
,. ··-· . " .
,_ J.·.·· -. '.
t·;v·
,._~·;.;.,"
l;()·"::•:
.''-'

:<· . . '·

,-:.;·'

_;,..; ·, , -.
. ,

. i·:·.:_-, '!'

· .

...
!.~·: . .:;'
;''

. , . ~.
'"' ·; .. _

..
. . .

·b

•._. ,, . .

---~..-- -~ ., .,.-~

-"' ~-"" 0 ~ -~., • ~_..,_F~~"'" ~-
< --~ •• • •

. .
' ..

.
•--- ·~- -~~ ~ ~ '' --=~~M~~ . ..-= ~"""""""

'".~-~ ~ ~ l!I!M\1 • ~

COPYRIGHT

Copyfisht • 1985 by UniSoft Systems. All riahti roserV<Id. Por.
tiou of jbis ms~r!al have been previoosly eopyfisht<ld by
AT&T ~ Laberatoriess, Western Electtk: Com-. and
R"ttflll$ of tbe University of Califomti. No part of this publi·
Oflion - be reprodlloed, stored in a retrioval system,
trllll-. .lr ibed or transmlt!W in any r...., "' by any
meln$ tnaiiuaJ, electtonie, olectro-macnetic~ o~. m- otber­
Wi$0, Wilboul explicit written permission ftom l)nilloft SYstems.

DISCLAIMER

TRADEMAAKS

'
UNIX is d trademark of AT&T Bell Lbtorios. U.111Plus+ and
UniSnft tll'e rtgi$tered tm!emarks of rn!Soft SystemB.

Adopt<ld to UniPlus+ by HOdther Anyn of Un!SoftSYstems.
I

0

('

c

r
'

PREFACE

This guide is a reference for those who administer and operate the
UniPlus + system. It contains a description of console operations
and general instructions for normal operator and administrator func­
tions as they apply to the family of microprocessors running the
UniPlus+ operating system. This guide should be used to supple­
ment the information contained in the UniP!us+ User Manual and
the UniPlus+ Administrator Manual.

This guide contains 16 chapters:

• INTRODUCfiON

• ADMINISTRATIVE ADVICE

• OPERATIONS

• START-UP PROCEDURES

• SINGLE USER AND MULTIUSER MODE

• DUTIES

• SYSTEM ACCOUNTING

• FSCK: FILE SYSTEM CHECKING

• LP SPOOLING SYSTEM

• SYSTEM ACTIVITY PACKAGE

o UUCP ADMINISTRATION

• T AKE!PUT: FILE TRANSFER SYSTEM

• UNIX UO

• UNIX IMPLEMENTATION

- j -

PREFACE

• ERROR MESSAGES

• VIRTUAL TUNING

Chapter I, INTRODUCTION, gives an
operator and administrator responsibilities.

overview of the system

Chapter 2, ADMINISTRATIVE ADVICE, contains helpful advice
and suggestions for system administrators of UniPlus+.

Chapter 3, OPERATIONS, explains some basic operations.

Chapter 4, START-UP PROCEDURES, explains how to start up
your UniPius + system.

Chapter 5, SINGLE USER AND MULTIUSER MODE, describes
the two modes of operation of the UniPlus+ operating system and
the commands necessary to set the mode.

Chapter 6, DUTIES, gives specific examples of duties performed by
either a computer operator or a system administrator.

Chapter 7, SYSTEM ACCOUNTING, describes the structure, imple­
mentation, and management of the accounting system.

Chapter 8, FSCK: FILE SYSTEM CHECKING, describes the file
system check program (fsck) of the UniPius + system. Fsck audits
and interactively repairs inconsistency in the file system.

Chapter 9, LP SPOOLING SYSTEM, defines the lp program and
describes the role of the LP administrator in performing restricted
functions and overseeing the smooth operation of lp.

- ii -

PREFACE

Chapter 10, SYSTEM ACTIVITY PACKAGE, describes the design
and implementation of the UniPlus + system activity package. The
package reports UniPlus + system-wide statistics.

Chapter 11, UUCP ADMINISTRATION, describes how a uucp net­
work is set up, the fonnat of the control files, and administrative
procedures.

Chapter 12, TAKE/PUT: FILE TRANSFER SYSTEM, describes a
rudimentary file transfer system.

Chapter 13, UNIX l/0 SYSTEM, provides an ovetview of the UNIX
1/0 system.

Chapter 14, UNIX IMPLEMENTATION, describes the implementa­
tion of the resident UNIX. kernel.

Chapter 15, ERROR MESSAGES, describes the UniPlus + error
messages.

Chapter 16, VIRTUAL TUNING, describes the special provisions
required by the paging environment.

Throughout this guide, each reference of the fonn name(IM),
name (7), or name (8) refers to entries in the UniPlus+ Administrator
Manual. All other references of the form name (N), where N is a
number, possibly followed by a letter, refer to entries in section N
of the UniPlus+ User Manual.

- iii -

'_)

CONTENTS

c
Chapter 1 INTRODUCTION

Chapter 2 ADMINISTRATIVE ADVICE

Chapter 3 OPERATIONS

Chapter 4 START-UP PROCEDURES

Chapter 5 SINGLE USER AND MULTIUSER MODE

Chapter 6 DUTIES

Chapter 7 SYSTEM ACCOUNTING

c Chapter 8 FSCK: FILE SYSTEM CHECKING

Chapter 9 LP SPOOLING SYSTEM

Chapter 10 SYSTEM ACTIVITY PACKAGE

Chapter 11 UUCP ADMINISTRATION

Chapter 12 TAKE/PUT: FILE TRANSFER SYSTEM

Chapter 13 UNIX 110 SYSTEM

Chapter 14 UNIX IMPLEMENTATION

c

Chapter 15 ERROR MESSAGES

Chapter 16 VIRTUAL TUNING

c

c

c

Chapter l: INTRODUCTION

CONTENTS

l. General

2. System Console .

3. Input/Output Notations

4. Local Needs

- i -

1

1

2

3

1. General

Chapter 1

INTRODUCTION

In this guide, procedures and examples are given for starting up
your system (booting and powering), changing run levels (that
is, single user and multiuser), saving and restoring files, bring­
ing down the system in an orderly manner, and restoring the
system after a crash. You should always consult documentation
for your processor before performing any of the procedures in
this guide.

2. System Console

Most of the operations you do will involve the system console.
All messages to the operator and input from the operator are
via the system console. You wit1 be using the system console
in one of three modes:

• Monitor/Boot - The UniPlus+ operating system is
halted. In this optional mode, a monitor or stand alone
operating system may be available to operate the proces­
sor and load in the boot program, or the boot program
may be already running. See the software and hardware
reference manuals for your computer for initial pro­
cedures and monitor commands.

• Single user - The UniPlus+ operating system is execut­
ing. The commands you enter on the system console are
UniPius+ system commands. In single-user mode you
are always super-user. When the system is halted or in
single-user mode, the console is the only interface to the
system, unless you specifically change the configuration so
that another terminal acts as a console.

• Multiuser - The UniPlus+ operating system is executing.
The system console (and any other configured terminal) is

1-1

INTRODUCTION

treated as a normal user terminal.

In halt mode or single-user mode, the console will not be ____/
treated as a login terminal (therefore, you are super-user).
When you change the system to multiuser mode, a login mes-
sage will appear on the console. You must provide a login and
password at this point in order to use the console. Normally
you should log in as root. Here, it must be mentioned that the
login you use is a local decision. In fact, the system adminis-
trator may configure your system so that it is not even neces-
sary for you to log in after changing to multiuser.

Normal daily maintenance requirements are described and
examples provided of normal operations (not including local
procedures). For more information on the console (for exam­
ple, set-up procedures), consult your console terminal owner's
manual.

3. Input/Output Notations

Throughout this guide, the following notation is used for com­
puter input/output:

1. Special characters are in all caps (for example, when you
see CONTROL read this as the "control" or "CTRL" key­
board character and RETURN as the "carriage return"
key).

2. Items within I Is are optional.

3. You should type in literally any indented command field
that appears boldface (a keyword).

4. You should substitute with the appropriate information
any command field that appears in italics.

5. All commands (system or console commands) should be
terminated with a carriage return.

1-2

c

c

INTRODUCTION

4. Local Needs

Because this guide is intended to be as general as possible, no
machine-specific or installation-specific information has been
included. Also, some operations may vary according to local
procedures. It is suggested that you add specific information
about:

• Hardware configuration

• Software configuration of administrative files

• Data set configuration

• Specific logging and record-keeping practices

• Contacts for hardware and software problems

• Site-dependent diagnostic procedures.

1-3

c

c

c

Chapter 2: ADMINISTRATIVE ADVICE

CONTENTS

1. Introduction . . . • .

2. Administrator's Road Map

3. A Few Words About System Tuning

4. File System Backup Programs

5. Controlling Disk Usage

6. Reorganizing File Systems

7. Keeping Directory Files Small

8. Administrative Use of "CRON"

9. Watch Out For Files and Directories That
Grow . • •

10. Allocating Resources to Users • . •

11. The Matter of Accounting and Usage •

12. Dial-Line Utilization

13. "Bird-Dogging"

14. Terminals •

15. Line Printers

16. Security

17. Communicating With the Users

18. Null Modem Wiring

LIST OF FIGURES

- i -

I

I

2

3

3

5

6

7

7

8

9

9

9

9

10

IO
II

II

Figure 2.1. File System Backup Programs . 4

- ii -

c

r
\

Chapter 2

ADMINISTRATIVE ADVICE

1. Introduction

This chapter describes administrating the UniPlus+ operating
system.

2. Administrator's Road Map

This chapter contains administrative advice based on the experi­
ence and suggestions of many system administrators. Other
reasonable approaches may be taken to solve many of the prob­
lem areas described.

Getting started as a UNIX system administrator is hard work.
There are no real shortcuts to a working knowledge of the sys­
tem. The system administrator will need time for reading,
studying, and hands-on experimenting. The system administra­
tor should not go "live" with the system until he/she have had
several weeks to learn the job and get the initial hardware
quirks ironed out.

The administrator should be familiar with most of the distri~
buted documentation. All of the sections of the UniPlus+
Administrator Manual should be studied.

Pay special attention to the following in the UniP/us+ Adminis~
trator Manual and UniP/us+ User Manual:

2-1

ADMINISTRATIVE ADVICE

chmodO)
chownO)
cpio(l)
date(!)
duO)
ed(l)
env (1)
find (I)
kill (I)

acctOM)
checkaii(IM)
dcopy(lM)
df(!M)
errpt(IM)
fsekOM)
fuser(lM)

acct(4)

all of section 7

crash(8)

mall (I)
mkdir(l)
ps(l)
rm(l)
rmdir(l)
su (1)
time (I)
who (I)
write(!)

mkfs(IM)
ncheck(lM)
shutdown (1M)
sync OM)
volcopy(lM)
wail OM)

3. A Few Words About System Tuning

A file system reorganization can help throughput but at the
expense of down time. If the reorganization is done during
nonprime time, it can help.

If normal shutdown and filesave procedures are used, the file
system check program [fsck(IM), -S option] will help keep
the disk free list in reasonable order. Try to keep disk drive
usage balanced. If there are over 20 users, the root file system
(/bin, /tmp, and /etc) deserves a drive of its own. If there is a
noisy modem (poorly executed do-it-yourself null-modem) or a
disconnected modem cable, the UniPius+ system will spend a
lot of CPU time trying to get it logged in. A random check of
systems uncovers a lot of this going on.

2-2

c

ADMINISTRATIVE ADVICE

4. File System Backup Programs

The following backup programs are distributed:

• Find/cplo: The UniPlus+ system is distributed in cpio
format. The -cpio option of the find command can be
used for saving only those files that have changed or been
created over a definite period.

• Volcopy: Physical file system copying to disk or tape. For
those with a spare drive, volcopy to disk provides con­
venient file restore and quick recovery from disk disasters.
Tape voloopy provides good long-term backup because the
file system can be read-in fairly quickly, mounted, and
browsed over. Disk and tape volcopy are generally used
together for short- and long-term backup. Note that a
volcopy from a mounted file system may result in an
inconsistent copy (files being written at the time can con­
tain invalid data).

Figure 2.1 summarizes attributes of these programs. In the
figure, the file system size is 65,500 KB in all cases; times are
in minutes; judgements are subjective.

The spare disk drive is strongly recommended. The speed and
convenience of volcopy are by no means the only advantage of
a spare drive. It is strongly recommended that the administra·
tor modify the /etc/ftlesave and /etc/checklist files to meet
the operational needs and update the local operator's manual
accordingly. Remember, the more the administrator automates
and documents operational procedures, the less downtime will
be encountered.

5. Controlling Disk Usage

Once the UniPlus+ system is a success, disk space will soon
become limited. During the long delay before more drives
become available, usage should be controlled. Try to maintain
the start-of-day counts recommended. Watch usage during the

2-3

ADMINISTRATIVE ADVICE

J ll'.IJ/U'IO IOL('<ll'Y IDISKJ \OJ_('OI'\ 11,\I'U

Full dump time 40 2
Incremental dump time 7 -
Full restore time 80 2
Incremental restore time 10 -
Ease of restoring:

one file fair good
a directory fair good
scattered files poor good
full restore fair verY good

Needs tape drive '" "" Needs spare file system
(two CPUs can share) - '" Maintains pack./ tape labels "" '" Handles multireel tape '" -

512 KB per record 1.10 88
Interactive

(i.e., ties up console) '" '" May require separate
liD space "" oo'

• KB per record are cut to 22 without separate 1/D space.

Figure 2.1. File System Backup Programs

day by executing the df(l) command regularly.

15
-

15
-

fair
good
good
good

'"
-
-

'" 10

'"
""

The du(l) command should be executed (after hours) regularly
(e.g., daily), and the output kept in an accessible file for later
comparison. In this way, users rapidly increasing their disk
usage may be spotted. This can also be accomplished by run·
ning the accounting system's acctdusg program.

The find(l) command can be used to locate inactive (or large)
files. For example:

find I -mtime +90 -atime +90 -print >somefile

records in "somefile" the names of files neither written nor
accessed in the last 90 days.

2-4

c

ADMINISTRATIVE ADVICE

The administrator will also have to balance usage between file
systems. To do this, user directories must be moved. Users
should be taught to accept file system name changes (and to
program around them-preferably ahead of time). The user's
login directory name (available in the shell variable HOME)
should be utilized to minimize pathname dependencies. User
groups with more extensive file system structures should set up
a shell variable to refer to the file system name (e.g., FSJ.

The find (I) and cpio(l) commands can be used to move user
directories and to manipulate the file system tree. The follow­
ing sequence is useful (it moves the directory trees userx and
usery from file system ji/esys 1 to file system .filesys2 where,
presumably, more space is available):

cd /filesysl
find userx usery -print I cpio - pdm /filesys2
Make sure new copy is OK.
Change userx and usery login directories
in the /etc/passwd file.
:Jt Notify userx and usery via mail(l) that
they have been moved and that pathname
dependencies in their .profile and shell
procedures may need to be changed. See the
discussion on $HOME above.
rm -rf /filesyslluserx /filesysl/usery

When moving more than one user in this way, keep users with
common interests in the same file system (these users may
have linked files) and move groups of users who may have
linked files with a single cpio command (otherwise linked files
will be unlinked and duplicated).

6. Reorganizing File Systems

There is a new file system reorganization utility called
dcopy(IM). On an otherwise idle system, a reorganized file
system has almost twice the 1/0 throughput of a randomly

2-5

ADMINISTRATIVE ADVICE

organized file system. This applies to file copying, finds, fscks,
etc. Dcopy can take up to 2.5 hours to initially reorganize
(copy) a large file system. During reorganization, the system
can be up, but the file system being copied must be
unmounted.

For those who can afford the operator time, root reorganization
once a week (requires system reboot) and user file system reor­
ganization once a month will improve system performance.
Dcopy is an interim step.

7. Keeping Directory Files Small

Directories larger than SK bytes (320 entries) are very
inefficient because of file system indirection. A UNIX system
user once complained that it took the system 10 minutes to
complete the login process; it turned out that his login directory
was 25K bytes long, and the login program spent that time
fruitlessly looking for a nonexistent ".profile" file. A large
/usr/mail or /usr/spool/uucp directory can also really slow the
system down. The following will ferret out such directories:

find I -typed -size +10 -print

Removing files from directories does not make the directories
get smaller (the empty directory entries are available for reuse).
The following will "compact" /usr/mail (or any other direc­
tory):

2-6

mv lusrlmaillusrlomail
mkdir lusrlmail
chmod 777 lusrlmail
cd lusrlomail
find . -print I cpio - plm . . I mail
cd ..
rm -rf omail

ADMINISTRATIVE ADVICE

8. Administrative Use of "CRON"

(The program cron (1M) is useful in the administration of the
'--. system; it can be used to:

• Turn off the programs in directory /usr/games during
prime time.

• Run programs off-hours:

- accounting;
- file system administration;
- long-running, user-written shell procedures.

9. Watch Out For Files and Directories That Grow

Most of the files below are restarted automatically by entries in
/etc/rc at system reboot.

• Accounting files:

/etc/wtmp-login information; grows extremely fast
with terminal line difficulties; use acctconOM) to
determine the offending line(s).

/usr/adm/pacet-per process accounting records;
gets big quickly; monitored automatically by ckpacct
from cron (1M).

/usr/lib/cron/log-status log of commands exe­
cuted by cron(lM); also watch this file for error
messages from the programs being executed in
I usr I spooii cronl crontabl"'.

lusrladmlerrfile-hardware error logging info; also
read login adm's mail periodically.

lusrladmlctlog-a log of the people who use
ct (l C) command.

lusrladmlsuloK-a log of those who execute the
superuser command.

2-7

ADMINISTRATIVE ADVICE

/usr/adm/Spacct-process accounting files left over
from an accounting failure; remove these files
unless the accounting files that failed are to be
rerun.

• Other files:

/usr/spool-spooling directory for line printers,
uucp(lC), etc., and whose subdirectories should be
compacted as described above.

10. Allocating Resources to Users

A prospective user should first obtain authorization to use the
system and then apply for a lo@;in by providing the following
information to the System Administrator:

• User's name.

• Suggested login name (not more than eight characters,
beginning with a lowercase letter and not containing spe­
cial or uppercase letters).

• Relationships to other users (this influences the choice of
the file system).

• Estimate of required file space (this also influences the
choice of the file system) and connect hours. This aids in
hardware growth planning.

Users must have passwords with at least six characters. (Only
the first eight characters are significant.) Also, every password
must have at least two alphabetic characters and one numeric or
special character. The password must differ from the user's
login name and any reverse or circular shift of it. Refer to
passwd(l) and passwd(4) for more information on password
selection and password aging.

2-8

ADMINISTRATIVE ADVICE

11. The Matter of Accounting and Usage

(You should run the accounting programs even if there is not a
--- "bill" for service. Otherwise, users' habits (especially bad

habits) will be a mystery to you. Accounting information can
also help you find performance bottlenecks, unused logins, bad
phone lines, etc.

c

12. Dial-Line Utilization

If prime-time dial-line utilization gets much over 70 percent,
users will start to encounter busy signals when dialing in. This,
in turn, will lead to "line hogging". The only solutions are to
acquire more dial-up ports, get a larger (another) machine, or
to get rid of users. Manual policing will help some, but
"automatic" policing will be invariably subverted by users.

13. "Bird-Dogging"

When the system is busy {lines busy and/ or slow response),
someone should determine why this is so. The wbo(l) com­
mand lists the people logged in. The ps(l) command shows
what they are doing. Unfortunately, ps operates from heuris­
tics that can consistently fail to report certain processes in a
busy system. That is, one must be careful about hanging up an
apparently inactive line. The acctcom(IM) command can read
the process accounting file /usr/adm/pacct backwards from the
most recent entry. It will print entries for selected lines or
login names.

14. Terminals

Do not use uppercase only terminals. Use full-duplex, full­
ASCII asynchronous terminals. Hardware horizontal tabbing is
very desirable because it increases output speed and lowers sys­
tem overhead. A fair proportion of the terminals should pro­
vide for correspondence-quality hard copy output to take advan­
tage of the UniPlus+ system word processing capabilities; see
term(5).

2-9

ADMINISTRATIVE ADVICE

15. Line Printers

Most line printers are troublesome and impose considerable
overhead on the system. Most also lack hardware tabs, charac- ._/
ter overstrike capability, etc. A printer that will work over an
asynchronous link (DCl/DC3 protocol required) is the best
bet.

16. Security

The current UNIX operating system is not tamperproof. The
system administrator cannot keep people from "breaking" the
system but can usually detect that they have done so. The fol­
lowing command will mail (to root) a list of all "set user ID-"
programs owned by roof (superuser):

find/-userroot-perm -4100 -exec Is -I(}\; I mail root

Any surprises in root's mail should be investigated. In dealing
with security,

• Change the superuser password regularly. Do not pick
obvious passwords (choose 6-to-8 character nonsense
strings that combine alphabetics with digits or special
characters).

• Dial ports that do not require passwords usually cause
trouble.

• The chroot (1M) and su (1) commands are inherently
dangerous as are group passwords.

• Login directories, ".profile" files, and files in /bin,
/usr/bln, /lbln, and /etc that are writable by others than
their respective owners are security weak spots; police the
system regularly against them.

• Remember, no time-sharing system with dial ports is
really secure. Do not keep top secret Information on the
system.

2-10

ADMINISTRATIVE ADVICE

17. Communicating With the Users

The directory /usr/news and the news(l) command are pro­
vided as a way to get "brief" announcements to your users.
More pressing items (one-liners) can be entered in the
/etc/motd (message of the day) file; motd and (new to the
user) news are announced at login time.

To reach users who are already logged in, use the wall(lM)
(write all) command. Do not use wall while logged-in as
superuser, except in emergencies.

The /usr/news directory should be cleaned out once a week by
removing everything older than 2 months. It has been found
that on most systems a file in /usr/news will reach 50 percent
of the users within a day and over 80 percent within a week;
motd should be cleaned out daily.

18. Null Modem Wiring

Improperly wired null modems can cause spurious interrupts,
especially at higher baud rates. A single bad modem on a
9600·baud line can waste 15 percent of your CPU power. The
following (symmetrical) wiring plan will prevent such problems:

pinltol
pin2to3
pin3to2
strap pin 4 to S in the same plug
pin 6 to 20
pin7to7
pin 8 to 20
pin 20 to 6 and 8
ground unused pins

2-11

c

r
''-

c

Chapter 3: OPERATIONS

CONTENTS

1. Introduction

2. Booting

3. Shutting Down

4. Powering Down

- i -

1

1

2

2

- j

- j

- j

I
I

j

j

j

j

j

j

j

1. Introduction

Chapter 3

OPERATIONS

Information on system operations should be obtained from the
manufacturer of your box. Console commands and start·up
procedures vary, depending on hardware configurations.

2. Booting

In general, a boot program is used to start up UniPlus+. This
boot program can reside in PROM, or on a floppy, or in the
beginning of a hard disk. The boot program must first find out
where UniPlus+ resides either by looking at a specific place on
the disk, or prompting the user for this information. Once
UniPlus+ is located on the file system, the boot program will
load it from disk to memory. For specific booting instructions,
refer to the manual from the manufacturer of your box.

Once loaded, the UniPius+ operating system is ready to come
up. The system will scan the /etc/inittab file to determine
among other things., which run level will be entered. If this file
specifies a run level (or a default level is found), the system
will enter the run level specified. Otherwise, do the following
steps:

1. This message should appear on the console:

ENTER RUN LEVEL (0-6, s or S):

Enter 2<cr> to go to multiuser state, or s<cr> to go to
single user state.

2. If you requested multiuser in step I, the system will ask
you to verify the date. Then you will be asked if the file
systems are to be checked. Finally, the following message

3-1

OPERATIONS

will be printed on the console:

Console Login:

If you requested single user in step 1, the # prompt will
be printed. In this case, typing telinit 2 will change the
operating system state to multiuser.

3. Shutting Down

The shutdown procedure is designed to gracefully turn off all
processes and bring the system back to single user state with all
buffers flushed. To do this you should execute shutdown as
described in Chapter 6. If shutdown is not successful, use the
following sequence of commands:

killall
sync
init S
fsck This is optional

4. Powering Down

The shutdown sequence should always be run before powering
down. Disk drives, where they require separate powering,
should be powered down before powering down the processor.
Refer to instructions from the manufacturer for any other
specific procedures.

3-2

c

c

c

Chapter 4

START-UP PROCEDURES

Below is a description of how to start up your UniPlus+ system.
A variety of procedures may be necessary to start the system.
The processor and peripherals (such as disk drives) may need
to be powered up. Additionally, a combination of hardware
and software resets and monitor commands may be required.
The final step in starting up the system is generally the boot.
The boot procedure loads a copy of the UniPlus+ operating sys­
tem from disk, floppy, tape, or some other media into memory
and executes it.

You will need to reboot the UniPlus+ operating system when
one of the following conditions occur:

• system crash or restart;

• loading of a new software release; or

• updating of the software release.

Once loaded, the UniPius+ operating system will typically enter
the single-user "run level" awaiting your commands. When
properly configured by the system administrator, the UniPlus+
operating system uses init to automatically enter the final run
level. Run levels are discussed in the "Single User and Mul­
tiuser Mode" chapter of this guide. Normally, run levels indi­
cates single user and 2 indicates multiuser. For more informa­
tion on init refer to lnlt (1M) in the UniPius + Administrator
Manual, inittab{4) in the UniPlus+ User Manual, or, if you are
an operator, consult the local system administrator.

4-1

START-UP

See the relevant software or hardware reference manual for
your computer for detailed powering and booting procedures.

4-2

c

c

Chapter 5: SINGLE USER AND MULTIUSER MODE

CONTENTS

1. Introduction

2. Single-User Environment
2.1 The Fsck Command •
2.2 The Telinit 2 Command

3. Multiuser Environment . .

- i .

I

2
2
6

6

Chapter 5

C SINGLE USER AND MULTIUSER MODE

r

r'
'

1. Introduction

There are two main modes of operation of the UniPius+
operating system: single user (level S) and multiuser (level 2).
The run level has eight possible values: 0-6 and S (or s). Sin­
gle user is always S or s. Although multiuser is normally level
2, the system administrator can configure the letclinitrab file to
run multiuser at any level from 0 to 6.

The /etc/inittab file can also be configured so that certain pro­
cedures are followed automatically only the first time that a cer­
tain run level is entered. For example, normally you will be
asked to verify date and file systems the first time you change
your system to multiuser. This is caused by an entry in the
inittab file. Subsequent changes in run level will not perform
this procedure automatically unless you specifically change the
inittab file. For more information on init refer to init(lM) in
the UniPlus+ Administrator Manual, inlttab(4) in the UniPius+
User Manual, or, if you are an operator, consult your local sys­
tem administrator.

When in single-user mode, all dial-up ports and hard-wired ter­
minals are disabled and only the console terminal may interact
with the processor. This mode of operation allows you to make
necessary changes to the system without any other processing
taking place. However, you will normally run the UniPlus+
operating system in multiuser mode. Consult the documenta­
tion for your particular processor before proceeding with any of
these procedures.

5-l

USER MODE

2. Single-User Environment

In single-user mode, you may type any available system com­
mand (followed by a RETURN). When the system has com­
pleted execution of the command, it will prompt with the "#"
again on the next line. You use the single-user environment
primarily to do ji/esaves, system maintenance, modification, or
repair operations. The typical sequence of commands to change
the system to multiuser mode is;

1. fsck

2. telinit 2

2.1 The Fsck Command

The command fsck will interactively repair any damaged file
systems that result from a crash of the operating system. You
should also use it to ensure that the file systems are not dam­
aged before going into multiuser mode or taking filesaves.
Usually, you will want to respond "yes" to all the prompts;
however, in the event of a system crash, the damage may be
extensive enough to warrant recovery from a backup pack. The
procedure for this is discussed under "FILESAVES" in
Chapter 6. See fsck in the UniPlus+ Administrator Manual for
details on the various options available and Chapter 8 in this
guide for a description of all the different errors that can occur.

An example of a check of a consistent file system is illustrated
below:

5-2

fsck /dev/rsmdl
/dev/rsmdl
File System: usr Volume: p0603
"'* Phase 1 - Check Blocks and Sizes
•• Phase 2 - Check Pathnames
•• Phase 3 - Check Connectivity
""" Phase 4 - Check Reference Counts
""" Phase 5 - Check Free List
2441 files 16547 blocks 31889 free

USER MODE

A file system that has been damaged can be repaired as shown
below. The y is your response. When checking a file system,
you can avoid the questions asked by fsck concerning incon­
sistencies found by using the y option. This option will
automatically attempt repairs as though you answered "yes" to
the questions. Use this with caution-the corrections usually
involve some data loss. If you decide to interactively repair the
file system, then follow the example below:

fsck /dev/rsmd2

The UniPlus+ operating system responds:

5-3

USER MODE

/dev/rsmd2
File System: fsl Volume: p0603
*"' Phase 1 - Check Blocks and Sizes
POSSIBLE FILE SIZE ERROR I-2500
** Phase 2 - Check Pathnames
""" Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
UNREF FILE I-2500 OWNER~255 MODE-100755
S1ZE~O MTIME-Dec 31 I9830 1983
CLEAR? y
.,.. Phase 5 - Check Free List
2441 files 16547 blocks 889 free
*"'*** FILE SYSTEM WAS MODIFIED "'"'***

All mountable file systems should be listed in the file
/etc/checklist which fsck uses, and you should check these file
systems each time the system is rebooted.

A faster alternative to using fsck is checkall. The checkall
command uses dfsck (a front end for fsck) to simultaneously
check two file systems in different disk drives. Included in
checkall are the file system names that normally appear in
/etc/checklist (see checkall in the VniPius+ User Manual).

WARNING: Never execute fsck on a mounted file system; it
will have a bad effect since you are repairing only the physical
disk. The only exception to this is the root file system which is
always mounted.

An example of repairing the root file system follows:

5-4

r \ ___ _

c

fsck /dev/smdO
/dev/smdO
File System: root Volume: pOOOl
.,.. Phase 1 - Check Blocks and Sizes
POSSIBLE FILE SIZE ERROR !~416
POSSIBLE FILE SIZE ERROR I-610
POSSIBLE FILE SIZE ERROR I-614
POSSIBLE FILE SIZE ERROR J~6I8
POSSIBLE FILE SIZE ERROR I ~625
•• Phase 2 - Check Pathnames
•• Phase 3 - Check Connectivity
•• Phase 4 - Check Reference Counts

USER MODE

UNREF FILE 1~416 OWNER~uucp MODE-100400
SIZE~O MTIME-Nov 20 16:23 1983
CLEAR? y
UNREF FILE I-610 OWNER~csw MODE~I00400
SIZE~O MTIME~Nov 20 16:26 1983
CLEAR?y
UNREF FILE 1~625 OWNER~cath MODE-100400
SIZE~O MTIME-Nov 20 16:26 1983
CLEAR?y
FREE !NODE COUNT WRONG IN SUPERBLK
FIX? y
•• Phase 5 - Check Free List
I DUP BLKS IN FREE LIST
BAD FREE LIST
SALVAGE? y
•• Phase 6 - Salvage Free List
585 files 5463 blocks 4223 free
...... ..,.,. BOOT UNIX (NO SYNC !) •••••

At this time you must immediately halt the processor and then
reboot the system (see the relevant software or hardware refer­
ence manual for your computer for start-up procedures.)

5-5

USER MODE

2.2 The Tellnit 2 Command

After you have checked the file systems, you may change the
UniPlus+ operating system to multiuser. Do this by entering
the command telinit 2. This command activates processes that
allow users to log in to the system, turn on the accounting and
error logging, mount any indicated file systems, and start the
cron and any indicated daemons. Depending upon the type of
data set your site has, you may have to manually flip the tog­
gles or pop the buttons on the data sets to allow users to log in.

3. Multiuser Environment

There are two ways to get to this level: by typing telinit 2; or,
specifying a run level of 2 after the boot. Users are permitted
to access all mounted file systems and execute all available
commands. In this mode, you can perform file restore pro­
cedures and take periodic status checks of the system. Some of
these periodic status checks can include:

• A check of free blocks (df) remaining on all mounted file
systems to ensure that a file system does not run out of
space.

• A check on mail to root or whatever login receives
requests for file restores.

• A check on the number of users on the system (who).

• A check of all running processes («ps -eaf" or whodo)
to determine if there is some process using an abnormally
large amount of CPU time.

If your site has other run levels defined, you can use the telinit
command to change to those run levels. Finally, to change a
multiuser system to single user, refer to .. SYSTEM SHUT­
DOWN" in Chapter 6.

5-6

Chapter 6: DUTIES

c CONTENTS

I. Introduction 1

2. Filesaves 1
2.1 Saving the Root File System on Disk 2
2.2 Saving the User File System on Disk • 3
2.3 Saving the User File System on Tape 4

3. File Restores 5
3.1 Restoring from Disk 5
3.2 Restoring from Tape 7

4. Message of the Day . . 10

5. System Shutdown 11
5.1 Shutdown Program • 12

r 6. System Crash Recovery 14
_

- i -

1. Introduction

Chapter 6

DUTIES

This chapter is a guide for the normal duties of a computer
operator or system administrator. These descriptions do not
represent what specific job duties are; they merely outline the
general procedures to ensure that the system operates properly.
Consult instructions for your processor before proceeding with
any of these procedures.

