
X Window System
User’s Guide

OPEN LOOK Edition

Final Draft

Ian Darwin, Valerie Quercia and Tim O’Reilly

Disclaimer
This book was written under a contract to O’Reilly & Associates. Due to the
announcement of the Common Desktop Environment (CDE) by Sun, HP, IBM,
Novell, and others, and the planned phaseout OPEN LOOK by Sun, O’Reilly
decided not to publish the book. Accordingly, it is being released as an unpublished
work. It is not being published by O’Reilly & Associates. This means that this ver-
sion hasnot been subjected to O’Reilly & Associates’ usual detailed editing and
quality-assurance process. Accordingly, neither O’Reilly & Associates, nor the
author, nor Darwin Open Systems assumes any liability for the accuracy of this
book, nor for errors & omissions.

Since the book is being distributed on CD-ROM, the manual pages referred to
throughout as being “in Section Three of this Guide” are in fact stored in theman
subdirectory of the CD-ROM instead.

In addition, work on this book was suspended for parts of 1993 and 1994, during a
time when it appeared that the work would never see the light of day. Some parts
have been updated for 1995, but other sections of the material will not refer to the
very latest versions of the software. Finally, since there are so many versions of
OpenWindows in circulation, we can’t say everything about all of them, so we try to
take a middle ground between the very latest and the older ones.We apologize for
any discrepancies, but wanted to bring the book to you in the most timely and cost-
effective way possible; this has meant sacrificing the task of updating all the screen-
shots and descriptions of the menu items in order to bring you a low-cost product
during a time when the OPEN LOOK Graphical User Interface is still widely used
in the Sun and Linux user communities.

Ian F. Darwin
March, 1995

For my best friend and wife Betty, whose time at
my side has vastly enriched my life , and who fed
the children and washed the dishes while I was
writing this book.

For Benjamin, Andy and Margartet who brought
snacks and smiles.

Trademarks

Apple, Apple LaserWriter, Apple LaserWriter Plus, MacIntosh (sp?) of Apple Computer...
Bembo and Gill Sans are trademarks of the Monotype Corporation Plc.
Helvetica is a trademark of Linotype AG and/or its subsidiaries.
ITC Avant Garde Gothic, ITC Bookman, ITC Zapf Chancery, and
ITC and Zapf Dingbats are registered trademarks of International Typeface Corporation.
Lucida is a registered trademark of Bigelow & Holmes.
New Century Schoolbook, Palatino , and Times are trademarks of Linotype AG and/or its subsid-
iaries.
OPEN LOOK was a trademeark of AT&T and is now a trademark of Novell Inc.
OSF/Motif is a trademark of the Open Software Foundation
PostIt (3M?)
PostScript is a trademark of Adobe
Rockwell is a trademark of The Monotype Corporation Plc.
Sun Workstation, OpenWindows, Sun-3, Sun-4, NeWS, X/NeWS, NeWSprint, AnswerBook,
SunPC are trademarks of Sun Microsystems Inc
SPARC is a trademark of SPARC International
Tek and Tektronix are trademarks Tektronic Incorporated.
UNIX has been a trademark of Bell Laboratories, AT&T, Western Electric, Unix System Labora-
tories Inc., Novell Inc., and others, and is now a trademark of X/Copen Co. Ltd..
X Window System is a trademark of either MIT or The X Consortium

Any other capitalizaed tradename should be presumed to be a trademark of the owner of that
product.

CHAPTER : 5

Preface... xxvii

Historical Update ..xxviii

Assumptions ...xxviii

Organization ... xxix

Historical Note .. xxxi

On the Complexity of X .. xxxii

xshowfonts.c and Other Free Programs ...xxxiii

X Window System Administrator’s Guide, with CD-ROM xxxiv

Other Books in this series .. xxxv

Bulk Sales Information .. xxxv

Request for Comments ... xxxvi

Font and Character Conventions .. xxxvi

Acknowledgments ... xxxvii

PART ONE: Using X with OpenWindows ..1

Chapter 1: An Introduction to OPEN LOOK and X Windows................................3

Anatomy of an X Display .. 5

Standard X Clients, OPEN LOOK Clients and Motif Clients .. 15

X Architecture Overview .. 20

The X Display Server .. 21

Clients .. 22

The ShellTool terminal emulator ... 23

The xterm Terminal Emulator .. 24

Other X Clients .. 24

Customizing Clients ... 27

Chapter 2: Working in the OPEN LOOK Environment ..29

Getting Started with X and OPEN LOOK .. 29

Logging In via the Special xdm Window .. 30

Logging In at a Full Screen Prompt: Starting OpenWindows or X 31

Starting on a 386 with SVR4 ... 34

Starting with an X Terminal ... 34

Selecting and Using a Window ... 35

Creating Additional Windows ... 36

6 X USER’S GUIDE: OPEN LOOK EDITION

Using the Pointer ...36

Selecting Text ...37

Menu Choices ...38

Pushing Buttons and Menu Buttons ...40

Other Controls ..41

Choice Items ...42

Exclusives and Non-Exclusives ..42

Checkbox ...44

Abbreviated Choice ...45

Sliding items ...45

Text Scrollbar ..45

Scrolling List ..46

Slider ...47

Gauge ..48

Text Fields ..48

Help Me ..50

Moving, Resizing, and Iconifying Windows ...51

Exiting an xterm or cmdtool Window ...52

Summary ..54

Chapter 3: Opening Additional Windows..55

Starting Additional Clients ..55

Command Line Options ...56

Window Geometry: Specifying Size and Location ..57

Running a Client on Another Machine: Specifying the Display61

Once You Run a Remote xterm using -display ..66

Logging In to a Remote System ...66

Complications: LD_LIBRARY_PATH ...66

Monitoring the Load on a Remote System ...67

Other Command Line Options ...67

Putting it All Together ...68

Customizing the X Environment: Specifying Resources ..69

Customizing your Session Start-up ...72

OpenWindows Specifics ..74

Where to Go From Here ..75

Chapter 4: The OPEN LOOK File Manager...77

What is a File Manager? ..77

CHAPTER : 7

Common Operations .. 79

Running programs .. 80

Change Directory ... 80

Moving or Copying Files ... 82

Deleting Files ... 84

Renaming Files .. 85

Displaying and Changing File Attributes (Properties) ... 86

Menu Bar Operations .. 87

File Menu Operations ... 88

Open .. 88

Print File ... 88

Create Folder ... 88

Create Document .. 89

Find ... 89

Remote Copy .. 90

Your own commands .. 92

Edit Menu Operations .. 92

Select All ... 93

Link .. 93

Copy .. 94

Cut and Paste ... 94

Goto Menu Operations ... 94

MENU button in the display .. 95

MENU button in the Wastebasket folder ... 95

Customizing the File Manager .. 95

View Menu Button ... 96

The View/Customize Properties Sheet .. 98

The Tool Properties Sheet .. 99

Customizing File Bindings ... 100

Binder: Customizing the File Manager in OpenWindows 100

Chapter 5: The Cmdtool/Shelltool Terminal Emulator.......................................103

Terminal Emulation and the sun-cmd Terminal Type .. 105

Resizing a cmdtool Window ... 105

The cmdtool Menus ... 107

The Cmdtool Term Pane Menu .. 107

The Shelltool Term Pane Menu ... 107

8 X USER’S GUIDE: OPEN LOOK EDITION

Using the OPEN LOOK Scrollbar ...108

Jumping with the scrollbar menu ...110

Splitting with the scrollbar ...111

Copying and Pasting Text Selections ..113

Selecting Text to Copy ..113

Copying or Cutting the text ...115

Replacing the text ...116

Pasting Text Selections ...116

Editing and Saving the History Log ...120

Clearing the log - a clean start ...120

Other Editing ...120

Saving ..120

Editing Text in OPEN LOOK Applications ..120

Editing with Textedit ...123

The Editing Keys ..124

The textedit menus ...125

The File menu ..127

The View menu ...128

The Edit, Find, and Extras Menus ...130

More About Text Selections ..130

Copying and Pasting between XView and MIT Clients: xcutsel130

Saving Multiple Selections: xclipboard ..130

Editing Text Saved in xclipboard ..130

Running a Program in a Temporary cmdtool Window ...131

Cmdtool as a Console Window ...131

Cmdtool/Shelltool/Textedit Menus Reference ..133

Other Terminal Emulator Programs ..134

Xterm ..134

Others ...135

Chapter 6: More about the OPEN LOOK Window Manager.............................137

Using Special Keys ..138

Input Focus and the Window Manager ..139

Focusing Input on an Icon ..139

Transferring the Focus with Keystrokes ...139

What to do if olwm Dies and the Focus is Lost ...140

The Workspace Menu (or Root Menu) ..140

The Window Menu: Moving, reshaping, and iconifying Windows144

CHAPTER : 9

The Virtual Desktop (Virtual Edges) .. 146

Moving windows with OLVWM ... 147

OLVWM Sticky Windows .. 148

Advantages of OLVWM .. 148

Limitations of OLVWM .. 149

The Future .. 149

The Workspace Manager (Properties Manager) ... 149

Chapter 7: The OpenWindows DeskSet Clients ...151

answerbook .. 152

audiotool .. 152

binder ... 155

calctool – the OpenWindows Calculator ... 155

Catalyst CDware ... 156

clock .. 157

cm – the OpenWindows Calendar Manager ... 158

Related Programs ... 165

cmdtool .. 166

dbxtool, debugger .. 166

filemgr ... 166

helpviewer ... 166

iconedit .. 166

mailtool – the OpenWindows Mail Interface .. 166

Sending a message ... 169

More Menus ... 169

Attachments ... 171

Menus in Compose Window .. 172

Saving and Printing Messages ... 172

Customizing Mailtool .. 173

Other Mail Programs .. 174

Pageview ... 175

Perfmeter ... 175

printtool – the OpenWindows Printer Interface .. 177

SearchIt - full text searching ... 178

ShowMe - graphical conferencing .. 180

tapetool – the OpenWindows Tape Interface .. 180

Listing and Extracting tape files .. 182

Writing Files with Tapetool ... 183

Setting Tapetool Properties .. 183

10 X USER’S GUIDE: OPEN LOOK EDITION

textedit ...184

Demonstration Programs and Games ..184

Summary ..186

Chapter 8: Other Standard Clients ..187

Desk Accessories ...188

Clock Programs: xclock and oclock ...188

A Scientific Calculator: xcalc ...190

Mail Notification Client: xbiff ..192

Monitoring System Load Average: xload ..193

Browsing Reference Pages: xman ..194

The xedit Text Editor ...199

Window and Display Information Clients ...205

Displaying Information about a Window: xwininfo ..205

Listing the Window Tree: xlswins ...208

Listing the Currently Running Clients: xlsclients ..210

Listing the Currently Running OpenWindows Clients: psps ...211

Getting Information about the Display: xdpyinfo ..212

Killing a Client Window ..212

Killing a Client with xkill ...213

Killing a window with pam NeWS-based (OpenWindows only)214

Demonstration Programs and Games ..215

Chapter 9: Graphics Clients ..217

Bitmap Gathering and Viewing ...217

Snapshot – the on-screen photographer (OpenWindows) ..218

xwd, xwud – Dump an X Window ...223

xpr, xdpr – Print an X Window ..223

Xloadimage ...225

Xv ..226

Bitmap Editing and Conversion ...231

iconedit (OpenWindows) ..231

bitmap ...234

touchup (SunView only) ...236

Magnifying Portions of the Screen: xmag ..237

What xmag Shows You ...239

Dynamically Choosing a Different Source Area ...240

The Portable Bitmap Toolkit ..240

CHAPTER : 11

Commercial Desktop Graphics Offerings ... 242

Arts & Letters ... 243

IslandPaint, IslandDraw ... 243

Artisan .. 243

Adobe Illustrator .. 243

Corel Draw ... 243

PostScript Viewing and Editing .. 243

Pageview (OpenWindows only) .. 244

Other PostScript Viewers ... 248

Font Editing ... 248

PART TWO: Customizing X and OpenWindows..251

Chapter 10: Font Specification..253

Font Naming Conventions .. 254

Font Families .. 255

Scalable Fonts .. 260

Stroke Weight and Slant .. 261

Font Sizes ... 262

Other Information in the Font Name .. 264

Font Name Wildcarding .. 266

The Font Search Path .. 268

The fonts.dir Files (Standard X server) ... 270

Font Name Aliasing .. 271

Aliases—X11R5 and OpenWindows 3.3 Server ... 271

Aliases—Older OpenWindows XNews Server ... 273

Making the Server Aware of Aliases ... 273

Utilities for Displaying Information about Fonts .. 274

The Font Displayer: xfd ... 274

Previewing and Selecting Fonts: xfontsel .. 275

Previewing Fonts with the xfontsel Menus ... 276

Selecting a Font Name .. 279

The “text” demo program (OpenWindows up to 3.2) .. 279

Chapter 11: Command Line Options ..283

Window Title and Application Name ... 287

Starting a Client Window as an Icon ... 288

Specifying Fonts on the Command Line ... 288

12 X USER’S GUIDE: OPEN LOOK EDITION

Reverse Video ..289

Specifying Color ..289

The rgb.txt File ...290

X11 Release 4 Color Names ...290

Alternative MIT X11 Release 4 and 5 Color Databases ..292

MIT X11R5 Color Extensions ..292

Hexadecimal Color Specification ...292

The RGB Color Model ..292

How Many Colors are Available? ...294

Border Width ...296

xterm and cmdtool example ...296

Summary ..296

Chapter 12: Setting Resources..297

Resource Naming Syntax ..298

Syntax of Toolkit Client Resources ..299

Tight Bindings and Loose Bindings ...300

Instances and Classes ...301

Precedence Rules for Resource Specification ..302

Some Common Resources ..303

Event Translations ...304

The Syntax of Event Translations ..305

xterm Translations to Use xclipboard ...307

Entering Frequently Used Commands with Function Keys308

Other Clients that Recognize Translations ..310

How to Set Resources ..310

A Sample Resources File ..311

Specifying Resources from the Command Line ...312

The –xrm Option ...312

The –name Option ...313

Setting Resources with xrdb ..313

Querying the Resource Database ..314

Loading New Values into the Resource Database ...314

Saving Active Resource Definitions in a File ..315

Removing Resource Definitions ...316

Listing the Current Resources for a Client: appres ...316

Other Sources of Resource Definition ..317

CHAPTER : 13

Chapter 13: Customizing the OPEN LOOK Window Manager319

The Workspace Menu ... 319

Level 1 Customization (AT&T-OL) .. 320

Level 2 Customization (OpenWindows) .. 320

OPEN LOOK Window Manager Command Line Options ... 324

OPEN LOOK Window Manager Options -AT&T-OL Version 324

OPEN LOOK Window Manager Options - OpenWindows Version 324

Debugging Options ... 325

Generic Options .. 325

Configuring OLWM with resources ... 325

Resources for Configuration —AT&T-OL .. 325

Resources for Configuration — OpenWindows .. 327

Chapter 14: Customization Clients ...331

Properties Resource Editor .. 331

Starting The Properties Editor .. 332

Programs Menu Category .. 334

Color Property Category - OpenWindows ... 334

Icons Property Category ... 335

Menus Property Category .. 336

Mouse Setting Property Category .. 336

Miscellaneous Property Category .. 336

Beep .. 337

Window layering Individually| As A Group ... 337

StartOPEN LOOK at login Yes|No ... 337

SELECT Mouse Press Displays Default|Displays Menu 337

Help Model Input Focus|Pointer (AT&T-OL) ... 338

Set Input Area Click Select|Move pointer .. 338

Interface Appearance 2D|3D ... 338

Mnemonics Off|Underline|Highlight|On-Don’t’ Show ... 338

Accelerators Off|On-Show|On-Don’t Show .. 338

Scrollbar Placement Left|Right .. 338

14 X USER’S GUIDE: OPEN LOOK EDITION

xset: Setting Display and Keyboard Preferences ...338

Keyboard Bell ...339

Bug Compatibility Mode ...339

Keyclick Volume ...339

Enabling or Disabling Auto-repeat ...340

Changing or Rehashing the Font Path ...340

Keyboard LEDs ...340

Pointer Acceleration ..341

Screen Saver ..341

Color Definition ..342

Help with xset Options ..342

xsetroot: Setting Root Window Characteristics ...343

Setting Root Window Patterns ...343

Foreground Color, Background Color, and Reverse Video ...344

Changing the Root Window Pointer ...345

xmodmap: Modifier Key and Pointer Customization ..346

Keycodes and Keysyms ..348

Procedure to Map Modifier Keys ...349

Displaying the Current Modifier Key Map ..349

Determining the Default Key Mappings ..350

Matching Keysyms with Physical Keys Using xev ..351

Changing the Map with xmodmap ...352

Expressions to Change the Key Map ..353

Key Mapping Examples ..354

Displaying and Changing the Pointer Map ..355

xkeycaps - visual keyboard mapping ...357

PART THREE: Reference Manual Pages ..359

(Not included in this printing; see the Man directory on the CD-ROM)

PART FOUR: Appendices ...361

Appendix A: The xterm Terminal Emulator...363

Terminal Emulation and the xterm Terminal Type ...364

Resizing an xterm Window ...365

Using the Athena Scrollbar ..366

CHAPTER : 15

Copying and Pasting Text Selections — MIT and OpenWindows Only 368

Selecting Text to Copy ... 369

Pasting Text Selections .. 372

More About Text Selections ... 373

Saving Multiple Selections: xclipboard ... 373

Problems with Large Selections .. 377

Editing Text Saved in the xclipboard .. 377

Running a Program in a Temporary xterm Window ... 378

The xterm Menus — MIT, OpenWindows ... 378

The Main Options Menu .. 380

VT Options Menu .. 384

VT Fonts Menu .. 386

Tek Options Menu ... 387

The xterm Menus—AT&T/olterm Version .. 388

AT&T-OL xterm Edit Menu .. 388

AT&T-OL xterm Properties Window .. 389

AT&T-OL xterm Tek mode menus ... 389

AT&T-OL Keyboard Shortcuts ... 390

Changing Fonts in xterm Windows ... 390

The Great Escape .. 390

The Selection Menu Item .. 392

Appendix B: OpenWindows and X11 Standard Fonts393

Pictures of Fonts .. 393

Fonts in the X11R5/6 (and modern OpenWindows) Servers .. 394

Fonts in the xnews Server ... 407

Font Formats .. 407

PostScript fonts and ldf .. 408

Font Samples ... 410

Font Encodings .. 410

Appendix C: Standard Bitmaps for X11, OLIT and XView...............................417

Appendix D: Standard Cursors ...419

Cursors .. 419

16 X USER’S GUIDE: OPEN LOOK EDITION

Appendix E: cmdtool and xterm Control Sequences..423

cmdtool/shelltool Control Sequences ..423

xterm Control Sequences ...425

Definitions ..425

VT102 Mode ..425

Tektronix 4014 Mode ...432

Appendix F: Translation Table Syntax ...435

Event Types and Modifiers ..435

Detail Field ...438

Modifiers ..438

Complex Translation Examples ...439

Appendix G: Introduction to Xt Widget Resources..441

The Widget Class Hierarchy ..441

Widgets in the Application ..445

What all this Means ...448

Complications ..449

Appendix H: OPEN LOOK Intrinsics Toolkit Widget Resources......................451

Historical Note ...451

Appendix I: Athena Widget Resources...453

Box ...453

Resources ..453

Command ...454

Resources ..454

Translations and Actions ..454

Dialog ..455

Resources ..455

Form ...455

Resources ..456

Grip ..457

Resources ..457

Translations and Actions ..457

CHAPTER : 17

Label .. 457

Resources ... 457

List ... 458

Resources ... 458

Translations and Actions .. 459

MenuButton ... 459

Resources ... 459

Translations and Actions .. 459

Paned ... 460

Resources ... 460

Scrollbar .. 462

Resources ... 462

Translations and Actions .. 463

Simple .. 464

Resources ... 464

SimpleMenu .. 464

Resources ... 464

Translations and Actions .. 465

Sme .. 465

Resources ... 465

SmeBSB .. 465

Resources ... 465

SmeLine .. 466

Resources ... 466

StripChart .. 466

Resources ... 467

Text .. 467

Resources ... 467

Translations and Actions .. 468

Cursor Movement Actions .. 468

Delete Actions ... 469

Selection Actions .. 470

New Line Actions ... 470

Kill Actions ... 471

Miscellaneous Actions .. 471

Event Bindings .. 472

Toggle .. 474

Resources ... 475

Translations and Actions .. 475

Radio Groups ... 476

18 X USER’S GUIDE: OPEN LOOK EDITION

Viewport ..476

Resources ..476

The index continues on the next page.

CHAPTER : 19

Appendix J: OPEN LOOK XVIEW Toolkit Resources479

The XView Resources ... 479

Window.Scale .. 479

Argument(s): ... 479

Type: ... 479

Default: ... 479

Font.Name .. 480

Argument(s): ... 480

Type: ... 480

Default: ... 480

Window.Width and Window.Height ... 480

Argument(s): ... 480

Type: ... 480

Default: ... 480

Window.X and Window.Y ... 480

Argument(s): ... 480

Type: ... 480

Default: ... 480

Argument(s): ... 481

Type: ... 481

Default: ... 481

Icon.X Icon.Y ... 481

Argument(s): ... 481

Type: ... 481

Default: ... 481

Window.Header ... 481

Argument(s): ... 481

Type: ... 481

Default: ... 481

Window.Iconic ... 481

Argument(s): ... 481

Type: ... 482

Default: ... 482

Window.Color.Foreground .. 482

Argument(s): ... 482

Type: ... 482

Default: ... 482

Window.Color.Background ... 482

Argument(s): ... 482

Type: ... 482

20 X USER’S GUIDE: OPEN LOOK EDITION

Default: ..482

Window.Color.Foreground ...482

Argument(s): ...482

Type: ..482

Default: ..482

Window.Color.Background ..483

Argument(s): ...483

Type: ..483

Default: ..483

Icon.Pixmap ..483

Argument(s): ...483

Type: ..483

Default: ..483

Icon.Footer ..483

Argument(s): ...483

Type: ..483

Default: ..483

Icon.Font.Name ..484

Argument(s): ...484

Type: ..484

Default: ..484

Window.Synchronous ..484

Argument(s): ...484

Type: ..484

Default: ..484

Server.Name ...484

Argument(s): ...484

Type: ..484

Default: ..484

Window.Mono.DisableRetained ..484

Argument(s): ...484

Type: ..485

Default: ..485

Fullscreen.Debug ..485

Argument(s): ...485

Type: ..485

Default: ..485

Fullscreen.Debugserver ..485

Argument(s): ...485

Type: ..485

CHAPTER : 21

Default: ... 485

Fullscreen.Debugkbd ... 485

Argument(s): ... 485

Type: ... 486

Default: ... 486

Fullscreen.Debugptr ... 486

Argument(s): ... 486

Type: ... 486

Default: ... 486

Window.ReverseVideo .. 486

Argument(s) .. 486

Type: ... 486

Default: ... 486

window.synchronous, +sync -sync .. 486

Values: .. 486

mouse.modifier.button2 ... 487

Values: .. 487

mouse.modifier.button3 ... 487

Values: .. 487

OpenWindows.beep (Props) .. 487

Values: .. 487

alarm.visible ... 487

Values: .. 487

Values: .. 487

OpenWindows.workspaceColor (Props) .. 487

Values: .. 487

xview.icccmcompliant ... 488

Values: .. 488

OpenWindows.3DLook.Color ... 488

Values: .. 488

OpenWindows.dragRightDistance (Props) .. 488

Values: .. 488

Selection.Timeout .. 488

Values: .. 488

OpenWindows.MouseChordMenu .. 488

Values: .. 488

OpenWindows.MouseChordTimeout .. 488

Values: .. 488

OpenWindows.SelectDisplaysMenu (Props) ... 489

Values: .. 489

22 X USER’S GUIDE: OPEN LOOK EDITION

OpenWindows.popupJumpCursor (Props) ...489

Values: ...489

notice.beepCount ..489

Values: ...489

OpenWindows.scrollbarPlacement (Props) ..489

Values: ...489

OpenWindows.multiClickTimeout (Props) ..489

Values: ...489

text.delimiterChars ...489

Values: ...489

scrollbar.jumpCursor (Props) ...490

Values: ...490

scrollbar.repeatDelay ..490

Values: ...490

scrollbar.pageInterval ...490

Values: ...490

scrollbar.lineInterval ...490

Values: ...490

keyboard.deleteChar ...490

Values: ...490

keyboard.deleteWord ..491

Values: ...491

keyboard.deleteLine ...491

Values: ...491

text.maxDocumentSize ...491

Values: ...491

text.retained ..491

Values: ...491

text.extrasMenuFilename ...491

Values: ...491

text.enableScrollbar ..492

Values: ...492

text.againLimit ..492

Values: ...492

text.autoIndent ..492

Values: ...492

text.autoScrollBy ..492

Values: ...492

text.confirmOverwrite ..492

Values: ...492

CHAPTER : 23

text.displayControlChars .. 492

Values: .. 492

text.undoLimit .. 492

Values: .. 492

text.insertMakesCaretVisible ... 493

Values: .. 493

text.lineBreak ... 493

Values: .. 493

text.margin.bottom ... 493

Values: .. 493

mouse.multiclick.space .. 493

Values: .. 493

text.storeChangesFile ... 493

Values: .. 493

text.margin.top ... 493

Values: .. 493

text.margin.left ... 493

Values: .. 493

text.margin.right ... 494

Values: .. 494

text.tabWidth .. 494

Values: .. 494

term.boldStyle .. 494

Values: .. 494

term.inverseStyle .. 494

Values: .. 494

term.underlineStyle .. 494

Values: .. 494

term.useAlternateTtyswrc .. 494

Values: .. 494

term.alternateTtyswrc .. 495

Values: .. 495

term.enableEdit .. 495

Values: .. 495

24 X USER’S GUIDE: OPEN LOOK EDITION

Internationalized Command Line Resource Arguments ..495

basicLocale ...495

Argument(s): ...495

Type: ..495

Default: ..495

displaylang ..495

Argument(s): ...495

Type: ..495

Default: ..495

inputLang ..496

Argument(s): ...496

Type: ..496

Default: ..496

numeric ...496

Argument(s): ...496

Type: ..496

Default: ..496

timeFormat ...496

Argument(s): ...496

Type: ..496

Default: ..496

Appendix K: OPEN LOOK Mouseless Keyboard Summary.............................497

AT&T Mouseless Operations ..497

OpenWindows Mouseless Operations ...498

Appendix L: SunView Applications under OpenWindowsI...............................505

The Similarities ..506

The Differences ...507

Always at the forefront... ..507

Pointer and Menu Conventions ..508

Pointer button conventions ...508

The Root Menu ..509

The Window Menu ..509

Keyboard Shortcuts ...510

SunView Customization Files ...510

The Defaults files vs. X11 Defaults ...510

SunView Controls ..511

CHAPTER : 25

Command Line Arguments ... 512

Setup ... 513

“OPEN LOOK/SunView” ... 513

Future Directions ... 514

Appendix M: Working with Motif ..515

Working with Motif Applications ... 515

Dialog Boxes and Push Buttons ... 515

Menu Bars and Pull-down Menus .. 517

File Selection Box .. 518

Selecting a File from the Files Box ... 520

Choosing a File from another Directory in the Directories Box 520

Choosing a File from Another Directory on the System .. 520

The Motif Scrollbar .. 521

Drawn Buttons .. 523

Radio Boxes and Toggle Buttons ... 523

Motif Applications under OLWM ... 524

OPEN LOOK Applications under mwm ... 525

X-based clients ... 525

NeWS-based clients ... 525

Appendix N: OPEN LOOK Software Availability ...527

Applications: Application Builders ... 527

Applications: Graphing Tools ... 528

Applications: Other ... 529

PostScript and Graphics Viewers .. 531

Tools: Terminal Emulators .. 532

Other Commercial Applications .. 532

Applications: toolkit Extensions ... 532

OpenWindows 3 Ports ... 534

XView 3 Ports ... 534

XView 2 Ports ... 535

Games (free and commercial) ... 536

26 X USER’S GUIDE: OPEN LOOK EDITION

Glossary ...537

Documentation Roadmap and Bibliography..557

Other Books in the O’Reilly X Window System Guides series ..557

Books about OPEN LOOK ..558

Writing Programs for OPENLOOK ..558

 NeWS, PostScript and Display PostScript ..559

Sun Documentation Roadmap ...559

Books about ToolTalk ...560

Sun’s AnswerBook ..560

Frequently Asked Questions (FAQ) lists ...560

Colophon ..587

About the authors ...587

PREFACE xxvii

Chapter 1X USER’S GUIDE: OPEN LOOK EDITION

Preface

TheOPEN LOOK GUIis a popular user interface style (also called a “graphical user inter-
face,” orGUI) for programs running on window systems like The X Window System. X11
itself is a network-based graphics windowing system developed at MIT and widely
adopted as an industry standard. But X11 only provides the foundation and skeleton of a
window system, just as concrete and wood provide the foundation and framework for a
house. The material that you put on the outside will significantly affect both how the final
edifice looks and how comfortable it will be to live and work in, be that edifice a house or
a window system. One exterior, or Graphical User Interface, that became popular in the
late 1980’s and early 1990’s isOPEN LOOK. TheOPEN LOOK GUI was designed by Sun
and AT&T with help from Xerox, and is based in part—like otherX11 GUIs such as
OSF/Motif, and other window systems such as the Apple Macintosh—on pioneering work
done in the late 1960’s and 1970’s at Xerox Palo Alto Research Center (PARC) and other
research sites.OPEN LOOK has also been influenced by a family resemblance to SunView,
Sun’s earlier, very successful, and long-popular workstation window system.

If you are new to X, you may be wondering why you should consider theOPEN LOOK GUI.
First of all,OPEN LOOK has many features that make it more intuitive and easier to use
than other X-based user interfaces. For example, frequently-accessed menus can be
“pinned up” for as long as you need them. As well, the graphical elements each have a dis-
tinctive shape—a button is always oval, a pull-down menu is always shown by a small
triangle, etc.—which makes it easier to spot buttons, pull-down menus, etc., than when
using a GUI that uses rectangular shapes for everything. And of course if you have previ-
ously used SunView, you will find much that is familiar in theOPEN LOOK GUI.

In addition, theOPEN LOOK GUI specifies the behavior of certain key applications such as
the File Manager (other GUIs do not specify this, and thus several different and incompat-
ible “desktop managers” are available at extra cost). Comprehensive implementations such
as Sun’s OpenWindows include a suite of useful “deskset” applications that make the inter-
face much more than a bare-bones “look and feel.” OpenWindows includes (in addition to

xxviii X USER’S GUIDE: OPEN LOOK EDITION

the File Manager) a set of useful tools called the DeskSet, which includes a calendar man-
ager for scheduling appointments among people in your workgroup, a multi-media mail
tool that can include audio files and graphical images in mail messages, tools for control-
ling printers, etc. All of these are either not available or cost a significant amount of extra
money when using other GUIs.

Because theOPEN LOOK GUI is a specification, there are several implemtnations of it.
Some of the complexity of this volume derives from listing the differences amont them The
X Window System User’s Guide, OPEN LOOK Edition covers the most popular implemen-
tation of theOPEN LOOK GUI, Sun’s OpenWindows Version 3.* Much of the information
is also applicable toAT&T ’s OPEN LOOK 4 software, and indeed much of it is applicable
to any version of The X Window System.

We describe the basic concepts of window systems and terminology, the application pro-
grams (clients) commonly included with these packages as well as some free-software
clients that you may wish to obtain on your own, and how client programs behave under
OPEN LOOK. TheOPEN LOOK edition is intended for those using X with theOPEN LOOK
interface. There are also Motif and “generic (MIT) X11” versions of this book available
from O’Reilly & Associates.

Historical Update
The OPEN LOOK Graphical User Interface has been abandoned by its two sponsors, Sun
andAT&T , as part of the Common Open Systems Environment process’ Common Desktop
Environment (CDE). As a result, there is no new commercial development ofOPEN LOOK
applications. Most commercial software for X is now being deveoped for Motif, since that
is the basic GUI specified by CDE. However, the availability of the XView toolkit as free
software and its popularity in the Linux field, as well as the large market share of Sun
Microsystems workstations, all of which still (March 1995) ship withOPEN LOOK as their
default windowing environment, ensures thatOPEN LOOK will remain popular for some
years to come.

Assumptions
This book assumes that the OpenWindows package or anotherOPEN LOOK package is
already installed on yourUNIX system in the standard locations, and that all standardOPEN
LOOK clients are available (if not, consult the appropriate vendor’s documentation, or refer
to Volume Eight,X Window System Administrator’s Guide). If you are on Linux, then most
of the Sun Deskset tools will not be available, though you may be able to run them
remotely across the network. This book also assumes that you have basic familiarity with
TheUNIX Operating System. It is probable that theOPEN LOOK GUI will be “ported” or
made available on operating systems other thanUNIX; the XView toolkit, for example, has
been ported to every major version ofUNIX and is commercially available for Digital

* Version 3 is standard on Solaris 1.0 (SunOS 4.1.2) on SPARC, and Solaris 2 (SunOS SVR4) on both SPARC
and Intel. Much of the information also applies to OpenWindows Version 2, though the DeskSet clients and the
operation of drag-and-drop are different. We do not mention all the differences, but do provide some coverage of
OpenWindowsV2 because it’s the last version that Sun is making available for the Sun-3 product family line.

PREFACE xxix

Equipment’sVMS operating system. And Quantum Software’s QNX operating system
uses theOPEN LOOK GUI as the interface to QNX Windows. If you are using theOPEN
LOOK GUI on an operating system other thanUNIX you will still find this book use-
ful—UNIX dependencies are not that widespread—but you may occasionally need to
translate a command example into its equivalent on your system. This book also assumes
that you are using a three-button mouse, and that the configuration files provided by your
vendor forolwm and the clients have not been extensively modified locally. (If this is not
the case, the book provides information that will allow you to understand how these pro-
grams can be configured on your system.)

In a few places we refer to “contributed” software. Most of theOPEN LOOK-specific free
software is included with the CD-ROM accompanying this book. If this is not available on
your system, you can either ignore the information—none of these programs is critical,
though we have included some that are useful—or you can obtain them in source form by
ftp or uucp from UUNET or elsewhere, then useimake to compile them. SeeXshowfonts
and Other Free Programs below for details.

This book is written for both first-time and experienced users of theOPEN LOOK GUI on
the X Window System. First-time users should read the book in order, starting with Chap-
ter 1,An Introduction to OPEN LOOK and the X Window System.

Experienced users of other X11 variants can use this book either to learn the specifics of
OPEN LOOK—start with Chapter 2,Working in the OPEN LOOK Environment—or as a
reference for the client programs detailed here. Since there is great flexibility with X, even
frequent users need to check the syntax and availability of options. Reference pages for
common client programs list command-line options, customization database (resource
database) variables, and other details.

Organization
The book contains these parts:

Part One: Using X and OPEN LOOK
ThePrefacedescribes the book’s assumptions, audience, organization, and conventions.

Chapter 1,An Introduction to OPEN LOOK and the X Window System, describes the basic
terminology associated withOPEN LOOK and the X Window System: server, client, win-
dow, etc. The most important client programs are described.

Chapter 2,Working in the OPEN LOOK Environment, shows how to start the programs
necessary to begin using X: the server, the first terminal window, and the window manager.
It teaches the skills necessary to begin working productively. This chapter also shows you
how to add additional windows; exit from a window; use the tools of the display; do some
basic window manager operations using the olwm window manager, and set up the display.

Chapter 3,Opening Additional Windows, describes how to start additional client windows.
You are introduced to two methods of customizing X client programs: command-line

xxx X USER’S GUIDE: OPEN LOOK EDITION

options and resource variables. In addition, Chapter 3 shows you how to identifyOPEN
LOOK clients, X Toolkit clients, and Motif clients.

At this point you will want to startusing the system. If you prefer a visual, icon-oriented
method of using computers, you should learn to use the File Manager. If you are familiar
with the UNIX command-line interface, you should learn to use thecmdtool terminal
emulator.

Chapter 4,Using the OPEN LOOK File Manager, discusses theOPEN LOOK File Man-
ager, a comprehensive user-interface program. It shows the small differences between the
Sun andAT&T versions.

Chapter 5,The cmdtool/shelltool Terminal Emulator, tells you how to use Sun’s terminal
emulator. Certain aspects of its operation apply to otherOPEN LOOK clients as well, par-
ticularly textedit(1) and to allOPEN LOOK clients that have “text fields.” For this reason,
textedit(1) is described in this chapter. The other commonly-used terminal emulator,xterm,
is described in Appendix A,The xterm/olterm Terminal Emulator.

Chapter 6,Using the OPEN LOOK Window Manager, describes additional window man-
ager operations, such as resizing windows and changing the order of windows in the stack
on your screen. It also describes the minor differences between the Sun andAT&T
versions.

Chapter 7,The OpenWindows DeskSet Clients, describes the DeskSet clients that Sun’s
OpenWindows package includes: Multimedia Mail Tool and Audio Tool that let you
record, play back, and send and receive verbal or other sound data; the Calendar Manager
for scheduling individual or group appointments,print tool, tape tool, perfmeter, clock,
calculator, iconedit, binder, and two online documentation facilities, Answerbook and the
Help Viewer.

The following programs, though strictly speaking part of the DeskSet, are described else-
where:File Manager(described in Chapter 4,Using the OPEN LOOK File Manager),
cmdtool/shelltooland textedit (described in Chapter 5,The cmdtool/shelltool Terminal
Emulator), and snapshot(described in Chapter 9,Graphics Clients).

Chapter 8,Other Standard Clients, gives an overview of other clients available with stan-
dard distributions of The X Window System, including window and display information
clients, thexkill program, and several “desk accessories.” In describing various MIT stan-
dard clients, this chapter highlights some features of the Athena widget set.

Chapter 9,Graphics Clients, explains how to use the major graphics clients included with
The X Window System andOPEN LOOK and OpenWindows. TheOPEN LOOK programs
include thesnapshotand olprintscreen screen capture programs, and the olpixmap and
iconedit icon editors. The standard clients includexwd, xpr, andbitmap. The chapter ends
with sections on PostScript previewing and font editing.

Part Two: Customizing X
Chapter 10,X11, OPEN LOOK and OpenWindows Font Specification, describes the some-
what complicated font naming conventions and ways to simplify font specification,
including wildcarding and aliasing, for both regular and scaleable fonts. It describes how

PREFACE xxxi

to use thexlsfonts, xfd, andxfontsel clients and the OpenWindowstext demo to list, display,
and select available display fonts.

Chapter 11,Command-line Options, discusses some of the standard command line options
accepted by most X11 clients, be they MIT clients or OpenWindows clients.

Chapter 12,Setting Resources, shows you how to create an.Xdefaults file to set default
characteristics for client applications. Also discusses the tool (calledProperties... on Open-
Windows and “Workspace Manager” onAT&T-OL) that maintains your.Xdefaultsfile for
you. This chapter also describes how to usexrdb, which saves you from having to main-
tain multiple.Xdefaults files if you run clients on multiple machines.

Chapter 13,Customizing olwm, describes the process of customizingolwm by showing the
default configuration files shipped by Sun andAT&T , and examines the purpose and syntax
of entries. It explains techniques for revising the files to modify existing menus and create
new ones. Chapter 13 also reviews the X resources that can be used to contrololwm.

Chapter 14,Customization Clients, describes how to set display and keyboard preferences
usingxset and how to set root window preferences usingxsetroot. Chapter 14 also demon-
strates how to usexmodmap to redefine the logical key names and pointer commands
recognized by X. In addition, we describe some general customizing utilities, such as
binder, which updates the file manager’s list of icons and programs.

Part Three: Client Reference Pages
Presents extended reference pages for three versions of the server (MIT, AT&T and Sun) as
well as all clients mentioned in this manual. These are in the standardUNIX “manual page”
format and should be familiar to users of TheUNIX Operating System orUNIX-like sys-
tems; for others, the format is described briefly at the beginning of this Part.

Historical Note
The Client Reference Pages are not included in the body of this book, but most of them are
included in themansubdirectory of the CD-ROM accompanying this book.

Part Four: Appendices
Appendix A,The xterm/olterm Terminal Emulator, describes how to use thexterm termi-
nal emulator. Certain aspects ofxterm operation described in this chapter, such as scrolling
and “copy and paste,” are common to other X Toolkit applications as well.

Appendix B,OpenWindows and X11 Fonts, discusses the fonts included with OpenWin-
dows and standard X11 releases, and shows how to add your own fonts.

Appendix C,Standard Bitmaps - X11, OPEN LOOK and OpenWindows, describes the
standard bitmap images that you can use for showing as icons, in your root window, etc.

Appendix D,Standard Cursors - X11 and OPEN LOOK, shows the standard cursors, and
describes what some of them mean.

Appendix E,Control Sequences for xterm and cmdtool, describes the “escape sequences”
used to control thecmdtool andxterm terminal emulators.

xxxii X USER’S GUIDE: OPEN LOOK EDITION

Appendix F,X Toolkit Translation Table Syntax, deescribes the translation tables used by
Xt libraries—OLIT and Motif.

Appendix G,Introduction to Xt Widget Resources, gives an introduction to the ways that
Xt toolkits such asOLIT fit “Widgets” together.

Appendix H,OPEN LOOK Intrinsics Toolkit Widget Resources, is not included in this
book for reasons of copyright. But most of the programs we discuss are based on XView,
so the material in Appendix J will be more relevant anyway. If you are using OLIT, you
have the manual pages with your toolkit that describe the X Resources they use..

Appendix I,Athena Widget Resources, describes the Resources used by the standard MIT
clients.

Appendix J,OPEN LOOK XView Toolkit Resources, describes the resources used by the
OPEN LOOK XView toolkit.

Appendix K,OPEN LOOK Mouseless Operations, summarizes the editing keys that can be
used to perform window operations from the keyboard.

Appendix L,Running SunView Applications on OpenWindows, discusses how SunView
applications differ from X applications under OpenWindows

Appendix M,OPEN LOOK and Motif, describes how to use Motif applications in relative
harmony withOPEN LOOK applications. Discusses both Motif applications under the
OPEN LOOK Window Manager andOPEN LOOK applications under the Motif Window
Manager,mwm.

Appendix N,OPEN LOOK Software Availability, describes the availability of software
that implements and uses theOPEN LOOK GUI.

TheGlossaryprovides a list of the important technical terms and their meanings.

The Documentation Roadmap and Bibliographywill describe the vendor documentation
and some additional reading.

Index

On the Complexity of X
One complaint you’ll hear over and over about the X Window System is that it’s too com-
plicated. One reason for this attitude is that X is widely available, and as a result many
programmers have turned their hand to extending it. As a result of that, there are many dif-
ferent ways to do even the simplest thing. We make no apology for here documenting
several ways to do most everything, as it is as yet too early in the evolution of X to tell
which will survive and become widely used. Yes, X appears complex because it has many
variations. But you seldom need to know more than one way of doing something, so we
offer this advice to the X-struck:

Try out a few ways of doing something. Remember the one that works best for you; forget
all the rest.

PREFACE xxxiii

xshowfonts.c and Other Free Programs
There is a lot of free or contributed software to accompany The X Window System. Indeed,
Sun Microsystems has contributed the source for their XView toolkit and several accom-
panying clients. The two most important sources of this software in North America are
UUNET—a non-profit networking site established by theUSENIX Association—and
export.lcs.mit.edu, an anonymous-ftp site set up by The X Consortium.

The source toxshowfonts.c, which is printed in Appendix C,Standard Bitmaps – X11,
OPEN LOOK and OpenWindows, is included in the CD-ROM that accompanies this book.
If you have received only a printed copy of the book, this program is also available free
from Uunet (although there is a small connect-time charge if you use their dial-up service).
If you have access toUUNET, you can retrieve the source code usinguucp or ftp. Foruucp,
find a machine with direct access toUUNET, and type the following command:

uucp uunet!~uucp/published/nutshell/Xuser/xshowfonts.c.Z \
yourhost!~/yourname

The exclamation marks (!) wil need to be escaped with a backslah if you use the C-shell
(csh) instead of the Korn or Bourne shell. The file should appear some time later (up to a
day or more) in the directory/usr/spool/uucppublic/yourname.

You don’t need to subscribe to Uunet to be able to use their archives viauucp, within the
U.S.A. By calling 1-900-468-7727 and using the login “uucp” with no password, anyone
may uucp any of UUNET’s on-line source collection. Start by copyinguunet!~/ls-lR.Z,
which is a compressed index of every file in the archives. Peruse this file to get an idea of
the programs available. The fileuunet!~/published/nutshell/ls-lR.Zcontains a listing of
the files in thepublished/nutshell s ubdirectory (example programs for our books). As of
this writing, the cost is 40 cents per minute. The charges will appear on your next telephone
bill.

It is more common today to access UUNET vit the Internet. To useftp, you will need to
find a machine with direct access to the Internet. The following example is a sample ses-
sion, with commands in boldface.

% ftp ftp.uu.net
Connected to ftp.uu.net.
220 uunet FTP server (Version 5.99 Wed May 23 14:40:19 EDT 1990)
ready.
Name (ftp.uu.net:ambar): anonymous
331 Guest login ok, send ident as password.
Password: vol3ol@ora.com (use your user name and host here)
30 Guest login ok, access restrictions apply.
ftp> cd published/nutshell/Xuser
250 CWD command successful.
ftp> binary (you must use binary transfer for compressed files)
200 Type set to I.
ftp> get xshowfonts.c.Z
200 PORT command successful.

xxxiv X USER’S GUIDE: OPEN LOOK EDITION

150 Opening ASCII mode data connection for xshowfonts.c.Z (5587
bytes).
226 Transfer complete.
ftp> quit
221 Goodbye.
%

The file is a compressed C program. To uncompress the program, type:

% uncompress xshowfonts.c

Thecompress(anduncompress) programs are now shipped with most vendors’ versions of
UNIX and are included in System V Release 4.If you do not have them, you can get the
source code (in uncompressed form, of course) from Uunet.

Finally, if you are on the Internet, the machineexport.lcs.mit.eduis the X Consortium’s
public ftp machine; it includes the official (latest release) distribution, as well as a terrific
amount of contributed software. There are other X archive sites around the Internet; con-
sult the Frequently Asked Questions article in the mailing listxpert@expo.lcs.mit.edu or
theUSENET groupcomp.windows.x for an up-to-date list of archive sites.

These programs normally come in compressed form (as the example above) or in “com-
pressed tar” form. The general assumption is that a C programmer will unpack, compile
and install them. But it’s not that hard to do this if you are not a programmer. A simple rec-
ipe is include in the bookX Window System Administrator’s Guidedescribed below.

X Window System Administrator’s Guide, with CD-ROM
X11 sources are also available bundled with a copy of Volume Eight,X Window System
Administrator’s Guide (O’Reilly & Associates, 1992).CD-ROM drives are now available
for just about every workstation. ManyUNIX vendors now distribute their operating sys-
tems only on CD, requiring you to buy a player. SunOS, DEC Ultrix, and SGI IRIX are
currently shipping onCD-ROM, as are (optionally) MicroSoft Windows and hundreds of
commercial applications, with more vendors expected to follow.

In fact, CD-ROM drives are now cheap enough that it’s worth getting aCD-ROM drive and
this disk even if you already have the full source of X11, because the magnetic disk space
you free up can be put to other, more productive purposes.

The CD includes:

■ “Rock Ridge”CDROM drivers from Young Minds, so you can install the CD as aUNIX
filesystem on severalUNIX platforms (current releases of SunOS already include Rock
Ridge format CD’s).

■ Complete “core” source for MIT X11 Release 4 and 5. This includes the new R5 fea-
tures, such as the font server andXCMS, the color management system.

■ Complete “contrib” source for MIT X11 Release 5. This includes the complete source
for the XViewOPEN LOOK toolkit and several sample clients, as well as some programs
not in the MIT distribution, such asxtici, the Tektronics Color Editor.

■ Complete examples and source code from all the books in the X Window System Series.

PREFACE xxxv

■ Programs and files that are discussed in Volume Eight. These were previously available
only to administrators with Internet access.

■ Pre-compiled X11 Release 5 binaries for Sun3 and Sun4 platforms running SunOS 4.1.1.

TheX Window System Adminstrator’s Guide includes directions for building and installing
the MIT sources, so even if you don’t currently have X up and running, you can do so with
this book/CD package. Contact O’Reilly & Associates or your local bookseller.

Other Books in this series
The O’Reilly X Guides provide a comprehensive set of documents for The X Window Sys-
tem. Other books in the series which may be of interest to end-users include:

X Window System Administror’s Guide (Volume 8). As mentioned above, this volume dis-
cusses many aspects of setting up and running the X Window System, particularly in a
multi-vendor environment.

X Window System in a Nutshell. (Nutshell series) Contains reference pages for many of the
standard clients, along with programmer documentation on the system.

Most of the remaining books in the series are of interest to programmers developing and
maintaining X Window System applications:

Volume Zero,X Protocol Reference Manual, discusses the network protocol used between
the X server and its clients. Of interest mainly to advanced programmers.

Volumes and Two, XLib Programmer’s Manual andXlib Reference Manual discuss the
use of XLib, the lower level of access.

 Volumes Four and Five, X Toolkit Intrinsics Programmer’s Manual. andX Toolkit Intrin-
sics Reference Manual, discuss the details of the “Xt” toolkit library.

Volume Seven,XView Programming Manual, discusses Sun’s XView toolkit for building
OPEN LOOK applications.

Volume Six,Motif Programming Manual, discusses in full detail the Motif toolkit.

PHIGS Programmer’s Manual. (X series, no volume number) discusses in considerable
detail the use of PHIGS graphics and PEX, the Phigs Extension to X, a graphics layer that
can be used on top of X.

Power Programming with RPC. (Nutshell Handbook series) discusses developing net-
worked applications using Sun’s Remote Procedure Call library, including significant
discussion of developing RPC applications that work within the constraints of X toolkits
such as Sun’sOPEN LOOK toolkit XView and Xt (includingOLIT and Motif).

Bulk Sales Information
This series of guides is routinely resold by many Workstation and X Terminal manufactur-
ers as their official X Window System documentation. For information on volume

xxxvi X USER’S GUIDE: OPEN LOOK EDITION

discounts for bulk purchases, call O’Reilly & Associates, Inc., at 800-338-6887 (other
numbers below), or send e-mail tolinda@ora.com (uunet!ora!linda).

We will do selected customization for you. For companies requiring extensive customiza-
tion of the guide, source-licensing terms are also available.

Request for Comments
Please write to tell us about any flaws you find in this manual or how you think it could be
improved. This will help us to provide you with the best documentation possible.

Our U.S. mail address, phone numbers, and e-mail addresses are as follows:

O’Reilly and Associates, Inc.
632 Petaluma Avenue
Sebastopol CA 95472
U.S.A.

In USA 1-800-338-6887, in California 1-800-533-6887, international +1 707-829-0515

UUCP:uunet!ora!ian
Internet:ian@ora.com

Font and Character Conventions
These typographic conventions are used in this book:

Italics are used for:

• new terms where they are defined.

• file and directory names, and command and client names when they appear in the
body of a paragraph.

Courier is used within the body of the text to show:

• command lines or options that should be typed verbatim on the screen.

and is used within examples to show:

• computer-generated output.

• the contents of files.

Courier bold is used within examples to show command lines and options that should
be typed verbatim on the screen.

Courier italics are used within examples or explanations of command syntax to
show a parameter to a command that requires context-dependent substitution
(such as a variable). For example,filename means to use some appropriate file-
name;option(s) means to use some appropriate option(s) to the command.

These symbols are used within theX Window System User’s Guide:

[] surround an optional field in a command line or file entry.

PREFACE xxxvii

name(1) is a reference to a command calledname in Section 1 of theUNIX Reference
Manual (this book may have a different name depending on the version ofUNIX
that you use). TheOPEN LOOK-specific commands are reprinted in Part Three of
this Guide.

$ is the standard prompt from the Bourne shell,sh(1).

% is the standard prompt from the C shell,csh(1).

Since there are some variations in the commands available with the various implementa-
tions ofOPEN LOOK, we use the following tags:

AT&T-OL refers to a feature of theAT&T OPEN LOOK client package

OpenWindows refers to a feature of Sun’s OpenWindows client/server package.

Acknowledgments
The first edition of this guide was based in part on three previous X Window System user’s
guides: one from Masscomp, written by Jeff Graber, one from Sequent Computer Systems,
Inc., and one from Graphic Software Systems, Inc.; both were written by Candis Condo
(supported byGSS’ UNIX development group). Some of Jeff’s and Candis’s material in
turn was based on material developed under the auspices of Project Athena at MIT. The
first version of this guide was adapted from these works by Tim O’Reilly, and the subse-
quent Motif edition was prepared by Valerie Quercia.

TheOPEN LOOK version of thisUser’s Guidewas written by Ian Darwin, but the overall
design, as well as some parts (even a few whole chapters) of the text, were either adapted
or borrowed intact from the “Generic X11” and Motif editions. TheOPEN LOOK version
was developed using Sun’s OpenWindows 2., 3.0 and 3.1on Sun-3 Workstations and
SPARCstations and on anAT&T 6386 WGS withAT&T ’s XWIN andOPEN LOOK product.
Earlier versions of this guide were developed on a SonyNEWS workstation running Sony’s
X implementation, a Visual 640 X Display Station, and anNCD16 Network Display
Station.

Mr. Darwin wishes to express his gratitudel to Sun Microsystems for ongoing provision of
software, documentation, and technical support, and toAT&T and Quantum Systems for
providing copies of theirOPEN LOOK software and QNX-Windows systems respectively.
We appreciate the support of these manufacturers in helping us develop complete and
accurate X Window System documentation. Thanks are particularly due to Brad Keates of
Sun Canada, Roger Nolan and Andrew Barker of Sun Microsystems, and Joanne New-
bauer ofAT&T . We’d also like to thank Sun for distributing the XView toolkit with an
accompanying Copyright that grants permission to reprint the reference manual pages else-
where in the CD-ROM, and to excerpt parts of the material (in particular, Appendix J,
OPEN LOOK XView Toolkit Resources). Most of the remaining reference manual pages,
those for standard MIT X clients, have been adapted from reference pages copyright©
1990-1994 the Massachusetts Institute of Technology, the X Consortium, and others. Refer
to the “Authors” section at the end of each reference page for details. Other copyrights are
listed on the relevant reference pages.

xxxviii X USER’S GUIDE: OPEN LOOK EDITION

Mr. Darwin would like to thank the previous authors for providing the framework of this
book. He also thanks the entire staff of O’Reilly and Associates for helping to produce the
draft version of this book, with special thanks to Tim O’Reilly for patience above the call:
this book took much longer to complete than he and Icombined ever thought it would. “No
man who is in a hurry is quite civilized.” —Will Durant. The initial book design was done
(initially for the PHIGS Programming Manual in this series) by Bill Prindle and Edie
Freedman and implemented by Mike Sierra. Mike also provided invaluable assistance in
learning the hidden craft of using FrameMaker. Dale Dougherty provide the initial version
of thetroff-to-Frame converter, and offered ongoing support while it was extended. Donna
Woonteiler read a draft of the whole book with a careful eye to editorial regularity. Linda
Walsh and Tim O’Reilly cooperated in getting clearance to reprint this work in CD-ROM
form in 1995. Mr. Darwin thanks these and everyone else at O’Reilly for their unflagging
assistance in bettering this book

Valerie Quercia of O’Reilly and Associates and Chuck Musciano of Harris Corporation
made constructive comments on the Alpha Draft of theOPEN LOOK version of this work;
their help is gratefully acknowledged.

And thanks to the staff of SoftQuad, Inc., for lending their support and for careful proof-
reading of many parts of the book. Liam Quin (who wrote and maintains the “Frequently
Asked Questions” list on theUSENET group comp.windows.open-look) was especially
helpful.

Mr. Darwin also thanks Ken Thompson, Dennis Ritchieet al of theAT&T Bell Laborato-
ries Computer Science Research department for inventing, promulgating, and extending
theUNIX system; all the folks at MIT Project Athena (where X originated), the X Consor-
tium, and elsewhere who have contributed to the design, implementation and spread of The
X Window System. Special thanks to theAT&T and Sun team that originated theOPEN
LOOK GUI specification.

For significant help and favors along the way, Mr. Darwin thanks Geoff Collyer, Erik Fair,
Brian Kernighan, and Al Lambert. John Gilmore and Laura Creighton first got me inter-
ested in SunView, the predecessor in the SunUNIXverse of The X Window System.

Finally, thanks to my wife Betty and children Benjamin, Andy, and Margaret for sparing
me the time to write all this. Behind every parent who writes, there must be (or ought to be)
a spouse as supportive as Betty. In addition, her proofreading skills salvaged scores of sick
sentences.

Despite the efforts of these people, the standard authors’ disclaimer applies: any errors that
remain are our own.

CHAPTER : 1

PART ONE: Using X with
OpenWindows

2 X USER’S GUIDE: OPEN LOOK EDITION

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 3

1

Chapter 1INTRODUCTION TO OPEN LOOK AND X

CHAPTER 1

An Introduction to OPEN
LOOK and X Windows

This chapter describes the features of a typical display runningOPEN LOOK on the X Win-
dow System, and introduces some basic window system concepts. It also provides an
overview of the X Window System’s client-server architecture and briefly describes some
common clients.

TheOPEN LOOK Graphical User Interface (GUI) gives display-based programs an inter-
face that is efficient, easy to use, and consistent.OPEN LOOK is supported by Sun, by
AT&T, by many system and application vendors, and is the standard graphical interface
with the current release of UNIX, System V Release 4.

The X Window System, called X for short, is a network-based graphics window system
that was first developed at MIT around 1984. Several versions of X have been developed,
the most recent of which is X Version 11 (X11), first released in 1987.There have been sev-
eral revisions of X11 since then. The latest is Release 6, or “X11R6”.

X11 has been adopted as an industry standard windowing system. It’s supported by every
significant workstation vendor, and its development is now managed by The X Consor-
tium, a group of UNIX and X industry leaders such as Sun, DEC, Hewlett-Packard, IBM,
NCD, and many others who have united to direct, contribute to, and fund its continuing
development. In addition to the system software development directed by the X Consor-
tium, many programmers develop “contributed” or free software for X, and many software
developers are producing commercial application software specifically for use with X,
including spreadsheets, graphics and database programs, and publishing applications.

But the original versions of X11 did not provide or specify any graphical user interface. X
is a basic window system upon which almost any style of GUI can be built. Even “The X
Toolkit” provides only a simplified approach to creating graphical user interface compo-
nents—guidelines for writing and implementing widgets—rather than offering a set of
components with a predefined look and feel.

4 X USER’S GUIDE: OPEN LOOK EDITION

1
When X first started to become popular, in fact, it was so ugly that one old-timer said: “X
[as it was then, with] each program having its own randomly-chosen conventions, looks
like a ransom-note user interface system. This was certain to drive people away from X and
UNIX to the Macintosh.”

The X developers at MIT took a hands-off approach; they did not want to step into the GUI
standards vacuum. Their battle cry was (then, and for many years after) “Mechanism, not
Policy.” That is, X itself has, and will always have, the flexibility to support any number of
user interface styles.

To fill the standards gap, Sun and AT&T developed theOPEN LOOK GUI specification
with input from many others in the industry. TheOPEN LOOK document specifies not only
the shape of various buttons and gadgets on the screen, but also the operation of various
important clients, such as the File Manager (see Chapter 2,Working in the OPEN LOOK
Environment, and Chapter 4,Using the OPEN LOOK File Manager). They published the
specification quite early, so that other vendors could work to it, makingOPEN LOOK the
leading open standard for graphical user interface.

The design they came up with is clean, simple, and intuitive. My son Ben, then three and a
half years old, climbed up on my lap one day, pointed at the scrollbars (graphic objects
used to move or “scroll” a large data window around in a smaller on-screen window).
Without puzzling over graphic design for a second, he asked me “What are those elevator
things for”? And before long he was rearranging the windows on my screen. So even a
three year old can learn to useOPEN LOOK: the design is clean, simple, and intuitive.

Shortly after Sun andAT&T announced that they would be working together on the devel-
opment ofOPEN LOOK, the Open Software Foundation announced its own development of
a “competing standard” GUI. This led to the eventual release of OSF/Motif, comprising a
set of “widgets” (graphical objects) made by blending together widget sets provided by
DEC and HP, and a window managermwm. It seemed clear that bothOPEN LOOK and
Motif would be with us as “competing standards” for most of the 1990’s.†

However, in 1993, some of the leading vendors got together and agreed on a new set of
standards. The COSE group produced one, the Common Desktop Environment, that was
based primarily on Motif. Thus it is likely thatOPEN LOOK’s importance will diminish
over time. However, most COSE vendors do not plan to begin shipping the Common Desk-
top Environment until late in 1995, and in the meantime many people are using X and
OPEN LOOK...

This book is aboutOPEN LOOK and X Windows. So we’ll start this chapter by looking at
a typical X display and consider some general features of the system. We’ll also briefly
compare a standard X application (written with the X Toolkit) to anOPEN LOOK applica-

† TheOPEN LOOK specification, and all implementations, include these features not in Motif 1.1, many of
which OSF is hoping to fit in to their next release: context-sensitive help, pinnable menus, and drag-and-drop. It
is to be hoped that the OSF will provide these features in ways that are compatible with the widely-used “prior
art” provided by theOPEN LOOK implementations features.OPEN LOOK also specifies the behavior of im-
portant clients such as the File Manager, Properties/Workspace manager, and others; these are described in up-
coming chapters of this guide.

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 5

1
tion. Then we’ll discuss what distinguishes the X Window System from other window
systems. We’ll also introduce some of the more important programs included in the stan-
dard distribution of X, and theolwm window manager shipped withOPEN LOOK. In the
next chapter we’ll show you how to start your X session and how to work in theOPEN
LOOK environment.

1.1 Anatomy of an X Display
X is typically run on a workstation with a large screen. The X Window System also runs
on PCs with 80386 CPUs and VGA graphics, on special X terminals, and on many larger
systems. X allows you to work with multiple programs simultaneously, each in a separate
window. The display in Figure 1-1 includes several windows.

The operations performed within a window can vary greatly, depending on the type of pro-
gram running it. Certain windows accept input from the user: they may function as
terminals, allow you to control a database, create graphics, etc. Other windows simply dis-
play information, such as the time of day, the system load average, a picture of the
characters in a given font, etc.

The windows you will probably use most frequently areterminal emulators, windows that
function as standard terminals. The terminal emulator included with the MIT release of X
is calledxterm; anOPEN LOOK standardized version of this program is calledolterm on
some systems. The terminal emulator used by default under OpenWindows is calledcmd-
tool or shelltool. Figure1-1 depicts twoxterm windows and onecmdtool window. In a
terminal emulator window, you can do anything you might do when logged in at the con-
sole or on a regular terminal: enter shell commands, run editing sessions, compile
programs, etc.

Don’t worry if you have already started upOPEN LOOK on your system and discovered
that the screen looks nothing like this example—it won’t!. We will show you how to cus-
tomize your screen layout to make it look just the way you like. You will also find, if you
are on a color display, that the frills around the edges of each window (called “window dec-
orations”) look more sculptured than the plain ones shown here. A nice feature ofOPEN
LOOK, unlike many other X11 GUIs, is that it automatically adapts to the kind of screen
you are on. On a monochrome monitor,OPEN LOOK uses the “two-dimensional” look
shown in most of these examples, which we’ve used because it prints more cleanly in the
book. When running on a color or grayscale monitor,OPEN LOOK attempts to create a
three-dimensional appearance†, which is more attractive than the look provided by some
older window managers. See the page of Color Plates for some examples ofOPEN LOOK
in color. If you’re using such a monitor, you’ll probably notice that window frames, vari-
ous command buttons, icons, etc., appear to be raised to varying heights above screen level.
This illusion is created by subtle shading and gives many display features a “beveled” look,
similar to the beveled style of some mirrors.‡

† Purists will object to this use of “three dimensional”, since it hides an entire discipline of computer graphics
work in the presentation of three-dimensional images. The rest of us will content ourselves with its use.

6 X USER’S GUIDE: OPEN LOOK EDITION

1

The display in Figure 1-1 also includes other application windows: a clock, a mailing list
programxrolo, and a calculatorcalctool. OPEN LOOK and X provide many such small util-
ity programs—analogous to the so-called “desk accessories” of the Macintosh
environment—intended to make your work easier.

The blank area that fills the unused portion(s) of the screen is conventionally called theroot
(or background) window;OPEN LOOK calls this area theWorkspace. Application windows
are displayed on top of this root window. X considers windows to be related to one another
in a hierarchy, similar to a family tree. The root window is the root or origin within this
hierarchy and is considered to be theparent of application windows displayed on it. Con-
versely, these application windows are calledchildren of the root window. In Figure 1-1,
thexterm, cmdtool, clock,xrolo, andxcalc windows are children of the root window.

The window hierarchy is actually much more complicated than this “two generation”
model suggests. Variousparts of application windows are windows in their own right. For
example, many applications provide menus to assist the user. Technically speaking, these
menus are separate windows. Knowledge of the complexity of the window hierarchy (and

‡ A few people find this “three-dimensional” look distracting, so of courseOPEN LOOK provides a way to turn
it off, as we’ll see later. Other Graphical User Interfaces that provide a 3D look, like Motif, generally do not give
you this option.

Figure 1-1. X display with numerous windows and an icon

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 7

1
the composite parts of an application) is irrelevant at this stage, but will become important
when we discuss how to tailor an application better to suit your needs.

One of the strengths of a window system such as X is that you can have several processes
running in (and even writing output to) different windows simultaneously. For example, in
Figure 1-1, the user is logging in to a remote system in onexterm window and editing a text
file in another terminal emulator window. And he’s fetching an address from a “Rolodex”
emulator in another for use in the text file. (As we’ll see in Chapter 5,The cmdtool/shell-
tool Terminal Emulator, you can also cut and paste text between windows.) The only
limitation on this multiwindow activity is that you can only be typing input into one win-
dow at a time.

Another strength of X is that it allows you to run programs on machines connected by a
network. You can run a process on a remote machine while displaying the results on your
own screen. You might want to access a remote machine for any number of reasons, to use
a program or access information not available on your local system; to distribute the work
load, etc. We’ll discuss X’s networking capabilities in more detail in the “X Architecture
Overview” on page 20.

Now let’s take another look at our sample display in Figure 1-1. Notice that some of the
windows overlap each other. Windows often overlap much like sheets of paper on your
desk or a stack of cards. This overlapping does not interfere with the process run in each
window. However, to really take advantage of windowing, you need to be able to move and
modify the windows on your display. For example, if you want to work in a window that
is partially covered by another window, you need to be able to raise the obscured window
to the top of the window stack.

Window management functions are provided by a program called awindow manager. The
window manager controls the general operation of the window system, allowing you to
change the size and position of windows on the display. You can reshuffle windows in a
window stack, make windows larger or smaller, move them to other locations on the
screen, etc. The window manager provides part of the user interface—to a large extent it
controls the overall “look and feel” of the window system.

The window manager provided withOPEN LOOK is calledolwm, theOpenLook window
manager. There are two implementations ofolwm, one from Sun and one from AT&T. At
this stage it does not matter which you are using (only when we come to customize the win-
dow manager behavior will the differences become important). A nice feature ofolwm is
the “frame” it places around all main windows on the display. Each top-level application
window in the illustration is surrounded by this frame. As we’ll see, you can manage the
window by clicking a mouse†or other pointing device on various parts of the window
frame.

† Today, the mouse is an integral part of the computer community, but it was not always so. The first computer
mouse is believed to have been invented in 1964 by Doug Engelbart at SRI, near Stanford, California. He writes
(in A. Goldberg (Ed.),A History of Personal Workstations, p. 196): “No one is quite sure why it got named a
‘mouse’, or who first started using that name. None of us would have thought that the name would have stayed
with it out into the world, but the thing that none of us would have believed either was how long it would take for
it to find its way out there.”

8 X USER’S GUIDE: OPEN LOOK EDITION

1
Theolwm window frame is a composite of several parts, the most prominent of which are
shown in Figure 1-2. The top edge of the frame is wider than the other three edges and fea-

tures most of the window management tools. This wide horizontal bar spanning the top of
the window is called aheader, or in standard X11 terminology, atitlebar. Most X11 win-
dow managers provide titlebars. The large central portion of this top edge is called thetitle
area because it contains a text description of the window. (Generally this is the application
name, but as we’ll see later you can often specify an alternate title.) The titlebar also fea-
tures a small menu mark—a box with a triangle—that we’ll discuss in Chapter 6,Using the
OPEN LOOK Window Manager. We’ll also see how to use the parts of the frame to resize
a window and to raise it to the top of the window stack.

olwm is intended to be used with applications built using theOPEN LOOK graphical user
interface. For those not usingOPEN LOOK, there are several other window managers avail-
able. In the standard distribution of X from MIT (as of X11 Release 4 and 5), the official
window manager istwm. twm originally stood for “Tom’s window manager,” in honor of
its developer, Tom LaStrange. However, it has since been worked on by many people and
subsequently renamed the “tab window manager.” Thetwm window manager provides a
different “look and feel” thanolwm. Rather than framing application windows,twm simply
provides each window with a titlebar, different from theolwm titlebar in style, but offering
similar window management functions. Other window managers exist, each with its own
distinctive look and feel and its own set of features. The best known commercial offering
besidesolwm is mwm, which is normally used with Motif applications. However, you
should note that most Motif applications will run with anOPEN LOOK window manager,
andvice versa.

Aesthetics notwithstanding, one of the primary advantages thatolwm shares withmwm, in
contrast to some other window managers such astwm, is inherent in the nature of a frame:
it provides window management tools on four sides of the window.twm’s titlebar is a use-
ful window management tool, but a titlebar is often covered by other windows in the stack.
In most cases at least a part of a window’s frame will be visible—and thus accessible to
olwm users but not totwm users.

Figure 1-2. olwm frames each window on the display

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 9

1
Also pictured in Figure 1-1 are severalicons. An icon is a small symbol that represents a
window in an inactive state. The window manager allows you to convert windows to icons
and icons back to windows. You may convert a window to an icon to save space on the dis-
play, or to prevent input to that window. (Some programs, such as Sun’s SunPC MS-DOS
emulator, become “dormant” when iconified, and stop using CPU time.) Each icon has a
label, generally the name of the program that created the window. The icons in Figure 1-1
represent anotherxterm window, a special system console window, and the file manager
tool that we’ll meet in Chapter 2,Working in the OPEN LOOK Environment. Icons can be
moved around on the display, just like windows.

The contents of a window are not visible when the window has been converted to an icon,
but they are not lost. In fact, a client continues to run when its window has been iconified;
if you iconify a terminal emulator client such asxterm, any programs running in the shell
will also continue.

All OPEN LOOK displays require you to have some sort of pointer, usually a three-button
mouse, with which you communicate information to the system. As you slide the pointer
around on your desktop, a cursor symbol on the display follows the pointer’s movement.
For our purposes, we will refer to both the pointing device (e.g., a mouse) and the symbol
that represents its location on the screen as pointers. Depending on where the pointer is on
the screen (in anxterm window, in another application window, on the root window, etc.),
it is represented by a variety of cursor symbols. If the pointer is positioned on the root win-
dow, it is generally represented by an arrow-shaped cursor, as in Figure 1-1. If the pointer
is in anxterm window, it looks like an uppercase “I” and is commonly called anI-beam
cursor.†

The cursor often changes shape as you move the pointer into different windows. A com-
plete list of standard X andOPEN LOOK cursors is shown in Appendix D,Standard
Cursors - X11 and OPEN LOOK. Some common MIT cursor shapes, as well as twoOPEN
LOOK-specific cursors, are shown in Figure1-3. As we’ll see later, some applications
allow you to select the cursor to use.

† Even though the actual image on the screen is called a cursor, throughout this guide we refer to “moving the
pointer” to avoid confusion with the standard text cursor that can appear in a terminal emulator window.

Figure 1-3. Three X11 standard cursors and two OPEN LOOK-specific cursors

10 X USER’S GUIDE: OPEN LOOK EDITION

1
You use the pointer to manage windows and icons, to make selections in menus, and to
select the window in which you want to input. You can’t type in a terminal window until
you select that window using the pointer. Directing input to a particular window is called
focusing. When a window “has the input focus,” the titlebar and the text cursor (if any) are
highlighted. The window to which input is directed is often called theactive window. Most
window managers require you to select the active window in one of two ways: either by
moving the pointer so that it rests within the desired window or by clicking the pointer on
the window. By default, theOPEN LOOK Window Manager requires you to click the
pointer on the window to which you want to direct input. This focusing style is commonly
referred to as “click-to-type” or “explicit focus.” In this mode, the active window is indi-
cated by darkening its titlebar, as shown in Figure 1-4.

As we’ll see in Chapter 13,Customizing olwm, olwm can be customized to allow you to
direct input focus simply by moving the pointer. This alternate focusing style is commonly
referred to as “real-estate-driven” (or “pointer focus”). In this mode, the active window is
highlighted simply by drawing a line along the bottom of its titlebar, as shown in
Figure 1-5.

The MIT twm window manager normally uses the real-estate-driven style: you direct input
focus by moving the pointer into the desired window and leaving it there. As long as the
pointer remains within the window’s borders, the keystrokes you type will appear in that
window (when the application accepts text input) or will somehow affect its operation (per-
haps serve as commands). If you accidentally knock the pointer outside the window’s
borders, the keystrokes you type will not appear in that window or affect its operation. If
you inadvertently move the pointer into another window, that window becomes the focus
window. If you move the pointer onto the root window, the keystrokes are lost—no appli-
cation will interpret them.

As mentioned, theOPEN LOOK window manager uses the click-to-type focusing style by
default: you must click the pointer on a window to focus input on that window. When you
begin using X witholwm, you’ll need to select the window to receive input by placing the

Figure 1-4. Focus on a terminal emulator window (click-to-type focus)

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 11

1

pointer anywhere within the window and clicking the button called SELECT, normally the
leftmost button.†

Once you select the focus window in this way, all input is directed to that window until you
move the pointer and deliberately click on another window. If you click SELECT on the
root, then no window has the input focus until you click SELECT on the titlebar of a
window.

One ofOPEN LOOK’s strengths is that it allows you to choose the focus policy. This flexi-
bility makesolwm a desirable choice for users with a variety of needs and work habits. As
you might imagine, both focusing policies have their advantages. Click-to-type focus
requires a little more work than pointer focus. (It’s simpler to move the pointer than to
move and click.) On the other hand, click-to-type focus is more precise—you can’t inad-
vertently change the focus by moving the pointer.

We find click-to-type focus somewhat laborious. However, a touch typist, who is not
inclined to look at the screen, might consider pointer focus too risky. It’s possible to knock
the pointer out of a window and type a large amount of text into the wrong window before
noticing. Another disadvantage of pointer focus is that it sometimes takes a moment for the
input focus to catch up with the pointer, especially on slower machines. If you type right
away, some keystrokes may end up in the window you left rather than in the new window.
This problem is not unique toolwm, but rather is a side effect of the additional overhead
caused by the generality (specified in a document called the ICCCM; see Volume Zero,X
Protocol Reference Manual) involved in complex window managers, and can affect any
ICCCM-compliant window manager such asolwm, mwm, or twm. Since you can change
the focus policy rather simply, even while the OpenWindows version ofolwm is run-

† The middle button is called ADJUST, and the right button is called MENU. To remember which button is which,
think of “SAM” for (in order) SELECT, ADJUST, and MENU. We’ll see how to use all these buttons as we
progress. If you are left handed and want to reverse the position of these buttons, see the last section of Chapter
14,Customization Clients.

Figure 1-5. Focus on a terminal emulator window (pointer focus)

12 X USER’S GUIDE: OPEN LOOK EDITION

1
ning†you might want to experiment with both methods. For now, we’ll assume you’re
using the default click-to-type focus.

The most important thing to recognize is that focusing on the proper window is integral to
working with an application running with a window system. If something doesn’t work the
way you expect, make sure that the focus is directed to the correct window. After you use
X for a while, awareness of input focus will come naturally.

The pointer is also often used to display menus. Most X programs, notablyolwm, shelltool
andxterm, have menus that are displayed by keystrokes and/or pointer button motions.
olwm provides two default menus—theWindow Menu and theWorkspace Menu—each
representing a different menu “style.”

TheWindow Menu is a “pull-down” menu that can be displayed on any window by placing
the pointer on the titlebar on top of the frame and either clicking or pressing and holding
down the MENU pointer button. Roughly defined, a pull-down menu is accessed from a
graphical element that is always displayed, such as a command button, a menu bar, or a
titlebar. Figure 1-6 shows a terminal emulator window (in this casecmdtool) with theWin-
dow Menu) displayed by clicking theMENU pointer button in the menu button on the
frame.

As you might infer from some of the menu items, you can use theWindow Menu to hide,
resize, and otherwise manage the window on which it is displayed. When you display the
Window Menu by clicking theMENU pointer button (as opposed to pressing and holding it
down), the default item (the one you would get just by clickingSELECT on the triangle
mark) is surrounded by an oval box. In this case, the first available selection isClose, used
to change a window into an icon. Of course, the first item in theWindow Menu of an icon

† You can change it at start-up time by specifying-follow on theolwm command line, by setting the X Re-
source OpenWindows.SetInput: to followmouse, or change it at will by putting an item with a call to the FLIP-
FOCUS built-in function in your.openwin-menu. file, and clicking on it. All these methods are described in more
detail in Chapter 13,Customizing olwm.

Figure 1-6. A pull-down menu: olwm’s Window Menu

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 13

1
is Open which converts the icon into a window. The third item,Properties, is not available
yet; it is meant to provide access to a set of Window Properties. The fact that it is not select-
able is indicated by the fact that it appears in a lighter (or stippled) typeface. The second
item, Full Size, and other aspects of theWindow Menu, are discussed in detail in Chapter
6, Using the OPEN LOOK Window Manager.

OPEN LOOK also supports “pop-up” menus, which are displayed at the current pointer
position (many X clients also use pop-up menus). In addition to keyboard keys and pointer
button motions, the location of the pointer plays a role in displaying menus. For example,
xterm menus can only be displayed when the pointer is within anxterm window. Figure 1-
6 shows theolwm Root Menu, a pop-up menu that is generally displayed by placing the
pointer on the root window and pressing and holding down theMENU pointer button.

In Figure 1-6, the arrow next to the menu title represents the pointer. As you drag the
pointer down the menu, each of the menu selections is highlighted (OPEN LOOK programs
generally highlight an item by placing an oval box of reverse video around it). When you
release the pointer button, the highlighted menu item is selected. If you drag the pointer
right off anOPEN LOOK menu without selecting anything, the menu stays up until either
you release the pointer button (in which case nothing is selected and the menu pops down),
or you move the pointer back into the menu and select something.

TheWorkspaceor Root Menu (see Figure 1-7) provides commands that can be thought of
as affecting the entire display (as opposed to a single window). For example, the first menu
item, Command Tool (on OpenWindows) creates a newcmdtool window on the local
machine and display.

Thougholwm’s menus are useful, you’ll probably find that you perform many window
management functions simply by using the pointer on the window frame. In Chapter 6,
Using the OPEN LOOK Window Manager, we’ll describe several of these functions. Keep
in mind, however, that both of the menus can be useful in certain circumstances. For

Figure 1-7. A pop-up menu: olwm’s Workspace (Root) Menu

14 X USER’S GUIDE: OPEN LOOK EDITION

1
instance, theWindow Menu may be useful when parts of the window frame are obscured
by another window. TheWorkspace Menu can be customized to execute system com-
mands, such as the terminal emulator command initialized by theCommand Tool’s item
underPrograms. It’s fairly simple to add items to theOPEN LOOK root menu orWork-
space Menu for the applications you use regularly. Just to show you the range of flexibility,
Table 1-1 shows an alternative workspace menu that we use.

 Chapter 13,Customizing olwm, describes how to add menu items and other modifications.

As we’ll see in Chapter 8,Other Standard Clients, a few non-OPEN LOOK programs pro-
vide “jump-up” menus that you display simply by placing the pointer on a particular part
of the window, e.g., a horizontal menu bar across the top.

A final note about the X display: in X, the termsdisplay andscreen are not equivalent. A
display may consist of more than onescreen. This feature might be implemented in several
ways. There might be two physical monitors, linked to form a single display, as shown in
Figure 1-8. Alternatively, two screens might be defined as different ways of using the same
physical monitor. For example, on certain older Sun Workstations (any Sun with a
“cgfour” color display), screen 0 is normally color, and screen 1 is black and white.†

† With OpenWindows, you must specify the screens to use and their order with the-device command line op-
tion; the default is a single screen in color. See the example in the OpenWindows section of Chapter 2,Working
in the OPEN LOOK Environment, or theopenwin manual page in Part III of this guide for details. The MIT
“Xsun” server uses the same technique on a cgfour, but automatically uses both screens. With either server, the
OpenWindows version ofolwm automatically finds all the screens that are in use.

Table 1-1. Alternate Workspace Menu

Name Function

Local Windows Create local terminal emulator windows

LANlogins Terminal emulator windows on our Local
Area Network

Internet Terminal emulator windows on Internet
hosts

Window Programs One of several dozen X- and NeWS- based
applications

OpenWin Demos A link to the standard OpenWindows demo
menu file

Lock Screen A standard X11 screen lock program

Terminations Shutdown X or even shutdown my
workstation

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 15

1
Each screen is the size of the monitor; you can only view one screen at a time. In practice,
the two screens seem to be side by side: you can “scroll” between them by moving the
pointer off either horizontal edge of the screen. By default, windows are always placed on
screen 0 but you can place a client window on screen 1 by specifying the screen number in
the -display option when starting the client. (See Chapter 2,Working in the OPEN
LOOK Environment, for instructions on using the-display option.)

1.2 Standard X Clients, OPEN LOOK Clients and
Motif Clients

The window manager running on a display helps determine the look and feel of an appli-
cation. Theolwm window manager frames each window on the display and allows you to
manage a variety of application windows using the same mechanisms.

However, the look and feel of an application is not entirely determined by the window
manager. The programming routines used to create the application also distinguish it. The
olwmandcmdtool/shelltool programs were written with anOPEN LOOK-specific toolkit,
while thexterm program was been written using “the X Toolkit”, developed at MIT.

The X Toolkit is a collective name for two subroutine libraries designed to simplify the
development of X Window System applications: the X Toolkit (Xt) Intrinsics and the Ath-
ena widget set (Xaw). The Xt library consists of low-level C programming routines for
building and usingwidgets, which are pre-defined user interface components or objects.
Typical widgets create graphical features such as menus, command buttons, dialog boxes,

Figure 1-8. A display made up of two physical screens

16 X USER’S GUIDE: OPEN LOOK EDITION

1
and scrollbars. Widgets make it easier to create realistic applications. A common widget
set also ensures a consistent user interface between applications.

As mentioned, most of the “standard” MIT X applications are written using the X Toolkit,
and have the user interface provided by the Athena Widget set.

One of the first implementations ofOPEN LOOK for X Windows is AT&T’sOPEN LOOK
Intrinsics Toolkit (OLIT). As the name implies, OLIT is based on the Xt Intrinsics, and
consists primarily of a widget set that implements theOPEN LOOK GUI. An application
coded using the OLIT Toolkit, or any otherOPEN LOOK toolkit, has a particular look and
feel that is prescribed in theOPEN LOOK Style Guideand illustrated by most of the pictures
in this book.

AnotherOPEN LOOK implementation for X is the XView toolkit, designed by Sun to allow
the thousands of SunView applications to migrate toOPEN LOOK and The X Window Sys-
tem. Its programmer interface is similar to that of the older proprietary SunView window
system, but it is anOPEN LOOK toolkit that works with X.

A third OPEN LOOK toolkit—one that is being phased out in favor of the others—is “The
NeWS Toolkit” (TNT), also from Sun. This toolkit is neither Xt- nor X11-based, but uses
the alternate NeWS protocol to communicate with the display server. It is included in Sun’s
OpenWindows package; applications written using TNT should behave much the same as
those developed using either of the otherOPEN LOOK toolkits.

The Open Software Foundation has also developed an Intrinsics-based widget set – or
more precisely, a specification for a GUI—called Motif. There is only one sanctioned
implementation of the Motif specification, and if you want it, you must license it from the
Open Software Foundation.OPEN LOOK and Motif are the prime contenders to establish a
graphical user interface standard in the market. In fact, theyare the two standard GUIs in
the workstation market. We will discussOPEN LOOK clients throughout most of this book.
Since you may occasionally need to use Motif-based clients, we show one sample Motif
program later in this chapter, and summarize the important aspects of using Motif pro-
grams in Appendix M,OPEN LOOK and Motif.

Some of the clients discussed in this guide are standard X clients shipped by MIT, while
others are part of the commercialOPEN LOOK offerings. Most of the MIT clients have
been built with the X Toolkit and illustrate the use of many of the Athena widgets. When
you run these standard clients (or any Motif clients) with theolwmwindow manager, your
environment is something of a hybrid—neither a vanilla X nor a pureOPEN LOOK
environment.

A standard X Toolkit client running witholwm is different from a trueOPEN LOOK appli-
cation, coded using anOPEN LOOK Toolkit. At first look, they may seem similar—when
olwm is running, all clients on the display are framed in the same way. In addition, certain
graphical features provided by theOPEN LOOK specification are also provided, albeit with
variations, by the Athena widgets. However, other features are unique toOPEN LOOK.

Without dissecting every component or closely examining how it functions, let’s briefly
compare a standard X application to anOPEN LOOK application, highlighting some of the
major differences (primarily in appearance). Many features ofOPEN LOOK and standard X

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 17

1
applications alsooperate differently. We’ll examine the functionality of variousOPEN
LOOK and Athena widgets in more detail in Chapter 8,Other Standard Clients.

For the comparison, we’ll use anOPEN LOOK client program calledtextedit, the OpenWin-
dows standard window-based text editor.textedit (see Figure1-9) demonstrates many of
the features ofOPEN LOOK as a GUI. It also demonstrates most of theOPEN LOOK-spe-
cific editing actions: editing text in this program is the same as editing commands in
cmdtool’s history mechanism, for example. This aspect oftextedit is described more fully
in Chapter 5,The cmdtool/shelltool Terminal Emulator.

The standard X client we’re using isxclipboard (Figure1-10), which you use in concert
with xterm’s “cut and paste” facility, described in Appendix A,The xterm/olterm Terminal
Emulator. Thexclipboard client provides a window in which you can paste multiple text
selections and from which you can copy text selections to other windows. Similar to the
clipboard feature of the Macintosh operating system,xclipboard is basically a storehouse
for text you may want to paste into other windows.

A Motif application displayed in Figure1-11 is mre, the Motif-based Resource Editor
(we’ll talk about Resources themselves later).mre is a demonstration program that is nor-
mally shipped with Motif, but isn’t part of the official Motif standard. In fact, the Motif

Figure 1-9. An OPEN LOOK application: textedit

Figure 1-10. An MIT X application: xclipboard

18 X USER’S GUIDE: OPEN LOOK EDITION

1
standard doesn’t document any standard clients, so your friend’s Motif system down the
hall may or may not include it.

The most striking difference between the first two clients is simply the amount of detail.
Like the OPEN LOOK window manager, the individualOPEN LOOK controls create a
“three-dimensional” appearance, at least on a color or grayscale monitor†. The push but-
tons are shaded to suggest that they are raised above the level of the application window.
The menu bar is shaded to appear raised. The scrollbars have clearly distinguishable com-
ponents, all of which are shaded and contoured to maintain the 3-D impression. For a better
look at this effect, see the page of color plates; it has been reduced to monochrome for
printing here. The Motif window, too, uses a bevelled or 3-D impression.

By contrast, thexclipboard window seems almost like a preliminary sketch of an applica-
tion. It is basically flat. The text window, command buttons, and scrollbars are rendered in
simple lines, without contouring, and with virtually no shading (though a portion of each
scrollbar is shaded).

Each application has a series of buttons along the top. Inxclipboard, each button simply
does one action. In anOPEN LOOK or Motif application, however, these buttons are usually
pull-down menus.OPEN LOOK clearly indicates these menus by the downwards-pointing
triangle.File, View, andEdit are common onOPEN LOOK applications. You can activate
one of these menus by placing the pointer on it and clicking (or pressing and holding down)
the MENU (right) pointer button. Alternately, you can select the default action from that
menu, without making the menu appear, by clicking the SELECT (left) pointer button
while the pointer is in the button. Thexclipboard application doesn’t provide any
menus—it’s a fairly simple program. However, some standard X clients (notablyxman dis-

† Most of the screenshots ofOPEN LOOK applications in this book are monochrome, and have a “two-dimen-
sional” look. Thetextedit application was captured in grayscale to show the bevelling effects.

Figure 1-11. A Motif application: mre

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 19

1
cussed in Chapter 8,Other Standard Clients) provide pull-down menus accessed by
pressing and holding down a pointer button.

OPEN LOOK pull-down menus have a few advantages over pull-down menus provided by
standard MIT X clients. While you must press and hold down a pointer button to display a
menu provided by a standard X client, you can display anOPEN LOOK menu simply by
clicking a pointer button—and the menu stays displayed until you click again.OPEN LOOK
menu items can also be invoked in multiple ways (including pointer actions and key-
strokes); the only way to invoke an item from a standard X menu is by dragging the pointer
down the menu and releasing the button. The various ways you can work with anOPEN
LOOK pull-down menu are described in Chapter 2,Working in the OPEN LOOK
Environment.

One minor advantage of Motif applications is that their menu bar featuressliding menus; if
you hold the left button and slide the pointer across the menu bar, each menu will pop down
without having to be clicked on.

Despite differences in general appearance and complexity,textedit andxclipboard have
many analogous components. Both applications feature a subwindow containing text that
can be edited.

Each application features buttons: push buttons in thetextedit window; command buttons
in the xclipboard window, drawn buttons in themre window. From a user’s viewpoint,
push buttons and command buttons are functionally equivalent (though you can invoke a
push button’s function in more ways).OPEN LOOK and the Athena widget set simply iden-
tify them by different names. This Motif application, like someOPEN LOOK applications,
features drawn or “glyph buttons,” buttons decorated with a small picture instead of being
labeled with a word or two of text.

All three application windows have a vertical scrollbar, used to display text that is currently
outside the viewing window. (These scrollbars are only displayed when the text read into
the window extends beyond the bounds of the viewing area. If the text only exceeds the
viewing area in one direction—either horizontally or vertically—only one scrollbar will be
displayed.) The Athena scrollbar is basically rectangular (actually one rectangle within
another). TheOPEN LOOK scrollbar is much more intuitive—it provides the visual analogy
of an elevator used in a multi-story building. Notice the arrows on either end of the indica-
tor mark in the middle, for instance. These arrows are the hallmark of anOPEN LOOK
scrollbar and can help you readily identify anOPEN LOOK application. The arrows also
provide functionality not duplicated by the Athena scrollbar. Similarly, the Motif scrollbar
can be used to recognize Motif applications.

In general, once you’ve mastered the basics of working withOPEN LOOK client programs
running under theolwm window manager, you should have no problem making use of any
additional features provided by commercial applications built withOPEN LOOK or any
similar GUI.

20 X USER’S GUIDE: OPEN LOOK EDITION

1 1.3 X Architecture Overview
Before X11 became popular, most window systems werekernel-based andhost-based: that
is, they were closely tied to the operating system itself and could only run on a discrete sys-
tem, such as a single workstation. X, by contrast, is auser-mode, network-based window
system; it is not part of any operating system but instead is composed entirely of user-level
programs.

The architecture of the X Window System is based on what is known as aclient-server
model. The system is divided into two distinct parts:display servers that provide display
capabilities and keep track of user input andclients, application programs that perform spe-
cific tasks.

In a sense, the server acts as intermediary between client application programs, and the
local display hardware (one or perhaps multiple screens) and input devices (generally a
keyboard and pointer). When you enter input using the keyboard or a pointing device, the
server conveys the input to the relevant client application. Likewise, the client programs
make requests (for information, processes, etc.) that are communicated to the hardware dis-
play by the server. For example, a client may request that a window be moved or that text
be displayed in the window.

This division within the X architecture allows the clients and the display server either to
work together on the same machine or to reside on different machines (possibly of different
types, with different operating systems, etc.) that are connected by a network. For example,
you might use a relatively low-powered PC or workstation as a display server to interact
with clients that are running on a more powerful remote system. Even though the client
program is actually running on the more powerful system, all user input and displayed out-
put occur on the PC or workstation server and are communicated across the network using
the X protocol. Figure 1-12 shows a diagram of such a network.

You might choose to run a client on a remote machine for any number of reasons. Gener-
ally, however, the remote machine offers some features unavailable on your local machine:
a more efficient or powerful processor; a completely different architecture better suited to
a particular task; different application software that is either licensed for that machine or
only available on a particular architecture; file server capabilities (and perhaps large data
files you’d rather not transfer over the network). X allows you to take advantage of these
remote features and to see the results on your local terminal.

The distinction between clients and the server also allows for somewhat complicated dis-
play situations. For instance, you can access several machines simultaneously (this can
greatly simplify the work of a system administrator). X also allows you to output to several
displays simultaneously. This capability can be very helpful in educational situations; for
example, a teacher could display instructional material to a group of students each using a
graphics workstation or X terminal hooked up to a network.

There is another less obvious advantage to the client-server model: since the server is
entirely responsible for interacting with the hardware, only the server program must be
machine-specific. X client applications can easily be ported from system to system.

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 21

1

1.4 The X Display Server
The X display server is a program that keeps track of all input from input devices, such as
the keyboard and pointer, and conveys that input to the relevant client applications. The
server also keeps track of output from any clients that are running and updates the display
to reflect that output. Each physical display (which may be multiple screens) has only one
server program.

User input and several other types of information pass from the server to a client in the
form of events. An event is a packet of information that tells the client something it needs
to act on, such as keyboard input. Moving the pointer or pressing a key, etc., causesinput
events to occur.

When a client program receives a meaningful event, it responds with arequest to the server
for some sort of action affecting the display. For instance, the client may request that a win-
dow be resized to particular dimensions. The server responds to requests by a client
program by updating the appropriate window(s) on your display.

Servers are available for PCs with 80386 processors, for workstations, and even for special
terminals (called X terminals), which may have the server downloaded from another
machine or stored in “read-only memory” (ROM). Details on the variety of servers avail-
able is included in Volume Eight,X Window System Administrator’s Guide.

Figure 1-12. A sample X Window System configuration

Personal Computer

Supercomputer

Large Minicomputer

Display Server

Local
Client

22 X USER’S GUIDE: OPEN LOOK EDITION

1
The server and the client programs communicate using a rigidly—defined protocol, The X
Protocol, described in Volume Zero,X Protocol Reference Manual. Some servers may rec-
ognize particular “extensions” to the base protocol.

The Sun OpenWindows server uses the standard X Protocol, but for increased flexibility
OpenWindows Versions 2 through 3.1 also accept connections using another, lower over-
head protocol called the NeWS (Network-extensible Window System) protocol. The
NeWS language allows the application programmer to extend the environment by writing
procedures in the PostScript language. NeWS clients will only work with a NeWS server,
which means an OpenWindows server; they will be discussed in this book with the nota-
tion “OpenWindows Only”.

Interestingly, some of the features that have become “X extensions” were first featured as
standard parts of NeWS. These include theSHAPE extension (used to draw circular win-
dows) and theDISPLAY POSTSCRIPT extension. Display Postscript (DPS for short) is less
flexible than the NeWS protocol, but does give programmers who must use X-based tool-
kits the ability to use the PostScript language. DPS has the further advantage that DPS
clients will work with a DPS server from any vendor. Neither OpenWindows 2 nor 3.1
used DPS; the NeWS protocol in the server is Sun’s original display-based PostScript
interpreter. However, Sun and Adobe (the creator of Display Postscript) signed a technol-
ogy transfer agreement in late 1992 which will see the OpenWindows product switching
over to Display PostScript soon†

1.5 Clients
As previously mentioned, a client is an application program. TheOPEN LOOK Window
Manager,shelltool, xterm, andcalctoolare client programs we’ve seen already. The stan-
dard release of X from MIT includes more than 50 client programs that perform a wide
variety of tasks. Another few hundred client programs are available as “contributed” or
“free software,” and more are added each week. X allows you to run many clients simulta-
neously: each client displays in a separate window. For example, you could be editing a
text file in one window, compiling a program source file in a second window, and reading
your mail in a third, while displaying the system load average in a fourth window.

While X clients generally display their results and take input from a single display server,
they may each be running on a different computer on the network. It is important to note
that the same programs may not look and act the same on different servers: users can run
different window managers on different servers; users can customize X clients differently
on each server; and the display hardware on each server may be different.

Remember that the server conveys input from the various input devices to the appropriate
client application; likewise, the client issues output in the form of requests to the server for
certain actions affecting the display.

† This will happen by mid-1993?, probably with Release 3.2? of the OpenWindows
system.

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 23

1
In addition to communicating with the server, a client sometimes needs to communicate
with other clients. For example, a client may need to tell the window manager where to
place its icon. Interclient communication is made easier by the use ofproperties. A prop-
erty is a piece of information associated with a window or a font and stored in the server.
Properties are used by clients to store information that other clients might need to know,
such as the name of the application associated with a particular window. Storing properties
in the server makes the information they contain accessible to all clients.

A typical use of properties in interclient communication involves how a client tells the win-
dow manager the name of the application associated with its window. By default, the
application name corresponds to the client’s name, but many clients allow you to specify
an alternative name when you run the program. A window manager that provides a titlebar
needs to know the application name to display in that area. The client’s application name
is stored in the server in the property called WM_NAME and is accessed by the window
manager.

See thexprop reference page in Part Three of this guide, and Volume One,Xlib Program-
ming Manual, for more information about properties and thexprop client.

! Note that OPEN LOOK has an additional, unrelated meaning for the term
“properties”, referring to “the properties of an application.” This use of the term
means “the user-controllable aspects of that program’s behavior.” This is
exemplified by “property sheets” that let you edit the properties of an application;
mostOPEN LOOK applications include a Properties menu item, and the root menu
has a like-named item that lets you edit global settings by adjusting X Resources.
This is described in Chapter 6,Using the OPEN LOOK Window Manager.

We’ve already discussed one important client, theOPEN LOOK Window Manager. Several
other frequently used client programs are discussed in the following sections.

1.5.1 The ShellTool terminal emulator
X11 itself is designed to support only bitmapped graphics displays. But there are many
day-to-day operations that are best handled by a command-line interpreter like the UNIX
shells. For this reason, one of the most important clients is aterminal emulator. The termi-
nal emulator brings up a window that allows you to log in to a multiuser system and to run
applications designed for use on a standard alphanumeric terminal. Anything you can do
on a terminal, you can do in this window. If you are using Sun’s OpenWindows package,
the terminal emulator used in the default setup is calledshelltool orcmdtool (the two names
refer to a single program under two different modes).

Running multiplecmdtool processes is like working with multiple terminals. Since you can
bring up more than onecmdtool window at a time, you can run several programs simulta-
neously. For example, you can have the system transfer files or process information in one
window while you focus your attention on a text-editing session in another window. As
you might imagine, having what are in effect multiple terminals can increase your produc-
tivity remarkably. See Chapter 5,The cmdtool/shelltool Terminal Emulator, for more
information aboutcmdtool/shelltool.

24 X USER’S GUIDE: OPEN LOOK EDITION

1
1.5.2 The xterm Terminal Emulator
There are several terminal emulators besidescmdtool. Users of MIT and SVR4 X systems
generally use one calledxterm. xterm is perhaps the most widely available terminal emula-
tor, and it is available under OpenWindows too.xterm emulates a character-based terminal
or a vector-graphics terminal. The standard MIT X11 version ofxterm emulates a DEC
VT102 character terminal; thexterm shipped withAT&T-OL emulates an AT&T 6386 con-
sole in character mode. Both versions can also emulate a Tektronix® 4014 as their graphics
terminal. For eachxterm process, you can display both types of windows at the same time
but only one is active (i.e., responding to input) at a time. This is one area wherexterm
would seem to excel over Sun’scmdtool, since the latter has no ability to emulate a Tek-
tronix terminal.†

1.5.3 Other X Clients
The standard distribution of X from MIT includes more than 50 client applications; most
of these are included in OpenWindows andAT&T-OL . The client you will probably use
most frequently is a terminal emulator, eithershelltool or xterm. We’ve grouped some of
the other more useful applications as follows: the “Availability” column lists “Standard”
(standard MIT clients), “Contributed” (free software, obtain fromUunet or MIT, see the
Preface), “OPEN LOOK” for clients that should be in anyOPEN LOOK system, or “Open-
Windows” for clients that are only included with Sun’s Open Windows.

† Since the ANSI and Tektronix terminals are so different, Sun’s older SunView window system featured a sep-
arate program calledtektool, for that purpose. Howevertektool, has not (yet) been brought forward toOPEN
LOOK. If you are an OpenWindows user in need of Tektronix emulation, the SunView version is still included
in SunOS 4.1, and it can be used under OpenWindows, subject to the limits laid out in Appendix L,Running Sun-
View Applications on OpenWindows. Or, you could usexterm for the times when you need Tektronix mode.

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 25

1
These and other client applications are described in Chapters 5 through 9. In addition, a ref-

Table 1-2. An Applications Sampler

Name Description Availability

Desktop Manager

filemgr, olfm File manager (desktop manager) anyOPEN LOOK
implementation

Desk accessories

xbiff Mail notification program Standard

faces Fancier, visual mail notifier Contributed

xclock, oclock Clock applications Standard

clock Fancier clock OpenWindows

xcalc Desktop calculator Standard

xload System load monitor Standard

perfmeter Fancier load monitor OpenWindows and
xview only

xman Manual page browser Standard

xrolo XView Rolodex™ emulator. Contributed

 cm Calendar Manager OpenWindows

calentool Calendar manager Contributed

Display and
keyboard preferences

properties Sets display, keyboard and color
preferences; updates your
resource file accordingly

Any OPEN LOOK
implementation

xset Sets display and keyboard prefer-
ences, such as bell volume, cursor
acceleration, and screen saver
operation

Standard.

xmodmap Allows you to map keyboard keys
and pointer buttons to particular
functions

Standard

Text Editing utilities

26 X USER’S GUIDE: OPEN LOOK EDITION

1

xedit Simple text editor Standard

textedit Simple text editor OpenWindows

Font utilities

xlsfonts Lists available fonts Standard

xfd Displays the characters in a single
font

Standard

xfontsel Allows you to display multiple
fonts sequentially and select a font
to be used by another application

Standard

Graphics utilities

bitmap Bitmap editor Standard

iconedit Another bitmap editor OpenWindows

atobm, bmtoa Convert ASCII characters to
bitmaps and bitmaps to ASCII
characters

Standard

pageview Show PostScript output OpenWindows

snapshot Fancy screen capture program OpenWindows

xloadimage, xv Control, display and manipulate
bitmap files in a variety of formats

Contributed

xfig, xpic One of many drawing programs.
Also touchup,.others

Contributed

Printing applications

xwd, xwud Dumps and re-displays the image
of a window to a file

Standard

xpr Translates an image file produced
by xwd to PostScript® or another
format, suitable for printing on a
variety of printers

Standard

xdpr Combines xwd, xpr and lp/lpr Standard

Removing a window

Table 1-2. An Applications Sampler

Name Description Availability

CHAPTER 1: INTRODUCTION TO OPEN LOOK AND X 27

1

erence page describing each client and listing its options appears in Part Three of this
guide. As more commercial and user-contributed software is developed, many more spe-
cialized programs will become available. For example, at the time of this writing (mid-
1992), the word processing user has the choice of many X- orOPEN LOOK-based word-
processing programs, including Word Perfect, FrameMaker, Interleaf, IslandWrite,
DECWrite, and others, with SoftQuad Author/Editor and ArborText Publisher for more
involved electronic publishing projects. The desktop graphics market includes Arts & Let-
ters, Corel Draw, Island Draw/Paint, and others. Just about any type of commercial
application you could want is now available for The X Window System, and most of them
are available for theOPEN LOOK GUI environment. A list of programs—both commercial
and contributed—that use theOPEN LOOK GUI is published in the Usenet newsgroup
comp.windows.open-look, and a recent version of this is reprinted in XXX NEW APPN.

1.5.4 Customizing Clients
Most X clients are designed to be customized by the user. A multitude of command-line
options can be used to affect the appearance and operation of a single client process. A few
of the more useful command-line options are introduced in Chapter 2,Working in the
OPEN LOOK Environment. Chapter 11,Command-line Options, discusses several options
in detail. Part Three of this guide includes a reference page for each client that details all
valid options.

xkill Terminates a client application Standard

pam Hides a dead window OpenWindows only

Window and display
information utilities

xlsclients Lists the clients running on the
display

Standard

xdpyinfo Lists general characteristics of the
display

Standard

xwininfo Lists general characteristics of a
selected window

Standard

xprop Lists the properties associated
with a window

Standard

psps Lists the PostScript (and other)
processes (window programs) in
the XNeWs server

OpenWindows only

Table 1-2. An Applications Sampler

Name Description Availability

28 X USER’S GUIDE: OPEN LOOK EDITION

1
X also provides a somewhat more convenient (if complicated) way to customize the
appearance and operation of client programs. Rather than specifying all characteristics
using command-line options, default values for most options can be stored in a file (gener-
ally called .Xresources or .Xdefaults) in your home directory. Each default value is set
using a variable called aresource; you can change the behavior or appearance of a program
by changing thevalue associated with a resource variable.

Generally, these resource values are loaded into the server using a program calledxrdb (X
resourcedatabase manager). Then the values are accessed automatically when you run a
client. Storing your preferences in the server withxrdb also allows you to run clients on
multiple machines without maintaining an.Xresources file on each machine. Because edit-
ing these resources by hand can be tedious,OPEN LOOK specifies a program to manage the
resources that affect globalOPEN LOOK characteristics. On OpenWindows this program is
calledprops (for “properties”); onAT&T-OL it is calledolwsm, the “workspace manager.”
It can be started by name or from the root menu. We will see this program in detail in Chap-
ter 6,Using the OPEN LOOK Window Manager.

In addition, manyOPEN LOOK applications have a “properties” menu that will allow you
to edit the resources (or other customization file) for that application. We’ll see examples
of these in various places.

There is a separate customization file for theolwm window manager (called.openwin-
menu on OpenWindows or.olprograms in AT&T-OL) which is also kept in your home
directory. On OpenWindows, editing the.openwin-menu file lets you modify the root
menu (theWorkspacemenu). OnAT&T-OL , you can only change the list of programs to be
run from thePrograms sub-window of theWorkspace menu; you use theproperties pro-
gram to modify this list of programs. Unlike some other window managers,olwm does not
let you modify the behavior of the window manager, nor the key and pointer button
sequences used to invoke actions, by editing this file. Instead, you use “X Resources”, most
of which can be set by theproperties program. Chapter 12,Setting Resources, has more
information.

Client customization is introduced in Chapter 14,Customization Clients, and is the general
topic of Part Two of this guide.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 29

2

Chapter 2WORKING IN THE OPEN LOOK ENVIRONMENT

CHAPTER 2

Working in the OPEN
LOOK Environment

The only way to learn any complex task is by doing it. In the first part of this chapter we
show you how to start up an X Window System session, including the X server and at least
one terminal window, along with theolwm window manager. The chapter then guides you
through some operations that are common to all programs using theOPEN LOOK GUI, as
well as to most X11 programs. This chapter describes how to:

■ Start your X system, if it isn’t started automatically

■ Use the mouse or other pointer device to choose a window

■ Use the pointer to move, reshape, iconify, and even delete windows

■ Understand and use all the standardOPEN LOOK controls

■ Start additional client programs, on both local and remote machines

This chapter is tutorial, and can be worked through at a computer with a version of the
OPEN LOOK GUI software installed.

2.1 Getting Started with X and OPEN LOOK
There are several possible ways you can start X. If you are lucky, your system administra-
tor will have read Volume Eight,X Window System Administrator’s Guide, and configured
your system to use the X Display Manager (xdm) login program as shown in Figure2-1. If
this is the case, you need only type your normal login and password to begin using X.

Or, you may have available a comprehensive vendor-supplied X package such as Sun’s
OpenWindows, in which case you need only log in at the workstation console (see
Figure 2-2), and type one command, normallyopenwin.

On the other hand, you may be using a dedicated terminal called an X Terminal. Each of
these methods is described in the following sections. If you don’t fit into one of these cat-

30 X USER’S GUIDE: OPEN LOOK EDITION

2

egories, you are probably on your own, and should consider reading Volume Eight,X
Window System Administrator’s Guide.

2.1.1 Logging In via the Special xdm Window
If the xdm display manager is running X on your system, you’ll probably see a window
similar to Figure 2-1 when you start up (or reset) your terminal.

Log in by typing your user name and password at the prompt, pressingRETURNafter each.
Without any user customization, the display manager executes a standard login “session,”
providing the firstxterm window and starting the window manager. Thexterm window
will be displayed in the upper-left corner of the screen. If theOPEN LOOK window man-

Figure 2-1. An XDM Screen

Figure 2-2. A Console Login

Welcome to X11 Release 5

Login:

Password

login:

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 31

2
ager is running, you will see the characteristic frame around thexterm window, as in
Figure 2-3. The name of the application (“xterm”) appears in the frame’s title area.

The frame provides a quick and easy way to move, iconify, resize, and otherwise manage
windows on the screen. Some of the basic window manager functions are described below
and in Chapter 6,Using the OPEN LOOK Window Manager.

You can now proceed to the section “Selecting and Using a Window” on page 35.

2.1.2 Logging In at a Full Screen Prompt: Starting OpenW indows or X
If you want to use a workstation that is not displaying any windows, but instead has a sim-
ple prompt ending with“login: ”, you just need to log in and start X manually. Typically,
when you log in, no windows are opened; instead the entire screen functions as a single ter-
minal, as shown in Figure 2-2.

If your account was created with the Sun-provided6 startup scripts (for example using
SunOS 4.1.x’sadduser script), then you will get this message

Starting OpenWindows, Control/C to interrupt...

and OpenWindows will be started for you automatically. If not, maybe your system admin-
istrator will be persuaded to configurexdm for you...

If no windows are displayed when you log in at a full screen prompt, you can start the X
Window System manually. In this section we’ll assume that anOPEN LOOK package such
as Sun’s OpenWindows has been installed. You need only type the command

% openwin

Figure 2-3. Window frame indicates that olwm is running

32 X USER’S GUIDE: OPEN LOOK EDITION

2
and you should (after a delay) see the full screen change color. Then an OpenWindows
logo similar to Figure 2-4 should appear. If instead, you get a message like “command not
found”, then you may need to specify the full UNIX path to the start-up script, which is
usually

% /usr/openwin/bin/openwin

The resulting screen should look like Figure 2-4.

If you have an older version of OpenWindows then the welcome screen will be simpler,
with a logo like that of Figure 2-5 in the center of the screen.

After some time (depending on your workstation), the screen will clear again, and you will
get some default clients like those in Figure 2-6.

You can use the optional-dev argument to specify a non-default “frame buffer”
device—the controller for a graphics monitor connected to your workstation (normally the

Figure 2-4. Sun OpenWindows startup screen

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 33

2

console). For “cgfour” systems (3/60, 3/110, and 4/110 with the normal color monitor),
you can use this to specify color-only, monochrome-only, or to use both by a kind of “vir-
tual screen” arrangement. The recommended configuration for these systems is to use:

Figure 2-5. Older OpenWindows startup screen

Figure 2-6. OpenWindows initial screen—not customized

34 X USER’S GUIDE: OPEN LOOK EDITION

2
% openwin -dev /dev/cgfour0 -dev /dev/bwtwo

In this configuration, the color screen (the default screen, or screen zero) is “to the left of”
the monochrome screen (screen one); that is, moving the mouse off the right side of the
color screen moves you into the black-and-white screen (makes the monochrome screen
appear on the monitor); moving off the left of the monochrome screen brings back the color
screen. For more details, see theopenwin andxnews manual pages in Part Three of this
Guide.

You can now proceed to the section “Selecting and Using a Window” on page 35.

If, on Solaris 1 (SunOS 4.1.x), you get a message like

wiwindow: Base frame not passed parent window in environment“
Cannot create base frame. Process aborted.

then you have erroneously set your PATH search variable and are picking up the SunView
version of some programs (see Appendix L,Running SunView Applications on OpenWin-
dows). Ensure that the directory/usr/openwin/bin is ahead of/usr/bin and all will be well.

2.1.3 Starting on a 386 with SVR4
A good example of a flexible system is Dell Computer Corp’s System V Release Four with
X11R5. Merely by setting one line in a system file, you can customize the appearance of
the overall system to Sun’sOPEN LOOK, AT&T-OL , Motif, or the MIT look. Copy the file
/usr/XR5/lib/xinit/xinitrc to your home directory under the name .xinitrc, and edit it.
Remove the comment character (“#”) from before the lineWM=xvolwm, and insert the
comment character before the lineWM=mwm, and you will get a Sun look, including the
cmdtool terminal emulator, that is closest to most of the examples in this book. For an
AT&T-OL look, including theOPEN LOOK version of xterm, un-comment the line
WM=olwsm. With WM=xvolwm, the screen should look something like Figure 2-7.:

You can now proceed to the section “Selecting and Using a Window” on page 35.

2.1.4 Starting with an X Terminal
Most X terminals now usexdm, and so behave as described in the section “Logging In via
the Special xdm Window”. If you aren’t runningxdm, check your vendor’s documentation
to see if your X terminal supports thexdm protocol; if so, see that documentation or Vol-
ume Eight,X Window System Administrator’s Guide, to configure it. If you have an older
X terminal that isn’txdm-capable, you normally use the X terminal’s built-intelnet or rlo-
gin session capability to connect to the file server on which the clients reside. Then you can
invoke your.xinitrc script either directly or through a simple shell script. Here is one exam-
ple of a script,xterminal, that the author has used in the past. The key point is to note that
we want to start all the normal clients, but we donot want to try to start a server, because
the X terminal itself takes care of starting its own server when you turn it on.

#!/bin/sh
DISPLAY=${1-myxterm:0}; export DISPLAY
OPENWINHOME=/usr/openwin; export OPENWINHOME
LD_LIBRARY_PATH=$OPENWINHOME/lib;export LD_LIBRARY_PATH

PATH=$PATH:/usr/openwin/bin; export PATH
exec /bin/sh .xinitrc

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 35

2

In this code,myxterm is a default X terminal’s TCP/IP hostname—the X terminal that I
normally use. For more information on the DISPLAY variable, see Section3.2.2, “Run-
ning a Client on Another Machine: Specifying the Display” on Page61. The
LD_LIBRARY_PATH and PATH settings are needed if you are using Sun OpenWindows
clients (normally theopenwin command sets this, but since we are invoking the clients
without using that script, we have to set these explicitly; see also Section3.2.5, “Compli-
cations: LD_LIBRARY_PATH). The last line starts up our.xinitrc script; the exec
keyword is there for efficiency.

2.2 Selecting and Using a Window
Now that you have a terminal emulator and a file manager handy, you can begin using
them. To use the terminal emulator, move the cursor into its titlebar and click theSELECT
(left) pointer button anywhere except on the Menu Button at the left.†

The titlebar becomes highlighted to show that the window has been given the focus. We
describe this “click-to-type” (or explicit focus) policy in Chapter One. (Ifolwm failed to
start, or fails during operation, such that you have no window manager, you use the
“pointer-focus” policy; simply move the pointer into a window and start typing.) If you
start typing when no window has the focus, your keystrokes will be lost without warning.

† In fact, you can click anywhere in the window, but it’s safest to click on the titlebar while you’re learning the
system.

Figure 2-7. Initial screen with WM=xvolwm

36 X USER’S GUIDE: OPEN LOOK EDITION

2
Once you have the focus on a terminal emulator window, it should behave much like an old
styleASCII terminal. The details vary depending on which terminal emulator you run and
how you have configured it, of course.

From here on, we will be discussing the details of using the previously mentioned clients.
The rest of this chapter discusses some specifics of using theOPEN LOOK GUI. The win-
dow manager, the file manager, and the terminal emulators will get our attention in the next
few chapters.

There are two areas of anyOPEN LOOK window that are used to provide feedback: the
titlebar, and the footer. The titlebar is “grayed out” to indicate that the window will be busy
for some time. And the footer is used to display messages. Watch for messages in the footer
of any application using theOPEN LOOK GUI!

2.3 Creating Additional Windows
You can create additional windows whenever you need them. First we’ll show you how to
do so from within a shell window, then we’ll see how you can create some windows from
the system menus.

Move the input focus to the terminal emulator (xterm or shelltool) now. Since you have a
UNIX shell running, you can run any program. One such program that you may need to run
often is a second (or third...) copy of the same terminal emulator. Just typeshelltool or
xterm, an ampersand (“&”), and press theRETURN or ENTER key. This will create a new
window, with a new copy of the UNIX shell in it (Bourne, Korn or C, whichever you nor-
mally use). It may take a few seconds, depending on how fast your system is. This window
will have the default size for the program, typically 24 lines of 80 columns each forxterm,
or 40 x 80 forshelltool/cmdtool.

By default,OPEN LOOK window managers will place new windows in a stack starting at
the upper-left corner of the screen, and moving down and to the right a little each time you
create a new window. We’ll see later in this chapter how to specify the positioning of cli-
ents when you create them; this will apply to all clients, not just terminal windows. Note
that a new window does not automatically get the input focus. WithOPEN LOOK’s default
click-to-focus policy, you must clickSELECT on a new terminal window before you can
start using it. As well, anytime a window is partially hidden by another window in front of
it, theSELECT operation that gives a window focus will also bring that window to the front,
but only if you clicked on the window’s titlebar. If instead you click inside the window, the
system will give that window the input focus, but willnot raise the window to the front.
There are operations for explicitly moving a window to the back or front of other windows,
as well as moving a window to a particular location, and others. We’ll look at some of these
shortly. But first, we need to learn some more details on using the pointer.

2.4 Using the Pointer
Most mice used with X11 have three buttons.OPEN LOOK defines their use as in the list
that follows; this is similar to (but not identical to) the commonly accepted uses in most X

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 37

2
Window System applications. Note in particular that thexterm terminal emulator isnot
OPEN LOOK-compliant, so it uses some buttons differently. See Appendix A,The
xterm/olterm Terminal Emulator for details.

■ SELECT—the left button, used to select an object or text

■ ADJUST—the center button, used to shorten or lengthen the selection

■ MENU—the right button, used to access a Menu.

But what if you don’t have a three-button mouse? The designers ofOPEN LOOK antici-
pated this, and assigned these standard alternatives:

■ On a two button mouse: Left isSELECT, shift-left isADJUST, right isMENU.

■ On a one button mouse: button isSELECT, shift-button isADJUST, control-button is
MENU.

2.4.1 Selecting Text
When usingOPEN LOOK, you normally select something before you operate on it (this is
called a “a selection-operation model”). For example, if you wanted to copy a sentence of
text from one window to another, or to cut out a line of text from a window-based text edi-
tor, you would firstSELECT the text, and then perform the cut or copy operation. The most
common way of selecting a range of text is as follows:

1. Move the cursor to just before the start of the text

2. Click and hold theSELECT mouse button

3. Move orwipethe cursor across the text you wish to select (as you do, each character
will be highlighted in inverse video)

4. Release theSELECT button

For example, let us assume that we have some text in a window, as shown in Figure 2-8.

38 X USER’S GUIDE: OPEN LOOK EDITION

2
Figure 2-8. Text before selecting

Our goal is to select the words “only a small portion even of the people then existing were
consulted.” Move the pointer to just before the “o” of “only”, then click and hold the
SELECT button while you move the pointer to just after the “d” in the word “consulted”.
The screen should now look like Figure 2-9.

Figure 2-9. Text after selection

If you need to lengthen or shorten the selectionafter you’ve released the button, no prob-
lem. Just move the pointer to the new desired end point, and clickADJUST.†

An alternate method of selecting a range of text is to click and releaseSELECT at the start
of the text you want selected, then move to the end and clickADJUST.

Then you can use theMENU button, or move to another window, to do the cut or paste
operation. This will be described, with examples, in Chapter 5,The cmdtool/shelltool Ter-
minal Emulator, where we will also discuss other types of text selections. For now what
matters is that text can be selected for use in copying, cutting, etc. Other objects can be
selected, too: think of setting the input focus bySELECTing a particular window. You
select the window and then do something to it (type into it, move it, etc.). In short,SELECT-
ing text or graphical objects is a basic operation.

2.4.2 Menu Choices
Like most window systems,OPEN LOOK makes extensive use of on-screen “menus,” or
lists of related choices.OPEN LOOK programs generally don’t have permanent menus,
ones that are always present on the screen. Instead, they use pop-up menus. And in addition

† If you have previously used the MIT version of thexterm terminal emulator, you will know thatxterm uses
“button1” to start a selection, and “button3” to adjust it. But inOPEN LOOK, theADJUST button is normally
the middle button, “button2.” There is no easy way to reconcile these incompatibilities, though individual users
may overcome them with an X Toolkit mechanism called “translations” (see Appendix F,X Toolkit Translation
Table Syntax). OpenWindows users may find it easier to usecmdtool instead ofxterm while you are learning this
material, sincecmdtool conforms toOPEN LOOK instead of thexterm conventions.AT&T-OL , however, in-
cludes a version ofxterm thatdoes conform to theOPEN LOOK specification.

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 39

2
they have one ofOPEN LOOK’s significant contributions to window systems: “pinnable”
menus, so that you the user can decide which menus are to stay up.

To use a menu, you must first display it with theMENU button (usually the right button).
There are two ways to displayOPEN LOOK menus, the traditional “pop-up sliding menu”
style, and the “stay-up” style.

■ Pushing theMENU buttonand holding it down “pops up” the menu—it stays on the
screen as long as you hold theMENU button down while you decide what to do. You can
move the pointer to any of the menu items and release it; this will cause the correspond-
ing action to be invoked. As you slide the pointer up and down, the item under the
pointer is highlighted, to indicate that it will take effect if you release the button.
Figure 2-10 shows one such menu: this example is the normal “titlebar” menu for win-
dows, orWindow Menu,both as it first appears and after you move the pointer to the
right to selectClose .

Figure 2-10. Window Menu

■ On the other hand, if you push theMENU buttonand quickly release it, then the menu
will appear in “stay-up” mode, that is, it will stay up just until you make one selection.
You can click theSELECT pointer button on one of the menu choices to select that
choice. If you want the menu to stay up for a while so you can invoke several of the
actions, you can click theSELECT pointer button on the pin, which causes the menu to
become pinned as described below†. Or, you can click any pointer buttonanywhere else
on the screen (typically in the Workspace or background) and the menu will be dis-
missed.

Important menus, such as the “root menu” orWorkspace menu, arepinnable, which means
you can “pin them up.” Somewindows are pinnable too, as we’ll see later. If an object is
“pinnable”, you can “pin” it, or make it stay up, just by moving the pointer over the picture
of the pin and releasing theMENU button. You’ll see the pin move before you release the

† Some implementations, such as Sun’solwm, allow you to clickany pointer button to select a menu choice or
pin the menu. Others do not, though, so you should consistently use theSELECT mouse button for these opera-
tions.

40 X USER’S GUIDE: OPEN LOOK EDITION

2
button, to show you that the pointer is in the right place. Figure2-11 shows a pinnable
menu before and after pinning.

Figure 2-11. Pinnable menu before and after pinning.

The name comes by analogy with pinning up a note on your corkboard, or putting a Post-
It note on your wall. Then the menu stays up with the pin in. If you later want to “dismiss”
(get rid of) this menu, you can click theSELECT button on the pin, to pull the pin out and
make the menu disappear. This discussion of pinning applies to any other item, such as a
dialog box, that is pinnable.

2.4.3 Pushing Buttons and Menu Buttons
There are two types of buttons provided by theOPEN LOOK GUI, command buttons and
menu buttons. Command buttons are the simplest; they look like this:

The function of a button will naturally be determined by the application. This particular
button is from thesnapshot program described in Chapter 9,Graphics Clients, and causes
a “view” of the current image to appear. To invoke it, you simply move the pointer so that
the point of the arrow is anywhere inside the oval, and click theSELECT pointer button
More ofOPEN LOOK’s visual feedback comes into play when you push on any button: the
button is grayed out until the operation it invokes is finished.

Note that some buttons have a “menu mark” consisting of three dots (“ . . .”) after the text.
This indicates that when you select this button, a pop-up window (or “dialog box”) will
appear. For example, the “Print...” button is used to pop up a dialog that lets you specify
which printer to use, number of copies, etc.

