
•'
' ..

I

Y"""-· -~_,,
. ' ~-=-:::-----::~-<:_~ ~ -; ,- "r~~= -c •

.
,. '"'-t~-' ~ililiii -"<-.: ""'""'

Copyright 0 1985 by UniSoft Systems

AU tl&lltH*rved. No part .of this publicatioQ 11>ay b!>;ropro- , ·"V
d~, lt(>rb4 in a retrieval system, traaslatad, ~ or
ltansmitted in any form. or by any means manual~ electrntiic,
electt()..~, .optlgd, or otherwise, without explfoit ,written
pet1111$81Gri from tlfiiSoft Systems.

····-·--()
This .. aula.- edlied and enhanced by Mary Ann FI!IJIOit}' of
IJniSoft Sy&loms.

UnfPlua+ ·and UniSoft are TeJiStered trademarks of UniSoll SystemS.
tJNJX tu !,rademark of AT&T $ell Laboratories.

CONTENTS

c Chapter 1 AWK

Chapter 2 SED

Chapter 3 LEX

Chapter 4 YACC

Chapter 5 BC

Chapter 6 DC

Chapter 7 M4

Chapter 8 MAKE c Chapter 9 AUGMAKE

Chapter 10 sees

Chapter 11 CURSES

Chapter 12 UUCP

"

c

Chapter 1: A WK

CONTENTS

1. Introduction .

2. General Structure

3. BEGIN and END Statements

4. Comments

5. Keywords .

6. Identifiers .
6.1 Variables

6.1.1 Initialization
6.1.2 Type
6.1.3 Incremented Variables
6.l.4 Special Variables

6.2 Arrays
6.2.1 Multidimensional Arrays

7. Operators • • • • •
7 .I Binary Operations
7.2 Unary Operations
7.3 Regular Expressions
7.4 Relational Expressions
7.5 Assignment Expressions
7.6 Variables, Expressions and

Assignments . .

8. Input Records and Fields
8.1 Tokens . . .
8.2 Fields
8.3 Field Separator
8.4 Record Separator
8.5 Output Separators
8.6 Multiline Records
8.7 Ranges . ,

9. Numeric Constants . .

. i .

3

4

7

8

9
9

11
11
l3
l3
14
16

17
19
20
20
23
25

27

29
30
31
32
33
34
35
36

37

10. String Constants
I 0.1 String Concatenation

II. Functions
11.1 Summary of Built-in Functions

12. Direct Command-line Usage
12.1 Cooperation with the Shell

13. Using Command Files .

14. Control Flow Statements
14.1 if-else
14.2 while Statement .
14.3 for Statement _ _
14.4 break, continue and next Statements

15. Report Generation
15.1 Output to Printer or Terminal
15.2 Output to Files
15.3 Output to Pipes . . _

LIST OF FIGURES

Figure 1.1. Keywords

Figure 1.2. Assignment Operators

Figure 1.3. Arithmetic Operators

Figure 1.4. Relational Operators

Figure 1.5. Logical Operators

Figure 1.6. Regular Expression Pattern Matching
Operators . _ .

Figure 1.7. Binary Operators

Figure 1.8. Unary Operators

Figure 1.9. Numeric Constants

Figure 1.10. String Constants

- ii -

38
39

41
44 ,_)

48
52

54

56
56
56
57
60

61
62
68
70

8

17

18

18

18

19

19

20

37

38
r I

Figure 1.11. Arithmetic Functions

Figure 1.12. String Functions c Figure 1.13. A WK printf Escape Characters

- iii -

41

42

67

~)

(
'

Chapter 1

AWK-

A PROGRAMMING LANGUAGE

1. Introduction

The following are examples of common awk applications:

AWK

• Report writing - especially those using information
gathered from record-oriented data bases

• Pattern matching
• Data manipulation
• Information retrieval

An awk program is a sequence of statements of the form

pattern { ac/ion}
pattern { at'! ion}

An awk program is typically run using an input file or set of
input files. Each line in a file is considered a record with each
field being distinguished by white-space (default).

The basic operation of awk is to scan a set of input lines, in
order, one at a time. In each line, awk searches for the pat­
tern described in the awk program. If that pattern is found in
the input line, a corresponding U('fion is performed.

Each statement of an awk program is executed for a given
input line. When all the patterns are tested, the next input line
is fetched, and the awk program is once again executed from
the beginning.

1-1

AWK

Either the pattern or the action may be omitted from an awk
program, but not both:

• If there is no ac!ion for a pattern, the matching line
is simply printed.

• If there is no pattem for an action, then the action
is performed for every input line.

A NULL awk program does nothing.

Since patterns and actions are both optional, actions are
enclosed in braces to distinguish them from patterns.

The patterns follow the regular expression syntax used in the
UNIX editors (e.g., sed, ed, etc.)

The following command line instructs awk
in inputftle which contains an x:

% awk · /x/ {print}' inputfile

1-2

to print every line

AWK

2. General Structure

An awk program has the following structure:

1. A < BEG IN > section
This section is run before any input lines are read.

2. A < record> or main section
This section is data driwn, since it is the section that is run
over and over for each record (separate line) of input.

3. An < END> section
This secion is run AFTER all the data files are processed.

Values are assigned to variables from the command line. The
< BEGIN > section is run before these assignments are made.

The words BEGIN and END are actually patterns recognized
(byawk.

No declarations are necessary to formally distinguish an awk
variable containing a character value from one containing an
integer value. The awk processor considers the value of the
variable as inferred by its use.

1-3

AWK

3. BEGIN and END Statements

The special pattern, BEGIN, matches the beginning of the
input before the first record is read.

The pattern, END, matches the end of the input after the last
line is processed.

BEGIN and END provide a way to gain control before and after
processing for initialization and wrapping up.

One popular use of BEGIN is to place column headings on the
output.

The following display is the contents of the text file countries,
separated by tabs, which will be used in most of the examples
in this document: (The headings are provided here for clarity,
but are NOT contained in the example file, countries.)•

COUNTRY AREAt POP.; CONTINENT
Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 68 14 Australia
India 1269 637 Asia
Argentina 72 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

• The figures are from 1978.

t AREA is given in thousands of square miles.

+POPULATION is population given in millions.

1·4

AWK

For the first example, the following commands are contained in
an executable file called report: (The symbol Ci) is used here to
represent the tab character, which would otherwise not be
clearly distinguished from space.)

awk 'BEGIN { FS-"Gl";
print "Country", "Area", "Population", "Continent"}

{print}' countries

By executing report, then, the following output results:

%report
Country Area Population Continent
Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 68 14 Australia
India 1269 637 Asia
Argentina 72 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa
%

The columns are not well aligned, but a printf statement could
be used to improve the appearance of the output. The printf
statement in awk has the same format designators and syntax
rules as those used in the C library version of printf. (See the
section entitled, "Output to Printer or Terminal" for more
information on using printf statements in awk.)

One reason to explicitly set the value of the variable FS (Field
Separator), is that spaces sometimes separate groups of words
that should be considered within the same field. In such a case,
it would be more efficient to declare FS to be equal to tab or
some other character. In fact, if FS were not set to tab, the
first record in countries would have four fields, but the second
record would have five - North would be the contents of the

1-5

AWK

fourth field and America the contents of the fifth.