2. Filesaves

Unless you make frequent copies of the file systems, a major
system crash could devastate your user community. The user
files could be destroyed or become inaccessible.

You should take daily filesaves. Should the system crash and
lose files, then, at most, only a day's work will be lost. If your
last filesave (or backup) was a week ago, then even after restor­
ing the file any changes made since that backup will be lost.

There are two ways you can do filesaves: by disk and by tape.
Most sites use volcopy to save files. See volcopy in the
UniP/us+ Administrator Manual for more information on the
available options and use this command. You should normally
do your file saving while in single-user mode, with the file sys­
tem unmounted, to preclude any file system activity and subse­
quent damage on the saved copy. Also, to ensure system
buffers are flushed and file systems are up to date, execute the
sync command before filesaves.

Normally the filesave procedure is automated by the system
administrator. You or your administrator may have created a

6-1

DUTIES

shell script to perform the filesave as part of your site's local
operation. Daily filesaves usually are made on disk; whereas, a
weekly filesave would be more efficiently made on tape. Tape
saves are necessary for long-term storage or for regular saves if
you do not have a spare disk. Tapes may be previously labeled,
or may be labeled by the volcopy command. You or your
administrator may have created separate shell scripts for disk
and tape saves (incorporating the procedures that follow).

You must have at least two disks, one of them a spare, for the
following procedures. For ease of mapping, file systems are
normally saved in the same partitions on the backup disk as
they exist on the working disk. This is imperative if you ever
need to boot from a backup version of root. The root file sys­
tem must reside on partition a of the disk.

2.1 Saving the Root File System on Disk

In this example, the root file system on disk 0 will be saved on
disk 1, volume 538002 (whatever volume name you use should
match the external label sticker).

1. Connect the disk to contain the filesave as disk 1.

2. Enter the commands:

6-2

#sync
fsck /dev/~Oa
volcopy reot /dev/rwOa 538001 /dev/r~la SJB002

to copy the root file system from disk 0 partition a to disk
1 partition a. The following messages should appear:

From: /dev/rwOa, to: /dev/rwla? (DEL if wrong)

END: 23000 blocks.

If the from and file systems are correct, wait for the
prompt; otherwise, press the DELETE key to abort the
copy.

DUTIES

3. Do step 2 for all the partitions of the disk to copy.

(4. Disconnect and remove disk 1.

In the above procedure, fsck in step 3 asks you to concur with
any repairs necessary before attempting them. If you respond
no, no action will be taken and fsck will continue. Also, vol­
copy verifies the label information on the to and from file sys­
tem (for example, pack number, file system name, date last
modified). You will be asked to override inconsistencies before
the copy proceeds. For example:

volcopy root /dev/rwOa pODOl /dev/rwla pOI OS

arg.(p0105) doesn't agree with to vol.O

Type 'y' to override: y

warning! from fs(root) differs from to fsO
Type 'y' to override: y

From: /dev/rwOa, to: /dev/rwla? (DEL if wrong)

END: 23000 blocks.

Note: In this example, the to partition is unlabeled, as indi­
cated by the null volume and file system fields. For more
information see volcopy in the UniPius+ Administrator Manual.

2.2 Saving tbe User File System on Disk

In this next example, the usr file system, on partition b of disk
0, will be saved on disk 1, volume p0603.

1. Connect the disk to contain the file-save on disk 1.

2. Enter the commands:

#sync
umount/dev/wOb
fsek /dev/rwOb
volwpy usr /dev/rwOb piMIOI /dev/rwlb p1Hi03

6-3

DUTIES

to copy the usr file system from disk 0 partition b to disk
1 partition b. The following messages should appear:

From: /dev/rwOb, to: /dev/rwlb? (DEL if wrQng)

END: 23000 blocks.

If the from and to file systems are correct, wait for the
prompt~ otherwise, press the DELETE key to abort the
copy.

3. Do step 2 for all the partitions of the disk to copy.

4. Disconnect and remove the disk.

2.3 Saving the User File System on Tape

In this example, the usr file system is saved on tape volume
tOOOJ, mounted on transport 0. The labelit command is used
to label the tape before the copy. You should place an external
paper label on the outside of the reel carrying the same infor­
mation as is written in the tape header label. The external label
should also indicate the sequence number of the tape if it is
from a set (multi-reel volume) for the file system. Note the
use of the -n option to labelit. Unless this option is used on
an unlabeled tape, the program will scan the entire reel looking
for a label to change before it rewinds and labels the beginning.
This can be very time-consuming on 2400-foot reels.

You can store approximately 65,000 blocks of a file system on a
2400-foot tape using volcopy and recording at 1600 bpi. You
may specify the size and type of tape in the volcopy command,
or you can let the system prompt for the information as shown.
In the example that follows, the file system requires two reels.
Although this example uses only one drive, you can have both
reels mounted on different drives. In that case, when the first
has finished, you would simply enter the name of the second
drive when asked.

6-4

DUTIES

1. Load the tape in transport 0, and label it:

{' # Iabelll/dev/rmtO usr tOIHll -n
'"---- Skipping label check!

NEW fsname- usr, NEW volume- tOOOI --DEL if wrong!!

2. Enter the following commands:

#sync
#amount /dev/wOb
fsdr. -y /dev/rwOb
volcepy usr /del'/rwOb pOOOl /lel'/rmtO tOOOl

Enter size of reel in feet for <tOOOl >: 2400

Reel tOOOI, 2400 feet, 1600 BPI
You wiD need 2 reels.
(The same size and density is expected for all reels)

From: /dev/rwOb, to: /dev/rmtO? (DEL if wrong)

Writing REEL I of 2, VOL - tOOOI
Changing drives? (RETURN if no, /dev/rmt_ if yes): RETURN

Mount tape 2

Type volume-10 when ready: tOOOZ

Cannot read header (This tape has not been labeled!)

Type y to override: y

Volume is <~:arbage>. not <t0001>.
Want 10 ol!f'rritle? y

Writing REEL 2 of 2, VOL = 10002

END: 90000 blocks.

3. File Restores

3.1 Restoring from Disk

When a request is made to restore a file from a backup disk,
you should first locate that disk and determine on which

6-5

DUTIES

partition the requested file system resides. Then at the console
terminal, log in to the system as root and proceed as the exam­
ple illustrates. Following is the procedure for restoring the file
/usr/adm/aect/sum/tacct from a previous backup disk. For
this example, disk 1 is the backup disk and /usr is on partition
0 of the disk.

1. Connect the disk as disk 1.

2. Enter the command:

#mount /dev/wlb /bck -r

This will mount the backup file system as /bck read-only.
The following message Should appear:

WARNING!!- mounting <usr> as </bck>

3. Enter the command:

Is -1/bek/adm/attt/sum/taccl

This will verify the existence of the file and the identity of
the owner. The following output will appear:

-rw-rw-r-- I adm bin 1932 Aug 9 14:27 /bck/adm/acct/sum/tao;:t

4. Enter the command:

cp /bck/adm/acct/sum/taccl/usr/adm/acct/sum/tacet

to copy the file from the backup to the specified place.

5. Enter the command:

chown adm /usr/adm/acct/sum/tacct

to change the owner of the file.

6. Enter the command:

umount /dev/wlb

This will unmount the backup file system.

6-6

DUTIES

7. Disconnect and remove the backup disk.

(
' '~ When you perform a file restore, it is usually a good practice to

(

mail a message to the user asking for the restore when you are
finished. Also, to avoid confusion, your message should refer
to the file using a full pathname. The procedure for this is:

mall user

I have restored the file /usr/adm/aect/sum/taed
from Friday's backup.
your initials

3.2 Restoring from Tape

If the file does not exist on any of the backup disks or if your
installation does not perform disk filesaves, then you will have
to recover the file from a tape save. It is assumed that you do
your tape saves in the same manner as disk saves, that is, with
volcopy. Filesaves are discussed earlier in this chapter. To
restore a file from tape, you must place the whole file system
on a spare partition of the disk. The backup tape version can
then be accessed in the same way as a disk save. For this
example, it is assumed that there are two small file systems
stored on a single tape and that the usr file system is the
second file on the tape. Also, it is assumed that partition e of
disk 0 is a spare partition on that disk. The tape drive is
already in service.

l. Mount tape on tape drive 0.

2. Enter the command:

~bo < /dev/mtO

This will space past the first file on the tape, with no

1
r' rewind.

3. Enter:

6-7

DUTIES

volcopy usr /de-v/mtO t0004 dn/rwOe 838003

This will copy the file system from tape to the spare disk
partition. The following messages should appear: --

From: /dev/mtO, to: /dev/rwOe? (DEL if wrong)

END: 90000 blocks.

4. Enter the command:

#mount /dn/wOe /bek -r

This will mount the backup partition. The following mes­
sage should appear on the screen:

WARNING!!- mounting: <usr> as </bck>

5. Enter the command:

Is -1/bek/adm/acct/sum/tacct

This will verify the existence of the file and identify the
owner. The following output will appear:

-rw-rw-r-- I adm bin 1932 Aug 9 14:27 /bck/adm/accl/sum/tacct

6. Enter:

cp /bck/adm/acrt/sum/tacct /usr/adm/acct/sum/tacet

This will copy the file to the specified place.

7. Enter the command:

chown adm /usr/adm/aeel/sum/tacrt

to change the owner of the file.

8. Enter the command:

umount /dev/wOa

This will unmount the spare partition.

Sometimes a file system is so large it requires more than one
tape to store the contents. In this situation, you follow the
same procedure to restore a file as in the previous example.

6-8

·. -

(
'

(
'

DUTIES

The volcopy command prompts you for additional reels when
necessary. In this example, the second reel has the wrong
label. The y response overrides the inconsistency and the reel
is read anyway.

1. Mount tape on tape drive 0.

2. Enter:

volcopy -bpil600 -feet2400 usr /dev/rmttl t0004 dev/rwOe 838003

This will copy the file system from tape to the spare disk
partition. The following messages should appear:

Reel!, 2400 feet, 1600 BPI
From: /dev/rmtO, to: /dev/rwOe? (DEL if wrong)

Reading REEL I of 3, VOL - 1
Chafijling drives? (RETURN if no, /dev/rmt_ if yes): RETURN

Mount tape 2
Type volume-ID when ready: 2

Volume is <I>, not <2>.
Want to override? y

Readii!i REEL 2 of 3, VOL = 1

Fri Jui29 12:00:02 EDT 1983

Changing drives? (RETURN if no, /dev/rmt_ if yes): RETURN

Mount tape 3
Type volume-10 when ready; 3

Reading REEL 3 of 3, VOL = 3

END: 90000 blocks.

3. Enter the command:

mount /dn-/wOe /bck -r

This will mount the backup partition. The following mes­
sage should appear on the screen:

6-9

DUTIES

WARNING!!- mounting: <usr> as </bck>

4. Enter the command:

Is -I /bck/adm/aK:ct/sumltacct

This will verify the existence of the file and identify the
owner. The following output will appear:

-rw-rw-r-- I adm bin 1932 Aug 9 14:27 /bck/adm/acct/sum/tacct

5. Enter:

cp /bck/adm/acct/sum/tacct /usr/adm/acct/sum/tattt

This will copy the file to the specified place.

6. Enter the command:

chown adm /usr/adm/aed/sum/tacct

to change the owner of the file.

7. Enter the command:

umount /dev/wOe

This will unmount the spare partition.

4. Message of the Day

When a user logs into the system, part of the login procedure
prints out a message of the day. This message can contain
several lines of useful information concerning scheduled
down-time for hardware preventive maintenance (PM), cleanw
up messages for spacew!ow file systems, or any other useful
warnings. The trick to maintaining this file is to keep it short
and to the point. A user does not want to wait ten minutes
while eloquent and wordy dialogue is spewed from the terminal
before he or she can begin working.

The contents of this message are stored in the file /etc/motd.
You may change the contents of this file by using the UniPius+
system text editor. See ed or vi in the UniPlus+ User Manual.

6-10

DUTIES

A sample of adding and deleting a line from this file is shown
.r-' below.

eel /ete/motd
26
p

9123: Reboot at 5pm today.

d

•
9/24: Down for PM 1700-2100 on 9/30 .

•
37

•

You can also remove the contents of the entire file (do not
(remove the file itself; it needs to exist so the login process can

read it) by:

ep /dev/null /etc/motd

S. System Shutdown

You will perform three distinct steps when bringing down your
UniPlus+ system. These steps must be performed in the indi­
cated order, although it is not necessary to bring the system
completely down for certain maintenance operations. For
example, preventive maintenance (such as filesaves) must be
done while in single-user mode without halting the UniPlus+
system. Whereas, repairing a hard fault would necessitate
removing power completely. You should never remove power
from a piece of equipment that is in service, and definitely do
not power down the system until the UniPlus+ operating sys·
tern has been halted. To bring down the system:

6-11

DUTIES

• Run the shutdown program (changes a multiuser system
to single-user mode).

• Halt the UniPlus+ program.

• Remove power.

5.1 Shutdown Program

Whenever the system must be shut down, such as for filesaves
or a reboot, you should run the program /etc/shutdown. The
shutdown procedure is designed to gracefully turn off all
processes and bring the system back to single-user state with all
buffers flushed.

You must be in the root directory (/) to use the shutdown pro­
gram. You may specify the amount of grace period between
sending a warning message out and actually shutting down.
This grace period is the number of seconds of delay. For
example, specifying a grace period of 300 will result in a 5-
minute delay. You may also send your own message. A
default message is sent to all logged-in users if you don't type
your own. The following printout is an example of a typical
shutdown sequence. Enter the following:

cd I
shutdown 300

Your shutdown procedure may vary slightly from the following,
depending on how it is set up in your system. The shutdown
script may be modified according to local procedures. A typical
output is as follows:

6-12

SHUTDOWN PROGRAM

Thu Sep I 18:51:58 EST 1983

Do you want to send your own message? (y or n): y

Type your message followed by <-ctrl>d

Sy!item oomina down for files aves!

Please loa: off.

<ctrl>d

System coming down for filesaves!

Please log off.
(u,'(li/s jiJr 5 millutes)

SYSTEM BEING BROUGHT DOWN NOW ! ! !

Busy out (push down) the appropriate

phone lines for this system.

Do you want to continue? (y or n}: y

Process accounting stopped.

Error Jogging stopped.

All currently running processes will now be killed.

Wait for '!NIT: SINGLE USER MODE' before halting.

DUTIES

If you executed the shutdown program while in single-user
mode, (which is neither useful nor recommended) the system
will not respond with the 'INIT' message above.

At the completion of this program you can either halt the sys­
tem (and reboot if necessary), power down, start the filesave
routine or other preventive maintenance, or bring the system
back to multiuser mode. To go to multiuser, type in telinit 2.
See the Chapter 5, SINGLE USER AND MULTIUSER
MODE, for more information on changing run level.

6-13

DUTIES

6. System Crash Recovery

An operating system is considered to have crashed when it halts
itself without being asked to. The reason for the halt is often
unknown and can be hardware failure or software related. It is
important, for obvious reasons, to determine the nature of the
crash so that it will not happen again. Note any messages that
appear on the console, and any pertinent information on the
processing that was going on at the time the crash occurred.

6-14

Chapter 7: ACCOUNTING

~ CONTENTS

~

~

1. Introduction 1

2. General 1

3. Files and Directories 2

4. Daily Operation . • 2

5. Setting up the Accounting System

6. Runacct

7. Recovering From Failure

8. Restarting Runacct . •

9. Fixing Corrupted Files
9.1 Fixing Wtmp Errors
9.2 Fixing Tacct Errors

3

4

8

9

10
10
ll

10. Updating Holidays 12

11. Daily Reports 12
11.1 Daily Report 13
11.2 Daily Usage Report 14
11.3 Daily Command and Monthly Total Command

Summaries 16
11.4 Last Login 18

12. Summary . • . 18

LIST OF FIGURES

Figure 7.1. Directory Structure of the "adm"
Login . • • . . · · . · · 2

- i -

LIST OF TABLES

TABLE 7.1. Files in the /usr/adm directory

TABLE 7.2. Files in the /usr/adrn/acct/fiscal
directory

TABLE 7.3. Files in the /usr/adm/acctlnite directory

19

19

(Page I of 2) . • . . . • • • . . 20

TABLE 7.3. Files in the /usr/adm/acct/nite directory
(Page 2 of 2) 21

TABLE 7.4. Files in the /usr/adm/acct/sum
directory 22

- ii -

I
\

Chapter 7

SYSTEM ACCOUNTING

1. Introduction

The UniPlus+ system accounting provides methods to collect
per-process resource utilization data, record connect sessions,
monitor disk utilization, and charge fees to specific logins. A
set of C language programs and shell procedures is provided to
reduce this accounting data into summary files and reports.
This chapter describes the structure, implementation, and
management of this accounting system, as well as a discussion
of the reports generated and the meaning of the columnar data.

2. General

The following list is a synopsis of the actions of the accounting
system:

• At process termination, the UniPlus+ system kernel
writes one record per process in lusrladm/pacct in the form
of acct.h.

• The login and init programs record connect sessions by
writing records into /etclwtmp. Date changes, reboots. and
shutdowns (via acctwtmp) are also recorded in this file.

• The disk utilization program acctdusg and diskusg break
down disk usage by login.

• Fees for file restores, etc., can be charged to specific
logins with the ehargefee shell procedure.

• Each day the runaect shell procedure is executed via cron
to reduce accounting data and produce summary files and
reports.

• The monaect procedure can be executed on a monthly or
fiscal period basis. It saves and restarts summary files,
generates a report, and cleans up the sum directory.

7-l

ACCOUNTING

These saved summary files could be used to charge users
for UniPius+ system usage.

3. Files and Directories

The lusrAib/acct directory contains all of the C language pro­
grams and shell procedures necessary to run the accounting sys­
tem. The adm login (currently user ID of 4) is used by the
accounting system and has the login directory structure shown
in Figure 7.1.

/usr/adm
I

a<et

I

nite sum fiscal

Figure 7.1. Directory Structure of the "adm" Login

The Jusr/adm directory contains the active data collection files.
(For a complete explanation of the files used by the accounting
system, see the table at the end of this section.} The nite direc­
tory contains files that are re-used daily by the runaed: pro­
cedure. The sum directory contains the cumulative summary
files updated by runaect. The fiscal directory contains periodic
summary files created by monaeet.

4. Dally Operation

When the UniPlus+ system is switched into multiuser mode,
/usrRib/acct/startup is executed which does the following:

1. The acetwtmp program adds a "boot" record to /etc/wtmp.
This record is signified by using the system name as the
login name in the wtmp record.

2. Process accounting is started via turnaect. Turnacet on
executes the aceton program with the argument
/usr/adm/pacct.

7-Z

ACCOUNTING

3. The remove shell procedure is executed to clean up the
saved pacct and wtmp files left in the sum directory by
runacc:t.

The ckpaec:t procedure is run via cron every hour of the day to
check the size of /usr/adm/pacct. If the file grows past 1000
blocks (default), tumacct switch is executed. The advantage
of having several smaller pacct files becomes apparent when try­
ing to restart runacct after a failure processing these records.

The chargefee program can be used to bill users for file
restores, etc. It adds records to /usr/adm!fee which are picked
up and processed by the next execution of runacct and merged
into the total accounting records.

Runacct is executed via cron each night. It processes the
active accounting files, lusrladm/pacct, /etc/wtmp,
lusr/adm/acct/nite/disktacct, and lusr/adm/fee. It produces com­
mand summaries and usage summaries by login.

When the system is shut down using shutdown, the shutacct
shell procedure is executed. It writes a shutdown reason record
into /etc/wtmp and turns process accounting off.

After the first reboot each morning, the computer operator
should execute /UsrAib/acct/prdaily to print the previous day's
accounting report.

5. Setting up the Accounting System

In order to automate the operation of this accounting system,
several things need to be done:

1. If not already present, add this line to the /etc/rc file in the
state 2 section:

7-3

ACCOUNTING

/bin/su -adm -c /usr/lib/acct/startup

2. If not already present, add this line to /etc/shutdown to
turn off the accounting before the system is brought ---
down:

/usr/lib/acct/shutacct

3. For most installations, the following three entries should
be made in lusr/spool!cron/crontab/adm so that cron will
automatically run the daily accounting.

0 4 • • 1-6 /usr/lib/acct/runacct 2 > /usr/adm/acct/nite/fd21og

0 2 • • 4 /usr/lib/acct/dodisk
5 • • • •/usr/lib/acct/ckpacct

4. To facilitate monthly merging of accounting data, the fol­
lowing entry in lusr/spooUcron/crontab!adm will allow
monacct to clean up all daily reports and daily total
accounting files and deposit one monthly total report and
one monthly total accounting file in the fiscal directory.

15 5 1 • • /usr/lib/acct/monacct

The above entry takes advantage of the default action of
monacct that uses the current month's date as the suffix
for the file names. Notice that the entry is executed at
such a time as to allow runacct sufficient time to com­
plete. This will, on the first day of each month, create
monthly accounting files with the entire month's ~ta.

5. The PATH shell variable should be set in lusr/adm/.profile
to:

PATH= /usr/lib/acct:/bin:/usr/bin

6. Runacd

Runacet is the main daily accounting shell procedure. It is nor­
mally initiated via cron during nonprime time hours. Runacct:
processes connect, fee, disk, and process accounting files. It
also prepares daily and cumulative summary files for use by
prdaily or for billing purposes. The following files produced by

7-4

(
'

ACCOUNTING

runacc:t are of particular interest:

nite/lineuse

nite/ daytacct

sum/tacct

sum/daycms

sum/ems

Produced by acctcon, reads the wtmp file,
and produces usage statistics for each ter­
minal line on the system. This report is
especially useful for detecting bad lines.
If the ratio between the number of
logoffs to logins exceeds about 3/1, there
is a good possibility that the line is fail­
ing.

This file is the total accounting file for
the previous day in tacct.h format.

This file is the accumulation of each
day's nite/daytacct and can be used for
billing purposes. It is restarted each
month or fiscal period by the monacct
procedure.

Produced by the acctcms program. It
contains the daily command summary.
The ASCII version of this file is
niteldaycms.

The accumulation of each day's com­
mand summaries. It is restarted by the
execution of monacct. The ASCII ver­
sion is nite/cms.

sum/loginlog Produced by the lastlogin shell pro­
cedure. It maintains a record of the last
time each login was used.

sum/rprtMMDD Each execution of runacct saves a copy
of the daily report that can be printed by
prdaily.

r, Runacct takes care not to damage files in the event of errors.
·"- A series of protection mechanisms are used that attempt to

recognize an error, provide intelligent diagnostics, and

7-5

ACCOUNTING

terminate processing in such a way that runacct can be res­
tarted with minimal intervention. It records its progress by
writing descriptive messages into the file active. (Files used by
runacct are assumed to be in the nite directory unless otherwise
noted.) All diagnostics output during the execution of runacct
is written into j(/2/og. Runacct will complain if the files lock
and lock 1 exist when invoked. The /astdate file contains the
month and day runacct was last invoked and is used to prevent
more than one execution per day. If runacct detects an error, a
message is written to /dev!conso/e, mail is sent to root and adm,
locks are removed, diagnostic files are saved, and execution is
terminated.

In order to allow runacct to be restartable, processing is broken
down into separate re-entrant states. A file is used to
remember the last state completed. When each state com­
pletes, statefi/e is updated to reflect the next state. After pro­
cessing for the state is complete, statefi/e is read and the next
state is processed. When runacct reaches the CLEANUP state,
it removes the locks and terminates. States are executed as fol­
lows:

SETUP

WTMPFIX

CONNECT!

7-6

The command turnacct switch is exe­
cuted. The process accounting files,
/usr/adm/pacct ?, are moved to
/usr/adm/Spacct ?.MMDD. The /etc!wtmp
file is moved to
/usr!adm/acct/nire!wtmp.MMDD with the
current time added on the end.

The wtmp file in the nite directory is
checked for correctness by the wtmpfix
program. Some date changes will cause
acctconl to fail, so wtmpfix attempts to
adjust the time stamps in the wtmp file if
a date change record appears.

Connect session records are written to
ctmp in the form of ctmp.h. The lineuse

CONNECT2

PROCESS

MERGE

ACCOUNTING

file is created, and the reboots file is
created showing all of the boot records
found in the wtmp file.

Ctmp is converted to ctacct.MMDD which
are connect accounting records.
(Accounting records are in tacct.h for­
mat.)

The acctprcl and acctprcl programs are
used to convert the process accounting
files, /usr/adm/Spacct ?.MMDD, into total
accounting records in placet ?.MMDD.
The Spacct and placet files are correlated
by number so that if runacct fails the
unnecessary reprocessing of Spacct files
will not occur. One precaution should be
noted; when restarting runacct in this
state, remove the last ptacct file because
it will not be complete.

Merge the process accounting records
with the connect accounting records to
form daytacct.

FEES Merge in any ASCII tacct records from
the file jee into daytacct.

DISK On the day after the dodisk procedure
runs, merge disktacct with daytacct.

MERGETACCT Merge daytacct with sumhacct, the cumu­
lative total accounting file. Each day,
daytacct is saved in sumhacctMMDD, so
that sumhacct can be recreated in the
event it becomes corrupted or lost.

CMS Merge in today's command summary
with the cumulative command summary
file sum/ems. Produce ASCII and internal
format command summary files.

7-7

ACCOUNTING

USEREXIT Any installation dependent (local)
accounting programs can be included
here.

CLEANUP Clean up temporary files, run prdaily and
save its output in sum/rprtMMDD,
remove the locks, then exit.

7. Recovering From Failure

The runacct procedure can fail for a variety of reasons; usually
due to a system crash, /usr running out of space, or a corrupted
wrmp file. If the activeMMDD file exists, check it first for error
messages. If the active file and lock files exist, check j(/2/og for
any mysterious messages. The following are error messages
produced by runacct and the recommended recovery actions:

ERROR: locks found, run aborted

The files lock and lock 1 were found. These files must be
removed before runacct can restart.

ERROR: acctg already
/usr/adm/acct/nite/lastdate '"" date check

The date in fastdate and today's date are the same.
Remove /astdate.

ERROR: tumacct switch returned rc- ?

7-8

Check the integrity of turnacct and accton. The accton
program must be owned by root and have the setuid bit
set.

(
'

ACCOUNTING

ERROR: Spacct ?.MMDD already exists

File setups probably already run. Check status of files,
then run setups manually.

ERROR: /usr/adm/acct/nite/wtmp.MMDD already exists,
run setup manually

Self-explanatory.

ERROR: wtmpflx errors see /usr/adm/acct/nite/wtmperror

Wtmpflx detected a corrupted wtmp file. Use fwtmp to
correct the corrupted file.

ERROR: connect acctg failed: check /usr/adm/acct/nite/log

The acctconl program encountered a bad wtmp file. Use
fwtmp to correct the bad file.

ERROR: Invalid state, check /usr/adm/acct/nite/active

The file statefile is probably corrupted. Check statefile and
read active before restarting.

8. Restarting Runacct

Runacct called without arguments assumes that this is the first
invocation of the day. The argument MMDD is necessary if
runacct is being restarted and specifies the month and day for
which runacct will rerun the accounting. The entry point for
processing is based on the contents of statefile. To override
statefile, include the desired state on the command line. For

(' example:
' -

7-9

ACCOUNTING

To start runacct:

nohup runacct 2> /usr/adm/acct/nite/fd2log&

To restart runacct:

nohup runacct 0601 2> /usr/adm/acctlnite/fd2log&

To restart runacct at a specific state:

nohup runacct 0601 WTMPFIX 2> /usr/adm/acct/nite/fd21og&

9. Fixing Corrupted Files

Unfortunately, this accounting system is not entirely foolproof.
Occasionally, a file will become corrupted or lost. Some of the
files can simply be ignored or restored from the file save
backup. However, certain files must be fixed in order to main­
tain the integrity of the accounting system.

9.1 Fixing Wtmp Errors

The wtmp files seem to cause the most problems in the day-to­
day operation of the accounting system. When the date is
changed and the UniPlus+ system is in multiuser mode, a set
of date change records is written into /etc/wtmp. The wtmpftx
program is designed to adjust the time stamps in the wtmp
records when a date change is encountered. However, some
combinations of date changes and reboots will slip through
wtmpftx and cause acctconl to fail. The following steps show
how to patch up a wtmp file.

7-10

r
··~

ACCOUNTING

cd /usr/adm/acct/nite
fwtmp < wtmp.MMDD > xwtmp
ed xwtmp

delete corrupted records or
delete all records }rom beginning up to the date change

fwtmp -ic < xwtmp > wtmp.MMDD

If the wtmp file is beyond repair, create a null wtmp file. This
will prevent any charging of connect time. Acctprcl will not be
able to determine which login owned a particular process, but it
will be charged to the login that is first in the password file for
that user id.

9.2 Fixing Tacct Errors

If the installation is using the accounting system to charge users
for system resources, the integrity of sumhacct is quite impor­
tant. Occasionally, mysterious tacct records will appear with
negative numbers, duplicate user IDs, or a user ID of 65,535.
First check sumltacctprev with prtacct. If it looks all right, the
latest sumltacct.MMDD should be patched up, then sumhacct
recreated. A simple patchup procedure would be:

cd /usr/adm/acct/sum
acctmerg -v < tacct.MMDD > xtacct
ed xtacct

remove the bad records
write duplicate uid records to another file

acctmerg -i < xtacct > tacct.MMDD
acctrnerg tacctprev < tacct.MMDD > tacct

Remember that the monacct procedure removes all the
tacct.MMDD files; therefore, sumhacct can be recreated by
merging these files together.

7-11

ACCOUNTING

10. Updating Holidays

The file !usr/lib/acct/holidays contains the prime/nonprime table
for the accounting system. The table should be edited to reflect
your location's holiday schedule for the year. The format is
composed of three types of entries:

1. Comment Lines: Comment lines may appear anywhere in
the file as long as the first character in the line is an aster­
isk.

2. Year Designation Line: This line should be the first data
line (noncomment line) in the file and must appear only
once. The line consists of three fields of four digits each
(leading white space is ignored). For example, to specify
the year as 1985, prime time at 9:00 a.m., and nonprime
time at 4:30 p.m., the following entry would be appropri­
ate:

1985 0900 1630

A special condition allowed for in the time field is that the
time 2400 is automatically converted to 0000.

3. Company Holidays Lines: These entries follow the year
designation line and have the following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range of 1
through 366 indicating the day for the corresponding holi­
day (leading white space is ignored). The other three
fields are actually commentary and are not currently used
by other programs.

11. Daily Reports

Runacct generates five basic reports upon each invocation.
They cover the areas of connect accounting, usage by person on
a daily basis, command usage reported by daily and monthly
totals, and a report of the last time users were logged in.

7·12

-~--

(

ACCOUNTING

The following paragraphs describe the reports and the meanings
of their tabulated data.

11.1 Daily Report

In the first part of the report, the from/to banner should alert
the administrator to the period reported on. The times are the
time the last accounting report was generated until the time the
current accounting report was generated. It is followed by a log
of system reboots, shutdowns, power fail recoveries, and any
other record dumped into /etc/wtmp by the acctwtmp program
[see a«t0M) in the UniPlus+ Administrator Manual].

The second part of the report is a breakdown of line utilization.
The TOTAL DURATION tells how long the system was in
multiuser state (able to be accessed through the terminal lines).
The columns are:

LINE

MINUTES

PERCENT

SESS

#ON

#OFF

The terminal line or access port.

The total number of minutes that line
was in use during the accounting period.

The total number of MINUTES the line
was in use divided into the TOTAL
DURATION.

The number of times this port was
accessed for a login(l) session.

This column does not have much mean­
ing any more. It used to give the
number of times that the port was used
to log a user on; but since login(!) can
no longer be executed explicitly to log in
a new user. this column should be identi­
cal with SESS.

This column reflects not just the number
of times a user logged off but also any
interrupts that occur on that line.

7-13

ACCOUNTING

Generally, interrupts occur on a port
when the getty (1M) is first in\-oked when
the system is brought to multiuser state.
Where this column does come into play
is when the # OFF exceeds the # ON by
a large factor. This usually indicates that
the multiplexer, modem, or cable is
going bad, or there is a bad connection
somewhere. The most common cause of
this is an unconnected cable dangling
from the multiplexer.

During real time, /etc/wtmp should be monitored as this is the
file that the connect accounting is geared from. If it grows
rapidly, execute acctconl to see which tty line is the noisest. If
the interrupting is occurring at a furious rate, general system
performance will be affected.

11.2 Daily Usage Report

This report gives a by-user breakdown of system resource utili­
zation. Its data consists of:

UID

LOGIN NAME

CPU (MINS)

7-14

The user ID.

The login name of the user; there can
be more than one login name for a
single user ID, this identifies which
one.

This represents the amount of time
the user's process used the central
processing unit. This category is bro­
ken down into PRIME and NPRIME
(nonprime) utilization. The account­
ing system's idea of this breakdown is
located in the lusr/lib/acct/holidays file.
As delivered, prime time is defined to
be 0900 through 1700 hours.