ManyOPEN LOOK applications have buttons labelledFile, View, Edit, and the like. These
menu buttons have a pull-down arrow () which means there is a pull-down menu
attached to them, as shown below:†

† TheFile menu is normally used to open a new file, save your work in a file, etc. TheView menu normally con-
trols some aspect(s) of how the window is displayed. TheEdit menu normally allows you to edit one or more as-
pects of the window’s behavior, or edit multiple parts of the data. Watch for examples of these as we go,
particularly in Chapter 7,The OpenWindows DeskSet Clients.

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 41

2
Clicking MENU on this button will pop the menu up, with all the flexibility discussed pre-
viously for menus. When you pull the menu down, you can that the item surrounded by an
oval is the default. Buttons that do not have the pull-down indicator shown above are sim-
pler—you just click on them with theSELECT pointer button when you want to activate
them. TheMENU button does not do anything on such buttons.

On the other hand, clicking theSELECT pointer button on it will select the default action,
without having to view the menu. This is a convenient shortcut that you use after you’re
familiar with the button layout of a given application. But because you may not be sure,
Menu Buttons also have a feature called “menu previewing.” When you push and hold the
SELECT button, they preview (display) the first few characters of the default item. If you
then release the pointer button, the default action will be taken. If you move the pointer off
that button, the default will not be taken. This is useful for applications that change their
default (say, betweenLoad andSave on theirFile menu button), or at any time you’re con-
fident but not certain about what the default action on a Menu Button will be.

2.4.4 Other Controls
In the following sections, we will discuss all of the commonOPEN LOOK control items.
Should you wish to experiment with these, run the “sampler” programs shipped with the
OPEN LOOK GUI. These sample programs are aimed primarily at programmers who are
developing applications using the widget set, and are similar to those offered by other wid-
get sets, such as Motif. This section discusses the programs available with OpenWindows
Version 3.0, but similar programs should be present with any implementation of theOPEN
LOOK GUI. Look in$OPENWINHOME/demo to see what’s available.

The first program, theOPEN LOOK Intrinsics Toolkit sampler, is in$OPENWIN-
HOME/demo/olitsampler on OpenWindows. Figure 2-12 shows what it looked like on our
system:

The second program is very similar to one provided with OSF/Motif. In both cases there is
an attempt to provide a “periodic table” of the design elements, which parodies the original
Periodic Table of the Elements used by chemists and physicists to classify all the basic
chemical elements out of which all substances are built. In most such programs, all the pic-
tures of movable controls, such as menus, scrollbars, and choices, are active, and can be
used to experiment with the behavior of the controls. And, again for the benefit of the pro-
grammers in the crowd, the command button at the bottom of each small window pops up
another window that reveals the source code needed to use that control. Figure2-13 shows
theOPEN LOOK Intrinsics Toolkit “periodic table”:

Figure 2-13 is shown here in monochrome; to really appreciate how it looks, you should
look at it in color, either on the page of Color Plates or by running it yourself on a system
with a color monitor. Just give the command

/usr/openwin/demos/olittable &

and you should see a picture similar to the above. Try this now; we’ll refer to some of the
controls shown in theolittable program in the following discussion. You can ignore the
two-letter names and numbers in the upper corners of each square; they are just there as a
tongue-in-cheek reference to the original Periodic Table.

42 X USER’S GUIDE: OPEN LOOK EDITION

2

2.4.5 Choice Items
Most window systems feature a variety of so-called “choice items”, or controls that let you
choose one or more options from a list. Here we look at the choice items provided by the
OPEN LOOK GUI; exclusives and non-exclusives, checkboxes, and abbreviated choices.

2.4.5.1 Exclusives and Non-Exclusives

Exclusive andNon-Exclusiveselections let you choose from a list of alternatives presented
in small boxes. Each box is drawn with a darker outline (monochrome) or with a recessed
image (three-dimensional look) when it is selected, and drawn with a thin border or drawn
flat when not selected. The only significant difference between Exclusives and Non-Exclu-
sives is that with the former, only one item can be selected, while with the latter, several or
all of the selections can be active at once. Exclusive choices are drawn touching each other,
to show that the buttons affect each other. For example, look at Figure2-14, which shows
more detail on the “Choices” section ofolittable. The most common place to encounter
these choice types is in “property sheets.” A Property Sheet is a pop-up window that con-
trols the “properties” or operation of a program. One example is the property sheet for
tapetool shown in Chapter 7,The OpenWindows DeskSet Clients.

Each little rectangle, such as the one aroundPick Me orBold, is one “choice”. The two sets
of choices on the left are Non-Exclusives, while the two on the right are Exclusives. You
can ignore the difference between the Flat and non-Flat versions of the choices; this is pri-
marily for the benefit of application implementors.

Figure 2-12. OLIT Sampler Program

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 43

2

Figure 2-13. The OPEN LOOK “Periodic Table”

Figure 2-14. Choices section of olittable

44 X USER’S GUIDE: OPEN LOOK EDITION

2
Clicking SELECT on one of the Non-Exclusives will either select that item (if it is currently
not selected), or deselected it (if it is currently selected). On the other hand, clicking
SELECT on one of the Exclusives other than the one that is selected will select that choice
and deselect the one that is currently selected.

For example, in a backup program, you might want to choose which tape format to use. It
makes no sense to have bothANSI Tar andCPIO formats in effect at the same time, for
example, since a tape can only be written in one format. So this decision would be an
Exclusive choice. Figure 2-15 is a picture of such a (hypothetical) backup program:

Figure 2-15. Choices in imaginary backup program

On the other hand, there are some options that are not mutually exclusive. Look at the Non-
Exclusive settings in the Options row: itdoes make sense to turn on both “Omit.o files”
(do not back up compiled “object” files) and “Omit SCCS” (do not back up SCCS
archives), so either one, both, or any of the other options shown here can be turned on (or
off again) by clickingSELECT in the box.

2.4.5.2 Checkbox

When you see a piece of paper with a list of items, some of which have little check marks
beside them, you probably assume that those items with check marks have been done, or
completed. TheCheckbox control item is similar: use it to request that certain actions be
done or that certain options be on or off. Figure2-16 shows a close-up of the Checkbox
item fromolittable:

Figure 2-16. Checkbox from olittable

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 45

2
The Checkboxes are like little switches; if youSELECT them when they are on, they go off,
and if youSELECT them when they are off, they go on. The third row of the program
shown in Figure2-15 allows you to turn backups on or off for each day of the week. The
bottom row of this hypothetical backup program uses Checkboxes to let you order food and
drink to consume while watching the tape drive spin.

2.4.5.3 Abbreviated Choice

The “Choose Tape Density” item is like an Exclusive choice, but it only displays the cur-
rent setting. It otherwise functions like an abbreviated menu, discussed earlier in this
chapter; if you clickSELECT on the menu mark, the default is set, while if you clickMENU,
the menu pops up, as shown in Figure 2-17:

Figure 2-17. Abbreviated menu button pops up

Then you can click on any of the choices; the one you chose will be displayed beside the
menu mark, and the menu will disappear.

2.4.6 Sliding items
There are several “sliding items” that let you scroll or adjust a value or a region. Thescroll-
bar, scrolling list andGauge controls are discussed together here.

2.4.6.1 Text Scrollbar

Scrollbars are one of the basic controls in any Graphical User Interface, because scrolling
of a larger window over a small display area is such a common operation. You can scroll a
command history list, a list of files, a list of colors to be used in displaying windows, or a
list of paintbrushes in a drawing program. A consistent GUI such asOPEN LOOK makes it
easy for the user by using the same scrolling notations throughout. Let’s first look at the

46 X USER’S GUIDE: OPEN LOOK EDITION

2
scrollbar and how it is used for the common operation of scrolling text. First, we need to
know the names of the parts of the scrollbar, as shown in Figure 2-18.

Figure 2-18. Parts of the OPEN LOOK Scrollbar

Here we present just the highlights of the scrollbar. A full explanation will be presented in
Section 5.4, “Using the OPEN LOOK Scrollbar” on Page 108.

■ To move the text up, click and holdSELECT in the centre box of the elevator, and drag
it up or down. As you drag the elevator down, the text will move up, which means you
are moving down in the file.

■ To move the text down, drag the elevator upward.

■ To move toward the top of the file, you can also click the little arrow on the top of the
elevator; to move down, click the arrow on the bottom.

■ To move up or down a “chunk” at a time (normally a page or half-page), clickSELECT
on the cable above or below the elevator.

There is much more to theOPEN LOOK scrollbar functionality, including a menu that lets
you jump around and split the window into multiple views. We discuss the scrollbar in
more detail in Chapter 5,The cmdtool/shelltool Terminal Emulator, when we have some
text to work with.

2.4.6.2 Scrolling List

The scrolling list lets you view several of a (potentially larger) number of choices, and
select one or more of the items. Each item that you select (if the application allows multiple
selections) is highlighted. You can visit parts of the list that aren’t currently visible by
appropriate use of the scrollbar, and select item(s) just by moving the pointer onto them

Top cable anchor

Up arrow
Drag area
Down arrow

Proportion indicator

Cable

Elevator

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 47

2
and clickingSELECT. So in a way, this type of item behaves like a cross between a text
scrollbar and a vertical list of choices—you can scroll up or down, and you can select items
from the list of choices. Theolitsampler program shown earlier features a scrolling list, as
does the simple window shown in Figure 2-18.

Figure 2-19. Scrolling list file browser

You can scroll the list up or down by using the scrollbar. In effect, the scrollbar here
behaves pretty much the same whether it is scrolling around in a text file (scrollbar) or in a
list (scrolling list). The Scrolling List scrollbar features a menu similar to the menu on a
regular scrollbar.

At any point, you can select an item in the list just by clickingSELECT on its name. Like
the Choices items discussed previously, Scrolling Lists can be either Exclusive or Non-
Exclusive. In an Exclusive Scrolling List—commonly used for selecting one file or topic
to open in an “Open...” pop-up window—only one item can be active at a time; selecting
one deselects the currently active one. In a NonExclusive Scrolling List, each item can be
selected or deselected individually.

A common shortcut is to double-clickSELECT on an item to choose it, particularly where
the scrolling list is being used to choose a file to open.

2.4.6.3 Slider

Like the scrollbar and scrolling list, aslider lets you move around. However, its purpose is
not to actually move something, but to adjust a numerical value within a specified range.
An example slider with its default value is shown in Figure 2-20:

Figure 2-20. A slider

This slider has a range of from zero to fifty; it might represent frames per second on a video
source, where zero means pause or “still frame,” and positive numbers control the refresh
rate. You adjust the value as with a scrollbar, either by dragging the central box or “grip,”

48 X USER’S GUIDE: OPEN LOOK EDITION

2
the analog of the scrollbar’s elevator, or by clicking on either side of the grip. If you grab
the grip by clicking and holding theSELECT pointer button on it, it gets highlighted, and
you can drag it as much as you like until you let go (Figure 2-21).

Figure 2-21. Slider being adjusted.

 While most sliders are horizontal, some applications use vertical sliders.

The value shown numerically is in a text field, in which you can type an exact value (and
pressRETURN); this will set the slider to that value.

2.4.7 Gauge
The gauge item shown in Figure2-22 is rather like a slider, except that it can only be set by
the application. That is, it is like a “read-only” slider; you cannot move it with the mouse,
but the program controlling the window sets its value to provide you with information.

2.4.8 Text Fields
There are several kinds of controls that let you manipulate text. A simple text field (see
Figure 2-23) has a label and one line for insertion of text. The label is “Filesystem”, and the
current value is/dev/rsd0a.

Text fields behave a little differently than other controls. To work with them, you must not
only ensure that the window they are in has the input focus, but you mustalso ensure that
the particular text field has the focus. You can do this by clicking theSELECT pointer but-
ton with the pointer in the text field; most applications will also allow you to move from
one textfield to the next by use of the <TAB> key or some other accelerator. Once you have
activated a text item, itsinsertion point (“caret” marker) will turn from gray to black to

Figure 2-22. A gauge

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 49

2

indicate that it is active. Then, you can type text at the insertion point, or you can use any
of several control keys:

■ CTRL-U clears the text field

■ CTRL-H, or Backspace, orDEL, erases one character at a time

A complete list appears in Section 5.7.1, “The Editing Keys” on Page 124.

Although a text field may only display a small number of characters, the application may
be willing to accept more. Let’s say we have a version ofUNIX that uses very long device
names, one of which we are typing into aBackup program, and we use up all the character
positions on the screen. This is shown in Figure 2-24.

Nothing special happens yet, but as we type the next character,OPEN LOOK gives us more
feedback, and lets us continue typing, by sliding the text to the left and giving us aMore
arrow at the left end (Figure 2-25).

Figure 2-25. Textfield with More arrow

If we wish to view text that is hidden behind a More arrow, we just click on the arrow, and
characters will appear one at a time. If necessary, another More arrow will be created at the
other edge of the text field. You can type as many characters as are needed in most appli-
cations; if you type more than the application is willing to accept, the text field will stop
accepting input, and beep if you try to keep typing.

Figure 2-23. A text field

Figure 2-24. Text field about to overflow

50 X USER’S GUIDE: OPEN LOOK EDITION

2
There are many other characters that can be used in text fields. As well, lines of a text field
behave similarly to lines in anOPEN LOOK text window. There is much more detail on this
topic in Section 5.6, “Editing Text in OPEN LOOK Applications” on Page 120.

2.4.9 Help Me
Although theOPEN LOOK GUI is remarkably consistent, there are quite a few different
types of objects, and they can be assigned different meanings by the application program-
mer. So you need some way to find out what a particular control is for. Most window
systems just tell you to “read the manual,” or at best give you a “Help” function that is not
aware of what you are doing (that is, they don’t give you “context-sensitive” help). But the
designers ofOPEN LOOK knew that most users would want something more powerful:
something based on window technology. So theOPEN LOOK GUI includes a facility for
getting online, context-sensitive help. Put the pointer on anyOPEN LOOK control, and
press theHELP key. This key is labeledHELP on some keyboards (on a Sun-3 keyboard, it
is labelled F1). If the developer of the application has provided a help file† and it has been
installed correctly, you will see a window created to bring you the help dataabout that par-
ticular OPEN LOOK control. Figure 2-25 shows an example of a help screen for the default
Workspace menu under OpenWindows. This is what you would see if you moved the
pointer into the (pinned) Workspace menu and pressed theHELP key.

The Help screen includes a little magnifying glass to show what it is “zooming in” on; in
this case, the Workspace menu. If you pressHELP with the pointer over a command button,
then only the help for that button will be displayed. If the help text is long, as in this exam-
ple, there will be a text scrollbar, described a few pages ago. If there is no help file for a
particular dialog item, or the help file for that application is not installed, you will see a
small dialog box with the message “No help is available for . . .” and the name of the appli-
cation and object for which the help is missing. For some commercial applications, you
may either have to install the help file as part of the installation, or else set the environment
variableHELPPATHto include the directory where the help files live. If the help function
fails for one program, check that the help files were installed properly and thatHELPPATH
is set correctly.‡

† The help file for an XView application namedfoot has the filenamefoot.info.

Figure 2-26. Help screen for a QUIT button

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 51

2
You could also use the HELPPATH facility to provide your own alternate help files. If you
wanted them to be more detailed or more terse than those provided, you could copy that
program’s help data into a private help library, put its name at the front of theHELPPATH
list, and edit the copy of the help file. The facility is as flexible as the UNIX execution
search path on which it is patterned.

One limit is that you cannot have part of one help file in one directory and part in another;
that is, the system only opens one library help file per application name. Another is that
some programs written with the OLIT toolkit may have the help data “hard coded,” and
you cannot provide your own help files for such applications. This is probably not such a
good idea, but OLIT programs may include it, so beware.

2.5 Moving, Resizing, and Iconifying Windows
As with most window systems, you can use the titlebar to perform common window oper-
ations such as moving, resizing, and closing the window. Unlike many X11 window
managers, however,OPEN LOOK lets you use the entire frame around the window to do
these operations, so you don’t have to have the titlebar visible. In the two-dimensional
monochromeOPEN LOOK, the frame is very thin on the sides and bottom, but you can find
it with a bit of practice. If you watch the screen cursor carefully, it “blinks” briefly as you
move onto the frame around a window. In colorOPEN LOOK, the frame is normally in a
color that contrasts with the background and with other windows, so it’s easier to see. You
can set it to a different color using X resource variables, shown inSection 3.4, “Customiz-
ing the X Environment: Specifying Resources” on Page69. Unlike some other window
managers such astwm, you cannot change the border thickness under theOPEN LOOK GUI.

Once the pointer focus is in the titlebar or frame, you can use theMENU button to get the
Window menu. The normalWindowmenu provided by theOPEN LOOK Window Manager
has the following items:Close, Full Size, Move, Resize, Properties, Back, Refresh, and
Quit. These will all be discussed in more detail in Chapter 6,Using the OPEN LOOK Win-
dow Manager; here is a brief look at the more commonly-used items:

■ Close iconifies (or “minimizes”) a window. The window disappears from your screen,
and is replaced by a small window with the same name and (usually) a graphic represent-
ing the program. These icons appear in a row along one edge of your screen.

■ Back moves the window behind any other windows that it overlaps. Useful in finding a
window when you have several that overlap.

■ Refresh redisplays the window, in case bits of it were overwritten or lost.

■ Quit terminates the application; if the application has its own means of termination, such
as logging out of a terminal emulator, that should be used instead ofQuit. However, the
presence of this item on the Window Menu is the reason why mostOPEN LOOK applica-
tions do not provide aQuit button of their own.

‡ HELPPATH is a colon-separated list of directories to look in for help files. It defaults to/usr/lib/help and
/usr/openwin/lib/help in AT&T-OL and Sun’s OpenWindows respectively.

52 X USER’S GUIDE: OPEN LOOK EDITION

2
Figure 2-27 provides an example of closing a window usingClose.

See Section6.4, “The Window Menu: Moving, reshaping, and iconifying Windows” on
Page 144, for more details on all these operations.

2.6 Exiting an xterm or cmdtool Window
When you are finished using anxterm orshelltool window and want to get rid of it, you can
remove in one of two ways. You can kill a terminal window by typing whatever command
you usually use to log off your system. On UNIX this might beexit or CTRL-D. In
Figure 2-28, we’ll quit anxterm window by typingexit.

Figure 2-27. Closing a window from the window menu

Figure 2-28. Exiting an xterm window.

CHAPTER 2: WORKING IN THE OPEN LOOK ENVIRONMENT 53

2
A second, more drastic method of terminating the window is using theQuit item on the
Windowmenu (see Figure2-29). However, some programs that do not fully conform to the
ICCCM (see Volume Zero,X Protocol Reference Manual), even including some versions
of the MITxterm, will give obnoxious messages when killed off this way.

Notice that in either case when we terminate the second terminal window, the first terminal
window does not take over the input focus. When explicit focus is being used and a win-
dow is terminated, the input focus reverts to the Workspace, rather than to any particular
window.

Be aware that on some systems (OpenWindows is not one of them), terminating the “login”
terminal emulator window (the first terminal emulator to appear) kills the X server† and all
associated clients. Be sure to finish any work you might be doing in all otherxterm win-
dows before terminating thexterm login window. For example, if you are in an editor such
asvi, be sure to save your data before you terminate that window or the session. If you are
on such a system, it may be wise to iconify the login window and use otherxterm windows
instead, so that you don’t inadvertently terminate it. Remember: you iconify a window by
placing the pointer on the pull-down symbol at the left end of the titlebar, and clicking the
SELECT button.

If you are worried about typingCTRL-D accidentally, and you normally use the C shell
(csh), you can enter:

% set ignoreeof

in the login window. Typingexit then becomes the only way you can terminate the
window.

Note that some C shell implementations have anautologout variable, which will auto-
matically terminate the shell if there is no activity for a given period of time. If your C shell
supports this feature, be sure to disable it in the loginxterm window using this command:

† If xdm is running X, the server will be reset but only after all client processes have been killed.

Figure 2-29. Quitting a window

54 X USER’S GUIDE: OPEN LOOK EDITION

2
% unset autologout

The contributed software clientcontool, by Chuck Musciano of Harris Corporation, pro-
vides an alternative console window. It is normally iconified, to save “screen real estate,”
and can be set to flash or even pop open when important console messages appear. And it’s
an output-only window, so you can’t accidentally kill it off by typingCTRL-D or exit in the
window.†

For xterm only, an alternative way of logging off the system is to terminate anxterm win-
dow by selectingSend HUP Signal, Send TERM Signal, Send KILL Signal or (most
reasonably),Quit from thexterm Main Options menu. (These menu options send different
signals to thexterm process. Depending on what signals your operating system recognizes,
some of the options may not work as intended. See Appendix A,The xterm/olterm Termi-
nal Emulator, for more information.)

As we’ve seen,OPEN LOOK also provides the QUIT item in theWindow menu to remove
any client window, including anxterm.

2.7 Summary
Now you know the basics of managing windows under X11 andOPEN LOOK. In the next
chapter we show you how to start many new windows, and how to customize the system
so your desired windows start whenever you begin using the system.

† This program does require a certain feature in the operating system. To see if you can run it, check your vendor’s
documentation for the ioctl request TIOCCONS (4BSD) or SRIOCSREDIR (SVR4)— see the tty(4) or console(4)
man page on your system—normally used bycmdtool -Cor xterm -C to take over management of the console. If
it’s there, as it should be on any modernUNIX, you can use contool just by compiling and installing it. Otherwise,
you or your support programmer would have to find out howxterm -C works on your system, if at all, and write
similar code intocontool.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 3: OPENING ADDITIONAL WINDOWS 55

3

Chapter 3OPENING ADDITIONAL WINDOWS

CHAPTER 3

Opening Additional
Windows

The previous chapter showed you how to start up OpenWindows or The X Window Sys-
tem and use the basic features of X11 andOPEN LOOK, using theOPEN LOOK Window
Manager to control windows. In this chapter we show you how to:

■ Start additional clients

■ Start those clients in convenient places on the display.

■ Customize a client process using command line options.

■ Specify alternate default characteristics for a client program using “resource” variables.

■ Arrange for your own particular set of windows to be created each time you start the win-
dow system.

3.1 Starting Additional Clients
Now that you know the basics of managing windows, you can start other X clients just as
you can start another instance of the terminal emulator. The following sections describe
how to open more client windows, place them on the display in convenient positions, and
take advantage of X11s networking capabilities by running clients on other machines.

To start a client, at the command line prompt in any terminal emulator window, type the
name of the client followed by an ampersand (&) to make the client run in the background.
For example, by typing:

% oclock &

you can create a new window displaying a clock. The clock will appear in a the next spot
in a stack coming down from the upper-left corner of the screen. You can then drag the
oclock window to a more convenient location—say the upper-right corner, as in

56 X USER’S GUIDE: OPEN LOOK EDITION

3
Figure 3-1. (Remember, to move a window, place the pointer on the titlebar, press the
SELECT button, drag the window outline to the desired location, and release the button.)

Though moving windows on the display is fairly simple, manually positioning every win-
dow each time you start using X is not particularly convenient. For most clients, X provides
a way to specify a window’s location (and also its size) automatically—using an option
when you run the command. A window’s size and position is referred to as itsgeometry
and you set these attributes using the-geometry option. The use of this option is dis-
cussed in the sectionWindow Geometry: Specifying Size and Locationbelow

3.2 Command Line Options
Most X clients accept two powerful and extremely useful options: the-geometry option,
which allows you to specify the size and location of a window on the screen; and the-dis-
play option, which allows you to specify on which screen a window should be created.
Most commonly, you’d use the-display option to run a client on a remote machine and
display the window ‘locally’, that is, on your display.

The next few sections illustrate some typical uses of these important options. In explaining
how to use them, we introduce some new, perhaps somewhat involved concepts (such as
the way distances can be measured on your screen). Bear with us. Though these two
options are not part of theOPEN LOOK specification, we feel that you need to master the
-geometry and-display options in order to begin to take advantage of the flexibility
of OPEN LOOK and X.

Most clients will accept a-help option, which will print the commonly-used command-
line options that the given client accepts. XView clients often print only the “generic”
options in response to-help . More detail on command line options appears in Chapter 11,
Command-line Options.

After explaining these options in detail, we’ll briefly consider some of the characteristics
you can specify using other common options.

Figure 3-1. The oclock window

CHAPTER 3: OPENING ADDITIONAL WINDOWS 57

3
3.2.1 Window Geometry: Specifying Size and Location
There is a command line option that is recognized by every imaginable X client to specify
the size and placement of its base window on the screen. At first blush it looks a bit com-
plicated. However, theOPEN LOOK Window Manager provides alternative methods of
finding this information and saving it in a file. You can place your windows using the
pointer, adjust their size using the pointer, then use theSave Workspace menu item. If
you’re willing to use that method, you can skip the remainder of this section until you need
to know it.

The command line option to specify a window’s size and location has the form:

-geometry geometry

The -geometry option can be (and sometimes is) abbreviated to as much as-g , unless
the client accepts another option that begins with “g.” Applications developed using the
XView toolkit cannot use -g because of other options†. Specifying-geometry is always
safe! Particularly in shell scripts, you should always use the long form, so that the script
won’t stop working when a new version of a program is installed; using the long forms also
makes the scripts more readable.

The parameter to the geometry option (geometry), referred to as the “standard geometry
string,” has four numerical components, two specifying the window’s dimensions and two
specifying its location. The standard geometry string has the syntax:

width xheight ±xoff ±yoff

Obviously, the first half of the string provides thewidth andheight of the window.
Many application windows are measured in pixels. However, application developers are
encouraged to use units that are meaningful in terms of the application. For example,
xterm’s dimensions are measured in columns and rows of font characters. More precisely,
an xterm window is some number of characters wide by some number of lines high (80
characters wide by 24 lines high by default).Cmdtool/shelltool’s geometry dimensions
are measured in pixels; use the alternate-Ww x and-Wh x to specify the size in columns
and lines forcmdtool or any XView client whose base window is a text window.

The second half of the geometry string gives the location of the window relative to the hor-
izontal and vertical edges of the screen. Imagine the screen to be a grid (where the upper-
left corner is 0,0),xoff (x offset) andyoff (y offset) represent the x and y coordinates at
which the window should be displayed. The x and y offsets are also measured in pixels.

Many users may not be accustomed to thinking in terms of pixels. What exactly is a pixel?
A pixel is the smallest element of a display surface that can be addressed by a program.
You can think of a pixel as one of the tiny dots that make up a graphic image, such as that
displayed by a terminal, an X display, or even a home television set.

Since a pixel is so tiny, gauging sizes and distances in pixels will take some practice. For
instance, what are the dimensions of your screen in pixels? Your workstation or X terminal

† If you like short forms, you can use-WG with XView clients; it takes the same geometry specification as does
-geometry.

58 X USER’S GUIDE: OPEN LOOK EDITION

3
documentation may provide this information, or you may have to experiment by placing
windows in order to figure out the approximate dimensions.

Keep in mind that monitors can vary substantially. The Sun 19-inch monitor usually has
dimensions of 1152 x 900 pixels (these figures also comprise what is known as the screen’s
resolution). Since the horizontal and vertical dimensions of the viewing area are approxi-
mately 13.75 x 10.75 inches, each inch is equivalent to approximately 84 pixels
(sometimes called dots) in both dimensions. By contrast, the 16-inch monitor on the Sony
NEWS workstation has dimensions of 1280 x 1024 pixels. The actual viewing area is
approximately 13 inches wide by 10 inches high. This translates to 98.5 dots per inch (dpi)
horizontally and 102.4 dpi vertically, or roughly 100dpi.

Most X servers on PC-class machines require the use of a VGA monitor board. A VGA dis-
play has a minimum resolution of 640x480, and the 13-inch monitor we measured has a
viewing area about 9-3/4 x 6-6/8 inches, giving a resolution of 65.5 x 72.5 dots per inch.
Since most “VGA compatible” screen adapters also support other higher resolutions,there
is no single resolution standard for PC-class machines with VGA. The same monitor in an
800x600 mode would have a resolution of 82 x 90.5 dots per inch. And at “Super VGA”
1024x768, the resolution would be a respectable 105 x 116 dots per inch.

What are the implications of such hardware differences in specifying client geometry? The
size and location of client windows is related to the size and resolution of your screen. For
example, if you specify a window with dimensions of 125 x 125 pixels, it will appear
somewhat larger on the Sun monitor than on the Sony or the Super VGA.

So how do we use the geometry option to specify a window’s size and location? First, be
aware that you can specify any or all elements of the geometry string. Incomplete geometry
specifications are compared to the application’s default settings and missing elements are
supplied by these values. All client windows have a default size. For example, if you run
anxterm window with the geometry option and specify a location but no dimensions, the
application default of 80 characters by 24 lines is used.

If you don’t specify the x and y coordinates at which to place a client window, the client
may provide a default location; if the application doesn’t provide a default, theolwm win-
dow manager will automatically position the window in a “stack” working down and to the
right from the upper-left corner of the screen.

For now, let’s just specify a window’s location and let the size be the application default.
The x and y offsets can be either positive or negative. If you specify positive offsets, you’re
positioning the left side and top side of the window. Negative offsets are interpreted differ-
ently. The possible values for the x and y offsets and their effects are shown in this table:.

Table 3-1. Geometry Specification x and y Offset

Offset Variables Description

+xoff A positive x offset specifies the distance by
which the left edge of the window is offset
from the left side of the display.

CHAPTER 3: OPENING ADDITIONAL WINDOWS 59

3

For example, the command line:

% xclock -geometry -10+10 &

places a clock of the default size in the upper-right corner of the display, 10 pixels from the
top and right edges of the screen.

To place a window in any of the four corners of the screen, flush against its boundaries, use
the following x and y offsets.

If you want a window placed away from one or both edges of the screen, the guesswork
starts. How many pixels away from the left side of the screen? How many pixels down
from the top? You’ll have to experiment with placing some clients on your screen to get a
better idea of x and y offsets. And you’ll have to rerun the experiments when you move to
a different workstation with a different display board. This is whyOPEN LOOK provides a
stacked window placement policy, as described earlier.

It’s actually a good idea to start some windows and move them around on your screen
using the pointer. You can position some windows in different places by dragging them,
and watching their sizes and positions. Underolwm you need only set the resources

OpenWindows.showMoveGeometry: True
OpenWindows.showResizeGeometry: True

Thenolwm will display the position during a move, and the size during a resize. This infor-
mation is displayed in a tiny window in the upper-left corner of the screen.

+yoff A positive y offset specifies the distance by
which the top edge of the window is offset
from the top of the display.

- xoff A negative x offset specifies the distance by
which the right edge of the window is offset
from the right side of the display.

- yoff A negative y offset specifies the distance by
which the bottom edge of the window is
offset from the bottom of the display.

Table 3-2Geometry Specifications for Corners

 Offset Specification Window Location

+0+0 Upper-left corner of the display.

+0-0 Lower-left corner of the display.

-0+0 Upper-right corner of the display.

-0-0 Lower-right corner of the display.

Table 3-1. Geometry Specification x and y Offset

60 X USER’S GUIDE: OPEN LOOK EDITION

3
If for some reason you are not usingolwm, you must figure out the window’s x and y off-
sets using thexwininfo client. Chapter 8,Other Standard Clients, describesxwininfo,
which gives you several statistics about a window including the coordinates of its upper-
left corner.

Now what about the size of a window? Forxterm, the size of the window is measured in
characters and lines (by default 80 characters by 24 lines). If you want to use a large VT100
window, say 100 characters wide by 30 lines long, you could use this geometry
specification:

% xterm -geometry 100x30-0-0 &

This command creates a largexterm window in the lower-right corner of the screen, as
illustrated in Figure 3-2.

Figure 3-2. xterm window sized and positioned with the -geometry option

As stated previously, most of the standard clients (other thanxterm) are measured in pixels.
For example,xclock is 164 pixels square by default (exclusive of the window manager’s
decorations or frame). A client’s default dimensions may appear on its reference page in
Part Three of this guide. However, you’ll probably need to experiment with specifying
sizes (as well as locations) on your display. (See Chapter 8,Other Standard Clients, and
the client reference page, for more aboutxclock.)

The geometry option is not the only means available to specify window size and location.
Several clients, includingxterm, allow you to set the size and location of a window (and
often its icon or an alternate window) using resource variables (in an.Xdefaults or other
defaults file). We’ll introduce some of the basics of specifying resources later in this chap-
ter. See Chapter 12,Setting Resources, for more detailed instructions on setting resources.
See the appropriate client reference pages in Part Three of this guide for a complete list of
resources used by any given client.

CHAPTER 3: OPENING ADDITIONAL WINDOWS 61

3
Clients built using the XView toolkit can also accept the command-line options -Wp x y
to specify the window position in pixels, and-WP x y to specify its position when iconified.

✗ These XView-specific forms do not accept the + or - forms of position to indicate distance
from the right margin or bottom. Furthermore, a bug in the XView library in OpenWindows
3.0 prevents use of the abbreviated “+xoff+yoff” forms of - geometry with negative val-
ues ofxoff oryoff, that is, for setting the location relative to the bottom or the right margin.
By experimentation we’ve determined which of the following forms work:

perfmeter -geometry -10-10 fails (centre of screen!)
perfmeter -geometry 64x64-10-10 works (lower left corner)
perfmeter -geometry +10+10 works (upper left corner)
perfmeter -geometry +10-10 fails (10 from left, but centry of screen)

Accordingly, we recommend using the full-blown specification, even though it means
hard-coding the size, with these clients, until the next release of the XView library.

✗ You should be aware that, as with all user preferences, you may not always get exactly what
you ask for with any geometry request in any client. The X Window System requires that
clients be designed to work with any window manager, not justolwm. If you are using some
other window manager, it may have its own rules for window or icon size and placement.
However, priority is always given to specific user requests, so you won’t often be surprised.

3.2.2 Running a Client on Another Machine: Specifying the Display
We have yet to take advantage of X’s networking capabilities. Remember that X allows
you to run a client on a remote machine across a network. Generally, the results of a client
program are displayed on a screen connected to the system where the client is running.
However, if you are running a client on a remote system, you probably want to see the
results on your own display (connected to a local server).

Running a client on a remote machine may give you access to different software, it may
increase the efficiency of certain processes, or benefit you in a number of other ways. We
discussed some of the advantages of running a client on a remote machine in Chapter 1,An
Introduction to OPEN LOOK and the X Window System. See the sectionX Architecture
Overview for details.

But how does running a client on a remote system affect the way you work with the X dis-
play? Once a client is running, it doesn’t. You can display the application window on your
own screen, enter input using your own keyboard and pointer, and read the client’s output
in the window on your screen—all while the actual client process occurs on another
machine.

However, by default a client creates its window on a display connected to the machine on
which it is running. In order to run a client remotely and display its results locally, you
must tell the client process where to display its window. For this purpose, X provides the
-display command line option. Like-geometry , the -display option is recog-
nized by almost all X clients. The display option tells the client on which server to display
results (i.e., create its window). The option has the syntax:

-display[host : server [.screen]]

62 X USER’S GUIDE: OPEN LOOK EDITION

3
In some clients the-display option can be abbreviated as-d , but it’s safest to use the
full form.†

The argument to the display option is a three-componentdisplay name. Thehost speci-
fies the machine on which to create the window, theserver specifies the server number,
and thescreen specifies the screen number.

In this context, “server” refers to a single physical display controlled by one X server pro-
gram. (A display may be composed of multiple screens, but the screens share one keyboard
and pointer.) Most workstations have only one keyboard and pointer and thus are classified
as having only one display. Multi-user systems may have multiple independent displays,
each running a server program. If only one display exists, as is the case with most worksta-
tions, it is numbered 0; if a machine has several displays, each is assigned a number
(beginning with 0) when the X server for that display is started.

Similarly, if a single display is composed of multiple screens (sharing one keyboard and
pointer), each screen is assigned a number (beginning with 0) when the server for that dis-
play is started. Multiple screen displays may be composed of two or more physical
monitors. Alternatively, two screens might be defined as different ways of using the same
physical monitor. One example is the Sun-3/60, Sun-3/110 and Sun-4/110 color worksta-
tions, described in Section2.1.2, “Logging In at a Full Screen Prompt: Starting
OpenWindows or X.” PC/386 systems often support “virtual terminals;” on these you can
sometimes run a separate X server on each of several virtual terminals. It is not clear
whether there is a standard yet for referring to these as separate displays or separate
screens; one expects that since there is but one keyboard, the server would treat it as one
display with multiple screens.

Note that theserver parameter of the display option always begins with a colon (a dou-
ble colon after a DECnet node)‡, and that thescreen parameter always begins with a
period. If the host is omitted or is specified asunix , the local machine is assumed. If the
screen is omitted, screen 0 is assumed.

Although much of the current X Window System documentation suggests that any of the
parameters to the-display option can be omitted and will default to the local node,
server and screen 0, respectively, we have not found this to be true. In our experience, only
the host andscreen parameters (and the period precedingscreen) can be omitted.
The colon andserver are necessary in all circumstances. For local hosts, the minimum
form of the-display argument is thus:0 and this form on some implementations may be
more efficient than usingunix:0, which some other documentation advises.

In summary, the display name can have the following forms:

† “X Toolkit” clients can usually use -d, but XView clients cannot because of the options ‘-disable_retained’ and
‘-disable_xio_error_handler’. See the Reference Manual page for ‘XView’ in Part Three of this Guide.

‡ By convention, DECnet node names end with a colon.

CHAPTER 3: OPENING ADDITIONAL WINDOWS 63

3
On UNIX systems, the display name can also be stored in the DISPLAY environment vari-

able. Clients running on the local system access this variable to determine which display to
connect to. The DISPLAY variable is set automatically, both by the OpenWindows start-
up script and by the xterm terminal emulator. OpenWindows defaults it to:0 , meaning the
local host. In most circumstances,xterm sets the server and screen numbers to 0, and either
omits a hostname (the local host is assumed) or sets the hostname to “unix,” a generic
name, which also defaults to the local host.

If you only run processes on the local machine, you don’t have to deal with issues concern-
ing the display setting.Clients running locally access the DISPLAY variable and open
windows on a display connected to the local host. However, if you want to run a process
on a remote machine and display the results locally, things become more complicated. A
client running on a remote machine does not have access to the DISPLAY variable on the
local machine. By default, a client running on a remote machine checks the DISPLAY set-
ting onthat machine, where DISPLAY may not even be set!

You can override the DISPLAY environment variable a client accesses by using the-dis-
play option when you run the command. Think of-display as a pointer to the physical
display on which you want the window to appear. For example, say you’re using a single
display workstation and the display also has only one screen. The hostname of the work-
station iskansas. In order to tell a client to connect to a display, you must identify it by its
unique name on the network. (You cannot identify your display by the common short-
hand—unix:0.0 , :0.0 , or some variation.) Let’s assume that the complete display
name for the workstationkansas is:

Table 3-3. Display Syntax Forms

Display
Where
window
appears

How
connected

(none) Console of
workstation
you’re using

Local socket
(/tmp/.X11-
unix)

:0 or :0.0 As above As above

:0.1 Screen 1 of
console

As above

unix:0.0 Console As above

hostname:0.0 Console or
screen of
hostname

TCP/IP
network
(usually
Ethernet)

hostname:0 As above DECnet

64 X USER’S GUIDE: OPEN LOOK EDITION

3
kansas:0.0

Now let’s say you want to run anxterm window on a faster system—let’s call itoz —on
your network. In order to run anxterm on oz but display the window on your screen con-
nected tokansas (the local server), you would run thexterm command using a remote shell
(rsh):†

% rsh -n oz xterm -display kansas:0.0 &

Thexterm process runs onoz, but you’ve directed the client to use the display and screen
numbered 0 onkansas, your local system. Notice thatkansas:0.0 is the complete dis-
play name. If the workstation (kansas) has only one screen or it has multiple screens but
you want to specify screen 0, you can omit the screen number and the preceding period
(.0).

Keep in mind that for this process to succeed, you must have permission to run commands
on the remote system (oz) and the remote system must have permission to “open” the local
display (onkansas). If you don’t have permission to run commands “over there,” you will
get back the message

Permission denied.

or words to that effect.

Normally you have permission to create windows from any machine on your local network
onto your display, assuming that your local network shares home directories. The file
.Xauthority in your home directory is created automatically by theopenwin script and any
other modern implementation of X11; this file grants permission to access your screen. It
is not publicly readable so that other users cannot copy it. If your home directory is avail-
able on the remote machines from which you wish to launch clients (for example, a home
directory mounted via NFS to a group of machines), no further action is necessary. But if
you wish to grant permission to another account that has adifferent home directory but that
you are “host equivalent” to, you can do so with thercp command:

rcp .Xauthority otherhost :

If your account on oz has not been granted access to the server running onkansas, the win-
dow will not be opened, and you should get an error message similar to:

Xlib: connection to "oz:0.0" refused by server
Xlib: Client is not authorized to connect to server
Error: Can’t Open display

On OpenWindows, thisadditional message will appear on the console ofoz:

X11/NeWS Network security violation
 Rejected connection from: kansas (192.31.6.192)
For more information, see the xhost(1) and xauth(1) man pages

† The command to run the remote process might be different depending on the available networking software.
Some versions of UNIX include a so-called “restricted shell” calledrsh, so these systems have to invent a new
name for the realrsh. If it’s not there, or if you get the messagersh: cannot open oz , try rcmd or remsh.
Ask your system administrator for the proper command.

CHAPTER 3: OPENING ADDITIONAL WINDOWS 65

3
If your command fails with this message, and you can’t provide a.Xauthority file, then as
a last restor try entering the command:

% xhost + oz

in a terminal emulator window running on your display. Then run the remote shell (rsh)
again.

✗ Be aware that nowanybody with an account onoz can create windows on your display;
this is why the.Xauthority mechanism mentioned above is preferable. If problems persist,
consult thexhost andxauth reference pages, or your system administrator, or refer to Vol-
ume Eight,X Window System Administrator’s Guide.

This problem will also occur if yousu to root and then try to create windows. Some ven-
dors’ software installation documentation tells you to use the “xhost +” form, but this is
insecure. A better method is:

1. su to root

2. Copy.Xauthority from your home directory to/.

3. Start the installation window.

4. Remove the file created in step 2!

5. Exit the root shell

6. Do the installation in the installation window.

The following command illustrates another common mistake:

% rsh oz cmdtool &

If you try to run a client using a remote shell and forget to direct the client to create its win-
dow on your own display, the window will not be displayed and you’ll get an error
message stating that the display cannot be opened. Worse, the terminalmay appear on oz’s
console if an X server is running there; this gives whoever is logged in there access to your
files on that machine!

In addition to specifying a local display, if permissions allow, you can also use the display
option to open a window on someone else’s display. You might want to display a window
on another user’s screen for instructional purposes. Multi-user systems can even be set up
to allow teachers to display educational material simultaneously to several students, each
using an X display of some sort.

If you’re working onkansas and you want to open a terminal window on the first display
connected tooz, you could use the command:

% cmdtool -display oz:0.0 &

Note that you can only open a window on another display if the server running that display
permits your client access. (Access must be granted from the remote server, perhaps using
xhost.) If oz does not allowkansas access, this command will fail and an error message will
indicate that the display cannot be opened.

66 X USER’S GUIDE: OPEN LOOK EDITION

3
3.2.3 Once You Run a Remote xterm using -display
A less than obvious repercussion of using-display to run a remotexterm is that the
option sets the DISPLAY variable for the newxterm window—and that DISPLAY setting
is passed on to all child processes of the client. Therefore, once you run anxterm on a
remote system and correctly specify your own display, you can run any number of clients
from thatxterm and they will all be displayed on your screen automatically (no-display
option is necessary).

✗ This automatic propagation is not done by the current version ofcmdtool or shelltool

In one of the examples in the preceding section, we ran anxterm on the remote systemoz,
specifying the local displaykansas:0.0 with the-display option. To query the con-
tents of the DISPLAY variable in the resultingxterm, use the command:

% echo $DISPLAY

The system should echo:

kansas:0.0

verifying that the display name has been passed to the DISPLAY variable in the newxterm
window. You can then run any client you want onoz by entering the command in thisxterm
window and the window will automatically be displayed onkansas:0.0 . The DIS-
PLAY setting will also be passed to any children ofthis process as well, and will be
propagated for any number of “generations.”

3.2.4 Logging In to a Remote System
If you log in to a remote UNIX system usingrlogin (or telnet) in a terminal emulator win-
dow, it’s a good idea to set the DISPLAY variable in the new shell to reflect your local
display. Then if you run a client process from this window, the new window will be placed
on your local display and the DISPLAY setting will be passed on to all child processes.

When you set the DISPLAY variable from the command line, the syntax varies depending
on the UNIX shell running. The following command sets the variable under the C shell.

% setenv DISPLAY kansas:0.0

To set the DISPLAY variable under the Korn or Bourne shell, use:

$ DISPLAY=kansas:0.0; export DISPLAY

3.2.5 Complications: LD_LIBRARY_PATH
Whenever you are starting a client program, you need to be sure that the shell variable
LD_LIBRARY_PATH has been set. $LD_LIBRARY_PATH is the SunOS shared library
search path, and is needed by most of the OpenWindows clients. This is normally set for
you by the OpenWindows script, and normally propagated for you by therlogin program.

Occasionally this fails, and programs refuse to start up.When this is the problem, you will
get the message like

ld.so.1: programname : can’t find file libxview.so.3
Killed.

CHAPTER 3: OPENING ADDITIONAL WINDOWS 67

3
Here are some circumstances in which you must set it manually

■ You aren’t using theopenwin script to start your environment

■ You have logged in remotely usingtelnet or any other network program that doesn’t
propagate your “environment variables”

■ You are logging in from a non-Sun platform to a Sun platform to run some OpenWin-
dows clients.

In these cases, the command

% setenv LD_LIBRARY_PATH /usr/openwin/lib

or

$ LD_LIBRARY_PATH=/usr/openwin/lib; export LD_LIBRARY_PATH

(typically from within a shell startup script) will solve the problem.

3.2.6 Monitoring the Load on a Remote System
There are two clients used to track the system load average on remote machines. These cli-
ents will be useful in determining which remote machine(s) on your network are least
heavily loaded and therefore most suitable for logging into to get work done. The MIT cli-
ent xload, described in Chapter 8,Other Standard Clients, tracks load average from one
machine; the OpenWindows DeskSet clientperfmeter described in Chapter 7,The Open-
Windows DeskSet Clients, tracks several load-related statistics from a system.

3.2.7 Other Command Line Options
In Section3.2.1, “Window Geometry: Specifying Size and Location” and Section3.2.2,
“Running a Client on Another Machine: Specifying the Display”, we saw how to use the
-geometry and -display options, which are accepted by most clients. Chapter 9,
Command Line Options, describes some of the other options accepted by most of the stan-
dard clients. These options set window features such as:

■ The font in which text is displayed.

■ The background color.

■ The foreground color (such as the color of text).

■ The text displayed in the title area.

■ The text of an icon label.

Many clients also accept a large number of toolkit-specific options (listed in Chapter 11,
Command-line Options) and application-specific options (listed on the reference page for
each client in Part Three of this guide). Using a combination of standard and application-
specific options, you can tailor a client to look and behave in ways that better suit your
needs.

Command line options override the default characteristics of a client for thesingle client
process. Traditional UNIX applications rely on command line options to allow users to

68 X USER’S GUIDE: OPEN LOOK EDITION

3
customize the way they work. X also offers many command line options, but these options
have some limitations and liabilities.

First, the number of client features that can be controlled by command line options is lim-
ited. Most applications have many more settable features than their command line options
indicate. Actually, a client can have so many features that typing a command line to set
them all would be impractical. And if you generally use the same options with a client, it
is tedious (and a waste of time) to type the options each time you run the program.

X offers an alternative to customizing a single client process on the command line. You can
specify default characteristics for a client using variables calledresources, described in
“Customizing the X Environment: Specifying Resources” on page 69.

Finally, remember that almost all clients will accept a- help option to give at least a sum-
mary of their command line options.

3.3 Putting it All Together
Now that we’ve learned something about the tools of the display, how to size and position
windows, and run remote processes, let’s try to set up a useful working display.

Say we’re using a workstation with the hostnamejersey. The workstation has a single dis-
play with one screen, so it will be called screen 0. Once X and the window manager are
running, we might set up the display using the following commands.

First, run anxterm on a more powerful remote system calledmanhattan and place it on
screen 0 ofjersey.

% rsh manhattan xterm -geometry +0-0 -display jersey:0 &

Runperfmeter windows on bothjersey andmanhattan to monitor loads on these systems.
Again, place the windows onjersey’s color screen in convenient locations.

% perfmeter -geometry 64x64-10-200 &
% perfmeter manhattan -geometry 64x64-10-20 \

-display jersey:0 &

Run anotherxterm window onjersey.

% xterm -geometry +50-0 &

Then iconify the loginxterm window so that you don’t inadvertently kill it (and shut down
X in the bargain). Remember: to iconify a window place the pointer on the Window Mark
on the window’s frame and click theSELECT button. (See “Moving, Resizing and Iconify-
ing Windows” earlier in this chapter.)

Run anoclock.

% oclock &

CHAPTER 3: OPENING ADDITIONAL WINDOWS 69

3
Figure 3-3 shows thejersey display, a fairly useful layout.

Figure 3-3. A working display

As we’ll see in “Customizing your Session Start-up” on page72, on most systems you can
place the commands you run to set up your display in a special file that is invoked when
you log in. Once this file (usually called.xinitrc, .openwin-init, or .xsession) is in place,
your display will be set up to your specifications automatically each time you log in.

Notice that the commands we used to set upjersey illustrate the power of the-geometry
and-display options to create a working environment that suits individual needs. How-
ever, these options barely hint at the number of features you can specify for each client.
The following section introduces some principles of client customization. Part Two of this
guide examines customization in depth.

3.4 Customizing the X Environment: Specifying
Resources

As we’ve seen, you can use command line options to specify certain characteristics for a
single client process. In a sense, command line options allow you to customize one pro-
gram.

X11 also provides a mechanism that allows you to specify characteristics that take effect
every time you run a client. Almost every feature of a client program can be controlled
using a variable called aresource. You can change the behavior or appearance of a pro-
gram by changing thevalue associated with a resource variable.

70 X USER’S GUIDE: OPEN LOOK EDITION

3
You generally place resource specifications in a file in your home directory. (The file can
have any name, but is often called.Xresources or .Xdefaults.) The resources you specify
are one of several factors that affect the appearance and behavior of a client.

☞ A useful tool that theOPEN LOOK GUI provides is aproperties program to edit
your resource files for you, that is, to customize many aspects of your display.
Properties is very easy to use, much easier than editing the resource files. The
properties program is described in Section14.1, “Properties Resource Editor” on
Page331. Accordingly,users of theOPEN LOOK GUI on Sun OpenWindows do not
need to learn about resource editing to configure the standardOPEN LOOK clients.
However you will eventually need to learn about resource editing for modifying
extended features of the standard clients as well as most non-OPEN LOOK clients.

By default, the way a client looks and behaves is determined by the program code, and in
some cases, by a system-wide file ofapplication defaults. Several clients have application
defaults files that determine certain client features.†

Application defaults files generally reside in the directory/usr/lib/X11/app-defaults (on
OpenWindows, in $OPENWINHOME/lib/app-defaults) and have the same name as the
client application (except that the first letter is capitalized, and if the first letter is an X, the
second letter is also capitalized). You can also have an application defaults file in your
home directory, with the same format name. For example, the files/usr/openwin/lib/app-
defaults/XEdit and$HOME/Bitmap would both be valid names for application defaults
files.

Need brief discussion of
XFILESEARCHPATH—here, or in
Resources chapter?

In describing the appearance and behavior of clients in this guide, we assume all of the
standard application defaults files are present on your system and accessible by the client
programs. If, by some chance, a client’s application defaults file has been edited or
removed from your system, the client may not look or behave exactly as we describe it. If
a client application appears substantially different than depicted in this guide, you may be
using a different version of the program or the application defaults may be different. Con-
sult your system administrator if this causes problems.

Within an application defaults file, defaults are set using resources. The resources specified
in a client’s application defaults files are usually just a subset of a greater number of
resources that can be set.

If the characteristics you set in your own resources file already have system-wide applica-
tion defaults, your own settings take precedence. Keep in mind, however, that command

† Forxterm, as for many clients, the application defaults let you control such things as the labels for menu items,
the fonts used to display menu items, and the shape of the pointer when it’s in anxterm window.

CHAPTER 3: OPENING ADDITIONAL WINDOWS 71

3
line options override both your own defaults and any system-wide defaults for the single
client process.

To make your resource specifications available to all clients, X provides a program called
xrdb, the X resource database manager. This programstores resources directly in the server
where they are accessible to all clients, regardless of the machine the clients are running on.
If you do not usexrdb, then each program reads the file.Xdefaults and (if it exists).Xde-
faults-host(wherehost is the name of the workstation whose display is being used), from
your home directory. This is done by the lower-level “Xlib” routines, so it should work
with all toolkits.

In some cases, a resource variable controls the same characteristic as a command line
option. However, while the option specifies a characteristic for the single client process
being invoked, a resource variable makes the characteristic the program default.

Each client recognizes certain resource variables that can be assigned a value. The vari-
ables for each client are listed on its reference page in Part Three of this guide.

A resource definition file is basically a sequence of lines—you can think of it as a two-col-
umn list—where each line specifies a different resource. The simplest resource definition
line has the name of the client, followed by an asterisk, and the name of the variable, fol-
lowed by a colon, in the left column. The right column (separated from the left by a tab or
whitespace) contains the value of the resource variable.

client * variable : value

The following example shows five simple resource specifications for thexclock client.
These particular resources specify attractive colors forxclock. See Chapter 11, Command-
line Options,and thexclock reference page in Part Three for details.

To set up your environment so that these characteristics apply each time you runxclock, do
the following:

1. In your home directory, create a file containing the resources listed in Example3-1.
Name the file.Xdefaults. A resource file can actually have any name, but is often
called .Xresources or .Xdefaults. .Xdefaults is preferable under OpenWindows
since this file is maintained by theProperties program.

2. Load the resources into the server by entering the following command in a terminal
window:

% xrdb -load .Xdefaults

Example 3-1. Resources to create a custom xclock

xclock*hands: green
xclock*highlight: royalblue
xclock*background: lightblue
xclock*update: 1
xclock*chime: true

72 X USER’S GUIDE: OPEN LOOK EDITION

3
Then each time you runxclock without options (for the remainder of that login session), the
window will reflect the new defaults.

You should load resources usingxrdb every time you log in. In the next section, we’ll
describe how to automate this process using a special start-up script, which also opens the
client windows you want on your display.

If you want to run an application with different characteristics (colors, update frequency,
etc.) than the defaults, use the appropriate command line options to override the resource
specifications.

Resource specifications can be much more complicated than our samples suggest. For
applications written with an Intrinsics-based toolkit (such as the MIT Athena Widgets,
AT&T’s Open Look Intrinsics Toolkit, or the Open Software Foundation’s Motif Toolkit),
X allows you to specify different characteristics for individual components, orwidgets,
within the application. Typical widgets create graphical features such as menus, command
buttons, dialog boxes, and scrollbars. Within most toolkit applications is a fairly complex
widget hierarchy—widgets exist within widgets (e.g., a command button within a dialog
box).

Resource naming syntax can parallel the widget hierarchy within an application. For
instance, you might set different background colors for different command buttons and
specify still another background color for the dialog box that encloses them. In such cases,
the actual widget names are used within the resource specification. Chapter 12,Setting
Resources, explains the resource naming syntax in greater detail and outlines the rules gov-
erning the precedence of resources.

3.5 Customizing your Session Start-up
By now you know that there has to be a file specifying the clients you want to run each time
you login, otherwise you would have to start all your clients by hand. If you just start the
X server itself, it will not startany clients for you, and you’ll have to start the first terminal
window from someplace else—not very convenient! The programxinit was designed to
help you start all the clients you need. If you startxinit with no special preparation, it will
try to start the default X server and at least one terminal emulator, but no window manager.
Normally you would have a file called.xinitrc to tell xinit what clients to run. Afterxinit
had been in use for a while, another program,xdm, was intended to solve the same problem
in a different way. Thexdm program is more sophisticated, but more complicated. Normal
users need only be aware of one file that it uses, though: the.xsession file. Like the.xinitrc
file, this file is a list of the clients that you want run each time you login viaxdm.

Let’s look at these files, and some others that are important for customizing your window
system environment. Bear in mind that we are just going to scratch the surface here. For the
full scoop onxinit, xdm and all their customization, you should refer to Volume Eight,X
Window System Administrator’s Guide.

The .xinitrc and .xsessionfiles contain the clients you want run. But this script—which-
ever of the two you are using—should also:

CHAPTER 3: OPENING ADDITIONAL WINDOWS 73

3
■ Set the DISPLAY environment variable

■ Load your X resources file withxrdb.

■ Start the window managerolwm.

■ Start any terminal emulator windows, desk accessories, DeskSet tools, or X applications
(text processors, spreadsheets, . . .) that you want to run.

Most of your clients will not interact directly withxinit or xdm, so they should be run “in
the background”, that is, with an ampersand (“&”) at the end of each command. If you for-
get this, the shell (command interpreter) that is processing your start-up file will wait until
the non-backgrounded client waits, before starting the remaining clients. However, if you
backgroundeverything in the script, the shell will get to the end of the file and, with noth-
ing more to do, terminate itself or “exit”. This will cause the X server to terminate. Because
of this, you may need to run a single console terminal window that is not put into the back-
ground. Alternately, you can use thewait command as the last line of your script.

Example 3-2 contains a listing of a simple example.xinitrc file:

We’ve used the Bourne shell (/bin/sh) as it is the shell most commonly used for writing
scripts. You can use another shell such ascsh if you are more comfortable writing scripts
in it.

It is common to find commented-out entries (lines that begin with a “#”) when looking at
another person’s.xinitrc file, so we’ve left some in. Such lines are ignored by the system.

Example 3-2. Simple .xinitrc file

#!/bin/sh

DISPLAY=myworkstation:0; export DISPLAY

xterm -geometry 80x6+0+75 -T Console -C &
contool -Ws 550 160 -Wp 0 0 -WP 5 80 -Wi &

xrdb -load < $HOME/.Xdefaults
xset m 8 fp+ /usr/local/lib/fonts # bc

olwm &

clock -Wn -Wp 930 90 -digital -24 &

Some terminal windows for working in.
cmdtool -Ww 80 -Wh 24 -Wp 000 200 -Wl “$hostname” -scale extra_large &
#xterm -geometry 80x48+000+176 -T “$hostname”&
#xterm -geometry 80x48+580+180 -T sq -e rlogin sq &

maker -geometry -0+900 & # Run FrameMaker if licensed

wait # forever, or until killall or shutdown.

74 X USER’S GUIDE: OPEN LOOK EDITION

3
The main thing is that all the possible command-line options discussed previously (as well
as those in Chapter 11,Command-line Options) can be used, so this mechanism represents
a powerful and flexible facility. If you may be using bothxdm and eitherxinit or theopen-
win start-up script, you should consider keeping your start-up clients in a third file that is
included in either your.xsession or your .xinitrc file. This is in fact what the defaultopen-
win start-up files do.

As well, it is possible without usingxdm to have your X11 session started automatically
when you login, simply by invoking it from your.login or .profile startup file.
Example 3-3 is a fragment of the default.login file used in the current releases of SunOS.
This code will normally start theopenwin script, but gives you a chance to interrupt it first
(during thesleep 5 sequence), and logs you out afterwards, again with a chance to inter-
rupt. This has proven to be quite convenient.

You may wish to incorporate code similar to this in your shell-specific startup script.

3.5.1 OpenWindows Specifics
OpenWindows uses a variation on the above files. If you already have a.xinitrc file, you
can continue to use it, since OpenWindows does usexinit to start its server. But you should
add a few entries gleaned from reading the OpenWindows-provided files mentioned
below, otherwise certain aspects of OpenWindows’s interface may not behave correctly.

If you do not have a.xinitrc file in your home directory, then OpenWindows will create
one for you. The file it creates is fairly short; it calls an extra file named.openwin-init to
start your clients. The file it creates is copied from/usr/openwin/lib/Xinitrc, and does the
following steps:

■ Runsxrdb on$HOME/.Xdefaults or $OPENWINHOME/lib/Xdefaults

■ Includes$OPENWINHOME/lib/openwin-sys, another script

■ If you haven’t requested otherwise, enables SunView binary compatibility mode.

■ Starts theOPEN LOOK Window Manager and waits until it has finished initializing

Example 3-3. SunOS .login code to start OpenWindows at each login

switch($mychoice) # “mychoice” is either “openwin”, “sunview” or null
case openwin:

echo -n “Starting OpenWindows (type Control-C to interrupt)”
sleep 5
$OPENWINHOME/bin/openwin # run the window system
clear # get rid of annoying cursor rectangle
echo -n “Automatically logging out (type Control-C to interrupt)”
sleep 5
logout # logout after leaving windows system
breaksw
#

other cases here
endsw

CHAPTER 3: OPENING ADDITIONAL WINDOWS 75

3
■ Runs the client start-up script, either$HOME/.openwin-init or $OPENWIN-

HOME/lib/openwin-init.

■ Waits forolwm (the “key client” or “session gate client”) to exit.

While this may seem like substantial added complexity, it has two advantages:

■ It works correctly even if the user has no start-up files to begin with, and

■ It is easy to update the list of clients and their arguments, since they’re in a separate file.

This technique of having the clients separate from the setup information is a generally use-
ful one. It can also be used with any of OpenWindows,xinit, orxdm.

In fact, this is the reason that theOPEN LOOK Window Manager has a built-in operator
called“SAVE_WORKSPACE”,called from its defaultUtilities menu, that saves the list
of all known X clients, their positions, and their arguments, into your.openwin-init file.
OpenWindows users can therefore forget all about.xinitrc files, and simply use the
“SAVE_WORKSPACE” mechanism to keep their list of clients. Or, they can use all the flex-
ibility that the .xinitrc file provides, by using their own file in place of the one that
OpenWindows provides for you.

✗ The “SAVE WORKSPACE” option produces a file that may not contain certain non-OPEN
LOOK, non-X11 clients, and that may contain additional detail beyond what you would nor-
mally want to specify.

You should also know about theOPEN LOOK Window Manager menu file,.openwin-
menu,used to control the workspace or root menu fromolwm. This is described in detail in
Chapter 13,Customizing olwm

3.6 Where to Go From Here
We’ve introduced some basic operations you can perform usingOPEN LOOK and theolwm
window manager. There are many useful client programs supplied withOPEN LOOK and
the X Window System. Details of how to use two of the most important clients, file man-
ager and the terminal emulator, are provided in Chapter 4,Using the OPEN LOOK File
Manager, and Chapter 5,The cmdtool/shelltool Terminal Emulator (the MIT terminal
emulator is described in Appendix A,The xterm/olterm Terminal Emulator). For instruc-
tions on performing additional window manager operations, read Chapter 6,Using the
OPEN LOOK Window Manager. An overview and tutorial for OpenWindows and other
standard clients is provided in Chapter 7,The OpenWindows DeskSet Clients, and Chapter
8, Other Standard Clients. Chapter 9,Graphics Clients, describes several graphics utilities
available with X. Part Two of this guide provides information on customizing your X envi-
ronment. All clients are described in detail in a reference page format (basically the UNIX
man page format) in Part Three of this guide.

76 X USER’S GUIDE: OPEN LOOK EDITION

3

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 4: THE OPEN LOOK FILE MANAGER 77

4

Chapter 4THE OPEN LOOK FILE MANAGER

CHAPTER 4

The OPEN LOOK File
Manager

The OPEN LOOKGUI is unique among X11 Graphical User Interfaces in specifying the
detailed behavior of important client programs such as the File Manager. With MIT X11,
there is no comparable program. With Motif, there may or may not be a version of one of
several competing file managers or “desktop managers” like X.Desktop or Looking Glass.
But with any implementation of a completeOPEN LOOK environment, there should be a
File Manager program, and it should behave as described in this chapter.

The File Manager is an important tool for users accustomed to icon-based systems such as
the Macintosh and Microsoft Windows, as well as to those unaccustomed to command-line
oriented systems with hierarchical directories, such asUNIX. The File Manager is also a
good illustration of how to use the standardOPEN LOOK “drag and drop” facilities.

Sun documents the File Manager as part of the DeskSet suite of tools, and by this logic it
should be described as part of Chapter 7,The OpenWindows DeskSet Clients. However,
we feel that a program of this sort is of sufficient import to justify its own chapter, so here
it is.

4.1 What is a File Manager?
The File Manager is a program that makes it easy to manage your files. When you start the
File Manager, files and directories are represented pictorially by small images calledicons.
You can work on these files and directories by manipulating the icons that represent them.
You can think of the File Manager as an iconic directory browser, or as a visually-oriented
command interpreter (or shell), or as a tool for making yourOPEN LOOK system look more
user-friendly. You can even think of it as a tool for turning a $5,000 workstation into a
$1,000 MacIntosh™ (but this will not impress your financial advisors.)

In the Sun environment, it is also an important part of The X Window System environment
in that it enhances some of the other DescSet tools, which therefore don’t need, and don’t
have, very fancy file/directory browsing capability; you can drag mail messages to direc-

78 X USER’S GUIDE: OPEN LOOK EDITION

4
tories in the File Manager, or drag files from it to PrintTool, and so on. Also, under Solaris
2, File Manager interacts quite well the the Volume Manager, so that you need only insert
a floppy or CD-ROM (and if it’s a floppy run thevolcheck command or theFile->Check
For Floppy menu item, and you will see a new directory view of the floppy. You can also
format or relabel floppies, unmount and eject them, etc.

The File Manager is all these, and more. Since File Manager is a visual program, let’s start
with a picture. Figure4-1 shows a screen with a File Manager running, and a row of icons.

Figure 4-1. The File Manager

This gives an overview of some features the File Manager offers: a menu bar of pull-down
menus to control its operation, a map from the “root” of the filesystem (“/”) to the current
directory, and a display pane showing the name and an iconic picture for each file object in
that directory.

The iconsinside the File Manager window representfiles, some of which may be execut-
able programs waiting to be run. The iconsoutside the File Manager, that is, on the Root
Window or Workspace, representrunning programs. This distinction is important. Unlike
the MacIntosh Operating System, neitherUNIX nor theOPEN LOOK GUI have the notion
of a single current application; each known type of file will automatically be opened by the
correct application when you double click on it.

In this example directory, Table 4-1 lists what is in each of those files.:

Table 4-1. What’s in a Name?

Filename Data type

README English text

TrmNrm14.vft: font definition

binder.rs: rasterfile, 64x64x1 standard format image

CHAPTER 4: THE OPEN LOOK FILE MANAGER 79

4

In short, the File Manager shows a pictorial representation of all the files. Note that all file
icons have the same overall shape — that of a page with the corner folded down — but
those whose contents are identifiable have a more detailed picture inside. One exception is
executable programs which are shown with a special icon (see abovetestprog in
Figure 4-1).† And all directories are shown by pictures of a file folder. File Manager uses
this analogy throughout; directories are called “folders” in the File Manager screens and
documentation.

But there is much more to the File Manager than is shown here, including the ability to
drag-and-drop a file to another application. File Manager provides a visual metaphor for
such tasks as navigating the directory tree, moving or copying files from one directory to
another, deleting files, and many other operations.

If you are an old-timeUNIX diehard, you may dislike such visual imagery, and prefer the
command-line mode of using systems. You’ll probably find some familiarity with the File
Manager useful for drag and drop occasionally, but you may just want to skim this chapter.

4.2 Common Operations
If you see an icon representing a file and you want to do “the obvious” operation on it, then
all you have to do is double-clickSELECT on its icon, and the appropriate action will hap-
pen. For example, the filepoem in this directory can be edited just by moving the pointer
onto the picture of a file labelled “poem,” and double-clicking theSELECT button. An edi-
tor will be started withpoem as the input file. Let’s look at some of these mouse operations
in more detail.

† In OpenWindows 2.0 they were shown as a tinyOPEN LOOK window since they will run in a window. (IBM-
PC and Macintosh users may choose to think that executable programs have been drawn as a picture of a floppy
disk).

bugreport Frame Maker document

core.xtest core file from xtest

dirt.ps: PostScript document

erewhon: broken symbolic link to badsym

poem: english text

recipes: directory

source: directory

testprog: executable shell script

Table 4-1. What’s in a Name?

80 X USER’S GUIDE: OPEN LOOK EDITION

4
4.2.1 Running programs
Double-clickingSELECT on just about any file’s icon will cause a program to be run. If you
click on an icon that represents anexecutable object — either a shell script or a compiled
program — the File Manager will try to run it for you. On the other hand, clicking on a file
whose type isbound to some application will cause that application to be run.Binding a file
to an application means that all files of a particular type will be run through that application
when selected from within the File Manager. Thisbinding between files and actions is just
a name for what happens when you click on a file’s icon. For example, files of type “work-
sheet” might bebound to the Lotus 1-2-3 application. This means that when you double-
click on the icon for a “worksheet” file, the File Manager will automatically invoke Lotus
1-2-3 on that file.

Many standard types are bound for you automatically, including many of the standard
commercial applications available on the Sun platform. We’ll see some of these in the fol-
lowing paragraphs, and how to change the bindings (or even add your own) inSection 4.4,
“Customizing the File Manager,” later in this chapter.

First, let’s look at running an application that is in our directory. The filetestprog shows up
as an executable program. Let’s double-click on it. It gets marked as selected or busy (the
icon is shown in reverse video), then the footer of the File Manager window displays this
message:

Opening testprog; errors may display on console or cmdtool.

If you requested a window-based application, you will see that program’s main window
appear. If your application is not window-based, but is a simple command-line program,
you won’t necessarily see any further indication that your program is running: File Man-
ager won’t give you any; beyond the notification that it has started your program. If the
program writes to theUNIX standard output, its output will normally appear in your Con-
sole window. In either case, File Manager is available for other work as soon as it has
started your application; you don’t have to wait for the application to finish before using
other File Manager functions.

What about starting up a program by clicking on a file whose type is bound to an applica-
tion? In our sample directory, the first two files,TrmNrm14.vft, andbinder.rs, show icons
that are associated with graphical utilities; the former is a binary font file in a form that can
be edited using Sun’sfontedit program (see Chapter 9,Graphics Clients). The latter is a
raster file that can be displayed with the snapshot program, also described in Chapter 8.
The filedirt.ps is a PostScript file, and clicking on it (or any file that is recognized as con-
taining PostScript) will start the OpenWindows PostScript previewer,pageview, to view
this file (see Chapter 9,Graphics Clients). The file “poem” is a text file, so it is considered
to be bound to an X-based text editor, normallytextedit, (see Chapter 5,The cmdtool/shell-
tool Terminal Emulator). Double clicking on any of these icons will try to launch the
corresponding application for you.

4.2.2 Change Directory
Eventually you will get tired of looking at the files in just one directory. If a directory icon
(picture of a file folder) is shown in your File Manager window (as arerecipes andsource

CHAPTER 4: THE OPEN LOOK FILE MANAGER 81

4
in our sample directory), you can change directory to it just by double-clickingSELECT on
it. A short form for this is to clickSELECT once and hit the RETURN key. The File Man-
ager will do a change directory operation internally, and will then read the contents of the
new directory and display it, using the same iconic representation as before. Note that this
change of directory doesnot affect any other shells or programs you may have running in
other windows; onUNIX there is no way for one process to change another’s working
directory. It does, however, set the working directory of any new programs or applications
that you start from within this instance of the File Manager.

Let’s say you double click on the folder (directory)recipes. The icon for that directory will
show busy for a second, then File Manager will display the new directory, and your new
screen might look like Figure 4-2.

Then you might wish to edit the “tarts” recipe. Just double-click on the picture of the file
labelledtarts. Your File Manager titlebar will show “busy” for a moment, as in Figure4-3.

Figure 4-4 shows the edit window that will appear in a few seconds.

On OpenWindows, the editor used by default istextedit, described in Chapter 5,The cmd-
tool/shelltool Terminal Emulator (To change this default, see“Customizing the File

Figure 4-2. File Manager in recipes directory.

Figure 4-3. File Manager starting editor on “tarts”

82 X USER’S GUIDE: OPEN LOOK EDITION

4

Manager” below). OnAT&T-OL , thevi editor is used. The File Manager window is ready
for action again as soon as it resets its titlebar to non-busy state; it doesn’t make you wait
to finish editing before you can undertake new operations.

4.2.3 Moving or Copying Files
When you wish to move or copy a file, you can use the File Manager withOPEN LOOK’s
“drag and drop” operation. Drag-and-drop is a fancy term for “slide”, and is familiar to us
from a variety of similar operations. In the games of Chess and Checkers, for example, we
select a player, and either lift or slide it to a new location, then release it. Computer drag-
and-drop is similar: briefly, you select the icon(s) of the file(s) you want to move or copy,
drag the icon into a window that represents a directory, and release the mouse button to
“drop” the icon(s) into that directory.†

As an example, let’s move the filetarts, to our home directory. First, to select a single file,
tarts, just click and hold, SELECT with the pointer over the file’s icon. Now if you move
the mouse, you will see (Figure4-5) that an outline of the file’s icon follows the pointer:

Now that you have the icon “in tow”, you can move it to any directory icon to drop it. At
this point you don’t have a second File Manager running to drop the file into. However, the
File Manager that you are running shows icons for all the directories between the root
directory (“/”) and your current working directory (which in this example is/home/dar-
ian/ian/book/ol/filemgr/recipes). So we’ll move the tarts). file to the icon for

† This is one ofOPEN LOOK’s significant extensions beyond what the underlying X Window System provides.
Hence it will not work correctly if for some reason you are not using theOPEN LOOK Window Manager; it
will not work with twm, mwm, oruwm.

Figure 4-4. Edit window for “tarts”

CHAPTER 4: THE OPEN LOOK FILE MANAGER 83

4

/home/darian/ian, my home directory, and drop thetarts, icon on top of my home direc-
tory’s icon:

Figure 4-6. Moving the icon to drop it on a directory

Finally the File Manager screen will be updated to show that the filetarts is gone, and the
window footer will contain the confirming messageMove to ‘/home/darian/ian’
succeeded , as shown in Figure 4-7:

Figure 4-7. Double Confirmation: Icon gone, message appears

The move operation has been completed successfully.

Figure 4-5. Icon outline for drag-and-drop

84 X USER’S GUIDE: OPEN LOOK EDITION

4
To copy a file instead of moving it, all you do is hold down the DUPLICATE key (nor-
mally the Control or CONTROL key) while you click and hold theSELECT mouse button.
The cursor shows slightly differently (see Appendix D,Standard Cursors - X11 and OPEN
LOOK) to let you know that you are copying, rather than moving. Everything else is the
same.

If you try to move or copy a file into a directory that is “read only” for some reason (for
example, because you lack write permission on the directory, or the filesystem is mounted
read-only), its icon will display a padlock icon while you hold the icon of the file you are
moving over it.

On modern versions ofUNIX (that is, SunOS, other BSD derivatives, and System V
Release 4), you can move a directory as easily as a file, provided only that you can’t move
a directory from one “filesystem” or “slice” to another. On System V Releases 2 and 3, and
System V Release 4 with the System V Filesystem Type, you cannot move a directory; you
can only rename it within the same parent directory.

If you need to move several files, you may want to start another copy of the File Manager,
and change it to the target directory. This will let you see what files exist in both directories
before and after each move. And in this case you can just drop the icon anywhere in the
icon window for the target directory.

Another possibility is to select multiple icons. As before, clickSELECT (and release it) to
select the first, and clickADJUST to select each additional icon. Then, clickand hold
SELECT, and you will get a “stack of icons” outline, which you can move to the target
directory and release.

4.2.4 Deleting Files
Deleting files is just a special case of moving files. When you start the File Manager, it cre-
ates a separate window labelledWasteBasket.† The window is iconified, but you can still
“drop” files into it.

If you select a file, drag it into the WasteBasket, and drop it, it is removed from the direc-
tory it was in. What could be easier?

But unlike the normalUNIX command for removing a file, this operation does not physi-
cally remove the file until one of the following occurs:

■ You exit the File Manager, in which case you are asked if it’s OK to remove the file(s)
in the WasteBasket, and you click on “Yes.”

■ You change your mind about removing the file, double-click on the WasteBasket folder
to open it, and move the file back where it was!

† On Sun OpenWindows Version 2, the WasteBasket icon sometimes appears with no icon label or image when
it first comes up, so it will appear as a blank icon. But it still functions correctly.

CHAPTER 4: THE OPEN LOOK FILE MANAGER 85

4
4.2.5 Renaming Files
You can change the name of any file or directory in one of two ways. The quickest way is
as follows:

■ Click SELECT on the filename; the File Manager will underline the name.

■ Treat the underlined filename as a text field; click on it, and then you can type a new
name. Or, you can clear part of the name by clickingSELECT and clearing from there to
the beginning with Control-U and type a new name, or delete or insert characters at will.†

■ Then just hitRETURN.

This method is also used to assign names to objects created usingCreate Document; or
Create Folder. The longer way, which you’d only use if you wanted to change other prop-
erties at the same time, is by selectingNewFolder and using theFile Properties menu
described in the next section.

For example, if we wish to create a folder or directory namedmideast. in our example
directory, the File Manager window will look like this after we create the folder:

Figure 4-8. File Manager screen after Creating NewFolder

Now we need only clickSELECT at the point we wish to change. Most commonly we want
to erase the charactersNewFolder completely and type a new name. So we clickSELECT

† For a list of other editing keystrokes, see the discussion oftextedit in Chapter 5,The cmdtool/shelltool Terminal
Emulator.

86 X USER’S GUIDE: OPEN LOOK EDITION

4
at the right side of the existing name, type Control-U, and type the new name as shown in
Figure 4-9:

Figure 4-9. Directly renaming NewFolder to mideast

The rename will take effect as soon as you either hit RETURN or clickSELECT elsewhere
to take the focus away from the filename’s text field.

Note that you can rename any object, not just a newly-created one, using this method. The
trick is that you must first select the icon,then select the filename underneath the icon to
mark it for renaming, then type the new name you want for it.

4.2.6 Displaying and Changing File Attributes (Properties)
This section demonstrates one of the clever ways in which the designers of OL worked to
make it easy to use. To change any of the attributes of a file, you just call up its properties
sheet. This replaces a whole grab-bag of operating-system-dependent utilities†with one
simple, consistent menu. To display all the information about a file, simply select it, and

† OnUNIX at leastls -l, mv, chown, chgrp, and the complexity ofchmod.

CHAPTER 4: THE OPEN LOOK FILE MANAGER 87

4
click on theProps menu button (or drag it down toFile Properties...). Figure 4-10 shows
the properties sheet for a simple file.

Figure 4-10. File Properties Sheet

If all you wanted to do was examine the file information, it’s there. Read it, then with the
pointer in this window press the Iconify button (L7), or selectDismiss from its window
menu. If you want to change the attributes of the file, change them and click on theApply
button. To change the name of the file (rename it), you just type a new name in the “File
name” text field, and clickSELECT on theApply button. To change the owner or group,
type the name of a new group in the appropriate text field, and clickAPPLY. Of course to
do this you must have sufficient privileges (own the files or be root). To change permis-
sions, clickSELECT on the Checkboxes for read, write and execute for yourself, people in
your group, and others on the system. At any rate, once you’ve specified any or all changes,
you just clickSELECT on theAPPLY button to make them to take effect. If you have
selected multiple files, then any properties that don’t apply to all of the selected files are
grayed out.

4.3 Menu Bar Operations
The Menu Bar, or row of buttons at the top of the File Manager window, gives you access
to a large variety of operations. These buttons are namedFile, View, Edit, Props, andGoto.
In this section we’ll discuss those items that cause actions to be done for you: File, Edit,

88 X USER’S GUIDE: OPEN LOOK EDITION

4
File Props, and Home/Goto. We’ll discussView andTool Props later, under the heading of
Customizing the File Manager.

4.3.1 File Menu Operations
TheFile menu pulls down to offer you a choice ofOpen, Print File, Create Folder, Create
Document, Remote Copy..., orYour Commands.

4.3.1.1 Open

TheOpen item is only active if a file is selected in one of the windows. This selection in
turn pulls down toFile, With Goto arguments,or In Document Editor. These let you open
a file in various ways.File, which is the default if you just selectOpen, opens the file with
whatever program is appropriate. A “worksheet” will be opened in Lotus 1-2-3; a Sun Ras-
ter file will be opened withsnapshot program (described in Chapter 9,Graphics Clients),
and so on. If you wish to pass command-line arguments to the given program, you can
enter then in theGoto textfield and then useOpen with With Goto arguments to pass the
Goto field’s contents as command line arguments. Lastly, if you wish to open the program
using the default document editor (normallytextedit), you canOpen it In Document Editor,
which overrides any program bindings for the file.

✗ Note that some types of files contain “binary data” and cannot be successfully edited with
a text editor; if you get “garbage” characters in a file, it usually indicates that the file is
binary, and you should not save it with a text editor or the file may be corrupted.

4.3.1.2 Print File

ThePrint File selection does just what it claims to: sends a copy of the selected file to your
system’s printer. The printer is normally your system default printer, but this can be over-
ridden by use of the Property sheet, described below under the sectionCustomizing the File
Manager. Like Open, this selection is not available unless a file has been selected. In par-
ticular, you cannot select this item if a directory has been selected instead of a file!

4.3.1.3 Create Folder

Create Folder is like theUNIX or MS-DOSmkdir command in that it creates a new direc-
tory or folder. However, it does not prompt you for a name; it creates the folder and gives
it the nameNewFolder, to let you defer choosing a real name for it until you are ready. You
then rename it in a manner similar to that described above in the sectionRenaming Files;
for convenience, the filename text field is already selected, so you need only select the
insertion point, type Control-U, and the new name.

On the other hand, if we want to change the permissions (or some other attribute) of the
newly created directory at the same time as we rename it, we can use theFile Properties;
dialog, as follows:

■ Click SELECT onNewFolder’s icon

■ Pull downProps and selectFile Properties, or press theProps (L3) key. This will cause
theFile Properties dialog to appear.

■ Change theName text field fromNewFolder to mideast.

■ Change the permissions using the check boxes.

CHAPTER 4: THE OPEN LOOK FILE MANAGER 89

4
■ TheFile Properties screen should now look something like this:

Figure 4-11. File Properties for renaming NewFolder to mideast

Click SELECT on the APPLY button; the change will be done and theFile Properties dia-
log will pop down.

4.3.1.4 Create Document

How do you create a new document? Just selectCreate Document. The process is almost
identical to theCreate Folder operation just described. The new document is created as
NewDocument, and you can edit it by clicking on its filename to set the text caret and using
any text field editing, usually Control-U and type a new name. Once it’s created, it behaves
like any other file, except that it’s created empty, so it has no contents or type. The most
common operation next is to edit the new file to make it a text file.

4.3.1.5 Find

TheFind... menu item pops up a dialog (see Figure4-12). It can find files either by certain
criteria (filename, owner, modification date, file type) or by contents.†

Let’s say you wanted to look for all recently-modified text files containing the word “com-
pendiate” Here is how you might set up the dialog, assuming that you used the extension
.txt, for your text files:

90 X USER’S GUIDE: OPEN LOOK EDITION

4

Then click onFind to start the search. If any files are matched, they will be presented in the
scrolling list in the bottom part of the window; these files can be clicked on, dragged, etc.,
just like other files in File Manager’s display. This is shown in Figure 4-13.

4.3.1.6 Remote Copy

From time to time, you need to access a file that isn’t on any machine you have a terminal
emulator window on and that isn’t exported for use as a network-mounted file. Then you
must copy the file from the remote machine to your local system’s disk. In command line
mode, you would use thercp utility. But in File Manager, you need only call up theRemote
Copy selection. TheRemote Copy operation allows you to copy file(s) to and from any
machine that is reachable by the TCP/IP networking software and on which you have an
account. You specify the source host and pathname, and the destination host and pathname.
You can use either relative pathnames (path name does not begin with a ‘/’ character) or
absolute pathnames (path given does begin with a ‘/’). Relative pathnames are interpreted
relative to your home directory on the remote machine, but relative to the current directory
on the local machine (the machine that File Manager is running on). Let’s copy a file from

† ExperiencedUNIX users will recognize this as similar to thefind command inUNIX. If you need to perform
a search that has more complexity than thisFind..., dialog, you can use the standardfind command. This function
is in fact implemented usingfind. For example, when using the find function of File Manager to search in /usr/in-
clude for files containing the string TIOCCONS, we did a/usr/ucb/ps -a in another window and saw this:

748 pts/0 S 0:00 find /usr/include -exec egrep -l TIOCCONS {} ; -follow

This way of finding strings in files is rather inefficient compared to “full text searching” as is done by SunSoft’s
SearchIt package or the contributed software packageLQ-Text, among others.

Figure 4-12. Looking for “compendiate”

CHAPTER 4: THE OPEN LOOK FILE MANAGER 91

4

machinetimbuktu, to the machine we are on. ClickSELECT onRemote copy..., and you get
the pop-up window shown in Figure 4-14.

Figure 4-13. Found one file

o

Figure 4-14. Remote copy pop-up window

92 X USER’S GUIDE: OPEN LOOK EDITION

4
The popup is pinnable, and since we might want to copy multiple files, let’s pin it up. Then
type the remote machine name, the filename, and a place to put it in the local directory, and
select on the COPY button. It becomes busy:

Figure 4-15. Remote copy window during copy

To copy out a file, justSELECT it in the File Manager window; the hostname and full path
appear in theSource Machine andSource Path fields for you.

If there are any problems, such as “Permission denied”, they will be printed in the left
footer of the File Manager window, so watch that window for any error messages. If all
goes well, the file you are copying to the local machine will appear in your File Manager
view window after a short delay, assuming you’re copying it to the same directory that the
File Manager is in.

4.3.1.7 Your own commands

TheCustom Commandsmenu lets you save a series of common commands, and execute
them at the click of a button. This may appear to be redundant with the.openwin-menu of
theOPEN LOOK Window Manager, but it is certainly easier to update. And it may make it
easier to have different commands set up for different machines in a networked environ-
ment. To add a command to the list, just pull downAdd Command.

You get a small dialog window with a text field in which to type a name for the command
and the actualUNIX command line. When you’ve typed it the way you want it (see
Figure 4-16), selectApply, and the new command will be added to your personal list. Next
time you pull down theYour Commands menu, you will see the new command.

The other entry under this selection,Shell, starts up a terminal emulator window with an
interactive shell running. This is rarely used, since you normally start shell windows from
thePrograms, menu of theWorkspace, menu. However, it might be a good way to restart
your window manager if it failed when you didn’t have any shell windows running. Just
selectShell, and when the shell window comes up, give the command

olwm &

and the window manager should reappear after a moment — you will see the titlebars reap-
pear on your windows.

4.3.2 Edit Menu Operations
In mostOPEN LOOK applications, the Edit menu is used to edit text. In File Manager, by
contrast, it requests editing operations on whole files.

CHAPTER 4: THE OPEN LOOK FILE MANAGER 93

4

4.3.2.1 Select All

Select All, for example, selects (highlights) all the objects in the display window, so you
can use them all as the target of some operation like print or move.

4.3.2.2 Link

TheLink, selection allows you to create alink, to a file. A link is an additional name for the
file; once you have created the link, you can refer to the file by either name. On Sun’s
OpenWindows, the new link is named ‘filename.1’ (or .2 if .1 already exists, and so on).

If your system supports “symbolic links”, note that File Manager will create a regular link
if the source and target directories are on the same filesystem, otherwise it will create a
symbolic link. If you are on System V Release 2 or 3, you can ignore this distinction.

Symbolic links behave a little differently than regular links. When you add or remove a
regular link, the file’s link count is incremented or decremented. If the link count reaches
zero, the file’s data blocks are discarded byUNIX and the file ceases to exist. Symbolic or
“soft” links are actually files that contain the realname of another file; when you “open”
(to read or write) a file that is a symbolic link, theUNIX kernel reads the symbolic link and
then tries to open the other file by name. A “symlink” can therefore do two things that no
ordinary link can do:

■ it can cross disk partition or “slice” boundaries.

■ it can be used to point at directories.

The drawback of symlinks, however, is that if the file they point to is renamed or removed,
the symlink still points to it; it will show up in anls listing, for example, but you won’t be

Figure 4-16. Create Commands Window

94 X USER’S GUIDE: OPEN LOOK EDITION

4
able to read it or write it, which is confusing. Such misleading links are called “broken” or
“dangling” symbolic links, and are shown by File Manager with the “broken chain” icon
used to represent the file “erewhon” in Figure 4-1.

4.3.2.3 Copy

Copy works just linkLink, except that it copies the file instead of linking it. That is, after a
Link, you have only one copy of the file on disk, accessible under two different names. But
after aCopy, you have two different files (though they initially have the same contents),
each with its own name.

4.3.2.4 Cut and Paste

Paste andCut work together to move files into and out of the directory. Select a file and
cut it, and Poof! It’s gone! Where did it go? By default, it goes into the WasteBasket folder,
just as if you had dragged it there and dropped it. ButCut can bepulled right (hold the
MENU button and drag the pointer to the right to pop down a new menu) to produce a menu
asking if you want toCut to Wastebasket, (the default),Move to Clipboard, or Really
Delete. The third item tells the operating system to unlink or remove or delete the file,
while the middle item moves it to a special folder called “the Wastebasket,” from which the
file can be retrieved later by moving it into a (possibly different) directory. TheShow Clip-
board item shows what has been cut into the File Manager Wastebasket.

4.3.3 Goto Menu Operations
To help you move around quickly by directory name, theGoto menu lists your home direc-
tory and several of the other directories that you have visited most recently. Sliding the
pointer down this menu and releasing on any one of these will make it the current directory.
Initially, the default is your home directory, so you can get to your home directory just by
clicking SELECT on theGoto selection item.

But notice that there is a text field to the right of the button. If you type a path name in this
text field, then clickSELECT on theGoto button, that directory will be made your current
directory. If you clickMENU on the button, you will see two items. One is the default, the
contents of the text field (or as much of it as will fit on the display).

This field has another use, too. You can use it to specify a range of files to operate on. This
has the effect of “wildcards” in theUNIX shell environment. For example, to select all the
PostScript files in a directory, just type the string*.ps in theGoto field and then press
Return or Enter, and all the files that match will be marked selected. Then if you want to
delete them all, just hit the CUT key (L10). Or, drag any one of the selected icons onto the
trash can (or any other drop target, such as print!), andall the files will be moved or copied
as appropriate.

In fact, you don’t even need to use this field. Just move the pointer into the file icon display
pane and type your pattern there. The pattern will appear in the footer as you type it, and as
each character is typed, any files that match will be selected. This is faster, but more exact-
ing, as you don’t have the textfield’s editing abilities at your disposal.

CHAPTER 4: THE OPEN LOOK FILE MANAGER 95

4

4.3.4 MENU button in the display
As a convenience, there is a menu attached to theMENU button while in the File Manager
window that contains some of the most common items of the ones we’ve seen. The list
includesSelect All, Cut, Copy, Paste, Delete, Print, and one called simplyUp. Except for
the last one, these all do the same thing as they do when activated from the top-level but-
tons in the menu bar. The last one does what you might expect from its name; it moves you
up one directory. It is inactive when you are in the root directory (“/”), since there is noth-
ing above that directory.

4.3.5 MENU button in the Wastebasket folder
If you open theWastebasket icon, you see a folder display for items that have been moved
or cut into the wastebasket. There are no menu buttons, but theMENU pointer button has a
menu similar to the menu just described. It has one important addition; the first item is
Empty Wastebasket, which actually deletes the files in the wastebasket—files so removed
arereally gone! This is useful when your hard disk is running low on space

4.4 Customizing the File Manager
The overall behavior of the File Manager is fixed. But you can change the details of its
behavior at several levels. First are theView. controls on the top row. Second is the Prop-
erties sheet. The third level of customization is in configuration files.

Figure 4-17. Wildcard selection in File Manager

Selected file

96 X USER’S GUIDE: OPEN LOOK EDITION

4
4.4.1 View Menu Button
As we’ve seen, the menu bar items areFile, View, Edit, Props, andGoto. Most of these
were discussed above. The File ManagerView menu items control what you see, or your
view of the files. Unlike many of the other buttons, changes you make here are saved in a
file for later File Manager sessions, that is, they stay in effect until you change them again.

The first item is eitherPath or Tree, initially Path. When the setting isPath, the “parent
directories” window shows a single row of icons for the path to the current directory. When
the setting isTree, however, you get a visual presentation of the parent directories and all
the parallel directories, as shown in Figure 4-18

Now it may happen that the directory hierarchy that is shown on the screen gets large and
complicated, if you have lots of subdirectories. To help you remember where you are, the
currently-open folder is drawn with an “open folder” icon (see Figure4-18) to remind you
of your place in the overall directory hierarchy.

Each icon in this window is “active.” That is, you can double-click on it, drop a selection
into it, etc., in any way that makes sense. The next few items,Hide Subfolders, Show All
Subfolders, Begin Tree Here, andAdd Tree’s Parent, are used to control the tree display,
but only if the mode isTreeand you have selected at least one directory with subdirecto-
ries (folder with subfolders).Hide Subfolders andShow All Subfolders control whether
subdirectories of the current (or selected) folder will be shown. Note that selectingShow
All Subfolders is a recursive operation. That is, it shows all the subdirectories, sub-sub-

Figure 4-18. View set to Tree shows the directory tree

Current folder

CHAPTER 4: THE OPEN LOOK FILE MANAGER 97

4
directories, sub-sub-sub-directories, and so on. For this reason, the left footer message is
set to “This operation may take some time” while the subdirectories are being found. But
you can get some fantastic displays of your system’s directory tree. Try this: before going
to lunch, and running File Manager on your own workstation, select the root directory, and
click on Show All Subfolders. When you get back, there will be vertical and horizontal
scrollbars for the view window, and you will be able to see the entireUNIX filesystem just
by moving the scrollbars. Of course, you can also resize the window wider to see more of
the display at one time:

Begin Tree Here andAdd Tree’s Parent are used to truncate the tree (so that everything
above the selected directory is removed from the top of the display) and to extend it upward
by one directory level, respectively.

The menu has several choices to specify how files and directories are to be sorted and dis-
played. The types are eitherList or Icon. Icon, which is the default, uses the large file and
directory icons shown throughout this chapter.List uses smaller icons like those shown in
Figure 4-20. TheIcon display can be sorted by name or by “type”, which sorts all entries
of a given type together. TheList display can be sorted by name, type, size (largest first),
or by modification date.

These smaller icons show less information than the larger ones; they only identify the
object as “file,” “folder” or “other.” (Compareerewhon’s look here with its look previ-
ously.) However, the small icons allow you to show more files in a given space (useful in
a large directory), and you can still select them, drag-and-drop them, etc., just as you can
the full-size icons.

Which format you choose — large or small, sorted by name, or by type, or by date — is
completely up to you. It’s a matter of taste. Try them out from time to time, and see which
makes most sense to you.

Figure 4-19. View Tree made wider

98 X USER’S GUIDE: OPEN LOOK EDITION

4

4.4.2 The View/Customize Properties Sheet
There is a “Properties”-like window under theView menu, namedCustomize View (See
Figure 4-21). Many of its items are similar to those of theView menu discussed previously,

but the window also lets you control whether hidden files (“dot files”, whose name begins
with a period or dot) are displayed, and whether icons are layout out in rows across the
screen or in columns down the screen.

You can also selectContent as the Display Mode setting. This causes raster and icon files
in known (Sun) formats to be displayed as themselves, at a slight cost in speed. However,
at least in Version 3.0, this display is garbled if the raster files are of odd sizes.

Figure 4-20. Folder Display set to List

Figure 4-21. The Customize View Window

CHAPTER 4: THE OPEN LOOK FILE MANAGER 99

4
If you selectList as your display mode (either on the Customize View window or in the
View menu), the Customize View window lets you control the display of the information
equivalent to that of theUNIX commandls -l. You can enable or disable individually the
viewing of permissions, size, owner, group, link count, and modification date. Figure4-22
shows the display of just permissions and file size, along with the names which are always
displayed.

4.4.3 The Tool Properties Sheet
You display the Properties sheet for the File Manager by pulling down theProps top-level
menu and releasing onFile Manager.The resulting screen looks like Figure4-23 on Open-
Windows.This gives you control over the optional features of the File Manager’s behavior:

■ the default print command

■ something called theView Filter, which allows you to only look at certain filenames, for
example,“*.txt. ”

■ the longest filename to be displayed

■ whether deleted files are kept in theWastebasket folder, or actually unlinked

■ selecting the default editor for documents.

Figure 4-22. Folder display with permissions and size only.

100 X USER’S GUIDE: OPEN LOOK EDITION

4

4.4.4 Customizing File Bindings
The third level of customization lets you control the way File Manager reacts to what it fins
in your directories. Many of the responses are controlled by a series of configuration files.
Unfortunately, the format of these configuration files does depend on which implementa-
tion you are using, AT&T’s or Sun’s.

4.4.4.1 Binder: Customizing the File Manager in OpenWindows

The OpenWindows version of File Manager uses a package called theclassing engineto
control the display of different file types. The Classing Engine is used by File Manager
(and other DeskSet programs), as well as theOPEN LOOK Window Manager, to classify
files. There are three sets of classing engine files; one “network wide” one for all files
served by a given NFS server, one “system-wide” file (in the/etc directory on each
machine), and one personal one (in your home directory).

Now updating these files is not for everybody. You only need to do this if you have a new
type of file that the Classing Engine doesn’t know about. Some vendors’ installation soft-
ware, for example, updates the files automatically, without running the binder. There is a
command-line interface to the Classing Engine files; see the man pages force_db_merge
in OpenWindows for details.

Figure 4-23. The File Manager Property Sheet

CHAPTER 4: THE OPEN LOOK FILE MANAGER 101

4
You normally update the Classing Engine files using a program calledbinder. Once you’ve
startedbinder, you should see something like Figure 4-24 in thebinderdialog box.

Figure 4-24. Binder dialog

The initial screen is a scrolling list of icons (the same ones used in the File Manager dis-
play) and the associated file type. Once you have selected one, you can customize either its
icon properties or the filetype properties. Figure4-25 shows using theIcon properties to
change the color that a given icon type is displayed in.

Figure 4-25. Binder Icon Properties Dialog

Users of OpenWindows Version 2 should note that the file layout is totally different, but
use of thebinder program is similar to that described here†

† .There is a bug in the OpenWindows 2.0 version that you should know about if you’ve read this far. If your file
refers to an XBM file rather than an icon-format file, thenolwm will still process it, butbinder will reject the entry
with a message like “icon file /home/darian/ian/xicons/xterm parse failure” and will delete the entry if you save
your file.

102 X USER’S GUIDE: OPEN LOOK EDITION

4
Whether you update the system-wide file or your own personal file, you must restart the
File Manager and theOPEN LOOK Window Manager before your changes will affect these
programs.

We’ve now shown how to use the File Manager to navigate your directory hierarchy, to
select files and operate on them in various ways, and showed several different methods of
customizing this versatile and valuable tool. The next chapter discusses the terminal emu-
lator and text editing under OpenWindows, after which we turn our attention to theOPEN
LOOK Window Manager.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 103

5

Chapter 5THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR

CHAPTER 5

The Cmdtool/Shelltool
Terminal Emulator

There are many “terminal emulator” programs available for The X Window System. This
chapter shows you how to use the OpenWindows standard terminal emulator, a program
known ascmdtool. Cmdtool is a general-purpose terminal emulator with a variety of fea-
tures such as scrolling, logging, history editing, and so on. And unlike some other
programs, such as the MIT version ofxterm, cmdtool is compliant with theOPEN LOOK
specification. and is therefore very similar to the editing windows provided by mostOPEN
LOOK-conforming applications. The nameshelltool invokes the same program in a differ-
ent mode.

This chapter also discusses the OpenWindows text editor,textedit, since it shares many
features withcmdtool†.

Like any other terminal emulator such asxterm, these tools provide a window that works
much like a standard computer terminal, and that lets you do anything you can do with a
standard terminal. Each such window is connected to ashell or command interpreter pro-
gram (normally the same shell that you use for your login shell), so you can run shell
commands directly. Once you have one terminal emulator window on your screen, you can
use it to start up any other clients you need, including other terminal emulators. You can
run as many terminal emulators as you need. For example, you might be examining or edit-
ing a program’s source code in onecmdtool window, while compiling or debugging it in
another.

The easiest way to start a newcmdtool is from theWorkspace->Programs menu. As it is
the default “Program,” you need only clickSELECT on thePrograms menu to start an addi-
tionalcmdtool at any time.

† If you aren’t using OpenWindows and wish to get a copy ofcmdtool, you can FTP it (along with the XView
toolkit, which is required to compilecmdtool) from MIT; see the Preface for details.

104 X USER’S GUIDE: OPEN LOOK EDITION

5
When you start acmdtool process on the command line from an existingcmdtool window,
the secondcmdtool inherits the “environment variables” of the first, including the setting
of the DISPLAY variable. The program running in the second also begins in the current
directory of the first shell. Otherwise, there is no real relationship between the two
windows.

The basic operation ofcmdtool will be familiar to anyone who has used an interactive com-
puter terminal; you should be able to work productively immediately. You type a
command, hit return, and see the results. As well, terminal emulators aren’t limited to the
fixed size of twenty-four lines by eighty characters; you can make them any size.

But cmdtool is more than just a “dumb terminal.” Two useful features of most modern ter-
minal emulators are an optional scrollbar to review text that has gone “off the top” of the
display, and a “cut and paste” facility that lets you rearrange text or even copy it from one
terminal emulator window into another. Cmdtool includes these, but also has comprehen-
sive text editing features built in.

Theshelltool andcmdtoolprograms have been part of Sun’s graphics offerings almost as
long as there have been Sun Workstations. The SunView™ window system used under
SunOS Release 3 provided these programs as its standard terminal emulators for several
years before the X Window System was even invented. It is not surprising, then, that these
two programs offer the same kind of functionality as does the MIT X terminal emulator
xterm but in different ways.

In those days, you had to remember to usecmdtool for full-screen programs such asvi, and
useshelltool for programs that used a simple tty-style interface (there was alsogfxtool to
start up certain types of graphics clients). Under OpenWindows, these two terminal emu-
lators are in fact just two names (“links”) for the same program, so for convenience I’ll
simply use the termcmdtool to refer to both of them. The most significant difference
between them is thatcmdtool starts up with scrolling on, andshelltool comes up with
scrolling off.

The main philosophical difference betweencmdtool and the MIT terminal emulatorxterm
discussed in Appendix A,The xterm/olterm Terminal Emulator is thatcmdtool tries to let
you do full editing on your terminal’s history, whilexterm preserves the history intact and
only lets you copy from it, and paste words or lines only into the current input buffer.Cmd-
tool thus carries the notion of “putting shell history into the terminal” one step further than
doesxterm, at a slight cost in efficiency. In fact,cmdtool has built into it a complete text
editor, which can be used to edit either the shell history or separate text files. This editing
facility can also be started up as an editor, calledtextedit; we will discuss this editor here,
because it is so similar tocmdtool. Another difference is thatxterm tends to be a little faster
than the current version ofcmdtool at inserting characters, which may make it preferable
for touch typists and others who type very rapidly.

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 105

55.1 Terminal Emulation and the sun-cmd Terminal
Type

If you’ve used more than one kind of terminal or terminal emulator, you probably realize
that they don’t all behave the same way. In particular, terminals differ in how they respond
to escape sequences or series of special characters typed by you or sent from the computer
to the terminal. One terminal might clear its screen upon receipt of a Control-X character,
for example, while another might need the four-character sequence <ESC>H<ESC>J in
order to clear the screen, where <ESC> means theASCII control character “Escape” or just
“ESC”. As a result, it can be very hard to write computer software to drive all the different
terminals in the world. The computer industry has taken two approaches in trying to tangle
with this problem. On the one hand, an ANSI Standards Committee has drawn up a stan-
dard, based largely on the DEC VT100 terminal, to specify how terminals should react to
escape sequences. And many manufacturers (and writers of terminal emulators) are using
this standard.

On the other hand, there are still many terminals in widespread use that do not conform to
this standard, and an equal number of variations among those that claim to. As a result,
UNIX systems include one of two similar facilities, called “Termcap” and “Terminfo”,
which are databases of the “capabilities” of all the terminal types, or the “info” needed to
drive each type of terminal. Termcap/Terminfo provide information on literally hundreds
of different brands of terminals, and are used by screen editors such asvi andemacs to
determine how to drive the particular terminal you are using.

But the trick is that you must somehow tell the software what type of terminal you are on.
If you omit this, or get it wrong, command-line commands such asls andcat will still work,
but screen editors and paginators—any screen-oriented software—will mess up.

How do you tell the system what kind of terminal you have? For each type, there is a name.
The namesun-cmd is used for thecmdtool terminal emulator. The namexterm refers to the
xterm terminal emulator discussed in Appendix A,The xterm/olterm Terminal Emulator.
Both the cmdtool/shelltool and the xterm terminal emulators normally set their own TERM
environment variable. You should be careful not to override this terminal type in your shell
initialization files. For details, please refer to Section3.5, “Customizing your Session
Start-up” on Page 72, and thecmdtool reference page in Part Three of this Guide.

Additionally, cmdtool interprets a variety of escape sequences of its own. These allow you
to resize the window, change the contents of the titlebar, etc. The escape sequences are
described in Appendix E,Control Sequences for xterm and cmdtool.

5.2 Resizing a cmdtool Window
The X Window System and theOPEN LOOK GUI allow you to change the size of almost
any window at almost any time. Most X Window System programs respond reasonably
well to having their size changed. However, when a terminal emulator is resized, there are
implications for any screen-based clients it is running at the time. The bottom line is that
it’s OK to resize acmdtool window, but notwhile it is running a full-screen program such

106 X USER’S GUIDE: OPEN LOOK EDITION

5
as a screen editor or word processor. Most OpenWindows clientsother than terminal emu-
lators can be resized at any time. A real terminal normally cannot be resized (except with
a steam roller), so some screen editors get upset when the terminal is resized. However,
several means have been worked out to solve this problem. First, whenever an editor such
asvi or emacs starts up using thesun-cmd terminal type, it asks the terminal emulator for
its current size, so it doesn’t matter whether you have resized it or not. Theresize command
described in the previous chapter is not needed and in fact does not work with terminal
emulators other thanxterm.

However, a problem comes up if you resize a windowwhile running a screen editor. Some
versions ofUNIX allow such a program to be notified (by a signal namedSIGWINCH) when
its window (terminal) size changes. However, the SunOS 4.1.x version of the vi screen edi-
tor apparently is derived from the System Vvi rather than the current Berkeley version, and
does not respond toSIGWINCH. Therefore, do not resize a terminal emulatorwhile a screen
editor is running in acmdtool or shelltool window.†

As mentioned in the previous section, you can resize acmdtool dynamically using escape
sequences. Example 5-1 is a short shell script that does so.

#!/bin/csh -f

Simplified from a script from Jay Plett jay@silence.princeton.nj.us>
#
switch ($#argv)

case 0: # no args, set default
set columns = 132
set rows = 34
breaksw

case 2: # two aregs: rows cols eg 24 80
set columns = $2
set rows = $1
breaksw

default: # else fall through
echo Usage: `basename $0` ‘[rows cols]’
exit 1

endsw

if ($term == sun-cmd) then
@ cols = $columns + 4

else
set cols = $columns

endif

stty rows $rows columns $columns # tell unix new term size

† Thevi sequence

Q
:set term=sun-cmd
:vi

will usually fix it if you accidentally resize a window runningvi.

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 107

5echo -n “^[[8;$rows;${cols}t” # tell cmdtool (N.B. “^[“ is ESC)

Example 5-1. C Shell Script to resize cmdtool

If you install this script in yourbin directory ascmd-resize and mark it executable, you can
give the command

% cmd-resize 30 90

to make your currentcmdtool window be thirty lines deep by ninety columns. If you make
the window smaller than its current size, press theEnd key or Ctrl-Return to move to the
bottom of the current window.

While we’re on the subject of useful scripts forcmdtool, here are two more. The first one
sets the title, and the second sets the icon label.

#!/bin/sh
cmd-title - set the title in a cmdtool window
echo -n “^[]l$*\\”

#!/bin/sh
cmd-iconlab - set the icon label in a cmdtool
echo -n “^[]L$*\\”

These use theucb version of theecho program; if the-n appears on your screen when you
run them, set/usr/ucb to the front of the search path in the script.

5.3 The cmdtool Menus
Cmdtool’s menu layout is simpler than that ofxterm; there are two main menus, depending
on which mode you are in, and a greater reliance on X resources and on initialization files
than is the case withxterm. When you start the program incmdtool mode, you get thecmd-
tool Term Panemenu; when you start it inshelltool mode (or start it ascmdtool but are
running a full-screen application such asvi), you get theshelltool Term PaneMenu.

5.3.1 The Cmdtool Term Pane Menu
Thecmdtool Term Pane menu has six selections:History, Edit, Find, Extras, File Editor,
andScrolling. Most of these will be described below, in the section on Editing. TheScroll-
ing selection is an exclusive choice: on or off. This item’s name belies its effect: when you
are incmdtool mode, scrolling is on. When you turn scrolling off here, poof! You are now
in shelltool mode, and the main menu is now the one listed forshelltool.

5.3.2 The Shelltool Term Pane Menu
This menu has only four choices:Enable Page Mode, Copy, Paste, andEnable Scrolling.

TheEnable Page Mode causes pausing after every screen full of text, rather like the con-
venience of havingmore or pg built into your terminal so that it benefits every program.
However, this mode is disabled if you go intocmdtool mode.

TheCopy andPaste selections are the same as those incmdtool’s Edit sub-menu, and like-
wise behave as mentioned below under Editing.

108 X USER’S GUIDE: OPEN LOOK EDITION

5
TheEnable Scrolling item turns on the scrollbar feature. This has the side effect of flipping
you back intocmdtool mode.

5.4 Using the OPEN LOOK Scrollbar
ManyOPEN LOOK programs, includingcmdtool, allow you to view on the screen one part
of a larger “virtual screen.” TheOPEN LOOK mechanism that controls this is called a
scrollbar, and allows you to move the on-screen window up or down either one item (such
as a line of text) at a time, or smoothly drag it up or down. Unlike most other GUIs, the
OPEN LOOK scrollbar also allows some other functions, such as splitting the view of the
larger background into several smaller, independent on-screen views.

Note thatcmdtool normally includes a scrollbar, whileshelltool does not, unless you have
enabled it from the window menu. You can have yourOPEN LOOK scrollbars placed on the
left side of your applications or the right side, either by using the Workspace Manager (see
Chapter 6,Using the OPEN LOOK Window Manager) or by specifying an X resource vari-
able (see Chapter 12,Setting Resources).

There are two other types of scrollbars you are likely to run into while using The X Win-
dow System. The Athena Widget scrollbar is described in Appendix A,The xterm/olterm
Terminal Emulator. The Motif scrollbar is described in Appendix M,OPEN LOOK and
Motif. In this section, we will concentrate on theOPEN LOOK scrollbar. Once you’ve
learned it, the others can be learned easily.

First, let’s review the parts of the scrollbar, as shown in Figure 5-1Note that it looks much
like an elevator riding up and down on an elevator cable. And the position of the elevator
within the overall scrollbar shows where you are, proportionally, in the text or list that you
are scrolling; if the elevator is at the top anchor, you are seeing the top of the text or list; if
it’s halfway between the anchors you are seeing the middle, and so on.

The most common use of the scrollbar is by clickingSELECT on the elevator. Pressing and
holdingSELECT on the center box (the drag area) lets you slide the scrollbar up or down at
will. Clicking SELECT on the up arrow will move the elevator up; clicking it on the down
arrow will move the elevator down. As the elevator moves up, the part of the text or list that
you see moves up; in other words, you move closer to the top of the file. However, if
you’ve never used a computer window system with scrollbars before, don’t be thrown off
by what happens; when you click on the up arrow, the text on the screen moves down! This
is just a consequence of moving the view window upwards, and is analogous to the fact
that, looking out the side window of a car driving forward, the scenery appears to move
toward the back of the car. This is so obvious that you never think about it, once you’ve
seen it a few times.

Note that when you click on either arrow, the pointer jumps† when the elevator moves, to
stay on the arrow. Thus you can clickSELECT repeatedly to move several lines at a time
without having to move the pointer each time. In fact, if you hold downSELECT you will

† You can disable this in theProperties editor.

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 109

5

notice that it “auto-repeats” like the keys on your keyboard: it keeps moving along until
you reach the end of the data.

You can also click on either cable anchor to return the elevator to that end. Clicking on the
top cable anchor moves you to the top of the file; clicking on the bottom anchor moves you
to the bottom.

What’s in between the elevator and the cable anchors? The cable, of course. You can click
SELECT on any point of the cable. When you do, the elevator moves up or down by one
screen full of text each time and again, the pointer jumps if necessary.

You may have noticed that one portion of the cable is thicker than the rest of it, or rather is
black while the rest is gray. The black part is the so-calledproportion indicator that shows
how big the on-screen portion of data is inproportion to the total amount of data viewable.
The proportion indicator is always attached to the elevator. If the elevator is at the top of
the column, the proportion indicator will be below it; if at the bottom, above it. If the ele-
vator is somewhere in the middle, the proportion indicator will be partly above and partly
below, in proportion to where you are in the total data. If the data is so huge that the pro-
portion indicator would be invisible beneath the elevator, a tiny proportion indicator is
used. If all the data is visible, as when you start up acmdtool program, the entire cable is
black.

Figure 5-1. Parts of the OPEN LOOK scrollbar

Top cable anchor

Up arrow
Drag area
Down arrow

Proportion indicator

Cable

Elevator

110 X USER’S GUIDE: OPEN LOOK EDITION

5
5.4.1 Jumping with the scrollbar menu
The scrollbar has its own menu, which you can get at any time by moving the pointer into
the scrollbar and pressing theMENU button. There are usually four items on it: Here to top;
Top to here; Previous, and Split View. These simply allow you to move the top line that is
on the screen (“top”) to where the pointer was pressed (“here”), to move the lines where
the pointer was pressed to the top of the screen, and to undo either of those two move oper-
ations (the fourth item,Split Views, is optional, at the discretion of the application writer;
we’ll discuss it later). For example, suppose that we have this window:

Figure 5-2. Moving top to here: before

and want to scroll it so that the first line (“34:19 And the young man...”) is near the bottom.
We just move the pointer into the scrollbar near the bottom, clickMENU, and release on
Top to here to move the top lines to where we are, as shown in Figure 5-3

Figure 5-3. Moving top to here: before

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 111

5
After we release onTop to here, the top line will be at the bottom, as in Figure 5-4

Figure 5-4. Moving top to here: after

5.4.2 Splitting with the scrollbar
A unique feature of theOPEN LOOK scrollbar is that it can be used to “split” the view in
most applications. You often want to see two (or even more) parts of a file, and possibly
copy text from one place to another. In the next section we’ll see how to copy text. Here
we’ll learn how to get multiple views of thecmdtool history. You can split views either
by using theScrollbar menu itemSplit Views or by using the cable anchors. Let’s say we
have acmdtool window that we’ve been typing commands in for some time; it may look
like Figure 5-5:

Figure 5-5. Cmdtool window before splitting

To split the window into two views, move the pointer into the scrollbar and press the
MENU button, and you will see the menu in Figure5-6.When you release theMENU button
on Split Views, you will have two views, each with its own scrollbar, as shown in
Figure 5-7

112 X USER’S GUIDE: OPEN LOOK EDITION

5

Notice their initial positions; the top one is left where it was, and the new one begins at the
top of the file. Furthermore, their relative sizes reflect where you pulled down the menu; to
get two views of equal size, click theMENU button near the middle of the scrollbar. As an
interesting experiment, to prove to yourself that these are but multiple views on a single
shell history, move both scrollbar elevators to their bottom anchors, and type a new com-
mand such asdate and run it. You should see the command, and its output, appear
simultaneously in both views, as shown in Figure 5-8.

You can also split a view by dragging the cable anchor. For example, click and hold
SELECT on the top cable anchor, and drag it down: notice that a thin horizontal line follows
it, to show the position more clearly. Drag the anchor and line to the place where you want
the split to be, and let go. Now you have two views into the data.

If you decide you no longer need multiple views, you can join them again. When you have
split views, the scrollbar menu gains an additional last item,Join Views; if you release here,
the views will be joined. You can also join views by dragging one cable anchor of a view
on top of the other cable anchor in that view; the view will be joined with the other view.

Finally, you can have as many split views as you need. Two, three or four split views are
not uncommon. An application that uses horizontal scrollbars, such as for viewing a large
bitmap or for viewing long lines of text, can allow you to split the view into several vertical
views as well. It is up to the application program whether you can split a given scrollbar or

Figure 5-6. Cmdtool window: scrollbar splitting

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 113

5

not. If a given scrollbar isn’t splittable, it won’t haveSplit View in the scrollbar menu.
Everything that we have said here about scrollbars applies to scrollbars used inanyOPEN
LOOK application, not justcmdtool.

5.5 Copying and Pasting Text Selections
A powerful capability of mostOPEN LOOK text application programs is the ability to copy
and paste portions of text. You can select a few letters, a word, several words, a whole line,
or even several lines. Once selected, text can be copied into an internal buffer and then
pasted or copied into the input once or as often as you wish. This selection mechanism is
similar to, but not identical with, that provided by the MIT X versions ofxterm and related
programs. First we’ll see howOPEN LOOK does it, then we’ll look at cutting and pasting
betweenOPEN LOOK applications and MIT-style programs.

5.5.1 Selecting Text to Copy
To select some text for copying, you must first move the pointer to the start of the text.
Then, you pressSELECT, and can either drag the pointer (“wipe”) across the text or mark
your selection using the pointer buttons.

To wipe across the text, just hold theSELECT key down and move the pointer. As you go,
you’ll see that the text is highlighted by displaying it in reverse video,as in Figure5-9†

Figure 5-7. Cmdtool window: after splitting, two views

114 X USER’S GUIDE: OPEN LOOK EDITION

5

† Remember that this reverse video is different from the single-charactervi cursor, if you are using that editor.
Vi’s cursor shows where it thinks the action is; the selection highlighting shows what text has been selected for
later re-use.

Figure 5-8. Both views reflect a single reality

Figure 5-9. Selecting Text by “sweeping”

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 115

5
You can let go at any time, and that is where the selection will stop. As usual, you can
lengthen or shorten the selection with theADJUST (middle button). With a bit of practice,
you can lengthen or shorten it by as little as one character at a time.

Another method of making a selection is by multiple clicking. Clicking and releasing the
SELECT pointer button once sets the point at which the selection will start, as before. But
clicking and releasing it again very quickly (adouble click) will cause the selection to
include the entire word around the selection starting point:

Figure 5-10. Selecting a word by double-clicking

You can also exercise your fingers in a blaze of clicking: three quick clicks in a row, or a
triple click”, will select the entire line on which the pointer is. And if you are really quick,
you canquadruple click or type four quick clicks; this selectsall the text that is visible in
the window.†

Now you have some text selected, and you can act on it.

5.5.2 Copying or Cutting the text
Once you have some text selected, you can move or copy the selected text into an internal
text buffer. If you move it, the original copy is removed from the screen and put into the
selection buffer, and this is called acut operation. If you copy it, the original text is left on
the screen as well as being put into the selection buffer; this is called acopy operation. The
cut operation is only available while scrolling is on, that is, incmdtool mode but not run-
ning a full-screen editor or other application. Again, note that in acmdtool window, this
cutting and copying is independent of any cut-and-paste logic in the program you are run-
ning, such asvi’s Yank and Paste commands oremacs’ kill-text and yank operations. Also,
cutting (as opposed to copying) is automatically disabled when running screen editorsvi,
emacs, etc.) or any other program that takes over control of the emulated terminal’s screen.

† The Properties editorprops lets you configure a maximum interval at which a pair of mouse clicks is treated as
a double-click.

116 X USER’S GUIDE: OPEN LOOK EDITION

5
To copy text that has been selected, you can use the application menu itemCopy. In cmd-
tool mode this is found under theEdit item; in shelltool mode, it is on the main menu.
Because these are common operations, however, there are normally keyboard shortcuts.
On a Sun keyboard, for example, the L6 key is a shortcut for thecopy operation, L8 is short
for paste, and L10 is short forcut.

5.5.3 Replacing the text
As a shortcut, you canreplace selected text from the keyboard just by typing into the win-
dow or text field that contains the selected text. This in effect combines acut operation with
an insert, all in one move.

5.5.4 Pasting Text Selections
A common operation is to copy a section of text from onecmdtool window into another, or
into a different place in the same window. If you wish to re-use a chunk of text that has
been copied (or cut), use thePaste operation to insert it. If you want to insert it into text that
you are editing withvi or emacs, for example, move that editor’s cursor to the place you
want it inserted, make sure the editor is ready to receive it (in the case ofvi, for example,
you must be in insert mode), and choosePaste from the application menu; it’s found in the
same place asCopy was found above. The keyboard shortcut on a Sun-3 keyboard is L8.
For example, if we wish to paste a longer selection of the Biblical text from above into this
vi window:

Figure 5-11. Vi window before pasting

we need only make sure thatvi’s cursor is at the right place, and type (for example) an “o”
command to Open a new line and enter Insert mode, and we can paste the text. We can
either pull down the window menu and release on Paste. This is shown in Figure 5-12

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 117

5

Or we could type the “o” command then hit the Paste key (L8). In any event, the text will
be pasted in, as shown in Figure5-13. You will wish to disable theshowmatch andautoin-
dent options invi if you are using them, to avoid unwanted interactions.

Figure 5-13. Vi window after pasting

If you wish to run the selected text as (part of) a command, be sure you are at a shell prompt
in yourcmdtool window, and paste the text in. For example, here we are about to copy and
paste a job name that showed up in the output of auustat command, to re-use it as the argu-
ment of another. The syntax

uustat -k jobname

is used to kill a previously submitteduucp (UNIX-to-UNIX copy program) job. This is a
good example, since the names thatuustat generates on this version ofuucp tend to contain
case changes and letters and numbers mixed together, so they are tedious to retype. After

Figure 5-12. window during pasting

118 X USER’S GUIDE: OPEN LOOK EDITION

5
typing the part of the command that doesn’t include the jobname (i.e., the “uustat -k”), we
select the one word of text we want (“sqN7e04”) just by double-clicking on it:

Figure 5-14. Re-using part of a shell command: before

Then you have two choices:

■ press the keyboard keys for COPY (L6) and PASTE (L8) to insert the text.

■ Click and holdSELECT pointer button, and drag a copy of the selection to the insertion
point (as shown in Figure 5-15), then release the pointer button

Figure 5-15. Dragging the text with the cursor

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 119

5
When you’ve copied the text, you may need to press the RETURN key to run the com-
mand. The resulting screen should look like Figure 5-16.

Figure 5-16. Re-using part of a shell command: after

If you have picked up some text from earlier in the history log by using the scrollbar to
move backwards, you have to get back to the insertion point at the very end of the history
(the current or active line). You can just clickSELECT on the bottom scrollbar anchor to
move the scroll to the bottom line (this does not de-select any highlighted text you may
have), then click on the last line (after the shell prompt). This is a common operation, so
Control-Return (press RETURN while holding the Control key) is a shortcut for this, as is
the End (R13) key on a Sun Type 4 keyboard. (By contrast,xterm moves to the end of the
last line automatically when you type anything, even a space; this is a bit faster, but is a
consequence ofxterm’s read-only history log.)

If you want to copy text from oneOPEN LOOK window to another, here is the sequence of
steps:

■ In the source window, select the text;

■ Click and hold theSELECT pointer button, and drag the text to where you want it. Note
that as in Figure 5-15, the cursor becomes a “gunsight” when you are over a drop target.

■ Release the pointer button, and the selection will be copied.

There are some occasions when you cannot use this mechanism. A common case is therlo-
gin andscript programs, which put the terminal into so-calledraw mode, in which drag-
and-drop does not work (more generally, command-line editing with the mouse does not
work). In this case, use the more explicitly copy-and-paste method:

■ In the source window, select the text;

■ Copy the text into the paste buffer (useCopy menu item orCopy keyboard button, L6);

■ Move the pointer to the new window, and if using click-to-type focus, clickSELECT in
the target window;

■ If using an editor in the target window, make sure the editor is in insert mode at the
appropriate point in your file. Alternately, if you want to paste the text into anOPEN
LOOK Text Field, clickSELECT on that text field to move the insertion caret there.

■ Paste the text (usePaste menu item orPaste keyboard button, L10).