If BEGIN is present, it is the first pattern.

If used, END is the last pattern.

1-6

AWK

4. Comments

Comments in awk programs begin with the character # and
terminate at the end of the line with a newline character.

For example:

print { NR, $1, $2, $3 } # print the record number and
the first three fields

A comment can be appended to the end of any line of an awk
program.

1-7

AWK

5. Keywords

KEYWORDS
BEGIN break int string
END close length substr
FILENAME continue log while
FS exit next
NF exp number
NR fo' print
OFMT getline printf
OFS if split
ORS in sprintf
RS index sqrt

Figure 1.1. Keywords

1-8

AWK

6. Identifiers

Identifiers in awk serve to denote variables and arrays.

An identifier is a sequence of letters, digits, and underscores,
beginning with a letter or an underscore.

Uppercase and lowercase letters are different.

6.1 Variables

A variable is one of the following:

• Identifier
• ldentifieriExpressionl
• $Term

The numeric value of any uninitialized variable is 0, and the
string value is the empty string.

An identifier by itself is a simple variable.

A variable of the form identifierlexpressionl represents an ele~
ment of an associative array named by identifier. The string
value of expression is used as the index into the array. The
preferred value of identifier or identifier {expression} is deter­
mined by context.

The built-in variable, $0 has both the string and numeric value
of the current input record.

If the current input record represents a number, then the
numeric value of $0 is the number and the string value is the
literal string.

l-9

AWK

The preferred value of $0 is string unless the current input
record is a number.

The SO cannot be changed by assignment.

The variables $1, $2, ... refer to fields 1, 2, ... of the current
input record.

The string and numeric value of Si for 1 < = i < = NF are those
of the i-th field of the current input record.

As with $0, if the ith field represents a number, then the
numeric value of $i is the number and the string value is the
literal string.

The preferred value of $i is string unless the i-th field is a
number.

The $i is changed by assignment. The $0 is then changed
accordingly.

In general, $term refers to the input record if term has the
numeric value 0 and to field i if the greatest integer in the
numeric value of term is i.

If i<O or if i> = 100, then accessing Si causes awk to produce
an error diagnostic.

If NF<i< = 100, then Si behaves like an uninitialized variable.

Accessing $i for i > NF does not change the value of NF.

1-10

1,.--

AWK

6.1.1 Initialization

By default, variables are initialized to the NULL string, which
has a numerical value of 0. (This eliminates the need for most
initialization of variables in BEGIN sections.)

The following commands are used to print the name and popu­
lation of the most highly populated country listed in the exam­
ple input file, countries. These commands are contained in a
command file.

awk 'maxpop<$3 {maxpop = $3; country = $1)
END {print country,maxpop)' countries

6.1.2 Type

Variables take on numeric or string values according to context.

The following awk command is used to print the sum of the
population figures in the file countries. In this example, the
variable pop is presumed to be a number:

% awk '{pop+= $3} END {print "TOTAL:", pop}' countries
TOTAL: 2201

The following awk command is used to print the name and
area of each country in the file countries. In this example, the
variable country is presumed to be a string, and the commands
are assumed to be contained in an executable file called report:

1·11

AWK

% cat report
awk ' { country = $1; size = $2 ;
printf "NAME; %-lOs AREA %4d", country, size}' countries
%report
NAME' Russia AREA' 8650
NAME' Canada AREA' 3852
NAME' China AREA' 3692
NAME' USA AREA' 3615
NAME' Brazil AREA' 3286
NAME' Australia AREA' 68
NAME' India AREA' 1269
NAME' Argentina AREA' 72
NAME' Sudan AREA' 968
NAME' Algeria AREA' 920
%

In the following example, the value-type of the variable max­
pop depends on the type of data found in the third field ($3).
(Evaluations of this type are done at run-time.)

awk 'maxpop<$3 {maxpop=$3}
END {print "Largest Population:", maxpop}' countries

Each variable (including fields) is potentially a string or a
number OR BOTH at any time.

An arithmetic expression is of the type number.

A concatenation of strings is of type string.

If both operands in a comparison are numeric, the comparison
is made numerically. Otherwise, operands are coerced to
strings, if necessary, and the comparison is made on strings.

The following awk segment may be used to force a type
conversion on the variable expr - from type string to type
number.

1-12

-

AWK

expr+ =0

The following awk segment may be used to force a type
conversion on the variable expr - from type number to type
string. (This can be expressed as achieving the type conver­
sion by causing the value of expr to be "string-concatenated"
with the NULL string.)

expr""'""

6.1.3 Incremented Variables

An incremented variable has one of the forms

• ++var
• --var
• var++
• var--

(The ++var has the value var + 1 and has the effect of
var = var + 1.

The --var has the value var - 1 and has the effect of
var = var - 1.

The var++ has the same value as var and has the effect of var
= var + 1.

The var-- has the same value as var and has the effect of
var = var - 1.

The preferred value of an incremented variable is numeric.

6.1.4 Special Variables

NR

NF

Number of the current record.

Number of fields in the current record.

1-13

AWK

FS

RS

Si

$0

OFS

Input field separator, by default it is set to a
blank or tab.

Input record separator, by default it is set to the
newline character.

The i-th input field of the current record.

The entire current input record.

Output field separator, by default it is set to a
blank.

ORS Output record separator, by default it is set to
the newline character.

OFMT The format for printing numbers, with the print
statement, by default is "%.6g".

FILENAME The name of the input file currently being read.

6.2 Arrays

This is useful because awk commands are typi­
cally of the form

% awk - f program filet flle2 ftle3 ...

Array elements in awk are not declared, they must only be
mentioned to be used.

Subscripts may have any non-NULL value, including non­
numeric strings.

The following awk segment is provided as an example of a con­
ventional numeric subscript, and illustrates assigning the value
of the current input record to the NR-th element of an array
called record. (NR is a special awk variable which, holds the
value of the current record number.)

record(NR(- $0

The following commands are used to fill an array called names
with the names of each country in the file countries. This is

1-14

AWK

done by assigning the value of the first field of each input
record (country name) to the NR-111 element of an array called
names. Since NR holds the value of the current input record,
the value of nameslll would be the first field in the first input
record (nameslli=Russia), the value of namesl21 would be
the first field in the second input record (namesi2I=Canada),
etc. (The command file, justnames, is assumed to be execut­
able.)

% cat justnames
awk '{ namesiNRI = $1 }
END { for (i in names) {print "NAME:", nameslil J }' countries
% justnames
NAME: Canada
NAME: China
NAME: USA
NAME: Brazil
NAME: Australia
NAME: India
NAME: Argentina
NAME: Sudan
NAME: Algeria
NAME: Russia

Arrays are also indexed by non-numeric values. This capability
is similar to the associative memory of Snobol tables. The fol­
lowing commands, contained in the file awkfile, are used to
illustrate such array indexing. (First the contents of awkfile
are displayed, then the file is executed and the result is
printed.):

% cat awkfile
awk ·/Asia/ I popi"Asia"l+=$3 }
END I print "Asia=", pop("Asia"l r countries
% awkfile
Asia=1765
%

1-15

AWK

Any expression can be used as a subscript in an array reference.
The following command line is used to illustrate using the
string value of a field to index an array called area.

