
Maintenance Commands GROWFS(1M)

NAME
 growfs - non-destructively expand a UFS file system

SYNOPSIS
 growfs [-M mount-point] [newfs-options]
 [raw-device]

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 growfs non-destructively expands a mounted or unmounted UNIX
 file system (UFS) to the size of the file system's slice(s).

 Typically, disk space is expanded by first adding a slice to
 a metadevice, then running the growfs command. When adding
 space to a mirror, you expand each submirror before expand-
 ing the file system. On a trans metadevice, the master dev-
 ice is expanded, not the trans metadevice. Then the growfs
 command is run on the trans metadevice. (You can add space
 to a logging device, but you do not need to run the growfs
 command. The new space is automatically recognized.)

 growfs will ``write-lock'' (see lockfs) a mounted file sys-
 tem when expanding. The length of time the file system is
 write-locked can be shortened by expanding the file system
 in stages. For instance, to expand a 1 Gbyte file system to
 2 Gbytes, the file system can be grown in 16 Mbyte stages
 using the -s option to specify the total size of the new
 file system at each stage. The argument for -s is the number
 of sectors, and must be a multiple of the cylinder size.
 Note: The file system cannot be grown if a cylinder size of
 less than 2 is specified. Refer to the newfs(1M) man page
 for information on the options available when growing a file
 system.

 growfs displays the same information as mkfs during the
 expansion of the file system.

 If growfs is aborted, recover any lost free space by
 unmounting the file system and running the fsck command, or
 run the growfs command again.

OPTIONS
 Root privileges are required for all of the following options.

 -M mount-point
 The file system to be expanded is mounted on mount-

 point. File system locking (lockfs) will be used.

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands GROWFS(1M)

 newfs-options
 The options are documented in the newfs man page.

 raw-device
 Specifies the name of a raw metadevice or raw special
 device, residing in /dev/md/rdsk, or /dev/rdsk, respec-
 tively, including the disk slice, where you want the
 file system to be grown.

EXAMPLES
 The following example expands a nonmetadevice slice for the
 /export file system. In this example, the existing slice,
 /dev/dsk/c1t0d0s3, is converted to a metadevice so addi-
 tional slices can be concatenated.

 # metainit -f d8 2 1 c1t0d0s3 1 c2t0d0s3
 # umount /export

 (Edit the /etc/vfstab file to change the entry for /export
 to the newly defined metadevice, d8.)

 # mount /export
 # growfs -M /export /dev/md/rdsk/d8

 This example starts by running the metainit command with the
 -f option to force the creation of a new concatenated meta-
 device d8 which consists of the existing slice
 /dev/dsk/c1t0d0s3 and a new slice /dev/dsk/c2t0d0s3. Next,
 the file system on /export must be unmounted. The
 /etc/vfstab file is edited to change the entry for /export
 to the newly defined metadevice name, rather than the slice
 name. After the file system is remounted, the growfs com-
 mand is run to expand the file system.

 The file system will span the entire metadevice when growfs
 completes. The -M option enables the growfs command to
 expand a mounted file system. During the expansion, write
 access for /export is suspended until growfs unlocks the
 file system. Read access is not affected, though access
 times are not kept when the lock is in effect.

 The following example picks up from the previous one. Here,
 the /export file system mounted on metadevice d8 is dynami-
 cally expanded.

 # metattach d8 c0t1d0s2
 # growfs -M /export /dev/md/rdsk/d8

 This example begins by using the metattach command to dynam-
 ically concatenate a new slice, /dev/dsk/c0t1d0s2, to the

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands GROWFS(1M)

 end of an existing metadevice, d8. Next, the growfs command
 specifies that the mount-point is /export and that it is to
 be expanded onto the raw metadevice /dev/md/rdsk/d8. The
 file system will span the entire metadevice when growfs com-
 pletes. During the expansion, write access for /export is
 suspended until growfs unlocks the file system. Read access
 is not affected, though access times are not kept when the
 lock is in effect.

 The following example expands a mounted file system /files,
 to an existing mirror, d80, which contains two submirrors,
 d9 and d10.

 # metattach d9 c0t2d0s5
 # metattach d10 c0t3d0s5
 # growfs -M /files /dev/md/rdsk/d80

 In this example, the metattach command dynamically concaten-
 ates the new slices to each submirror. The metattach com-
 mand must be run for each submirror. The mirror will
 automatically grow when the last submirror is dynamically
 concatenated. The mirror will grow to the size of the smal-
 lest submirror. The growfs command then expands the file
 system. The growfs command specifies that the mount-point is
 /files and that it is to be expanded onto the raw metadevice
 /dev/md/rdsk/d80. The file system will span the entire mir-
 ror when the growfs command completes. During the expan-
 sion, write access for the file system is suspended until
 growfs unlocks the file system. Read access is not affected,
 though access times are not kept when the lock is in effect.

SEE ALSO
 fsck(1M), lockfs(1M), mkfs(1M), metattach(1M), newfs(1M),

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-

 ence

LIMITATIONS
 Only UFS file systems (either mounted or unmounted) can be
 expanded using the growfs command. Once a file system is
 expanded, it cannot be decreased in size.

 The following conditions prevent you from expanding file
 systems:
 When acct is activated and the accounting file is on
 the target device.
 When C2 security is activated and the logging file is
 on the target file system.
 When there is a local swap file in the target file sys-
 tem.
 When the file system is root (/), /usr, or swap.

SunOS 5.7 Last change: 19 July 1996 3

Maintenance Commands MDLOGD(1M)

NAME
 mdlogd, mdlogd.cf - Solstice DiskSuite SNMP support

SYNOPSIS
 mdlogd
 mdlogd.cf

AVAILABILITY
 /usr/opt/SUNWmd/sbin/mdlogd
 /etc/opt/SUNWmd/mdlogd.cf

DESCRIPTION
 mdlogd implements a simple daemon that watches the system
 console looking for messages written by the DiskSuite device
 driver (md). When a DiskSuite message is detected the daemon
 will send a generic SNMP trap.

 /etc/opt/SUNWmd/mdlogd.cf is used to control the daemon's
 behavior.

 It is an ASCII file with the basic form:

 ENTERPRISE = <enterprise-id>
 OBJECTID = <object-id>

 <reg-exp> <trap-destination> <generic trap #> <specific
trap #>

 [...]

 <enterprise-id> and <object-id> are required and must be
 specified. They are used by all traps generated by the dae-
 mon.

 <enterprise-id> is the SNMP identifier for the enterprise to
 which the system running the daemon belongs. For example,
 the Sun Microsystems enterprise ID is: 1.3.6.1.4.1.42.

 <object-id> is the SNMP identifier of the system running the
 daemon. For example, the object-id of a host within the Sun
 enterprise might be: 1.3.6.1.4.1.42.10.

 The remainder of the file consists of tuples which describe
 a regular expression and the specific SNMP trap to be gen-
 erated when a matching message is written to the system con-
 sole.

 Each tuple has four fields:

 <regular expression> specifies a regular expression to
 be matched.

 <trap destination> specifies the destination for the
 SNMP trap, given in the following

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands MDLOGD(1M)

 form: "hostname:port-number:protocol"

 <generic trap #> specifies the SNMP generic trap
 number, ranging from 0 to 6.
 These numbers have pre-defined
 meanings:

 0 - cold-start
 1 - warm-start
 2 - link-down
 3 - link-up
 4 - authentication
 5 - EGP Neighbor Lost
 6 - enterprise specific trap

 Traps of type 6 include an additional
 enterprise specific trap number.

 <specific trap #> specifies an arbitrary number.
 Interpretation of this number
 is enterprise specific.

EXAMPLE:
 #
 #ident "@(#)mdlogd.cf 1.1 96/02/15"
 #
 #
 # DiskSuite SNMP Trap configuration file.
 #
 # This file specifies the SNMP trap data to be sent when a
 # notable condition related to the DiskSuite driver (md)
 # is detected.
 #
 # The conditions are based on the event logging which the
 # driver does using the cmn_err() interface. The events
 # have different severity levels: NOTICE, WARNING and PANIC.
 # They appear on the console and look like this:
 #
 # unix: WARNING: md: d81: write error on /dev/md/dsk/d5
 # unix: WARNING: md: d81: /dev/md/dsk/d5 needs maintenance
 # unix: NOTICE: md: d81: hotspared device /dev/md/dsk/d5
 # with /dev/md/dsk/d2
 #
 # Using this configuration file, a different SNMP trap may
 # be associated with each level. See mdlogd.cf for a
 # brief summary of the generic SNMP traps and their meanings.
 #
 # Generic trap variables:
 #
 # ENTERPRISE: the enterprise to which the system belongs
 # OBJECTID: the id of the system
 #

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands MDLOGD(1M)

 ENTERPRISE = 1.3.6.1.4.1.42
 OBJECTID = 1.3.6.1.4.1.42.860
 #
 # SubString Trap Destination SNMP Trap # Specific
Trap #
 # (host:port:protocol) 0 < n <= 6 0 < n
 "NOTICE: md:" "spin:162:udp" 6 1
 "WARNING: md:" "spin:162:udp" 6 2

 Given this configuration file and an error written to

 /dev/console on the host which looks like:

 WARNING: md: d6: /dev/dsk/c3t3d0s7 needs maintenance

 an SNMP trap will be dispatched.

 If this trap were received by SunNetManager, it would look
 like:

 Wed Feb 21 15:40:41 1996 [spin] : Trap:

 sequence=2
 receive-time=Wed Feb 21 15:40:41 1996
 version=0
 community=public
 enterprise=Sun Microsystems
 source-time=00:00:00.00
 trap-type=enterprise specific trap: 2

 1.3.6.1.4.1.860 = Feb 21 15:40:41 1996 spin WARNING:
 md: d6: /dev/dsk/c3t3d0s7 needs maintenance

NOTES
 The supported regular expressions (RE) are constructed as
 follows:

 1.1 Any character that is not a special character (to be
defined)
 matches itself.

 1.2 A backslash (\) followed by a special character matches
the
 literal character itself (i.e., this `escapes' the special
 character).

 1.3 The `special' characters are: + * ? . [] ^ $

 1.4 The period (.) matches any character except the newline.
 E.g., `.umpty' matches either `Humpty' or `Dumpty'.

 1.5 A set of characters enclosed in brackets ([]) is a
one-character
 RE that matches any of the characters in that set. E.g.,
`[akm]'
 matches either an `a', `k' or `m'. A range of characters
can be
 indicated with a dash. E.g., `[a-z]' matches any
lower-case
 letter. However, if the first character of the set is the

SunOS 5.7 Last change: 19 July 1996 3

Maintenance Commands MDLOGD(1M)

 caret (^), the the RE matches any character except those
in
 the set. It does not match the empty string. Example:
[^akm]
 matches any character except `a', `k' or `m'. The caret
loses
 its special meaning if it is not the first character of
the set.

 The following rules can be used to build a multicharacter RE:

 2.1 A one-character RE followed by an asterisk (*) matches
zero or
 more occurences of the RE. Hence, [a-z]* matches zero or
more
 lower-case characters.

 2.2 A one-character RE followed by a plus (+) matches one or
more
 occurences of the RE. Hence, [a-z]+ matches one or more
 lower-case characters.

 2.3 A question mark (?) is an optional element. The
preceeding RE
 can occur zero or once in the string -- no more. E.g.,
xy?z
 matches either xyz or xz.

 2.4 The concatenation of REs is an RE that matches the
corresponding
 concatenation of strings. E.g., [A-Z][a-z]* matches any
 capitalized word.

 Finally, the entire regular expression can be anchored to match
only
 the beginning or end of a line:

 3.1 If the caret (^) is at the beginning of the RE, then the
matched
 string must be at the beginning of a line.

 3.2 If the dollar sign ($) is at the end of the RE, then the
matched
 string must be at the end of the line.

 The following escape codes can be used to match control
characters:

 \b backspace
 \e ESC (escape)
 \f formfeed
 \n newline
 \r carriage return

 \t tab
 \xddd the literal hex number 0xddd
 \^C Control Code. E.g., \^D is `control-d'

SEE ALSO
 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 4

Maintenance Commands METACLEAR(1M)

NAME
 metaclear - delete active metadevices and hot spare pools

SYNOPSIS
 metaclear -h
 metaclear [-s setname] -a [-f]
 metaclear [-s setname] [-f] metadevice...
 hot_spare_pool...
 metaclear [-s setname] -r [-f] metadevice...
 hot_spare_pool...

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 metaclear deletes all configured metadevice(s) and hot spare
 pool(s), or the specified metadevice and/or hot_spare_pool.
 Once a metadevice or hot spare pool is deleted, it must be
 recreated using metainit before it can be used again.

 Any metadevice currently in use (open) cannot be deleted.

OPTIONS
 Root privileges are required for all of the following
 options except -h.

 -a Deletes all metadevices and configured hot spare pools.

 -f Deletes a metadevice that contains a subcomponent in an
 errored state.

 -h Displays usage message.

 -r Recursively deletes specified metadevices and hot spare
 pools.

 -s setname
 Specifies the name of the diskset on which metaclear
 will work. Using the -s option will cause the command
 to perform its administrative function within the
 specified diskset. Without this option, the command
 will perform its function on local metadevices and/or
 hot spare pools.

 metadevice ...
 Specifies the name(s) of the metadevice(s) to be
 deleted.

 hot_spare_pool ...

SunOS 5.7 Last change: 19 June 1996 1

Maintenance Commands METACLEAR(1M)

 Specifies the name(s) of the hot spare pools to be
 deleted in the form hspnnn, where nnn is a number in
 the range 000-999.

EXAMPLES
 This example deletes a metadevice named d10.

 # metaclear /dev/md/dsk/d10

 This example deletes all local metadevices and hot spare
 pools on the system.

 # metaclear -a

 This example deletes a mirror, d20, with an errored submir-
 ror.

 # metaclear -f d20

 This example deletes a hot spare pool, hsp001.

 # metaclear hsp001

SEE ALSO
 metadb(1M), metadetach(1M), metahs(1M), metainit(1M),
 metaoffline(1M), metaonline(1M), metaparam(1M),
 metareplace(1M), metaroot(1M), metaset(1M), metastat(1M),
 metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 June 1996 2

Maintenance Commands METADB(1M)

NAME
 metadb - create and delete replicas of the metadevice state
 database

SYNOPSIS
 metadb -h
 metadb [-s setname]
 metadb [-s setname] -a [-f] [-k system-file] mddbnnn
 metadb [-s setname] -a [-f] [-k system-file]
 [-c number] [-l length] slice...
 metadb [-s setname] -d [-f] [-k system-file] mddbnnn
 metadb [-s setname] -d [-f] [-k system-file] slice...
 metadb [-s setname] -i
 metadb [-s setname] -p [-k system-file] [mddb.cf-file]

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metadb command creates and deletes replicas of the meta-
 device state database. State database replicas can be
 created on dedicated slices, or on slices that will later
 become part of a simple metadevice (concatenation or
 stripe), RAID5 metadevice, or trans metadevice.