KCORE-MINS

(
'

CONNECT (MJNS)

DISK BLOCKS

#OF PROCS

#OF SESS

ACCOUNTING

This represents a cumulative measure
of the amount of memory a process
uses while running. The amount
shown reflects kilobyte segments of
memory used per minute. This meas­
urement is also broken down into
PRIME and NPRIME amounts.

This identifies "Real Time" used.
What this column really identifies is
the amount of time that a user was
logged into the system. If this time is
rather high and the column "# OF
PROCS" is low, this user is what is
called a "line hog". That is, this per­
son logs in first thing in the morning
and does not hardly touch the termi­
nal the rest of the day. Watch out for
these kinds of users. This column is
also subdivided into PRIME and
NPRIME utilization.

When the disk accounting programs
have been run, the output is merged
into the total accounting record
(tacct.h) and shows up in this
column. This disk accoun~ing is
accomplished by the program
acctdusg.

This column reflects the number of
processes invoked by the user. This
is a good column to watch for large
numbers indicating that a user may
have a shell procedure that runs
amok.

This is how many times the user
logged onto the system.

7-15

ACCOUNTING

DISK SAMPLES

FEE

This indicates how many times the
disk accounting was run to obtain the
average number of DISK BLOCKS
listed earlier.

An often unused field in the total
accounting record, the FEE field
represents the total accumulation of
widgets charged against the user by
the chargefee shell procedure [see
acctsh (1M)]. The cbargefee pro­
cedure is used to levy charges against
a user for special services performed
such as file restores, etc.

11.3 Daily Command and Monthly Total Command Sum­
maries

These two reports are virtually the same except that the Daily
Command Summary only reports on the current accounting
period while the Monthly Total Command Summary tells the
story for the start of the fiscal period to the current date. In
other words, the monthly report reflects the data accumulated
since the last invocation of monacct.

The data included in these reports gives an administrator an
idea as to the heaviest used commands and, based on those
commands' characteristics of system resource utilization, a hint
as to what to weigh more heavily when system tuning.

These reports are sorted by TOTAL KCOREMIN, which is an
arbitrary yardstick but often a good one for calculating "drain"
on a system.

COMMAND NAME

7-16

This is the name of the command.
Unfortunately, all shell procedures are
lumped together under the name sh
since only object modules are reported

r

r

NUMBER CMDS

ACCOUNTING

by the process accounting system.
The administrator should monitor the
frequency of programs called a.out or
eore or any other name that does not
seem quite right. Often people like to
work on their favorite version of
backgammon and do not want every­
one to know about it. Acctcom is also
a good tool to use for determining
who executed a suspiciously named
command and also if superuser
privileges were used.

This is the total number of invoca­
tions of this particular command.

TOTAL KCOREMIN The total cumulative measurement of
the amount of kilobyte segments of
memory used by a process per minute
of run time.

TOTAL CPU-MIN The total processing time this pro­
gram has accumulated.

TOTAL REAL-MIN

MEAN SIZE-K

MEAN CPU-MIN

HOG FACTOR

The total real-time (wall-clock)
minutes this program has accumu­
lated. This total is the actual "waited
for" time as opposed to kicking off a
process in the background.

This is the mean of the TOTAL
KCOREMIN over the number of
invocations reflected by NUMBER
CMDS.

This is the mean derived between the
NUMBER CMDS and TOTAL CPU­
MIN.

This is a relative measurement of the
ratio of system availability to system

7-17

ACCOUNTING

CHARS TRNSFD

BLOCKS READ

11.4 Last Login

utilization. It is computed by the for­
mula

(toml CPU time) I (elapsed time)

This gives a relative measure of the
total available CPU time consumed by
the process during its execution.

This column, which may go negative,
is a total count of the number of char­
acters pushed around by the read (2)
and write(2) system calls.

A total count of the physical block
reads and writes that a process per­
formed.

This report simply gives the date when a particular login was
last used. This could be a good source for finding likely candi­
dates for the archives or getting rid of unused logins and login
directories.

12. Summary

The UniPlus+ system accounting was designed from a system
administrator's point of view. Every possible precaution has
been taken to ensure that the system will run smoothly and
without error. It is important to become familiar with the C
programs and shell procedures. The manual pages should be
studied, and it is advisable to keep a printed copy of the shell
procedures handy. The accounting system should be easy to
maintain, provide valuable information for the administrator,
and provide accurate breakdowns of the usage of system
resources for charging purposes.

7-18

r

ACCOUNTING

TABLE 7.1. Files in the /usr/adm directory

diskdiag

dtmp

fee

pacct

pacct?

Spacct? .MMDD

diagnostic output during the execution
of disk accounting programs

output from the acctdusg program

output from the chargefee program,
ASCII tacct records

active process accounting file

process accounting files switched via
tumacct

process accounting files for MMDD
during execution of runacct

TABLE 7.2. Files in the /usr/adm/acct/fiscal directory

ems?

fiscrpt?

tacct?

total command summary file for fiscal
? in internal summary format

report similar to prdaily for fiscal ?

total accounting file for fiscal ?

7-19

ACCOUNTING

TABLE 7.3. Files in the /usr/adm/acct/nite directory (Page I
of 2)

active

ems

ctacct.MMDD

ctmp

day ems

daytacct

disktacct

fd2log

7-20

used by runacct to record progress
and print warning and error messages.
activeMMDD same as active after
runacct detects an error

ASCII total command summary used
by prdaily

connect accounting records in tacct.h
format

output of acctconl program. connect
session records in ctmp.h format

ASCII daily command summary used
by prdaily

total accounting records for 1 day in
tacct.b format

disk accounting records in tacct.h for­
mat, created by dodisk procedure

diagnostic output during execution of
runacct (see cron entry)

r

c

r
'

ACCOUNTING

TABLE 7.3. Files in the /usr/adm/acct/nite directory (Page 2
of 2)

lastdate

lock Iockl

line use

log

logMMDD

reboots

statefile

tmpwtmp

wtmperror

wtmperrorMMDD

wtmp.MMDD

last day runacct executed in
date +'hm%d format

used to control serlal use of runacet

tty line usage report used by prdally

diagnostic output from aceteonl

same as Jog after runacet detects an
error

contains beginning and ending dates
from wtmp, and a listing of reboots

used to record current state during
execution of runacct

wtmp file corrected by wtmpfix

place for wtmpfix error messages

same as wtmperror after runacd
detects an error

previous day's wtmp file

7-21

ACCOUNTING

TABLE 7 .4. Files in the /usr/adm/acct/sum directory

ems

cmsprev

day ems

loginlog

pacct.MMDD

rprtMMDD

tacct

tacctprev

tacctMMDD

wtmp.MMDD

7-22

total command summary file for
current fiscal in internal summary for­
mat

command summary file without latest
update

command summary file for yesterday
in internal summary format

created by lastlogln

concatenated version of all pacct files
for MMDD, removed after reboot by
remove procedure

saved output of prdaily program

cumulative total accounting file for
current fiscal

same as racer without latest update

total accounting file for MMDD

saved copy of wrmp file for MMDD,
removed after reboot by remove pro­
cedure

c

c

c

Chapter 8: FSCK: FILE SYSTEM CHECKING

CONTENTS

1. Introduction... 1

2. General.. 1
2.1 System Administrator Advice................................... 2

3. Update of the File System ,.............. 2
3.1 Superblock... 2
3.2 Inodes.. 3
3.3 Indirect Blocks... 3
3.4 Data Blocks... 3
3.5 First Free-List Block... 4

4. Corruption of the File System .. .
4.1 Improper System Shutdown and Startup
4.2 Hardware Failure .. .

5. Detection and Correction of Corruption
5.1 Superblock .. .

5.1.1 File System Size and Inode-List Size
5.1.2 Free-Block List
5.1.3 Free-Block Count.. .. .
5.1.4 Free-Inode Count

5.2 Inodes
5.2.1 Format and Type .. .
5.2.2 Link Count
5.2.3 Duplicate Blocks
5.2.4 Bad Blocks .. .
5.2.5 Size Checks

5.3 Indirect Blocks .. .
5.4 Data Blocks
5.5 Free-List Blocks

- i -

4
4
4

4
5
5
6
6
7
7
7
8
8
9
9

10
10
12

6. Fsck Error Conditions .. .
6.1 Conventions
6.2 Initialization

C option? .. .

Bad -t option .. .
Invalid - s argument, defaults assumed
Incompatible options: -nand -s
Can not fstat standard input
Can not get memory
Can not open checkall file: F
Can not stat root
Can not stat F
F is not a block or character device
Can not open F
Size check: fsize X isize Y .. .
Can not create F
CAN NOT SEEK: BLK B (CONTINUE)
CAN NOT READ: BLK B (CONTINUE)
CAN NOT WRITE: BLK B (CONTINUE)..

6.3 Phase 1: Check Blocks and Sizes
UNKNOWN FILE TYPE 1-1 (CLEAR)
LINK COUNT TABLE OVERFLOW (CONTINUE)
B BAD 1=1 .. .
EXCESSIVE BAD BLKS 1-I (CONTINUE)
BDUPI=I .. .
EXCESSIVE DUP BLKS 1-1 (CONTINUE)
DUP TABLE OVERFLOW (CONTINUE)
POSSIBLE FILE SIZE ERROR 1-1
DIRECTORY MISALIGNED 1-1
PARTIALLY ALLOCATED !NODE 1=1 (CLEAR)

6.4 Phase lB: Rescan for More Dups
B DUP 1-1 .. .

6.5 Phase 2: Check Patbnames
ROOT !NODE UNALLOCATED. TERMINATING
ROOT !NODE NOT DIRECTORY (FIX)
DUPS/BAD IN ROOT INODE (CONTINUE)
I OUT OF RANGE 1=1 NAME-F (REMOVE)
UNALLOCATED 1-1 OWNER~O MODE=M SIZE-S

- ii .

12
12
13
13
13
13
13
14
14
14
14
14
14
IS
IS
IS
IS
IS
16
16
17
17
17
18
18
18
19
19
19
19
20
20
20
20
20
21
21

··~

MTIME=T NAME-F (REMOVE).............................. 21
DUP/BAD 1-1 OWNER-0 MODE=M SIZE-S
MTIME=T DIR-F (REMOVE) ..•••••••••••••••••••••••• ,,,,,,,

DUP/BAD 1-1 OWNER-0 MODE=M SIZE-S

MTIME=T FILE-F (REMOVE)

BAD BLK BIN DIR 1-1 OWNER-0 MODE-M SIZE-S

22

22

MTIME=T ,,,,,,,,,,,,,............................ 22
6.6 Phase 3: Check Connectivity..................................... 23

UNREF DIR 1=1 OWNER-0 MODE-M SIZE-S
MTIME-T (RECONNECT).,,,,,,,,,,,,.......................... 23

SORRY. NO lost+ found DIRECTORY......................... 23
SORRY. NO SPACE IN lost+found DIRECTORY........... 24
DIR 1=11 CONNECTED. PARENT WAS 1=12............... 24

6.7 Phase 4: Check Reference Counts............................ 24
UNREF FILE 1-1 OWNER-0 MODE-M SIZE-S
MTIME=T (RECONNECT)....................................... 24
SORRY. NO lost+found DIRECTORY......................... 25
SORRY. NO SPACE IN lost+found DIRECfORY........... 25
(CLEAR) ,,,,,,,,,,,,....................... 25

LINK COUNT FILE I-I OWNER=O MODE-M SIZE-S
MTIME-T COUNT-X SHOULD BEY (ADJUST) 25
LINK COUNT DIR 1=1 OWNER-0 MODE-M SIZE=S
MTIME-T COUNT=X SHOULD BEY (ADJUST)........ 26
LINK COUNT F 1=1 OWNER-0 MODE-M SIZE=S
MTIME-T COUNT=X SHOULD BEY (ADJUST)........ 26
UNREF FILE 1=1 OWNER-0 MODE-M SIZE=S
MTIME=T (CLEAR)... 26
UNREF DIR 1-1 OWNER-0 MODE-M SIZE-S
MTIME-T (CLEAR) ,,,,,,,,,,........ 27
BAD/DUP FILE 1-1 OWNER=O MODE-M SIZE=S
MTIME-T (CLEAR)... 27
BAD/DUP DIR 1=1 OWNER-0 MODE-M SIZE-S

MTIME-=T (CLEAR) .. .
FREE !NODE COUNT WRONG IN SUPERBLK (FIX)

6.8 Phase 5: Check Free List
EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)
EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)
BAD FREEBLK COUNT .. .

- iii -

27
28
28
28
29
29

X BAD BLKS IN FREE LIST...................................... 29
X DUP BLKS IN FREE LIST...................................... 29
X BLK(S) MISSING... 29
FREE BLK COUNT WRONG IN SUPERBLOCK (FIX).... 30
BAD FREE USt (SALVAGE).................................... 30

6.9 Phase 6: Salvage Free List... 30
Default free-block list spacing assumed 30

6.10Cieanup... 31
X files Y blocks Z free... 31
uu• BOOT UNIX (NO SYNC!) •••-. 31
***"• FILE SYSTEM WAS MODIFIED ••u• 31

- iv-

(

Chapter 8

FSCK: FILE SYSTEM CHECKING

1. Introduction

The File System Check Program (fsck) is an interactive file
system check and repair program. Fsck uses the redundant
structural information in the UniPlus+ system file system to
perform several consistency checks. If an inconsistency is
detected, it is reported to the operator, who may elect to fix or
ignore each inconsistency. These inconsistencies result from
the permanent interruption of the file system updates, which
are performed every time a file is modified Fsck is frequently
able to repair corrupted file systems using procedures based
upon the order in which the UniPlus+ system honors these file
system update requests.

"---- The purpose of this chapter is to describe the normal updating
of the file system, to discuss the possible causes of file system
corruption, and to present the corrective actions implemented
by fsck. Both the program and the interaction between the
program and the operator are described.

The fsck error conditions are listed in the last section of this
chapter. The meanings of the various error conditions, possible
responses, and related error conditions are explained.

2. General

When a UniPlus+ operating system is brought up, a con­
sistency check of the file systems should always be performed.
This precautionary measure helps to ensure a reliable environ­
ment for file storage on disk. If an inconsistency is discovered,
corrective action must be taken.

8-1

FSCK

The updating of the file system and file system corruption is
described in this chapter. Finally, the set of heuristically sound
corrective actions used by fsck are presented.

2.1 System Administrator Advice

Remember that system buffers are 1024 bytes. When
configuring the operating system, take into consideration that
the same number of buffers as before will use more main
memory. Weigh this against reducing the number of buffers,
which reduces the cache hit ratio and degrades performance.

3. Update of the File System

Every working day hundreds of files are created, modified, and
removed. Every time a file is modified, the U niP Ius+ system
performs a series of file system updates. These updates, when
written on disk, yield a consistent file system. To understand
what happens in the event of a permanent interruption in this
sequence, it is important to understand the order in which the
update requests were probably being honored. Knowing which
pieces of information were probably written to the file system
first, heuristic procedures can be developed to repair a cor­
rupted file system.

There are five types of file system updates. These involve the
superblock, inodes, indirect blocks, data blocks (directories and
files), and free-list blocks.

3.1 Superblock

The superblock contains information about the size of the file
system, the size of the inode list, part of the free-block list, the
count of free blocks, the count of free inodes, and part of the
free-inode list.

The superblock of a mounted file system (the root file system is
always mounted) is written to the file system whenever the file

8-2

r''
I

FSCK

system is unmounted or a sync command is issued.

3.2 Inodes

An inode contains information about the type of inode (direc­
tory, data, or special), the number of directory entries linked to
the inode, the list of blocks claimed by the inode, and the size
of the inode.

An inode is written to the file system upon closure of the file
associated with the inode. (All ''in" core blocks are also writ­
ten to the file system upon issue of a sync system call.)

3.3 Indirect Blocks

There are three types of indirect blocks-single-indirect,
double-indirect, and triple-indirect. A single-indirect block con­
tains a list of some of the block numbers claimed by an inode.
Each one of the 128 entries in an indirect block is a data-block
number. A double-indirect block contains a list of single­
indirect block numbers. A triple-indirect block contains a list
of double-indirect block numbers.

Indirect blocks are written to the file system whenever they
have been modified and released by the operating system.
More precisely, they are queued for eventual writing. Physical
1/0 is deferred until the buffer is needed by the UNIX system
or a sync command is issued.

3.4 Data Blocks

A data block may contain file information or directory entries.
Each directory entry consists of a file name and an inode
number.

Data blocks are written to the file system whenever they have
been modified and released by the operating system.

8-3

FSCK

3.5 First Free-List Block

The superblock contains the first free-list block. The free-list
blocks are a list of all blocks that are not allocated to the super­
block, inodes, indirect blocks, or data blocks. Each free-list
block contains a count of the number of entries in this free-list
block, a pointer to the next free-list block, and a partial list of
free blocks in the file system.

Free-list blocks are written to the file system whenever they
have been modified and released by the operating system.

4. Corruption of the File System

A file system can become corrupted in a variety of ways.
Improper shutdown procedures and hardware failures are the
most common.

4.1 Improper System Shutdown and Startup

File systems may become corrupted when proper shutdown pro~
cedures are not observed, e.g., forgetting to sync the system
prior to halting the CPU, physically write~protecting a mounted
file system, or taking a mounted file system off·line.

File systems may also become further corrupted by allowing a
corrupted file system to be used (and, thus, to be modified
further).

4.2 Hardware Failure

Any piece of hardware can fail at any time. Failures can be as
subtle as a bad block on a disk platter or as blatant as a non·
functional disk controller.

S. Detection and Correction of Corruption

A quiescent file system (an unmounted system and not being
written on) may be checked for structural integrity by

8-4

c
FSCK

performing consistency checks on the redundant data intrinsic
to a file system. The redundant data is either read from the file
system or computed from other known values. A quiescent
state is important during the checking of a file system because
of the multipass nature of the fsck program.

When an inconsistency is discovered, fsck reports the incon­
sistency for the operator to chose a corrective action.

Discussed in this part are how to discover inconsistencies (and
possible corrective actions) for the superblock, the inodes, the
indirect blocks, the data blocks containing directory entries, and
the free-list blocks. These corrective actions can be performed
interactively by the fsck command under control of the opera­
tor.

5.1 Superblock

One of the most common corrupted items is the superblock.
The superblock is prone to corruption because every change to
the file system's blocks or inodes modifies the superblock.

The superblock and its associated parts are most often cor­
rupted when the computer is halted and the last command
involving output to the file system was not a sync command.

The superblock can be checked for inconsistencies involving
file system size, inode-list size, free-block list, free-block count,
and the free-inode count.

5.1.1 File System Size and Inode-List Size

The file system size must be larger than the number of blocks
used by the superblock and the number of blocks used by the
list of inodes. The number of inodes must be less than 65,535.
The file system size and inode-list size are critical pieces of
information to the fsck program. While there is no way to

8-5

FSCK

actually check these sizes, fsck can check for them being within
reasonable bounds. All other checks of the file system depend
on the correctness of these sizes.

5.1.2 Free-Block List

The free-block list starts in the superblock and continues
through the free-list blocks of the file system. Each free-list
block can be checked for a list count out of range, for block
numbers out of range, and for blocks already allocated within
the file system. A check is made to see that all the blocks in
the file system were found.

The first free-block list is in the superblock. Fsck checks the
list count for a value of less than 0 or greater than 50. It also
checks each block number for a value of less than the first data
block in the file system or greater than the last block in the file
system. Then it compares each block number to a list of
already allocated blocks. If the free-list block pointer is
nonzero, the next free-list block is read in and the process is
repeated.

When all the blocks have been accounted for, a check is made
to see if the number of blocks used by the free-block list plus
the number of blocks claimed by the inodes equals the total
number of blocks in the file system.

If anything is wrong with the free-block list, then fsck may
rebuild the list, excluding all blocks in the list of allocated
blocks.

5.1.3 Free-Block Count

The superblock contains a count of the total number of free
blocks within the file system. F-sck compares this count to the
number of blocks it found free within the file system. If the
counts do not agree, then fsck may replace the count in the

8-6

FSCK

superblock by the actual free-block count.

5.1.4 Free-lnode Count

The superblock contains a count of the total number of free
inodes within the file system. Fsek compares this count to the
number of inodes it found free within the file system. If the
counts do not agree, then fsck may replace the count in the
superblock by the actual free-inode count.

5.2 Inodes

An individual inode is not as likely to be corrupted as the
superblock. However, because of the great number of active
inodes, there is almost as likely a chance for corruption in the
inode list as in the superblock.

The list of inodes is checked sequentially starting with inode 1
(there is no inode 0) and going to the last inode in the file sys­
tem. Each inode can be checked for inconsistencies involving
format and type, link count, duplicate blocks, bad blocks, and
inocie size.

5.2.1 Format and Type

Each inode contains a mode word. This mode word describes
the type and state of the inode. !nodes may be one of four
types:

I. Regular

2. Directory

3. Special block

4. Special character.

If an inode is not one of these types, then the inode has an ille·
gal type. !nodes may be found in one of three states­
unallocated, allocated, and neither unallocated nor allocated.

8-7

FSCK

This last state indicates an incorrectly formatted inode. An
inode can get in this state if bad data is written into the inode
list through, for example, a hardware failure. The only possible
corrective action is for fsck to clear the inode.

5.2.2 Link Count

Contained in each inode is a count of the total number of direc­
tory entries linked to the inode. Fsck verifies the link count of
each inode by traversing down the total directory structure,
starting from the root directory, and calculating an actual link
count for each inode.

If the stored link count is nonzero and the actual link count is
zero, it means that no directory entry appears for the inode. If
the stored and actual link counts are nonzero and unequal, a
directory entry may have been added or removed without the
inode being updated.

If the stored link count is nonzero and the actual link count is
zero, fsck can, under operator control, link the disconnected
file to the lost+JOund directory. If the stored and actual link
counts are nonzero and unequal, fsck can replace the stored
link count by the actual link count.

5.2.3 Duplicate Blocks

Contained in each inode is a list or pointers to lists (indirect
blocks) of all the blocks claimed by the inode. Fsck compares
each block number claimed by an inode to a list of already allo­
cated blocks. If a block number is already claimed by another
inode, the block number is added to a list of duplicate blocks.
Otherwise, the list of allocated blocks is updated to include the
block number. If there are any duplicate blocks, fsck will make
a partial second pass of the inode list to find the inode of the
duplicated block. This is necessary because without examining
the files associated with these inodes for correct content there is
not enough information available to decide which inode is

8-8

r

(

FSCK

corrupted and should be cleared. Most of the time, the inode
with the earliest modify time is incorrect and should be cleared.
This condition can occur by using a file system with blocks
claimed by both the free-block list and by other parts of the file
system.

A large number of duplicate blocks in an inode may be due to
an indirect block not being written to the file system. Fsck will
prompt the operator to clear both inodes.

5.2.4 Bad Blocks

Contained in each inode is a list or pointer to lists of all the
blocks claimed by the inode. Fsck checks each block number
claimed by an inode for a value lower than that of the first data
block or greater than the last block in the file system. If the
block number is outside this range, the block number is a bad
block number.

·"----- If there is a large number of bad blocks in an inode, this may
be due to an indirect block not being written to the file system.
Fsck will prompt the operator to clear both inodes.

'-

5.2.5 Size Checks

Each inode contains a 32-bit {4-byte) size field. This size indi­
cates the number of characters in the file associated with the
inode. This size can be checked for inconsistencies, e.g., direc­
tory sizes that are not a multiple of 16 characters or the number
of blocks actually used not matching that indicated by the inode
size.

A directory inode within the file system has the directory bit on
in the inode mode word. The directory size must be a multiple
of 16 because a directory entry contains 16 bytes (2 bytes for
the inode number and 14 bytes for the file or directory name).

8-9

FSCK

Fsck will warn of such directory misalignment. This is only a
warning because not enough information can be gathered to
correct the misalignment.

A rough check of the consistency of the size field of an inode
can be performed by computing from the size field the number
of blocks that should be associated with the inode and compar­
ing it to the actual number of blocks claimed by the inode.

Fsck calculates the number of blocks that there should be in an
inode by dividing the number of characters in an inode by the
number of characters per block and rounding up. Fsck adds
one block for each indirect block associated with the inode. If
the actual number of blocks does not match the computed
number of blocks, fsck will warn of a possible file-size error.
This is only a warning because the system does not fill in blocks
in files created in random order.

5.3 Indirect Blocks

Indirect blocks are owned by an inode. Therefore, inconsisten­
cies in indirect blocks directly affect the inode that owns it.

Inconsistencies that can be checked are blocks already claimed
by another inode and block numbers outside the range of the
file system.

For a discussion of detection and correction of the inconsisten­
cies associated with indirect blocks, see parts "Duplicate
Blocks" and "Bad Blocks".

5.4 Data Blocks

The two types of data blocks are plain data blocks and directory
data blocks. Plain data blocks contain the information stored in
a file. DirectorY data blocks contain directory entries. Fsck
does not attempt to check the validity of the contents of a plain

8-10

,r-

FSCK

data block.

Each directory data block can be checked for inconsistencies
involving directory inode numbers pointing to unallocated
inodes, directory inode numbers greater than the number of
inodes in the file system, incorrect directory inode numbers for
"." and " .. ", and directories disconnected from the file sys­
tem. In addition, the validity of the contents of a directory's
data block is checked.

If a directory entry inode number points to an unallocated
in ode, then fsck may remove that directory entry. This condi­
tion probably occurred because the data blocks containing the
directory entries were modified and written out while the inode
was not yet written out.

If a directory entry inode number is pointing beyond the end of
the inode list, fsck may remove that directory entry. This con­
dition occurs if bad data is written into a directory data block.

The directory inode number entry for "." should be the first
entry in the directory data block. Its value should be equal to
the inode number for the directory data block.

The directory inode number entry for " .• " should be the
second entry in the directory data block. Its value should be
equal to the inode number for the parent of the directory entry
(or the inode number of the directory data block if the direc­
tory is the root directory).

If the directory inode numbers are incorrect, fsck may replace
them with the correct values.

8-11

FSCK

Fsck checks the general connectivity of the file system. If
directories are found not to be linked into the file system, fsck
will link the directory back into the file system in the
lost +.fOund directory. This condition can be caused by inodes
being written to the file system with the corresponding directory
data blocks not being written to the file system.

5.5 Free-List Blocks

Free-list blocks are owned by the superblock. Therefore,
inconsistencies in free-list blocks directly affect the superblock.

Inconsistencies that can be checked are a list count outside of
range, block numbers outside of range, and blocks already asso­
ciated with the file system.

For a discussion of detection and correction of the inconsisten­
cies associated with free-list blocks, see part "Free-Block List".

6. Fsck Error Conditions

6.1 Conventions

Fsck is a multipass file system check program. Each file system
pass invokes a different phase of the fsck program. After the
initial setup, fsck performs successive phases over each file sys­
tem performing cleanup, checking blocks and sizes, pathnames,
connectivity, reference counts, and the free-block list (possibly
rebuilding it).

When an inconsistency is detected, fsck reports the error con­
dition to the operator. If a response is required, fsck prints a
prompt message and waits for a response. This appendix
explains the meaning of each error condition, the possible
responses, and the related error conditions.

8-12

FSCK

The error conditions are organized by the "Phase" of the fsck
program in which they can occur. The error conditions that
may occur in more than one phase will be discussed in the next
section.

6.2 Initialization

Before a file system check can be performed, certain tables
have to be set up and certain files opened. This section
describes the opening of files and the initialization of tables.
Error conditions resulting from command line options, memory
requests, opening of files, status of files, file system size
checks, and creation of the scratch file are listed below.

C option?

Cis not a legal option to fsck; legal options are -y, -n, -s,
-S, -t, -r, -q, and -D. Fsck terminates on this error con­
dition. See the fsck(lM) entry in the VniP/us+ Administrator

(- Manual for further details.

I
'
' ~

Bad - t option

The -t option is not followed by a file name. Fsck terminates
on this error condition. See the fsck(lM) entry in the
UniP/us+ Administrator Manual for further details.

Invalid -s argument, defaults assumed

The -s option is not suffixed by 3, 4, or blocks·per·
cylinder:blocks·to·skip. Fsck assumes a default value of 400
blocks--per·cylinder and 9 blocks·to·skip. See the fsck(IM)
entry in the UniP/us+ Administrator Manual for further details.

Incompatible options: -nand -s

It is not possible to salvage the free·block list without modify.
ing the file system. Fsck terminates on this error condition.
See the fsck(IM) entry in the UniPius+ Administrator Manual
for further details.

8-13

FSCK

Can not fstat standard input

Fsck's attempt to fstat standard input failed. The occurrence
of this error condition indicates a serious problem which may
require additional assistance. Fsck terminates on this error
condition.

Can not get memory

Fsck's request for memory for its virtual memory tables failed.
The occurrence of this error condition indicates a serious prob·
!em which may require additional assistance. Fsck terminates
on this error condition.

Can not open checkall file: F

The default file system checkall file F (usually /etc/checkal/)
cannot be opened for reading. Fsck terminates on this error
condition. Check access modes of F.

Can not stat root

Fsck's request for statistics about the root directory"/" failed.
The occurrence of this error condition indicates a serious prob­
lem which may require additional assistance. Fsck terminates
on this error condition.

Can not stat F

Fsck 's request for statistics about the file system F failed. It
ignores this file system and continues checking the next file
system given. Check access modes of F.

F is not a block or character device

Fsck has been given a regular file name by mistake. It ignores
this file system and continues checking the next file system
given. Check file type of F.

8-14

FSCK

Can not open F r- The file system F cannot be opened for reading. It ignores this
-'----- file system and continues checking the next file system given.

Check access modes of F.

Size check: fsize X isize Y

More blocks are used for the inode list Y than there are blocks
in the file system X, or there are more than 65,535 inodes in
the file system. It ignores this file system and continues check­
ing the next file system given.

Can not create F

Fsck's request to create a scratch file F failed. It ignores this
file system and continues checking the next file system given.
Check access modes of F.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck's request for moving to a specified block number Bin the
file system failed. The occurrence of this error condition indi­
cates a serious problem which may require additional assistance.

Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check.
Often, however, the problem will persist. This
error condition will not allow a complete check of
the file system. A second run of fsck should be
made to recheck this file system. If block was part
of the virtual memory buffer cache, fsck will ter­
minate with the message "Fatal 1/0 error".

NO Terminate program.

I CAN NOT READ: BLK B (CONTINUE)

Fsck's request for reading a specified block number B in the
file system failed. The occurrence of this error condition

8-15

FSCK

indicates a serious problem which may require additional assis·
tance.

Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check.
Often, however, the problem will persist. This
error condition will not allow a complete check of
the file system. A second run of fsck should be
made to recheck this file system. If block was part
of the virtual memory buffer cache, fsck will ter­
minate with the message "Fatal 110 error".

NO Terminate program.

CAN NOT WRITE: BLK B (CONTINUE)

Fsck's request for writing a specified block number Bin the file
system failed. The disk is write-protected.

Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check.
Often, however, the problem will persist. This
error condition will not allow a complete check of
the file system. A second run of fsck should be
made to recheck this file system. If block was part
of the virtual memory buffer cache, fsck will ter­
minate with the message "Fatal 1/0 error".

NO Terminate program.

6.3 Phase l: Check Blocks and Sizes

This phase concerns itself with the inode list. This part lists
error conditions resulting from checking inode types, setting up
the zero-link-count table, examining inode block numbers for
bad or duplicate blocks, checking inode size, and checking
inode format.

8-16

FSCK

UNKNOWN FILE TYPE I-I (CLEAR)

(' The mode word of the inode 1 indicates that the inode is not a
''---- special character inode, regular inode, or directory inode.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents. This
will always invoke the UNALLOCATED error
condition in Phase 2 for each directory entry
pointing to this inode.

NO Ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated inodes with a
link count of zero has no more room. Recompile fsck with a
larger value of MAXLNCNT.

Possible responses to CONTINUE prompt are:

YES Continue with program. This error condition will
not allow a complete check of the file system. A
second run of fsck should be made to recheck this
file system. If another allocated inode with a zero
link count is found, this error condition is
repeated.

NO Terminate program.

B BAD I-I

Inode I contains block number B with a number lower than the
number of the first data block in the file system or greater than
the number of the last block in the file system. This error con­
dition may invoke the EXCESSIVE BAD BLKS error condition
in Phase 1 if inode I has too many block numbers outside the
file system range. This error condition will always invoke the
BAD/DUP error condition in Phase 2 and Phase 4.

8-17

FSCK

EXCESSIVE BAD BLKS 1-1 (CONTINUE)

There is more than a tolerable number (usually 10) of blocks
with a number lower than the number of the first data block in
the file system or greater than the number of the last block in
the file system associated with inode /.

Possible responses to CONTINUE prompt are:

YES Ignore the rest of the blocks in this inode and
continue checking with next inode in the file sys­
tem. This error condition will not allow a com­
plete check of the file system. A second run of
fsck should be made to recheck this file system.

NO Terminate program.

8 DUP 1-1

!node 1 contains block number B which is already claimed by
another inode. This error condition may invoke the EXCES­
SIVE DUP BLKS error condition in Phase 1 if inode I has too
many block numbers claimed by other inodes. This error con­
dition will always invoke Phase 1 b and the BAD/DUP error
condition in Phase 2 and Phase 4.

EXCESSIVE DUP BLKS I- I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks
claimed by other inodes.