% awk '{areal$11=$2} END {print areal"lndia"l}' countries
1269
%

6.2.1 Multidimensional Arrays

Multidimensional arrays may be created by using two levels of
subscripts. For example,

1-16

for (i =I; i < = 10; i+ +)
for (j = l;j <= lO;j++)

multli "," jl = ...

' -

AWK

7. Operators

An awk program has assignment, arithmetic, relational, and
logical operators similar to those in the C programming
language.

An awk program also has regular expression pattern matching
operators similar to those in the UNIX operating system pro­
gram egrep and lex.

ASSIGNMENT OPERATORS
Symbol Usage Description

- assignment X- y

+ plus-equals X+- y is similar
to X - X+Y

- minus-equals X -Y is similar
to X~ X-Y

• times-equals X • y is similar
to X = X*Y

1- divide-equals X/- y is similar
to X ~ X/Y

%- mod-equals X%- y is similar
to X = Xo/oY

++ prefix and ++X and X++ ace similar
postfix incre- to X= X+l
ments
prefix and X and X are similar
postfix deere- to X- X- I
ments

Figure 1.2. Assignment Operators

1-17

AWK

ARITHMETIC OPERATORS
Symbol Description

+ unary and binary plus
- unary and binary minus
• multiplication
I division
IYil modulus
<---> grouping

Figure 1.3. Arithmetic Operators

RELATIONAL OPERATORS
Symbol Description
< less than
<~ less than or equal to
== equal to
!= not equal to
>~ greater than or equal to
> greater than

Figure 1.4. Relational Operators

LOGICAL OPERATORS
Symbol Description

&& and
II or
! not

Figure 1.5. Logical Operators

1-18

AWK

REGULAR EXPRESSION
PATTERN MATCHING OPERATORS

Symbol Description
- matches ,- does not match

Figure 1.6. Regular Expression Pattern Matching Operators

7.1 Binary Operations

The following binary arithmetic operators are recognized by
awk:

BINARY OPERATORS

+ Addition
- Subtraction

• Multiplication

I Division

% Modulus

Figure 1. 7. Binary Operators

The binary operator is applied to the numeric value of the left
operand and the right operand and the result is the usual
numeric value.

The preferred value of binary terms is the numeric result of the
binary operation on the left operand but the numeric value can
be interpreted as a string value (see Numeric Constants).

The operators •, /, and If. have higher precedence than + and

All operators are left associative.

1-19

AWK

All arithmetic is done in floating point.

7.2 Unary Operations

The following unary operators are recognized by awk:

UNARY OPERATORS
+ (positive)
- (negative)

Figure 1.8. Unary Operators

A unary operator is applied to the numeric value of a term.

The preferred value of a unary term is the numeric value of the
result, however, the result can be interpreted as a string value.

Unary + and - have higher precedence than "', I, and 1/e.

7.3 Regular Expressions

The awk program can be used to search files and find patterns
matching regular expressions.

A pattern in front of an action acts as a selector that determines
if the action is to be executed.

A variety of expressions are used as patterns:

• Regular Expressions
• Arithmetic Relational Expressions
• String-Valued Expressions
• Combinations of Regular Expressions, Arithmetic

Relational and String-Valued Expressions
The simplest such regular expression is a literal string of char­
acters enclosed in slashes.

1-20

("'
'

AWK

The following examples use the text file countries (used in pre­
vious examples) as input. The command line instructs awk to
search countries for all lines (input records) containing the
string Asia in any field. (Since a pattern is given without a
corresponding action, ALL fields of each input record contain­
ing the pattern Asia (in any field), will be printed.)

% awk '/Asia/' countries

The following command line is used to print all lines (input
records) beginning with either A, B, or C. The brackets ((and
)) are used to mean "any one of the characters enclosed."
(Brackets are most often used to enclose a range of characters,
e.g., A-Z or 0-9, etc.) The caret n represents the beginning of
the line - otherwise, the following command would find all
lines containing either an A, B or C anywhere on the line.

% awk ·riABCI/' countries

The following command line is used to print all lines (input
records) ending with ia. The dollar sign ($) represents the end
of the line.

% awk '/ia$/' countries

The following command line is used to print all lines (input
records) which contain either N or S. The pipe (I) separates
the alternatives.

o/o awk '/NISI' countries

The following command line is used to print all lines (input
records) which contain a u, followed by one or more s's, fol­
lowed by an i. The plus (+) is used to indicate one or more
occurrences of the preceding character.

% awk '/us+i/' countries

The following command line is used to print all lines (input
records) which contain a da followed by zero or one n 's. The

1-21

AWK

question mark(?) is used to indicate zero or one occurrence of
the preceding character.

% awk 'I dan?/' countries

The following command line is used to print all lines (input
records) which contain an s, followed by any single character,
followed by an a.

u,;l awk 'I s.a/' countries

The following command line is used to print all lines (input
records) which contain an s, followed by zero or more i's, fol·
lowed by an a.

% awk '/si*al' countries

NOTE: The special meaning of metacharacters - such as
(beginning of line), S (end of line), . <any single
character), * (zero or more characters), etc. - can be
"escaped" by preceding these characters with a
backslash (\).

The following command line instructs awk to search
all input records for an s, followed by a period (.),
followed by an a.

% awk '/s\.a/' countries

Regular expressions, as used with the UNIX editors, are under­
stood by awk.

The following command line is used to print the first field of all
lines (input records) where the string contained in the first field
ends with the characters ia.

% awk '$1 - /ia$/ {print $1}' countries

The following operators may be used to combine patterns so
that more specific subsets may be retrieved:

1-22

•
•
• •

II (OR)
&& (AND)
! (NOT)
Parentheses (ASSOCIATION)

AWK

The following command line is used to print all Jines (input
records) for which the third field (population) is greater than
or equal to 100, and for which the second field (area) is greater
than or equal to 3000.

1Vi1 awk '$2 > = 3000 && $3 > =100' countries

The following command line is used to print all lines (input
records) for which the value of the fourth field is either A ... i.t
or Africa.

% awk '$4 = = "Asia" II $4 =="Africa"' countries

_ ___. The following command line is also used to print all lines
(input records) for which the value of the fourth field is either
Asia or Africa, but a comparison to a regular expression is
used instead of the OR operator (II).

1\111 awk 'Sl ~ r<Asia!Africa)$/' countries

Both && and II guarantee that their operands are evaluated
from left to right.

With both the && and II operators, evaluation stops as soon as
truth or falsehood is determined.

7.4 Relational Expressions

It is possible to perform comparisons on the fields of a file and
base output, or the control flow of an awk program, on the

. .----... result of the comparison.

1-23

AWK

The conditions tested are those using the relational operators.
(i.e.,>,<,>=,<=,== and!=.)

In relational tests, if both operands are numeric, a numerical
comparison is made. Otherwise, the operands are compared as
strings.

The following examples all use the text file countries (used in
previous examples) as their input file.