 The metadevice state database contains the configuration of
 all metadevices and hot spare pools in the system. Addition-
 ally, the metadevice state database keeps track of the
 current state of metadevices and hot spare pools, and their
 components. DiskSuite automatically updates the metadevice
 state database when a configuration or state change occurs.
 A submirror failure is an example of a state change. Creat-
 ing a new metadevice is an example of a configuration
 change.

 The metadevice state database is actually a collection of
 multiple, replicated database copies. Each copy, referred to
 as a replica, is subject to strict consistency checking to
 ensure correctness.

 Replicated databases have an inherent problem in determining
 which database has valid and correct data. To solve this
 problem, DiskSuite uses a majority consensus algorithm.
 This algorithm requires that a majority of the database
 replicas agree with each other before any of them are
 declared valid. This algorithm requires the presence of at
 least three initial replicas which you create. A consensus
 can then be reached as long as at least two of the three
 replicas are available. If there is only one replica and the
 system crashes, it is possible that all metadevice

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METADB(1M)

 configuration data may be lost.

 The majority consensus algorithm is conservative in the
 sense that it will fail if a majority consensus cannot be
 reached, even if one replica actually does contain the most
 up-to-date data. This approach guarantees that stale data
 will not be accidentally used, regardless of the failure

 scenario. The majority consensus algorithm accounts for the
 following: the system will stay running with exactly half
 or more replicas; the system will panic when less than half
 the replicas are available; the system will not reboot
 without one more than half the total replicas.

 When used with no options, the metadb command gives a short
 form of the status of the metadevice state database. Use
 metadb -i for an explanation of the flags field in the out-
 put.

 The initial state database is created using the metadb com-
 mand with both the -a and -f options, followed by the slice
 where the replica is to reside. The -a option specifies that
 a replica (in this case, the initial) state database should
 be created. The -f option forces the creation to occur, even
 though a state database does not exist. (The -a and -f
 options should be used together only when no state databases
 exist.)

 Additional replicas beyond those initially created can be
 added to the system. They contain the same information as
 the existing replicas, and help to prevent the loss of the
 configuration information. Loss of the configuration makes
 operation of the metadevices impossible. To create addi-
 tional replicas, use the metadb -a command, followed by the
 name of the new slice(s) where the replicas will reside. All
 replicas that are located on the same slice must be created
 at the same time.

 To delete all replicas that are located on the same slice,
 the metadb -d command is used, followed by the slice name.

 When used with the -i option, metadb displays the status of
 the metadevice state databases. The status can change if a
 hardware failure occurs or when state databases have been
 added or deleted.

 To fix a replica in an errored state, delete the replica and
 add it back again.

OPTIONS
 Root privileges are required for all of the following
 options except -h and -i.

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METADB(1M)

 The following options can be used with the metadb command.
 Not all the options are compatible on the same command line.
 Refer to the above synopsis line to see the supported use of
 the options.

 -a Attach a new database device. The /etc/system file is
 automatically edited with the new information and the
 /etc/opt/SUNWmd/mddb.cf file is updated. An alternate
 way to create replicas is by defining them in the
 /etc/opt/SUNWmd/md.tab file and specifying the assigned
 name at the command line in the form, mddbnn, where nn
 is a two-digit number given to the replica definitions.
 Refer to the md.tab(4) man page for instructions on
 setting up replicas in that file.

 -c number
 Specifies the number of replicas to be placed on each
 device. The default number of replicas is 1.

 -d Deletes all replicas that are located on the specified
 slice. The /etc/system file is automatically edited
 with the new information and the
 /etc/opt/SUNWmd/mddb.cf file is updated.

 -f The -f option is used to create the initial state data-
 base. It is also used to force the deletion of replicas
 below the minimum of two. (The -a and -f options should
 be used together only when no state databases exist.)

 -h Displays a usage message.

 -i Inquire about the status of the replicas. The output
 of the -i option includes characters in front of the
 device name that represent the status of the state
 database. Explanations of the characters are printed
 following the replica status.

 -k system-file
 Specifies the name of the kernel file where the replica
 information should be patched. The default system-file
 is /etc/system. This option is for use with the local
 diskset only.

 -l length
 Specifies the size of each replica. The default length
 is 1034 blocks, which should be appropriate for most
 configurations.

 -p Specifies patching the system file that is located in
 the current working directory (/system) with entries
 from the /etc/opt/SUNWmd/mddb.cf file. This option is
 normally used to patch a newly built system before it

SunOS 5.7 Last change: 19 July 1996 3

Maintenance Commands METADB(1M)

 is booted for the first time. If the system has been
 built on a system other than the one where it will run,
 the location of the mddb.cf on the local machine can be
 passed as an argument. The system file to be patched
 can be changed using the -k option. This option is for
 use with the local diskset only.

 -s setname
 Specifies the name of the diskset on which the metadb
 command will work. Using the -s option will cause the
 command to perform its administrative function within
 the specified diskset. Without this option, the command
 will perform its function on local database replicas.

 slice
 Specifies the logical name of the physical slice (par-
 tition), such as /dev/dsk/c0t0d0s2.

EXAMPLES
 The following example creates the initial state database
 replicas on a new system.

 # metadb -a -f c0t0d0s7 c0t1d0s2 c1t0d0s7 c1t1d0s2

 The -a and -f options force the creation of the initial
 database and replicas. You could then create metadevices
 with these same slices, making efficient use of the system.

 This example shows how to add two replicas on two new disks
 that have been connected to a system currently running Disk-
 Suite.

 # metadb -a c0t2d0s2 c1t1d0s2

 This example shows how to delete two replicas from the sys-
 tem. Assume that replicas have been set up on
 /dev/dsk/c0t2d0s2 and /dev/dsk/c1t1d0s2.

 # metadb -d c0t2d0s2 c1t1d0s2

 Note: Although you can delete all replicas, you should never
 do so while metadevices still exist. Removing all replicas
 causes existing metadevices to become inoperable.

FILES
 /etc/opt/SUNWmd/mddb.cf
 Contains the location of each copy of

SunOS 5.7 Last change: 19 July 1996 4

Maintenance Commands METADB(1M)

 the metadevice state database.

 /etc/opt/SUNWmd/md.tab
 Workspace file for metadevice database
 configuration.

 /etc/system Kernel patch file.

SEE ALSO
 metaclear(1M), metadetach(1M), metahs(1M), metainit(1M),
 metaoffline(1M), metaonline(1M), metaparam(1M),
 metareplace(1M), metaroot(1M), metaset(1M), metastat(1M),
 metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 5

Maintenance Commands METATTACH(1M)

NAME
 metattach, metadetach - attach or detach metadevice to or
 from a mirror or trans

SYNOPSIS
 metattach [-h]
 metattach [-s setname] mirror [metadevice]
 metattach [-s setname] [-i size] concat/stripe
 component...
 metattach [-s setname] RAID component...
 metattach [-s setname] trans log
 metadetach [-s setname] [-f] mirror submirror
 metadetach [-s setname] [-f] trans

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 metattach is used to add submirrors to a mirror, add logging
 devices to trans devices, or grow metadevices. Growing meta-
 devices can be done without interrupting service. To grow
 the size of a mirror or trans, the slices must be added to
 the submirrors or to the master devices.

 DiskSuite supports one-to-three-way mirrors. Thus, you can
 only attach a metadevice to a mirror if there are two or
 fewer submirrors beneath the mirror. Once a new metadevice
 is attached to a mirror, metattach will automatically start
 a resync operation to the new submirror.

 Attaching a new logging device to a busy trans metadevice is

 allowed, although a trans metadevice will start using its
 new logging device only after the trans is idle (after it is
 unmounted, for example). The busy trans will be in an
 Attaching state (metastat) until the logging device is actu-
 ally attached. Attaching a logging device in the Hard Error
 or Error state (metastat) is not allowed.

 metadetach is used to detach submirrors from mirrors, or
 detach logging devices from trans metadevices.

 When a submirror is detached from a mirror, it is no longer
 part of the mirror, thus reads and writes to and from that
 metadevice via the mirror are no longer performed through
 the mirror. Detaching the only existing submirror is not
 allowed. Detaching a submirror that has slices reported as
 needing maintenance (by metastat) is not allowed unless the
 -f (force) flag is used.

SunOS 5.7 Last change: 19 June 1996 1

Maintenance Commands METATTACH(1M)

 metadetach also detaches the logging device from a trans.
 Once detached, the logging device is no longer part of the
 trans, thus the trans is no longer logging and all benefits
 of logging are lost. Any information on the logging device
 that pertains to the master device is written to the master
 device before the logging device is detached.

 Detaching the logging device from a busy trans device is not
 allowed unless the -f (force) flag is used. Even so, the
 logging device is not actually detached until the trans is
 idle. The trans is in the Detaching state (metastat) until
 the logging device is detached.

OPTIONS
 Root privileges are required for all of the following
 options except -h.

 -f Force the detaching of metadevices that have components
 that need maintenance or are busy.

 -h Displays a usage message.

 -i size
 Specifies the interlace value for stripes, where size

 is a specified value followed by either `k' for kilo-
 bytes, `m' for megabytes, or `b' for blocks. The units
 can be either upper case or lower case. If size is not
 specified, the size defaults to the interlace size of
 the last stripe of the metadevice. When an interlace
 size change is made on a stripe, it will be carried
 forward on all stripes that follow.

 -s setname
 Specifies the name of the diskset on which the metat-
 tach command or the metadetach command will work.
 Using the -s option will cause the command to perform
 its administrative function within the specified
 diskset. Without this option, the command will perform
 its function on local metadevices.

 mirror
 Specifies the mirror.

 metadevice
 Specifies the name of the metadevice to be attached to
 the mirror as a submirror. This metadevice must have
 been previously created by the metainit command.

 concat/stripe
 Specifies the metadevice name of the concatenation,
 stripe, or concatenation of stripes.

SunOS 5.7 Last change: 19 June 1996 2

Maintenance Commands METATTACH(1M)

 component...
 The logical name for the physical slice (partition) on
 a disk drive, such as /dev/dsk/c0t0d0s2, being added to
 the concatenation, stripe, concatenation of stripes, or
 RAID5 metadevice.

 RAID Specifies the metadevice name of the RAID5 metadevice.

 trans
 Specifies the metadevice name of the trans metadevice
 (not the master or logging device).

 log Specifies the metadevice name of the logging device to
 be attached to the trans metadevice.

 submirror
 The metadevice name of the submirror to be detached

 from the mirror.

EXAMPLES
 This example concatenates a single new slice to an existing
 metadevice, d8. (Afterwards, you would use the growfs com-
 mand to expand the file system.)

 # metattach d8 /dev/dsk/c0t1d0s2

 This example adds four slices to an existing metadevice, d9.
 (Afterwards, you would use the growfs command to expand the
 file system.)

 # metattach d9 /dev/dsk/c0t1d0s2 /dev/dsk/c0t2d0s2 \
 /dev/dsk/c0t3d0s2 /dev/dsk/c0t4d0s2

 This example detaches the logging device from a trans meta-
 device d9. Notice that you do not have to specify the log-
 ging device itself, as there can only be one.

 # metadetach d9

 This example expands a RAID5 metadevice, d45, by attaching
 another slice.

 # metattach d45 /dev/dsk/c3t0d0s2

 When you add additional slices to a RAID5 metadevice, the
 additional space is devoted to data. No new parity blocks
 are allocated. The data on the added slices is, however,
 included in the overall parity calculations, so it is pro-
 tected against single device failure.

 This example adds space to a two-way mirror by adding a

SunOS 5.7 Last change: 19 June 1996 3

Maintenance Commands METATTACH(1M)

 slice to each submirror. (Afterwards, you would use the
 growfs command to expand the file system.)

 # metattach d9 /dev/dsk/c0t2d0s5
 # metattach d10 /dev/dsk/c0t3d0s5

 This example detaches a submirror, d2, from a mirror, d4.

 # metadetach d4 d2

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M),
 metastat(1M), metasync(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

WARNING
 When a submirror is detached from its mirror, the data on
 the metadevice may not be the same as the data that existed
 on the mirror prior to running metadetach. In particular,
 if the -f option was needed, the metadevice and mirror prob-
 ably do not contain the same data.

SunOS 5.7 Last change: 19 June 1996 4

Maintenance Commands METAHS(1M)

NAME

 metahs - manage hot spares and hot spare pools

SYNOPSIS
 metahs [-s setname] -a all component
 metahs [-s setname] -a hot_spare_pool [component]
 metahs [-s setname] -d hot_spare_pool [component]
 metahs [-s setname] -d all component
 metahs [-s setname] -e component
 metahs [-s setname] -r hot_spare_pool component-old
 metahs [-s setname] -r all component-old component-new
 metahs [-s setname] -i [hot_spare_pool...]

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metahs command manages existing hot spares and hot spare
 pools. It is used to add, delete, enable, and replace com-
 ponents (slices) in hot spare pools. Like the metainit com-
 mand, the metahs command can also create an initial hot
 spare pool. The metahs command does not replace a component
 of a metadevice. This function is performed by the metare-
 place command.

 Hot spares are always in one of three states: available,
 in-use, or broken. Available hot spares are running and
 ready to accept data, but are not currently being written to
 or read from. In-use hot spares are currently being written
 to and read from. Broken hot spares are out of service and
 should be repaired. The status of hot spares is displayed
 when metahs is invoked with the -i option.

OPTIONS
 Root privileges are required for any of the following
 options except -i.

 -a all component
 Adds component to all hot spare pools. all is not case
 sensitive.

 -a hot_spare_pool [component]
 Adds the component to the specified hot_spare_pool.
 hot_spare_pool is created if it does not already exist.

 -d all component
 Deletes component from all the hot spare pools. The
 component cannot be deleted if it is in the in-use
 state.

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METAHS(1M)

 -d hot_spare_pool [component]
 Deletes hot_spare_pool, if the hot_spare_pool is both
 empty and not referenced by a metadevice. If component
 is specified, it is deleted from the hot_spare_pool.
 Hot spares in the in-use state cannot be deleted.

 -e component
 Enables component to be available for use as a hot
 spare. The component can be enabled if it is in the
 broken state and has been repaired.