120 X USER’S GUIDE: OPEN LOOK EDITION

5
Finally, there is one even shorter method:

■ Click SELECT to get an insertion caret where you want the text, if necessary

■ Pressand hold the Paste key (L8)

■ Select the text you want copied using theSELECT pointer button. It should be under-
lined, rather than highlighted in reverse video.

■ Let go of the Paste button, and the text will be copied.

To move text from one window to another rather thancopying it, you would follow the
same steps for any of these methods except useCut instead ofCopy.

It sounds like more work than it is. Try it a few times and you’ll see how easy it is. For any-
thing with tricky typing, or anything longer than a word or two, it is quite a bit faster (not
to mention more accurate) to copy it rather than to re-type it. Once text is in the computer
correctly,let the computer do the work.

5.5.5 Editing and Saving the History Log
The cmdtool program has the ability to save its History Log into a file, using the main
menu’sHistory menu. This can be used, for example, to document how a program actually
behaves, for purposes of writing technical documentation or for filing a bug report. You
can edit thecmdtool’s history log prior to saving it. Editing can be used, for example, to
remove errors that you made, such as running some command with an option missing,
without having to flip into a text editor.

5.5.5.1 Clearing the log - a clean start

If you have been using yourcmdtool session for a while before starting to make a record of
some program’s behavior, you will probably want to start with a clean slate. Pull down the
main menu, then pull right onHistory and further right ontoClear Log. When you release
this item, the history log will be cleared out, and you can start typing your example.

5.5.5.2 Other Editing

There are many other editing options, described in the following section. These can be used
in many places whereOPEN LOOK applications allow editing of text fields or strings.

5.5.5.3 Saving

Once you have the log in the form you want it, you can save it to disk using theHistory
menu itemStore log as new file. Just release on this and you will be prompted for the name
of a file to save the history log into. Once you type the name and click on theSave button,
the history log will be written into a file.

5.6 Editing Text in OPEN LOOK Applications
OPEN LOOK specifies the methods used for editing from the mouse and keyboard. This is
not to prevent use of more sophisticated editors, such asvi andemacs, but only to provide
a standard set of editing functions that can be used anywhere in the X andOPEN LOOK
environments that text must be edited from the mouse and keyboard. This discussion of

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 121

5
editing the history log applies to anyOPEN LOOK application that uses text or text fields,
such as theOPEN LOOK-specific text editor program,textedit, as well as tocmdtool’s his-
tory log. TheOPEN LOOK text editing facilities give you a comprehensive text editor,
including cut/copy and paste, search and replace, and the ability to filter text through a
series of external programs.

Cutting text out has been described above: select the text using the mouse, and cut it using
either the keyboard shortcut (L10) or theCut main menu item.

You can insert text at any point. Position the pointer where you want to begin inserting, and
click SELECT. You will see a small insertion caret, and can begin typing at once. Continue
typing until you have said your piece. If you make a mistake, you can correct it with the
backspace key (some applications also let you use the DELETE key). Most other keys,
including control characters, will be inserted directly.

The main menu, calledTerm Pane in cmdtool andText Pane in textedit, has anEdit item
that invokes a series of editing functions, most of them familiar. The bottom three are
Copy, Paste, andCut, which have been described earlier in this chapter. The others are
Again which repeats the previous editing change, andUndo. Undo can undo either the sin-
gle most recent editing change, or the entire set of editing changes. The order of these
change operations,Again, Undo, Copy, Paste, andCut may seem arbitrary, but it is the
same order as the keyboard shortcuts for these actions on the Sun-3 keyboard: Again is L2,
Undo is L4, Copy is L6, Paste is L8 and Cut is L10.

The next item incmdtool’s Term Pane and textedit’s Text Pane is Find, which lets you
locate and optionally replace text. It leads to a menu of four items:Find & Replace..., Find
Selection, Find Marked Text, andReplace Field. The first,Find & Replace..., pops up a
window with two text fields, one for the text to be found and the other for the text to be
replaced. There are several push buttons on this pop-up window:

Figure 5-17. Find and Replace Pop-up Window

TheFind button lets you search forward or backwards after you have entered your text. If
you wish to replace the found text, you can selectReplace then Find to do the replacement
and find the next occurrence. Or you can selectReplace All which will do the replacement
in the whole file. The abbreviated menu button at the right lets you select betweenAll Text
(replace throughout the entire document) orHere to end which will only make the change
from the current point or found string up to the end of the document. TheFind Selection
item lets you select some text and find it, without having to copy it or retype it in theFind
text field. The next matching text will be found, if there is one, and left selected, so you can
cut or copy it from the new location. This is a common operation, so there is a keyboard
shortcut for it. On a Sun keyboard, the L9 (FIND) key will find the selected string if you
are in an edit window. Shift-L9 will find backwards. On any keyboard, Meta-F and Meta-

122 X USER’S GUIDE: OPEN LOOK EDITION

5
Shift-F will perform the same find operations. If there is no string currently selected, it will
try to find the most recentlyCut or Copied string.

Find marked text andReplace Field are advanced topics and will not be described here.

The next item incmdtool’s Term Pane andtextedit’s Text Pane isExtras, a list of odds and
ends that runs some external filters on the selected text. TheFormat item runs thefmt text
alignment program; this is useful for making long lines of text fit, or for joining words into
a single line to run as a command. For example, to list (ls) the three files highlighted in
Figure 5-18,

Figure 5-18. Three filenames selected for “formatting”

we select them with the pointer, pull down theTerm Pane to Extras, and release onFor-
mat. This replaces the three lines shown, with one line:

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 123

5
Figure 5-19. Lines joined together

We then highlight this line (either by wiping across it or by triple-clicking), press the
COPY key, move to after therm command (either by clickingSELECT to the right of it, or
by using Control-RETURN), press the PASTE key, and it’s done:

Figure 5-20. The command is done

Admittedly cutting and pasting is not much faster for three short filenames, but for half a
dozen long or complicated filenames it can be a significant time-saver.

The remaining items in theExtras menu allow you to

■ shift the case of text from upper to lower (useful with MS-DOS filenames), lower to
upper, or even to capitalize words (useful with people’s names);

■ shift entire lines to the left or right;

■ have C source code reformatted or “pretty-printed”, and

■ insert and remove various kinds of parentheses or brackets (useful in expressions in most
computer programming languages.

These are mostly useful to programmers who already know why these tools are necessary,
so they’re not explained here. We will show you how to change the functions in this list in
Snuff this dead chapter reference ASAP!.

The final item incmdtool’s Term Pane is File Editor. This selection turns the bottom half
(or more) of thecmdtool screen into atextedit window, which behaves just liketextedit, as
described in the next section.

5.7 Editing with Textedit
Textedit is the OpenWindows text editor program. It can be started from theWorkspace
menu, from theOPEN LOOK File Manager, from within acmdtool window, or any place
else you need editing abilities.Textedit is easier to learn than conventionalUNIX text edi-
tors likevi andemacs, but an adept user of one of those editors can get work done more
quickly than a user oftextedit.

124 X USER’S GUIDE: OPEN LOOK EDITION

5
All of its editing facilities are the same as those ofcmdtool, since it contains the same edit-
ing program. All you need to learn now is how to change text in the on-screen buffer, and
how read and write files plus a few other, less common operations and you’ll be atextedit
user.

5.7.1 The Editing Keys
There are several keys that can be used to edit text in anOPEN LOOK application such as
cmdtool. These are similar to those in other keyboard editors, most notably to theemacs
family of editors. But they are not exactly the same asemacs, so users of that editor should
not get complacent, and users of other editors should not feel disadvantaged.

Before describing the individual keys, we need to explain the notion ofinsertion caret or
insertion point. There is always one insertion point in the window of anOPEN LOOK appli-
cation that has any text fields or text windows. This is the point at which most editing
operations take place. For example, text that you type is inserted at the caret, while deleting
the start of a line deletes from the caret leftward to the start of the line. You can move the
insertion point anywhere in the text window just by moving the pointer to where you want
the caret, and clickingSELECT. A small caret symbol (♦) will be displayed there.

Several control keys (hold the Control key and type the given letter) have effect on the edit.
These are similar to the MITxedit program, however, the list of keys that work here is
smaller than withxedit. Several keys that work inxedit but not here are listed as “No
effect” so that you can compare them if you have previously usedxedit. Table 5-1 lists the
control keys and their actions.

Table 5-1. TextEdit Editing Characters

Key SHIFT reverses? Function (mnemonic)

Control-A yes Move to the beginning of the current line
(previous line if repeated).

Control-B yes Move backward one character (“backward”).

Control-D no No effect; inserts a Control-D.

Control-E yes Move to the end of the current line.

Control-F yes Move forward one character (“forward”).

Control-H yes No effect; inserts a Control-H.

Backspace yes Deletes char to left of cursor

Return no Break line at caret.

Control-Return yes Moves to end of document

Control-I n/a Inserts TAB character.

Control-K n/a No effect; inserts itself.

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 125

5

5.7.2 The textedit menus
When started from theWorkspace menu or the command line with no filename argument
given,textedit looks like this:

Control-L n/a No effect; inserts itself;

Control-N yes Move down to the next line. (“next”)

Control-O n/a No effect; inserts itself.

Control-P yes Move up to the previous line. (“previous”)

Control-U yes Delete from the start of line to the insertion
point (commonstty setting)

Control-V n/a No effect; inserts itself

Control-W yes Delete the word to the left of the caret.
(commonstty setting)

Control-Y n/a No effect; inserts itself.

Control-, no Word motion to left (under < key).

Control-. no Word motion to right (under > key).

Escape key n/a No effect; inserts itself.

Delete key yes Delete the character to the left of the caret.

Table 5-1. TextEdit Editing Characters

Key SHIFT reverses? Function (mnemonic)

126 X USER’S GUIDE: OPEN LOOK EDITION

5
Figure 5-21. Textedit initial screen

The “NONE” in the titlebar simply means that no file has been selected. When enabled
within a cmdtool, the text editor looks similar except that it only occupies the bottom part
of the window; the bottom of the command log is displayed in the top window, like so:

Figure 5-22. TextEdit started from within cmdtool

In either case, you are presented with an empty document. If started with a filename on the
command line, of cours4e,textedit starts up with the first screenful of text displayed. To
create a new document, just begin typing. Or you can load an existing document using the
File menu. Here is an example of using the editor withincmdtool to create a new, short file:

Figure 5-23. Creating a short file with textedit.

Having created the two lines of text, you would save it as a new file, as described below
using theEdit Hint: you can just clickSELECT on theFile button and the program will do
the right thing: save an existing file, or ask you for a name to save a new file under.

The menu bar has the conventionalFile, View, Edit andFind pulldown menus. Each of
these pulls down a menu. In addition, these are the same names and in the same order as
the first four controls in theWindow Menu, which also hasExtras. But Edit, Find, and
Extras are the same intextedit as incmdtool above, so there is nothing new to say about
them. Instead, let us discussFile andView.

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 127

5
5.7.2.1 The File menu

The File... menu, whether accessed from the menu bar or the window menu, has these
choices in it:

Load File...
Save Current File
Store as New File...
Include File...
Empty Document

Load File... is used to load a text file into the editor to start editing it. You get a filename
dialog window, either a directory browser or a simple dialog with text fields for the direc-
tory and filename, and aLoad File button. The directory text field is initialized to the
current directory, so if the file is in the same directory, just type its name and click theLoad
button. If the file is in some other directory, then you can either edit the directory name and
type the filename, or just type the full path in theFilename field. In either case, clickLoad
to actually load the file. And as a shortcut, hitting RETURN after typing the filename will
load it, just as if you had clicked on the button. Many OpenWindows programs use this
technique: notice that theLoad button has a double circle or “default ring” to indicate that
it is the default action. If you have popped up this dialog but want to cancel the action, you
can pull down the window menu of the popup window and selectDismiss, which will can-
cel the Load operation.

When there is nothing in the edit buffer, the default item on theFile menu isLoad file...
Once you have started editing, the default item changes toSave Current File. Clicking
SELECT on a menu button performs the menu’s current default action. Also, if you try to
load a file when you have unsaved text in the text buffer, you will be prompted to save it
before it is cleared.

Save Current File saves the contents of thetextedit buffer back into the file you edited it
from.

Store as New File lets you write the changed file in the edit buffer out to a different file than
that from which you edited it. This would also be used in the case where you are creating
a new file withtextedit. This popup dialog behaves the same as the one forLoad File

TheInclude File control is used to insert another file in the place where the insertion caret
is, just as if you had typed the file in anew. It prompts with a standard File popup dialog,
as above. When you click on theInclude button, the file is read into your edit buffer, right
where the insertion caret is.

A valuable short form forInclude File is <Meta>-i (hold Meta key and type “i”). If a file-
name is selected anywhere on the display, it will be pre-loaded into theInclude dialog, and
you just have to hit return there (or click on theInclude button) to insert the file. If the
selected filename is in the currenttextedit window, it will bereplaced by the contents of
the file.

TheEmpty Document control does what it says: it empties the document, or gives you an
empty document. If you have unsaved text in the buffer, you are prompted with a Notice.

128 X USER’S GUIDE: OPEN LOOK EDITION

5
A successfulEmpty operation forgets the remembered filename, too, so you don’t have to
worry about accidentally saving an empty file over top of one you were editing.

5.7.2.2 The View menu

TheView menu has these controls:

Select Line At Number...
What Line number?
Show Caret at Top
Change Line Wrap

Select Line At Number... simply allows you to jump to a given line by number, and select
all the text on that line for copying. If you want to get to line 450 of the file you are editing,
for example, select this control and you will pop up a small dialog box into which you can
type the number 450. When you press theSelect button, your view of the file will be
advanced to line 450, and the text of line 450 will be selected so that you can Cut or Copy
it for later pasting:

Figure 5-24. Selecting line 450

When we click theSelect button, line 450 will be highlighted:

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 129

5
Figure 5-25. Line 450 now Selected

A sort of inverse operation isWhat Line number?, which tells you the line number that the
currently-selected text begins on. Let us suppose that we have selected this text from a
larger file, and want to see where it is in the file:

Figure 5-26. What line is this text on?

We pull down theView menu and selectWhat Line Number? Immediately, this Notice
pops up:

Figure 5-27. It is on line number 912.

and we see that is line number 912 in the file that we are editing.

The menu itemShow Caret at Top simply moves the text so that the line with the insertion
caret is at or near the top of the screen, so you can see the context around it better. You
could do this yourself with the scrollbar, so I’m not sure why you’d want it.

The final item,Change Line Wrap, lets you control how lines longer than the width of the
text window are to be displayed. You can choose fromWrap at Word, Wrap at Character,
or Clip lines. The first two are reasonably self-explanatory; text that won’t fit on a line is
wrapped either at a word boundary or at a character boundary (i.e., right at the right mar-

130 X USER’S GUIDE: OPEN LOOK EDITION

5
gin). The last item doesn’t actually truncate the lines in the file, but only ignores them for
purposes of the display. In fact, none of these options actually changes the text; they only
affect the way it is displayed. If you find yourself setting this each time you start an edit
window, you may wish to customize it, as described inSnuff this dead chapter reference
ASAP!.

5.7.2.3 The Edit, Find, and Extras Menus

As mentioned, theEdit, Find, andExtras in textedit have the same controls and function in
exactly the same fashion as they do when editing a history item incmdtool, so they are not
discussed further here.

This completes our discussion of the Text Editing mode ofcmdtool as well as oftextedit.
We now discuss a few more details about Text Selections, and show you how to start a
cmdtool window to run one specific program instead of running a shell.

5.8 More About Text Selections
Since the MIT xterm program is so widely used, you may on occasion need to transfer text
between cmdtool and xterm, or vice versa. This section discusses the details.

5.8.1 Copying and Pasting between XView and MIT Clients: xcutsel
You can select text incmdtool (or textedit, or anyOPEN LOOK client that has a text field or
a text window), then move the pointer to an MITxterm and click the middle button. Your
text will be pasted into thexterm. This technique also allows you to copy text intoxedit,
xclipboard, and other MIT-style clients.

But to copy from an MITxterm (orxedit orxclipboard) into an XViewOPEN LOOK client,
you have to use the following procedure:

■ Select the text in thexterm, usingxterm conventions (sweep with Button1 (left), extend
if necessary with Button3 (right button));

■ Move the pointer into thexclipboard main window;

■ Paste the text into thexclipboard window using thexterm conventions (Button2, middle
button, pastes text);

■ Move the pointer into theOPEN LOOK window;

■ Paste the text using thePaste button or thePaste item from theEdit menu.

5.8.2 Saving Multiple Selections: xclipboard
Xclipboard lets you have multiple selections. ItsNew button creates a new selection; once
you have created more than one, theNext andPrevious buttons move you among them.

5.8.2.1 Editing Text Saved in xclipboard

It is possible to edit text in anxclipboard window, but you should be aware that it uses the
xedit conventions, which are similar totextedit, but not identical. Refer to the discussion of

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 131

5
texteditin Chapter 5, The cmdtool/shelltool Terminal Emulator,and ofxedit in Chapter 8,
Other Standard Clients, for more details.

5.9 Running a Program in a Temporary cmdtool
Window

Normally you start up acmdtool window and keep it running for a long time, typically the
duration of your session. Each suchcmdtool has its own copy of your login shell (more pre-
cisely, the program named in the SHELL environment variable) or the shell named in your
.Xresources file. You can, however, start up anad-hoc copy ofcmdtool just for the dura-
tion of a single command. All you do is put the name of the command (and any arguments
to it) after any generic XView arguments:

% cmdtool [generic-arguments] command [command-arguments]

For example, if you want to runmore on a file namedtemp in a window that will disappear
when you quit (or reach end of file), you can do so as follows:

% cmdtool more temp

The generic arguments (such as -display) must appear before the command, and arguments
to the command must be last. For example, to run the above command with the output
appearing on the second screen of a two-headed display,

% cmdtool -display unix:0.1 more temp

Be aware, though, that if the command terminates without reading from the terminal (as
would be the case if filetemp were shorter than one screen full of text), there is a good
chance that it will terminate before the window is fully displayed, in which case you will
not see any output. One way around this is to use asleep command, as in

cmdtool more temp \; sleep 600

which will sleep for up to ten minutes (600 seconds) after themore. You can interrupt this
by a Control-C (or your interrupt character) in the temporary window. Another way is to
read from the window’s standard input after the command terminates:

cmdtool cat myfile \; echo Press Return \; read junk

This will wait until you press return before terminating the window.

5.10 Cmdtool as a Console Window
In the olden days ofUNIX, there was a special printing terminal set aside for the console
operator, and it had the special name/dev/console. This file is used by many programs to
log messages on, and the file still exists in modernUNIX, even though the hardcopy termi-
nal is gone from workstations. On most modernUNIX systems,/dev/console is a pseudo-
device that causes the log messages (actually anything written to/dev/console) to appear
“somewhere else”. That “somewhere” may be on a printer, in a file, or on another terminal.
In the case of workstations with graphic screens, it is usually the graphic screen, so that the
workstation user will see any “important” messages that are sent to /dev/console. But in the

132 X USER’S GUIDE: OPEN LOOK EDITION

5
case of a windowing system such as X, it is not a good idea to have programs writing
directly to the screen, as this would appear over top of various windows, and jumble up the
screen contents (see Figure 5-28).

Figure 5-28. A screen with console messages over windows

To solve this problem temporarily, you mustrefresh or repaint the screen, that is, repaint
the root window and then have each client program repaint its window(s). On OpenWin-
dows this is available in the default menu underUtilities on the workspace menu, where it
is the default item so you need only click SELEECT on Utilities in the root menu. With
other window managers your mileage may vary.

It is better toprevent this problem, which you normally do by making a terminal emulator
“become the console”. Thecmdtool program (and other terminal emulators such asxterm)
accept a -C option to make them the console. This is normally specified for the first or last
terminal emulator that your session scripts start up, and it is often a small (6 lines by 80
characters) window, to allow you to see messages but not use up much screen space. For
example, the default OpenWindows start-up script (.openwin-init) has this entry:

$OPENWINHOME/bin/cmdtool -Wp 0 0 -Ws 590 77 -C

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 133

5
The -Wp and-Ws are standard command line options for position (upper left corner) and
size (small) of the window. The -C makes this instance ofcmdtool become the system con-
sole window.

A special-purpose program,contool, is available as contributed software.Contool is opti-
mized for use as a console; you cannot type commands into it, but it allows you
considerable flexibility in filtering out the more common but uninteresting messages that
may appear on your console. It can arrange to write some or all messages into a log file,
and can open (de-iconify) itself automatically when certain messages appear. See the ref-
erence manual in Part Three of this guide for details on this useful (con)tool.

5.11 Cmdtool/Shelltool/Textedit Menus Reference
The chart in Figure 5-29 shows the menus available, starting inshelltool mode. For exam-
ple, turningScrolling on sets the mode tocmdtool, where the Term pane menu lists
History, Edit, etc. This is the same menu you get if you start off incmdtool mode. Simi-
larly, settingFile Editor Enable turns onTextEdit mode, wherein the menus are the same
as if you had started off by running atextedit window.

ShellTool’s Term Pane
Enable Page Mode
Copy
Paste
Enable Scrolling --> CmdTool Mode

Cmdtool’s Term Pane
History -> Mode -> Editable/Read-Only

-> Store log as new file...
-> Clear log

Edit -> Again
-> Undo -> Undo Last Edit

-> Undo All Edits
-> Copy
-> Paste
-> Cut

Find -> Find & Replace...
-> Find Selection -> Forward

-> Backwards
-> Find marked text ...
-> Replace Field -> Expand/Next/Previous

Extras -> Format
-> Capitalize ->
-> Shift Lines ->
-> Pretty Print C
-> Insert Brackets ->
-> Remove Brackets ->

File Editor --> Enable
Textedit’s Text Pane
File -> Load File

-> Save Current File...
-> Store as New File...
-> Include File
-> Empty document

View -> Select Line at #...
-> What line #?
-> Show caret at top
-> Change Line Wrap ->

Edit

134 X USER’S GUIDE: OPEN LOOK EDITION

5
Find (same as Find above)
Extras (same as Extras above)

Figure 5-29. Shelltool/Cmdtool/Textedit Menus Reference

5.12 Other Terminal Emulator Programs
Now we’ve discussed thecmdtool terminal emulator in detail. There are many other termi-
nal emulators that you should at least be aware of.

5.12.1 Xterm
Xterm, the MIT standard terminal emulator, is widely used in some parts of the X Window
System community. It is discussed in Appendix A,The xterm/olterm Terminal Emulator.
Sincexterm is so widely used, a brief comparison is in order: please refer to Table 5-2.

Table 5-2. Shelltool/Xterm Comparison

Cmdtool/Shelltool Xterm

Cmdtool has the advantage that it complies
fully with the OL specification.

Widely used.

Cmdtool works with theOPEN LOOK cut
and paste, drag and drop, and other
mechanisms.

Xterm has a much simpler copy-and-paste
mechanism: you select with button1, extend
with button3, and paste the selection with
button2, instead of with function keys or a
menu.

Cmdtool has a better history mechanism,
letting you revise the shell history, save it
into a file, etc.

Xterm has a limited history: you can select
from any previous line or lines, but not
change them.

Because of its history mechanism, earlier
versions ofcmdtool had problems with
command interpreters that play games with
stty settings, such ascsh with “set comple-
tion” on, tcsh, bash, ksh with “set -o
vi/emacs”, etc. These are fixed now.

Xterm is faster. It passes interrupt characters
(^C, ^Z) much more quickly, and it uses
less CPU time in normal operation.

The version ofcmdtool in OpenWindows
3.0 has problems when scrolling text while
a window partly overlaps it; some of the
text does not get redisplayed. This will prob-
ably be fixed soon, possibly by the time
you read this.

Not a problem.

Geometry size in pixels (700x500) Geometry size in characters (80x24)

CHAPTER 5: THE CMDTOOL/SHELLTOOL TERMINAL EMULATOR 135

5
5.12.2 Others
jet is an experimental terminal emulator that is distributed in both source code and binary
forma as part of OpenWindows 3.0. A related program isjed, the jet-like editor. You could
say thatjed is to jet astextedit is tocmdtool; the terminal emulators feature simple editing,
and the editors work only on text file but have more functionality.

Some commercial X packages include their own terminal emulators. Examples include
DECterm in Digital Equipment’s DECWindows and AIXterm in IBM’s AIX version of
UNIX. These are discussed in the appropriate vendor documentation.

Now let’s turn our attention to some other X clients. First we’ll discuss some additional
features of theOPEN LOOK Window Manager. The next two chapters deal with useful
tools; they cover the OpenWindows DeskSet tools and the MIT “standard” clients that
should be in any release of The X Window System. This is followed by a chapter on Graph-
ics Clients that mentions MIT clients,OPEN LOOK clients, and some free software clients.

136 X USER’S GUIDE: OPEN LOOK EDITION

5

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 6: THE OPEN LOOK WINDOW MANAGER 137

6

Chapter 6THE OPEN LOOK WINDOW MANAGER

CHAPTER 6

More about the OPEN
LOOK Window Manager

TheOPEN LOOK Window Manager,olwm, is one of many window managers available for
X11. However, if you are to make full use ofOPEN LOOK, you are really committed to
using olwm, for it is the only Window Manager that implements all thatOPEN LOOK
requires of a window manager. Both Sun andAT&T provide their own versions ofolwm;
in this chapter we discuss the common functions that they provide for a variety of window
management functions. In Chapter 2,Working in the OPEN LOOK Environment, we
described theOPEN LOOK-specified procedures for selecting the input focus window, rais-
ing windows, moving and resizing them, and opening/closing them using the pointer. Here
we will discuss a number of additional features of theOPEN LOOK Window Manager. You
can useolwm to:

■ Create additional terminal windows.

■ Move windows to a new location on the screen.

■ Change the size of windows.

■ Lower windows (move them to the back).

■ Refresh a window, or the entire screen.

■ Close (iconify) or remove (delete) windows.

TheOPEN LOOK Window Manager lets you manage your windows in several ways:

■ You can use the “window frame” (including the titlebar) and various features on it: the
window mark (iconify or “minimize” button);

■ You can use theWindow Menu available from the window’s frame;

■ You can use theWorkspace Menu (which most X11 documentation calls theRoot
Menu);

■ Or you can use keyboard keys as shortcuts for many of these operations.

138 X USER’S GUIDE: OPEN LOOK EDITION

6
In this chapter, we’ll review some basics about focusing input to a window or icon, and
consider some other window management functions that can be performed using the win-
dow’s frame, theWindow Menu, and theWorkspace Menu.

We’ll see that some window management functions can be done from the keyboard, using
specially-assigned keys. These keyboard shortcuts are often called “accelerators” because
they can speed up your work. Keyboard accelerators usually involve special keys that X11
calls modifier keys. So we’ll have to spend a bit of time looking at what X considers
“special.”

Theolwm program is moderately flexible – less so than some other window managers, but
with the intent of keepingOPEN LOOK intact as a standard – so you can configure it in cer-
tain ways. You can change the focus policy from the default click-to-type to a more
convenient point-to-type (keyboard focus was described in more detail in Chapter 1). You
can also change theWorkspace Menu; in Sun’s version ofolwm you can replace the entire
menu, organizing it as you wish, while in AT&T’s version you can only add entries to the
Programs list in the menu. Chapter 13,Customizing olwm, is devoted to this topic.

An even more flexibleOPEN LOOK Window Manager isolvwm, which is upwards compat-
ible with the OpenWindows version ofolwm (from which it is derived). It is not a
supported product, but the source for it can be obtained by anonymousftp from Uunet and
other sites. It has a “virtual desktop” facility that gives the appearance of multiple screens
on a single display—as many screens as you want. See Section6.5, “The Virtual Desktop
(Virtual Edges),” for details onolvwm.

This chapter is aimed at the user of theOPEN LOOK Window Manager program from either
Sun’s OpenWindows 3.0 or AT&T’sOPEN LOOK GUI 4.0. Use of other versions of the
OPEN LOOK Window Manager, or of locally-customized versions, will be similar, but you
should expect a few small differences as you go through the chapter.

6.1 Using Special Keys
Undoubtedly you know how to use a keyboard. However, X interprets certain keys some-
what differently than the labels on the keys would indicate.

Most workstation keyboards have a number of “modifier” keys, so-called because they
modify the action of other keys. Generally these keys are used to invoke commands of
some sort, such as window manager functions.

Three of these modifier keys should be familiar to any user of a standard ASCII terminal
or a personal computer—Shift, Caps Lock, and Control. However, many workstations
have additional modifier keys. A PC has an “Alt” key, a Macintosh™ has a “clover”
(“command”) key, a Sony workstation has keys named “Nfer” and “Xfer,” and most Sun
Workstations have three additional modifier keys, labeled “Alt” or “Alternate”, and either
a diamond character (◊) or “Left” and “Right.

Because X clients are designed to run on many different workstations, with different key-
boards, it is difficult to assign functions to special keys on the keyboard. A software
developer can’t be sure that any given key will exist on every user’s keyboard!

CHAPTER 6: THE OPEN LOOK WINDOW MANAGER 139

6
For this reason, most X clients make use of “logical” modifier key names, which can be
mapped by the user to any actual key on the keyboard.

Up to eight separate modifier keys can be defined. The most commonly used (after Shift,
Caps Lock, and Control) has the logical key name “Meta.”

We’ll talk at length about this subject in Chapter 14,Customization Clients, but we wanted
to warn you here. When we talk later in this chapter about pressing the “Meta” key, you
should be aware that there is not likely to be a physical key on the keyboard with that name.
For example, on Sun workstations with the normal Type 4 keyboard, the key is labelled
with a diamond character, on another workstation, the Meta key might be labeled “Alt”
and, on another, “Left.” And as we’ll show in Chapter 14, you can choose any key you
want to act as the Meta key.

Unfortunately, if you or your system administrator has been busy modifying key assign-
ments, there is no easy way to find out which key on your keyboard has been assigned to
be the Meta key. When you need to know, please turn to the discussion of key mapping in
Chapter 14,Customization Clients, to learn more.

6.2 Input Focus and the Window Manager
Input Focus is, as described in Chapter 1,An Introduction to OPEN LOOK and the X Win-
dow System, the direction of keyboard input into a given window by use of the pointing
device (mouse). The management of the input focus is controlled by the Window Manager
program in any version of The X Window System. TheOPEN LOOK Window Manager
provides both common focus policies, pointer-focus and click-to-focus, so you can use the
system as it suits you. In click-to-focus, you move the pointer into the titlebar of the win-
dow you want to focus input on, and click theSELECT (left) button. In pointer-driven or
click-to-focus mode, the focus is directed to a window just by moving the pointer into that
window. Both focus styles have their uses.

6.2.1 Focusing Input on an Icon
When a window is iconified, or closed to a small icon, it normally does not receive input.
But you can still direct the focus to it. For example, if you iconify a terminal emulator that
is a shell window, and then move the focus into the icon and type commands, nothing will
happen; the keystrokes will be lost. However, there is one exception: theOPEN LOOK Win-
dow Manager allows certain keyboard shortcuts - such as opening the window - to be typed
to an iconified window. And, inolwm, you can move the focus into an icon and press the
MENU (right) pointer button to get theWindow Menu, which operates as described below.

6.2.2 Transferring the Focus with Keystrokes
In AT&T ’s implementation of theOPEN LOOK Window Manager, you can move from one
window to the next by the key sequence ALT+F6. You can move to the previous window
with Shift+ALT+F6. In the OpenWindows version of theOPEN LOOK Window Manager,
use Next Application (Alt-n) or Previous Application (Alt-Shift-n). This only works if you
have the olwm.KeyboardCommands resource set to Full; see Appendix K,OPEN LOOK
Mouseless Operations

140 X USER’S GUIDE: OPEN LOOK EDITION

6
6.2.3 What to do if olwm Dies and the Focus is Lost
It may occasionally happen that the window manager will “drop out from under you.”
While it is an important and reasonably well-debugged program, it is possible forolwm,
like any computer program, to fail under certain rare circumstances. In this case, you will
see a brief flurry of action as all the titlebars disappear and any iconified windows pop
open.

Fortunately, in most cases the input focus reverts to X11’s native “point to type” mode, so
you can just move the cursor into any terminal emulator window and type the command
olwm& to get theOPEN LOOK Window Manager back. For those cases when the input
focus is left in click-to-type mode andnot in a terminal window, you can use theSecure
Keyboard feature ofxterm to get the focus back, as described in Appendix A,The
xterm/olterm Terminal Emulator. Of course you have to have anxterm running to use this
mode. Alternately, you can log in at another terminal, or remotely, and restartolwm man-
ually. Or, if you have a File Manager running, pull downFile -> Custom Commands ->
UNIX Shell... which will try to start a shell window for you; from there, startolwm as
before†.

6.3 The Workspace Menu (or Root Menu)
The overall screen area of your display is called theWorkspace in OPEN LOOK terminol-
ogy, or theroot window in X11 terminology. Most window systems give you a special
“master menu” when on this area, andOPEN LOOK is no exception. Moving the pointer
into the background window and pressing theMENU pointer button causes theWorkspace
Menu (also called theRoot Menu) to appear. The normal content of this menu is shown in
Figure 6-1.

Figure 6-1. OpenWindows Workspace Menu

Both Programs andUtilities have a menu mark beside them, so selecting either one will
bring up a menu.Properties has a window mark (“...”) after it, to indicate that selecting it
will bring up a pop-up window, the properties manager. The Properties Manager (or Work-
space Manager) is described in Section14.1, “Properties Resource Editor” on Page331.
Both Help... andDesktop Intro... give access to tutorial documents using thehelpviewer
application described in Chapter 7,The OpenWindows DeskSet Clients. The former is an

† The final act of desperation before rebooting a machine is, if you have a shell window but can’t get the input
focus into it using any of these techniques, use copy-and-paste to copy “o”, “l’, “w”, “m”, and end-of-line into a
shell window!

CHAPTER 6: THE OPEN LOOK WINDOW MANAGER 141

6
overall table-of-contents handbook, as shown in Figure2-6, and the latter is the Introduc-
tory tutorial that appears in an uncustomized OpenWindows session. And selectingExit...
will bring up a confirming dialog; if you click onExit in the dialog, you will terminate your
X11/OPEN LOOK session.

Figure 6-2. Top Level Help Handbook

142 X USER’S GUIDE: OPEN LOOK EDITION

6
Figure 6-3 is thePrograms menu:

Figure 6-3. Workspace Menu, Programs submenu, OpenWindows Version

Selecting any one of these will start up the appropriate application. For example, selecting
Command Tool will start up acmdtool terminal emulator, described in Chapter 5,The cmd-
tool/shelltool Terminal Emulator. The individual programs are discussed throughout the
remaining chapters of this book. Most of them are described in Chapter 7,The OpenWin-
dows DeskSet Clients. TheUtilities menu is presented in Figure 6-4.

TheRefresh item will cause each window, including the root or Workspace window, to be
re-painted or re-displayed. This is normally used when system output has inadvertently
appeared over top of windows, for example, when console output is directed to the screen
instead of to a terminal emulator such asxterm -C or contool...

TheReset Input item (which only appears on old versions of OpenWindows under SPARC,
not on Intel x86 systems) has to do with the NeWS system.

TheFunction Keys brings up the Function Key map, as shown in Figure 6-5. See thevkbd
man page for details..

Window Controls is described below.

Figure 6-4. Workspace Menu, Utilities submenu, OpenWindows Version

CHAPTER 6: THE OPEN LOOK WINDOW MANAGER 143

6

The Sun version ofSave Workspace will save the names and locations of your applications
in a file ($HOME/.openwin-init) so that anytime you later start OpenWindows you will
have your own customized set of clients. However, it may miss certain MIT X applications
or those developed with non-OPEN LOOK toolkits. It may be preferable to customize
your.xinitrc file instead, which is portable to more versions of X. See Section3.4, “Cus-
tomizing the X Environment: Specifying Resources” on Page 69.

Lock Screen starts a screenlock program; it is used when you will be away from your work-
station or X terminal for a short period; you don’t want to log out of X, but you don’t want
other people to use your account while you’re away. While the screen is locked, nobody
can type into your windows. To resume normal activities, you must hit RETURN and then
correctly type your login password.

The last item,Console, starts up a terminal emulator(Cmdtool) with console output
directed to it. This is useful to prevent further need for theRefresh item described above.

✗ A word of warning: theConsole entry (as well ascontoolor xterm -C) should only be used
on (run from) a workstation, not on a file server. Older versions of UNIX would allow any
user to take over the system console output function, and your console window would then
get all the operator-specific messages such as full filesystems, login problems, etc.

The Window Controls menu is shown in Figure 6-6.

Figure 6-6. Workspace Menu, Window Controls Submenu

TheWindow Controls allow you to operate on one window or on a group of windows that
you have selected. You can select a group of windows in two ways:

■ Sweep out a rectangle on the Workspace that totally encloses the windows or icons you
want

Figure 6-5. OpenWindows Function Key Popup

144 X USER’S GUIDE: OPEN LOOK EDITION

6
■ Click SELECT on the titlebar, frame, or icon of the first, andADJUST on the titlebars,

frames or icons of the rest

Once you’ve done this, you canOpen/Close them as a group, which will open any that are
closed, and close any that are open. You can use Full/Restore Size, which will make any
that are normal size occupy the full height of the display, and any that are full height return
to their normal height and position. You can move the whole group to theBack. And if you
want to clean up your screen quickly, you canQuit a whole group of windows. Note that
the group association is temporary; it is broken as soon as you useSELECT for any other
purpose on the same display.

This is the default set of menu items. On Sun’s OpenWindows, you can change the Work-
space menu or even completely replace it; on AT&T’sOPEN LOOK you can add items to
thePrograms submenu. This is described in detail in Chapter 13,Customizing olwm.

6.4 The Window Menu: Moving, reshaping, and
iconifying Windows

As with most window systems, you can use the titlebar to perform common window oper-
ations, such as moving, resizing, and closing the window. Unlike some other X11 window
managers, however,OPEN LOOK lets you use the entire frame around the window to do
these operations, so you don’t have to have the titlebar visible. In the two-dimensional
monochromeOPEN LOOK, the frame is very thin on the sides and bottom, but you can find
it with a bit of practice. If you watch the screen cursor carefully, it “blinks” briefly as you
move the pointer onto the frame around a window. You can set it to a larger thickness using
X Resources, shown in the section“Customizing the X Environment: Specifying
Resources.”

In colorOPEN LOOK, the frame is normally painted in a color that contrasts with the back-
ground and with other windows, so it’s easier to see.

What can you do in the titlebar or frame? Use theMENU button to get theWindow menu.
The normalOPEN LOOK Window ManagerWindow menu has the items shown below:

Table 6-1

Choice Function Shortcut

Close Selecting this choice will cause the window to be
‘closed’ or ‘iconified’, that is, replaced by a tiny icon
window that represents the window.

Click SELECT on
triangle at left of
titlebar.

(Clicking MENU on the icon will get a Window
menu with the word ‘Close’ replaced by ‘Open’,
which lets you open the window).

Double-click
SELECT on icon

CHAPTER 6: THE OPEN LOOK WINDOW MANAGER 145

6

✗ If you’ve previously used Motif or Microsoft Windows, note that “Close” here meansico-
nify, and does not terminate the program, while “Quit” means terminate. Motif and MS-
Windows use the term “minimize” foriconify, and use “Close” to mean terminate.

There are several common operations that donot appear in theWindow menu. For exam-
ple, there is noFront item, because you can move any window to the top (front) of the
window stack by clickingSELECT in its titlebar or frame. Since an icon is a (small) win-
dow, you can move an iconified window to the top just by clickingSELECT in it once
(remember that clickingSELECT twice will cause the window to be opened). As well, the
Sun keyboards have aFront (L5) key which has the same effect.

While there is a mouselessMove item on theWindow menu, most users prefer to move
windows around by pressingand holding the SELECT button on the titlebar or frame.
When you do this, an outline of the window will follow the pointer to show the new posi-
tion of the window. When you release theSELECT button, the window is actually moved.
Similarly, you move an icon by clicking and holdingSELECT on the icon. To use the
mouselessmove, click SELECT on theMove item, then use the arrow keys on the keyboard
to move the window around. To move more quickly, hold down theSHIFT key while press-
ing the arrow key.

Full Size
Normal Size

This will make the window assume its maximum
size, which usually means the full height of the
screen. If the window has already been set to “Full
Size”, this selection will read “Normal size,” and
selecting it will return the window to its original size.

Double-click
SELECT on
titlebar

Move Sets up for mouseless (or mouseful) move operation. Click and drag
SELECT on titlebar

Resize Sets up for mouseless (or mouseful)resize operation. Click and drag
SELECT on any
resize corner.

Properties This is not used at present. It will someday allow you
to access the application’s Property sheet, if it has
one, from the Window menu.

L3 key

Back Move this window to the back (bottom) of the stack
of windows.

L5 key

Refresh Re-display the window, in case some bits of it got
clobbered by accident.

Quit Causes the window and the program or application
controlling it to be terminated.

Shell window: ^D
or exit .

Table 6-1

Choice Function Shortcut

146 X USER’S GUIDE: OPEN LOOK EDITION

6
Similarly, there is a mouselessResize item on theWindow menu, but most users seem to
prefer using the pointer. To change the size or shape of a window, move the pointer so that
it is over one of the four “resize” corners. Notice that the cursor changes from an arrow to
a circle, meaning that you can move in any direction at all. Again, a “rubber band” or out-
line will show the new size as you move, and when you release, the window will actually
change size. To use the mouseless mode, clickSELECT on theResize item, then use the
arrow keys to adjust the size of the window. Holding theSHIFT key will cause faster resiz-
ing. Most programs nowadays will react correctly to being resized. What about those that
don’t? For some versions of thevi editor, you should not resize the window whilevi is run-
ning; if you do this, you must quitvi and restart it. For older systems, there is a program
calledresize that sets up the information on the resized window. It is described in the ref-
erence page in Part Three of this guide.

As mentioned under the description of “Window Controls” above, you can perform many
of these operations on groups of windows. Say you wanted to open several iconified win-
dows at the same moment. ClickSELECT on the first one, then click on the other(s). Note
that each one has its border highlighted to show that it is part of the selection. When you’ve
SELECTed the last one, pressMENU, and release on OPEN. With a mighty flash, all the
windows you’ve selected will open at once. Another method of grouping is to click and
hold SELECT on the background (root window), and dragSELECT until the rubber band
box completely encloses all the windows you want to group. Now moving any one of them
will cause them all to move. In either case, the association between these windows lasts
only until you use theSELECT button to select any other items on the screen.

OpenWindows offers the following shortcuts, using extra keys that appear on the Sun
Type-3 and Type-4 keyboards:

Alt-T Pressing the T key while holding the Alt key toggles the input focus between the
last two windows that were selected.

L5 Pressing the L5 key when the pointer is in a window moves that window to the top
(front). If the window is already at the top, L5 moves it to the bottom (back).

L7 Pressing the L7 key when the pointer is in a window iconifies the window;
pressing it when the pointer is in an icon restores (opens) an icon to its window.

6.5 The Virtual Desktop (Virtual Edges)
TheOPEN LOOK specification allows a window manager to provide “virtual edges” to the
workspace (or root window). This allows the workspace to appear to be larger than the
physical screen. However, neither supported version ofolwm provides this at present. It is
left to a contributed program calledolvwm, derived from the Sunolwm source code, to pro-
vide a facility that, while not conforming to theOPEN LOOK specification for “Virtual
Edges”, provides a more useful solution to the problem of limited screen “real estate”.
olvwm is especially useful on small, low-resolution screens (800x600, 1024x768,...) in
which you can’t usefully show much more than one full-sized terminal emulator window
at a time. But it is also worthwhile on normal- and high-resolution screens (1152x900 and
up). In fact, if your office desk looks anything like mine on a typical day, olvwm can make

CHAPTER 6: THE OPEN LOOK WINDOW MANAGER 147

6
your workstation screenreally look like your desk, bringing the paperless office one step
closer to reality.

The following description of usingolvwm’s virtual desktop facility is adapted from the
manual page by Scott Oaks, who added the virtual desktop facility toolwm to produce
olvwm. The full reference page is reprinted in Section Three of this guide. You can obtain
olvwm by anonymousftp, as described in thePreface.

Olvwm starts by displaying a virtual desktop manager (VDM) window along with any
other tools normally started in your.xinitrc file. The virtual desktop manager is a reduced
display of all windows active on the desktop at any time. The area of the desktop which is
visible (that is, which appears on your screen) is outlined in the virtual desktop manager.
For example, Figure6-7 shows a normal VDM that has room for six screen-sized seg-
ments. The one in the upper left has a large terminal emulator labelled “darian”. The one
below it has a single window called “Snapshot” (see Chapter 9,Graphics Clients). The top-
middle screen has twoMailtool windows (see Chapter 7,The OpenWindows DeskSet Cli-
ents). The window under that has one largeXfig window (a contributed graphics program).

But what are those tiny boxes at the top? They are icons, clocks, and other gadgets.
Figure 6-8, continuing the example, shows the screen in the upper left corner:

6.5.1 Moving windows with OLVWM
You move windows on the screen just as you normally would inolwm. You can also drag
windows from the screen into the virtual desktop manager or from the virtual desktop man-
ager to the screen, or just within the virtual desktop manager. Note that if you select on a
window’s frame which is overlapping the virtual desktop manager, you will end up drag-
ging the window into the virtual desktop manager, and it will suddenly shrink to the scale
of windows in the VDM. You can disable this with an X resource (AllowMoveIn-
toDesktop , see Chapter 12,Setting Resources) if you are bothered by this behavior.

If you select a window inside the virtual desktop manager (but not necessarily in the cur-
rent segment), you can move the window. This is just like moving a window around on the
workspace, except that it all happens in much-reduced scale.

If, instead, you double click on any area inside the virtual desktop, then that segment
becomes the current segment.

Figure 6-7. olvwm’s virtual desktop manager

148 X USER’S GUIDE: OPEN LOOK EDITION

6

6.5.2 OLVWM Sticky Windows
The Virtual Desktop Manager window never moves on your screen when you change
views. That’s because the desktop manager window is permanently “sticky.” “Sticky” win-
dows never move position on the screen when you change your view into the desktop. To
set a particular window as sticky, simply selectStick in its frame menu. You may similarly
Unstick a sticky window via its menu.

6.5.3 Advantages of OLVWM
The most obvious advantage is that you have more space to work on; windows that you
aren’t using can be moved off the screen without iconifying them.

Another advantage is that it allows the Workspace Menu to be automatically pinned up;
this feature is not in the standardolwm yet.

Figure 6-8. The top left screen of OLVWM’s virtual desktop

CHAPTER 6: THE OPEN LOOK WINDOW MANAGER 149

6
6.5.4 Limitations of OLVWM
There are two problems witholvwm that affect NeWS programs (such as FrameMaker 3.1
OPEN LOOK) and SunView programs running under OpenWindows.:

✗ NeWS programs built with The NeWS Toolkit use the NeWS Window Management func-
tions, which look almost exactly likeolwm; underolvwm. SunView programs use the Sun-
View mouse conventions, described in Appendix L,Running SunView Applications on
OpenWindows. These programs always appear on the current segment of the screen, and
cannot be moved to other segments; theirWindow Menu does not have theStick orUnstick
options. That is, they are in effect sticky; they always appear even if you try to move away
from them.

✗ Some NeWS programssometimes behave as though click-to-type focus policy were in
effect, even though pointer-focus policy is in effect.

Users of such programs should consider usingolwm instead.

6.5.5 The Future
It remains to be seen whetherolvwm will be “adopted” by Sun, or will remain in the con-
tributed software category. At any rate, the facility if offers is sufficiently useful that Sun
ought to provide it somehow.

6.6 The Workspace Manager (Properties Manager)
TheOPEN LOOK specification calls for a Workspace Properties window to allow the user
to change “global preferences”. This is implemented by a separate program from the Win-
dow Manager, called the Properties Manager. It is mentioned here because it often seems
to be part of theOPEN LOOK Window Manager. Indeed, it cooperates witholwm in that
some of the property changes it makes are acted upon immediately by the Window Man-
ager. However, it is a separate client program started by the Window Manager.
Accordingly, the Workspace Properties Window is described more fully in Chapter 14,
Customization Clients.

Note that this is not the same as the Properties item on theWindow menu of individual win-
dows; that item is disabled if it is not yet implemented, as in OpenWindows.

We have now discussed the most important features of theOPEN LOOK specification and
theOPEN LOOK Window Manager. We now turn our attention to a detailed discussion of
the important clients, starting with the terminal emulators. Thecmdtool/shelltool terminal
emulator clients are discussed in Chapter 5,The cmdtool/shelltool Terminal Emulator,
while the pre-OPEN LOOK terminal programxterm is discussed in Appendix A,The
xterm/olterm Terminal Emulator. Subsequent chapters discuss other important clients.

150 X USER’S GUIDE: OPEN LOOK EDITION

6

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 151

7

Chapter 7THE OPENWINDOWS DESKSET CLIENTS

CHAPTER 7

The OpenWindows
DeskSet Clients

One advantage of theOPEN LOOK GUI is that it specifies several basic clients such as the
File Manager described in Chapter 4,Using the OPEN LOOK File Manager. In addition,
Sun’s OpenWindows provides quite a collection of useful clients above and beyond what
the OPEN LOOK specification requires. The name for this collection is “TheDeskSet”.
Table 7-1 lists theDeskSet clients plus some additional clients that are part of OpenWin-
dows even though not in theDeskSet.

Table 7-1. DeskSet and other Sun Clients

Program Part of? Function Described in:

answerbook unbundled Hypertext document reader page152.

audiotool DeskSet Sound play/edit/record page152.

binder DeskSet Describe file types, icons, etc. page155.

calculator DeskSet Desk Calculator page155.

Catalyst
CDware

Catalyst
distribution

Lots of demonstration
programs, Catalyst catalog,
etc.

page156

clock DeskSet Clock accessory page157.

cm DeskSet Fancy calendar program page158.

cmdtool OpenWindows Terminal emulator Chapter 5,The cmdtool/shell-
tool Terminal Emulator

dbxtool SPARCworks
(was DeskSet)

Interface todbx page166; also SPARC-
Works documentation

152 X USER’S GUIDE: OPEN LOOK EDITION

7

7.1 answerbook
Sun’sAnswerbook is a complete collection of the operating system documentation, plus
several books including a few from this series, on a single CD-ROM with searching soft-
ware. You can locate material by keywords, or by book name. You can set your own
“bookmarks” to find material that you have located. And you can print any portion of the
documentation on a PostScript printer.

As theAnswerbook is an unbundled product, we don’t provide a full description of it in this
book. However, we commend Sun for making the documentation available on CD-ROM,
and recommend that at the very least each workgroup acquire a copy of theAnswerbook
corresponding to the version of SunOS that they are using.

7.2 audiotool
The Sun SPARCstation has a microphone connector and an audio-quality loudspeaker.
One can infer from this that its designers foresaw the need for multi-media computing in
the late 1980’s.audiotool is a program that lets you record your voice into a sound file,
play sound files, and edit sound files. It is used automatically if you try to send or receive

filemgr DeskSet File Manager (“dekstop
manager”).

Chapter 4,Using the OPEN
LOOK File Manager

helpviewer DeskSet Documentation viewer page166.

iconedit DeskSet Icon editor Chapter 9,Graphics Clients.

mailtool DeskSet Multimedia mail system page166.

pageview OpenWindows PostScript previewer Chapter 9,Graphics Clients.

perfmeter DeskSet Performance load monitor page175.

printtool DeskSet Print system interface page177.

searchit unbundled Full text searching

showme unbundled Interactive conference page180.

snapshot DeskSet Screen shot grabber, raster
file viewer

Chapter 9,Graphics Clients.

tapetool DeskSet Interface totar page180.

textedit DeskSet Text editor Chapter 5,The cmdtool/shell-
tool Terminal Emulator.

Table 7-1. DeskSet and other Sun Clients

Program Part of? Function Described in:

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 153

7
a sound file while usingmailtool, described in Section7.13, “mailtool – the OpenWindows
Mail Interface” on Page 166.

When you first startaudiotool, you get a window like that in Figure7-1, and (assuming you
have your microphone connected properly as per your model of SPARCstation’s documen-
tation), you are immediately ready to begin recording and playing sounds. Without a
microphone, you can of course play existing sound files, but not record new ones.

You can load an existing sound file from theFile menu’sLoad item. This load item has
a directory browser in it. A useful directory is/usr/demo/SOUND/sounds, if you installed
your SunOS with the demonstration files. Just type this directory’s name in the Name field
and pressRETURN, and you’ll be able to view the directory, as shown in Figure 7-2

We can’t really describe the sounds here, but they are fun to listen to. When you select a
file and click theLoad button, or just double-clickSELECT on a filename, it will be loaded
any played.

Figure 7-1. AudioTool initial screen

Figure 7-2. AudioTool File Browser: Initial state, and in demo directory

154 X USER’S GUIDE: OPEN LOOK EDITION

7
The drag-and-drop target in the upper right corner allows you to drop in a sound file from
the File Manager or any other source; it will be loaded and played.

You can also control playing from the main window shown in Figure7-1, where the four
large glyph buttons (labelled “Rev”, “Play”, “Fwd” and “Rec”) are intended to model the
control buttons on a standard audio tape recorder. ClickingSELECT

■ on thePlay button begins playing, and advances the position indicator as it plays. The
Play button is replaced by aStop button.

■ clicking on the Stop button stops playing or recording, and thePlay button reappears.

■ clicking onRew (rewind) takes you to the beginning of the current sound image,

■ clicking onFwd (fast forward) moves you to the end.

■ clicking Rec begins recording, and theRec button becomes aStop button while
recording.

While it is playing, the sound level meter at the right side of the window displays the rela-
tive sound level, like a “Vu meter” on an audio tape deck. The length of the current sound
image is shown in the right footer of the main window, and convenient time markers are
shown below the sound graph in the main window. You can also control the output volume
and the output destination (internal speaker or the external jack) from theVolume menu’s
popup windows, as shown in Figure 7-3.

TheEdit menu on the main window lets you access, from a menu, such functions asCut
andPaste , used to rearrange bits and snippets of sound. You can play at this forever if
you’re not careful! This menu also gets you at theProperties sheet, which controls
such global functions as whether sounds should be played automatically when loaded, and
whether “silence detection” (removal of dead space from sounds) should be performed.
You can also change the directory into which temporary files are saved, in case your/tmp
filesystem fills up while you are editing a complicated sound sequence.

If you have sound files in other formats, you may wish to consider the free-software pro-
gramsoxa library of files for converting sound files from one format to another. Convert
the files to Sun.au format, then load them with AudioTool. To send sound files to another
user, seemailtool, described on page 166.

Figure 7-3. AudioTool Volume Pop-up

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 155

77.3 binder
The binder program is used to control the Classing Engine routines that classify files to
decide what icon to display for them, how to print them, and other information. The Class-
ing Engine is used by most of the DeskSet tools, including theOPEN LOOK Window
Manager. However its greatest user is the File Manager, so it is documented in
Section 4.4.4.1, “Binder: Customizing the File Manager in OpenWindows” on Page 100.

7.4 calctool – the OpenWindows Calculator
Calctool is a scientific calculator. Unlikexcalc described in Chapter 8,calctool does not
emulate a specific brand or model of calculator, but tries to provide the best features of sev-
eral types in one convenient program. It has fixed, scientific and engineering display
modes, basic, financial, and scientific modes of operation, ten register memories, ten user-
definable functions, and zillions of other features. Here is a look at its keyboard:

Most keys have keyboard equivalents. Let’s face it, moving the pointer around to press
keys on a window-based calculator may be fun for a minute or two, but just about anybody
can type faster than they can point-and-click, particularly for entering numbers. For exam-
ple, to divide a 95-acre farm among three children, just type

95 / 3 <RETURN>

with the input focus onCalctool, and you will see in the display window that each will
inherit 31.67 acres.

When you are typing, you can use normalOPEN LOOK cut and paste operations to put data
into the window or copy it out. However, the text field does not show that it has been
selected; this is probably a bug that will be fixed by the time you read this. For example, to
copy the calculation from the text of the previous paragraph intocalctool, I just triple-
clicked on the “95 / 3” line, hit the COPY key (L6), moved the pointer focus to the Calcu-
lator window, and hit PASTE (L8). I then pressed <RETURN> and got the answer.OPEN

Figure 7-4. Calctool in action.

156 X USER’S GUIDE: OPEN LOOK EDITION

7
LOOK was used to copy the answer back into that paragraph, too: I selected the “31.67” in
the calctool window by clickingSELECT and dragging the pointer across all four digits
(ignoring the fact that text didn’t get highlighted as I dragged), hit COPY, moved back into
thecmdtool window in which we were editing this chapter, and hit PASTE.

In keeping withOPEN LOOK’s context-sensitive help facility, each key has a short help
menu, as shown in Figure7-5, that shows the name, keyboard equivalent, and function of
the key.

Each button with a menu mark (such asBase, Acc andCon in Figure 7-4) features a menu.
You can pull down the menu by pressing and holding theMENU pointer button, or pop it
up by pressing and quickly releasingMENU. Or you can apply the default action from the
menu just by clickingSELECT on the menu button. There are literally dozens of functions;
too many to detail here. They are all explained in the reference manual page in Section
Three, and summarized in the on-line help for each key.

It also has Financial and Scientific modes, and lets you define your own functions.

7.5 Catalyst CDware
One of the best ways to find out about third-party software is to “try before you buy.” Sun-
Soft produces a CD-ROM filled with demonstration copies-many of`them unlockable-of a
large number of commercial software products`covering publishing software, database,
imaging, games, software`development, and many other areas. All products are distributed

Figure 7-5. Calctool help on “Base”.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 157

7
in a standardizedOPEN LOOK browser format as shown in Figure 7-6, which shows a few
of the products listed in Volume Four of CDware.

The CDware CD is issued once or twice a year and is distributed free of charge to Sun own-
ers and users. To get a copy, contact your Sun representative, or SunSoft Inc., Attn:
Catalyst CDware, 2550 Garcia Avenue, Mountain View, CA 94043, U.S.A..

7.6 clock
The clock program is a simple rectangular clock. It has a Properties dialog that lets you
select analog or digital display, analog or roman display in the Icon window, 12 or 24 hour
mode, and include the seconds and the date if you wish. The MIT clock programs are
described in Section 8.1.1, “Clock Programs: xclock and oclock.” The ultimate discussion
of X clocks is the bookX User Tools, where an entire chapter is given over to the many
varieties of clock that you can run under X.

Figure 7-6. Cdware browser and installation program

158 X USER’S GUIDE: OPEN LOOK EDITION

7 7.7 cm – the OpenWindows Calendar Manager
One of the most common examples of a useful window system program is that of a calen-
dar tool. Most calendar utilities (even the two-decades-old UNIXcalendar program) let
you specify your appointments, and be notified about them in advance. Some of the screen-
based ones let you display a week, month, or year, and print calendars in various formats.
But most of them ignore the fact that people who work together often need to meet
together. Very few such tools let you schedule meetings interactively, by looking at various
users’ calendar files. Sun’scm, or Calendar Manager, is one tool that does so. When ini-
tially started, it comes up iconified with the current day and month shown, as in Figure7-7:

Figure 7-7. Calendar Manager initial icon.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 159

7
To open the icon, just double clickSELECT, or press L7, with the pointer on the icon. It
opens up to a large month-at-a-glance format:

As you can see, this has a menu bar at the top and displays the current month in the main
panel. We’ll discuss the menus presently, but first let’s look at the most common
operations.

Figure 7-8. Calendar Manager main window.

160 X USER’S GUIDE: OPEN LOOK EDITION

7
Let’s say we want to schedule an appointment for lunch on the 27th of this month. We need
only move the pointer into the calendar’s box for the 27th, and double-clickSELECT, to
start up the Appointment Editor window:

We can type a note about the appointment into theWhat field, and the times in the Start and
End fields. As you’d expect from anOPEN LOOK application, there is a context-sensitive
Help facility for all controls in the window, accessed by pushing the HELP (F1) key. For
example, if you need information about theStart andEnd time fields, you might press
HELP on the Start field, and you will see a display similar to that in Figure 7-10:

Figure 7-9. Calendar Manager Appointment Editor.

Figure 7-10. Help on the Appointment Editor.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 161

7
Once you’ve entered the note about the appointment, the times, you can activate any of the
four warning types:

Once you’ve set up the appointment the way you want, clickSELECT on theInsert button.
Notice that the appointment now appears both in the scrolling list on the Appointment Edi-
tor windowand in the full-month view:

Table 7-2. Reminder Methods for Calendar Manager Appointments

Method Meaning

Beep Causes the X display’s bell to ring the specified
number of minutes in advance of your appointment.
Adjust the time to give yourself enough time to get
there!

Flash Causes thecm window or icon to start flashing the
specified number of minutes before your
appointment.

Open Causes thecm icon to open into a window the speci-
fied number of minutes in advance.

Mail Causescm to send electronic mail the given number
of hours in advance. You can direct the mail to
another user or account if someone else normally
manages your time, or if you are using someone
else’s account.

Figure 7-11. Appointment now appears in Month View.

162 X USER’S GUIDE: OPEN LOOK EDITION

7
You can also use the scrolling list to select an appointment for alteration or deletion (click
SELECT on its entry in the list and then on theDelete or Change button.). You can recall
the default values (usually to start installing a new appointment, since the defaultWhat
item is “nothing”) just by clicking on the DEFAULTS button in the editor.

Back on the main window, there are two sets of buttons in the menu bar. The left side has
the traditionalView, Edit and other buttons; the right side hasPrev, Today, andNext but-
tons, TheView menu lets you control the view in the main panel; you can see just one day,
or the week, or a whole month (the default), or even a whole year.Edit will by default get
you into the Appointments Editor described above; it can also be used to start the Proper-
ties sheet that lets you change:.

Most of these are straightforward. The last, Access List and Permissions, deserves an
example. By default, everyone (“the world”) can inspect your calendar file:

Table 7-3. Calendar Manager Property Choices

Choice Meaning

 Editor Defaults Set the defaults for the various Reminder types
described above.

Day Bound-
aries and View

Controls the time that the day starts and ends
(adjusted with twoOPEN LOOK sliders), and the
default view (Year, Month, Week, or Day).

Browser
Calendars

Lets you specify a list of other people whose calen-
dars you want to inspect.

Access List
and
Permissions

Lets you give other people permission to browse,
insert, and delete items in your calendar.

Figure 7-12. Calendar Manager Access Control Screen.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 163

7
Suppose we want to give user “mary” on machine “gamut” the ability to schedule appoint-
ments for us. We add her name (using normal “user@host” notation) and turn on Insert and
Delete, then click on the menu mark beside the wordName to Add it. This abbreviated
menu pulls down to a list of Add, Delete or Change; the default is Add, so you can just
click on the menu mark, or hit RETURN after her name, as a keyboard shortcut for Add.

After adding all the entries we wish to add, we clickAPPLY to make them permanent.

TheBrowse item lets you browse in others’ calendars, assuming they have not turned off
the default world Browse permission. It gives you either a scrolling list of people you com-
monly browse, or lets you select them from the menu. Browsing is similar to working with
your own calendar, except that you can see several calendars at once if you invoke the
multi-browse feature

ThePrint menu item lets you print any of the standard views (day, week, month, or year),
or set the printer properties. For example, Figure7-14 is a printout of the month of January,

Figure 7-13. Giving Mary Insert and Delete Access.

164 X USER’S GUIDE: OPEN LOOK EDITION

7
1999. Normally it is printed in landscape mode to fill a full “US Letter” size page; we’ve
rotated and reduced it to fit this book:.

Figure 7-14. Calendar Manager Printout of Month View

04/03/95 02:50 PM ian@sqrex

Year view by Calendar Manager

2001
January

S M T W T F S
1 2 3 4 5 6

7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

February
S M T W T F S

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28

March
S M T W T F S

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

April
S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

May
S M T W T F S

1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

June
S M T W T F S

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

July
S M T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

August
S M T W T F S

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

September
S M T W T F S

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

October
S M T W T F S

1 2 3 4 5 6
7 8 9 10 11 12 13

14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

November
S M T W T F S

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

December
S M T W T F S

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 165

7
ThePrev, Today andNext buttons move you forward, backwards, or to today’s entry; how-
ever, the entry will be displayed in whatever view you have selected. For example, if we
have set the View to be Year, and click on Today, we get the current year. If we click on
Next enough times, we can get the view shown in Figure 7-15:†

7.7.1 Related Programs
The contributed software programxcalentool provides similar functions, It does not have
any capability to inspect other users’s calendar files. It does have a simpler file format, and
has an “include” file capability so that public lists of holidays or other key dates can be

† The program will stop at 1999; it will not display the last year of this century or any years in the next. Presum-
ably later versions will allow you to plan further into the future.

Figure 7-15. Full-Year Calendar.

166 X USER’S GUIDE: OPEN LOOK EDITION

7
included without making multiple copies of the dates files. It is not afraid to print year cal-
endars into the twenty-first century. Another contributed program isxcal.

7.8 cmdtool
The OpenWindows standard terminal emulator iscmdtool, which has been described at
length in Chapter 5,The cmdtool/shelltool Terminal Emulator.

7.9 dbxtool, debugger
The dbxtool debugging interface originated as a SunView program in early releases of
SunOS. The first X-based version was included with Release 2 of OpenWindows. With
Release 3 it was moved from theDeskSet into the unbundled compilers package known as
SparcWorks (ProWorks on the Intel version of Solaris). With Release 2.1 of Solaris, this
moving target has been renameddebugger. Since it is in any event a tool for programmers,
it is not documented in this Guide; consult the appropriate Sun documentation.

7.10 filemgr
The File Manager is a visual interface to your files and programs; this type of program is
also called a “desktop manager”. We have devoted all of Chapter 4,Using the OPEN
LOOK File Manager, to this program.

7.11 helpviewer
The helpviewer program displays a “help handbook” and allows you to view it, move
around, print pages, etc. It is started automatically when a new user starts up OpenWin-
dows the first time (see Figure2-6 on Page33), and every time thereafter until the user
removes it from their start-up files as described in Section3.5, “Customizing your Session
Start-up” on Page 72.

More detail here.

7.12 iconedit
The iconedit program is for creating and modifying the icons that represent files and run-
ning programs. It is described in Chapter 9,Graphics Clients.

7.13 mailtool – the OpenWindows Mail Interface
Mailtool is anOPEN LOOK replacement for the standard BerkeleyMail program. Berkeley
Mail (known asmailx in System V), when started up in mail-reading mode, provides you
with a menu of your mail items:

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 167

7
Mail version SMI 4.0 Tue Nov 7 10:46:02 PST 1989 Type ? for help.

"/var/spool/mail/ian": 3 messages 3 new
>N 1 rab@research.att.com Sat May 25 14:20 20/632 S-Plus Review
 N 2 To tim@ora.com Sat May 25 14:23 43/1904 comments on chapters
 N 3 root Sat May 25 14:24 16/458 Output from "at" job
Mail>

For each mail message you see its status (N for New), message number, sender’s name and
date/time, size in lines and characters, and the subject. Single-letter commands (s for save,
r for reply, etc.) let you work individual messages in your mailbox.

Mailtool tries to give you all the flexibility of the underlying Berkeley Mail program within
the framework of theOPEN LOOK user interface. When started normally, it shows up as
one of two icons, depending on whether you have any unread mail or not:

Figure 7-16. Mailtool icon when you have no mail.

Figure 7-17. Mailtool icon when new mail has arrived

168 X USER’S GUIDE: OPEN LOOK EDITION

7
When you open the icon, any mail you do have is displayed in a menu format similar to that
shown in Figure 7-18:

To read a mail message, just clickSELECT on it (the “menu” is really anOPEN LOOK
Scrolling List). Double-clicking on a message, or clicking once on the message then on the
View button, causes the message view window to appear, with the selected message in an
(editable) text window:

Figure 7-18. Mailtool main window with three messages to be read.

Figure 7-19. View a message.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 169

7
This window can be scrolled in the usual way, and the text can be edited as described in
Chapter 5,The cmdtool/shelltool Terminal Emulator.

7.13.1 Sending a message
Should you decide that a reply to this message is in order, or if you wish to compose a new
message, pull down theCompose menu. The main items here areNew, which starts a new
message, andReply which replies to the sender of the message that you are viewing or have
selected. If no message is selected, you can only compose a New message. TheCompose
window looks like Figure 7-20:

There are some controls at the top; for now, just type the name of the recipient into the text
field labeledTo:. The main part of this window is a standardOPEN LOOK text screen, as
described in Chapter 5,The cmdtool/shelltool Terminal Emulator, into which you can type
the body of your message. When you’re happy with the message, just clickSELECT on the
Deliver button at the top, and it will be sent.

7.13.2 More Menus
The File menu lets youOpen new mail,Move or Copy selected messages into a holding
file, Print the selected message(s),Save changes that you’ve made, and beDone with (e.g.,
iconify) theMailtool program.

The View -> Messages menu item lets you see either the full header or an abbreviated
header, as controlled by theIgnore line in the.mailrc file in your home directory. This is
useful to suppress the display of uninteresting “message headers” inserted by most mail
transport agents such assendmail. For example, if we have the line

Figure 7-20. Compose Window

170 X USER’S GUIDE: OPEN LOOK EDITION

7
ignore Received Message-ID Status

in my .mailrc file, then the abbreviated message view (which is the default) might look like
this:

The Full message display of the same message would look like this:

Figure 7-21. Abbreviated Message View.

Figure 7-22. Full Message View.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 171

7
TheView menu also lets you select theNext or Previous message. And it also has aSort
item for sorting the messages; this item seems to be permanently disabled in this release.

TheEdit menu you lets you cut, copy, delete or undelete messages. It also gets you access
to Find, which tries to locate a person by using Sun’s NIS (formerly YP) password service
(you can’t use this facility if the machine you’re runningmailtool on isn’t served by NIS).
And it gets you themailtool Property sheet

TheCompose menu on the main window allows you to create aNew orReply message. As
previously noted, this pops up theCompose window, used for entering mail messages. You
can alsoForward a message, which lets you use an existing message as the basis of a new
message. And finally, this menu gets you into a mode where you can control thevacation
mail program. This will send people mail stating that you are on vacation (or whatever
message you like) and that you will read your mail when you get back.

7.13.3 Attachments
TheMailtool program allows you to include or “attach” files, audio clips, and other items.
When you receive a message with attachment(s), you will see them listed in a file-man-
ager-like window at the bottom of theView Message window. When composing a
message, you can select the menu itemInclude->Show Attachments to create a similar win-
dow at the bottom of theCompose window. This window has its ownFile menu that lets
you Add a file, and anEdit menu that lets you rename or remove attachments. But since
this is a file-manager type window, you can more easily add objects just by drag-and-drop
from any filemanager window.This is the best way to send a copy of a file to the recipient
of your message

.

Figure 7-23. Compose Window with one Attachment

172 X USER’S GUIDE: OPEN LOOK EDITION

7
The Compose window also has anAttach menu, which lets you attach a voice message
usingAudioToolor an Appointment fromCalendar Manager.

7.13.4 Menus in Compose Window
TheCompose window is used to compose new mail and reply to incoming messages, and
has several menus at the top.Include lets you include the currently selected message (it
does not default to the message you are replying to; you must select a message). By default,
this button includes the messagebracketed by the conventional Internet-style messages:

----- Begin Included Message -----
----- End Included Message -----

Alternately, you can have the messageIndented by one tab position.

The next menu button is toDeliver the message. This normally terminates theCompose
window; you can also iconify it, leave it up, or leave it up and clear the message, by choos-
ing options from this menu.

Using the third button, you can addHeader fields such as CC (carbon copy), BCC (blind
carbon copy, i.e., the recipients don’t see the BCC recipient’s name), and other fields
(which you specify usingthe Properties window as described in Section7.13.6, “Custom-
izing Mailtool” on Page 173).

The next button,Name Finder, starts up the same message finder described above under
Edit -> Find. It relies on NIS to scan your NIS domain’s password file looking for a name
that matches the name you specified. This feature is not included in later versions of the
software.

The final button,Clear, is the measure of last despair: it clears the entire compose message
window and lets you start all over again. If you have text in the window, of course, you will
be prompted if it is alright to discard the text.

TheCompose window is a baseframe, so you can keep working on it while you’ve iconi-
fied the rest ofMailtool.

7.13.5 Saving and Printing Messages
Mailtool provides a facility for saving all your mail messages in a subdirectory. You can
specify this in the Mail Filing category of the Properties window (See “Customizing Mail-
tool” below).

The main menu scrolling list allows you to use the OpenWindows shortcut forCUT, L10,
to delete the current message, even while there is a View window active for it. Just move
the pointer into the main window and hit theCUT key. The message will be deleted, the
next message will be selected, and the new message will appear in the View window if
there is one active.

Since the main menu is a scrolling list, you can select any item in it for drag-and-drop oper-
ations. Just clickSELECT to select the item, release the pointer button, then clickSELECT
again without moving the pointer, and holdSELECT down while dragging. If you drag the
message (an envelope icon follows the pointer) onto aprinttool icon (described in
Section7.16, “printtool – the OpenWindows Printer Interface”later in this chapter), the

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 173

7
file will be sent to the printer. (In older versions you then had to selectEdit -> Undelete to
keep the message in your mailbox, since the drag and drop operation removed it from your
mailbox). You can also use useFile -> Print from the main window to print the message
that is currently displayed.

As another possibility, you can save the message in a file just by dragging it into a File
Manager (see Chapter 4,Using the OPEN LOOK File Manager) window and dropping it
into a directory. Since mail messages don’t have names, the saved message will have a
name made up for it bymailtool. Depending on what version of the software you have, the
saved message will initially have a filename of eitherMail plus a large pseudorandom
number, or ofsun-deskset-message. You can rename it using the file manager (just click on
the name, rather than the icon, type your new name, and press Enter). Another way to copy
a message into a file is to useFile -> Edit -> Save New File in the window menu of the
mailtool View window.

7.13.6 Customizing Mailtool
There are two main ways of customizing mailtool, the~/.mailrc file and theEdit->Proper-
ties menu item, which pops up a Properties window.. For the most part you should avoid
editing your ~/.mailrc file and use the Properties window. The categories of customization
are shown in Table 7-4:

One customization that can only be performed by editing the~/.mailrc file is the display
format used in the Header Window. There can be any of a number ofvariables in this file.
One variable isshowto, which controls whether address of the “To” person or recipient will
be displayed. Another variable isheader_format, which specifies the format of the header.
This variable is rather like the C language printf format string, in that a percent sign fol-

Table 7-4. Mailtool Properties Customization

Category Meanings

Header Window Message Listing Window: Retrieval frequency, notification,
geometry, delivery, custom buttons.

Message Window Lines to display, print command, hidden fields

Compose Window When composing text: marker for included text, file to log out-
gong messages to, defaults, custom fields forHeader menu

Message Filing Mail folders to appear inLoad, Copy andMove menus

Template Neat feature - lets you compose or reply with form letters!

Alias Updates user and group aliases (also used by)

Expert Miscellaneous Options

174 X USER’S GUIDE: OPEN LOOK EDITION

7
lowed by (usually) one character specifies the formatting of one item. The formats which
can be used are shown in Table 7-5:

For example, the default format is something like

header_format=”%3m %-18.40f %16.16d %4l/%-5c %-.100s”

where a number means the width of a field, a period means “no more than”, and a negative
sign means to left-justify the field.

7.13.7 Other Mail Programs
The standard MIT X11 clientxbiff will show you whether you have mail or not, using an
icon similar to that an old version of mailtool. And the contributed programfaces will give
you a fancier display of incoming mail, showing a pictorial representation of each sender.

Table 7-5. Mailtool Format Codes

Format Code Result

%c number of bytes in the message

%C number of bytes in the message contents (excluding header)

%f entire From field

%l number of lines in the message

%L number of lines in the message contents

%i Message-ID field

%m Message Number

%s Subject: field of message

%t To: field (recipient)

%r Recipient (sender, or to line if you are the sender)

%d date and time of the message

%n sender’s real name (if any, otherwise same as %r)

%?header? Contents ofheader field, if present

%% Print a real % character

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 175

7
The three mail messages shown in the examples above might appear like this withFaces:
9z

But neither of these has the ability to display your mail; they just tell you that you have mail
to read.

The standard MIT X11 clientxmh provides a sophisticated mail reading interface to the
MH mail system; both MH andxmh are described in detail in the O’Reilly Nutshell book
MH & xmh: E-mail for Users & Programmers by Jerry Peek.

7.14 Pageview
Thepageview PostScript previewer is described in Chapter 9,Graphics Clients.

7.15 Perfmeter
The perfmeter program is useful for showing the “load average” and other measures of
busy-ness on one or several machines. It is simpler to use and more flexible thanxload(see
Chapter 8,Other Standard Clients). Theperfmeter client knows how to reach out across
the network to ask another machine for its load average (or any of almost a dozen statis-
tics). Its default is to show the percentage of CPU time that is used, rather than the load
average; you can get the load average just by adding-v load on the command line. Let
us say that you want to watch the load average on both the local machine (call itkansas)
and a server namedoz. Assuming that both machines are running the standard RPC dae-
monrstatd(8C), you need only type this set of commands in akansas xterm:

perfmeter -v load & perfmeter -v load oz &

The result might look like this:

Figure 7-25. OpenWindows Perfmeter running locally and on Oz

As you can see,perfmeter has the advantage (over the olderxload program) that it gives a
numerical scale to its graph, rather than the numberless graph thatxload offers. As well,
perfmeter lets you select CPU load, disk I/O, paging, ethernet traffic, and many other

Figure 7-24. Faces display of incoming mail.

176 X USER’S GUIDE: OPEN LOOK EDITION

7
things to watch just by pressing theProps key (L3) or by pulling down a menu in its win-
dow. ItsPropertiespanel lets you select two or more load factors to monitor, and lets you
change several other attributes of its operation. Figure 7-26 shows the Properties window,
which you get by selecting Properties from the application menu in theperfmeter window.

Figure 7-26. Perfmeter Properties Window

You can select any of the load indicators that you want:

See the reference manual page in Section Three of this guide for more information about
eitherxload or perfmeter.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 177

77.16 printtool – the OpenW indows Printer Interface
 Printtool provides a simplifiedOPEN LOOK-style interface to the line printer system. If
you start it, either by typing the commandprinttool or by selecting it from thePrograms
menu, you get a start-up screen similar to this one:

The main function of this tool is to send files to the printer for you. There are two simple
ways to do this. One is to have a copy of printtool sitting iconified, drag a file’s image from
thefilemgr program, and drop it onto the icon forprinttool. The other way is to have a copy
of printtool open, type the filename in theFile text field, and click on thePrint button.

Other options let you choose the printer to use, specify the number of copies, and specify
what type of data the file contains. The defaults are: the first printer found in the file
/etc/printcap, one copy, and no special “filtering.” As well, push buttons let youPrint a file
(like thelpr command), get theStatus of all jobs (like thelpq program), and cancel orStop
Printing either one job or all the jobs you have queued (likelprm).

To specify an alternate printer, you can use theOPEN LOOK abbreviated menu beside the
name of the default printer. Just clickMENU on the menu mark beside the wordPrinter: ,
and you will see a list of the available printers. Select one, and it will become the current
printer. The first one in the list is the default, so you can always return to the first one just
by clickingSELECT directly on the menu mark.

To change the number of copies, you can either click on the up arrow to add one to the cur-
rent number, or the down arrow to subtract one from the number. For more drastic changes,
say 54 copies, you naturally don’t have to click the up-arrow 54 times. The number display

Figure 7-27. Printtool main window.

178 X USER’S GUIDE: OPEN LOOK EDITION

7
is just anOPEN LOOK text field. Move the pointer to the right of the current number, click
SELECT, type Control-U to clear the field (or DEL to delete one character), and retype your
number.

The Filters listed are normally used only with special types of data files. One exception is
pr, which paginates your text file before printing it, using the standard UNIX utility of the
same name.

ThePrint button causes the named file to be sent to the printer with the currently selected
options. TheStatus button causes a listing of the current print jobs to appear in the small
scrolling window at the bottom of the page. If you want to delete one or more print jobs,
just select them from the scrolling list, and selectselected Print Job from theStop Printing
menu button. You can also cancel all your outstanding print jobs on this printer just by
selectingAll Jobs from the same button.

In short, printtool gives you control over your printers. For more details, consult the refer-
ence manual page in Part Three of this guide, as well as thelpr manual page in your normal
UNIX documentation.

7.17 SearchIt - full text searching
Searchit is an unbundled product from SunSoft that lets you build an index of a collection
of files, then rapidly search the index to locate files. We used it in building theOPEN LOOK

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 179

7
version of this book. Figure7-28 is an example of searching for all documents containing
the phrase “escape sequence:”

This search found three documents; the first, shown with a black icon, was judged most
likely to meet our search criteria, the second, shaded gray, less likely, and the third, shown
with a white icon, least likely. Double=clicking on any of the files will bring up aviewer
window, with command and menu buttons to jump to the next occurrence of a search word,
the next document, etc., All in all it’s a good product.

Figure 7-28. Searchit in action

180 X USER’S GUIDE: OPEN LOOK EDITION

7 7.18 ShowMe - graphical conferencing
ShowMe is an unbundled converencing tool from SunSoft. It is very easy to use, and will
communicate with another or several other copies of itself, one per workstation display.
Figure 7-29 is a (hypothetical) example of usingShowMe, .

The figure definitely looks better in color, so do look at the Color Plates section. Each par-
ticipant in the conference is given a different color, and anything they add—text, freehand
drawing, and outline or filled rectangles or ovals—appears in their color. We like this pro-
gram, as it is a good example of making computers useful with an intuitive interface.

Figure 7-29 is adapted from our review of this program in the January 1993 issue ofSun-
Expert magazine. If you need a “shared whiteboard” facility, we recommend you
investigate this program. You can get an evaluation copy without obligation by contacting
your Sun representative.

7.19 tapetool – the OpenWindows Tape Interface
Tapetool provides a simplified interface to the standard tape archive utilitytar.†

Figure 7-29. Part of a ShowMe conference

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 181

7
.Becausetapetool is an interface to an existing program, not all the messages are very
detailed. Pay close attention to the “footer” section of the main window, and also look in
your Console window for messages. For example, trying to write on a tape that is not write-
enabled will product the rather uninformative message

Write terminated

in the window footer; the more detailed messages

st0: tape is write protected /bin/tar: can’t open /dev/rst8 : Permission
denied

will normally appear in your console window (or in the shell window from which you
startedtapetool). Furthermore, this program will probably never have 100% of the flexibil-
ity that the UNIX command line interface totar has. For example, there is no way (except
for reverting to a terminal emulator window and issuing anmt command) to maketapetool
read the second or third tar file on a single tape. Nor is there any way to support extra
options that local or contributed software versions oftar may offer. In fact, you can’t use
tapetool with the Free Software Foundation’s contributed version oftar; it just doesn’t
work, due to some incompatibility. However, for simple uses,tapetool provides access to
the 90% oftar’s functionality that is most commonly needed.

When you invoketapetool, you get a simple main window that looks like Figure 7-30:

As you can see, the main choices are toList the tape,Read files from it, orWrite files to
tape, and there is also a property sheet. Let’s look at each of these operations.

† It does not work with, and in its present form cannot be made to work with, other incompatible tape programs
such ascpio, dump, etc.

Figure 7-30. Tapetool main window.

182 X USER’S GUIDE: OPEN LOOK EDITION

7
7.19.1 Listing and Extracting tape files
Assuming a tape is mounted in your system’s default tape drive, just clicking onList will
generate a list of files on the tape, in a separate window, like so:

Quite often, obtaining a listing of the files on a tape is a prelude to extracting some or all
of them. But given that the list of files is in the computer already, in the “list of files” win-
dow, it would be an awful waste of personpower to re-type some of the filenames. And to
make maximum use of having the list in the computer, you should be able to specify the
files you want in two ways: either by selecting some from the list to be read or extracted,
or by selecting some to be excluded (an “all but these files” extraction).Tapetool does pro-
vide both methods of specifying the files. That display of the list of files is anOPEN LOOK
Scrolling List, so you can select individual files from it. To extract individual files, just
select them — they’ll be highlighted by a box around each item — then pull downRead
from the main window and release or select onSelected. In fact, if you have a list dis-
played, that is the default, so you can just clickSELECT on theRead menu button. You also
have to select a directoryinto which the files are to be extracted, in theDestination text
field. If you want the files read into the directory in which you startedtapetool, just type
“dot” (‘.’), meaning the current directory. Otherwise, type the path to the directory where
you want the files places. Then selectRead/ Selected.

The Read item Entire List implies that there must be a way to get a partial listing of the
tape. Indeed there is. Get a listing of the tape, as above. Select the files that you donot want
to extract (remember that you can click and holdSELECT and drag it across a scrolling list
to quickly select a bunch of files for exclusion), then press theMENU button in the Listing
window, and selectDelete Selected to discard the ones you don’t want, leaving those you
do. As a shortcut, you can hit the CUT key, L10. Then you can selectRead -> Entire List
and have the program read onto disk just the files you want.

Figure 7-31. Tapetool list of files.

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 183

7
7.19.2 Writing Files with Tapetool
To write a file or directory onto a tape, you must mount the tape with write enabled. For the
common QIC cartridge tape drives used on Sun systems, this is accomplished by turning
the small plastic arrow in the upper left of the cartridge so that the arrow points to the left,
i.e., away from the word “SAFE.” For half-inch (reel-to-reel) tapes used on older Sun serv-
ers, putting the small plastic write-enable ring, flat side out, into the back of the tape reel
enables writing.

Then you have to select the files you want to write. For each file, just type its name in the
Files To Write textfield, and press RETURN.Tapetool will verify that the file is readable
and, if so, add it to the scrolling list in the main window. Once you’re happy with the list,
you can just clickSELECT on theWrite button in the main window. Bevery careful to
watch for error messages. In fact, you should probably make it a habit to always get a list-
ing of a tape (as described above) after writing it, just to be sure that all the files really were
written.

7.19.3 Setting Tapetool Properties
The property sheet is used to specify thedevice special file of the tape drive in case the
default drive isn’t suitable, and to specify some commontar options. It lis shown in
Figure 7-32:

Figure 7-32. Tapetool properties.

184 X USER’S GUIDE: OPEN LOOK EDITION

7
If you have more than one tape drive, or use multiple densities, you probably already know
the names of the device special files to use. If not, consult your system administrator or
Sun’s manual pages on the particular tape driver you are using. Note that although some
versions of thetar program allow you to use a remote tape drive, this option does not seem
to be supported at present (maybe in OWN Release 3)?

The other options control specific options of thetar program; please refer to the reference
manual page for this program in your version of the SunOS reference manual to see exactly
what they do. If you are already familiar withtar you probably recognize many of these,
and if not, you can safely skip them for the time being. There is also a reference page for
tapetool in Part Three of this guide, which summarizes these options in a briefer format.

7.20 textedit
The textedit editor has been described in Chapter 5,The cmdtool/shelltool Terminal
Emulator.

7.21 Demonstration Programs and Games
Sun has always been an innovative company, and employs a lot of talented people that
delight in innovation. The NeWS system, though it has been phased out from current
releases of SunOS,, demonstrated conclusively that PostScript is a useful language for
interactive display management. Some of these demos and games are in NeWS, and will
not work after OpenWindows Version 3.2..

CHAPTER 7: THE OPENWINDOWS DESKSET CLIENTS 185

7
You can access most of these from theDemos item on the main workspace menu, assuming
you have the full OpenWindows package installed. That menu is shown in Figure 7-33:

Table 7-6 is a list of these programs and a few notes on them.

Figure 7-33. OpenWindows Demonstration Programs Menu

Table 7-6. OpenWindows Demonstration Programs

Name Function Notes

Icosahedron Bouncing geometric shape From MIT dist’n.

Maze Generates and solves random mazes Sun.

Muncher Geometric progression From MIT dist’n.

Plaid Random plaid patterns. From MIT dist’n.

Puzzle Solves child’s 4x4 puzzle

Worms Colorful worms escaping.

Xsol Solitaire game.

Spider Double-deck Solitaire game

Jet terminal Terminal emulator. See page135.

Jed Text editor. See page135.

186 X USER’S GUIDE: OPEN LOOK EDITION

7

7.22 Summary
We have now covered the standardDeskSet client programs that are part of Sun’s Open-
Windows package.We now look at the standard MIT clients that are part of all X11
distributions, in Chapter 8,Other Standard Clients.

NeWS Clock Another clock. Sun, NeWS.

FontView Detailed look at characters in a font. Sun

Pixelview PostScript drawing demo Sun, NeWS

Circles Circles demo.

Colors Choose colors with sliders. Buggy!

RasterRap Amazing operations on raster images. Neat! Try doing this in
raw X11...

OLIT Sampler Sampler of theOPEN LOOK GUI compo-
nents (controls, etc.)

See “Other Controls”
on Page41

TNT Sampler As above, but for (obsoleted) TNT toolkit.NeWS.

Text Text demonstration See Section10.5.3,
“The “text” demo
program (OpenWin-
dows up to 3.2)” on
Page279.

Table 7-6. OpenWindows Demonstration Programs

Name Function Notes

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 8: OTHER STANDARD CLIENTS 187

8

Chapter 8OTHER STANDARD CLIENTS

CHAPTER 8

Other Standard Clients

This chapter gives an overview of other clients available with X, including window and
display information clients, printing utilities, thexkill program, and several “desk accesso-
ries.” It also examines some of the features common to applications written with the X
Toolkit.

The standard X11 distribution includes many useful clients. Most of these are included in
OpenWindows Release Three. We have grouped these X11 clients according to basic
functionality:

■ Desk accessories:xclock, oclock, xcalc, xbiff, xload, andxman.

■ Text editor:xedit.

■ Window and display information programs:xwininfo, xlswins, xlsclients, xdpyinfo, and
psps.

■ Programs to remove a client window:xkill, pam.

In many cases we refer you toOPEN LOOK or OpenWindows alternatives described else-
where in the book. Most sections in this chapter are intended to acquaint you with the
major features of some of the available clients. Additional detailed information is provided
on the reference pages for each client in Part Three of this guide.

Many of the standard clients ere written using a programming library called the X Toolkit.
As explained in Chapter 2, the X Toolkit includes a set of predefined components (or wid-
gets), known as the Athena widget set. And theOPEN LOOK Intrinsics Toolkit includes a
different set of widgets. Widgets make it easier to create complex applications; they also
ensure a consistent user interface between applications. In discussing various clients in this
chapter, we’ll point out some of the features attributable to the X Toolkit.

188 X USER’S GUIDE: OPEN LOOK EDITION

8
For a comprehensive treatment of the X Toolkit, software developers should refer to Vol-
ume Four,X Toolkit Intrinsics Programming Manual, and Volume Five,X Toolkit
Intrinsics Reference Manual.

You can start these clients from the command line in anyxterm window or, if you like, you
can add them to your window manager’s menu (see Chapter 13,Customizing olwm).

You can terminate any of these clients by using theQuit button on theolwm window menu.
As well, some such asxman, have their ownQuit button.

8.1 Desk Accessories
The clientsxclock, oclock, xcalc, xload, xbiff, andxman can be thought of asdesk accesso-
ries. “Desk accessories” is a term we’ve borrowed from the Macintosh environment,
meaning small applications available—and useful—at any time. Many of the DeskSet cli-
ents described in Chapter 7,The OpenWindows DeskSet Clients, can also be considered to
be Desk Accessories.

8.1.1 Clock Programs: xclock and oclock
The standard release of X includes two clients that display the time:xclock andoclock (the
oclock client was added to the standard distribution of X in Release 4). The time displayed
by bothxclock andoclock is the system time set and displayed with the UNIXdate (1)
command, the MS-DOSdate andtime commands, etc., in other words, the operating sys-
tem’s notion of the correct time.

xclock continuously displays the time, either in analog or digital form, in a standard win-
dow. The analogxclock shows a round 12-hour clock face with tick marks representing the
minutes. The digitalxclock shows the 24-hour time (2:30 PM would be represented as
14:30) as well as the day, month, and year. You can run more than one clock at a time. The

CHAPTER 8: OTHER STANDARD CLIENTS 189

8
analog clock is the default. Figure 8-1 shows twoxclock applications being run: an analog
clock above a digital clock.

Figure 8-1. Two xclock displays: analog clock above digital clock

Note thatolwm normally puts a titlebar on all windows. We suppressed this, to show how
thexclock window would normally look, by adding them to theMinimalDecor list. For
example, if you normally usexclock, you could add this to your.Xdefaults file:

OpenWindows.MinimalDecor: xclock

You don’t have to do this, but it makes thexclock window look nicer if you do.

The oclock client (available as of X11 Release 4) displays the time in analog form on a
round 12-hour clock face without tick marks. The only features of anoclock display are the
round clock outline, hour and minute hands, and the “jewel” marking 12 o’clock.

190 X USER’S GUIDE: OPEN LOOK EDITION

8
Figure 8-2. oclock display

Though it is somewhat more difficult to read the precise time on the simpleoclock display,
theoclock is perhaps a little more aesthetically pleasing than the analogxclock.

oclock also makes use of the X Shape server extension, which supports non-rectangular
windows. If you try to resize the roundoclock, you’ll discover that it’s possible to “stretch”
it into various oblong shapes, as shown in Figure 8-3.

Figure 8-3. Oblong oclock displays

oclock sets some “window manager hints” to tellolwm that it doesn’t need a titlebar, you
don’t need to add it to theMinimalDecor list. To move theoclock display underolwm,
you need only grab it with the pointer. Click and holdSELECT, the left pointer button, and
drag the clock to where you want it. To Resize it, however, is a two-step process:

■ Click SELECT on the window’s border, and the normalOPEN LOOK resize corners will
appear, as in the right side of Figure 8-3.

■ Then use these re-size corners as you would on any window.

This is how the two oblong clocks were produced.

Though the default colors foroclock are black and white, it was designed to be run in color.
The minute hand, hour hand, jewel, clock border, and background can all be set to a color,
using either command line options (described in Chapter 11,Command-line Options) or by
specifying client resources (described in Chapter 12,Setting Resources). See theoclock
reference page in Part Three of this guide for the necessary command line options and color
suggestions.

8.1.2 A Scientific Calculator: xcalc
xcalc is a scientific calculator that can emulate a Texas Instruments TI-30 or a Hewlett
Packard HP-10C.

OpenWindows users should also check out the operation ofcalctool described in Chapter
7, The OpenWindows DeskSet Clients.

CHAPTER 8: OTHER STANDARD CLIENTS 191

8
Once you place the pointer within thexcalc window, the calculator can be operated in two
ways: with the pointer, by clicking the first pointer button on the buttons in the calculator
window, or with the keyboard, by typing the same numbers and symbols that are displayed
in the calculator window. When using the first method, notice that the pointer appears as a
small hand, enabling you to “press” the buttons.Figure 8-4 showsxcalc on the screen.

Figure 8-4. The default xcalc (TI-30 mode) on the screen

Figure 8-4 depicts the version of the calculator provided with Release 4 of X. As you can
see, it features oval buttons. If you are running an earlier release, the calculator will have
rectangular buttons and may also have a darker background color. We are discussing the
Release 4 version. For additional information, see thexcalc reference page in Part Three of
this guide.

The values punched on the calculator and the results of calculations are displayed in the
long horizontal window along the top of thexcalc. You can enter values either by clicking
on the calculator keys with the pointer, or by pressing equivalent keys on the keyboard.
Most of the calculator keys have keyboard equivalents. The not-so-obvious equivalents are
described on thexcalc reference page in Part Three of this guide.

By default,xcalc works like a TI-30 calculator. To runxcalc in this mode, enter:

% xcalc &

You can also operate the calculator in Reverse Polish Notation (as an HP-10C calculator
operates), by entering:

% xcalc -rpn &

192 X USER’S GUIDE: OPEN LOOK EDITION

8
In Reverse Polish Notation the operands are entered first, then the operator. For example,
5 * 4 = would be entered as5 Enter 4 * . This entry sequence is designed to mini-
mize keystrokes for complex calculations.

xcalc allows you to select the number in the calculator display. You select the number
using the first pointer button and paste it in another window using the second button. Since
this is an Athena widget set application, you should refer to Appendix A,The xterm/olterm
Terminal Emulator, for information about copying and pasting text selections.

xcalc can also be resized. In prior releases, this was not possible. Also as of X11R4, the
code inxcalc to emulate an analog slide rule (- analog) is no longer available.

For more information on the function of each of the calculator keys, see thexcalc reference
page in Part Three of this guide.

You can terminate the calculator by using theQuit menu button on theolwm window
menu. For a method more in keeping with the spirit of this program, you can also terminate
it by simulating “powering off” the calculator by clicking the right pointer button on the TI
calculator’s AC key or the HP calculator’s ON key. You can even terminate it by position-
ing the pointer on the calculator and typing q, Q, or Control-C.

8.1.3 Mail Notification Client: xbiff
xbiff is a simple program that notifies you when you have mail. It puts up a window show-
ing a picture of a mailbox. When you receive new mail, the keyboard emits a beep, the flag
on the mailbox goes up, and the image changes to reverse video. Figure8-5 shows thexbiff
mailbox before and after mail is received. We didn’t need to addxbiff to theMinimalDe-
cor resource because its program sets certain “window manager hints” that tellolwm not
to provide a titlebar.

Figure 8-5. xbiff before and after mail is received

After you read your mail (and the mail file is empty), the image changes back to its original
state; or you can click on the full mailbox icon with any pointer button to change it back to
empty. Regardless of the number of mail messages when you do this,xbiff remembers the
current size of your mail file to be theempty size.

This feature ofxbiff has two implications, one obvious and the other not so obvious: when
additional mail arrives (and the mail file becomes larger),xbiff notifies you; but when you
delete messages from the current mail file (and the file becomes smaller),xbiff also notifies
you—when you exit the mail program and the file is saved. This can be a little confusing
until you get used to it.

CHAPTER 8: OTHER STANDARD CLIENTS 193

8
While xbiff is intended to monitor a mail file, it can actually be set up to watch any file
whose size changes using the-file option (followed by the name of the file to be moni-
tored). For instance, if you’re running a program that produces output intermittently, you
can startxbiff with -file followed by the name of the output file; thenxbiff will notify
you when output is returned. (You can even specify an image other than the mailbox using
resource variables—even for a singlexbiff process.) See thexbiff reference page in Part
Three of this guide for a list of options and resources. See Chapter 12,Setting Resources,
for the syntax of resource specifications.

8.1.4 Monitoring System Load Average: xload
By default,xload polls the system for the load average at five-second intervals and displays
the results in a simple histogram.

If you are running processes on more than one machine, it’s useful to gauge the level of
activity on the systems in question. This information should help you judge when to start
processes and monitor how your processes are impacting system resources.

Say you’re running clients both on the local machinekansas and on the remote machineoz.
On the local display, you can have twoxload windows, one showing activity onkansas and
another showing activity onoz.

To create anxload window monitoring activity onkansas, use the command:

% xload &

Once thexload window is created, move it to a convenient location on the screen, using the
pointer.

Then run anxload process onoz using a remote shell and display the results in a window
onkansas:

% rsh -n oz xload -display kansas:0.0 &

The display option tellsxload to create its window on the local display (kansas). Again,
move the window using the pointer.

194 X USER’S GUIDE: OPEN LOOK EDITION

8
Figure 8-6 shows the resultingkansas display: twoxload windows—the top window mon-
itoring activity on the local system and the bottom one monitoring activity on the remote
system.

Figure 8-6. Monitoring activity on two systems with xload

For OpenWindows users, a simpler method is to use the more flexibleperfmeter program,
which knows how to reach out across the network to ask another machine for its load aver-
age (or any of almost a dozen statistics).perfmeter has the advantage that it gives a
numerical scale to its graph, rather than the numberless graph thatxload offers. There is
more toxload, and much more toperfmeter, than these examples show. In particular,per-
fmeter lets you select CPU load, disk I/O, paging, ethernet traffic, and many other things to
watch. And you can change the list of hosts you want to watch without quitting and restart-
ing the program. See the description ofperfmeter in Chapter 7,The OpenWindows DeskSet
Clients. Also see the reference manual page in Section Three of this guide for more infor-
mation about eitherxload or perfmeter.

8.1.5 Browsing Reference Pages: xman
Thexman client allows you to display and browse through formatted versions of reference
pages. By default,xman lets you look at the standard UNIX manual pages found in subdi-
rectories of the directory/usr/man. The standard version of X assumes there are 10
subdirectories:man1 throughman8, corresponding to the eight sections of reference pages
in the UNIX documentation set;manl (man local) andmann (man new). You can specify
other directories by setting the MANPATH system variable. (The individual directory
names should be separated by colons.)

This section describes the version ofxman provided with Release 4 of X. From a user’s
viewpoint, the general operation of the client has not changed much since prior releases but
the organization of menus and options has changed.

Regardless of the version of X, you runxman by typing:

% xman &

in anxterm window.

CHAPTER 8: OTHER STANDARD CLIENTS 195

8
The initial xman window, shown in Figure8-7, is a small window containing only a few
commands.

This window is small enough to be displayed for prolonged periods during which you
might have need to examine UNIX manual pages. You select a command by clicking on it
with the first pointer button.

TheManual Page command brings up a larger window in which you can display a format-
ted version of any manual page in the MANPATH. By default, the first page displayed
contains general help information aboutxman. Use this information to acquaint yourself
with the client’s features.* (The actualxman reference page in Part Three of this guide pri-
marily describes how to customize the client.)

Once you’ve opened this larger window, you can display formatted manual pages in it.†

Notice the horizontal bar spanning the top edge of the window. (If you’re runningolwm or
a similar window manager, this bar appears beneath the titlebar provided by the window
manager.) The bar is divided into three parts labeledOptions, Sections, andXman Help.
The part currently labeledXman Help is merely informational and the text displayed in it
will change depending on the contents of the window. The parts labeledOptions andSec-
tions are actually handles to twoxman menus.

If you place the pointer on theOptions box and press and hold down the first button, a
menu calledXman Options will be displayed below. The menu is pictured in Figure 8-8.

The functionality of these options is described in the on-linexman help page. To select an
option, move the pointer down the menu and release the first button on the option you
want. The option you will probably use most frequently is the first one,Display Directory.

Display Directory lists the reference pages in the current reference page directory (also
called asection). By default, this isman1, the user commands. When you list the contents

† Selecting theHelp command also opens a large window in which the same help information is displayed. The
Help command is something of a dead end, however; you cannot display any other text in this window.

Figure 8-7. Initial xman window

196 X USER’S GUIDE: OPEN LOOK EDITION

8

of man1 in this way, the informational section of the horizontal bar readsDirectory of: (1)
User Commands.

xman displays each man page directory in a window known as aviewport, created with the
Athena Viewport widget from the X Toolkit. A viewport is a composite widget that pro-
vides a main window and horizontal and/or vertical scrollbars.

xman’s scrollbar is also an Athena widget. (See Appendix A,The xterm/olterm Terminal
Emulator, for instructions on using an Athena scrollbar.) TheOPEN LOOK Toolkit also
provides a scrollbar, described in Chapter 5,The cmdtool/shelltool Terminal Emulator,
which looks and operates differently than the Athena scrollbar.

For a list of the Athena widgets, see Appendix I,Athena Widget Resources. For complete
information about the X Toolkit, see Volume Four,X Toolkit Intrinsics Programming
Manual, and Volume Five,X Toolkit Intrinsics Reference Manual.

Once you’ve listed a reference page directory in thexman window, you can display a for-
matted version of any page in the list simply by clicking on the name with the first pointer
button. Figure 8-9 shows the formatted reference page for the UNIXcd (1) command.

To display another manual page from the same directory, display theXman Options menu
again. SelectDisplay Directory and the directory listing is again displayed in the window.
Then click on another command name to display its manual page in the window. (If you
decide not to display another reference page, you can remove the directory listing and go
back to the reference page previously displayed by using the secondXman Options menu
selection,Display Manual Page. Display Directory andDisplay Manual Page are toggles
of one another.)

To display a manual page from another directory in the MANPATH, you must first change
to that directory using the secondxman menu,Xman Sections. Bring up the menu by plac-
ing the pointer in theSections box in the application’s titlebar and holding down the first
button. TheXman Sections menu lists the default directories of UNIX manual pages (in this
case for a Solaris 2 system), as shown in Figure 8-10.

Display Directory

Display Manual Page

Help

Search

Show Both Screens

Remove This Manpage

Open New Manpage

Show Version

Quit

Figure 8-8. Xman Options menu

CHAPTER 8: OTHER STANDARD CLIENTS 197

8

Click on the first pointer button to select another directory of reference pages from which
to choose. Once you select a directory, the files in that directory are listed in the window.
Again, you display a page by clicking on its name with the first pointer button.

You can display more than one “browsing” window simultaneously by selecting theOpen
New Manpage option from theXman Options menu. An additional reference page window
will be opened again starting with the help information.

The various windowsxman creates can all be iconified and each is represented by a differ-
ent icon symbol. The icon symbols for the initialxman window, the help window, and the
browsing window appear in Figure8-11. Keep in mind that if you’ve displayed several
browsing windows simultaneously, you can iconify each of them.

Note that the “Manual Page” icon label is too big to fit in the icon area provide byolwm.
This is amusing but harmless.

Figure 8-9. cd reference page displayed in xman window

198 X USER’S GUIDE: OPEN LOOK EDITION

8

Figure 8-10. Xman Sections menu

Figure 8-11. Icons for xman’s initial window, help window, and browsing window

CHAPTER 8: OTHER STANDARD CLIENTS 199

8
You can remove a browsing window by selecting theRemove This Manpage option from
theXman Options menu. SelectingQuit from theXman Options menu or from the initial
xman window causes the client to exit.

An alternate man page browser istkman, which is included on the CD-ROM accompany-
ing this book. The Tk toolkit provides a Motif-like interface, buttkman is a very useful
browser - it can treat almost any text as a hyperlink, and jump to the appropriate man page.

OpenWindows users should also refer toanswerbook andhelpviewer, described in Chapter
7, The OpenWindows DeskSet Clients.

8.2 The xedit Text Editor
Thexedit client provides a window in which you can create and edit text files. The editing
commandsxedit recognizes are provided by the Athena Text widget. Many other standard
and user-contributed clients also include areas in which you can enter text. Several of these
clients, includingxclipboard andxmh, also use the Text widget, and thus recognize the
same editing commands asxedit.

xedit is in some ways patterned aftertextedit, a version of which has been in SunOS for
nearly a decade. OpenWindows users may wish to usetextedit, described in Chapter 5,The
cmdtool/shelltool Terminal Emulator, rather thanxedit, sincetextedit uses theOPEN LOOK
conventions..

Thexedit client is valuable to illustrate the use of the Athena Text widget. (xedit can also
be used to illustrate several other widgets.) However, we do not recommend usingxedit as
your primary text editor. The program’s behavior can be erratic. For example, it’s fairly
easy to overwrite files inadvertently, as explained in the discussion of theLoad button later
in this section. The redraw command (Control-L) causes text in the window to scroll so as
to reposition the cursor in the center of the editing window—not a welcome surprise. Some
of the commands to create a new paragraph may also inadvertently copy preceding text.
These are just a few ofxedit’s inconvenient features. OpenWindows users, as mentioned,
may wish to usetextedit. A Motif-based free-software editor of similar power is theasedit
program, source for which is included in your CD-ROM.

Still, it is necessary to know something about the Athena Text widget in order to be able to
enter and edit text in windows provided by many standard X11 clients.

xedit recognizes various Control and Meta keystroke combinations that are bound to a set
of commands similar to those provided by theemacs text editor.†

In addition, you can use the pointer to move the cursor in the text or to select a portion of
text. Thexedit cursor is a caret symbol (^). A caret cursor appears in each of the three areas
that accept text entry. (These areas are described later in this section.) Pressing the first
pointer button causes the insertion point (cursor) to move to the location of the pointer.
Notice that the cursor always appears between characters, rather than on a character as the

† The commands may be bound to keys different from the defaults described below through the standard X Tool-
kit key translation mechanisms. See Chapter 12,Setting Resources, for more information.

200 X USER’S GUIDE: OPEN LOOK EDITION

8
xterm cursor does. Double-clicking the first pointer button selects a word, triple-clicking
selects a paragraph, and quadruple-clicking selects everything. After you select text, the
selection may be extended in either direction by using the third pointer button.

You can invokexedit by entering:

% xedit &

Since no filename has been specified, the main section of thexedit window is empty, as
illustrated by Figure 8-12.

Notice that thexedit window is divided into four parts:

■ A commands section, which features three command push buttons (Quit, Save, and
Load) and an area to their right in which a filename can be entered.

■ A message window, which displays messages from the client and can also be used as a
scratch pad.

■ The filename display, which shows the name of the file being edited and the read/write
permissions for the file.

■ The edit window, in which the text of the file is displayed and in which you issue the
editing commands.

Thexedit application uses the Athena VPaned widget (of the X Toolkit), which arranges
subwindows one above the other without overlapping. The subwindows are also known as
vertical panes and the non-overlapping, top-to-bottom arrangement is commonly
described asvertical tiling.

The individual panes organized by a VPaned widget can be any other type of widget. In the
case ofxedit, for example, the commands section is one pane that contains three command
buttons (another widget) and a small window to the right of the buttons (a Text widget) in
which a filename can be entered.

Figure 8-12. xedit window before text file is read in

CHAPTER 8: OTHER STANDARD CLIENTS 201

8
Notice the three small black rectangles on the borders between the panes. These features
are calledgrips and they serve as handles to allow you to resize the subwindows. When the
pointer is positioned on the grip and a button pressed, an arrow is displayed that indicates
the direction in which the border between the two windows can be moved. If you move the
pointer in the direction of the arrow (while pressing the button), one subwindow will grow
while the other will shrink.

You can enter text in three areas of thexedit window: the message window, the edit win-
dow, and the small window immediately to the right of the command buttons in which you
can enter a filename. (Thus all three use a Text widget.) Note that the small filename win-
dow to the right of the command buttons is different from the filename display (lower in
thexedit window). The filename display is simply that—a display of the filename; the win-
dow does not support editing.

All three areas that permit editing display the caret text cursor. In order to focus keyboard
input to a particular area, the pointer must rest in that area—regardless of whetherolwm is
operating with the default click-to-type focus. (If click-to-type focus is in effect, thexedit
window must also be selected as the focus window.) This is extremely important to remem-
ber. Both the message window and the edit window will display a vertical scrollbar if the
text is too large to fit. (Be aware also that a scrollbar technically is not part of the text entry
window it borders. If the pointer is resting in a scrollbar, keyboard input will be lost—it
will not be directed to the corresponding text area!)

The three push buttons in the commands section have the following functions:

Quit Exits the current editing session and closes the window. If changes have not been
saved,xedit displays a warning in the message window, and does not exit, thus
allowing the user to save the file.

Save Writes the file. If file backups are enabled (using theenableBackups
resource),xedit first stores a copy of the unedited file as filename.BAK and then
overwritesfilename with the contents of the edit window. Thefilename used is the
text that appears in the area immediately to the right of theLoad button.

Load Loads the file displayed immediately to the right of the button into the edit
window. If a file is currently being displayed and has been modified, a warning
message will ask the user to save the changes, or to pressLoad again.

This interface has at least two serious pitfalls. First, if you’re working on a file that has
unsaved changes and you try to load a second file, it’s possible to overwrite the
second file. This is how it happens. In order to load a second file, you must enter
the name of the file in the area next to theLoad button; then pressLoad. If you try
to load a second file while editing a file with unsaved changes,xedit warns you to
save or pressLoad again. If you pressSave the current file will be saved—but as
the name to the right, the second file you intended to load.

If backups are not enabled, this action will overwrite the file you wanted to load. If backups
are enabled, the first file will be saved under the name of the second file with a
.BAK extension and the second file will not be overwritten. Because of this poten-
tial problem, we recommend that you set the resourceenableBackups to on
(and load the resources usingxrdb) before usingxedit.

202 X USER’S GUIDE: OPEN LOOK EDITION

8
A second problem can occur after you’ve loaded a file by entering the name in the window

next to theLoad button. Say you’ve been editing the file for some time, but
haven’t saved the changes. If you go to save the changes and accidentally double-
click onLoad (not that difficult to do), you’ll reload the version of the file before
you made the edits. The changes are lost!

Now, after considering some of the possible pitfalls, let’s load a file into the emptyxedit
window as shown in the figure above. (Obviously, in this case, there’s no danger of over-
writing an existing file.) To load a file calledindex.html:

1. Place the pointer in the area to the right of theLoad button.

2. Typeindex.html. The caret cursor moves as you type.

3. Place the pointer on theLoad command button and press the first pointer button.

The file calledindex.html is displayed in the edit window, as shown in Figure 8-13.

The simpler commands to edit or append text are intuitive. A backspace deletes the char-
acter to the left of the cursor. Typing enters characters immediately before the cursor point,
causing the cursor to advance to the right. When you first load a file, the cursor appears at
the beginning of the text in the edit window. If you want to append text to the end of the
file, move the pointer to the end of the text and click the first button. The caret cursor

Figure 8-13. text file displayed in xedit window

CHAPTER 8: OTHER STANDARD CLIENTS 203

8
appears where the pointer is and any text you type is added to the end of the file, moving
the cursor to the right.

The list at the end of this section summarizes all of the editing command recognized by
xedit. In this list of commands, aline refers to one row of characters displayed in the win-
dow. A paragraph refers to the text between manually inserted carriage returns or blank
lines. Text within a paragraph is automatically broken into lines based on the current width
of the window.

The keystroke combinations are defined as indicated. (Note that “Control” and “Meta” are
two of the “soft” keynames X recognizes. They are mapped to particular physical keys
which may vary from keyboard to keyboard. See the “xmodmap” section in Chapter 14,
Customization Clients, for a discussion of modifier key mapping.) If you are using an ear-
lier release of X, a few of these keystroke combinations may produce slightly different
results.

Keep in mind that you can redefine any of these key combinations using what are known
astranslations. Translations allow you to assign actions recognized by a client to particular
key combinations, or key and pointer button combinations. For example,xedit recognizes
actions to delete text, to copy text, to move the cursor, etc.xedit defines key combinations
to invoke these actions. (The key/action mappings appear in the list at the end of this sec-
tion.) For information on specifying alternate mappings, see “Event Translations” in
Chapter 12,Setting Resources.

Note that the function assigned to the Return key in the following list applies only to the
edit window and message window. In the filename window (next to the command buttons),
Return simply moves the cursor to the end of the line.

Table 8-1. Xedit key bindings

Key
sequence

Function

Control-A Move to the beginning of the current line.

Control-B Move backward one character.

Control-D Delete the next character.

Control-E Move to the end of the current line.

Control-F Move forward one character.

Control-H or
Backspace

 Delete the previous character.

Return,
Control-J,
Control-M, or
LineFeed

 New paragraph. (Linefeed, Control-J , andControl-M may be unreli-
able on some terminals.)

204 X USER’S GUIDE: OPEN LOOK EDITION

8

Control-K Kill the rest of this line. (Does not kill the carriage return at the end of
the line. To do so, useControl-K twice. However, be aware that the
second kill overwrites the text line in the kill buffer.)

Control-L Redraw the window. (Also scrolls text so that cursor is positioned in the
middle of the window.)

Control-N Move down to the next line.

Control-O Divide this line into two lines at this point.

Control-P Move up to the previous line.

Control-V Move down to the next screenful of text.

Control-W Kill the selected text.

Control-Y Insert the last killed text. (If the last killed text is a carriage return—see
Control-K above—a blank line is inserted.)

Control-Z Scroll up the text one line.

Meta-< Move to the beginning of the file.

Meta-> Move to the end of the file.

Meta-[Move backward one paragraph.

Meta-] Move forward one paragraph.

Meta-B Move backward one word.

Meta-D Kill the next word.

Meta-F Move forward one word.

Meta-H or
Meta-Delete

 Kill the previous word.

Meta-I Insert a file. If any text is selected, use the selected text as the filename.
Otherwise, a dialog box will appear in which you can type the desired
filename.

Meta-V Move up to the previous screenful of text.

Table 8-1. Xedit key bindings

Key
sequence

Function

CHAPTER 8: OTHER STANDARD CLIENTS 205

8

8.3 Window and Display Information Clients
The standard release of X includes four clients that provide information about windows on
the display and about the display itself. Much of the information is probably more relevant
to a programmer than to the typical user. However, these clients also provide certain pieces
of information, such as window geometry, window ID numbers, and the number and nature
of screens on the display, that can assist you in using other clients.

8.3.1 Displaying Information about a Window: xwininfo
Thexwininfo client displays information about a particular window. Some of this informa-
tion can be useful in determining or setting window geometry (described in Chapter 3).
xwininfo also provides you with thewindow ID (also called the resource ID). Each window
has a unique identification number associated with it. This number can be used as a com-
mand line argument with several clients. Most notably, the window ID can be supplied to
thexkill client to specify the window be killed.

You can also use the window ID as an argument to thexprop client, which displays various
window properties. As described in Chapter 1, a property is a piece of information associ-
ated with a window or a font and stored in the server. Properties facilitate interclient
communication; they are used by clients to store information that other clients might need
to know. Storing properties in the server makes the information they contain accessible to
all clients. See Chapter 1, thexprop reference page in Part Three of this guide, and Volume
One,Xlib Programming Manual, for more information about properties and thexprop
client.

To display information about a window, type this command in anxterm window:

% xwininfo

The pointer changes to the cross-hair pointer and you are directed to select the window
about which you want information:

xwininfo ==> Please select the window about which you
==> would like information by clicking the

Meta-Y Insert the last selected text here. Note that this can be text selected in
some other text subwindow. Also, if you select some text in anxterm
window, it may be inserted in anxmh window with this command.
Pressing pointer button 2 is equivalent to this command.

Meta-Z Scroll down the text one line.

Delete Delete the previous character.

Table 8-1. Xedit key bindings

Key
sequence

Function

206 X USER’S GUIDE: OPEN LOOK EDITION

8
==> mouse in that window.

You can select any window on the display, including the window in which you’ve typed
the command and the root window. (Rather than using the pointer, you can specify a win-
dow on the command line by supplying its title, or name if it has no title, as an argument to
xwininfo’s own -name option. See Chapter 9 for information about setting a client’s title
and name. See thexwininfo reference page in Part Three of this guide for a list of its
options.)

The following diagram, Figure8-14, shows the statistics ofxwininfo supplies with some
typical readings.

xwininfo ==> Window id: 0x70000e (xterm)
==> Absolute upper-left X: 12
==> Absolute upper-left Y: 29
==> Relative upper-left X: 0
==> Relative upper-left Y: 0
==> Width: 818 ==> Height: 484
==> Depth: 8 ==> Border width: 0
==> Window class: InputOutput
==> Colormap: 0x8006b (installed)
==> Window Bit Gravity State: NorthWestGravity
==> Window Window Gravity State: NorthWestGravity
==> Window Backing Store State: NotUseful
==> Window Save Under State: no
==> Window Map State: IsViewable
==> Window Override Redirect State: no
==> Corners: +12+29 -322+29 -322-387 +12-387

Figure 8-14. Window information displayed by xwininfo

These readings are for a loginxterm window displayed using a 12-point Roman Courier
font. All numerical information is in pixels, except depth, which is in bits per pixel. The
olwm window manager is also running. The most significant statistics from the above fig-
ure for the average user are:

xwininfo ==> Window id: 0x70000e (xterm)
==> Absolute upper-left X: 12
==> Absolute upper-left Y: 29
==> Relative upper-left X: 0
==> Relative upper-left Y: 0
==> Width: 818 ==> Height: 484
==> Depth: 8 ==> Border width: 0
==> Colormap: 0x8006b (installed)
==> Corners: +12+29 -322+29 -322-387 +12-387

The first piece of information is the window ID, which can be used as an argument toxkill.
Specifying the window to be killed by its ID number is somewhat less risky than choosing
it with the pointer.

With many window managers, you can use some of the other statistics to gauge the win-
dow’s geometry (size and position). Generally, the absolute upper-left X and Y correspond
to the positive x and y offsets that can be supplied to the-geometry option used to place

CHAPTER 8: OTHER STANDARD CLIENTS 207

8
a client window. (The use of the-geometry option is discussed in Chapter 3,Opening
Additional Windows.).

The Window Manager window frame complicates matters. Whenolwm or another framing
window manager such asmwm is running, the absolute upper-left X and Y correspond to
the x and y coordinates of the application window—but not the framed window!

Let’s take another look at the samplexwininfo output. The absolute upper-left X and Y sug-
gest that the window is located at coordinates 12,29. However, the output is actually for an
xterm located at coordinates 0,0! The 12,29 are the coordinates of thexterm window itself;
the coordinates represent the distance of the window from 0,0including the dimensions of
the frame. The default frame formwm is actually 12 pixels in the x dimension and 29 pixels
in the y dimension (because of the titlebar).

For any given window manager and set of font and size resources, there will be some fixed
offset (like the 12,29 above) that you can subtract to get the actual position.These figures
can be supplied as arguments to the-geometry option on the command line to specify
window placement, as described in Chapter 3,Opening Additional Windows. (Chapter 3
also describes two simpler method of gauging x and y offsets.)

The relative upper-left X and Y may or may not be meaningful depending upon which win-
dow manager you are using. Withtwm, for example, regardless of a window’s location, the
relative upper-left X and Y are 0 and 0.

The four corners (again, including the frame) are listed with the upper-left corner first and
the other three clockwise around the window (i.e., upper-right, lower-right, lower-left).
The coordinates of the upper-left corner are, of course, the absolute upper-left X and Y.
The width and height in pixels are somewhat less useful, since the geometry option to
xterm requires that these figures be specified in characters and lines.

The values for window depth and colormap relate to how color is specified. See the discus-
sion of color in Chapter 12,Setting Resources, for more information.

The other statistics provided byxwininfo are listed below:

==> Window class: InputOutput
==> Window Bit Gravity State: NorthWestGravity
==> Window Window Gravity State: NorthWestGravity
==> Window Backing Store State: NotUseful
==> Window Save Under State: no
==> Window Map State: IsViewable
==> Window Override Redirect State: no

These statistics have to do with the underlying mechanics of how a window is resized,
moved, obscured, unobscured, and otherwise manipulated. They are inherent in the client
program and you cannot specify alternatives. For more information on these and other win-
dow attributes, see Chapter 4 in Volume One,Xlib Programming Manual.

You can also usexwininfo with various options to display other window attributes. See the
reference page in Part Three of this guide for details.

208 X USER’S GUIDE: OPEN LOOK EDITION

8
8.3.2 Listing the Window Tree: xlswins
Windows are arranged in a hierarchy, much like a family tree, with the root window at the
top. Thexlswins client displays the window tree starting with the root window, listing each
window by its resource ID and title (or name), if it has one. (See Chapter 9 for a discussion
of setting a client’s title and name with command line options.)

A resource ID can be supplied toxkill to specify the window to kill. You can also supply a
resource ID toxwininfo to specify the window you want information about, or toxprop to
get the window’s properties. Being able to display the ID numbers of all windows on the
screen simultaneously is especially helpful if one or more windows is obscured in the
stack. Thexwininfo client is virtually useless in situations in which one window is hidden
behind another.xlswins allows you to determine by process of elimination which window
is hidden—without having to circulate all the windows on your screen. You can then use
xwininfo with the ID number (displayed byxlswins) to get information about the obscured
window.

Figure 8-17 shows the results ofxlswins for a simple window arrangement: a singlexterm
(login) window on a root window. (No window manager is running.)

0x8006e ()
 0x30000e (xterm)
 0x300015 ()
 0x300016 ()

Figure 8-15. Window tree displayed by xlswins

The xterm window is easily identified. Any client that displays an application window,
such asxterm, xclock, xfd, bitmap, etc., will be listed by name (in parentheses) following
the ID number†. The root window is listed above thexterm in the window hierarchy. Client
(and other) windows displayed on the root window are calledchildren of the root window,
in keeping with the family tree analogy; thus, the root window is the parent of thexterm
window. In thexlswins listing, a child window is indented once under its parent.

But what are the other windows listed in Figure8-15? A superficial examination of these
other windows provides a brief introduction to the inner workings of X. An underlying fea-
ture of X is that menus, boxes, icons, and evenfeatures of client windows, such as
scrollbars, are actually windows in their own right. What’s more, these windows (and cli-
ent window icons) may still exist, even when they are not displayed.

The two remaining windows are unnamed. From the relative indents of the windows, we
can tell certain information. The first unnamed window is a child of thexterm, the second
is a child of the child.

If we again runxlswins, this time requesting a long listing (with the-l option), we get
geometry information that helps identify each window. This is shown in Figure 8-16.

† Most likely, you will not have to deal with the ID numbers for windows other than the explicitly named client
windows. You can use the IDs of the client windows in all of the ways we’ve discussed: withxkill, xwininfo,
xprop, etc.