The following command line is used to list the countries whose
population is greater than 100 million. Note that since a pal*
tern is given without an action, each record in the input file
which matches the pattern is printed.

1Vi1 awk '$3 > too· countries
Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
India 1269 637 Asia

The following command line is used to list just the names of
the countries ($1) on the Asian continent.

% awk '$4 =="Asia" {print $1}' countries
Russia
China
India

The following command line is used to list the countries whose
names begin with a letter greater than or equal to the letter S
O.e., S, T, ... , Z):

1-24

1~1 awk '$1 > = "S"' countries
USA 3615 219 North America
Sudan 968 19 Africa

AWK

The following command line is used to list the countries whose
name is the same as that of the continent on which it resides:

1/o awk '$1 = = $4' countries
Australia 68 14 Australia

7 .S Assignment Expressions

An assignment expression takes the following form:

variable assignment-operator expression

The preferred value of variable is the same as that of expres­
sion. and assignment-operator is one of those listed in Figure
1.2.

In an expression of the form:

variable = expression

the numeric and string value of var becomes those of expres­
sion.

An expression of the form:

variable operator = expression

is equivalent to

variable = variable operator expression

where operator is one of:

+ * I %

The assignment operators are right associative and have the
lowest precedence of any operator. For example,
a += b >~<= c-2 is equivalent to the following sequence of
assignments:

1-25

AWK

b = b • (c-2)
a = a+b

The following commands are used to print the total population
of and the number of countries in the continent of Asia. To do
this, the variable pop is incremented by the value found in the
third field (population) of every input record (input line) con­
taining the pattern Asia. Also, if the pattern is matched, the
variable n is incremented by 1. After all the input records have
been searched, the END statement is executed and the quoted
strings are printed, "as is," and the values of the variables
(found outside the double quotes) are substituted for the vari­
able name and printed.

awk '/Asia/ {pop+=$3; ++n}
END {print "Total",pop,"Number of counlries",n}' countries

The following operators are recognized by awk and C:

ASSIGNMENT OPERATORS
RECOGNIZED BY AWK AND C

++ Increment; May be prefix (increment BEFORE
operation), or postfix (increment AFTER
operation).

Decrement; May be prefix (decrement
BEFORE operation), or postfix (decrement
AFTER operation).

- Subtract right operand from left operand and
place the result in the left operand.

I Divide the left operand by the right operand
and place the result in the left operand.

%- Divide the left operand by the right operand
and place the remainder in the left operand.

• Multiply the left operand by the right operand
and place the result in the left operand.

+- Add the left operand to the right operand and
put the result in the left operand.

I-26

NOTE: The operation:

X += y

provides the same solution as the operation:

X = X + Y

However, x + = y is shorter and runs faster.

ALSO: The operation:

++x

provides the same solution as the operation:

X = X + 1

However, ++x is shorter and runs faster.

7.6 Variables, Expressions and Assignments

AWK

It is possible to use awk to perform an arithmetic operation (or
series of such operations) and store the result in a variable.
Although variables store values as character strings, awk allows
an almost transparent type conversion.

The following command line is used to print only the name of
each country (first field) and its population density (per square
mile). The population density is found by dividing the
country's population (per million persons) by its area (per
thousand square miles).

1-27

AWK

% awk '{print $1, (1000000 • $3)/($2 • 1000) }'countries
Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 205.882
India 501.97
Argentina 361.111
Sudan 19.6281
Algeria 19.5652
%

The following commands are also used to print the name of
each country (first field) and its population density (per square
mile), but a printf statement is used to force the output into a
more precisely-aligned table. (Note that the commands here,
because they are too long to fit easily on a command line, are
assumed to be contained in an executable file.)

awk '{print("%10s %6.11\n", $1,
(1000000 • $3)/($2"' 1000) }'countries

The output using the printf statement looks like the following:

Russia 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 205.9

India 502.0
Argentina 361.1

Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point.

1-28

AWK

Awk recognizes the standard arithmetic operators, i.e. +, -, •,
I and%.

8. Input Records and Fields

The awk program reads its input one record at a time unless
explicitly instructed to do otherwise.

By default, a record is a sequence of characters ending with a
newline character or with an end of file. It is possible to change
the character used to define the end of a record to something
other than newline or end of file. This is done by assigning a
new character to the special variable RS (Record Separator).

Once read, the record is assigned to the variable $0, and the
awk program then splits the record into fields.

By default, a field is a string of characters separated by blanks
or tabs. It is possible to change the character used to define the
end of a field to something other than whitespace by assigning a
new character to the special variable FS (Field Separator).

Using the input file called countries (used in previous exam­
ples) the first record is the following:

Russia 8650 262 Asia

When this record is read by awk, it is assigned to the variable
SO. For example, the following awk command:

'!. awk '{print SO}' countries

Will print the entire record of each record read by awk.

To have only the name of the country printed, the following
awk command would do the trick:

1-29

AWK

% awk '{print $1 }'countries

The first field of the present record is referred to as $1 by the
awk program, the second by $2, the third by $3, and so forth.

The variables $1, $2, etc. are particularly useful when it is
necessary to print the fields of a record in a different order than
that found in the original file.

To produce a list of countries with the population in the first
column and the name of the country in the second, using the
same countries file as input, the following command line could
be used:

1/o awk '{print $4, $1, $3}' countries

8.1 Tokens

The token $0 is a special variable whose value is that of the
current input record.

The tokens $1, $2 ... are special variables whose values are
those of the first field ($1), the second field ($2), etc., of the
current input record.

The keyword NF (Number of Fields) is a special variable
whose value is the number of fields in the current input
records.

SNF holds the value of the last field of the current input
records.

The fields of each record are numbered sequentially and the
total number of fields can vary from record to record.

1-30

AWK

None of these variables is defined in the action associated with
a BEGIN or END pattern, where there is no current input

(record.

The keyword NR (Number of Records) is a variable whose
value is the number of input records read so far.

The first input record read is 1.

Tokens in awk are usually separated by non-NULL sequences
of blank, tabs, and newlines, or by other punctuation symbols
such as commas and semicolons.

• Braces ({ }) surround actions.

• Slashes (I I) surround regular expression patterns.

• Double quotes (" ") surround strings.

8.2 Fields

Fields are referenced by the current value of NF prepended
with a$ O.e., the first field is referenced by $1, the second field
by $2, etc.).

These special, "built-in" variables may be used in arithmetic
and string operations, assigned values and are always initialized,
by default, to the NULL string.

The following command line is used to print all lines (input
records), after first converting the value of the second field
(area) from "per thousand square miles" to "per million
square miles." (The conversion from "area per thousand
square miles" to "area per million square miles" is achieved by
dividing the value of the second field by 1,000.)

% awk '{ $2 I= 1000; print)' countries

1-31

AWK

The following command line is used to print all lines (input
records), after re-assigning the fourth field to represent the
population density (per square miles). (The population density
is calculated by multiplying the value of the third field (popula­
tion per million) by 1,000,000 and dividing by the value of the
second field (area per thouand square miles) multiplied by
1,000.