 -i [hot_spare_pool ...]
 Displays the status of the specified hot_spare_pool or
 for all hot spare pools if one is not specified.

 -r all component-old component-new
 Replace component-old with component-new in all hot
 spare pools which have the component associated. Com-
 ponents cannot be replaced from any hot spare pool if
 the old hot spare is in the in-use state.

 -r hot_spare_pool component-old component-new
 Replaces component-old with component-new in the speci-
 fied hot_spare_pool. Components cannot be replaced
 from a hot spare pool if the old hot spare is in the
 in-use state.

 -s setname
 Specifies the name of the diskset on which metahs will
 work. Using the -s option will cause the command to
 perform its administrative function within the speci-
 fied diskset. Without this option, the command will
 perform its function on local hot spare pools.

 component
 The logical name for the physical slice (partition) on
 a disk drive, such as /dev/dsk/c0t0d0s2.

 hot_spare_pool
 Hot spare pools must be of the form hspnnn, where nnn
 is a number in the range 000-999.

EXAMPLES
 The following example adds a hot spare /dev/dsk/c0t0d0s7 to
 a hot spare pool hsp003.

 # metahs -a hsp003 c0t0d0s7

 When the hot spare is added to the pool, the existing order
 of the hot spares already in the pool is preserved. The new

 hot spare is added at the end of the list of hot spares in

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METAHS(1M)

 the hot spare pool specified.

 This example adds a hot spare to the hot spare pools that
 are currently defined.

 # metahs -a all c0t0d0s7

 The keyword all in this example specifies adding the hot
 spare, /dev/dsk/c0t0d0s7, to all the hot spare pools.

 This example deletes a hot spare, /dev/dsk/c0t0d0s7, from a
 hot spare pool, hsp003.

 # metahs -d hsp003 c0t0d0s7

 When you delete a hot spare, the position of the remaining
 hot spares in the pool changes to reflect the new order. For
 instance, if in this example /dev/dsk/c0t0d0s7 were the
 second of three hot spares, after deletion the third hot
 spare would move to the second position.

 This example replaces a hot spare that was previously
 defined.

 # metahs -r hsp001 c0t1d0s0 c0t3d0s0

 In this example, the hot spare /dev/dsk/c0t1d0s0 is replaced
 by /dev/dsk/c0t3d0s0. The order of the hot spares does not
 change.

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metainit(1M),
 metaoffline(1M), metaonline(1M), metaparam(1M),
 metareplace(1M), metaroot(1M), metaset(1M), metastat(1M),
 metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 3

Maintenance Commands METAINIT(1M)

NAME
 metainit - configure metadevices

SYNOPSIS
 metainit -h
 metainit [generic options] concat/stripe
 numstripes width component... [-i interlace]
 [width component... [-i interlace]]
 [-h hot_spare_pool]
 metainit [generic options] mirror -m submirror
 [read_options] [write_options] [pass_num]
 metainit [generic options] RAID -r component...
 [-i interlace] [-h hot_spare_pool]
 [-k] [-o original_column_count]
 metainit [generic options] trans -t master [log]
 metainit [generic options] hot_spare_pool [hotspare...]
 metainit [generic options] metadevice-name
 metainit [generic options] -a
 metainit -r

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metainit command configures metadevices and hot spares
 according to the information specified on the command line.
 Or, you can run metainit so that it uses configuration
 entries you specify in the /etc/opt/SUNWmd/md.tab file. All
 metadevices must be set up by the metainit command before
 they can be used.

 If you edit the /etc/opt/SUNWmd/md.tab file to configure
 metadevices, specify one complete configuration entry per

 line. You then run the metainit command with either the -a
 option, to activate all metadevices you entered in the
 /etc/opt/SUNWmd/md.tab file, or with the metadevice name
 corresponding to a specific configuration entry.

 Note: DiskSuite never updates the /etc/opt/SUNWmd/md.tab
 file. Complete configuration information is stored in the
 metadevice state database, not md.tab. The only way informa-
 tion appears in md.tab is through editing it by hand.

GENERIC OPTIONS
 Root privileges are required for all of the following
 options except -h.

 -f Forces the metainit command to continue even if one of
 the slices contains a mounted file system or is being

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METAINIT(1M)

 used as swap. This option is useful when configuring
 mirrors on root (/), swap, and /usr.

 -h Displays usage message.

 -n Checks the syntax of your command line or
 /etc/opt/SUNWmd/md.tab entry without actually setting
 up the metadevice. If used with -a, all devices are
 checked but not initialized.

 -r Only used in a shell script at boot time. Sets up all
 metadevices that were configured before the system
 crashed or was shut down. The information about previ-
 ously configured metadevices is stored in the metadev-
 ice state database (see metadb).

 -s setname
 Specifies the name of the diskset on which metainit
 will work. Without the -s option, the metainit command
 operates on your local metadevices and/or hotspares.

CONCAT/STRIPE OPTIONS
 concat/stripe
 Specifies the metadevice name of the concatenation,
 stripe, or concatenation of stripes being defined.

 numstripes

 Specifies the number of individual stripes in the meta-
 device. For a simple stripe, numstripes is always 1.
 For a concatenation, numstripes is equal to the number
 of slices. For a concatenation of stripes, numstripes
 will vary according to the number of stripes.

 width
 Specifies the number of slices that make up a stripe.
 When width is greater than 1, the slices are striped.

 component
 The logical name for the physical slice (partition) on
 a disk drive, such as /dev/dsk/c0t0d0s2. For RAID5
 metadevices, a minimum of three slices is necessary to
 enable striping of the parity information across
 slices.

 -i interlace
 Specifies the interlace size. This value tells Disk-
 Suite how much data to place on a slice of a striped or
 RAID5 metadevice before moving on to the next slice.
 interlace is a specified value, followed by either `k'
 for kilobytes, `m' for megabytes, or `b' for blocks.
 The characters can be either uppercase or lowercase.
 The interlace specified cannot be less than 16 blocks,

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METAINIT(1M)

 or greater than 100 megabytes. If interlace is not
 specified, it defaults to 16 kilobytes.

 -h hot_spare_pool
 Specifies the hot_spare_pool to be associated with the
 metadevice. If you use the command line, the hot spare
 pool must have been previously created by the metainit
 command before it can be associated with a metadevice.
 The hot_spare_pool must be of the form hspnnn, where
 nnn is a number in the range 000-999. Use /-h hspnnn
 when the concat/stripe being created is to be used as a
 submirror.

MIRROR OPTIONS
 mirror -m submirror
 Specifies the metadevice name of the mirror. The -m
 specifies that the configuration is a mirror. submirror
 is a metadevice (stripe or concatentation) that makes
 up the initial one-way mirror. DiskSuite supports a

 maximum of three-way mirroring. When defining mirrors,
 first create the mirror with the metainit command as a
 one-way mirror. Then attach subsequent submirrors using
 the metattach command. This method ensures that Disk-
 Suite properly syncs the mirrors. (The second and third
 submirrors are first created via the metainit command.)

 read_options
 The following read options for mirrors are available:

 -g Enables the geometric read option, which results
 in faster performance on sequential reads.

 -r Directs all reads to the first submirror. This
 should only be used when the devices comprising
 the first submirror are substantially faster than
 those of the second mirror. This flag cannot be
 used with the -g flag.
 If neither the -g nor -r flags are specified, reads are
 made in a round-robin order from all submirrors in the
 mirror. This enables load balancing across the submir-
 rors.

 write_options
 The following write options for mirrors are available:

 -S Performs serial writes to mirrors. The first sub-
 mirror write completes before the second is
 started. This may be useful if hardware is suscep-
 tible to partial sector failures. If -S is not
 specified, writes are replicated and dispatched to
 all mirrors simultaneously.

SunOS 5.7 Last change: 19 July 1996 3

Maintenance Commands METAINIT(1M)

 pass_num
 A number in the range 0-9 at the end of an entry defin-
 ing a mirror that determines the order in which that
 mirror is resynced during a reboot. The default is 1.
 Smaller pass numbers are resynced first. Equal pass
 numbers are run concurrently. If 0 is used, the resync
 is skipped. 0 should be used only for mirrors mounted
 as read-only, or as swap.

RAID5 OPTIONS
 RAID -r

 Specifies the name of the RAID5 metadevice. The -r
 specifies that the configuration is RAID5.

 -k For RAID5 metadevices, informs the driver that it is
 not to initialize (zero the disk blocks) due to exist-
 ing data. Only use this option to recreate a previously
 created RAID5 device.

 -o original_column_count
 For RAID5 metadevices, used with the -k option to
 define the number of original slices in the event the
 originally defined metadevice was grown. This is neces-
 sary since the parity segments are not striped across
 concatenated devices.

 WARNING For -k and -o
 Use extreme caution when using the -k and -o options.
 When used, these options set the disk blocks to the OK
 state. If any errors exist on disk blocks within the
 metadevice, DiskSuite may begin fabricating data.
 Instead of using these options, you may want to ini-
 tialize the device and restore data from tape.

TRANS OPTIONS
 trans -t master [log]
 trans specifies the name of the trans metadevice, which
 consists of master and log devices, or just a master
 device. The -t specifies that the configuration is a
 trans metadevice. If log is not specified when you
 create the trans metadevice, no logging can take place
 until a logging device is provided by using the metat-
 tach command. master and log can be simple, mirror, or
 RAID5 metadevices. They cannot be trans metadevices.
 master should be a UFS file system. You can configure
 an existing file system for logging by creating a trans
 metadevice as follows: make the existing file system
 into the master trans device, then create the log dev-
 ice on a separate, unused slice. The minimum log size
 is 1 Mbyte of disk space. Under heavy sustained loads,
 small logs will detract from performance because old
 data must be copied from the log to the file system

SunOS 5.7 Last change: 19 July 1996 4

Maintenance Commands METAINIT(1M)

 before new data can be logged. The maximum log size is
 1 Gbyte. Large logs might increase performance. How-
 ever, logs larger than 64 Mbytes can have negligible

 performance benefits.

HOT SPARE POOL OPTIONS
 hot_spare_pool [hotspare...]
 When used as arguments to the metainit command,
 hot_spare_pool defines the name for a hot spare pool,
 and hotspare... is the logical name for the physical
 slice(s) for availability in that pool. hot_spare_pool
 is a number of the form hspnnn, where nnn is a number
 in the range 000-999.

md.tab FILE OPTIONS
 metadevice-name
 When the metainit command is run with a metadevice-name
 as its only argument, it searches the
 /etc/opt/SUNWmd/md.tab file to find that name and its
 corresponding entry. The order in which entries appear
 in the md.tab file is unimportant. For example, con-
 sider the following md.tab entry:

 d0 2 1 c1t0d0s0 1 c2t1d0s0

 When you run the command metainit d0, it configures
 metadevice d0 based on the configuration information
 found in the md.tab file.

 -a Activates all metadevices defined in the
 /etc/opt/SUNWmd/md.tab file.

EXAMPLES
 Examples listed here include creation of a concatenation, a
 stripe, a concatenation of stripes, a mirror, a trans meta-
 device, a RAID5 metadevice, and a hot spare pool. All
 drives in the following examples have the same size of 525
 Mbytes.

 Concatenation
 This example shows a metadevice, /dev/md/dsk/d7, consisting
 of a concatenation of four slices.

 # metainit d7 4 1 c0t1d0s0 1 c0t2d0s0 1 c0t3d0s0 1
/dev/dsk/c0t4d0s0

 The number 4 indicates there are four individual stripes in
 the concatenation. Each stripe is made of one slice, hence
 the number 1 appears in front of each slice.

 Note: The first disk sector in all of the above devices

SunOS 5.7 Last change: 19 July 1996 5

Maintenance Commands METAINIT(1M)

 contains a disk label. To preserve the labels on devices
 /dev/dsk/c0t2d0s0, /dev/dsk/c0t3d0s0, and /dev/dsk/c0t4d0s0,
 the metadisk driver must skip at least the first sector of
 those disks when mapping accesses across the concatenation
 boundaries. Because skipping only the first sector would
 create an irregular disk geometry, the entire first cylinder
 of these disks will be skipped. This allows higher level
 file system software to optimize block allocations
 correctly.

 Stripe
 This example shows a metadevice, /dev/md/dsk/d15, consisting
 of two slices.

 # metainit d15 1 2 c0t1d0s2 c0t2d0s2 -i 32k

 The number 1 indicates that one stripe is being created.
 Because the stripe is made of two slices, the number 2 fol-
 lows next. The optional -i followed by 32k specifies the
 interlace size will be 32 Kbytes. If the interlace size
 were not specified, the stripe would use the default value
 of 16 Kbytes.

 Concatentation of Stripes
 This example shows a metadevice, /dev/md/dsk/d75, consisting
 of a concatenation of two stripes of three disks.

 # metainit d75 2 3 c0t1d0s2 c0t2d0s2 \
 c0t3d0s2 -i 16k \
 3 c1t1d0s2 c1t2d0s2 c1t3d0s2 -i 32k

 On the first line, the -i followed by 16k specifies that the
 stripe interlace size is 16 Kbytes. The second set speci-
 fies the stripe interlace size will be 32 Kbytes. If the
 second set did not specify 32 Kbytes, the set would use the
 default interlace value of 16 Kbytes. The blocks of each set
 of three disks are interlaced across three disks.

 Mirroring
 This example shows a two-way mirror, /dev/md/dsk/d50, con-
 sisting of two submirrors. This mirror does not contain any
 existing data.

 # metainit d51 1 1 c0t1d0s2
 # metainit d52 1 1 c0t2d0s2
 # metainit d50 -m d51
 # metattach d50 d52

 In this example, two submirrors, d51 and d52, are created
 with the metainit command. These two submirrors are simple

SunOS 5.7 Last change: 19 July 1996 6

Maintenance Commands METAINIT(1M)

 concatenations. Next, a one-way mirror, d50,
 is created using the -m option wtih d51. The second submir-
 ror is attached later using the metattach command. When
 creating a mirror, any combination of stripes and concatena-
 tions can be used. The default read and write options in
 this example are a round-robin read algorithm and parallel
 writes to all submirrors.

 Logging (trans)
 This example shows trans metadevice, /dev/md/dsk/d1, with
 mirrors for the master and logging devices. This trans does
 not contain any existing data.

 # metainit d11 1 1 c0t1d0s2
 # metainit d12 1 1 c0t2d0s2
 # metainit d21 1 1 c1t1d0s3
 # metainit d22 1 1 c1t2d0s3
 # metainit d10 -m d11
 # metattach d10 d12
 # metainit d20 -m d21
 # metattach d20 d22
 # metainit d1 -t d10 d20

 This example begins by defining four concatenations, d11,
 d12, d21, and d22. Next, mirror d10 is defined, followed by
 mirror d20. The mirrors are initially defined as one-way
 mirrors, then the second submirrors are attached later with
 the metattach command. Finally, the trans metadevice d1 is
 defined, with d10 as the master device and d20 as the log-
 ging device by using the -t option.