Possible responses to CONTINUE prompt are:

YES Ignore the rest of the blocks in this inode and
continue checking with next inode in the file sys­
tem. This error condition will not allow a com­
plete check of the file system. A second run of
fsck should be made to recheck this file system.

8-18

FSCK

NO Terminate program.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers
has no more room. Recompile fsck with a larger value of
DUPTBLSIZE.

Possible responses to CONTINUE prompt are:

YES Continue with program. This error condition will
not allow a complete check of the file system. A
second run of fsck should be made to recheck this
file system. If another duplicate block is found,
this error condition will repeat.

NO Terminate program.

POSSIBLE FILE SIZE ERROR 1-1

The inode I size does not match the actual number of blocks
used by the inode. This is only a warning. If the - q option is
used, this message is not printed.

DIRECTORY MISALIGNED 1-1

The size of a directory inode is not a multiple of the size of a
directory entry (usually 16). This is only a warning. If the -q
option is used, this message is not printed.

PARTIALLY ALLOCATED !NODE 1-1 (CLEAR)

Inode I is neither allocated nor unallocated.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

8-19

FSCK

6.4 Phase lB: Rescan for More Dups

When a duplicate block is found in the file system, the file sys­
tem is rescanned to find the inode which previously claimed
that block. This part lists the error condition when the dupli­
cate block is found.

B DUP 1-1

Inode I contains block number B which is already claimed by
another inode. This error condition will always invoke the
BAD/DUP error condition in Phase 2. Inodes with overlapping
blocks may be determined by examining this error condition
and the DUP error condition in Phase I.

6.5 Phase 2: Check Pathnames

This phase concerns itself with removing directory entries
pointing to error conditioned inodes from Phase 1 and Phase
I b. This part lists error conditions resulting from root inode
mode and status, directory inode pointers in range, and direc­
tory entries pointing to bad inodes.

ROOT !NODE UNALLOCATED. TERMINATING

The root inode (always inode number 2) has no allocate mode
bits. The occurrence of this error condition indicates a serious
problem which may require additional assistance. The program
will terminate.

ROOT !NODE NOT DIRECTORY (FIX)

The root inode (usually inode number 2) is not directory inode
type.

Possible responses to FIX prompt are:

YES Replace the root inode's type to be a directory. If
the root inode's data blocks are not directory
blocks, a twy large number of error conditions

8-20

FSCK

r NO

will be produced.

Terminate program.
I

' DUPS/BAD IN ROOT !NODE (CONTINUE)

Phase 1 or Phase lb have found duplicate blocks or bad blocks
in the root inode (usually inode number 2) for the file system.

Possible responses to CONTINUE prompt are:

YES Ignore DUPS/BAD error condition in root inode
and attempt to continue to run the file system
check. If root inode is not correct, then this may
result in a large number of other error conditions.

NO Terminate program.

I OUT OF RANGE 1-1 NAME-F (REMOVE)

A directory entry F has an inode number I which is greater
than the end of the inode list.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

UNALLOCATED 1-1 OWNER-0 MODE-M SIZE=S
MTIME-T NAME=F (REMOVE)

A directory entry F has an inode I without allocate mode bits.
The owner 0, mode M, size S, modify time T, and file name F
are printed. If the file system is not mounted and the -n
option was not specified, the entry will be removed automati­
cally if the inode it points to is character size 0.

Possible responses to REMOVE prompt are:

8-21

FSCK

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD I-I OWNER=O MODE-M SIZE-S
MTIME- T DIR = F (REMOVE)

Phase I or Phase lb have found duplicate blocks or bad blocks
associated with directory entry F, directory inode /. The owner
0, mode M, size S, modify time T, and directory name Fare
printed.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD I-I OWNER=O MODE=M SIZE=S
MTIME-T FILE-F (REMOVE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks
associated with directory entry F, inode /. The owner 0, mode
M, size S, modify time T, and file name Fare printed.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

BAD BLK BIN DIR I=I OWNER=O MODE=M SIZE-S
MTIME-T

This message only occurs when the -q option is used. A bad
block was found in DIR inode /. Error conditions looked for in
directory blocks are nonzero padded entries, inconsistent "."
and " .. " entries, and imbedded slashes in the name field. This
error message indicates that the user should at a later time
either remove the directory inode if the entire block looks bad
or change (or remove) those directory entries that look bad.

8-22

FSCK

6.6 Phase 3: Check Connectivity

(' This phase concerns itself with the directory connectivity seen
"-- in Phase 2. This part lists error conditions resulting from

unreferenced directories and missing or full /ost+found direc·
tories.

UNREF DIR I-I OWNER=O MODE-M SIZE=S
MTIME-T (RECONNECT)

The directory inode 1 was not connected to a directory entry
when the file system was traversed. The owner 0, mode M,
size S, and modify time T of directory inode I are printed.
Fsck will force the reconnection of a nonempty directory.

Possible responses to RECONNECT prompt are:

YES Reconnect directory inode I to the file system in
directory for lost files {usually lost+found). This
may invoke /ost+found error condition in Phase 3
if there are problems connecting directory inode I
to /ost+found. This may also invoke CON­
NECTED error condition in Phase 3 if link was
successful.

NO Ignore this error condition. This will always
invoke UNREF error condition in Phase 4.

SORRY. NO lost +found DIRECTORY

There is no lost+found directory in the root directory of the file
system; fsck ignores the request to link a directory in
/ost+found. This will always invoke the UNREF error condi­
tion in Phase 4. Check access modes of lost+found. See
fsck(lM) in the UniPius+ Administrator Manual for further
details.

8-23

FSCK

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+}Ound direc-
tory in the root directory of the file system; fsck ignores the ._/
request to link a directory in Jost+}Ound. This will always
invoke the UNREF error condition in Phase 4. Clean out
unnecessary entries in lost+}Ound or make lost+jOund larger.
See fsck(lM) in the UniP/us+ Administrator Manual for further
details.

DIR I-II CONNECTED. PARENT WAS I-12

This is an advisory message indicating a directory inode I I was
successfully connected to the lost+found directory. The parent
inode 12 of the directory inode 11 is replaced by the inode
number of the lost +found directory.

6. 7 Phase 4: Check Reference Counts

This phase concerns itself with the link count information seen
in Phase 2 and Phase 3. This part lists error conditions result­
ing from unreferenced files; missing or full lost+Jbund direc­
tory; incorrect link counts for files, directories, or special files;
unreferenced files and directories; bad and duplicate blocks in
files and directories; and incorrect total free-inode counts.

UNREF FILE I-I OWNER-0 MODE-M SIZE-S
MTIME-T (RECONNECT)

Inode I was not connected to a directory entry when the file
system was traversed. The owner 0, mode M, size S, and
modify time T of in ode I are printed. If the - n option is not
set and the file system is not mounted, empty files will not be
reconnected and will be cleared automatically.

Possible responses to RECONNECT prompt are:

YES Reconnect inode I to file system in the directory
for lost files (usually lost+found). This may
invoke lost+jbund error condition in Phase 4 if

8-24

FSCK

there are problems connecting inode I to
lost+ fOund.

NO Ignore this error condition. This will always
invoke CLEAR error condition in Phase 4.

SORRY. NO lost+found DIRECTORY

There is no Jost+}Ound directory in the root directory of the file
system; fsck ignores the request to link a file in lost +}Ound.
This will always invoke CLEAR error condition in Phase 4.
Check access modes of lost+ }Ound.

SORRY. NO SPACE IN lost +found DIRECTORY

There is no space to add another entry to the lost+ found direc­
tory in the root directory of the file system~ fsck ignores the
request to link a file in lost+}Ound. This will always invoke the
CLEAR error condition in Phase 4. Check size and contents of
/ost+}Ound.

(CLEAR)

The inode mentioned in the immediately previous error condi­
tion cannot be reconnected.

Possible responses to CLEAR prompt are:

YES Deallocate inode mentioned in the immediately
previous error condition by zeroing its contents.

NO Ignore this error condition.

LINK COUNT FILE 1-1 OWNER-0 MODE=M SIZE-S
MTIME=T COUNT-X SHOULD BEY (ADJUST)

The link count for inode 1, which is a file, is X but should be
Y. The owner 0, mode M, size S, and modify time T are

printed.

8-25

FSCK

Possible responses to ADJUST prompt are:

YES Replace link count of file inode I with Y.

NO Ignore this error condition.

LINK COUNT DIR I-I OWNER-0 MODE-M SIZE-S
MTIME-T COUNT-X SHOULD BEY (ADJUST)

The link count for inode 1, which is a directory, is X but should
be Y. The owner 0, mode M, size S, and modify time T of
directory inode 1 are printed.

Possible responses to ADJUST prompt are:

YES Replace link count of directory inode I with Y.

NO Ignore this error condition.

LINK COUNT F I-I OWNER-0 MODE-MSIZE-S
MTIME-T COUNT-X SHOULD BEY (ADJUST)

The link count for F inode 1 is X but should be Y. The file
name F, owner 0, mode M, size S, and modify time T are
printed.

Possible responses to ADJUST prompt are:

YES Replace link count of inode I with Y.

NO Ignore this error condition.

UNREF FILE I-I OWNER-0 MODE-M SIZE-S
MTIME-T (CLEAR)

Inode /, which is a file, was not connected to a directory entry
when the file system was traversed. The owner 0, mode M R,
size S, and modify time T of inode 1 are printed. If the -n
option is not set and the file system is not mounted, empty files
will be cleared automatically.

8-26

FSCK

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

UNREF DIR I-I OWNER=O MODE-M SIZE=S
MTIME=T (CLEAR)

Inode /, which is a directory, was not connected to a directory
entry when the file system was traversed. The owner 0, mode
M, size S, and modify time T of inode I are printed. If the
- n option is not set and the file system is not mounted, empty
directories will be cleared automatically. Nonempty directories
will not be cleared.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

Ignore this error condition.

BAD/DUP FILE I=I OWNER=O MODE=M SIZE=S
MTIME=T (CLEAR)

Phase 1 or Phase lb have found duplicate blocks or bad blocks
associated with file inode /, The owner 0, mode M, size S,
and modify time T of inode I are printed.

Possible responses to CLEAR prompt are:

YES Deallocate inode 1 by zeroing its contents.

NO Ignore this error condition.

BAD/DUP DIR I=I OWNER-0 MODE-M SIZE-S
MTIME=T (CLEAR)

(Phase l or Phase 1 b have found duplicate blocks or bad blocks
associated with directory inode /. The owner 0, mode M, size
S, and modify time T of inode 1 are printed.

8-27

FSCK

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in
the superblock of the file system. If the -q option is specified,
the count will be fixed automatically in the superblock.

Possible responses to FIX prompt are:

YES Replace count in superblock by actual count.

NO Ignore this error condition.

6.8 Phase 5: Check Free List

This phase concerns itself with the free-block list. This part
lists error conditions resulting from bad blocks in the free-block
list, bad free-blocks count, duplicate blocks in the free-block
list, unused blocks from the file system not in the free-block
list, and the total free-block count incorrect.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usu­
ally 10) of blocks with a value less than the first data block in
the file system or greater than the last block in the file system.

Possible responses to CONTINUE prompt are:

YES Ignore rest of the free-block list and continue exe­
cution of fsck. This error condition will always
invoke "BAD BLKS IN FREE LIST" error condi­
tion in Phase 5.

NO Terminate program.

8-28

(
'

FSCK

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usu­
ally 10) of blocks claimed by inodes or earlier parts of the free­
block list.

Possible responses to CONTINUE prompt are:

YES Ignore the rest of the free-block list and continue
execution of fsck. This error condition will
always invoke "DUP BLKS IN FREE LIST" error
condition in Phase 5.

NO Terminate program.

BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater than 50
or less than 0. This error condition will always invoke the
"BAD FREE LIST" condition in Phase 5.

X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower than
the first data block in the file system or greater than the last
block in the file system. This error condition will always invoke
the "BAD FREE LIST" condition in Phase 5.

X DUP BLKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list block
were found in the free-block list. This error condition will
always invoke the "BAD FREE LIST" condition in Phase 5.

X BLK(S) MISSING

X blocks unused by the file system were not found in the free­
block list This error condition will always invoke the "BAD
FREE LIST" condition in Phase 5.

8-29

FSCK

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the
superblock of the file system.

Possible responses to FIX prompt are:

YES Replace count in superblock by actual count.

NO Ignore this error condition.

BAD FREE LIST (SALVAGE)

Phase 5 has found bad blocks in the free-block list, duplicate
blocks in the free-block list, or blocks missing from the file sys­
tem. If the -q option is specified, the free-block list will be
salvaged automatically.

Possible responses to SALVAGE prompt are:

YES Replace actual free-block list with a new free­
block list. The new free-block list will be ordered
to reduce time spent by the disk waiting for the
disk to rotate into position.

NO Ignore this error condition.

6.9 Phase 6: Salvage Free List

This phase concerns itself with the free-block list reconstruc­
tion. This part lists error conditions resulting from the blocks­
to-skip and blocks-per-cylinder values.

Default free-block list spacing assumed

This is an advisory message indicating the blocks-to-skip is
greater than the blocks-per-cylinder, the blocks-to-skip is less
than l, the blocks-per-cylinder is less than l, or the blocks­
per-cylinder is greater than 500. The default values of 9
blocks-to-skip and 400 blocks-per-cylinder are used. See
fsck(lM) in the UniP/us+ Administrator Manual for further

8-30

(
'

FSCK

details.

6.10 Cleanup

Once a file system has been checked, a few cleanup functions
are performed. This part lists advisory messages about the file
system and modify status of the file system.

X files Y blocks Z free

This is an advisory message indicating that the file system
checked contained X files using Y blocks leaving Z blocks free
in the file system.

"' BOOT UNIX (NO SYNC!) ...,

This is an advisory message indicating that a mounted file sys­
tem or the root file system has been modified by fsck. If the
UniPius+ system is not rebooted immediately without sync,
the work done by fsck may be undone by the in-core copies of
tables the UniPlus+ system keeps.

••••• FILE SYSTEM WAS MODIFIED *"'*"'*
This is an advisory message indicating that the current file sys­
tem was modified by fsck.

8-31

r

c

Chapter 9: LP SPOOLING SYSTEM

CONTENTS

1. Introduction . • • •

2. Overview of LP Features
2.1 Definitions
2.2 Commands
2.3 Commands for LP Administrators

3. Installing LP , • •

4. Configuring LP-The "Lpadmin"
Command • • . • • • • •
4.1 Introducing New Destinations
4.2 Modifying Existing Destinations
4.3 Specifying the System Default

Destination • • . . • • ,
4.4 Removing Destinations

5. Making an Output Request-The "Lp"
Command •••••••

6. Finding LP Status- "Lpstat"

7. Cancelling Requests-''Cancel''

8. Allowing and Refusing Requests-Accept and
Reject • • • • • • • • • • • • •

9. Allowing and Inhibiting Printing-Enable and
Disable • • • • • •

10. Moving Requests Between Destinations-
"Lprnove" . • • • • • • • • .

11. Stopping and Starting the Scheduler-"Lpshut" and
·~Lpsched" o o o o o

12. Printer Interface Programs

- i-

I

I
I
2
3

3

4
4
6

8
8

9

10

11

11

12

13

14

15

13. Setting up Hard-Wired Devices and Login Terminals
as LP Printers . • . .
13.1 Hard-Wired Devices
13.2 Login Terminals

14. Summary - . • . . •

- ii -

17
18
19

20

Chapter 9

LP SPOOLING SYSTEM

1. Introduction

The line printer (LP) program is a series of commands that
perform diverse spooling functions under UniPlus+. Since the
primary LP application is off-line printing, this document
focuses mainly on spooling to line printers. LP allows adminis­
trators to spool to a collection of line printers of any type and
to group printers into logical classes to maximize the
throughput of the devices. Users can:

• Queue and cancel print requests.

• Prevent and allow queuing to devices.

• Start and stop LP from processing requests.

• Change printer configuration.

• Find status of the LP system.

This chapter describes the role of an LP administrator.

2. Overview of LP Features

2.1 Definitions

We define several terms before presenting a brief summary of
LP commands. The LP was designed to meet the needs of
users on different UniPlus+ systems. Changes to the LP
configuration are performed by the Ipadmin OM) command.

LP makes a distinction between printers and printing devices.
A device is a physical peripheral device or a file and is
represented by a full UniPlus+ system pathname. A printer is a
logical name that represents a device. At different times, a

9-1

LP SPOOLING

printer may be associated with different devices. A class is a
name given to an ordered list of printers. Every class must
contain at least one printer. Each printer may be a member of
zero or more classes. A destination is a printer or a class. One
destination may be designated as the system dejQult destination.
The lp{t) command directs all output to this destination unless
the user specifies otherwise. Output that is routed to a printer
will be printed only by that printer, whereas output directed to
a class will be printed by the first available class member.

Each invocation of lp creates an output request that consists of
the files to be printed and options from the lp command line.
An interface program which formats requests must be supplied
for each printer. The LP scheduler, lpsched(IM), services
requests for all destinations by routing requests to interface
programs to do the printing on devices. An LP configuration
for a system consists of devices, destinations, and interface pro­
grams.

2.2 Commands

2.2.1 Commands for General Use

The Ip(l) command is used to request printing files. It creates
an output request and returns a request id of the form

dest-seqno

to the user, where seqno is a unique sequence number across
the entire LP system and dest is the destination where the
request was routed.

Cancel cancels output requests. The user supplies request ids
as returned by lp or printer names, in which case the currently
printing requests on those printers are canceled.

Disable prevents lpsched from routing output requests to
printers.

9-2

LP SPOOLING

Enable(l) allows lpsched to route output requests to printers.

2.3 Commands for LP Administrators

Each LP system must designate a person or persons as LP
administrator to perform the restricted functions listed below.
Either the superuser or any user who is logged into the
UniPlus+ system as lp qualifies as an LP administrator. All LP
files and commands are owned by lp. The following commands
are described in more detail later in this chapter.

lpadmin(lM)

lpsched(IM)

lpsbut

accept OM)

reject

lpmove

3. Installing LP

Modifies LP configuration. Many features of
this command cannot be used when lpsched
is running.

Routes output requests to interface programs
which do the printing on devices.

Stops lpsched from running. All printing
activity is halted, but other LP commands
may still be used.

Allows lp to accept output requests for desti·
nations.

Prevents lp from accepting requests for des­
tinations.

Moves output requests from one destination
to another. Whole destinations may be
moved at one time. This command cannot
be used when lpscbed is running.

Add the following code to !etc/rc.

rm - f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched
echo "LP scheduler started"

9-3

LP SPOOLING

This starts the LP scheduler each time that UniPlus+ is res­
tarted.

PRECAUTIONS

I. The files under the /usr/spool/lp directory should be
modified only by LP commands.

2. All LP commands require set-user-id permission. If this
is removed, the commands will fail.

4. Configuring LP- The ''Lpadmin'' Command

Changes to the LP configuration should be made by using the
Ipadmin command and not by hand. Lpadmln will not attempt
to alter the LP configuration when lpsched is running, except
where explicitly noted below.

4.1 Introducing New Destinations

The following information must be supplied to Ipadmin when
introducing a new printer:

1. The printer name (- p printer) is an arbitrary name which
must conform to the following rules:

• It must be no longer than 14 characters.

• It must consist solely of alphanumeric characters and
underscores.

• It must not be the name of an existing LP destina­
tion (printer or class).

2. The device associated with the printer (-v device). This
is the pathname of a hard-wired printer, a login terminal,
or other file that is writable by lp.

3. The printer interface program. This may be specified in
one of three ways:

9-4

• It may be selected from a list of model interfaces
supplied with LP (-m model).

LP SPOOLING

• It may be the same interface that an existing printer
uses (-e printer).

• It may be a program supplied by the LP administra­
tor {-I interface).

Information which need not always be supplied when creating a
new printer includes:

1. The user may specify - h to indicate that the device for
the printer is hardwired or the device is the name of a file
(this is assumed by default). If, on the other hand, the
device is the pathname of a login terminal, then -I must
be included on the command line. This indicates to
fpsched that it must automatically disable this printer each
time fpsched starts running. This fact is reported by lpstat
when it indicates printer status:

$ lpstat -pa
printer a (login terminal) disabled Oct 31 11:15 -

disabled by scheduler: login terminal

This is done because device names for login terminals can
be (and usually are) associated with different physical
devices from day to day. 1f the scheduler did not take
this action, somebody might log in and be surprised that
LP is spooling to his/her terminal!

2. The new printer may be added to an existing class or
added to a new class (-cclass). New class names must
conform to the same rules for new printer names.

EXAMPLES

The following examples wiU be referenced by further examples
in later sections.

l. Create a printer called prl whose device is /dev/printer and
whose interface program is the model hp interface:

9-S

LP SPOOLING

$/usr/lib/lpadrnin -pprl -v/dev/printer -mhp

2. Add a printer called pr2 whose device is /devhty22 and
whose interface is a variation of the model prx interface.
It is also a login terminal:

$ cp /usr/spool/lp/rnodel/prx xxx
< edit XXX >

$/usr/lib/lpadmin -ppr2 -v/dev/tty22 -ixxx -I

3. Create a printer called pr3 whose device is /devltty23. The
pr3 will be added to a new class called ell and will use the
same interface as printer pr2:

$/usr/lib/lpadmin -ppr3 -v/dev/tty23 -epr2 -cell

4.2 Modifying Existing Destinations

Modifications to existing destinations must always be made with
respect to a printer name (-pprinter). The modifications may
be one or more of the following:

1. The device for the printer may be changed (-vdevice).
If this is the only modification, then this may be done
even while fpsched is running. This facilitates changing
devices for login terminals.

2. The printer interface program may be changed (-mmo­
del, -eprinter, -iinterface).

3. The printer may be specified as hardwired (-h) or as a
login terminal (-I).

4. The printer may be added to a new or existing class
(-cclass).

5. The printer may be removed from an existing class
(- rclass). Removing the last remaining member of a
class causes the class to be deleted. No destination may
be removed if it has pending requests. In that case,
lpmove or cancel should be used to move or delete the
pending requests.

9-6

LP SPOOLING

EXAMPLES

(- These examples are based on the LP configuration created by
..__, those in the previous section.

1. Add printer pr2 to class ell:

$ /usr/lib/lpadmin -ppr2 -cell

2. Change pr2's interface program to the model prx inter­
face, change its device to /devltty24, and add it to a new
class called cl2:

$/usr/lib/lpadmin -ppr2 -mprx -v/dev/tty24 -ccl2

Note that printers pr2 and prJ now use different interface
programs even though pr3 was originally created with the
same interface as pr2. Printer pr2 is now a member of
two classes.

3. Specify printer pr2 as a hard-wired printer:

S/usr/lib/lpadmin -ppr2 -h

4. Add printer prl to class cl2:

S/usr/lib/lpadmin -pprl -cc12

The members of class cl2 are now pr2 and prl, in that
order. Requests routed to class cl2 will be serviced by pr2
if both pr2 and prl are ready to print; otherwise, they will
be printed by the one which is next ready to print.

5. Remove printers pr2 and pr3 from class ell:

$/usr/lib/lpadmin -ppr2 -rcll
$/usr/lib/lpadmin -ppr3 -rcll

Since pr3 was the last remaining member of class ell, the
class is removed.

6. Add pr3 to a new class called cl3.

S/usr/lib/lpadmin -ppr3 -ccl3

?-7

LP SPOOLING

4.3 Specifying the System Default Destination

The system default destination may be changed even when
lpsched is running.

EXAMPLES

l. Establish class ell as the system default destination:

$ /usr/lib/lpadmin -dell

2. Establish no default destination:

$/usr/lib/lpadmin -d

4.4 Removing Destinations

Classes and printers may be removed only if there are no pend­
ing requests that were. routed to them. Pending requests must
either be canceled using cancel or moved to other destinations
using lpmove before destinations may be removed. If the
removed destination is the system default destination, then the
system will have no default destination until the default desti­
nation is respecifi.ed. When the last remaining member of a
class is removed, then the class is also removed. Removing a
class never implies removing printers.

EXAMPLES

1. Make printer prl the system default destination:

$ /usr/lib/lpadmin -dprl

Remove printer prl:

$ /usr/lib/lpadmin -xprl

Now there is no system default destination.

2. Remove printer pr2:

$ /usr/lib/lpadmin -xpr2

Class cl2 is also removed since pr2 was its only member.

9-8

r
'

LP SPOOLING

3. Remove class cl3:

$ /usr/lib/lpadmin -xcl3

Class cl3 is removed, but printer pr3 remains.

5. Making an Output Request-The "Lp" Command

Once LP destinations have been created, users may request
output by using the lp command. The request id that is
returned may be used to see if the request has been printed or
to cancel the request.

The LP program determines the destination of a request by
checking the following list in order:

• If the user specifies - d dest on the command line, then
the request is routed to dest.

• If the environment variable LPDEST is set, the request is
routed to the value of LPDEST.

• If there is a system default destination, then the request is
routed there.

• The request is rejected.

EXAMPLES

1. There are at least four ways to print the password file on
the system default destination:

lp /etc/passwd
lp < /etc/passwd
cat /etc/passwd lip
lp -c /etc/passwd

The last three ways print copies of the file, whereas the
first way prints the file directly. Thus, if the file is
modified between the time the request is made and the
time it is actually printed, the changes will be reflected in
the output.

9-9

LP SPOOLING

2. Print two copies of file abc on printer xyz and title the
output "my file":

pr abc [lp - dxyz - n2 - t"my file"

3. Print file xxx on a Diablo* 1640 printer called zoo in 12-
pitch and write to the user's terminal when printing has
completed:

lp -dzoo -o12 -w xxx

In this example, "12" is an option that is meaningful to
the model Diablo 1640 interface program that prints out­
put in 12-pitch mode [see Ipadmin {1M)].

6. Finding LP Status-"Lpstat"

The lpstat command finds status information about LP
requests, destinations, and the scheduler.

EXAMPLES

1. List the status of all pending output requests made by this
user:

lpstat

The status information for a request includes the request
id, the logname of the user, the total number of charac­
ters to be printed, and the date and time the request was
made.

2. List the status of printers pl and p2:

lpstat -ppl,p2

• Registered trademark of Xerox Corporation

9-10

LP SPOOLING

7. Cancelling Requests- "Cancel"

You can cancel LP requests with the cancel command. Two
kinds of arguments may be given to the command-request ids
and printer names. The requests named by the request ids are
canceled and requests that are currently printing on the named
printers are canceled. Both types of arguments may be inter­
mixed.

EXAMPLE

Cancel the request that is now printing on printer xyz:

cancel xyz

If the user that is canceling a request is not the same one that
made the request, then mail is sent to the owner of the request.
LP allows any user to cancel requests in order to eliminate the
need for users to find LP administrators when unusual output
should be purged from printers.

8. Allowing and Refusing Requests-Accept and Reject

When a new destination is created, lp rejects requests that are
routed to it. When the LP administrator is sure that it is set up
correctly, he or she should allow lp to accept requests for that
destination. The aa:ept command performs this function.

Sometimes it is necessary to prevent lp from routing requests
to destinations. If printers have been removed or are waiting to
be repaired or if too many requests are building for printers,
then you may want to have lp reject requests for those destina­
tions. The reject command performs this function. After the
condition that led to the rejection of requests has been
remedied, the accept command should be used to allow
requests to be taken again.

9-11

LP SPOOLING

The acceptance status of destinations is reported by the -a
option of lpstat.

EXAMPLES

1. Cause lp to reject requests for destination xyz:

/usr/lib/reject - r"printer xyz needs repair" xyz

Any users that try to route requests to xyz will encounter
the following:

$ lp - dxyz file
lp: can not accept requests for destination "xyz"

-- printer xyz needs repair

2. Allow lp to accept requests routed to destination xyz:

/usr/lib/accept xyz

9, Allowing and Inhibiting Printing-Enable and Dis­
able

The enable command allows the LP scheduler to print requests
on printers. That is, the scheduler routes requests only to the
interface programs of enabled printers. Note that it is possible
to enable a printer and at the same time prevent further
requests from being routed to it.

The disable command will undo the effects of the enable com·
mand. It prevents the scheduler from routing requests to
printers, independently of whether lp is allowing them to accept
requests. Printers may be disabled for several reasons including
malfunctioning hardware, paper jams, and end of day shut·
downs. If a printer is busy at the time it is disabled, then the
request that was printing will be reprinted in its entirety either
on another printer (if the request was originally routed to a
class of printers) or on the same one when the printer is re·
enabled. The -c option cancels the currently printing requests
on busy printers in addition to disabling the printers. This is
useful if strange output is causing a printer 'to behave

9-12

r'
'

abnormally.

EXAMPLE

Disable printer xyz because of a paper jam:

$disable -r"paper jam" xyz
printer "xyz" now disabled

Find the status of printer xyz:

$ Ips tat - pxyz
printer "xyz" disabled since Jan 5 10:15

paper jam

Now, re-enable xyz:

$enable xyz
printer "xyz" now enabled

LP SPOOLING

--~ 10. Moving Requests Between Destinations-
"Lpmove"

Occasionally, it is useful for LP administrators to move output
requests between destinations. For instance, when a printer is
down for repairs, it may be desirable to move all of its pending
requests to a working printer. This is one way to use the
lpmove command. The other use of this command is moving
specific requests to a different destination. Lpmove will refuse
to move requests while the LP scheduler is running.

EXAMPLES

1. Move all requests for printer abc to printer xyz:

$ /usr/lib/lpmove abc xyz

All of the moved requests are renamed from abc·nnn to
xyz·nnn. As a side effect, destination abc is no longer
accepting further requests.

9-13

LP SPOOLING

2. Move requests zoo·543 and abc-1200 to printer xyz:

$ /usr/lib/lpmove zoo-543 abc-1200 xyz

The two requests are now renamed xyz-543 and xyz-1200.

11. Stopping and Starting the Scbeduler-"Lpshut"
and "Lpsched"

Lpsched is the program that routes the output requests (made
with Ip) through the appropriate printer interface programs to
be printed on line printers. Each time the scheduler routes a
request to an interface program, it records an entry in the log
file, lusr/spoo/1/p/log. This entry contains the logname of the
user that made the request, the request id, the name of the
printer that the request is being printed on, and the date and
time that printing first started. If a request has been restarted,
more than one entry in the log file may refer to the request.
The scheduler also records error messages in the log file.
When lpsched is started, it renames !usr!spool/lp!log to
/usrlspool/lploldlog and starts a new log file.

No printing will be performed by the LP system unless lpsched
is running. Use the command

lpstat -r

to find the status of the LP scheduler.

Lpsched is normally started by the /etc/rc program, as
described above, and continues to run until the UniPius+ sys­
tem is shut down. The scheduler operates in the !usr/spool/lp
directory. When it starts running, it will exit immediately if a
file called SCHEDLOCK exists. Otherwise, it creates this file to
prevent more than one scheduler from running at the same
time.

Occasionally, it is necessary to shut down the scheduler to
reconfigure LP or to rebuild the LP software. The command

9-14

LP SPOOLING

/usr/lib/lpshut

causes lpsched to stop running and terminates all printing. All
requests that were in the middle of printing will be reprinted in
their entirety when the scheduler is restarted.

To restart the LP scheduler, use the command

/usr/lib/lpsched

Shortly after this command is entered, lpstat should report that
the scheduler is running. If not, it is possible that a previous
invocation of lpsched exited without removing SCHEDLOCK,
so try the following:

em -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched

(The scheduler should be running now.

12. Printer Interface Programs

Every LP printer must have an interface program which does
the actual printing on the device that is currently associated
with the printer. Interface programs may be shell procedures,
C programs, or any other executable program. The LP model
interfaces are all written as shell procedures and can be found
in the lusr/spool/lp/mode/ directory. At the time lpsched routes
an output request to a printer P, the interface program for P is
invoked in the directory lusr/spool/lp as follows:

9-15

LP SPOOLING

interface/P id user title copies options file ...
where
id is the request id returned by lp
user is logname of user who made the request
title is optional title specified by the user
copies is number of copies requested by user
options is a blank-separated list of class or
printer-dependent options specified by user
file is the full pathname of a file to be printed

EXAMPLES

The following examples are requests made by user "smith"
with a system default destination of printer "xyz". Each exam­
ple lists an lp command line followed by the corresponding
command line generated for printer xyz's interface program:

l. lp /etc/passwd /etc/group
interface/xyz xyz-52 smith"" 1 ""/etc/passwd /etc/group

2. pr /etc/passwd lip -t"users~ -n5
interface/xyz xyz- 53 smith users 5 ""

/usr/spool/lp/request/xyz/ dO- 53

3. lp /etc/passwd -oa -ob
interface/xyz xyz-54 smith"" 1 "a b" /etc/passwd

When the interface program is invoked, its standard input
comes from /dev/null and both the standard output and standard
error output are directed to the printer's device. Devices are
opened for reading as well as writing when file modes permit.
When a device is a regular file, all output is appended to the
end of the file.

Given the command line arguments and the output directed to
a device, interface programs may format their output in any
way they choose. Interface programs must ensure that the
proper stty modes (terminal characteristics such as baud rate,
output options, etc.) are in effect on the output device. This

9-16

LP SPOOLING

may be done in a shell interface only if the device is opened for r reading:

stty mode ... < &1

That is, take the standard input for the stty command from the
device.