CHAPTER 8: OTHER STANDARD CLIENTS 209

8
0: 0x8006e (); ()() 1152x900+0+0 +0+0
1: 0x30000e (xterm); (xterm)(XTerm) 818x484+0+0 +0+0
2: 0x300015 (); ()() 818x484+0+0 +1+1
3: 0x300016 (); ()() 14x484+-1+-1 +0+0

Figure 8-16. Window tree with geometry specifications

The first number on each line refers to the level of the window in the hierarchy, the root
window being at level 0, client windows at 1, etc. Following thexterm application window
are what are known as the instance and class resource names for the client (in this case,
xterm , XTerm). You use the instance and class resource names to specify default window
characteristics, generally by placing them in a file in your home directory. This is described
in detail in Chapter 12,Setting Resources.

The first geometry string is the complete specification relative to theparent window. The
second geometry string is the current position relative to theroot window. Sinceolwm is
not running, frames are not an issue. Thus, a window at coordinates 0,0 would have the
position+0+0 relative to the root.

The two unnamed windows underxterm are the VT102 window and the window’s scroll-
bar, respectively. (The firstxterm listing is the application shell window, which can be
displayed both as a VT102 and a Tektronix window.)

The listing in Figure 8-16 was generated when no window manager was running. Ifolwm
is running, thexlswins output is considerably more complicated. Many of the features pro-
vided byolwm, such as the window frame and its command buttons, and theRoot Menu
andWindow Menu, are actually windows themselves. Thisgreatly complicates the window
hierarchy. If you runxlswins while olwm is running, even if the display has only a single
application window, the output will be dozens of lines long; you can assume that most of
the mysterious windows in the hierarchy are features provided by the window manager.
We just ranxlswins on a system with one cmdtool, onecontool, and a publishing software
package with one document open, another iconified, and three popups pinned up. There
were so many windows that we had to use the standardUNIX utility wc (word count) to
count them all:

% xlswins | wc -l
 149
%

You may also notice that application windows, such asxterm, are now at level 3 in the hier-
archy. This is becauseolwm reparents all client windows; that is, the window manager
creates another window that is the parent window of the application window and is itself
the child of the root window. (The frame is actually a window in its own right; think of the
window manager as creating a window that contains the application window.)

The geometry strings for application windows will also be different whenolwm is running
because of this reparenting and because of the presence of the frame. The first geometry
string, which gives the position relative to the parent window, will always end with the x,y
coordinates +0+0, since the parent is the window manager. The second geometry string,
which gives the position relative to the root window, will include the dimensions of the
frame. A window located at coordinates 0,0 will have the string +12,+29 because the x and

210 X USER’S GUIDE: OPEN LOOK EDITION

8
y dimensions of the default frame are 12 and 29 pixels, respectively. See the preceding dis-
cussion ofxwininfo for more information.

For more information on the window hierarchy, see Volume One,Xlib Programming Man-
ual.

8.3.3 Listing the Currently Running Clients: xlsclients
You can get a listing of the client applications running on a particular display by using
xlsclients. Without any options,xlsclients displays a two-column list, similar to:

colorful xterm -geometry 80x24+10+10 -ls
colorful xclock -geometry -0-0

The first column shows the name of the display (machine) and the second the client run-
ning on it. The client is represented by the command line used to initiate the process.

This sample listing indicates that there is onexterm window and onexclock window run-
ning on the displaycolorful . (The option-ls following thexterm command reveals
that the shell running in this window is a login shell.)

You can usexlsclients to create an.xsession or .xinitrc file, which specifies the clients you
want to be run automatically when you log in. In order to do this, you must have set up cli-
ent windows in an arrangement you like using command line options alone (that is, without
having moved or resized windows via the window manager). You can then runxlsclients
to print a summary of the command lines you used to set up the display and include those
command lines in your.xsession or .xinitrc file. See “Customizing your Session Start-up”
on Page 72, for information on configuring your session.

By default,xlsclients lists the clients running on the display corresponding to the DIS-
PLAY environment variable, almost always the local display. You can list the clients
running on another display by using the-display command line option. See Chapter 3,
Opening Additional Windows, for more information about the-display option.

With the option -l (indicating long), xlsclients generates a more detailed listing.
Figure 8-17 shows the long version of the listing on the previous page.

Window 0x30000e:
 Machine: colorful
 Name: xterm
 Icon Name: xterm
 Command: xterm -geometry 80x24+10+10 -ls
 Instance/Class: xterm/XTerm
Window 0x40000b:
 Machine: colorful
 Name: xclock
 Icon Name: xclock
 Command: xclock -geometry -0-0
 Instance/Class: xclock/XClock

CHAPTER 8: OTHER STANDARD CLIENTS 211

8
Figure 8-17. Long xlsclients listing

For each client,xlsclients displays six items of information: the window ID number,
machine name, client name, icon name, command line used to run the client, and the
instance and class resource names associated with the client.

As we’ll see in Chapter 9, many clients, includingxterm, allow you to specify an alternate
name for a client and a title for the client’s window. If you’ve specified a title, it will appear
in thexlsclientsName field. If you haven’t specified a title but have specified a name for
the application, the name will appear in this field. Neither of the clients in the sample dis-
play has been given an alternate name or title.

You use the instance and class resource names to specify default window characteristics,
generally by placing them in a file in your home directory. This is described in detail in
Chapter 10,Setting Resources.

8.3.4 Listing the Currently Running OpenWindows Clients: psps
psps is an OpenWindows-specific tool to list the currently-running xnews clients, both
those talking the X11 protocol and those using the NeWS protocol. Its output will be useful
primarily to those developing NeWS applications, since there is, for example, no docu-
mented way to kill a NeWS client by its process id. In particular, the “ID” numbers donot
correspond to the X11 “resource ID” used withxkill described above; trying to use the PS
ID as the-id argument toxkill results in a “BadValue’ X Error, indicating that X11 does
not recognize the ID as a resource ID.

Here is an example output:

% psps
 ID State Pri ESS OSS DSS Name
> 0x2e0088 runnable 0 6 3 2 psps
> 0x2e2218 IO_wait 100 2 0 3 darian X11 client
> 0x2de218 IO_wait 100 2 0 3 darian X11 client
> 0x232218 runnable 100 2 0 3 darian X11 client
> 0x2c2dbc input_wait 0 2 0 2 RoundBaseFrame
> 0x236218 IO_wait 100 2 0 3 darian X11 client
> 0x212218 IO_wait 100 2 0 3 darian X11 client
> 0x19e218 IO_wait 100 2 0 3 darian X11 client
> 0x204218 IO_wait 100 2 0 3 darian X11 client
> 0x206218 IO_wait 100 2 0 3 darian X11 client
> 0x1f4218 IO_wait 100 2 0 3 darian X11 client
> 0x1f6218 IO_wait 100 2 0 3 darian X11 client
> 0x1ed440 IO_wait 100 4 3 1 X Listener %socketl/tmp/.X11-unix/X0
> 0x1edb5c IO_wait 100 4 3 1 X Listener %socketl6000
> 0x1e21e0 IO_wait 100 4 3 1 NeWS Listener unix
> 0x1e0c54 IO_wait 100 4 3 1 NeWS Listener tcp
> 0x1d638c input_wait 100 6 1 2 Global System EventMgr
> 0x1d79f8 input_wait 0 6 1 2 Global UI EventMgr
> 0x1be500 zombie 0 0 0 0 nullprocess
> 0x199e88 zombie 0 0 0 0 NullCanvasEventMgr
%

212 X USER’S GUIDE: OPEN LOOK EDITION

8
As you can see, the output resembles a UNIXps command output, hence the namepsps
(PostScript Process Status). It is in fact a listing of the “lightweight processes” running
inside the X/NeWS server program.

The last column is a textual description of the program; X11 clients are listed by the host
they are from, but are not further identified. NeWS clients are identified by the type of their
top-level window;RoundBaseFrame is the round NeWS clock shown in several of the
examples in this book. Details of the other columns may be found in the reference page in
Section Three of this guide.

8.3.5 Getting Information about the Display: xdpyinfo
Thexdpyinfo client gives information about the X display, including the name of the dis-
play (contents of the DISPLAY variable), version and release of X, number of screens,
current screen, and statistics relating to the color, resolution, input, and storage capabilities
of each screen. Thexdpyinfo reference page in Part Three of this guide shows a listing for
a display that supports both a color and monochrome screen.

Much of the information provided byxdpyinfo has to do with how clients communicate
information to one another and is more relevant to a programmer than to the typical user.
However, the basic statistics about the name of the display, the version and release of X,
and the number and nature of screens might be very helpful to a user, particularly one who
is using a display for the first time.

The output ofxdpyinfo appears on its “standard output”, normally it appears in the terminal
emulator window from which you started it. The output is voluminous; you probably want
to pipe it throughmore or pg.

In addition, the detailed information about each screen’s color capabilities can also be very
valuable in learning how to use color more effectively. This information includes the
default number of colormap cells: the number of colors you can use on the display at any
one time. See Chapter 12,Setting Resources, for more information on the use of color and
how to specify colors for many clients.

If you are of a programmatic bent, refer to Volume One,Xlib Programming Manual, for
insights into some of the other information provided byxdpyinfo.

8.4 Killing a Client Window
You can normally kill any client with theQuit item at the bottom of theOPEN LOOK Win-
dow Manager’sWindow menu. For this reason, mostOPEN LOOK clients do not provide a
specialQuit button or command. Programs such as terminal emulators, of course, can be
terminated by exiting the shell in them, either by theexit keyword or by typing your EOF
character (normally CTRL/D). However, there are a few cases when you need something
more drastic; these should only be used as a last resort, as theyare drastic.xkill kills an X
client, andpam hides (but doesn’t kill off) a NeWS window. These are described in the fol-
lowing sections.

CHAPTER 8: OTHER STANDARD CLIENTS 213

8
Generally, you should exhaust the safer alternatives before you usexkill and other com-
mands that kill a client. When you want to remove a window, depending on the client and
what commands it recognizes, try these methods (roughly) in this order:

1. TheQuit item on the window menu

2. Methods that cause the client to exit after finishing relevant processes:

■ Special commands (e.g.,exit) or key sequences (e.g., Control-D, Control-C, q, Q) rec-
ommended to stop a client.

■ Certain application-specific menu items (e.g., forxterm, theMain Options menu com-
mandsSend HUP Signal, Send TERM Signal, andQuit).

■ TheQuit button on those applications which provide one

3. When these methods don’t work,then use commands or menu items that kill the
client:

■ The Send KILL Signal item on thextermMain Options menu, for removingxterm
windows only. (See Appendix A,The xterm/olterm Terminal Emulator.)

■ The UNIXkill command with the client’s process ID number, which is determined using
ps. (This method of removing a window is described forxclock earlier in this chapter.*)†

■ Thexkill client (described below) or, for NeWS clients,pam (see Section 8.4.2, “Killing
a window with pam NeWS-based (OpenWindows only).

8.4.1 Killing a Client with xkill
The xkill program allows you to kill a client window or, more specifically, to force the
server to end the connection to the client. The process exits and the associated window is
removed.

xkill is a fairly drastic method of terminating a client and shouldnot be used as the method
of choice. In most cases, clients can be terminated in other ways. The possible repercus-
sions of usingxkill and some of the alternatives are discussed in the next section.

xkill is intended primarily to be used in cases where more conventional methods of remov-
ing a client window do not work. It is especially useful when programs have displayed
undesired windows on the screen. To remove a stubborn client window, type:

% xkill

on the command line of anxterm window. The pointer changes to a “draped box” pointer
and you are instructed to:

Select the window whose client you wish to kill with button 1 . . .

† This method is powerful but in practice has limitations. UNIX only allows you to kill a process if you are the
owner of the process or if you are root. Thus, if a client has been started on your display from a remote system
and you don’t know the root password, you may not be in a position to use the UNIXkill command.

214 X USER’S GUIDE: OPEN LOOK EDITION

8
Move the draped box pointer to the window you want to remove, as shown in Figure8-18,
and click the first pointer button. The window is removed. (xkill does not allow you to
select the root window.)

You can also specify the window to be killed by itswindow ID (also called theresource
ID). Every window has an identification number associated with it. Thexwininfo client can
be used to display a window’s window/resource ID (see the section “Window and Display
Information” later in this chapter).

To remove a window using its ID number, type:

% xkill -id number

The window with the IDnumber is removed. Killing a window by its ID number is more
cumbersome but it’s somewhat safer than choosing the window to be killed with the
pointer. It’s too easy to click in the wrong place. (Of course, it’s less treacherous to use the
pointer on an isolated window than a window in a stack.)

Do not usexkill on an icon window, as they are always created by the window manager,
not the application; if you do use xkill on the icon, therefore, you will kill your window
manager and not the application!

8.4.2 Killing a window with pam NeWS-based (OpenWindows only)
It sometimes happens that a NeWS client will die and leave its window up on the screen.
To “hide” windows permanently, there is an OpenWindows tool called “pam”.

Figure 8-18. Selecting the window to be removed.

CHAPTER 8: OTHER STANDARD CLIENTS 215

8
It works likexkill in that it gives you a special cursor that you click on a window, and gives
you the message (on standard output):

Click on the stuck window to spray some Pam (tm) on it...

When it has hidden the window, it says:

Unstuck! Remember, you can’t see it, but it’s still there.

to remind you that any resources the window was consuming are still in use. Further, if you
usepam on an X window that is active, the window is simply unmapped; the process isnot
killed; you would then have to use the UNIXkill command to terminate it, as there is no
good way to re-map apammed X11 window.

8.5 Demonstration Programs and Games
In one sense, many of the standard MIT clients are “demonstration” programs as they are
intended to demonstrate the Athena widgets, both to users and to programmers. But some
are specifically written to demonstrate aspects of The X Window System, and others are
games for the pure and simple fun of playing.

We’ve now looked at most of the standard clients in a distribution of The X Window Sys-
tem. Now we turn our attention to some special-purpose graphics clients, both in standard
X and in theOPEN LOOK distributions.

Table 8-2. X11 Demonstrations and Games

Name Function Notes

plaid

puzzle

MORE TO COME

216 X USER’S GUIDE: OPEN LOOK EDITION

8

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 9: GRAPHICS CLIENTS 217

9

Chapter 9GRAPHICS CLIENTS

CHAPTER 9

Graphics Clients

The X Window System is rich in graphical capabilities†. This chapter explores some of the
graphics utility programs that come standard with X, as well as some of theOPEN LOOK
extensions and some commercial and contributed software. We look at:

■ programs for collecting and viewing bitmapped graphics from the system,

■ programs for editing bitmap files,

■ a brief survey of commercial desktop graphics programs for theOPEN LOOK GUI,

■ programs for displaying PostScript graphical images, and

■ programs for editing font images for use in X11.

9.1 Bitmap Gathering and Viewing
A bitmap or raster is a grid of pixels, or picture elements, each of which is white, black, or
in the case of a color display, a color. There are several methods of obtaining bitmap files.
This section describes several programs that use a method called “screen capture”; this
term means recording in a file the contents of the actual display. Another is “bitmap edit-
ing”, discussed in Section 9.2, “Bitmap Editing and Conversion” on Page 231.

After you’ve been using any window system for a while, there comes a time when you need
to record the image of what is on the screen. It may be that you are having problems with
somebody else’s software, and want to show exactly what all the pop-up windows looked
like at a particular time. Or you may be writing documentation about how to use some par-

† Fordeveloping full-fledged graphics software, see PHIGS, the Programmers’ Hierarchical Interactive Graphics
Systems, and PEX, the Phigs Extension to X, described in thePHIGS Programming Manual. When PHIGS/PEX
becomes more popular, we can expect to see a real increase in the number of impressive graphics programs run-
ning under X.

218 X USER’S GUIDE: OPEN LOOK EDITION

9
ticular graphics tool, and want to get a bitmap file to show how the screen looks at some
particular point. OpenWindows features a program calledsnapshot that can grab the whole
screen, one window, or a defined region, and lets you save or print the image.xwd is a stan-
dard X11 program to dump an entire window; it can be used with some filter programs to
print screen windows. And all X11 distributions include a program calledxmag for looking
at part of the screen.

Two contributed clients,xloadimage andxv, do a good job of displaying graphics. They
specialize in different jobs:xloadimage can load well-nigh any graphics image you are
likely to find. Thexv client can load a smaller variety of image formats, but can do far more
with the image once it’s loaded, including cropping, scaling, and writing it out. Both pro-
grams have the convenient property that they can directly read files compressed with the
standard UNIXcompressfacility. xv can also grab and save a region of the screen.

See also the unbundled Sun ShowMe program in Section7.18, “ShowMe - graphical con-
ferencing” on Page 180.

9.1.1 Snapshot – the on-screen photographer (OpenWindows)
As we’ve seen, you can usexwd to dump one window or the whole screen, but it’s cumber-
some to use when you want a region of the screen that doesn’t correspond to one window.
That is wheresnapshot comes in.Snapshot takes a picture of any part of your screen, just
as if you had taken an instant camera and shot a photograph of the screen. The advantages
of snapshot are that it’s always in focus, never runs out of film (until your disk is full), and
lets you record either the whole screen, or any part of it, or any one specific window. You’d
record the whole screen only rarely. To record one window with some dialog boxes, you
might use the region (part of screen) mode. And to show a close-up of one program’s win-
dow, just record that window.

Figure 9-1 shows the control panel for snapshot†.

Figure 9-1. Snapshot’s control panel

CHAPTER 9: GRAPHICS CLIENTS 219

9
The main operations areSnap andView. The three kinds of things you can “snap” are a
single Window , a selectedRegion , or the entireScreen . Once you have a snapshot in
the program’s memory, you can selectView to display it (to ensure that what you saw is
what you got, or to view a snapshot that you loaded withLoad), or Print . And you can
Load orSave an image; the former lets you use this program as a viewer as well as a snap-
shot program. Let’s look at each of these operations in a bit more detail now.

When you pressSnap with the Type set toWindow, theSnap button becomes busy.
Here we are about to take a picture:

Notice that the left footer becomes

SELECT - Select Window. ADJUST or MENU - Cancel.

to tell you what your two choices are. To snapshot the window you want, then, move the
pointer into that window, and click the SELECT mouse button. Nowsnapshot goes and
reads the contents of the window from X, and saves it for later writing into a file. When you
select a single window, snapshot gives you the image of just that window - the titlebar is
excluded. To include the titlebar, simply to click the button in theolwm titlebar instead of
in the window.Your normal next step isView to convince yourself that you really suc-
ceeded in saving the given window into the program’s buffer. Just press the SELECT
mouse button onView and you will get a display that should be a copy of the window you
clicked in. When done with this display, un-pin it or pull down itsWindow Menu and
release onDismiss. ThenSave the image to a file if it’s what you want. You can save the
file either by theSave... menu button, or by dragging it from the drag-and-drop target onto
any running File Manager, which will save it under the nameraster (orraster0, raster1, ...)

† The OpenWindows Version 2 snapshot has a different window layout but behaves in essentially the same way.

Figure 9-2. Snapshot: Snap Window operation

220 X USER’S GUIDE: OPEN LOOK EDITION

9
in its current directory; this may be preferable to trying to type a long directory path in the
Save dialog.

TheSnap Region control works similarly, but lets you selectany rectangular area of the
screen. For example, if we want to document how a row of icons looks:

We can move the pointer to one corner (say the upper left), click SELECT and hold it, drag
the pointer to the opposite corner (in this case the lower right), and let go. Then when we
click the ADJUST button, the snapshot will actually be taken. If we realize we didn’t want
to proceed, we just click the MENU button to cancel the operation (the word Cancel some-
times got truncated due to a bug in Version 2, or even in Version 3 with -scale large in
effect).

If you want to capture an image of theentire screen, set the Type to Screen and click
SELECT, and it will be done. There is no request for you to Click SELECT, since there is
no need; there only is one root window or screen,†so selectingSnap Screen is enough –
snapshot goes ahead and does it. Immediately. This may not always be what you want,
though. If you are trying to arrange the entire display, but you don’t want the camera (snap-
shot) to appear in the picture, you can check theHide Snapshot During Capture checkbox.
When you select this, it automatically sets the timer to 8 seconds, and keeps it there as long
asHide Snapshot During Capture is enabled. When not using the Hide feature, the timer
can be set to any number of seconds shown in the exclusive choice - 0, 2, 4, 8 or 16. And
an audible countdown can be enabled or disabled by selecting theTimer Bell toggle. The
timer will normally beep while it is running.

If you try to take a snapshot of a program that has a popped up menu or a notice, you will
notice that it doesn’t work. This is because popup menus and notices use what is called a
grab in X11 terminology – they take exclusive control of the X Server, and mouse button
clicks anywhere in the screen are passed to that program. What you need is a way to make
the program run without doing the grab. You have to re-start the application in a special
non-grab mode, popup the menu or notice that you want to show, and then you usually
have to kill off the application, because it cannot work without the grab. If the program was
written with the XView toolkit, use the -Wfsdb (window full-screen debug) command
line option. For example, Figure 9-2 was produced with the command

snapshot -Wfsdb &

† If you’re on a machine with multiple screens, theSnap Screen option captures the screen that it is running on.

Figure 9-3. The Desired Picture

CHAPTER 9: GRAPHICS CLIENTS 221

9
to make thesnapshot program put up its notifier without grabbing the server; this allowed
me to click onsnapshot’s Snap Region command and have the mouse clicks passed to
snapshot rather than just being able to click in the notice.

Another method of grabbing such things is to use the delay setting along withSnap
Region , and pop up the menu during the delay.

The controlView Snap has already been discussed; it displays the image in the program’s
buffer. You can even use this to display Sun Raster format files created by other programs:
as long as the name in theDirectory andFile text fields matches a valid file,snapshot will
try to display it.

Load... andSave... let you save your snapshot, or load another one for examination.
In either case, a simple pinnable Load/Save dialog box is popped up in which you can spec-
ify the directory (if not the current directory) and the name of the file.

Lastly, thePrint control lets you print the current image. If you just click SELECT on this
control, the current image will be printed. But it has a menu mark; if you pull it down, you
see a menu ofPrint Snap or Options... The last item has a window mark (‘...’), so
if you click on it an options sheet appears, like the one shown in Figure9-4. This lets you
adjust various options such as portrait or landscape mode.

Figure 9-4. Snapshot: Print Options screen

222 X USER’S GUIDE: OPEN LOOK EDITION

9
There are numerous print options. You can have the image “printed” to a file, but the
default is to print it to a real printer, whose name defaults tolw (LaserWriter, a generic
PostScript printer). If you click onFile , thePrinter field is replaced by Directory and
File fields. You can request that the snap be printed in portrait (“Upright”) or landscape
(“Sideways”), and either Centered or at a particular position. You can have the image
printed actual size, double size, or you can specify Width, Height, or Both. Since at present
most of us can afford only monochrome printers, that is the default. But if you have a color
printer, feel free to check the Monochrome box off to print in color. In all cases, the pro-
gram rash, a standard part of OpenWindows, is used to convert the image from Raster
format into PostScript.

A quicker way of printing is to drag the image from thesnapshot program’s drag-and-drop
target (the rectangle in the upper right of the main window) onto a copy of theprinttool
program (described in Chapter 7,The OpenWindows DeskSet Clients). This way you need
only set your print options once, inprinttool, and all your print requests that go through
printtool will use these settings.

Snapshot works very nicely with normal X11 windows on OpenWindows. But Sun’s
OpenWindows also allows you to run NeWS and SunView clients. Becausesnapshot is an
X11 program, it cannot know about either NeWS or SunView clients. NeWS client win-
dows can easily be recorded by usingsnapshot’s Snap Region facility. However, SunView
clients are totally invisible. Neitherxwd (with the -root option) norsnapshot can “see” such
clients. This is because of the way the sharing of the screen is implemented; see Appendix
L, Running SunView Applications on OpenWindows, for details. What matters here is how
we can get an image of such programs. The best way we’ve found so far is to usescreen-
dump, an ancient and venerable SunOS program that simply copies the physical contents
of the frame buffer into a file on disk. Sincescreendump is not part of any windowing sys-
tem, it doesn’t care about NeWS, X11, SunView, or any difficulties or disagreements
among them. It simply copies what is visible on your screen into a disk file for you. Let’s
say you want to get a screen image of the SunViewfontedit program - this is how
Figure 9-22 of thefontedit program at the end of this chapter was produced. First, start the
program that you want to capture, and set its screen up the way you want it. Then, move
the program’s window†to the upper left of the screen. This is position (0,0), and makes the
following steps easier. From a shell window, run

screendump > screen.rs

But that dumps the entire screen. If you only want one part of the screen, you can specify
options that request part of the screen, or use a copy ofsnapshot with theGrab Region con-
trol to select the part you want. If you prefer command-line-based methods, you could use
the PBMplus package, described later in this chapter, to cut out the part you need. For this
example, we used

screendump -X 680 -Y 710 > fontedit.rs

† The SunView mouse conventions are different from those ofOPEN LOOK; see Appendix L,Running Sun-
View Applications on OpenWindows. Briefly: click and hold the middle pointer button on the titlebar to move a
SunView window.

CHAPTER 9: GRAPHICS CLIENTS 223

9
(note upper case X and Y) to just get the 680x710 region from the upper-left corner. Unfor-
tunately, the 680 and 710 had to be derived experimentally, sincexwininfo won’t report on
a SunView window, even in OpenWindows Version 3.0. For more information onscreen-
dump, see the reference manual page in your SunOS manual set.

9.1.2 xwd, xwud – Dump an X Window
If you don’t have the OpenWindows DeskSet tools, you may wish to use the MIT standard
clientxwd to capture images in a “dump” format.xwdstores window images in a formatted
window dump file. This file can be read by certain other X utilities for redisplay, printing,
editing, formatting, image processing, etc.

To create a window dump file, type:

% xwd > file

The pointer will change to a small cross-hair symbol. Move the cross-hair pointer to the
desired window and click any pointer button. The keyboard bell rings once when the dump
starts and twice in rapid succession when the dump is finished.

To make a dump of the entire root window (and all windows on it), use the-root option:

% xwd -root > file

When you select a single window,xwd takes an image of the window proper. To include
the titlebar, simply to click the button in theolwm titlebar instead of in the window.

xwd allows you to capture a single window or the entire root window. But what if you want
an image that includes more than one window or parts of multiple windows? One method
is to usexmag (described below) to capture an image of multiple windows and then use
xwd on thexmag window! Sincexmag is intended to magnify, if you want the window
image to be the actual size, you must specify that no magnification is performed. To do
this, you runxmag with the option-mag 1 . See thexmag reference page in Part Three of
this guide for more information. For OpenWindows users, a more flexible method of cap-
turing part of the screen is to use the “Snap Region” option ofsnapshot, which we’ll
describe shortly.

To redisplay a file created withxwd in a window on the screen, use thexwud client, an
undumping utility. Specify the dump file to display as an argument to the-in option:

% xwud -in file

When you get tired of looking at it, you can remove the image by pulling down and releas-
ing Quit in theWindow Menu. If you prefer, you can type Control-C (yourINTR character)
in the shell window from which you startedxwud.

9.1.3 xpr, xdpr – Print an X Window
xpr takes as input an X Window System dump file produced byxwd and converts it to a
printer-specific format that can be printed on the DEC LN03 or LA100 printer, a PostScript
printer such as the Apple LaserWriter, the IBM PP3812 page printer, and as of Release 4,
the HP LaserJet (or other PCL printers) or the HP PaintJet. By default, output is formatted
for the obscure DEC LN03 printer. Use the-device option to format for another printer.
For example, to format a window dump file for a PostScript printer, type:

224 X USER’S GUIDE: OPEN LOOK EDITION

9
% xpr -device ps file > file.ps

Other options allow you to change the size, add headers or footers, and so on. See thexpr
reference page in Part Three of this guide for details.

You can usexwd and xpr together, using the standard UNIX pipe mechanism. For
example:

% xwd | xpr -device ps | lpr

Because this is such a common operation, there is anxdpr shell script (csh) that rolls these
three commands into one.xdpr accepts most of the options accepted byxwd, xpr, andlpr
(1). Thus, you could use the command:

% xdpr -device ps

to take a window dump (xwd), convert that file to PostScript (xpr -device ps), and
print the output (lpr). See thexdpr reference page in Part Three of this guide for more
information.

If you routinely usexdpr with some device other than the now-defunct LN03, you can pro-
vide another default device by editing a copy ofxdpr†

Hopefully a future version ofxpr will allow use of X resources (see Chapter 12,Setting
Resources) to specify the default printer.

Note that when you start piping together the output of X clients, you run into some ambi-
guities. For example, if you pipe the output ofxwd to xpr and for some reason thexpr
command fails,xwd will still be there waiting for pointer input. The original UNIX pipe
mechanism doesn’t have the concept of data dependent on pointer input! The integration of
the UNIX model of computing (in which standard input and output are always recognized)
and the window model is not always complete, sometimes leading to unexpected behavior.

As an even more flagrant example, you can create a pipe between two programs, the first
of which doesn’t produce standard output and the second of which doesn’t recognize stan-
dard input. The shell doesn’t know any better and the programs themselves go on their
merry way with pointer and windows.

However, it is nice to know that you can pipe together program output, even when some of
those programs may not produce output until you intervene with the pointer.

Even without pipes, you should start thinking about how these programs could work
together. For example, the pictures of fonts in Appendix C,Standard Bitmaps - X11, OPEN
LOOK and OpenWindows, were created by these steps:

1. Display a font withxfd. (See Chapter 10,X11, OPEN LOOK and OpenWindows
Font Specification, for instructions on how to use xfd.).

2. Resize the window to improve readability, using the window manager.

† You may wish to change the initialization of the variablexprv from set xprv=() to set
xprv=(-device ps) near the start of the file.

CHAPTER 9: GRAPHICS CLIENTS 225

9
3. Create a window dump file with the commandxwd > file .

4. Create a PostScript file from the dump with the command:

xpr -device ps file > file.ps

Print the PostScript file on a PostScript printer with the standard print commandlp or lpr
command.

Even though the UNIX shell will accept a pipe betweenxfd, xwd, andxpr, what actually
happens is thatxwd starts up faster thanxfd, and is ready to dump a window before thexfd
window appears.

9.1.4 Xloadimage
Thecontributed client Xloadimage does not save images, but will load nearly any graphics
image, and present it on your X screen. To use it to view a file, sayface.xbm, simply type

xloadimage face.xbm

If the file is a picture in any of the known formats, you will get a message like

face.xbm is a 47x64 X11 bitmap file titled ’UofT’

and then a window with that image in it will appear:

In some bitmap formats a “title” is stored with each image, while in other formats it is not.
If your bitmap file has a title, it will be printed in the message (as it was in this example)
and displayed in the window’s titlebar (though it will be truncated if the bitmap is small).
If there is no title, the last part of the pathname (the “filename” part) will be used.

Multiple bitmaps may be displayed just by giving more than one bitmap file name on the
command line. To display multiple bitmaps sequentially, you just give the filenames on the
command line in the order you want them to appear†. To move from one bitmap to another,
type a letter “n” in the bitmap display window.

For example,

xloadimage face1.xbm face2.xbm face3.xbm

This would display the bitmap fromface1.xbm; to get at the second bitmap, move the
pointer into the bitmap and type “n” for “next”. There are a few other single-letter com-
mands listed in the reference manual; the most useful is probably “q” for “quit.”

† An earlier version of this program would combine multiple bitmaps given on the command line into a single
bitmap. If you have this version, add-slideshow to display multiple bitmaps.

Figure 9-5. xloadimage face.xbm

226 X USER’S GUIDE: OPEN LOOK EDITION

9
If the bitmap is too large to fit comfortably on your screen,xloadimage will display only a
part of it. However, the program does not use scrollbars to move around. Instead, you
“grab” the bitmap by pushing pointer button number one, and “drag” the display around.
This does not conform to any standard (OPEN LOOK, Motif, or Athena), but in practice it
works fine.

The number of formats supported byxloadimage is impressive, and it grows regularly
because the program source code is structured to make it easy for C programmers to add
code for new file types. Here is a recent list of the more common formats:

 Some programmers have added their own proprietary formats as well; these are not in
widespread use so they aren’t shown here. It’s fairly easy for a C programmer to add new
types.

One problem withxloadimage is that it has difficulty with certain full-color images; it
often fails to get the colors right. This will probably be corrected in a future release, though.

9.1.5 Xv
While xloadimage has a real breadth of file types, another contributed program calledxv
has a wide variety of operations.Xv as distributed can only read the GIF, PBM/PGM/PPM,
XBM, SunRaster, JPeg and TIFF formats, as well as one local format called PM. But it can
do quite a bit with images. It can re-scale an image. It can rotate images in 90-degree steps.
It can “crop” images, throwing away extraneous sections of background. It can change the

Table 9-1. Common XLoadImage Bitmap Formats

Formats Supported

FBM (Fuzzy BitMap library) Image

Sun Rasterfile

Sun Icon file

CMU WM Raster

Portable Bit Map (PBM, PGM, PPM)

USENIX/UUNET Faces Project

GIF Image

X Window Dump (fromxwd)

X Bitmap

X Pixmap

Group 3 FAX Image

MacPaint Image

CHAPTER 9: GRAPHICS CLIENTS 227

9
coloring (use fewer colors, perform “gamma correction”, etc.). It can write out images in
the same formats it reads, plus a few others such as PostScript. And it can grab regions of
the screens (but not particular windows). As the program’s own author says:

“It slices, it dices, and it’ll balance your checkbook if you aren’t careful.”

Let’s runxv on the sample bitmaps we used withxloadimage. First, the face file. We’ll give
the command

xv face.xbm

and see how it looks:

But this is rather hard to see, so let’s resize it, usingolwm to grab and drag one of the resize
corners. When we let go,xv gets notified that its window is resized, so it scales the bitmap
and redisplays it. For a large full-color bitmap this might take some time, but for this sim-
ple example it is almost instantaneous. The result is not impressive, because the underlying
bitmap needs to be cleaned up. (We’ll look at tools for doing so in the next section.)

Figure 9-6. xv face.xbm.

Figure 9-7. Bitmap after re-scaling.

228 X USER’S GUIDE: OPEN LOOK EDITION

9
When you want to do more to your image, you can click the right button (which is normally
the MENU button inOPEN LOOK), and get the control screen. This program is not written
to useOPEN LOOK; indeed, its control interface is more like that of the Macintosh™:

If you have multiple files, they will appear in the filename list. To the right of that list are
buttons forNext andPrevious (which are grayed out here because there is only one file),
Info which pops up the Information window in Figure9-9,Save which lets you save the file
in any of several formats, andQuit which gets you out ofxv.

Notice the window mark; this is not a popup window, but another main window. If you
want to get rid of this window, you can just click in it. Or, click on theInfo button again. If

Figure 9-8. Xv controls

Figure 9-9. Xv Info Screen.

CHAPTER 9: GRAPHICS CLIENTS 229

9
you select theSave button, the program will pop up another dialog box, thexv save dialog,
shown in Figure 9-10.

Like the control panel, the save dialog is a full window, not a popup window, and it is more
Mac-like thanOPEN LOOK-ish. To select a format, for example, you click the left button
(normally SELECT) in the circle beside the name of the format you want to use, and that
circle gets a black circle inside it to indicate it is highlighted. This type of choice item is
commonly called a “radio button”. AnOPEN LOOK program would use either an exclusive
choice or (more likely) an abbreviated choice, since you are unlikely to change formats
very often.

To save a file, type its name into theFile name text box. As soon as you start typing, the
Save button becomes active, and can be clicked on when you have finished typing the file-
name and chosen the size, format, and color model you want from the button selection
panel.

Figure 9-10. Xv Save Dialog.

230 X USER’S GUIDE: OPEN LOOK EDITION

9
The Visual Schnauzer gives a directory view similar to that of the Sun File Manager
described in Chapter 4,Using the OPEN LOOK File Manager. Initially it appears as
shown in Figure 9-11

This in itself is fairly impressive. But it really comes to life when you notice that the box at
the top right, labelledMisc Commands, is a pull-down menu (use theLeft pointer button to
activate it). If you selectGenerate Icons from this menu, any files in that directory that are

Figure 9-11. xv Visual Schnauzer

CHAPTER 9: GRAPHICS CLIENTS 231

9
graphic files that xv can handle get replaced by iconic views of the pictures. The display
now looks like Figure 9-12

This is a very powerful feature for browsing a directory of images. However, be aware tht
the images are stored on disk (in a subdirectory called #), and can take up to 4Kb per image
for color. When you’re finished with them, you can remove the.xvpics directory, since it
only takes a minute or two to regenerate.

9.2 Bitmap Editing and Conversion
This section looks at some programs that can be used for creating or modifying simple bit-
map images such as those used by The X Window System for program icons, and by the
OPEN LOOK GUI for filemgr icons.We also look at one more advanced program,touchup,
for editing larger bitmap pictures. Finally, we take a look at a toolkit for converting bitmap
images among dozens of different formats and otherwise massaging them.

9.2.1 iconedit (OpenWindows)
 Iconedit is a bitmap editor that uses theOPEN LOOK GUI, so it is consistent with what you
may expect, and it edits files in Sun “Icon” format in addition to XBM (X BitMap) and
XPM (X PixMap) format.Iconedit is also similar in operation tobitmapand olpixmap,
which will be described below. When started,iconedit puts up an empty edit window with
numerous controls (see Figure9-13). At this point, you can just move the pointer into the
large drawing region and use the pointer buttons. The left (SELECT) button will turn indi-
vidual points (pixels) on, while the middle (ADJUST) button will turn them off. Dragging

Figure 9-12. xv Visual Schnauzer with icons

232 X USER’S GUIDE: OPEN LOOK EDITION

9
the pointer with either of these buttons depressed will continue the action, so you can draw
simple figures just by holdingSELECT and dragging the pointer.

The screen features Menu Buttons for File, View, Edit and Properties. File lets you load an
existing image, save the screen image to a file, or print the screen image. The main window
also has icons to select pixel drawing, lines, rectangles, circles, text (“abc”), region selec-
tion, and erasing. Unlike simpler programs such asbitmap (see Section 9.2.2, “bitmap” on
Page234), this program lets you addtext in a variety of faces and sizes into your bitmap.
These are controlled from the Text window, which appears when you clickSELECT on the
button with “abc” on it.

You can also select from one of several fill patterns by selecting one of the icons at the top
right of the window. These will be used for filling rectangles, circles, or ellipses that you
draw. The default is white, that is, no filling.

Figure 9-13. Iconedit start-up screen after a bit of freehand drawing.

CHAPTER 9: GRAPHICS CLIENTS 233

9
If you are on a color display, you can choose whether you want to edit a color or mono-
chrome (“B&W”) image. On a monochrome display, you can only edit monochrome
images.

Iconedit also has the ability to all or part of move the bitmap up, down, left or right one
pixel at a time (the four directional arrows), to flip it vertically or horizontally (the double
arrows), and even to rotate the bitmap either clockwise or counterclockwise (the circular
arrows). These can be very useful features.

For example, here is a simple demo icon, with the text window shown, just after we used
theText mode to put the words “My Demo” at the bottom:

TheView menu has only one item, that isGrid on or off. The Grid is a background of ver-
tical and horizontal lines to help you align objects on the screen.,

Figure 9-14. Iconedit in action

234 X USER’S GUIDE: OPEN LOOK EDITION

9
 The Edit menu (which is also the default menu when you press theMENU pointer button
in the drawing area) lets you cut or paste an area of the screen, undo changes, etc. Notice
that the OpenWindows L-keys, such as L6 for Copy, L8 for Paste, L10 for Cut, and L4 for
Undo, all work in this context and indeed in most oficonedit.

TheProperties menu does not get a Properties sheet, but lets you choose the format and
size of the image. The known formats are XView Icon, X Bitmap, Color X Pixmap, and
Monochrome X Pixmap. The sizes are shown in Table 9-2.

There is much more toiconedit than we have shown here. Try it out!Iconedit is a good
choice for the OpenWindows user to edit bitmaps.

9.2.2 bitmap
If you have noOPEN LOOK package installed, you can use thebitmap program. the sim-
plest and most widely available of the bitmap editing programs discussed in this section. It
does not conform to theOPEN LOOK GUI nor to the OSF/Motif conventions, but itis
included in the standard X11 software, so it is available almost anywhere that The X Win-
dow System goes.

Like iconedit, bitmap allows you to create and edit smallbitmaps. You can usebitmap to
create backgrounds, icons, and pointers. bitmap is primarily a programming tool for appli-
cation developers. However, several applications allow you to design your own icon or
background pattern withbitmap, save it in a bitmap file, and specify that filename on the
command line.†

For example,xsetroot (described in Chapter 14,Customization Clients) allows you to spec-
ify a bitmap that will be used as the background pattern for the root window or as the root
window pointer.

To invokebitmap, type:

% bitmap &

† There are many bitmaps included in the X distribution. These can generally be found in the directory$OPEN-
WINHOME/share/includeor /usr/include/X11/bitmaps. Samples are shown in Appendix C,Standard Bitmaps -
X11, OPEN LOOK and OpenWindows.

Table 9-2. IconEdit File Formats

Size Format

16x16 Standard X Cursor

32x32 OpenWindows File Manager Icon

48x48 (unused)

64x64 olwm program Icon

128x128 (unused)

CHAPTER 9: GRAPHICS CLIENTS 235

9
If you provide a filename that contains an existing bitmap, it will be loaded (X11R4
required you to do so), otherwise a blankbitmap window is displayed, as shown in
Figure 9-15.

The window thatbitmap creates has three sections:

1. At the top is a partial “menu bar”, with a File and Edit menu and a display of the
current filename (if any) and size (16x16, but it usually gets truncated).

2. The largest section is the checkerboard grid, which is a magnified version of the
bitmap you are editing. The default size grid for new bitmaps is 16x16. (For existing
bitmaps, the size of the grid will be the size of the bitmap. For example, if you open

Figure 9-15. Bitmap window

236 X USER’S GUIDE: OPEN LOOK EDITION

9
a file containing a bitmap of size 100 pixels by 62 pixels, the grid will be 100 cells
wide and 62 cells high.) If the cells in the grid aren’t large enough for comfortable
editing, resize the window. Each square on the grid will be enlarged proportionally.

3. On the left side of the window is a list of commands in command buttons that you
can invoke with any pointer button.

If you want to create a new bitmap in a grid of different proportions than the default size
16x16 grid, you can specifyWIDTHxHEIGHT on the command line afterfilename . For
example, to create a grid double the default size, enter:

% bitmap filename 32x32 &

The WIDTHxHEIGHT argument is used only when creating a new bitmap. Existing bit-
maps are always edited at their current size; this programcannot re-size bitmaps.

Keep in mind that there is an interaction between the size of the bitmap being edited and
the size of thebitmap window. By default, each cell in thebitmap editing area is 13 pixels
square. If the bitmap being edited is large, this may result in an application window larger
than the screen. (Sincebitmap does not provide a scrollbar, a large window may make it
impossible to edit!) Specifying an explicit size for the overall application using the-
geometry option (or resizing it with the window manager) will change the size of the
editing window becausebitmap will automatically adjust the size of each editing cell to fit.

However, this type of adjustment has limitations. Thebitmap application defines a mini-
mum size of 3 pixels for the cells in the bitmap editing area. This means that in the smallest
bitmap window you can create, each pixel in the bitmap itself will be represented by a cell
3 pixels square. Even if this adjustment creates a window that fits on your screen, it is
extremely difficult to edit individual pixels represented by cells 3 pixels square.

Since we have covered theOPEN LOOK bitmap editors, we do not discuss the MITbitmap
editor in detail here. Consult the client reference page in Part Three of this manual for more
details on thebitmap client.

9.2.3 touchup (SunView only)
Touchup is a sophisticated “draw” program, rivalling some of the Macintosh draw pro-
grams.Touchup is a contributed software application that at present is only configured for
the SunView system.†

However, it will therefore run on early versions of OpenWindows, and is interesting for
several reasons. It can edit much larger bitmaps than can the three text-mode bitmap appli-
cations described above. It has a wide range of brush types built in, and allows you to
define your own, including by picking part of an existing bitmap for use as a brush. And it
lets you specify write the bitmap out with a different size than you read in, which is useful
for cropping or fitting bitmaps. (This is not a scaling operation, but a cutting or padding
operation.)

† SunView is Sun’s popular pre-X11 window system. This program may have been ported to Sun’s XView toolkit
by the time you read this, which would make it available on any X platform. However, this is not guaranteed to
happen.

CHAPTER 9: GRAPHICS CLIENTS 237

9
Since it’s not (yet) a true application of The X Window System, we don’t have space to
describe the program in detail in this book. Here is a sample screen, editing my world-
famous “fishycat” bitmap (Copyright © by Ian F. Darwin):

Use of touchup will be obvious to anyone who’s used a paint program; to anyone who
hasn’t, and wants to do bitmap editing, I recommend getting a copy of this program (see
the Preface) and learning it.

9.2.4 Magnifying Portions of the Screen: xmag
Although it doesn’t actually capture part of the screen for you,xmag is a useful little pro-
gram for displaying part of the screen. Thexmag client enables you to magnify a portion of
the screen. The close-up lookxmag affords can assist you in creating and editing bitmaps
and other graphic images.

xmag is primarily a tool for application developers using sophisticated graphics programs.
But you could also usexmag in concert with thebitmap client. For instance, say you’re run-
ning a program that creates a special image on the root window and you’d like to create a
bitmap file of a part of that image. You can display a magnification of the image you want
with xmag and try to recreate the image by editing in an openbitmap window.

If you invokexmag without options, you can interactively choose the area to be magnified
(thesource area) and position the magnified image on your screen. At the command line,
type:

% xmag &

Figure 9-16. Touchup in action

238 X USER’S GUIDE: OPEN LOOK EDITION

9
The pointer changes to a small cross (the cross-hair cursor) in the center of a small, hollow
square with a wavering border. (By default, the square is 64 pixels on each side.) Move the
cross-hair cursor, placing the square over the area you want to magnify, and click the first
pointer button.

The hollow square becomes enlarged to the size of the magnified image. (By default, the
image is magnified five times.) By default,olwm places thexmag window containing the
magnified image in the upper-left quadrant of the display. Let’s say we want to see the icon
of snapshot blown up. Conveniently,xmag’s default viewing size is 64x64, the same as
OpenWindows icons. Center the active area over the icon, and click any pointer button, and
you should see a window similar to that shown in Figure 9-17

The string “Magnifying Glass” will be displayed in thexmag window titlebar. This is the
default title string of the application, and unlike most programs,xmag provides no way to
change it.

The default sizexmag window shows an area 64 pixels square, magnified five times. This
magnification enables you to see the individual pixels, which are represented by squares of
the same color as the corresponding pixels in the source image.

Figure 9-17. xmag window displaying magnified screen area.

CHAPTER 9: GRAPHICS CLIENTS 239

9
Rather than use the default source area and magnification, you can specify other values on
the command line. See thexmag reference page in Part Three of this guide for a complete
list of options. Quitting xmag

As a shortcut to quitting thexmag program, you can type q, Q, or Control-C in thexmag
window.

9.2.4.1 What xmag Shows You

xmag enables you to determine the x and y coordinates, bitmap bit setting, and RGB color
value of every pixel in thexmag window. (See Chapter 11,Command-line Options, for a
discussion of the RGB color model.) If you move the pointer into thexmag window, the
cursor becomes an arrow. Point the arrow at one of the magnified pixels and press and hold
down the first pointer button. A banner across the top or bottom edge of the window dis-
plays information about the pixel, as shown in Figure 9-18.

The banner displays the following information about the specified pixel:

■ The x and y coordinates relative to the window. The defaultxmag window is, in effect,
a grid of 64 squares on each side. Therefore, each pixel has x,y coordinates between 0,0
and 63,63.

I

Figure 9-18. Displaying pixel statistics with pointer in xmag window

240 X USER’S GUIDE: OPEN LOOK EDITION

9
■ The bitmap bit setting. This is either 0 if the pixel is in the background color or 1 if the

pixel is in the foreground color.

■ The RGB value. This is a 16-bit value. The RGB specification is in three parts (of four
hexadecimal digits each), corresponding to the three primaries in the RGB color model.

If you are trying to create a graphic image on a grid (such as thebitmap client provides),
the x and y coordinates of each pixel can be especially useful. Also, the 16-bit RGB value
specifies the color of each pixel with moderate precision. Depending on the number of col-
ors available on your display, you can learn to use RGB values to specify an enormous
range of colors (other useful tools for learning RGB values are the colormap editor inxv
(described above) and also xcoloredit).

xmag provides these pixel statistics dynamically. If you continue to hold down the first
pointer button and drag the pointer across the window, the banner will display values for
each pixel as the pointer indicates it.

9.2.4.2 Dynamically Choosing a Different Source Area

If you want to magnify another portion of the screen using the same source area size and
magnification, you do not have to startxmag again. Simply move the pointer into thexmag
window and click theADJUST pointer button, or press the space bar. The magnified image
disappears and the cursor again becomes a cross-hair surrounded by a hollow square. Move
the cross-hair cursor, placing the square over the new source area you want to magnify, and
click any pointer button. The magnified image is immediately displayed in the same loca-
tion as the first image.

9.2.5 The Portable Bitmap Toolkit
Unlike the on-screen editing provided by the above bitmap editing programs, the Portable
Bitmap Toolkit (in the user-contributed distribution) provides dozens of non-interactive
utilities for converting graphics files to and from portable formats. Developed by Jef Pos-
kanzer, the Toolkit is composed of four parts, three of which correspond to a particular
portable format:

■ PBM: utilities to convert files to and from portable bitmap format.

■ PGM: utilities to convert files to and from portable graymap format (grayscale images).

■ PPM: utilities to convert files to and from portable pixmap format (color images).

The fourth part of the toolkit, PNM, provides utilities to manipulate images in any of the
three formats. For example, the programpnmenlarge enlarges a portable “anymap” by a
factor you supply.pnminvert inverts an image in any of the three portable formats.

CHAPTER 9: GRAPHICS CLIENTS 241

9
The available utilities and the conversions they perform are summarized in theREADME
file in the source directory. Some representative conversion utilities and their functions are
listed in Table 9-3.

As the table indicates, some of the available utilities come in pairs—they can be used to
convert a file to a portable format and back to its original format again. (The table also
includes a group of three related utilities to convert X10 and X11 bitmaps to portable bit-
maps and back again.)

Certain conversions can only be performed in one direction. For example, you can convert
a portable graymap to a portable bitmap (usingpgmtopbm), but you can’t convert a bitmap
to a graymap. The one-way conversions generally involve changing a file to a simpler
format.

You’ll probably be most interested in converting graphics files to formats suitable for use
with X, namely X11 bitmaps or window dump files. Keep in mind that a portable bitmap
has a different format than an X11 bitmap. The programpbmtoxbm converts a portable bit-
map to a bitmap compatible with X11.

Table 9-3. Some PBM Toolkit Conversion Utilities

Utility Converts

giftoppm GIF to portable pixmap.

ppmtogif Portable pixmap to GIF.

ppmtoxwd Portable pixmap to X11 window dump.

xwdtoppm X10 or X11 window dump to portable pixmap.

ppmtopgm Portable pixmap to portable graymap.

fstopgm Usenix FaceSaver file to portable graymap.

pgmtops Portable graymap to Encapsulated PostScript.

pgmtopbm Portable graymap to portable bitmap.

pbmtomacp Portable bitmap to MacPaint.

macptopbm MacPaint to portable bitmap.

pbmtoxbm Portable bitmap to X11 bitmap.

pbmtox10bm Portable bitmap to X10 bitmap.

xbmtopbm X10 or X11 bitmap to portable bitmap.

pbmtoxwd portable bitmap to X11 window dump.

xwdtopbm X10 or X11 window dump to portable bitmap.

242 X USER’S GUIDE: OPEN LOOK EDITION

9
The conversions you may want to perform can be simple (directly from one format to
another) or complex (through several intermediate formats). An example of a simple con-
version is changing a portable pixmap to a portable graymap usingppmtopgm:

% ppmtopgm pixmap > graymap

The PBM Toolkit source directory includes a file calledTIPS that provides helpful hints on
using the utilities. Based on these suggestions, we performed a fairly complex conversion:
a Usenix FaceSaver image to a bitmap suitable for use with X. The following command
performed the conversion on the filemyface to createmyface.bitmap:

fstopgm myface | pnmenlarge 3 | ppmscale -yscale 1.125 | ppmtopgm |\
pgmnorm | pgmtopbm | pbmtoxbm > myface.bitmap

Notice that this particular conversion requires seven utilities! This procedure is by no
means intuitive. We relied heavily on theTIPS provided.

The seven conversions performed are:

■ Convert FaceSaver image to portable graymap (fstopgm).

■ Enlarge a portable anymap three times (pnmenlarge 3).

■ Scale pixels in y dimension; x dimension is adjusted accordingly (ppmscale
-yscale 1.125). This program produces portable pixmap output.

■ Convert portable pixmap to portable graymap (ppmtopgm).

■ Normalize contrast of portable graymap (pgmnorm).

■ Convert portable graymap to portable bitmap (pgmtopbm).

■ Convert portable bitmap to X11 bitmap (pbmtoxbm).

Be aware that the command:

ppmscale -yscale 1.125

may not be necessary on all systems or the necessary arguments may vary. If you omit
ppmscale and the command is necessary, the system should return a message to that effect
and also tell you what arguments to use.

The possible uses of the PBM Toolkit programs and the ways in which they can be com-
bined are extremely varied. You’ll have to do some experimenting. To orient yourself, read
the filesREADME, TIPS, andFORMATS in the source directory. The source directory also
includes reference pages for each utility.

9.3 Commercial Desktop Graphics Offerings
As The X Window System becomes more popular, the variety of commercial offerings
available for it will continue to grow. This is especially true in the graphics area. Here are
some current offerings.

CHAPTER 9: GRAPHICS CLIENTS 243

9
9.3.1 Arts & Letters
A Sun OPEN LOOK version of this popular MS-Windows desktop graphics tool was
released in 1991. It offers scaling, shading, freehand drawing with Bezier curves, vector-
ization (“auto tracing”) of bitmaps, numerous special effects including fitting text to
arbitrary shapes, and a library of some 5,000 clip-art images, with many more available.
Contact the vendor: Computer Support Corporation, 15926 Midway Road, Dallas TX
75244, phone 214-661-8960.

9.3.2 IslandPaint, IslandDraw
Island Graphics distributes the Island Productivity tools, which includes IslandWrite,
IslandDraw, and IslandPaint. The former is a publishing package, while the latter two are
graphics packages that integrate with it. Contact the vendor: Island Graphics at 415-491-
1000.

9.3.3 Artisan
Artisan is a graphics package for manipulating bitmap images, that is, a full-featured
“Paint” program. Contact Media Logic at 213-453-7744.

9.3.4 Adobe Illustrator
A Motif version of Adobe Illustrator is available for Solaris 2.3 and later. Contact Adobe
Systems, Inc. Their World Wide Web address is http://www.adobe.com.

9.3.5 Corel Draw
A Motif edition of this full-function desktop graphics package is available from Corel
Systems.

9.4 PostScript Viewing and Editing
Many systems in use today support the PostScript™ language. It provides a largely device-
independent imaging model that can be used by printers or displays to produce attractive
text and graphics. It was initially made popular by the Apple Macintosh. Lately, with the
rise of printers with reasonable resolution (600 dpi and up), PostScript has even begun to
be used in some commercial graphics and typesetting.

 Since a large number of Suns have “Sun LaserWriter” printers (a private label for the
Apple LaserWriter), there is considerable support for PostScript in current versions of
SunOS. In fact, many of the OpenWindows tools discussed in Chapter 7,The OpenWin-
dows DeskSet Clients assume that they can print to a PostScript printer. And Sun provides
a software product, NeWSprint† that provides PostScript support on printers that lack it,
such as the common Hewlett-Packard LaserJet™ and even some dot-matrix printers.
Because of the relative slowness of printers compared with graphics screens, however, it is
common to want to “view” a PostScript file before committing it to paper. That is what

† NeWSprint runs only on SPARC systems running SunOS4.1 or later and OpenWindows.

244 X USER’S GUIDE: OPEN LOOK EDITION

9
PostScript Previewing is about. Let’s look first at Sun’spageview previewer, and then at
some other previewers.

9.4.1 Pageview (OpenWindows only)
Pageview is a PostScript viewer that depends on PostScript features of the server included
with Sun’s OpenWindows offering. As you’d expect, Openwindows versions up to 3.2 use
the NeWS PostScript system, while 3.3 and later use Display PostScript. It will not work
with other servers, such as the standard X11R6 server (users of such systems that need
PostScript should see the section “Other PostScript Viewers” below). It should work with
other servers that include the Display PostScript extention, however..

Pageview can be started from theolwm root menu, or from the command line. If it is
invoked with no filename, it waits for you to provide a file. It displays this message:

Use File->Load... to load a PostScript file
 or
use File Manager to drag and drop one from $OPENWINHOME/demo/PostScript

As the message says, you can either use theFile menu’sLoad item to load a specific file,
or you can useOPEN LOOK’s drag-and-drop mechanism to tellpageview what file to read.
On the other hand, ifpageview is invoked with a filename, it will read that file. As a special
case for use in pipelines, it accepts the sporadically-enforced UNIX convention that a file-
name of a single minus sign (“-”) means the standard input, so you can say

troff -ms myfile | troff_to_ps | pageview -

to run atroff and some troff-output-to-PostScript converter, and feed the result of that into
pageview.†

As has been mentioned, theFile menu has aLoad option that lets you load one PostScript
file at a time. It also has aPrint option that lets you send either the current page or the
whole document to a PostScript-capable printer.

Pageview’s normal operation when it starts up is to display the first page of the document,
and wait for you to do something. You can move around, if the page is bigger than the view
window. However, the present version does not use scrollbars; you drag the canvas around
by clicking and holding SELECT, then dragging the pointer in the direction you want to
move the canvas. Or you can move to different pages by using theView menu, which lets
you move to the First, Last, Next (default) or Previous page.

TheEdit menu lets you edit eitherPostScript or Properties. The Edit->Postscript option
lets you edit the PostScript input, assuming that you know the PostScript language well
enough to make changes. The editing facility is identical with that used incmdtool andtex-
tedit, which are described in Chapter 5,The cmdtool/shelltool Terminal Emulator. Edit-
>Postscript is also a great learning tool if you are teaching yourself the PostScript lan-
guage. You can make a few changes and re-run the file, and see right away what effect your
change has. For example, start uppageview with no options, and you will see this:

† Several companies provide versions oftroff that produce PostScript; one such offering that works with Pagev-
iew is from SoftQuad Inc., 56 Aberfoyle Crescent, Toronto, Ontario CANADA M8X 2W4, phone 416-239-4801,
800-387-2777 (from U.S.A. only). E-mail mail@sq.com.

CHAPTER 9: GRAPHICS CLIENTS 245

9

Figure 9-19. Pageview welcome screen

246 X USER’S GUIDE: OPEN LOOK EDITION

9
Just click SELECT on theEdit button, sinceEdit->Postscript is the default, and you will
get an edit window:

Figure 9-20. Pageview edit window

CHAPTER 9: GRAPHICS CLIENTS 247

9
Type a few lines like those shown,†and click onRun. The main window will display the
output:

† Bauhaus is a commercial Type1 font; if you don’t have it, useTimes-Roman or some other font.

Figure 9-21. Output of pageview.

248 X USER’S GUIDE: OPEN LOOK EDITION

9
The Edit->Properties lets you change some settings, such as the size of paper, relative
dots-per-inch, page orientation, etc. One useful mode is “anti-aliasing”, which produces
better quality type. These changes are not saved in a file; they only apply to the current
pageview session; many of these can also be specified on the command line.

Pageview’s command line options are detailed in the reference page in Part Three of this
Guide. The most commonly-encountered difficulties withpageview in Release 2 of Open-
Windows had to do with impure PostScript. There are several levels of “standardization”
for PostScript. The base language has two versions (Version 1 is in use; Version 2 has
recently been released by Adobe but isn’t widely used yet). As well, “proper” PostScript
documents include something called “structure comments”, and in OpenWindows Release
2 and 3 thepageview program depended on them. In the current release of OpenWindows,
pageview will work with or without the structure comments; if they are missing, it will read
only the base PostScript language.

9.4.2 Other PostScript Viewers
Some system vendors include a PostScript interpreter called Display PostScript™ as part
of their X servers. Display Postscript is in some ways patterned after the NeWS component
of Sun’s OpenWindows, but the two implementations of the PostScript language are, alas,
not compatible. So you can’t use the 2.2 or earlierpageview to display output on an IBM
RS-6000 with AIX nor on a DECstation with Ultrix. However, these systems do provide
their own PostScript viewers. Users of these systems should consult their vendor
documentation.

In 1992, Sun Microsystems signed an agreement with Adobe Systems, the originators of
the PostScript language and the vendors of Display Postscript, to make Display PostScript
available in OpenWindows. Current releases of OpenWindows support Display PostScript
rather than NeWS..

Finally, there are two programs in the “contributed software” category that can interpret
PostScript and display it on an X11 window. These programs,psview and ghost-
scrip/gsviewt, are included in the CD-ROM accompanying this book, and available from
many Internet archive sites including UUNET (see description of UUNET in the Preface).
We do not provide any further information, as these programs are still undergoing change.

9.5 Font Editing
Since this chapter is about graphics, it would be incomplete without some mention of one
of the most basic graphics that we use in our daily lives, that of text fonts. X11 does not
include any official font editing facilities. The contributed programxfed provides minimal
facilities for producing bitmap fonts in the X11 “bitmap distribution format” (BDF fonts).
BDF is an X Consortium standard, and any implementation of X11 is supposed to either
accept them (directly, as the DECwindows™ server does), by conversion usingbdftosnf
(as the MIT X11 servers do), or by conversion to its own format (as the older OpenWin-
dows server does, usingconvertfont). Fonts in this format can therefore be used on any
reasonable implementation of The X Window System. More detail on these and other font

CHAPTER 9: GRAPHICS CLIENTS 249

9
conversion programs can be found in Volume Eight,X Window System Administrator’s
Guide.

The Sun operating systems (SunOS 4 only) includesfontedit, a bitmap editor originally
written for SunView™, and unfortunately not yet (as of OpenWindows Version 3) con-
verted to run on X11 for OpenWindows. It, too, provides simple editing of bitmap fonts. In
usage, bothxfed andfontedit are similar in flavor to iconedit orbitmap,but with extra con-
trols for editing the font information. Figure 9-22 is a picture of the (SunView version of
the)fontedit program in action

For commercial production of fonts, there are several schemes in use. Most of the large
commercial type foundries either have their own software, or use a package calledIkarus
(from URW Software AG).Ikarus lets you edit outline fonts, and produce either scalable
fonts or bitmaps in a variety of sizes and formats. As well, many companies are now pro-
ducing software that helps you generate PostScript™ fonts. OpenWindows users who wish

Figure 9-22. SunView fontedit.

250 X USER’S GUIDE: OPEN LOOK EDITION

9
to pursue this should investigate Sun’sTypemaker™ offering, which makes fonts in an out-
line format (“F3”) that the OpenWindows server can use. SunPics produces a CD-ROM
called “Printer’s Palette” that contains a variety of fonts and other tools for use with Open-
Windows and its printing software package NeWSprint (described in Chapter 7,The
OpenWindows DeskSet Clients).

Current versions of The X Window System (including OpenWindows versions that use
Display PostScript) support the use of “Type 1” PostScript fonts. These can be created
using tools that are popular on the Macintosh, such asFontographer andFont Studio.
These could be run under Apple’s Macintosh Application Environment under Solaris 2, or
you could use them on a Mac and convert the font files to “MS Windows” format and
install them on your OpenWindows server, as discussed in Chapter 10,X11, OPEN LOOK
and OpenWindows Font Specification.

CHAPTER : 251

PART TWO: Customizing
X and OpenWindows

252 X USER’S GUIDE: OPEN LOOK EDITION

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 10: FONT SPECIFICATION 253

10

Chapter 10FONT SPECIFICATION

CHAPTER 10

Font Specification

Some OpenWindows client programs allow you to choose the fonts you want by selecting
from a menu. Any user-ready commercial application, such as the DeskSet clients
described in Chapter 7,The OpenWindows DeskSet Clients, and commercial publishing
software packages such asFrameMaker andInterleaf, or graphics packages such as Adobe
Illustrator or CorelDraw, provide a simple interface for selecting fonts. However, the
cmdtool terminal emulators does not have such a menu, and thexterm terminal emulator
only lets you choose from a few pre-specified fonts. You can choose the font used for the
text inolwm menus or incmdtoolor xterm windows, but you must do it via the command
line or from X resources..

The X Window System has a fairly complex font naming system which, like most things
about X, is designed for maximum flexibility rather than for simplicity or ease of use. This
wouldn’t be so bad if a typical font name weren’t mind-bending at first glance. To create a
cmdtool window whose text is to be displayed in 14-point Courier bold, you’d hope to be
able to type something like this:

% cmdtool -fn Courier-Bold-14

Fortunately you can do that on OpenWindows because of Sun’s clever alias naming and
“font scaling.” Accordingly, users of OpenWindows may wish to skip this chapter at first
blush, and return to it later when they need to select fonts via command line options or
resource specifications, for MIT or other non-commercial applications.

On a normal X11 server, you might need to type, as a worst case, something like this:

% cmdtool -fn -adobe-courier-bold-r-normal--14-140-75-75-m-
90-iso8859-1

Fortunately, you can use asterisks as wildcards to simplify this name to a somewhat more
reasonable one:

% cmdtool -fn ’*courier-bold-r*140*’

254 X USER’S GUIDE: OPEN LOOK EDITION

10
and you can define even simpler aliases, so that you could end up typing a command line
like the simplified one shown earlier:

% cmdtool -fn Courier-Bold-14

In this chapter, we’re going to try to make sense out of the sometimes bewildering jungle
of information about fonts under X. First, we’ll explain the font naming convention in
detail. Along the way, we’ll acquaint you with the appearance of some of the basic font
families (groups of related fonts), and the various permutations (such as weight, slant, and
point size) within each family.

Then, we’ll talk about how to use font name wildcards to simplify font specification. We’ll
also talk about the font search path (the directories where the font files are stored), and how
to define aliases for font names.

Finally, we’ll talk about some of the utilities provided for dealing with fonts:

■ xlsfonts, which lists the names of the fonts available on your server, as well as any
aliases.

■ xfd (font displayer), which allows you to display the character set for any individual font
you specify on the command line.

■ xfontsel (font selector), which allows you to preview fonts and select the name of the one
you want (this name can then be pasted onto a command line, into a resource file, etc.)

■ text (OpenWindows only), which allows you to display a representative text sample
(character display) for any font selected from a menu of all available fonts.

10.1 Font Naming Conventions
The X11 “logical font naming convention” has been around since X11 Release Three, so it
is included in all versions and variants of the X Window Systems in use today. As we’ll see
in a moment, these logical font names allow for complete specification of all of the charac-
teristics of each font. Unfortunately, this completeness makes them somewhat difficult to
work with, at least until you learn what all the parts of the names mean, and get a handle
on which parts you need to remember and which you can safely ignore. (By the end of this
chapter, you should have that knowledge.)

The xlsfonts client can be used to display the names of all the fonts available on your
server. When you runxlsfonts, you’ll get an intimidating list of names similar to the name
in Ref f. Upon close examination, this rather verbose name contains a great deal of useful
information: the font’s developer, or foundry (Adobe); the font family (Courier); weight
(bold); slant (oblique); set width (normal); size of the font in pixels (10); size of the font in
tenths of a point (100 tenths of a point, thus 10 points); horizontal resolution (75 dpi); ver-
tical resolution (75 dpi); spacing (m, for monospace); average width (60—measured in
tenths of a pixel, thus 6 pixels); and character set (iso8859-1).

As mentioned earlier, font name wildcarding can eliminate lots of unnecessary detail. If
you are already familiar with font characteristics, skip ahead to the section “Font Name

CHAPTER 10: FONT SPECIFICATION 255

10
Wildcarding,” later in this chapter, for some tips and tricks. If you need a refresher on
fonts, read on as we illustrate and explain each of the elements that make up the font name.

10.1.1 Font Families
It has been a decade or so since the advent of desktop publishing and, by now, it is unlikely
that anyone in the computer industry is unaware that text can be displayed on the screen
and printed on the page using different fonts.

However, the termfont is used somewhat ambiguously. Does it refer to a family of type-
faces (such as Times Roman or Helvetica), which comes in different sizes, weights, and
orientations? Or should each distinct set of character glyphs be considered a separate font?

OpenWindows takes the former approach, while historically X11 has taken the latter.
When the documentation says that X11 Release 4 has more than 400 fonts , this sounds
either intimidating or impressive, depending on your mood. But, in fact, the X11R4 distri-
bution includes only eight font families (Courier, Helvetica, New Century Schoolbook®,
Symbol, Times, Lucida® and the Clean family of fixed-width fonts), plus several miscel-
laneous and special purpose fonts. By contrast, both the Macintosh and OpenWindows
support dozens of font families. Although OpenWindows comes with “57 fonts” (see
Figure 10-2), there are actually about two dozen families when you remove variations such
as Bold and Italic (AvantGarde (two versions), Bembo, Bookman, Courier, Gill, Gill Sans,
Helvetica, Lucida, Lucida Bright, Lucida Sans, Lucida Sans Typewriter, LucidaBright,
LucidaTypewriter, New Century Schoolbook, Palatino, Rockwell, symbol, Times,
Zapfchancery, and Zapfdingbats) plus some special-purpose fonts (the X11 special fonts
plus XX OPEN LOOK Cursor and Glyph fonts). Hundreds of fonts are available both com-
mercially and as “free software” for PostScript laser printers (many of these can be used in
OpenWindows as well), and commercial typesetters support thousands of families.Open-
Windows uses fonts in Sun’s “F3” Folio format. PostScript Type Three fonts can also be
used and, in revision3.1 of OpenWindows, you can use PostScript Type One as well. Both

Figure 10-1. Font name, X11 Logical Font Naming Convention

-adobe-courier-bold-r-normal-sans-14-140-75-75-m-90-iso8859-1

foundry

font family

weight

slant

set width

additional
style

pixels

decipoints

hres

vres

spacing

avg width

charset

256 X USER’S GUIDE: OPEN LOOK EDITION

10
F3 and PostScript Type One are widely available commercially. X11R5 also supports Bit-
Stream’s “Speedo” format fonts,, which some commercial type suppliers provide.:

Figure 10-2. xshowfonts listing for the 57 OpenWindows Fonts.

CHAPTER 10: FONT SPECIFICATION 257

10
Because of the difficulty of working with fonts in X11R4, the X Consortium has included
scalable fonts in X11R5, half a decade after NeWS (now part of OpenWindows) intro-
duced them to the UNIX workstation market. X11R5 incorporates scalable font technology
from BitStream, using their “Speedo” format fonts. X11R5 also includes “font server” pro-
grams that make fonts available to the X11 server. This will be especially useful to sites
that run a variety of diskless X Terminals, since at present each X Terminal vendor uses a
slightly different method of downloading fonts. The Font Server is described in Volume
Eight,X Window System Administrator’s Guide. However, at the present time (late 1992)
few vendors are yet shipping the X11R5 release, so we still need to understand the X11R4
mechanism. By mid-1993, most reputable vendors should be supporting the X11R5 “font
server” technology.

When you think of the X11 fonts as consisting of several large font families, rather than
hundreds of unique fonts, you can quickly reduce the clutter. Figure 10-2 shows the major
families of commercial fonts that are available under X. To illustrate the fonts, we’ve used
the simple expedient of printing each font name in the font itself. Font names are truncated
to fit on the page. (For those of you who don’t read the Greek alphabet, several entries have

258 X USER’S GUIDE: OPEN LOOK EDITION

10
names like “-adobe-symbol-medium-r-normal--18...” This font is used for mathematical
equations and so forth, rather than for normal display purposes.)†

You’ll notice that with the exception of Courier and Lucidatypewriter, all of the fonts in the
figure areproportionally spaced. That is, each character has a separate width. This makes
them look good on a printed page and for screen-aware text processing programs, but
makes them less appropriate for screen display in terminal windows (especially for pro-
gram editing), since text will not line up properly unless all characters are the same width.

† To generate the figures in this section and in Appendix B,OpenWindows and X11 Fonts, we wrote a short pro-
gram calledxshowfonts, which displays a series of fonts in a scrollable window. Source code forxshowfonts is
listed in Appendix B,OpenWindows and X11 Fonts. In each case, we used wildcards (discussed later in this chap-
ter) to select the fonts we wanted and then did screendumps of the resulting images. Note that the fonts look better
on the screen than they do in the illustration, since the scaling factor used to make the screen dumps exacerbates
the “jagged edges” endemic to bitmap fonts.

Figure 10-3. The major font families in the OpenWindows product

CHAPTER 10: FONT SPECIFICATION 259

10
You will most likely use these proportional fonts for labels or menu items, rather than for
running text. (Word processing or publishing programs will, of course, use them to repre-
sent proportional type destined for the printed page.)

Courier and Lucidatypewriter aremonospaced fonts: every character has the same width.
Monospaced fonts can be used effectively for the text font inxterm or cmdtool windows.

There are also some special monospaced fonts originally designed for computer displays.
You can think of these ascharacter cell fonts. They, too, are monospaced but the spacing
relates to the size of a cell that contains each character, rather than (necessarily) to the char-
acter itself. Some of these fonts are quite old-they were originally available in X11 Release
2- and they have simple names expressing their size in pixels. For example, in the font
named 8x13, each character occupies a box 8 pixels wide by 13 pixels high.They since
have been renamed to use the logical font naming conventions with a foundry name of
“misc,” and a font family of “fixed.” but the simple names have been preserved as aliases.
 shows the character cell fonts, using their short names

Table 10-1 shows the correspondence between these aliases and full font names. Note that
the 6x13 font also has an alias called “fixed” defined for it. The “fixed” alias is used as the
default font forxterm windows. Twelve-point Helvetica bold roman has the alias “vari-
able,” which several applications use as the default font for labels. The Motif window

Figure 10-4. Miscellaneous fonts for xterm text

260 X USER’S GUIDE: OPEN LOOK EDITION

10
managermwm uses this font for the application name that appears in the titlebar. TheOPEN
LOOK Window Managerolwm uses “Lucida” for its titlebars and menus.

X11R4 also includes the Clean family of fixed-width fonts from Schumacher, and DEC’s
terminal fonts, both of which are illustrated in Appendix B,OpenWindows and X11 Fonts.

There are also many other special purpose fonts, such as the Greek Symbol font that we
already saw, the cursor font, theOPEN LOOK cursor and glyph fonts, and Kana and Kanji
Japanese fonts. See Appendix B,OpenWindows and X11 Fonts, for comprehensive lists
and samples of these fonts, as well as pictures of the complete character set in some repre-
sentative fonts.

10.1.2 Scalable Fonts
The X Logical Font Description described above can be used for X11R5 Speedo fonts and
for OpenWindows scaleable fonts. Bitmap fonts appear just as they did above, while scal-

Table 10-1. Fixed Font Aliases and Font Names

Fixed Name Font Name

fixed -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1

5x8 -misc-fixed-medium-r-normal--8-80-75-75-c-50-iso8859-

6x9 -misc-fixed-medium-r-normal--9-90-75-75-c-60-iso8859-1

6x10 -misc-fixed-medium-r-normal--10-100-75-75-c-60-iso8859-1

6x12 -misc-fixed-medium-r-semicondensed--12-110-75-75-c-60-iso8859-1

6x13 -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1

6x13bold -misc-fixed-bold-r-semicondensed--13-120-75-75-c-60-iso8859-

7x13 -misc-fixed-medium-r-normal--13-120-75-75-c-70-iso8859-1

7x13bold -misc-fixed-bold-r-normal--13-120-75-75-c-70-iso8859-1

7x14 -misc-fixed-medium-r-normal--14-130-75-75-c-70-iso8859-1

8x13 -misc-fixed-medium-r-normal--13-120-75-75-c-80-iso8859-

 8x13bold -misc-fixed-bold-r-normal--13-120-75-75-c-80-iso8859-1

8x16 -sony-fixed-medium-r-normal--16-120-100-100-c-80-iso8859-

9x15 -misc-fixed-medium-r-normal--15-140-75-75-c-90-iso8859-

9x15bold -misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-1

10x20 -misc-fixed-medium-r-normal--20-200-75-75-c-100-iso8859-

12x24 -sony-fixed-medium-r-normal--24-170-100-100-c-120-iso8859-1

CHAPTER 10: FONT SPECIFICATION 261

10
able fonts are listed as having a zero value for pixel size, point size, resolution, and
maximum width. For example, while an X11 bitmap font like Helvetica has to be listed
once for each of its limited number of point sizes,xlsfonts under OpenWindows or X11R5
reports each Lucida font only once. Here are the Lucida listings:

-b&h-lucida-bold-i-normal-sans-0-0-0-0-p-0-iso8859-1
-b&h-lucida-bold-i-sans--0-0-0-0-p-0-iso8859-1
-b&h-lucida-bold-r-normal-sans-0-0-0-0-p-0-iso8859-1
-b&h-lucida-bold-r-sans--0-0-0-0-p-0-iso8859-1
-b&h-lucida-medium-i-normal-sans-0-0-0-0-p-0-iso8859-1
-b&h-lucida-medium-i-sans--0-0-0-0-p-0-iso8859-1
-b&h-lucida-medium-r-normal-sans-0-0-0-0-p-0-iso8859-1
-b&h-lucida-medium-r-sans--0-0-0-0-p-0-iso8859-1
-b&h-lucidabright-demibold-i-normal--0-0-0-0-p-0-iso8859-1
-b&h-lucidabright-demibold-r-normal--0-0-0-0-p-0-iso8859-1
-b&h-lucidabright-medium-i-normal--0-0-0-0-p-0-iso8859-1
-b&h-lucidabright-medium-r-normal--0-0-0-0-p-0-iso8859-1
-b&h-lucidatypewriter-bold-r-normal-sans-0-0-0-0-m-0-iso8859-1
-b&h-lucidatypewriter-bold-r-sans--0-0-0-0-m-0-iso8859-1
-b&h-lucidatypewriter-medium-r-normal-sans-0-0-0-0-m-0-iso8859-1
-b&h-lucidatypewriter-medium-r-sans--0-0-0-0-m-0-iso8859-1

These sixteen listings provide fonts equivalent to about 96 of the bitmap fonts, and have the
further advantage that they can be requested inany point size. For example:

xfd -fn ’-b&h-lucida-bold-r-normal-sans--370-0-0-m-0-iso8859-1’

will scale the font Lucida Typewriter Bold to thirty-seven points (remember that the point
sizes is in tenths, so 370 means 37 points) and display it. However, when using wildcards
with this scaling, you can’t be as cavalier about leaving out fields as you can with the MIT
server. If in doubt, put in all the dashes, even if you’re wildcarding most of the fields.

As a convenience, primarily for interactive use rather than in X Resource files, you can use
the PostScript names for these fonts, followed by a dash, and the pointsize. For example,

xfd -fn Lucidasans-Typewriterbold-37

10.1.3 Stroke Weight and Slant
The characters in a given font family can be given a radically different appearance by
changing thestroke weight or theslant, or both.

The most common weights are medium and bold. The most common slants are roman
(upright), italic, or oblique. (Both italic and oblique are slanted; however, italic versions of
a font generally have had the character shape changed to make a more pleasing effect when
slanted, while oblique fonts are simply a slanted version of the upright font. In general,
serif fonts (those with little decorations on the ends and corners of the characters) are
slanted via italics, whilesans-serif fonts are made oblique.)

262 X USER’S GUIDE: OPEN LOOK EDITION

10
Figure 10-5 compares the medium and bold weights, and the roman and italic or oblique
slants in the Helvetica font family.

X11 and OpenWindows also include some fonts that have an in-between weight called
demibold. Weight names are somewhat arbitrary, since a demibold weight in one family
may be almost as dark as a bold weight in another.

The font naming convention also defines two counter-clockwise slants calledreverse italic
(ri) andreverse oblique (ro), as well as a catch-all calledother (ot).

10.1.4 Font Sizes
Font sizes are often given in a traditional printer’s measure known as apoint. A point is
approximately one seventy-second of an inch. Most of the font families are provided in the
six point sizes shown in Figure 10-6.

However, the size story doesn’t end there. Newer X servers (such as Sun’s OpenWindows
server and the X11R5 and later servers) support scalable outline fonts that are device-inde-
pendent and, thus, true-to-size regardless of the output device. These fonts can be
requested in virtually any pointsize. In older releases of X, such as X11R4, fonts we re sim-
ply bitmaps. Because of the different resolution of computer monitors, a font with a given
nominal point size might actually appear larger or smaller on the screen.

Most monitors on the market today have a resolution between 75 dots per inch (dpi) and
100 dots per inch. Accordingly, there are both 75-dpi and 100-dpi versions of a few of the
fonts in X11 R3, and of most of them in X11R4. These separate versions of each font are
stored in different directories. By setting the font search path so that the appropriate direc-

Figure 10-5. The same fonts in different weights and slants

Figure 10-6. The same font in six different point sizes

CHAPTER 10: FONT SPECIFICATION 263

10
tory comes first, you can arrange to get the correct versions without having to specify them
in the font name.*†

But how do you tell which kind of monitor you have?

If you have the manufacturer’s specs on your monitor, they might give you this figure. But
they’ll more likely give you the overall resolution in rows and columns. After measuring
the physical screen, you can do some rough calculations to arrive at the equivalent in dots
per inch. For example, the 16-inch monitor on the Sony NEWS workstation has an adver-
tised resolution of 1280 x 1024 pixels. The actual viewing area is approximately 13 inches
wide by 10 inches high. Dividing the resolution by the size, you come up with a vertical
resolution of 102.4 dpi and a horizontal resolution of 98.5 dpi.

The Sun 19-inch monitor, by contrast, has an advertised resolution of 1152 x 900 pixels.
The horizontal and vertical dimensions of the viewing area are approximately 13.75 x
10.75 inches. This yields a resolution of about 84 dpi.

What happens if you select the wrong resolution for your monitor? Given the difference in
the pixel size, the same size font will appear larger or smaller than the nominal point size.

For example, consider the 75- and 100-dpi versions of the 24-point charter medium italic
font:

-bitstream-charter-medium-i-normal--25-240-75-75-p-136-iso8859-1
-bitstream-charter-medium-i-normal--33-240-100-100-p-179-iso8859-1

If you look at the pixel size field, you will notice that the height of the 75-dpi version is 25
pixels, while the height of the 100-dpi version is 33 pixels. If you use the 75-dpi version on
the Sun, you actually get something closer to 21.5 points (75/84*24); on a 100-dpi monitor,
you will actually get something closer to 18 points (75/100*24). We noticed this right away
when we first began using the Sony workstation. Because of its higher resolution, the font
size we had been using on the Sun appeared much smaller.

If you are working on a lower-resolution monitor, you can take advantage of this artifact to
display type as large as 32 points (the size that a 24-point 100-dpi font will appear on a 75-
dpi monitor). Figure10-7 shows the 75- and 100-dpi versions of the same 24-point font, as
displayed on a Sun workstation with a 19-inch monochrome monitor. As shown, neither is
actually 24 points. The 75-dpi version is actually 21.5 points, as discussed above; the 100-
dpi version is about 28.5 points.*

Note that the logical font-naming convention allows for different horizontal and vertical
resolution values. This would allow server manufacturers to support fonts that were

† We’ll talk about how to set the font search path later in this chapter.

264 X USER’S GUIDE: OPEN LOOK EDITION

10
“tuned” for their precise screen resolution. However, the fonts shipped with the generic
X11 distribution all use the same horizontal and vertical resolution.†

As suggested above, this resolution may not exactly match the actual resolution of any par-
ticular screen, resulting in characters that are not true to their nominal point size. In the case
of the Sony monitors, the actual resolution is quite close to the design of the 100-dpi fonts.
However, on the Sun monitor, neither the 75- nor 100-dpi fonts will be exactly right.
Unless you are running an old MIT X server that lacks scaleable fonts, however, this won’t
be much of a problem.)

10.1.5 Other Information in the Font Name
What we’ve already shown summarizes the most important information in the font name.
The remaining fields are explained below:

Foundry Font manufacturers are still referred to as foundries, from the days when type was
founded, or cast, from lead. The X font naming convention specifies the foundry
as the company that digitized or last modified the font, rather than its original
creator. For the fonts contained in the standard X distribution, the foundry is not
terribly significant since there are no cases where the same font family is available
from different foundries. However, there are numerous commercial font families
available from more than one foundry. In general, the appearance of the fonts
should be quite similar since the font family defines the design of the typeface.
However, there may be some small differences in the quality of some of the char-
acters, and there may be more significant differences in the font metrics (the
vertical or horizontal measurements of the characters). This might be significant
for a publishing application that was using the bitmapped font for awysiwyg*
screen display that needed to match the fonts in a particular laser printer or
typesetter.‡

“Set width” A value describing a font’s proportionate width, according to the foundry.
Typical set widths include: normal, condensed, semicondensed, narrow, double

† Note that the differences are exaggerated further in printing the screen dump of this display, since we scaled the
bitmap up somewhat to print it..

‡ This is an acronym for “what you see is what you get” and describes a type of text editor or word processor that
purports to display the page exactly as it would appear in print. There is always some approximation due to the
differences between screen fonts and printer fonts. MacWrite® is awysiwyg program in the MacIntosh world;
FrameMaker, Interleaf and others offerwysiwyg programs in the X11 world.

Figure 10- 7. The 100-dpi version of a 24-point font appears larger on a 75-dpi monitor

CHAPTER 10: FONT SPECIFICATION 265

10
width. All of the X11 Release 3 fonts and most of the Release 4 fonts have the set
width normal. A few of the Release 4 fonts have the set widthsemicondensed.

Spacing All standard X11 Release 3 fonts are either m (monospace, i.e., fixed-width) or
p (proportional, i.e., variable-width). In Release 4, fonts may also have the spacing
characteristic c (character cell, a fixed-width font based on the traditional type-
writer model, in which each character can be thought to take up the space of a
“box” of the same height and width). As mentioned earlier, the original R2 fonts
were this type.

Average width Mean width of all characters in the font, measured in tenths of a pixel.
You’ll notice, if you look back at Figure 10-2, that two fonts with the same point
size (such as New Century Schoolbook and Times) can have a very different
average character width. This field can sometimes be useful if you are looking for
a font that is especially wide or especially narrow. The Schumacher Clean family
of fonts offers several fonts in the same point size but with different average
widths.†

Character set In the initial illustration of the font naming convention, Figure10-1, we
identified the character set as a single field. If you look more closely, you’ll realize
it is actually two fields, the first of which identifies the organization or standard
registering the character set, the second of which identifies the actual character
set.

Most fonts in the standard X distribution contain the string “iso8859-1” in their names,
which represents the ISO Latin-1 character set. The ISO Latin-1 character set is a
superset of the standard ASCII character set, which includes various special char-
acters used in European languages other than English. See Appendix H of Volume
Two, Xlib Reference Manual, for a complete listing of the characters in the ISO
Latin-1 character set.

Note, however, that the symbol font contains the strings “adobe-fontspecific” in this posi-
tion. This means that Adobe Systems defined the character set in this font, and that
it is font-specific. You can see from this example that the use of these fields is
somewhat arbitrary.

Style Not represented in the example or in most R3 or R4 font names. However,
according to the logical font convention, the style of a font may be specified in the
field between set width and pixels. Some of the possible styles arei (informal),r
(roman),serif andsans (serif). Note that ther for roman may also be used in the
slant field.

If you need still more detail and want a complete technical description of font naming con-
ventions, see the X Consortium Standard,X Logical Font Description Conventions. This
document is available as part of the standard MIT X distribution, and is reprinted as an
Appendix in Volume Zero,X Protocol Reference Manual.

† These fonts all (incorrectly to our minds) have a set width of “normal.” They should be distinguished by set
widths such as condensed, semi-condensed, etc. Since they do not, they can be distinguished by the difference in
their average width.

266 X USER’S GUIDE: OPEN LOOK EDITION

10 10.2 Font Name Wildcarding
In order to simplify font specification, X recognizes wildcarding within font names. You
can use wildcarded font names to specify the text font for a client, either on the command
line or in an X resource specification. You can also supply a wildcarded font name to any
of the font utilities, such asxlsfonts, xfd, etc.

An asterisk (*) can be used to represent any part of the font name string; a question mark
(?) can be used to represent any single character. You can usually get the font you want by
specifying only the font family, the weight, the slant, and the point size, and wildcarding
the rest. For example, to get Courier bold at 14 points, you could use the command line
option:

-fn ’*courier-bold-r*140*’

That’s starting to seem a little more intuitive!

However, there are a number of “gotchas.”

■ First, since the UNIX shell also has a special meaning for the “&”, “*” and “?” wildcard
characters, wildcarded font names must be quoted. This can be done by enclosing the
entire font name in quotes (as in the previous example), or by “quoting” each wildcard
character by typing a backslash before it. (If you don’t do this, the shell will try to expand
the * to match any filenames in the current directory and, if you use the C shell, will give
the message “No match.” and not run the command) Wildcards need not be quoted in
resource files.

■ Second, if the wildcarded font name matches more than one font, the server will use the
first one that matches. And unfortunately, because the font names may differ from one
server to the next and are sorted in simple alphabetical order, it is indeterminate what
font you will get. On X11R4, since the bold weight sorts before medium, and italic and
oblique slants before roman, the specification:

-fn ’*courier*’

gave Courier bold oblique, rather than the Courier medium roman you might intuitively
expect. On OpenWindows 3.1, it yields a fairly small, but medium roman, Courier:

% xlsfonts ‘*courier*’ | head -1
-adobe-courier-bold-o-normal--10-100-75-75-m-60-iso8859-1
%

As shown, you can usexlsfonts ... | head -1 to find out what font is matched. If you aren’t
sure whether your wildcarded name is specific enough, try using it as an argument toxls-
fonts. If you get more than one font name as output, you may not get what you want. Try
again with a more specific name string.

The exception to this rule has to do with the75dpi and100dpi directories. If a wildcard
matches otherwise identical fonts in these two directories, the server will actually use the
one in the directory that comes first in the font path. This means that you should put the
appropriate directory first in the font path. (We’ll tell you how to do this in the next sec-
tion.) Thereafter, you can generally wildcard the resolution fields (unless you specifically
want a font from the directory later in the path).†

CHAPTER 10: FONT SPECIFICATION 267

10
Third, the * wildcard expansion is resolved by a simple string comparison. So, for exam-
ple, if you type:

-fn ’*courier-bold*r*140*’

instead of:

-fn ’*courier-bold-r*140*’

(the difference being the asterisk instead of the hyphen before the “r” in the slant field), the
“r” would also match the “r” in the string “normal” in the set width field. The result is that
you would select all slants. Since o (oblique) comes before r (roman), and you always get
the first font that matches, you’d end up with Courier oblique.

The trick is to be sure to include at least one of the hyphens to set the -r- off as a separate
field rather than as part of another string.

Even though a wildcarded name such as:

*cour*b*r-*140*

should get you 14-point Courier bold roman, we think it is good practice to spell out the
font family and weight and use hyphens between adjacent fields. As usual there are excep-
tions: the Lucida family really has three subfamilies; you can get all three by specifying the
family as “Lucida*” rather than “Lucida-”; and you might certainly want to abbreviate
“New Century Schoolbook” to “New Century*” or “*Schoolbook.”

Font names are case-insensitive. “Courier” is the same as “courier.”

✗ Some early versions of the SCO “Open DeskTop” server fail to be case-insensitive in font-
names.

Table 10-2 summarizes the values you can use to specify a unique font name (assuming
only the standard fonts are loaded). Choose one element from each column. Don’t forget to
include the leading and trailing asterisks and the hyphen before the slant.

† Unlikexfontsel, which displays fonts in the order of wildcard matches,xlsfonts will always list fonts in straight-
sort order, with the sort done character by character across the line. Since size in pixels comes before point size
in the name, and the size in pixels of the 100-dpi fonts is larger than that of the equivalent 75-dpi font, the 75-dpi
font will always be listed first for a given point size. But when listing more than one point size, the fonts will be
jumbled. For example, the size in pixels of the 8-point Charter font at 100-dpi is 11, so it will come after the 10-
point Charter font at 75 dpi, with a size in pixels of 10. The 8-point Charter font at 75 dpi gets sorted to the very
end of the list, since to a character-by-character sort, its size in pixels (8) looks larger to the size in pixels of even
the largest 100-dpi font (the 24 point, with a height of 33 pixels).

Table 10-2. Essential Elements of a Font Name

* Family - Weight - Slant* - Point Size *

Charter Medium r (roman) 80 (8 pt.)

Courier Bold i (italic) 100 (10 pt.)

Helvetica Demibold o (oblique) 120 (12 pt.)

268 X USER’S GUIDE: OPEN LOOK EDITION

10

10.3 The Font Search Path
The OpenWindows Release 3.0 server uses the directories shown in Table10-5 to store
fonts..

The OpenWindows server uses only the first of these directories as its font search path. The
normal font directory is$OPENWINHOME/lib/fonts, and this is the default setting of the
environment variable FONTPATH. FONTPATH is a colon-separated list of directories,
like the normal UNIX environment PATH. For example, to add a local font directory, you

New century ri (reverse
italic)

140 (14 pt.)

schoolbook

Symbol ro (reverse
oblique)

180 (18 pt.)

Times ot (other) 240 (24 pt.)

Fixed (R4)

Clean (R4)

OPEN LOOK
(R4)

Lucida (R4)

Terminal (R4)

Table 10-3. Standard Font Directories, OpenWindows Release 3.0

Directory Contents

/usr/openwin/lib/fonts Main body of fonts, mostly outline

/usr/openwin/lib/fonts/100dpi Fixed- and variable-width fonts, 100
dpi (all font families).

/usr/openwin/lib/fonts/afm Adobe Font Metrics

/usr/openwin/lib/fonts/map Contains one file,fontmaps.ps.

Table 10-2. Essential Elements of a Font Name

* Family - Weight - Slant* - Point Size *

CHAPTER 10: FONT SPECIFICATION 269

10
might set FONTPATH to, the following (andexport it if using the Bourne or Korn
shell):

/usr/openwin/lib/fonts:/usr/local/lib/fonts

Then if you re-start the OpenWindows server, any fonts it recognizes in the local font
directory will automatically be available.

The OpenWindows 3.3 server, by contrast, uses the following font directories:

In the MIT X server and its derivatives, fonts are stored in three directories, as shown in
Table 10-5.

These three directories (in this order) constitute X’s default font path.

Table 10-4. Standard Font Directories,OpenWindows 3.3

Directory Contents

/usr/openwin/lib/X11/fonts/F3/ Folio Format scaleable fonts

/usr/openwin/lib/X11/fonts/F3bitmaps/ Folio Format pre-scaled fonts

/usr/openwin/lib/X11/fonts/Type1/ PostScript Type 1 scaleable fonts

/usr/openwin/lib/X11/fonts/Speedo/ Speedo format scaleable fonts

/usr/openwin/lib/X11/fonts/misc/ Same as X11 misc fonts

/usr/openwin/lib/X11/fonts/75dpi/ Many 75dpi fonts

/usr/openwin/lib/X11/fonts/100dpi/ Many 100dpi fonts

/usr/openwin/lib/X11/fonts/Xt+/ Glyph fonts for OLIT toolkit

Table 10-5. Standard Font Directories, X11 Release 4

Directory Contents

/usr/lib/X11/fonts/misc Sixty fixed-width fonts, including the
six available in Release 3, the cursor
font, several Clean family fonts
provided by Schumacher, a Kanji font,
Kana fonts, and OPEN LOOK cursor
and glyph fonts.

/usr/lib/X11/fonts/75dpi Fixed- and variable-width fonts, 75 dpi.

/usr/lib/X11/fonts/100dpi Fixed- and variable-width fonts, 100
dpi (all font families).

270 X USER’S GUIDE: OPEN LOOK EDITION

10
If you wish to provide additional fonts, other directories can be added to the font search
path, or its order can be rearranged, usingxset with the fp option. To completely replace
the font path, simply specify a comma-separated list of directories. For example, to put the
100dpi directory before the75dpi directory with the MIT server, you might enter:

% xset fp=
/usr/lib/X11/fonts/misc,/usr/lib/X11/fonts/100dpi
,\ /usr/lib/X11/fonts/75dpi

(Note that a space must follow the equal sign (=) and that the example above is broken onto
two lines escaped with a backslash (\) only so that it can be printed within the page mar-
gins.) To restore the default font path, type:

% xset fp default

Use thefp+ option to add a directory or list of directories to the end of the font path, or
+fp to add them at the start. Use-fp andfp- to delete directories from the beginning or
end of the font path.

For a complete list of the fonts in each directory and samples of each font, refer to Appen-
dix B, OpenWindows and X11 Fonts.

10.3.1 The fonts.dir Files (Standard X server)
In addition to font files, the MIT X server requires each font directory to contain a file
calledfonts.dir. Thefonts.dir files serve, in effect, as databases for the X server. When the
X server searches the directories in the default font path, it uses thefonts.dir files to locate
the font(s) it needs.

Eachfonts.dir file contains a list of all the font files in the directory with their associated
font names in two-column form. (The first column lists the font file name and the second
column lists the actual font name associated with the file.) The first line infonts.dir lists the
number of entries in the file (i.e., the number of fonts in the directory).

Example 10-1 shows a portion of thefonts.dir file from the Release 4
/usr/lib/X11/fonts/100dpi directory. As the first line indicates, the directory contains 200
fonts. The first group of fonts listed below (up to the second ellipse) are available as of X11
Release 4. They are all Courier family fonts. (These fonts are 100-dpi equivalents of fonts
that were only available in 75 dpi in X11 Release 3.) The second group of fonts shown in
the list below (a few sizes from the Charter family) are also available in the X11 Release 3
100dpi directory.

200
courBO08.snf -adobe-courier-bold-o-normal--11-80-100-100-m-60-
iso8859-1
courBO10.snf -adobe-courier-bold-o-normal--14-100-100-100-m-90-
iso8859-1
courBO12.snf -adobe-courier-bold-o-normal--17-120-100-100-m-100-
iso8859-1
courBO14.snf -adobe-courier-bold-o-normal--20-140-100-100-m-110-
iso8859-1 c
ourBO18.snf -adobe-courier-bold-o-normal--25-180-100-100-m-150-
iso8859-1

CHAPTER 10: FONT SPECIFICATION 271

10
courBO24.snf -adobe-courier-bold-o-normal--34-240-100-100-m-200-
iso8859-1
courB08.snf -adobe-courier-bold-r-normal--11-80-100-100-m-60-iso8859-
1
courB10.snf -adobe-courier-bold-r-normal--14-100-100-100-m-90-
iso8859-1
courB12.snf -adobe-courier-bold-r-normal--17-120-100-100-m-100-
iso8859-1
courB14.snf -adobe-courier-bold-r-normal--20-140-100-100-m-110-
iso8859-1
courB18.snf -adobe-courier-bold-r-normal--25-180-100-100-m-150-
iso8859-1
courB24.snf -adobe-courier-bold-r-normal--34-240-100-100-m-200-
iso8859-1
courO08.snf -adobe-courier-medium-o-normal--11-80-100-100-m-60-
iso8859-1
courO10.snf -adobe-courier-medium-o-normal--14-100-100-100-m-90-
iso8859-1
courO12.snf -adobe-courier-medium-o-normal--17-120-100-100-m-100-
iso8859-1
courO14.snf -adobe-courier-medium-o-normal--20-140-100-100-m-110-
iso8859-1
. . .

Example 10-1Subsection of the Release 4 fonts.dir file in /usr/lib/X11/fonts/100dpi

The fonts.dir files are created by themkfontdir client when X is installed.mkfontdir reads
the font files in directories in the font path, extracts the font names, and creates afonts.dir
file in each directory. Iffonts.dir files are present on your system, you probably won’t have
to deal with them or withmkfontdir at all. If the files are not present, or if you have to load
new fonts or remove existing ones, you will have to create files withmkfontdir. Refer to
Volume Eight,X Window System Administrator’s Guide, for details.

10.4 Font Name Aliasing
Another way to abbreviate font names is by aliasing (that is, by associating fonts with alter-
native names of your own choosing).

10.4.1 Aliases—X11R5 and OpenWindows 3.3 Server
You can edit or create a file calledfonts.alias, in any directory (or multiple directories) in
the font search path, to set aliases for existing fonts. The X server uses bothfonts.dir files
andfonts.alias files to locate fonts in the font path.

If you are running X11 , there should already be an alias file in each font directory. Take
the time to look at the contents of each of these files, since many of the existing aliases may
be easier to type than even wildcarded font names. You can also add aliases to the file,
change existing aliases, or even replace the entire file. However, this should be done with
caution. To play it safe, it’s probably a good idea merely toadd to existingfonts.alias files.
If you’re working in a multiuser environment, the system administrator should definitely
be consulted before aliases are added or changed. Note that when you create or edit a

272 X USER’S GUIDE: OPEN LOOK EDITION

10
fonts.alias file, the server does notautomatically recognize the aliases in question. You
must make the server aware of newly created or edited alias files by resetting the font path
with xset.

The fonts.alias file has a two-column format similar to thefonts.dir file: the first column
contains aliases, the second contains the actual font names. If you want to specify an alias
that contains spaces, enclose the alias in double quotes. If you want to include double
quotes (”) or other special characters as part of an alias, precede each special symbol with
a backslash (“\”.

When you use an alias to specify a font in a command line, the server searches for the font
associated with that alias in every directory in the font path. Therefore, afonts.alias file in
one directory can set aliases for fonts in other directories as well. You might choose to cre-
ate a single aliases file in one directory of the font path to set aliases for the most commonly
used fonts in all the directories. Example10-2 shows three sample entries that could be
added to an existingfonts.alias file (or constitute a new one).

xterm12 -adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1
xterm14 -adobe-courier-medium-r-normal--14-140-75-75-m-90-iso8859-1
xterm18 -adobe-courier-medium-r-normal--18-180-75-75-m-110-iso8859-1

Example 10-2. Sample fonts.alias file entries

As the names of the aliases suggest, these sample entries provide aliases for three fonts (of
different point sizes) that are easily readable inxterm windows. (We also recommend the
fixed-width font stored in the file9x15.snf,* in themisc directory.) You can also use wild-
cards within the font names in the right column of an alias file. For instance, the alias file
entries above might also be written as follows:

xterm12 *courier-medium-r-*-120*
xterm14 *courier-medium-r-*-140*
xterm18 *courier-medium-r-*-180*

Once the server is made aware of aliases, you can specify an alias on the command line.
For example, you can use a font name alias as an argument toxfd.

A special note about themisc directory: when X was configured for your system, a
fonts.alias file should have been created in this directory. The first two entries in this file
are shown below:

fixed -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1
 variable -*-helvetica-bold-r-normal-*-*-120-*-*-*-*-*-*

The default file contains an additional 56 entries but the entries pictured above are partic-
ularly important. The aliases called “fixed” and “variable” are invoked as the default fonts
for many clients. The “fixed” font can be thought of as a system-wide default. The “vari-
able” font, described in the right column as a 12-point bold Helvetica font, is used as the
default font bybitmap, as well as by other clients. If this file is removed or replaced, when
you runbitmap, you’ll get an error message that the server cannot open the variable font,
and text in thebitmap window will display in the smaller, somewhat less readable “fixed”
font.

CHAPTER 10: FONT SPECIFICATION 273

10
If you do choose to edit thefonts.alias file in themisc directory, it is important to preserve
at least these two aliases. (As we’ve said, it’s probably a better idea to keep all the default
entries and merely append any new ones.)

If you’re running the older X11 Release 3, thefonts.alias file in themisc directory will be
somewhat different. The X11 Release 3 version of thefonts.alias file in themisc directory
comprises only these two lines:

fixed 6x13 variable *-helvetica-bold-r-normal-*-*-140-*

Regardless of what edits you make to the file, the line specifying the variable alias must not
be changed.

The variable font is slightly larger in X11 Release 3 (14-point) than in X11 Release 4 (12-
point). If you examine the Release 3 alias file a little more closely, you may notice that the
first line contains anincorrect alias specification. Remember, in Release 3,fixed is actually
the name of the default system font—it is not an alias. The first column should contain
aliases; the second column should contain proper font names. However, 6x13 is not a
proper font name. It is actually the name of the file that contains the font namedfixed. You
can specifyfixed as a font on the command line and it will work—but as a font name, not
an alias.

10.4.2 Aliases—Older OpenWindows XNews Server
You can provide your own aliases by creating a.user.ps file with the following contents.
This example makes “Nice” be an alias for the existing Folio font “GillSans”:

FontDirectory begin
/Nice /Gill-Sans _FontDirectorySYN
% other aliases here

end

The font Nice can now be used instead of Gill-Sans at any point size. As usual, you must
re-start the server for changes in this file to take effect. This technique is in fact used to pro-
vide X11 names for the standard PostScript fonts. The file
$OPENWINHOME/lib/fonts/Synonyms.Lst is comprised of hundreds of lines like this:

/-bitstream-charter-medium-i-normal--8-80-75-75-p-44-iso8859-1 \
/Charter-Italic _FontDirectorySYN

See the Sun documentX11/NeWS Version 2 Server Guide, part number 800-4898-10, for
more details on the user’s initialization files.

10.4.3 Making the Server Aware of Aliases
After you create (or update) an alias file, the server does not automatically recognize the
aliases in question. You must make the server aware of newly created or edited alias files
by “rehashing” the font path withxset. Enter:

% xset fp rehash

on the command line. Thexset optionfp (font path) with therehash argument causes the
server to reread thefonts.dir andfonts.alias files in the current font path. You need to do
this every time you edit an alias file. (You also need to usexset if you add or remove fonts.
See Appendix B,OpenWindows and X11 Fonts, for details.)

274 X USER’S GUIDE: OPEN LOOK EDITION

10 10.5 Utilities for Displaying Information about
Fonts

We’ve already mentionedxlsfonts, which simply displays the names and aliases of avail-
able fonts. In addition,xfd can be used to display the full character set of a particular font,
and xfontsel can be used to interactively preview and select a font for use in another
window.

10.5.1 The Font Displayer: xfd
If you’re unfamiliar with the general appearance of a particular font, we’ve included pic-
tures of some representative fonts in Appendix B,OpenWindows and X11 Fonts.

You can also display the characters in a font using thexfd (font displayer) client. Note that
xfd takes an option,-fn , before the font name. For example, to display the default system
font, a 6x13 pixel fixed-width font known asfixed, enter:†

% xfd -fn fixed &

Thexfd window will display the specified font (by its real name;fixed is an alias) as shown
in Figure 10-8.

† In X11 Release 3,fixed is a font name. In Release 4, it is an alias for a longer font name that follows the con-
ventions outlined previously.

Figure 10-8. Fixed font, 6x13 pixels

CHAPTER 10: FONT SPECIFICATION 275

10
This figure depicts the X11 Release 4 version ofxfd. The font name is displayed across the
top of the window Three command buttons appear in the upper-left corner of the window
below the font name. If the font being displayed doesn’t fit within a singlexfd screen, Prev
Page and Next Page allow you to scroll through multiple screens. (The horizontal and ver-
tical window dimensions can vary slightly to accommodate different fonts but certain fonts
will still require multiple screens.) The Quit button causes the application to exit, though
this can also be done by typing q or Q while input is focused on thexfd window.

In addition to displaying a font,xfd also allows you to display certain information about the
individual characters. But before we examine these capabilities, let’s take a closer look at
the way the characters in a font are identified and how thexfd window makes use of this
information.

Within a font, each character is considered to be numbered. Thexfd client displays a font’s
characters in a grid. By default, the first character of the font appears in the upper-left posi-
tion; this is character number 0. The two text lines above the grid identify the upper-left
character and the range of characters in the window by character numbers both in hexadec-
imal and in decimal notation (in parentheses following the hex character number).

You can specify a character other than character number 0 to be in the first position in the
window using the-start option. For example, if you enter this command line:

% xfd -start 15 -fn fixed &

thexfd window begins with character number 15.

Notice the instructionSelect a character below the command buttons. To display
information about a particular character, click any pointer button within the character’s
grid square. Statistics about the character’s width, left bearing, right bearing, ascent, and
descent are displayed where the lineSelect a character previously appeared.

Thexfd client is most useful when you have an idea what font you might want to display.
If you don’t have a particular font in mind or would like to survey the possibilities, the
xfontsel client (available as of X11 Release 4) allows you to preview a variety of fonts by
specifying each component of the font name using a different menu.

10.5.2 Previewing and Selecting Fonts: xfontsel
Thexfontsel client provides a font previewer window in which you select the font to view
using 14 menus corresponding to the 14 components of a font name. By specifying various
font name components, you can take a look at a variety of fonts. This is particularly useful
if you are trying to pick good display fonts and you don’t have a clear idea what type of
font would be best. Rather than running several instances ofxfd, you can dynamically
change the font displayed in thexfontsel window by changing the font name components.
(Despite the flexibility ofxfontsel, it’s certainly not practical to previewall of the available
fonts. If you have no idea what a particular font family looks like, see the discussion earlier
in this chapter, or refer to Appendix B,OpenWindows and X11 Fonts, for complete list-
ings.)†

Once you’ve displayed the desired font using the menus, you can make the name of that
font the PRIMARY text selection by clicking on the window’s select button. You can then

276 X USER’S GUIDE: OPEN LOOK EDITION

10
paste the font name into another window using the pointer: onto a command line, into a
resource file, etc. Making a font name the PRIMARY selection also enables you to choose
that font from thexterm VT Fonts menu. (Selecting text and usingxterm menus are
described in Chapter 5,The xterm Terminal Emulator.

10.5.2.1 Previewing Fonts with the xfontsel Menus

To runxfontsel, enter this command in anxterm window:

% xfontsel &

Thexfontsel window initially displays a some randomly-chosen font such as a greek sym-
bol font or a bold, constant-width, 7x13 pixel font, as shown in Figure10-9. In fact it
displays the first font in the default font search path.

The upper-left corner of thexfontsel window features two command buttons:quit and
select. As we’ve explained, clicking onselect with the first pointer button makes the font
displayed in the window the PRIMARY text selection; obviously,quit causes the applica-
tion to exit.

Below the command buttons is, in effect, a generic font name or font name template. It is
divided into 14 fields corresponding to the 14 parts of a standard font name. Each field is
an abbreviation for one part of a font name. Take a look again at the sample font name in
Figure 10-1 to refresh your memory as to the components. Each of the fields in thexfontsel
window is actually the handle to a menu which lets you specify this part of the font name.

To get a clearer idea of how this works, move the pointer onto the generic font name—spe-
cifically onto the first field, fndry. (This is an abbreviation for the first part of a font name,
the foundry.) When you place the pointer on fndry, the field title should be highlighted by

† To our minds, the major drawback ofxfontsel is that it shows you only the first font that matches a given wild-
carded font name. A far better interface would list all of the matching fonts so that you could compare and choose
the one that best suited your needs. There is no way in the standard X distribution to display the appearance of a
group of fonts. To produce the figures in this book, we had to write such a program, which we calledxshowfonts.
The program has since been posted tocomp.sources.x, and a listing appears in Appendix B,OpenWindows and
X11 Fonts.

Figure 10-9. xfontsel window displaying random font

CHAPTER 10: FONT SPECIFICATION 277

10
a box. You can then display a menu of foundry names by pressing and holding down the
first pointer button, as in Figure 10-10

Notice that the first choice is the asterisk (*) wildcard character. This is the first choice on
all of the menus, allowing you to include wildcards in the font name you specify rather than
explicitly selecting something from all 14 menus.

To specify a font name component (i.e., make a selection from the menu), first display the
menu by pressing and holding down the first pointer button. Then move the pointer down
the menu. As the pointer rests on each menu item, it is highlighted by reverse video. To
select a highlighted menu item, release the first pointer button.

The line below the font name menus represents the actual font name. When you first run
xfontsel, all of these fields contain wildcard characters because no menu selections have
been made. The number of fonts matched by the font name is displayed in the upper-right
corner of the window. The number of fonts initially matched depends on the number of
fonts with this naming convention available on your system. In this example, 474 fonts
match. (Since this line of wildcards can matchany 14-part font name, the server chooses
the first font in the font path that reflects this naming convention.)

When you select a font name component from one of the 14 menus, the component appears
in the actual font name, and thexfontsel window displays the first font that matches this

Figure 10-10. xfontsel window with foundry menu displayed

278 X USER’S GUIDE: OPEN LOOK EDITION

10
name. For example, say we select adobe from the fndry menu, thexfontsel window would
look like Figure 10-11.

The font name is now:

-bitstream-*-*-*-*-*-*-*-*-*-*-*-*-*

and the window displays the first font in the font path that matches this wildcarded name.
In this case, the first font to match is a 12-point bold Oblique Courier font, which is stored
in the filecourBO10.snf and has the actual font name:

-bitstream-charter-bold-o-normal-*-10-100-75-75-m-60-iso8859-1

Once you make a selection from one menu, the number of possible fonts matched by the
name changes. (Notice the linennn fonts match in the upper-right corner of the win-
dow.) Choosing one font name component also eliminates certain choices on other menus.
For example, after you select Bitstream as the foundry, the possible choices for font family
(the second menu, fmly) are narrowed down to 2 (not counting the asterisk). Again display
the fmly menu using the first pointer button. The available choices for font family appear
in a regular typeface; the items that are unavailable (i.e., cannot be selected) appear in a
lighter typeface. Families such as Clean, Lucida, and Charter are in a lighter typeface
because none of the standard X fonts provided by Bitstream is from these families. Bit-
stream fonts in the standard X distribution are limited to the families Courier, and Charter;
these are the items available on the fmly menu.

In order to display a particular font, you’ll probably have to make selections from several
of the menus. As described earlier in the section “Font Name Wildcarding,” we suggest
you explicitly select at least these parts of the font name:

■ Font family

■ Weight

■ Slant

■ Point size

Thus, you would make selections from the fmly, wght, slant, and ptSz menus.

Figure 10-11. xfontsel after choosing Bitstream from the foundry menu

CHAPTER 10: FONT SPECIFICATION 279

10
You can also use the-pattern option with a wildcarded font name to start out with a more
limited range of options. For example, if you typed:

% xfontsel -pattern ’*charter-bold-o-*’

you’d start out with the pattern you specified in the filename template part of thexfontsel
display. You could then simply select from the ptSz menu to compare the various point
sizes of Courier bold oblique until you found the one you wanted.

Note that if the pattern you specify toxfontsel matches more than one font, the one that is
displayed (the first match found) is the one that the server will use. This is in contrast to
xlsfonts, which sorts the font names. You can always rely onxfontsel to show you the
actual font that will be chosen, given any wildcard specification.

10.5.2.2 Selecting a Font Name

Once you make selections from the menus to compose the name of the font you want, the
corresponding font is displayed in thexfontsel window. Then you can select that font name
by clicking on the select command button with the first pointer button. The font name
becomes the PRIMARY text selection and thus can be pasted in another window using the
second pointer button, as described in Appendix A,The xterm/olterm Terminal Emulator.

You might paste the font name on a client command line in anxterm window in order to
specify it as the client’s display font. (See Chapter 11,Command Line Options.) You might
paste it into a resource file such as.Xdefaults to specify it as the default font for a client or
some feature of a client (such as a menu). (See Chapter 12,Setting Resources, for more
information.)

Less obviously, once a font name is made the PRIMARY text selection, it can be toggled
as thexterm display font using the Selection item of thextermVT Fonts menu. The Selec-
tion menu item can only be chosen from the VT Fonts menu when there is a PRIMARY
text selection. (Otherwise, the menu item appears in a lighter typeface, indicating that it is
not available.) If the PRIMARY text selection is a valid font name (as it is when you’ve
pressed the select button in thexfontsel window), thexterm window displays in that font.
(In cases where the PRIMARY selection is not a valid font name, thexterm display font
does not change.)

By default,xfontsel displays the lowercase and uppercase letters a through z and the digits
0 through 9. You can specify alternative sample text using the-sample option. For more
information about this and other options, see thexfontsel reference page in Part Three of
this guide.

10.5.3 The “text” demo program (OpenWindows up to 3.2)
OpenWindows Release Two includes a useful program for displaying text in various fonts.
The text program is stored in the demos directory, which is usually not in your standard
directory search path. It is a PostScript script file, so you can invoke it usingpsh as follows:

% cd $OPENWINHOME/demos
% psh ./text

280 X USER’S GUIDE: OPEN LOOK EDITION

10
The initial screen (Figure 10-12)shows some silly text in the default typeface:

TheMENU button in the program’s window displays this menu: l. Fonts Point Size Gray
Level Contrast Show Text Show All The last two are used to toggle between the default
display above, and the display of the full character set in any given font, as shown in
Figure 10-13.

Figure 10-12. Text Demo.

Figure 10-13. Text Demo.

CHAPTER 10: FONT SPECIFICATION 281

10
The first item in the menu,fonts, expands to a (very large) list of all the available font
names. Note that it takes quite a while to prepare this menu, as the X/NeWS server has to
examine each font file at its disposal. Figure 10-14 is the list on my system:

Figure 10-14. Text Demo: List of Fonts

282 X USER’S GUIDE: OPEN LOOK EDITION

10
If you click on a large font, you will only see the first part of it; usexfd mentioned above
to see it all. For example, if you click onKanji, you see a window like Figure 10-15.

Note that the font menu is pinnable; if you are planning to experiment with a variety of
fonts, you can (and should) pin this menu up.

The Point Size menu lets you view the text sample at a variety of sizes. The remaining
items,Gray Level andContrast allow you to view the text in a variety of shadings and con-
trasts, including reverse video.

All in all, text is a useful tool for previewing all the available fonts in the OpenWindows
system.

Figure 10-15. Text demo: Kanji Font (first page of many).

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 11: COMMAND LINE OPTIONS 283

11

Chapter 11COMMAND LINE OPTIONS

CHAPTER 11

Command Line Options

This chapter describes command line options that are common to most clients. Some argu-
ments to command line options can also be specified as the values of resource variables,
described in Chapter 12,Setting Resources. For example, the format of a geometry string
or a color specification is the same whether it is specified as an argument to an option or as
the value of a resource definition.

As explained in Chapter 3,Opening Additional Windows, The X Window System allows
the user to specify numerous (very numerous!) command line options when starting most
clients. In order to know for sure what options a given client will accept, you need to check
its reference page in Part Three. However, there are many “generic” options. In addition to
certain client-specific options, all applications built with the MIT X Toolkit (or a toolkit
based on the Xt Intrinsics, such as OLIT, theOPEN LOOK Intrinsics Toolkit, or OSF/Motif)
accept certain standard options, which are listed in Table11-1. Programs built using the
XView toolkit accept most of these options, as well as certain XView-specific options and
some “-W” short forms shown in Table 11-2, “XView Generic Options”. Some non-Tool-
kit applications may also recognize some or all of these options. The first column contains
the name of the option, the second the name of the resource to which it corresponds (see
Chapter 12,Setting Resources), and the third a brief description of what the option does.

This chapter discusses some of the more commonly used generic options and demonstrates
how to use them. (For the syntax of the other X Toolkit options, see theX reference page
in Part Three of this guide; for the XView options, see thexview reference page.)

Table 11-1. MIT Toolkit and OLIT Standard Options

Flag Long Flag Resource Description

-bg -background background Background color of window.

-bd -bordercolor borderColor Color of window border.

284 X USER’S GUIDE: OPEN LOOK EDITION

11

Though all Toolkit options are preceded by a minus sign, client-specific options may or
may not require one. See the reference page for each client in Part Three of this guide for
the syntax of all options.

-bw -borderwidth borderWidth Border width of window in pixels.

-display display Display on which to run client.

-fn -font font Font for text display.

-fg -foreground foreground Foreground (drawing or text) color of window.

-geometry geometry Geometry string for window size and placement.

-iconic Start the application in iconified form.

-name name Specify a name for the application being run.

-rv -reverse reverseVideo Reverse foreground and background colors.

+rv reverseVideo Don’t reverse foreground and background.

-
selection-
Timeout

selectionTim-
eout

Time-out in milliseconds within which two
communicating applications must respond to
one another for a selection request.

-synchronous synchronous Enable synchronous debug mode.

+synchronous synchronous Disable synchronous debug mode.

-title title Specify a window title (e.g., to be displayed in a
titlebar).

-xnllanguage xnlLanguage The language, territory, and code set for
National Language Support; this information
helps resolve resource and other filenames.

-xrm value of next
argument

Next argument is a quoted string containing a
resource manager specification, as described in
Chapter 12,Setting Resources.

Table 11-1. MIT Toolkit and OLIT Standard Options

Flag Long Flag Resource Description

CHAPTER 11: COMMAND LINE OPTIONS 285

11
Here are the XView options. Most are preceded by a minus sign, but a few may be pre-
ceded by a plus sign to have the opposite effect.

Table 11-2. XView Generic Options

Flag Long Flag Argument Type Description

-WH -help Print this table.

-Ww -width columns Window width in pixels

-Wh -height lines Window height in pixels

-Ws -size x y (combination of above)

-Wp -position x y Position of top left window
corner

-geometry X geometry X-style size, location

-WP -icon_position x y Icon location

-Wl -label string Window Label

-title string Same as -label

-name string Set application instance name
to string

-Wi -iconic Start up iconified

+Wi +iconic Start up open

-Wt -font or -fn font name Normal font name

-Wx -scale small | medium |
large | extra_large

Relative size

-Wf - foreground_col
or

red green blue 0-255, 0=no color; 255=full
color

-fg -foreground color name X Color specification

-Wb -
background_colo
r

red green blue same as -Wf

-bg -background color name same as -fg

-rv -reverse Reverse -fg and -bg colors

+rv +reverse Don’t reverse colors

-WI - icon_image filename Take icon image from file

286 X USER’S GUIDE: OPEN LOOK EDITION

11

-WL -icon_label string Label when iconified

-WT -icon_font font name Name of font for -WL

-Wr -display server_name:screenX display name

-visual StaticGray | Gray-
Scale | StaticColor
| PseudoColor|
TrueColor |
DirectColor

“Visual” to use

-depth depth 1-24 Depth of visual to use

-Wdr - disable_retain
ed

Turn off “retained” hint

-Wdxio - disable_xio_er
ror_handler

Turn off XLib I/O handling

-Wfsdb - fullscreen-
debug

For debugging; avoid
screengrabs

- Wfsdbs - fullscreende-
bugserver

Avoid server grabs only

- Wfsdbp - fullscreende-
bugptr

Avoid pointer (mouse) grabs
only

-Wfsdbk -
fullscreende-
bugkbd

Avoid keyboard grabs only

-WS -
defeateventse-
curity

Turn off XLib event security
(don’t!)

-sync -synchronous Force a synchronous XLib
connection

+sync +synchronous Make an asynchronous XLib
connection

-Wd -default resource value Set the X resource to value

-xrm resource:value Set the X resource to value

- lc_basiclocale locale Set basic locale to locale

Table 11-2. XView Generic Options

Flag Long Flag Argument Type Description

CHAPTER 11: COMMAND LINE OPTIONS 287

11

One very useful option is-help , which prints the list of options that a given program will
accept, similar to the above table.†

Perhaps the next-most useful options are-display and-geometry , which allow you
to specify the display on which a client window should appear, and the size and position of
that window, respectively. See Chapter 3,Opening Additional Windows, for detailed
instructions on using these options. In the remainder of this chapter we’ll discuss some of
the other useful Toolkit options.

An option that lets you specify any X Resource for which there is no command line argu-
ment is-xrm , which takes an argument of the formresource:value(XView clients also
accept -Wd or -default, which takes two arguments, a resource and a value). The two fol-
lowing forms are equivalent:

cmdtool -xrm “OpenWindows.ScrollbarPlacement:right”
cmdtool -Wd “OpenWindows.ScrollbarPlacement:right”

In either case, the quotes are recommended to prevent the shell from trying to interpret any
asterisk (“*”) or other special characters.

11.1 Window Title and Application Name
The name of the program (as known to the server) and the title of the window can be spec-
ified on the command line. The-title option allows you to specify a text string as the
title of the application’s window. If your application has a titlebar or if the window man-
ager you are using puts titlebars on windows, this string will appear in the titlebar. Window
titles can be useful in distinguishing multiple instances of the same application.

The-name option actually changes the name by which the server identifies the program.
Changing the name of the application itself (with the-name option) affects the way the
application interprets resource files. This option is discussed further in Chapter 12,Setting
Resources. If a name string is defined for an application, that string will appear as the appli-
cation name in its icon.

† Indeed, my one complaint about the standard OpenWindows clients is that they only print the generic help;
many of those that accept additional command line arguments don’t display them when-help is given.