 RAID5
 This example shows a RAID5 device, d80, consisting of three
 slices:

 # metainit d80 -r c1t0d0s2 c1t1d0s2 c1t3d0s2 -i 20k

 In this example, a RAID5 metadevice is defined using the -r
 option with an interlace size of 20 Kbytes. The data and
 parity segments will be striped across the slices, c1t0d0s2,
 c1t2d0s2, and c1t3d0s2.

SunOS 5.7 Last change: 19 July 1996 7

Maintenance Commands METAINIT(1M)

 Hot Spare
 This example shows a two-way mirror, /dev/md/dsk/d10, and a
 hot spare pool with three hot spare components. The mirror
 does not contain any existing data.

 # metainit hsp001 c2t2d0s2 c3t2d0s2 c1t2d0s2
 # metainit d41 1 1 c1t0d0s2 -h hsp001
 # metainit d42 1 1 c3t0d0s2 -h hsp001
 # metainit d40 -m d41
 # metattach d40 d42

 In the above example, a hot spare pool, hsp001, is created
 with three disks used as hot spares. Next, two submirrors
 are created, d41 and d42. These are simple concatenations.
 The metainit command uses the -h option to associate the hot
 spare pool hsp001 with each submirror. A one-way mirror is
 then defined using the -m option. The second submirror is
 attached using the metattach command.

FILES
 /etc/opt/SUNWmd/md.tab
 Contains list of metadevice and hot
 spare configurations for batch-like
 creation.

WARNING
 Do not use the metainit command to create a multi-way mir-
 ror. Rather, create a one-way mirror with metainit then
 attach additional submirrors with metattach. When the
 metattach command is not used, no resync operations occur
 and data could become corrupted.

 If you use metainit to create a mirror with multiple submir-
 rors, the following message is displayed:

 WARNING: This form of metainit is not recommended.
 The submirrors may not have the same data.
 Please see ERRORS in metainit(1M) for additional informa-
 tion.

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metaoffline(1M), metaonline(1M), metaparam(1M),
 metareplace(1M), metaroot(1M), metaset(1M), metastat(1M),
 metasync(1M), metattach(1M), md.cf(4), md.tab(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 8

Maintenance Commands METAINIT(1M)

LIMITATIONS
 Recursive mirroring is not allowed; that is, a mirror cannot
 appear in the definition of another mirror.

 Recursive logging is not allowed; that is, a trans metadev-
 ice cannot appear in the definition of another metadevice.

 Stripes and RAID5 metadevices must consist of slices only.

 Mirroring of RAID5 metadevices is not allowed.

SunOS 5.7 Last change: 19 July 1996 9

Maintenance Commands METAOFFLINE(1M)

NAME
 metaoffline, metaonline - place submirrors offline and
 online

SYNOPSIS
 metaoffline -h
 metaoffline [-s setname] [-f] mirror submirror
 metaonline -h
 metaonline [-s setname] mirror submirror

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metaoffline command prevents DiskSuite from reading and
 writing to the submirror that has been taken offline. While
 the submirror is offline, all writes to the mirror will be
 kept track of (by region) and will be written when the sub-

 mirror is brought back online. The metaoffline command can
 also be used to perform online backups: one submirror is
 taken offline and backed up while the mirror remains acces-
 sible. (However, if this is a two-way mirror, data redun-
 dancy is lost while one submirror is offline.) The metaoff-
 line command differs from the metadetach command because it
 does not sever the logical association between the submirror
 and the mirror. To completely remove a submirror from a mir-
 ror, use the metadetach command.

 A submirror that has been taken offline will only remain
 offline until the metaonline command is invoked or the sys-
 tem is rebooted.

 When the metaonline command is used, reading from and writ-
 ing to the submirror resumes. A resync is automatically
 invoked to resync the regions written while the submirror
 was offline. Writes are directed to the submirror during
 resync. Reads, however, will come from a different submir-
 ror. Once the resync operation completes, reads and writes
 are performed on that submirror. The metaonline command is
 only effective on a submirror of a mirror that has been
 taken offline.

 Note: A submirror that has been taken offline with the meta-
 offline command can only be mounted as read-only.

OPTIONS
 Root privileges are required for all of the following
 options except -h.

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METAOFFLINE(1M)

 -f Forces offlining of submirrors that have slices requir-
 ing maintenance.

 -h Displays usage message.

 -s setname
 Specifies the name of the diskset on which metaoffline
 and metaonline will work. Using the -s option will
 cause the command to perform its administrative func-
 tion within the specified diskset. Without this
 option, the command will perform its function on local
 metadevices.

 mirror
 Specifies the metadevice name of the mirror from which
 the submirror will be either taken offline or put
 online.

 submirror
 Specifies the metadevice name of the submirror to be
 either taken offline or put online.

EXAMPLES
 This example takes one submirror, d9, offline from mirror
 d10.

 # metaoffline d10 d9

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaparam(1M), metareplace(1M), metaroot(1M),
 metaset(1M), metastat(1M), metasync(1M), metattach(1M),
 md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METAOFFLINE(1M)

NAME
 metaoffline, metaonline - place submirrors offline and
 online

SYNOPSIS
 metaoffline -h
 metaoffline [-s setname] [-f] mirror submirror
 metaonline -h
 metaonline [-s setname] mirror submirror

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metaoffline command prevents DiskSuite from reading and
 writing to the submirror that has been taken offline. While
 the submirror is offline, all writes to the mirror will be
 kept track of (by region) and will be written when the sub-
 mirror is brought back online. The metaoffline command can
 also be used to perform online backups: one submirror is
 taken offline and backed up while the mirror remains acces-
 sible. (However, if this is a two-way mirror, data redun-
 dancy is lost while one submirror is offline.) The metaoff-
 line command differs from the metadetach command because it
 does not sever the logical association between the submirror
 and the mirror. To completely remove a submirror from a mir-
 ror, use the metadetach command.

 A submirror that has been taken offline will only remain
 offline until the metaonline command is invoked or the sys-
 tem is rebooted.

 When the metaonline command is used, reading from and writ-
 ing to the submirror resumes. A resync is automatically
 invoked to resync the regions written while the submirror
 was offline. Writes are directed to the submirror during
 resync. Reads, however, will come from a different submir-
 ror. Once the resync operation completes, reads and writes
 are performed on that submirror. The metaonline command is
 only effective on a submirror of a mirror that has been
 taken offline.

 Note: A submirror that has been taken offline with the meta-
 offline command can only be mounted as read-only.

OPTIONS
 Root privileges are required for all of the following
 options except -h.

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METAOFFLINE(1M)

 -f Forces offlining of submirrors that have slices requir-
 ing maintenance.

 -h Displays usage message.

 -s setname
 Specifies the name of the diskset on which metaoffline
 and metaonline will work. Using the -s option will
 cause the command to perform its administrative func-
 tion within the specified diskset. Without this
 option, the command will perform its function on local
 metadevices.

 mirror
 Specifies the metadevice name of the mirror from which
 the submirror will be either taken offline or put
 online.

 submirror
 Specifies the metadevice name of the submirror to be
 either taken offline or put online.

EXAMPLES
 This example takes one submirror, d9, offline from mirror
 d10.

 # metaoffline d10 d9

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaparam(1M), metareplace(1M), metaroot(1M),
 metaset(1M), metastat(1M), metasync(1M), metattach(1M),
 md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METAPARAM(1M)

NAME
 metaparam - modify parameters of metadevices

SYNOPSIS
 metaparam -h
 metaparam [-s setname] [concat/stripe or RAID5 options]
 concat/stripe | RAID
 metaparam [-s setname] [mirror options] mirror

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metaparam command is used to display or modify current
 parameters of metadevices. The current parameters can be
 displayed by the metastat command.

 If just the metadevice is specified as an argument to the
 metaparam command, the current settings are displayed.

 The metaparam command enables metadevice parameters to be
 changed with the exception of the interlace value, which
 initially must be set using the metainit command.

OPTIONS
 Root privileges are required for all of the following
 options except -h.

 -h Displays usage message.

 -s setname
 Specifies the name of the diskset on which metaparam
 will work. Using the -s option will cause the command
 to perform its administrative function within the
 specified diskset. Without this option, the command
 will perform its function on local metadevices.

CONCAT/STRIPE OR RAID5 OPTIONS
 -h hot_spare_pool | none
 Specifies the hot spare pool to be used by a metadev-
 ice. If none is specified, the metadevice is disassoci-
 ated with the hot spare pool assigned to it. If the
 metadevice is currently using a hot spare, then meta-

 param cannot replace the hot spare pool.

 concat/stripe | RAID
 Specifies the metadevice name of the concatenation,
 stripe, or concatenation of stripes, or of the RAID5
 metadevice.

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METAPARAM(1M)

MIRROR OPTIONS
 -r roundrobin | geometric | first
 Modifies th read option for a mirror. The -r option
 must be followed by either roundrobin, geometric, or
 first. roundrobin, which is the default action under
 the metainit command, specifies reading the disks in a
 round-robin (load balancing) method. geometric allows
 for faster performance on sequential reads. first
 specifies reading only from the first submirror.

 -w parallel | serial
 Modifies the write option for a mirror. The -w option
 must be followed by either parallel or serial. paral-
 lel, the default action under the metainit command,
 specifies that all writes are parallel. serial speci-
 fies that all writes are serial.

 -p pass_number
 A number from 0-to-9 that specifies the order in which
 a mirror is resynced during reboot. The default is 1.
 Smaller pass numbers are resynced first. Equal pass
 numbers are run concurrently. If 0 is used, the mirror
 resync is skipped. 0 should only be used for mirrors
 mounted as read-only, or as swap.

 mirror
 Specifies the metadevice name of the mirror.

EXAMPLES
 This example associates a hot spare pool, hsp005, with a
 RAID5 metadevice, d80.

 # metaparam -h hsp005 d80

 This example changes the read option on a mirror d50 from
 the default of roundrobin to geometric.

 # metaparam -r geometric d50

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metareplace(1M), metaroot(1M), metaset(1M), metastat(1M),
 metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METARENAME(1M)

NAME
 metarename - rename metadevice or switch layered metadevice
 names

SYNOPSIS
 metarename [-s setname] metadevice1 metadevice2
 metarename [-s setname] [-f] -x metadevice1 metadevice2
 metarename -h

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 There are two ways to use metarename. The first renames an
 existing metadevice to a new name. This makes managing the
 metadevice namespace easier. The metadevice being renamed
 cannot be mounted or open, nor can the new name already
 exist. For example, to rename a metadevice that contains a
 mounted file system, you would first need to unmount the
 file system.

 Secondly, when used with the -x option, metarename switches
 (exchanges) the names of an existing layered metadevice and
 one of its subdevices. (In DiskSuite terms, a layered meta-
 device can be either a mirror or a trans metadevice.) The
 -x option enables you to switch the metadevice names of a
 mirror and one of its submirrors, or a trans metadevice and
 its master device.

 metarename -x makes it easier to mirror or unmirror an

 existing stripe or concatenation, and to create or remove a
 trans of an existing metadevice.

 When used to mirror an existing stripe or concatenatation,
 you must stop access to the device. For example, if the dev-
 ice contains a mounted file system, you must first unmount
 the file system before doing the rename.

 metarename -x can also be used to create a trans metadevice
 from an existing metadevice, or to untrans the device. This
 applies only to the master device. A logging device cannot
 be created or removed via metarename. Before you can rename
 a trans device, you must detach the logging device. Then you
 must stop access to the trans metadevice itself.

 You cannot rename or switch metadevices that are in an
 errored state or that have subcomponents in an errored
 state, or metadevices actively using a hot spare replace-
 ment.

 You can only switch metadevices that have a direct
 child/parent relationship. You could not, for example,

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METARENAME(1M)

 directly exchange a stripe in a mirror that is a master dev-
 ice with the trans metadevice.

 You must use the -f flag when switching members of a trans
 metadevice.

 Only metadevices can be switched, not slices.

OPTIONS
 Force the switching of trans metadevice members.

 -h Display a help message.

 -s setname
 Specifies the name of the diskset on which metarename
 will work. Using the -s option will cause the command
 to perform its administrative function within the
 specified diskset. Without this option, the command
 will perform its function on the local metadevices.

 -x Exchange the metadevice names metadevice1 and metadev-

 ice2.

 metadevice1
 Specifies the metadevice to be renamed or switched.

 metadevice2
 Specifies the target metadevice name for the rename or
 switch operation.

EXAMPLES
 This example renames a metadevice named d10 to d100. Note
 that d100 must not exist for the rename to succeed.

 # metarename d10 d100

 This example creates a two-way mirror from an existing
 stripe named d1 with a mounted file system, /home2.

 # metainit d2 1 1 c13d0s1
 # metainit -f d20 -m d1
 # umount /home2
 # metarename -x d20 d1
 # metattach d1 d2
 # mount /home2

 First, a second concatenation d2, is created. (d1 already
 exists.) The metainit command creates a one-way mirror, d20,
 from d1. Next, you umount the file system and switch d1 for
 d20, making d1 the top-level device (mirror). You attach

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METARENAME(1M)

 the second submirror, d2, to create a two-way mirror.
 Lastly, you remount the file system.

 This example takes an existing mirror named d1 with a
 mounted file system, and ends up with the file system
 mounted on a stripe d1.

 # umount /fs2
 # metarename -x d1 d20
 # metadetach d20 d1
 # metaclear -r d20
 # mount /fs2

 First, you unmount the file system, then switch the mirror

 d1 and its submirror d20. This makes the mirror into d20.
 Next, you detach d1 from d20, then delete the mirror d20 and
 its other submirror. You then remount the file system.

 This example creates a trans metadevice from an existing
 RAID5 metadevice named d1 which contains the file system
 /myhome.

 # umount /myhome
 # metainit d21 -t d1
 # metarename -f -x d21 d1
 # metattach d1 d0
 # mount /myhome

 You umount the file system before using the metainit command
 to create the trans metadevice d21, with d1 as the master
 device. You then switch d21 and d1, making d1 the top-level
 metadevice (trans metadevice). A logging device d0 is
 attached with the metattach command. You then remount the
 file system.

 This example deletes a trans metadevice named d10 while its
 mount point is /myhome. The master device, which is a
 stripe, is named d2. The logging device, also a stripe, is
 named d5.