% awk '{ $4 = (1000000 * $3)/(1000 '"$2); print}' countries

The following command line is used to print all lines (input
records) after assigning the string "United States" to the first
field of the record(s) containing the pattern "USA."

'/o awk '/USA/ { $1 = "United States" ; print }' countries

Fields are accessed by expressions.

For example, because fields are numbered sequentially, if the
total number of fields of a given record is equal to some
number 11, then the 11-th field is the last field in the record.

Therefore, to print the next-to-the-lasl field of a given record,
use the variable for the total number of fields, $NF, in an
expression $(NF-1) which results in a value l less than the
value of the total number of fields -- the next-to-the-last-field
of the record.

8.3 Field Separator

The keyword FS (Field Separator) is a variable indicating the
current field separator, which is initially assigned the value of
any non-NULL sequence of blanks and tabs.

The keyword FS may be changed to any single character by
using either an assignment statement, or the command-line
argument -F.

1-32

.~·

(~

AWK

On the command line, -F\t makes tab the field separator.

If the field separator is NOT a blank, then there is a field in the
record on each side of the separator. For instance, if the field
separator is I, the record lXXXl has three fields. The first and
last field are NULL.

If the field separator is a space, or if it is not explicitly assigned,
then fields are assumed, by default, to be separated by white
space. In this case, the record lXXXl would have only one
field.

8.4 Record Separator

The keyword RS (Record Separator) is a variable whose value
is the current record separator, which is initially set to newline.

Keyword RS is changed to any character by using an assign­
ment statement in the action portion of an awk program.

For example, if inputfile contained the following: (Note that
the character G> is used in the following examples to make the
tab character visible. When using this command, an actual tab
should be used, not the \t notation used in the C programming
language, or any other such representation).

oneCDtwoCDthreeCDfourG>five

Then the following command could be used to print each item
in inputfile, preceded by its record number, i.e. its sequential
position in inputfile.

1-33

AWK

% awk 'BEGIN { RS="Ul"} {print NR, $0 }' inputfile
1 one
2two
3 three
4 four
5 five

%

8.5 Output Separators

The value of OFS (Output Field Separator) is the output field
separator. The OFS separates the fields of each record output
by an awk action, and is set to space (blank) by default.

There is also an Output Record Separator ORS, which separates
each of the records output by an awk action, and is set to new­
line by default.

The values of both OFS and ORS may be re-assigned.

Using the input file countries (used in previous examples), the
following commands illustrate assigning a different value to
ORS (Output Record Separator).

1-34

% awk 'BEGIN I ORS = ~ ... \n" J {print NR. $0 r countries
1 Russia 8650 262 Asia .. .
2 Canada 3852 24 North America ...
3 China 3692 866 Asia ...
4 USA 3615 219 North America ...
5 Brazil 3286 116 South America
6 Australia 68 14 Australia ...
7 India 1269 637 Asia ...
8 Argentina 72 26 South America
9 Sudan 968 19 Africa ...
10 Algeria 920 18 Africa ...
%

AWK

Note that the FS (Field Separator) was NOT re-assigned the
value of tab, and therefore was, by default, space. Since the
commands we used did not concern fields, and since ORS is
not effected by the number of fields in a given record, the fol­
lowing example is provided to illustrate assigning a value to the
OFS (Output Field Separator). In the first command line, FS
will use its default value of space. In the second command
line, FS will be re-assigned the value of tab.

% awk "BEGIN { OFS = " ... " J { print NR, $0 }' countries
1 ... Russia 8650 262 Asia
2 ... Canada 3852 24 North America
3 ... China 3692 866 Asia
4 ... USA 3615 219 North America
5 ... Brazil 3286 116 South America
6 ... Australia 68 14 Australia
7 ..• India 1269 637 Asia
8 ... Argentina 72 26 South America
9 ... Sudan 968 19 Africa

(10 ... Algeria 920 18 Africa

% awk -F\t 'BEGIN [OFS-" ••• ")[print NR,$1,$2}' countries
1 ... Russia ... 8650
2 ... Canada ... 3852
3 ... China ... 3692
4 ... USA ... 3615
5 ... Brazil ... 3286
6 ... Australia ... 68
7 ... India ... 1269
8 ••• Argentina ..• 72
9 ••• Sudan .•. 968
10 ... Algeria ... 920

The OFS appears wherever a comma appears in an awk print
statement.

8.6 Multiline Records

The assignment RS-"" (no white space between the double
quotes) explicitly assigns the Record Separator the value of an

1-35

AWK

empty line while implicitly assigning the Field Separator (FS)
the value of any non-NULL sequence consisting of blanks,
tabs, and possibly a newline.

With this setting, none of the first NF fields of any record are
NULL

8.7 Ranges

The following command line is used to print all lines (input
records) found between the first occurrence of Canada, and the
first occurrence of Brazil, including the lines (input records)
which contain these delimiting patterns.

% awk '/Canada/ ,/Brazil/' countries

The following command line is used to print all the fields of
lines (input records) 2 through 5, inclusive.

% awk 'NR = = 2, NR =""' 5' countries

The following command line is used to print all lines (input
records) found between the first occurrence of Canada, and the
first occurrence of Africa - IN THE FOURTH FIELD ($4),
including the lines (input records) which contain these delimit­
ing patterns.

% ·awk '/Canada/, $4 = = "Africa"' countries

Normally, pattern ranges occur OUTSIDE the curly brackets
({}) which delimit an awk action segment. To check pattern
ranges INSIDE an awk action use a control flow statement,
such as an if or while statement.

1-36

AWK

9. Numeric Constants

A Numeric Constant is either:

OR

• A Decimal Constant

A decimal constant is a non-NULL sequence of
digits containing at most one decimal point as in 12,
12., 1.2, and .12.

• A Floating Constant

A floating constant is a decimal constant followed by
e or E followed by an optional + or- sign followed
by a non-NULL sequence of digits as in 12e3, 1.2e3,
1.2e-3, and 1.2E+3.

The maximum size and precision of a numeric constant are
machine dependent.

Numeric values are stored as floating point numbers.

Both the numeric and string value of a numeric constant is the
decimal number represented by the constant.

The preferred value is the numeric value.

NUMERIC CONSTANTS
Numeric Numeric String
Constant Value Value

0 0 0
I 1 1
.5 0.5 .5
.Se2 50 50

Figure 1.9. Numeric Constants

1-37

AWK

10. String Constants

A string constant is a sequence of zero or more characters sur­
rounded by double quotes as in",", "a", "ab", and "12''.

Only the following two characters need to be escaped when put
in a string:

• A double quote is put in a string by preceding it
with the backslash character (\).

• A newline is put in a string by using \n in its place.

Strings can be (almost) any length.

The numeric value of a string constant is 0 unless the string is
a numeric constant enclosed in double quotes. In this case, the
numeric value is the number represented.

The preferred value of a string constant is its string value.

The string value of a string constant is always the string itself.

STRING CONSTANTS
String Numeric String

Constant Value Value
" " 0 empty space
"a" 0 a
"XYZ" 0 XYZ
"0" 0 0
"1" 1 1
II .5" 0.5 .5
".5e2" 0.5 .5e2

Figure 1.10. String Constants

1-38

10.1 String Concatenation

Strings are concatenated as in the following example:

% awk '{ x - "hello" x = x ",world" print x }'
hello, world

AWK

The following command line is used to print the value of the
variable s, which is assigned the value of the first field (country
name) of every input record which has the pattern A in any
field, each country's name being separated by a space(" ").