When printing has completed, it is the responsibility of the
interface program to exit with a code indicative of the success
of the print job. Exit codes are interpreted by lpsched as fol­
lows:

CODE

0

l to 127

greater than 127

MEANING TO LPSCHED

The print job has completed successfully.

A problem was encountered in printing
this particular request (e.g., too many
nonprintable characters). This problem
will not affect future print jobs. Lpsched
notifies users by mail that there was an
error in printing the request.

These codes are reserved for internal use
by lpsched. Interface programs must not
exit with codes in this range.

When problems that are likely to affect future print jobs occur
(e.g., a device filter program is missing), the interface programs
would be wise to disable printers so that print requests are not
lost. When a busy printer is disabled, the interface program
will be terminated with signal 15.

13. Setting up Hard~ Wired Devices and Login Termi~
r- nals as LP Printers
'

9-17

LP SPOOLING

13.1 Hard-Wired Devices

As an example of how to set up a hard-wired device for use as
an LP printer, consider using tty line 15 as printer xyz. As
superuser, perform the following:

1. Avoid unwanted output from non-LP processes and
ensure that LP can write to the device:

$ chown lp /dev/ttyl5
$ chmod 600 /dev/ttylS

2. Change /etclinittab so that ttyl5 is not a login terminal. In
other words, ensure that /etc/getty is not trying to log users
in at this terminal. Change the entries for tty15 to:

15:2:off:/etc/getty -t60 tty15 1200

Enter the command:

$ telinit Q

If there is currently an invocation of /etc/getty running on
ttylS, kill it. When the UniPlus+ system is rebooted,
tty IS will be initialized with default stty modes. Thus, it
is up to LP interface programs to establish the proper
baud rate and other stty modes for correct printing to
occur.

3. Introduce printer xyz to LP using the model prx interface
program:

$/usr/lib/lpadmin -pxyz -v/dev/ttylS -mprx

4. When xyz is created, it will initially be disabled and lp will
be rejecting requests routed to it. If it is desired, allow lp
to accept requests for xyz:

/usr/lib/accept xyz

This will allow requests to build up for xyz and to print
when it is enabled at a later time.

S. When it is desired for printing to occur, be sure that the
printer is ready to receive output. For several printers,

9-18

LP SPOOLING

this means that the top of form has been adjusted and
that the printer is on·line. Enable printing to occur on
xyz:

enable xyz

When requests have been routed to xyz, they will begin
printing.

13.2 Login Terminals

Login terminals may also be used as LP printers. To do this
for a Diablo 1640 terminal called abc, perform the following:

1. Introduce printer abc to LP using the model 1640 inter­
face program:

$ /usr/lib/lpadmin -pabc -v/dev/null -m1640 -I

Note that /dev/nu/1 is used as abc's device because we will
specify the actual device each time that abc is enabled.
This device may be different from day to day. When abc
is created, it will initially be disabled~ and lp will be reject­
ing requests routed to it. If it is desired, allow lp to
accept requests for abc:

/usr/lib/accept abc

This will allow requests to build up for abc and to be
printed when it is enabled at a later time. It is not advis-­
able to enable abc for printing, however, until the follow·
ing steps have been taken.

2. Log terminal in if this has not already been done.

3. Assuming the tty(l) command reports that this terminal
is !dev!tty02, associate this device with printer abc:

$/usr/lib/lpadmin -pabc -v/dev/tty02

Note that Ipadmin may be used only by an LP administra·
tor. If it is desired for other users to routinely perform
this step, then an LPA may establish a program owned by
lp or by root with set·user·id permission that performs

9-19

LP SPOOLING

this function.

4. When it is desired for printing to occur, be sure that the
printer is ready to receive output. For several printers,
this means that the top of form has been adjusted.
Enable printing to occur on abc:

enable abc

When requests have been routed to abc, they will begin
printing.

5. When all printing has stopped on abc or when you want it
back as a regular login terminal, you may prevent it from
printing more output:

$ disable abc
printer ''abc" now disabled

If abc is enabled when UniPius+ is rebooted or when
lpsched is restarted, it will be disabled automatically.

14. Summary

The administrative functions of the LP administrator have been
described in detail. These functions include configuring and
reconfiguring LP; maintaining printer interface programs;
accepting, rejecting, and moving print requests; stopping and
starting the LP scheduler; and enabling and disabling printers.
LP offers administrators the following advantages over other
centrally supported printer packages:

• Printers may be grouped into classes.

• LP may be configured to meet the needs of each site.

• Administrators may supply interface programs to format
output in any way desirable.

• LP functions are performed by simple commands and not
by hand.

9-20

c

c

Chapter 10: SYSTEM ACTIVITY PACKAGE

CONTENTS

1. Introduction

2. System Activity Counters

3. System Activity Commands
3.1 The "Sar" Command .
3.2 The "Sag" Command •
3.3 The "Timex" Command
3.4 The "Sadp" Command

4. Daily Report Generation
4.1 Facilities • • • . .
4.2 Suggested Operational Setup

5. File Descriptions . . •

6. The "Sysinfo" Structure

7. Reporting Items
7.1 CPU Utilization , .
7.2 Cache Hit Ratio . .
7.3 Disk or Tape 1/0 Activity
7.4 Queue Activity • • • •
7.5 The Rest of System Activity

- i -

I

2

6
6
7
7
8

9
9
9

11

13

15
15
15
15
15
15

r'
'

Chapter 10

SYSTEM ACTIVITY PACKAGE

1. Introduction

This chapter describes the design and implementation of the
UniPlus+ System Activity Package. UniPlus+ contains several
counters that are incremented as system actions occur. The
system activity package reports UniPlus+ system-wide measure­
ments, including central processing unit (CPU) utilization, disk
and tape input/output (1/0) activities, terminal device activity,
buffer usage, system calls, system switching and swapping, file­
access activity, queue activity, and message and semaphore
activities.

The package has four commands that generate various types of
reports. Procedures that automatically generate daily reports
are also included. The five functions of the activity package
are:

• sar(l) command-allows a user to generate system
activity reports in real-time and to save system activities
in a file for later use.

• sag{lG) command-displays system activity in a graphical
form.

• sadp(l) command-samples disk activity once every
second during a specified time interval and reports disk
usage and seek distance in either tabular or histogram
form.

• timexO)-a modified tlme(l) command that times a
command and also (optionaUy) reports concurrent system

(' activity and process accounting activity.

• system activity daily reports-provides procedures for
sampling and saving system activities in a data file

10-1

SYSTEM ACTIVITY PACKAGE

periodically and for generating the daily report from the
data file.

The system activity information reported by this package is
derived from a set of system counters located in the operation
system kernel. These system counters are described in the sec·
tion "System Activity Counters." The section "System Activity
Commands" describes the commands provided by this package.
The procedure for generating daily reports is given in "Daily
Report Generation." For a description of the files used by the
system activity package, see the section "File Descriptions."

2. System Activity Counters

UniPius+ manages several counters that record various activi­
ties and provide the basis for the system activity reporting sys­
tem. The data structure for most of these counters is defined
in the sysinjO structure in /usr/include/sys!sysinjO.h. The system
table overflow counters are kept in the syserr structure. The
device activity counters are extracted

1
from the device status

tables. In this version, the I/0 activity of the following devices
is recorded: RP06, RMOS, RS04, RFll, RKOS, RPOJ, RL02,
TMOJ, and TM!I.

The following paragraphs describe the system activity counters
sampled by the system activity package.

Cpu time counters-There are four time counters that may be
incremented at each clock interrupt 60 times per second.
According to the mode the CPU is in at the interrupt (idle,
user1 kernel, and wait for 1/0 completion), one of the cpu[]
counters is incremented.

Lread and lwrite-The tread and !write counters count logical
read and write requests issued by the system to block devices.

10-2

SYSTEM ACTIVITY PACKAGE

Bread and bwrlte-The bread and bwrite counters count the
number of times data is transferred between the system buffers
and the block devices. These actual 1/0s are triggered by logi­
cal 1/0s that cannot be satisfied by the current contents of the
buffers. The ratio of block 1/0 to logical 1/0 is a common
measure of the effectiveness of the system buffering.

Phread and phwrite-The phread and ph write counters count
read and write requests issued by the system to raw devices.

Swapln and swapout-The swapin and swapout counters are
incremented for each system request initiating a transfer from
or to the swap device. More than one request is usually
involved in bringing a process in to or out of memory because
text and data are handled separately. Frequently-used programs
are kept on the swap device and are swapped in rather than
loaded from the file system. The swapin counter reflects these
initial loading operations as well as resumptions of activity,
while the swapout counter reveals the level of actual "swap­
ping " The amount of data transferred between the swap device
and memory are measured in blocks and counted by bswapin
and bswapout.

Pswiteb and syseall-These counters are related to the
management of multiprogramming. Syscal/ is incremented
every time a system call is invoked. The numbers of invoca­
tions of read(2), write(2), fork(2), and exec:(2) system calls
are kept in counters sysread, syswrite, sy:ifork, and sysexec,
respectively. Pswitch counts the times the switcher was
invoked, which occurs when:

1. A system call resulted in a road block

2. An interrupt occurred resulting in awakening a higher
prior~ty process

3. A 1 second clock interrupt occurred.

10-3

SYSTEM ACTIVITY PACKAGE

lget, namei, and dirblk-These counters apply to file-access
operations. /get and namei, in particular, are the names of
UniPlus+ routines. The counters record the number of times
the respective routines are called. Namei is the routine that
performs file system path searches. It searches the various
directory files to get the associated inurnber of a file
corresponding to a special path. /get is a routine called to locate
the inode entry of a file Gnumber). It first searches the in-core
inode table. If the inode entry is not in the table, routine iget
will get the inode from the file system where the file resides
and make an entry in the in-core inode table for the file. /get
returns a pointer to this entry. Namei calls iget, but other file
access routines also call iget. Therefore, counter iget is always
greater than counter namei.

Counter dirblk records the number of directory block reads
issued by the system. The directory blocks read divided by the
number of namei calls estimates the average path length of files.

Runque, runocc, swpque, and swpoa:-These counters record
queue activities. They are implemented in the c/ock.c routine.
At every one~second interval, the clock routine examines the
process table to see whether any processes are in core and in
ready state. If so, the counter runocc is incremented and the
number of such processes are added to counter runque. While
examining the process table, the clock routine also checks
whether any processes in the swap device are in ready state.
The counter ·swpocc is incremented if the swap queue is occu~
pied, and the number of processes in swap queue is added to
counter swpque.

Readch and writech-The readch and writech counters record
the total number of bytes (characters) transferred by the read
and write system calls, respectively.

10-4

SYSTEM ACTIVITY PACKAGE

Monitoring terminal device activities-There are six counters
monitoring terminal device activities. Rcvint, xmtint, and
mdmint are counters measuring hardware interrupt occurrences
for receiver, transmitter, and modem individually. Rawch,
canch, and outch count number of characters in the raw queue,
canonical queue, and output queue. Characters generated by
devices operating in the cooked mode, such as terminals, are
counted in both rawch and (as edited) in conch; but characters
from raw devices, such as communication processors, are
counted only in rawch.

Msg and sema counters-These counters record message send­
ing and receiving activities and semaphore operations, respec­
tively.

Monitoring I/0 activities-As to the 110 activity for a disk or
tape device, four counters are kept for each disk or tape drive
in the device status table. Counter io_ops is incremented when
an 1/0 operation has occurred on the device. It includes block
1/0, swap 1/0, and physical 1/0. lo _bent counts the amount of
data transferred between the device and memory in 512-byte
units. lo_act and io_resp measure the active time and response
time of a device in time ticks summed over all 110 requests
that have completed for each device. The device active time
includes the device seeking, rotating, and data transferring
times, while the response time of an 1/0 operation is from the
time the 1/0 request is queued to the device to the time when
the 1/0 completes.

Inodeovf, fileovf, textovf, and procovf-These counters are
extracted from _ syserr structure. When an overflow occurs in
any of the inode, file, text, and process tables, the correspond­
ing overflow counter is incremented.

10-5

SYSTEM ACTIVITY PACKAGE

3. System Activity Commands

The system activity package provides three commands for gen­
erating various system activity reports and one command for
profiling disk activities. These tools facilitate observation of
system activity during

• A controlled stand-alone test of a large system.

• An uncontrolled run of a program to observe the operat­
ing environment.

• Normal production operation.

Commands sar and sag permit the user to specify a sampling
interval and number of intervals for examining system activity
and then to display the observed level of activity in tabular or
graphical form. The timex command reports the amount of
system activity that occurred during the precise period of exe­
cution of a timed command. The sadp command allows the
user to establish a sampling period during which access location
and seek distance on specified disks are recorded and later
displayed as a tabular summary or as a histogram.

3.1 Tbe "Sar" Command

The sar command can be used in the following two ways:

• When the frequency arguments t and n are specified, it
invokes the data collection program sadc to sample the
system activity counters in the operating system every t
seconds for n intervals and generates system activity
reports in real-time. Generally, you will want to include
the option to save the sampled data in a file for later
examination. The format of the data file is shown in
sar(IM). In addition to the system counters, a time
stamp is also included. It gives the time at which the
sample was taken.

• If no frequency arguments are supplied, it generates sys­
tem activity reports for a specified time interval from an

10-li

SYSTEM ACTIVITY PACKAGE

existing data file that was created by sar at an earlier time.

,__ A convenient use is to run sar as a background process saving
its samples in a temporary file but sending its standard output
to /dev/nu/1. Then an experiment is conducted after which the
system activity is extracted from the temporary file. The sar(l)
manual entry describes the usage and lists various types of
reports. See the section "Reporting Items," which gives the
formula for deriving each reported item.

("""
'

3.2 The "Sag" Command

Sag displays system activity data graphically. It relies on the
data file produced by a prior run of sar after which any column
of data or the combination of columns of data of the sar report
can be plotted. A fairly simple but powerful command syntax
allows the specification of cross plots or time plots. Data items
are selected using the sar column header names. The sar(IG)
manual entry describes its options and usage. The system
activity graphical program invokes graphicsOG) and tplotOG)
commands to have the graphical output displayed on any of the
terminal types supported by tplot.

3.3 The .. Timex" Command

The timex command is an extension of the time(l) command.
Without options, timex behaves like time. In addition to giv~
ing the time information, it can also print a system activity
report and a process accounting report. For all the options
available, refer to the manual entry timex(l). It should be
emphasized that the user and sys times reported in the second
and third lines are for the measured process itself including all
its children while the remaining data (including the "cpu user
%"and "cpu sys %") are for the entire system.

While the normal use of timex will probably be to measure a
single command, multiple commands can also be timed-either
by combining them in an executable file and timing it or by

10-7

SYSTEM ACTIVITY PACKAGE

typing:

timex sh -c "cmdl~ cmdl; ·"

This establishes the necessary parent-child relationships to
correctly extract the user and system times consumed by cmdl,
cmd2, ... (and the shell).

3.4 The "Sadp" Command

Sadp is a user level program that can be invoked independently
by any user. It requires no storage or extra code in the operat­
ing system and allows the user to specify the disks to be moni­
tored. The program is reawakened every second, reads system
tables from /dev/kmem, and extracts the required information.
Because of the I second sampling, only a small fraction of disk
requests are observed; however, comparative studies have
shown that the statistical determination of disk locality is ade­
quate when sufficient samples are collected.

In the operating system, there is an iobuffor each disk drive. It
contains two pointers which are head and tail of the 1/0 active
queue for the device. The actual requests in the queue may be
found in three buffer header pools-system buffer headers for
block 1/0 requests, physical buffer headers for physical 1/0
requests, and swap buffer headers for swap 1/0. Each buffer
header has a forward pointer that points to the next request in
the 110 active queue and a backward pointer that points to the
previous request.

Sadp snapshots the iobuf of the monitored device and the three
buffer header pools once every second during the monitoring
period. It then traces the requests in the 110 queue, records
the disk access location, and seeks distance in buckets of 8-
cylinder increments. At the end of monitoring period, it prints
out the sampled data. The output of sadp can be used to bal­
ance load among disk drives and to rearrange the layout of a
particular disk pack. This command is described in manual

10-8

SYSTEM ACTIVITY PACKAGE

entry sadp(l).

4. Daily Report Generation

The previous part described the commands available to users to
initiate activity observations. It is probably desirable for each
installation to routinely monitor and record system activity in a
standard way for historical analysis. This part describes the
steps that a system administrator may follow to automatically
produce a standard daily report of system activity.

4.1 Facilities

• sadc-The executable module of sadc.c (see "File
Descriptions") which reads system counters from
/dev/kmem and records them to a file. In addition to the
file argument, two frequency arguments are usually
specified to indicate the sampling interval and number of
samples to be taken. In case no frequency arguments are
given, it writes a dummy record in the file to indicate a
system restart.

• sal-The shell procedure that invokes sadc to write sys­
tem counters in the daily data file /usr!adm/sadd where dd
represents the day of the month. It may be invoked with
sampling interval and iterations as arguments.

• sa2-The shell procedure that invokes the sar command
to generate daily report /usr/adm/sa/sardd from the daily
data file /usr/adm/sa/sadd. It also removes daily data files
and report files after 7 days. The starting and ending
times and all report options of sar are applicable to sa2.

4.2 Suggested Operational Setup

It is suggested that the cron (I M) control the normal data col­
lection and report generation operations. For example, the
sample entries in /usr/spool/cron/crontab/sys:

10-9

SYSTEM ACTIVITY PACKAGE

0 • • • 0,6/usr/lib/sa/sal

0 18-7• • 1-5/usr!lib/sa/sal

08-17••1-5/usr/lib/sa/sall2003

would cause the data collection program sadc to be invoked
every hour on the hour. Moreover, depending on the argu·
ments presented, it writes data to the data file one to three
times at every 20 minutes. Therefore, under the control of
cron(lM), the data file is written every 20 minutes between
8:00 and 18:00 on weekdays and hourly at other times.

Note that data samples are taken more frequently during prime·
time on weekdays to make them available for a finer and more
detailed graphical display. It is suggested that sal be invoked
hourly rather than invoking it once every day; this ensures that
if the system crashes data collection will be resumed within an
hour after the system is restarted.

Because system activity counters restart from zero when the
system is restarted, a special record is written on the data file to
reflect this situation. This process is accomplished by invoking
sadc with no frequency arguments within /erc!rc when going to
multiuser state:

su adm -c "/usr/lib/sa/sadc /usrfadm/sa/sa'date +%d'"

CronOM) also controls the invocation of sar to generate the
daily report via shell procedure sa2. One may choose the time
period the daily report is to cover and the groups of system
activity to be reported. For instance, if:

010 • • l-5/usr/lib/sa/sa2 -s 8:00 -e 18:00 -j 3600 -uybd

is an entry in /usr/spoo/kron/crollfab/sys, cron will execute the
sar command to generate daily reports from the daily data file
at 20:00 on weekdays. The daily report reports the CPU utiliza·
tion, terminal device activity, buffer usage, and device activity
every hour from 8:00 to 18:00.

10-10

SYSTEM ACTIVITY PACKAGE

In case of a shortage of the disk space or for any other reason,
these data files and report files can be removed by the
superuser. The manual entry sar(lM) describes the daily
report generation procedure.

5. File Descriptions

The source files and shell programs of the system activity pack·
age are in directory /usr/src/cmd/sa.

sa.h

sadc.c

sar.c

sagbdr.h

saga.c & sagb.c

The system activity header file defines
the structure of data file and device
information for measured devices. It is
included in sadc.c, sar .c, and timex.c.

The data collection program that
accesses /dev/kmem to read the system
activity counters and writes data either
on standard output or on a binary data
file. It is invoked by the sar command
generating. a real-time report. It is also
invoked indirectly by entries in
lusr/spool/cronlcrontab/sys to collect sys­
tem activity data.

The report generation program invokes
sadc to examine system activity data,
generates reports in real-time, and saves
the data to a file for later use. It may
also generate system activity reports
from an existing data file. It is invoked
indirectly by cron to generate daily
reports.

The header file for saga.c and sagb.c. It
contains data structures and variables
used by saga.c and sau;b.c.

The graph generation program that first
invokes sar to format the data of a data
file in a tabular form and then displays

I0-11

SYSTEM ACTIVITY PACKAGE

sal.sh

sa2.sh

timex.c

sadp.c

10-12

the sar data in graphical form.

The shell procedure that invokes sadc to
write data file records. It is activated by
entries in !usr/spoo//cron/crontab!sys.

The shell procedure that invokes sar to
generate the report. It also removes the
daily data files and daily report files after
a week. It is activated by an entry in
/usr!spoollcron/crontab/sys on weekdays.

The program that times a command and
generates a system activity or process
accounting report.

The program that samples and reports
disk activities.

SYSTEM ACTIVITY PACKAGE

6. The "Sysinfo" Structure
(struct sysinfo

time t cpu[4];
#define CPU_IDLE 0
#define CPU_USER I
#define CPU_KERNEL 2
#define CPU_WAIT 3

time_t wait[3];
#define W_IO 0
#define W_SWAP 1
#define W_PIO 2

long bread;
long bwrite;
long lread;
long !write;
long phread;
long phwrite;
long swap in;

r long swapout;
long bswapin;
long bswapout;
long pswitch;
long syscall;
long sysread;
long syswrite;
long sysfork;
long sysexec;
long runque;
long runocc;
long swpque;
long swpocc;
long iget;
long namei;
long dirblk;
long readch;
long writech;
long rcvint; r long xmtint;
long mdmint;
long rawch;
long canch;

10-13

SYSTEM ACTIVITY PACKAGE

};

10-14

long
long
long

outch;
msg;
sema;

SYSTEM ACTIVITY PACKAGE

7, Reporting Items

The derivation of the reported items is given in this section.
Each item discussed below is the data difference sampled at two
distinct times t2and tl.

7.1 CPU Utilization

%-of-cpu-x = cpu-xI (cpu-idle+cpu-user+cpu-kernel+cpu-wait) • 100

where cpu-x is cpu-idle, cpu-user, cpu-kernel (cpu-sys), or
cpu-wait.

7.2 Cache Hit Ratio

%-of-cache-I/O = (logicaJ-1/0 - block-I/O) I logical-I/O • 100

where cache 1/0 is cache read or cache write.

7.3 Disk or Tape ~0 Activity

,r- %-of-busy = I/O-active I (12 - tO • 100;
avs-queue-length - 110-resp I I/O-active;

avg-wait - 0/0-resp- 110-actSIIO)/ 1/0-ops;

avg-service-time - I/O-active I 1/0-ops.

7.4 Queue Activity

avg-x-queue-length = x-queue I x-queue-occupicd-time;

%-of-x-queue-occupied-time = x-queue-occupicd-time I (U- tl);

where x-queue is run queue or swap queue.

7.5 The Rest of System Activity

avs-rate-of-x - xI (t2- tO

where x is swap in/out, blks swapped in/out, terminal device
activities, read/write characters, block read/write, logical
read/write, process switch, system calls, read/write, fork/exec,
iget, namei, directory blocks read, disk/tape 1/0 activities, mes­
sage, or semaphore activities.

10-15

~

Chapter 11: UUCP ADMINISTRATION

CONTENTS

1. Introduction

2. Planning • • • . • • .
2.1 Extent of the Network
2.2 Hardware and Line Speeds
2.3 Maintenance and Administration

3. UUCP Software

4. Installation . .
4.1 Object Modules
4.2 Password File
4.3 Lines File . .

4.3.1 Naming Conventions
4.4 System File- "L.sys" • •
4.5 Dialing Prefixes-''L-dialcodes''
4.6 Userfile
4.7 Forwarding File

5. Administration
5.1 Cleanup

5.1.1 Cleanup of Undeliverable Jobs
5.1.2 Cleanup of the Public Area
5.1.3 Compaction of Log Files

5.2 Polling Other Systems
5.3 Problems . . . • . . .

5.3.1 Out of Space
5.3.2 Bad ACU and Modems
5.3.3 Administrative Problems

6. Debugging . . . •

c LIST OF FIGURES

- i -

I

I
I
2
2

3

3
3
4
4
6
6
8
9

10

11
12
12
12
12
12
13
13
13
13

13

Figure 11.1. Uucp Network Daemon

Figure 11.2. Uucico Daemon Functional
Blocks . • •

- ii .

15

16

r
\

Chapter 11

UUCP ADMINISTRATION

1. Introduction

This chapter describes how a uucp network is set up, the for­
mat of control files, and administrative procedures. Adminis­
trators should be familiar with the manual pages for each of the
uucp related commands.

2. Planning

In setting up a network of UNIX systems, there are several con­
siderations that should be taken into account befOre configuring
each system on the network. The following parts attempt to
outline the most important considerations.

2.1 Extent of the Network

Some basic decisions about access to processors in the network
must be made before attempting to set up the configuration
files. If an administrator has control over only one processor
and an existing network is being joined, then the administrator
must decide what level of access should be granted to other
systems. The other members of the network must make a
similar decision for the new system. The UNIX system pass­
word mechanism is used to grant access to other systems. The
file /usr/lib/uucp/USERFILE restricts access by other systems to
parts of the file system tree, and the file /usrllib/uucp/L.sys on
the local processor determines how many other systems on the
network can be reached.

When setting up more than one processor, the administrator
has control of a larger portion of the network and can make
more decisions about the setup. For example, the network can
be set up as a private network where only those machines
under the direct control of the administrator can access each

11-1

UUCP ADMINISTRATION

other. Granting no access to machines outside the network can
be done if security is paramount; however, this is usually
impractical. Very limited access can be granted to outside
machines by each of the systems on the private network.
Alternatively, access to/from the outside world can be confined
to only one processor. This is frequently done to minimize the
effort in keeping access information (passwords, phone
numbers, login sequences, etc.) updated and to minimize the
number of security holes for the private network.

2.2 Hardware and Line Speeds

There are only two supported means of interconnection by
uucp(l),

1. Direct connection using a null modem.

2. Connection over the Direct Distance Dialing (DOD) net­
work.

In choosing hardware, the equipment used by other processors
on the network must be considered. For example, if some sys­
tems on the network have only 103-type (300-baud) data sets,
then communication with them is not possible unless the local
system has a 300-baud data set connected to a calling unit.
(Most data sets available on systems are 1200-baud.) If hard­
wired connections are to be used between systems, then the
distance between systems must be considered since a null
modem cannot be used when the systems are separated by
more than several hundred feet. The limit for communication
at 9600-baud is about 800 to 1000 feet. However, the RS232
specification and Western Electric Support Groups only allow
for less than 50 feet. Limited distance modems must be used
beyond 50 feet as noise on the lines becomes a problem.

2.3 Maintenance and Administration

There is a minimum amount of maintenance that must be pro­
vided on each system to keep the access files updated, to

11-2

(
'

I

UUCP ADMINISTRATION

ensure that the network is running properly, and to track down
line problems. When more than one system is involved, the
job becomes more difficult because there are more files to
update and because users are much less patient when failures
occur between machines that are under local control.

3. UUCP Software

Figure 11.1 (at the end of this chapter) is an illustration of the
daemons used by the uucp network to communicate with
another system. The uucp(l) or uux(l) command queues
users' requests and spawns the uucico daemon to call another
system. Figure 11.2 (at the end of this chapter) illustrates the
structure of uucico and the tasks that it performs in communi­
cating with another system. Uueico initiates the call to another
system and performs the file transfer. On the receiving side,
uucico is invoked to receive the transfer. Remote execution
jobs are actually done by transferring a command file to the
remote system and invoking a daemon (uuxqt) to execute that
command file and return the results.

4. Installation

4.1 Object Modules

The following object modules are installed as part of the uucp
make procedure.

1. uucp-The file transfer command (bin/uucp).

2.

3.

4.
5.

6.

uux-The remote execution command (bin/uux).

uucico-The uucp network daemon (usr/lib/uucp/ .. .).

uustat-Network status command (bin/uustat).

uuto-Sends source files to destination (bin/uuto).

uulog-Queries a summary log of uucp and uux transac­
tions (bin/uulog).

11-3

UUCP ADMINISTRATION

7. uuname-lists the uucp names of known systems
(bin/uuname).

8. uuclean-Cleanup command (usr/lib/uucp/ ...).

9. uusub-The command for monitoring and creating a sub­
network (bin/uusub).

10. uuxqt-The remote execution daemon (usr/lib/uucp/ .. .).

11. uudemon.day-A shell procedure that is invoked each day
to maintain the network. Shell scripts for execution each
week (uudemon.wk) and each hour (uudemon.hr) are
also distributed (usr/lib/uucp/ ...).

4.2 Password File

To allow remote systems to call the local system, password
entries must be made for any uucp logins. For example,

nuucp:zaaA A :6: I :U UCP .Admin:/ usr I spool/ uucppublic:/ usr/lib/ uucp/ uucico

Note that the uucico daemon is used for the shell, and the
spool directory is used as the working directory.

There must also be an entry in the passwd file for an uucp
administrative login. This login is the owner of all the uucp
object and spooled data files and is usually ~uucp". For exam­
ple, the following is a entry in /etc/passwd for this administrative
login:

uucp:zAvLCKp:S:l:UUCP.Admin:/usr/lib/uucp:

Note that the standard shell is used instead of uucico.

4.3 Lines File

The file !usr/lib/uucp/L-devices contains the list of all lines that
are directly connected to other systems or are available for cal­
ling other systems. The file contains the attributes of the lines
and whether the line is a permanent connection or can call via a
dialer. The format of the file is

11-4

UUCP ADMINISTRATION

type line call-device speed protocol

,f where each field is

r

type

line

Two keywords are used to describe whether a
line is directly connected to another system
(DIR) or uses an automatic calling unit
(ACU). An X.25 permanent virtual circuit
would use the DIR keyword.

This is the device name for the line (e.g., ttyab
for a direct line, cu/0 for a line connected to an
ACU).

call-device If the ACU keyword is specified, this field con­
tains the device name of the ACU. Otherwise,
the field is ignored; however, a placeholder
must be used in this field so that the protocol
field can be interpreted.

speed The line speed that the connection is to run at.
(The speed field is currently ignored if an X.25
link is used.)

protocol This is an optional field that needs only be
filled in if the connection is for a protocol
other than the default terminal protocol. The
X.25 protocol is the only other protocol sup­
ported and the single character x is used to
select this protocol.

The following entries illustrate various types of connections:

DIR ttyab 0 9600
ACU cuiO cuaO 1200
DIR x25.s0 0 300 X

The first entry is for a hard-wired line running at 9600-baud
(between two systems. Note that the acu-device field is zero.
\ The second entry is for a line with a 1200-baud ACU. The last

entry is for an X.25 synchronous direct connection between

11-5

UUCP ADMINISTRATION

systems. Note that the protocol field is filled in and that the
acu-device and line speed fields are meaningless.

4.3.1 Naming Conventions

It is often useful when naming lines that are directly connected
between systems or which are dedicated to calling other systems
to choose a naming scheme that conveys the use of the line. In
the earlier examples, the name rtyab is used for the line that
directly connects two systems named a and b. Similarly, lines
associated with calling units are best given names that relate
them to the calling unit {note the names cu/0 and cuaO to
specify the line and calling unit, respectively).

4.4 System File-"L.sys"

Each entry in this file represents a system that can be called by
the local uucp programs. More than one line may be present
for a particular system. In this case, the additional lines
represent alternative communication paths that will be tried in
sequential order. The fields are described below.

system name

time

11-6

Name of the remote system.

This is a string that indicates the days-of-week
and times-of-day when the system should be
called (e.g., MoTuThOS00-1730).

The day portion may be a list containing Su,
Mo, Tu, We, Thy Fr, Sa; or it may be Wk for
any week-day or Any for any day. The time
should be a range of times (e.g., 0800-1230).
If no time portion is specified, any time of day
is assumed to be allowed for the call. Note
that a time range that spans 0000 is permitted;
0800-0600 means all times are allowed other
than times between 6 and 8 am. An optional
subfield is available to specify the minimum
time (minutes) before a retry following a failed

device

class

phone

;--
' login

UUCP ADMINISTRATION

attempt. The subfield separator is a "," {e.g.,
Any, 9 means call any time but wait at least 9
minutes before retrying the call after a failure
has occurred).

This is either ACU or the hard-wired device
name to be used for the call. For the hard­
wired case, the last part of the special file name
is used (e.g., ttyO).

This is usually the line speed for the call {e.g.,
300).

The phone number is made up of an optional
alphabetic abbreviation (dialing prefix) and a
numeric part. The abbreviation should be one
that appears in the L-dia/codes file (e.g.,
mhl212, bostonSSS-1212). For the hard­
wired devices, this field contains the same
string as used for the device field.

The login information is given as a series of
fields and subfields in the format

[expect send] ...

where expect is the string expected to be read
and send is the string to be sent when the
expect string is received.

The expect field may be made up of subfields
of the form

expect[-send-expect] ...

where the send is sent if the prior expect is nor
successfully read and the expect following the
send is the next expected string. (For exam­
ple, login--login will e'Fpect login; if it gets it,
the program will go on to the next field; if it
does not get login, it will send null followed by
a new line, then expect login again.) If no

11-7

UUCP ADMINISTRATION

characters are initially expected from the
remote machine, the string "" (a null string)
should be used in the first expect field.

There are two special names available to be
sent during the login sequence. The string
EDT will send an EOT character, and the
string BREAK will try to send a BREAK char­
acter. (The BREAK character is simulated
using line speed changes and null characters
and may not work on all devices and/ or sys­
tems.) A number from 1 to 9 may follow the
BREAK (e.g., BREAK 1, will send I null char­
acter instead of the default of 3). Note that
BREAK 1 usually works best for 300-/1200-
baud lines.