 # umount /myhome
 # metadetach d10
 # metarename -f -x d10 d2
 # metaclear d2
 # metaclear d5
 # fsck /dev/md/dsk/d10
 # mount /myhome

 You umount the file system first, then detach the trans
 metadevice's logging device. The trans metadevice is
 switched with the master device, making the trans metadevice
 d2 and the underlying stripe d10. You clear the trans

SunOS 5.7 Last change: 19 July 1996 3

Maintenance Commands METARENAME(1M)

 metadevice d2 and the logging device d5. d10 must be
 fsck'd, and then the file system is remounted.

SEE ALSO
 metaclear(1M), metainit(1M), metastat(1M)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

LIMITATIONS
 Renaming and exchanging metadevice names can only be used
 for metadevices. A physical slice cannot be renamed to a
 metadevice, nor can a metadevice be exchanged with a physi-
 cal slice name.

 Metadevice names are (still) limited to strings of the pat-
 tern d<xyz> where xyz is a value between 0 and 1024 . You
 cannot use logical names for metadevices.

SunOS 5.7 Last change: 19 July 1996 4

Maintenance Commands METAREPLACE(1M)

NAME
 metareplace - enable or replace components of submirrors or
 RAID5 metadevices

SYNOPSIS
 metareplace -h
 metareplace [-s setname] -e mirror component
 metareplace [-s setname] mirror
 component-old component-new
 metareplace [-s setname] -e RAID component
 metareplace [-s setname] [-f] RAID
 component-old component-new

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metareplace command is used to enable or replace com-
 ponents (slices) within a submirror or a RAID5 metadevice.

 When you replace a component, the metareplace command
 automatically starts resyncing the new component with the
 rest of the metadevice. When the resync completes, the
 replaced component becomes readable and writeable. If the
 failed component has been hot spare replaced, the hot spare
 is placed in the available state and made available for
 other hot spare replacements.

 Note that the new component must be large enough to replace
 the old component.

 A component may be in one of several states. The Last Erred
 and the Maintenance states require action. Always replace
 components in the Maintenance state first, followed by a
 resync and validation of data. After components requiring
 maintenance are fixed, validated, and resynced, components
 in the Last Erred state should be replaced. To avoid data
 loss, it is always best to back up all data before replacing
 Last Erred devices.

OPTIONS
 Root privileges are required for all of the following
 options except -h.

 -e Transitions the state of component to the available
 state and resyncs the failed component. If the failed
 component has been hot spare replaced, the hot spare is
 placed in the available state and made available for
 other hot spare replacements. This command is useful

SunOS 5.7 Last change: 19 June 1996 1

Maintenance Commands METAREPLACE(1M)

 when a component fails due to human error (for example,
 accidentally turning off a disk), or because the com-
 ponent was physically replaced. In this case, the
 replacement component must be partitioned to match the
 disk being replaced before running the metareplace com-
 mand.

 -f Forces the replacement of an errored component of a
 metadevice in which multiple components are in error.
 The component determined by the metastat display to be
 in the ``Maintenance'' state must be replaced first.
 This option may cause data to be fabricated since mul-
 tiple components are in error.

 -h Display help message.

 -s setname
 Specifies the name of the diskset on which metareplace
 will work. Using the -s option will cause the command
 to perform its administrative function within the
 specified diskset. Without this option, the command
 will perform its function on local metadevices.

 mirror
 The metadevice name of the mirror.

 component
 The logical name for the physical slice (partition) on
 a disk drive, such as /dev/dsk/c0t0d0s2.

 component-old
 The physical slice that is being replaced.

 component-new
 The physical slice that is replacing component-old.

 RAID The metadevice name of the RAID5 device.

EXAMPLES
 This example shows how to recover when a single component in
 a RAID5 metadevice is errored.

 # metareplace d10 c3t0d0s2 c5t0d0s2

 In this example, a RAID5 metadevice d10 has an errored com-
 ponent, c3t0d0s2, replaced by a new component, c5t0d0s2.

 This example shows the use of the -e option after a physical

 disk in a submirror has been replaced.

 # metareplace -e d11 c1t4d0s2

SunOS 5.7 Last change: 19 June 1996 2

Maintenance Commands METAREPLACE(1M)

 Note: The replacement disk must be partitioned to match the
 disk it is replacing before running the metareplace command.

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metaroot(1M), metaset(1M), metastat(1M),
 metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 June 1996 3

Maintenance Commands METAROOT(1M)

NAME
 metaroot - setup system files for root (/) metadevice

SYNOPSIS
 metaroot -h
 metaroot [-n] [-k system-name] [-v vfstab-name]
 [-c mddb.cf-name] device

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metaroot command edits the /etc/vfstab and /etc/system
 files so that the system may be booted with the root file
 system (/) on a metadevice.

 If necessary, the metaroot command can reset a system that
 has been configured to boot the root file system (/) on a
 metadevice so that it uses a physical slice.

OPTIONS
 Root privileges are required for all of the following
 options except -h.

 -c mddb.cf-name
 Uses mddb.cf-name instead of the default
 /etc/opt/SUNWmd/mddb.cf file as a source of metadevice
 database locations.

 -h Displays a usage message.

 -k system-name
 Edits a user-supplied system-name instead of the
 default /etc/system system configuration information
 file.

 -n Print what would be done without actually doing it.

 -v vfstab-name
 Edits vfstab-name instead of the default /etc/vfstab
 table of file system defaults.

 device
 Specifies either the metadevice or the conventional
 disk device (slice) used for the root file system (/).

EXAMPLES

SunOS 5.7 Last change: 19 June 1996 1

Maintenance Commands METAROOT(1M)

 The following command edits /etc/system and /etc/vfstab to
 specify that the root filesystem is now on metadevice d0.

 # metaroot d0

 The following command edits /etc/system and /etc/vfstab to
 specify that the root filesystem is now on the SCSI disk
 device /dev/dsk/c0t3d0s0.

 # metaroot /dev/dsk/c0t3d0s0

FILES
 /etc/system Kernel patch file.

 /etc/vfstab File system defaults.

 /etc/opt/SUNWmd/mddb.cf
 Metadevice state database locations.

NOTES
 WARNING: forceload of misc/md_hotspares failed may appear
 during boot if root is on a metadevice and no hot spares are
 specified. This can be eliminated by defining an empty hot

 spare pool.

 WARNING: forceload of misc/md_trans failed may appear if no
 trans devices have been configured.

 WARNING: forceload of misc/md_raid failed may appear if no
 RAID5 devices have been configured.

 You can safely ignore these messages. This is an artifact of
 the way drivers are loaded during the boot process.

SEE ALSO
 metadb(1M), metainit(1M), metastat(1M), mddb.cf(4), sys-
 tem(4), vfstab(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 June 1996 2

Maintenance Commands METASET(1M)

NAME
 metaset - configure shared disksets

SYNOPSIS
 metaset -s setname -a -h hostname...
 metaset -s setname -a [-l length] drivename...
 metaset -s setname -d [-f] -h hostname...
 metaset -s setname -d [-f] drivename...
 metaset -s setname -r
 metaset -s setname -t [-f]
 metaset -s setname -b
 metaset -s setname -o [-h hostname]
 metaset [-s setname]

AVAILABILITY

 /usr/opt/SUNWmd/sbin

DESCRIPTION
 In a diskset configuration, two hosts are physically con-
 nected to the same set of disks. When one host fails, the
 other host has exclusive access to the disks. The metaset
 command administers sets of disks shared for exclusive (but
 not concurrent) access between such hosts. While disksets
 enable a high-availability configuration, DiskSuite itself
 does not actually provide a high-availability environment.

 Shared metadevices/hot spare pools can be created only from
 drives which are in the diskset created by metaset. To
 create a set, one or more hosts must be added to the set. To
 create metadevices within the set, one or more devices must
 be added to the set. The drivename specified must be in the
 form cxtxdx with no slice specified.

 Drives are repartitioned when they are added to a diskset
 only if Slice 7 is not set up correctly. A small portion of
 each drive is reserved in Slice 7 for use by DiskSuite. The
 remainder of the space on each drive is placed into Slice 0.
 Any existing data on the disks is lost after repartitioning.
 After adding a drive to a diskset, you can repartition the
 drive as necessary. However, Slice 7 should not be moved,
 removed, or overlapped with any other partition.

 After a diskset is created and metadevices are set up within
 the set, the metadevice name will be in the following form:

 /dev/md/setname/{dsk,rdsk}/dnumber

 where setname is the name of the diskset, and number is the
 number of the metadevice (0-127).

SunOS 5.7 Last change: 19 June 1996 1

Maintenance Commands METASET(1M)

 Hot spare pools within local disksets use standard DiskSuite
 naming conventions. Hot spare pools with shared disksets
 use the following convention:

 setname/hspnumber

 where setname is the name of the diskset, and number is the
 number of the hot spare pool (0-999).

OPTIONS
 -a Adds drives or hosts to the named set. For a drive to
 be accepted into a set, the drive must not be in use
 within another metadevice or diskset, mounted on, or
 swapped on. When the drive is accepted into the set, it
 is repartitioned and the metadevice state database
 replica (for the set) may be placed on it. However, if
 a Slice 7 starts at cylinder 0, and is large enough to
 hold a state database replica, then the disk is not
 repartioned. Also, a drive is not accepted if it cannot
 be found on all hosts specified as part of the set.
 This means that if a host within the specified set is
 unreachable due to network problems, or is administra-
 tively down, the add will fail.

 -b Insures that the replicas are distributed according to
 the replica layout algorithm. This can be invoked at
 any time, and will do nothing if the replicas are
 correctly distributed. In cases where the user has used
 the metadb command to manually remove or add replicas,
 this command can be used to insure that the distribu-
 tion of replicas matches the replica layout algorithm.

 -d Deletes drives or hosts from the named diskset. For a
 drive to be deleted, it must not be in use within the
 set. The last host cannot be deleted unless all of the
 drives within the set are deleted.

 -f Forces one of three actions to occur: takes ownership
 of a diskset when used with -t; deletes the last disk
 drive from the diskset; or deletes the last host from
 the diskset. (Deleting the last drive or host from a
 diskset requires the -d option.) When used to forcibly
 take ownership of the diskset, this causes the diskset
 to be grabbed whether or not another host owns the set.
 All of the disks within the set are taken over
 (reserved) and fail fast is enabled, causing the other
 host to panic if it had diskset ownership. The meta-
 device state database will be read in by the host per-
 forming the take, and the shared metadevices contained
 in the set will be accessible. The -f option is also
 used to delete the last drive in the diskset, because

SunOS 5.7 Last change: 19 June 1996 2

Maintenance Commands METASET(1M)

 this drive would implicitly contain the last state
 database replica. The -f option is also used for delet-
 ing hosts from a set. When specified with a partial
 list of hosts, it can be used for one-host administra-
 tion. One-host administration could be useful when a
 host is known to be non-functional, thus avoiding
 timeouts and failed commands. When specified with a
 complete list of hosts, the set is completely deleted.
 It is generally specified with a complete list of hosts
 to clean up after one-host administration has been per-
 formed.

 -h hostname...
 Specifies one or more host names to be added to or
 deleted from a diskset. Adding the first host creates
 the set. The last host cannot be deleted unless all of
 the drives within the set have been deleted. The host
 name is not accepted if all of the drives within the
 set cannot be found on the specified host. The host
 name is the same name found in /etc/nodename.

 -o Returns an exit status of 0 if the local host or the
 host specified with the -h option is the owner of the
 diskset.

 -r Releases ownership of a diskset. All of the disks
 within the set are released. The metadevices set up
 within the set are no longer accessible.

 -s setname
 Specifies the name of a diskset on which metaset will
 work. If no setname is specified, all disksets are
 returned.

 -t Takes ownership of a diskset safely. If metaset finds
 that another host owns the set, this host will not be
 allowed to take ownership of the set. If the set is not
 owned by any other host, all the disks within the set
 will be owned by the host on which metaset was exe-
 cuted. The metadevice state database is read in, and
 the shared metadevices contained in the set become
 accessible. The -t option will take a diskset that has
 stale databases. When the databases are stale, metaset
 will exit code 66, and a message will be printed. At
 that point, the only operations permitted are the addi-
 tion and deletion of replicas. Once the addition or
 deletion of the replicas has been completed, the
 diskset should be released and retaken to gain full
 access to the data.

SunOS 5.7 Last change: 19 June 1996 3

Maintenance Commands METASET(1M)

EXAMPLES
 This example defines a diskset.

 # metaset -s relo-red -a -h red blue

 The name of the diskset is relo-red. The names of the first
 and second hosts added to the set are red and blue, respec-
 tively. (The hostname is found in /etc/nodename.) Adding the
 first host creates the diskset. A diskset can be created
 with just one host, with the second added later. The last
 host cannot be deleted until all of the drives within the
 set have been deleted.

 This example adds drives to a diskset.

 # metaset -s relo-red -a c2t0d0 c2t1d0 c2t2d0 c2t3d0 c2t4d0
c2t5d0

 The name of the previously created diskset is relo-red. The
 names of the drives are c2t0d0, c2t1d0, c2t2d0, c2t3d0,
 c2t4d0, and c2t5d0. Note that there is no slice identifier
 ("sx") at the end of the drive names.

FILES
 /etc/opt/SUNWmd/md.tab
 Contains list of metadevice configura-
 tions.

NOTES
 Diskset administration, including the addition and deletion
 of hosts and drives, requires all hosts in the set to be
 accessible from the network.

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metastat(1M),
 metasync(1M), metattach(1M), md.cf(4), md.tab(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 June 1996 4

Maintenance Commands METASTAT(1M)

NAME
 metastat - display status for metadevice or hot spare pool

SYNOPSIS
 metastat -h
 metastat [-s setname] [-p] [-t] [metadevice...]
 [hot_spare_pool...]

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metastat command displays the current status for each
 metadevice (including stripes, concatenations, concatena-
 tions of stripes, mirrors, RAID5, and trans devices) or hot
 spare pool, or of specified metadevices or hot spare pools.

 It is helpful to run the metastat command after using the
 metattach command to view the status of the metadevice.

OPTIONS
 -h Displays usage message.

 -p Displays the list of active metadevices and hot spare
 pools in a format like md.tab.

 -s setname
 Specifies the name of the diskset on which metastat
 will work. Using the -s option will cause the command
 to perform its administrative function within the
 specified diskset. Without this option, the command
 will perform its function on metadevices and/or hot
 spare pools in the local diskset.