% awk '/A/ { s = s" "$1} END {prints}' countries
Australia Argentina Algeria

Variables, string expressions, and numeric expressions may
appear in concatenations.

Numeric expressions are treated as strings in concatenations.

In the first of the following example, the string value of the
terms are concatenated. (The file countries, used in previous
examples, is used as the input file). In the second example,
the command line is changed to include a comma between the
terms which causes the Output Field Separator (OFS) to be
inserted, preventing concatentation: (As was previously men­
tioned, the default value of the Output Field Separator is
space.)

% awk -F\t 'NR = =l,NR= =3 I print $2 $3 }'countries
8650262
385224
3692866

o/o awk -F\t 'NR= =l,NR= -3 I print $2, $3 }'countries
8650 262
3852 24
3692 866

1-39

AWK

The preferred value of the resulting expression is a string value
that can be interpreted as a numeric value.

Concatenation of terms has lower precedence than binary +
and -. For example, 1+2 3+4 has the string (and numeric)
value 37, since 1+2 equals 3 and 3+4 equals 7 and the concate·
nation of the terms is then 37.

1-40

AWK

11. Functions
('
1 The awk program has a number of built-in functions that per-

form common arithmetic and string operations.

ARITHMETIC FUNCTIONS
cos (expression)
exp(expression)
int (expression)
log(expression)
sin(expression)
sqrt (expression)

_Figure 1.11. Arithmetic Functions

These functions (cos, exp, int, log, sin and sqrt) compute the
cosine, exponential, integer part, natural logarithm, sin and

(' square root, respectively, of the numeric value of expression.

If the (expression) is omitted, then the function is applied to
$0.

The preferred value of an arithmetic function is numeric.

1-41

AWK

STRING FUNCTIONS
getlineO
index(stringl, string2)
length (string)
spllt(string, array, field separator)
split(string, array)
sprintf(format, expression (s))
substr(strlng, position)
substr(string, position, length)

Figure 1.12. String Functions

The function getline causes the next input record to replace the
current record. It returns 1 if there is a next input record or a
0 if there is no next input record. (The value of NR is
updated.)

The function index(stringl,string2) takes the string values of
stringt and string2 and returns the first position of where
stringZ occurs in stringl, and returns 0 if string2 is not present
in stringl.

index ("abc", "be") = 2
index("abc", "ac") = 0

The function length without an argument returns the number
of characters in the current input record.

The function length(string) returns the number of characters
in the string value of string. For example:

length("abc") =3
length (17) -2

The function split(string, array, field separator) splits the
string value of string into fields that are then stored in array

1-42

AWK

using the string value of field separator as the field separator.

The function split(string, array, field separator) returns the
number of fields found in string.

If the function split(string, array) is used, the current value of
FS is used to indicate the field separator.

The following example uses cat to show the contents of
inputfile and then uses awk and its split function to print the
last field and the number representing that field in inputfile.

% cat inputfile
one@twoG:lthreeCilfourG)five
% awk -F\t '{ n=split($0, a); print alnl, n }' inputfile
five 5

r-- Because n represents the number of fields in $0, and the array,
a, the notation alnl represents the value contained in the n-th
field of a. Alternately, the notation aiSNFI could be used,
since the n is equal to the number of fields in a given record.

Also, since the - F command-line option was used to assign
the value \t (tab) as the Field Separator (FS), spUt understood
that character as the field delimiter, instead of the FS default -
space.

The function sprintf(format, expression (s)) produces the
value of expression (s) in the format specified by the string
value of format.

The format control conventions in the function sprintf(format,
expression (s)) are those of the printf statement in the C pro­
gramming language library.

1-43

AWK

The function substr(stringl, position) returns the substring of
stringl beginning at position.

The function substr(string, position, length) returns the sub­
string of string that begins at position and is length characters
long.

If position+length is greater than the length of string, then
substr(string, position, length) is equivalent to substr(strlng,
position).

substr("abc", 2, 1) = "b"
substr("abc", 2, 2) = "be"
substr("abc", 2, 3) = "be"
substr("abc", 3, 1) = "c"

Positions (position) less than 1 are taken as 1.

A negative or zero length produces a NULL result.

The preferred value of sprlntf and substr is string.

The preferred value of the remaining string functions is
numeric.

11.1 Summary of Built-in Functions

The following is a summary of the functions (both mathemati­
cal and string) built-in the awk program:

cos This function returns the cosine of its argument.

exp This function returns the exponential of its argument.

getline The function getline immediately reads the next input

1-44

record.
Fields NR and $0 are all set but control is left at
exactly the same spot in the awk program.
The getline function returns 0 for the end-of-file.

r
'

index

AWK

The getline function returns a 1 for a normal record.

The function index (stringl,string2) returns the left­
most position in stringl where the string2 occurs.
If stringl does not contain string2, index(stringl,
string2) returns zero.

int This function returns the integer part of its argument
- truncating toward 0.

length The function used to compute the length of a string of
characters.
Without an argument, length is assumed to mean
length($0), i.e., the length of the entire input record.
In general, length (x) returns the length of x as a
STRING.
The following example is used to print all input
records in the file countries, preceding each by its
length.

% awk '{print length, $0 r countries

The next example is used to determine and print the
name of the country having the longest name in the
file countries.

awk 'length($1)>max {max=lengtb($1); name=$1}
END {print name)' countries

log This function returns the natural logarithm of its argu­
ment.

sin This function returns the sine of its argument.

split The function split(motto, words, dogear) assigns the
fields of the string motto to successive elements of the
array called words. If the dogear argument is present,
its first character is used as the string field separator.
Otherwise, the current value of FS (field separator) is
used as the string field separator.
The number of elements found is returned as the
value of split.

1-45

AWK

awk 'BEGIN {spllteCountry Area Population", titles))
{print titleslll, $1, tltleslll, $2, titlesl31, $3}' countries

sprintf The sprintf function uses the same formatting conw
ventions as does printf, but is used to assign an
expression or its result to a variable instead of sending
the results to stdout (Standard Output).
In the following awk program, the value of the string
produced by formatting the values of the first and
second fields ($1 and $2) is assigned to the variable x.
The variable x may then be used in subsequent com­
putations.

% awk '{x = sprintf("%10s o/o6d ", $1, $2); print x}" countries
Russia 8650

Canada 3852
China 3692

USA 3615
Brazil 3286

Australia 68
India 1269

Argentina 72
Sudan 968

Algeria 920

sqrt This function returns the square root of its argument.

substr The substring function, substr(words, start, max),
returns the substring of words, which begins at posi­
tion start, and which is at most max characters long.
If the third argument (max, in the example), is omit­
ted, the substring returned will begin at the position
provided in the second argument (start), and end at
the end of the string provided in the first argument
(words).

1-46

The following example is used to print each input
record, with the names of the countries abbreviated to
3 letters.