-lc_displaylang locale Set display language to locale

- lc_inputlang locale Set input language to locale

- lc_numeric locale Set numeric format to locale

- lc_timeformat locale Set time format to locale

Table 11-2. XView Generic Options

Flag Long Flag Argument Type Description

288 X USER’S GUIDE: OPEN LOOK EDITION

11
If you display information about currently running windows using thexwininfo or xlswins
client, title strings will appear in parentheses after the associated window ID numbers. (If
there is no title string but there is a name string, the name string will be displayed.)

You can also use thexwininfo client to request information about a particular window by
title, or name, if no title string is defined, using that application’s own-name option. See
thexlswins andxwininfo reference pages in Part Three of this guide and the section “Win-
dow and Display Information Clients” in Chapter 8,Other Standard Clients, to learn more
about these clients.

11.2 Starting a Client Window as an Icon
The-iconic command line option starts the client window in iconified form. To start an
xterm window as an icon, type:

% xterm -iconic &

XView clients accept the alternate form - Wi, for example,

% cmdtool -Wi &

This can be especially useful for starting a login terminal emulator window. As described
in Chapter 3,Opening Additional Windows, terminating the loginxterm window may kill
the X server and all other clients that are running. It’s always possible to terminate a win-
dow inadvertently by selecting the wrong menu option or typing the wrong key sequence.
If your login xterm window is automatically iconified at start-up, you are far less likely to
terminate the window inadvertently and end your X session.

All toolkits let you specify the location of the main window on the command line, for
example using the- geometry command line argument. XView clients also allow you to
specify the size and position of the icon on the command line. Unfortunately, the X Toolkit
does not allow this. For most such clients, the size and position of the icon can be set using
resource variables in an.Xdefaults or other resource file. (Setting the icon geometry in a
resource file is highly recommended if you are starting the loginxterm window as an icon.)
See the appropriate client reference pages in Part Three of this guide for a complete list of
available resources. Refer to Chapter 12,Setting Resources, for instructions on how to set
resources.

11.3 Specifying Fonts on the Command Line
Many clients allow you to specify the font to be used when displaying text in the window.
(These are known asscreen fonts and are not to be confused withprinter fonts.) For clients
written with either toolkit (OLIT or XView), the option to set the display font is-fn . For
example, the command line:

% cmdtool -fn fixed &

creates anxterm window in which text will be displayed with the font namedfixed .

Chapter 10,X11, OPEN LOOK and OpenWindows Font Specification, describes the avail-
able screen fonts and font naming conventions. See alsoxlsfonts.

CHAPTER 11: COMMAND LINE OPTIONS 289

1111.4 Reverse Video
There are three options to control whether the application will display in reverse
video—that is, with the foreground and background colors reversed. The-rv or
-reverse option is used to request reverse video.

The+rv option is used to override any reverse video request that might be specified in a
resource file. (See Chapter 12,Setting Resources.) This is important, because not all clients
handle reverse video correctly, and even those that do usually do so only on black and
white displays.

11.5 Specifying Color
Many clients have options that allow you to specify the color of the window background,
foreground (the color in which text or graphic elements will be displayed), and border.
These options generally have the form:

–bg color Sets the background color.

–fg color Sets the foreground color.

–bd color Sets the border color.

By default, the background of an application window is usually white and the foreground
black, even on color workstations. You can specify a new color using either the color
names listed in a system file calledrgb.txt (described later) or hexadecimal values repre-
senting colors. The hexadecimal format is described in the sectionHexadecimal Color
Specification later in this chapter.

Many X Toolkit clients accept a-bd option that is intended to specify the color of the win-
dow border. However, underOPEN LOOK using theOPEN LOOK Window Manager, this
customization is generally useless: theolwm frame effectively replaces most window bor-
ders. As an alternative, you can change the color of all windows’ frames by specifying
resources forolwm in a .Xdefaults or .Xresources file in your home directory. For more
information, see Chapter 13,Customizing olwm, and theolwm reference page in Part Three
of this guide.

In the next section, we’ll take a look at some of the color names you can use. For now, let’s
consider the syntax of a command line specifying anxterm to be displayed in three colors:

% xterm -bg lightblue -fg darkslategrey -bd plum &

This command creates anxterm window with a background of light blue, foreground of
dark slate gray, and window border of plum.

At the command line, a color name should be typed as a single word (for example,dark-
slategray). However, you can type the words that make up a color name separately if
you enclose them in quotes, as in the command line:

% xterm -bg "light blue" -fg "dark slate grey" -bd plum &

290 X USER’S GUIDE: OPEN LOOK EDITION

11
As we’ll see, thergb.txt file contains variants of the same color name (for example, “navy
blue” and “navyblue,” or “grey” and “gray”) to allow a range of spelling, spacing, and cap-
italization on the command line.

Some clients allow additional options to specify color for other elements, such as the cur-
sor, highlighting, and so on. See the appropriate client reference pages in Part Three of this
guide for details.

To see how a given color looks “in the large”, you can put it onto your root window using
thexsetroot client described in Chapter 14,Customization Clients. For example,

% xsetroot -solid “light sea green”

11.5.1 The rgb.txt File
Thergb.txt file, usually located in/usr/lib/X11, is supplied with the standard distribution of
X and consists of predefined colors assigned to specific text names.

A corresponding compiled database lives in two files calledrgb.dir andrgb.pag. This data-
base contains the definitions used by the server; this machine-readable file serves as a color
name database and is discussed more fully in Thergb.txt file is the human-readable
equivalent.

11.5.2 X11 Release 4 Color Names
The defaultrgb.txt file shipped with Release 4 of X contains 738 color name definitions.
This number is slightly deceptive, since a number of the color names are merely variants
of another color name (differing only in spelling, spacing, and capitalization).

Still, the number of colors available in Release 4 is more than double the number available
in Release 3. Some of the Release 4 colors are entirely new (such as snow and misty rose)
but many are just slightly different shades of colors available in prior releases.

For example, the Release 3rgb.txt file includes the color sea green. The Release 4rgb.txt
file offers several shades of that color:

light sea green
sea green medium
sea green dark
sea green
SeaGreen1
SeaGreen2
SeaGreen3
SeaGreen4
DarkSeaGreen1
DarkSeaGreen2
DarkSeaGreen3
DarkSeaGreen4

Each of these names corresponds to a color definition. (This list does not include the vari-
ants SeaGreen, LightSeaGreen, MediumSeaGreen, and DarkSeaGreen, which also appear
in the file.) As you can see, some of these shades are distinguished in the fairly traditional

CHAPTER 11: COMMAND LINE OPTIONS 291

11
way of being called “light,” “medium,” and “dark.” The light, medium, and dark shades of
a color can probably be distinguished from one another on virtually any monitor.

Beyond this distinction, there are what might be termed “sub-shades”: gradations of a par-
ticular shade identified by number (SeaGreen1, SeaGreen2, etc.). Numerically adjacent
sub-shades of a color may not be clearly distinguishable on all monitors. For example,
SeaGreen1 and 2 may look very much the same. (You certainly would not choose to create
a window with a SeaGreen1 background and SeaGreen2 foreground! On the other hand,
sub-shades a couple of numbers apart are probably sufficiently different to be used on the
same window.)

By supplying many different shades of a single, already fairly precise color like sea green,
X developers have tried to provide definitions that work well on a variety of commonly
used monitors.†

You may have to experiment to determine which colors (or shades) display best on your
monitor.

The color names in the Release 4rgb.txt file are too numerous to list here. Although there
are no literal dividers within the file, it can roughly be considered to fall into three sections:

Section 1: A standard spectrum of colors, many available in or similar to colors in Release
3 (such as sea green). These colors seem to be ordered roughly as: off-whites and
other pale colors, greys, blues, greens, yellows, browns, oranges, pinks, reds, and
purples.

Section 2: Sub-shades of Section 1 colors (such as SeaGreen 1 through 4). These sub-
shades make up the largest part of the file.

Section 3: One hundred and one additional shades of grey, numbered 0 through 100 (also
available in Release 3). This large number of precisely graduated grays provides
a wide variety of shading for monochrome screens.

Rather than list every color in thergb.txt file, we’ve compiled this table of representative
colors. We’ve chosen some of the more esoteric color names. Naturally all of the primary
and secondary colors are also available.

Section 1:
ghost white peach puff lavender blush lemon chiffon slate grey midnight
blue cornflower blue medium slate blue dodger blue powder blue turquoise
pale green lawn green chartreuse olive drab lime green khaki light
yellow goldenrod indian red sienna sandy brown salmon coral tomato hot
pink maroon violet red magenta medium orchid blue violet purple
Section 2:
snow1 - 4 bisque1 - 4 cornsilk1 - 4 honeydew1 -4 azure1 - 4 SteelBlue1
- 4 DeepSkyBlue1 - 4 LightCyan1 - 4 PaleTurquoise1 - 4 aquamarine1 - 4
PaleGreen1 - 4 DarkOliveGreen1 - 4 SpringGreen1 -4 gold1 - 4 RosyBrown1
- 4 burlywood1 - 4 chocolate1 - 4 firebrick1 - 4 DarkOrange1 - 4
OrangeRed1 - 4 DeepPink1 - 4 PaleVioletRed1 - 4 plum1 - 4 DarkOrchid1 - 4

† The color database shipped with prior releases of X was originally designed to display optimally on the vt240
series terminals manufactured by Digital Equipment Corporation.

292 X USER’S GUIDE: OPEN LOOK EDITION

11
Section 3:
grey0 (gray0) through grey100 (gray100)

If you want to look more closely at thergb.txt file, you can open it with any text editor. As
an alternative, you can display the contents of the file using theshowrgb client. showrgb
seems to do nothing more thancat (1) the file to your terminal window; in fact, it consults
the database (dbm) version of the file. Given the size of the file, you should pipe the com-
mand’s output to a paging program, such aspg (1) ormore (1), as shown below:

% showrgb | more

See Volume Eight,X Window System Administrator’s Guide, for information on customiz-
ing color name definitions.

Keep in mind that colors look different on different monitors. Thexcol andxcoloredit cli-
ents, from the user-contributed distribution, allow you to display the colors defined in the
rgb.txt file. xcol can also edit the color specifications in a resource file. See thexcol client
reference page in Part Three of this guide.

11.5.3 Alternative MIT X11 Release 4 and 5 Color Databases
In addition to the standard color database described previously, Release 4 also includes
three other databases your system administrator can compile. These files can be found in
the general release in the directory./rgb/others.

raveling.txt Designed by Paul Raveling, this database rivals the default database in size and
scope but was tuned to display optimally on Hewlett-Packard monitors.

thomas.txt Based on the Release 3 database, this file has been modified by John Thomas of
Tektronix to approximate the colors in a box of Crayola Crayons.

old-rgb.txt This is nothing more than the Release 3 database.

11.5.4 MIT X11R5 Color Extensions
The MIT X11 Release 5 system contains numerous extensions for color editing and speci-
fication. These are not described here yet.. If your system supports them, you will find a
full discussion in Volume Eight,X Window System Administrator’s Guide.

11.5.5 Hexadecimal Color Specification
You can specify colors more exactly than is possible with the names in thergb.txt file by
using a hexadecimal color string. You probably won’t use this method unless you require
a color not available by using a color name. In order to understand how this works, you
may need a little background on how color is implemented on most workstations.

11.5.5.1 The RGB Color Model

Most color displays on the market today are based on the RGB color model. Each pixel on
the screen is actually made up of three phosphors: one red, one green, and one blue. Each
of these three phosphors is excited by a separate electron beam. When all three phosphors
are fully illuminated, the pixel appears white to the human eye. When all three are dark, the
pixel appears black. When the illumination of each primary color varies, the three phos-

CHAPTER 11: COMMAND LINE OPTIONS 293

11
phors generate a subtractive color. For example, equal portions of red and green, with no
admixture of blue, makes yellow.

As you might guess, the intensity of each primary color is controlled by a three-part digital
value—and it is the exact makeup of this value that the hexadecimal specification allows
you to set.

Depending on the underlying hardware, different servers may use a larger or smaller num-
ber of bits (from 4 to 16) to describe the intensity of each primary. To insulate you from
this variation, most clients are designed to take color values containing anywhere from 4 to
16 bits (1 to 4 hex digits), and the server then scales them to the hardware. As a result, you
can specify hexadecimal values in any one of these formats:

#RGB #RRGGBB #RRRGGGBBB #RRRRGGGGBBBB

where R, G, and B represent single hexadecimal digits and determine the intensity of the
red, green, and blue primaries that make up each color.

When fewer than four digits are used, they represent the most significant bits of the value.
For example,#3a6 is the same as#3000a0006000 .†

What this means concretely is perhaps best illustrated by looking at the values that corre-
spond to some colors in the color name database. We’ll use 8-bit values—two hexadecimal
digits for each primary. These definitions are the hexadecimal equivalents of the decimal
values for some of the colors found in thergb.txt file:

#000000 black
#FFFFFF white
#FF0000 red
#00FF00 green
#0000FF blue
#FFFF00 yellow
#00FFFF cyan
#FF00FF magenta
#5F9EA0 cadet blue
#6495ED cornflower blue
#ADD8E6 light blue
#B0C4DE light steel blue
#0000CD medium blue
#000080 navy blue
#87CEED sky blue
#6A5ACE slate blue
#4682B4 steel blue

As you can see from the colors previously given, pure red, green, and blue result from the
corresponding bits being turned on fully. All primaries off yields black, while all nearly
full on gives white. Yellow, cyan, and magenta can be created by pairing two of the other
primaries at full intensity. The various shades of blue shown previously are created by
varying the intensity of each primary—sometimes in unexpected ways.

† If you are unfamiliar with hexadecimal numbering, see the Glossary for a brief explanation, or a basic computer
textbook for a more extended discussion.

294 X USER’S GUIDE: OPEN LOOK EDITION

11
The bottom line here is that if you don’t intimately know the physics of color, the best you
can do is look up existing colors from the color name database and experiment with them
by varying one or more of the primaries till you find a color you like. Unless you need pre-
cise colors, you are probably better off using color names.

11.5.5.2 How Many Colors are Available?

The number of distinct colors available on the screen at any one time depends on the
amount of memory available for color specification. (Thexdpyinfo client provides infor-
mation about a display, including the number of colors available at one time. See Chapter
8, Other Standard Clients, and thexdpyinfo reference page in Part Three of this guide for
details. As well, the Sun OpenWindows server lets you control the number of colors with
its -cubesize command line argument; see theOpenWindows Server Guide for details.)

A color display uses multiple bits per pixel (also referred to as multiple planes or thedepth
of the display) to select colors. Programs that draw in color use the value of these bits as a
pointer to a lookup table called acolormap, in which each entry (orcolorcell) contains the
RGB values for a particular color.* As shown in Figure11-1, any given pixel value is used
as an index into this table—for example, a pixel value of 16 will select the 16th colorcell.

Why is this technical detail important? Because it explains several issues that you might
encounter in working with color displays.†

First, the range of colors possible on the display is a function of the number of bits avail-
able in the colormap for RGB specification. If 8 bits are available for each primary, then

Figure 11-1. Multiple planes used to index a colormap

0
0

0
0

1
1

1
0

0
0

0
0

1
1

1
0

0
0

0
0

1
1

1
0

Frame
Buffer

Pixel
Values

blue

Colormap

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

R G B

0

0

225

CHAPTER 11: COMMAND LINE OPTIONS 295

11
the range of possible colors is 2563 (more than 16 million colors). This means that you can
create incredibly precise differences between colors.

However, the number of different colors that can be displayed on the screen at any one time
is a function of the number of planes. A four-plane system can index 2^4 colorcells (16 dis-
tinct colors); an 8-plane system can index 28 colorcells (256 distinct colors); and a 24-
plane system can index 224colorcells (more than 16 million distinct colors).

If you are using a 4-plane workstation, the fact that you can precisely define hundreds of
different shades of blue is far less significant than the fact that you can’t use them all at the
same time. There isn’t space for all of them to be stored in the colormap at one time or any
mechanism for them to be selected even if they could be stored.

This limitation is made more significant by the fact that X is a multi-client environment.
When X starts up, usually no colors are loaded into the colormap. As clients are invoked,
certain of these cells are allocated. But when all of the free colorcells are used up, it is no
longer possible to request new colors. When this happens, you will usually be given the
closest possible color from those already allocated. However, you may instead be given an
error message and told that there are no free colorcells.

In order to minimize the chance of running out of colorcells, many programs useshared
colorcells. Shared colorcells can be used by any number of applications but they can’t be
changed by any of them. They can only be de-allocated by each application that uses them,
and when all applications have de-allocated the cell, it is available for setting one again.
Shared cells are most often used for background, border, and cursor colors.

Alternately, some clients have to be able to change the color of graphics they have already
drawn. This requires another kind of cell, calledprivate, which can’t be shared. A typical
use of a private cell would be for the palette of a color-mixing application. Such a program
might have three bars of each primary color and a box that shows the mixed color. The pri-
mary bars would use shared cells, while the mixed color box would use a private cell.

In summary, some programs define colorcells to be read-only and sharable, while others
define colorcells to be read/write and private.

To top it off, there are even clients that may temporarily swap in a private colormap of their
own. If this happens, all other applications will be displayed in unexpected colors because
of the way color is implemented. This is calledcolormap flashing, because the colormaps
flash in and out as the pointer enters and leaves such clients. You can “lock” in the color-
map of a client under the OpenWindows version ofolwm using the Colormap Lock key
(Ctrl/L2 on the Sun keyboard).

In order to minimize such conflicts, you should request precise colors only when neces-
sary. By preference, use color names or hexadecimal specifications that you specified for
other applications.

† There is a type of high-end display in which pixel values are used directly to control the illumination of the red,
green, and blue phosphors. But far more commonly, the bits per pixel are used indirectly with the actual color
values specified independently.

296 X USER’S GUIDE: OPEN LOOK EDITION

11 11.6 Border Width
Many clients accept a-bw option that is intended to specify the width of the window bor-
der in pixels. However, as in the case of the-bd (border color) option, underOPEN LOOK,
this customization is generally useless because theolwm window frame effectively
replaces most window borders.

As an alternative, youcan change the width of the frame of all windows by specifying
resources forolwm in a .Xresources or .Xdefaults file in your home directory. For more
information, see Chapter 13,Customizing olwm, and the resources on theolwm reference
page in Part Three of this guide.

11.7 xterm and cmdtool example
Here is an example that consolidates several of the options that we’ve discussed so far. We
want a terminal emulator, with a window size of 80 columns by 48 rows (double the size
of a conventional “24x80” ASCII terminal), at the left margin but with its top 100 pixels
down from the top of the screen. And we want the name in its titlebar to be whatever is
stored in the shell variable “HOSTNAME”. If we prefer to usexterm, we could use this
form:

xterm -geometry 80x48+0+100 -T "$HOSTNAME"&

If we are usingcmdtool we could give this specification:

cmdtool -Ww 80 -Wh 40 -Wp 0 100 -Wl "$HOSTNAME"&

However, this attempt at an X Toolkit-compatible one:

cmdtool -geometry 80x48+0+100 -title "$HOSTNAME"&

will fail, because in this context the width and height are interpreted in pixels, so we get a
very tiny window, about an inch high! By contrast,xterm interprets the geometry size in
columns and rows, whilecmdtool interprets it in pixels, and provides the alternate-width
and -height command line arguments (columns and rows, respectively), so that you can
specify it either way.

11.8 Summary
We’ve now shown most of the standard command line options for the Intrinsics toolkits
(Athena and OLIT) as well as for the XView toolkit. Since color is so important in making
a display visually appealing, we spent some time on it. In the next chapter we describe
Resources, which are a way you can control the behavior of window clients without having
to type your preferences each time you start that client.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 12: SETTING RESOURCES 297

12

Chapter 12SETTING RESOURCES

CHAPTER 12

Setting Resources

This chapter describes how to set resource variables that determine application features
such as color, geometry, fonts, and so on. It describes the syntax of resource definition files
such as.Xresources, as well as the operation ofxrdb, a client that can be used to change
resource definitions dynamically, and make resources available to clients running on other
machines.

Virtually all X clients are customizable. You can specify how a client looks on the
screen—its size and placement, its border and background color or pattern, whether the
window has a scrollbar, and so on. Some applications even allow you to redefine the key-
strokes or pointer actions used to control the application.

Traditional UNIX applications rely on command line options to allow users to customize
the way they work. As we’ve already discussed in Chapter 11,Command Line Options, X
applications support command line options too, but often not for all features. Also, there
can be so many customizable features in an application that entering a command line to set
them all would be completely impractical. (Imagine the aggravation of misspelling an
option in a command that was three lines long!)

X offers an alternative to customizing an application on the command line. Almost every
feature of a program can be controlled by a variable called aresource; you can change the
behavior or appearance of a program by changing thevalue associated with a resource vari-
able. (All of the standard X ToolkitCommand Line Options described in Chapter 11 have
corresponding resource variable names. See Table11-1 and Table11-2 for more
information.)

Resource variables may be Boolean (such asscrollBar: True) or take a numeric or
string value (borderWidth: 2 or foreground: blue). What’s more, in applica-
tions written with the X Toolkit (or an Xt-based toolkit such as the Motif toolkit), resources
may be associated with separateobjects (or “widgets”) within an application. There is a
syntax that allows for separate control over both aclass of objects in the application and an

298 X USER’S GUIDE: OPEN LOOK EDITION

12
individual instance of an object. This is illustrated by these resource specifications for a
hypothetical application calledxclient:

xclient*Buttons.foreground: blue
xclient*help.foreground: red

The first resource specification makes the foreground color of all buttons in thexclient
application (in the classButtons) blue; the second resource specification makes the fore-
ground color of thehelp button in this application (an instance of the classButtons)
red.

The values of resources can be set as application defaults using a number of different
mechanisms, including resource files in your home directory and a program calledxrdb (X
resource database manager). As we’ll see, thexrdb program stores resources directly in the
server, making them available to all clients, regardless of the machine the clients are run-
ning on.

Placing resources in files allows you to set many resources at once, without the restrictions
encountered when using command line options. In addition to a primary resource file
(often called.Xdefaults or .Xresources) in your home directory, which determines defaults
for the clients you yourself run, the system administrator can create system-wide resource
files to set defaults for all instances of a given application run on this machine. It is also
possible to create resource files to set some resources only for the local machine, some for
all machines in a network, and some for one or more specific machines.

The various resource files are automatically read in and processed in a certain order within
an application by a set of routines called theresource manager. The syntax for resource
specifications and the rules of precedence by which the resource manager processes them
are intended to give you the maximum flexibility in setting resources with the minimum
amount of text. You can specify a resource that controls only one feature of a single appli-
cation, such as the redhelp button in the hypotheticalxclient settings above. You can also
specify a resource that controls one feature of multiple objects within multiple applications
with a single line.

It is important to note that command line options normally take precedence over any prior
resource settings; so you can set up the files to control the way younormally want your
application to work and then use command line options to specify changes you need for
only one or two instances of the application.

In this chapter, we’ll first look at the syntax of resource specifications. Then we’ll consider
some methods of setting resources, primarily some special command line options and the
xrdb program. Finally, we’ll take a brief look at other sources of resource definition, addi-
tional files that can be created or edited to set application resources.

12.1 Resource Naming Syntax
The basic syntax of a resource definition file is fairly simple. Each client recognizes certain
resource variables that can be assigned a value. The variables for each client are docu-
mented on its reference page in Part Three of this guide.

CHAPTER 12: SETTING RESOURCES 299

12
Most of the common clients are written to use the X Toolkit. As described in Chapter 8,
Other Standard Clients, toolkits are a mechanism for simplifying the design and coding
of applications, and making them operate in a consistent way. Toolkits provide a standard
set of objects, or widgets, such as menus, command buttons, dialog boxes, scrollbars, and
so on. As we’ll see, the naming syntax for certain resources parallels the object hierarchy
that is built into X Toolkit programs.†

In addition, X Toolkit clients recognize a set of Core resource variables, listed in Table G-
1. However, though all Toolkit applications recognize these variables, not all applications
make use of them. This fine distinction is addressed in Appendix I,Athena Widget
Resources, which gives a more technical discussion of how widgets use resources, and how
applications use widgets. Appendix G also gives a detailed listing of the resources defined
by each of the Athena widgets.

The most basic line you can have in a resource definition file consists of the name of a cli-
ent, followed by a period or an asterisk, and the name of a variable. A colon and whitespace
separate the client and variable names from the actual value of the resource variable. The
following line specifies that all instances of thexterm application have a scrollbar:

xterm*scrollBar: True

If the name of the client is omitted, the variable applies to all instances of all clients (in this
case, all clients that can have a scrollbar). If the same variable is specified as a global vari-
able and a client-specific variable, the value of the client-specific variable takes precedence
for that client. Note, however, that if the name of the client is omitted, the line should gen-
erally begin with an asterisk.

Be sure not to inadvertently omit the colon at the end of a resource specification. This is an
easy mistake to make and the resource manager provides no error messages. If there is an
error in a resource specification (including a syntax error such as the omission of the colon
or a misspelling), the specification is ignored. The value you set will simply not take effect.
To include a comment in a resource file or comment out one of the resource specifications,
begin the line in question with an exclamation point (!). If the last character on a line is a
backslash (\), the resource definition on that line is assumed to continue on the next line.

12.1.1 Syntax of Toolkit Client Resources
As mentioned above, X Toolkit applications (and Xt-based toolkit applications) are made
up of predefined components called widgets. There can be widgets within widgets (e.g., a
command button within a dialog box). The syntax of resource specifications for Toolkit
clients parallels the levels of the widget hierarchy. Accordingly, you should think of a
resource specification as having this format:

object.subobject [.subobject... .attribute : value

where:

† If a client was built with the X Toolkit, this should be noted on the reference page. In addition to certain appli-
cation-specific resource variables, most clients that use the X Toolkit recognize a common set of resource vari-
ables, listed in Table 12-1.

300 X USER’S GUIDE: OPEN LOOK EDITION

12
object is the client program or a specific instance of the program. (See “The –name

Option” later in this chapter.)

subobject s correspond to levels of the widget hierarchy (usually the major structures
within an application, such as windows, menus, scrollbars, etc.).

attribute is a feature of the lastsubobject (perhaps a command button), such as
background color or a label that appears on it.

value is the actual setting of the resourceattribute , i.e., the label text, color, or
other feature.

The type ofvalue to supply is often evident from the name of the resource or from the
description of the resource variable on the reference page. Most of these values are similar
to those used with the command line options described in Chapter 9.

For example, various resources, such asborderColor or background , take color
specifications;geometry takes a geometry string,font takes a font name, and so on.
Logical values, such as the values taken byscrollBar , can generally be specified as:on
or off ; yes or no ; or True or False .

12.1.2 Tight Bindings and Loose Bindings
Binding refers to the way in which components of a resource specification are linked
together. Resource components can be linked in two ways:

■ By a tight binding, represented by a dot (.).

■ By a loose binding, represented by an asterisk (*).

A tight binding means that the components on either side of the dot must be next to one
another in the widget hierarchy. A loose binding is signaled by an asterisk, a wildcard char-
acter which means there can be any number of levels in the hierarchy between the two
surrounding components.

If you want to specify tight bindings, you must be very familiar with the widget hierarchy:
it’s easy to use tight bindings incorrectly.

For example, this resource specification to request thatxterm windows be created with a
scrollbar doesn’t work:

xterm.scrollBar: True

The previous specification ignores the widget hierarchy ofxterm, in which the VT102 win-
dow is considered to be one widget, the Tektronix window another, and the menus a third.
This means that if you want to use tight bindings to request thatxterm windows be created
with a scrollbar, you should specify:

xterm.vt100.scrollBar: True

Of course rather than decipher the widget hierarchy (which may even change with subse-
quent versions of an application), it is far simpler just to use the asterisk connector in the
first place:

xterm*scrollBar: True

CHAPTER 12: SETTING RESOURCES 301

12
In an application that supports multiple levels of widgets, you can mix asterisks and peri-
ods. In general, though, the developers of X recommend always using the asterisk rather
than the dot as the connector even with simple applications, since this gives application
developers the freedom to insert new levels in the hierarchy as they produce new releases
of an application.

12.1.3 Instances and Classes
Each component of a resource specification has an associatedclass. Several different wid-
gets, or widget attributes, may have the same class. For example, in the case ofxterm, the
color of text (foreground), the pointer color, and the text cursor color are all defined as
instances of the classForeground . This makes it possible to set the value of all three
with a single resource specification. That is, if you wanted to make the text, the pointer, and
the cursor dark blue, you could specify either:

xterm*foreground: darkblue
xterm*cursorColor: darkblue
xterm*pointerColor: darkblue

or:

xterm*Foreground: darkblue

Initial capitalization is used to distinguish class names from instance names. By conven-
tion, class names always begin with an uppercase letter, while instance names always begin
with a lowercase letter. Note, however, that if an instance name is a compound word (such
ascursorColor), the second word is usually capitalized.

The real power of class and instance naming is not apparent in applications such asxterm
that have a simple widget hierarchy. In complex applications written with the X Toolkit or
the Motif Toolkit, class and instance naming allows you to do such things as specify that
all buttons in dialog box be blue but that one particular button be red. For example, in the
hypotheticalxclient application, you might have a resource file that reads:

xclient*buttonbox*Buttons*foreground: blue
xclient*buttonbox*delete*foreground: red

whereButtons is a class name and thedelete button is an instance of theButtons
class. This type of specification works because an instance name always overrides the cor-
responding class name for that instance. Class names thus allow default values to be
specified for all instances of a given type of object. Instance names can be used to specify
exceptions to the rules outlined by the class names. Note that a class name can be used with
a loose binding to specify a resource for all clients. For example, this specification would
say that the foreground colors for all clients should be blue:

*Foreground: blue

The reference page for a given program should always give you both instance and class
names for every resource variable you can set. You’ll notice that in many cases the class
name is identical to the instance name, with the exception of the initial capital letter. Often
(but not always) this means that there is only one instance of that class. In other cases, the
instance with the same name is simply the primary or most obvious instance of the class.

302 X USER’S GUIDE: OPEN LOOK EDITION

12
12.1.4 Precedence Rules for Resource Specification
Even within a single resource file, such as.Xresources, resource specifications often con-
flict. For instance, recall the example from the first page of the chapter involving the
hypotheticalxclient application:

xclient*Buttons.foreground: blue
xclient*help.foreground: red

The first resource specification makes the foreground color of all buttons (in the class
Buttons) blue. The second resource specification overrides the first in one instance: it
makes the foreground color of thehelp button (an instance of the classButtons) red. In
the event of conflicting specifications, there are a number of rules that the resource man-
ager follows in deciding which resource specification should take effect.

We’ve already seen two of these rules, which are observable in the way the resource man-
ager interprets definitions in a user-created resource file. (The first rule applies in the
previousxclient example.)

■ Instance names take precedence over class names.

■ Tight bindings take precedence over loose bindings.

From just these two rules, we can deduce a general principle: the more specific a resource
definition is, the more likely it is to be honored in the case of a conflict.

However, for cases in which you want to set things up very carefully, you should know a
bit more about how programs interpret resource specifications.

For each resource, the program has both a complete, fully specified, tightly bound instance
name and class name. In evaluating ambiguous specifications, the program compares the
specification against both the full instance name and the full class name. If a component in
the resource specification matches either name, it is accepted. If it matches more than one
element in either name, it is evaluated according to these precedence rules:

1. The levels in the hierarchy specified by the user must match the program’s expec-
tations or the entry will be ignored. For example, if the program expects either:
xterm.vt100.scrollBar:valueinstance name or:
XTerm.VT100.ScrollBar:valueclass name

then the resource specification:
xterm.scrollBar: True
won’t work, because the tight binding is incorrect. The objectsxterm and
scrollBar are not adjacent in the widget hierarchy: there is another widget,
vt100 , between them. The specification would work if you used a loose binding,
however:
xterm*scrollBar: True
(Note that the class name of xterm is XTerm , notXterm as
you might expect.)

2. Tight bindings take precedence over loose bindings. That is, entries with instance
or class names prefixed by a dot are more specific than entries with names
prefixed by an asterisk, and more specific entries take precedence. For example,

CHAPTER 12: SETTING RESOURCES 303

12
the entryxterm.vt100.geometry will take precedence over the entry
xterm*geometry .

3. Similarly, instances take precedence over classes. For example, the entry
*scrollBar will take precedence over the entry*Scrollbar .

4. An instance or class name that is explicitly stated takes precedence over one that
is omitted. For example, the entryxterm*scrollbar is more specific than the
entry*scrollBar .

5. Left components carry more weight than right components. For example, the
entryxterm*background will take precedence over*background .

 To illustrate these rules, let’s consider the following resource specifications for the hypo-
thetical Toolkit applicationxclient, shown in Example 12-1.

xclient.toc*Command.activeForeground: black
*Command.Foreground: green

Example 12-1. Sample resources

The program would try to match these specifications against these complete tightly bound
instance and class specifications:

xclient.toc.messageFunctions.include.activeForeground instance name
Xclient.Box.SubBox.Command.Foreground class name

Note that these specifications are the instance and class names for the same resource. Each
component of the instance name belongs to the class in the corresponding component of
the class name. Thus, the instancetoc occurs in the classBox, the messageFunc-
tions instance name is from the classSubBox , etc.

Both resource specifications in Example12-1 match these instance and class names. How-
ever, with its tight bindings and instance names,
xclient.toc*Command.active%Foreground
 matches more explicitly (i.e., with higher precedence). The resource is set: thefore-
ground color of theinclude button in itsactive state is set toblack .

The specification*Command.Foreground also matches the instance and class names
but is composed entirely of class names which are less specific; thus, it takes lower prece-
dence than the first line in Example 12-1 (which sets theinclude button toblack).

However, since the second line is an acceptable specification, hypothetically it would set
the foreground color of other objects in theCommand class. This resource would be set for
xclient, as well as any other application, since the line begins with the asterisk wildcard. So
if there were otherxclient command buttons comparable to theinclude button in the
hierarchy, this second line would set the foreground color of these buttons togreen . If
you want a more detailed description of how resource precedence works, see Section 9.2.3
of Volume Four,X Toolkit Intrinsics Programming Manual.

12.1.5 Some Common Resources
Each Toolkit command line option (listed in Table11-1, “. MIT Toolkit and OLIT Stan-
dard Options,” on page283) has a corresponding resource variable. Most X Toolkit (and
OLIT Toolkit) applications recognize some subset of these resources.

304 X USER’S GUIDE: OPEN LOOK EDITION

12
Table 12-1 lists the resource variables recognized by most Toolkit clients.

Note that in a complex Toolkit application these values can occur at every level in a widget
hierarchy. For example, our hypotheticalxclient application might support these complete
instance names:

xclient.background xclient.buttonBox.background
xclient.buttonBox.commandButton.background
xclient.buttonBox.quit.background

These resources would specify the background color for the application window, the but-
tonbox area, any command buttons, and the quit command button, respectively.

Of course, the specification:

xclient*background

would match any and all of them.

Appendices list resources for the OLIT and Athena widgets.

12.2 Event Translations
 We’ve discussed the basics of resource naming syntax. From the sample resource settings,
it appears that what many resource variables do is self-evident or nearly so. Among the less
obvious resource variables, there is one type of specification, an event translation, that can
be used with many clients and warrants somewhat closer examination.

User input and several other types of information pass from the server to a client in the
form of events. An event is a packet of information that tells the client something it needs
to act on, such as keyboard input. As mentioned in Chapter 1,An Introduction to OPEN
LOOK and the X Window System, moving the pointer or pressing a key, etc., causesinput
events to occur. When a program receives a meaningful event, it responds with some sort
of action.

For many clients, the resource manager recognizes mappings between certain input events
(such as a pointer button click) and some sort of action by the client program (such as

Table 12-1. Common Toolkit Resources

Instance
Name

Class Name Default Description _

background Background White Background
color.

foreground Foreground Black Foreground
color.

borderColor BorderColor Black Border color.

borderWidth BorderWidth 1 pixel Border width.

CHAPTER 12: SETTING RESOURCES 305

12
selecting text). A mapping between one or more events and an action is called atransla-
tion. A resource containing a list of translations is called atranslation table.

Many event translations are programmed into an application and are invisible to the user.*
For our purposes we are only concerned with very visible translations of certain input
events, primarily the translation of keystrokes and pointer button clicks to particular
actions by a client program.†

12.2.1 The Syntax of Event Translations
The operation of many clients, notablyxterm, is partly determined by default input event
translations. For example, as explained in Appendix A,The xterm/olterm Terminal Emula-
tor, selecting text with the first pointer button (an event) saves that text into memory (an
action).

In this case, the input “event” is actually three separate X events:

1. Pressing the first pointer button.

2. Moving the pointer while holding down the first button.

3. Releasing the button.

Each of these input events performs a part of the action of selecting text:

1. Unselects any previously selected text and begins selecting new text.

2. Extends the selection.

3. Ends the selection, saving the text into memory (both as the PRIMARY selection
and CUT_BUFFER0).

The event and action mappings would be expressed in a translation table as:

<Btn1Down>: select-start()\n\
<Btn1Motion>: select-extend()\n\
<Btn1Up>: select-end(PRIMARY,CUT_BUFFER0)

where each event is enclosed in angle brackets (<>) and produces the action that follows
the colon (:). A space or tab generally precedes the action, though this is not mandatory:

<event>: action

A translation table must be a continuous string. In order to link multiple mappings as a con-
tinuous string, each event-action line should be terminated by a newline character (\n),
which is in turn followed by a backslash (\) to escape the actual newline.

These are default translations forxterm.‡

† For more information on events and translations, see Volume Four,X Toolkit Intrinsics Programming Manual.

‡ They are actually slightly simplified versions of default translations. Before you can understand the actual trans-
lations listed on thexterm reference page in Part Three of this guide, you must learn more about the syntax of
translations. In addition to the current chapter, read Appendix F,X Toolkit Translation Table Syntax.

306 X USER’S GUIDE: OPEN LOOK EDITION

12
All of the events are simple, comprised of a single button motion. As we’ll see, events can
also have modifiers: i.e., additional button motions or keystrokes (often Control or Meta)
that must be performed with the primary event to produce the action. (Events can also have
modifiers thatmust not accompany the primary event if the action is to take place.)

As you can see, the default actions listed in the table are hardly intuitive. The event-action
mappings that can be modified using translation resources are usually described on the ref-
erence page for the particular client.

 You can specify non-default translations using a translation table (a resource containing a
list of translations). Since actions are part of the client application and cannot be modified,
what you are actually doing is specifying alternative events to perform an action.* Keep in
mind that only applications written with the X Toolkit (or an Xt-based toolkit such as the
Motif Toolkit) recognize translation table syntax.

The basic syntax for specifying a translation table as a resource is:

[object *[subobject ...]]*translations: #override\
[modifier <event >: action

The first line is basically like any other resource specification with a few exceptions. First,
the final argument is alwaystranslations , indicating that one (or more) of the
event-action bindings associated with the [object *[subobject ...]] are being
modified.†

Second, note that#override is not thevalue of the resource; it is literal and indicates
that what follows should override any default translations. In effect,#override is no
more than a pointer to the truevalue of the resource: a new event-action mapping (on the
following line), where the event may take a modifier.

A not-so-obvious principle behind overriding translations is that you only literally “over-
ride” a default translation when the event(s) of the new translation match the event(s) of a
default translationexactly. If the new translation does not conflict with any existing trans-
lation, it is merely appended to the defaults.‡

In order to be specified as a resource, a translation table must be a single string. The
#override is followed by a backslash (\) to indicate that the subsequent line should be a
continuation of the first.

In the previous basic syntax example, thevalue is a single event-action mapping. The
value could also be a list of several mappings, linked by the characters “\n\” to make the
resource a continuous string.

The followingxterm translation table shows multiple event-action mappings linked in this
manner:

† As we’ll see, in certain cases you may be able to supply an alternativeargument (such as a selection name) to
an action. These changesare interpreted by the resource manager.

‡ The use of modifiers can actually become quite complicated, sometimes involving multiple modifiers. For our
purposes, we’ll deal only with simple modifiers. For more information on modifiers, see Appendix F in this guide
and Volume Four,X Toolkit Intrinsics Programming Manual.

CHAPTER 12: SETTING RESOURCES 307

12
*VT100.Translations: #override\

<Btn1Down>: select-start()\n\
<Btn1Motion>: select-extend()\n\
<Btn1Up>: select-end(PRIMARY,CUT_BUFFER0)

12.2.1.1 xterm Translations to Use xclipboard

As explained in Chapter 5, thexclipboard client provides a window in which you can store
text selected from other windows. You can also paste text from thexclipboard window into
other windows. See the discussion ofxclipboard in Chapter 8,Other Standard Clients
before proceeding .

You can specify translations forxterm so that text you copy with the pointer is made the
CLIPBOARD selection. The CLIPBOARD selection is the property of thexclipboard cli-
ent. If you are runningxclipboard and you copy text to be made the CLIPBOARD
selection, this text automatically appears in thexclipboard window.

Some sample translations that would allow you to use thexclipboard in this way are:

*VT100.Translations: #override\
Button1 <Btn3Down>: select-end(CLIPBOARD)\n\
~Ctrl ~Meta <Btn2Up>: insert-selection(PRIMARY,CLIPBOARD)

According to this translation table, while selecting text withButton1 (the modifier), the
event of pressing the third pointer button (Btn3Down), while continuing to hold down the
first button, produces the action of making the text the CLIPBOARD selection. (Notice
that we’ve taken theselect-end action and combined it with the argumentCLIP-
BOARD. The default translation uses the argumentsPRIMARY,CUT_BUFFER0.)

The second line modifies the way selected text is pasted into a window so that theCLIP-
BOARD selection can be pasted. As described in Chapter 5, pressing the second pointer
button pasted the contents of the PRIMARY selection, by default. If there is no PRIMARY
selection, the contents of the cut buffer are pasted. The default translation that sets this
behavior is the following:

~Ctrl ~Meta <Btn2Up>: insert-selection(PRIMARY,CUT_BUFFER0)

This translation specifies that releasing pointer button 2, while pressing any modifier but-
ton or key other than Control or Meta, inserts text from the PRIMARY selection or, if the
selection is empty, from cut buffer 0. In the second line of our translation table, we’ve
replacedCUT_BUFFER0 with theCLIPBOARD selection. The new behavior is that releas-
ing the second pointer button pastes the PRIMARY selection, or if there is none, the
CLIPBOARD selection.

Thus, according to the translations in the example, if you select text as usual with the first
pointer button, and then additionally press the third button (while continuing to hold down
the first button), the text becomes the CLIPBOARD selection and appears automatically in
thexclipboard window, as shown in Figure 12-1.

Figure 12-1. Selected text appears automatically in the xclipboard window

Since our first translation specifies a different event/action mapping than the default trans-
lation for selecting text (discussed in the previous section), the default translation still
applies. If you select text with the first pointer button alone, that text is still made the PRI-

308 X USER’S GUIDE: OPEN LOOK EDITION

12
MARY selection and fills CUT_BUFFER0. To send text to thexclipboard, you would
need to press the third pointer button as well; thus, not all selected text needs to be made
the CLIPBOARD selection (and sent automatically to thexclipboard).

There are advantages to making only certain selections CLIPBOARD selections. You can
keepxclipboard running and make many text selections by the default method (first pointer
button), without filling up thexclipboard window. And chances are you don’t want to save
every piece of text you copy for an extended period of time, anyway.

The CLIPBOARD selection and thexclipboard client also get around the potential prob-
lems of selection ownership discussed in Chapter 5. Once text becomes the CLIPBOARD
selection, it is owned by thexclipboard client. Thus, if the client from which text was cop-
ied (the original owner) goes away, the selection is still available, owned by thexclipboard,
and can be transferred to another window (and translated to another format if necessary).

12.2.1.2 Entering Frequently Used Commands with Function Keys

The samplexterm translations to use thexclipboard client involve just a few of the actions
xterm recognizes. Among the more useful translations you can specify forxterm are func-
tion key mappings that allow you to enter frequently used commands with a single
keystroke. This sort of mapping involves an action calledstring , which passes a text
string to the shell running in thexterm window.

The translation table syntax for such a function key mapping is fairly simple. The follow-
ing line maps the text string “lpq -Pprinter1” (the BSD 4.3 command to check the queue for
the printer named printer1) to the F1 function key:

<Key>F1: string("lpq -Pprinter1")

Notice the quotes surrounding the text string. If the argument tostring includes spaces
or non-alphanumeric characters, the whole argument must be enclosed in one pair of dou-
ble quotes. (Don’t make the mistake of quoting individual words.)

The translation table would be:

*VT100.Translations: #override\
<Key>F1: string("lpq -Pprinter1")

This sample translation causeslpq -Pprinter1 to be passed to the command line in
the activexterm window when you press the F1 function key, as in Figure 12-2.

Notice, however, that the command is not invoked because there has been no carriage
return. The sample translation does not specify a return. You can add a return as the argu-
ment to anotherstring action within the same translation.

To specify the Return (or any) key, use the hexadecimal code for that key as the argument
to string . Keycodes and the procedure for determining them are explained in Chapter
14,Customization Clients. The letters “0x” signal a hexadecimal key code. If you want to
enter a key as an argument tostring , use “0x” followed by the specific code. The code
for the Return key is “d” or “0d.”†

† As explained in Chapter 14,Customization Clients, the commandxmodmap -pk returns a long list-
ing of all keycodes. The codes have the either of the following forms:

CHAPTER 12: SETTING RESOURCES 309

12

0xff ab
0x00 ab

whereab represents two alphanumeric characters. To specify a key as an argument to
string , you can omit the “ff” or “00” in thexmodmap listing.

The following translation table specifies that pressing F1 passes the linelpq -
Pprinter1 followed by a carriage return to anxterm window:

*VT100.Translations: #override\
<Key>F1: string("lpq -Pprinter1") string(0x0d)

Remember, you can list several translations in a single table. The following table maps
function keys F1 through F3:

*VT100.Translations: #override\
<Key>F1: string("lpq -Pprinter1") string(0x0d)\n\
<Key>F2: string("cd ~/bitmap;ls") string(0x0d)\n\
<Key>F3: string("cd /usr/lib/X11") string(0x0d)

According to these translations, pressing F2 inserts the command string
cd ~/bitmap;ls
which changes directory to~/bitmap and then lists the contents of that directory. Notice
that you can issue multiple commands (cd , ls) with a single key. Pressing F3 changes
directory to/usr/lib/X11.

Keep in mind that all the translations for an application can appear in the same table. For
example, we can combine thexterm translations to use thexclipboard with the translations
to map function keys.

*VT100.Translations: #override\
Button1 <Btn3Down>: select-end(CLIPBOARD)\n\
~Ctrl ~Meta <Btn2Up>: insert-selection(PRIMARY,CLIPBOARD)\n\
<Key>F1: string("lpq -Pprinter1") string(0x0d)\n\
<Key>F2: string("cd ~/bitmap;ls") string(0x0d)\n\
<Key>F3: string("cd /usr/lib/X11") string(0x0d)

The order of the translations is not important. However, it is necessary to end all but the
final line with the sequence “\n\” to make the resource a continuous string.

Figure 12-2. Pushing F1 passes command text to xterm shell .

310 X USER’S GUIDE: OPEN LOOK EDITION

12
12.2.1.3 Other Clients that Recognize Translations

xterm is not the only client whose operation can be modified by specifying event transla-
tions as resources (though it is probably the client you’ll be most interested in modifying).
Among the standard clients,xbiff, xcalc, xdm, xman, andxmh all recognize certain actions
that can be mapped to particular keys or key combinations using the translation mecha-
nism. See the relevant client reference pages in Part Three of this guide for complete lists
of actions.

You can also modify the operation of the Text widget used byxedit, xmh, and other X
Toolkit applications. See Appendix I,Athena Widget Resources, for a list of actions recog-
nized by the Text widget. Keep in mind, however, that the default Text widget recognizes
dozens of commands, which are summarized in the discussion ofxedit in Chapter 8,Other
Standard Clients. It may not be practical or desirable to modify them all.

If you choose to modify the Text widget, you can do so for all relevant clients by introduc-
ing the translations with the line:

*Text*Translations: #override\

You can also specify different translations for different clients that use the widget by
prepending the client’s name. To affect the operation of the Text widget only underxedit,
introduce the translation table with the line:

Xedit*Text*Translations: #override\

In modifying the operation of the Text widget, keep in mind that insert mode is the default.
In other words, likeemacs, most of the individual keystrokes you type are added to the text
file; an exception is Backspace, which predictably deletes the preceding character. The
commands to move around in a file, copy and delete text, etc., involve a combination of
keys, one of which is generally a modifier key. If you want to modify a command, you
should use an alternative key combination, rather than a single key.

For example, the following table offers two suitable translations:

*Text*Translations: #override\
Meta<Key>f: next-page()\n\
Meta<Key>b: previous-page()

The first translation specifies that pressing the key combination Meta-f moves the cursor
ahead one page in the file (scrolls the file forward one window); the second translation
specifies that Meta-b moves the cursor back one page. The actions performed are fairly
obvious from their names. For a complete list of actions recognized by the Text widget, see
Appendix G.

For more information about events, actions, and translation table syntax, see Appendix F,
X Toolkit Translation Table Syntax, and Volume Four,X Toolkit Intrinsics Programming
Manual.

12.3 How to Set Resources
Learning to write resource specifications is a fairly manageable task, once you understand
the basic rules of syntax and precedence. In contrast, the multiple ways you can set

CHAPTER 12: SETTING RESOURCES 311

12
resources—for a single system, for multiple systems, for a single user, for all users—can
be confusing. For our purposes, we are primarily concerned with specifying resources for
a single user running applications both on the local system and on remote systems in a
network.

As we’ve said, resources are generally specified in files. A resource file can have any name
you like. Resources are generally “loaded” into the X server by thexrdb client, which is
normally run from your startup file or run automatically byxdm when you log in. (See , for
information about startup files andxdm.) Prior to Release 2 of X, there was only one
resource file called.Xdefaults, placed in the user’s home directory. If no resource file is
loaded into the server byxrdb, the.Xdefaults file will still be read.

Remember that X allows clients to run on different machines across a network, not just on
the machine that supports the X server. The problem with the older.Xdefaults mechanism
was that users who were running clients on multiple machines had to maintain multiple
.Xdefaults files, one on each machine. By contrast,xrdb stores the application resources
directly in the server, thus making them available to all clients, regardless of the machine
on which the clients are running. As we’ll see,xrdb also allows you to change resources
without editing files.

Of course, you may want certain resources to be set on all machines and others to be set
only on particular machines. See the section “Other Sources of Resource Definition” later
in this chapter for information on setting machine-specific resources. This section gives an
overview of additional ways to specify resources using a variety of system files.

In addition to loading resource files, you can specify defaults for a particular instance of an
application from the command line using two options:-xrm and-name .

First we’ll consider a sample resources file. Then we’ll take a look at the use of the-xrm
and -name command line options. Finally, we’ll discuss various ways you can load
resources using thexrdb program and consider other sources of resource definition, later in
this chapter.

12.3.1 A Sample Resources File
Figure 12-3 shows a sample resources file. This file sets the border width for all clients to
a default value of two pixels, and sets other specific variables forxclock andxterm. The
meaning of each variable is obvious from its name (for example,xterm*scrollBar:
True means thatxterm windows should be created with a scrollbar.

Note that comments are preceded by an exclamation point (!).

For a detailed description of each possible variable, see the appropriate client reference
pages in Part Three of this guide.

*borderWidth: 2
!
! xclock resources
!
xclock*borderWidth: 5
xclock*geometry: 64x64
!

312 X USER’S GUIDE: OPEN LOOK EDITION

12
! xterm resources
!
xterm*curses: on
xterm*cursorColor: skyblue
xterm*pointerShape: pirate
xterm*jumpScroll: on
xterm*saveLines: 300
xterm*scrollBar: True
xterm*scrollKey: on
xterm*background: black
xterm*borderColor: blue
xterm*borderWidth: 3
xterm*foreground: white
xterm*font: 8x13

Figure 12-3. A sample resources file

12.3.2 Specifying Resources from the Command Line
Two command line options supported by all clients written with the X Toolkit can be use-
ful in specifying resources.

12.3.2.1 The –xrm Option

The-xrm option allows you to set on the command line any specification that you would
otherwise put into a resources file. For example:

% xterm -xrm ’xterm*Foreground: blue’ &

Note that a resource specification on the command line must be quoted using the single
quotes in the line above.

The-xrm option only specifies the resource(s) for the current instance of the application.
Resources specified in this way do not become part of the resource database.

The-xrm option is most useful for setting classes, since most clients have command line
options that correspond to instance variable names. For example, the-fg command line
option sets theforeground attribute of a window, but-xrm must be used to set
Foreground .

Note also that a resource specified with the-xrm option will not take effect if a resource
that takes precedence has already been loaded withxrdb. For example, say you’ve loaded
a resource file that includes the specification:

xterm*pointerShape: pirate

This command line specification of another cursor will fail:

% xterm -xrm ’*pointerShape: gumby’ &

because the resourcexterm*pointerShape is more specific than the resource
*pointerShape . Instead, you’ll get anxterm with the previously specified pirate
cursor.

To override the resource database (and get the Gumby cursor), you’d need to use a resource
equally (or more) specific, such as the following:

CHAPTER 12: SETTING RESOURCES 313

12
% xterm -xrm ’xterm*pointerShape: gumby’ &

12.3.2.2 The –name Option

 The-name option lets you name one instance of an application; the server identifies the
single instance of the application by this name. The name of an application affects how
resources are interpreted.

For example, the following command sets thexterm instance name tobigxterm :

% xterm -name bigxterm &

When this command is run, the client uses any resources specified forbigxterm rather
than forxterm .

The -name option allows you to create different instances of the same application, each
using different resources. For example, you could put the following entries into a resource
file such as.Xresources:

XTerm*Font: 8x13
smallxterm*Font: 6x10
smallxterm*Geometry: 80x10
bigxterm*Font: 9x15
bigxterm*Geometry: 80x55

You could then use these commands to createxterms of different specifications:

% xterm &

would create anxterm with the default specifications, while:

% xterm -name bigxterm &

would create a bigxterm, 80 characters across by 55 lines down, displaying in the font
9x15. The command:

% xterm -name smallxterm &

would create a smallxterm, 80 characters across by 10 lines down, displaying in the font
6x10.

12.4 Setting Resources with xrdb
The xrdb program saves you from the difficulty of maintaining multiple resource files if
you run clients on multiple machines. It stores resources in the X server, where they are
accessible to all clients using that server. (Technically speaking, the values of variables are
stored in a data structure referred to as the RESOURCE_MANAGER property of the root
window of screen 0 for that server. From time to time, we may refer to this property col-
loquially simply as the resource database.)

The appropriatexrdb command line should normally be placed in your.xinitrc file or .xses-
sion file to initialize resources at login, although it can also be invoked interactively. It has
the following syntax:

xrdb [options [filename

314 X USER’S GUIDE: OPEN LOOK EDITION

12
Thexrdb client takes several options, all of which are documented on the reference page in
Part Three of this guide. Several of the most useful options are discussed in subsequent sec-
tions. (Those that are not discussed here have to do withxrdb’s ability to interpret C
preprocessor-style defined symbols; this is an advanced topic. For more information, see
thexrdb reference page in Part Three of this guide, and thecpp (1) reference page in your
UNIX Reference Manual.)

The optionalfilename argument specifies the name of a file from which the values of client
variables (resources) will be read. If no filename is specified,xrdb will expect to read its
data from standard input. That is, the program will appear to hang, until you type some
data, followed by an end-of-file (Control-D on many UNIX systems). Note that whatever
you type will override the previous contents of the RESOURCE_MANAGER property, so
if you inadvertently typexrdb without a filename argument, and then quit with Control-D,
you will delete any previous values. (You can append new settings to current ones using
the-merge option discussed later in this chapter.)

The resourcefilename can be anything you want. Two commonly used names are.Xde-
faults and .Xresources. The former is an older form, but is more commonly used in the
OpenWindows environment. The latter is newer, and is more prevalent in X11R5 environ-
ments. Either form can be used.

You should load a resource file with thexrdb -load option. For example, to load the con-
tents of your.Xresources file into the RESOURCE_MANAGER property, you would type:

% xrdb -load .Xresources

12.4.1 Querying the Resource Database
You can find out what options are currently set by using the-query option. For example:

% xrdb -query
XTerm*ScrollBar: True
bigxterm*font: 9x15
bigxterm*Geometry: 80x55
smallxterm*Font: 6x10
smallxterm*Geometry: 80x10
xterm*borderWidth: 3

If xrdb has not been run, this command will produce no output.

12.4.2 Loading New Values into the Resource Database
By default,xrdb reads its input (either a file or standard input) and stores the results into
the resource database, replacing the previous values. If you simply want to merge new val-
ues with the currently active ones (perhaps by specifying a single value from standard
input), you can use the-merge option. Only the new values will be changed; variables
that were already set will be preserved rather than overwritten with empty values. In fact,
if you are running withxdm, it is preferable to use -merge, since this will prevent you from
accidentally erasing some valuable initial resources thatxdm might have stored in the
server.

CHAPTER 12: SETTING RESOURCES 315

12
For example, let’s say you wanted to add new resources listed in the filenew.values. You
could say:

% xrdb -merge new.values

As another example, if you wanted all subsequently runxterm windows to have scrollbars,
you could use standard input, and enter:

% xrdb -merge xterm*scrollBar: True

and then press Control-D to end the standard input. Note that because of precedence rules
for resource naming, you may not automatically get what you want. For example, if you
specify:

xterm*scrollBar: True

and the more specific value:

xterm*vt100.scrollBar: False

has already been set, your new, less specific setting will be ignored. The problem isn’t that
you used the-merge option incorrectly—you just got caught by the rules of precedence.

If your specifications don’t seem to work, use the-query option to list the values in the
RESOURCE_MANAGER property and look for conflicting specifications.

Note also that when you add new specifications, they won’t affect any programs already
running, but only programs started after the new resource specifications are in effect. (This
is also true even if you overwrite the existing specifications by loading a new resource file.
Only programs run after this point will reflect the new specifications.)

12.4.3 Saving Active Resource Definitions in a File
 Assume that you’ve loaded the RESOURCE_MANAGER property from an.Xresources or
other file. However, you’ve dynamically loaded a different value using the-merge option
and you’d like to make the new value your default.

You don’t need to edit the file manually (although you certainly could.) The-edit option
allows you to write the current value of the RESOURCE_MANAGER property to a file. If
the file already exists, it is overwritten with the new values. However,xrdb is smart enough
to preserve any comments and preprocessor declarations in the file being overwritten,
replacing only the resource definitions.

For example:

% xrdb -edit ~/.Xresources

will save the current contents of the RESOURCE_MANAGER property in the file.Xre-
sources in your home directory.

If you want to save a backup copy of an existing file, use the-backup option:

% xrdb -edit .mydefaults -backup old

The string following the-backup option is used as an extension to be appended to the old
filename. In the prior example, the previous copy of.mydefaults would be saved as
.mydefaults.old.

316 X USER’S GUIDE: OPEN LOOK EDITION

12
12.4.4 Removing Resource Definitions
You can delete the definition of the RESOURCE_MANAGER property from the server by
callingxrdb with the-remove option.

There is no way to delete a single resource definition other than to read the currentxrdb
values into a file. For example:

% xrdb -query > filename

Use an editor to edit the file, deleting the resource definitions you no longer want and save
the file:

% vi filename

Then read the edited values back into the RESOURCE_MANAGER withxrdb:

% xrdb -load filename

12.4.5 Listing the Current Resources for a Client: appres
The appres (application resource) program, available as of X11 Release 4, lists the
resources that currently might apply to a client. These resources may be derived from sev-
eral sources, including the user’s.Xresources file and a system-wide application defaults
file. The directory/usr/lib/X11/app-defaults contains application default files for several
clients. The function of these files is discussed in the next section. For now, be aware that
all of the resources contained in these files begin with the class name of the application.

Also be aware thatappres has one serious limitation: it cannot distinguish between valid
and invalid resource specifications. It lists all resources that might apply to a client,
whether or not the resources are correctly specified.

appres lists the resources that apply to a client having theclass_name and/or
instance_name you specify. Typically, you would useappres before running a client
program to find out what resources the client program will access.

For example, say you want to runxterm but you can’t remember the latest resources you’ve
specified for it, whether you’ve loaded them, or perhaps what some of the application
defaults are, etc. You can use theappres client to check the currentxterm resources. If you
specify only a class name, as in this command line:

% appres XTerm

appres lists the resources that anyxterm would load. In the case ofxterm, this is an exten-
sive list, encompassing all of the system-wide application defaults as well as any other
defaults you have specified in a resource file.

You can additionally specify an instance name to list the resources applying to a particular
instance of the client, as in:

% appres XTerm bigxterm

If you omit the class name,xappres assumes the class-NoSuchClass- , which has no
defaults, and returns only the resources that would be loaded by the particular instance of
the client.

CHAPTER 12: SETTING RESOURCES 317

12
Note that the instance can simply be the client name, for example,xterm . In that case
none of the system-wide application defaults would be listed, since all begin with the class
nameXTerm. For example, the command:

% appres xterm

might return resources settings similar to these:

xterm.vt100.scrollBar: True
xterm*PhonyResource: youbet
xterm*pointerShape: gumby
xterm*iconGeometry: +50+50
*VT100.Translations: #override\

Button1 <Btn3Down>: select-end(CLIPBOARD)\n\
~Ctrl ~Meta <Btn2Up>: insert-selection(PRIMARY,CLIPBOARD)

Most of these resources set obvious features ofxterm. The translation table sets upxterm
to use thexclipboard. Notice also thatappres has returned an invalid resource calledPho-
nyResource that we created for demonstration purposes. You can’t rely onappres to tell
you what resources a client will actually load because theappres program cannot distin-
guish a valid resource specification from an invalid one. Still, it can be fairly useful to jog
your memory as to the defaults you’ve specified in your.Xresources file, as well as the sys-
tem-wide application defaults.

12.4.6 Other Sources of Resource Definition
If xrdb has not been run, the RESOURCE_MANAGER property will not be set. Instead,
the resource manager looks for a file called.Xdefaults in the user’s home directory. As we
discussed earlier, resources found in this way are only available to clients running on the
local machine.

Whether or not resources have been loaded withxrdb, when a client is run these sources of
resource definition are conIndexsulted in this order:

1. The client’s application defaults file(s), if any, which usually reside in the directory
/usr/lib/X11/app-defaults, will be loaded into the resource manager (Note that the
path can be reset with the XFILESEARCHPATH environment variable). Applica-
tion-specific resource files generally have the nameClass, whereClass is the class
name of the client program.

Any other application-specific resource files: a resource file named by the variable
XUSERFILESEARCHPATH; or if this variable is not set, a file in the directory
named by the environment variable XAPPLRESDIR.

2. Resources loaded into the RESOURCE_MANAGER property of the root window
with xrdb; these resources are accessible regardless of the machine on which the
client is running.

If no resources are loaded in this way, the resource manager looks for a.Xdefaults
file in the user’s home directory; these resources are only available on the local
machine.

318 X USER’S GUIDE: OPEN LOOK EDITION

12
3. Screen-specific resources loaded into the SCREEN_RESOURCES property of the

root window withxrdb. The resource manager will sort and place the resources in
RESOURCE_MANAGER (where they will apply to all screens) or in
SCREEN_RESOURCES (where they will apply to the appropriate screen).

4. Next, the contents of any file specified by the shell environment variable XENVI-
RONMENT will be loaded.

If this variable is not defined, the resource manager looks for a file named.Xdefaults-
hostname in the user’s home directory, wherehostname is the name of the host
where theclient is running (not necessarily where the display is).

These methods are used to set machine-specific resources.

5. Any values specified on the command line with the-xrm option will be loaded for
that instance of the program.

All of these various sources of defaults will be loaded and merged according to the prece-
dence rules described earlier in the section “Precedence Rules for Resource Specification.”

The client will then merge these various defaults specified by the user with its own internal
defaults, if any.

Finally, if the user has specified any options on the command line (other than with the-
xrm option), these values will override those specified by resource defaults, regardless of
their source.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 13: CUSTOMIZING OLWM 319

13

Chapter 13CUSTOMIZING OLWM

CHAPTER 13

Customizing the OPEN
LOOK Window Manager

Some window managers have the flexibility to let you paint your root window sky blue by
pressing the middle pointer button in a titlebar while holding down the shift, control, and
ALT keys. As we’ve seen in Chapter 2,Working in the OPEN LOOK Environment, the
OPEN LOOK User Interface specifies the window system’s behavior in such detail that the
user can’t be given this degree of flexibility.Hence, TheOPEN LOOK Window Manager
does not have the blazing configurability of some other X11 Window Managers. It is
designed to allow users flexibility, but still keep you within the confines of theOPEN
LOOK Graphical User Interface specification.

 If you had that kind of flexibility, users could (and some would) configure their systems
in ways that would violate theOPEN LOOK specification. SoOPEN LOOK Window Man-
ager is considerably easier to configure—or less flexible, depending on your point of
view—than some other X Window System window managers, such as the widely-used
twm andmwm. Customization ofolwm is, in fact, limited to changing or replacing theroot
menu orWorkspace Menu, specifying options on the command line, and specifying a num-
ber of X Resources that contrololwm’s behavior. These topics will occupy our attention in
the remainder of this chapter.

13.1 The Workspace Menu
TheOPEN LOOK specification describes two levels of conformance, calledLevel One and
Level Two. Level One describes a basic, minimal implementation, while Level Two has
more features than Level One. TheAT&T-OL version ofolwm conforms to Level One,
which only requires that you be able to change the list of programs in thePrograms part of
theWorkspace Menu. The OpenWindows version ofolwm conforms to Level Two, which
specifies that the user can replaceall the entries in theWorkspace Menu. The following
section describes both versions.

320 X USER’S GUIDE: OPEN LOOK EDITION

13
13.1.1 Level 1 Customization (AT&T-OL)
The list of Programs in thePrograms sub-menu of theAT&T-OL Workspace menu is main-
tained from the Properties program. Selecting the CategoryPrograms Submenu produces
a window that lets you add additional programs. There is a Scrolling List listing the
optional programs, aName andInvocation String andMnemonic text field that lets you put
in the values for each program. Below this are several buttons.

To add a new program, for example, select Insert. Type the name (such as “Local Xterm”)
in theName text field. Type the invocation string (such as “exec xterm”) in theInvocation
String text field. Pick a single-character name that isn’t already a mnemonic for one of the
programs, and type it in theMnemonic field. Then click SELECT onApply Edits and your
changes will be saved. From now on, thePrograms submenu of theWorkspace menu will
include this item.

You can use the scrolling list in the normal way to edit or delete items in the scrolling list.
To change and item, for example, click SELECT on it in the scrolling list. Update one or
more of the text fields (remember to click on each field to activate it), and click SELECT
on theApply button to save your changes. To delete an item, select it, click on the DELETE
button, and click SELECT on theApply button to make your changes take effect.

13.1.2 Level 2 Customization (OpenWindows)
To customize theWorkspace menu in OpenWindows, you need only edit a text file. The
default file is/usr/openwin/lib/openwin-menu, which looks like this:

@(#)openwin-menu 23.15 91/09/14 openwin-menu # # OpenWindows
default root menu file - top level menu #
"Workspace" TITLE
"Programs" MENU $OPENWINHOME/lib/openwin-menu-programs
"Utilities" MENU $OPENWINHOME/lib/openwin-menu-utilities
"Properties..." PROPERTIES
SEPARATOR
"Help..." exec $OPENWINHOME/bin/helpopen handbooks/top.toc.handbook
"Desktop Intro..." exec $OPENWINHOME/bin/helpopen
handbooks/desktop.intro.handbook
SEPARATOR
"Exit..." EXIT

This is whatolwm actually uses to create the normal workspace menu, consisting of:

Table 13-1. Olwm normal root window

Programs

Utilities

Properties... -

-

 Help Desktop Intro...

CHAPTER 13: CUSTOMIZING OLWM 321

13

Each line in the menu text file consists of three fields:† the name to appear on the menu,
optional keywords, and the action to take when the line is selected. Comment lines begin-
ning with ‘#’ in column one, and null lines, are ignored (you can usefully put a ‘#’ before
a line that is temporarily not working, to make it invisible). Look at the example a minute
and the overall pattern should become clear.

The easiest and safest way to change this file is to copy it into your home directory under
the name.openwin-menu, for example,/home/darian/ian/.openwin-menu. Then make any
changes you want. But make changes one at a time, and keep track of your changes (hint:
use RCS or SCCS). Why? Because if you make a mistake, and your menu is incorrect,
olwm may just ignore the menu file completely, and use the system one (which is why you
should not tamper with the system copy). If your menu file is huge, it can be hard to spot
errors. The currentolwm is pretty good at reporting many errors:

olvwm: menu label mismatch in file /home/xyz/ian/.openwin-menu, line 104

But it’s still easier to make changes in small doses so you can easily back up and see what
you did wrong.

As an example of a simple change, if you’d prefer to startxterm instead ofcmdtool from
thePrograms menu, change the line

"Command Tool..." DEFAULT exec $OPENWINHOME/bin/xview/cmdtool

to these two lines:

"Xterm..." DEFAULT exec $OPENWINHOME/demo/xterm
"Command Tool..." exec $OPENWINHOME/bin/xview/cmdtool

The DEFAULT keyword is optional, but useful: it specifies what menu item will be
selected when you click or release SELECT on the parent menu, in this case, on the word
Programs in the top-levelWorkspace menu. The word “exec” is present as an optimiza-
tion. A copy of the UNIX shell is used to interpret the string that is given as the command,
and theexec prevents this extra shell from sticking around waiting for the application
xterm, for example) to terminate.

As another example, If you get tired of the “Please confirm exit from window system”
prompt, you can suppress it by changing

“Exit” EXIT

to

“Exit!” EXIT_NO_CONFIRM

† The syntax is the same as the older SunView root menu, except that you cannot (yet?) specify an icon in place
of the name field.

 -

Exit...

Table 13-1. Olwm normal root window

322 X USER’S GUIDE: OPEN LOOK EDITION

13
You probably should have both; the latter will exit without confirming. Use with care!

There are several keywords that can be specified, listed in Table13-2. They must be in
upper case.

Table 13-3

You may not like the default root window menu, so you can completely change it. My own
root menu looks like this: box; l. Local Windows Window Programs OpenWin Demos

Table 13-2. Sun OPEN LOOK Window Manager menu file keywords

Keyword Function

TITLE Specify title for menu (or submenu).

MENU, END Make a menu, or invoke one as in examples above

DEFAULT Specify default case for menu

PIN (after END) makes menu pinnable.

REFRESH Refresh all windows

POSTSCRIPT Send rest of line to NeWS (OpenWindows only)

SAVE_WORKSPACE Save windows in $HOME/.openwin-init

PROPERTIES Start up Workspace or Properties manager

EXIT Exit window system

EXIT_NO_CONFIRM Exits without confirming notice.

WM_EXIT Exit Window Manager, but don’t kill clients.

RESTART Re-run olwm (e.g., after changing the menu file)

FLIPDRAG Toggle dragging of window contents when moving
windows.

FLIPFOCUS Flip focus policy (click vs. follow-mouse)

NOP Does nothing (placeholder).

SEPARATOR Produce a blank line.

PRINT_SCREEN Not implemented yet.

CLIPBOARD Not implemented yet.

WINDOW_CONTROLS Not implemented yet.

REREAD_MENU_FILE Just what it says

CHAPTER 13: CUSTOMIZING OLWM 323

13
Refresh Screen Lock Screen Terminations The first three pull down menus. The Local
Windows lets me at several different terminal emulators. Another menu, normally com-
mented out but made available when I’m on a LAN or the Internet, has remote logins for
the hosts I normally use,

"ozzify" xterm -T ozzify -geom +200+140 -e rlogin ozzify

for each one. TheWindow Programs menu has along list of X11 (and NeWS, and Sun-
View) applications. Some are straight invocations, like

"Author/Editor" exec $SQBIN/ae

Others are more involved, like running programs remotely with a display back to my work-
station. These three entries let me usexman (see Chapter 8,Other Standard Clients) on any
of four different versions of SunOS:

"Man pages (SunOS3.5)" rsh sq /usr/bin/X11/xman -display $DISPLAY
"Man pages (SunOS4.0)" rsh sqarc /usr/bin/X11/xman -display $DISPLAY
"Man pages (SunOS4.1)" xman -display $DISPLAY
"Man pages (SunOS5.0)" rsh sqlaris /usr/bin/X11/xman -display $DISPLAY

There is no limit to what you can put in this file; review the discussion of DISPLAY in
Chapter 1,An Introduction to OPEN LOOK and the X Window System and the examples
here. As a final example, to try out some of the built-in functions described earlier, and to
confirm that certain functions were still unimplemented, we just added this to our own
menu file:

Test MENU"Weird stuff" TITLE
FlipFocus FLIPFOCUS
FlipDrag FLIPDRAG
winctl WINDOW_CONTROLS
prtscr PRINT_SCREEN

Test END PIN

Remember that you have to re-start the window manager for changes to take effect; that’s
why our have an entry that calls RESTART on the top-levelWorkspace menu. A hint: if
you make any mistakes, your entire structure of menu files will be ignored. To avoid hav-
ing to restart olwm when modifying your own files, you may wish to modify the system
Utilities menu $OPENWINHOME/lib/openwin-menu-utilities to include the following
lines:

"Re-read menu file" REREAD_MENU_FILE
"Restart Window Manager" RESTART

If you are having trouble with your.openwin-menu file and want to see the error messages
from programs run from it, you can exit your window manager and restart olwm from a vis-
ible cmdtool, as follows:

Either choose “Exit Window Manager” if you’ve installed WMEXIT in your Terminations
or Utilities menu, or, give the commandps -ax (ps -ae on Solaris 2 or System V), and use
the UNIX kill command to kill the olwm process, for example,

% ps -ax
 PID TT STAT TIME COMMAND
 0 ? D 0:00 swapper
 1 ? IW 0:00 /sbin/init -
 2 ? D 0:00 pagedaemon

324 X USER’S GUIDE: OPEN LOOK EDITION

13
 ...
 172 co IW 0:00 olwm
 174 co IW 0:00 olwmslave
 176 co I 0:00 clock -Wn -Wp 930 90 -digital
 178 p1 S 0:09 cmdtool -Ww 80 -Wh 24 -Wl darian -scale extra_l
 298 p1 R 0:00 ps -ax
% kill 172
%

Then give the command

% olwm -display :0 &

from within the terminal emulator. This will start a new copy of olwm, with its standard
output and standard error displayed in the terminal window. Then when olwm has trouble
reading or parsing your menu file, or a program you start doesn’t work, you can see why.

13.2 OPEN LOOK Window Manager Command Line
Options

13.2.1 OPEN LOOK Window Manager Options - AT&T-OL Version
The AT&T-OL version ofolwm has very simple command-line customization. In fact, it
accepts only one optional command-line argument: the name of the display to use. It
defaults to the display named in the DISPLAY environment variable setting; if this is not
set, it defaults tounix:0 , that is, the console of the 386 PC (or other workstation) on
which it is invoked.

13.2.2 OPEN LOOK Window Manager Options - OpenWindows Version
The following is a list of command-line options for the OpenWindows version ofolwm.
Most have counterparts in the X11 resource database (see Chapter 12,Setting Resources,
and the sectionConfiguring OLWM with resources below). A command-line option will
override the corresponding setting from the resource database.

-2d Use two-dimensional look. This is the default, and the only possible look, for mono-
chrome displays.

-3d Use three-dimensional look. This is the default for a color screen, and is ignored on a
monochrome screen

You can usually ignore the two options above, since the window manager usually does the
right thing.

-c, –click . Use click-to-focus mode. This is the default focus mode. The opposite of
-follow.

-f, –follow Use pointer-driven (focus-follows-mouse) focus policy. Default mode is
click-to-focus.

You normally set this in an X11 resource file; you can specify the other policy on the
command line to try it out, for example.

-parent Ignore windows that are already on the screen. In earlier versions ofolwm this
was used to make the window manager to leave titlebars off certain “desk acces-

CHAPTER 13: CUSTOMIZING OLWM 325

13
sory” windows. However, the preferable way to achieve this is to name them in
the “MinimalDecor” resource, since windows ignored by-parent can never be
moved or resized, and will never receive the input focus.

13.2.2.1 Debugging Options

There are severalDebugging Options described in theolwm Reference Manual Page in
Section Three of this guide that are only meant for people debugging X applications or
olwm itself. Don’t use them unless you know what you are doing.

13.2.2.2 Generic Options

The OpenWindows version recognizes the following generic options (see Chapter 11,
Command Line Options):

You would normally startolwm from your.xinitrc file, for example:

olwm -display unix:0 -fn zapfchancery-mediumitali c&

in your .xinitrc file.

13.3 Configuring OLWM with resources
As with most X11 programs, there is a significant amount of configurable behavior built
into the window manager, and much of it can be configured with X Resources. Unfortu-
nately, the two versions ofolwm — AT&T-OL and Sun OpenWindows — have totally
incompatible resource lists, so it is necessary to know which version you are using and to
choose the appropriate resources.

13.3.1 Resources for Configuration — AT&T-OL

AT&T does not document the resources needed to configure their version ofolwm, on the
grounds that you are expected to use the Workspace Properties Manager to update them.

Table 13-4. Olwm generic options

-display display Specify which display to manage.

-fn fontname
-fontname fontname

 Set the font for window titles.

-name resource-name Use name to find resources in X11 resource
database.

-xrm resource-string Put X11 resources on the command-line.

326 X USER’S GUIDE: OPEN LOOK EDITION

13
However, it has been determined that the following resources are at least known to their
version ofolwm.

Table 13-5. AT&T-OL Resources

Configuration Resources

 PointerFocus

SaveSet

IconGridSize

 IconGrid

WindowAttributes

 WindowFrameColor

Warnings

HelpDirectory

 WMIconGravity

HeaderFont

Table 13-6. AT&T-OL Resources that set Key Values

Keys for shortcuts

wmOpenCloseKey

wmSizeKey

wmPropertiesKey

wmRefreshKey

wmBackKey

wmQuitKey

wmDismissThisKey

wmDismissAllKey

wmMoveKey

CHAPTER 13: CUSTOMIZING OLWM 327

13

13.3.2 Resources for Configuration — OpenWindows
Here are the resources allowed by the Sun OpenWindows version ofolwm. Most of these
resources can be set by the Properties program (See Chapter 14,Customization Clients).
However, they are listed here for reference, and for those who wish to edit the Resource
files manually.

The “class” name for Sun’s version ofolwm is “OpenWindows”, so the string “OpenWin-
dows.” must be used as part of the name in the resource file Thus, to enable automatic
“raising” (move to front) of the focus window, you would put “OpenWindows.AutoRaise:
true” in your X resource file.

Some resources specify key bindings. A key specification is a list of words separated by
space, each of which is a KeySym name. Every word except the last must specify a modi-
fier key. All KeySym names are case-sensitive. For example, to bind the Color-Lock key
to control-shift-F1, you would use the following resource specification:

OpenWindows.ColorLockKey: Control Shift F1

You can specify that a key will have effect under all modifier combinations by using the
special keyword “Any” instead of a real X11 modifier.

Boolean values can be specified in any of several ways: the pairs “true”, “false”, “on”,
“off”, “yes”, “no”, “1”, “0”, “t”, and “nil” will all work.

 wmResizeKey

wmOwnerKey

Table 13-7 . OpenWindows OPEN LOOK Window Manager Resources

Resource Type Function

AutoRaise boolean Move focussed window to front

Beep enumeration Never, Notice or Always (==on warn-
ings, etc.)

ButtonFont font name Font for buttons

ClickMoveThreshold integer

ColorFocusLocked boolean Color focus lock policy

ColorLockKey key specification Key to lock colormap

ColorUnlockKey key specification Key to unlock colormap

Table 13-6. AT&T-OL Resources that set Key Values

Keys for shortcuts

328 X USER’S GUIDE: OPEN LOOK EDITION

13

ConfirmKey key specification Key selects default from Notices

CursorFont font name Font for cursor (don’t change)

DefaultTitle string Title if application has none

DragRightDistance integer For menus

DragWindow boolean Move whole window or just outline

EdgeMoveThreshold integer For mouse moves

FlashFrequency integer How often to flash after Owner?

 FocusLenience boolean Don’t enforce ICCCM on "input hint"

FrontKey key specification Key to front (or back) window

GlyphFont font name Font for drawing; don’t change

IconFont font name Font for icon names

IconLocation enumeration Where to stack icons

MinimalDecor list of strings Desk Accessory windows; no titlebar

 MoveThreshold integer For mouse moves

MultiClickTimeout integer For pointer clicks

OpenKey key specification Key to open (or close) a window

PPositionCompat boolean Compatibility for X11R3 clients

PopupJumpCursor boolean

RefreshRecursively boolean

RubberBandThickness integer

SaveWorkspaceTimeout integer

SetInput enumeration SnapToGrid

TextFont font name Font for normal text

TitleFont font name Font for titlebar

Use3D boolean Use 3D (or 2D)OPEN LOOK

Use3DFrames boolean Use 3D frame thickness

Table 13-7 . OpenWindows OPEN LOOK Window Manager Resources

Resource Type Function

CHAPTER 13: CUSTOMIZING OLWM 329

13

Each of these is discussed in more detail in theolwm reference manual page in Section
Three of this book.

WindowColor color specification BG1 color

WorkspaceColor color specification Root window color, bitmap, or null

Table 13-7 . OpenWindows OPEN LOOK Window Manager Resources

Resource Type Function

330 X USER’S GUIDE: OPEN LOOK EDITION

13

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

CHAPTER 14: CUSTOMIZATION CLIENTS 331

14

Chapter 14CUSTOMIZATION CLIENTS

CHAPTER 14

Customization Clients

This chapter describes how to personalize the appearance of your display, and the opera-
tion of your keyboard and pointer, using these clients:

Properties The OPEN LOOK Properties Editor (Workspace Manager) to update your X
Resources file for such things as color settings, icon placement, menu operations,
mouse settings and other features.

xset A standard X11 client to set certain characteristics of the keyboard, pointer, and
display.

xsetroot A standard X11 client to set root window characteristics.

xmodmap A standard X11 client to change pointer and modifier key mappings.

xkeycapsA client to help with key mappings.

14.1 Properties Resource Editor
TheOPEN LOOK properties editor is both a good example of anOPEN LOOK application
and a useful tool that edits your X resources file under control ofOPEN LOOK-based
menus. It differs from the Motif Resource Editormre described in Appendix M,OPEN
LOOK and Motif, in that it is a fully supported part of theOPEN LOOK package, and in that
it incorporates color resource editing similar to that of the contributed-softwarexcol pro-
gram. There are several main categories of properties that you can edit:

Table 14-1. Property Categories

Category Name Function Restriction

Programs Root Menu User Programs AT&T-OL only

Color Window, root window, data areacolors Color monitor only

332 X USER’S GUIDE: OPEN LOOK EDITION

14

We’ll discuss each of these in order, after showing you how to start up the properties editor.

14.1.1 Starting The Properties Editor
The Properties Editor, called the Workspace Manager Application in the AT&T documen-
tation, can be started from theProperties entry in theWorkspace Menu or root menu on
either AT&T-OL or Sun OpenWindows.† The Sun OpenWindows Properties Editor can
also be started from a shell window under the nameprops, i.e.,

props &

You should get an initial screen like Figure14-1 , although the initial category will vary

from one release to the next. From here you can select any one of the categories by pulling
down the abbreviated menu button, like so:

Note that on each category panel there is anApply button. When you press this, two things
happen. One is that your.Xdefaults file is rewritten; the other is that the new resource values
are written as an X11 “property” on the root window, so that botholwm and anyOPEN
LOOK applications will notice them at once.

† On OpenWindows, it may not be available from the root menu if you have modified the menu file as described
in Chapter 13,Customizing olwm.

Icons Icon placement

Menus Menu operations OpenWindows only

 Mouse Setting Mouse speed, pointer jumping, etc.

Mouse Modifiers Mouse toOPEN LOOK mappings AT&T-OL only

Keyboard Functions Keyboard shortcuts AT&T-OL only

Miscellaneous Pointer focus, scrollbar side, etc.

Figure 14-1. Properties Editor initial screen

Table 14-1. Property Categories

Category Name Function Restriction

CHAPTER 14: CUSTOMIZATION CLIENTS 333

14

The rewriting of the resource file.Xdefaults is not perfect. For one thing, the file is pro-
cessed with the C language pre-processor as part of this re-writing, and a side effect of this
is that any comments you have in it will be lost. Older OpenWindows versions therefore-
give you a Notice with this text:

Applying your changes will modify your ~/.Xdefaults file.
All comments in the file will be lost.
Do you want to do this?

The buttons on the Notice areYes andNo. If you click SELECT on Yes, your file will be
rewritten, and (true to its word) all comments will be lost†. And the new properties will be
applied to windows on the display. On the other hand, if you selectNo, no changes will be
made, either to your file or to the root window property. If you don’t do a lot of work on
your .Xdefaults file, you may not care about comments in it.

Newer OpenWindowsversions of the Properties Editor instead update the.OWdefaults file
in your home directory, which is normally loaded withxrdb as described in Chapter 12,
Setting Resources.

Each panel also has aReset button; note that this resets to your current value, not to the
“factory default“. TheAT&T-OL version also hasReset to Factory on its categories, which
resets the values in that category to theOPEN LOOK defaults.

You can select any of the categories for editing at any time. You don’t have toApply the
changes from each panel; you only need to click theApply button once before leaving the
editor to save all your changes.

Notice also that the OpenWindows version comes up as a pinned, pop-up window, so it has
the pop-upWindow menu. To quit this program, you can either selectDismiss from the
Window menu, or explicitly unpin-pin it by clickingSELECT on the pin to “pull the pin.”

† You can fool this process by making your comments appear to be resources, as in:

comment.phony: this is a comment that will be preserved

Figure 14-2. Abbreviated Menus on Properties.

334 X USER’S GUIDE: OPEN LOOK EDITION

14
14.1.2 Programs Menu Category
This category produces a scrolling list with thePrograms category from the root menu.
Note that if you have your own.openwin-menu file, it must include a file named.openwin-
menu-programs from your home directory, or this category will be inoperative. For each
item you can specify the menu label (such asXTerm and the command to be run (such as
xterm -fn fixed -bg pink).

14.1.3 Color Property Category - OpenWindows
The next category is the Color Preferences menu. The OpenWindows version of the color
window only appears if you are on a color display. Its appearance varies from one release
of OpenWindows to another; an earlier version is shown in Figure14-3 and the Version 3.3
window is shown in Figure 14-4 .

The box at the center bottom (earlier versions had it in the top-left corner) of the Color cat-
egory panel is a “model window” that shows a simulation of the top-left corner of a typical
shell window underOPEN LOOK with the currently-selected colors. The exclusive-choice
box underneath it lets you select between theOPEN LOOK Workspace (root window) color
and theOPEN LOOK Window color. The “Window” color is used on window titlebars and
on the background of controls such as scrollbars. The actual color of the text part of the
window is not controlled byOPEN LOOK, but by the application, be itcmdtool or xterm or

Figure 14-3. Color category - OpenWindows 3.1

CHAPTER 14: CUSTOMIZATION CLIENTS 335

14

any other client. Having selected eitherWorkspace or Window (or Data Areas in 3.3 or
later), you can choose colors for it from among the dozens of colors displayed on the pal-
ette. Each time you pick a color, it is instantly shown on the appropriate parts of the “model
window” in the upper left. Thus, you can see right away what your windows will look like
if you select theApply button.

You can probably find a color that you like from among the hundreds shown in the palette.
But if not, don’t despair. You can play artist and mix your own colors. Just select theCus-
tom button, and the Palette will be replaced by a “mixer” window with sliders for Color,
Saturation, and Brightness. It’s difficult to describe these in a black-and-white book, so
your best bet is to look at Figure 14-4 and experiment with these yourself.

Once you have the colors you like, clickApply to both update your.Xresources file and
update the colors on your screen.

14.1.4 Icons Property Category
TheIcons category lets you choose the location of icons, and in some cases the border dis-
play of icons. The screen looks like Figure 14-5.

Selecting one of the four locations will make that be the location forolwm to place icons.
For example,Top means that icons will be placed in a row along the top edge of the screen.

Figure 14-4. Color Category - OpenWindows 3.3

336 X USER’S GUIDE: OPEN LOOK EDITION

14

TheBorder setting, which only shows up in theAT&T-OL version, specifies whether a bor-
der is displayed around each icon when you are on a color monitor. Under OpenWindows,
you cannot control this setting. On a monochrome monitor, borders are always displayed.

As usual, clickApply to make your changes take effect.

14.1.5 Menus Property Category
This category only appears on the OpenWindows version. It contains only the itemsDrag-
Right distance (which appears underMouse Settings in theAT&T-OL version, andSELECT
Mouse Press which appears underMiscellaneous category inAT&T-OL . To avoid duplica-
tion, the items are documented under the correspondingAT&T-OL entries.

14.1.6 Mouse Setting Property Category
This category has four items:

■ Multi-Click Timeout specifies how close together two clicks of the same button can be
and still be considered part of a single multi-click sequence instead of two separate
clicks.

■ Mouse Damping lets you filter out small mouse movements that may be accidental, to
separate them from intentional motions of the mouse.

■ Drag-Right Distance lets you specify how far you must drag the mouse right on a control
with a menu mark in order to activate the submenu.

■ Menu Mark Region Is the opposite; it specifies how far to the left you must move to get
back to the menu mark, i.e., to pop down the submenu.

As usual, clickApply to make your changes take effect.

14.1.7 Miscellaneous Property Category
This is a kind of catch-all category, as you might expect by the name. It is a list of exclusive
choices. The following lists the choices, their possible values, and which are currently
available in the twoOPEN LOOK implementations:

Figure 14-5. Icon Property Display.

Table 14-2. Miscellaneous Properties

Name Choices Version

 Beep Always| Notices Only| Never Both

CHAPTER 14: CUSTOMIZATION CLIENTS 337

14

Note 1: This item is in theMiscellaneous category inAT&T-OL , but is in theMenus cate-
gory in OpenWindows.

14.1.7.1 Beep

Controls when the bell will ring:Always means whenever notices or important footer
notices appear;Notices Only means only when a Notice appears, andNever means what it
says.

14.1.7.2 Window layering Individually| As A Group

Controls how windows are moved to the front or back.As A Group means that all pop-ups
move when the main window moves, whileIndividually treats each window as an indepen-
dent item.

14.1.7.3 Start OPEN LOOK at login Yes|No

Controls whether theolinit script should be run from your.profile at login time.

14.1.7.4 SELECT Mouse Press Displays Default|Displays Menu

Controls what happens when you pressSELECT on a control that has a menu mark.Dis-
plays Default means it activates the Default item for the menu.Displays Menu means that
it pulls down or pops up the menu, but waits for you to select an item.Displays Default is
the advanced user’s choice, as it lets you get either the default (by clickingSELECT) or the
menu (by clicking theMENU pointer button).

 Window layering Individually| As A Group AT&T-OL

 StartOPEN LOOK at
login

Yes| No AT&T-OL

SELECT Mouse Press Displays Default| Displays Menu Note 1

 Help Model Input Focus| Pointer AT&T-OL

 Set Input Area Click Select| Move pointer Both

Interface Appearance 2D| 3D AT&T-OL

 Mnemonics Off| Underline| Highlight| On-Don’t
Show

AT&T-OL

 Accelerators Off| On-Show| On-Don’t Show AT&T-OL

 Scrollbar Placement Left| Right OpenWindows

Table 14-2. Miscellaneous Properties

Name Choices Version

338 X USER’S GUIDE: OPEN LOOK EDITION

14
14.1.7.5 Help Model Input Focus|Pointer (AT&T-OL)

For programs written with the OLIT toolkit, controls whether HELP is offered for the text
field that has the input focus, or the item that the pointer is over, when the HELP key is
pressed.

14.1.7.6 Set Input Area Click Select|Move pointer

Selects the pointer focus policy, either click-to-type or pointer focus. See the discussion of
pointer focus policy in Chapter 1,An Introduction to OPEN LOOK and the X Window
System.

14.1.7.7 Interface Appearance 2D|3D

Specifies whether to use the two-dimensional or three-dimensional appearance. Mono-
chrome monitors always use 2D; color monitors default to 3D but can be controlled to 2D
by this setting.

14.1.7.8 Mnemonics Off|Underline|Highlight|On-Don’t’ Show

AT&T-OL lets you use single-character mnemonics for many functions. This item controls
whether the mnemonics will be disabled, shown by underlining or highlighting the letter,
or be enabled but not displayed.

14.1.7.9 Accelerators Off|On-Show|On-Don’t Show

Similarly for keyboard accelerators.

14.1.7.10 Scrollbar Placement Left|Right

Controls whether vertical scrollbars appear to the left or right of the panel they are
controlling.

Don’t forget to clickApply to make your changes take effect.

This concludes our discussion of theOPEN LOOK-specific Properties Editor or Workspace
Manager. We now turn our attention to some standard X11 customization clients that will
be present in any standard version of The X Window System.

14.2 xset: Setting Display and Keyboard
Preferences

Thexset client allows you to set an assortment of user preference options for the display
and keyboard. Some of these are followed byon or off to set or unset the option. Note
that xset is inconsistent with other UNIX and X programs in its use of a dash (–) as an
option flag. Some options use a preceding dash to indicate that a feature be disabled; this
can be confusing at first to users accustomed to seeing a dash as an introductory symbol on
all options.

Althoughxset can be run any time, it is suggested that you run it at startup. These settings
reset to the default values when you log out. Not all X implementations honor all of these
options.

CHAPTER 14: CUSTOMIZATION CLIENTS 339

14
14.2.0.1 Keyboard Bell

Theb option controls bell volume (as a percentage of its maximum), pitch (in hertz), and
duration (in milliseconds). It accepts up to three numerical parameters:

b volume pitch duration

If no parameters are given, the system defaults are used. If only one parameter is given, the
bell volume is set to that value. If two values are listed, the second parameter specifies the
bell pitch. If three values are listed, the third one specifies the duration.

For example, the command:

% xset b 70 1000 100

sets the volume of the keyboard bell to 70 percent of the maximum, the pitch to 1000 hertz,
and the duration to 100 milliseconds.

Note that bell characteristics vary with different hardware. The X server sets the character-
istics of the bell as closely as it can to the user’s specifications.

Theb option also accepts the parameterson or off . If you specifyxset b on , system
defaults for volume, pitch and duration are used.

The bell can also be turned off with the option-b , or by setting the volume parameter to 0
(xset b 0).

14.2.0.2 Bug Compatibility Mode

Some X11 Release 3 clients were written to work with “features” of the MIT X11 Release
3 server, features which could more accurately be called bugs. Many of these bugs have
been eliminated from the MIT Release 4 server. In order to allow certain Release 3 clients
to work under the Release 4 server, the MIT X11 Release 4 server has a bug compatibility
mode that can be enabled usingxset. In this mode, the Release 4 server is compatible with
Release 3 clients that depended on bugs in the Release 3 server to work properly (most
notably the Release 3 version ofxterm). This feature is hardly ever needed today; newer
servers no longer provide this compatibility, and tend to ignore requests for it fromxset.

Note that since the OpenWindows server is not derived from the MIT Sample Server, this
option isnot available under OpenWindows. However, the XWIN server is an enhanced
version of the MIT server, so this option does work on the AT&T server.

To enable bug compatibility mode, use the commandxset bc ; to disable it, use the com-
mandxset -bc .

14.2.0.3 Keyclick Volume

Thec option sets the volume of the keyboard’s keyclick and takes the form:

c volume

volume can be a value from 0 to 100, indicating a percentage of the maximum volume.
For example:

% xset c 75

340 X USER’S GUIDE: OPEN LOOK EDITION

14
sets a moderately loud keyclick. The X server sets the volume to the nearest value that the
hardware can support.

Thec option also accepts the parameterson or off . If you specifyxset c on , the sys-
tem default for volume is used.

The keyclick can also be turned off with the option-c , or by setting the volume parameter
to 0 (xset c 0).

On some hardware, a volume of 0 to 50 turns the keyclick off, and a volume of 51 to 100
turns the keyclick on.

14.2.0.4 Enabling or Disabling Auto-repeat

Ther option controls the keyboard’s auto-repeat feature. (Auto-repeat causes a keystroke
to be repeated over and over when the key is held down.) Usexset r or xset r on to
enable key repeat. Usexset -r or xset r off to disable key repeat. On some key-
boards (notably Apollo) only some keys repeat regardless of the state of this option.

14.2.0.5 Changing or Rehashing the Font Path

As discussed in Chapter 10,X11, OPEN LOOK and OpenWindows Font Specification,
when a client is to be displayed in a particular font, the server by default looks for the font
in several subdirectories of/usr/lib/X11/fonts, such asmisc, 75dpi, and100dpi.

The fp (font path) option ofxset can be used to change the font path, i.e., to direct the X
server to search other directories for fonts called by a client. The option must be followed
by a directory or a comma-separated list of directories, as in this example:

% xset fp /work/andy/fonts,/usr/lib/X11/newfonts

To restore the server-specific default font path, type:

% xset fp default

The fp option with therehash parameter causes the server to reread thefonts.dir and
fonts.alias files in each directory in the current font path. You need to do this every time
you edit an alias file to make the server aware of the changes. To make the server aware of
aliases, type:

% xset fp rehash

You also have to do this if you add or remove fonts. See thexset manual page for more
information.

14.2.0.6 Keyboard LEDs

Theled option controls the enabling or disabling of one or e fall of the keyboard’s LEDs.
It accepts the parameterson oroff to enable or disable all of the LEDs. A preceding dash
also disables all of the LEDs (-led).

You can also enable or disable individual LEDs by supplying a numerical parameter (a
value between 1 and 32) that corresponds to a particular LED. Theled option followed by
a numerical parameter enables that LED. Theled option preceded by a dash and followed
by a numerical parameter disables that LED. For example:

CHAPTER 14: CUSTOMIZATION CLIENTS 341

14
% xset led 3

would enable LED #3, while:

% xset -led 3

would disable LED #3.

Note that the particular LED values may refer to different LEDs on different hardware.

14.2.0.7 Pointer Acceleration

The m (mouse) option controls the rate at which the mouse or pointer moves across the
screen. This option takes two parameters:acceleration andthreshold . They must
be positive integers. (The acceleration can also be written as a numerator/denominator
combination separated by a slash, for example, 5/4.)

The mouse or pointer movesacceleration times as fast when it travels more than the
threshold number of pixels in a short time. This way, the pointer can be used for pre-
cise alignment when it is moved slowly, yet it can be set to travel across the screen by a
flick of the wrist when desired. If only one parameter is given, it is interpreted as the
acceleration.

For example, the command:

% xset m 5 10

sets the pointer movement so that if you move the pointer more than 10 pixels, the pointer
cursor moves five times as many pixels on the screen as you moved the pointer on the pad.

If no parameter or the valuedefault is used, the system defaults will be set.

If you want to change the threshold and leave the acceleration unchanged, enter the value
default for acceleration.

14.2.0.8 Screen Saver

X supports a screen saver to blank or randomly change the screen when the system is left
unattended for an extended period. This avoids the “burn in” that can occur when the same
image is displayed on the screen for a long time. Thes (screen saver) option toxset deter-
mines how long the server must be inactive before the screen saver is started.

Thes option takes two parameters:time andcycle . The screen goes blank if the server
has not received any input for the time interval specified by thetime parameter. The con-
tents of the screen reappear upon receipt of any input. If the display is not capable of
blanking the screen, then the screen is shifted a pixel in a random direction at time intervals
set by thecycle parameter. The parameters are specified in seconds.

For example, the command:

% xset s 600

sets the length of time before the screen saver is invoked to 600 seconds (10 minutes).

For a display not capable of blanking the screen, the command:

% xset s 600 10

342 X USER’S GUIDE: OPEN LOOK EDITION

14
sets the length of time before the screen saver is invoked to 10 minutes and shifts the screen
every 10 seconds thereafter, until input is received.

Thes option also takes the parameters:

default Resets the screen save option to the default.

blank Turns on blanking and overrides any previous settings.

noblank Displays a background pattern rather than blanking the screen; overrides any
previous settings.

off Turns off the screen saver option and overrides any previous settings.

expose Allows window exposures (the server can discard window contents).

noexpose Disables screen saver unless the server can regenerate the screens without
causing exposure events (i.e., without forcing the applications to regenerate their
own windows).

OpenWindows Option—Sun users can bypass this, and instead start the program
/usr/bin/screenblank from /etc/rc.local during system boot. This screen blank program has
the advantage over the X server’s that it works all the time, not just while X11 (OpenWin-
dows) is running. For example, it will work before you have logged in, or while you are
logged in but not running any window system.

14.2.0.9 Color Definition

On color displays, every time a client requests a private read/write colorcell, a new color
definition is entered in the display’s colormap. Thep option sets one of these colormap
entries even though they are supposed to be private. The parameters are a positive integer
identifying a cell in the colormap to be changed and a color name:

p entry_number color_name

The root window colors can be changed on some servers usingxsetroot. An error results if
the map entry is a read-only color.

For example, the command:

% xset p 3 blue

sets the third cell in the colormap to the color blue but only if some client has allocated this
cell read/write.

The client that allocated the cell is likely to change it again sometime after you try to set it,
since this is the usual procedure for allocating a read/write cell.

14.2.0.10 Help with xset Options

Theq option lists the current values of allxset preferences.

CHAPTER 14: CUSTOMIZATION CLIENTS 343

1414.3 xsetroot: Setting Root Window
Characteristics

You can use thexsetroot client to tailor the appearance of the background (root) window
on a display running X.

Thexsetroot client is primarily used to specify the root window pattern: as a plaid-like grid,
tiled gray pattern, solid color, or a bitmap. You can also specify foreground and back-
ground colors (defaults are black and white), reverse video, and set the shape of the pointer
when it’s in the root window.

If no options are specified, or the-def option is specified,xsetroot resets the root window
to its default state, a gray mesh pattern, and resets the pointer to the hollow X pointer. The
-def option can also be specified with other options; those characteristics that are not set
by other options are reset to the defaults.

Althoughxsetroot can be run at any time, it is suggested that you run it from a startup shell
script, as described at the end of this chapter. All settings reset to the default values when
you log out.

For a complete list of options, see thexsetroot reference page in Part Three of this guide.
Not all X implementations are guaranteed to support all of these options. Some of the
options may not work on certain hardware devices.

The -help option prints all thexsetroot options to standard output. The options you’ll
probably use most frequently are explained in the next section. Since only one type of
background pattern can be specified at a time, the-solid , -gray , -grey , -bitmap
and-mod options are mutually exclusive.

14.3.1 Setting Root Window Patterns
The default root window pattern is called a “gray mesh.” On most displays, it is fairly dark.

Thexsetroot client allows you to specify an alternative gray background with the-grey
(or -gray) option. This tiled gray pattern is slightly lighter than the default gray mesh
pattern.

Thexsetroot client also allows you to create a root window made up of repeated “tiles” of
a particular bitmap, using the option:

-bitmap filename

wherefilename is the bitmap file to be used as the window pattern.

You can choose any of the bitmaps in the directory/usr/include/X11/bitmaps or make your
own bitmap files using theiconeditor bitmap client (see Chapter 9,Graphics Clients).For
example, the command:

% xsetroot -bitmap /usr/openwin/share/include/Xol/bitmaps/gumby \
-fg white -bg skyblue

fills the root window with a tiling of the bitmap/usr/openwin/share/include/Xol bit-
maps/skyscene, a tranquil scene, using the colors white and blue.

344 X USER’S GUIDE: OPEN LOOK EDITION

14
The -mod option sets a plaid-like grid pattern on the root window. You specify the hori-
zontal (x) and vertical (y) dimensions in pixels of each square in the grid. The syntax of the
option is:

-mod x y

where the parametersx andy are integers ranging from 1 to 16 (pixels). (Zero and negative
numbers are taken as 1.)

The larger the x and y values you specify, the larger (and more visible) each square on the
root window grid pattern. Try the command:

% xsetroot -mod 16 16

for the largest possible grid squares. Then test different x and y specifications.

Thexsetroot option:

-solid color

sets the color of the root window to a solid color. This can be a color from the color name
database or a more exact color name specified by its RGB value.

The command:

% xsetroot -solid lightblue

sets the color of the root window to light blue.* See Chapter 11,Command Line Options,
and Chapter 12,Setting Resources, for more information on how to specify colors.†

While this behavior may seem to be a serious bug, it is actually an optimization designed
to ensure applications don’t run out of colors unnecessarily. Free colormap cells can be a
scarce resource. See Volume One,Xlib Programming Manual, for more information.

14.3.2 Foreground Color, Background Color, and Reverse Video
In addition to specifying a solid color for the root window pattern,xsetroot allows you to
specify foreground and background colors if you set the pattern with-bitmap or -mod .
The standard Toolkit options are used to set foreground and background colors:-fg and
-bg . The defaults are black and white.

Colors can be specified as names from the color name database, or as RGB values. See
Chapter 11,Command Line Options, and Chapter 12,Setting Resources, for more instruc-
tions on how to specify color.

If you specify reverse video (-rv), the foreground and background colors are reversed.

† For technical reasons, colors set withxsetroot -solid may change unexpectedly. When you set a color
with the -solid option toxsetroot, the client allocates a colorcell, sets the color, and deallocates the colorcell.
The root window changes to that color. If another client is started that sets a new color, it allocates the next avail-
able colorcell—which may be the same one xsetroot just deallocated. This results in that color changing to the
new color. The root window also changes to the new color. If this happens, you can runxsetroot again and if there
are other colorcells available, the root window changes to the new color. If all colorcells are allocated, any call to
change a colorcell results in an error message.

CHAPTER 14: CUSTOMIZATION CLIENTS 345

14
Foreground and background colors also take effect when you set the root window pointer,
as described in the next section.

Another use ofxsetroot is to notify you when a long-running program is done. For exam-
ple, if you expect a program compilation being run bymake to take a while, you can “type
ahead” anxsetroot command. For example:

make
xsetroot -solid pink

then iconify the window. It will run themake, then change your background window
pink—a change you are likely to notice.

14.3.3 Changing the Root Window Pointer
By default, the pointer is an X when it’s in the root window. You can change the shape of
the root window pointer to one of the standard X cursor shapes or to any bitmap, using
these options:

-cursor_name standard_cursor_name
-cursor cursorfile maskfile

Available as of MIT X11 Release 4, the first option allows you to set the root window
pointer to one of the standard cursor symbols, which are generally listed in the file
/usr/include/X11/cursorfont.h. We’ve provided a list of the standard cursors in Appendix
D, Standard Cursors - X11 and OPEN LOOK. To specify a standard cursor on a command
line or in a resource file, strip theXC_ prefix from the name. Thus, to set the root window
pointer to the pirate cursor symbol, you would enter:

% xsetroot -cursor_name pirate

This second option is intended to allow you to set the root window pointer to a bitmap, per-
haps one you create. The parameterscursorfile andmaskfile are bitmaps. The
cursorfile sets the bitmap for the pointer shape. In effect, themaskfile is placed
behind thecursorfile bitmap to set it off from the root window. Themaskfile
should be the same shape as thecursorfile but should generally be at least one pixel
wider in all directions.†

With thexsetroot defaults, you can observe the effect of a mask. When you move the X
pointer onto the dark gray root window, the X should have a very thin white border, which
enables you to see it more clearly.

For thecursorfile , you can use any of the standard bitmaps in/usr/include/X11/bit-
maps or you can make your own with thebitmap client (see Chapter 9,Graphics Clients).

Every standard cursor has an associated mask. Pictures of the cursors appear in Appendix
D, Standard Cursors - X11 and OPEN LOOK. To get an idea of what masks look like, dis-
play the cursor font using the command:

† Technically speaking, the mask determines the pixels on the screen that are disturbed by the cursor. It functions
as a sort of outliner or highlighter for the cursor shape. The mask appears as a white (or background color) border
around the cursor (black or another foreground color), making it visible over any root window pattern. This is es-
pecially important when a black cursor appears on a black root window.

346 X USER’S GUIDE: OPEN LOOK EDITION

14
% xfd -fn cursor .

If you are using your own bitmap as thecursorfile , until you get used to the way
masks work, create amaskfile that is a copy of thecursorfile with all bits set, i.e.,
themaskfile should be all black* (or the foreground color). Then edit themaskfile
to make it wider than thecursorfile by at least one pixel in all directions.†

To specify a root window pointer made from the smiling Gumby bitmap we created for
Figure 7-2, first copy the bitmap to make a mask file:

% cp gumby gumby.mask

Then edit thegumby.mask file using thebitmap client, setting all squares inside the
Gumby. (You can use thebitmap command boxFlood Fill to set all the empty squares at
once.) Continue to edit the bitmap, making it one pixel wider in all directions.

Then specify the new pointer withxsetroot:

% xsetroot -cursor gumby gumby.mask

See Chapter 9,Graphics Clients, for more information on usingbitmap.

14.4 xmodmap: Modifier Key and Pointer
Customization

Thexmodmap client is used to assign (or map) key functions to physical keys on the key-
board. Primarily,xmodmap is used to assign so-called “modifier” key functions to physical
keys but it can also change the way other keys (and even pointer buttons) function.

As described in , keys with labels such as Shift, Control, Caps Lock, etc. are called “mod-
ifier” keys because they modify the action of other keys. The number and names of
modifier keys differ from workstation to workstation. Every keyboard is likely to have a
Shift, Caps Lock, and Control key but after that, the babble begins. One workstation might
have an Alt key, another might have a Funct key, and yet another a Gold key. On the Sun-
3 keyboard, there are no less than three additional modifier keys, labeled Alternate, Right,
and Left.

Because of the differences between keyboards, X programs are designed to work withlog-
ical modifier keynames. The logical keynames represent functions recognized by X
programs. These modifier keynames can be mapped by the user to any physical key on the
keyboard with thexmodmap client.

The logical keynames that X recognizes are:

■ Shift

■ Lock

† Don’t be confused by the idea of a black cursor with a black mask on a black root window. Remember, the mask
determines the pixels that are disturbed by the cursor—in effect creating an outline around the cursor. The outline
appears in white (or specified background color), regardless of the color of themaskfile .

CHAPTER 14: CUSTOMIZATION CLIENTS 347

14
■ Control

■ Mod1 (Meta or Alt)

■ Mod2

■ Mod3

■ Mod4

■ Mod5

These keynames are case-insensitive.

Of these X modifier keys, only Shift, Caps Lock, Control, and Meta are in common use.
Note thatuwm also recognizes the mod keys simply by number alone (1-5) and recognizes
mod1 as Meta (i.e., mod1, Meta and 1 are equivalent).

The primary function ofxmodmap is to allow you to assign these important modifier key-
name functions (Shift, Control, Meta, etc.) to convenient keys on the keyboard. For
example, you could choose to map the Shift function to a single key called “Shift,” to two
“Shift” keys (one on either side of the keypad), to an “Alt” key, or to any other convenient
key or keys on the physical keyboard. A left-handed person might choose to map modifier
keys that more often are found on the left side, such as Control, on the right side of the
keyboard.

In practical terms, each server will have a default keyboard configuration. The Shift, Caps
Lock, and Control modifier keynames will be mapped to obvious keys. The assignment of
the Meta key might be less obvious.

Thexmodmap client allows you to print out the current assignments of modifier keyname
functions to physical keys and/or to change the assignments.

xmodmap also has two other functions that you will probably use less frequently. In addi-
tion to mapping modifier keyname functions to physical keys,xmodmap also allows you to
assign the function ofany key on the keyboard to any other key. For instance, you can
make the Backspace key and the Delete key both function as Delete keys. (This may be
helpful if the Backspace key is easier to reach.)

Also, in addition to keyboard mappings,xmodmap can be used to display or change the
pointer button assignments. Many X clients recognize logical pointer button commands.
For example, holding down and dragging the first logical pointer button in anxterm win-
dow copies the text into memory. (In many default pointer maps, the first logical button is
the leftmost button, designed to be pressed by the right index finger.) Each logical button
is associated with abutton code. The first logical button generates button code 1, the sec-
ond logical button generates button code 2, etc.xmodmap allows you to reassign logical
buttons to different physical buttons on the pointer.

Thus, basically,xmodmap can perform three types of mappings:

348 X USER’S GUIDE: OPEN LOOK EDITION

14
1. Assign modifier keyname functions (such as Shift, Control, Meta) recognized by X

to physical keys.

2. Make any key on the keyboard function as any other key (for example, making
Backspace function like Delete).

3. Reassign logical pointer button functions to other physical buttons (for example,
making the rightmost physical button function as the first logical button).

In the following sections, we discuss key mapping, with an emphasis on the first type of
mapping, of modifier keyname functions. Chances are, you’ll have relatively little call to
map other key functions (such as Backspace), though we have included an example of one
such mapping, just in case.

After considering key mapping, we’ll take a look at the much simpler issues involved in
mapping pointer button functions. As you might expect, when you’re changing the func-
tionality of (up to) three pointer buttons, it’s fairly simple to keep track of what you’re
doing.

On the other hand, mapping modifier key functions to physical keys can be more than a lit-
tle confusing. In order to understand the mechanics of mapping keys, we first need to take
a look at some terms used to describe keyboard keys.

14.4.1 Keycodes and Keysyms
Each key on a physical keyboard can be identified by a number known as akeycode. (Tech-
nically speaking, a keycode is the actual value that the key generates.) Keycodes cannot be
mapped to other keys. No matter what functions you assign to various keys withxmodmap,
the keycode associated with each physical key remains the same.

In addition to a keycode, each physical key is associated with a name known as a keysym.
A keysym (key symbol name) is a name that represents the label on a key (theoretically) and
corresponds to its function.

Alphanumeric keys generally have obvious keysyms, corresponding to the label on the
key: for example, the keysym for the key labeled “H” ish. Unfortunately, a keysym does
not always correspond to the key label. For example, on a Sun-3 workstation, though the
keysym for the key labeled “Return” isReturn, the keysym for the key labeled “Alternate”
is Break, and the keysym for the key labeled “Right” isMeta_R.

While each keycode is tied to a physical key, each keysym corresponds to afunction —and
the keysym/function is mapped to a particular physical key (keycode). Every keyboard has
a default assignment of keysyms to keycodes. In most cases, each physical key on the key-
board will be associated with a different keysym. As we’ll see, however, the keysym
(function) associated with a particular physical key (keycode) can be changed. This is done
by assigning the keysym of one key to the keycode of another.

The modifier keynames recognized by X are not to be confused with keysyms. The X mod-
ifier keys are limited to the eight keynames discussed previously and are assignedin
addition to the regular keysym/keycode pairings. In other words, when a physical key is

CHAPTER 14: CUSTOMIZATION CLIENTS 349

14
mapped to function as the X Control key, it already has a default functionality (keysym)
and keycode.

By default, most modifier keyname functions are mapped to keys having keysyms repre-
senting the same function. For example, the X Control keyname is probably mapped to the
key labeled Control, and having the keysym Control.

The Meta modifier keyname is probably also assigned to a key having the keysym Meta.
However, determining which physical key has the keysym Meta can be something of a
puzzle. Later in this chapter, we’ll consider a program calledxev, which can be used to
determine the keysym and keycode of any physical key.

With this background information in mind, we can now tackle a procedure to map modifier
keynames.

14.4.2 Procedure to Map Modifier Keys
In order to change modifier key mappings with a minimum of confusion, you should per-
form these steps:

1. Display the currentmodifier key mappings usingxmodmap.

2. Then print out the default assignments of keysyms to keycodes forall keys, using
xmodmap with the-pk option. Save this list of the default key assignments in a file as
a reference.

3. Experiment with thexev client to determine the keysyms associated with certain
physical keys. This will help you find the key(s) assigned as the Meta modifier key
(which probably also has the keysym Meta).

4. Once you’re familiar with the current assignments, you can remap modifier keys
usingxmodmap.

14.4.3 Displaying the Current Modifier Key Map
Before mapping any modifier keynames, you should take a look at the current assignments.
With no options,xmodmap displays the current map of X modifier keynames to actual
keys. Typexmodmap and you get a display similar to this:

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x6a), Shift_R (0x75)
lock Caps_Lock (0x7e)
control Control_L (0x53)
mod1 Meta_L (0x7f), Meta_R (0x81)
mod2 Mode_switch (0x14)
mod3 Num_Lock (0x69)
mod4 Alt_L (0x1a)
mod5 F13 (0x20), F18 (0x50), F20 (0x68)

For each logical keyname (on the left),xmodmap lists one or more keysyms, each followed
in parentheses by an actual hardware keycode. The keycodes displayed byxmodmap are

350 X USER’S GUIDE: OPEN LOOK EDITION

14
represented in hex. As we’ll see, the equivalent decimal and octal keycodes are also
accepted as arguments toxmodmap.

In this mapping, two keys are assigned as Meta (mod1) keys: keys having the keysyms
Meta_L and Meta_R (for left and right, apparently one on each side of the keyboard).
Unfortunately, as you can see, this doesn’t really tell you which keys these are on the phys-
ical keyboard. You still need to know which physical keys (keycodes) have the keysyms
Meta_L and Meta_R. You can determine this using thexev client, described later in this
chapter.

14.4.4 Determining the Default Key Mappings
Before you start mapping keys, you should display and save a map of the default assign-
ments of keysyms to keycodes. Runningxmodmap with the -pk option prints a current
map of all keyboard keys to standard output. This map, called a keymap table, lists the dec-
imal keycode on the left and the associated keysym(s) on the right. Figure14-6 shows a
portion of a typical keymap table, for a Sun-4 keyboard.

Notice that each keysym is listed by a keysym name (comma, Caps_Lock, etc.) and a key-
sym value (0x002c, 0xffe5, etc). For our purposes, this value is irrelevant. It cannot be
supplied as a keysym argument toxmodmap.

As you can see, the keymap table lists regular keyboard keys (C, V, comma, slash, space,
etc.), and function/numeric keypad keys (R13, F35, etc.) as well as modifier keys
(Caps_Lock, Meta_L and Meta_R). If you map several keys, you may get confused as to
the original assignments. Before you map any keys, we suggest you redirect the keymap
table to a file to save and use as a reference:

% xmodmap -pk > keytable

The keysyms recognized by your server are a subset of a far greater number of keysyms
recognized internationally. The file/usr/include/X11/keysym.h lists the keysymfamilies
that are enabled for your server. The file/usr/include/X11/keysymdef.h lists the keysyms in
each of the families enabled for your server, as well as the keysyms in several other fami-

Table 14-3. Arguments to xmodmap

Logical modifier
keyname recognized by
X

Keysym
Keycode
(hex version)

Shift Shift_L
Shift_R

(0x6a)
(0x75)

Lock Caps_Lock (0x7e)

Control Control_L (0x53)

Mod1 Meta_L
Meta_R

(0x7f)
(0x81)

CHAPTER 14: CUSTOMIZATION CLIENTS 351

14
lies. See Appendix H,Keysyms, of Volume Two,Xlib Reference Manual, for more
information on keysyms and tables of the most common ones.

% xmodmap -pk
There are 4 KeySyms per KeyCode; KeyCodes range from 8 to 132.

 KeyCode Keysym (Keysym) ...
 Value Value (Name) ...

 109 0x0043 (C)
 110 0x0056 (V)
 111 0x0042 (B)
 112 0x004e (N)
 113 0x004d (M)
 114 0x002c (comma) 0x003c (less)
 115 0x002e (period) 0x003e (greater)
 116 0x002f (slash) 0x003f (question)
 117 0xffe2 (Shift_R)
 118 0xff0a (Linefeed)
 119 0xffde (R13) 0xffde (R13) 0xffb1 (KP_1) 0xff57 (End)
 120 0xff54 (Down) 0xffdf (F34) 0xffb2 (KP_2)
 121 0xffe0 (F35) 0xffe0 (F35) 0xffb3 (KP_3) 0xff56 (Next)
 . . .
 125 0xff6a (Help)
 126 0xffe5 (Caps_Lock)
 127 0xffe7 (Meta_L)
 128 0x0020 (space)
 129 0xffe8 (Meta_R)

Figure 14-6. Partial keymap table

14.4.5 Matching Keysyms with Physical Keys Using xev
The keysym and keycode for any key can be determined with thexev client.†

If you cannot usexev, you must rely on the keymap table and a little deductive reasoning.
Since certainOPEN LOOK functions have keyboard shortcuts involving the Alt (Meta) key,
at least on the AT&T version ofOPEN LOOK, testing these shortcuts should help you locate
this key. See , for more information.

This is particularly useful for finding the Meta key(s). Thexev client is used to keep track
of events, packets of information that are generated by the server when actions occur and
are interpreted by other clients. Moving the pointer or pressing a keyboard key cause input
events to occur. (For more information about events, see Volume One,Xlib Programming
Manual.)

To usexev, enter the command:

% xev

† xev is an MIT X11 Release 3 standard client. In Release 4, it has been moved to thedemos directory; on Open-
Windows it is in/usr/openwin/demo/xev. If an executable version does not exist on your system, ask your system
administrator.

352 X USER’S GUIDE: OPEN LOOK EDITION

14
in anxterm window, and then use the pointer to place thexev window, as in Figure 14-7.

Within thexev window is a small box. Move the pointer inside this box. When you type a
key inside the box, information about the key, including its keysym and keycode, will be
displayed in thexterm window from which you startedxev. The relevant information will
look like this:

. . . keycode 127 (keysym 0xffe7, Meta_L) . . .

Notice that the keycode is given as a decimal number. You can use the decimal keycode as
an argument toxmodmap. The keysym is listed by name, Meta_L, and value, 0xffe7.
Again, this value cannot be supplied as a keysym argument toxmodmap. (See thexev ref-
erence page in Part Three of this guide for more information.)

To find the Meta key, type a few likely keys in thexev window. To terminate the program,
you can use theWindow menu or (if you didn’t background thexev) just type Control-C in
the window from which you invokedxev.

14.4.6 Changing the Map with xmodmap
xmodmap executes an expression or list of expressions that is interpreted as instructions to
modify the key (or pointer) map. The expressions that can be interpreted byxmodmap are
described in the next section.

xmodmap has this syntax:

xmodmap [options [filename

An expression can be executed in either one of two ways:

■ From the command line, using the-e expression option. This option specifies an
expression to be executed (as an instruction to modify the map). Any number of expres-
sions may be specified from the command line. Anexpression should be enclosed in
quotes.

■ Entered in a file that is used as an argument toxmodmap. Several expressions can be
entered in one file.

Figure 14-7. xev window

CHAPTER 14: CUSTOMIZATION CLIENTS 353

14
See thexmodmap reference page in Part Three of this guide for a complete list of options.
Other than-e expression , the most important options for our purposes are listed
below.

-n Indicates thatxmodmap should not change the key mappings as specified in the
filename or command line expression but should display what it would do. A
handy test. (Only works with key mappings, not with expressions that change the
pointer map.)

-verbose Indicates thatxmodmap should print information as it parses its input.

filename specifies a file containingxmodmap expressions to be executed (as instruc-
tions to modify the map). This file is usually kept in the user’s home directory with a name
like.xmodmaprc.

14.4.6.1 Expressions to Change the Key Map

The expressions interpreted byxmodmap can be used to perform these types of key
mappings:†

1. Assign and remove keysyms as modifier keynames recognized by X.

2. Map any keysym (function) to any physical key (keycode).

This list shows allowable expressions, divided by function. (Usingxmodmap with the -
grammar option returns a help message with much of this information.) Those expres-
sions that include an equal sign require a space before and after the sign.

1. To assign and remove keysyms as modifier keynames:

clear MODIFIERNAME

Removes all entries in the modifier map for the given modifier, where valid modifier names
are: shift, lock, control, mod1, mod2, mod3, mod4, and mod5 (case does not
matter in modifier names, although it does matter for all other names). For
example, the expressionclear Lock will remove all keys that were bound to
the lock modifier.

add MODIFIERNAME=KEYSYMNAME

Adds the given keysym to the indicated modifier map. For example, you could make the
Alt key an additional shift modifier key. The keysym name is evaluated after all
input expressions are read to make it easy to write expressions to swap keys.

remove MODIFIERNAME=KEYSYMNAME

Removes the given keysym from the indicated modifier map (unmaps it). For example,
remove Caps_Lock as the lock modifier key. Unlike with theadd expression, the
keysym names are evaluated as the line is read in. This allows you to remove keys
from a modifier without having to worry about whether they have been
reassigned.

† Expressions to change the pointer map are discussed in the section “Displaying and Changing the Pointer Map,”
later in this chapter.