 -t Prints the current status and timestamp for the speci-
 fied metadevices and hot spare pools. The timestamp
 provides the date and time of the last state change.

 metadevice...
 Displays the status of the specified metadevice(s). If
 a trans metadevice is specified, the status of the mas-
 ter and log devices is also displayed.

 hot_spare_pool...
 Displays the status of the specified hot spare pool(s).

EXAMPLES

SunOS 5.7 Last change: 19 June 1996 1

Maintenance Commands METASTAT(1M)

 The following example shows the partial output of the metas-
 tat command after creating a mirror, d0, consisting of two
 submirrors, d70 and d80.

 # metastat d0
 d0: Mirror
 Submirror 0: d80
 State: Okay
 Submirror 1: d70
 State: Resyncing
 Resync in progress: 15 % done
 Pass: 1
 Read option: roundrobin (default)
 Write option: parallel (default)
 Size: 2006130 blocks
 .
 .
 .

WARNING
 metastat prints states as of the time the command is
 entered. It is unwise to use the output of the metastat -p
 command to create a md.tab(4) file for a number of reasons:
 o The output of metastat -p may show hot spares being used.
 o It may show mirrors with multiple submirrors. See
 metainit for instructions for creating multi-way mirrors
 using metainit and metattach.
 o A slice may go into an error state after metastat -p is
 issued.

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M),
 metasync(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 June 1996 2

Maintenance Commands METASYNC(1M)

NAME
 metasync - handle metadevice resync during reboot

SYNOPSIS
 metasync -h
 metasync [-s setname] [buffer_size] metadevice
 metasync [-s setname] -r [buffer_size]

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metasync command starts a resync operation on the speci-
 fied metadevice. All components that need to be resynced are
 resynced. If the system crashes during a RAID5 initializa-
 tion, or during a RAID5 resync, either an initialization or
 resync restarts when the system reboots.

 Applications are free to access a metadevice at the same
 time that it is being resynced by metasync. Also, metasync
 performs the copy operations from inside the kernel, which
 makes the utility more efficient.

 Use the -r option in boot scripts to resync all possible
 submirrors.

OPTIONS
 -h Displays usage message.

 -r Specifies that the metasync command handle special
 resync requirements during a system reboot. metasync
 -r should only be invoked from /etc/init.d/SUNWmd.sync.
 The metasync command only resyncs those metadevices
 that need to be resynced. metasync schedules all the
 mirror resyncs according to their pass numbers.

 -s setname
 Specifies the name of the diskset on which metasync
 will work. Using the -s option will cause the command
 to perform its administrative function within the
 specified diskset. Without this option, the command
 will perform its function on local metadevices.

 buffer_size
 Specifies the size (number of 512-byte disk blocks) of
 the internal copy buffer for the mirror resync. The
 size defaults to 63 512-byte disk blocks (31.5 Kbytes).
 It can be no more than 126 blocks.

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METASYNC(1M)

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M),
 metastat(1M), metattach(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METATOOL(1M)

NAME
 metatool - create and administer DiskSuite configurations

SYNOPSIS
 metatool [-s diskset] [-r registry-file]

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 The metatool command runs DiskSuite Tool, Solstice
 DiskSuite's graphical user interface. metatool displays a
 graphical representation of all metadevices, hot spare
 pools, and the metadevice state database, and a drag-and-
 drop interface for manipulation of these objects.

 All functionality available using the DiskSuite command line
 interface is available from metatool, with the exceptions of
 the creation of disksets and the unmirroring of file systems
 you cannot umount. Disksets must be created using the Disk-
 Suite command-line utilities. Metadevices and hot spare
 pools within disksets can then be displayed and administered
 by metatool using the -s option.

 When you run metatool on a system with an existing DiskSuite
 configuration, you see all existing metadevices, hot spare
 pools, and the metadevice state database in the Objects list
 of the Metadevice Editor window for that diskset, either
 local or shared.

 When you run metatool on a system that has no DiskSuite con-
 figuration, you see an empty MetaDB (metadevice state data-
 base) object in the Objects list of the Metadevice Editor
 window. This object must be populated with a minimum of
 three state database replicas before metadevices can be
 created.

OPTIONS
 The following options can be used with metatool:

 -s diskset
 Display metadevices configured in the specified
 diskset.

 -r registry-file
 Load the Tools pulldown menu using entries from
 registry-file instead of the default registry
 /usr/opt/SUNWmd/lib/metatool-toolsmenu.

SunOS 5.7 Last change: 19 July 1996 1

Maintenance Commands METATOOL(1M)

ENVIRONMENT

 metatool supports the standard X11 environment variables.
 See environ(5) for descriptions of the following environment
 variables that affect the execution of the metatool
 command: LC_MESSAGES, LANG, NLSPATH.

RESOURCES
 The file, /usr/opt/SUNWmd/lib/X11/app-defaults/Metatool,
 contains a list of all the X resources used by metatool.

SEE ALSO
 growfs(1M), metaclear(1M), metadb(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaparam(1M),
 metareplace(1M), metaroot(1M), metaset(1M), metastat(1M),
 metasync(1M), metattach(1M), metatool-toolsmenu(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 2

Maintenance Commands METATTACH(1M)

NAME
 metattach, metadetach - attach or detach metadevice to or
 from a mirror or trans

SYNOPSIS
 metattach [-h]
 metattach [-s setname] mirror [metadevice]
 metattach [-s setname] [-i size] concat/stripe
 component...
 metattach [-s setname] RAID component...
 metattach [-s setname] trans log
 metadetach [-s setname] [-f] mirror submirror
 metadetach [-s setname] [-f] trans

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 metattach is used to add submirrors to a mirror, add logging
 devices to trans devices, or grow metadevices. Growing meta-
 devices can be done without interrupting service. To grow
 the size of a mirror or trans, the slices must be added to
 the submirrors or to the master devices.

 DiskSuite supports one-to-three-way mirrors. Thus, you can
 only attach a metadevice to a mirror if there are two or
 fewer submirrors beneath the mirror. Once a new metadevice
 is attached to a mirror, metattach will automatically start
 a resync operation to the new submirror.

 Attaching a new logging device to a busy trans metadevice is
 allowed, although a trans metadevice will start using its
 new logging device only after the trans is idle (after it is
 unmounted, for example). The busy trans will be in an
 Attaching state (metastat) until the logging device is actu-
 ally attached. Attaching a logging device in the Hard Error
 or Error state (metastat) is not allowed.

 metadetach is used to detach submirrors from mirrors, or
 detach logging devices from trans metadevices.

 When a submirror is detached from a mirror, it is no longer
 part of the mirror, thus reads and writes to and from that
 metadevice via the mirror are no longer performed through
 the mirror. Detaching the only existing submirror is not
 allowed. Detaching a submirror that has slices reported as
 needing maintenance (by metastat) is not allowed unless the
 -f (force) flag is used.

SunOS 5.7 Last change: 19 June 1996 1

Maintenance Commands METATTACH(1M)

 metadetach also detaches the logging device from a trans.
 Once detached, the logging device is no longer part of the
 trans, thus the trans is no longer logging and all benefits
 of logging are lost. Any information on the logging device
 that pertains to the master device is written to the master
 device before the logging device is detached.

 Detaching the logging device from a busy trans device is not
 allowed unless the -f (force) flag is used. Even so, the
 logging device is not actually detached until the trans is
 idle. The trans is in the Detaching state (metastat) until
 the logging device is detached.

OPTIONS
 Root privileges are required for all of the following
 options except -h.

 -f Force the detaching of metadevices that have components
 that need maintenance or are busy.

 -h Displays a usage message.

 -i size
 Specifies the interlace value for stripes, where size
 is a specified value followed by either `k' for kilo-
 bytes, `m' for megabytes, or `b' for blocks. The units
 can be either upper case or lower case. If size is not
 specified, the size defaults to the interlace size of
 the last stripe of the metadevice. When an interlace
 size change is made on a stripe, it will be carried
 forward on all stripes that follow.

 -s setname
 Specifies the name of the diskset on which the metat-
 tach command or the metadetach command will work.
 Using the -s option will cause the command to perform
 its administrative function within the specified
 diskset. Without this option, the command will perform
 its function on local metadevices.

 mirror
 Specifies the mirror.

 metadevice
 Specifies the name of the metadevice to be attached to
 the mirror as a submirror. This metadevice must have
 been previously created by the metainit command.

 concat/stripe
 Specifies the metadevice name of the concatenation,
 stripe, or concatenation of stripes.

SunOS 5.7 Last change: 19 June 1996 2

Maintenance Commands METATTACH(1M)

 component...
 The logical name for the physical slice (partition) on
 a disk drive, such as /dev/dsk/c0t0d0s2, being added to
 the concatenation, stripe, concatenation of stripes, or
 RAID5 metadevice.

 RAID Specifies the metadevice name of the RAID5 metadevice.

 trans
 Specifies the metadevice name of the trans metadevice
 (not the master or logging device).

 log Specifies the metadevice name of the logging device to
 be attached to the trans metadevice.

 submirror
 The metadevice name of the submirror to be detached
 from the mirror.

EXAMPLES
 This example concatenates a single new slice to an existing
 metadevice, d8. (Afterwards, you would use the growfs com-
 mand to expand the file system.)

 # metattach d8 /dev/dsk/c0t1d0s2

 This example adds four slices to an existing metadevice, d9.
 (Afterwards, you would use the growfs command to expand the
 file system.)

 # metattach d9 /dev/dsk/c0t1d0s2 /dev/dsk/c0t2d0s2 \
 /dev/dsk/c0t3d0s2 /dev/dsk/c0t4d0s2

 This example detaches the logging device from a trans meta-

 device d9. Notice that you do not have to specify the log-
 ging device itself, as there can only be one.

 # metadetach d9

 This example expands a RAID5 metadevice, d45, by attaching
 another slice.

 # metattach d45 /dev/dsk/c3t0d0s2

 When you add additional slices to a RAID5 metadevice, the
 additional space is devoted to data. No new parity blocks
 are allocated. The data on the added slices is, however,
 included in the overall parity calculations, so it is pro-
 tected against single device failure.

 This example adds space to a two-way mirror by adding a

SunOS 5.7 Last change: 19 June 1996 3

Maintenance Commands METATTACH(1M)

 slice to each submirror. (Afterwards, you would use the
 growfs command to expand the file system.)

 # metattach d9 /dev/dsk/c0t2d0s5
 # metattach d10 /dev/dsk/c0t3d0s5

 This example detaches a submirror, d2, from a mirror, d4.

 # metadetach d4 d2

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metaset(1M),
 metastat(1M), metasync(1M), md.tab(4), md.cf(4), mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

WARNING
 When a submirror is detached from its mirror, the data on
 the metadevice may not be the same as the data that existed
 on the mirror prior to running metadetach. In particular,
 if the -f option was needed, the metadevice and mirror prob-
 ably do not contain the same data.

SunOS 5.7 Last change: 19 June 1996 4

Maintenance Commands RPC.METAD(1M)

NAME
 rpc.metad - remote metaset services

SYNOPSIS
 rpc.metad

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 rpc.metad is an rpc(4) daemon (functioning as a server pro-
 cess) that is used to manage local copies of metadevice
 diskset information. The rpc.metad daemon is invoked by
 inetd.

SEE ALSO

 inetd(1M), metaset(1M), rpc.metamhd(1M), rpc(3N), ser-
 vices(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 June 1996 1

Maintenance Commands RPC.METAMHD(1M)

NAME
 rpc.metamhd - remote multihost disk services

SYNOPSIS
 rpc.metamhd

AVAILABILITY
 /usr/opt/SUNWmd/sbin

DESCRIPTION
 rpc.metamhd is an rpc(4) daemon (functioning as a server
 process) that is used to manage multi-hosted disks. The
 rpc.metamhd daemon is invoked by inetd.

SEE ALSO
 inetd(1M), metaset(1M), rpc.metad(1M), rpc(3N), services(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 June 1996 1

File Formats MD.TAB(4)

NAME
 md.tab, md.cf - metadisk utility files

SYNOPSIS
 md.tab
 md.cf

AVAILABILITY
 /etc/opt/SUNWmd

DESCRIPTION
 /etc/opt/SUNWmd/md.tab is a file that can be used by
 metainit and metadb to configure metadevices, hot spare
 pools, and metadevice state database replicas in a batch-
 like mode. DiskSuite does not store configuration informa-
 tion in the /etc/opt/SUNWmd/md.tab file. The only way infor-
 mation appears in md.tab is through editing it by hand.
 When using the md.tab file, each metadevice, hot spare pool,
 or state database replica in the file must have a unique
 entry. Entries can include the following: simple metadev-
 ices (stripes, concatenations, and concatenations of
 stripes); mirrors, trans metadevices, and RAID5 metadevices;
 hot spare pools; and state database replicas. Because md.tab
 only contains entries that you type in it, do not rely on
 the file for the current configuration of metadevices, hot
 spare pools, and replicas on the system at any given time.

 Tabs, spaces, comments (by using a pound sign, #), and con-
 tinuation of lines (by using a backslash-newline), are
 allowed.

 Typically, you set up metadevices according to information
 specified on the command line by using the metainit command.
 Likewise, you set up state database replicas with the metadb
 command.

 An alternative to the command line is to use the md.tab
 file. Metadevices and state database replicas can be speci-
 fied in the md.tab file in any order, and then activated in
 a batch-like mode with the metainit and metadb commands.

 If you edit the md.tab file, you specify one complete confi-
 guration entry per line. Metadevices are defined using the
 same syntax as required by the metainit command. You then
 run the metainit command with either the -a option, to
 activate all metadevices in the md.tab file, or with the
 metadevice name corresponding to a specific configuration
 entry.

 State database replicas are defined in the

SunOS 5.7 Last change: 19 July 1996 1

File Formats MD.TAB(4)

 /etc/opt/SUNWmd/md.tab file as follows:

 mddbnumber options [slice...]

 Where mddbnumber is the characters mddb followed by a two
 digit number that identifies the state database replica.
 slice is a physical slice. For example:

 mddb05 /dev/dsk/c0t1d0s2

 /etc/opt/SUNWmd/md.cf is a backup file of the configuration
 used for disaster recovery. Whenever the DiskSuite confi-
 guration is changed, this file is automatically updated
 (except when hot sparing occurs). You should not directly
 edit this file.

EXAMPLES
 Examples listed here include md.tab entries for the creation
 of a concatenation, a stripe, a concatenation of stripes, a
 mirror, a trans metadevice, a RAID5 metadevice, a hot spare,
 and state database replicas. All drives in the following
 examples have the same size of 525 Mbytes.

 Concatenation
 This example shows a metadevice, /dev/md/dsk/d7, consisting
 of a concatenation of four disks.