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm matches all or part of the input string as
illustrated in the password field above.

4.5 Dialing Prefixes- ••L-dialcodes''

This file contains the dial-code abbreviations used in the L.sys
file (e.g., py, mh, boston). The entry format is

abb dial-seq

where abb is the abbreviation and dial-seq is the dial sequence
to call that location.

The line

py 165-

would be set up so that entry py7777 would send 165-7777 to
the dial unit.

11-8

UUCP ADMINISTRATION

4.6 Userfile

(The USERFILE contains user accessibility information. It
specifies four types of constraints:

/''
I
'-·--

1. Files that can be accessed by a normal user of the local
machine.

2. Files that can be accessed from a remote computer.

3. Login name used by a particular remote computer.

4. Whether a remote computer should be called back in
order to confirm its identity.

Each line in the file has the format

login,sys [c] pathname [pathname]

where

login

sys

c

pathname

is the login name for a user or the remote
computer.

is the system name for a remote computer.

is the optional call-back required flag.

is a pathname prefix that is acceptable for sys.

The constraints are implemented as follows:

1. When the program is obeying a command stored on the
local machine, the pathnames allowed are those given on
the first line in the USER FILE that has the login name of
the user who entered the command. If no such line is
found; the first line with a null login name is used.

2. When the program is responding to a command from a
remote machine, the pathnames allowed are those given
on the first line in the file that has the system name that
matches the remote machine. If no such line is found,
the first one with a null system name is used.

11-9

UUCP ADMINISTRATION

3. When a remote computer logs in, the login name that it
uses must appear in the USERF/LE. There may be
several lines with the same login name but one of them
must either have the name of the remote system or must
contain a null system name.

4. If the line matched in (3.) contains a "c", the remote
machine is called back before any transactions take place.

The line

u,m /usr/xyz

allows machine m to login with name u and request the transfer
of files whose names start with /usr!xyz. The line

you, /usr/you

allows the ordinary user you to issue commands for files whose
name starts with /usrlyou. (This type restriction is seldom
used.) The lines

u,m /usr/xyz /usc/spool
u, /usc/spool

allows any remote machine to login with name u. If its system
name is not m, it can only ask to transfer files whose names
start with !usr/spool. If it is system m, it can send files from
paths /usr/xyz as well as /usr/spool. The lines

root, I
, /usr

allow any user to transfer files beginning with /usr but the user
with login root can transfer any file. (Note that any file that is
to be transferred must be readable by anybody.)

4.7 Forwarding File

There are two files that allow restrictions to be placed on the
forwarding mechanism. The format of the entries in each file is
the same,

11-10

UUCP ADMINISTRATION

system
or

system, user, user2, ...

The file ORIGFJLE (lusr/lib/uucp/ORJGFJLE) restricts the
access of systems that are attempting to forward through the
local system. The file contains the list of systems (and users)
for whom the local system is willing to forward. Each entry
refers to the system that was the source of the original job and
not the name of the last system to forward the file. The second
file, FWDFILE (lusrllibluucp/FWDFJLE), is a list of valid sys­
tems that a job can be forwarded to. (It is not necessarily the
name of the destination of a job, but merely the next valid
node.) This file will be a subset of the L.sys file and can be
used to prevent forwarding to systems that are very expensive
to reach but to which access by local users is allowed (e.g.,
links to overseas universities). If neither of these files exist,
uucp will be perfectly happy to forward for any system. As an
example, if the entry for system australia were in the ORIG­
FILE but not in the FWDFILE on system mhtsa, it would mean
that system australia would be capable of forwarding jobs into
the network via system mhtsa. However, no systems in the net­
work could forward a job to australia via system mhtsa.

5. Administration

The role of the uucp administrator depends heavily on the
amount of traffic that enters or leaves a system and the quality
of the connections that can be made to and from that system.
For the average system, only a modest amount of traffic (100 to
200 files per day) pass through the system and little if any
intervention with the uucp automatic cleanup functions is
necessary. Systems that pass large numbers of files (200 to
10,000) may require more attention when problems occur. The
following parts describe the routine administrative tasks that
must be performed by the administrator or are automatically
performed by the uucp package. The part on problems
describes what are the most frequent problems and how to
effectively deal with them.

lJ.ll

UUCP ADMINISTRATION

5.1 Cleanup

The biggest problem in a dialup network like uucp is dealing
with the backlog of jobs that cannot be transmitted to other sys­
tems. The following cleanup activities should be routinely per­
formed by shell scripts started from crou(l).

5.1.1 Cleanup of Undeliverable Jobs

The uudemon.day procedure usually contains an invocation of
the unclean command to purge any jobs that are older than
some fixed time (usually 72 hours). A similar procedure is
usually used to purge any lock or status files. An example invo­
cation of unclean (l M) to remove both job files and old status
files every 48 hours is:

/usr/lib/uucp/uuclean - pST - pC - n48

5.1.2 Cleanup of the Public Area

In order to keep the local file system from overflowing when
files are sent to the public area, the uudemon.day procedure is
usually set up with a find command to remove any files that are
older than 7 days. This interval may need to be shortened if
there is not sufficient space to devote to the public area.

5.1.3 Compaction of Log Files

The files SYSLOG and LOG FILE that contain logging informa­
tion are compacted daily (using the pack command from the
shell script uudemon.day) and should be kept for 1 week
before being overwritten.

5.2 Polllng Other Systems

Systems that are passive members of the network must be
polled by other systems in order for their files to be sent. This
can be arranged by using the uusub(l) command as follows:

uusub -cmhtsd

which will call mhtsd when it is invoked.

11-12

UUCP ADMINISTRATION

5.3 Problems

The following sections list the most frequent problems that
appear on systems that make heavy use ofuucp(l).

5.3.1 Out of Space

The file system used to spool incoming or outgoing jobs can
run out of space and prevent jobs from being spawned or
received from remote systems. The inability to receive jobs is
the worse of the two conditions. When file space does become
available, the system will be flooded with the backlog of traffic.

5.3.2 Bad ACU and Modems

The ACU and incoming modems occasionally cause problems
that make it difficult to contact other systems or to receive files.
These problems are usually readily identifiable since LOGFJLE
entries will usually point to the bad line. If a bad line is
suspected, it is useful to use the cu(l) command to try calling
another system using the suspected line.

5.3.3 Administrative Problems

Some uucp networks have so many members that it is difficult
to keep track of changing passwords, changing phone numbers,
or changing logins on remote systems. This can be a very
costly problem since ACU's will be tied up calling a system that
cannot be reached.

6. Debugging

In order to verify that a system on the network can be con­
tacted, the uucico daemon can be invoked from a user's termi­
nal directly. For example, to verify that mhtsd can be con­
tacted, a job would be queued for that system as follows:

uucp -rfile mhtsd!-/tom

The -r option forces the job to be queued but does not invoke
the daemon to process the job. The uucico command can then

11-13

UUCP ADMINISTRATION

be invoked directly:

/usr/lib/uucp/uucico -rl -x4 -smhtsd

The -rl option is necessary to indicate that the daemon is to
start up in master mode (i.e., it is the calling system). The
- x4 specifies the level of debugging that is to be printed.
Higher levels of debugging can be printed {greater than 4) but
requires familiarity with the internals of uucico. If several jobs
are queued for the remote system, it is not possible to force
uucico to send one particular job first. The contents of LOG·
FILE should also be monitored for any error indications that it
posts. Frequently, problems can be isolated by examining the
entries in LOGFILE associated with a particular system. The
file ERRLOG also contains error indications.

11-14

UUCP ADMINISTRATION

(
'

z
0 -~
0
W< c
z- 0
zo
ow e
OE g
~
w
~

Q
z - -"

" 0

(
~
u z

- 0.
u

" ::>
~

~<

CIJ
,..;

ow ~

0~ e :J;c
" ..

< ;.:
E
w
~ ~ 0

D > 0
0 -~ ~

~
0
3

11-15

UUCP ADMINISTRATION

~
~
n
~ ~ 0 n z 0 m nl:-,g
0 ~z~
~ ~om m 0 z
3 n n
0 ~ m z

- 0 0
~ ~

~ ~ 0 ~

~ ~ 0 ~

~ ~ 0 ~ - ~ !i ~

n
0~

0 Zz
~w z~
~< m~
m~ n~
~m ~~
3 :>~

z
,---

~ ---------
L

0 X ~
0 > z ~ ~~
0 ~ ~ ~~ ~~

0 X O> 0~~ z !'i ~n ~z~ m 0 0~ 00~
~ ~ < nm n~m
~ m 0 0~ om
0 ~ ~ ~~
~ m
~ 3

0
0

11-16

Chapter 12: TAKE/PUT: FILE TRANSFER SYSTEM

(CONTENTS
'-

1. Introduction • 1

2. Necessary Files and Programs 2
2.1 Master Machine 2
2.2 Slave Machine 3

3. Special Files . . 4

4. Trouble Shooting 7

5. Operation • . . 8

6. Directory TransferS 9

7. Two Way Operation 9

(
' ~·

c
- i -

Chapter 12

(TAKE/PUT: FILE TRANSFER SYSTEM ,_

1. Introduction

The take/put system is a group of programs and related files
providing a rudimentary file transfer system for UniPlus+. The
system provides a mechanism for executing commands across
machines as well as for transferring file and directory.

Like uucp(lC), the take/put interface assigns specific roles to
each of two computers connected together. One is the master
(or local machine), which initiates all transfers between com­
puters. The other is the slave (or remote machine). The port
on the master machine which connects to the slave doesnot
have a login running (i.e., its line of /etc/ttys begins with a
zero). The slave port does have a login running, although take
and put cannot log in. The cu (I C) program must initially be
used to log in on the slave machine.

Unlike uucp, the take/put system does not provide a mechan­
ism for queueing transfers or for initiating transfers from the
slave machine. Of course, two ports can be dedicated on both
machines to provide two-way transfer initiation capabilities (dis­
cussed later), which has no mechanism for blocking access to
the port while a transfer is in progress. Therefore, if a transfer
is initiated while another is in progress, both will fail.

The system was designed to form a simple 'star' communica­
tion network between a more powerful computer (Vax 111750)
operating as the slave and several microcomputers acting as
masters. Note that the single slave computer has one port
dedicated to each microcomputer.

12-1

TAKE/PUT

2. Necessary Files and Programs

2.1 Master Machine

take Used to get files, directories, and the output of com­
mands executed on the slave.

put Used to transmit files, directories, and input to com­
mands executed on the slave.

Both programs have a similar usage. If - p occurs as the first
argument, then the second argument is the port to use in com­
municating with the slave. If no alternate port is specified,
/dev/ttyO is used.

The next argument may be -sSPEED, where SPEED is of
300, 600, 1200, 2400, 4800, or 9600 and specifies the baud rate
of the port.

The next argument may be -c indicating that the following
argument is the name of the command to be executed on the
slave machine. Any arguments following that command name
are arguments to the command. If - c is not specified, then a
- i I id J may be. This indicates that the specified filename
should be remapped on the slave machine through a special
table (described later). If the optional id is not specified, then
the special file /etc/sys_id (on the master machine) is checked.
If it exists, it contains a single word id.

Unless the -c option is specified, the filename to take or send
(i.e., the input file) must be given. Whenever an input
filename is given an output filename may be specified also, oth·
erwise it defaults to the input filename. There is one special
case: if the input file is a regular file and the output filename is

12-Z

TAKE/PUT

a directory, then the output filename is formed by concatenat·
ing the last segment of the input filename (called the tail) with
the directory specified as the output file.

If the input file is a directory, then tar(l) is used to convert it
to and from a 'flat' file suitable for transmission or reception.
The output file (whether explicitly or implicitly defined) must
also be a directory. See the later section on Directory
Transfers.

Note that when using take, the first filename specified (i.e., the
input file} is on the slave (remote) machine and the second
(optionaO filename (i.e., the output file) is the local one. The
situation is reversed when using put, since the first filename is
the local file to be transmitted. A simple way to remember this
is that the input file comes first, must always be specified, and
must exist. The second filename {output file) is optional
{defaulting to the input filename if unspecified) and may or
may not exist.

2.2 Slave Machine

take7 Used to send files, directories, and the results of
commands to the take program running on the mas­
ter machine.

put7 Used to receive files, directories and the input to
commands from the the put program running on the
master machine.

No port need be specified to take7 or put7 since they are exe­
cuted when take or put 'types' the appropriate command line
on the connecting port. They simply use their standard input,
standard output, and standard error to communicate with take
or put.

12-3

TAKE/PUT

The arguments for take7 and put7 are similar to those for take
and put. In the case of a command, the - c is passed along and
the command is enclosed in quotes to form a single argument.
The -I option is also passed.

In the case of a file transaction to the slave machine (i.e., a
put), two additional arguments are generated. If the file being
transmitted is a directory, then the first argument will be a -d
so that put7 can prepare to decode it. The next argument will
be a - mMODE, where MODE is in decimal, and is the mode
of the input file on the master machine. The output file's
mode will be set to match.

Take7 does not have the -dor-m arguments since the mode
is being sent the other way. This information is sent as part of
the initial handshake with take and is discussed more
thoroughly in the section on OPERATION.

3. Special Files

A special file /etc/takelist exists on the slave machine; use-d in
conjunction with the -1 option. It is used to relocate path­
names between the master and slave machines by concatenating
the pathname passed from the special file with a directory
prefix. The following describes the format expected in the spe­
cial file.

The file consists of three parts: user identification, macro
definitions, and access descriptions. The user identification sec­
tion is a single line that specifies the login name of the 'owner'
of take7 and put7. For more information on how this is used1

see the section on Protection.

The macro definition section follows immediately. It consists
of lines of the form name= string. The name is any string of
upper and lower case letters and numbers and defines the

12-4

TAKE/PUT

macro name. The string is any alphanumeric string. In section
three of the file, all occurrences of a dollar sign followed by
that macro name will be replaced with that string.

Each line in the third section of the file contains a series of
fields separated by colons. The first field is a series of system
identification names (login names and system ids) separated by
'or' bars (or symbol). Each additional field contains one or
more directory prefixes also separated by 'or' bars.

If the - i option is used, take7 or put7 find the appropriate line
of the special file and search each directory for the filename
specified.

Both take7 and put7 find the appropriate starting line in the
same way: if a system identification does not appear con­
catenated after the .:... i flag, then the user name (as determined
by getpwnam(3S)) is used instead. This name is looked up in
the special file and that line is the starting place for the search.

Note that each colon-separated field of the line contains a list of
directory names (separated by 'or' bars). In the case of a
take7, each colon separated field is used left to right until the
file specified is found in one or more of the directories listed in
that field. If the file exists in more than one of the directories
listed, then take7 exits with an appropriate error message. If
exactly one occurrence is found~ that file is transmitted to the
master machine and any remaining fields are unchecked. If the
field being searched contains a single string (i.e., no 'or' bars)
and starts with the 'at' sign, then the string is considered to be
an id and the search is continued at the line for that id. In this
case the rest of the current line is ignored by take7.

In the case of put7, no duplication or re-reference (via usage of
the 'at' sign) is allowed. The fi)e must occur in exactly one of

12-5

TAKE/PUT

the directories mentioned on the line. The 'at' sign 'goto' is
simply ignored as is the distinction between colon-separated
fields and their 'or' bar delimited subfields.

For example, consider the special file sample below:

usr68
M=/micro
L=/languages
M3=/usr/m3
malmacha:$M/mal/generic:@typel:$M/ma.local
mblmachb:$M/mbl/generici$L/fortran:@type2
type} :$M/ reloc.l 0000 I $M/68mmu
type2:$M/reloc.20000I$M3/xmmul.20000

A command of the form:

take - ima /bin/echo /tmp/echo

executed on the master machine would invoke:

take7 -ima /bin/echo

Take7 would look first in '/micro/rna/bin/echo' and
'/generic/bin/echo'. If the file is found in both places, an error
would result. If it is found in one or the other, then that copy
of 'echo' would be transmitted. Otherwise the line for 'typel'
would be examined and the directories '/micro/reloc.lOOOO'
and '/micro/68mmu' would be searched for 'bin/echo'. Again,
if it exists in both places, an error is generated and take7 ter­
minates; if either one or the other exists, it is transmitted. If
neither exists, since there are no more directories or gatos,
take7 would terminate with an error message.

A command of the form:

put -ima echo /bin/echo

12-6

TAKE/PUT

would invoke r· put7 - mMODE - ima /bin/echo
·~

(
\

on the slave machine. Put7 would look in '/micro/rna', '/gen­
eric', and '/micro/ma.local' for copies of 'bin/echo'. If it were
found in exactly one of these three directories, that file would
be replaced. Otherwise the appropriate error message would be
generated.

In addition to the differences in the way take7 and put7 use the
special /etc/takelist file, there is another distinction between
the two programs. Take7 has a special user name, specified by
the first line of the /etc/takelist file. This is so that take7 can
be made set-uid (see chmod(l)).

To selectively control access to files through take7, all the files
should be accessible only through that user id. When someone
executes take7, he must supply an -i option. If no id follows
the -i option, the user's login name will be used. Take7 will
look up this id and use it to find the appropriate line of the spe­
cial control file. If this line contains the user's login name, the
user is allowed full access to all directories specified on the line.
Otherwise, take7 does a setuid(2) to the invoker's real user id.
Thus the superuser and the controlling user may reference any
line in the special control file. Other users can access only lines
that contain their login name.

4. Trouble Shooting

The following sections cover the details of operation for the
four programs. These sections should be helpful to users in
determining what happened when something goes wrong, as
well as an aid to those maintaining the programs. Here is a list
of things to check/do in determining' why take/put doesn't
work.

12-7

TAKE/PUT

I. Use the cu(lC) program (on the master machine) to
check out the port. Make sure you are logged in, that the
take7 or put7 program exists by executing it without
arguments. The response should be

""'bad usage

in both cases. If Jots of characters are lost try dropping
the baud rate (at both ends).

2. If directories or remote commands (i.e., the -c option)
are failing it may be because csh(l) or sh(l) are missing
from /bin or not executable. TarO) must exist on both
machines for directory transfers to work.

5. Operation

After determining what files are to be used in the transfer, the
master and slave programs must condition the port and syn·
chronize with each other. Echoing is disabled on both sides
and the erase and kill characters in effect are checked for
conflict with the character set used for transfer.

Each block of data is broken into four 125 byte chunks. To
each is added a character count (to determine the short last
block) and a checksum byte. The chunks are converted into
base 64 (three bytes of data get converted into four characters)
and the constructed line is terminated by a line feed. The base
64 character set (in ascending order) is a·z A-Z 0-9< >.

Each time a chunk is sent or received from the master
machine, a '.' is printed on the standard error if the chunk was
error free. Otherwise an 'R' is printed and the chunk is
retransmitted. Whenever a retransmission is performed, the
program doing the transmitting sleeps one second for each time
it has had to retransmit the current chunk. Thus the take7
program sleeps one second the first time it has to retransmit a
chunk, two seconds if it has to retransmit that same block a
second time, etc. This sleeping continues until 10 retrys have

12-8

TAKE/PUT

failed; at this point the transfer fails. The put program operates r similarly.
' ~

In the event that a transfer in progress fails and a simple file
(i.e., not a directory) was being created on the master or slave
machine, the file is removed. The one exception is a 'put -s'
since, in order to replace a file via the - s option of put7, the
file must have existed in the first place. Therefore, if removed
because of a transfer error, all future references through the
- s remapping option would fail.

When the -c option is used (i.e., a command is executed on
the slave machine with its input or output from the master),
the returned status of the take or put command is the returned
status of the remote command if the input or output transfer
didn't fail. An error message is printed if the transfer fails.
Note that messages printed on the standard error by the remote
command are printed on the standard error of take or put.

6, Directory Transfers

When the file to be transferred is a directory, tar(I) is used to
convert the tree being sent into a flat file. In all cases the tar
command is invoked from the directory to be transferred.
Thus if take is used to get a directory, that directory is created
first, if necessary. Similarly, if put is used to send a directory,
the directory will be created if necessary.

7. Two Way Operation

In order for transfers to be initiated from either of two
machines, two ports must be dedicated. In addition, all four
programs, take, put, take7, and put7, must exist on both
machines. In order to avoid having to always specify the port
via the -p option, /dev/ttyO can be the name of the master
side of both ports. Remember that the master does not have a
login process running, (i.e., its line of /etc/ttys begins with a
zero), and that the slave end of each port can be called

IZ-9

TAKE/PUT

anything.

12-10

I.

2.

3.

4.

5.

6.

c

Chapter 13: UNIX 1/0 SYSTEM

CONTENTS

Device Classes

Overview of 1/0

Character Device Drivers

The Block-Device Interface

Block Device Drivers

Raw Block-Device 110

- i -

1

2

4

8

12

14

- j

- j

- j

I .

j

j

j

j

j

j

j

Chapter 13

UNIX 1/0 SYSTEM

This chapter is an overview of the UNIX 1/0 system. It guides
writers of device driver routines, and therefore focuses on the
environment and nature of device drivers, rather than the
implementation of that part of the file system dealing with ordi­
nary files. We assume that the reader has a good knowledge of
the overall structure of the file system.

This chapter was updated and revised in 1984 by U niSoft Sys­
tems to reflect additions to the UniPlus+ kernel for System V.

1. Device Classes

There are two classes of device: block and character. The block
interface is for devices, like disks and tapes, which can work
with addressable 512-byte blocks. Ordinary magnetic tape only
fits in this category because it can read any block using forward
and backward spacing. Block devices can potentially contain a
mounted file system. The interface to block devices is highly
structured; the drivers for these devices share a great many
routines as well as a pool of buffers.

Character-type devices have a much more straightforward inter­
face, although the driver itself must do more work.

Both types of devices are named by a major and a minor device
number. These numbers are generally stored 8s an integer. The
minor device number is in the low-order 8 bits and the major
device number is in the next-higher 8 bits. The major and
minor macros access these numbers. The major device number

13-1

UNIX 1/0 SYSTEM

selects which driver deals with the device; the minor device
number is not used by the rest of system but is passed to the
driver at appropriate times. Typically, the minor number selects
a subdevice attached to a given controller, or one of several
similar hardware interfaces.

The major device numbers for block and character devices are
used as indices in separate tables; they both start at 0 and
therefore overlap.

2. Overview of 1/0

The open and creat system calls set up entries in three separate
system tables. The first is the u _ ofi/e table, stored in the
system's per-process data area, u. This table is indexed by the
file descriptors returned by the open or creat, and is accessed
during a read, write-, or other operation on the open file. Each
entry is a pointer to the corresponding entry in the file table,
which is a per~system data base. There is one entry in the file
table for each open or creal. This table is per-system because
the same instance of an open file must be shared among the
several processes which can result from forks after the file is
opened. A .file table entry contains flags indicating whether the
file was open for reading or writing, and a count which is used
to determine when all processes using the entry have ter­
minated or closed the file (so the entry can be abandoned).
There is also a 32-bit file offset which indicates where in the file
the next read· or write takes place. Finally, there is a pointer to
the entry for the file in the inode table, which con'tains a copy
of the file's inode.

An entry in the file table corresponds to an instance of open or
creat; if the same file is opened several times, it will have
several entries in this table. However, there is only one entry
in the inode table for a file. Also, a file may enter the inode
table not only because it is open, but also because it is the

13-2

UNIX 1/0 SYSTEM

current directory of some process or because it is a special file r containing a currently-mounted file system.

r
\

An entry in the inode table differs somewhat from the
corresponding inode stored on the disk-the modified and
accessed times are not stored, and a flag word containing infor­
mation about the entry is added. This flag word contains a
count used to determine when it may be allowed to disappear,
and the device and inumber the entry came from. Also, the
several block numbers that give addressing information for the
file are expanded from the 3-byte, compressed format to full
long quantities.

During the processing of an open or creat call for a special file,
the system always calls the device's open routine to allow for
any special processing (rewinding a tape, turning on the data­
terminal-ready lead of a modem, etc.) However, the close rou­
tine is called only when the last process closes a file~ that is,
when the inode table entry is being deallocated. Thus, it is not
feasible for a device to maintain or depend on a count of its
users, although it is quite possible to implement an exclusive­
use device which cannot be reopened until it has been closed.

When a read or write takes place, the user's arguments and the
file table entry are used to set up the variables u.u_base,
u.u count, and u.u offSet. These arguments respectively con­
taitl: the (user) address of the 110 target area, the byte-count
for the transfer, and the current location in the file. If the file
referred to is a character-type special file, the appropriate read
or write routine is called. This routine is responsible for
transferring data and updating the count and current location
appropriately, as discussed below. Otherwise, the current loca­
tion is used to calculate a logical block number in the file. If
the file is an ordinary file, the logical block number must be
mapped (possibly using indirect blocks) to a physical block
number; a block-type special file need not be mapped. The

13-3

UNIX 1/0 SYSTEM

bmap routine performs this mapping. The resulting physical
block number is used (as discussed below) to read or write the
appropriate device.

3. Character Device Drivers

The cdevsw table specifies the interface routines for character
devices. Each device provides five routines: open, close, read,
write, and special-function (to implement the ioct/ system call).
Any of these may be missing. If a call on the routine should be
ignored (e.g., open on non-exclusive devices that require no
setup), the cdevsw entry can be nu/ldev. If a call on a routine
should be considered an error (e.g., write on read-only devices)
use nodev. For terminals, the cdevsw structure also contains a
pointer to the tty structure associated with the terminal.

The open routine is called each time the file is opened with the
full device number as argument. The second argument is a flag
which is non-zero only if the device is to be written on.

The close routine is called only when the file is closed for the
last time. That is, when the last process closes the file. This
means that it is not possible for the driver to maintain its own
count of its users. The first argument is the device number;
the second is a flag which is non-zero if the file was open for
writing in the process which closes it.

When write is called, it is supplied the device as argument. The
per-user variable u.u_count has been set to the number of char­
acters indicated by the user; for character devices, this number
may be 0 initially. u.u_base is the address, supplied by the
user, from which to start taking characters. The system may
call the routine internally, For this reason, the flag u.u setjfg
indicates, if on, that u.u_base refers to the system address space
instead of the user's.

13-4

r
\~

UNIX 1/0 SYSTEM

The write routine copies up to u.u_count characters from the
user's buffer to the device, decrementing u.u_count for each
character passed. For most drivers {which work one character
at a time) the routine cpass () picks up characters from the
user's buffer. Successive calls on it return the characters to be
written, until u.u_count goes to 0 or an error occurs (when it
returns -1). Cpass updates u.u_count.

Write routines which transfer a large number of characters into
an internal buffer may also use the routine iomove (bujjer,
offSet, count, ./fag}. This routine is faster when moving many
characters. Jomove transfers up to count characters into the
buffer starting offiet bytes from the start of the buffer; flag
should be B_WRITE (which is 0) in the write case. Caution:
You are responsible for making sure the count is not too large
or non-zero. lomove is much slower if bujfer+ offiet, count, or
u.u_ base is odd.

The device's read routine is called under conditions similar to
write, except that u.u_count is non-zero. The routine pass(c)
returns characters to the user. It takes care of housekeeping,
like cpass, and returns -1 when the last character specified by
u.u_count is returned to the user. Before that, it returns 0.
You can also use iomove as you do with write -the flag should
be B_READ but the same cautions apply.

The "special functions" routine is invoked by the ioctl system
call:

(""p) (dev,cmd,arg,mode)

where p is a pointer to the address of the device, dev is the
device number, cmd is the user ioctl command argument, arg is
the user argument, and mode is the file table flag word for the r opened device

13-5

UNIX 1/0 SYSTEM

Finally, each device should have appropriate interrupt routines.
When an interrupt occurs, it is turned into a C-compatible call
to the device's interrupt routine. The interrupt-catching
mechanism makes 16 bits of data available to the interrupt
handler in a-dev (see < inc/ude/sys/reg.h>). This is convention­
ally used by drivers dealing with multiple similar devices to
encode the minor device number.

Several subroutines are available for character device drivers.
For example, most of these handlers need a place to buffer
characters in the internal interface between their "top half''
(read/write) and "bottom half'' (interrupt) routines. For rela­
tively low data-rate devices, the best mechanism is the charac­
ter queue maintained by the routines getc and pule. A queue
header has the structure:

struct clist
int c_cc; I• character count •I

struct cblock •c_cf; I• pointer to first •I
struct cblock •c_cl; I• pointer to last •I
}

Pure places a character on the end of a queue (c. &queue)
where c is the character and queue is a clist structure. The rou­
tine returns -1 if there is no space to put the character. Oth­
erwise, it returns 0. Gete may retrieve the first character on the
queue (&queue). This returns either the (non-negative) char­
acter or -1 (if the queue is empty).

The space for characters in queues is shared among all devices
in the system. In the standard system there are only 600 char­
acter slots available. Thus, device handlers, especially write
routines, must avoid gobbling up excessive numbers of charac­
ters.

13-6

UNIX 1/0 SYSTEM

The other major help available to device handlers is the sleep­
wakeup mechanism. The call sleep (event, priority} makes the
process wait (allowing other processes to run) until the event
occurs. When the event occurs, the process is marked ready-to­
run and the call returns when there is no process with higher
priority.

The call wakeup (event) indicates that the event has happened,
causing processes sleeping on the event to wake up. The event .
is arbitrary-agreed upon by the sleeper and the waker-up. By
convention, it is the address of some data area used by the
driver. This guarantees that events are unique.

Processes sleeping on an event should not assume that the
event has really happened. They should check that the condi­
tions which caused them to sleep are no longer true.

Priorities range from 0 to 127. A larger number indicates less­
favored scheduling. There is a distinction between processes
sleeping at a priority less than the parameter PZERO, and those
sleeping at a priority greater than PZERO. The former cannot
be interrupted by signals, although it is conceivable that it may
be swapped out. For this reason it is a bad idea to sleep with
priority less than PZERO on an event which might never occur.
On the other hand, calls to sleep with larger priority may never
return if the process is terminated by some signal in the mean­
time. Incidentally, it is a gross error to call sleep in a routine
called at interrupt time, since the process which is running is
almost certainly not the process which should go to sleep.
Likewise, none of the variables in the user area "u." should be
touched, let alone changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is
inconvenient or impossible to supply a wakeup (for example, a
device going on-line, which does not generally cause an inter­
rupt), the call sleep (&bolt, priority) may be given. Lbolt is an

13-7

UNIX I/0 SYSTEM

external cell whose address is awakened once every second by
the clock interrupt routine.

The routines sp/40, sp/50, sp/6(), spl7() set the processor
priority level as indicated to avoid inconvenient interrupts from
the device.

Timeout{jimc,arg,interva/) is useful if a device needs to know
about real-time intervals. After interval sixtieths of a second,
j'unc is called with arg as argument, in the style ("limc)(arg).
Timeouts provide real-time delays after function characters
(like new-line and tab) in typewriter output and terminate an
attempt to read the 201 Dataphone (dp) if there is no response
within a specified number of seconds. Notice that the number
of sixtieths of a second is limited to 2.n31-1, since it must
appear to be positive, and that only a bounded number of
timeouts can be going on at once. Also, the specified june is
called at clock-interrupt time, so it should conform to the
requirements of interrupt routines in general.

4. The Block-Device Interface

Handling block devices is mediated by a collection of routines.
These routines manage a set of buffers containing the images of
blocks of data on the various devices. These routines assure
that several processes accessing the same block of the same
device in multiprogrammed fashion maintain a consistent view
of the data in the block. A secondary but still important pur­
pose is increasing the efficiency of the system by keeping in­
core copies of blocks that are accessed frequently. The main
data base for this mechanism is the table of buffers, bi{}: Each
buffer header contains

• A pair of pointers (b_)Orw, b_back) maintaining a
doubly-linked list of the buffers associated with a particu-
lar block device. ----

13-8

UNIX I/0 SYSTEM

• A pair of pointers (av_)Orw, av_back) maintaining a
doubly-linked list of "free" blocks (blocks which can be
reallocated for another transaction). Buffers that have 1/0
in progress or are busy for other purposes do not appear
in this list.

• The device and block number to which the buffer refers.

• A pointer to the actual storage associated with the buffer.

• A word count (the number of bytes to be transferred to
or from the buffer).

• An error byte and a residual byte count to communicate
information from an 1/0 routine to its caller.

• A flag word with bits indicating the status of the buffer.
These flags are discussed below.

The interface with the rest of the system is primarily made up
to seven routines. Both bread and getblk return a pointer to a
buffer header for the block when given a device and a block
number. The difference is that bread returns a buffer containing
the current data for the block, while getblk returns a buffer con­
taining the data in the block only if it is already in core (this is
indicated by the B_DONE bit; see below). In either case, the
buffer (and the corresponding device block) is "busy." Other
processes referring to it have to wait until it becomes free. For
example, getblk can be used when a block is about to be totally
rewritten-no other process can refer to the block until the new
data is placed in it.

The breada routine implements read-ahead. It is logically simi­
lar to bread, but takes an additional argument- the block
number of a block (on the same device) to read asynchronously
after the specifically requested block is available.