354 X USER’S GUIDE: OPEN LOOK EDITION

14
2. To map any keysym(s) to any physical key (keycode):

keycode NUMBER=KEYSYMNAME

Assigns the keysym to the indicated keycode (which may be specified in decimal, hex or
octal). Usually only one keysym is assigned to a given code.

keysym KEYSYMNAME=KEYSYMNAME

Assigns the keysym on the right to the keycode of the keysym on the left. Note that if you
have the same keysym bound to multiple keys, this might not work.

14.4.6.2 Key Mapping Examples

Expressions can be used on thexmodmap command line or entered in a file that is then
used as an argument toxmodmap. Note thatxmodmap should be run from your startup
script (discussed in) to take effect for all clients in the login session. This section includes
three examples, corresponding to the three types of mappings you can perform.

Remember that including the-n option on thexmodmap command line allows you to see
what the new mappingswould be, without actually performing them. This can be very use-
ful, particularly while you’re learning to usexmodmap and getting used to the syntax of
expressions. (Note, however, that-n cannot be used with expressions to change the pointer
mapping.)

First, thexmodmap client also allows you to assign logical modifier keynames to physical
keys. A not so obvious feature ofxmodmap is that to change the mapping of a modifier key,
you must first remove that key from the current modifier map. For example, to swap the
left Control and (Caps) Lock keys, you would first need to unmap both physical keys
(Caps_Lock, Control_L) from their respective modifier keynames (lock, control):

remove lock = Caps_Lock remove control = Control_L

 And then reverse the mappings:

add lock = Control_L add control = Caps_Lock

 If you then typexmodmap without options, you see the new map:

xmodmap: up to 2 keys per modifier, (keycodes in parentheses):
shift Shift_L (0x6a), Shift_R (0x75)
lock Control_L (0x53)
control Caps_Lock (0x7e)
mod1 Meta_L (0x7f), Meta_R (0x81)
mod2
mod3
mod4
mod5

The key with the keysym Control_L functions as a Lock key and the key with the keysym
Caps_Lock functions as a Control key.

Second,xmodmap allows you to assign any keysym to any other key. Here is some code
that sets up the OpenWindows key assignments:

xmodmap -e ’keysym F1 = Help’ \
-e ’add mod1 = Meta_L Meta_R’

CHAPTER 14: CUSTOMIZATION CLIENTS 355

14
This sets F1 to be theOPEN LOOK Help key, and the Left and Right keys to be Meta (or
ALT) keys. This example is excerpted from the Sun startup scripts in/usr/openwin/lib. As
another example, you might make the Backspace key function as a Delete key:

% xmodmap -e ’keysym BackSpace = Delete’

Then when you display the keymap table andgrep for the Delete keysym, you’ll see that it
is assigned twice. On the command line of anxterm window, type:

% xmodmap -pk | grep Delete

and you’ll get two lines from the current keymap table, similar to these:

50 0xffff (Delete)
73 0xffff (Delete)

The 50 and 73 are keycodes representing two physical keys. As you can see, both of these
keys now function as Delete keys.

This example suggests some of the confusion you can experience usingxmodmap. We
know that one of these keys previously functioned as the Backspace key. But how can we
tell which one? Here is an instance when our default keymap table comes in handy. If
you’ve runxmodmap -pk and redirected it to a file before changing any mappings, you
can check the file for the keysyms originally associated with the keycodes 50 and 73. In
this case, the file tells us 50 originally was Backspace and 73 was Delete.

Of course, you could also figure out the original assignments by remapping one of the key-
codes to Backspace. Then, if the key marked Backspace functions as marked, you know
you’ve mapped the keysym to the original keycode. But, as you can see, the default key-
map table can greatly simplify matters.

This example also implies that there are advantages to using expressions of the form:

keycode number = keysymname

This expression syntax requires you to be aware of default keycode/keysym assignments.
Also, if you explicitly assign a keysym to a particular keycode, it’s much easier to keep
track of what you’re doing and retrace your steps if necessary. On the down side, though
keysyms are portable, keycodes may vary from server to server. Thus, expressions using
this syntax cannot be ported to other systems.

14.4.7 Displaying and Changing the Pointer Map
If you want to change the assignment of logical pointer buttons to physical buttons, you
should first display the current pointer map with the-pp option toxmodmap. A typical
pointer map appears in Figure 14-8.

There are 3 pointer buttons defined.
Physical Button
Button Code

1 1
2 2
3 3

356 X USER’S GUIDE: OPEN LOOK EDITION

14
Figure 14-8. Pointer map

This is a fairly simple map: the physical buttons are listed on the left and the corresponding
logical functions (button codes) are listed on the right.

These are typical assignments for a right-handed person: the first logical button is the left-
most button, designed to be pressed by the right index finger. Thexmodmap client allows
you to reassign logical buttons so that the pointer can be more easily used with the left
hand.

The xmodmap client allows you to change the pointer map.* There are twoxmodmap
expressions: one to assign logical pointer buttons (button codes) to physical buttons; and
another to restore the default assignments. The syntax of the expressions is:

pointer= x y z

Sets the first, second, and third physical buttons to the button codesx , y , andz .

pointer=default

Sets the pointer map back to its default settings (button 1 generates a code of 1, button 2
generates a code of 2, etc.).

Being able to change the pointer button assignments is very useful if you happen to be left-
handed and would like the rightmost physical button to function as the first logical button
(i.e., generate button code 1). To configure the pointer for a southpaw:†

% xmodmap -e ’pointer = 3 2 1’

If you then display the pointer mappings withxmodmap -pp , you get this:

There are 3 pointer buttons defined.
Physical Button
Button Code
1 3
2 2
3 1

You can then push the first logical button (button code 1, whichOPEN LOOK uses for
SELECT) with the index finger of your left hand; button code 2,ADJUST, with the second
finger, and button code 3,MENU, with the third finger.‡

You can return to the default pointer button assignments by entering:

% xmodmap -e ’pointer = default’

Note thatAT&T-OL ’s version of the Properties Editor lets you assign the pointer buttons
more easily, without usingxmodmap.

† Remember that the-n option, which allows you to see whatxmodmap would do without per-
forming the changes cannot be used with expressions to change the pointer mapping.
‡ Users of OpenWindows may need to take additional action to convince NeWS clients to switch the pointer but-
tons around.

CHAPTER 14: CUSTOMIZATION CLIENTS 357

1414.5 xkeycaps - visual keyboard mapping
Maybe Lee can provide this?

358 X USER’S GUIDE: OPEN LOOK EDITION

14

359 X USER’S GUIDE: OPEN LOOK EDITION

PART THREE: Reference
Manual Pages

Note: it was indended that the Online Reference Manuals (UNIX “man pages”) would be
included in the bound version of this volume. However, for the CD-ROM release we have
instead chosen to deliever them as individual Man pages in several formats, so that they
can be used directly by your UNIXman command if you wish.

360 X USER’S GUIDE: OPEN LOOK EDITION

CHAPTER : 361

PART FOUR: Appendices

362 X USER’S GUIDE: OPEN LOOK EDITION

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 363

A

Appendix ATHE XTERM/OLTERM TERMINAL EMULATOR

APPENDIX A

The xterm Terminal
Emulator

xterm provides you with an X window with a terminal within it. Anything you can do using
a standard terminal, you can do in anxterm window. Like theshelltool terminal emulator
described in Chapter 5,The cmdtool/shelltool Terminal Emulator, this client can be used
to create multiple terminal windows, each of which can run any programs available on the
underlying operating system. Once you have anxterm window on your screen, you can use
it to run other clients.

The version ofxterm shipped with OpenWindows is identical to the MIT X11 xterm. The
version shipped withAT&T-OL has been substantially overhauled forOPEN LOOK con-
formance. To add to the confusion, this “OLlified” version ofxterm is distributed under the
nameolterm with some System V Release 4 systems, such as Dell Computers’ version of
X. In this chapter we describe the common xterm version, and describe some aspects of
olterm by mentioning the differences fromxterm. We’ll use the termxterm to describe both
versions, and we’ll refer to theAT&T-OL version asolterm.

You can bring up more than onexterm window at a time. For example, you might want to
list the contents of a directory in one window while you edit a file in another window.
Although you can display output simultaneously in several windows, you can type in only
one window at a time.

When you start anxterm process on the command line in onexterm window, the second
xterm inherits the environment variables of the first (including the DISPLAY setting); the
second shell also starts in the working directory of the first shell.

The basic operation ofxterm should be obvious to anyone familiar with a terminal. You
should be able to work productively immediately.

But xterm provides much more than basic terminal capabilities. Two ofxterm’s most use-
ful features are a scrollbar, which allows you to review text in the window, and a “copy and
paste” facility, which allows you to select text from one window using the pointer and
paste it into another (or even the same) window.

364 X USER’S GUIDE: OPEN LOOK EDITION

A
As we’ll see, you can create anxterm window with a scrollbar using the-sb command line
option or specify a scrollbar as a default characteristic ofxterm using thescrollbar
resource variable. You can also add a scrollbar to (or remove one from) anxterm window
at any time by using one ofxterm’s four menus. Without customizing the client in any way,
you can cut and paste text betweenxterm windows.

Among the less obvious features ofxterm is a dual functionality. By default,xterm emu-
lates a DEC VT102 terminal, a common alphanumeric terminal type.AT&T-OL calls this
mode the “AT&T 6386 console” emulation mode. However,xterm can also emulate the
Tektronix 4014 terminal, an obsolete terminal that was used to display simple computer
graphics before bit-mapped window systems became prevalent. For eachxterm process,
you can switch between these two types of terminal windows. You can display both a
VT102 and a Tektronix window at the same time but only one of them can be the “active”
window, i.e., the window receiving input and output. Hypothetically, you could be editing
in the VT102 window while looking at graphics in the Tektronix window.

You switch between the VT102 window and the Tektronix window using items from cer-
tain xterm menus.xterm has four menus that can be used to control the VT102 and Tek
windows, to select many terminal settings, and to run other commands that affect thexterm
process.

The VT Fonts menu lets you change the font used to display text in the VT102 window.
You may want to change the font for a number of reasons. Perhaps you need a larger font
to read text more easily; or maybe you want to use a smaller font to reduce the size of a
window while a program is running and you don’t need to monitor its progress.

We’ll take a look at some of the more useful items on each menu as well as some alterna-
tives to menu items later in this chapter. For more complete information about menus, see
thexterm reference page in Part Three of this guide.

We’ll also consider how to run a program in a temporaryxterm window, which goes away
when the program finishes.

But first, let’s consider some preliminary issues: which terminal type to specify forxterm
and what to do when resizing anxterm window causes problems with its terminal
emulation.

Then we’ll look at thexterm features you’ll probably use most frequently: the scrollbar and
the text selection mechanism.

A.1 Terminal Emulation and the xterm Terminal
Type

Anyone who has used a variety of terminals knows that they don’t all work the same way.
As a terminal emulator, anxterm window must be assigned a terminal type that tells the
system how the window should operate, that is, what type of terminal it should emulate.
Whenxterm is assigned an invalid terminal type, the window does not display properly at
all times, particularly when using a text editor such asvi. If one of your login files (.login,
.profile, .cshrc, etc.) currently specifies a default terminal type, you will need to replace

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 365

A
this with a type valid forxterm. (If none of your login files specifies a terminal type,xterm
automatically searches the file of TERMCAP entries for the first valid entry.)

xterm can emulate a variety of terminal types, which are listed on the client reference page
in Part Three of this guide. Anxterm window most successfully emulates a terminal when
it has been assigned the terminal type xterm. For the xterm terminal type to be recognized
on your system, the system administrator will have had to add it to the file containing valid
TERMCAP entries. (The xterm TERMCAP entry is supplied with the standard release of
X.) If this has not been done, the system will not recognize the xterm terminal type. In these
cases, try the vt100 terminal type, which also generally works well, or use one of the other
types listed on the client reference page.

See , and thexterm reference page in Part Three of this guide for information about cus-
tomizing thetermcap file.

A.2 Resizing an xterm Window
xterm sets the TERMCAP environment variable for the dimensions of the window you cre-
ate. Clients (includingxterm) use this TERMCAP information to determine the physical
dimensions of input and output to the window.

If you resize anxterm window, programs running within the window must be notified so
they can adjust the dimensions of input and output to the window. If the underlying oper-
ating system supports terminal resizing capabilities (for example, the SIGWINCH signal in
systems derived from BSD 4.3),xterm will use these facilities to notify programs running
in the window whenever it is resized. However, if your operating system does not support
terminal resizing capabilities, you may need to request explicitly that TERMCAP be
updated to reflect the resized window.

The resize client sends a special escape sequence to thexterm window andxterm sends
back the current size of the window. The results ofresize can be redirected to a file that can
then be sourced to update TERMCAP. To update TERMCAP to match a window’s
changed dimensions, enter:

% resize > filename

and then execute the resulting shell command file:

% source filename C shell syntax

or:

$. filename Bourne shell syntax

TERMCAP will be updated and the dimensions of the text within the window will be
adjusted accordingly.

An easier way is to use command substitution. If your regular shell on UNIX is the C shell,
you can define this alias forresize:

alias rs ’set noglob; eval ‘resize‘; unset noglob’

On the Korn or Bourne shell, you can use

366 X USER’S GUIDE: OPEN LOOK EDITION

A
rs() { eval ‘resize‘ }

Then users to update the TERMCAP entry to reflect a window’s new dimensions.

Note that even if your operating system supports terminal resizing capabilities,xterm may
have trouble notifying programs running in the window that the window has been resized.
On some older systems (based on BSD 4.2 or earlier), certain programs, notably thevi edi-
tor, cannot interpret this information. If you resize a window during avi editing session,vi
will not know the new size of the window. If you quit out of the editing session and start
another one, the editor should know the new window size and operate properly. On newer
systems (e.g., BSD 4.3 and later), these problems should not occur.

A.3 Using the Athena Scrollbar
When usingxterm, you are not limited to viewing the 24 lines displayed in the window at
one time. By default,xterm actually remembers the last 64 lines that have appeared in the
window. If the window has a scrollbar, you can scroll up and down through the saved text.
This section describesonly the MIT and OpenWindowsxterm scrolling; theOPEN LOOK
scrollbar used in theAT&T-OL xterm (and in most Sun OpenWindows applications) is
described in the sectionUsing theOPEN LOOK Scrollbar in Chapter 5,The cmdtool/shell-
tool Terminal Emulator.

To create a singlexterm window with a scrollbar, use the-sb command line option:

% xterm -sb &

To display allxterm windows with a scrollbar by default, setscrollBar in your .Xre-
sources file, as described in Chapter 12,Setting Resources. The appropriate resource
setting is illustrated below:

XTerm*scrollBar: true

If an xterm window was not created with a scrollbar, you can add one using theEnable
Scrollbar item on theVT Options menu. See the sectionVT Options Menu later in this
chapter for instructions on selecting a menu item.

Many applications provide horizontal and/or vertical scrollbars that allow you to look at a
window’s contents that extend beyond the viewing area. You move text (or images in
graphics applications) in the window by placing the pointer on the scrollbar and perform-
ing some sort of action.

xterm’s scrollbar is created by the Athena Scrollbar widget. (As we’ll see in subsequent
chapters, several of the standard X clients use Athena scrollbars, while allOPEN LOOK-
conforming applications useOPEN LOOK scrollbars.) An Athena scrollbar looks and oper-
ates differently than a scrollbar provided by a *(OL application (that is, one created using
one of the *(OL toolkits or widget sets), as described in Chapter 5,The cmdtool/shelltool
Terminal Emulator. If you’re accustomed to using an *(OL (or even a Motif or Macintosh)
scrollbar, the Athena scrollbar may take some getting used to, buy you will soon find that
it does the same thing in a different way. While most other scrollbars have separate parts
to invoke different types of scrolling, the Athena scrollbar moves text according to which
pointer button you use and how you use it.

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 367

A
Figure A-1 shows anxterm window with a scrollbar.

The Athena scrollbar has two parts: athumb (the highlighted area within the scrollbar)
which moves within thescroll region. The thumb displays the position and amount of text
currently showing in the window relative to the amount saved. When anxterm window
with a scrollbar is first created, the thumb fills the entire scrollbar. As more text is saved,
the size of the thumb decreases. The number of lines saved is 64 by default but an alterna-
tive can be specified with either the-sl command line option or thesaveLines value
in a resources file.

You scroll through the saved text using various pointer commands. When the pointer is
positioned in the scrollbar, the cursor changes to a two-headed arrow. The scrollbar com-
mands are summarized in Table 5-1.

Figure A-1. An xterm window with a scrollbar

Table A-1. Athena Scrollbar Commands

To move text in
this direction:

Place pointer on
scrollbar and:

Notes:

Either up or down Hold down second
pointer button and
drag thumb.

Text follows pointer
movement.

Down Click first pointer
button.

Scrolls towards latest saved
text (towards bottom of
window).

368 X USER’S GUIDE: OPEN LOOK EDITION

A

The first command in Table 5-1 involves dragging the text in the window using the second
pointer button. This command is the simplest and offers the most control over how much
scrolling takes place. To drag the text in this manner: first place the pointer on the scrollbar;
press and hold down the second pointer button; then drag the thumb up and down. Notice
that text moves as you move the thumb. If you drag up, the window scrolls back toward the
beginning of information saved in the window. If you drag down, the window scrolls for-
ward toward the end of information in the window. When you release the button, the
window displays the text at that location. This makes it easy to get to the top of the data by
pressing the second button, dragging the thumb to the top of the scroll region, and releasing
the pointer button.

The next three pointer commands in Table 5-1 involve a click that causes the text to scroll
However, if you test them, you’ll find that it’s difficult to judge how much text you’re
going to scroll with a single click.

Clicking the first pointer button in the scrollbar causes the window to scroll toward the end
of information in the window.

Clicking the third pointer button in the scrollbar causes the window to scroll toward the
beginning of information in the window.

Clicking the second pointer button moves the display to a position in the saved text that
corresponds to the pointer’s position in the scroll region. For example, if you move the
pointer to the very top of the scroll region and click the second button, the window scrolls
to a position very near the beginning of the saved text. As you might imagine, it’s difficult
to guess exactly how much scrolling will take place when you use the scrollbar in this way.

A.4 Copying and Pasting Text Selections — MIT
and OpenWindows Only

Once yourxterm window is created, you can select text to copy and paste within the same
or otherxterm windows using the pointer. You don’t need to be in a text editor to copy and
paste. You can also copy or paste text to and from the command line. As with the Scrollbar,
there are two different ways of doing this, the Athena way and theOPEN LOOK way. And

Up Click third pointer
button.

Scrolls towards earliest
saved text (towards top of
window).

Either up or down Click second
pointer button.

Scrolls to a position in
saved text that corresponds
to the pointer’s position in
scroll region.

Table A-1. Athena Scrollbar Commands

To move text in
this direction:

Place pointer on
scrollbar and:

Notes:

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 369

A
again, the MIT and OpenWindows versions ofxterm use the Athena way, while theAT&T-
OL version ofxterm (and allOPEN LOOK applications) use theOPEN LOOK version, which
is outlined in the sectionThe Edit Menu below, and described in more detail inCopying
and Pasting Text Selections in Chapter 5,The cmdtool/shelltool Terminal Emulator.

Text copied into memory using the pointer is saved in a global cut buffer and also becomes
what is known as the PRIMARY text “selection.”1

Both the contents of the cut buffer and the contents of the PRIMARY text selection are glo-
bally available to all clients. When you paste text into anxterm window, by default the
contents of the PRIMARY selection are pasted. If no text is in the PRIMARY selection, the
contents of the cut buffer (called CUT_BUFFER0), are pasted. (In most cases, these will
be the same.)

Copying and pasting is one way in which clients exchange information, in this case, text.
Later in this chapter, we’ll consider some of the complications that can arise when copying
and pasting between applications that save information differently. For now, however, let’s
see how to copy and paste text betweenxterm windows.

A.4.1 Selecting Text to Copy
There are several ways to select (copy) text. You can select text by individual words or
lines, or you can select a passage of text.

In order to copy text from a window, the window must have the input focus. In click-to-
focus mode, the click that sets the input focus is not interpreted as an attempt to start a text
selection.

There are two methods for selecting a passage of text. First, you can make the selection by
dragging the pointer: place the pointer at the beginning of the text you want to select; hold
down the first button; move the pointer to the end of the desired text; then release the but-
ton. The text is highlighted, copied into the global cut buffer (called CUT_BUFFER0) and
also made the PRIMARY selection.

The second way to select a passage is even simpler: mark the beginning of the selection by
clicking the first pointer button; then mark the end of the selection by clicking the third
pointer button. The text between the marks is highlighted, copied into CUT_BUFFER0,
and made the PRIMARY selection.

You can select a single word or line simply by clicking. To select a single word, place the
pointer on the word and double-click the first button.2

To select a single line, place the pointer on the line and triple-click the first button.

1. The PRIMARY selection and the cut buffer are stored asproperties of the root window. A property is a piece
of information associated with a window (or font) and stored in the server, where it can be accessed by any client.
The property mechanism permits “cut” text to be stored and later “pasted” into the windows of other clients. See
Chapter 1 and Chapter 10 for more about properties and interclient communication.

370 X USER’S GUIDE: OPEN LOOK EDITION

A
If you hold the button down after double- or triple-clicking (rather than releasing it) and
move the pointer, you will select additional text by words or lines at a time. Then release
the button to end the selection.

Table 5-2 lists the possible pointer actions and the selections they make. You always begin
by placing the pointer on the text you want to select.

Each selection replaces the previous contents of CUT_BUFFER0 and the previous PRI-
MARY text selection. You can make only one selection at a time. (Thexclipboard client,
described later in this chapter, can be used to store multiple text selections.)

Once you have made a selection with the first button, you can extend that selection with the
third button. This example shows how this works:

1. Bring up vi (or any other text editor with which you are familiar) in anxterm
window, and type in this sample sentence:

The X Window System is a network-based graphics window system that was
developed at MIT in 1984.

Place the pointer on the wordgraphics in the sample sentence and select it by double-click-
ing the first button.

Then press and hold down the third pointer button. Move the pointer away from the word
graphics to the left or right. A new selection now extends from the last selection (graphics)
to the pointer’s location and looks something like this (the text that is underlined here will
normally be shown in reverse video on your screen):

The X Window System is a network-basedgraphics window system that was developed at
MIT in 1984.

2. To be more precise, double-clicking selects all characters of the same class (e.g., alphanumeric characters). By
default, punctuation characters and whitespace are in a different class from letters or digits—hence, the observed
behavior. However, character classes can be changed. For example, if you wanted to double-click to select email
addresses, you’d want to include the punctuation characters !, %, @, and . in the same class as letters and digits.
However, redefining the character classes is not something you’d do every day. See thexterm reference page in
Part Three of this guide for details.

Table A-2. Button Combinations to Select Text for Copying

To select Do this

Passage At the beginning of the selection, hold down the first
button; move the pointer to the end of the desired text;
and release the button. Or:

Click the first button at the start of the selection and the
third button at the end of the selection.

Word Double-click the first button anywhere on the word.

Line Triple-click the first button anywhere on the line.

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 371

A
or:

The X Window System is a network-based graphics window system that was developed at
MIT in 1984.

Remember that the extension always begins from the last selection. By moving the pointer
up or down, or to the right or left of the last selection, you can use this technique to select
part of one line or add or subtract several lines of text.

To select text that fills more than one screen, select the first screenful. Use the scrollbar to
view the additional text. Then use the third pointer button to extend the selection. The orig-
inal selection does not need to be in view; clicking the third button will extend it to the
point you choose.

To clear the highlighting, move the pointer off the selection and click the first button any-
where else in the window. Note, however, that the text still remains in memory until you
make another selection.

Complications can arise if you’re copying text that includes tabs. With the current imple-
mentation of the copy and paste feature, tabs are saved as spaces. If you’re copying a large
amount of text with many tabs from one text file to another, having tabs converted to
spaces can create problems. A possible workaround is to change all tabs in the first file to
some unique character or string (using a global command provided by your text editor);
copy and paste the text into the second file; convert the unique strings back to tabs in both
files using your text editor.

Figure A-2. Highlighted text saved as the PRIMARY selection

372 X USER’S GUIDE: OPEN LOOK EDITION

A
A.4.2 Pasting Text Selections
The second button inserts the text from the PRIMARY selection (or CUT_BUFFER0, if
the selection is empty) as if it were keyboard input. You can move data from onexterm
window to another by selecting the data in one window with the first button, moving the
pointer to another window, and clicking the second button.

You can paste text either into an open file or at a command line prompt. To paste text into
an open file, as illustrated in FigureA-3, click the second button within the window con-
taining the file. The text from the memory area will be inserted at the text editor cursor. (Of
course, the file must be in a mode where it is expecting text input, such as the insert mode
of an editor.) You can paste the same text as often as you like. The contents of the PRI-
MARY selection remain until you make another selection.

To paste text at a command line prompt, you must first close any open file within the win-
dow. Then click the second button anywhere within the window to place the text on the
command line at the end of text in the window. (Note that the window will scroll to the bot-
tom on input.) You can make multiple insertions by repeatedly clicking the second button.

Note that you can paste text into a window when click-to-type focus is in effect, even if the
window does not have the input focus. The act of pasting does not transfer focus either.
(Similarly, if you click on a window to focus input, the click is not interpreted as an attempt
to start a text selection.)

Keep in mind that you can pasteover existing text in a file with thevi change text com-
mands (such as cw, for change word). For example, you can paste over five words by

Figure A-3. Pasting text into an open file

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 373

A
specifying thevi command 5cw, and then pasting text by clicking the second pointer but-
ton. Note that you can paste over existing text in any editor that has an overwrite mode.

A.5 More About Text Selections
Most X11 clients exchange information via selections. The selection mechanism allows
data from one client to be copied to another client, and optionally converted to a different
format used by the receiving client.

A selection is globally available but not owned by the server. A selection is owned by a cli-
ent—initially by the client from which you copy it. Then when the text selection is pasted
in another window, that window becomes the owner of the selection.

Because of the nature of selections (particularly the issue of ownership), the following
problems can arise in transferring data:

1. By default, you can save only one selection at a time.

2. For a selection to be transferred to a client, the selection must be owned by a client.
If the client that owns the selection no longer exists, the transfer cannot be made.

Thexclipboard client addresses these problems.

Most users will probably not encounter the second problem. You are probably doing all of
your copying and pasting betweenxterm windows. If you’ve made a selection from an
xterm window and the window is killed, theselection contents are lost. However, contents
of an older X11 mechanism, the “cut buffer“, remain intact and are pasted instead. (Since
all xterm windows interpret ASCII text, the translation capabilities of the selection mecha-
nism are not needed.)

Problems involving the loss of selections are more likely to happen if you are transferring
information between clients that require information to be in different formats. If you are
having such problems, you can customize the clients involved to copy information to what
is known as the CLIPBOARD selection.

The CLIPBOARD selection is intended to avert problems of selection ownership by pro-
viding centralized ownership. Once the CLIPBOARD owns a selection, the selection can
be transferred (and translated), even if the client that previously owned the selection goes
away.

You can customize a client to send data to the CLIPBOARD selection by usingevent trans-
lations, which are discussed in Chapter 10. See the client reference pages in Part Three of
this guide for information on the appropriate translations. For more information on selec-
tions and translations, see Volume One,Xlib Programming Manual.

A.5.1 Saving Multiple Selections: xclipboard
Thexclipboard client provides a window in which you can paste multiple text selections
and from which you can copy text selections to other windows. Similar to the clipboard
feature of the Macintosh operating system, thexclipboard is basically a storehouse for text

374 X USER’S GUIDE: OPEN LOOK EDITION

A
you may want to paste into other windows, perhaps multiple times. Thexclipboard win-
dow is shown in Figure A-4.

To open anxclipboard, type:

% xclipboard &

You can paste text into thexclipboard window using the pointer in the manner described
previously and then copy and paste it elsewhere but this is not its intended use. To use the
xclipboard most effectively, you must do some customization involving a resource file,
such as.Xdefaults. The necessary steps are described in detail in Chapter 10. For now, suf-
fice it to say that you want to set up thexclipboard so that you can select text to be made
the CLIPBOARD selection and have that textautomatically pasted in thexclipboard win-
dow, as illustrated in XXX.

Since thexclipboard client is intended to be coordinated with the CLIPBOARD selection,
the X server allows you to run only onexclipboard at a time.

In order to illustrate how the clipboard works, let’s presume it has been set up according to
the guidelines in Chapter 10. According to those guidelines, you make text the CLIP-
BOARD selection by selecting it with the first pointer button (as usual) and then, while
holding down the first button, clicking the third button. (You could specify another button
combination or a button and key combination but we’ve found this one works pretty well.)
The first pointer action makes the text the PRIMARY selection (and it is available to be
pasted in another window using the pointer); the second pointer action additionally makes
the text the CLIPBOARD selection (and it is automatically sent to thexclipboard window).

These guidelines still allow you to select text with the first pointer button alone and that
text will be made the PRIMARY selection; however, the text will not automatically be sent
to thexclipboard. This enables you to make many selections but to direct to thexclipboard
only those selections you consider important (perhaps those you might want to paste sev-
eral times).

Figure A-4. The xclipboard window

Quit Delete New Next PrevSave 1

^

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 375

A

In order to allow you to store multiple text selections, the seemingly tinyxclipboard actu-
ally provides multiple screens, each of which can be thought of as a separate buffer.
(However, as we’ll see, a single text selection can span more than one screen.) Each time
you use the pointer to make text the CLIPBOARD selection, thexclipboard advances to a
new screen in which it displays and stores the text.

Once you have saved multiple selections, the client’s Next and Previous command buttons
allow you to move forward and backward among these screens of text. The functionality of
the client’s command buttons is summarized in TableA-3. They are all selected by click-
ing the first pointer button.

Figure A-5. Selected text appears automatically in the xclipboard window

Table A-3. Command Buttons and Functions

Button Function

Quit Causes the application to exit.

Delete Deletes the currentxclipboard buffer; the
current screenful of text is cleared from the
window and the next screenful (or
previous, if there is no next) is displayed.

New Opens a new buffer into which you can
insert text; the window is cleared.

Quit Delete New Next PrevSave 1

text
^

376 X USER’S GUIDE: OPEN LOOK EDITION

A

The command buttons you will probably use most frequently are Delete,Next, and
Previous.

When you select text using the first and third pointer buttons, the text will automatically be
displayed in thexclipboard window and will, in effect, be the first screenful of text (or first
buffer) saved in thexclipboard. Subsequent CLIPBOARD selections will be displayed and
saved in subsequent screens.

You select text from thexclipboard and paste it where you want it just as you would any
text. Just display the text you want in thexclipboard window, using Next orPrevious as
necessary. Then select the text using the first pointer button and paste it using the second
pointer button.

You can remove a screenful of text from thexclipboard by displaying that screenful and
then clicking on the Delete command button. When you delete a screenful of text using this
command button, the next screenful (if any) will be displayed in the window. If there is no
next screenful, the previous screenful will be displayed.

Certain features (and limitations) of thexclipboard become apparent only when you make
a very large CLIPBOARD selection. Say you select a fullxterm window of text with the
first and third pointer buttons, as described above. The text extends both horizontally and
vertically beyond the bounds of a singlexclipboard screen. (As we suggested earlier, a
CLIPBOARD selection can actually span more than onexclipboard screen. Pressing
Delete will remove all screens that the selection comprises.) When you make a selection
that extends beyond the bounds of thexclipboard screen (either horizontally, vertically, or
both), scrollbars will be activated in the window to allow you to view the entire selection,
as shown in Figure A-6.

If the text extends both horizontally and vertically beyond the bounds of thexclipboard
screen, as it does in FigureA-6 the window will display both horizontal and vertical scroll-
bars. If the text extends beyond the screen in only one of these two ways, the window will
display either a horizontal or vertical scrollbar, as needed.* These scrollbars are selection-
specific: they are only displayed as long as the current selection cannot be viewed in its
entirety without them. If you move to a previous or subsequent selection thatcan be
viewed without scrollbars, the scrollbars will be deactivated.1

Next and Previous Once you have sent multiple selections to
thexclipboard, Next and Previous allow
you to move from one to another (e.g.,
display them sequentially). Before two or
more CLIPBOARD selections are made,
these buttons are not available for use.
(Their labels will appear in a lighter type-
face to indicate this.)

Table A-3. Command Buttons and Functions

Button Function

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 377

A

A.5.1.1 Problems with Large Selections

If you experiment making large selections withxclipboard, you may discover what seems
to be a bug in the program. Though in most circumstances, making a new selection causes
the screen to advance and display the new text, this does not happen reliably after a selec-
tion vertically spanning more than one screenful. In these cases, the new selectionis saved
in the xclipboard; however, thexclipboard window does not automatically advance to
show you the new current selection. Instead, the previous long selection is still displayed.
This is a bit ofxclipboard sleight-of-hand. The new selection has been successfully made
but the appearance of the window belies this fact. (The Next button will probably add to
your confusion; it will not be available for selection, suggesting that the text in the window
is the last selection saved. This is not the case.)

In order to get around this problem and display the actual current selection, press the Pre-
vious button. The same long selection (which is, in actuality, the Previous selection) will
again be displayed. Then the Next button will be enabled, and you can click on it to display
the actual current selection.

A.5.1.2 Editing Text Saved in the xclipboard

You can edit text you send to thexclipboard using the same commands recognized by
xedit. These commands are described in the section “The xedit Text Editor” in Chapter 8.
A small caret cursor will be visible in each screenful of text. You can move this cursor by
clicking the pointer where you’d like it to appear. Then you can backspace to delete letters
or type to insert them. When you edit a screenful of text, thexclipboard continues to store
the edited version, until you delete it or exit the program.

Be aware that, without performing customization, you can still usexclipboard on a very
simple level. You can paste text into and copy text from thexclipboard window just as you

1. An application created using the X Toolkit, which provides horizontal and vertical scrollbars, is described as a
viewport. See Chapter 8 for more information about viewports and other X Toolkit features.

Figure A-6. xclipboard with scrollbars to view large text selection

Quit Delete New Next PrevSave 1

Another strength of X is that it allows you to run programs
on machines connected by a network. You can run a
process on a remote machine while displaying the results
on your own screen. You might want to access a remote
machine for any number of reasons: to use a program or
access information not available on your local system; to
distribute the work load, etc. We'll discuss X's networking
capabilities in more detail in the "X Architecture Overview"
later in this chapter.

378 X USER’S GUIDE: OPEN LOOK EDITION

A
would any other, using the pointer movements described earlier in this chapter. You can
also type in thexclipboard window and then copy and paste what you’ve typed. Just move
the pointer into the window and try typing. However, keep in mind that this is not the
intended use of thexclipboard.

If you do choose to use the clipboard in a limited way, it can still be a helpful editing tool.
For example, say you wanted to create a paragraph composed of a few lines of text from
each of two files. You could copy the text from each file using the pointer and paste it into
thexclipboard window. (Each time you paste text into thexclipboard window, the text is
appended to whatever text was already pasted there.) Again using the pointer, you could
copy the newly formed paragraph from thexclipboard window and paste it into a file in
another window.

A.6 Running a Program in a Temporary xterm
Window

Normally, when you start up anxterm window, it automatically runs another instance of
the UNIX Bourne or C shell (depending on which is set in your.Xdefaults file or the
SHELL environment variable). If you want to create anxterm window that runs some other
program and goes away when that program terminates, you can do so with thexterm-e
option:

% xterm -e command [arguments

For example, if you want to look at the filetemp in a window that will disappear when you
quit out of the file, you can use the UNIXmore program as follows:

% xterm -e more temp

When you are using other options toxterm on the command line, the-e option must
appear last because everything after the-e option is read as a command.

A.7 The xterm Menus — MIT, OpenWindows
The MIT X11 Release 5 version ofxterm, which is included in Sun’s OpenWindows
Release 3.3, has four different menus, described here. TheAT&T-OL version ofxterm has
a different set of menus, and is described in the following section,The xterm Menus —
AT&T-OL.

■ Main Options menu (formerly calledxterm menu).

■ VT Options menu (formerly calledModes menu).

■ VT Fonts menu (available as of MIT X11 Release 4).

■ Tek Options menu (formerly calledTektronix menu).

The VT Fonts menu, which allows you to change thexterm display font dynamically, was
introduced in Release 4. The other three menus are updated versions of menus available in
Release 3. As is indicated above, these three menus have been renamed in Release 4. Most

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 379

A
of the items available on these menus have not changed in functionality since Release 3,
though many have been renamed and some have been reorganized.

As shown in Figure A-7, three of the fourxterm menus are divided into sections separated
by horizontal lines. The top portion of each divided menu contains various modes that can
be toggled. (The one exception is the Redraw Window item on theMain Options menu,
which is a command.) A check mark appears next to a mode that is currently active.
Selecting one of these modes toggles its state.

The items on the VT Fonts menu change the font in which text is displayed in thexterm
window. Only one of these fonts can be active at a time. To toggle one off, you must acti-
vate another.

Most mode entries can also be set by command line options when invokingxterm, or by
entries in a resource startup file (such as.Xdefaults or .Xresources) as described in Chapter
12,Setting Resources. (See thexterm reference page in Part Three of this guide for a com-
plete list of command options and resource variables.) The various modes on the menus are
very helpful if you’ve set (or failed to set) a particular mode on the command line and then
decide you want the opposite characteristic.

The sections below the modes portion of each menu contain various commands. Selecting
one of these commands performs the indicated function. Many of these functions can only
be invoked from thexterm menus. However, some functions can be invoked in other

Figure A-7. The X11 Release 5 xterm menus

Main Options

Secure Keyboard
Allow SendEvents
Log to File
Redraw Window

Send STOP Signal
Send CONT Signal
Send INT Signal
Send HUP Signal
Send TERM Signal
Send KILL Signal

Quit

VT Options

Enable Scrollbar
Enable Jump Scroll
Enable Reverse Video
Enable Auto Wraparound
Enable Reverse Wraparound
Enable Auto Linefeed
Enable Application Cursor Keys
Enable Application Keypad
Scroll to Bottom on Key Press
Scroll to Bottom on Tty Output
Allow 80/132 Column Switching
Enable Curses Emulation
Enable Visual Bell
Enable Margin Bell
Show Alternate Screen

Do Soft Reset
Do Full Reset
Reset and Clear Saved Lines

Show Tek Window
Switch to Tek Mode
Hide VT Window

Tek Options

Large Characters
#2 Size Characters
#3 Size Characters
Small Characters

PAGE
RESET
COPY

Show VT Window
Switch to VT Mode
Hide Tek Window

VT Fonts

Default
Unreadable
Tiny
Small
Medium
Large
Huge
Escape Sequence
Selection

380 X USER’S GUIDE: OPEN LOOK EDITION

A
ways: for example, from anmwm menu, on the command line, by a sequence of keystrokes
(such as Control-C). This chapter includes alternatives to some of the menu items which,
in certain cases, may be more convenient. Of course, thexterm menus can be very helpful
when other methods to invoke a function fail.

Menus are displayed by placing the pointer on the window and simultaneously pressing a
keyboard key and pointer button. (The exact key and button combinations are described
below with each menu.) When you’re using a window manager, such asmwm, that pro-
vides a titlebar or frame, the pointer must rest within the window proper—not on any
window decoration. (Note that the pointer be within the window, even if click-to-type
focus is enabled. See Chapter 1 for a discussion of focus policy.)

When you display anxterm menu, the pointer becomes the arrow pointer and initially
appears in the menu’s title. Once the menu appears, you can release any keyboard key. The
menu will remain visible as long as you continue to hold down the appropriate pointer but-
ton. (You can move the pointer off the menu without it disappearing.)

If you decide not to select a menu item after the menu has appeared, move the pointer off
the menu and release the button. The menu disappears and no action is taken.

In this discussions of the fourxterm menus, we’ll consider some of the more useful items
as well as some alternatives to menu items. For more complete information about each
menu, see thexterm reference page in Part Three of this guide.

A.7.1 The Main Options Menu
The Main Options menu, shown in FigureA-8, allows you to set certain modes and to send
signals (such as SIGHUP) that affect thexterm process.

To bring up the Main Options menu, move the pointer to thexterm window you want to
change, hold down the Control key, and press the first (usually the left) pointer button.*
The pointer changes to the menu pointer, and this menu of three modes and eight com-
mands appears. (You can release the Control key but must continue to press the first
pointer button to hold the Main Options menu in the window.)1

Note that Main Options menu items apply only to thexterm window the pointer is in when
you display the menu. To effect changes in anotherxterm, you must move the pointer to
that window, display the menu, and specify the items you want.

To select a menu item, move the menu pointer to that item and release the first button.
After you have selected a mode (Secure Keyboard, Allow SendEvents, or Log to File), a
check mark appears before the item to remind you that it is active. The Log to File mode
on theMain Options menu can also be set by a command line option when invoking
xterm. In addition, both Log to File and Allow SendEvents can be set by entries in a
resource startup file such as.Xdefaults or .Xresources. The menu selections enable you to
change your mind oncexterm is running. (See thexterm reference page in Part Three for
more information on these modes.)

1. The right button can be made to function as the “first” button. This is especially useful if you are left-handed.
See Chapter 14,Customization Clients, for instructions on how to customize the pointer withxmodmap.

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 381

A

The Secure Keyboard mode toggle is there to help counteract one of the security weak-
nesses of X. This mode is intended to be activated when you want to type a password or
other important text in anxterm window. Generally, when you press a keyboard key or
move the pointer, the X server generates a packet of information that is available for other
clients to interpret. These packets of information are known asevents. Moving the pointer
or pressing a keyboard key causes input events to occur.

There is an inherent security problem in the X client-server protocol. Because events such
as the keys you type in anxterm window are made available via the server to other clients,
hypothetically an adept system hacker could access this information. (Naturally, this is not
an issue in every environment.) A fairly serious breach of security could easily occur, for
instance, if someone were able to find out a user’s password or theroot password. Enabling
Secure Keyboard mode causes all user input to be directedonly to thexterm window itself.

Of course, in many environments, precaution is probably not necessary: if the nature of the
work is in no way sensitive, if the system administrator has taken pains to secure the sys-
tem in other ways, etc. If your environment might be vulnerable, you can enable Secure
Keyboard mode before typing passwords and other important information and then disable
it again using the menu.

When you enable Secure Keyboard mode, the foreground and background colors of the
xterm window will be exchanged (as if you had enabled the Reverse Video mode from the

Figure A-8. The xterm main menu

382 X USER’S GUIDE: OPEN LOOK EDITION

A
VT Options menu), as shown in FigureA-9. When you disable Secure Keyboard mode,
the colors will be switched back.

Be aware that only one X client at a time can secure the keyboard. Thus, if you have
enabled Secure Keyboard mode in onexterm, you will not be allowed to enable it in
anotherxterm until you disable it in the first. If Secure Keyboard mode is not available
when you request it, the colors will not be switched and a bell will sound. Note also that the
window manager cannot obtain keystrokes while anxterm is in Secure Keyboard mode, so
that keyboard accelerators for window manager functions will not operate; they will prob-
ably appear as gibberish in the securexterm window. Finally, note that other X
applications’ pop-up dialogs will not be able to get the keyboard either.

! If you request Secure Keyboard mode and are not refused but the colors are not
exchanged, be careful: you are not in Secure Keyboard mode. If this happens,
there’s a good chance that someone has tampered with the system. If the
application you’re running displays a prompt before asking for a password, it’s a
good idea to enable Secure Keyboard mode before the prompt is displayed and
then verify that the prompt is displayed in the proper colors. Before entering the
password, you can also display the Main Options menu again and verify that a
check mark appears next to Secure Keyboard mode.

Be aware that Secure Keyboard will be disabled automatically if you iconify thexterm
window, or startolwm ormwm or another window manager that provides a titlebar or other
window decoration. (You can enable Secure Keyboard mode once the new window man-

Figure A-9. Reverse video is enabled when the keyboard is secure

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 383

A
ager is running, though.) This limitation is due to the X protocol. When the mode is
disabled, the colors will be switched back and the bell will sound to warn you.

Though intended to counteract a security weakness, the Secure Keyboard mode toggle can
also be used to get around a weakness in X. As described in Chapter 6,Using the OPEN
LOOK Window Manager, if the window manager dies, it’s possible that the focus can be
lost—i.e., the focus is no longer directed to any application window. Selecting Secure Key-
board mode for anyxterm should cause that window to grab the focus again.

In addition to modes that can be toggled, the Main Options menu includes several com-
mands. All of the commands (except for Redraw Window) send a signal that is intended to
affect thexterm process: suspend it (Send STOP Signal), terminate it (Send TERM Sig-
nal), etc. Given that your operating system may recognize only certain signals, every menu
item may not produce the intended function.

Note that most of these commands are equivalent to common keystroke commands, which
are generally simpler to invoke. For example, in most terminal setups Control-C can be
used to interrupt a process. This is generally simpler than using the Send INT Signal menu
command, which performs the same function.

Similarly, if your system supports job control, you can probably suspend a process by typ-
ing Control-Z and start the process again by typing Control-Y, rather than using the Send
STOP Signal and Send CONT Signal menu commands. If your system does not support job
control, neither the menu commands nor the keystrokes will work.

Four of the commands (Send HUP Signal,Send TERM Signal, Send KILL Signal, and
Quit) send signals that are intended to terminate thexterm window. Depending on the sig-
nals your system recognizes, these commands may or may not work as intended. Be aware
that in most cases you can probably end anxterm process simply by typing some sequence
(such as Control-D orexit) in the window. Of course the menu items may be very helpful
if the more conventional ways of killing the window fail. Also be aware that, in addition to
being recognized only by certain systems, some signals are more gentle to systems than
others. See thexterm reference page in Part Three of this guide for information on the sig-
nal sent by each of the menu commands and thesignal (3C) reference page in theUNIX
Programmer’s Manual for more information on what each signal does.

The Quit command sends a SIGHUP to the process group of the process running under
xterm, usually the shell. (The Send HUP Signal command sends the same signal.) This
ends up killing thexterm process, and the window disappears from the screen.

 Quit is separated from the earlier commands by a horizontal line so it’s easier to point at.
Sending a SIGHUP with Quit is slightly more gentle to the system than sending a SIGKILL
with Send KILL Signal.

The Redraw Window command redraws the contents of the window. As an alternative, you
can redraw the entire screen using thexrefresh client. See thexrefresh reference page in
Part Three of this guide for more information about this client.

384 X USER’S GUIDE: OPEN LOOK EDITION

A
A.7.2 VT Options Menu
The VT Options menu provides many VT102 setup functions. Some of these mode settings
are analogous to those available in a real VT102’s setup mode; others, such asscrollbar,
arexterm -only modes.

The VT Options menu items allow you to reset several modes at once, select the Tektronix
window to accept input, and hide the VT window.

To bring up the VT Options menu, move the pointer to thexterm window, hold down the
Control key, and then press and hold down the second pointer button. (You can release the
Control key but must continue to press the second button to keep the VT Options menu in
the window.) The menu shown in Figure A-10 appears.

Figure A-10. The VT Options menu

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 385

A
Check marks indicate the active modes. For example, Jump Scroll,Auto Wraparound ,
andScroll to Bottom on Tty Output are active in the VT Options menu displayed in
Figure A-10. These are the only modes active by default.1

To turn off one of these modes, move the menu pointer to that mode and release the second
button.

Most of these modes can also be set by command line options when invokingxterm or by
entries in a resource startup file like.Xdefaults or .Xresources. The menu selections allow
you to change your mind oncexterm is running.

The toggle Allow 80/132 Column Switching warrants a little more explanation. This mode
allowsxterm to recognize the DECCOLM escape sequence, which switches the terminal
between 80- and 132-column mode. The DECCOLM escape sequence can be included in
a program (such as a spreadsheet) to allow the program to display in 132-column format.
See , for more information. This mode is off by default.

The VT Options menu commands (in the second and third partitions of the menu) perform
two sets of functions, neither of which can be performed from the command line or a
resource definition file. The commands Soft Reset andFull Reset reset some of the modes
on the menu to their initial states. See thexterm reference page in Part Three of this guide
for more information.

The Show Tek Window,Switch to Tek Mode, and Hide VT Window menu items allow
you to manipulate the Tektronix and VT102 windows.

The Show Tek Window command displays the Tek window and its contents without mak-
ing it the active window (you can’t input to it). Use the Switch to Tek Mode command to
display a Tektronix window and make it the active window. When you select Switch to
Tek Mode, the Show Tek Window command is automatically enabled, since the Tek win-
dow is displayed. (Note that a Tektronix window is not commonly used for general purpose
terminal emulation but for displaying the output of graphics or typesetting programs.)

Both of these commands are toggles. If Show Tek Window is active and you toggle it off,
the Tek window becomes hidden. (As we’ll see, you can also do this with the Hide Tek
Window item on the Tek Options menu.) If both Switch to Tek Mode and Show Tek Win-
dow are active (remember, enabling the former automatically enables the latter), toggling
off either one of them switches thexterm back to VT mode. (This can also be done from
the Tek Options menu with the Switch to VT Mode item.)

The Hide VT Window command hides the VT102 window but does not destroy it or its
contents. It can be restored (and made the active window) by choosing Select VT Mode
from the Tek Options menu.

1. This mode indicates that if you are using the scrollbar and the window receives output (or a key is pressed, if
stty echo is enabled), the window scrolls forward so that the cursor is at the current line.
(You can use the menu to toggle off this mode but it is generally desirable to have.)

386 X USER’S GUIDE: OPEN LOOK EDITION

A
A.7.3 VT Fonts Menu
The VT Fonts menu is a welcome Release 4 innovation. It allows you to change the display
font of anxterm window while the window is running. To bring up the VT Fonts menu,
move the pointer inside thexterm window. Press and hold down the Control key on the
keyboard and press the third (usually the right) pointer button. The VT Fonts menu is
shown in Figure A-11.

If you have not toggled any items on this menu, a check mark will appear before the
Default mode setting. The Default is the font specified when thexterm window was run.
This font could have been specified on thexterm command line or in a resource file such
as.Xdefaultsor .Xresources. Whatever the case, this font remains the Default for the dura-
tion of the currentxterm process.

The items Default,Tiny , Small, Medium, andLarge can be toggled to set the font dis-
played in thexterm window. The font can be changed any number of times to
accommodate a variety of uses. You might choose to use a large font for editing a file
(chances are you’ve chosen a large enough default font, though). You could then change to
a smaller font while a process is running since you don’t need to be reading or typing in that
xterm. Changing the font also changes the size of the window.

Figure A-11. VT Fonts menu

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 387

A! There are also default settings for the Tiny,Small, Medium, andLarge fonts. They
are all constant-width fonts from the directory /usr/lib/X11/fonts/misc and are
listed in Table A-4.

Bring up the VT Fonts menu and toggle some of these fonts to see what they look like. The
default Tiny font,nil2, is actually too small to be legible. It is not intended to be read. If
you select this font, yourxterm window becomes tiny, almost the size of some application
icons. Though you cannot read the actual text in a window this size, the window is still
active and youcan observe if additional output, albeit minuscule, is displayed. Anxterm
window displaying text in such a small font can, in effect, serve as anactive icon.

Be aware that you can specify your own Tiny,Small, Medium, andLarge fonts using
entries in a resource startup file such as.Xdefaultsor .Xresources. The corresponding
resource names arefont1 , font2 , font3 , andfont4 . See Chapter 6 for more infor-
mation about available fonts. See Chapter 10 for instructions on how to set resource
variables.

In addition to the menu selections we’ve discussed, the VT Fonts menu offers two other
possible selections: Escape Sequence andSelection. When you first run anxterm window,
these selections appear on the VT Fonts menu but they are not functional. (They will
appear in a lighter typeface than the other selections, indicating that they are not available.)
In order to enable these selections for use, you must perform certain actions which are out-
lined in Chapter 6.

A.7.4 Tek Options Menu
The Tek Options menu controls certain modes and functions of the Tektronix window. The
menu can only be displayed from within the Tektronix window. As previously described,
you can display the Tek window and make it the active window by using the Switch to Tek
Mode command on the VT Options menu.

To display the Tek Options menu, move the pointer inside the Tektronix window. Press
and hold down the Control key on the keyboard and press the second pointer button. The
Tek Options menu appears.. With this menu you set the size of the text in the Tektronix
window and select some commands.

Table A-4. VT Fonts Menu Defaults

Menu Item Default Font

Tiny nil2

Small 6x10

Medium 8x13

Large 9x15

388 X USER’S GUIDE: OPEN LOOK EDITION

A
Note that these modes (above the first line) can only be set from the Tek Options menu. All
of these modes set the point size of the text displayed in the Tektronix window. (Only one
of these four modes can be enabled at any time.)

The most important command on the Tek Options menu is Switch to VT Mode. If the Tek
window has been made the active window (using the Switch to Tek Mode command from
the VT Options menu), you can choose Switch to VT Mode to make the VT window the
active window again. (If both windows are showing, you can also toggle Switch to Tek
Mode on the VT Options menu todeactivate it; that is, switchfrom Tek mode and back to
VT mode.) Switch to VT Mode is also a toggle; if you deactivate it,xterm will switch back
to Tek mode.

Selecting Show VT Window displays the VT window if it has been hidden (using the Hide
VT Window command from the VT Options menu) or hides it if it is being displayed.
(Again, the command is a toggle.) Remember that you cannot input to the VT window until
you make it the active window by using Switch to VT Mode.

A.8 The xterm Menus—AT&T/olterm Version
TheAT&T-OL version ofxterm has most of the same requests available in menus, but they
are organized differently, in an attempt to bringxterm into compliance with theOPEN
LOOK specification. The main menu, activated by pressing the MENU (usually right)
pointer button, looks like this:

xterm
Edit ->
Redraw
Soft Reset
Full Reset
Properties...
Show Tek window
Interrupt
Hangup
Terminate
Kill

Edit gets you into the edit menu, to be described shortly.Redraw redisplays the window,
just likeRefresh on the workspace menu.Soft Reset, Full Reset andShow Tek Window are
the same as the corresponding items on theVT Options menu in the MIT version. The
Properties... item starts up a properties window that has most of the items from the first
section of theVT Options shown in FigureA-10 above. And the last four items send the
same signals as do the corresponding items in theMain Options menu in the MIT version
above.

A.8.1 AT&T-OL xterm Edit Menu
TheEdit menu looks like this:

Send
Paste
Copy
Cut(X)

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 389

A
These provide a simple cut and paste facility similar to that described for the MITxterm
above. You can select text using the SELECT (left) pointer button. Just click and hold
SELECT before the first character you want to select, and drag the pointer across all the
text you want to select, and release SELECT. Then you can copy this text into yourxterm
window just by selectingSend from theEdit menu. TheCopy operation copies selected text
into a clipboard, whilePaste copies the clipboard into the current window or text field.
Think of Send as a combination ofCopy andPaste.

The OPEN LOOK text selection and copying mechanism is described in more detail in
Chapter 5,The cmdtool/shelltool Terminal Emulator, in the sectionCopying and Pasting
Text Selections.

A.8.2 AT&T-OL xterm Properties Window
TheProperties window lets you set most of the settings that are in the first part of theVT
Options in the MIT and OpenWindows version ofxterm. The property window, which is
pinnable, has these Checkbox (exclusive settings), which have the same meaning as the
same-named items described previously for the MIT version ofxterm:

Visual Bell Logging
Jump Scroll Reverse Video
Auto Wraparound Reverse Wraparound
Auto Linefeed Application Cursor
Application Pad Scroll Bar
Margin Bell Secure Keyboard
Curses Resize

A.8.3 AT&T-OL xterm Tek mode menus
TheTektronix Mode xterm Menu contains these selections:

PAGE
RESET
COPY
Redraw
Properties...
Hide VT window
Interrupt
Hangup
Terminate
Kill

The first three, in upper case, are the same as the middle section of the MIT version’sTek
Options menu. The next two do what you’d expect:Redraw redisplays the screen, and
Properties brings up a Properties window.Hide VT window causes the “AT&T 6386”
(VT102) window to be unmapped. THe last four have the same meaning as on the main
xterm menu here, and on theMain Options menu in the MIT version.

TheTek Properties window lets you choose one of four sizes — Large, Medium, Small,
and Tiny — for the Tek display. These are identical to the like-named items in theVT Fonts
menu of the MIT version.

390 X USER’S GUIDE: OPEN LOOK EDITION

A
A.8.4 AT&T-OL Keyboard Shortcuts
All the xterm menus have keyboard shortcuts, shown by underlining in the menu listings
above. In addition, the following shortcuts are available. The key bindings assume an
AT&T 6386 WGS keyboard.

In Tek mode, only Menu (Ctrl-m) works.

1.9 Changing Fonts in xterm Windows
xterm includes a VT Fonts menu that allows you to change fonts on the fly. We discussed
most of the menu entries above. These items require a detailed understanding of font nam-
ing such as that given in Chapter 10,X11, OPEN LOOK and OpenWindows Font
Specification. So we’ve saved them until the end of this Appendix..

1.9.0.1 The Great Escape

Though it is by no means obvious,xterm allows you to change the display font by sending
an escape sequence, along with the new font name, to the terminal window. Once you
change the font in this way, theEscape Sequence item on thexterm VT Fonts menu
becomes available and choosing it toggles the font you first specified with the escape
sequence. (In effect, whatever font you specify using the escape sequence is stored in
memory as the menu’sEscape Sequence font selection.)

You send an escape sequence to the terminal window by using the UNIXecho (1) com-
mand. The escape sequence to change thexterm display font comprises these keystrokes:

Table A-5. AT&T-OL Xterm Key Sequences

Function Default Binding xterm use

Scroll Up <Prior> Scroll text up

Down <Next> scroll text down

 Up <Ctrl><Prior> Scroll up one page

Down <Ctrl><Next> Scroll down one page

Top <Alt><Prior> Jump scroll to top of text

Bottom <Alt><Next> Jump scroll to end of text

 Scrollbar menu Ctrl-r Activate Scrollbar menu

Menu Ctrl-m Activate xterm main menu

Cut <Shift><Delete> Cut selected text

Copy <Ctrl><Insert> Copy selected text into clipboard

Paste <Shift><Insert> Paste in copied text into window

APPENDIX A: THE XTERM/OLTERM TERMINAL EMULATOR 391

A
Esc] 50 ; fontname Control-G

To clarify, these keystrokes are: the Escape key, the right bracket (]), the number 50, a
semicolon (;), afontname , and the Control-G key combination. We’ve shown the key-
strokes with spaces between them for readability, but when you type the sequence on the
command line, there should be no spaces. Note also that to supply this sequence as an argu-
ment toecho, you must enclose it in quotes:

% echo "Esc]50; fontname Control-G"

These are the literal keys you type. However, be aware that when you type these keys as
specified, the command line will not look exactly like this. Certain keys, such as Escape,
and key combinations, such as Control-G, are represented by other symbols on the com-
mand line. When you type the previous key sequence, the command line will actually look
like this:

% echo "^[]50; fontname ^G"

Pressing the Escape key generates the “^[” symbol; typing the Control-G key combination
generates “^G.” You can use a full fontname, an alias, or a wildcarded font specification as
the font name. You should be aware that if the wildcarded specification matches more than
one font, you will get the first font in the search path that matches. For example:

% echo "^[]50;*courier*^G"

will get you a 10-point courier bold oblique. The advantage of being able to change the dis-
play font with an escape sequence is that it allows you to add another font to your choices
on the fly.1

Changing the fonts associated with theTiny , Small, Medium, andLarge menu items is a
more laborious process. It involves specifying other fonts in a resource file, making those
resources available to the server, and then running anotherxterm process. (See Chapter 12,
Setting Resources, for more information.) However, you can change the font specified by
the Escape Sequence menu item as often as you want during the currentxterm process,
simply by typing the escape sequence described previously.

Now that we’ve looked at the mechanics of the escape sequence, let’s consider its practical
use. Say you want to run a program in anxterm window and you want to be able to read the
output easily, but you would like the window to be moderately small. You discover that
toggling theMedium font, the8x13 font by default, makes the window a good size, but
the typeface is too light to be read easily. (We presume you are using the default menu
fonts and have not customized them using a resource file.) You could dynamically change
the display font to a bold font of the same size by entering the following command line:

% echo "Esc]50;8x13boldControl-G"

The xterm font becomes the desired8x13bold , a good choice; in addition, theEscape
Sequence item of theVT Fonts menu becomes available for selection. This menu item
allows you to toggle the8x13bold font at any time during thexterm process. Thus, you

1. Specifying a font with an escape sequence affects only the currentxterm window and enables only that win-
dow’sEscape Sequence menu selection.

392 X USER’S GUIDE: OPEN LOOK EDITION

A
could switch back to any of the other fonts available on the menu (Small, Large, etc.) and
then useEscape Sequence to again select8x13bold .

This font will remain theEscape Sequence font for the duration of thexterm process,
unless you again change the display font with an escape sequence. If you enter another font
name using the escape sequence described above, the window will display in that new font
and theEscape Sequence menu item will toggle it.

1.9.0.2 The Selection Menu Item

The Selection menu item allows you to toggle a font whose name you’ve previously
“selected.” The font name could be selected with the pointer, for example, fromxlsfonts
output, using the “cut-and-paste” techniques described in Appendix A,The xterm/olterm
Terminal Emulator. It is far more likely, though, that you would use this menu item after
selecting a font withxfontsel. This menu item was clearly designed withxfontsel in mind.
(If no text is currently selected, this menu item appears in a lighter typeface, indicating that
it is unavailable.)

The main limitation of this menu item is that it uses thelast text selected as the font name,
regardless of what that text is. If you select a font name, that name is only available through
Selection until you use the pointer to select other text. Since cutting and pasting text is one
of the most useful features ofxterm, you will probably be making frequent selections. If the
last selected text was not a valid font name, togglingSelection will not change the display
font, and a beep will inform you that the toggle failed.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 393

B

Appendix BX USER’S GUIDE: OPEN LOOK EDITION

APPENDIX B

OpenWindows and X11
Standard Fonts

This appendix shows the standard display fonts available in OpenWindows Release 3 and
in X11 Release 5. The images contained in this appendix are window dumps created with
our own program, calledxshowfonts, the code for which is included in the CD-ROM.

This appendix does not show how to add fonts to the OpenWindows server or the MIT X
server, norr use of the X11R5 “font server”; these are covered in Volume Eight,X Window
System Administrator’s Guide. We do discuss adding Type 1 PostScript fonts to OpenWin-
dows 3.3 and later.

B.1 Pictures of Fonts
This appendix includes pictures of some representative fonts from the standard X distribu-
tions. No two distributions of X11 (except two copies of the same release direct from the
X Consortium) contain exactly the same set of fonts! Not every font may be supported by
particular server vendors, and some vendors may supplement the set.

SectionB.2, “Fonts in the X11R5/6 (and modern OpenWindows) Servers,” lists the fonts
in the X11R5 and modern OpenWindows directories. SectionB.3, “Fonts in the xnews
Server,” lists the fonts in the older OpenWindows servers. The first column lists the name
of the file in which the font is stored (without the filenameextension); the second column
lists the actual font name. See Chapter 10,X11, OPEN LOOK and OpenWindows Font
Specification, for information about font naming conventions.

PICTURES of the different font families supplied in the standard X11 distribution appear
in Section B.4, “Font Samples . We show just the fonts in the75dpi directory. The100dpi
directory contains the same fonts stored in the75dpi directory but for 100 dots per inch
monitors. Keep in mind that all of the fonts in the75dpi and100dpi directories are avail-
able in 8-, 10-, 12-, 14-, 18-, and 24-point sizes. Each page shows fonts of various sizes,
weights, and styles. We include the source forxshowfonts.c, the program written at
O’Reilly & Associates to make these displays, at the end of the appendix.. SectionB.5,

394 X USER’S GUIDE: OPEN LOOK EDITION

B
“Font Encodings,” shows you, usingxfd, one example of each of the uniqueencodings, or
character sets, available.1

All of the characters in each font are shown more-or-less actual size. But since no two mon-
tiros have exactly the same pixel density, these fonts would appear in a different size on
your monitor.

B.2 Fonts in the X11R5/6 (and modern
OpenWindows) Servers

On the X Consortium X11R5 and R6 releases, as well as OpenWindows after Release 3.2,
the standard fonts are stored in several directories, as shown in Table B-1

The standard server can accept fonts in any of several formats:

1. If you want to use this program yourself, you probably don’t want to type the sourcein, so it’s in the src/utils
dir4ectory of the CD-ROM. Or, you can obtain the source from uunet.uu.net via anonymousftp or uucp. See the
Preface for more information.

Table B-1. MIT X11 Font Directories

Directory (relaitve to /usr/lib/
X11 or /usr/openwin/home/lib/
X11)

Contents

.../fonts/misc Fxed-width fonts, the cursor font,
other miscellaneous fonts.

.../fonts/75dpi Fixed- and variable-width fonts, 75
dots per inch.

...//fonts/100dpi Fixed- and variable-width fonts, 100
dpi.

.../fonts/Speedo Charter and Courier outline fonts
from Bitstream

.../fonts/F3 (and F3bitmaps) Sun “F3” fonts (Sun only)

.../fonts/Type1 Display PostScript Type 1 fonts (Sun
and other DPS vendors only)

Table 2-2. X11R5 Font File Formats

Suffix File Format

.afm Adobe ASCII format
metric file

.bdf Adobe BDF 2.1 bitmap file

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 395

B

Here is a listing of the fonts.

.snf Server Normal Form

.spd Speedo Scaleable form

.ff Font Family file

.fm NeWS font metric file

.ps PostScript font file (usually
Type Three)

.vft Vfont (Berkeley) bitmap
font

Table B-3. Fonts in the misc Directory

Filename Font name

6x12.pcf.Z -misc-fixed-medium-r-semicondensed--12-110-75-75-c-60-iso8859-1

6x13.pcf.Z -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1

6x10.pcf.Z -misc-fixed-medium-r-normal--10-100-75-75-c-60-iso8859-1

7x13.pcf.Z -misc-fixed-medium-r-normal--13-120-75-75-c-70-iso8859-1

7x14.pcf.Z -misc-fixed-medium-r-normal--14-130-75-75-c-70-iso8859-1

clR8x12.pcf.Z -schumacher-clean-medium-r-normal--12-120-75-75-c-80-iso8859-1

6x9.pcf.Z -misc-fixed-medium-r-normal--9-90-75-75-c-60-iso8859-1

clR8x13.pcf.Z -schumacher-clean-medium-r-normal--13-130-75-75-c-80-iso8859-1

clR8x10.pcf.Z -schumacher-clean-medium-r-normal--10-100-75-75-c-80-iso8859-1

5x7.pcf.Z -misc-fixed-medium-r-normal--7-70-75-75-c-50-iso8859-1

clR8x16.pcf.Z -schumacher-clean-medium-r-normal--16-160-75-75-c-80-iso8859-1

clR8x14.pcf.Z -schumacher-clean-medium-r-normal--14-140-75-75-c-80-iso8859-1

clR8x8.pcf.Z -schumacher-clean-medium-r-normal--8-80-75-75-c-80-iso8859-1

5x8.pcf.Z -misc-fixed-medium-r-normal--8-80-75-75-c-50-iso8859-1

clR9x15.pcf.Z -schumacher-clean-medium-r-normal--15-150-75-75-c-90-iso8859-1

clR6x8.pcf.Z -schumacher-clean-medium-r-normal--8-80-75-75-c-60-iso8859-1

clR5x6.pcf.Z -schumacher-clean-medium-r-normal--6-60-75-75-c-50-iso8859-1

clR7x8.pcf.Z -schumacher-clean-medium-r-normal--8-80-75-75-c-70-iso8859-1

clR4x6.pcf.Z -schumacher-clean-medium-r-normal--6-60-75-75-c-40-iso8859-1

clR5x8.pcf.Z -schumacher-clean-medium-r-normal--8-80-75-75-c-50-iso8859-1

clR6x6.pcf.Z -schumacher-clean-medium-r-normal--6-60-75-75-c-60-iso8859-1

Table 2-2. X11R5 Font File Formats

Suffix File Format

396 X USER’S GUIDE: OPEN LOOK EDITION

B

6x13B.pcf.Z -misc-fixed-bold-r-semicondensed--13-120-75-75-c-60-iso8859-1

12x24rk.pcf.Z -sony-fixed-medium-r-normal--24-170-100-100-c-120-jisx0201.1976-0

7x13B.pcf.Z -misc-fixed-bold-r-normal--13-120-75-75-c-70-iso8859-1

7x14B.pcf.Z -misc-fixed-bold-r-normal--14-130-75-75-c-70-iso8859-1

clR6x12.pcf.Z -schumacher-clean-medium-r-normal--12-120-75-75-c-60-iso8859-1

clR6x13.pcf.Z -schumacher-clean-medium-r-normal--13-130-75-75-c-60-iso8859-1

clR6x10.pcf.Z -schumacher-clean-medium-r-normal--10-100-75-75-c-60-iso8859-1

clR7x12.pcf.Z -schumacher-clean-medium-r-normal--12-120-75-75-c-70-iso8859-1

clR7x10.pcf.Z -schumacher-clean-medium-r-normal--10-100-75-75-c-70-iso8859-1

clR7x14.pcf.Z -schumacher-clean-medium-r-normal--14-140-75-75-c-70-iso8859-1

8x13.pcf.Z -misc-fixed-medium-r-normal--13-120-75-75-c-80-iso8859-1

8x16.pcf.Z -sony-fixed-medium-r-normal--16-120-100-100-c-80-iso8859-1

clR5x10.pcf.Z -schumacher-clean-medium-r-normal--10-100-75-75-c-50-iso8859-1

9x15.pcf.Z -misc-fixed-medium-r-normal--15-140-75-75-c-90-iso8859-1

heb6x13.pcf.Z -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-8

clB8x8.pcf.Z -schumacher-clean-bold-r-normal--8-80-75-75-c-80-iso8859-1

8x13B.pcf.Z -misc-fixed-bold-r-normal--13-120-75-75-c-80-iso8859-1

7x14rk.pcf.Z -misc-fixed-medium-r-normal--14-130-75-75-c-70-jisx0201.1976-0

9x15B.pcf.Z -misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-1

clI8x8.pcf.Z -schumacher-clean-medium-i-normal--8-80-75-75-c-80-iso8859-1

heb8x13.pcf.Z -misc-fixed-medium-r-normal--13-120-75-75-c-80-iso8859-8

decsess.pcf.Z decw$session

clB8x12.pcf.Z -schumacher-clean-bold-r-normal--12-120-75-75-c-80-iso8859-1

clB8x13.pcf.Z -schumacher-clean-bold-r-normal--13-130-75-75-c-80-iso8859-1

clB8x10.pcf.Z -schumacher-clean-bold-r-normal--10-100-75-75-c-80-iso8859-1

clB8x16.pcf.Z -schumacher-clean-bold-r-normal--16-160-75-75-c-80-iso8859-1

clB8x14.pcf.Z -schumacher-clean-bold-r-normal--14-140-75-75-c-80-iso8859-1

clB9x15.pcf.Z -schumacher-clean-bold-r-normal--15-150-75-75-c-90-iso8859-1

olcursor.pcf.Z -sun-open look cursor-----12-120-75-75-p-455-sunolcursor-1

Cmr-Bold14.pcf.Z -sun-cmr-bold-r-normal--14-140-72-72-m-100-sun-fontspecific

hanglg16.pcf.Z -daewoo-gothic-medium-r-normal--16-120-100-100-c-160-ksc5601.1987-0

8x16rk.pcf.Z -sony-fixed-medium-r-normal--16-120-100-100-c-80-jisx0201.1976-0

clB6x12.pcf.Z -schumacher-clean-bold-r-normal--12-120-75-75-c-60-iso8859-1

clB6x10.pcf.Z -schumacher-clean-bold-r-normal--10-100-75-75-c-60-iso8859-1

hanglm16.pcf.Z -daewoo-mincho-medium-r-normal--16-120-100-100-c-160-ksc5601.1987-0

Table B-3. Fonts in the misc Directory

Filename Font name

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 397

B

jiskan24.pcf.Z -jis-fixed-medium-r-normal--24-230-75-75-c-240-jisx0208.1983-0

hanglm24.pcf.Z -daewoo-mincho-medium-r-normal--24-170-100-100-c-240-ksc5601.1987-0

jiskan16.pcf.Z -jis-fixed-medium-r-normal--16-150-75-75-c-160-jisx0208.1983-0

cursor.pcf.Z cursor

Serif12.pcf.Z -sun-serif-medium-r-normal-serif-12-120-72-72-m-70-iso8859-1

Serif10.pcf.Z -sun-serif-medium-r-normal-serif-10-100-72-72-m-70-iso8859-1

Serif11.pcf.Z -sun-serif-medium-r-normal-serif-11-110-72-72-m-70-iso8859-1

Serif16.pcf.Z -sun-serif-medium-r-normal-serif-16-160-72-72-m-90-iso8859-1

Serif14.pcf.Z -sun-serif-medium-r-normal-serif-14-140-72-72-m-80-iso8859-1

deccurs.pcf.Z decw$cursor

clI6x12.pcf.Z -schumacher-clean-medium-i-normal--12-120-75-75-c-60-iso8859-1

Screen6.pcf.Z -sun-screen-medium-r-normal--6-60-72-72-m-40-sun-fontspecific

Screen7.pcf.Z -sun-screen-medium-r-normal--7-70-72-72-m-60-sun-fontspecific

Gallant19.pcf.Z -sun-gallant-demi-r-normal--19-190-72-72-m-120-iso8859-1

olgl19.pcf.Z -sun-open look glyph-----19-190-75-75-p-163-sunolglyph-1

olgl12.pcf.Z -sun-open look glyph-----12-120-75-75-p-116-sunolglyph-1

olgl24.pcf.Z -sun-open look glyph-----24-240-75-75-p-206-sunolglyph-1

k14.pcf.Z -misc-fixed-medium-r-normal--14-130-75-75-c-140-jisx0208.1983-0

olgl10.pcf.Z -sun-open look glyph-----10-100-75-75-p-106-sunolglyph-1

olgl16.pcf.Z -sun-open look glyph-----16-160-75-75-p-137-sunolglyph-1

olgl20.pcf.Z -sun-open look glyph-----20-200-75-75-p-172-sunolglyph-1

olgl14.pcf.Z -sun-open look glyph-----14-140-75-75-p-136-sunolglyph-1

nil2.pcf.Z -misc-nil-medium-r-normal--2-20-75-75-c-10-misc-fontspecific

Cmr14.pcf.Z -sun-cmr-medium-r-normal--14-140-72-72-m-90-sun-fontspecific

10x20.pcf.Z -misc-fixed-medium-r-normal--20-200-75-75-c-100-iso8859-1

12x24.pcf.Z -sony-fixed-medium-r-normal--24-170-100-100-c-120-iso8859-1

Screen-Bold12.pcf.Z -sun-screen-bold-r-normal--12-120-72-72-m-80-iso8859-1

Screen-Bold16.pcf.Z -sun-screen-bold-r-normal--16-160-72-72-m-100-iso8859-1

Screen-Bold14.pcf.Z -sun-screen-bold-r-normal--14-140-72-72-m-90-iso8859-1

Screen12.pcf.Z -sun-screen-medium-r-normal--12-120-72-72-m-70-iso8859-1

Screen11.pcf.Z -sun-screen-medium-r-normal--11-110-72-72-m-70-iso8859-1

Screen16.pcf.Z -sun-screen-medium-r-normal--16-160-72-72-m-90-iso8859-1

Screen14.pcf.Z -sun-screen-medium-r-normal--14-140-72-72-m-80-iso8859-1

Table B-3. Fonts in the misc Directory

Filename Font name

398 X USER’S GUIDE: OPEN LOOK EDITION

B
Here are the fonts in the 75dpi directory:

Table B-4. Fonts in the 75dpi Directory

Filename Font names

courO08.pcf.Z -adobe-courier-medium-o-normal--8-80-75-75-m-50-iso8859-1

courO18.pcf.Z -adobe-courier-medium-o-normal--18-180-75-75-m-110-iso8859-1

courO14.pcf.Z -adobe-courier-medium-o-normal--14-140-75-75-m-90-iso8859-1

courO12.pcf.Z -adobe-courier-medium-o-normal--12-120-75-75-m-70-iso8859-1

courO24.pcf.Z -adobe-courier-medium-o-normal--24-240-75-75-m-150-iso8859-1

courO10.pcf.Z -adobe-courier-medium-o-normal--10-100-75-75-m-60-iso8859-1

lubB08.pcf.Z -b&h-lucidabright-demibold-r-normal--8-80-75-75-p-47-iso8859-1

lubB18.pcf.Z -b&h-lucidabright-demibold-r-normal--18-180-75-75-p-107-iso8859-1

lubB19.pcf.Z -b&h-lucidabright-demibold-r-normal--19-190-75-75-p-114-iso8859-1

lubB12.pcf.Z -b&h-lucidabright-demibold-r-normal--12-120-75-75-p-71-iso8859-1

lubB24.pcf.Z -b&h-lucidabright-demibold-r-normal--24-240-75-75-p-143-iso8859-1

lubB10.pcf.Z -b&h-lucidabright-demibold-r-normal--10-100-75-75-p-59-iso8859-1

lubB14.pcf.Z -b&h-lucidabright-demibold-r-normal--14-140-75-75-p-84-iso8859-1

courB08.pcf.Z -adobe-courier-bold-r-normal--8-80-75-75-m-50-iso8859-1

courB18.pcf.Z -adobe-courier-bold-r-normal--18-180-75-75-m-110-iso8859-1

lubI14.pcf.Z -b&h-lucidabright-medium-i-normal--14-140-75-75-p-80-iso8859-1

courBO08.pcf.Z -adobe-courier-bold-o-normal--8-80-75-75-m-50-iso8859-1

lubI12.pcf.Z -b&h-lucidabright-medium-i-normal--12-120-75-75-p-67-iso8859-1

lubI24.pcf.Z -b&h-lucidabright-medium-i-normal--24-240-75-75-p-136-iso8859-1

courBO18.pcf.Z -adobe-courier-bold-o-normal--18-180-75-75-m-110-iso8859-1

lubI10.pcf.Z -b&h-lucidabright-medium-i-normal--10-100-75-75-p-57-iso8859-1

termB14.pcf.Z -dec-terminal-bold-r-normal--14-140-75-75-c-80-iso8859-1

courB12.pcf.Z -adobe-courier-bold-r-normal--12-120-75-75-m-70-iso8859-1

courB24.pcf.Z -adobe-courier-bold-r-normal--24-240-75-75-m-150-iso8859-1

courB10.pcf.Z -adobe-courier-bold-r-normal--10-100-75-75-m-60-iso8859-1

courBO14.pcf.Z -adobe-courier-bold-o-normal--14-140-75-75-m-90-iso8859-1

courBO12.pcf.Z -adobe-courier-bold-o-normal--12-120-75-75-m-70-iso8859-1

courBO24.pcf.Z -adobe-courier-bold-o-normal--24-240-75-75-m-150-iso8859-1

lubI08.pcf.Z -b&h-lucidabright-medium-i-normal--8-80-75-75-p-45-iso8859-1

courB14.pcf.Z -adobe-courier-bold-r-normal--14-140-75-75-m-90-iso8859-1

courBO10.pcf.Z -adobe-courier-bold-o-normal--10-100-75-75-m-60-iso8859-1

lubI18.pcf.Z -b&h-lucidabright-medium-i-normal--18-180-75-75-p-102-iso8859-1

lubI19.pcf.Z -b&h-lucidabright-medium-i-normal--19-190-75-75-p-109-iso8859-1

lubR08.pcf.Z -b&h-lucidabright-medium-r-normal--8-80-75-75-p-45-iso8859-1

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 399

B

lubR18.pcf.Z -b&h-lucidabright-medium-r-normal--18-180-75-75-p-103-iso8859-1

lubR19.pcf.Z -b&h-lucidabright-medium-r-normal--19-190-75-75-p-109-iso8859-1

helvBO08.pcf.Z -adobe-helvetica-bold-o-normal--8-80-75-75-p-50-iso8859-1

helvBO18.pcf.Z -adobe-helvetica-bold-o-normal--18-180-75-75-p-104-iso8859-1

lubR12.pcf.Z -b&h-lucidabright-medium-r-normal--12-120-75-75-p-68-iso8859-1

lubR24.pcf.Z -b&h-lucidabright-medium-r-normal--24-240-75-75-p-137-iso8859-1

helvBO14.pcf.Z -adobe-helvetica-bold-o-normal--14-140-75-75-p-82-iso8859-1

lubR10.pcf.Z -b&h-lucidabright-medium-r-normal--10-100-75-75-p-56-iso8859-1

helvBO12.pcf.Z -adobe-helvetica-bold-o-normal--12-120-75-75-p-69-iso8859-1

helvBO24.pcf.Z -adobe-helvetica-bold-o-normal--24-240-75-75-p-138-iso8859-1

helvBO10.pcf.Z -adobe-helvetica-bold-o-normal--10-100-75-75-p-60-iso8859-1

lubR14.pcf.Z -b&h-lucidabright-medium-r-normal--14-140-75-75-p-80-iso8859-1

lubBI14.pcf.Z -b&h-lucidabright-demibold-i-normal--14-140-75-75-p-84-iso8859-1

lubBI12.pcf.Z -b&h-lucidabright-demibold-i-normal--12-120-75-75-p-72-iso8859-1

lubBI24.pcf.Z -b&h-lucidabright-demibold-i-normal--24-240-75-75-p-143-iso8859-1

lubBI10.pcf.Z -b&h-lucidabright-demibold-i-normal--10-100-75-75-p-59-iso8859-1

lubBI08.pcf.Z -b&h-lucidabright-demibold-i-normal--8-80-75-75-p-48-iso8859-1

lubBI18.pcf.Z -b&h-lucidabright-demibold-i-normal--18-180-75-75-p-107-iso8859-1

lubBI19.pcf.Z -b&h-lucidabright-demibold-i-normal--19-190-75-75-p-114-iso8859-1

courR08.pcf.Z -adobe-courier-medium-r-normal--8-80-75-75-m-50-iso8859-1

courR18.pcf.Z -adobe-courier-medium-r-normal--18-180-75-75-m-110-iso8859-1

courR12.pcf.Z -adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1

courR24.pcf.Z -adobe-courier-medium-r-normal--24-240-75-75-m-150-iso8859-1

courR10.pcf.Z -adobe-courier-medium-r-normal--10-100-75-75-m-60-iso8859-1

courR14.pcf.Z -adobe-courier-medium-r-normal--14-140-75-75-m-90-iso8859-1

charB08.pcf.Z -bitstream-charter-bold-r-normal--8-80-75-75-p-50-iso8859-1

charB18.pcf.Z -bitstream-charter-bold-r-normal--19-180-75-75-p-119-iso8859-1

charB12.pcf.Z -bitstream-charter-bold-r-normal--12-120-75-75-p-75-iso8859-1

charB24.pcf.Z -bitstream-charter-bold-r-normal--25-240-75-75-p-157-iso8859-1

charB10.pcf.Z -bitstream-charter-bold-r-normal--10-100-75-75-p-63-iso8859-1

charB14.pcf.Z -bitstream-charter-bold-r-normal--15-140-75-75-p-94-iso8859-1

charI14.pcf.Z -bitstream-charter-medium-i-normal--15-140-75-75-p-82-iso8859-1

charI12.pcf.Z -bitstream-charter-medium-i-normal--12-120-75-75-p-65-iso8859-1

charI24.pcf.Z -bitstream-charter-medium-i-normal--25-240-75-75-p-136-iso8859-1

charI10.pcf.Z -bitstream-charter-medium-i-normal--10-100-75-75-p-55-iso8859-1

Table B-4. Fonts in the 75dpi Directory

Filename Font names

400 X USER’S GUIDE: OPEN LOOK EDITION

B

charI08.pcf.Z -bitstream-charter-medium-i-normal--8-80-75-75-p-44-iso8859-1

charI18.pcf.Z -bitstream-charter-medium-i-normal--19-180-75-75-p-103-iso8859-1

charR08.pcf.Z -bitstream-charter-medium-r-normal--8-80-75-75-p-45-iso8859-1

charR18.pcf.Z -bitstream-charter-medium-r-normal--19-180-75-75-p-106-iso8859-1

luRS08.pcf.Z -b&h-lucida-medium-r-normal-sans-8-80-75-75-p-45-iso8859-1

luRS18.pcf.Z -b&h-lucida-medium-r-normal-sans-18-180-75-75-p-106-iso8859-1

luRS19.pcf.Z -b&h-lucida-medium-r-normal-sans-19-190-75-75-p-108-iso8859-1

charR12.pcf.Z -bitstream-charter-medium-r-normal--12-120-75-75-p-67-iso8859-1

charR24.pcf.Z -bitstream-charter-medium-r-normal--25-240-75-75-p-139-iso8859-1

charR10.pcf.Z -bitstream-charter-medium-r-normal--10-100-75-75-p-56-iso8859-1

luRS14.pcf.Z -b&h-lucida-medium-r-normal-sans-14-140-75-75-p-81-iso8859-1

luRS12.pcf.Z -b&h-lucida-medium-r-normal-sans-12-120-75-75-p-71-iso8859-1

luRS24.pcf.Z -b&h-lucida-medium-r-normal-sans-24-240-75-75-p-136-iso8859-1

charR14.pcf.Z -bitstream-charter-medium-r-normal--15-140-75-75-p-84-iso8859-1

luRS10.pcf.Z -b&h-lucida-medium-r-normal-sans-10-100-75-75-p-58-iso8859-1

lutRS08.pcf.Z -b&h-lucidatypewriter-medium-r-normal-sans-8-80-75-75-m-50-iso8859-1

lutRS18.pcf.Z -b&h-lucidatypewriter-medium-r-normal-sans-18-180-75-75-m-110-iso8859-1

lutRS19.pcf.Z -b&h-lucidatypewriter-medium-r-normal-sans-19-190-75-75-m-110-iso8859-1

lutRS14.pcf.Z -b&h-lucidatypewriter-medium-r-normal-sans-14-140-75-75-m-90-iso8859-1

lutRS12.pcf.Z -b&h-lucidatypewriter-medium-r-normal-sans-12-120-75-75-m-70-iso8859-1

lutRS24.pcf.Z -b&h-lucidatypewriter-medium-r-normal-sans-24-240-75-75-m-140-iso8859-1

lutRS10.pcf.Z -b&h-lucidatypewriter-medium-r-normal-sans-10-100-75-75-m-60-iso8859-1

luIS14.pcf.Z -b&h-lucida-medium-i-normal-sans-14-140-75-75-p-82-iso8859-1

luIS12.pcf.Z -b&h-lucida-medium-i-normal-sans-12-120-75-75-p-71-iso8859-1

luIS24.pcf.Z -b&h-lucida-medium-i-normal-sans-24-240-75-75-p-136-iso8859-1

luIS10.pcf.Z -b&h-lucida-medium-i-normal-sans-10-100-75-75-p-59-iso8859-1

luIS08.pcf.Z -b&h-lucida-medium-i-normal-sans-8-80-75-75-p-45-iso8859-1

luIS18.pcf.Z -b&h-lucida-medium-i-normal-sans-18-180-75-75-p-105-iso8859-1

techB14.pcf.Z -dec-terminal-bold-r-normal--14-140-75-75-c-80-dec-dectech

luIS19.pcf.Z -b&h-lucida-medium-i-normal-sans-19-190-75-75-p-108-iso8859-1

timBI14.pcf.Z -adobe-times-bold-i-normal--14-140-75-75-p-77-iso8859-1

timBI12.pcf.Z -adobe-times-bold-i-normal--12-120-75-75-p-68-iso8859-1

timBI24.pcf.Z -adobe-times-bold-i-normal--24-240-75-75-p-128-iso8859-1

timBI10.pcf.Z -adobe-times-bold-i-normal--10-100-75-75-p-57-iso8859-1

timBI08.pcf.Z -adobe-times-bold-i-normal--8-80-75-75-p-47-iso8859-1

Table B-4. Fonts in the 75dpi Directory

Filename Font names

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 401

B

timBI18.pcf.Z -adobe-times-bold-i-normal--18-180-75-75-p-98-iso8859-1

luBS08.pcf.Z -b&h-lucida-bold-r-normal-sans-8-80-75-75-p-50-iso8859-1

luBS18.pcf.Z -b&h-lucida-bold-r-normal-sans-18-180-75-75-p-120-iso8859-1

luBS19.pcf.Z -b&h-lucida-bold-r-normal-sans-19-190-75-75-p-122-iso8859-1

luBS14.pcf.Z -b&h-lucida-bold-r-normal-sans-14-140-75-75-p-92-iso8859-1

luBS12.pcf.Z -b&h-lucida-bold-r-normal-sans-12-120-75-75-p-79-iso8859-1

luBS24.pcf.Z -b&h-lucida-bold-r-normal-sans-24-240-75-75-p-152-iso8859-1

luBS10.pcf.Z -b&h-lucida-bold-r-normal-sans-10-100-75-75-p-66-iso8859-1

lutBS08.pcf.Z -b&h-lucidatypewriter-bold-r-normal-sans-8-80-75-75-m-50-iso8859-1

lutBS18.pcf.Z -b&h-lucidatypewriter-bold-r-normal-sans-18-180-75-75-m-110-iso8859-1

lutBS19.pcf.Z -b&h-lucidatypewriter-bold-r-normal-sans-19-190-75-75-m-110-iso8859-1

lutBS14.pcf.Z -b&h-lucidatypewriter-bold-r-normal-sans-14-140-75-75-m-90-iso8859-1

lutBS12.pcf.Z -b&h-lucidatypewriter-bold-r-normal-sans-12-120-75-75-m-70-iso8859-1

lutBS24.pcf.Z -b&h-lucidatypewriter-bold-r-normal-sans-24-240-75-75-m-140-iso8859-1

lutBS10.pcf.Z -b&h-lucidatypewriter-bold-r-normal-sans-10-100-75-75-m-60-iso8859-1

timI08.pcf.Z -adobe-times-medium-i-normal--8-80-75-75-p-42-iso8859-1

timI18.pcf.Z -adobe-times-medium-i-normal--18-180-75-75-p-94-iso8859-1

timI14.pcf.Z -adobe-times-medium-i-normal--14-140-75-75-p-73-iso8859-1

timI12.pcf.Z -adobe-times-medium-i-normal--12-120-75-75-p-63-iso8859-1

timI24.pcf.Z -adobe-times-medium-i-normal--24-240-75-75-p-125-iso8859-1

timI10.pcf.Z -adobe-times-medium-i-normal--10-100-75-75-p-52-iso8859-1

timB12.pcf.Z -adobe-times-bold-r-normal--12-120-75-75-p-67-iso8859-1

timB24.pcf.Z -adobe-times-bold-r-normal--24-240-75-75-p-132-iso8859-1

timB10.pcf.Z -adobe-times-bold-r-normal--10-100-75-75-p-57-iso8859-1

timB14.pcf.Z -adobe-times-bold-r-normal--14-140-75-75-p-77-iso8859-1

timB08.pcf.Z -adobe-times-bold-r-normal--8-80-75-75-p-47-iso8859-1

timB18.pcf.Z -adobe-times-bold-r-normal--18-180-75-75-p-99-iso8859-1

tech14.pcf.Z -dec-terminal-medium-r-normal--14-140-75-75-c-80-dec-dectech

timR12.pcf.Z -adobe-times-medium-r-normal--12-120-75-75-p-64-iso8859-1

timR24.pcf.Z -adobe-times-medium-r-normal--24-240-75-75-p-124-iso8859-1

timR10.pcf.Z -adobe-times-medium-r-normal--10-100-75-75-p-54-iso8859-1

timR14.pcf.Z -adobe-times-medium-r-normal--14-140-75-75-p-74-iso8859-1

timR08.pcf.Z -adobe-times-medium-r-normal--8-80-75-75-p-44-iso8859-1

timR18.pcf.Z -adobe-times-medium-r-normal--18-180-75-75-p-94-iso8859-1

helvB08.pcf.Z -adobe-helvetica-bold-r-normal--8-80-75-75-p-50-iso8859-1

Table B-4. Fonts in the 75dpi Directory

Filename Font names

402 X USER’S GUIDE: OPEN LOOK EDITION

B

helvB18.pcf.Z -adobe-helvetica-bold-r-normal--18-180-75-75-p-103-iso8859-1

helvB12.pcf.Z -adobe-helvetica-bold-r-normal--12-120-75-75-p-70-iso8859-1

helvB24.pcf.Z -adobe-helvetica-bold-r-normal--24-240-75-75-p-138-iso8859-1

helvB10.pcf.Z -adobe-helvetica-bold-r-normal--10-100-75-75-p-60-iso8859-1

helvB14.pcf.Z -adobe-helvetica-bold-r-normal--14-140-75-75-p-82-iso8859-1

term14.pcf.Z -dec-terminal-medium-r-normal--14-140-75-75-c-80-iso8859-1

helvO08.pcf.Z -adobe-helvetica-medium-o-normal--8-80-75-75-p-47-iso8859-1

helvO18.pcf.Z -adobe-helvetica-medium-o-normal--18-180-75-75-p-98-iso8859-1

helvO14.pcf.Z -adobe-helvetica-medium-o-normal--14-140-75-75-p-78-iso8859-1

helvO12.pcf.Z -adobe-helvetica-medium-o-normal--12-120-75-75-p-67-iso8859-1

helvO24.pcf.Z -adobe-helvetica-medium-o-normal--24-240-75-75-p-130-iso8859-1

helvO10.pcf.Z -adobe-helvetica-medium-o-normal--10-100-75-75-p-57-iso8859-1

helvR08.pcf.Z -adobe-helvetica-medium-r-normal--8-80-75-75-p-46-iso8859-1

helvR18.pcf.Z -adobe-helvetica-medium-r-normal--18-180-75-75-p-98-iso8859-1

helvR12.pcf.Z -adobe-helvetica-medium-r-normal--12-120-75-75-p-67-iso8859-1

helvR24.pcf.Z -adobe-helvetica-medium-r-normal--24-240-75-75-p-130-iso8859-1

helvR10.pcf.Z -adobe-helvetica-medium-r-normal--10-100-75-75-p-56-iso8859-1

helvR14.pcf.Z -adobe-helvetica-medium-r-normal--14-140-75-75-p-77-iso8859-1

luBIS14.pcf.Z -b&h-lucida-bold-i-normal-sans-14-140-75-75-p-92-iso8859-1

luBIS12.pcf.Z -b&h-lucida-bold-i-normal-sans-12-120-75-75-p-79-iso8859-1

luBIS24.pcf.Z -b&h-lucida-bold-i-normal-sans-24-240-75-75-p-151-iso8859-1

luBIS10.pcf.Z -b&h-lucida-bold-i-normal-sans-10-100-75-75-p-67-iso8859-1

luBIS08.pcf.Z -b&h-lucida-bold-i-normal-sans-8-80-75-75-p-49-iso8859-1

luBIS18.pcf.Z -b&h-lucida-bold-i-normal-sans-18-180-75-75-p-119-iso8859-1

luBIS19.pcf.Z -b&h-lucida-bold-i-normal-sans-19-190-75-75-p-122-iso8859-1

ncenBI14.pcf.Z -adobe-new century schoolbook-bold-i-normal--14-140-75-75-p-88-iso8859-1

ncenBI12.pcf.Z -adobe-new century schoolbook-bold-i-normal--12-120-75-75-p-76-iso8859-1

ncenBI24.pcf.Z -adobe-new century schoolbook-bold-i-normal--24-240-75-75-p-148-iso8859-1

ncenBI10.pcf.Z -adobe-new century schoolbook-bold-i-normal--10-100-75-75-p-66-iso8859-1

ncenBI08.pcf.Z -adobe-new century schoolbook-bold-i-normal--8-80-75-75-p-56-iso8859-1

ncenBI18.pcf.Z -adobe-new century schoolbook-bold-i-normal--18-180-75-75-p-111-iso8859-1

symb12.pcf.Z -adobe-symbol-medium-r-normal--12-120-75-75-p-74-adobe-fontspecific

symb24.pcf.Z -adobe-symbol-medium-r-normal--24-240-75-75-p-142-adobe-fontspecific

symb10.pcf.Z -adobe-symbol-medium-r-normal--10-100-75-75-p-61-adobe-fontspecific

symb14.pcf.Z -adobe-symbol-medium-r-normal--14-140-75-75-p-85-adobe-fontspecific

Table B-4. Fonts in the 75dpi Directory

Filename Font names

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 403

B

The fonts in the 100 dpi fonti difectory are a subset of the above, and it would not be useful

symb08.pcf.Z -adobe-symbol-medium-r-normal--8-80-75-75-p-51-adobe-fontspecific

symb18.pcf.Z -adobe-symbol-medium-r-normal--18-180-75-75-p-107-adobe-fontspecific

ncenB08.pcf.Z -adobe-new century schoolbook-bold-r-normal--8-80-75-75-p-56-iso8859-1

ncenB18.pcf.Z -adobe-new century schoolbook-bold-r-normal--18-180-75-75-p-113-iso8859-1

ncenB12.pcf.Z -adobe-new century schoolbook-bold-r-normal--12-120-75-75-p-77-iso8859-1

ncenB24.pcf.Z -adobe-new century schoolbook-bold-r-normal--24-240-75-75-p-149-iso8859-1

ncenB10.pcf.Z -adobe-new century schoolbook-bold-r-normal--10-100-75-75-p-66-iso8859-1

ncenB14.pcf.Z -adobe-new century schoolbook-bold-r-normal--14-140-75-75-p-87-iso8859-1

ncenI14.pcf.Z -adobe-new century schoolbook-medium-i-normal--14-140-75-75-p-81-iso8859-
1

ncenI12.pcf.Z -adobe-new century schoolbook-medium-i-normal--12-120-75-75-p-70-iso8859-
1

ncenI24.pcf.Z -adobe-new century schoolbook-medium-i-normal--24-240-75-75-p-136-
iso8859-1

ncenI10.pcf.Z -adobe-new century schoolbook-medium-i-normal--10-100-75-75-p-60-iso8859-
1

ncenI08.pcf.Z -adobe-new century schoolbook-medium-i-normal--8-80-75-75-p-50-iso8859-1

ncenI18.pcf.Z -adobe-new century schoolbook-medium-i-normal--18-180-75-75-p-104-
iso8859-1

ncenR08.pcf.Z -adobe-new century schoolbook-medium-r-normal--8-80-75-75-p-50-iso8859-1

ncenR18.pcf.Z -adobe-new century schoolbook-medium-r-normal--18-180-75-75-p-103-
iso8859-1

ncenR12.pcf.Z -adobe-new century schoolbook-medium-r-normal--12-120-75-75-p-70-iso8859-
1

ncenR24.pcf.Z -adobe-new century schoolbook-medium-r-normal--24-240-75-75-p-137-
iso8859-1

ncenR10.pcf.Z -adobe-new century schoolbook-medium-r-normal--10-100-75-75-p-60-iso8859-
1

ncenR14.pcf.Z -adobe-new century schoolbook-medium-r-normal--14-140-75-75-p-82-iso8859-
1

charBI14.pcf.Z -bitstream-charter-bold-i-normal--15-140-75-75-p-93-iso8859-1

charBI12.pcf.Z -bitstream-charter-bold-i-normal--12-120-75-75-p-74-iso8859-1

charBI24.pcf.Z -bitstream-charter-bold-i-normal--25-240-75-75-p-154-iso8859-1

charBI10.pcf.Z -bitstream-charter-bold-i-normal--10-100-75-75-p-62-iso8859-1

charBI08.pcf.Z -bitstream-charter-bold-i-normal--8-80-75-75-p-50-iso8859-1

charBI18.pcf.Z -bitstream-charter-bold-i-normal--19-180-75-75-p-117-iso8859-1

Table B-4. Fonts in the 75dpi Directory

Filename Font names

404 X USER’S GUIDE: OPEN LOOK EDITION

B
to list them here. The following is the contents of the Speedo directory:

The following lists the files in the F3 directory (Sun only). The F3bitmaps directory con-
tains pre-scaled versions of the same fonts, so we do not list them separately.:

Table B-5. Fonts in the Speedo Directory

Filename Font names

font0648.spd -bitstream-charter-medium-r-normal--0-0-0-0-p-0-iso8859-1

font0649.spd -bitstream-charter-medium-i-normal--0-0-0-0-p-0-iso8859-1

font0709.spd -bitstream-charter-bold-r-normal--0-0-0-0-p-0-iso8859-1

font0710.spd -bitstream-charter-bold-i-normal--0-0-0-0-p-0-iso8859-1

font0419.spd -bitstream-courier-medium-r-normal--0-0-0-0-m-0-iso8859-1

font0582.spd -bitstream-courier-medium-i-normal--0-0-0-0-m-0-iso8859-1

font0583.spd -bitstream-courier-bold-r-normal--0-0-0-0-m-0-iso8859-1

font0611.spd -bitstream-courier-bold-i-normal--0-0-0-0-m-0-iso8859-1

Table B-6. Fonts in the F3 Directory (Sun only)

Filename Font name

NewCenturySchlbk-
Bold.f3b

-linotype-new century schoolbook-bold-r-normal--0-0-0-0-p-0-iso8859-1

LucidaSans-
BoldItalic.f3b

-b&h-lucida sans-bold-i-normal-sans-0-0-0-0-p-0-iso8859-1

NewCenturySchlbk-
BoldItalic.f3b

-linotype-new century schoolbook-bold-i-normal--0-0-0-0-p-0-iso8859-1

Palatino-BoldItalic.f3b -linotype-palatino-bold-i-normal--0-0-0-0-p-0-iso8859-1

Times-BoldItalic.f3b -linotype-times-bold-i-normal--0-0-0-0-p-0-iso8859-1

Bembo-BoldItalic.f3b -monotype-bembo-bold-i-normal--0-0-0-0-p-0-iso8859-1

Bookman-
LightItalic.f3b

-urw-itc bookman-light-i-normal--0-0-0-0-p-0-iso8859-1

GillSans-BoldItalic.f3b -monotype-gill sans-bold-i-normal-sans-0-0-0-0-p-0-iso8859-1

Lucida-
BrightDemiBold-
Italic.f3b

-b&h-lucida bright-demibold-i-normal--0-0-0-0-p-0-iso8859-1

Lucida-BrightItalic.f3b -b&h-lucida bright-medium-i-normal--0-0-0-0-p-0-iso8859-1

Rockwell-BoldItalic.f3b -monotype-rockwell-bold-i-normal--0-0-0-0-p-0-iso8859-1

NewCenturySchlbk-
Italic.f3b

-linotype-new century schoolbook-medium-i-normal--0-0-0-0-p-0-iso8859-1

Palatino-Italic.f3b -linotype-palatino-medium-i-normal--0-0-0-0-p-0-iso8859-1

Bembo-Italic.f3b -monotype-bembo-medium-i-normal--0-0-0-0-p-0-iso8859-1

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 405

B

ZapfChancery-
MediumItalic.f3b

-urw-itc zapfchancery-medium-i-normal--0-0-0-0-p-0-iso8859-1

Rockwell-Bold.f3b -monotype-rockwell-bold-r-normal--0-0-0-0-p-0-iso8859-1

AvantGarde-
DemiOblique.f3b

-urw-itc avant garde-demi-o-normal-sans-0-0-0-0-p-0-iso8859-1

Helvetica-Narrow-
Oblique.f3b

-linotype-helvetica-medium-o-narrow-sans-0-0-0-0-p-0-iso8859-1

Lucida-Bright.f3b -b&h-lucida bright-medium-r-normal--0-0-0-0-p-0-iso8859-1

Courier.f3b --courier-medium-r-normal--0-0-0-0-m-0-iso8859-1

NewCenturySchlbk-
Roman.f3b

-linotype-new century schoolbook-medium-r-normal--0-0-0-0-p-0-iso8859-1

Palatino-Bold.f3b -linotype-palatino-bold-r-normal--0-0-0-0-p-0-iso8859-1

GillSans.f3b -monotype-gill sans-medium-r-normal-sans-0-0-0-0-p-0-iso8859-1

Times-Bold.f3b -linotype-times-bold-r-normal--0-0-0-0-p-0-iso8859-1

LucidaSans-Bold.f3b -b&h-lucida sans-bold-r-normal-sans-0-0-0-0-p-0-iso8859-1

Times-Italic.f3b -linotype-times-medium-i-normal--0-0-0-0-p-0-iso8859-1

Bookman-
DemiItalic.f3b

-urw-itc bookman-demi-i-normal--0-0-0-0-p-0-iso8859-1

LucidaSansTypewriter-
Bold.f3b

-b&h-lucida sans typewriter-bold-r-normal-sans-0-0-0-0-m-0-iso8859-1

Courier-Oblique.f3b --courier-medium-o-normal--0-0-0-0-m-0-iso8859-1

Helvetica-Narrow-
Bold.f3b

-linotype-helvetica-bold-r-narrow-sans-0-0-0-0-p-0-iso8859-1

Bembo.f3b -monotype-bembo-medium-r-normal--0-0-0-0-p-0-iso8859-1

Courier-Bold.f3b --courier-bold-r-normal--0-0-0-0-m-0-iso8859-1

AvantGarde-Book.f3b -urw-itc avant garde-medium-r-normal-sans-0-0-0-0-p-0-iso8859-1

AvantGarde-Demi.f3b -urw-itc avant garde-demi-r-normal-sans-0-0-0-0-p-0-iso8859-1

Rockwell.f3b -monotype-rockwell-medium-r-normal--0-0-0-0-p-0-iso8859-1

LucidaSans-Italic.f3b -b&h-lucida sans-medium-i-normal-sans-0-0-0-0-p-0-iso8859-1

GillSans-Italic.f3b -monotype-gill sans-medium-i-normal-sans-0-0-0-0-p-0-iso8859-1

Helvetica-Oblique.f3b -linotype-helvetica-medium-o-normal-sans-0-0-0-0-p-0-iso8859-1

Bookman-Light.f3b -urw-itc bookman-light-r-normal--0-0-0-0-p-0-iso8859-1

Palatino-Roman.f3b -linotype-palatino-medium-r-normal--0-0-0-0-p-0-iso8859-1

Bembo-Bold.f3b -monotype-bembo-bold-r-normal--0-0-0-0-p-0-iso8859-1

Rockwell-Italic.f3b -monotype-rockwell-medium-i-normal--0-0-0-0-p-0-iso8859-1

Courier-
BoldOblique.f3b

--courier-bold-o-normal--0-0-0-0-m-0-iso8859-1

Table B-6. Fonts in the F3 Directory (Sun only)

Filename Font name

406 X USER’S GUIDE: OPEN LOOK EDITION

B

Most modern commercial versions of X, including OpenWindows, include the Display
PostScript option. Fonts for this are normally stored as PostScript Type 1 Ascii (with the
extention .pfa). Here are the fonts in the Type1 directory for OpenWindows 3.3:

If you wish to add your own Type 1 fonts, you need to usemkpsres in addition to setting
up the font directory. There are some commercial tools which help you in this process. If
you use Adobe software such as Adobe Illustrator, you should use their TypeInstaller pro-

Helvetica-
BoldOblique.f3b

-linotype-helvetica-bold-o-normal-sans-0-0-0-0-p-0-iso8859-1

Helvetica-Narrow-
BoldOblique.f3b

-linotype-helvetica-bold-o-narrow-sans-0-0-0-0-p-0-iso8859-1

Lucida-
BrightDemiBold.f3b

-b&h-lucida bright-demibold-r-normal--0-0-0-0-p-0-iso8859-1

Helvetica-Bold.f3b -linotype-helvetica-bold-r-normal-sans-0-0-0-0-p-0-iso8859-1

LucidaSansType-
writer.f3b

-b&h-lucida sans typewriter-medium-r-normal-sans-0-0-0-0-m-0-iso8859-1

Times-Roman.f3b -linotype-times-medium-r-normal--0-0-0-0-p-0-iso8859-1

GillSans-Bold.f3b -monotype-gill sans-bold-r-normal-sans-0-0-0-0-p-0-iso8859-1

Symbol.f3b --symbol-medium-r-normal--0-0-0-0-p-0-sun-fontspecific

Helvetica.f3b -linotype-helvetica-medium-r-normal-sans-0-0-0-0-p-0-iso8859-1

AvantGarde-
BookOblique.f3b

-urw-itc avant garde-medium-o-normal-sans-0-0-0-0-p-0-iso8859-1

Bookman-Demi.f3b -urw-itc bookman-demi-r-normal--0-0-0-0-p-0-iso8859-1

Helvetica-Narrow.f3b -linotype-helvetica-medium-r-narrow-sans-0-0-0-0-p-0-iso8859-1

LucidaSans.f3b -b&h-lucida sans-medium-r-normal-sans-0-0-0-0-p-0-iso8859-1

ZapfDingbats.f3b -urw-itc zapfdingbats-medium-r-normal--0-0-0-0-p-0-sun-fontspecific

Table B-7. Fonts in the Type1 (Display PostScript) Directory

Filename Font name

UTRG____.pfa -adobe-utopia-medium-r-normal--0-0-0-0-p-0-iso8859-1

UTI_____.pfa -adobe-utopia-medium-i-normal--0-0-0-0-p-0-iso8859-1

UTB_____.pfa -adobe-utopia-bold-r-normal--0-0-0-0-p-0-iso8859-1

UTBI____.pfa -adobe-utopia-bold-i-normal--0-0-0-0-p-0-iso8859-1

cour.pfa -adobe-courier-medium-r-normal--0-0-0-0-m-0-iso8859-1

couri.pfa -adobe-courier-medium-i-normal--0-0-0-0-m-0-iso8859-1

courb.pfa -adobe-courier-bold-r-normal--0-0-0-0-m-0-iso8859-1

courbi.pfa -adobe-courier-bold-i-normal--0-0-0-0-m-0-iso8859-1

Table B-6. Fonts in the F3 Directory (Sun only)

Filename Font name

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 407

B
gram, which lets you install fonts from CD-ROM, browse fonts (see Figure2-1), download
fonts to the printer, and get a list of fonts resident in the printer.

B.3 Fonts in the xnews Server
On OpenWindows up to Release 3.2, the X server was based on Sun’s own server., The
standard fonts are stored in the directories shown in Table B-1.

2.3.1 Font Formats
The OpenWindows server accepts fonts in several formats. The most common are bitmaps,
Sun Folio fonts, and Postscript fonts. Since the OpenWindows server is not derived from
the MIT server, it does not accept bitmap fonts in the MIT server’s internal “SNF” (server
normal form) format. Instead, theconvertfont program is used to convert bitmap files into
a form that the server can accept. This is analogous to the use ofbdftosnf in the MIT server,

Figure 2-1. Adobe TypeInstaller’s Browse Fonts Screen

Table B-8. OpenWindows Release 3 Font Directories

Directory Contents

/usr/openwin/lib/fonts Font masters (.f3b) and families (.ff)
for all scalable fonts.

/usr/openwin/lib/fonts/afm Adobe Font Metrics for other sofrt-
ware that needs them..

./usr/openwin/lib/fonts/100dpi Pre-computed bitmaps for standard
fonts, 100 dpi.

408 X USER’S GUIDE: OPEN LOOK EDITION

B
and is perfectly in keeping with the X standards, sinceconvertfont will accept fonts in the
X Consortium standard Bitmap Distribution Format (“.bdf” files). However, unlikebdf-
tosnf, OpenWindows’sconvertfont can also convert from many other formats into the form
needed by the OpenWindows server. Here is a summary of the font file name suffixes and
their types:

The Font Family files are made bybldfamily, a program used in conjunction with
convertfont.

As you can see,convertfont can read and write most of the important bitmap font file for-
mats. Here is an example of using it on a font file in the MIT BDF format:.

% convertfont kbb.bdf
kbb.bdf->./KlBB2424.fb
% ls -l kbb* K*
-rw-r--r-- 1 ian 69632 Jun 23 15:56 KlBB2424.fb
-rw-rw-r-- 1 ian 133938 Feb 4 11:24 kbb.bdf
%

Having generated a “font binary” (.fb) file, you must install it in the appropriate font direc-
tory, as described in the following section, and runbldfamily. See the reference pages for
these two programs in Part Three of this guide for details.

Table 2-9. OpenWindows Font File Formats

Suffix File Format
Convert
font
input?

Output
?

.afb Adobe ASCII format
bitmap font file

y

.afm Adobe ASCII format
metric file

n/a

.bdf MIT (Adobe) BDF 2.1
bitmap file

y

.f3b Folio Font format file y n

.fb NeWS binary file y

.ff Font Family file

.fm NeWS font metric file y

.ps PostScript font file (usually
Type Three)

n

.vft Vfont (Berkeley) bitmap
font

y y

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 409

B
2.3.2 PostScript fonts and ldf
You can also use PostScript Type Three fonts directly in the OpenWindows server. How-
ever, installing them in the font directory does not automatically make them available.
Presumably because they are so much more memory-expensive than bitmap and Folio
fonts, you must explicitly load them. You could load them by hand usingpsh, but it is more
convenient to use a special script calledldf (load font). Invoked with no arguments, it lists
the available PostScript (.ps) fonts in all the directories in $FONTPATH. For example:

% ldf
ldf: loads PostScript defined NeWS fonts.
Usage: ldf fontname
Where fontname may be one of the following:

fontname PostScript name
-------- ---------------
 Dijkstra Dijkstra
 HrshCyr Hershey-Cyrillic
 HrshGoth Hershey-Gothic
 HrshGrk Hershey-Greek
 HrshGrkN Hershey-Greek-Narrow
 HrshGrkp Hershey-Greekp
 HrshI Hershey-Italic
 HrshIN Hershey-Italic-Narrow
 HrshIW Hershey-Italic-Wide
 HrshRom Hershey-Roman
 HrshRomN Hershey-Roman-Narrow
 HrshRomW Hershey-Roman-Wide
 HrshRomd Hershey-Romand
 HrshRomp Hershey-Romanp
 HrshScr Hershey-Script
 HrshScrN Hershey-Script-Narrow
 HaeberliWriting

The first column is the filename (relative to one of the font directories), and the second, if
different,1 is the name you use to refer to the font. The Hershey fonts are the ubiquitous
public-domain Hershey fonts, converted to an outline format for use here. HaeberliWriting
is the handwriting font shown in thePageview example in Chapter 9,Graphics Clients. It
appeared in the USENET newsgroups comp.graphics, comp.fonts, comp.lang.postscript,
and several system-specific groups courtesy of Paul Haeberli of Silicon Graphics,
<paul@manray.asd.sgi.com>, on 10 July 1990. Silicon Graphics was the first major work-
station vendor outside of Sun to offer NeWS support on their workstations. Paul writes:
“Here’s another outline font in Adobe type 3 format. This is a replica of my handwriting,
drawn onto the screen of an IRIS, and auto traced into a PostScript Font.”

We’ve installed it on our reference system in the directory/usr/local/lib/fonts, which is
mentioned in $FONTPATH. So to use it, all I need to is give the command

1. Ldf is a shell script; it locates the PostScript name bygrepping ’ ^/FontName’, so if the font doesn’t have its
definition of FontName beginning in column one of the line it’s on, ldf prints it as blank!

410 X USER’S GUIDE: OPEN LOOK EDITION

B
ldf HaeberliWriting

(in fact this command is in my.xinitrc file), and I can use it in any NeWS clients. For exam-
ple, in the “text demo” mentioned earlier, I can select it from the font menu, and get this:

And, as shown in Chapter 9,Graphics Clients, I can use it in normal PostScript. However,
these Type 3 fonts do not have X11 names, so they do not show up in anxlsfonts listing,
and cannot be used by X11 clients:

% xfd -fn ’HaeberliWriting-12’
xfd: error: Unable to open font HaeberliWriting-12!
%

However, they are a lot of fun if you know how to make use of them. There are many
freely-available Type3 fonts available on the Internet and on BBS systems..

B.4 Font Samples

B.5 Font Encodings
A font encoding is a representation of the characters in a font and their locations within a
font. This is to enable applications to know that the characters they need are available on

Figure 2-2. Text Demo Program showing HaeberliWriting

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 411

B
each font that has a given encoding. The common font encodings used with X11 are
described in Table B-10, and are pictured on the following pages.

The following figures show xfd displays of the standard font encodings (just the first page
of wide character sets is shown). The shell script which produced these bitmaps,show-
encodings, is included in thesrc directory on the CD-ROM..

Table B-10. Font Encodings used with X11

Name Description

iso8859-1 Extended ASCII character set

iso8859-8 Same with additional characters

adobe-fontspecific For use by Adobe fonts

dec-dectech For use by DEC fonts

jisx0201.1976 Japanese character set

jisx0208.1983 Japanese character set, revised

ksc5601.1987 Korean/Asicn character set

sun-fontspeci For use by Sun special-purpose fonts

sun-open look cursor Cursors for use with Sun OPEN LOOK software

sun-open look glyph Picture elemeents used by Sun OPEN LOOK software

412 X USER’S GUIDE: OPEN LOOK EDITION

B

Figure 2-3. ISO8859-1 Encoding

Figure 2-4. Adobe-Fontspecific Encoding

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 413

B

Figure 2-5. dec-dectech encoding

Figure 2-6. JIS0201-1976 Encoding

414 X USER’S GUIDE: OPEN LOOK EDITION

B

Figure 2-7. jisx0208.1983 Encoding

APPENDIX B: X USER’S GUIDE: OPEN LOOK EDITION 415

B

Figure 2-8. ksc5601.1987 Encoding

Figure 2-9. Sun OPEN LOOK Cursor Encoding

416 X USER’S GUIDE: OPEN LOOK EDITION

B

Figure 2-10. Sun OPEN LOOK Glyph Encoding

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX C: STANDARD BITMAPS 417

C

Appendix CSTANDARD BITMAPS

APPENDIX C

Standard Bitmaps for X1 1,
OLIT and XView

This appendix shows the bitmaps included with the standard distribution of the X Window
System. These can be used for setting window background, cursor symbols, pixmaps, and
possibly for application icon pixmaps.

A number of bitmaps are included with the standard distribution of the X Window System.
These bitmaps can be used for setting window background pixmaps and possibly for appli-
cation icon pixmaps.

The standard bitmaps are generally located in the directory/usr/include/X11/bitmaps .
Each bitmap is in standard X11 bitmap format in its own file. Thebitmap application can
be used to view these bitmaps in larger scale and to edit them (though their permissions
normally do not allow overwriting).

You can use these bitmaps to set the background pattern of a window in any application
that allows it. For example, if you wanted to change the root window background pixmap,
you could do so usingxsetroot :

xsetroot -bitmap /usr/include/X11/bitmaps/wide_weave

Note that the bitmaps that come in pairs, such ascntr_ptr andcntr_ptrmsk , are
intended for creating pointer shapes. See Chapter 14,Customization Clients, for informa-
tion on specifying a bitmap as the root window pointer.

The 63 bitmaps pictured on the following pages are included in the MIT Release 4 standard
distribution of X. Table C-1 lists those bitmaps that have been added to the standard distri-
bution in X11 Release 4.

Table C-1Standard Bitmaps Available in the MIT distribution

calculator dropbar7 dropbar8

418 PHIGS PROGRAMMING MANUAL

C

This will be a long listing of std
bitmaps from MIT

Figure C-1. The standard bitmaps

This will be a long listing of the
OLIT bitmaps from AT&T (also in Sun)

Figure C-2. The OLIT Bitmaps

This will list the Sun (SunView/
XView) bitmaps

Figure C-3. The SunView/XView bitmaps

escherknot hlines2 hlines3

keyboard16 letters mailempty

mailemptymsk mailfull mailfullmsk

menu10 menu12 menu16

menu8 noletters plaid

terminal vlines2 vlines3
xlogo11

Table C-1Standard Bitmaps Available in the MIT distribution

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX D: STANDARD CURSORS 419

D

Appendix DSTANDARD CURSORS

APPENDIX D

Standard Cursors

D.1 Cursors
This appendix shows the standard cursor images that can be used by X programs.

Tsble 1 lists the cursors available in the standard distribution of X from MIT; the cursor
shapes themselves are pictured in Figure 1. TheOPEN LOOK cursors are shown in Figure 2.

To specify a cursor as an argument to a command line option, as the value of a resource
variable, etc., strip theXC_ prefix from the symbol name. For example, to specify the
XC_sailboat cursor as thexterm pointer, you could enter the command:

% xterm -xrm ’xterm*pointerShape: sailboat’

Each cursor has an associated numeric value (to the right of the symbol name in the table).
You may notice that the values skip the odd numbers. Each cursor is actually composed of
two font characters: the character that defines the shape (pictured in .Ref f), p and a mask
character (not shown) that sets the cursor shape off from the root (or other) window. (More
precisely, the mask selects which pixels in the screen around the cursor are disturbed by the
cursor.) The mask is generally the same shape as the character it underlies but is one pixel
wider in all directions.

To get an idea of what masks look like, display the entire cursor font using the command:

% xfd -fn cursor

Theolwm window manager uses several of the standardOPEN LOOK cursor symbolsshow
in Figure 2.

420 PHIGS PROGRAMMING MANUAL

D
Table D-1. Standard Cursor Shapes

Symbol Value Symbol Value

XC_X_cursor 0 XC_ll_angle 76

XC_arrow 2 XC_lr_angle 78

XC_based_arrow_down 4 XC_man 80

XC_based_arrow_up 6 XC_middlebutton 82

XC_boat 8 XC_mouse 84

XC_bogosity 10 XC_pencil 86

XC_bottom_left_corner 12 XC_pirate 88

XC_bottom_right_corner 14 XC_plus 90

XC_bottom_side 16 XC_question_arrow 92

XC_bottom_tee 18 XC_right_ptr 94

XC_box_spiral 20 XC_right_side 96

XC_center_ptr 22 XC_right_tee 98

XC_circle 24 XC_rightbutton 100

XC_clock 26 XC_rtl_logo 102

XC_coffee_mug 28 XC_sailboat 104

XC_cross 30 XC_sb_down_arrow 106

XC_cross_reverse 32 XC_sb_h_double_arro
w

108

XC_crosshair 34 XC_sb_left_arrow 110

XC_diamond_cross 36 XC_sb_right_arrow 112

XC_dot 38 XC_sb_up_arrow 114

XC_dotbox 40 XC_sb_v_double_arro
w

116

XC_double_arrow 42 XC_shuttle 118

XC_draft_large 44 XC_sizing 120

XC_draft_small 46 XC_spider 122

XC_draped_box 48 XC_spraycan 124

XC_exchange 50 XC_star 126

XC_fleur 52 XC_target 128

APPENDIX D: STANDARD CURSORS 421

D

Insert display of std cursors from
Generic Volume 3

Figure D-1. Standard Cursors

Insert display of OL cursors
Figure D-2. The OPEN LOOK Cursors

XC_gobbler 54 XC_tcross 130

XC_gumby 56 XC_top_left_arrow 132

XC_hand1 58 XC_top_left_corner 134

XC_hand2 60 XC_top_right_corner 136

XC_heart 62 XC_top_side 138

XC_icon 64 XC_top_tee 140

XC_iron_cross 66 XC_trek 142

XC_left_ptr 68 XC_ul_angle 144

XC_left_side 70 XC_umbrella 146

XC_left_tee 72 XC_ur_angle 148

XC_leftbutton 74 XC_watch 150

XC_xterm 152

Table D-1. Standard Cursor Shapes

Symbol Value Symbol Value

422 PHIGS PROGRAMMING MANUAL

D

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX E: XTERM CONTROL SEQUENCES 423

E

Appendix EXTERM CONTROL SEQUENCES

APPENDIX E

cmdtool and xterm
Control Sequences

This appendix lists the escape sequences that can be used to control features of acmdtool
or xterm terminal emulator window.

A standard terminal performs many operations in response to escape sequences sent out by
a program. In emulating a terminal,cmdtoolor xterm responds to those same terminal
escape sequences. Under UNIX, programs use thetermcap or terminfo database to deter-
mine which escape sequences to send out. For more information, see the standard UNIX
man pagestermcap (5) or terminfo (5), or the Nutshell HandbookTermcap and Terminfo,
available from O’Reilly & Associates, Inc.

E.1 cmdtool/shelltool Control Sequences
Sincecmdtool was written as a window terminal, not as an emulator of a real terminal, it
has little “baggage” to carry around; accordingly, the commands interpreted bycmdtool/
shelltool are few in number, but more than adequate for most purposes. TableE-1 lists
them. Part of this table is adapted from theshelltool manual page.

Table E-1. Cmdtool/shelltool escape sequences

Sequence Function

BEL (Ctrl-G) Make beeping sound

BS (Ctrl-H) Erase char to left of cursor

TAB (Ctrl-I) Horizontal tab

LF (Ctrl-J) Newline; UNIX maps to “Return”

CR (Ctrl-M; Return) Normal end-of-line character.