~ awk '{ $1 = substr($1, 1, 3); print}' countries

AWK

The value returned by the function
substr(123456789,3,4), is 3456 the 4·character
string beginning at the 3-rd position in 123456789.

1-47

AWK

12. Direct Command~line Usage

One way to use the awk program is to feed the pattern-action
statements to awk for processing directly on the command line.
This method is primarily used when just a few awk pattern­
action statements are to be executed (a line or two}. For
example:

awk 'pattern-action statements' files

Here files is an optional list of input files on which the
pattern-action statements are to be run.

Note that there are single quotes around the pattern-action
statements in order for the shell to accept the entire string as
the first argument to awk.

If no input files are specified, awk takes input from the stan­
dard input {stdln).

You can explicitly declare that input is to come from standard
input by using - (the hyphen) in place of, or as one of files.
For example:

awk 'pattern-action statements' filet file2 -

In this example, awk takes input from filet, file2 and standard
input (-), and then processes the pattern-action statements
on filet, flle2 and finally on input received from standard input.

It is possible to assign values to variables from within an awk
program. Because you do not declare types of variables, a vari­
able is created simply by referring to it. For example:

x-5

1-48

AWK

This statement in an awk program assigns the value 5 to the
variable x.

It is also possible to assign values to variables from the com­
mand line. This provides another way to supply input values to
awk programs. For example:

awk '{print x }' x=S-

will print the value 5 on the standard output.

The minus sign at the end is necessary in this instance to indi­
cate explicitly that input is coming from stdin so that x=S is
not misinterpreted as the name of a file on which print x
should be executed.

If the input were to come from a file named text, the command
.r-- would then be:

awk '{print x}' file

It is NOT possible to assign values to variables used in the
BEGIN section in this way (i.e., OFS, FS, ORS, RS .. .).

If it is necessary to change the record separator (RS) and/or
the field separator (FS), it can be done on the command line,
using the following syntax:

awk -f cmd.awk RS=":~ text

In this example, the pattern-action statements to be executed
on the text file text are contained in a command file cmd.awk.
For the sake of the example, the re-assignment of the record

.r--- separator (RS) was done on the command line instead of in
cmd.awk.

1-49

AWK

In this example, the record separator (RS) is assigned the value
: (colon). This new value, then, replaces the default RS value
of newline.

There are two ways to change the field separator (FS) from the
command line. One is to use the following structure:

awk -f cmd.awk FS=":'' text

In this example, the field separator (FS) is assigned the value :
(colon). This new value, then, replaces the default RS value
of space (or tab).

The other way to change the field separator (FS) from the com­
mand line is to us the -F option. For example:

awk -F: -f cmd.awk text

In this example, the pattern-action statements to be executed
on the text file text are contained in a command file cmd.awk.

The field separator (FS) is assigned the value : (colon). This
new value, then, replaces the default FS value of space (or
tab).

If the field separator (FS) is explicitly assigned the value of tab,
using either the command-line option (awk - F\t), or an
assignment statement (FS="G)"), where G) represents a literal
tab, blanks are NOT recognized as separating fields. For exam­
ple:

1-50

AWK

o/e cat onlytabs
awk - F\t '/North America/ (n = split($0, a) ;
for (i = 1 ; i <- n ; i+ +)
{ print "Field #" i, "is", alii }
print "" }' countries
% onlytabs
Field #1 is Canada
Field #2 is 3852
Field #3 is 24
Field #4 Is North America

Field #I Is USA
Field #2 Is 3615
Field #3 is 219
Field #4 is North America

%

However, if the field separator (FS) is explicitly assigned the
value of space using either the command-line option (awk
-F" "), or an assignment statement (FS=" "), tabs continue
to be recognized by awk as field separators. For example:

1-51

AWK

'le cat tabandspace
awk - F" " '/South America/ { n = split($0, a) ;
for (i • 1 ; I <- n ; i+ +)
I print "Field #" I, "is", alii }
print "" } • countries
% tabandspace
Field #1 is Brazil
Field #2 Is 3286
Field #3 Is 116
Field #4 is South
Field #5 is America

Field #1 Is Argentina
Field #2 Is 72
Field #3 Is 26
Field #4 is South
Field #5 is America

%

12.1 Cooperation with the Shell

Normally, an awk program is either contained in a file or
enclosed within single quotes.

The awk program uses many of the same characters that the
shell does, such as$ and the double quote.

Surrounding the awk instructions with single quotes r..;),
ensures that the shell passes the instructions to awk intact.

The following example is used to print the n- rh field of an
input file, where n is a parameter whose value is determined at
run-time. (The ways in which n may be assigned a value will
be discussed following the example.}

field n

1-52

The example above is equivalent to the command:

awk '{print Sn)'

AWK

The variable n may be assigned a value in a number of ways.
The following example is used to illustrate one of these ways:

awk '{print $'$1'}'

Spaces are critical in the example above, since there is only one
argument, even though there are two sets of quotes.

The $1 is OUTSIDE the quotes, and is "substituted" properly
when field is invoked.

The next example also illustrates a way in which n may be
assigned a value. This method exploits on the fact that the
shell substitutes $ parameters within double quotes.

% awk "{print $1}"

Here the trick is to protect the S with a \\; the $1 is again
replaced by the number when field is invoked.

1-53

AWK

13. Using Command Files

If the number of awk pattern-action statements is more than
one or two, it is usually more convenient (and efficient) to put
the pattern-action statements into a file.

For example, suppose the following commands were contained
in a file called commandfile

% cat commandftle
BEGIN {print "Country Names")
[print $1)
%

Then the following command line would run those commands
on the input file countries (used in previous examples}.

% awk -f commandfile countries

Standard input could be used as input to commandfile by using --
a dash (-) in its place:

% awk - F\t -f commandfile -

Recall that the word BEGIN is a special pattern indicating that
the action following in braces is run before any data is read.
Also, that the - F\t is necessary because the fields in the file
countries are separated by tabs.

Another way to use an awk is to create a script. The following
example illustrates just such a use.

1-54

% cat printnames
awk -F\t 'BEGIN {print "Country Names:"}
I print $1 } • countries
% chmod + x printnames
% printnames
Country Names:
Russia
Canada
China
USA
Brazil
Australia
India
Argentina
Sudan
Algeria
%

AWK

1-55

AWK

14. Control Flow Statements

14.1 if-else

The if statement has the following general structure, which is
the same as that used in the C Programming Language:

awk '{if ($4 = = "Asia") { print $0}
else {print $1, "isn't in Asia"} }'countries

The else segment is optional.

Several statements enclosed in curly brackets ({}) are treated as
a single statement.

The following awk program finds the country with the largest
population (among those listed in the file countries), while
demonstrating the use of if statements.

awk '{ if (maxpop < $3)

I

}

maxpop=$3
country=$1

END { print country, maxpop)' countries

14.2 while Statement

There is also a while statement in awk with the following gen­
eral format:

% awk '{while ($1 = = $4) {print $0 })'countries

The following example illustrates the Euclidean algorithm for
finding the greatest common divisor of the second and third
fields of each record (line) in the input file. (Even though
there is no need to find the greatest common divisior of the
area and population fields in countries, that file is used as input

1-56

r-'

('

AWK

for consistency.)