 #
 # (concatenation of four disks)
 #
 d7 4 1 c0t1d0s0 1 c0t2d0s0 1 c0t3d0s0 1 c0t4d0s0

 The number 4 indicates there are four individual stripes in
 the concatenation. Each stripe is made of one slice, hence
 the number 1 appears in front of each slice.

 Note: The first disk sector in all of the above devices con-
 tains a disk label. To preserve the labels on devices
 /dev/dsk/c0t2d0s0, /dev/dsk/c0t3d0s0, and /dev/dsk/c0t4d0s0,
 the metadisk driver must skip at least the first sector of
 those disks when mapping accesses across the concatenation
 boundaries. Since skipping only the first sector would
 create an irregular disk geometry, the entire first cylinder
 of these disks will be skipped. This will allow higher
 level file system software to optimize block allocations
 correctly.

 Stripe
 This example shows a metadevice, /dev/md/dsk/d15, consisting
 of two slices.

SunOS 5.7 Last change: 19 July 1996 2

File Formats MD.TAB(4)

 #
 # (stripe consisting of two disks)
 #
 d15 1 2 c0t1d0s2 c0t2d0s2 -i 32k

 The number 1 indicates that one stripe is being created.
 Because the stripe is made of two slices, the number 2 fol-
 lows next. The optional -i followed by 32k specifies the
 interlace size will be 32 Kbytes. If the interlace size
 were not specified, the stripe would use the default value
 of 16 Kbytes.

 Concatenation of Stripes
 This example shows a metadevice, /dev/md/dsk/d75, consisting
 of a concatenation of two stripes of three disks.

 #
 # (concatenation of two stripes, each consisting of three
disks)
 #
 d75 2 3 c0t1d0s2 c0t2d0s2 c0t3d0s2 -i 16k \
 3 c1t1d0s2 c1t2d0s2 c1t3d0s2 -i 32k

 On the first line, the -i followed by 16k specifies that the
 stripe's interlace size is 16 Kbytes. The second set speci-
 fies the stripe interlace size will be 32 Kbytes. If the
 second set did not specify 32 Kbytes, the set would use
 default interlace value of 16 Kbytes. The blocks of each set
 of three disks are interlaced across three disks.

 Mirroring
 This example shows a three-way mirror, /dev/md/dsk/d50, con-
 sisting of three submirrors. This mirror does not contain
 any existing data.

 #
 # (mirror)
 #
 d50 -m d51
 d51 1 1 c0t1d0s2
 d52 1 1 c0t2d0s2
 d53 1 1 c0t3d0s2

 In this example, a one-way mirror is first defined using the
 -m option. The one-way mirror consists of submirror d51.
 The other two submirrors, d52 and d53, are attached later
 using the metattach command. The default read and write
 options in this example are a round-robin read algorithm and
 parallel writes to all submirrors. The order in which mir-
 rors appear in the /etc/opt/SUNWmd/md.tab file is unimpor-
 tant.

SunOS 5.7 Last change: 19 July 1996 3

File Formats MD.TAB(4)

 Logging (trans)
 This example shows a trans metadevice, /dev/md/dsk/d1, with
 mirrors for the master and logging devices. This trans does
 not contain any existing data.

 #
 # (trans)
 #
 d1 -t d10 d20
 d10 -m d11
 d11 1 1 c0t1d0s2
 d12 1 1 c0t2d0s2
 d20 -m d21
 d21 1 1 c1t1d0s2
 d22 1 1 c1t2d0s2

 In this example, the two mirrors, d10 and d20, are defined
 using the -m option. d10 is defined as the master device
 and d20 is defined as the logging device for the trans, d1,
 by using the -t option. The order in which mirrors or trans
 appear in the /etc/opt/SUNWmd/md.tab file is unimportant.
 The submirrors d12 and d22 are attached later (using the
 metattach command) to the d10 and d20 mirrors.

 RAID5
 This example shows a RAID5 metadevice, d80, consisting of
 three slices:

 #
 # (RAID devices)
 #
 d80 -r c0t1d0s1 c1t0d0s1 c2t0d0s1 -i 20k

 In this example, a RAID5 metadevice is defined using the -r
 option with an interlace size of 20 Kbytes. The data and

 parity segments will be striped across the slices, c0t1d0s1,
 c1t0d0s1, and c2t0d0s1.

 Hot Spare
 This example shows a three-way mirror, /dev/md/dsk/d10, con-
 sisting of three submirrors and three hot spare pools.

 #
 # (mirror and hot spare)
 #
 d10 -m d20
 d20 1 1 c1t0d0s2 -h hsp001
 d30 1 1 c2t0d0s2 -h hsp002
 d40 1 1 c3t0d0s2 -h hsp003
 hsp001 c2t2d0s2 c3t2d0s2 c1t2d0s2

SunOS 5.7 Last change: 19 July 1996 4

File Formats MD.TAB(4)

 hsp002 c3t2d0s2 c1t2d0s2 c2t2d0s2
 hsp003 c1t2d0s2 c2t2d0s2 c3t2d0s2

 In this example, a one-way mirror is first defined using the
 -m option. The submirrors are attached later using the
 metattach command. The hot spare pools to be used are tied
 to the submirrors with the -h option. In this example, there
 are three disks used as hot spares, defined in three
 separate hot spare pools. The hot spare pools are given the
 names hsp001, hsp002, and hsp003. Setting up three hot
 spare pools rather than assigning just one hot spare with
 each component helps to maximize the use of hardware. This
 configuration enables the user to specify selecting the most
 desirable hot spare first, and improves availability by hav-
 ing more hot spares available. At the end of the entry, the
 hot spares to be used are defined. Note: When using the
 md.tab file to associate hot spares with metadevices, the
 hot spare spool does not have to exist prior to the associa-
 tion. DiskSuite takes care of the order in which metadevices
 and hot spares are created when using the md.tab file.

 State Database Replicas
 This example shows how to set up an initial state database
 and three replicas on a server that has three disks.

 #
 # (state database and replicas)

 #
 mddb01 -c 3 c0t1d0s0 c0t2d0s0 c0t3d0s0

 In this example, three state database replicas are stored on
 each of the three slices.

 Once the above entry is made in the /etc/opt/SUNWmd/md.tab
 file, the metadb command must be run with both the -a and -f
 options. For example, typing the following command creates
 one state database replicas on three slices:

 # metadb -a -f mddb01

FILES
 /etc/opt/SUNWmd/md.tab
 /etc/opt/SUNWmd/md.cf

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metastat(1M),
 metasync(1M), metattach(1M), mddb.cf(4)

SunOS 5.7 Last change: 19 July 1996 5

File Formats MD.TAB(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

LIMITATIONS
 Recursive mirroring is not allowed; that is, a mirror cannot
 appear in the definition of another mirror.

 Recursive logging is not allowed; that is, a trans metadev-
 ice cannot appear in the definition of another metadevice.

 Stripes and RAID5 metadevices must contains slices only.

 Mirroring of RAID5 metadevices is not allowed.

SunOS 5.7 Last change: 19 July 1996 6

File Formats MD.TAB(4)

NAME
 md.tab, md.cf - metadisk utility files

SYNOPSIS
 md.tab
 md.cf

AVAILABILITY
 /etc/opt/SUNWmd

DESCRIPTION
 /etc/opt/SUNWmd/md.tab is a file that can be used by
 metainit and metadb to configure metadevices, hot spare
 pools, and metadevice state database replicas in a batch-
 like mode. DiskSuite does not store configuration informa-
 tion in the /etc/opt/SUNWmd/md.tab file. The only way infor-
 mation appears in md.tab is through editing it by hand.
 When using the md.tab file, each metadevice, hot spare pool,
 or state database replica in the file must have a unique
 entry. Entries can include the following: simple metadev-
 ices (stripes, concatenations, and concatenations of
 stripes); mirrors, trans metadevices, and RAID5 metadevices;
 hot spare pools; and state database replicas. Because md.tab
 only contains entries that you type in it, do not rely on
 the file for the current configuration of metadevices, hot
 spare pools, and replicas on the system at any given time.

 Tabs, spaces, comments (by using a pound sign, #), and con-
 tinuation of lines (by using a backslash-newline), are
 allowed.

 Typically, you set up metadevices according to information
 specified on the command line by using the metainit command.
 Likewise, you set up state database replicas with the metadb
 command.

 An alternative to the command line is to use the md.tab
 file. Metadevices and state database replicas can be speci-
 fied in the md.tab file in any order, and then activated in
 a batch-like mode with the metainit and metadb commands.

 If you edit the md.tab file, you specify one complete confi-
 guration entry per line. Metadevices are defined using the
 same syntax as required by the metainit command. You then
 run the metainit command with either the -a option, to
 activate all metadevices in the md.tab file, or with the
 metadevice name corresponding to a specific configuration
 entry.

 State database replicas are defined in the

SunOS 5.7 Last change: 19 July 1996 1

File Formats MD.TAB(4)

 /etc/opt/SUNWmd/md.tab file as follows:

 mddbnumber options [slice...]

 Where mddbnumber is the characters mddb followed by a two
 digit number that identifies the state database replica.
 slice is a physical slice. For example:

 mddb05 /dev/dsk/c0t1d0s2

 /etc/opt/SUNWmd/md.cf is a backup file of the configuration
 used for disaster recovery. Whenever the DiskSuite confi-
 guration is changed, this file is automatically updated
 (except when hot sparing occurs). You should not directly
 edit this file.

EXAMPLES
 Examples listed here include md.tab entries for the creation
 of a concatenation, a stripe, a concatenation of stripes, a
 mirror, a trans metadevice, a RAID5 metadevice, a hot spare,
 and state database replicas. All drives in the following
 examples have the same size of 525 Mbytes.

 Concatenation
 This example shows a metadevice, /dev/md/dsk/d7, consisting
 of a concatenation of four disks.

 #
 # (concatenation of four disks)
 #
 d7 4 1 c0t1d0s0 1 c0t2d0s0 1 c0t3d0s0 1 c0t4d0s0

 The number 4 indicates there are four individual stripes in
 the concatenation. Each stripe is made of one slice, hence
 the number 1 appears in front of each slice.

 Note: The first disk sector in all of the above devices con-
 tains a disk label. To preserve the labels on devices
 /dev/dsk/c0t2d0s0, /dev/dsk/c0t3d0s0, and /dev/dsk/c0t4d0s0,
 the metadisk driver must skip at least the first sector of
 those disks when mapping accesses across the concatenation
 boundaries. Since skipping only the first sector would
 create an irregular disk geometry, the entire first cylinder
 of these disks will be skipped. This will allow higher
 level file system software to optimize block allocations
 correctly.

 Stripe
 This example shows a metadevice, /dev/md/dsk/d15, consisting
 of two slices.

SunOS 5.7 Last change: 19 July 1996 2

File Formats MD.TAB(4)

 #
 # (stripe consisting of two disks)
 #
 d15 1 2 c0t1d0s2 c0t2d0s2 -i 32k

 The number 1 indicates that one stripe is being created.
 Because the stripe is made of two slices, the number 2 fol-
 lows next. The optional -i followed by 32k specifies the
 interlace size will be 32 Kbytes. If the interlace size
 were not specified, the stripe would use the default value
 of 16 Kbytes.

 Concatenation of Stripes
 This example shows a metadevice, /dev/md/dsk/d75, consisting
 of a concatenation of two stripes of three disks.

 #
 # (concatenation of two stripes, each consisting of three
disks)
 #
 d75 2 3 c0t1d0s2 c0t2d0s2 c0t3d0s2 -i 16k \
 3 c1t1d0s2 c1t2d0s2 c1t3d0s2 -i 32k

 On the first line, the -i followed by 16k specifies that the
 stripe's interlace size is 16 Kbytes. The second set speci-
 fies the stripe interlace size will be 32 Kbytes. If the
 second set did not specify 32 Kbytes, the set would use
 default interlace value of 16 Kbytes. The blocks of each set
 of three disks are interlaced across three disks.

 Mirroring
 This example shows a three-way mirror, /dev/md/dsk/d50, con-
 sisting of three submirrors. This mirror does not contain
 any existing data.

 #
 # (mirror)
 #
 d50 -m d51
 d51 1 1 c0t1d0s2
 d52 1 1 c0t2d0s2
 d53 1 1 c0t3d0s2

 In this example, a one-way mirror is first defined using the
 -m option. The one-way mirror consists of submirror d51.
 The other two submirrors, d52 and d53, are attached later
 using the metattach command. The default read and write
 options in this example are a round-robin read algorithm and
 parallel writes to all submirrors. The order in which mir-
 rors appear in the /etc/opt/SUNWmd/md.tab file is unimpor-
 tant.

SunOS 5.7 Last change: 19 July 1996 3

File Formats MD.TAB(4)

 Logging (trans)
 This example shows a trans metadevice, /dev/md/dsk/d1, with
 mirrors for the master and logging devices. This trans does
 not contain any existing data.

 #
 # (trans)
 #
 d1 -t d10 d20
 d10 -m d11
 d11 1 1 c0t1d0s2
 d12 1 1 c0t2d0s2
 d20 -m d21
 d21 1 1 c1t1d0s2
 d22 1 1 c1t2d0s2

 In this example, the two mirrors, d10 and d20, are defined
 using the -m option. d10 is defined as the master device
 and d20 is defined as the logging device for the trans, d1,
 by using the -t option. The order in which mirrors or trans
 appear in the /etc/opt/SUNWmd/md.tab file is unimportant.
 The submirrors d12 and d22 are attached later (using the
 metattach command) to the d10 and d20 mirrors.

 RAID5
 This example shows a RAID5 metadevice, d80, consisting of
 three slices:

 #
 # (RAID devices)
 #
 d80 -r c0t1d0s1 c1t0d0s1 c2t0d0s1 -i 20k

 In this example, a RAID5 metadevice is defined using the -r
 option with an interlace size of 20 Kbytes. The data and
 parity segments will be striped across the slices, c0t1d0s1,
 c1t0d0s1, and c2t0d0s1.

 Hot Spare
 This example shows a three-way mirror, /dev/md/dsk/d10, con-
 sisting of three submirrors and three hot spare pools.