424 PHIGS PROGRAMMING MANUAL

E

ESC [1 t open (de-iconify)

ESC [2 t close (iconify)

ESC [3 t move, with interactive feedback

ESC [3 ; TOP ; LEFT t move window to TOP LEFT (pixel
coordi- nates)

ESC [4 t stretch, with interactive feed- back

ESC [4 ; HT ; WIDTH t resize window, to HT WIDTH size (in
pixels)

ESC [5 t move window to front of window stack

ESC [6 t move window to back of screen

ESC [7 t refresh

ESC [8 ; ROWS ;
COLS t

resize window, to ROWS COLS size
(in characters)

ESC [11 t report if window is open or iconic by
sending ESC [1 t or ESC [2 t

ESC [13 t report position by sending ESC [3 ;
TOP ; LEFT t

ESC [14 t report size in pixels by sending ESC [
4 ; HT ; WIDTH t

ESC [18 t report size in characters by sending
ESC [8 ; ROWS ; COLS t

ESC [20 t report icon label by sending ESC] L
label ESC \

ESC [21 t report tool header by sending ESC] l
label ESC \

ESC] l text ESC \ set tool header to text

ESC] I file ESC \ set icon to the icon contained in file;
file must be in iconedit output format

ESC] L label ESC \ set icon label to label

Table E-1. Cmdtool/shelltool escape sequences

Sequence Function

APPENDIX E: XTERM CONTROL SEQUENCES 425

E

E.2 xterm Control Sequences
Sincexterm has to retain compatiibility with not one but two different terminal types, it has
a vast array of escape sequences. This appendix purports to contain a complete list.

This appendix is based on two sources: the “Xterm Control Sequences” document, written
by Edward Moy, University of California, Berkeley, for the X10xterm ; and X11 updates
provided to the X Consortium by Skip Montanaro, GE Corporate Research &
Development.

E.2.1 Definitions
Most of these control sequences are standard VT102 control sequences. There are, how-
ever, additional ones to provide control ofxterm -dependent functions, like the scrollbar or
window size.

C A single (required) character.

Ps A single (usually optional) numeric parameter, composed of one of more digits.

Pm A multiple numeric parameter composed of any number of single numeric param-
eters, separated by ; character(s).

Pt A text parameter composed of printable characters.

E.2.2 VT102 Mode
Most of these control sequences are standard VT102 control sequences. There are, how-
ever, additional ones to provide control of xterm-dependent functions, like the scrollbar or
window size.

BEL Bell (Ctrl-G)

BS Backspace (Ctrl-H)

TAB Horizontal Tab (Ctrl-I)

LF Line Feed or New Line (Ctrl-J)

VT Vertical Tab (Ctrl-K)

ESC [> OPT ; ... h turn SB OPT on (OPT = 1 => page-
mode), for example, ESC [> 1 ; 3 ; 4h

ESC [> OPT ; ... k report option OPT; sends ESC [>
OPT l or ESC [> OPT h for each OPT

ESC [> OPT ;... l turn option OPT off (OPT = 1 =>
pagemode), for ESC [> 1 ; 3 ;

Table E-1. Cmdtool/shelltool escape sequences

Sequence Function

426 PHIGS PROGRAMMING MANUAL

E
FF Form Feed or New Page (Ctrl-L)

CR Carriage Return (Ctrl-M)

SO Shift Out (Ctrl-N) -> Switch to Alternate Character Set

SI Shift In (Ctrl-O) -> Switch to Standard Character Set

ESC BEL Same as non-escaped BEL

ESC BS Same as non-escaped BS

ESC HT Same as non-escaped HT

ESC NL Same as non-escaped NL

ESC VT Same as non-escaped VT

ESC NP Same as non-escaped NP

ESC CR Same as non-escaped CR

ESC SO Same as non-escaped SO

ESC SI Same as non-escaped SI

ESC #BEL Same as non-escaped BEL

ESC #BS Same as non-escaped BS

ESC #HT Same as non-escaped HT

ESC #NL Same as non-escaped NL

ESC #VT Same as non-escaped VT

ESC #NP Same as non-escaped NP

ESC #CR Same as non-escaped CR

ESC #SO Same as non-escaped SO

ESC #SI Same as non-escaped SI

ESC #8 DEC Screen Alignment Test (DECALN)

ESC (BEL Same as non-escaped BEL

ESC (BS Same as non-escaped BS

ESC (HT Same as non-escaped HT

ESC (NL Same as non-escaped NL

ESC (VT Same as non-escaped VT

ESC (NP Same as non-escaped NP

ESC (CR Same as non-escaped CR

ESC (SO Same as non-escaped SO

APPENDIX E: XTERM CONTROL SEQUENCES 427

E
ESC (SI Same as non-escaped SI

ESC (C Select G0 Character Set (SCS)

 C = 0 -> Special Character and Line Drawing Set

 C = 1 -> Alternate Character ROM Standard Set

 C = 2 -> Alternate Character ROM Special Set

 C = A -> United Kingdom (UK)

 C = B -> United States (USASCII)

ESC)C Select G1 Character Set (SCS)

 C = 0 -> Special Character and Line Drawing Set

 C = 1 -> Alternate Character ROM Standard Set

 C = 2 -> Alternate Character ROM Special Set

 C = A -> United Kingdom (UK)

 C = B -> United States (USASCII)

ESC *C Select G2 Character Set (SCS)

 C = 0 -> Special Character and Line Drawing Set

 C = 1 -> Alternate Character ROM Standard Set

 C = 2 -> Alternate Character ROM Special Set

 C = A -> United Kingdom (UK)

 C = B -> United States (USASCII)

ESC +C Select G3 Character Set (SCS)

 C = 0 -> Special Character and Line Drawing Set

 C = 1 -> Alternate Character ROM Standard Set

 C = 2 -> Alternate Character ROM Special Set

 C = A -> United Kingdom (UK)

 C = B -> United States (USASCII)

ESC 7 Save Cursor (DECSC)

ESC 8 Restore Cursor (DECRC)

ESC = Application Keypad (DECPAM)

ESC > Normal Keypad (DECPNM)

ESC D Index (IND)

ESC E Next Line (NEL)

428 PHIGS PROGRAMMING MANUAL

E
ESC H Tab Set (HTS)

ESC M Reverse Index (RI)

ESC N Single Shift Select of G2 Character Set (SS2)

ESC O Single Shift Select of G3 Character Set (SS3)

ESC Return Terminal ID (DECID)

ESC [BEL Same as non-escaped BEL

ESC [BS Same as non-escaped BS

ESC [HT Same as non-escaped HT

ESC [NL Same as non-escaped NL

ESC [VT Same as non-escaped VT

ESC [NP Same as non-escaped NP

ESC [CR Same as non-escaped CR

ESC [SO Same as non-escaped SO

ESC[SI Same as non-escaped SI

ESC [?BEL Same as non-escaped BEL

ESC [?BS Same as non-escaped BS

ESC [?HT Same as non-escaped HT

ESC [?NL Same as non-escaped NL

ESC [?VT Same as non-escaped VT

ESC [?NP Same as non-escaped NP

ESC [?CR Same as non-escaped CR

ESC [?SO Same as non-escaped SO

ESC [?SI Same as non-escaped SI

ESC [Ps@ Insert Ps (Blank) Character(s) (default = 1) (ICH)

ESC [PsA Cursor Up Ps Times (default = 1) (CUU)

ESC [PsB Cursor Down Ps Times (default = 1) (CUD)

ESC [PsC Cursor Forward Ps Times (default = 1) (CUF)

ESC [PsD Cursor Backward Ps Times (default = 1) (CUB)

ESC [Ps;PsH Cursor Position [row;column] (default = [1,1]) (CUP)

ESC [PsJ Erase in Display (ED)

 Ps = 0 -> Clear Below (default)

APPENDIX E: XTERM CONTROL SEQUENCES 429

E
 Ps = 1 -> Clear Above

 Ps = 2 -> Clear All

ESC [PsK Erase in Line (EL)

 Ps = 0 -> Clear to Right (default)

 Ps = 1 -> Clear to Left

 Ps = 2 -> Clear All

ESC [PsL Insert Ps Line(s) (default = 1) (IL)

ESC [PsM Delete Ps Line(s) (default = 1) (DL)

ESC [PsP Delete Ps Character(s) (default = 1) (DCH)

ESC [T Track mouse

ESC [Psc Device Attributes (DA1)

ESC [Ps;Psf Cursor Position [row;column] (default = [1,1]) (HVP)

ESC [Psg Tab Clear

 Ps = 0 -> Clear Current Column (default)

 Ps = 3 -> Clear All

ESC[Psh Mode Set (SET)

 Ps = 4 -> Insert Mode (IRM)

 Ps = 20 -> Automatic Linefeed (LNM)

ESC [Psl Mode Reset (RST)

 Ps = 4 -> Insert Mode (IRM)

 Ps = 20 -> Automatic Linefeed (LNM)

ESC [Pmm Character Attributes (SGR)

 Pm = 0 -> Normal (default)

 Pm = 1 -> Blink (appears as Bold)

 Pm = 4 -> Underscore

 Pm = 5 -> Bold

 Pm = 7 -> Inverse

ESC [Psn Device Status Report (DSR)

 Ps = 5 -> Status Report ESC[0n -> OK

 Ps = 6 -> Report Cursor Position (CPR) [row;column] as ESC[r;cR

430 PHIGS PROGRAMMING MANUAL

E
ESC [Ps;Psr Set Scrolling Region [top;bottom] (default = full size of window)
(DECSTBM)

ESC [Psx Request Terminal Parameters (DECREQTPARM)

ESC [Ps ND string NP

OSC Mode

 ND can be any non-digit Character (it’s discarded)

 NP can be any non-printing Character (it’s discarded)

 string can be any ASCII printable string (max 511 characters)

 Ps = 0 -> use string as a new icon name and title

 Ps = 1 -> use string as a new icon name only

 Ps = 2 -> use string as a new title only

 Ps = 46 -> use string as a new log file name

ESC [?Psh DEC Private Mode Set (DECSET)

 Ps = 1 -> Application Cursor Keys (DECCKM)

 Ps = 2 -> Set VT52 Mode

 Ps = 3 -> 132 Column Mode (DECCOLM)

 Ps = 4 -> Smooth (Slow) Scroll (DECSCLM)

 Ps = 5 -> Reverse Video (DECSCNM)

 Ps = 6 -> Origin Mode (DECOM)

 Ps = 7 -> Wraparound Mode (DECAWM)

 Ps = 8 -> Auto-repeat Keys (DECARM)

 Ps = 9 -> Send MIT Mouse Row & Column on Button Press

 Ps = 38 -> Enter TekTronix Mode (DECTEK)

 Ps = 40 -> Allow 80 <--> 132 Mode

 Ps = 41 -> curses(5) fix

 Ps = 44 -> Turn On Margin Bell

 Ps = 45 -> Reverse-wraparound Mode

 Ps = 46 -> Start Logging

 Ps = 47 -> Use Alternate Screen Buffer

 Ps = 1000 -> send VT200 Mouse Row & Column on Button Press

 Ps = 1003 -> send VT200 Hilite Mouse Row & Column on Button Press

APPENDIX E: XTERM CONTROL SEQUENCES 431

E
ESC [?Psl DEC Private Mode Reset (DECRST)

 Ps = 1 -> Normal Cursor Keys (DECCKM)

 Ps = 3 -> 80 Column Mode (DECCOLM)

 Ps = 4 -> Jump (Fast) Scroll (DECSCLM)

 Ps = 5 -> Normal Video (DECSCNM)

 Ps = 6 -> Normal Cursor Mode (DECOM)

 Ps = 7 -> No Wraparound Mode (DECAWM)

 Ps = 8 -> No Auto-repeat Keys (DECARM)

 Ps = 9 -> Don’t Send MIT Mouse Row & Column on Button Press

 Ps = 40 -> Disallow 80 <--> 132 Mode

 Ps = 41 -> No curses(5) fix

 Ps = 44 -> Turn Off Margin Bell

 Ps = 45 -> No Reverse-wraparound Mode

 Ps = 46 -> Stop Logging

 Ps = 47 -> Use Normal Screen Buffer

 Ps = 1000 -> Don’t send Mouse Row & Column on Button Press

 Ps = 1003 -> Don’t send Hilite Mouse Row & Column on Button Press

ESC [?Psr Restore DEC Private Mode

 Ps = 1 -> Normal/Application Cursor Keys (DECCKM)

 Ps = 3 -> 80/132 Column Mode (DECCOLM)

 Ps = 4 -> Jump (Fast)/Smooth (Slow) Scroll (DECSCLM)

 Ps = 5 -> Normal/Reverse Video (DECSCNM)

 Ps = 6 -> Normal/Origin Cursor Mode (DECOM)

 Ps = 7 -> No Wraparound/Wraparound Mode (DECAWM)

 Ps = 8 -> Auto-repeat/No Auto-repeat Keys (DECARM)

 Ps = 9 -> Don’t Send/Send MIT Mouse Row & Column on Button Press

 Ps = 40 -> Disallow/Allow 80 <--> 132 Mode

 Ps = 41 -> Off/On curses(5) fix

 Ps = 44 -> Turn Off/On Margin Bell

 Ps = 45 -> No Reverse-wraparound/Reverse- wraparound Mode

 Ps = 46 -> Stop/Start Logging

432 PHIGS PROGRAMMING MANUAL

E
 Ps = 47 -> Use Normal/Alternate Screen Buffer

 Ps = 1000 -> Don’t send/send VT200 Mouse Row &Column onButton Press

 Ps = 1003 -> Don’t send/send VT200 HiliteMouse Row & Column on Button Press

ESC [?Pss Save DEC Private Mode

 Ps = 1 -> Normal/Application Cursor Keys (DECCKM)

 Ps = 3 -> 80/132 Column Mode (DECCOLM)

 Ps = 4 -> Jump (Fast)/Smooth (Slow) Scroll (DECSCLM)

 Ps = 5 -> Normal/Reverse Video (DECSCNM)

 Ps = 6 -> Normal/Origin Cursor Mode (DECOM)

 Ps = 7 -> No Wraparound/Wraparound Mode (DECAWM)

 Ps = 8 -> Auto-repeat/No Auto-repeat Keys (DECARM)

 Ps = 9 -> Don’t Send/Send MIT Mouse Row & Column on Button Press

 Ps = 40 -> Disallow/Allow 80 <--> 132 Mode

 Ps = 41 -> Off/On curses(5) fix

 Ps = 44 -> Turn Off/On Margin Bell

 Ps = 45 -> No Reverse-wraparound/Reverse-wraparound Mode

 Ps = 46 -> Stop/Start Logging

 Ps = 47 -> Use Normal/Alternate Screen Buffer

 Ps = 1000 -> Don’t send/send VT200 Mouse Row & Column on Button Press

 Ps = 1003 -> Don’t send/send VT200 Hilite Mouse Row & Column on Button Press

ESC]Ps;PtBEL

 Set Text Parameters

 Ps = 0 -> Change Window Name and Title to Pt

 Ps = 1 -> Change Window Name to Pt

 Ps = 2 -> Change Window Title to Pt

 Ps = 46 -> Change Log File to Pt

 Ps = 50 -> Change Font to Pt

ESC c Full Reset (RIS)

ESC n Locking Shift Select of G2 Character Set (LS2)

ESC Locking Shift Select of G3 Character Set (LS3)

APPENDIX E: XTERM CONTROL SEQUENCES 433

E
E.2.3 Tektronix 4014 Mode
Most of these sequences are standard Tektronix 4014 control sequences. The major fea-
tures missing are the alternate (APL) character set and the write-thru and defocused modes.

BEL Bell (Ctrl-G)

BS Backspace (Ctrl-H)

TAB Horizontal Tab (Ctrl-I)

LF Line Feed or New Line (Ctrl-J)

VT Vertical Tab (Ctrl-K)

FF Form Feed or New Page (Ctrl-L)

CR Carriage Return (Ctrl-M)

ESC ETX Switch to VT102 Mode

ESC ENQ Return Terminal Status

ESC LF PAGE (Clear Screen)

ESC ETB COPY (Save Tektronix Codes to File)

ESC CAN Bypass Condition

ESC SUB GIN mode

ESC FS Special Point Plot Mode

ESC GS Graph Mode (same as GS)

ESC RS Incremental Plot Mode (same as RS)

ESC US Alpha Mode (same as US)

ESC 8 Select Large Character Set

ESC 9 Select #2 Character Set

ESC : Select #3 Character Set

ESC ; Select Small Character Set

ESC]Ps;PtBEL

 Set Text Parameters

 Ps = 0 -> Change Window Name and Title to Pt

 Ps = 1 -> Change Icon Name to Pt

 Ps = 2 -> Change Window Title to Pt

 Ps = 46 -> Change Log File to Pt

ESC ` Normal Z Axis and Normal (solid) Vectors

434 PHIGS PROGRAMMING MANUAL

E
ESC a Normal Z Axis and Dotted Line Vectors

ESC b Normal Z Axis and Dot-Dashed Vectors

ESC c Normal Z Axis and Short-Dashed Vectors

ESC d Normal Z Axis and Long-Dashed Vectors

ESC h Defocused Z Axis and Normal (solid) Vectors

ESC i Defocused Z Axis and Dotted Line Vectors

ESC j Defocused Z Axis and Dot-Dashed Vectors

ESC k Defocused Z Axis and Short-Dashed Vectors

ESCl Defocused Z Axis and Long-Dashed Vectors

ESC p Write-Thru Mode and Normal (solid) Vectors

ESC q Write-Thru Mode and Dotted Line Vectors

ESC r Write-Thru Mode and Dot-Dashed Vectors

ESC s Write-Thru Mode and Short-Dashed Vectors

ESC t Write-Thru Mode and Long-Dashed Vectors

FS Point Plot Mode

GS Graph Mode

RS Incremental Plot Mode

US Alpha Mode

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX F: TRANSLATION TABLE SYNTAX 435

F

Appendix FTRANSLATION TABLE SYNTAX

APPENDIX F

Translation Table Syntax

This appendix describes the basic syntax of translation table resources, described in Chap-
ter 12,Setting Resources.

This appendix explains some of the more complex aspects of translation table syntax. It
probably gives more detail than the average user will need but we’ve included it to help
clarify this rather complicated topic.

F.1 Event Types and Modifiers
The syntax of the translation table is sufficiently general to encompass a wide variety of
events and circumstances. Event translations can be specified to handle characteristic user
interface idioms like double clicking, dragging, or combining keyboard modifiers with
pointer button input. To specify translations that use these features, it is necessary to learn
more about the detailed syntax used to specify translations.

An activity susceptible to translation is a sequence of events and modifiers (that perform
an action). Events are specified in angle brackets and modifiers precede the event they
modify. The legal events that can be specified in a translation are as shown in Table F-1.

Table F-1. Event Types and Their Abbreviations

Event Name Event Type Abbreviations/Synonyms

KeyPress Keyboard Key , KeyDown

KeyUp Keyboard KeyRelease

ButtonPress Mouse Button BtnDown

ButtonRelease Mouse Button BtnUp

436 PHIGS PROGRAMMING MANUAL

F

Btn1Down Mouse Button Press

.

.

Btn5Down

Btn1Up Mouse Button Release

.

 .

Btn5Up

MotionNotify Mouse Motion Motion , MouseMoved,PtrMoved

ButtonMotion Motion w/any Button
Down

BtnMotion

Button1Motion Motion w/Button Down Btn1Motion

. .

 . .

Button5Motion Btn5Motion

EnterNotify Mouse in Window Enter, EnterWindow

LeaveNotify LeaveWindow , Leave

FocusIn Keyboard Input Focus

FocusOut

KeymapNotify Changed Key Map Keymap

ColormapNotify Changed Color Map Clrmap

Expose Related Exposure Events

GraphicsExpose GrExp

NoExpose NoExp

VisibilityNotify Visible

CreateNotify Window Management Create

Table F-1. Event Types and Their Abbreviations

Event Name Event Type Abbreviations/Synonyms

APPENDIX F: TRANSLATION TABLE SYNTAX 437

F

The possible modifiers of an event are listed in the table. The modifiers Mod1 through
Mod5 are highly system-dependent, and may not be implemented by all servers.

DestroyNotify Destroy

UnmapNotify Unmap

MapNotify Map

MapRequest MapReq

ReparentNotify Reparent

ConfigureNotify Configure

ConfigureRequest ConfigureReq

GravityNotify Grav

ResizeRequest ResReq

CirculateNotify Circ

CirculateRequest CircReq

PropertyNotify Prop

SelectionClear Intra-client Selection SelClr

SelectionRequest SelReq

SelectionNotify Select

Table F-2. Key Modifiers

Event
Modifiers

Abbreviation

Ctrl c

Meta m

Shift s

Lock l

Any

ANY

Table F-1. Event Types and Their Abbreviations

Event Name Event Type Abbreviations/Synonyms

438 PHIGS PROGRAMMING MANUAL

F

F.1.1 Detail Field
To provide finer control over the translation process, the event part of the translation can
include an additional “detail.” For example, if you want the event to require an additional
keystroke, for instance, an A key, or a Control-T, then that keystroke can be specified as a
translation detail. The default detail field isANY .

The valid translation details are event-dependent. For example, to specify the above exam-
ple for keypress events, you would use:

<Key>A

and:

Ctrl<Key>T

respectively.

Key fields can be specified by the keysym value, as well as by the keysym symbolic name.
For example, the keysym value of the Delete key is 0xffff. Keysym values can be deter-
mined by examining the file <X11/keysymdef.h> or by using thexmodmap client. (See
Chapter 14,Customization Clients). Unfortunately, with some translations the keysym
value may actually be required, since not all keysym symbolic names may be properly
interpreted.

F.1.2 Modifiers
Modifiers can be closely controlled to define exactly which events can be specified. For
example, if you want the action to be performed by pointer button clicks but not by pointer
button clicks with the Control or Shift key down, these limitations can be specified. Simi-
larly, if you don’t care if there are modifiers present, this can also be specified.

Table F-3 lists the available event modifiers.

None

Mod1 1

 . .

 Mod5 5

Table F-3. Event Modifiers and their Meanings

Modifier Meaning

None<event> No modifiers allowed.

<event> Doesn’t care. Any modifiers okay.

Table F-2. Key Modifiers

Event
Modifiers

Abbreviation

APPENDIX F: TRANSLATION TABLE SYNTAX 439

F

F.1.3 Complex Translation Examples
The following translation specifies that functionf is to be invoked when both the Shift key
and the third pointer button are pressed.

Shift<Btn3Down>: f ()

To specify that both the Control and Shift keys are to be pressed use:

Ctrl Shift<Btn3Down>: f ()

To specify an optional repeat count for an activity, put a number in parentheses after the
action. The number refers to the whole translation. To make the last example require a dou-
ble-click, with both Control and Shift keys pressed, use:

Ctrl Shift<Btn3Down>(2): f ()

The server distinguishes between single-clicks and double-clicks based on a pre-pro-
grammed timing interval. If a second click occurs before the interval expires, then the
event is interpreted as a double-click; otherwise the event is interpreted as two single-
clicks. The variableclickTime is maintained deep in the internals of X. Unfortunately,
thus far there is no way to set this time interval to match user preference. Currently it is set
to be 200 milliseconds.

A translation involving two or more clicks can be specified as (2+) in the previous exam-
ple. In general, a plus sign following the numbern would meann or more occurrences of
the event.

Multiple events can be specified by separating them with commas on the translation line.
To indicate pressing button 1, pressing button 2, then releasing button 1, and finally releas-
ing button 2, use:

<Btn1Down>,<Btn2Down>,<Btn1Up>,<Btn2Up>: f()

Another way to describe this action in English would be to say “while button 1 is down,
click button 2.” “Meaningless” pointer movement is generally ignored. In the previous
case, for example, if pointer motion occurred while the buttons were down, it would not
interfere with detection of the event. Thus, inadvertent pointer jiggling will not thwart even
the most complex user-input sequences.

Mod1 Mod Mod1 and Mod2, plus any others (i.e.,
anything that includes m1 and m2).

!Mod1 Mod2<event> Mod1 and Mod2 but nothing else.

Mod1 ~Mod2<event> Mod1 and not Mod2.

Table F-3. Event Modifiers and their Meanings

Modifier Meaning

440 PHIGS PROGRAMMING MANUAL

F

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX G: X USER’S GUIDE: OPEN LOOK EDITION 441

G

Appendix GX USER’S GUIDE: OPEN LOOK EDITION

APPENDIX G

Introduction to Xt Widget
Resources

We’ve said several times that you can set “resources” to control the behavior of client pro-
grams. Unfortunately, to make full use of this feature, you need to know a little about the
program you want to customize. If the program is an XView application—the OpenWin-
dows DeskSet,cmdtool, and most current Sun programs—it uses a simpler hierarchy of
resources. If the program is written using any “Xt Intrinsices” or “Widget”-based toolkit—
such asOLIT, Motif, or the MIT Athena Widgets—then you need to know a little more
about the individual widgets. These toolkits do allow you to set not only resources defined
by the application itself, but also resources that apply to any of the widgets that make up
the application. The reference page for the application sometimes lists the most important
of these resources, but for fuller customization, you need to know more about each widget.

Unfortunately, the design of the X Toolkit is such that to really do the right thing, you prob-
ably need to know a bit more about Toolkit programming than the average user might like.

In this appendix we provide some introductory concepts about how widgets are used in X
Toolkit programs. The following two appendices provide reference information about each
class of widgets in the OpenWindows version ofOLIT as well as the MIT Athena Widgets
used in many MIT and contributed applications. If you are a Toolkit programmer or other
sophisticated user, feel free to skip right to the widget reference descriptions.

G.1 The Widget Class Hierarchy
The first thing you need to know is how widgets are built.

Rather than starting each widget from scratch, the widget programmer starts with a copy of
another, more basic widget, and modifies it. This process is calledsubclassing the widget,
and the sequence of widgets leading up to the one you see is called itsclass hierarchy.
Because of the way subclassing works, a widgetinherits all of the characteristics of its
superclasses, except those that are explicitly overridden or changed.

442 X USER’S GUIDE: OPEN LOOK EDITION

G
The class hierarchy starts with a class called Object, which defines some basic characteris-
tics common to all widgets—namely the ability to understand resources, and to be linked
to applications via a mechanism referred to as a callback. (When you click on a “quit” but-
ton, and the application quits, that is because the widget has communicated with the
application via a callback.)

RectObj is a subclass of Object. RectObj adds various resources having to do with the fact
that widgets are rectangular: width, height, borderWidth, and x, y positions. RectObj also
adds resources for sensitivity—the fact that a widget can be temporarily “disabled” by a
client (so for example, not allowing you to choose an option on a menu that would close a
file if no file was open.)

Core is the first true widget in the class hierarchy. Object and RectObj don’t have win-
dows associated with them, and can never be “instantiated”—created and mapped to the
screen. In fact, prior to Release 4, they were “invisible” even to Toolkit programmers, who
simply assumed that Core was the root of the widget hierarchy.

The reason we now talk openly about Object and RectObj is that the R4 Toolkit supports a
different class of object, known colloquially as a gadget, which is subclassed directly from
RectObj, and does not have a window associated with it. It can be used only within a wid-
get that understands how to manage gadgets, and allocates some of its own window space
to display them. This is typically done when there are many identical widgets. (The only
gadgets in the Athena widget set are the SmeBSB and SmeLine gadgets used to implement
panes in a SimpleMenu widget. OLIT and Motif offer both widget and gadget versions of
many of their objects, including all kinds of command buttons.)

At any rate, for most purposes, you can still act as though Core is the root of the widget
hierarchy, since all widgets are subclassed from it, and therefore share all of its resources.
The phrase “Core resources” is a fluke of terminology that can be misleading to new users.
Because it sounds meaningful just as a general term, it isn’t clear that the Core resources
are really the resources of a particular widget class (rather than something magically rec-
ognized as central or “core” by the X Toolkit.)

Let’s take a brief look at the some of the Core resources, which appear in Table G-1. The
list includes the resources inherited from Object and RectObj, plus those added by Core.

Table G-1. Core Resources

background Background

borderColor BorderColor

borderWidth BorderWidth 1

height Height 0

width Width 0

x Position 0

y Position 0

APPENDIX G: X USER’S GUIDE: OPEN LOOK EDITION 443

G
Some of these Core resources set obvious characteristics of a widget:background
(color), borderColor , andborderWidth (in pixels).height andwidth specify
the dimensions of the widget in pixels.x andy represent the x,y coordinates of the widget
in relation to its parent.

Technically, foreground is not a Core resource. However, sinceforeground is
defined by every widget class that does any drawing of lines or text, it can be assumed to
be.

Note that Table G-1 isn’t actually a complete list of all of the Core resources, but only of
those that might be set by users. Some resources (such as callbacks) can only be set by pro-
grammers. The Toolkit doesn’t even support a mechanism for understanding how to set
them in a resource file. In addition, there are two resources that are so common that you
might expect them to be Core resources, but which are not. They are defined individually
by each of the widget classes that use them. This can be confusing, especially since they do
correspond to standard X Toolkit options. But really, it is hair-splitting to worry about
where they are defined—they are sufficiently standard to fall under the colloquial under-
standing of Core resources.

We’ll say more about the subject of resource conversion later. First, though, let’s finish
describing the base classes provided by the X Toolkit, which are common to all Xt-based
widget sets (includingOLIT, Motif ,and the Athena widgets).

There is a special class of widgets whose job is to manage the size and/or position of other
widgets. These are called Composite widgets, and all such geometry-managing widgets,
are children of the Composite widget class. Composite inherits all of the characteristics of
Core, and adds resources (settable only by the programmer) for identifying which widgets
it should treat as its children.

Some simple geometry-managing widgets such as the Athena Box widget are direct sub-
classes of Core. However, there is another, more complex class of geometry-managing
widget defined by the X Toolkit Intrinsics, called Constraint. A constraint widget defines
special resources, called constraint resources, that apply to its children rather than to itself.
They are actually resources of the constraint widget, but are specified as if they were
resources of the child. The clearest example of constraint resources is provided by the Ath-
ena Form widget, which allows widgets to be positioned with respect to one another, so
that they always keep the same arrangement, even when the Form is resized. For example,
xcalc is implemented using a Form widget. Resources such as:

Form widget
| Command widget child of Form
| | | Constraint resource of Form seems to be resource of child
| | |

XCalc.ti.button12.fromHoriz: button11
XCalc.ti.button12.fromVert: button7

specify that button12 (label PI) should always be next to button11 (label x!), and over
button7 (label 7). We’ll return to this example later, when we talk about the instance hier-
archy of widgets in an application.

444 X USER’S GUIDE: OPEN LOOK EDITION

G
At any rate, there is one other subclass of Composite that bears mention: the Shell widget
class. Shell widgets are simple composite widgets; they manage only one child—the appli-
cation’s main window, and they make themselves exactly the same size, so that they are
hidden behind it. Even though you never see them, though, Shell widgets are extremely
important, since they are the widgets that know how to interact with the window manager.
Shell introduces several resources of importance to the application programmer, but only
one of importance to the user:geometry (classGeometry).

There are actually seven subclasses of Shell, three of which are for internal toolkit purposes
and four of which are used by application programmers in different circumstances. For
example, there is one kind of shell widget used for the main window of an application
(class TopLevelShell) and another used as the parent of a popup widget like a dialog box
(class OverrideShell) that should never be manipulated by the window manager. (Notice
that mwm doesn’t reparent dialogs—they don’t get a titlebar of their own, and can’t be
moved independently—this is because they are children of an OverrideShell, which over-
rides window manager intervention.)

There is another class of shell widget, called a TransientShell, which is used for popups,
but can be manipulated by the window manager. An application might use a TransientShell
for a popup help window that would be allowed to remain on the screen, and could be
moved or resized separately (but not iconified.) An ApplicationShell is used by an applica-
tion that has more than one completely independent window, as the class for its secondary
“top level” windows.

For all practical purposes, you don’t need this much information about shell widgets. As
we’ll see shortly, the only reference to a shell widget in a resource specification is typically
via the application name, which the shell widget takes as its own.

Returning to widgets that you actually do see and interact with, let’s consider the class der-
ivation of a widget like Command, which is used to implement buttons you can click on
with the mouse to ask the application to do something.

The Athena Command widget is a subclass of the Label widget, which is a subclass of the
Simple widget, which in turn is a subclass of Core. As a result, Command inherits all of the
Core resources, plus the resources of the Athena Simple widget (for practical purposes, the
cursor that is to be displayed when the pointer is in the window), plus the resources of the
Label widget—such as the ability to display a label, in a particular font. Command adds the
ability (defined by the programmer, not the user) to call a particular application function
when the button is clicked on.

Figure G-1 shows the complete class hierarchy of the Athena widgets used in all of the
standard MIT applications described in this book. The widgets shown in gray are defined
by the X Toolkit intrinsics, and are common to all Xt-based widget sets, includingOLIT
and Motif.

The listres application, without any arguments, lists the inheritance hierarchy for each of
the Athena widgets. Given the name of any widget class, it lists all of the resources for that
widget, and which superclass they are inherited from. Figure XXX shows listres for the
Athena Label widget.: As we’ll describe later in this appendix, not all of the resources

APPENDIX G: X USER’S GUIDE: OPEN LOOK EDITION 445

G

listed by listres can be set in a resource file. However, this listing can provide a handy
quick reference.

G.2 Widgets in the Application
Widget inheritance of resources from superclasses is an important part of the background
to understanding how to affect the widget resources in the application, but it is not the
whole story. Let’s talk for a moment about how these widgets are used.

To make things more concrete, let’s look at an actual application.xclipboard is a good
choice. It uses several different widget classes, but isn’t too complex. .FigureG-3 illus-
trates the widgets that make upxclipboard.

Every Toolkit application begins with a call to a function calledXtInitialize , which
in looks something like this1

top = XtInitialize("xclipboard", "XClipboard", ...);

Figure G-1. Inheritance among the Athena widgets

Label List

Grip

Scrollbar

Command

Box

Viewport

Constraint

Shell

Paned Form

Dialog

OverrideShellWMShell

VendorShell

TopLevelShell TransientShell

ApplicationShell

Composite

Toggle

SimpleMenu

StripChart

Simple

Porthole

Panner

Repeater
Tree

C o r e

Text

446 X USER’S GUIDE: OPEN LOOK EDITION

G

The first two arguments to this function give the instance name and class name of the appli-
cation. This becomes the start of any resource specification for this application. And we
know that ifxclipboard has an app-defaults file, it will be calledXClipboard, since that
name is taken from the class name of the application. Notice that there’s no magic here: this
is under the explicit control of the application programmer. If he doesn’t follow the con-
ventions for the application’s class and instance name, he’d better document what names
he used here!

1. Actually, modern Toolkit applications are supposed to use the more complexXtAppInitialize , but
XtInitialize makes the concept clearer, and besides, it’s whatxclipboard actually us-
es.

Figure G-2. listres for “label” widget

APPENDIX G: X USER’S GUIDE: OPEN LOOK EDITION 447

G

XtInitialize , among its other activities, creates a TopLevelShell widget. The name
before the equals sign,top , is the name that the programmer will use to refer to this widget
whenever he needs to use it in the application. This is completely irrelevant to the name the
widget publishes for itself as its instance name.

Next, the program begins to create the widgets in the application, using a function called
XtCreateManagedWidget . The first widget to be created is the main application wid-
get, which in this case is a Form widget.

parent = XtCreateManagedWidget("form", formWidgetClass, top, ...);

The first argument toXtCreateManagedWidget is the instance name of the widget
(form)—this is the name that will be used to refer to it in resource files. The second argu-
ment is a symbol identifying which widget class this widget should be.

Notice that the instance name is entirely arbitrary, and depends completely on the whim of
the application programmer. Many applications that use only one instance of a widget class
will give it an instance name that mirrors the class name, except in lower case, as was done
here. But you can see that the programmer could just as well have given the widget the
instance name “foo” or “main” or “grandma_moses.” The implication is that unless the cli-
ent’s man page documents a widget instance name, you won’t know what to use in a
resource file.1

1. As of R4, all of the MIT client reference pages do list the instance names of all the widgets in the application.

Figure G-3. Anatomy of an X Toolkit application

Quit Delete New Next PrevSave 1

^

Command widget
instance name: quit
class name: Command

text widget
instance name: text
class name: Text

Not a scrollbar widget.
These scrollbars are
implemented as part of
the Text widget class.

form widget
instance name: form
class name: Form

Command widget
instance name: next
class name: Command

invisible shell widget
instance name: xclipboard
class name: XClipboard

448 X USER’S GUIDE: OPEN LOOK EDITION

G
The class name, on the other hand, is a part of the definition of a widget’s class. It is always
the same.

The third argument is the widget’s parent—the geometry-managing widget that this widget
will be displayed inside, and which will control its size and position. Notice that the parent
of the form istop —the shell widget created byXtInitialize . As noted earlier, Shell
widgets take just one child, and resize themselves so they fit completely behind that child,
and are invisible.

Remember, though, that the program’s internal name for the shell widget is not important
when it comes to resource specifications. The Shell widget takes its “resource name and
class” from theXtInitialize call.

If you’re following the flow of the argument, you can see that to refer to this widget in a
resource file, you could use any of the following resource specifications:

xclipboard.form instance name for both the shell widget and form widget
XClipboard.Form class name for both the shell widget and form widget
XClipboard.form class name for the shell, and instance name for the form
xclipboard.Form instance name for the shell, and class name for the form

as well as any analogous loose bindings.

Theform widget (named “parent” for internal reference within the application) is used in
turn as the parent of the various command widgets and the text widget:

quit = XtCreateManagedWidget("quit", commandWidgetClass, parent, ...);
delete = XtCreateManagedWidget("delete", commandWidgetClass, parent,
...);
new = XtCreateManagedWidget("new", commandWidgetClass, parent, ...);
nextButton = XtCreateManagedWidget("next", commandWidgetClass, parent,

...);
prevButton = XtCreateManagedWidget("prev", commandWidgetClass, parent,

...);
text = XtCreateManagedWidget("text", textWidgetClass, parent, ...);

This “parent-child relationship” between composite widgets and their children is what is
expressed in the instance hierarchy of the widget. So, for example, the Command widget
instance namedquit is a child of the Form widget instance namedform , which in turn
is a child of a Shell widget, which takes as its name the application namexclipboard .

G.3 What all this Means
The fully-specified instance name of any widget in an application is determined by the par-
ent-child relationships of every widget in the application. First, there is always a shell
widget, which takes as its name the application name. Then, there are one or more compos-
ite widgets, which contain other widgets. Finally, at the end of the chain, you have a simple
widget, with the resources it defines, as well as the resources it inherits from its super-
classes.

Don’t confuse the class names of the widgets in the instance hierarchy with the class inher-
itance hierarchy of each widget. Figure G-4 tries to make the relationships clear.

APPENDIX G: X USER’S GUIDE: OPEN LOOK EDITION 449

G

In FigureG-4, thequit widget gets its instance name from the relationship of widgets
within the application. But it gets its resources from the class hierarchy of the widgets that
the programmer used to develop theCommand widget class.

Remember that the instance names of the widgets are completely arbitrary; even though it
is not unusual to see a Form widget with the instance nameform , there is nothing required
about this. As a result, you need to look at the documentation for the application, not the
widget, to find out the appropriate instance names.

The resources that a given widget class has are the result of its class inheritance hierarchy,
which is defined by the widget programmer who originally designed the widget class.
Thus, when you want to set resources for a widget like Command, you need to look not
only in the section of this appendix that describes Command and its resources, but also the
sections on each of its superclasses.

G.4 Complications
There are a number of provisos that modify this (hopefully by now clear and simple)
picture:

■ Even though a widget inherits a resource, it may not use it. For example, the Command
widget class inherits theborderWidth resource from the Core widget class, but it
does not actually use this information to redraw its border if you change the resource. A
resource is just data you provide to the widget. Whether or not the widget does anything

Figure G-4. Resource names and class inheritance

Core

Simple

Label

Command

label
font
justify
.
.

background
translations
width
height
.
.

shapeStyle
cornerRoundPercent
highlightThickness
.
.

Quit Delete New Next PrevSave 1

^

xclipboard.form.quit.label: Quit

450 X USER’S GUIDE: OPEN LOOK EDITION

G
with that data is up to its designer. If you set a resource and nothing seems to happen, you
might have done something wrong...but you might also have set the resource correctly,
and the widget simply chose to ignore it.

■ Even when a widget does use a resource, you can’t necessarily set it from a resource file.
There are two reasons for this:

■ The programmer has the option to “hardcode” the value of a resource when creating a
widget. If he does this, all resource specifications for that resource are ignored.

■ Some resources are designed only for programmer use. Some of these can’t ever be spec-
ified in a resource file, since the data type of the resource isn’t a text string, and the
Toolkit doesn’t provide any automatic conversion. (Things like colors or can be speci-
fied in resource files, even though a color name is not actually the color itself, because
the X Toolkit automatically converts a color name to the appropriate internal format).

The following pages document only resources that are theoretically settable from resource
files. (That is, if no converter exists, we’ve assumed that the resource is only for program-
mer use and have deleted it from the list.) However, there are many other resources listed
that are most likely hardcoded by the programmer. Unfortunately, there is no way to tell in
advance whether they will or will not be hardcoded in a particular application.

The “default values” listed for each widget resource may or may not apply to an actual
application. These are the default values for the widget. An application can override them,
either in the program code, or in an application defaults file. But inasmuch as the defaults
are reasonable, they will usually be unchanged.

With this background, you’re now ready to navigate the widget reference information con-
tained in the next two appendices. For each widget (or gadget) in theOLIT and Athena
widget sets, we give a brief description, a summary of its class hierarchy, a list of the new
resources it defines, and its default translations and actions, if any.

Commercial X Toolkit-based applications should document all of the appropriate
resources for theOLIT Motif widgets they use.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX H: OPEN LOOK INTRINSICS TOOLKIT WIDGET RESOURCES 451

H

Appendix HOPEN LOOK INTRINSICS TOOLKIT WIDGET RESOURCES

APPENDIX H

OPEN LOOK Intrinsics
Toolkit Widget Resources

As suggested on the reference pages for various clients, you can set not only resources
defined by the application itself, but also resources that apply to any of the widgets that
make up the application. The reference page for the application sometimes lists the most
important of these resources, but for fuller customization, you need to know more about
each widget.

Unfortunately, the design of the X Toolkit is such that to really do the right thing, you prob-
ably need to know a bit more about Toolkit programming than the average user might like.

In the previous appendix, we included some introductory concepts about how widgets are
used in X Toolkit programs, and reference information about each class of Athena widgets.
In this chapter we focus on the reference information needed to use programs based on the
OLIT (OPEN LOOK Intrinsics Toolkit) toolkits used to produce manyOPEN LOOK appli-
cations. The XView toolkit resources are covered in the next appendix. The final category
of applications, NeWS applications under OpenWindows, do not make any use of X
Resources.

H.1 Historical Note
The text of this Appendix was derived from AT&T-owned material for which copyright
clearance was not available at press time. Since most users of this book are presumed to be
using XView-based programs on Linux and SunOS, this will not be a serious problem.
There is no implementation of OLIT for Linux, and SunOS users have the information
available in onlineman pages and in the Answerbook.

452 X USER’S GUIDE: OPEN LOOK EDITION

H

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 453

I

Appendix IX USER’S GUIDE: OPEN LOOK EDITION

APPENDIX I

Athena Widget Resources

As suggested on the reference pages for various clients, you can set not only resources
defined by the application itself, but also resources that apply to any of the widgets that
make up the application. The reference page for the application sometimes lists the most
important of these resources, but for fuller customization, you need to know more about
each widget.

Unfortunately, the design of the X Toolkit is such that to really do the right thing, you prob-
ably need to know a bit more about Toolkit programming than the average user might like.
See Appendix G,Introduction to Xt Widget Resources, if you are not familiar with the gory
details of “the Widget hierarchy.”

In this appendix, we provide some reference information about each class of widgets in the
Athena Widget set used by the standard MIT clients..

I.1 Box
The Box widget provides geometry management of arbitrary widgets in a box of a speci-
fied dimension. Box moves but does not resize its children. The children are rearranged
when the Box is resized, when its children are resized, or when children are managed or
unmanaged. The Box widget always attempts to pack its children as closely as possible
within the geometry allowed by its parent.

Box widgets are commonly used to manage a related set of Command widgets and are fre-
quently called ButtonBox widgets, but the children are not limited to buttons.

The children are arranged on a background that has its own specified dimensions and color.

I.1.1 Resources
The following new resources are associated with the Box widget:

454 X USER’S GUIDE: OPEN LOOK EDITION

I
hSpace (classHSpace) Number of pixels to the left or to the right of each child. Default

is 4.

orientation (classOrientation) Specifies whether the preferred shape of the box
is tall and narrow (vertical , the default) or short and wide (horizontal).

vSpace (classVSpace) Number of pixels above or below each child. Default is 4.

I.2 Command
The Command widget is an area, often rectangular, that contains a text or pixmap label and
calls an application function when “pressed” with a pointer button. This selectable area is
sometimes referred to as a “button.” When the pointer cursor is on the button, the button
border is highlighted to indicate that the button is ready for selection. When a pointer but-
ton is pressed, the command widget indicates that it has been selected by reversing its
foreground and background colors.

I.2.1 Resources
The following new resources are associated with the Command widget:

highlightThickness (classThickness) The thickness of the line drawn by the
highlight action.

shapeStyle (classShapeStyle) Nonrectangular buttons may be created using this
resource. Nonrectangular buttons are supported only on a server that supports the
Shape Extension. If nonrectangular buttons are specified for a server lacking this
extension, the shape is ignored and the widgets will be rectangular. The following
shape names are currently supported:Rectangle , Oval , Ellipse , and
roundedRectangle , in any case.

cornerRoundPercent (classCornerRoundPercent) When aShapeStyle of
roundedRectangle is used, this resource controls the radius of the rounded
corner. The radius of the rounded corners is specified as a percentage of the length
of the shortest side of the widget.

I.2.2 Translations and Actions
The following are the default translation bindings that are used by the Command widget:

<EnterWindow>: highlight()
<LeaveWindow>: reset()
<Btn1Down>: set()
<Btn1Up>: notify() unset()

With these bindings, the user can cancel the action before releasing the button by moving
the pointer out of the Command widget.

The full list of actions supported by Command is as follows:

highlight() Displays the internal highlight border in the color (foreground or
background) that contrasts with the interior color of the Command widget.
This is normally bound to <EnterWindow> events, so the widget border is high-
lighted when the pointer enters the window.

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 455

I
unhighlight() Displays the internal highlight border in the color (foreground or

background) that matches the interior color of the Command widget. This
action is called internally by reset(), and does not need an explicit translation.

set() Enters theset state, in whichnotify is possible and displays the interior of the
button, including the highlight border, in the foreground color. The label is
displayed in the background color. This usually happens when a pointer button
(button 1 by default) is pressed in the widget.

unset() Cancels theset state and displays the interior of the button, including the high-
light border, in the background color. The label is displayed in the foreground
color. This action is called internally by reset(), and does not need an explicit
translation.

reset() Cancels anyset or highlight and displays the interior of the button in the
background color, with the label displayed in the foreground color. This is
normally bound to <Btu1Up> (along withnotify ()) to reset the button appear-
ance to its normal state, once the button’s callback function has been executed.

notify() Executes the callback list specified bycallback , if executed in theset
state. This is the action that actually calls the application function to be invoked.

I.3 Dialog
 The Dialog widget prompts you for additional input. The typical Dialog widget contains
three areas. The first line contains a description of the function of the Dialog widget, for
example, the stringFilename:. The second line contains an area into which you type input.
The third line can contain buttons that let you confirm or cancel the Dialog input.

Dialog is not really a widget, but an interface to a widget. It might also be thought of as a
compound widget. It includes a label widget, a command widget, and a text widget as com-
ponents. These could theoretically appear as subwidgets in a resource specification.

I.3.1 Resources
The following new resources are associated with the Dialog widget:

icon (classIcon) The name of a pixmap to be displayed immediately to the left of the
Dialog widget’s label.

label (classLabel) A string to be displayed at the top of the Dialog widget.

value (classValue) An initial value for the string field into which you will enter text.
By default, no text entry field is available. Specifying an initial value forvalue
activates the text entry field. If string input is desired but no initial value is to be
specified, then set this resource to"" (empty string).

I.4 Form
 The Form widget can contain an arbitrary number of children of any class. The Form pro-
vides geometry management for its children, including individual control of the position of
each child. The initial positions of the children may be computed relative to the positions

456 X USER’S GUIDE: OPEN LOOK EDITION

I
of other children. When the Form is resized, it computes new positions and sizes for its
children.

I.4.1 Resources
The following new resource is associated with the Form widget:

defaultDistance Specifies the default value forhorizDistance andvertDis-
tance . This value is four pixels, by default. The default width of the Form is the
minimum width needed to enclose the children after computing their initial layout,
with a margin ofdefaultDistance at the right and bottom edges. If a width
and height is assigned to the Form that is too small for the layout, the children will
be clipped by the right and bottom edges of the Form.

Form is a subclass of Constraint, which means it has special kind of resources called con-
straint resources, which means that they apply to—and are specified as if they belong to—
the child of the Form rather than to the Form itself. For example,xcalc uses a Form widget
to organize its buttons. The resources below apply to the buttons, rather than to the Forms
(e.g., xcalc.ti.button11.horizDistance : 4)

bottom (classEdge)

top (classEdge)

left (classEdge)

right (classEdge) Specify how to reposition the bottom, top, left, and right, respec-
tively, of a child widget when the Form is resized. These resources can take one
of five values. The valuesChainTop , ChainBottom , ChainLeft , and
ChainRight maintain a constant distance from an edge of the child to the top,
bottom, left, and right edges, respectively, of the Form. The valueRubber
(default) maintains a proportional distance from the edge of the child to the left or
top edge of the Form. The proportion is determined from the initial position of the
child and the initial size of the Form.

fromHoriz (classWidget)

horizDistance (classThickness) Specify a child widget’s horizontal position rela-
tive to another widget within the Form.fromHoriz is the name of the widget
relative to which the child widget is placed, andhorizDistance is the number
of pixels separating the two widgets. For example, ifhorizDistance is 10, the
child widget will be placed 10 pixels to the right of the widget defined infrom-
Horiz . If fromHoriz is not defined, thenhorizDistance is measured from
the left edge of the Form.

fromVert (classWidget)

vertDistance (classThickness) Similar to previous resources, except thatfrom-
Vert andvertDistance position a child widget by a specified number of
pixels vertically away from a specified widget. If no widget is specified for
fromVert , thenvertDistance is measured from the top of the Form.

resizable (classBoolean) TRUE if children are allowed to resize themselves. Default
is FALSE.

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 457

II.5 Grip
 The Grip widget provides a small region that allows button presses and button releases.
The Grip widget is typically used as an attachment point for visually repositioning an
object (for example, the pane border in a Paned widget).

I.5.1 Resources
The following Core resources may be useful with the Grip widget:

foreground, width, height, borderWidth .

I.5.2 Translations and Actions
The Grip widget does not declare any default event translation bindings, but it does declare
a single action routine namedGripAction in its action table. The client specifies an
arbitrary event translation table, giving parameters to theGripAction routine.

The following is an example of aGripAction translation table:

<Btn1Down>: GripAction(press)
<Btn1Motion>: GripAction(move)
<Btn1Up>: GripAction(release)

I.6 Label
 A Label is an non-editable text string or pixmap that is displayed within a window. The
string may contain multiple lines of characters. It can be aligned to the left, right, or center
of its window. A Label can be neither selected nor directly edited by the user.

I.6.1 Resources
The following resources are used by the Label widget:

bitmap (classPixmap) Specifies a bitmap to display in place of the text label. In a
resource file, the resource should be specified as the name of a file in the bitmap
utility format that is to be loaded into a pixmap. The string can be an absolute or
a relative filename. If a relative filename is used, the directory specified by the
resource namebitmapFilePath or the resource classBitmapFilePath is
added to the beginning of the specified filename. If thebitmapFilePath
resource is not defined, the default directory on a POSIX-based system is/usr/
include/X11/bitmaps .

font (classfont) The font of the label.

foreground (classForeground) The color of the text string or pixmap.

internalHeight (classHeight) Represents the distance in pixels between the top
and bottom of the label text or bitmap and the horizontal edges of the Label
widget. Default is 2 pixels.

internalWidth (classWidth) Represents the distance in pixels between the ends of
the label text or bitmap and the vertical edges of the Label widget. Default is 4
pixels.

458 X USER’S GUIDE: OPEN LOOK EDITION

I
justify (classJustify) Specifies left, center, or right alignment of the label string

within the Label widget. One of the valuesleft , center , or right can be
specified.

label (classLabel) Specifies the text string that is to be displayed in the button if no
bitmap is specified. Note that the label may be hardcoded by the application.

resize (classResize) A Boolean value that specifies whether the Label widget should
attempt to resize to its preferred dimensions wheneverXtSetValues is called
for it. Default isTrue . Not usually set by users.

rowSpacing (classSpacing) Specify the amount of space in pixels between each of
the rows in the list. The default is 6 pixels.

I.7 List
 The List widget is a rectangle that contains a list of text strings formatted into rows and
columns. When one of the strings is selected, it is highlighted, and an application callback
routine is invoked. Only one string may be selected at a time. Note that most of the List
resources are for application use.

I.7.1 Resources
The following resources are used by the List widget:

callback All functions on this list are called whenever thenotify action is invoked.
This resource cannot be set from within a resource file, but only within an appli-
cation program.

columnSpacing (classSpacing) Specify the amount of space in pixels between each
of the columns in the list. The default is 6 pixels.

Cursor (classCursor) The cursor to be displaced when the pointer is in the List widget.
Default isleft-ptr .

defaultColumns (classColumns) Specifies the default number of columns, which is
used when neither the width nor the height of the List widget is specified or when
forceColumns is True . The default is 2.

forceColumns (classColumns) Specifies that the default number of columns is to be
used no matter what the current size of the List widget is. The default is FALSE.

font (classFont) Specifies the font to be used to display the list.

foreground (classForeground) Specifies the color to be used to paint the text of the
list elements.

internalHeight (classHeight) Represents a margin, in pixels, between the top and
bottom of the list and the edges of the List widget. Default is 2 pixels.

internalWidth (classWidth) Represents a margin, in pixels, between the left and
right edges of the list and the edges of the List widget. Default is 4 pixels.

longest (classLongest) Specifies the length, in pixels, of the longest string in the
current list. If the client knows the length, it should specify it; otherwise, the List

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 459

I
widget computes a default length by searching through the list. This value is not
typically set in resource files.

numberStrings (classNumberStrings) Specifies the number of strings in the
current list. If a value is not specified, the list must beNULL-terminated. This
value is not typically set in resource files.

pasteBuffer (classBoolean) If this isTrue , then the value of the string selected will
be put into X cut buffer 0. The default is FALSE. (Normally, the selected item is
simply passed to the application. For example, a filename might be passed to the
application’s “open” routine.)

verticalList (classBoolean) If this is True , the elements in the list are arranged
vertically; if False , the elements are arranged horizontally.

I.7.2 Translations and Actions
The List widget has three predefined actions:Set , Unset , andNotify . Set andUnset
allow switching the foreground and background colors for the current list item.Notify
allows processing application callbacks.

The following is the default translation table used by the List widget:

<Btn1Down>,<Btn1Up>: Set() Notify()

These translations should not typically be modified by users, and may be hardcoded by the
application.

I.8 MenuButton
 The MenuButton widget is a subclass of the Command widget that is used to pop-up a
menu. It is an area, often rectangular, that contains a text or pixmap label. This selectable
area is referred to as a button. When the pointer cursor is on the button, the button border
is highlighted to indicate that the button is ready for selection. When pointer button 1 is
pressed, the MenuButton widget pops up the menu that has been named in themenuName
resource.

I.8.1 Resources
MenuButton widgets have no new user-settable resources.

I.8.2 Translations and Actions
The following default translation bindings are used by the MenuButton widget:

<EnterWindow>: highlight()
<LeaveWindow>: reset()
<BtnDown>: reset(|) PopupMenu()

With these bindings, the user can cancel the action before releasing the button by moving
the pointer out of the MenuButton widget.

The actions supported by MenuButton are listed below:

460 X USER’S GUIDE: OPEN LOOK EDITION

I
highlight (condition) Displays the internal highlight border in the color (fore-

ground or background) that contrasts with the interior color of the
MenuButton widget. The conditionsWhenUnset andAlways are understood
by this action procedure. If no argument is passed,WhenUnset is assumed.

unhighlight() Displays the internal highlight border in the color (foreground or
background) that matches the interior color of the MenuButton widget.

set() Enters the set state, in whichnotify is possible, and displays the interior of the
button, including the highlight border, in the foreground color. The label or
pixmap is displayed in the background color.

unset() Cancels the set state and displays the interior of the button, including the high-
light border, in the background color. The label or pixmap is displayed in the
foreground color.

reset() Cancels anyset or highlight action and displays the interior of the button
in the background color, with the label or pixmap displayed in the foreground
color.

PopupMenu() Pops up the menu specified by themenuName resource.

I.9 Paned
 The Paned widget manages children in a vertically or horizontally tiled fashion. You may
resize these panes by using thegrips that appear near the right or bottom edge of the border
between two panes.

When you position the pointer on a grip, pressing the pointer button will display an arrow
that indicates which pane is being resized. By keeping the pointer button down, you can
move the pointer up and down (or left and right). This, in turn, changes the border between
the panes, causing one pane to shrink and some other pane (or panes) to grow. The size of
the Paned widget will not change.

The choice of alternate pane is a function of themin , max, andskipAdjust constraints
on the other panes. With the default bindings, button 1 resizes the pane above or to the left
of the selected grip, button 3 resizes the pane below or to the right of the selected grip, and
button 2 repositions the border between two panes only.

I.9.1 Resources
The following new resources are associated with the Paned widget:

betweenCursor (classCursor) Cursor for changing the boundary between two panes.

cursor (classCursor) Pointer cursor image that displays, whenever the pointer is in
this widget but not in any of its children (children may also inherit this cursor).

gripCursor (classCursor) Cursor for grip when not active.

gripIndent (classGripIndent) Offset of grip from margin (in pixels). Default is 10.

gripTranslations (classTranslations) Button bindings for grip.

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 461

I
horizontalBetweenCursor (classCursor) Cursor to use for the grip when

changing the boundary between two panes. Default issb_up_arrow .

horizontalGripCursor (classCursor) Cursor to use for the grips when they are
not active. Default issb_h_double_arrow .

internalBorderColor (classBorderColor) Internal border color of the widget’s
window. Default isXtDefaultForeground .

internalBorderWidth (classBorderWidth) Amount of space (in pixels) kept
between panes. Default is 1.

leftCursor (classCursor) Cursor used when resizing the pane to the left of the grip.
Default issb_left_arrow .

lowerCursor (classCursor) Cursor used when resizing the pane below the grip.
Default issb_down_arrow .

orientation (classOrientation) Orientation to use in stacking the panes. This
value can be eitherVertical (the default) orHorizontal .

refigureMode (classBoolean) A Boolean that specifies whether the Paned widget
should adjust its children. Default isTRUE.

rightCursor (classCursor) Cursor used when resizing the pane to the right of the
grip. Default issb_right_arrow .

upperCursor (classCursor) Cursor used when resizing the pane above the grip.
Default issb_up_arrow .

verticalBetweenCursor (classCursor) Cursor to use for the grip when changing
the boundary between two panes. Default issb_left_arrow .

verticalGripCursor (classCursor) Cursor to use for the grips when they are not
active. Default issb_v_double_arrow .

Paned supports the following constraint resources. They can be specified to the Paned wid-
get to indicate where a child widget should be positioned within the Paned widget.

allowResize (classBoolean) A Boolean that specifies whether to accept a child’s
request to resize. The default,FALSE, is to ignore such requests.

max (classmax) Maximum height for pane. Default is to allow unlimited height.

min (classmin) Minimum height for pane (in pixels). Default is 1.

preferredPaneSize (classPreferredPaneSize) Preferred size of pane. This
default is dependent on the application.

resizeToPreferred (classBoolean) A Boolean that specifies whether to resize
each pane to its preferred size when the Paned widget is resized. Default is
False .

showGrip (classShowGrip) A Boolean that specifies whether to show a grip for this
pane. Default isTrue .

skipAdjust (classBoolean) By default, this resource isFALSE, meaning that the
Paned widget will resize a pane automatically, whenever necessary. If this

462 X USER’S GUIDE: OPEN LOOK EDITION

I
resource isTRUE, the Paned widget will skip the adjustment of the pane. .SH
"Translations and Actions" The Paned widget has no action routines of its own,
as all actions are handled through the grips. The grips are each assigned a default
Translation table.

<Btn1Down>: GripAction(Start, UpLeftPane)
<Btn2Down>: GripAction(Start, ThisBorderOnly)
<Btn3Down>: GripAction(Start, LowRightPane)
<Btn1Motion>: GripAction(Move, UpLeftPane)
<Btn2Motion>: GripAction(Move, ThisBorderOnly)
<Btn3Motion>: GripAction(Move, LowRightPane)
Any<BtnUp>: GripAction(Commit)

The Paned widget interprets theGripAction as taking two arguments. The first argu-
ment may be any of the following:

StartUpLeftPane, ThisBorderOnly, LowRightPane).

MoveStart action that began this process. If these arguments are not passed, the behavior
is undefined.

Commit

I.10 Scrollbar
 The Scrollbar widget is a rectangular area that contains a slide region and a thumb (slide
bar). A Scrollbar can be used alone (to provide a graduated scale) or within a composite
widget (for example, a Viewport). A Scrollbar can be aligned either vertically or
horizontally.

When a Scrollbar is created, it is drawn with the thumb in a contrasting color. The thumb
is normally used to scroll client data and to give visual feedback on the percentage of the
client data that is visible.

I.10.1 Resources
You can set the dimensions of the Scrollbar two ways:

■ By using thewidth andheight resources, as you can for all widgets.

■ By using the Scrollbar resourceslength and thickness , which are independent
of the vertical or horizontal orientation.

The following new resources are associated with the Scrollbar widget:

foreground (classForeground) Thumb color.

length (classLength) Specifies the height for a vertical Scrollbar and the width for a
horizontal Scrollbar. Default is 1 (pixel).

minimumThumb (classMinimumThumb) Smallest size, in pixels, to which the thumb
can shrink. Default is 7.

orientation (classOrientation) Orientation of scrollbar. This value can be either
XtOrientVertical (the default) orXtOrientHorizontal . Not usually
set in resource files.

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 463

I
scrollDCursor (classCursor) Cursor fo r sc ro l l i ng down. De fau l t i s

XC_sb_down_arrow .

scrollHCursor (classCursor) Id le hor i zon ta l cu rsor . De fau l t i s
XC_sb_h_double_arrow .

scrollLCursor (classCursor) Cursor fo r sc ro l l i ng le f t . De fau l t i s
XC_sb_left_arrow .

scrollRCursor (classCursor) Cursor fo r sc ro l l i ng r igh t . De fau l t i s
XC_sb_right_arrow .

scrollUCursor (classCursor) Cursor fo r sc ro l l i ng up . De fau l t i s
XC_sb_up_arrow .

scrollVCursor (classCursor) Id le ve r t i ca l cu rsor . De fau l t i s
XC_sb_v_double_arrow .

shown (classShown) Percentage the thumb covers. Default is 0.0.

thickness (classThickness) Specifies the width for a vertical Scrollbar and the
height for a horizontal Scrollbar. Default is 14 (pixels).

thumb (classThumb) Thumb pixmap. Default isGrayPixmap .

topOfThumb (classTopOfThumb) Position on scroll bar. Default is 0.0.

I.10.2 Translations and Actions
The actions supported by the Scrollbar widget are:

StartScroll (value) The possible values areForward , Backward , or Contin-
uous . This must be the first action to begin a new movement.

NotifyScroll (value) The possible values areProportional orFullLength . If
the argument toStartScroll wasForward or Backward , Notify-
Scroll executes theXtNscrollProc callbacks and passes either the position
of the pointer if its argument isProportional or the full length of the scroll
bar if its argument isFullLength . If the argument toStartScroll was
Continuous , NotifyScroll returns without executing any callbacks.

EndScroll() This must be the last action after a movement is complete.

MoveThumb() Repositions the scroll bar thumb to the current pointer location.

NotifyThumb() Calls theXtNjumpProc callbacks and passes the relative position of
the pointer as a percentage of the scroll bar length.

The default bindings for Scrollbar are:

<Btn1Down>: StartScroll(Forward)
<Btn2Down>: StartScroll(Continuous) MoveThumb() NotifyThumb()
<Btn3Down>: StartScroll(Backward)
<Btn2Motion>: MoveThumb() NotifyThumb()
<BtnUp>: NotifyScroll(Proportional) EndScroll()

Examples of additional bindings you might wish to specify in a resource file are:

*Scrollbar.Translations: \
~<KeyPress>f: StartScroll(Forward) NotifyScroll(FullLength) EndScroll()

464 X USER’S GUIDE: OPEN LOOK EDITION

I
<KeyPress>b: StartScroll(Backward) NotifyScroll(FullLength) EndScroll()

I.11 Simple
 The Simple widget defines characteristics that are inherited by non-composite widgets
such as Labels, Lists, and Scrollbars. The Simple widget never appears in applications, but
it does define resources that are inherited by its subclasses.

I.11.1 Resources
The following resources are associated with the Simple widget:

cursor (classCursor) The cursor to use within the widget. Default is none.

insensitiveBorder (classInsensitive) The pixmap to use to indicate that the
Simple widget cannot receive input. Default isGray .

I.12 SimpleMenu
 The SimpleMenu widget is a container for menu entries. It is a direct subclass of Shell.
This is the only part of the menu that actually contains a window, since each menu pane is
a gadget (a widget without a window). SimpleMenu “glues” the individual menu entries
together into one menu.

I.12.1 Resources
The following new resources are used by the SimpleMenu widget:

backingStore (classBackingStore) Determines what type of backing store will be
used for the menu. Legal values for this resource areNotUseful , When-
Mapped, andAlways . These values are the backing-store integers defined in
<X11/X.h>. If default is specified (the default behavior) the server will use
whatever it thinks is appropriate. This resource is typically set by the application.

bottomMargin , topMargin (classVerticalMargins) The amount of space
between the top or bottom of the menu and the menu entry closest to that edge.
Default is 0.

cursor (classCursor) The shape of the mouse pointer whenever it is in this widget.

popupOnEntry (classPopupOnEntry) The XawPositionSimpleMenu action
pops up the SimpleMenu with its label (or first entry) directly under the pointer,
by default. To pop up the menu under another entry, the application can set this
resource to the menu entry thatshould be under the pointer when the menu is
popped up. This allows the application to offer the user a default menu entry that
can be selected without moving the pointer. Not usually settable by the user.

rowHeight (classRowHeight) If this resource is 0 (the default), then each menu entry
is given its desired height. If this resource has any other value, then all menu
entries are forced to berowHeight pixels high.

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 465

I
I.12.2 Translations and Actions
The following default translation bindings are used by the SimpleMenu widget:

<EnterWindow>: highlight()
<LeaveWindow>: unhighlight()
<BtnMotion>: highlight()
<BtnUp>: MenuPopdown() notify() unhighlight()

With these bindings, the user can pop down the menu without activating any of the call-
back functions, by releasing the pointer button when no menu item is highlighted.

The actions supported by SimpleMenu are listed below:

highlight() Highlights the menu entry that is currently under the pointer. Only an item
that is highlighted is notified when thenotify action is invoked. The look of a
highlighted entry is determined by the menu entry.

unhighlight() Unhighlights the currently highlighted menu item and returns it to its
normal look.

notify() Notifies the currently highlighted menu entry that it has been selected. It is the
responsibility of the menu entry to take the appropriate action.

MenuPopdown(menu) Built-in action to pop down a menu widget.

I.13 Sme
 The Sme object is the base class for all menu entries that are children of SimpleMenu.
While this object is intended mainly to be subclassed, it may be used in a menu to add
blank space between menu entries.

I.13.1 Resources
The Sme object defines no new resources.

I.14 SmeBSB
 The SmeBSB object is used to create a menu entry that contains a string, and optional bit-
maps in its left and right margins. The parent is expected to be SimpleMenu. Since each
menu entry is an independent object, the application is able to change the font, color,
height, and other attributes of the menu entries, on an entry-by-entry basis.

I.14.1 Resources
The following resources are used by the SmeBSB object:

font (classFont) Specifies the font used by the menu entry.

foreground (classForeground) Specifies the foreground color of the menu entry’s
window. This color is also used to render all 1’s inleftBitmap and
rightBitmap .

justify (classJustify) Specifies how the label is to be rendered between the left and
right margins when the space is wider than the actual text. When specifying the

466 X USER’S GUIDE: OPEN LOOK EDITION

I
justification from a resource file, the valuesleft , center , or right may be
used.

label (classLabel) Specifies the string to be displayed in the menu entry. The exact
location of this string within the bounds of the menu entry is controlled by the
resourcesleftMargin , rightMargin , vertSpace , andjustify .

leftBitmap (classLeftBitmap), rightBitmap (classRightBitmap) Specifies
a name of a bitmap to display in the left or right margin of the menu entry. All 1’s
in the bitmap are rendered in the foreground color of the SimpleMenu widget, and
all 0’s will be drawn in the background color of the SimpleMenu widget. The
programmer must ensure that the menu entry is tall enough and that the appro-
priate margin is wide enough to accept the bitmap. If care is not taken, the bitmap
might extend into either another menu entry or this entry’s label. This resource is
typically set by the application.

leftMargin , rightMargin (classHorizontalMargins) Specifies the amount of
space (in pixels) to leave between the edge of the menu entry and the label string.

vertSpace (classVertSpace) Specifies the amount of vertical padding to place
around the label of a menu entry. The label and bitmaps are always centered verti-
cally within the menu. Values for this resource are expressed as a percentage of
the font’s height. The default value (25) increases the default height to 125% of
the font’s height.

I.15 SmeLine
 The SmeLine object is used to add a horizontal line or menu separator to a SimpleMenu.
Since each menu entry is an independent object, the application is able to change the color,
height, and other attributes of the menu entries, on an entry-by-entry basis. This entry is not
selectable, and does not highlight when the pointer cursor is over it.

I.15.1 Resources
The following resources are used by the SmeLine object:

foreground (classForeground) The foreground color of the menu entry’s window.

lineWidth (classLineWidth) The width of the horizontal line to be displayed.

stipple (classStipple) If a bitmap is specified for this resource, the line will be stip-
pled through it. This allows the menu separator to be rendered as something more
exciting than just a line. For instance, if the application defines a stipple that is a
chain link, then menu separators will look like chains.

I.16 StripChart
 The StripChart widget is used to provide a real-time graphic chart of a single value. This
widget is used byxload to provide the load graph. It will read data from an application, and
update the chart at the interval specified byupdate .

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 467

I
I.16.1 Resources
The following resources are used by the StripChart widget:

height (classHeight) The height of the stripchart. Default is 120 pixels.

highlight (classForeground) The color that will be used to draw the scale lines on
the graph.

jumpScroll (classJumpScroll) When the graph reaches the right edge of the
window it must be scrolled to the left. This resource specifies the number of pixels
it will jump. Smooth scrolling can be achieved by setting this resource to 1.

minScale (classScale) The minimum scale for the graph. The number of divisions on
the graph will always be greater than or equal to this value. Default is 1.

update (classInterval) The number of seconds between graph updates. Each update
is represented on the graph as a 1-pixel-wide line. Everyupdate seconds, a new
graph point will be added to the right end of the StripChart. Default is 10.

width (classWidth) The width of the stripchart. Default is 120 pixels.

I.17 Text
 A Text widget is a window that provides a way for an application to display one or more
lines of text. The displayed text can reside in a file on disk or in a string in memory. An
option also lets an application display a vertical Scrollbar in the Text window, letting the
user scroll through the displayed text. Other options allow an application to let the user
modify the text in the window or search for a specific string.

 Three types of edit mode are available: .RS 3n

" Append-only mode lets the user enter text into the window, while read-only mode does
not. Text may be entered only if the insertion point is after the last character in the
window. Editable mode lets you place the cursor anywhere in the text and modify
the text at that position. The text cursor position can be modified by using the
keystrokes or pointer buttons defined by the event bindings. (See the section
“Translations and Actions” below.)

I.17.1 Resources
 The following resources are used by the Text widget:

autoFill (classAutoFill) A Boolean that specifies whether the Text widget will
automatically break a line when the user attempts to type into the right margin
Default isFalse .

bottomMargin (classMargin) Amount of space, in pixels, between the edge of the
window and the edge of the text within the window. Default is 2.

dataCompression If True (the default), theAsciiSrc will compress its data to the
minimum size required. This will happen either every time the text string is saved
or whenever the value of the string is queried.

468 X USER’S GUIDE: OPEN LOOK EDITION

I
displayCaret (classOutput) A Boolean that specifies whether to display the text

caret. Default isTrue .

displayPosition (classTextPosition) Character position of first line. Default is
0.

insertPosition (classTextPosition) Character position of caret. Default is 0.

leftMargin (classMargin) Left margin in pixels. Default is 2.

rightMargin (classMargin) Amount of space, in pixels, between the edge of the
window and the corresponding edge of the text within the window. Default is 2.

scrollHorizontal

scrollVertical Control the placement of scrollbars on the left and bottom edge of the
tex t w idge t . Poss ib le va lues a reXawtex tScro l lA lways ,
XawtextScrollWhenNeeded , andXawtextScrollNever (the default).
Not settable from a resource file.

topMargin (classMargin) Amount of space, in pixels, between the edge of the window
and the corresponding edge of the text within the window. Default is 2.

useStringInPlace If True , will disable the memory management provided by the
Text widget, updating thestring resource instead. Default isFalse .

I.17.2 Translations and Actions
 Many standard keyboard editing facilities are supported by the event bindings. The fol-
lowing actions are supported: l| l. Cursor MovementDelete

_

.TH Forward-characterDelete-next-character Backward-characterDelete-previous-charac-
ter Forward-wordDelete-next-word Backward-wordDelete-previous-word Forward-
paragraphDelete-selection Backward-paragraph Beginning-of-lineSelection End-of-line
Insert-selection Next-lineSelect-word Previous-lineSelect-all Next-pageSelect-start Previ-
ous-pageSelect-adjust Beginning-of-fileSelect-end End-of-fileExtend-start Scroll-one-
line-upExtend-adjust Scroll-one-line-downExtend-end New LineMiscellaneous Newline-
and-indentRedraw-display Newline-and-backupInsert-file NewlineInsert-char KillDis-
play-caret Kill-wordFocus-in Backward-kill-wordFocus-out Kill-selectionSearch Kill-to-
end-of-lineMultiply Kill-paragraphForm-paragraph Kill-to-end-of-paragraphTranspose-
characters No-op

_

$delete action deletes a text item. Thekill action deletes a text item and puts the item in
the kill buffer (X cut buffer 1).

$insert-selection action retrieves the value of a specified X selection or cut buffer, with fall-
back to alternative selections or cut buffers.

I.17.2.1 Cursor Movement Actions

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 469

I
forward-character()

backward-character() These actions move the insert point forward or backward
one character in the buffer. If the insert point is at the end (or beginning) of a line,
this action moves the insert point to the next (or previous) line.

forward-word()

backward-word() These actions move the insert point to the next or previous word
boundary. A word boundary is defined as a space, a tab, or a carriage return.

forward-paragraph()

backward-paragraph() These actions move the insert point to the next or previous
paragraph boundary. A paragraph boundary is defined as two carriage returns in a
row with only spaces or tabs between them.

beginning-of-line()

end-of-line() These actions move to the beginning or end of the current line. If the
insert point is already at the end or beginning of the line, no action is taken.

next-line()

previous-line() These actions move the insert point up or down one line. If the insert
point is currentlyn characters from the beginning of the line then it will ben char-
acters from the beginning of the next or previous line. Ifn is past the end of the
line, the insert point is placed at the end of the line.

next-page()

previous-page() These actions move the insert point up or down one page in the file.
One page is defined as the current height of the text widget. These actions always
place the insert point at the first character of the top line.

beginning-of-file()

end-of-file() These actions place the insert point at the beginning or end of the
current text buffer. The text widget is then scrolled the minimum amount neces-
sary to make the new insert point location visible.

scroll-one-line-up()

scroll-one-line-down() These actions scroll the current text field up or down by
one line. They do not move the insert point. Other than the scrollbars, this is the
only way that the insert point may be moved off of the visible text area. The
widget will be scrolled so that the insert point is back on the screen as soon as
some other action is executed.

I.17.2.2 Delete Actions

delete-next-character()

delete-previous-character() These actions remove the character immediately
after or before the insert point. If a carriage return is removed, the next line is
appended to the end of the current line.

470 X USER’S GUIDE: OPEN LOOK EDITION

I
delete-next-word()

delete-previous-word() These actions remove all characters between the insert
point location and the next word boundary. A word boundary is defined as a space,
a tab or a carriage return.

delete-selection() This action removes all characters in the current selection. The
selection can be set with the selection actions.

I.17.2.3 Selection Actions

select-word() This action selects the word in which the insert point is currently
located. If the insert point is between words, it will select the previous word.

select-all() This action selects the entire text buffer.

select-start() This action sets the insert point to the current pointer location, where
a selection then begins. If many of these selection actions occur quickly in succes-
sion then the selection count mechanism will be invoked.

select-adjust() This action allows a selection started with theselect-start
action to be modified, as described above.

select-end(name[,name,...]) This action ends a text selection that began with the
select-start action, and asserts ownership of the selection or selections
specified. Aname can be a selection (e.g., PRIMARY) or a cut buffer (e.g.,
CUT_BUFFER0). Note that case is important. If nonames are specified,
PRIMARY is asserted.

extend-start() This action finds the nearest end of the current selection, and moves
it to the current pointer location.

extend-adjust() This action allows a selection started with anextend-start
action to be modified.

extend-end(name[,name,...]) This action ends a text selection that began with the
extend-start action, and asserts ownership of the selection or selections
specified. Aname can be a selection (e.g., PRIMARY) or a cut buffer (e.g.,
CUT_BUFFER0). Note that case is important. If noname is given, PRIMARY is
asserted.

insert-selection(name[,name,...]) This action retrieves the value of the first (left-
most) named selection that exists or the cut buffer that is not empty. This action
then inserts it into the Text widget at the current insert point location. Aname can
be a selection (e.g., PRIMARY) or a cut buffer (e.g., CUT_BUFFER0). Note that
case is important.

I.17.2.4 New Line Actions

newline-and-indent() This action inserts a newline into the text and adds spaces to
that line to indent it to match the previous line. (Note: this action still has a few
bugs.)

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 471

I
newline-and-backup() This action inserts a newline into the textafter the insert

point.

newline() This action inserts a newline into the textbefore the insert point.

I.17.2.5 Kill Actions

kill-word()

backward-kill-word() These actions act exactly like thedelete-next-word
anddelete-previous-word actions, but they store the word that was killed
into the kill buffer (CUT_BUFFER_1).

kill-selection() This action deletes the current selection and stores the deleted text
into the kill buffer (CUT_BUFFER_1).

kill-to-end-of-line() This action deletes the entire line to the right of the insert
point, and stores the deleted text into the kill buffer (CUT_BUFFER_1).

kill-paragraph() This action deletes the current paragraph. If the insert point is
between paragraphs, it deletes the paragraph above the insert point, and stores the
deleted text into the kill buffer (CUT_BUFFER_1).

kill-to-end-of-paragraph() This action deletes everything between the current
insert point and the next paragraph boundary, and puts the deleted text into the kill
buffer (CUT_BUFFER_1).

I.17.2.6 Miscellaneous Actions

redraw-display() This action recomputes the location of all the text lines on the
display, scrolls the text to center vertically the line containing the insert point on
the screen, clears the entire screen, and then redisplays it.

insert-file([filename) This action activates the insert file popup. Thefile-
name option specifies the default filename to put in the filename buffer of the
popup. If nofilename is specified the buffer is empty at startup.

insert-char() This action may be attached only to a key event. It callsXLookup-
String to translate the event into a (rebindable) Latin-1 character (sequence)
and inserts that sequence into the text at the insert point position.

insert-string(string [,string ,...]) This action inserts eachstring into the text
at the insert point location. Anystring beginning with the characters “0x” and
containing only valid hexadecimal digits in the remainder is interpreted as a hexa-
decimal constant and the corresponding single character is inserted instead.

display-caret(state ,when) This action allows the insert point to be turned on and
off. Thestate argument specifies the desired state of the insert point. This value
may be any of the string values accepted for Boolean resources (e.g.,on , True ,
off , False , etc.). If no arguments are specified, the default value isTrue . The
when argument specifies, forEnterNotify or LeaveNotify events,
whether or not the focus field in the event is to be examined. If the second argu-
ment is not specified, or specified as something other thanalways , then if the

472 X USER’S GUIDE: OPEN LOOK EDITION

I
action is bound to anEnterNotify orLeaveNotify event, the action will be
taken only if the focus field isTrue . An augmented binding that might be useful
is:

*Text.Translations: #override \
<FocusIn>: display-caret(on) \n\
<FocusOut>: display-caret(off)

focus-in()

focus-out() These actions do not currently do anything.

search(direction ,[string) This action activates the search popup. Thedirec-
tion must be specified as eitherforward orbackward . The string is optional
and is used as an initial value for the “Search for:” string.

multiply(value) The multiply action allows the user to multiply the effects of many
of the text actions. Thus the following action sequence:

multiply(10) delete-next-word()

will delete 10 words. It does not matter whether these actions take place in one event or
many events. Using the default translations the key sequence Control-u, Control-d will
delete 4 characters. Multiply actions can be chained; thus,

multiply(5) multiply(5)

is the same as:

multiply(25)

If the stringreset is passed to the multiply action the effects of all previous multiplies are
removed and a beep is sent to the display.

form-paragraph() This action removes all the carriage returns from the current para-
graph and reinserts them so that each line is as long as possible, while still fitting
on the current screen. Lines are broken at word boundaries if at all possible. This
action currently works only on Text widgets that use ASCII text.

transpose-characters() This action will switch the positions of the character to
the left of the insert point and the character to the right of the insert point. The
insert point will then be advanced one character.

no-op([action) The no-op action makes no change to the text widget, and is used
mainly to override translations. This action takes one optional argument. If this
argument isRingBell then a beep is sent to the display.

I.17.2.7 Event Bindings

The default event bindings for the Text widget are:

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 473

I
char defaultTextTranslations[] = "\ Ctrl<Key>F: forward-character() \n\

Ctrl<Key>B: backward-character() \n\
Ctrl<Key>D: delete-next-character() \n\
Ctrl<Key>A: beginning-of-line() \n\
Ctrl<Key>E: end-of-line() \n\
Ctrl<Key>H: delete-previous-character() \n\
Ctrl<Key>J: newline-and-indent() \n\
Ctrl<Key>K: kill-to-end-of-line() \n\
Ctrl<Key>L: redraw-display() \n\
Ctrl<Key>M: newline() \n\
Ctrl<Key>N: next-line() \n\
Ctrl<Key>O: newline-and-backup() \n\
Ctrl<Key>P: previous-line() \n\
Ctrl<Key>V: next-page() \n\
Ctrl<Key>W: kill-selection() \n\
Ctrl<Key>Y: unkill() \n\
Ctrl<Key>Z: scroll-one-line-up() \n\
Meta<Key>F: forward-word() \n\
Meta<Key>B: backward-word() \n\
Meta<Key>I: insert-file() \n\
Meta<Key>K: kill-to-end-of-paragraph() \n\
Meta<Key>V: previous-page() \n\
Meta<Key>Y: stuff() \n\
Meta<Key>Z: scroll-one-line-down() \n\
:Meta<Key>d: delete-next-word() \n\
:Meta<Key>D: kill-word() \n\
:Meta<Key>h: delete-previous-word() \n\
:Meta<Key>H: backward-kill-word() \n\
:Meta<Key>\<: beginning-of-file() \n\
:Meta<Key>\>: end-of-file() \n\
:Meta<Key>]: forward-paragraph() \n\
:Meta<Key>[: backward-paragraph() \n\
~Shift Meta<Key>Delete: delete-previous-word() \n\
 Shift Meta<Key>Delete: backward-kill-word(|) \n\
~Shift Meta<Key>Backspace: delete-previous-word() \n\
 Shift Meta<Key>Backspace: backward-kill-word(|) \n\
<Key>Right: forward-character() \n\
<Key>Left: backward-character() \n\
<Key>Down: next-line() \n\
<Key>Up: previous-line() \n\
<Key>Delete: delete-previous-character() \n\
<Key>BackSpace: delete-previous-character() \n\
<Key>Linefeed: newline-and-indent() \n\
<Key>Return: newline() \n\ <Key>: insert-char() \n\
<FocusIn>: focus-in() \n\ <FocusOut>: focus-out() \n\
<Btn1Down>: select-start() \n\
<Btn1Motion>: extend-adjust() \n\
<Btn1Up>: extend-end(PRIMARY, CUT_BUFFER0) \n\
<Btn2Down>: insert-selection(PRIMARY, CUT_BUFFER0) \n\
<Btn3Down>: extend-start() \n\
<Btn3Motion>: extend-adjust() \n\
<Btn3Up>: extend-end(PRIMARY, CUT_BUFFER0)";

A user-supplied resource entry can use application-specific bindings, a subset of the sup-
plied default bindings, or both. The following is an example of a user-supplied resource
entry that uses a subset of the default bindings:

Xmh*Text.Translations: \
<Key>Right: forward-character() \n\
<Key>Left: backward-character() \n\
 Meta<Key>F: forward-word() \n\
 Meta<Key>B: backward-word() \n\

474 X USER’S GUIDE: OPEN LOOK EDITION

I
:Meta<Key>]: forward-paragraph() \n\
:Meta<Key>[: backward-paragraph() \n\
<Key>: insert-char()

An augmented binding that is useful with thexclipboard utility is:

*Text.Translations: #override \
Button1 <Btn2Down>: extend-end(CLIPBOARD)

The Text widget fully supports the X selection and cut buffer mechanisms. The following
actions can be used to specify button bindings that will cause Text to assert ownership of
one or more selections, to store the selected text into a cut buffer, and to retrieve the value
of a selection or cut buffer and insert it into the text value.

insert-selection (name[,name,...]) Retrieves the value of the first (left-most)
named selection that exists or the cut buffer that is not empty and inserts it into the
input stream. The specified name can be that of any selection (for example,
PRIMARY or SECONDARY) or a cut buffer (i.e., CUT_BUFFER0 through
CUT_BUFFER7). Note that case matters.

select-start() Unselects any previously selected text and begins selecting new text.

select-adjust()

extend-adjust() Continues selecting text from the previous start position.

start-extend() Begins extending the selection from the farthest (left or right) edge.

select-end (name[,name,...])

extend-end (name[,name,...]) Ends the text selection, asserts ownership of the speci-
fied selection(s), and stores the text in the specified cut buffer(s). The specified
name can be that of a selection (for example, PRIMARY or SECONDARY) or a
cut buffer (i.e., CUT_BUFFER0 through CUT_BUFFER7). Note that case is
significant. If CUT_BUFFER0 is listed, the cut buffers are rotated before storing
into buffer 0.

I.18 Toggle
 The Toggle widget is an area, often rectangular, containing a text or pixmap label. This
widget maintains a Boolean state (e.g. True/False or On/Off) and changes state whenever
it is selected. When the pointer is on the button, the button border is highlighted to indicate
that the button is ready for selection. When pointer button 1 is pressed and released, the
Toggle widget indicates that it has changed state by reversing its foreground and back-
ground colors, and itsnotify action is invoked. If the pointer is moved out of the widget
before the button is released, the widget reverts to its normal foreground and background
colors, and releasing the button has no effect. This behavior allows the user to cancel an
action.

Toggle buttons may also be part of a radio group. A radio group is a list of Toggle buttons
in which no more than one Toggle may be set at any time. A radio group is identified by
the widget ID of any one of its members.

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 475

I
The difference between a Command widget and a Toggle widget is that a Command wid-
get typically invokes an application function when it is invoked. A Toggle widget simply
changes its state (and presumably the state of some application data.) Toggles are thus use-
ful for mailing configuration settings, which can then be applied by an associated
Command widget.

I.18.1 Resources
The following new resources are associated with the Toggle widget:

radioGroup (classWidget) Specifies another Toggle widget that is in the radio group
to which this Toggle widget should be added. A radio group is a group of Toggle
widgets, only one of which may be set at a time. If this value isNULL (the default),
then the Toggle is not part of any radio group and can change state without
affecting any other Toggle widgets. If the widget specified in this resource is not
already in a radio group, then a new radio group is created containing these two
Toggle widgets. No Toggle widget can be in multiple radio groups.

state (classState) Specifies whether the Toggle widget is set (True) or unset
(False). The default isFalse .

I.18.2 Translations and Actions
The following default translation bindings are used by the Toggle widget:

<EnterWindow>: highlight(Always)
<LeaveWindow>: unhighlight()
<Btn1Down>,<Btn1Up>: toggle() notify()

The actions supported by Toggle are listed below:

highlight (condition) Displays the internal highlight border in the color (fore-
ground or background) that contrasts with the interior color of the Toggle
widget. The conditionsWhenUnset andAlways are understood by this action
procedure. If no argument is passed,WhenUnset is assumed.

unhighlight() Displays the internal highlight border in the color (foreground or
background) that matches the interior color of the Toggle widget.

set() Enters the set state, in whichnotify is possible, and displays the interior of the
button in the foreground color. The label or pixmap is displayed in the background
color.

unset() Cancels the set state and displays the interior of the button, including the high-
light border, in the background color. The label or pixmap is displayed in the
foreground color.

toggle() Changes the current state of the Toggle widget, setting the widget if it was
previously unset, and unsetting it if it was previously set. If the widget is to be set
and is in a radio group, then this action procedure may unset another Toggle
widget, causing all routines on its callback list to be invoked. The callback
routines for the Toggle to be unset are called before those for the Toggle to be set.

reset() Cancels anyset or highlight action and displays the interior of the button
in the background color, with the label displayed in the foreground color.

476 X USER’S GUIDE: OPEN LOOK EDITION

I
I.18.3 Radio Groups
Two types of radio groups are typically desired by applications. In the first type, the default
translations for the Toggle widget implement a “zero, or one of many” radio group. This
means that no more than one button can be active, but no buttons need to be active.

The other type of radio group is “one of many” and has the more restricted policy that
exactly one radio button will always be active. Toggle widgets can be used to provide this
interface by modifying the translation table of each Toggle in the group:

<EnterWindow>: highlight(Always)
<LeaveWindow>: unhighlight()
<Btn1Down>,<Btn1Up>: set() notify()

This translation table does not allow any Toggle to be unset unless another Toggle has been
set.

I.19 Viewport
The Viewport widget consists of a frame window, one or two Scrollbars, and an inner win-
dow (usually containing a child widget). The size of the frame window is determined by
the viewing size of the data that is to be displayed and the dimensions to which the View-
port is created. The inner window is the full size of the data that is to be displayed and is
clipped by the frame window. The Viewport widget controls the scrolling of the data
directly.

When the geometry of the frame window is equal in size to the inner window, or when the
data does not require scrolling, the Viewport widget automatically removes any scroll bars.
The forceBars resource causes the Viewport widget to display any scroll bar
permanently.

I.19.1 Resources
The following new resources are associated with the Viewport widget:

allowHoriz (classBoolean) Flag to allow horizontal scroll bars. Default value is
FALSE. Setting this resource toTRUE allows a Viewport child to increase in size
horizontally.

allowVert (classBoolean) Flag to allow vertical scroll bars. Default value isFALSE.
Setting this resource toTRUE allows a Viewport child to increase in size
vertically.

forceBars (classBoolean) Flag to force display of scroll bars. Default value is
FALSE. Normally, when the geometry of the frame window is equal in size to the
inner window, or when the data does not require scrolling, Viewport automatically
removes any scroll bars. SettingforceBars to TRUE causes the Viewport
widget to display any scroll bar permanently.

useBottom (classBoolean) Flag to indicate bottom/top bars. Default isFALSE,
meaning to put scrollbars on top.

APPENDIX I: X USER’S GUIDE: OPEN LOOK EDITION 477

I
useRight (classBoolean) Flag to indicate right/left bars. Default isFALSE, meaning

to put scrollbars on the left.

478 X USER’S GUIDE: OPEN LOOK EDITION

I

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 479

J

Appendix JX USER’S GUIDE: OPEN LOOK EDITION

APPENDIX J

OPEN LOOK XVIEW
Toolkit Resources

This appendix describes the X resources used by XView toolkit, Sun’s toolkit for produc-
ing clients that conform to theOPEN LOOK GUI. The XView toolkit is different from the
Intrinsics-based toolkits (OLIT, Athena, and Motif) in that it doesnot use a widget hierar-
chy for assigning resources. This makes it impractical to use Resources to change the third
button in the second window from skyblue to flaming-chartreuse, but we think the design-
ers would consider that a blessing. Most of the resources are in fact concerned with the
overall behavior of a client rather than with little details of one aspect of the appearance of
a client.

J.1 The XView Resources
The following information is primarily obtained from Sun’s documentation on the use of
the XView toolkit. The sectionArgumentsappears only if there are corresponding com-
mand line arguments. The sectionsType andDefault describe the type of argument that the
option accepts. This is followed by a section describing the effect of setting the resource.

J.1.1 Window.Scale
J.1.1.1 Argument(s):

-Wx, or -scale

J.1.1.2 Type:

“small”, “medium”, “large”, or “extra_large”

J.1.1.3 Default:

medium

480 X USER’S GUIDE: OPEN LOOK EDITION

J
Sets the initial scale of the application (larger or smaller). small is 10 pixels, medium is 12
pixels, large is 14 pixels and extra_Large is 19 pixels. The font.name resource will override
the scale.

J.1.2 Font.Name
J.1.2.1 Argument(s):

-Wt, -fn, or -font

J.1.2.2 Type:

string

J.1.2.3 Default:

lucida-sans

Sets the name of the font used for the application (not control areas). To find out what fonts
are available, use the xlsfonts command (see reference manual page for more information).
It is also possible to see the available fonts for the Open Windows server with thetext demo
program in the demo Navigator. Start this by choosing “demos...” from the default root
menu. If the font you specify cannot be found, you see will an error message such as:

XView warning:
Cannot load font ’galant-24’ (Font package)
XView warning:
Attempting to load font ’b&h-lucida-medium-r-normal-sans-*-120-*-*-*-*-*-

*’ instead (Font package)

J.1.3 Window.Width and Window.Height
J.1.3.1 Argument(s):

-Ws, or -size

J.1.3.2 Type:

integer integer

J.1.3.3 Default:

depends

Sets the width and height of the application’s base frame. The values are in pixels.

J.1.4 Window.X and Window.Y
J.1.4.1 Argument(s):

-Wp, or -position

J.1.4.2 Type:

integer

J.1.4.3 Default:

depends on window manager

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 481

J
Sets the initial position of the application’s base frame in pixels. See Chapter 3,Opening
Additional Windows, for information on specifying window geometry.

J.1.4.4 Argument(s):

-WG, or -geometry

J.1.4.5 Type:

X Geometry specification.

J.1.4.6 Default:

depends on window manager

This sets both the size and the placement of the application’s base frame. This option has
priority over the -size and -position arguments. See Chapter 3,Opening Additional Win-
dows, for information on the format and meaning of the X Geometry string.

J.1.5 Icon.X Icon.Y
J.1.5.1 Argument(s):

-WP, -icon_position

J.1.5.2 Type:

integer integer

J.1.5.3 Default:

depends on window manager

Sets the position of the application’s icon in pixels. Uses the same semantics as -position
for base frames.

J.1.6 Window.Header
J.1.6.1 Argument(s):

-Wl, -label, or -title

J.1.6.2 Type:

string

J.1.6.3 Default:

depends on the application

Sets a default label for the base frame’s header.However, the application can overwrite this
setting and display its own header.

J.1.7 Window.Iconic
J.1.7.1 Argument(s):

-Wi, and +Wi

482 X USER’S GUIDE: OPEN LOOK EDITION

J
J.1.7.2 Type:

boolean

J.1.7.3 Default:

+Wi

These options control how an application will come up, open or closed (iconified).

J.1.8 Window.Color.Foreground
J.1.8.1 Argument(s):

-Wf, or -foreground_color

J.1.8.2 Type:

integer integer integer

J.1.8.3 Default:

0 0 0

See description in -Wb below.

J.1.9 Window.Color.Background
J.1.9.1 Argument(s):

-Wb, or -background

J.1.9.2 Type:

integer integer integer

J.1.9.3 Default:

255 255 255

These options allow the user to specify the foreground color (e.g., the color of the text in a
textsw), or the background color (e.g., the color that the text is painted on) of an applica-
tion. The three values should be integers between 0 and 255. They specify the amount of
red, green and blue that is in the color.See -fg and -bg below for information on similar
functions.

J.1.10 Window.Color.Foreground
J.1.10.1 Argument(s):

-fg, or -foreground

J.1.10.2 Type:

string (color name, or hexadecimal color specification)

J.1.10.3 Default:

black

See description in -bg below.

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 483

J
J.1.11 Window.Color.Background
J.1.11.1 Argument(s):

-bg, or -background

J.1.11.2 Type:

string (color name, or hexadecimal color specification)

J.1.11.3 Default:

white

These options are similar to the -Wf and -Wb options, except that they take a color argu-
ment in the form of a predefined color name (lavender, grey, goldenrod, etc.) from
$OPENWINHOME/lib/rbg.txt, or a hexadecimal representation. The hexadecimal repre-
sentation is of the form pound sign (#) followed by the hexadecimal representation of the
red, green and blue aspects of the color.

J.1.12 Icon.Pixmap
J.1.12.1 Argument(s):

-WI, or -icon_image

J.1.12.2 Type:

string

J.1.12.3 Default:

depends on application

Sets the default filename for the icon’s image.However, the application can overwrite this
setting and display its own icon image. The file must be in XView icon format. The pro-
gram iconedit will allow one to create an image in the icon format. Several icons have been
provided in the directory $OPENWINHOME/include/images. By convention, icon format
files end with the suffix “.icon”.

J.1.13 Icon.Footer
J.1.13.1 Argument(s):

-WL, or -icon_label

J.1.13.2 Type:

string

J.1.13.3 Default:

depends on application

Sets a default label for the base frame’s icon. However, the application can overwrite this
setting and display its own icon label.

484 X USER’S GUIDE: OPEN LOOK EDITION

J
J.1.14 Icon.Font.Name
J.1.14.1 Argument(s):

-WT, or -icon_font

J.1.14.2 Type:

string

J.1.14.3 Default:

depends

Sets the name of the font used for the application’s icon. To find out what fonts are avail-
able, use xlsfonts (see reference manual page for more information).

J.1.15 Window.Synchronous
J.1.15.1 Argument(s):

-sync or -synchronous, and +sync or +synchronous

J.1.15.2 Type:

boolean

J.1.15.3 Default:

+synchronous

These options allow you to make the connection that the application has with the X11
server either synchronous (-sync) or asynchronous (+sync).

J.1.16 Server.Name
J.1.16.1 Argument(s):

-Wr, or -display

J.1.16.2 Type:

string (host:display{.screen})

J.1.16.3 Default:

taken from the DISPLAY environment variable

Sets the name of the X11 server on which to connect. host is the name or address of the
machine on whose server you have permission to display. display is a number correspond-
ing to the server on which to display for that machine, and screen corresponds to which
screen for the server. See reference manual page on xhost for more details on adding to per-
missions list.

J.1.17 Window.Mono.DisableRetained
J.1.17.1 Argument(s):

-Wdr, or -disable_retained

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 485

J
J.1.17.2 Type:

boolean

J.1.17.3 Default:

Not Retained on color systems, and Retained on monochrome systems

This option is useful for applications running on a monochrome display, where server
memory is at a minimum. For performance reasons, monochrome windows are by default
retained by the server. Using retained windows will use more memory in the X11 server;
however, it also speeds up repainting when the window is covered and uncovered by other
windows. When true, monochrome windows are not retained, thus saving server memory.

J.1.18 Fullscreen.Debug
J.1.18.1 Argument(s):

-Wfsdb, or -fullscreendebug

J.1.18.2 Type:

boolean

J.1.18.3 Default:

FALSE

Enables/disables fullscreen debugging mode during which XGrabs (XGrabServer(),
XGrabKeyboard(), XGrabPointer()) are not done. When using FULLSCREEN, the X11
server will be grabbed which prevents other windows on the server from responding until
the grab has been released by the one window which initiated the grab. Refer to the Appen-
dix F in the XView Reference Manual: Converting SunView Applications for further
details.

J.1.19 Fullscreen.Debugserver
J.1.19.1 Argument(s):

-Wfsdbs, or -fullscreendebugserver

J.1.19.2 Type:

boolean

J.1.19.3 Default:

FALSE

Enables/disables server grabbing (XGrabServer()) that is done via the fullscreen package.
Refer to Appendix F in theXView Reference Manual: Converting SunView Applications
for further details.

J.1.20 Fullscreen.Debugkbd
J.1.20.1 Argument(s):

-Wfsdbk, or -fullscreendebugkbd

486 X USER’S GUIDE: OPEN LOOK EDITION

J
J.1.20.2 Type:

boolean

J.1.20.3 Default:

FALSE

Enables/disables keyboard grabbing (XGrabKeyboard()) that is done via the fullscreen
package. Refer to Appendix F in theXView Reference Manual: Converting SunView Appli-
cations for further details.

J.1.21 Fullscreen.Debugptr
J.1.21.1 Argument(s):

-Wfsdbp, or -fullscreendebugptr

J.1.21.2 Type:

boolean

J.1.21.3 Default:

FALSE

Enables/disables pointer grabbing (XGrabPointer()) that is done via the fullscreen pack-
age. Refer to Appendix F in theXView Reference Manual: Converting SunView
Applications for further details.

J.1.22 Window.ReverseVideo
J.1.22.1 Argument(s)

-rv (or -reverse), and +rv (or +reverse)

J.1.22.2 Type:

boolean

J.1.22.3 Default:

False

These options control whether the foreground and background colors of the application
will be reversed. If True, the foreground and background colors will be swapped. The -rv
flag will set this to True, while the +rv will set it to False. This is really only useful on
monochrome displays.

J.1.23 window.synchronous, +sync -sync
J.1.23.1 Values:

True, False (False)

Useful when debugging or tracking down a problem since the error codes emitted from
Xlib will correspond to the immediate request made. Running in a synchronous mode will
cause the application to run significantly slower.

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 487

J
J.1.24 mouse.modifier.button2
J.1.24.1 Values:

Shift, Ctrl, any valid modifier keysym (Shift)

When using a mouse with less than three buttons, this resource gets an equivalent mapping
for the second button which is the ADJUST button on a three button mouse. For more
information on keysyms, see the xmodmap reference manual page, Xlib documentation,
and the include file $OPENWINHOME/include/X11/Xkeymap.h.

J.1.25 mouse.modifier.button3
J.1.25.1 Values:

Shift, Ctrl, any valid modifier keysym (Ctrl)

When using a mouse with less than three buttons, this resource gets an equivalent mapping
for the third button which is the MENU button on a three button mouse. For more informa-
tion on keysyms, see the xmodmap reference manual page, Xlib documentation, and the
include file $OPENWINHOME/include/X11/Xkeymap.h.

J.1.26 OpenWindows.beep (Props)
J.1.26.1 Values:

never, notices, always (always)

When the value is notices, the audible bell will ring only when a notice pops up. When the
value is never, the audible bell will never ring. When the value is always, the audible bell
will always ring when the bell function is called by a program.

J.1.27 alarm.visible
J.1.27.1 Values:

True, False (True)

When ringing the bell in an XView program, flash the window as well to warn the user.

DefaultOpenWindows.windowColor (Props)

J.1.27.2 Values:

any valid X11 color specification (for example, #cccccc produces 80% grey)

Specify the base color for control areas for 3-D look. Takes hexadecimal representation.
Three other colors used for shading and highlighting are calculated based upon the value
of the specified control color. The actual calculated values are done by the OLGX library
to provide a consistent color calculation between XView and OLWM. The desktop prop-
erties program allows a full range of customization and previews what the chosen 3-D look
will look like. Does not apply to monochrome displays.

J.1.28 OpenWindows.workspaceColor (Props)
J.1.28.1 Values:

any valid X11 color specification (#cccccc-80% grey)

488 X USER’S GUIDE: OPEN LOOK EDITION

J
Specifies the color for the root window and the background color for icons that blend into
the desktop.

J.1.29 xview.icccmcompliant
J.1.29.1 Values:

True, False (True)

When False, tell XView to set window manager hints in a way that was used before the
ICCCM was adopted. Useful for window managers that are released before X11R4. Not
needed with the Open Look Window Manager provided with Open Windows.

J.1.30 OpenWindows.3DLook.Color
J.1.30.1 Values:

True, False (True on all but monochrome screens)

When False, do not use the 3-D look on a color or grayscale screen.

J.1.31 OpenWindows.dragRightDistance (Props)
J.1.31.1 Values:

N (100)

Used by menus to determine when a pullright submenu would display when dragging over
the menu item near a submenu. N is an integer greater than 0. A reasonable value might
start at 20 and go to 200 or so. May need to try different values to see what feels right to
each person.

J.1.32 Selection.Timeout
J.1.32.1 Values:

N (3)

Selection timeout value. N indicates the number of seconds that a requestor or a selection
owner waits for a response.

J.1.33 OpenWindows.MouseChordMenu
J.1.33.1 Values:

True, False (False)

Turns on the mouse chording mechanism. Mouse chording was implemented to make
XView work with two button mice. Holding the SELECT and the ADJUST buttons
together will act as MENU button.

J.1.34 OpenWindows.MouseChordTimeout
J.1.34.1 Values:

N (100)

Mouse chording time-out value. N is in micro-seconds.

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 489

J
J.1.35 OpenWindows.SelectDisplaysMenu (Props)
J.1.35.1 Values:

True, False (False)

When True, the SELECT button (usually left mouse) will display the menu as well as the

MENU button (usually right mouse).

J.1.36 OpenWindows.popupJumpCursor (Props)
J.1.36.1 Values:

True, False (False)

When False, do not warp the mouse to the notice when it appears.

J.1.37 notice.beepCount
J.1.37.1 Values:

N (1)

Where N is an integer to specify how many times to ring the bell when a notice appears.
Ringing the bell can consist of either an audible beep and/or a visual flash.

J.1.38 OpenWindows.scrollbarPlacement (Props)
J.1.38.1 Values:

Left, Right (Right)

When set to Left, put all scrollbars on the lefthand side of the window or object.

J.1.39 OpenWindows.multiClickTimeout (Props)
J.1.39.1 Values:

N (4)

Where N is an integer greater than 2. Set the number of tenths of a second between clicks
for a multi-click. A click is button-down, button-up pair.

J.1.40 text.delimiterChars
J.1.40.1 Values:

string(‘\011!\”#$%&\’()*+,./:;<=>?@[\\]^_`{|}~’)

This resource allows the user to select the delimiter characters that are used when doing
word level selections in the XView package. It was added because of the needs of the inter-
national marketplace, and it allows the user to define the local delimiters for the character
set that is being used with the current keyboard and Sun workstation.

This resource is provided as a bridge until automatic selection of these characters becomes
available.

490 X USER’S GUIDE: OPEN LOOK EDITION

J
Note that the octal characters can be scrambled by Xrm during a rewrite of the value of
text.delimiter.Chars. Xrm interprets the text.delimiterChar string when it is loaded. Specif-
ically it will decode the backslashed portions of the string and convert them to octal
representations. When this is passed to the client application, the logic will function cor-
rectly. However, this misbehavior of Xrm causes the string to be stored incorrectly if the
user saves the.Xdefaults file using the Xrm content of the string. The specific problem(s)
that occur are the stripping of the backslash characters and the expansion of the tab charac-
ter (“\t”).

To correct this problem, one can put the text.delimiterChar entry into an.Xdefaults file that
will not be overwritten when saving the workspace properties (for example, a system wide
defaults file). Or a copy of the text.delimiterChar entry can be inserted after.Xdefaults file
saves.

J.1.41 scrollbar.jumpCursor (Props)
J.1.41.1 Values:

True, False (True)

When False, the scrollbar will not move the mouse pointer when scrolling.

J.1.42 scrollbar.repeatDelay
J.1.42.1 Values:

N (100)

Where N is some integer greater than 2. Specifies the time in milliseconds when a click
becomes a repeated action.

J.1.43 scrollbar.pageInterval
J.1.43.1 Values:

N (100)

Where N is some integer greater than 2. Specifies the time in milliseconds between repeats
of a single page scroll.

J.1.44 scrollbar.lineInterval
J.1.44.1 Values:

N (1)

Where N is some integer greater than 0. Specifies the time in milliseconds between repeats
of a single line scroll. How long to pause scrolling when holding down the SELECT button
on the scrollbar elevator. Scrollbar sets up a timer routine for repeats.

J.1.45 keyboard.deleteChar
J.1.45.1 Values:

C (177 = octal for Delete)

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 491

J
Where C is some character either typed into an editor or specified with an octal equivalent.
Specifies the delete character. This resource applies to text windows only and not to panel
text items. This would work in either cmdtool or textedit or the compose window of
mailtool.

J.1.46 keyboard.deleteWord
J.1.46.1 Values:

C (27 = octal for ^W)

Where C is some character either typed into an editor or specified with an octal equivalent.
Specifies the delete word character. This resource applies to text windows only and not to
panel text items. This would work in either cmdtool or textedit or the compose window of
mailtool.

J.1.47 keyboard.deleteLine
J.1.47.1 Values:

C

Where C is some character either typed into an editor or specified with an octal equivalent.
Specifies the delete line character. This resource applies to text windows only and not to
panel text items. This would work in either cmdtool or textedit or the compose window of
mailtool.

J.1.48 text.maxDocumentSize
J.1.48.1 Values:

N (2000)

Where N specifies the bytes used in memory before a text file is saved to a file on disk.
Once this limit is exceeded, the text package will send a notice to the user to tell them that
no more insertions are possible. If the file being edited is saved to a file, or it is a disk file
being edited, then the limit does not apply.

J.1.49 text.retained
J.1.49.1 Values:

True, False (False)

If True, retain text windows with server backing store.

J.1.50 text.extrasMenuFilename
J.1.50.1 Values:

filename (/usr/lib/.text_extras_menu)

Where filename is an absolute location to a file. Can also be set via environment variable
EXTRASMENU. This file is used for the text package’s Extras menu. The commands
specified in the extras menu are applied to the contents of the current selection in the textsw
window and then it inserts the results at the current insertion point.

492 X USER’S GUIDE: OPEN LOOK EDITION

J
J.1.51 text.enableScrollbar
J.1.51.1 Values:

True, False (True)

When False, do not put a scrollbar on the text window.

J.1.52 text.againLimit
J.1.52.1 Values:

N (1)

Where N is an integer between 0 and 500. Number of operations the “again history”
remembers for a textsw.

J.1.53 text.autoIndent
J.1.53.1 Values:

True, False (False)

When True, begin the next line at the same indentation as the previous line as typing in
text.

J.1.54 text.autoScrollBy
J.1.54.1 Values:

N (1)

Where N is an integer between 0 and 100. Specifies the number of lines to scroll when
type-in moves insertion point below the view.

J.1.55 text.confirmOverwrite
J.1.55.1 Values:

True, False (True)

When False, do not give user confirmation if a save will overwrite an existing file.

J.1.56 text.displayControlChars
J.1.56.1 Values:

True, False (True)

When False, use an up arrow plus a letter to display the control character instead of the
character that is available for the current font.

J.1.57 text.undoLimit
J.1.57.1 Values:

N (50 maximum of 500)

Where N is an integer between 0 and 500. How many operations to save in the undo history
log. These operations will be undone when you press the “Undo” key in the text window.

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 493

J
J.1.58 text.insertMakesCaretVisible
J.1.58.1 Values:

If_auto_scroll (Always)

Controls whether insertion causes repositioning to make inserted text visible.

J.1.59 text.lineBreak
J.1.59.1 Values:

Clip, Wrap_char, Wrap_word (Wrap_word)

Determines how the textsw treats file lines when they are too big to fit on one display line.

J.1.60 text.margin.bottom
J.1.60.1 Values:

N (0)

Where N is an integer between -1 and 50. Specifies the minimum number of lines to main-
tain between insertion point and bottom of view. A value of -1 turns auto scrolling off.

J.1.61 mouse.multiclick.space
J.1.61.1 Values:

N (4)

Where N is an integer between 2 and 500. Specifies the maximum number of pixels
between successive mouse clicks to still have the clicks considered as a multi-click event.

J.1.62 text.storeChangesFile
J.1.62.1 Values:

True, False (True)

When False, do not change the name of the current file being edited to the name of the file
that is stored. The name of the current file is reflected in the titlebar of the textedit frame.

J.1.63 text.margin.top
J.1.63.1 Values:

N (2)

Where N is an integer between -1 and 50. Specifies the minimum number of lines to main-
tain between the start of the selection and the top of the view. A value of -1 means defeat
normal actions.

J.1.64 text.margin.left
J.1.64.1 Values:

N (8)

494 X USER’S GUIDE: OPEN LOOK EDITION

J
Where N is an integer between 0 and 2000. Specifies the margin in pixels that the text
should maintain between the left hand border of the window and the first character on each
line.

J.1.65 text.margin.right
J.1.65.1 Values:

N (0)

Where N is an integer between 0 and 2000. Specifies the margin in pixels that the text
should maintain between the right hand border of the window and the last character on each
line.

J.1.66 text.tabWidth
J.1.66.1 Values:

N (8)

Where N is an integer between 0 and 50. Specifies the width in characters of the tab
character.

J.1.67 term.boldStyle
J.1.67.1 Values:

None, Offset_X, Offset_Y, Offset_X_and_Y, Offset_XY, Offset_X_and_XY,
Offset_Y_and_XY, Offset_X_and_Y_and_XY, Invert (Invert)

Specify the text emboldening style for a terminal based window.

J.1.68 term.inverseStyle
J.1.68.1 Values:

Enable, Disable, Same_as_bold (Enable)

Specify the text inverting style for a terminal based window.

J.1.69 term.underlineStyle
J.1.69.1 Values:

Enable, Disable, Same_as_bold (Enable)

Specify the text underlining style for a terminal based window.

J.1.70 term.useAlternateTtyswrc
J.1.70.1 Values:

True, False (True)

When True, and a $HOME/.ttyswrc is not found, look for an alternate ttyswrc file. When
False, do not look for an alternate file is one is not found in the home directory, $HOME/
.ttyswrc.

APPENDIX J: X USER’S GUIDE: OPEN LOOK EDITION 495

J
J.1.71 term.alternateTtyswrc
J.1.71.1 Values:

filename ($XVIEWHOME/lib/.ttyswrc)

Where filename specifies a complete filename and absolute path of an alternate ttyswrc
file. This is only used if a.ttyswrc file is not found in $HOME/.ttyswrc and term.useAlter-
nateTtyswrc is True.

J.1.72 term.enableEdit
J.1.72.1 Values:

True, False (True)

When False, do not keep an edit log of what has been typed into the term window. This is
set to false automatically when switching from a scrollable term to one that is not
scrollable.

J.2 Internationalized Command Line Resource
Arguments

The following command line arguments are relevant to internationalization. Locale refers
to the language and cultural conventions used in a program. Locale setting is the method
by which the language and cultural environment of a system is set. Locale setting affects
the display and manipulation of language-dependent features.

J.2.1 basicLocale
J.2.1.1 Argument(s):

-lc_basiclocale

J.2.1.2 Type:

string

J.2.1.3 Default:

"C"

Specifies the basic locale category, which sets the country of the user interface.

J.2.2 displaylang
J.2.2.1 Argument(s):

-lc_displaylang

J.2.2.2 Type:

string

J.2.2.3 Default:

“C”

496 X USER’S GUIDE: OPEN LOOK EDITION

J
Specifies the displaylanguagelocale category, sets the language in which labels, messages,
menu items, and help text are displayed.

J.2.3 inputLang
J.2.3.1 Argument(s):

-lc_inputlang

J.2.3.2 Type:

string

J.2.3.3 Default:

“C”

Specifies the inputlanguagelocale category, sets the language used for keyboard input.

J.2.4 numeric
J.2.4.1 Argument(s):

-lc_numeric

J.2.4.2 Type:

string

J.2.4.3 Default:

“C”

Specifies the numeric locale category, which defines the language used to format numeric
quantities.

J.2.5 timeFormat
J.2.5.1 Argument(s):

-lc_timeformat

J.2.5.2 Type:

string

J.2.5.3 Default:

“C”

Specifies the time format locale category, which defines the language used to format time
and date.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX K: X USER’S GUIDE: OPEN LOOK EDITION 497

K

Appendix KX USER’S GUIDE: OPEN LOOK EDITION

APPENDIX K

OPEN LOOK Mouseless
Keyboard Summary

The OPEN LOOK specification suggests that implementations should provide a mode for
mouseless operations, for those most disposed to use a keyboard for everything. While one
wonders what such people will do when computers need to speak and provide video, there
is ample precedent for such “mouseless operations”.—it wasn’t that long ago that the aver-
age MIS Manager didn’t even know that some computershad mice. Well, anyway, the
OPEN LOOK GUI provides for mouseless work by defining a series of tags and assigning
key values to them. For example, the tag ACTION_CUT is used to Cut the selected
objects. On OpenWindows, it is initially mapped to x+Meta,L10”, which means that either
pressing the L10 key, or holding the “Meta” key while pressing “x”, will cut the current
selection. And, you can change this by setting the X Resource named “Cut” to some other
value.

K.1 AT&T Mouseless Operations
The AT&T mouseless operations are not documented with their resources. Instead, the
AT&T-OL version of theproperties editor allows you to change all the common mouseless
operation key combinations, and this has already been documented. For this reason, the
AT&T-OL mouseless keys are not listed here; please refer to the AT&T documentation for
this information.

498 X USER’S GUIDE: OPEN LOOK EDITION

K K.2 OpenWindows Mouseless Operations
The following table lists the Sun mouseless mode operations; most of the names of the
actions are self-explanatory.

Example K-1. OpenWindows Mouseless Keys

OPEN LOOK Name

OpenWindows
Resource Name
(OpenWindows.Keybo
ardCommand.)

Default Binding

ACTION_ADJUST Adjust Insert+Alt

ACTION_AGAIN Again a+Meta,a+Ctrl+Meta,L2

ACTION_COPY Copy c+Meta,L6

ACTION_COPY_THEN_PASTE CopyThenPaste p+Meta

ACTION_CUT Cut x+Meta,L10

ACTION_DATA_END DataEnd End+Ctrl,R13+Ctrl

ACTION_DATA_END DataEnd End,R13,Return+Ctrl,End+Shi
ft

ACTION_DATA_START DataStart Home+Ctrl,R7+Ctrl

ACTION_DATA_START DataStart Home,R7,Return+Shift+Ctrl,H
ome+Shift

ACTION_DEFAULT_ACTION DefaultAction Return+Meta

ACTION_DOWN Down Down

ACTION_DOWN Down n+Ctrl,P+Ctrl,Down,R14,Dow
n+Shift

ACTION_EMPTY Empty e+Meta,e+Ctrl+Meta

ACTION_ERASE_CHAR_BACKW
ARD

EraseCharBackward Delete,BackSpace

ACTION_ERASE_CHAR_FORWA
RD

EraseCharForward Delete+Shift,BackSpace+Shift

ACTION_ERASE_CHAR_FORWA
RD

EraseCharForward Delete+Shift,BackSpace+Shift

ACTION_ERASE_LINE EraseLine Delete+Meta,BackSpace+Meta

APPENDIX K: X USER’S GUIDE: OPEN LOOK EDITION 499

K

ACTION_ERASE_LINE_BACKWA
RD

EraseLineBackward u+Ctrl

ACTION_ERASE_LINE_END EraseLineEnd U+Ctrl

ACTION_ERASE_WORD_BACK
WARD

EraseWordBackward w+Ctrl

ACTION_ERASE_WORD_FORWA
RD

EraseWordForward W+Ctrl

ACTION_FIND_BACKWARD FindBackward F+Meta,L9+Shift

ACTION_FIND_FORWARD FindForward f+Meta,L9

ACTION_GO_LINE_FORWARD GoLineForward apostrophe+Ctrl,R11

ACTION_GO_PAGE_BACKWARD GoPageBackward R9

ACTION_GO_PAGE_FORWARD GoPageForward R15

ACTION_GO_WORD_FORWARD GoWordForward slash+Ctrl,less+Ctrl

ACTION_HELP Help Help

ACTION_HORIZONTAL_SCROLL
BAR_MENU

HorizontalScrollbar-
Menu

h+Alt

ACTION_INCLUDE_FILE IncludeFile i+Meta

ACTION_INPUT_FOCUS_HELP InputFocusHelp question+Ctrl

ACTION_INSERT Insert Insert

ACTION_JUMP_DOWN JumpDown Down+Ctrl

ACTION_JUMP_LEFT JumpLeft Left+Ctrl

ACTION_JUMP_LEFT JumpLeft comma+Ctrl,greater+Ctrl

ACTION_JUMP_MOUSE_TO_INP
UT_FOCUS

JumpMouseToInput-
Focus

j+Alt

ACTION_JUMP_RIGHT JumpRight Right+Ctrl

ACTION_JUMP_RIGHT JumpRight period+Ctrl

Example K-1. OpenWindows Mouseless Keys

OPEN LOOK Name

OpenWindows
Resource Name
(OpenWindows.Keybo
ardCommand.)

Default Binding

500 X USER’S GUIDE: OPEN LOOK EDITION

K

ACTION_JUMP_UP JumpUp Up+Ctrl

ACTION_LEFT Left Left

ACTION_LEFT Left b+Ctrl,F+Ctrl,Left,R10,Left+S
hift

ACTION_LINE_END LineEnd e+Ctrl,A+Ctrl

ACTION_LINE_START LineStart a+Ctrl,E+Ctrl

ACTION_LOAD Load l+Meta

ACTION_MATCH_DELIMITER MatchDelimiter d+Meta

ACTION_MENU Menu space+Alt

ACTION_MORE_HELP MoreHelp Help+Shift

ACTION_MORE_TEXT_HELP MoreTextHelp Help+Shift+Ctrl

ACTION_NEXT_ELEMENT NextElement Tab+Ctrl

ACTION_NEXT_PANE NextPane a+Alt

ACTION_PANEL_END PanelEnd bracketright+Ctrl

ACTION_PANEL_START PanelStart bracketleft+Ctrl

ACTION_PANE_BACKGROUND PaneBackground b+Alt

ACTION_PANE_DOWN PaneDown R15

ACTION_PANE_LEFT PaneLeft R9+Ctrl

ACTION_PANE_RIGHT PaneRight R15+Ctrl

ACTION_PANE_UP PaneUp R9

ACTION_PASTE Paste v+Meta,L8

ACTION_PREVIOUS_ELEMENT PreviousElement Tab+Shift+Ctrl

ACTION_PREVIOUS_PANE PreviousPane A+Alt

ACTION_PROPS Props L3

ACTION_QUOTE_NEXT_KEY QuoteNextKey q+Alt

Example K-1. OpenWindows Mouseless Keys

OPEN LOOK Name

OpenWindows
Resource Name
(OpenWindows.Keybo
ardCommand.)

Default Binding

APPENDIX K: X USER’S GUIDE: OPEN LOOK EDITION 501

K

ACTION_RESUME_MOUSELESS ResumeMouseless Z+Alt

ACTION_RIGHT Right Right

ACTION_RIGHT Right f+Ctrl,B+Ctrl,Right,R12,Right
+Shift

ACTION_ROW_END RowEnd End,R13

ACTION_ROW_START RowStart Home,R7

ACTION_SCROLL_DATA_END ScrollDataEnd End+Alt+Ctrl,R13+Alt+Ctrl

ACTION_SCROLL_DATA_START ScrollDataStart Home+Alt+Ctrl,R7+Alt+Ctrl

ACTION_SCROLL_DOWN ScrollDown Down+Alt

ACTION_SCROLL_JUMP_DOWN ScrollJumpDown Down+Alt+Ctrl

ACTION_SCROLL_JUMP_LEFT ScrollJumpLeft Left+Alt+Ctrl

ACTION_SCROLL_JUMP_RIGHT ScrollJumpRight Right+Alt+Ctrl

ACTION_SCROLL_JUMP_UP ScrollJumpUp Up+Alt+Ctrl

ACTION_SCROLL_LEFT ScrollLeft Left+Alt

ACTION_SCROLL_PANE_DOWN ScrollPaneDown R15+Alt

ACTION_SCROLL_PANE_LEFT ScrollPaneLeft R9+Alt+Ctrl

ACTION_SCROLL_PANE_RIGHT ScrollPaneRight R15+Alt+Ctrl

ACTION_SCROLL_PANE_UP ScrollPaneUp R9+Alt

ACTION_SCROLL_RIGHT ScrollRight Right+Alt

ACTION_SCROLL_ROW_END ScrollRowEnd End+Alt,R13+Alt

ACTION_SCROLL_ROW_START ScrollRowStart Home+Alt,R7+Alt

ACTION_SCROLL_UP ScrollUp Up+Alt

ACTION_SELECT_ALL SelectAll End+Shift+Meta,R13+Shift+M
eta

Example K-1. OpenWindows Mouseless Keys

OPEN LOOK Name

OpenWindows
Resource Name
(OpenWindows.Keybo
ardCommand.)