The brelse routine makes the buffer available to other processes
when given a pointer to a buffer. It is called, for example, after

13-9

UNIX 1/0 SYSTEM

data is extracted following a bread. There are three subtly
different write routines, all of which take a buffer pointer as
argument, and all of which logically release the buffer for use
by others and place it on the free list.

• Bwrite puts the buffer on the appropriate device queue,
waits for the write, and sets the user's error flag, if
required.

• Bawrite places the buffer on the device's queue, but does
not wait for completion. For this reason, errors are not
reflected directly to the user.

• &/write does not start any 1/0 operation at all, but marks
the buffer so that, if it is grabbed from the free list to
contain data from some other block, the data in it will
first be written out.

Use bwrite when you want to be sure that 1/0 takes place
correctly, and that errors are reflected to the proper user- for
example, when updating inodes. Use bawrite when you want
more overlap (because no wait is required for 1/0 to finish) but
when you are reasonably certain that the write is required. Use
bdwrite when you are not sure that the write is needed at the
moment. For example, bdwrite is called when the last byte of a
write system call falls short of the end of a block, on the
assumption that another write will be given soon which will re­
use the same block. On the other hand, as the end of a block is
passed, bawrite is called, since the block will probably not be
accessed again soon and you want to start the writing process
soon.

The routines getblk and bread dedicate the given block
exclusively to the caller's use and make others wait. On the
other hand, brelse, bwrite, bawrite, or bdwrite must eventually
~ called to free the block for use by others.

13-10

UNIX 1/0 SYSTEM

Each buffer header contains a flag word indicating the status of
the buffer. Since they provide one important channel for infor­
mation between the drivers and the block 1/0 system, it is
important to understand these flags. The following names are
manifest constants which select the associated flag bits.

8 READ

B_DONE

B_ERROR

B_BUSY

(8 PHYS

B_WANTED

This bit is set when the buffer is handed to the
device strategy routine (see below). It indicates a
read operation. The symbol B_ WRITE is defined
as 0 and does not define a flag. It is a mnemonic
convenience for callers of routines, like swap,
which have a separate argument indicating read
or write.

This bit is set to 0 when a block is handed to the
device strategy routine and is turned on when
the operation completes, whether normally or as
the result of an error. It is also used as part of
the return argument of getblk-if it is 1, it indi­
cates that the returned buffer actually contains
the data in the requested block.

This bit may be set to 1 when B_DONE is set to
indicate that an 1/0 or other error occurred. If it
is set, the b_error byte of the buffer header may
contain an error code. If b_error is 0, the error
code is not specified. Actually, no driver at
present sets b error.

This bit indicates that the buffer header is dedi­
cated to someone's exclusive use. However, the
buffer remains attached to the list of blocks asso­
ciated with its device. When getblk (or bread,
which calls it) searches the buffer list for a given
device and finds the requested block with this bit
on, it sleeps until the bit clears

This bit is set for raw 1/0 transactions.

This flag is used in conjunction with the B BUSY
bit. Before sleeping (described above),- getblk

13-11

UNIX 1/0 SYSTEM

B_AGE

sets this flag. Conversely, when the block is
freed and the busy bit goes down (in brelse) a
wakeup is given for the block header whenever
B_ WANTED is on. This avoids having to call
wakeup every time a buffer is freed on the
chance that someone might want it.

This bit may be set on buffers just before releas­
ing them. If it is on, the buffer is placed at the
head of the free list, rather than at the tail. It is
a performance heuristic used when the caller
decides that the same block will not soon be used
again.

B_ASYNC This bit is set by bawrite. It indicates to the
appropriate device driver that the buffer should
be released when the write is finished (usually at
interrupt time). The difference between bwrite
and bawrite is that bwrite starts 1/0, waits until it
is done, and frees the buffer. Bawrite sets this
bit and starts 1/0. The bit indicates that brelse
should be called for the buffer on completion.

B DELWRI This bit is set by bdwrite before releasing the
buffer. When getblk (while searching for a free
block) discovers the bit is 1 in a buffer it would
otherwise grab, it writes block out before re­
using it.

B STALE This flag invalidates the association between the
buffer and the device/block number. It is set
when an error occurs or when the buffer is asso­
ciated with a block on a file system that is
unmounted.

S. Block Device Drivers

The bdevsw table contains the names of the interface routines
and a table for each block device.

13-12

r

UNIX I/0 SYSTEM

As with character devices, block device drivers may supply an
open and a close routine, called respectively on each open and
on the final close of the device. Instead of separate read and
write routines, each block device driver has a strategy routine
which is called with a pointer to a buffer header as argument.
The buffer header contains a read/write flag, the core address,
the block number, a byte count, and the major and minor dev­
ice numbers. The strategy routine carries out the operation
requested by the information in the buffer header. When the
transaction is complete, the B DONE (and possibly the
B_ERROR) bits are set. If the -B_ASYNC bit is set, bre/se
should be called; otherwise, wakeup is called. When the device
is capable (under error-free operation) of transferring fewer
words than requested, the device's word-count register should
be placed in the residual count slot of the buffer header. Other­
wise, the residual count should be set to 0. This is for the
benefit of the magtape driver-it tells the user the actual length
of the record.

Although the most usual argument of the strategy routines is a
genuine buffer header allocated as discussed above, all that is
actually required is that the argument be a pointer to a place
containing the appropriate information. For example, the swap
routine, which manages movement of core images to and from
the swapping device, uses the strategy routine for this device.
Care has to be taken that no extraneous bits get turned on in
the flag word.

The device's table specified by bdevsw has a byte containing an
active flag and an error count, a pair of links constituting the
head of the chain of buffers for the device (b_)Orw, b_back),
and a first and last pointer for a device queue. All of these are
used solely by the device driver itself, except for the buffer­
chain pointers. Typically, the flag encod~s the state of the dev­
ice, and is used at a minimum to indicate that the device is
currently engaged in transferring information and no new com­
mand should be issued. The error count is useful for counting

13-13

UNIX I/0 SYSTEM

retries when errors occur. The device queue remembers
stacked requests. In the simplest case, it may be maintained as
a first-in first-out list. Since buffers which have been handed
over to the strategy routines are never on the list of free
buffers, the pointers in the buffer which maintain the free list
(avjOrw, av_back) are also used to contain the pointers which
maintain the device queues.

A few routines are useful to block device drivers. Jodone(bp)
arranges that the buffer to which bp points be released or awak­
ened when the strategy module has finished with the buffer
(either normally or after an error). (If after an error, the
B_ERROR bit has presumably been set.)

The routine geterror(bp) can examine the error bit in a buffer
header and reflect any error indication found there to the user.
It may be called only in the non-interrupt part of a driver when
l/0 has completed (i.e., B_ DONE has been set).

6. Raw Block-Device 1/0

Block device drivers may be used to transfer information
directly between the user's core image and the device without
using buffers and in blocks as large as the caller requests. This
involves setting up a character-type special file corresponding to
the raw device and providing read and write routines. These
routines set up what is usually a private, non-shared buffer
header with the appropriate information and call the device's
strategy routine. Separate open and close routines may be pro­
vided but this is usually unnecessary. A special-function rou­
tine might come in handy, especially for magtape.

A great deal of work has to be done to generate the "appropri­
ate information" to put in the argument buffer for the strategy
module. The worst part is mapping relocated user addresses to
physical addresses. Most of this work is done by physio(strat,

13-14

UNIX I/0 SYSTEM

bp, dev, rw) whose arguments are: the name of the strategy
routine strat; the buffer pointer bp; the device number dev;
and a read-write flag rw, whose value is either B_READ or
B WRITE. Physio makes sure that the user's base address and
cOunt are even (because most devices work in words) and that
the core area affected is contiguous in physical space. It delays
until the buffer is not busy, and makes it busy while the opera­
tion is in progress, and it sets up user error return information.

13-15

Chapter 14: UNIX IMPLEMENTATION

c CONTENTS

1. Introduction I

2. Process Control I
2.1 Process Creation and Program

Execution 3
2.2 Swapping 4
2.3 Synchronization and Scheduling 6

3. 1/0 System 8
3.1 Block 1!0 System 8
3.2 Character 1/0 System 10

3.2.1 Disk Drivers 10
3.2.2 Character Lists 10
3.2.3 Other Character Devices . 12

(4. The File System 12
~ 4.1 File System Implementation 14

4.2 Mounted File Systems 17
4.3 Other System Functions . . 17

- i -

Chapter 14

UNIX IMPLEMENTATION

This chapter describes the implementation of the resident UNIX
kernel. The first section is a brief introduction. The second sec­
tion describes how the UNIX system views processes, users, and
programs. The third section describes the 110 system. The last
section describes the UNIX file system.

1. IntroductiOn

The UNIX kernel consists of 20,000 lines of C code and 500
lines of assembly code. The assembly code can be further bro­
ken down into 200 lines included for efficiency (they could
have been written in C) and 300 lines performing hardware
functions not possible in C.

This code represents 5 to 10 percent of what has been called
"the UNIX operating system." The kernel is the only UNIX code
that cannot be changed by a user. For this reason, the kernel
should make as few real decisions as possible. The user doesn't
need a million options to do the same thing. Rather, there
should be one way to do a thing, but that way should be the
least-common divisor of all the options that might have been
provided.

2. Process Control

In the UNIX system, a user executes programs in an environ­
ment called a user process. When a system function is required,
the user process calls the system as a subroutine. At some point
in this call, there is a distinct switch of environments. After
this, the process is said to be a system process. In the normal
definition of processes, the user and system processes are
different phases of the same process (they never execute

14-1

UNIX IMPLEMENTATION

simultaneously). For protection, each system process has its
own stack.

The user process may execute from a read-only text segment,
shared by all processes executing the same code. There is no
jUnctional benefit from shared-text segments. An efficiency
benefit is that there is no need to swap read-only segments out
because the original copy on secondary memory is still current.
This is a great benefit to interactive programs that tend to be
swapped while waiting for terminal input. Furthermore, if two
processes are executing simultaneously from the same copy of a
read-only segment, only one copy needs to reside in primary
memory. This is a secondary effect, because simultaneous exe­
cution of a program is not common. It is ironic that this effect,
which reduces the use of primary memory, only comes into
play when there is an overabundance of primary memory- that
is, when there is enough memory to keep waiting processes
loaded.

All current read-only text segments in the system are main­
tained from the texttable. A text table entry holds the location
of the text segment on secondary memory. If the segment is
loaded, that table also holds the primary memory location and
the number of processes sharing this entry. When this count is
reduced to zero, the entry is freed along with any primary and
secondary memory holding the segment. When a process first
executes a shared-text segment, a text table entry is allocated
and the segment is loaded onto secondary memory. If a second
process executes a text segment that is already allocated, the
entry reference count is simply incremented.

A user process has some strictly private read-write data in its
data segment. As far as possible, the system does not use the
user's data segment to hold system data. There are no 110
buffers in the user address space.

14-2

;-'
'

r
'~

UNIX IMPLEMENTATION

The user data segment has two growing boundaries. One,
increased automatically by the system as a result of memory
faults, is used for a stack. The second boundary is only grown
(or shrunk) by explicit requests. The contents of newly allo­
cated primary memory are initialized to zero.

Also associated and swapped with a process is a small, fixed­
size system data segment. This segment contains all the data
about the process that the system needs only when the process
is active. Examples of the kind of data contained in the system
data segment are: saved central processor registers, open file
descriptors, accounting information, scratch data area, and the
stack for the system phase of the process. The system data seg­
ment is not addressable from the user process and is therefore
protected.

Last, there is a process table with one entry per process. This
entry contains all the data needed by the system when the pro­
cess is not active. Examples are the process's name, the location
of the other segments, and scheduling information. The process
table entry is allocated when the process is created, and freed
when the process terminates. This process entry is always
directly addressable by the kernel.

2.1 Process Creation and Program Execution

Processes are created by the system primitive fork. The newly
created process {child) is a copy of the original process
{parent). There is no detectable sharing of primary memory
between the two processes. (Of course, if the parent process is
executing from a read-only text segment, the child shares the
text segment) Copies of all writable data segments are made
for the child process. Files that were open before the fork are
shared after the fork. The processes are informed of their part
in the relationship, allowing them to select their own (usually
non-identical) destiny. The parent may wait for the termination

14-3

UNIX IMPLEMENTATION

of any of its children.

A process may exec a file. This consists of exchanging the
current text and data segments of the process for new text and
data segments specified in the file. The old segments are lost.
Doing an exec does not change processes; the process that did
the exec persists, but after the exec it is executing a different
program. Files that were open before the exec remain open
after the exec.

If a program (for example, the first pass of a compiler) wishes
to overlay itself with another program (for example, the second
pass) then it simply execs the second program. This is analo­
gous to a "goto." If a program wishes to regain control after
execing a second program, it should fork a child process, have
the child exec the second program, and have the parent wait
for the child. This is analogous to a "call." Breaking up the
call into a binding followed by a transfer is similar to the sub­
routine linkage in SL-5.

2.2 Swapping

The major data associated with a process (the user data seg­
ment, the system data segment, and the text segment) are
swapped to and from secondary memory, as needed. The user
data segment and the system data segment are kept in primary
memory to reduce swapping latency. (When using low-latency
devices-such as bubbles, CCDs, or scatter/gather devices­
this decision has to be reconsidered.) Allocation of both pri­
mary and secondary memory is performed by the same simple
first-fit algorithm. When a process grows, a new piece of pri­
mary memory is allocated. The contents of the old memory are
copied to the new memory. If necessary, the old memory is
freed and the tables are updated. If there is not enough primary
memory, secondary memory is allocated instead. The process is
swapped out onto the secondary memory, ready to be swapped

14-4

UNIX IMPLEMENTATION

in with its new size.

One separate process in the kernel, the swapping process, sim­
ply swaps the other processes in and out of primary memory. It
examines the process table looking for a process that is swapped
out and is ready to run. It allocates primary memory for that
process and reads its segments into primary memory, where
that process competes for the central processor with other
loaded processes. If no primary memory is available, the swap­
ping process makes memory available by examining the process
table for processes that can be swapped out. It selects a process
to swap out, writes it to secondary memory, frees the primary
memory, and then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process.
Which of the possibly many processes that are swapped out is
to be swapped in? This is decided by secondary storage
residence time. The one with the longest time out is swapped in
first. There is a slight penalty for larger processes. Which of the
possibly many processes that are loaded is to be swapped out?
Processes that are waiting for slow events O.e .• not currently
running or waiting for disk 110) are picked first, by age in pri­
mary memory. again with size penalties. The other processes
are examined by the same age algorithm, but are not taken out
unless they are at least of some age. This adds hysteresis to the
swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system.
With limited primary memory, these algorithms cause total
swapping. This is not bad in itself, because the swapping does
not impact the execution of the resident processes. However, if
the swapping device must also be used for file storage, the
swapping traffic severly impacts the file system traffic. It is
exactly these small systems that tend to double the use of lim­
ited disk resources.

14-5

UNIX IMPLEMENTATION

2.3 Synchronization and Scheduling

Process synchronization is accomplished by having processes
wait for events. Events are represented by arbitrary integers. By
convention, events are chosen to be addresses of tables associ­
ated with those events. For example, a process that is waiting
for any of its children to terminate will wait for an event that is
the address of its own process table entry. When a process ter­
minates, it signals the event represented by its parent's process
table entry. Signaling an event on which no process is waiting
has no effect. Similarly, signaling an event on which many
processes are waiting will wake all of them up. This differs
considerably from Dijkstra's P and V synchronization opera­
tions, in that no memory is associated with events. Thus, there
need be no allocation of events prior to their use. Events exist
simply by being used.

On the negative side, because there is no memory associated
with events, no notion of "how much" can be signaled via the
event mechanism. For example, processes that want memory
might wait on an event associated with memory allocation.
When any amount of memory becomes available, the event
would be signaled. All the competing processes would then
wake up to fight over the new memory. On reality, the swap·
ping process is the only process that waits for primary memory
to become available.)

If an event occurs between the time a process decides to wait
for that event and the time that process enters the wait state,
then the process will wait on an event that has already hap·
pened (and may never happen again). This race condition hap·
pens because there is no memory associated with the event to
indicate that the event has occurred; the only action of an event
is to change a set of processes from wait state to run state. This
problem is relieved largely by the fact that process switching
can only occur in the kernel by explicit calls to the event·wait
mechanism. If the event in question is signaled by another

14-6

r

r

r

UNIX IMPLEMENTATION

process, then there is no problem. But if the event is signaled
by a hardware interrupt, then special care must be taken. These
synchronization races pose the biggest problem when UNIX is
adapted to multiple-processor configurations.

The event-wait code in the kernel is like a co-routine linkage.
At any time, all but one of the processes has called event-wait.
The remaining process is the one currently executing. When it
calls event-wait, a process whose event has been signaled is
selected and that process returns from its call to event-wait.

Which of the runable processes is to run next? Each process is
associated with a priority. The priority of a system process is
assigned by the code issuing the wait on an event. This is
roughly equivalent to the response that one would expect on
such an event. Disk events have high priority, teletype events
are low, and time-of-day events are very low. (From observa­
tion, the difference in system process priorities has little or no
performance impact.) All user-process priorities are lower than
the lowest system priority. User-process priorities are assigned
by an algorithm based on the recent ratio of the amount of
compute time to real time consumed by the process. A process
that used a lot of compute time in the last real-time unit is
assigned a low user priority. Because interactive processes are
characterized by low ratios of compute to real time, interactive
response is maintained without any special arrangements.

The scheduling algorithm simply picks the process with the
highest priority, thus picking all system processes first and user
processes second. The compute-to-real-time ratio is updated
every second. Thus, all other things being equal, looping user
processes are scheduled round-robin with a 1-second quantum.
A high-priority process waking up will preempt a running, low­
priority process. The scheduling algorithm has a desirable nega­
tive feedback character. If a process uses its high priority to hog
the computer, its priority drops. At the same time, if a low-

14-7

UNIX IMPLEMENTATION

priority process is ignored for a long time, its priority rises.

3. 1/0 System

The I/0 system is broken into two completely separate systems;
the block 1/0 system and the character 110 system. In retros­
pect, the names should have been "structured 1/0" and
"unstructured 110," respectively. While the term "block I/0"
has some meaning, "character 110" is a complete misnomer.

Devices are characterized by a major device number, a minor
device number, and a class (block or character). For each
class, there is an array of entry points into the device drivers.
The major device number is used to index the array when cal­
ling the code for a particular device driver. The minor device
number is passed to the device driver as an argument. The
minor number has no significance other than that attributed to
it by the driver. Usually, the driver uses the minor number to
access one of several identical physical devices.

Using the array of entry points (configuration table) as the only
connection between the system code and the device drivers is
important. Early versions of the system had a much less formal
connection with the drivers, making it extremely hard to hand~
craft differently configured systems. Now it is possible to create
new device drivers in an average of a few hours. The
configuration table, in most cases, is created automatically by a
program that reads the system parts list.

3.1 Block 1/0 System

The model block 1/0 device consists of randomly addressed,
secondary memory blocks of 512 or 1024 bytes each. The
blocks are uniformly addressed 0, 1,... up to the size of the
device. The block device driver emulates this model on a physi~
cal device.

14-8

UNIX IMPLEMENTATION

The block 1/0 devices are accessed through a layer of buffering
software. The system maintains a list of buffers (typically
between 10 and 70) each assigned a device name and a device
address. This buffer pool constitutes a data cache for the block
devices. On a read request, the cache is searched for the desired
block. If the block is found, the data are made available to the
requester without any physical 1/0. If the block is not in the
cache, the least recently used block in the cache is renamed,
the correct device driver is called to fill up the renamed buffer,
and then the data are made available. Write requests are han­
dled in an an~ogous manner. The correct buffer is found and
relabeled, if necessary. The write is performed simply by mark­
ing the buffer as "dirty." The physical 110 is then deferred
until the buffer is renamed.

The benefits in reduction of physical 1/0 of this scheme are
substantial, especially considering the file system implementa·
tion. There are, however, some drawbacks. The asynchronous
nature of the algorithm makes error reporting and meaningful
user error handling almost impossible. The cavalier approach to
1/0 error handling in the UNIX system is partly due to the asyn·
chronous nature of the block 110 system. A second problem is
in the delayed writes. If the system stops unexpectedly, it is
almost certain that there is a lot of logically complete, but phy·
sically incomplete, 1/0 in the buffers. There is a system primi·
tive to flush all outstanding 110 activity from the buffers.
Periodic use of this primitive helps, but does not solve, the
problem. Finally, the associativity in the buffers can alter the
physical 110 sequence from that of the logical 110 sequence.
This means that there are times when data structures on disk
are inconsistent, even though the software is careful to perform
1/0 in the correct order. On non·random devices, notably mag­
netic tape, the inversions of writes can be disastrous. The prob-­
lem with magnetic tapes is "cured" by allowing only one out·
standing write request per drive.

14-9

UNIX IMPLEMENTATION

3.2 Character 1/0 System

The character 110 system consists of all devices that do not fall
into the block 110 model. This includes the "classical" charac·
ter devices-such as communication lines, paper tape, and line
printers. It also includes magnetic tape and disks when they are
not used in a stereotyped way (for example, 80-byte physical
records on tape and track-at-a-time disk copies). In short, the
character 1/0 interface means "everything other than block."
1/0 requests from the user are sent to the device driver essen­
tially unaltered. The implementation of these requests is, of
course, up to the device driver. There are guidelines and con­
ventions to help the implementation of certain types of device
drivers.

3.2.1 Disk Drivers

Disk drivers are implemented with a queue of transaction
records. Each record holds a read/write flag. a primary memory
address, a secondary memory address, and a transfer byte
count. Swapping is accomplished by passing a record to the
swapping device driver. The block 1/0 interface is implemented
by passing such records with requests to fill and empty system
buffers. The character 110 interface to the disk drivers create a
transaction record that points directly into the user area. The
routine that creates this record also ensures that the user is not
swapped during this 1/0 transaction. Thus, by implementing the
general disk driver, it is possible to use the disk as a block dev­
ice, a character device, and a swap device. The only really
disk-specific code in normal disk drivers is the pre-sort of tran­
sactions to minimize latency for a particular device, and the
actual issuing of the 1/0 request.

3.2.2 Character Lists

Real character-oriented devices may be implemented using the
common code to handle character lists. A character list is a

14-10

·, __

UNIX IMPLEMENTATION

queue of characters. One routine puts a character on a queue.
Another gets a character from a queue. It is also possible to ask
how many characters are currently on a queue. Storage for all
queues in the system comes from a single common pool. Put·
ting a character on a queue allocates space from the common
pool and links the character onto the data structure defining the
queue. Getting a character from a queue returns the
corresponding space to the pool.

A typical character-output device (paper tape punch, for exam­
ple) is implemented by passing characters from the user onto a
character queue until some maximum number of characters is
on the queue. The 1/0 is prodded to start as soon as there is
anything on the queue and, once started, it is sustained by
hardware completion interrupts. Each time there is a comple­
tion interrupt, the driver gets the next character from the
queue and sends it to the hardware. The number of characters
on the queue is checked and, as the count falls through some
intermediate level, an event (the queue address) is signaled.
The process that is passing characters from the user to the
queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape
reader) is handled in a very similar manner.

Another class of character devices is terminals. A terminal is
represented by three character queues. There are two input
queues (raw and canonical) and an output queue. Characters
going to the output of a terminal are handled by common code
exactly as described above. The main difference is that there is
also code to interpret the output stream as ASCII characters
and to perform some translations, e.g., escapes for deficient ter­
minals. Another common aspect of terminals is code to insert
real-time delay after certain control characters.

I4·11

UNIX IMPLEMENTATION

Input on terminals is a little different. Characters are collected
from the terminal and placed on a raw input queue. Some
device-dependent code conversion and escape interpretation is
handled here. When a line is complete in the raw queue, an
event is signaled. The code catching this signal then copies a
line from the raw queue to a canonical queue performing the
character erase and line kill editing. User read requests on ter­
minals can be directed at either the raw or canonical queues.

3.2.3 Other Character Devices

Finally, there are devices that fit no general category. These
devices are set up as character J/0 drivers. An example is a
driver that reads and writes unmapped primary memory as an
110 device. Some devices are too fast to be treated a character
at a time, but do not fit the disk 1/0 mold. Example are fast
communications lines and fast line printers. These devices
either have their own buffers or "borrow" block 1/0 buffers
for a while and then give them back.

4. The File System

In the UNIX system, a file is a {one-dimensional) array of bytes.
No other structure of files is implied by the system. Files are
attached anywhere {and possibly multiply) onto a hierarchy of
directories. Directories are simply files that users cannot write.

The UNIX file system is a disk data structure accessed com­
pletely through the block 1/0 system. As stated before, the
canonical view of a "disk" is a randomly addressable array of
512-byte or 1024-byte blocks. A file system breaks the disk into
four self-identifying regions. The first block (address 0) is
unused by the file system. It is left aside for booting pro­
cedures. The second block (address 1) contains the so-called
"super-block." This block, among other things, contains the
size of the disk and the boundaries of the other regions. Next

14-12

UNIX IMPLEMENTATION

comes the ilist, a list of file definitions. Each file definition is a
(64-byte structure, called an inode. The offset of a particular
\'----- in ode within the ilist is called its in umber. The combination of

device name (major and minor numbers) and inumbers
uniquely names a particular file. After the ilist, and at the end
of the disk, are free storage blocks available for the contents of
files.

The free space on a disk is maintained by a linked list of avail­
able disk blocks. Every block in this chain contains a disk
address of the next block in the chain. The remaining space
contains the address of up to 50 disk blocks that are also free.
Thus with one 110 operation, the system obtains 50 free blocks
and a pointer showing where to find more. The disk allocation
algorithms are straightforward. Since all allocation is in fixed­
size blocks and there is strict accounting of space, there is no
need to compact or garbage collect. However, as disk space

f becomes dispersed, latency gradually increases. Some installa­
tions choose to occasionally compact disk space to reduce
latency.

An inode contains 13 disk addresses. The first 10 of these
addresses point directly at the first 10 blocks of a file. If a file is
larger than 10 blocks, then the eleventh address points at a
block that contains the addresses of the next 128 blocks of the
file. If the file is still larger than this, then the twelfth block
points at up the 128 blocks, each pointing to 128 blocks of the
file. Files yet larger use the thirteenth address for a "triple
indirect" address. The algorithm ends here with the maximum
file size of 1,082,201,087 bytes for a 512-byte file system, or
2,164,402,175 bytes for a 1024-byte file system.

A logical directory hierarchy is added to this flat physical struc­
ture simply by adding a new type of file-the directory. A direc­
tory is accessed exactly as an ordinary file. It contains 16-byte
entries consisting of a 14-byte name and an inumber. The root

14-13

UNIX IMPLEMENTATION

of the hierarchy is at a known inumber (viz., 2). The file sys­
tem structure allows an arbitrary, directed graph of directories
with regular files linked in at arbitrary places in this graph. In
fact, very early UNIX systems used such a structure. Administra­
tion of this structure became so chaotic that later systems were
restricted to a directory tree. Even now, with regular files
linked multiply into arbitrary places in the tree, accounting for
space is a problem. It may be necessary to restrict the entire
structure to a tree, and allow a new form of linking that is sub­
servient to the tree structure.

The file system allows easy creation, easy removal, easy random
accessing, and very easy space allocation. With most physical
addresses confined to a small contiguous section of disk, it is
also easy to dump, restore, and check the consistency of the file
system. Large files suffer from indirect addressing, but the
cache prevents most of the implied physical 1/0 without adding
much execution. The space overhead properties of this scheme
are quite good. For example, on one particular file system,
there are 25,000 files containing 130M bytes of date-file con­
tent. The overhead (inode, indirect blocks, and last block
breakage) is about 11.5M. The directory structure supporting
these files has about 1,500 directories containing 0.6M bytes of
directory content and about O.SM bytes of overhead in access­
ing the directories. This comes out to less than a 10 percent
overhead for actual stored data. Most systems have this much
overhead in padded trailing blanks alone.

4.1 File System Implementation

Because the inode defines a file, the implementation of the file
system centers around access to the inodes. The system main­
tains a table of all active inodes. As a new file is accessed, the
system locates the corresponding inode, allocates an inode table
entry, and reads the inode into primary memory. As in the
buffer cache, the table entry is considered to be the current
version of the inode. Modifications to the inode are made to

14-14

1::-

UNIX IMPLEMENTATION

the table entry. When the last access to the inode goes away,
the table entry is copied back to the secondary store ilist and
the table entry is freed.

All 1/0 operations on files are carried out with the aid of the
corresponding inode table entry. Accessing a file is a straight­
forward implementation of the algorithms mentioned previ­
ously. The user is not aware of inodes and inumbers. Refer­
ences to the file system are made in terms of path names of the
directory tree. Converting a path name into an inode table entry
is also straightforward. Starting at some known inode (the root
or the current directory of some process), the next component
of the path name is searched by reading the directory. This
gives an inumber and an implied device (that of the directory).
Thus, the next inode table entry can be accessed. If that was
the last component of the path name, then this inode is the
result. If not, this inode is the directory needed to look up the
next component of the path name, and the algorithm is
repeated.

The user process accesses the file system with certain prtml­
tives. The most common of these are open, creat, read, write,
seek, and close.

In the system data segment associated with a user, there is
room for some (usually between 10 and 50) open files. This
open file table consists of pointers that can be used to access
corresponding inode table entries. Associated with each of these
open files is a current 110 pointer. This is a byte offset of the
next read/write operation on the file. The system treats each
read/write request as random with an implied seek to the 1/0
pointer. The user usually thinks of the file as sequential with
the I/0 pointer automatically counting the number of bytes that
have been read/written from the file. Tobe user may, of course,
perform random 1/0 by setting the 1/0 pointer before
reads/writes.

14-15

UNIX IMPLEMENTATION

With file sharing, it is necessary to allow related processes to
share a common 1/0 pointer and yet have separate 1/0 pointers
for independent processes that access the same file. To fill these
two conditions, the 1/0 pointer cannot reside in the inode table
nor can it reside in the list of open files for the process. A new
table (the open file table) was invented for the sole purpose of
holding the 1/0 pointer. Processes that share the same open
file (the result of forks) share a common open file table entry.
A separate open of the same file will share the inode table
entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows.
open converts a file system path name into an inode table entry.
A pointer to the inode table entry is placed in a newly created
open file table entry. A pointer to the file table entry is placed
in the system data segment for the process. creat first creates a
new inode entry, writes the inumber into a directory, and then
builds the same structure as for an open. read and write access
the inode entry as described above. seek manipulates the 1/0
pointer. No physical seeking is done. close frees the structures
built by open and creat. Reference counts are kept on the open
file table entries and the inode table entries to free these struc­
tures after the last reference goes away. unlink decrements the
count of the number of directories pointing at the given inode.
When the last reference to an inode table entry goes away, if
the inode has no directories pointing to it, then the file is
removed and the inode is freed. This delayed removal of files
prevents problems arising from removing active files. A file
may be removed while still open. The resulting unnamed file
vanishes when the file is closed. This is a method of obtaining
temporary files.

There is a type of unnamed FIFO file called a pipe. Implemen­
tation of pipes consists of implied seeks before each read or
write to implement first-in first-out. There are also checks and
synchronization to prevent the writer from grossly outproducing
the reader and to prevent the reader from overtaking the writer.

14-16

r

('

UNIX IMPLEMENTATION

4.2 Mounted File Systems

The file system of a UNIX system starts with some designated
block device formatted as described above to contain a hierar­
chy. The root of this structure is the root of the UNIX file sys­
tem. A second formatted block device may be mounted at any
leaf of the current hierarchy. This logically extends the current
hierarchy. The implementation of mounting is trivial. A mount
table is maintained containing pairs of designated leaf inodes
and block devices. When converting a path name into an inode,
a check is made to see if the new inode is a designated leaf. If
it is, the inode of the root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the
device on which the file lives. Thus a file system consisting of
many mounted devices does not have a common pool of free
secondary storage space. This separation of space on different
devices is necessary to allow easy unmounting of a device.

4.3 Other System Functions

There are some other things that the system does for the
user-a little accounting, a little tracing/debugging, and a little
access protection. Most of these things are not very well
developed because our use of the system in computing science
research does not need them. There are some features that are
missed in some applications (for example, better inter-process
communication).

The UNIX kernel is an 1/0 multiplexer more than a complete
operating system. This is as it should be. Because of this
outlook, many features found in most other operating systems
are missing from the UNIX kernel. For example, the UNIX ker­
nel does not support file access methods, file disposition, file
formats, file maximum size, spooling, command language, logi­
cal records, physical records, assignment of logical file names,
logical file names, more than one character set, an operator's

14-17

UNIX IMPLEMENTATION

console, an operator, log-in, or log-out. Many of these things
are symptoms rather than features. Many of these things are
implemented in user software using the kernel as a tool. A
good example of this is the command language. Each user may
have his own command language. Maintaining such code is as
easy as maintaining user code. The idea of implementing "sys­
tem" code with general user primitives comes directly from
MULTICS.