 #

 # (mirror and hot spare)
 #
 d10 -m d20
 d20 1 1 c1t0d0s2 -h hsp001
 d30 1 1 c2t0d0s2 -h hsp002
 d40 1 1 c3t0d0s2 -h hsp003
 hsp001 c2t2d0s2 c3t2d0s2 c1t2d0s2

SunOS 5.7 Last change: 19 July 1996 4

File Formats MD.TAB(4)

 hsp002 c3t2d0s2 c1t2d0s2 c2t2d0s2
 hsp003 c1t2d0s2 c2t2d0s2 c3t2d0s2

 In this example, a one-way mirror is first defined using the
 -m option. The submirrors are attached later using the
 metattach command. The hot spare pools to be used are tied
 to the submirrors with the -h option. In this example, there
 are three disks used as hot spares, defined in three
 separate hot spare pools. The hot spare pools are given the
 names hsp001, hsp002, and hsp003. Setting up three hot
 spare pools rather than assigning just one hot spare with
 each component helps to maximize the use of hardware. This
 configuration enables the user to specify selecting the most
 desirable hot spare first, and improves availability by hav-
 ing more hot spares available. At the end of the entry, the
 hot spares to be used are defined. Note: When using the
 md.tab file to associate hot spares with metadevices, the
 hot spare spool does not have to exist prior to the associa-
 tion. DiskSuite takes care of the order in which metadevices
 and hot spares are created when using the md.tab file.

 State Database Replicas
 This example shows how to set up an initial state database
 and three replicas on a server that has three disks.

 #
 # (state database and replicas)
 #
 mddb01 -c 3 c0t1d0s0 c0t2d0s0 c0t3d0s0

 In this example, three state database replicas are stored on
 each of the three slices.

 Once the above entry is made in the /etc/opt/SUNWmd/md.tab
 file, the metadb command must be run with both the -a and -f
 options. For example, typing the following command creates

 one state database replicas on three slices:

 # metadb -a -f mddb01

FILES
 /etc/opt/SUNWmd/md.tab
 /etc/opt/SUNWmd/md.cf

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metastat(1M),
 metasync(1M), metattach(1M), mddb.cf(4)

SunOS 5.7 Last change: 19 July 1996 5

File Formats MD.TAB(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

LIMITATIONS
 Recursive mirroring is not allowed; that is, a mirror cannot
 appear in the definition of another mirror.

 Recursive logging is not allowed; that is, a trans metadev-
 ice cannot appear in the definition of another metadevice.

 Stripes and RAID5 metadevices must contains slices only.

 Mirroring of RAID5 metadevices is not allowed.

SunOS 5.7 Last change: 19 July 1996 6

File Formats MDDB.CF(4)

NAME
 mddb.cf - metadevice state database replica locations

SYNOPSIS
 mddb.cf

AVAILABILITY
 /etc/opt/SUNWmd

DESCRIPTION
 The /etc/opt/SUNWmd/mddb.cf file is created when the metadb
 command is invoked. You should never directly edit this
 file.

 /etc/opt/SUNWmd/mddb.cf is used by the metainit command to
 find the locations of the metadevice state databases repli-
 cas. The metadb command creates the file and updates it each
 time it is run. Similar information is entered in the
 /etc/system file.

 Each metadevice state database replica has a unique entry in
 the /etc/opt/SUNWmd/mddb.cf file. Each entry contains the
 driver and minor unit numbers associated with the block phy-
 sical device where a replica is stored. Each entry also con-
 tains the block number of the master block, which contains a
 list of all other blocks in the replica.

 Entries in the /etc/opt/SUNWmd/mddb.cf file are of the form:

 driver_name minor_t master_block checksum

 where driver_name and minor_t represent the device number of
 the physical device storing this replica. master_block is
 the block number of the master block used by this replica of
 the metadevice state database. checksum is used to make
 certain the entry has not been corrupted. A pound sign (#)
 introduces a comment.

EXAMPLES
 The following example shows a mddb.cf file.

 #metadevice database replica location file do not hand
edit
 #driver minor_t daddr_t checksum
 id 3 16 -182
 id 67 16 -246
 id 18 16 -197
 id 82 16 -261

SunOS 5.7 Last change: 19 July 1996 1

File Formats MDDB.CF(4)

FILES
 /etc/opt/SUNWmd/mddb.cf
 /etc/system

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metastat(1M),
 metasync(1M), metattach(1M), md.tab(4), md.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-

 ence

SunOS 5.7 Last change: 19 July 1996 2

File Formats METATOOL-TOOLSMENU(4)

NAME
 metatool-toolsmenu - Solstice DiskSuite Tool application
 registry file

SYNOPSIS
 metatool-toolsmenu

AVAILABILITY
 /usr/opt/SUNWmd/lib

DESCRIPTION
 metatool-toolsmenu is used by Solstice DiskSuite's DiskSuite
 Tool graphical user interface to initialize its `Tools'
 pulldown menu.

 metatool-toolsmenu is an ASCII (text editable) file contain-
 ing entries with variable numbers of fields. Each line in
 the file represents a single entry. Each line consists of
 fields separated by delimiter characters (`:' `|' `+' `^')
 and terminated with a newline.

 The initial character of an entry indicates the delimeter
 that will be used for the remainder of the entry. There can
 be only one delimiter per entry.

 Blank lines are allowed. Comments start with "#" and con-
 tinue through the end of the line.

 Entries in the metatool-toolsmenu file are of the form:

 :<type>:<field>:...

 where type indicates the entry type and format for the rest
 of the entry and field... indicates the data fields for the
 entry.

 Currently, as of release 4.1, DiskSuite Tool recognizes only
 one entry type, `0'. This type specifies an entry consisting
 of two data fields:

 :0:<name>:<commandline>:

 where name indicates the string to be displayed in the Tools
 pulldown menu and commandline indicates the command line to
 be passed to system() when the menu item is selected. `:' is
 a field delimiter and can be one of: `+', `|', `:', or `^'.

 metatool supports a small set of substitution variables that
 can be used in the command lines added to the registry in
 the form:

SunOS 5.7 Last change: 19 July 1996 1

File Formats METATOOL-TOOLSMENU(4)

 Substitution Variable Value
 $hostname the current hostname
 $setname the current diskset name
 $selection the names of the currently
selected objects

EXAMPLES
 This example shows an entry for File Manager. You would see
 the string "File Manager" on the Tools pulldown menu. Choos-
 ing this selection would run the command
 /opt/SUNWadm/2.2/bin/stomgr -F in the current disk set con-
 text.

 :0:File Manager...:/opt/SUNWadm/2.2/bin/stomgr -F -m $setname:

 This example shows an entry for Disk Manager. You would see
 the string "Disk Manager" on the Tools pulldown menu. Choos-
 ing this selection would run the command
 /opt/SUNWadm/2.2/bin/stomgr -D.

 :0:Disk Manager...:/opt/SUNWadm/2.2/bin/stomgr -D:

 This example shows a sample registry file for metatool.

 # Sample Registry for metatool
 :0:File Manager...:/opt/SUNWadm/2.2/bin/stomgr -F -display
$hostname:0.0:
 :0:Disk Manager...:/opt/SUNWadm/2.2/bin/stomgr -D -m $setname
$selection:

SEE ALSO
 metatool(1M)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 2

Device and Network Interfaces MD(7)

NAME
 md - user configurable pseudo device driver

AVAILABILITY
 SUNWmd

DESCRIPTION
 md is a user configurable pseudo device driver that provides
 disk concatenation, striping, mirroring, RAID5 metadevices,
 trans metadevices, and hot spare utilities.

 The block devices access the disk using the system's normal
 buffering mechanism and are read and written without regard
 to physical disk records. There is also a ``raw'' device
 which provides for direct transmission between the disk and
 the user's read or write buffer. A single read or write call
 usually results in one I/O operation; raw I/O is therefore
 considerably more efficient when many bytes are transmitted.
 The names of the block devices are found in /dev/md/dsk; the
 names of the raw devices are found in /dev/md/rdsk. Meta-
 devices have the appearance of whole disks; there are no
 slices (partitions).

 I/O requests (such as lseek (2)) to the metadevices must
 have an offset that is a multiple of 512 bytes (DEV_BSIZE),
 or the driver returns an EINVAL error. If the transfer
 length is not a multiple of 512 bytes, the tranfer count is
 rounded up by the driver.

 The md pseudo device drivers support all disk devices on all
 Solaris 2.4 or later Solaris systems.

IOCTLS
 This section provides a list of the ioctls supported by the
 metadisk driver. Other ioctls are used by the DiskSuite
 utilities, but these are not documented, and are for inter-
 nal SunSoft use only.

 The following ioctls are valid when issued to the raw meta-
 device such as /dev/md/rdsk/d0. See dkio(7) for additional
 information.

 DKIOCGGEOM
 This ioctl is used to get the disk geometry. The metad-
 isk driver fills in the dkg_nhead, dkg_nsect, dkg_rpm,
 dkg_write_reinstruct and dkg_read_reinstruct from the
 first component of the metadevice (at metainit time).

 dkg_ncyl is calculated using the size of the metadevice
 (reported by metastat) divided by (dkg_nhead *
 dkg_nsect). The total size is always a multiple of

SunOS 5.7 Last change: 19 July 1996 1

Device and Network Interfaces MD(7)

 (dkg_nhead * dkg_nsect).

 If the first component of a metadevice does not start
 on cylinder number 0, then the dkg_ncyl is increased by
 one cylinder; because DKIOCGVTOC reports the metadevice
 as starting on cylinder 1. The side effect here is
 that it looks like cylinder 0 is not being used, but
 all the arithmetic works out correctly.
 If the metadevice is not set up, then ENXIO is
 returned.

 DKIOCINFO
 When issued to the administrative device or metadevice,
 this ioctl sets dki_unit to the unit number of the
 metadevice, dki_ctype to a value of DKC_MD, and
 dki_partition to 0, because there are no slices.

 DKIOCGVTOC
 This ioctl returns the current vtoc. If one has not
 been written, then a default vtoc is returned.
 v_nparts is always 1. v_part[0].p_start is 0 if the
 first component of the metadevice starts on cylinder 0.
 Otherwise, the p_start field is the starting sector of
 cylinder 1. v_part[0].p_size is the same as the total
 size reported by metastat.

 DKIOCSVTOC
 This ioctl stores the vtoc in the metadevice state
 database so it is persistent across reboots.

DIAGNOSTICS
 Notice Log Messages
 The informative log messages include:

 md: dnum: Hotspared device dev with dev
 The first device name listed has been hot spare
 replaced with the second device name listed.

 md: dnum: Hotspared device dev(num,num) with dev(num,num)
 The first device number listed has been hot spare
 replaced with the second device number listed.

 md: Could not load misc /dev
 The named misc module in not loadable. It is possibly
 missing, or something else has been copied over it.

 md: dnum: no mem for property dev
 Memory could not be allocated in the prop_op entry
 point.

SunOS 5.7 Last change: 19 July 1996 2

Device and Network Interfaces MD(7)

 md: db: Parsing error on 'dev'
 Set command in /etc/system for the
 mddb.bootlist<number> is not in the correct format.
 metadb -p can be run to put the correct set commands
 into the /etc/system file.

 md: dnum: dev(num,num) needs maintenance
 md: dnum: dev needs maintenance
 An I/O or open error has occurred on a device within a
 mirror causing a component in the mirror to change to
 the Maintenance state.

 md: dnum: dev(num,num) last erred
 md: dnum: dev last erred
 An I/O or open error has occurred on a device within a
 mirror and the data is not replicated elsewhere in the
 mirror. This is causing the component in the mirror to
 change to the Last Erred state.

 Warning Log Messages
 The warning log messages include:

 md: dnum: not configurable, check /kernel/drv/md.conf
 This error occurs when the number of metadevices as
 specified by the nmd parameter in the
 /kernel/drv/md.conf file is lower than the number of

 configured metadevices on the system. It can also
 occur if the md_nsets parameter for disksets is lower
 than the number of configured disksets on the system.
 To fix this problem, examine the md.conf file and
 increase the value of either nmd or md_nsets as needed.

 md: State database is stale
 This error message comes when there are not enough
 usable replicas for the state database to be able to
 update records in the database. All accesses to the
 metadevice driver will fail. To fix this problem, more
 replicas need to be added or unaccessible replicas need
 to be deleted.

 md: dnum: read error on dev
 md: dnum: write error on dev
 A read or write error has occurred on the specified
 submirror, at the specified device name. This happens
 if any read or write errors occur on a submirror.

 md: dnum: read error on dev(num,num)
 md: dnum: write error on dev(num,num)
 A read or write error has occurred on the specified
 submirror, at the specified device number. This hap-
 pens if any read or write errors occur on a submirror.

SunOS 5.7 Last change: 19 July 1996 3

Device and Network Interfaces MD(7)

 md: State database commit failed
 md: State database delete failed
 These messages occur when there have been device errors
 on components where the state database replicas reside.
 These errors only occur when more than half of the
 replicas have had device errors returned to them. For
 instance, if you have three components with state data-
 base replicas and two of the components report errors,
 then these errors may occur. The state database commit
 or delete is retried periodically. If a replica is
 added, then the commit or delete will finish and the
 system will be operational. Otherwise the system will
 timeout and panic.

 md: dnum: Cannot load dev driver
 Underlying named driver module is not loadable (for
 example, sd, id, xy, or a third-party driver). This
 could indicate that the driver module has been removed.

 md: Open error of hotspare dev
 md: Open error of hotspare dev(num,num)
 Named hotspare is not openable, or underlying driver is
 not loadable.

 Panic Log Messages
 The panic log messages include:

 md: dnum: Unknown close type
 md: dnum: Unknown open type
 Metadevice is being opened/closed with an unknown open
 type (OTYP).

 md: State database problem
 Failed metadevice state database commit or delete has
 been re-tried the default 100 times.

FILES
 /dev/md/dsk/dn block device (where n is the
 device number)

 /dev/md/rdsk/dn raw device (where n is the
 device number)

 /dev/md/setname/dsk/dn block device (where setname is
 the name of the diskset and n
 is the device number)

 /dev/md/setname/rdsk/dn raw device (where setname is
 the name of the diskset and n
 is the device number)

SunOS 5.7 Last change: 19 July 1996 4

Device and Network Interfaces MD(7)

 /dev/md/admin administrative device

 /kernel/drv/md driver module

 /kernel/drv/md.conf driver configuration file

 /kernel/misc/md_stripe stripe driver misc module

 /kernel/misc/md_mirror mirror driver misc module

 /kernel/misc/md_hotspares hotspares driver misc module

 /kernel/misc/md_trans metatrans driver for UFS log-
 ging

 /kernel/misc/md_raid RAID5 driver misc module

SEE ALSO
 metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
 metainit(1M), metaoffline(1M), metaonline(1M),
 metaparam(1M), metareplace(1M), metaroot(1M), metastat(1M),
 metasync(1M), metattach(1M), dkio(7I), md.tab(4), md.cf(4),
 mddb.cf(4)

 Solstice DiskSuite User's Guide, Solstice DiskSuite Refer-
 ence

SunOS 5.7 Last change: 19 July 1996 5