Default Binding

502 X USER’S GUIDE: OPEN LOOK EDITION

K

ACTION_SELECT_DATA_END SelectDataEnd End+Shift+Ctrl,R13+Shift+Ctr
l

ACTION_SELECT_DATA_START SelectDataStart Home+Shift+Ctrl,R7+Shift+Ct
rl

ACTION_SELECT_DOWN SelectDown Down+Shift

ACTION_SELECT_FIELD_BACK
WARD

SelectFieldBackward Tab+Shift+Ctrl

ACTION_SELECT_FIELD_FORW
ARD

SelectFieldForward Tab+Ctrl

ACTION_SELECT_JUMP_DOWN SelectJumpDown Down+Shift+Ctrl

ACTION_SELECT_JUMP_LEFT SelectJumpLeft Left+Shift+Ctrl

ACTION_SELECT_JUMP_RIGHT SelectJumpRight Right+Shift+Ctrl

ACTION_SELECT_JUMP_UP SelectJumpUp Up+Shift+Ctrl

ACTION_SELECT_LEFT SelectLeft Left+Shift

ACTION_SELECT_NEXT_FIELD SelectNextField Tab+Meta

ACTION_SELECT_PANE_DOWN SelectPaneDown R15+Shift

ACTION_SELECT_PANE_LEFT SelectPaneLeft R9+Shift+Ctrl

ACTION_SELECT_PANE_RIGHT SelectPaneRight R15+Shift+Ctrl

ACTION_SELECT_PANE_UP SelectPaneUp R9+Shift

ACTION_SELECT_PREVIOUS_FI
ELD

SelectPreviousField Tab+Shift+Meta

ACTION_SELECT_RIGHT SelectRight Right+Shift

ACTION_SELECT_ROW_END SelectRowEnd End+Shift,R13+Shift

ACTION_SELECT_ROW_START SelectRowStart Home+Shift,R7+Shift

ACTION_SELECT_UP SelectUp Up+Shift

ACTION_STOP Stop L1

Example K-1. OpenWindows Mouseless Keys

OPEN LOOK Name

OpenWindows
Resource Name
(OpenWindows.Keybo
ardCommand.)

Default Binding

APPENDIX K: X USER’S GUIDE: OPEN LOOK EDITION 503

K

ACTION_STORE Store s+Meta

ACTION_SUSPEND_MOUSELESS SuspendMouseless z+Alt

ACTION_TEXT_HELP TextHelp Help+Ctrl

ACTION_TRANSLATE Translate R2

ACTION_UNDO Undo u+Meta,L4

ACTION_UP Up Up

ACTION_UP Up p+Ctrl,N+Ctrl,Up,R8,Up+Shift

ACTION_VERTICAL_SCROLLBA
R_MENU

VerticalScrollbarMenu v+Alt

Example K-1. OpenWindows Mouseless Keys

OPEN LOOK Name

OpenWindows
Resource Name
(OpenWindows.Keybo
ardCommand.)

Default Binding

504 X USER’S GUIDE: OPEN LOOK EDITION

K

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX L: SunView Applications under OpenWindows 505

L

Appendix LSunView Applications under OpenWindows

APPENDIX L

SunView Applications
under OpenWindows I

If you hang around Sun users for long enough, you’ll eventually hear them talking about a
window system called “SunView”. Before the emergence of X11 and NeWS, most users of
Sun Workstations used Sun’s own windowing system, called SunView. Indeed, many old-
time Sun aficionados will mourn the passing of SunView. It was small and fast1, which
meant you could do useful work on a Sun-3/50 with a mere(!) four megabytes of main stor-
age. And on my SparcStation 1 (the classic SPARC machine) running SunView,cmdtool
starts up in about one second, while an XViewcmdtool or anxterm takes slightly over two
seconds2. Most of this overhead is probably due to the networked nature of communication
between the program, the X server, and the X window manager. SunView was a full-fea-
tured system, with its own (the original) version ofshelltool/cmdtool, desk accessories
such asperfmeter, etc. There was even (in SunOS 4.1.1) a SunViewfileview program,
which is similar to the File Manager discussed in Chapter 4,Using the OPEN LOOK File
Manager. But despite its speed, SunView wasn’t able to muster support in the days of net-
worked window systems, so it has had to pass on to that great swap device in the sky.

But wait; SunView lives on! To make OpenWindows serve as a complete working envi-
ronment for users of modern graphical programs, Sun Microsystems provides full
compatibility with applications written for their first-generation window system, SunView.
OpenWindows 2.0 introduced, and 3.x continues, the tradition of providing reasonable
backwards compatibility for SunView applications. While few new applications are being
developed for SunView, if you are making extensive use of a variety of programs on your
Sun, you may meet up with a SunView application. Thus you should at least know the
basics of running SunView applications under OpenWindows. This appendix shows you

1. But still not as fast as MGR, the free software window system from Steve Uhler of Bellcore. It’s fast, but there
is no real body of software accumulating for it as there is for The X Window System.

2. All cases were timed after one of these windows was started, to rule out disk- and cache-induced delays

506 X USER’S GUIDE: OPEN LOOK EDITION

L
how to use SunView applications under Sun’s version of OpenWindows: what works, what
doesn’t, and what problems can crop up.

L.1 The Similarities
Figure L-1 shows a fairly typical native SunView window; this is how workstation screens
looked before The X Window System came along. Like an X display, the screen has two
shelltool windows, a small one for console messages and a larger one for working in, and
a perfmeter and a clock. As well, this screendump shows the root menu pulled down to
show the items for starting clock windows.

Notice the following similarities between SunView and OpenWindows:

■ there can be arbitrarily many windows, and they overlap in about the same way

■ most of the time you do most of your work in one or more shell windows

■ cmdtool/shelltool is almost identical to its OpenWindows descendants. Even the escape
codes in the SunView terminal windows are the same as those forcmdtool/shelltool in
Appendix E,Control Sequences for xterm and cmdtool.

Figure L-1. Typical SunView Display.

APPENDIX L: SunView Applications under OpenWindows 507

L
■ Cut-and paste is similar, but the terminal pane menu has the added itemsend (combines

copy and paste) menu item, which to this day is distressingly absent from the OpenWin-
dows versions (the functionality is there, but not in the menus; see Chapter 2,Working
in the OPEN LOOK Environment).

■ tools like clocks andperfmeters are almost identical to their OpenWindows descendants

■ menus are activated by depressing the right button

■ root menu, submenus. Menu contents controlled by files, similar in syntax toOPEN
LOOK Window Manager

■ There are special editors (SunView‘sdefaultsedit is the ancestor of OpenWindows’s
properties editor).

L.2 The Differences
The SunView window system was organized quite differently than is X11. It is not a net-
worked window system; it is tightly interwoven with the UNIX kernel, and there is no
separate “window manager” client at all. This means that you cannot change the overall
behavior nor the “look and feel” of SunView clients, as you can in X11 by changing win-
dow managers. And you use “defaults files”, not X Resources, to customize SunView
programs.

L.2.1 Always at the forefront...
Pity the poor OpenWindows server program! It has to keep track not only of X11 pro-
grams’ windows, and NeWS programs’ windows, but also SunView program windows.
X11 and NeWS are similar enough that they can co-exist on one screen. But SunView pro-
grams do not respond to the same kind of events, and do not have the same overall
behavior, so they cannot really live on the same screen. To sort this out, the OpenWindows
server maintains the fiction of an “overlay plane”, or separate screen level, to run SunView
applications in. The result is that SunView applications will always appear to be “in front
of” all X11 and NeWS applications. To visually remind you that a given program is run-
ning in SunView mode, the SunView program’s windows are surrounded by a fat white
border. Figure L-2 is an example of a SunView version of thedbxtool program debugger:
running in the OpenWindows environment. Notice how the border around the dbxtool win-
dow “cuts into” the windows around it, including the Workspace menu, thexv control
panel being used to record the screen, and the borders of the terminal windows, with a large
white space around it. This is your reminder that a SunView application is in use, and that
certain things (notably pointer and menu operations) must be done differently. These are
described in the next section.

508 X USER’S GUIDE: OPEN LOOK EDITION

L

L.3 Pointer and Menu Conventions
Many of the pointer and menu button conventions are similar or identical to those of Open-
Windows. Indeed, when the pointer is not in a SunView window, it behaves “normally”.
When in a SunView window, titlebar, or icon, however, there are a few differences.

L.3.1 Pointer button conventions
Table L-1 is a summary of the pointer button conventions used when running SunView
applications under OpenWindows.

Figure L-2. SunView dbxtool in front of OpenWindows windows.

Table L-1. SunView Button Functions

Where Button Function

Root window All Buttons OPEN LOOK conventions (controlled
by window manager)

APPENDIX L: SunView Applications under OpenWindows 509

L

L.3.2 The Root Menu
When the pointer is on the OpenWindows background or root window, its behavior is
entirely controlled by the window manager. Running the recommendedolwm or olvwm
will cause the normalOPEN LOOK conventions to apply to all keyboard and pointer button
activity in the root window.

L.3.3 The Window Menu
Under X11, the “window manager” program provides the “window menu”, the menu seen
when clicking theMENU button on the titlebar of a window. Under SunView, the user pro-
gram provides the window menu, so you may see variations from one program to another.
The typical program provides the menu shown in Figure L-3, when not iconified.

Most of these entries have the same meaning as they do underOPEN LOOK.

One difference is in what happens when you click on an icon - click-to-select (single-click)
actually opens the icon, rather than just selecting it as most X window managers do.

In Titlebar Button 1 Front

Button 2 Move

Button 3 Window menu

In Application
Window

Button 1 Program-defined

Button 2 Program-defined

Button 3 Usually client menu

Figure L-3. Typical SunView Window Menu.

Table L-1. SunView Button Functions

Where Button Function

510 X USER’S GUIDE: OPEN LOOK EDITION

L
L.3.4 Keyboard Shortcuts
Most of the common keyboard shortcuts are the same, including the commonL5, L7, L6,
L8, L10, L4, and HELP. See Appendix K,OPEN LOOK Mouseless Operations for list of
the standard Sun keyboard shortcuts.

L.4 SunView Customization Files
As with OpenWindows, there are numerous files used to control the way programs operate.
For each of these files, there is both a system-wide set of files (in/usr/lib) and a per-user
set in a user’s home directory. A SunView user might have as many as five files to custom-
ize her environment, as shown in TableL-2. Some of these are used when SunView

programs run under OpenWindows, and some are not.

L.4.1 The Defaults files vs. X11 Defaults
The SunView system used “defaults” files to let the user customize the behavior of individ-
ual window programs. Their syntax is simpler than that of X Resources—there is no
“Widget Hierarchy”, for example—but quite different Here is a section of one such file:

//Set/askbcc “No”
 $Enumeration ““
 $Help “Enables/disables prompting user for ‘bcc’ field when sending.”
 No “No”
 No/$Help “Do NOT automatically prompt user for ‘bcc’ field when

sending.”
 Yes “Yes”
 Yes/$Help “Automatically prompt user for ‘bcc’ field when sending.”

//Set/bell “0”
 $Help “Number of times to ring the audible bell when new mail arrives.”

Part of the structure here is to dynamically control thedefaultsedit program. This program,
shown in FigureL-4,: was used to customize the behavior of SunView programs for an

Table L-2. SunView Files

Name Function

Used
under
OpenWind
ows?

OpenWindows Analog

~/.defaults Set defaults for various programs Yes .Xdefaults

~/.rootmenu Workspace Menu No ~/.openwin-menu

~/.suntools Programs to run No ~/.xinitrcor ~/.openwin-init

~/.text_extras_menu Menu forExtras in text windows Yes ~/.text_extras_menu

~/.textswrc Customize all “textsw” windows Yes ~/.textswrc

APPENDIX L: SunView Applications under OpenWindows 511

L

individual user, like theproperties program described in Chapter 13,Customizing olwm. It
only saved the changed values, so a user’s~/.defaults file might look like this

SunDefaults_Version 2
/Mail/Set/editmessagewindow "Yes"
/Mail/Set/hold "Yes"

For users who may have existing Defaults files, there are two programs. The first,
input_from_defaults,is normally run automatically, to read your Defaults files and apply
them to the running copy of OpenWindows (see the next section for an example). The
other,convert_to_Xdefaults,is invoked manually, and only once, when you are moving
from SunView to X11 or OpenWindows. Its function is to convert a Defaults file to the cor-
responding X Resources format. This program is normally run with its standard output
redirected into a file that will become (or be appended to) your.Xdefaults file. See the Ref-
erence Page in Part Three if you need to use this program.

L.5 SunView Controls
The use of buttons, menus, and other controls in SunView is very similar to that ofOPEN
LOOK. This is not surprising, since historically SunView is one of the most direct ancestors
of theOPEN LOOK GUI. However there are a few differences that should be noted:

Figure L-4. Defaultsedit (SunView) in action

512 X USER’S GUIDE: OPEN LOOK EDITION

L
1. The SunView scrollbar is much more like the Athena (xterm) scrollbar (see Appen-

dix A, The xterm/olterm Terminal Emulator) than like theOPEN LOOK scrollbar
described in Chapter 2,Working in the OPEN LOOK Environment.

2. Instead of “abbreviated menu buttons”, SunView programs uses “cyclical buttons”.
For example, inthedefaultsedit window in FigureL-4, clicking the left button on the
little circle beside the wordCategory will change the main category from SunView
Controls through several other major categories.

By and large, however, a user of theOPEN LOOK GUI will have little trouble getting used
to SunView programs.

L.6 Command Line Arguments
The SunView command line arguments are a subset of those discussed in Chapter 11,
Command Line Options, in particular, in Table11-2. For example, here is the list of options
from the SunView version ofcmdtool:

Table L-3. SunView Command Arguments

Flag Long Flag
Argument
Type

Notes

-Ww -width text columns

-Wh -height text lines

-Ws -size x y (pixels)

-Wp -position x y

-WP -icon_position x y

-Wl -label (quoted) string

-Wi -iconic

-Wn -no_name_stripe

-Wt -font filename

-Wf -foreground_color red green blue 0-255 (no color-full color)

-Wb -background_color red green blue 0-255 (no color-full color)

-Wg -set_default_color same (apply color to subwindows too)

-WI -icon_image filename

-WL -icon_label (quoted) string

-WT -icon_font filename

APPENDIX L: SunView Applications under OpenWindows 513

L

As you can see, these options are almost all the same as the like-named options discussed
in Chapter 12, but many of the ones discussed there are not accepted in SunView applica-
tions. In particular there is no-display option: SunView windows will only appear on the
screen of the computer they are running on. And there is no “color name database” (see
Section11.5, “Specifying Color” on Page289) so you have to specify colors by their
numeric RGB values.

L.7 Setup
In order to use the SunView compatibility mode, there are some programs that you must
run. If you use the provided OpenWindows-specific startup scripts, this is done automati-
cally. If not, you should copy a few lines from the various system startup files. The
providedopenwin-sys file contains these lines:

Load SunView defaults and invoke SunView/XView selection service
if NOSunView != 1
if [-z “$NOSunView” -o “$NOSunView” -ne 1];
 then input_from_defaults
 sv_xv_sel_svc &
fi

 And the provided.xinitrc file (/usr/openwin/lib/Xinitrc) includes this:

SunView binary compatibility is default mode.
 [-z “$NOSunView” -o “$NOSunView” -ne 1] && eval ‘svenv -env‘

These both test the shell variable NOSunView and, if it is not present, fire up various pro-
grams that are part of the SunView compatibility mode. If you maintain your own.xinitrcc
file, you should add these entries to it. Leaving out the testing, all you really need is:

input_from_defaults # get sunvew defaults
sv_xv_sel_svc & # enable cut-n-paste btwn SunView and X11
eval ‘svenv -env‘ # setup “environment variables“ for SunView compat.

Alternately, you can run obtain the first two commands by running the provided “system”
file from within your.xinitrc file, just by including this line in your.xinitrc file.

 $OPENWINHOME/lib/openwin-sys # OpenWin “system” initialization

L.8 “OPEN LOOK/SunView”
To further confuse you, a group in Sun has created an interim toolkit called “OPEN LOOK
SunView” (or vice versa). This was to allow developers to build SunView applications that
conform to theOPEN LOOK specification. These run as SunView applications under Open-
Windows, but use more-or-less theOPEN LOOK conventions, not those shown in the tables

-WH -help

Table L-3. SunView Command Arguments

Flag Long Flag
Argument
Type

Notes

514 X USER’S GUIDE: OPEN LOOK EDITION

L
above. As far as can be determined, this toolkit has not been distributed outside Sun. How-
ever there are two products that are known to use it, and there may be others:

1. The “DeskSet Environment forSunView”, part number DSK-1.0-4-34R-5, which
givesSunView usersOPEN LOOK versions of File Manager, cm, Mailtool, calctool,
textedit, printtool, tapetool, snapshot, iconedit, perfmeter, binder, cmdtool, shell-
tool, console and Sun’s clock.

2. Sun’s SunNet License Platform’snladmin (network license administration) tool.

Unless you use either of these packages, you are unlikely to run into the “SunViewOPEN
LOOK”.

L.9 Future Directions
The SunView compatibility mode provides a useful transition tool to allow users of Open-
Windows to run any of the hundreds of SunView applications that they may have
available.This compatibility works in OpenWindows Release 3.1 under SunOS 5.1, but
will end in an unspecified future release of SunOS1; applications that are created under
SunOS4.xmust be dynamically linked if they are to run on SunOS 5.x/Solaris 2. You
should convert your applications to X11 as soon as possible.

 If you have the source code to an application available, there are (at least) two approaches.
One method of converting SunView applications to X11 is to use Sun’s XView toolkit;
XView is intentionally similar to the SunView toolkit, to facilitate just such conversion.
Simple SunView applications can usually be converted using a program provided with
OpenWindows (calledconvert_to_xview, and described in the manual page in Part Three
of this guide). Sophisticated applications will require some programmer time to convert.
XView is described more fully in Volume Seven,XView Programming Manual.

Another approach is to use Sun’sdevGuide (Developer’s Guide) to re-write the user inter-
face code; GUIDE can generate the user-interface code for XView, for OLIT (an X
Intrinsics-based Toolkit that is conceptually closer to Motif), or for The NeWS Toolkit.
Either of these approaches –convert_to_xview or devGuide – will allow your program-
ming staff to update older applications to work with X11 and/or OpenWindows, so that
programs you have been using under SunView can continue to be used on The X Window
System.

1. One can imagine that some future release of OpenWindows will replace theSunView application emulation
with a mode that runs MicroSoft Windows applications in the same kind of “overlay plane” without having to start
up SunPC and then MS-Windows.

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX M: WORKING WITH MOTIF 515

M

Appendix MWORKING WITH MOTIF

APPENDIX M

Working with Motif

Since neitherOPEN LOOK nor Motif has a complete corner on the X market, there will
always be some applications that you want to run that aren’t available with the interface
you want. Since Motif is dominant, though, a gradual transition to Motif seems probable.
This appendix deals with some specifics of using applications written using the Motif tool-
kit in anOPEN LOOK environment, and the window manager and file considerations.

M.1 Working with Motif Applications
The Athena widget set provides X Toolkit applications with certain common features,
many of which were described in Chapter 8. As explained in Chapter 1, an application
coded using the Motif widget set has a different look and feel.

In this Appendix, we’ll look at some of the features you’re liable to encounter in a Motif
application and learn how to use them. Most of these features are provided in a slightly dif-
ferent flavor by theOPEN LOOK GUI.

Most of the sample components we’re using are taken from themre demo program
described in The Motif resource editor assists you in editing your own resource specifica-
tion file, but it is primarily intended to demonstrate many of the Motif widgets.

The following sections mention the comparable Athena widgets where appropriate. Some
of the Athena widgets are illustrated using the standard MIT clients in Chapter 8,Other
Standard Clients, as well as in Appendix A,The xterm/olterm Terminal Emulator, and
Chapter 9,Graphics Clients.

M.1.1 Dialog Boxes and Push Buttons
If you ask an X client for any drastic action, it is supposed to prompt you for confirmation.
For example, theOPEN LOOK Window Manager will prompt you with a Notice window
when you try to exit. Motif applications behave similarly. For example, if you were run-

516 X USER’S GUIDE: OPEN LOOK EDITION

M
ning the Motif window manager mwm, and try to “restart” it from the window manager’s
Rootmenu, you would see the dialog box pictured in Figure M-1.

A dialog box generally displays a message relevant to the application and requires a
response from the user. In this case, the dialog box queries whether you really want to
Restart mwm? .

A Motif dialog box contains one or morepush buttons that allow you to respond to the
message. (Many applications use push buttons; they are not confined to dialog boxes.)
When a dialog is displayed and the default click-to-type focus is in effect, the input focus
is usually switched to the dialog window. Until you respond to the dialog box, the applica-
tion cannot continue. Once you respond to the dialog, the focus should switch back to the
main application window.

Whether the dialog box contains one push button or multiple buttons, one button is always
highlighted, generally by outlining. You can push the highlighted push button simply by
pressing the Return key on your keyboard. To push another button, you must place the
pointer on it and click the first pointer button.

A response might be a simple acknowledgment that you’ve seen the message: some dialogs
feature only one button that readsOK . For instance, when you start themre resource editor
demo without a filename argument, the program looks for a file called.Xdefaults in your
home directory. Ifmre cannot find the file, it displays a dialog box containing a message
similar to:

Couldn’t open /home/pat/.Xdefaults.

with anOK button. When a dialog has only one button, the button is always highlighted.
Pressing Return or clicking the first pointer button on theOK button informs the client that
you’ve seen the message and removes the dialog window.

Figure M-1. Typical Motif dialog box with two push buttons

Restart Mwm?

OK Cancel

?

APPENDIX M: WORKING WITH MOTIF 517

M
Some responses request an action, such as proceeding with a previously invoked process,
cancelling the process, or even exiting the program. The dialog box in FigureM-1 contains
two push buttons labeledOK andCancel. Pushing theOK button tellsmwm to proceed
with the restart process. TheCancel button gives you a chance to avert the restart process
in case you invoked the command by mistake or have changed your mind. SinceCancel is
highlighted, you can push it either by pressing Return or by using the pointer.

Whatever the message or potential responses, you react to a dialog box either by pressing
Return (to push the highlighted push button) or by placing the pointer on one of the push
buttons and clicking the first pointer button. Action will be taken if requested and the dia-
log box will be removed.

As we’ll see, some Motif applications support another kind of push button called adrawn
button. A drawn button is basically a push button decorated with a bitmap rather than text.

The Athena widget set provides comparable widgets to the Motif dialog box and push but-
ton. An Athena dialog box provides virtually the same functionality as a Motif dialog. The
most obvious difference is that, in an Athena dialog, you must click on a command button
to invoke it. The Return key shortcut only works with a Motif push button. See “Dialog
Boxes and Command Buttons” in Chapter 9,Graphics Clients, for more information about
Athena dialogs.

M.1.2 Menu Bars and Pull-down Menus
Figure M-2 illustrates themenu bar on a Motifwindow.

A menu bar is a horizontal bar from which pull-down menus can be displayed. Each word
on the bar is a menu title; you display the menu by placing the pointer on its title and click-
ing the first pointer button. The title becomes raised and highlighted by a box, the menu is
displayed and the first selectable item is also raised and boxed.OPEN LOOK applications
do not have a menu bar, but have separate main menus, usually in about the same position
as a menu bar. One advantage of a menubar is that you can slide the pointer left or right and
see all the available menus one after another.

Figure M-3 shows a Motif application’sFile pull-down menu.

Figure M-2. Motif menu bar

518 X USER’S GUIDE: OPEN LOOK EDITION

M

Notice that one letter of each menu item is underlined. That letter represents a unique
abbreviation, or mnemonic, for the menu item, which can be used in a “mouseless” mode
to select the item.

Notice also that each menu item has a keyboard shortcut, oraccelerator, that appears in the
right hand column of the menu. An accelerator can be used to invoke the action without
displaying the menu at all (though they also work while the menu is displayed).

When you’ve displayed a menu by placing the pointer on the title and clicking the first but-
ton, you can select an item by:

■ Placing the pointer on the item and clicking the first button.

■ typing the mnemonic abbreviation for the menu item.

■ Typing the accelerator key combination. (Though these are intended to save you the
trouble of displaying the menu, they also work when it is displayed.)

■ To select the boxed item (the first available for selection), you can alternatively press
either the Return key or the space bar.

You can also display a menu from a menu bar by placing the pointer on the title and press-
ing the first pointer button. The menu is displayed as long as you continue to hold the
pointer button down. To select an item, drag the pointer down the menu (each item is high-
lighted by a box in turn), and release the button on the item you want.

M.1.3 File Selection Box
Several Motif applications feature a widget called afile selection box, which allows you to
select a filename from a list. Most modernOPEN LOOK applications provide similar dia-
logs; others provide this level of functionality by use of the familiar File Manager (see
Chapter 4,Using the OPEN LOOK File Manager).

Figure M-3. Motif File menu

APPENDIX M: WORKING WITH MOTIF 519

M
Using a file selection box is not exactly difficult, but it’s not particularly obvious either.
Let’s consider the file selection box that is displayed when you selectOpen... from mre’s
File menu illustrated in the preceding section. TheOpen... menu item is used to read a file
into mre’s main edit window. When you selectOpen..., a second window is displayed—
the file selection box illustrated in Figure M-4.

Notice the window labeledSelection near the bottom of the box. You want to place the
name of the file to select in this window. Initially this window contains an incomplete path-
name—a directory is specified but no file. You can specify a file in a variety of ways.

Notice the two areas labeledDirectories andFiles. These arelist boxes that are contained
within the larger window. TheDirectories box lists the directories from which you can
choose a file; the first directory is usually highlighted. TheFiles box lists the files within
the highlighted directory.

Notice that the list boxes are bordered by horizontal and vertical scrollbars, which allow
you to view text that is currently outside the box. (The Scrollbar widget is discussed in the
next section.) A list box and its accompanying scrollbars form what is known as a Scrolled-

Figure M-4. A file selection box

520 X USER’S GUIDE: OPEN LOOK EDITION

M
Window. The Motif ScrolledWindow is comparable to the Athena Viewport widget,
discussed in Section 8.1.5, “Browsing Reference Pages: xman” on Page 194.

The file selection box allows you to select a file from any directory on the system, using
various procedures. You can select a file from the list currently in theFiles box; you can
list the files in another directory currently displayed in theDirectories box and select one
of those files; or you can list the contents of an entirely different directory and select a file
from that directory.

M.1.3.1 Selecting a File from the Files Box

To select a file currently in theFiles box:

1. Place the pointer on the filename.

2. Click the first pointer button. The filename is highlighted by a dark bar; the letters
appear in reverse video.

3. Notice also that theSelection window will be updated to reflect the filename; and
the push button to confirm the selection (OK in many applications) will be high-
lighted, indicating that you can select the file by pressing Return.

4. Select the filename either by pressing Return or by placing the pointer on theOK
push button and clicking the first pointer button.

When you select a file inmre’s file selection box, the file is read in to the initialmre editing
window and the selection box disappears.

M.1.3.2 Choosing a File from another Directory in the Directories Box

To list the files in another directory in theDirectories box and select one of those files:

1. Place the pointer on the directory name and click the first button. The directory
name is highlighted. Notice that the box labeled s-1fHFilterfRs0 is updated to
reflect the new pathname and the s-1fHFilterfRs0 push button at the bottom of the
box is highlighted for selection.

2. Then, to display the contents of the highlighted directory in theFiles box either:

■ Press Return; or

■ Click on theFilter push button.

To select a file from the updatedFiles box, follow the steps outlined previously in “Select-
ing a File from the Files Box.”

M.1.3.3 Choosing a File from Another Directory on the System

You can specify an alternative directory from which a file can be selected by changing the
filter, that is, the path in theFilter window (near the top of the file selection box). Initially
theFilter window reflects the current working directory. In FigureM-4, the filter is/work/
motif/demos/mre/* and theDirectories box lists two directories:

/work/motif/demos/mre/. \"the current directory
/work/motif/demos/mre/.. \"previous directory in the tree

APPENDIX M: WORKING WITH MOTIF 521

M
To specify another filter, place the pointer within theFilter window and double click the
first pointer button. The window becomes highlighted with a black bar (the text is visible
in reverse video); now whatever you type will replace the current text.

When you type a pathname and hit Return (or click on theFilter push button at the bottom
of the file selection box), theDirectories box will be updated to reflect the filter you’ve
specified. For example, if you enter the following pathname in theFilter window:

/home/pat/*

and hit Return or click on theFilter push button, theDirectories box will be updated to
reflect the directory/home/pat, its subdirectories, and the directory above it in the tree. The
first directory in the Directories box,/home/pat/., is highlighted and the files in that direc-
tory are listed in theFiles box.

You can then choose any of the files in theFiles box using the steps outlined previously in
“Selecting a File from the Files Box.”

M.1.4 The Motif Scrollbar
Each of the list boxes in the File Selection Box features both a horizontal and a vertical
scrollbar. A vertical scrollbar is commonly used review text that has scrolled off the top of
a window or extends past the bottom. In the case ofmre’s Files box, the vertical scrollbar
is used to scan a list of files too long to fit in the window at one time. A horizontal scrollbar
is commonly used to view text or graphics that are too wide to fit in the viewing area.
You’ll probably encounter vertical scrollbars most often, as in Figure M-5.

Both the Motif and Athena widget sets provide scrollbar widgets. A Motif scrollbar oper-
ates differently than an Athena scrollbar, such as the one used byxterm. As you know, an
Athena scrollbar is simple in design—just a rectangular thumb within a rectangular scroll
region. Both parts are flat; the thumb is distinguished from the scroll region only by its
(generally) darker color. The Athena scrollbar also operates differently than the Motif
scrollbar. While a Motif scrollbar has separate parts to invoke different types of scrolling,
the Athena scrollbar moves text according to which pointer button you use and how you
use it. (See Appendix A,The xterm/olterm Terminal Emulator, for instructions on how to
usexterm’s scrollbar.)

Now let’s take another look at theFiles box frommre’s file selection box, which is bor-
dered by two scrollbars. A Motif scrollbar is comprised of four parts, labeled in
Figure M-5: twoarrows (one at either end of the bar), thescroll region between the arrows,
and thethumb, the raised area which moves within the scroll region. The thumb displays
the position and amount of text currently showing in the window relative to the amount
saved. If text does not extend beyond the window, the thumb fills the entire scroll region.
In Figure M-5, the thumbs in both scrollbars indicate that text extends beyond the bounds
of the window.

Let’s consider the pointer commands used to operate a vertical scrollbar. (You’ll probably
use a vertical scrollbar most often.) To scroll the text forward one window, place the
pointer below the thumb and click the first button. To scroll the text back one window,
place the pointer above the thumb and click the first button. Clicking on one of the arrows
scrolls the text one line at a time: each click on a down arrow lets you view one more line

522 X USER’S GUIDE: OPEN LOOK EDITION

M

of text at the bottom of the window; each click on an up arrow lets you view one more line
of text at the top of the window.

A horizontal scrollbar lets you view the remaining part of lines that are too wide to fit in a
single window. You use the same pointer commands to use a horizontal scrollbar as you do
a vertical scrollbar; obviously the orientation of text and directions of movement are differ-
ent. Clicking to the right of the thumb scrolls the text horizontally to the right. Clicking to
the left of the thumb scrolls the text horizontally to the left. In FigureM-4, theFiles box is
displaying filenames only—the earlier parts of the pathnames are not in view. Notice that
the horizontal scrollbar’s thumb is all the way to the right of the scroll region. If you place
the pointer to the left of the thumb and click the first button, the text is scrolled to the left
to reveal the earlier parts of the pathname. Clicking on either arrow of the horizontal scroll-
bar moves the text one character to the left or right, depending on the direction of the
arrow.

The unit scrolled when you click on an arrow depends on the application. Scrollbars are
also sometimes featured on application windows that contain graphic elements rather than

Figure M-5. Motif Scrollbar

Top arrow

Slider

Scroll region

Bottom arrow

Background of
application window

APPENDIX M: WORKING WITH MOTIF 523

M
text. Obviously, such a window cannot be scrolled by text characters or lines. Themwm
icon box, described in Chapter 13,Customizing olwm, can be scrolled the height or width
of one icon.

M.1.5 Drawn Buttons
A drawn button is a push button decorated with a pixmap rather than a text label.
Figure M-6 shows four drawn buttons frommre’s main window.

The image on a drawn button should signal its function. If a program uses drawn buttons
effectively, they can enhance an application’s aesthetics.

mre uses drawn buttons well. The button decorated with an artist’s palette tellsmre to place
resource specifications relating to color in the application’s editing window. The button
showing the letter “A” places resources specifying fonts in the editing window. The button
featuring the mirror image of the arrows in reverse colors is a rather clever graphical rep-
resentation of a difficult concept. The image is a sort of technical yin-yang symbol: it tells
mre to place resources that can be toggled (turned on or off; set to be true or false, yes or
no, etc.) in the editing window. Finally, the button featuring the eternity symbol tellsmre
to put all of the resources in the user’s resource file in the editing window.

M.1.6 Radio Boxes and Toggle Buttons
A radio box is made up of a column of toggles (mutually exclusive choices). FigureM-7
shows four Motif radio boxes inmre’s Font Selection window.

Each column is one radio box; each box contains several diamond shapedtoggle buttons.
You push a toggle button by placing the pointer on the diamond symbol and clicking the
first pointer button. The toggle button becomes darker (appearing as if it’s been pressed).
Actually, if you examine the button closely, the highlighting has just switched from the
bottom edge to the top edge of the button. When you first make a selection from a column,
the button and the accompanying text label are highlighted by a box. When you make a
selection in another column, the highlighting box appears in that column (and disappears
from the previous one).

Figure M-6. Motif drawn buttons

524 X USER’S GUIDE: OPEN LOOK EDITION

M

Toggles in the same column are mutually exclusive. If you select one and then select
another from the same column, the first one is toggled off. (The button appears to pop up—
i.e., the highlighting switches back to the bottom edge of the button; also the highlighting
box appears around the latest selection.)

M.2 Motif Applications under OLWM
Applications written for the Motif toolkit conform to the vendor-neutral ICCCM document
(see Volume Zero,X Protocol Reference Manual) so they will operate with any ICCCM-
conferment window manager, includingolwm. It is thus possible to have a “hybrid”
environment.

The most common problems we have seen have been related to “OSFkeysyms.” If you get
a batch of messages about keysyms beginning with the string “OSF” when starting a Motif
client, ensure that your Keysyms file (/usr/openwin/lib/XKeysymDB or /usr/lib/X11/XKey-
symDB) contains a number of lines beginning with the string “OSF”. If not, get a later copy
from an X11R5 site or from OpenWindows 3.1.

If you are migrating to Motif, or sometimes use one interface and sometimes the other, you
can simplify your life by using X Resources to make one behave more like another. For
example, Motif normally uses Alt-F4 to kill an application. You can easily make olwm
behave the same way by setting the resource

olwm.MenuAccelerator.Quit: F4+Meta

in your X defaults file. Similar customizations can be had by perusing Appendix K,OPEN
LOOK Mouseless Operations

Figure M-7. Motif radio boxes

APPENDIX M: WORKING WITH MOTIF 525

MM.3 OPEN LOOK Applications under mwm
M.3.1 X-based clients
Applications written for the X-basedOPEN LOOK toolkits generally conform to the ven-
dor-neutral ICCCM document (see Volume Zero,X Protocol Reference Manual) so they
will operate with any ICCCM-conformant window manager, includingtwm and the Motif
window managermwm. It is thus possible to have a “hybrid” environment

However certain features such as pushpins will not always operate. You may need to use
the “f.delete” item in yourtwm ormwm menu in order to close anOPEN LOOK dialog win-
dow. Undermwm, you may be able to dismiss pop-up windows by double-clicking the left
pointer button on the “menu” icon at the left of the titlebar.

As well, you may find that some Motif-based X servers are deficient in their supply of
OPEN LOOK-specific fonts. If you get messages about missing fonts, see Appendix B,
OpenWindows and X11 Fonts, which talks about adding fonts to the server.

M.3.2 NeWS-based clients
Applications written using the NeWS toolkit, of which there are very few1, will only oper-
ate with an X server that has the “X/News” features; these applications arenot compatible
with a modern “Display PostScript” X server. As well, such applications will haveOPEN
LOOK-style titlebars and window menus, regardless of what window manager is in opera-
tion. It is recommended that you not run these programs undertwmor mwm. Figure M-8,
for example, shows the effect of running the NeWS-basedOPEN LOOK FrameMaker under
twm using the OpenWindows 3.0 server. Notice that FrameMaker and the window with
this text in it have titlebars and a menu from theOPEN LOOK GUI, while everything else
has twm titlebars. The same would happen withmwm or any other X-based window
manager..

1. The only known applications that this applies to are the 3.1 OPEN LOOK version of FrameMaker, the Hyper-
look and SimCity programs (which don’t use OPEN LOOK conventions anyway), and the Hexsweeper game
mentioned in Appendix N, OPEN LOOK Programs.

526 X USER’S GUIDE: OPEN LOOK EDITION

M

Figure M-8. NeWS Applications running under a non-OPEN LOOK window manager

This page intentionally left blank

to preserve original page counts.

This page intentionally left blank

to preserve original page counts.

APPENDIX N: X USER’S GUIDE: OPEN LOOK EDITION 527

N

Appendix NX USER’S GUIDE: OPEN LOOK EDITION

APPENDIX N

OPEN LOOK Software
Availability

There is a wide range of software available to users of theOPEN LOOK GUI. The following
is a reprint of the “Frequently Asked Questions” listing ofOPEN LOOK software from the
USENET newsgroupcomp.windows.open-look1. It is a compilation of both free and com-
mercial software. This list is updated periodically; the most recent version is normally
posted to the Usenet newsgroupcomp.windows.open-look.

Most of the free software is distributed in source code form, needing compilation.

This is version 1.13 92/12/18 of the file open-look-programs.faq.

Contents:
Subject: Applications: Application Builders
Subject: Applications: Graphing Tools
Subject: Applications: Other
Subject: Tools: Terminal Emulators
Subject: Other Commercial Applications
Subject: Applications: toolkit Extensions
Subject: OpenWindows 3 Ports
Subject: XView 3 Ports
Subject: XView 2 Ports
Subject: Games (free and commercial)

N.1 Applications: Application Builders
Commercial: DevGuide 3.0
Contact: SunPICS

lets you use Drag and Drop to create an OPEN LOOK application with XView, OLIT,
UIT or TNT. Very easy to use.

1. This “FAQ” is reprinted with the permission of its compiler, Liam Quin <lee@sq.com>

528 X USER’S GUIDE: OPEN LOOK EDITION

N
Free: dirt

there _might_ be an OLIT port of this UI builder.

Commercial: ExoCode
Contact: Expert Object

one of the first third-party GUI builders to support OPEN LOOK, using the XView
toolkit. It was reviewed in SunExpert magazine in 1990.

Commercial: uib
Contact: ParcPlace, Debra Frances debra@ParcPlace.COM, +1 303 678-4626

uib is a user interface builder which supports building applications that support both
OPEN LOOK and Motif. It generates code for ParcPlace’s OI C++ toolkit and can
make use of user created subclasses. Note: ‘OI’ can also display an OSF/Motif GUI at
runtime.

Free: wcl

Uses X resources to specify an Xt widget hierarchy and actions to user-defined call-
backs. uses OLIT, Xt or Motif.

Commercial: XVT
Contact: XVT Systems (+1 303-443-4223)

Lets you write code to a common subset of OPEN LOOK, Motif, Microsoft Windows,
the Macintosh GUI, and even terminals (using curses). You buy an XVT toolkit for
each environment.

N.2 Applications: Graphing Tools
Free: dstool

XView-based program that plots Lorenz Attractors and other chaotic things in real
time. Also includes a mathematical expression interpreter.

ftp: macomb.tn.cornell.edu

Free: ACE/gr -- graph and analysis program, xvgr
Ftp: ftp.ccalmr.ogi.edu [129.95.72.34]; xvgr-2.09.tar.Z in /CCALMR/pub/
acegr

Handles x-y scatterplots, lineplots, bargraphs, FFT analysis, running averages, poly-
nomial fits, etc.

Free: robot - a scientific graph plotting and data analysis tool
Contact: Robin Corbet <corbet@astro.psu.edu>
Description:

Graph plotting in various styles & axes; Data manipulation - arithmetic, functions,
smoothing, folding, sorting; Fitting to data using Gaussians, polynomials, Lorentzians,
and/or user defined functions; Annotation of graphs; log files; Commands with loops
etc.; Colour; PostScript output.

Ftp: astrod.astro.psu.edu (128.118.147.28) in pub/astrod
Ftp: files: robotx0.35.tar.Z - everything

APPENDIX N: X USER’S GUIDE: OPEN LOOK EDITION 529

N
Ftp: files: RobotManual.ps.Z - just the documentation.
Ftp: files: robot.sun4.Z - binary built on a SPARCstation.
Requirements:

Robot is XView based. User interface portions of code are written in ’C’. Data manip-
ulation code is written in FORTRAN. Hence a FORTRAN compiler is also required
or the public domain f2c package. Alternatively, a SPARC binary is available by anon-
ymous ftp.

N.3 Applications: Other
Commercial: Bimail 400
Contact: BIM (+32-2-759.59.25) pge@sunbim.be
X.400-address: C=be;A=RTT;P=BIM;O=Horizon;S=Geurts;G=Patrick
Notes:

Bimail is a complete X.400 electronic mail system. It consists in a user interface which
gives access to all X.400 services with a consistent look and feel, a message transfer
agent (MTA) system which can transfer messages over X.25, TP.4 and TCP/IP (using
RFC 1006). A gateway to SMTP mail is also available.

Free: WorkMan - Audio CD player for X11 (Sun, Ultrix)
Requirements: XView libraries
Ftp: Ultrix binary: ftp.hyperion.com in /WorkMan
Ftp: ftp.ucsc.edu in "incoming" - database of over 750 CDs
Contact: koreth@hyperion.com (Steven Grimm)
Free: pan - Postit notes
Free: xrolo - Rolodex card index/address book
Commercial: SearchIt 1.0
Contact: SunSoft or SunExpress
SunExpress can be reached at:

US: 1-800-873-7869; UK: 0800 89 88 88

Germany: 01 30 81 61 91; France: 05 90 61 57

Platforms: SPARC, Solaris 1.x
Price: $249
Notes:

SearchIt is a full text search and retrieval application designed to improve individual
and group productivity. It makes an index to files and can later retrieve documents by
words or phrases, ranking the results in relevance order.

Commercial: ShowMe
Contact: SunSoft
Notes:

Conferencing software that lets multiple connected users share the same drawing
screen, with bitmap capture and moveable pointer.

Requirements:

You can only run one ShowMe per computer, so you have to have a CPU per confer-
ence member.

530 X USER’S GUIDE: OPEN LOOK EDITION

N
Free: xvman - Man Pages viewer
Free: xvtdl - ToDo List manager
Ftp: export.lcs.mit.edu /contrib/xvtdl-4.0.tar.Z, /contrib/xvtdl-4.0-
README
Requirements: XView libraries
Contact: Mike Jipping jipping@cs.hope.edu (BITNET: JIPPING@HOPE)
Organisation: Hope College Department of Computer Science

Free: name_finder
Contact: richard.elling@eng.auburn.edu +1 (205) 844-2280
Ftp: ftp.eng.auburn.edu [131.204.10.91] pub/name_finder1.2.tar.Z.
Patches: pub/name_finder1.2.compile.patch1.
Requirements: OpenWindows 3.0, C++ 2.1 or greater to recompile
Desctription:

name_finder was orginally designed as a replacement for the name finder missing from
the OpenWindows Version 3.0 mailtool. It has since grown into a tool for several elec-
tronic mail related activities including: interaction with local ListServ robots for
handling mail lists, requesting Full.Name style mail aliases from your local Post-
Master, and providing mailbox status information ala finger(1). name_finder is written
in C++ (cfront 2.1) using gxv++ version 1.1. If you don’t have access to a C++
compiler, a precompiled sparc executable is included in the distribution.

bibcard (v 1.01) LaTeX Bibliography Manager ???
Ftp: ftp.eunet.ch in software/text/TeX/bibcard-1.0.tar.Z
xftp interface to ftp.
Ftp: ftp.chpc.utexas.edu as file /packages/X/xftp.0.1.alpha.tar.Z.
Contact: Bill Jones jones@chpc.utexas.edu
Requirements: X11, OLIT or Motif or Athena widgets

compiles under (at least) Ultrix, AIX 3.1.5, AIX 3.2, Convex OS, SunOS, Unicos
6.1.4, and IRIX. Uses OLIT. BUG: can also use OSF/Motif and Athena widgets.

Free: olvwm -- OPEN LOOK Virtual Window Manager
contact: Scott Oaks
Ftp: export.lcs.mit.edu in the contrib directory
Patches: there are two patches
Requirements: XView 3
Description:

Olvwm is a version of olwm that manages a ‘virtual desktop’ (hence the ‘v’ in its
name). It shows a little map on the screen, with the currently displayed area repre-
sented by a little rectangle. You can move around by dragging the rectangle or with the
arrow keys. This lets you run several clients (applications) and move the display
around from one to the other. Olvwm was derived from the OpenWindows 3.0 olwm.

Free: bibcard -- OPEN LOOK font end to BibTeX.
Ftp: iam.unibe.ch [130.92.64.10] /X11/Bibcard-1.0.tar.Z
Ftp: includes source and SPARC binary for SunOS 4.1.1.
Requirements: XView
contool (ftp from export.lcs.mit.edu)

APPENDIX N: X USER’S GUIDE: OPEN LOOK EDITION 531

N
a special-purpose console-window that can filter out or take special action on specified
console messages; written by Chuck Musciano.

ftptool (ftp from export.lcs.mit.edu)

an OPEN LOOK front-end to ftp (it uses XView)

Hyperlook, from the Turing Institute

Hypertext package written entirely in NeWS. Runtime from turing.com in /pub or
ftp.uu.net (graphics/NeWS/HyperLook1.5-runtime.tar.Z)

Maestro (ftp from sioux.stanford.edu)

Multimedia authoring tools, including support for sound, text & video.

xvnews (ftp from export.lcs.mit.edu)

An xview-based newsreader for netnews.

xvttool (ftp from titan.rice.edu:sun-source)

A vt100/102 emulator, in both XView and SunView versions. Includes buttons for the
PF keys, etc.

N.4 PostScript and Graphics Viewers
Commercial: pageview - PostScript previewer
Contact: Included in OpenWindows as part of DeskSet.
Notes:

Type 1 support only in OpenWindows 3.0.1 under Solaris 2.1. Antialiasing support -
with colour OpenWindows 3 try pageview -aa -dpi 150 Note that pageview uses the
X11/NeWS server to interpret the PostScript, and thus won’t run on an X terminal or
other non-OpenWindows server. It’s *not* enough to be runing an OPEN LOOK UI
[tm] window manager such as olwm.

Commercial: xps - PostScript program editor and previewer
Contact: included with OpenWindows 2.0 under demo and share/src
Notes:

Only runs under OpenWindows 2 (not 3).

Commercial: psh
Contact: included with OpenWindows

simple interface to NeWS and the OpenWindows server

Free: ralpage
Ftp: export.lcs.mit.edu in contrib/clients
Notes:

Crispin Goswell’s PostScript interpreter, much hacked. Not OPEN LOOK compliant.
No Type 1 font support. There are other versions of this called ‘xps’, ‘postscript’, etc.;
don’t confuse this ‘xps’ with the one mentioned above.

Free: ghostscript
(from the Free Software Foundation)

532 X USER’S GUIDE: OPEN LOOK EDITION

N
Supports Type 1 fonts. Not OPEN LOOK based.

N.5 Tools: Terminal Emulators
Free: cmdtool, shelltool
Requirements: XView 3 toolkit
Notes:

These are included in the XView source distribution from export.lcs.mit.edu in /
contrib; they’re also included with Sun’s OpenWindows.

Commercial: SwitchTerm
Contact: Micro Resources Inc., Columnbus, Ohio, USA, +1 614 766-2335
Notes:

A version of Xterm with an OPEN LOOK UI, print interface, ANSI X3.64 colour
escape sequences, etc.

Commercial: IsoTerm
Contact: The Bristol Group Ltd., +1 415 925-9250 and (49) 6105-2945
(Germany)
Requirements: OpenWindows 3 (??)
Other Products: IsoTeX, IsoFax, Power Base
Notes:

An OLIT-based terminal emulator. I couldn’t get the demo version to give me a shell
prompt, although it did look like it was a pretty fll vt340 emulation, with double-height
characters, colour, fonts, grahics and so forth. With the Union Flag (the British flag)
as their logo I somehow expected an English address, perhaps in Bristol...

N.6 Other Commercial Applications
Contact SunSoft (or Sun) and ask for the Catalyst OPEN LOOK guide, which lists over
200 pages of applications. You can also get the free CDWare CD/ROM, which
contains demo versions of several popular OPEN LOOK UI applications. Once you’ve
done this, you can often simply contact the vendor concerned to have the license
upgraded from demo, and receive the full product documentation.

Product Name: Author/Editor - SGML-based text editor/word processor
Company Name: SoftQuad Inc., +1 416 239 4801, mail@sq.com
Description:

Word processor or text editor that manipulates ISO 8879 SGML documents. Inter-
faces: OPEN LOOK UI (XView), OSF/Motif, Mac, MS/Windows

N.7 Applications: toolkit Extensions
Product Name: Xtra XWidgets
Company Name: Graphical Software Technology
E-Mail: info@gst.com
Phone: 310-328-9338; Fax: 310-376-6224
Keywords: graphics, library, widgets, spreadsheet, help
Interfaces: OPEN LOOK, Motif

APPENDIX N: X USER’S GUIDE: OPEN LOOK EDITION 533

N
Platforms: SPARC, HP9000s300/400/700, IBM RS6000, Interactive 386
Requirements: X11, Xt, Xol (or Xm) libraries and headers; X11
Price: $795/single user, $3000/network, $5000/source
Support-Price: $400/30 calls
Source-Available: yes
Description:

The Xtra XWidget library contains a set of widgets that are subclassed from and
compatible with either OLIT or Motif widgets. The library includes widgets that
implement the following: Spreadsheet, Bar Graph, Stacked Bar Graph, Line Graph,
Pie Chart, XY Plot, Hypertext, Hypertext based Help System, and Data Entry Form.
Widgets have been successfully integrated with both TeleUSE from Telesoft and
Builder Xcessory from ICS. A free demo is available for any of the supported
platforms.

Product Name: XRT/Graph
Company Name: KL Group
E-mail: sun.com!suncan!klg!xrt_info
Phone: +1 416 594-1026
Description:

XRT/Graph is a charting/graphing extension to XView. There are OLIT and (I
think) Motif versions available, too. A free demo is available.

Free: Slingshot XView extension

Slingshot provides rectangles (like the Xt Intrinsics’ RectObj gadget), drag-and-drop
support, images, icons and text, trees, lines, arrows... Get it by ftp from
export.lcs.mit.edu, in /contrib/SlingShot2.0.tar.Z (remember to use binary mode in
ftp!).

You can also get it by sending mail to archive-server@gazooch.eng.sun.com with the
body of each message containing a line like

send sspkg2.0 Part01 Part02

going up to

send sspkg2.0 Part17 Part18

send sspkg2.0 DocPart01 DocPart02 DocPart03

send sspkg2.0 DocPart04 DocPart05 DocPart06

You can ask for one file at a time to reduce the impact on intermediate mail sites. Ask
the mail server for help with the Subject line: "help". A human can be reached at
archive-manager@gazooch.eng.sun.com. Add a line in the message

path <your-mail-address>

if you think the normal automatic reply address might not work.

Ada bindings for XView

Sun Ada 1.1 includes among other things an Ada Source Code Generator for
Devguide. It uses the Verdix XView Ada bindings. It does not yet [July 1992] support
gfm (the guide file manager).

534 X USER’S GUIDE: OPEN LOOK EDITION

N
C++ Bindings for XView
Qualix’s XV++.
UIT

N.8 OpenWindows 3 Ports
Sun: SPARC, SunOS 4.1

Sun: SPARC, Solaris 2 (actually 3.0.1?)

others: none so far...

There are said (by Sun) to be two or three ports of OpenWindows either available now
or in progress. Contact Anthony Flynn at Open Vistas Internat ional
(anthony@ovi.com) for more information. (originally they said 35, but perhaps they
meant 3.5)

OpenWindows source is available - commercially, it costs about $5,000 for the server,
including TypeScaler and the toolkits; deskset (filemgr etc) is another $25,000;
ToolTalk is $40,000 or so.

N.9 XView 3 Ports
What: XView 3
System: Apple A/UX
Porter: lmj@uncompaghre.jax.org (Lou Jones)
Ftp: encyclo.jax.org
Notes:

The libraries and utilities (olwm, cmdtool, etc) are available for anonymous ftp from
encyclo.jax.org. I used gcc 2.1 to compile the sources. If there is enough interest, I can
make the diffs available.

System: Concurrent 7000 (68040 based)
Porter: sinan@Mtesol.boeing.com (Sinan Karasu)
System: DECStation/Ultrix
Porter: dscott@ittc.wec.com (Dave Scott)
Ftp: media-lab.media.mit.edu:~ftp/xview3-ultrix.4.2-mips.tar.Z
Notes:

Let me stress that this is *not* fully tested, but seems to work pretty well. Please let
me know about any problems you find. Problems I already know about:

Large buttons under *any* non-Sun X server (non-xnews; i.e. any standard MIT
X11R[45] server) have the bottom of the button chopped off. We’re working on
this one. :-)

[actually this seems *not* to be Dave Scott’s port; please accept my
apologies for listing this incorrectly. A correct entry will appear as
soon as I get the necessary information. -- Lee]

System: HP 720
Porter: (?)
Ftp: tesla.ucd.ie [137.43.24.44], /pub

APPENDIX N: X USER’S GUIDE: OPEN LOOK EDITION 535

N
Notes:

Includes HP 720 build, HP XView patch file, Xvgr.

System: HP9000/300 series
Porter: tjc@ecs.soton.ac.uk (Tim Chown)
System: HP9000/7XX series
Ftp: ftp.csc.liv.ac.uk (138.253.42.172) hpux/X11/xview-
3.part[123].tar.Z
System: Intel (SysVR4/i386)
Porter: dawes@physics.su.OZ.AU (David Dawes)
Ftp: ftp.physics.su.oz.au, suphys.physics.su.oz.au /Esix_4/x11r5
hierarchy
Notes:

His patches were for Esix 4.0.3 but should work on DELL, ISC and Intel SVR4 with
no worries. The files are README.xview3 and xview3.diff.Z.

System: IBM RS/6000
Porter: tmcconne@sedona.intel.com (Tom McConnell)
Compiler: bsdcc
Ftp: export.lcs.mit.edu:contrib/xview3/Fixes/
xview3_rs6k_unofficial.patch.Z
Notes:

There is still a problem with tty support for the RS/6000. For instance, the cmdtool will
not work. Still, most everything else works. For those of you who have already
installed my previous patch, I have put a separate patch for just the shared library
problem. This file is contrib/xview3/Fixes/xview3_rs6k_XView_lib.patch.Z.

System: SGI
Porter: Rainer Sinkwitz <sinkwitz@ifi.unizh.ch>
Ftp: export.lcs.mit.edu:/contrib/xview3/Fixes/
xview3_sgi_unofficial.patch.tar.Z
Notes:
System: Solbourne Series 5
Porter: tmcconne@sedona.intel.com (Tom McConnell)

N.10 XView 2 Ports
In general, there is no point in using XView 2 if you have XView 3
available;
it’s a good idea to look for an XView 3 port first. Moving from XView 2 to
XView 3 is usually simply a matter of recompiling, unless you’ve done
"dirty tricks" or used undocumented calls.
System: Stellar GS100 (Stardent 1000) and Stardent 1500 & 3000
Porter: arvai@scripps.edu (Andy Arvai)
Ftp: perutz.scripps.edu (137.131.152.27) in the pub/xview directory
Notes:

Stardent is now Kubota Pacific (KPC)

System: Harris Nighthawk 4000 system (CX/UX Unix)
Porter: andy@harris.nl (Andy Warner)

536 X USER’S GUIDE: OPEN LOOK EDITION

N
Status: Commercial
System: SGI/Iris
Porter: (?)
Ftp: wuarchive.wustl.edu:graphics/graphics/sgi-stuff/XView/xview2
System: VAX/VMS
Porter: TGV Inc (?)
Notes:

Steven Fenger <svfenge@afterlife.ncsc.mil> wrote:

A company called TGV makes a product called "XView for VMS". ...

N.11 Games (free and commercial)
Free: hexsweeper - minesweeper game based on hexagons
Contact: lee@sq.com, include HexSweeper in Subject
Requirements: OpenWindows 3.0 or later
Toolkit: TNT 3
Free: Spider (Included in OpenWindows under ‘demo’ and ‘share/src’)

A patience-style card game with two packs of cards and excellent bitmap cards. I
suggest recompiling to allow the cards to have rounded edges.

Free: Xblackjack (ftp from export.lcs.mi.edu as contrib/xblackjack-
2.1.tar.Z)

A MOTIF/OLIT based tool constructed to get you ready for the casino.

Commercial: Aviator - flight simulator for GX-equipped SPARCStations
Contact: Artificial Horizons Inc, aviator-interest@ahi.com; +1 415 367
5029
Requirements: OpenWindows (2 or 3), SunOS 4.1 or later, SPARC GX or
GXplus
Commercial: SimCity
Contact: Dux Software, Los Altos, CA
Price: US$89
Requirements: OpenWindows 3 (uses NeWS). Doesn’t run on a 4/110 with cg4
:-(

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 537

Chapter 15X USER’S GUIDE: OPEN LOOK EDITION

Glossary

X andOPEN LOOK use many common terms in unique ways. Good examples are “server”
and “child.” While most, if not all, of these terms are defined where they are first used in
this book, you will find it easier to refresh your memory by looking here.

The following defines the meanings of most of the common X andOPEN LOOK terms used
in this book. Terms defined elsewhere in the glossary appear inbold. Terms that are spe-
cific to OPEN LOOK, as well as those to whichOPEN LOOK assigns special meanings, are
identified with the tag (OL) after the term.

abbreviated menu (OL) A menubutton displayed as a small square with an
inverted triangle inside it. Most commonly seen in
OPEN LOOK titlebars. Behaves like anOPEN LOOK
menu button.

abbreviated scrollbar (OL) A scrollbar on a very smallpanel orsplit pane may
be displayed with just thecable anchors andarrow
buttons

accelerator A key or key sequence that is short for one or more
menu and/or button actions.

access control list X maintains lists of hosts that are allowed create
windows on a display. By default, only the local host
may use the display, plus any hosts specified in the
access control list for that display. Nowadays it is
recommended to useX Authorization . instead.

538 X USER’S GUIDE, OPEN LOOK EDITION

active window The window where the input is directed. With a
``pointer focus” policy, such asolwm in pointer-
focus mode, ortwm, you must put the pointer in a
window to make it the active window. The active
window is sometimes called the focus window.

ADJUST pointer button
(OL)

The pointer button, normally the middle one on a
three-button mouse, used to adjust— lengthen or
shorten— a selection.

application See under client.

arrow button (OL) An abbreviated button, usually found at the ends of a
text field, used for scrolling. A special case of “abbre-
viated button.”

ASCII American Standard Code for Information Inter-
change. This standard for data transmission assigns
individual 7-bit codes to represent each of a specific
set of 128 numerals, letters, and control characters.
See alsoiso8859-1.

Athena A project at the Massachusetts Institute of Tech-
nology; in X11, commonly used to refer to the
Athena Widget Set used with theX Intrinsics
Toolkit.

Automatic Scrolling (OL) Automatic scrolling lets you move the view by
holding SELECT and wiping through (moving the
pointer across) the data. At present, this works for
OLIT clients, but not for XView clients.

background Windows may have abackground, consisting of
either a solid color or a tile pattern. If a window has a
background, it will be repainted automatically by the
server whenever there is anExpose event on the
window.

background color The color that determines the backdrop of a window,
for example, on monochrome displays, the root
window background color is gray.

background window Another name for theRoot Window orWorkspace.

Backing Store An attribute of the X Server that lets it retain in
memory an image of overlapped areas so that the
client doesn’t have to redraw them.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 539

base frame (OL), base
window

The mainwindow of an application. A base frame
has a close button(shown here) at the left of its title
bar; a pop-up window generally has a push-pin. See
alsoCommand Frame, Properties Window.

binding An association between a function and a key and/or
pointer button. TheOPEN LOOKFile Managerbinds
file types with actions, so that clicking on the file’s
icon causes it to be processed in some predefined
way; see Chapter 4,Using the OPEN LOOK File
Manager. The MIT window managertwm allows
you tobind its functions to any key(s) on the
keyboard, or to a combination of keys and pointer
button (e.g., the Control key and the middle button
on a 3-button pointer).

bitmap A grid of pixels or picture elements, each of which is
white, black, or, in the case of color displays, a color.
The OpenWindows DeskSet clienticoneditand the
MIT bitmap client allow you to editbitmaps, which
you can use as pointers, icons, and background
window patterns.

border OPEN LOOK windows have a very thinborder
around them; you can access thewindow menu
from any point on the border. With non-OPEN LOOK
window managers, a window can have aborder that
is zero or more pixels wide. If a window has a
border, theborder can have a solid color or a tile
pattern.

button A tiny ``window” area with a label that, when clicked
on, causes some action to be performed. InOPEN
LOOK, buttons can be used to perform an action
directly, to display a pop-up window, or to display a
menu.

Cable (OL) The Cable is the part of ascrollbar that shows how
much data can be scrolled, and lets you scroll by one
screenful at a time.

Cable anchor (OL) The boxes at the end of the cable anchor; clicking
SELECT on them scrolls all the way to the appro-
priate end of the data. Dragging SELECT on them
lets you split the view.

540 X USER’S GUIDE, OPEN LOOK EDITION

Cancel A button that lets you remove a property sheet or
other pop-up dialog without applying any changes;
the action of so removing it. Also a key that does so,
usually <ESC> orSTOP.

Caret (OL) A small mark that shows you which of several text
fields will receive your keyboard input. The active
caretis a black half-diamond; the inactive caret is a
grey diamond.

check boxes (OL) A nonexclusive choice setting; shows a check mark
or tick mark in a small box when the setting is active,
and is an empty box otherwise.

click To press one of thepointer buttons to notify a
program of your intentions; the action of so pressing.

client X11’s name for an application program, any program
that requests the X Server to create and manage one
or morewindows for it. There are standardclient
programs to perform a variety of tasks, including
terminal emulation and window management.
Commercial or third-party applications are consid-
ered to beclients.Clients need not run on the same
system as the display server program.

clipboard A holding area into which you can paste selected text
or other matter.

close To close a window is to iconify it. OnOPEN LOOK,
this does not terminate the client controlling the
window; on OSF/Motif and on Microsoft Windows,
closing a window means to quit from it.

colorcell An entry in a colormap is known as acolorcell.
An entry contains three values specifying red, green,
and blue intensities. See alsocolormap.

colormap A colormap consists of an array of colorcells. A
pixel value indexes into the colormap to produce
intensities of red, green, and blue to be displayed.
The colormap on most systems is a limited resource
that should be conserved by allocating read-only
colorcells whenever possible, and selecting RGB
values from the predefined color database. Read-only
cells may be shared between clients. See alsoRGB.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 541

colormap lock (OL) An OPEN LOOK facility to lock the colormap of one
application onto the display, to avoid flashing of
colors when moving the pointer in and out of that
window. On the OpenWindows version of olwm, the
key sequence Control/L2 locks, and Control/L4
unlocks, the colormap of the window that has the
input focus.

console window Thiswindow, which usually contains a terminal
emulator such ascmdtool, contool, orxterm, is
usually the first window to appear on your display.
On some implementations, exiting the console
window kills the Xserver program and any running
applications. Also called thelogin terminal window.

control Any screen area used to activate a function. Exam-
ples include menus, scrollbars, buttons, etc.

There are alsocontrol keys on most computer
keyboards; these are often used asaccelerators

copy cursor (OL) A cursor indication that the drag-and-drop selection
is being copied, rather than moved.

cut To cut a selection (graphics or text) is to remove it
from the active window; it is usually stored in a clip-
board so it can be pasted in elsewhere.

default A function-dependent value assigned when you do
not specify a value. For example, specifying the-rv
option withxterm reverses the foreground and back-
ground colors for thexterm window. If you do not
specify this option, thedefault foreground and back-
ground colors are used.

default ring (OL) In anOPEN LOOKpop-up, thedefault button is indi-
cated by a double line around it. In anOPEN LOOK
menu, the default item is indicated by a thin oval ring
around it. You can change the default in a menu by
dragging with Control-ADJUST.

Desktop manager Any program similar toOPEN LOOK’s File
Manager.

depth Thedepth of a window or pixmap is the number of
bits per pixel.

542 X USER’S GUIDE, OPEN LOOK EDITION

device-dependent Aspects of a system that vary depending on the hard-
ware. For example, the number of colors available on
the screen (or whether color is available at all) is a
device-dependent feature of X.

DeskSet (OW) A set of clients provided with Sun’s OpenWindows
that provides some useful functionality that is either
missing or costs extra with most other GUIs. See
Chapter 7,The OpenWindows DeskSet Clients

Dialog box A popup window used to ask for specific
information.

display A set of one or more screens driven by a single X
server. TheDISPLAY environment variable tells
programs which servers to connect to, unless it is
overridden by the-display command line option.
The default is always screen 0 of display server 0 on
the local system. See Chapter 1,An Introduction to
OPEN LOOK and the X Window System

Display PostScript An extension to X11 that allows rendering of Post-
Script files into X windows. Not the same as Sun’s
earlier NeWS protocol for PostScript.

double-click To click twice in rapid succession on a control. This
is normally a shortcut oraccelerator for selecting
something and then clicking another button to acti-
vate it.

drag and drop A protocol brought to the X11 community byOPEN
LOOK that lets you copy a selection from one
window to another with a single mouse action: you
hold a mouse button down while dragging the
pointer, and release the button to “drop” the selection
in another window.

Drag Area (OL) The area in the middle of a scrollbar or slider that is
dragged to scroll the data or change the slider’s value.

Drop Target (OL) A rectangle into which you can drop a selection to
make it current; you can often drag from the drag
target to get the current contents of the application.

Drop Shadow (OL) The gray area to the right and below the border of a
menu.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 543

Duplicate pointer (OL) The cursor displayed when you are copying an object
by dragging.

Elevator (OL) The central feature of anOPEN LOOKscrollbar; it
features up and down arrows to scroll up or down,
and a central drag area that can be moved by
dragging.

event The windowserver represents user actions such as
pointer motion, key presses and windowexposure
with a data structure called anevent. Application
programs interpret theseevents and respond to them
in particular ways.

exposure Windowexposure occurs when a window is first put
up on the screen, or when another window that
obscures it is unmapped (e.g., iconified or destroyed),
resized, or moved. Expose events are sent to clients
to inform them when contents of regions of windows
have been lost and need to be regenerated.

Exclusive choice (OL) A control that allows for only one of a number of
choices to be selected at one time.

Extension The MIT X server allows a skilled programmer to
add new features; a set of one or more such features
is called anextension.

File Manager (OL) A program (filemgr) used to browse through files and
directories. It displays different icons for different
types of files, and can automatically start application
programs or take other action when you double-click
on files. See Chapter 4,Using the OPEN LOOK File
Manager, for a discussion of theOPEN LOOK file
manager.

focus window The window to which keyboard input is directed. For
a discussion of the two modes of selecting thefocus
window, see Chapter 2,Working in the OPEN LOOK
Environment

focus help (OL) A visual indication of which window has the input
focus. Normally invoked by Control-?.

544 X USER’S GUIDE, OPEN LOOK EDITION

font A style of text characters. Fonts and X font naming
conventions are described in Chapter 10,X11, OPEN
LOOK and OpenWindows Font Specification.

font directory By default, fonts are stored in the subdirectories of
/usr/lib/X11/fonts (MIT) or $OPENWIN-
HOME/lib/fonts (OpenWindows). You can specify
alternative or additionalfont directories with thexset
client.

footer (OL) The bottom area of a main window, used to display
messages. The left footer is for status messages such
as the completion of an action; the right footer is for
information such as the current page number.

foreground color The color in which the text in windows and menus,
or graphics output are displayed.

Front (OL) The Front item in the Window Menu moves a
window to the front of the screen, that is, over top of
any windows that overlap it. In OpenWindows the
accelerator for this is the L5 key.

Full Size (OL) To make a windowfull size is to make it use the
largest size (normally by height) that it can. This is a
Window Menu item and is also available by double-
clicking on a window’s titlebar.

gauge (OL) An output-only control that shows the percentage of
use or the proportion of an action that has been
completed.

geometry The size and placement of a window, which can be
specified with the-geometry option or an X
resource.

Graphical User Interface
(GUI)

A specifications for the look and feel of client
windows.OPEN LOOK is one GUI; the MacIntosh
Operating System and the OSF/Motif interface are
others.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 545

header (OL) TheOPEN LOOK term for a titlebar. A small rect-
angle across the top of the window, with the
program’s name or other information (for example,
the name of the file being processed in the window)
centered. Base windows have a window menu button
(menu mark) at the left of the header; pop-up
windows (command and property windows) have a
pushpin at the left.

Help Assistance or information about a window or control.
OPEN LOOKapplications provide help in a consis-
tent way, by the use of aHELP key (F1 on some
keyboards;HELP on others).

hexadecimal A base-16 arithmetic system, which uses the digits A
through F to represent the base-10 numbers 10
through 15.X clients accept a special hexadecimal
notation (prefixed by a # character) in all command
line options relating to color. See XX CHAPTER
WITH COLOR XX for more information.

highlight As you drag the pointer down a menu, each item is
highlighted by drawing it in a different color.
Releasing the pointer button on the highlighted item
will cause it to be selected.

hot spot The reference point of a pointer that corresponds to
its specified position on the display. In the case of an
arrow, an appropriatehot spot is its tip. In the
case of a cross, an appropriate hot spot
might be its center.

icon A small symbol that represents a window but uses
little space on the display. Converting windows to
icons, called “iconifying”, allows you to keep your
display uncluttered. X11 and NeWS programs typi-
cally have an icon that is intended to be
representative of the program. Because they have the
full capability of PostScript available, NeWS
programs often have a scaled version of the current
image of the main window.

546 X USER’S GUIDE, OPEN LOOK EDITION

input device Hardware device that allows you to input information
to the system. For a window-based system, a
keyboard and pointer are the most common input
devices. The X InputExtension allows you to add
new device types to theMIT X server.

internationalization A way of writing programs that allows use of a
different human language than that used by the
author of the program.

iso8859-1 A character set containingASCII and a number of
international (European) characters as well.

join views (OL) To join back together two views of a panel; seesplit
view.

keyboard accelerator See accelerator.

keyboard focus Seefocus window.

keyboard input The entry of information from the keyboard; the text
entered from the keyboard.

maximize The Motif term forFull Size.

menu A list of commands or functions, listed in a small
window, one of which can be selected with the
pointer.

menu button (OL) A button that has a menu associated with it. An
example is the File menu on most main windows;
clicking SELECT will take the default action (load or
save as appropriate), while clicking MENU will
cause the menu to be displayed. See Chapter 2,
Working in the OPEN LOOK Environment

menu mark (OL) A triangle in the border of a button or to the right of a
menu item, to indicate that a menu is connected to it.
Triangle points down or right to show which direc-
tion the menu will appear in. See alsoAbbreviated
Menu Button.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 547

MENU pointer button
(OL)

The pointer button, usually the rightmost one on a
three button mouse, that is used to make a menu
appear.

Minus button (OpenWin-
dows only)

A button used in some of the OpenWindows
DeskSet clients to reduce the size of the Properties
window.

modifier keys Keys on the keyboard such as Control, Alt, and Shift.
X programs recognize a set of “logical”modifier key
functions that can be mapped to physical keys. The
most frequently used of these logical keys is called
the “meta” key) labelled ¨Left¨ and ¨Right¨ on some
keyboards=.

MoOLIT An AT&T toolkit that will be able to provide either
anOPEN LOOKor a Motif interface, at the user’s
request. Derived from their earlier OLIT.

Motif A Graphical User Interface and its toolkit, developed
by the Open Software Foundation by coalescing
elements of DEC’s and Hewlett-Packard’s X-based
GUIs.

mouse An input device that, when moved across a flat
surface, moves the pointer symbol correspondingly
across the display. The mouse usually has buttons
that can be pressed to send signals that in turn accom-
plish certain functions. The mouse is one type of
pointer device; the representation of the mouse on the
screen is also called thepointer. (Seepointer.)

Move cursor (OL) A pointer shape used to warn you that a drag you are
doing will move, rather than copy, the data object.
Moving a file from the File Manager to the Print
Manager, for example, will print the file and delete it
from your disk.

Multimedia A system that has access to media other than the tradi-
tional screen/keyboard/mouse, such as sound,
interactive video, etc.

548 X USER’S GUIDE, OPEN LOOK EDITION

NeWS Sun’s Network Extensible Window System, an alter-
native to X11. Unlike Display PostScript, NeWS
extends the PostScript language into a full
windowing system. The OpenWindows server
supports both X11 and NeWS clients concurrently.

NFS The Networked File System, allows files from almost
any operating system to be “mounted” on any other
computer that is connected via a network.

non-exclusive choice (OL) A control that allows for any or all of its multiple
choices to be active (selected) at one time.

Notice (OL) A Notice isOPEN LOOK’s term for apop-up
window used to bring your attention to an error or
warning that requires action, usually a choice, before
the application can continue. Analogous to certain
types ofdialog box in other terminologies., and to
the ¨Alert Box¨ on the MacIntosh.

occluding In a windowing system, windows may be stacked on
top of each other much like a deck of cards. The
window that overlays another windowoccludes, or
hide, that window. A window need not completely
conceal another window to be occluding it.

OLIT TheOPEN LOOKIntrinsics Toolkit, anOPEN LOOK
tookit from AT&T.

open To open a window is to replace its icon with the full-
scale window.

OPEN The most-abused term in the computer industry; the
marketing buzzword of the 1980’s and 1990’s. It
began with Sun’s use of “Open Systems”, but has
since lost much of its meaning through overuse.

OPEN LOOK A Graphical User Interface developed by Sun and
AT&T; the first industry-standard GUI for the X11
and UNIX environments. The trademark in the name
is held by AT&T. Oops, better make that Novell, Inc.

OpenWindows Sun’s windowing software package; includes an X
server, most standard X clients, window and file
managers, a series of useful DeskSet clients., the
ToolTalk inter-application protocol, X toolkits, etc.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 549

OSF/Motif See under Motif.

page-oriented scrollbar
(OL)

A scrollbar that moves from one page to the next in a
page-oriented application such as publishing soft-
ware. Has a small box to indicate the current page
number.

palette A set of colors used to select the colors for parts of
your display.

parameter A value required before a client can perform a func-
tion. Also called an argument.

paste To insert a selection that was previously cut or
copied.

picture frame corners See Resize Corners.

Pinnable menus (OL) Menus that have a pushpin and can thus be pinned up
on your screen until you are done with them.

pixel The smallest element of a display surface that can be
addressed.

Plus button (OpenWin-
dows only)

A button used in some of the OpenWindows
DeskSet clients to increase the size of the Properties
window.

point A unit of measurement equal to approximately 1/72
of an inch (0.354 am).

pointer A generic name for an input device that, when
moved across a flat surface, moves the pointer
symbol correspondingly across the display. Apointer
usually has buttons that can be pressed to send
signals that in turn accomplish certain functions. The
mouse is by far the most common type of pointer
device at present.

Thepointer also refers to the symbol on your display
that tracks pointer movement on your desk. Pointers
allow you to make selections in menus, size and posi-
tion windows and icons, and select the window
where you want to focus input. A pointer can be
represented by a variety of symbols. (Seetext
cursor.) Some typical X pointer symbols are the I-
beam and the skull and crossbones.

550 X USER’S GUIDE, OPEN LOOK EDITION

pop-up menu (OL) A menu that pops up when you press the MENU key
anywhere other than over amenu button.

pop-up window A window that appears in order to perform some
specific tasks. Examples of pop-up windows in
OPEN LOOKinclude command windows, property
windows, help windows, and notices.

property (X11) Windows have associatedproperties, each consisting
of a name, a type, a data format, and some data.
These are used for many purposes in X11, such as
specifying whether a window is to be iconified, what
Resource values are to be used, etc.

Property (OL) OPEN LOOKuses the termproperties in a more
conventional sense than X11´s technical meaning, to
mean attributes of something, such as the type of font
to use, or the color of a window.

Property Window (OL) A pop-up window used to set preferences (“proper-
ties”) of an object, a program, or a window.

Pushpin (OL) A graphic image of a pushpin used to make a
window or menu stay up until you explicitly dismiss
it by removing the pin.

Pin See pushpin.

quit To quit an application means to terminate it. The
OPEN LOOKWindow Manager has a quit item in its
window menu, so you can quit any application from
the window manager.

radio button A group of buttons where only one of the buttons can
be selected at a time. So named because they behave
like the channel buttons of an old fashioned car radio.
OPEN LOOK’s analog is theexclusive choice.

reverse video Reversing the default foreground and background
colors.

RGB A method for defining color in which proportions of
the primary colors Red, Green, and Blue are
combined to form other colors.

Refresh To make the window (or the entire screen) be
redisplayed.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 551

Resize corners (OL) Most windows can be made smaller or larger by
selecting one of their resize corners and sliding it in
the desired direction to make the window larger or
smaller.

Root Menu The menu that a window manager displays when you
request a menu with the pointer positioned on the
background, that is, not inside any given window.
OPEN LOOKcalls this theWorkspace Menu.

Root Window The background area of your screen; the area on top
of which all actual windows are drawn. Also called
thebackground windowor, inOPEN LOOK, the
Workspace.

RPC Remote Procedure Call, a high-level communication
method used by some applications to exchange infor-
mation. NFS uses RPC.

screen A server may provide several independentscreens,
which may or may not have physically independent
monitors. For instance, it is sometimes possible to
treat a color monitor as if it were two screens, one
color and one black and white.

scroll To move through data that is larger than the window
that is displaying it.

scrollbar A bar on the side of a window that allows you to use
the pointer to scroll up and down through the text
saved in the window. Useful whenever the amount of
data in an application is greater than amount that can
be displayed at one time.

scrollbar menu (OL) EachOPEN LOOKscrollbar has a menu that can be
used to scroll, and sometimes tosplit/join the view
of the window. Access the menu by pressing MENU
with the pointer over the scrollbar.

552 X USER’S GUIDE, OPEN LOOK EDITION

select A process in which you move the pointer to the
desired menu item or window and click or hold down
a pointer button in order to select some text or data.

SELECT pointer button
(OL)

The pointer button, usually the leftmost one on a
three-button mouse, used to start a selection or to
select a particular choice from a menu or series of
buttons.

selection Selections are a means of communication between
clients using properties and events. A selection is an
object or item of data that can be highlighted in one
instance of an application and dragged or pasted into
another instance of the same or a different applica-
tion. The current selection can also be copied into the
clipboard, orcut.

server A server is a program that makes some resource
available to clients. A traditional “file server” makes
file storage available to workstations. In X termi-
nology, the server is the combination of graphics
display, hardware, and X server software that
provides display services for clients. Theserver
also handles keyboard and pointer input.

split view (OL) To divide a panel into multiple views of the data;
each view has its own scrollbar and can be scrolled
independently.

stay-up menus (OL) Menus that stay on the screen when you click and
release the MENU button.

Text Arrow (OL) Visual indication that a text field is larger than can be
displayed in the visible portion on the screen.

text cursor The standard underscore or block cursor that appears
on the command line or in a text editor running an
xterm window. To make the distinction
clearer, the cursor that tracks the move-
ment of a mouse or other pointing device
is referred to as thepointer. The pointer
may be associated with any number of
cursor shapes, and may change shape as
it moves from window to window.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 553

text duplicate pointer (OL) Pointer that displays when a text drag is copying the
data

text move pointer (OL) Pointer that displays when a text drag is (destruc-
tively) moving the data.

tile A pattern that is replicated (as if laying atile) to form
the background of a window or other area. This term
is also used to refer to a style of nonOPEN LOOK
window manager that places windows side by side
instead of allowing them to overlap.

titlebar A small rectangle on top of a window. Shows the
name of the application, and allows menu access to
various window manager functions.

tNt, TNT The NeWS Toolkit, atoolkit for developingNeWS
applications underOpenWindows.

toolkit A set of programmer-accessible functions used to
develop applications. Examples ofOPEN LOOKtool-
kits for X11 include AT&T‘s OLIT and Sun’s
XView, and for NeWS, Sun´s TNT. There is only
one Motif toolkit, the Motif Toolkit. There are
severalOPEN LOOK- and Motif-compliant toolkits
from third parties.

ToolTalk A Sun program that provides very high level interpro-
cess communication. Used by some of thedeskset
clients to exchange messages; used byfilemgr to start
some clients.

triple-click To click three times in rapid succession. Normally
used to select an entire line of text in an editor or
terminal emulator.

unbundled Sold separately from the base system; costing extra
money.

Undo To undo an operation, i.e., to return the data to its
state before the last change you made.

Unicode An extension of theASCII character set designed to
include all known European and Asian languages
See also iso8859-1.

554 X USER’S GUIDE, OPEN LOOK EDITION

UNIX A multi-tasking, multi-user operating system that is
most commonly used on mini-computers and work-
stations. The X Window System was developed on
UNIX, but now runs on several other operating
systems or even stand-alone inX Terminals.

Validate To verify that an item of data is acceptable in a given
context.

Virtual Desktop A scrolling facility for making theWorkspace
appear larger than the physical screen. Examples of
window managers that implement this include
tvtwm andolvwm.

Virtual Edges (OL) A facility for reserving part of the workspace for
icons and certain application windows. Rarely used.

Virtual Keyboard An image of the keyboard used to show and alter the
mappings of various keys.

Virtual Reality Nothing to do with X11; a fancy multimedia system
that appears to present you with an interactive, three-
dimensional world.

Wait Cursor A cursor indicating that you’ve asked the application
to do something that may take a long time. On some
GUIs the watch hands appear to move; this does not
happen with most current X11 implementations.

window A region on your display created by aclient. For
example, thecmdtool orxterm terminal emulator, the
calctoolor xcalc calculator, and theiconedit or
bitmap graphics editor all create windows. You can
manipulate windows on your display using a
window manager.

window manager A client that allows you to move, arrange, resize,
circulate, and iconifywindows on your display. The
Window Manager also draws borders and titlebars.
The most commonWindow Managers underOPEN
LOOK areolwm andolvwm.

... window mark Three dots (...) following a button label or menu item
to indicate that it will cause a separate pop-up
window to appear.

CHAPTER : X USER’S GUIDE: OPEN LOOK EDITION 555

window menu (OL) A menu that is displayed when you press the MENU
button on a window’s titlebar.

Wipe-through selection Pressing SELECT and moving the pointer across
data (text or graphics) to make a continuous selection.

Workspace (OL) OPEN LOOK’s term for theRoot Window, the
region behind all other windows

Workspace Menu (OL) OPEN LOOK’s term for theRoot Menu, the menu
that 9zis accessed when the MENU button is pushed
over the Workspace (not over any window).

Workspace Properties
Menu (OL)

The property window accessed from the Workspace
Menu that lets you customize global properties by
updating your.Xdefaultsfile. See Chapter 2,
Working in the OPEN LOOK Environment.

X Authorization A mechanism that allows your programs to open
windows on your display, regardless of what host
they are running on, without having to be explicitly
added to the Access Control List. The most common
form of X Authorization uses the file~/.Xauthority to
contain an encryption that the server recognizes. See
the manual pages forxauth andxhost.

X Terminal A computer terminal that is dedicated to running The
X Window System

X11 A window system that is the subject of this series of
books. The X Window System is a trademark of the
Massachusetts Institute of Technology.

Xt+ An early name for theOLIT toolkit.

XView Sun’sOPEN LOOKtoolkit for X11. Has a similar
programmer’s interface to their older, pre-X11
SunView toolkit.

556 X USER’S GUIDE, OPEN LOOK EDITION

BIBLIOGRAPHY 557

Chapter 16X USER’S GUIDE: OPEN LOOK EDITION

Documentation Roadmap
and Bibliography

This is a bibliography of works on theOPEN LOOK GUI, OpenWindows, and X11. Some
sections of this bibliography are adapted from material in the Usenet newsgroupcomp.win-
dows.open-look Frequently Asked Questions (FAQ).

Other Books in the O’Reilly X Window System
Guides series

The O’Reilly X Window System Guides provide a comprehensive set of documents for
The X Window System. Other books in the series which may be of interest to end-users
include:

X User Tools. ISBN 1-56592-019-8. Linda Mui, Valerie Quercia, and other authors
(including the author of the present work). A new (1994) work that provides the most com-
prehensive coverage imaginable of all the programs for The X Window System, including
standard X11 programs and free software. Includes one chapter on theOPEN LOOK GUI.

X Window System Administror’s Guide (Volume 8), ISBN 0-937175-83-8, with CD: 1-
56592-052-X). This volume discusses many aspects of setting up and running the X Win-
dow System, particularly in a multi-vendor environment.

X Window System in a Nutshell. (Nutshell series) Contains reference pages for many of the
standard clients, along with programmer documentation on the system.

Most of the remaining books in the series are of interest to programmers developing and
maintaining X Window System applications:

Volume Zero,X Protocol Reference Manual, discusses the network protocol used between
the X server and its clients. Of interest mainly to advanced programmers.

558 X USER’S GUIDE: OPEN LOOK EDITION

Volumes and Two, XLib Programmer’s Manual andXlib Reference Manual discuss the
use of XLib, the lower level of access.

 Volumes Four and Five, X Toolkit Intrinsics Programmer’s Manual. andX Toolkit Intrin-
sics Reference Manual, discuss the details of the “Xt” toolkit library.

Volume Seven,XView Programming Manual, discusses Sun’s XView toolkit for building
OPEN LOOK applications.

Volume Six,Motif Programming Manual, discusses in full detail the Motif toolkit.

PHIGS Programmer’s Manual. (X series, no volume number) discusses in considerable
detail the use of PHIGS graphics and PEX, the Phigs Extension to X, a graphics layer that
can be used on top of X.

Power Programming with RPC. (Nutshell Handbook series) discusses developing net-
worked applications using Sun’s Remote Procedure Call library, including significant
discussion of developing RPC applications that work within the constraints of X toolkits
such as Sun’sOPEN LOOK toolkit XView and Xt (includingOLIT and Motif).

Books about OPEN LOOK
The official description and usage guidelines for theOPEN LOOK GUI are contained in the
following two books:

■ Sun Microsystems Inc.,OPEN LOOK Graphical User Interface Functional Specifica-
tion, Addison Wesley

■ Sun Microsystems Inc.,OPEN LOOK Graphical User Interface Application Style
Guidelines, Addison Wesley, 1989

Writing Programs for OPEN LOOK
David Miller describes programming with OLIT inAn OPEN LOOK At Unix (M&T
press).

Nabajyoti Brkakati gives an excellent introduction to X and to OLIT programming, as well
as setting up and using X and OpenWindows, inUnix Desktop Guide to OPEN LOOK,
SAMS, 1992 ISBN 0-672-30023-0 You can get the examples from this book as
ftp://export.lcs.mit.edu/contrib/naba-olguide-examples.tar.Z

Also about using OLIT, and Xt in particular:The X Window System: Programming and
Applications with Xt, OPEN LOOK Edition, Doug Young and John Pew, Prentice Hall,
1992, ISBN 0-13-982992-X. There are also HP Widgets and Motif versions of this book.
The example source code in this book can be obtained as ftp://export.lcs.mit.edu, file
contrib/young.pew.olit.Z.

There is an introduction to XView inWriting Applications For Sun Systems, Vol 1, A
Guide for Macintosh(R) Programmers (Sun Microsystems, pub. Addison Wesley)

BIBLIOGRAPHY 559

A recent (the last?) XView programming guide isPractical XView Programming, by Ken-
neth W. Bibb and Larry Wake, John Wiley & Sons, Inc., 1993, ISBN 0-471-57460-0You
can get the examples from this book asftp://export.lcs.mit.edu:/contrib/xvprac.tar.Z

 NeWS, PostScript and Display PostScript
To learn more about the NeWS and PostScript languages, see

The NeWS Book, Springer Verlag, 1989 (sadly, a little out of date)

Sun’s documentation on NeWS, accompanying OpenWindows releases up to 3.2. Open-
Windows versions up to version 3.2 use NeWS which is a level 1 PostScript
implementation, with certain Level 2 features (such as Composite Fonts) to some degree.
Versions 3.3 and higher feature Level 2 Display PostScript.

PostScript Language Reference Manual, Second Edition, Adobe Systems Inc., Addison
Wesley, 1990. ISBN 0-201-18127-4 (“the Red Book”). Note: the first edition of this book,
ISBN 0-201-10174-2) is sometimes still available, but it is substantially out of date.The
first edition describes only Level 1 PostScript; the second edition also describes Level 2
PostScript.

PostScript Language Tutorial and Cookbook, Adobe Systems Inc., Addison Wesley, 1985,
ISBN 0-201-10179-3. (“The blue book”). A fairly gentle introduction to PostScript.

Programming the Display PostScript System with X. Adobe Systems Inc., Addison Wes-
ley, 1993, ISBN 0-201-62203-3. Contains several books in one: Programming Guide,
Client Library Reference and Supplement for X, pswrap Reference, and DPS Toolkit for
X. Comprehensive if nothing else.

Sun Documentation Roadmap
Sun also supplies a large amount of documentation with OpenWindows, although you may
have to order it separately. Here are some that came with one version; note that the part
numbers are subject to change. Most of these also appear in the Answerbook, and some are
also available in bookstores.

800-6006-10 OpenWindows Version 3 Release Manual

 800-6029-10 OpenWindows Version 3 Installation and Start-Up Guide

 800-6231-10 OpenWindows Version 3 DeskSet Reference Guide

 800-6618-10 OpenWindows Version 3 User’s Guide

 800-6323-10 Desktop Integration Guide

 800-6027-10 Programmer’s Guide

 800-6005-10 OpenWindows Version 3 Reference Manual [the man pages]

800-6055-10 OLIT 3.0 Widget Set Reference Manual

 800-6198-10 XView 3.0 Reference Manual: Converting SunView Applications

560 X USER’S GUIDE: OPEN LOOK EDITION

There are also some other sets of documentation, including the TypeScaler documentation
from Sun’s OpenFonts group, for example.

Books about ToolTalk
ToolTalk is Sun’s inter-application communication protocol. It assumed extra significance
when it was chosen as the standard inter-application protocol for the COSE vendors’ Com-
mon DeskTop Environment (CDE). You can read about it in:

ToolTalk 1.x Setup and Administration Guide (SunSoft, 1991)

ToolTalk 1.x Programmer’s Guide (SunSoft, 1991)

Sun’s AnswerBook
Sun’s AnswerBook CD/ROM (see Chapter 7,The OpenWindows DeskSet Clients) con-
tains a lot of the above documentation, in PostScript form, and a viewer program to read it
online or print parts of it on any PostScript printer. There are several generations of
Answerbook software; the earlier ones of course use NeWS and the later ones use Display
PostScript.

Frequently Asked Questions (FAQ) lists
This frequently-asked-questions (FAQ) list is a good source for up-to-date information.
TheFAQonOPEN LOOK is posted every so often to the Usenet groupcomp.windows.open-
look (among others). It can also be obtained by sending electronic mail to lee@sq.com to
ask for it. Douglas N. Arnold (dna@math.psu.edu) keeps an up-to-date copy on
ftp.math.psu.eduin the file ~ftp/pub/FAQ/open-look

There is a World Wide Web version, maintained by Andrew Violette, at
http://cs.indiana.edu/faq/OpenLook/front_page.html

TheFAQ on X itself is posted regularly to the Usenet groupcomp.windows.x.

PREFACE dlxi

Symbols
"can’t find file libxview.so" error 66
"window

Base frame not passed parent window in environment." message 34
.openwin-init 75
.openwin-sys 75
.Xauthority file 65
.Xdefaults file (see .Xresources) 28, 380
.Xdefaults file, vs. xrdb 311
.xinitrc 72–75
.Xresources file 28, 298, 380
.Xresources file, sample 311

A
acceleration, cursor 24
acceleration, pointer 341
AIXterm terminal emulator 135
aliasing font names 271–273
app-defaults directory 317
Appointment scheduling program - see cm 158
appres - list resources for a client 316
Artisan graphics program 243
Arts & Letters graphics editor 243
asedit text editor 199
Athena class hierarchy 441–445
Athena class hierarchy, diagram 444
Athena class hierarchy, listres application 444–445
Athena class hierarchy, Object class 442
Athena class hierarchy, RectObj class 442
Athena widget set 16, 441–??, 453–477
auto-repeat option (xset) 340
average width (fonts) 265

B
-background option (-bg) (X Toolkit) 289
background window (see also root window)
background, colors 344
-bd option (X Toolkit) 289
bell volume (xset) 339

dlxii X USER’S GUIDE: OPEN LOOK EDITION

-bg option (X Toolkit) 289
binding, tight vs. loose (resources) 300
bitmap (creating graphics) 24, 234–236
bitmap (creating graphics), description of 234
bitmap (creating graphics), invoking 234
bitmap (creating graphics), window 235
bitmap flipping 233
-bitmap option (xsetroot) 343, 344
bitmap rotation 233
bitmap, converting to another format 240
bitmap, portable 240
bitmap, standard 417
border color option (-bd) 289
border width option (X Toolkit) 296–??
browser, directory 154
bug compatibility mode 339
busy highlighting 36
button, codes 356
button, command 304
button, command (Athena) 19
button, logical 347
button, push (OPEN LOOK) 19
-bw option (X Toolkit) 296
bwtwo, Sun frame buffer 33

C
-C, cmdtool option 132
calctool calculator 155–156
calculator (see also xcalc) 24
calculator (xcalc), description 191
calculator (xcalc), function of keys 192
calculator (xcalc), terminating 192
Calendar manager - see cm 158
CD-ROM, software distributed on xxxiv, 156
CDware 156
cgfour, Sun frame buffer 33
Changing size of a window, see resizing
character set 265
character-cell fonts 259

PREFACE dlxiii

class, definition 301
class, hierarchy (Athena) (see Athena class hierarchy) 441
class, Object (Athena) 442
class, RectObj (Athena) 442
class, resource names 301
client, command line options 61
client, customizing 27, 69–72, 297
client, definition 22
client, desk accessories 188
client, display options 61
client, location of default values 298
client, removing 213
client, standalone 24
clients, Motif ??–524
clients, Motif vs. OPEN LOOK 15–??
clients, standard vs. OPEN LOOK 15–19
clipboard (see also xclipboard) 307
CLIPBOARD selection 307–310
CLIPBOARD selection (see also xclipboard) 373
clock (see also oclock) 188
clock (see also xclock) 188
Close (menu item), conflicting meaning of with Motif 145
cm calendar manager 158–166
cmdtool

mouse editing fails with rlogin 119
cmdtool history log

editing and saving 120
cmdtool terminal emulator 103–135
cmdtool, compared with xterm 134
cmdtool, difference from shelltool 104
cmdtool, difference from xterm 104
cmdtool, getting source code 103
cmdtool, history of 104
cmdtool, running several at once 103
color graphics (see pixmap)
color, choosing from Properties program 334
color, determining number available 294
color, displaying 294
color, for screen elements 290
color, hexadecimal specification 292

dlxiv X USER’S GUIDE: OPEN LOOK EDITION

color, RGB model 293
color, specifying root window (xsetroot) 344
colorcell, definition 294
colorcell, read/write 295, 342
colorcell, read-only 295
colorcell, shared 295
colormap 207, 342
colormap flashing 295
colormap, description 294
colors, previewing 292
command button widget (Athena) 19
command buttons (bitmap) ??–236
Command Line Arguments

SunView 510
Command line option, -Wfsdb 220
command line options (client) 67–68, 283–296, 297
command line options (client), -background 289
command line options (client), -bd (border color) 289
command line options (client), -bg (background) 289
command line options (client), -border color 289
command line options (client), -borderwidth 296
command line options (client), -bw (border width) 296
command line options (client), -display 61
command line options (client), -fn (font) 288
command line options (client), -foreground 289
command line options (client), -iconic 288
command line options (client), list of standard 283
command line options (client), -name 313
command line options (client), -reverse 289
command line options (client), -title 287
command line options (client), -xrm (set resources) 312
commands, for terminating xterm window 383
commands, Main Options menu 381
commands, Tek Options menu 388
commands, text editing widget 203
commands, VT Options menu 385
Commercial software for SunOS 156
Composite widget class (Athena) 443–444
compress 218
Console messages on screen 132

PREFACE dlxv

constraint widget class (Athena) 443–??
Contool, console logging program 133
Control key 203, 306
conventionsofbook xxxvi
convert_to_xview program 514
copy and paste

using L6 and L8 keys 119
using term pane menus 119

copying a file with File Manager 84
copying selections in xterm windows 369
Copying text 115
Core widget class (Athena) 442–??
Core widget class (Athena), resources 442–??, 442–443
creating font databases (see also mkfontdir) 271
curses, and cmdtool 105
cursor, cursor font 419
customizing, clients 27, 69–72, 297
customizing, keyboard 346
customizing, pointer 346
customizing, X environment 69–72
cut buffer strings 369
cut buffer strings, vs. selections 373
Cutting text 115

D
database, resource 314
dbxtool

under SunView 508
dbxtool debugger 166
debugger (OPEN LOOK GUI) 166
DEC VT102 24
DECterm terminal emulator 135
-def option (xsetroot) 343
defaults, setting 298, 303
Delete key 125, 205
Deleting Files 84
Demonstration software 156
desk accessories 24, 188–205
desktop manager, see File Manager

dlxvi X USER’S GUIDE: OPEN LOOK EDITION

devGuide 514
devGuide (Developer’s Guide) 514
directories, font 269
directory browser 154
Directory browsing, using File Manager 77
Disk space

freeing up in file manager 95
display fonts 275
display fonts (see also xfd) 254
-display option 61
Display PostScript 248
DISPLAY variable 61, 66
DISPLAY variable, setting after remote login 66
display window information (see also xwininfo) 205
display, depth of 294
display, server 21
display, setting 338
Double-clicking to select word 115
drag and drop, in File Manager 82
drag-and-drop

fails with rlogin 119
draw program, see touchup 236
dump file (see window dump file)
dumping the screen image 222

E
Edit menu 40
Editing Text in OPEN LOOK Applications 120
Editing with Textedit 123
eject command, Solaris 78
Empty wastebasket item 95
environment variables, DISPLAY 66, 210
environment variables, TERMCAP 365
environment variables, XENVIRONMENT 318
event translations 305
event translations, syntax 435
event, definition 21, 304
events, input 305
exiting, shelltool window 52

PREFACE dlxvii

exiting, xmag 239
exiting, xman program 199
exiting, xterm window 52

F
FAQ—see Frequently Asked Questions
-fg option (X Toolkit) 289
File Manager 77

copying a file 84
drag and drop operation 82
link file under new name 93
shell wildcards to select files 94

File menu 40
files, .openwin-menu 28
files, .Xdefaults 380
files, .xinitrc 298
files, .Xresources 298, 380
files, .xsession 298
files, moving 82
files, renaming 82
files, resource 298
floppy disk, mounting/unmounting 78
focusing, definition 12
font displayer (see also xfd) 24
Font Information ??–273, 273–??
font path option (xset) 340
fonts, 75-dpi vs 100-dpi 263, 264
fonts, aliases for 271
fonts, average width 265
fonts, bold and demi-bold 262
fonts, character set 265
fonts, character-cell 259, 265
fonts, creating font databases (mkfontdir) 271
fonts, directories 269
fonts, displaying (xfd) 253, 254, 275
fonts, families 255, 269
fonts, fonts.dir files 270
fonts, foundries 264
fonts, italic vs. oblique 261

dlxviii X USER’S GUIDE: OPEN LOOK EDITION

fonts, list available (xlsfonts) 254
fonts, making server aware of aliases 273
fonts, monospace 265
fonts, naming conventions 254
fonts, number of fonts available 256
fonts, on command line 288
fonts, pictures of Release 4 393
fonts, point size 262
fonts, previewing (xfontsel) 275
fonts, printer 253
fonts, proportional 258, 265
fonts, reverse italic and reverse oblique 262
fonts, screen 253, 288
fonts, search path 269, 270
fonts, select (xfontsel) 254
fonts, selecting (xfontsel) 275
fonts, serif and sans-serif 261, 265
fonts, set width 264
fonts, slant 261
fonts, style 265
fonts, weight 261
fonts, wildcarding 266, 267
fonts,conventionsofinbook xxxvi
fonts.alias files 271
fonts.dir files (font databases) 270, 271
footer of window, messages in 36
-foreground option (-fg) (X Toolkit) 289
foreground, colors 344
Form widget (Athena) 443
foundries (fonts) 264
-frame option, xwd 223
frame, olwm window manager 31
FrameMaker

problems with olvwm 149
Frequently Asked Questions

obtaining up-to-date list 560
OPEN LOOK 560

PREFACE dlxix

G
generating display information (see also xdpyinfo) 212
-geometry option (X Toolkit) 57–61
gfxtool (obsolete Sun window program) 104
ghostscript, PostScript previewer 248
Grab, server 220
-grammar option (xmodmap) 353
graphics utilities 218–250
graphics, creating with bitmap 234–236
graphics, magnifying with xmag 237
-gray option (xsetroot) 343
graymap, converting to another format 240
graymap, portable 240
grayscale graphics (see graymap)
grip, definition 200
Grouping windows 146
GUI (graphical user interface) 3

H
header 8
helpviewer (OpenWindows documentation viewer) 166
hexadecimal color specification 292
History Log in cmdtool

editing and saving 120

I
icon, definition 8
icon, starting window as 288
iconedit 231
-iconic option (X Toolkit) 288
iconifying windows 53
icons 77
input events 305
instance, definition 301
instance, resource names 301
Inter-application communication 560
IslandDraw graphics program 243
IslandPaint graphics program 243
ISO Latin-1 character set 265

dlxx X USER’S GUIDE: OPEN LOOK EDITION

J
jed, text editor 135
jet, terminal emulator 135

K
Keyboard shortcuts

with SunView under OpenWindows 510
keyboard, bell 339
keyboard, customization 346
keyboard, preferences 338
keyclick volume 339
keycode, definition 348
keys, Control 203, 306
keys, Delete 125, 205
keys, Escape 125
keys, mapping 349, 354
keys, Meta 139, 203, 306, 350
keys, modifier 138, 346–??, 346, ??–356
keysym, definition 348
keysym, determining 351
keysym, mapping 353
keysym, values 438
killing, client window 213
killing, oclock 213
killing, server 213
killing, shelltool window 52
killing, xterm window 52, 383

L
LD_LIBRARY_PATH variable 66
led option (xset) 340
left-handed reversal of pointer buttons 356
Link, symbolic

in File Manager 93
list fonts (see also xlsfonts) 254
list window tree (see also xlswins) 208
listres (lists resources for widgets) 444–445
load average 193
logical, font convention 254

PREFACE dlxxi

logical, keyname 139, 349
logical, pointer button 347
Looking Glass 77
loose bindings 300, 303
ls -l functionality

File Manager 87

M
magnifying screen (see also xmag) 237
mailtool mail interface 166
Main Options menu (xterm) 378, 380–??
Main Options menu (xterm), commands 383
Main Options menu (xterm), mode toggles 380
man page browser - tkman 199
mapping, definition 305
mapping, event-action 306
mapping, modifier keys 346, 349, 355
mapping, possibilities with xmodmap 353
mapping, translation table 305
Menu, window 39
menus, mwm (window manager) 379
Menus, Pinnable 39
Menus, pinning up 39, 40
Menus, popping up 39
menus, Tek Options 364, 387
menus, Tektronix (see Tek Options menu) 364
menus, VT Fonts 386
menus, VT Options 366, 384
menus, xterm (terminal emulator) 378
-merge option (xrdb) 314
Meta key 139, 203, 204, 306, 350
MGR window system 505
mkfontdir (create font databases) 271
-mod option (xsetroot) 344
mode toggles, Main Options menu 380
mode toggles, Tek Options menu 387
mode toggles, VT Options menu 385
Modes menu (see VT Options menu) 378
modifier keys 138, 346

dlxxii X USER’S GUIDE: OPEN LOOK EDITION

modifier keys, mapping 346–356
monospaced fonts 259
Motif

Applications under OPEN LOOK window manager 524
controls, working with 516
dialog box 516
menus 517
mouseless mode with 518
push button controls 523
radio boxes and toggle boxes 523
Scrollbar 521

Motif Toolkit 16, 515, ??–524
Motif widget set 16
Motif, conflicting use of Close menu item 145
Mouse button 75
mouse option (xset) 341
Mouse, one-button 37
Mouse, two-button 37
mouseless mode

with Motif 518
Move window to front 145
Moving a window 145
moving files 82
Moving or Copying Files 82
mre 331
mwm (window manager), menus 379

N
naming conventions, fonts 254
network, running client over 61
NeWS Toolkit 16
Normal size 145

O
Object class (Athena) 442
object, Sme (Athena) 465
object, SmeBSB (Athena) 465–466
object, SmeLine (Athena) 466
oclock (analog clock) 56, 188–190

PREFACE dlxxiii

oclock (analog clock), killing 213
* 16, 46
Scrollbar, * 46
OLIT widget set 451–??
olterm 5
olvwm

moving windows 147
problem with NeWS clients 149
sticky windows 148
Virtual Desktop Manager 146

olvwm (virtual window manager) 146
olwm

workspace menu 140
olwm (see OPEN LOOK Window Manager 137
olwm SAVE_WORKSPACE 75
olwm, restarting 92
olwsm properties program 28
One-button mouse 37
OPEN LOOK

Applications under mwm 525
OPEN LOOK applications 15–19
OPEN LOOK File Manager 77
OPEN LOOK GUI, description of 3
OPEN LOOK Intrinsics Toolkit 16
OPEN LOOK specification 558
OPEN LOOK SunView 514
OPEN LOOK Window Manager 137
OPEN LOOK, developing software for 558
OPEN LOOK, starting 29–36
OpenWindows

differences from SunView 507
similarities to SunView 506

options (see command line options)
OSF/Motif 4
OSFkeysyms 524
* 273

P
Pageview PostScript viewer 244–248

dlxxiv X USER’S GUIDE: OPEN LOOK EDITION

pasting selections in xterm windows 372
PBM (Portable Bitmap Toolkit) 240
Pinning items up 40
pipes and pointer interaction 225
pixmap, converting to another format 240
pixmap, portable 240
point size 262
pointer button (see button)
pointer buttons, reversing for left-handed use 356
Pointer grab 220
pointer, acceleration 341
pointer, buttons 356
pointer, customization 346
pointer, definition 9
pointer, mapping 355
pointer, possible cursor images 419
portable bitmap toolkit 240
PostScript translation (xpr) 223–??
postscript translation (xpr) ??–225
postscript translation (xpr) (see also xpr) 24
PostScript Viewing and Editing 243–248
PostScript, Display (Adobe) 248
PRIMARY selection 369
printer fonts (see fonts)
printing utilities 223–225
printtool printer interface 177–178
Programming for OPEN LOOK 558
Properties editor 331–338
properties menu

description of 28
properties, editing 331
proportional fonts 258
props properties program 28
psps (list running xnews clients) 211–212
push button widget (OPEN LOOK) 19

Q
Quit command (Main Options menu) 383

PREFACE dlxxv

R
radio groups 476
ralpage, PostScript previewer 248
read/write colorcell 295, 342
read-only colorcell 295, 342
RectObj class (Athena) 442
redrawing windows 383
Refresh menu item 142
Refresh screen 132
Release 4 fonts, pictures of 393
remote system, logging in 66
remote system, monitoring load on 193
remote system, running client on 61
rename 87
Renaming Files 85
renaming files 82
Repaint, see Refresh
Replacing selected text 116
resize (reset terminal window) 365
Resizing a window 146
resizing windows 365
resource database manager 298
resource database manager (see also xrdb) 28, 311
Resource Editor, Motif 331
RESOURCE_MANAGER property 313
resources, class names of 301
Resources, editing 331
resources, event translations of 304–310
resources, files of 298
resources, instance names of 301
resources, list of common 303
resources, management of 298, 313–318
resources, precedence rules for 302
resources, removing definitions 316
resources, sample file 311
resources, setting 70–72, 297–??, 313, ??–318
resources, specification of 298, 299, 302
resources, syntax of 298, 299
resources, tight vs. loose bindings 303
resources, translation table of 305

dlxxvi X USER’S GUIDE: OPEN LOOK EDITION

restarting window manager 92
-reverse option (X Toolkit) 289
reverse video 289, 344
RGB, color model 293–294
RGB, values 344
rgb.txt file, display colors 292
rlogin

causing drag-and-drop to fail 119
rlogin, setting DISPLAY 66
Root Menu

with SunView under OpenWindows 509
Root menu, see Workspace Menu
root window 343
root window, definition 7
root window, setting (xsetroot) 343
-rv option (X Toolkit) 289

S
SAVE_WORKSPACE 75
Scheduling program - see cm 158
Scolling list, choice item 46
screen fonts (see fonts)
Screen grab 220
screen image, dumping 222
screen, magnifying 237
screen, resolution 263, 264
screen, saver option (xset) 341
screendump (SunOS screen dump utility) 222
scrollbar (Athena) 19
scrollbar (OPEN LOOK) 19
scrollbar widget (Athena) 196
scrollbar widget (Motif) 196
scrollbar, creating in xterm window 366
Scrollbar, parts of 46
scrollbar, VT Options menu 366
ScrolledWindow widget (Motif) 196
SELECT (mouse button) 75
SELECT button 11
Selecting text to copy 113

PREFACE dlxxvii

Selecting word by double-clicking 115
Selection, text 37
Selection, wipe-through 37
selections, copying 369
selections, manipulating 373
selections, pasting 372
selections, saving multiple 374
selections, text 369
selections, vs. cut buffers 373
Send CONT signal command (Main Options menu) 383
Send HUP Signal command (Main Options menu) 383
Send INT Signal command (Main Options menu) 383
Send KILL Signal command (Main Options menu) 383
Send STOP signal command (Main Options menu) 383
Send TERM Signal command (Main Options menu) 383
server, closing connection 213
server, definition 21
server, display 21
set width (fonts) 264
Several windows at once, see grouping
shell environment variables (see environment variables)
shell history, editing 104
Shell widget class (Athena) 444
shelltool 5, 23

under SunView 506
shelltool (terminal emulator), terminating 52
shelltool terminal emulator (see cmdtool) 103
shelltool, difference from cmdtool 104
Software development (books) 558
-solid option (xsetroot) 344
spacing (fonts) 265
starting X 29–36
starting X, steps for 31
Status messages, see footer
su to root

window permissions with 65
Sun-3/110 workstation 33
Sun-3/60 workstation 33
Sun-4/110 workstation 33
sun-cmd terminal type 105

dlxxviii X USER’S GUIDE: OPEN LOOK EDITION

SunView
conversion of programs to OpenWindows 514
differences from OpenWIndows 507
pointer and menu conventions 508
similarities to OpenWindows 506

SunView clients, sharing screen with 222
SunView Defaults Files 512
SunView OPEN LOOK 514
SunView under OpenWindows

startup scripts for 513
SunView under Openwindows

window always at front 507
SunView Window System 505–514
Symlink—see Symbolic link

T
tapetool tape interface 180–184
Tek Options menu (xterm) 378
Tek Options menu, commands 388
Tek Options menu, description of items 387
Tek Options menu, mode toggles 387
Tektronix 4014 24
telnet, setting DISPLAY 66
temporary xterm windows, running commands in 378
termcap (see under terminfo) 105
TERMCAP environment variable, for xterm 365
terminal emulator (cmdtool) 103–135
terminal emulator (see also xterm) 363
terminal emulator, definition 24
terminal type, xterm 365
terminating shelltool window 52
terminating xterm window 52, 288, 383
terminfo, and cmdtool 105
terminfo, meaning of 105
text editing widget 203
text editor, asedit 199
Text selection 37
Text widget (Athena) 199, 467–474
Text widget (Athena), cursor movement 468–469

PREFACE dlxxix

Text widget (Athena), definition 467
Text widget (Athena), deleting text 469–470
Text widget (Athena), edit mode 467
Text widget (Athena), editing facilities 468–475
Text widget (Athena), event bindings 472–474
Text widget (Athena), inserting newlines 470–471
Text widget (Athena), killing text 471
Text widget (Athena), miscellaneous actions 471–472
Text widget (Athena), resources 467–468
Text widget (Athena), selecting text 470
Text, copying 115
text, copying and pasting 369, 372
Text, cutting 115
Text, replacing selected 116
Textedit

editing keys 123
tight bindings 300, 303
title area, description 8
title area, in xterm window 31
-title option (X Toolkit) 287
titlebar 8
titlebar, busy highlighting on 36
titlebar, description 8
TNT, see NeWS Toolkit 16
Toolkit options (see command line options)
toolkit, XView 16
toolkits, definition 299
ToolTalk 560
touchup, paint program 236–237
translation table, definition 305
translation table, example of 306
translation table, mappings in 305
translation table, syntax 435–439
translation table, syntax of 306
translation, definition 305
twm (tab window manager) 8
Two-button mouse 37

dlxxx X USER’S GUIDE: OPEN LOOK EDITION

U
Undo, file removal 84
UNIX commands, running in temporary xterm 378
Unremove file 84
Utilities menu 142

V
variables (see also environment variables) 66
variables, resource (see resource variables) 60
vertical panes 200
View menu 40
Viewport widget (Athena) 196
Virtual Desktop, see olvwm 146
Virtual screens 33
Virtual terminals 33
volcheck command (check for floppy) 78
Volume Manager, interaction with File Manager 78
VPaned widget (Athena) 200
VT Fonts menu (xterm) 378
VT Fonts menu, description of items 386
VT Options menu (xterm) 378
VT Options menu, Allow 80/132 Column Switching 385
VT Options menu, description of items 384
VT Options menu, mode toggles 385
VT102 (DEC) 24
VT102 (DEC), Modes menu (see VT Options menu) 384
VT102 (DEC), VT Options menu 384

W
Wastebasket, file manager 84
-Wfsdb command line option 220
widget set 16
widget, attributes 300
widget, binding (loose vs. tight) 300
widget, Box (Athena) 453–454
widget, callback 442
widget, Command (Athena) 444, 454–455
widget, command button (Athena) 19
widget, Command widget class (Athena) 449

PREFACE dlxxxi

widget, Composite (Athena) (see Composite widget class) 443
widget, constraint (Athena) (see constraint widget class) 443
widget, Core (Athena) (see Core widget class) 442
widget, defining conventions 300
widget, definition 187
widget, Dialog (Athena) 455
widget, Form (Athena) 443, 455–456
widget, Form widget class (Athena) 449
widget, Grip (Athena) 457
widget, hierarchy 299
widget, hierarchy (Athena) (see Athena class hierarchy) 441
widget, inheriting resources 448–450
widget, instance names 449
widget, introduction 441
widget, Label (Athena) 444, 457–458
widget, List (Athena) 458–459
widget, MenuButton (Athena) 459–460
widget, Paned (Athena) 460–??
widget, push button (OPEN LOOK) 19
widget, quit (Athena) 449
widget, relationship between widgets 448–450
widget, Scrollbar (Athena) 462–463
widget, scrollbar (Athena) 196
widget, scrollbar (Motif) 196
widget, ScrolledWindow (Motif) 196
widget, Shell (Athena) (see Shell widget class) 444
widget, Simple (Athena) 444, 464
widget, SimpleMenu (Athena) 464–466
widget, StripChart (Athena) 466–467
widget, subclassing 441
widget, Text (Athena) 199
widget, Text (Athena) (see Text widget) 467
widget, text editing 203
widget, Toggle (Athena) 474–476
widget, using in an application (Athena) 445–448
widget, Viewport (Athena) 196, 476–477
widget, VPaned (Athena) 200
widgets, Athena 16, 441–??, 453–477
widgets, Motif 16
widgets, OLIT 451–??

dlxxxii X USER’S GUIDE: OPEN LOOK EDITION

widgets, OPEN LOOK 16
wildcarding font names 266, 267
Wildcards

in File manager 94
Window always in front (SunView) 507
window dump (see also xwd) 24
window dump file, creating (xwd) 223
window dump file, displaying (xwud) 223
window dump file, printing 223
window dump file, to printer (xdpr) 225
window dump file, undumping (xwud) 225
Window Menu

with SunView under OpenWindows 509
Window menu 51, 144
Window Properties 13
windows, definition 7
windows, displaying information about 205
windows, exiting shelltool 52
windows, exiting xterm 52
windows, geometry 57–61
Windows, grouping 146
windows, hierarchy of 208
windows, iconifying 53
windows, killing (xkill) 213
windows, redrawing 383
windows, resizing 365
windows, root 7, 343
windows, size and location 57–61
windows, starting as icon 288
windows, Tektronix 364
windows, terminating 383
windows, title 287
windows, vertically tiled 200
windows, width of 296
Wipe-through, selection 37
Workspace Manager

properties window 331–338
Workspace menu 142
Workspace Menu, olwm 140

PREFACE dlxxxiii

X
X administration (book) 557
X environment, customizing 69–72
X Toolkit 16
X Window System, description of 3
X Window System, display server 21
X Window System, overview of architecture 20, 146
X.Desktop 77
X11 Release 3 fonts, aliasing 271
X11 Release 3 fonts, creating font databases (mkfontdir) 271
X11 Release 3 fonts, directories 269
X11 Release 3 fonts, fonts.dir files 270
X11 Release 3 fonts, making server aware of aliases 273
X11 Release 4 fonts, directories 269
Xauthority file

in home directory 64
xcalc (calculator) 24, ??–190, 191–??, 191, 192
xclipboard (save text selections) 17, 199, 307, 373, 374
xclock (analog or digital clock) 24, 188–190
xcol (display/change colors) 292
xcol, Resource Color Editor 331
xcutsel (exchange cut buffer and selection) 373
xdm (display manager), login window 30
xdpr (window dump to printer) 225
xdpyinfo (list display information) 212
xedit (text editor) 199, 377
XENVIRONMENT environment variable 318
xev (track events) 351
xfd (font displayer) 24, 254, 274
XFILESEARCHPATH 317
xfontsel (font previewer) 275–??
xfontsel (select font) 254
xhost

security problems with 65
xkill (remove window) ??–205, 213–??
xload (poll system load average) 193
xloadimage (graphics viewing program) 225
xlsclients (list running clients) 210–211
xlsfonts (list available fonts) 254
xlswins (list window tree) 208–210

dlxxxiv X USER’S GUIDE: OPEN LOOK EDITION

xmag (magnify screen portion) 237–240
xmag (magnify screen portion), description of 237
xmag (magnify screen portion), quitting 239
xman (display manual pages) 194
xman (display manual pages), as a Viewport 196
xman, man page browser 199
xmodmap (modifier key and pointer customization) 346–356
xmodmap (modifier key and pointer customization), change map 352–356
xmodmap (modifier key and pointer customization), display key map 349
xmodmap (modifier key and pointer customization), display pointer map 355
xmodmap (modifier key and pointer customization), grammar option 353
xpr (PostScript translation) 223–??
xpr (postscript translation) 24, ??–225
xrdb (resource database manager) 28, 311–318
xrdb (resource database manager), -edit option 315
xrdb (resource database manager), loading new values to 314
xrdb (resource database manager), querying 314
xrdb (resource database manager), removing definitions 316
xrdb (resource database manager), saving definitions 315
xrdb (resource database manager), setting resources with 313
xrdb (resource database manager), syntax 313
xrdb (resource database manager), using 313
xrefresh (refresh screen) 383
-xrm option (X Toolkit)) 312
xset (set display preferences) 24, 270, 338–342
xset (set display preferences), auto-display option 340
xset (set display preferences), font path option 340
xset (set display preferences), mouse option 341
xsetroot (set root window characteristics) 343–356
xsetroot (set root window characteristics), -bitmap option 343
xsetroot (set root window characteristics), -def option 343
xterm 5
xterm (terminal emulator) menus 378–??, 384, 386, 387, ??–390
xterm (terminal emulator), control sequences 423
xterm (terminal emulator), overview 24, 363
xterm (terminal emulator), running command in temporary window 378
xterm (terminal emulator), scrollbar 366
xterm (terminal emulator), Tektronix window 364
xterm (terminal emulator), TERMCAP 365
xterm (terminal emulator), terminal type 365

PREFACE dlxxxv

xterm (terminal emulator), terminating 52, 383
xterm menu 378–383
xterm menus, Main Options 378, 380
xterm menus, Modes (see VT Options menu) 378
xterm menus, Tek Options 364, 378
xterm menus, Tektronix (see Tek Options menu) 364
xterm menus, Tektronix (see Tek Options menu)". 378
xterm menus, VT Fonts 378
xterm menus, VT Options 378
xterm menus, xterm (see Main Options menu) 378
xterm, compared with cmdtool 134
xterm, difference from cmdtool 104
XUSERFILESEARCHPATH environment variable 317
xv (graphics viewing program) 226
XView options (see command line options)
XView toolkit 16
xwd (window dump) 24, 223–225
xwininfo (display window information) 205–207
xwud (window undumper) 223, 225

dlxxxvi X USER’S GUIDE: OPEN LOOK EDITION

Colophon
This volume is derived in part from the Standard and Motif editions of this book, which were produced with
SoftQuadtroff, with most of the figures produced in Aldus Freehand on a Macintosh. The Alpha Draft of the
OPEN LOOK edition was produced in the same manner, although many of the Macintosh-produced figures
were replaced with screendumps ofOPEN LOOK applications. The text was converted to FrameMaker format
with a series of scripts written by Dale Dougherty and updated by Ian Darwin, and then revised for OpenWin-
dows Version 3. The second draft and most revisions were produced using FrameMaker on a Sun
SPARCstation. The remaining drawn figures are mostly produced in Aldus Freehand by Chris Reilly.

About the authors
Ian Darwin

Ian is the author ofChecking C Programs with lint and over fifty articles, courses and seminars on the UNIX
operating system and related software. When not working for SoftQuad Inc., producers of software for
HTML/SGML and corporate publishing, he teaches UNIX-related courses for Learning Group International,
writes forSun Expert magazine and, of course, O’Reilly & Associates. Ian lives north of Toronto with his
wife and their three children.

Valerie Quercia
Valerie is a staff writer for O’Reilly & Associates and co-author (with Tim O’Reilly) of several editions of
Volume 3: X Window System User’s Guide. Her personal trainer and mnager, Dr. Heinrich Bunsen, reports:
“Though X has been very, very good to her, Val would really like to try another letter, maybe a nice Q.”

Val lives close enough to Boston to be upset by the Red Sox.

Tim O’Reilly
Tim is well known in the UNIX and X communities as the founder of O’Reilly & Associates, publishers of
high-quality, low-cost UNIX and X documentation.He wrote the earliest ancestral version of this book.

	Title Page
	Disclaimer
	Copyright Notice
	CONTENTS
	Preface
	1 Intro
	2 OPEN LOOK
	3 Starting Programs
	4 File Manager
	5 Cmdtool/Textedit
	6 OL Window Manager
	7 Sun Deskset
	8 Other Apps
	9 Graphics
	10 Fonts
	11 Cmd line options
	12 X Resources
	13 OLWM Customization
	14 Other Customization
	A Xterm
	B Fonts
	C Standard Bitmaps
	D Standard Cursors
	E Escape Sequences
	F Translation Tables
	G Resources
	H Resources/OLIT
	I Resources/Athena
	J Resources/XView
	K Mouseless
	L SunView
	M Motif
	N Software
	GLOSSARY
	Bibliography
	INDEX
	Colophon