14-18

Chapter 15: ERROR MESSAGES

c CONTENTS

Can't allocate message buffer .. .
cksum: out of data
cmemalloc: improper allocation countscat-# size=#
cxrfree error cx_daddr- 0 .. .
DANGER: mfree map overflow #, lost # items at#
DANGER: out of swap space
needed # blocks .. .
/dev/swap doesn't match swapdev
changing to x, y•..•••
Device error on device-type drive#, [ctl #,] [slice#]
Double Panic: <message>
dpfree failed

c duplicate IP address!! sent from ethernet
address: %x %x %x %x %x %x

exec error: u_error # u_dent.d_name <name>
File table overflow
forward: src %x dst %x ttl %x .. .
iaddress > 2A24
Inode table overflow .. .
insufficient swap space for available memory
Largest runnable process is # .. .
lo%d: can't handle af%d
m_expand returning 0 .. .
memalloc error: tried to allocate # units
cmemalloc error: tried to allocate # units
memfree: illegal index # (Ox#) .. .
<name> overflow- internal table data discarded.
The define constant <name> is too small.
No swap space for exec args

c Not enough swap space to fork
out of mmu registers
panic: •••• ABORTING •••• .. .

- i -

2
3
4
5
6

7

8
9

10
11

12
13
14
15
16
17

18
19
20

21
22

23
24
25
26
27

panic: accept
panic: bflush: bad free list .. .
panic: devtab .. .
panic: dpfrelse .. .
panic: findmajor
panic: icmp _error
panic: iinit .. .
panic: interrupt stack overflow
panic: 10 err in swap .. .
panic: ip_init
panic: kernel memory management error
panic: kernel parity error .. .
panic: lost vmap segment
panic: m_copy .. .
panic: No data pages
panic: No text pages
panic: no fs .. .
panic: no imt .. .

panic: no procs ·········'··
panic: out of swap space
panic: raw_ usrreq
panic: receive
panic: receive 2 .. .
panic: receive 2a
panic: receive 3 .. .
panic: receive 4 .. .
panic: rtfree .. .
panic: sbappendaddr
panic: sbdrop .. .
panic: sbflush
panic: sbflush 2 .. .
panic: soaccept: !NOFDREF .. .
panic: soclose: NOFDREF
panic: so free dq .. .
panic: soisconnected
panic: sosend .. .
panic: syscall .. .
panic: tcp_output .. .

- ii -

28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

I

panic: tcp _output REXMT
panic: tcp _pulloutofband .. .
panic: tcp _ usrreq .. .
panic: Timeout table overflow .. .
panic: udp_usrreq
phys mmu overflow
shared mem mmu overflow
procdup: error: al = = #
procdup: error: a2 = = #
Random interrupt ignored
real mem = value
avail mem = value•••.••.......•...•..
panic: unexpected kernel trap .. .
out of text .. .
scatter load map too small by # units .. .
swap error: swapping beyond processs
unsuccessful mmu load
lba=# lam=# pba=# asn=# asm=#
memory management unit dump
WARNING: swap space running out
needed # blocksi

- iii -

65
66
67
68
69

70

71
72

73
74
76
77
78

79

80

- j

- j

- j
j
j

j
j
j

j

j
j
j

I
j

Chapter 15

ERROR MESSAGES

This manual describes some UniPlus+ System V Release 2.0
error messages and appropriate actions and references for each.

The messages appear in alphabetical order with one entry per
page. The table of contents lists each error message. The for­
mat of each error message entry is described below.

Error Message

DESCRIPTION This section describes the error message.

ACTION

It may also refer you to further informa­
tion.

This section describes probable causes
for each error message, and corrective
action to resolve the problem.

REFERENCES This section contains the name of the
UniPlus+ system source code module(s)
producing the error message.

15-1

ERROR MESSAGES

Can't allocate message buffer

DESCRIPTION At system initialization time, it was found
that too much memory was being allocated
for messages. Messages are currently unus­
able.

ACTION Check the MSGSEG and MSGSSZ entries in
the system description file. MSGSEG is the
number of segments to allocate and MSGSSZ
is the size each segment should be. The
product of the two numbers (MSGSEG and
MSGSSZ) is the amount of memory to allo­
cate for messages. When this amount
exceeds the amount of memory currently
available in the machine, the above message
appears during system booting. The system
size must be reduced by either modifying
the above entries or by other means. Then a
new system must be generated and booted.
If the above solutions are unacceptable,
more memory must be added to the
machine.

REFERENCES os/msg.c

15-2

ERROR MESSAGES

(cksum: out of data

DESCRIPTION The actual length of the mbuf chain passed
to in_cksum was shorter than it should have
been.

REFERENCES in_cksum.c

15-3

ERROR MESSAGES

cmemalloc: improper allocation countscat=# size=#

(scatter loaded kernels only)

DESCRIPTION After attempting to allocate consecutive
pages for a raw 1/0 request in a scatter
loaded kernel, the validity check to see if the
correct number was allocated failed. Pro­
cessing continues as if the attempt was suc­
cessful. This should not happen

ACTION Requires no action on its own. Depends on
any further errors that may result.

REFERENCES malloc.c

15-4

ERROR MESSAGES

r- cxrfree error cx_daddr=O
'
--- (kernels with multiple contexts and shared page registers only

(STANFORD style))

DESCRIPTION In releasing the page registers for a process,
resources were expected but not found.
This is probably a software problem and
should be reported.

ACTION Depends on subsequent error messages.

REFERENCES contexte

15-5

ERROR MESSAGES

DANGER: mfree map overftow #, lost #items at#

DESCRIPTION One of the tables, mapped through the
system's ma/loc (see mal/oc(3C) in the User
Manual, Sections 2 - 6) mechanism, has
overflowed. The first number indicates the
address of the table. By searching for this
address in the system namelist, the name of
the malfunctioning table can be discovered.
The crash command (see crash(lM) in the
Administrator Reference Manual> may also be
used to find the name of the table.

ACTION Increase the number of entries currently
allocated for the malfunctioning table in the
system description file. Generate a new sys­
tem. Boot the system.

REFERENCES os/malloc.c

15-6

ERROR MESSAGES

(,-.. DANGER: out of swap space

-- needed # blocks

DESCRIPTION The system ran out of swap space in trying
to swap and there were no sticky images
around to free. This process will wait (possi­
bly indefinitely} for swap space.

ACTION Grow the available swap space.

REFERENCES text.c

15-7

ERROR MESSAGES

/dev/swap doesn't match swapdev

changing to x, y

DESCRIPTION The system was configured so that
/dev/swap did not match swapdev as defined
by conf.c.

ACTION The file /dev/swap is automatically con­
verted to agree with swapdev and has a
major device number x and a minor device
number y. If this is not the desired swap
area, reset the swap parameters in the sys­
tem description file used by con.fig. See
con:fig{lM) in the Administrator Manual

REFERENCES .main.c

15-8

ERROR MESSAGES

(Device error on device-type drive#, (ctl #,] (slice#]

DESCRIPTION This message indicates that a hardware error
has occurred on a block type device. The
error messages from device drivers vary and
are hardware specific depending on the type
of controller used.

ACTION

This message is followed by:

bn- # er = #,#

This is the block number in error, followed
by the contents of two of the device regis­
ters.

See your hardware reference manual.

15-9

ERROR MESSAGES

Double Panic: <message>

DESCRIPTION The system got a second panic when trying
to clean up after a first panic. It has stopped
to prevent further damage. This can indicate
a severe software or hardware problem.

ACTION Reboot system and run fsck.

REFERENCES prf.c

15-10

ERROR MESSAGES

r dpfree failed

,__ (68451 memory management kernels only)

r-
1

DESCRIPTION The memory management unit indicated a
failure in trying to clear a freed descriptor.
This usually indicates a hardware problem.
The system will continue, possibly causing
problems when the descriptor is used later.

ACTION None necessary.

REFERENCES dp.c

15-11

ERROR MESSAGES

duplicate IP address!! sen I from ethernel address: %x %x %x %x 'lex
%x

DESCRIPTION An ARP packet was received from a
machine on the network with the same
Internet address as the local machine.

REFERENCES if_ether.c

15-12

ERROR MESSAGES

(exec error: u_error # u_dent.d_name <name>

DESCRIPTION An unexpected error occurred in attempting
to execute a program. name specifies the
name of the program, u _error specifies the
error. The program is probably corrupted.

ACTION Check the program. The image may be cor­
rupted, or there may be a hard disk error in
the image.

REFERENCES sysl.c

15-13

ERROR MESSAGES

File table overflow

DESCRIPTION The system file table has overflowed and a
new reference (see open(2), access(2),
dup{2) in the User Reference Manual, Sec­
tions 2 - 6) to a file failed. This means that
the system was not created with a large
enough file table to support the maximum
number of open files on the system.

ACTION Increase the number of entries currently
allocated for the open-file table (files) in the
system description file. The number of
inode table entries may also have to be
increased. Generate a new system. Boot the
new system.

REFERENCES os/fio.c

15-14

ERROR MESSAGES

r forward: src %x dst 'lox ttl %x

DESCRIPTION A packet is being forwarded: the source and
destination addresses and the time to live are
given.

REFERENCES ip_input.c

15-15

ERROR MESSAGES

iaddress > 2 "24

DESCRIPTION When updating a file's inode on the file sys­
tem, a block number in the inode was found
to be greater than permissible.

ACTION This message indicates a software and/or
hardware error. It is usually caused by a cor­
rupted file system. To check the state of any
file system suspected to be corrupted,
unmount the file system and check it with
the fsck command (see jSck(lM) in the
Administrator Reference Manuah. If the
suspect file system is the root system, the
system will have to go single user to check
it.

REFERENCES

15-16

The error can also be generated by new dev­
ice drivers which have not been completely
debugged. Also suspect are any standard
UNIX system device drivers that have been
modified without authorization. Check any
drivers that meet the above criteria.

If none of the above apply, the error can
also be caused by a disk drive and/or con­
troller. This could be a memory problem
also. Contact your support organization.

os/iget.c

ERROR MESSAGES

(Inode table overflow

r

DESCRIPTION The system inode table has overflowed and a
new file could not be accessed {see open(2),
create(2), access(2), and sta/(2) in the User
Reference Manual, Sections 2 - 6). The in ode
table overflow message means that the sys­
tem was not created with a large enough
inode table to support the maximum number
of open files on the system.

ACTION Increase the number of entries currently
allocated for the inode table (inodes) in the
system description file. Generate a new sys­
tem. Boot the system.

REFERENCES os/iget.c

15-17

ERROR MESSAGES

insufficient swap space for available memory

Largest runnable process is #

DESCRIPTION There is insufficient swap space available for
the amount of memory found on the system.
The size of the largest process has been lim­
ited to prevent swapping problems.

ACTION Grow the available swap space.

REFERENCES smachdep.c

15-18

ERROR MESSAGES

lo'lod: can't handle af%d

DESCRIPTION A request was made to the loopback driver's
output routine with a destination address
who's address family was not AF _INET.

REFERENCES if_loop.c

15-19

ERROR MESSAGES

m_expand returning 0

DESCRIPTION A request to allocate memory to use for
mbufs was denied.

REFERENCES uipc_mbuf.c

15-20

ERROR MESSAGES

memalloc error: tried to allocate # units

cmemalloc error: tried to allocate # units
(scatter loaded kernels only)

DESCRIPTION The scatter loaded memory allocation rou­
tine was called with an invalid size. The
request is ignored. This is a kernel problem.

ACTION Depends on subsequent problems that may
arise.

REFERENCES malloc.c

15-21

ERROR MESSAGES

memfree: illegal index # (Ox#)

(scatter loaded kernels only)

DESCRIPTION Memfree was called with an out-of-range
scatter index. Processing continues as if the
attempt was successful. This probably indi­
cates a kernel problem.

ACTION Requires no action on its own. Depends on
any further errors that may result.

REFERENCES malloc.c

15-22

r
' ' ~

ERROR MESSAGES

<name> overflow - internal table data discarded.

The define constant <name> is too small.
(68451 memory management kernels only)

DESCRIPTION Memory was released when there was
insufficient space in the memory map.
Memory will be lost. System will continue
to run without that memory with possible
impact on performance or capability to run
processes.

ACTION Grow the named map.

REFERENCES cmalloc.c

15-23

ERROR MESSAGES

No swap space for exec args

DESCRIPTION During an exec, the system uses swap space
to pass arguments and environment from the
calling program to the called program.
There was no space available and the exec
was aborted.

ACTION Grow the swap space.

REFERENCES sysl.c

15-24

ERROR MESSAGES

,f Not enough swap space to fork

·-
DESCRIPTION The system makes a preliminary check when

forking to make sure that there is enough
swap space for this program. If there is not
enough, it will print this warning message
and return failure on the fork.

ACTION Grow the available swap space.

REFERENCES sysl.c

15-25

ERROR MESSAGES

out of mmu registers

(68451 memory management kernels only)

DESCRIPTION The system has run out of descriptors in try­
ing to map in a process. This probably indi­
cates a software problem. The process will
be run anyway and will probably abort.

ACTION None necessary.

REFERENCES uregdp.c

15-26

ERROR MESSAGES

panic: *""** ABORTING ****

DESCRIPTION Printed after a system stack dump. It will be
preceded by some other kernel error mes­
sage.

ACTION See other message.

REFERENCES smachdep.c

15-27

ERROR MESSAGES

panic: accept

DESCRIPTION The queue of incoming connections to a
socket was nonempty but an attempt to
remove the first connection on the queue
failed.

REFERENCES netipc.c

15-28

ERROR MESSAGES

r panic: bflush: bad free list

DESCRIPTION In attempting to do delayed writes for a dev­
ice (sync or umount}, the buffer queue was
invalid. This should not happen.

ACTION Reboot the system.

REFERENCES bio.c

15-29

ERROR MESSAGES

panic: devtab

DESCRIPTION The system got an error in attempting to
hash the device and block number to look
for a buffer. This should never happen.

ACTION Reboot system.

REFERENCES bio.c

15-30

lr"'

ERROR MESSAGES

panic: dpfrelse

(68451 memory management kernels only)

DESCRIPTION The system has run out of descriptors in try­
ing to map in a process. Probably indicates a
software problem.

ACTION Reboot the system.

REFERENCES dp.c

15-31

ERROR MESSAGES

panic: findmajor

DESCRIPTION The getmajor routine was not able to find
the major device number. This should
never happen. It can occur if a device stra­
tegy routine is being used that is not in the
block device table.

ACTION Reboot the system.

REFERENCES bio.c

15-32

ERROR MESSAGES

(panic: icmp_error
·~

;-·
'

DESCRIPTION An unknown ICMP message type was given
to icmp_error.

REFERENCES ip_icmp.c

15-33

ERROR MESSAGES

panic: iinit

DESCRIPTION System could not read the superblock or root
inode of the root file system. Usually a
hardware problem or a bad device driver.

ACTION Correct problem and reboot. Possibly remap
bad block.

REFERENCES main.c

15-34

ERROR MESSAGES

(panic: interrupt stack overflow

I
'

DESCRIPTION The system has run out of supervisor stack.
Probably some routine is using excessive
local variables. If it persists, it may be
necessary to grow the Udot area.

ACTION Reboot the system.

REFERENCES clock.c

15-35

ERROR MESSAGES

panic: 10 err in swap

DESCRIPTION An unrecoverable error has occurred during
a system swap operation. The processor has
halted.

ACTION This message indicates an error on the disk
drive and/or controller problem. The fol­
lowing steps should be taken. Generate a
system dump. Change the location of the
swap device to a different section on the
current disk or replace the disk with another.

REFERENCES

15-36

If the problem is alleviated, the error was
caused by a bad spot on the disk.

If the problem still exists, suspect disk drive
and/or controller problems. Contact your
support organization. Meanwhile, attempt to
boot from a different disk drive.

io/bio.c

ERROR MESSAGES

(panic: ip_init

r
'

DESCRIPTION No protocol table entry exists for protocol
family PF _INET, protocol IPPROTO_RA W.

REFERENCES ip_input.c

15-37

ERROR MESSAGES

panic: kernel memory management error

DESCRIPTION The kernel got a bus or address error. This
message is preceded by kernel address error
or kernel bus error.

ACTION

REFERENCES

15-38

vaddr-# paddr-# ireg=# fcode=#

vaddr is virtual fault address
paddr is physical fault address
ireg is instruction register
.ti:ode is the function code

pc-# sr-# up->u_procp=# pid=# exec=NNN

pc is the program counter
sr is the status register
up-> u_procp is process pointer
pid is process id of active process
exec is the name of the active process
the rest is the data and the address registers

It can indicate either a software or a
hardware problem. The program counter
gives a good starting place to look.

Reboot the system.

trap.c

I
'

ERROR MESSAGES

panic: kernel parity error

DESCRIPTION Memory detected a parity error while the
kernel was running. Message preceded by
trap: kernel parity error.

ACTION

REFERENCES

vaddr-# paddt-# ireg-# fcode-#

vaddr is virtual fault address
paddr is physical fault address
ireg is instruction register
}Code is the function code

pc-# sr-# up->u_procp-# pid-# exec=NNN

pc is the program counter
sr is the status register
up-> u_procp is process pointer
pld is process id of active process
exec is the name of the active process
the rest is the data and the address registers

Run memory check if one is provided with
the system. Reboot the system.

trap.c

15-39

ERROR MESSAGES

panic: lost vmap segment

(68451 memory management kernels only)

DESCRIPTION In freeing shared data pages, a conflict exists
in the memory map. The operation will be
skipped, potentially causing later problems.

ACTION None necessary.

REFERENCES shm.c

15-40

r-- panic: m_copy
'

ERROR MESSAGES

DESCRIPTION In copying one mbuf chain to another, one
of the following occurred:

• the offset or length was negative

• the offset is positive but no more mbufs
remain

• the length is positive but no more mbufs
remain

• the offset of an mbuf in the chain is
greater than MMAXOFF

REFERENCES uipc_mbuf.c

15-41

ERROR MESSAGES

panic: No data pages

panic: No text pages
(kernels with multiple contexts and shared page registers only
(STANFORD style))

DESCRIPTION Insufficient page registers were available to
set up the process. This should not happen.

ACTION Reboot the system.

REFERENCES cxureg.c

15-42

-

ERROR MESSAGES

r panic: no fs

DESCRIPTION The in-core super-block of a mounted file
system cannot be found. This should never
happen. The processor has halted.

ACTION Generate a system dump. Reboot the sys­
tem. The crash command (see crash(lM) in
the Administrator Reference Manuah can be
used to gather more information from the
system dump about the nature of the prob­
lem.

REFERENCES

Probable causes of the error include both
software and hardware problems. Check the
configuration information in the system
description file to make sure it is correct.
Check any device drivers that have not been
completely debugged. Check any UNIX sys­
tem device driver that has been modified
without authorization.

If none of the above apply, suspect hardware
problems with the disk drive and/or con­
troller. Contact your support organization.

os/alloc.c

15-43

ERROR MESSAGES

panic: no imt

DESCRIPTION A mount point was not found in the system
mount table when traversing a file system
boundary. This should never happen. The
processor has halted.

ACTION Generate a system dump. Reboot the sys­
tem. The crash command (see crash(l M) in
the Administrator Re.fl!rence Manua/) can be
used to gather more information from the
dump about the nature of the problem.

REFERENCES

15-44

Probable causes include both software and
hardware problems. Check the configuration
information in the system description file,
make sure it is correct. Check any new dev­
ice drivers that have not been completely
debugged. Also, check any UNIX system
device driver that has been modified without
authorization.

If none of the above apply, suspect hardware
problems with the disk drive and/or con­
troller. Contact your support organization.

os/iget.c

ERROR MESSAGES

panic: no procs

DESCRIPTION A process table entry cannot be found dur­
ing a fork when it is known that an entry is
available. This should never happen. The
processor has halted.

ACTION Generate a system dump. Reboot the sys­
tem. Contact your support organization.

REFERENCES slp.c

15-45

ERROR MESSAGES

panic: out of swap space

DESCRIPTION The system ran out of swap space in trying
to swap out a process.

ACTION Grow the available swap space.

REFERENCES text.c

15-46

ERROR MESSAGES

r panic: raw usneq

DESCRIPTION Raw_usrreq was called with an unknown
user request.

REFERENCES raw_usrreq.c

15-47

ERROR MESSAGES

panic: receive

DESCRIPTION The count of characters in a socket's receive
queue is nonzero but the pointer to the
mbuf chain containing the data is NULL.

REFERENCES socket.c

15-48

ERROR MESSAGES

(panic: receive 2

DESCRIPTION In dealing with a protocol in which addresses
are always passed with messages, either an
mbuf could not be allocated to hold the
remote address or the size of the remote
address was zero.

REFERENCES socket.c

15-49

ERROR MESSAGES

panic: receive 2a

DESCRIPTION In dealing with a protocol in which addresses
are always passed with messages, the mes­
sage contained the sender's address but no
access rights.

REFERENCES socket.c

15-SO

ERROR MESSAGES

panic: receive 3

DESCRIPTION In dealing with a protocol in which addresses
are always passed with messages, the mes­
sage contained the sender's address and
access rights, but no data.

REFERENCES socket.c

15-51

ERROR MESSAGES

panic: receive 4

DESCRIPTION In a protocol in which only atomic messages
are exchanged, the "end of message"
marker is not present but no more data
remain.

REFERENCES socket.c

15-SZ

ERROR MESSAGES

1
...--- panic: rtfree

DESCRIPTION Rtfree was called with a NULL argument.

REFERENCES route.c

15-53

ERROR MESSAGES

panic: sbappendaddr

DESCRIPTION The pointer to the first mbuf of data in a
message is NULL.

REFERENCES socket2.c

15-54

ERROR MESSAGES

r panic: sbdrop

.r-·

('
'

DESCRIPTION A request has been made to drop some data
from a socket buffer but the pointer to the
first mbuf in the data chain is NULL.

REFERENCES socket2.c

15-55

ERROR MESSAGES

panic: sbflush

DESCRIPTION Sbflush was called to flush data from a
socket but the receive queue was "locked."

REFERENCES socket2.c

15-56

ERROR MESSAGES

r panic: sbflush 2

I,--

DESCRIPTION After flushing all data from a socket buffer,
either the character count, the mbuf count,
or the pointer to the first mbuf in the data
chain is nonzero.

REFERENCES socket2.c

15-57

ERROR MESSAGES

panic: soaccept: !NOFDREF

DESCRIPTION A socket on the queue of incoming connec­
tions for another socket already has a file
table reference.

REFERENCES socket.c

15-58

I
'

ERROR MESSAGES

panic: soclose: NOFDREF

DESCRIPTION A close was attempted on a socket for which
a file table reference should no longer exist.

REFERENCES socket.c

15-59

ERROR MESSAGES

panic: sofree dq

DESCRIPTION The list of "accept sockets" for a socket was
not NULL but an attempt to remove the
first connection on the queue failed.

REFERENCES socket.c

15-60

ERROR MESSAGES

(panic: soisconnected

DESCRIPTION A socket related to an accept cannot be
found on the queue of partial connections of
the socket to which it is related.

REFERENCES socket2.c

15-61

ERROR MESSAGES

panic: sosend

DESCRIPTION The number of scatter-gather write areas
remaining to send is negative although it was
never 0.

REFERENCES socket.c

15-62

ERROR MESSAGES

(panic: syscall

,r-'

DESCRIPTION A system call came through trap rather than
syscall. The interrupt vector table is not set
up correctly.

ACTION Fix the interrupt table and rebuild the ker­
nel.

REFERENCES trap.c

15-63

ERROR MESSAGES

panic: tcp_output

DESCRIPTION The TCP template pointer for a TCP control
block is NULL.

REFERENCES tcp_output.c

15-64

ERROR MESSAGES

(panic: tcp_output REXMT

'---

r
'

DESCRIPTION The TCP retransmit timer was set when an
attempt was made to start the persistence
timer.

REFERENCES tcp_output.c

15-65

ERROR MESSAGES

panic: tcp_pulloutofband

DESCRIPTION The TCP urgent pointer points within the
current segment but beyond the last byte of
data in the segment's mbuf chain.

REFERENCES tcp_input.c

15-66

ERROR MESSAGES

r---- panic: tcp_usrreq
'

', __ _

DESCRIPTION Tcp_usrreq was called with an unknown user
request.

REFERENCES tcp_usrreq.c

15-67

ERROR MESSAGES

panic: Timeout table overflow

DESCRIPTION The system timeout table, which is used to
implement software interrupts, has
overflowed while attempting to add another
entry. The processor has halted.

ACTION Reboot the system. If this condition per­
sists, increase the number of entries
currently allocated for the call-out table
(calls) in the system description file. Gen­
erate a new system. Boot the new system.

REFERENCES os/ clock.c

15-68

ERROR MESSAGES

(panic: udp_usrreq

r-
'

DESCRIPTION Udp_usrreq was called with an unknown
user request.

REFERENCES udp_usrreq.c

15-69

ERROR MESSAGES

phys mmu overflow

shared mem mmu overflow
(kernels with multiple contexts and shared page registers only
(STANFORD style))

DESCRIPTION Insufficient page registers were available to
set up the phys or shared memory area of a
process. This should not happen.

ACTION The process will continue to run without the
specified area set up. If it uses that area, it
will probably core dump.

REFERENCES cxureg.c

15-70

r· procclup: error: al - = #
,_ proctlup: error: a2 = = #

(scatter loaded kernels only)

ERROR MESSAGES

DESCRIPTION Procdup was called with more memory allo­
cated than specified in the process size. Pro­
cessing continues, ignoring extra memory.
Probably indicates a kernel problem.

ACTION Requires no action on its own.

REFERENCES mmachdep.c

lS-71

ERROR MESSAGES

Random interrupt ignored

DESCRIPTION The system got a spurious or random inter·
rupt. This interrupt is generated by the
MC68000 if a device requests an interrupt
but does not acknowledge when the 68000
responds. This is usually a hardware prob­
lem.

ACTION No action necessary. The system will con­
tinue, ignoring the interrupt. If the interrupt
should have been handled, further problems
may arise later.

REFERENCES trap.c

15-72

real mem = value

avail mem = value

ERROR MESSAGES

DESCRIPTION Real memory is the number of bytes of phy­
sical memory on the CPU. Available
memory is the number of bytes of physical
memory actually available to the user
processes.

ACTION This message is for information only.

REFERENCES machdep.c

15-73

ERROR MESSAGES

panic: unexpected kernel trap

DESCRIPTION An unexpected system fault has occurred.

ACTION

15-74

This message is preceded by trap type #

pc=# sr=# up->u_procp=# pid-# exe~;:-NNN

pc is the program counter
sr is the status register
up-> u_procp is process pointer
pid is process id of active process
exec is the name of the active process
the rest is the data and the address registers

The message may also be preceded by a
memory management dump. The trap type
is the trap type as specified in a motorola
68000 reference manual.

Reboot the system. Probable causes include
the following.

• New device drivers that have not been
completely debugged.

• Unauthorized modifications to existing
system device drivers.

• Running out of system resources.

• Incorrect information in the system
description file.

• Lack of information in the system
description file.

ERROR MESSAGES

• Hardware problems.

r REFERENCES trap.c

15-75

ERROR MESSAGES

out of text

DESCRIPTION The shared text table has overflowed and a
shared text program was not allowed to exe­
cute. Too many programs with the sticky bit
on (ISVTX) may be present in the system.
This is usually a transient condition that
occurs under a heavy load.

ACTION

REFERENCES

15-76

If the condition persists, increase the
number of entries currently allocated for the
text table (texts) in the system description
file. Generate a new system. Boot the sys-
tern.

os/text.c

r--
1

ERROR MESSAGES

scatter load map too small by # units

(scatter loaded kernels only)

DESCRIPTION The scatter load map size is too small for the
amount of memory on the system.

ACTION Grow NSCATLOAD by at least the indi·
cated amount and rebuild the kernel.

REFERENCES smachdep.c

15-77

ERROR MESSAGES

swap error: swapping beyond process

(scatter loaded kernels only)

DESCRIPTION During swapping, the size of a process indi­
cated that more segments should have been
allocated in memory than actually were allo­
cated. The swap will be aborted. This will
probably cause problems when the process
tries to run again.

ACTION Depends on subsequent results.

REFERENCES bio.c

15-78

,,----

ERROR MESSAGES

unsuccessful mmu load

lba=# lam=# pba-# asn=# asm=#
memory management unit dump
(68451 memory management kernels only)

DESCRIPTION The memory management unit has indicated
an error in loading due to a conflict in
addresses. Probably indicates a software
problem, but can be a bad chip. System will
continue with process anyway.

lba is the logical base address
lam is the logical address mask
pba is the physical base address
asn is the address space number
asm is the address space mask

All of the control registers and each of the
descriptors will also be dumped.

ACTION None necessary.

REFERENCES uregdp.c

15-79

ERROR MESSAGES

WARNING: swap space running out

needed # blocks

DESCRIPTION The system needed to free a sticky image in
order to swap.

ACTION Grow the available swap space or mark less
processes sticky.

REFERENCES text.c

15-80

c
Chapter 16: VIRTUAL TUNING

CONTENTS

1. Configuration Tuning

1.1 Multiple Swap Areas

1. 2 Paging Parameters •

1. 3 Paging Daemon Parameters

1.4 Additional Parameters • •

1.5 Record and File Locking Parameters

- i -

1

1

1

2

3

4

- j

j
j

j

j
j
j

~· j

-- j

J

j
j

j

j
j

j

j
j
j

j
j
j
j

r

r

Chapter 16

VIRTUAL TUNING

1. Configuration Tuning

Except for special provisions required by the paging environment
noted below, tuning guidelines for the UniPlus+ virtual implementa­
tion are identical to those described in the Administrator Guide.

1.1 Multiple Swap Areas

Virtual UniP!us + provides the ability to configure systems with mul­
tiple swap areas. The procedure for doing so is described in the
manual page for swap(IM).

Under most circumstances, there is no need to configure more than a
single swap area. However, for the following conditions, multiple
swap areas should be configured:

• operating system warning messages suggest that the system is
running low on swap space and the current swap area cannot
be extended.

• load across disk drives is unbalanced and ordinary file systems
cannot be relocated.

As usual, whenever reapportioning access across disk drives by mov­
ing logical partitions, verify that load across drives is evenly distri­
buted in the new configuration by comparing the %busy files for all
drives reported by sar -d.

1.2 Paging Parameters

Virtual UniPlus + provides the ability to control activity of the page
daemon by selective setting of parameter values. The values of
these parameters are specified in /etc/master (see master(4) and

16-1

VIRTUAL

config(I M)).

1.3 Paging Daemon Parameters

In general, the default settings provide near optimal performance for
a variety of workloads. However, circumstances when changes
might be made to default setting include:

• most active processes are in the swap queue and only one pro­
cess is in the run queue

• Central Processor Unit (CPU) idle time occurs for a workload
where none occurred with a swapping version of System V
Release 2.0 (time spent waiting for memory is attributed as
idle time).

The first case results when the paging daemon is too active and the
second symptom occurs when the daemon is not active enought.
The goal is to establish daemon activity that is acceptable.

• vhandr-----<lecrease the value to make the daemon more active:
increase to make less active (must be integer > 0 and ~ 300).

• vhndfrac--decrease the value to make the daemon more active;
increase to make less active (must be integer > 0 and >
maxmemlgetpgslow and < 25 percent of available memory).

• getpgshi-increase the value to make the daemon more active;
decrease to make less active (must be integer >0 an d >
getpgsio and < 25 percent of available memory).

• getpgslow-increase the value to make the daemon more
active; decrease to make less active (must be integer *' 0 and
< getpgshl).

The value of getpgshi and getpgslow will be dynamically adjusted at
system boot time if there are fewer free pages (maxmem) available
than the initial value of getpgshi and getpgslow.

16-2

VIRTUAL

The following table provides several parameter configurations that
are well suited to different job mixes. As noted above, the default
configuration should be satisfactory for most applications. however,
sites running only large processes {greater than 400 kilobytes) may
wish to experiment with different values.

Su211:ested Pallinll Parameter Confi~mrations

Parameter Default
vhandr I

vhndfrac 16

2etosrshi 100
2etoe:slow 25

1.4 Additional Parameters

In general, the default settings for the following additional parame­
ters should not be altered.

• nregion-set at 2.5 times the number of procs and increment if
and only if region table overflow message appears.

• maxpmem---default is 0 and should not be altered. Maxpmem
is the maximum memory size in pages, a value of 0 uses all
available memory.

• maxumem--default is 256, but can be reduced to save memory
consumed by page tables at the cost of decreasing user process
address space. This is the maximum number of pages which a
user process is allowed to use.

• nsptmap--set at the number of procs and increment if and only
if the message ''DANGER: mfree map overflow ... "appears.

• ma.nc-if system warning message low on swap appears, this
value should be set lower or the swap space increased. The
value must be an integer much greater than I (default of 64)

16-3

VIRTUAL

and less than or equal to 100.

• maxfc-The value must be an integer much greater than I
(default of 100) and less than or equal to 100.

• ppmem-The value must be an integer greater than 1 (default
10) and :;,;,; getpgslow. This values is used to determine when
to deny a user process memory resources when memory
becomes scarce. The super-user can always get the last
memory available.

1.5 Record and File Locking Parameters

There are two parameters which control the resources that are allo­
cated for Record and File Locking.

• jlckfil-the number of files in the system that can have record
locks set at one time; the number cannot exceed files.

• flckrec-the number of internal records locks that may be
present on the system at one time.

16-4

(
'

'---

c

Colophon

Composed at UniSoft Systems Inc.
on the UniPlus+ Operating System
Designed by the Documentation Department
Printed in Times Roman on Sequoia Matt