%cat getgcd
awk -F\t '{ printf "GCD of %4d and %3d ", $2, $3

while ($2 !- $3)
{
if ($2 > $3)$2-$2 - $3
else $3 - $3-$2
I
printf "is %2d\n", $2)' countries

% getgcd
GCD of 8650 and 262 is 2
GCD of 3852 and 24 is 12
GCD of 3692 and 866 Is 2
GCD of 3615 and 219 Is 3
GCD of 3286 and 116 is 2
GCD of 68 and 14 is 2
GCD of 1269 and 637 is I
GCD of 72 and 26 is 2
GCD of 968 and 19 Is I
GCD of 920 and 18 is 2

14.3 for Statement

The for statement in awk is like that provided by the C pro-
gramming language.

The following example illustrates the usage of the awk for-loop
by reading the fields of each of the first three records into an
array, a, and then using array notation to represent each field in
the print statement. The commands are contained in an exe­
cutable file, fielder.

1-57

AWK

% cat fielder
awk -F\t 'NR= =l,NR= =3 { n""'split($0, a);

for (i=l; i<= n; i++)

% fielder

{ print "Field #" i, "is", alii J
print "" }' countries

Field #1 is Russia
Field #2 is 8650
Field #3 is 262
Field #4 is Asia

Field #1 is Canada
Field #2 is 3852
Field #3 is 24
Field #4 is North America

Field #1 is China
Field #2 is 3692
Field #3 is 866
Field #4 is Asia

%

The following is an alternate form of the for statement used to
access the elements of an associative array:

% cat otherone
awk -F\t 'NR==1,NR==3 I n=split($0, a);

for(iina)
I print "Field #" i, "is", alii }
print "" }' countries

Chaos will result if i is altered or if new variables are added
within the loop.

The following awk program, recorder, is used to print the
current record number (the value of the built-in variable, NR),
followed by the entire record itself for all input records in the

1-58

file countries.

% cat recorder
awk - F\t '{ array(NR(- $0 I
END { for (i in array)
{ print i, array(l) } }' countries I sort -n
% recorder
1 Russia 8650 262 Asia
2 Canada 3852 24 North America
3 China 3692 866 Asia
4 USA 3615 219 North America
S Brazil 3286 116 South America
6 Australia 68 14 Australia
7 India 1269 637 Asia
8 Argentina 72 26 South America
9 Sudan 968 19 Africa
10 Algeria 920 18 Africa

AWK

The following awk program, popucont, is used to illustrate
using strings as array indices for the purpose of adding the
populations of each continent as listed in the file countries.

% cat popucont
awk 'BEGIN { FS-"Gl" I

{ populationl$41 +- $3 I
END { for (i in population)
{ printf "%·13s %4d0, i, populationlil } }' countries
% popucont
South America 142
Africa 37
Asia 1765
Australia 14
North America 243

In the above example, the total population is computed for one
,.r-' continent at a time.

The condition part of an if, wbile or for statement can include
relational operators G. e., <, <=, >, >-~ --, !-).

1-59

AWK

The condition part of an if, while or for statement can also
include regular expressions and the operators- and !-.

The condition part of an if, while or for statement can also
include logical operators (i.e., II, &&, !) .

The condition part of an if, while or for statement can also
include parentheses for grouping.

14.4 break, continue and next Statements

The break statement, when it occurs within a while or for loop,
causes an immediate exit from the loop.

The continue statement, when it occurs within a while or for
loop, invokes the next iteration of the loop.

The next statement causes both an immediate skip to the next
record, and a return to the beginning of the program's pattern­
action statements. In this way, all the the pattern-matching
statements will be performed for each record.

It is important to note the difference between getline and next.
The getline instruction does not cause a skip to the beginning
of the program's pattern-matching statements.

If an exit statement occurs in the BEGIN section of an awk
program, the program stops executing and the END section is
not executed (if there is one).

If an exit statement occurs in the main body of the program,
no further records are read and the END section is executed.

If an exit statement occurs in the END section of an awk pro­
gram, execution terminates at that point.

1-60

AWK

15. Report Generation

The control statements (i.e., if, else, for, while, etc.) are espe­
cially useful when awk is used as a report generator.

The following example is used to calculate the population for
each continent listed in the file countries.

awk -F\t '{ totall$41 +- $3}
END { for (j in total)
print j, "has a population of', totai(jl)' countries

The example above produces the following output:

South America has a population of 142
Africa has a population of 37
Asia has a population of 1765
Australia bas a population of 14
North America has a population of 243

The following example is used to print the countries which con­
tribute to the continent population total.

awk -F\t '{ totall$41 +- $3
country(NR) = $1
popiNRI - $3
continentiNRI - $4 }

END { for (j in total)
if (j !- done)
{

print j, total(jl
for (i-t ; i <"" NR ; i+ +)
{

if (continent Iii -- j)
{print " " country[IJ, poplil}

) done= j } } ' countries

The example above produces the following output:

1-61

AWK

South America 142
Brazi1116
Argentina 26

Africa 37
Sudan 19
Algeria 18

Asia 1765
Russia 262
China 866
India 637

Australia l4
Australia 14

North America 243
Canada 24
USA 219

15.1 Output to Printer or Terminal

An action may have no pattern; in which case the action is exe­
cuted for all lines. For example:

1/e awk '{print}' countries -...--/

This example is one of the simplest actions performed by awk.
It prints each line of the input to the output.

To print only the first and third fields of the file countries
{used in previous examples), use the following command line:

'le awk '{ print $1, $3 }' countries

This example prints the first field (name of the country) fol­
lowed by the third field (population) and ignores all other
fields.

The use of a semicolon at the end of a single statement in awk
programs is optional. Both

1-62

AWK

% awk ·{print $1 } ' countries

and

% awk '{print $1; }'countries

are considered the same to awk.

To put two awk statements on the same line of an awk script,
it is necessary to separate them with a semicolon. For example:

% awk '{x=5; print x }'countries

Parentheses are also optional with the print statement. For
example:

% awk '{print $3, $2)'countries

and

% awk '{print ($3, $2))'countries

are considered equivalent by awk.

Items separated by a comma in a print statement are separated
by the current output field separator (OFS). Even if the input
fields are separated by tabs, the default output field separator
(OFS) is space. Therefore, when printed, each field would be
separated by a space, not by a tab, unless the OFS is assigned a
different value. For example, using the text file countries
(used in previous examples) for the input file, and using the
following pattern-action statements contained in a command
instruction file called cmd.awk:

1-63

AWK

% cat cmd.awk
BEGIN { OFS=" has a population of")
{ prinl $1, $3)
%

the command line:

% awk - F\t -f cmd.awk countries

will produce the following output:

Russia has a population of 262
Canada has a population of 24
China has a population of 866
USA has a population of 219
Brazil has a population of 116
Australia has a population of 14
India has a population of 637
Argentina has a population of 26
Sudan has a population of 19
Algeria has a population of 18

It is also possible to use the print command to print literal
strings. For example:

% awk '{print "hello, world")'
hello, world
Dfll

In addition to the RS and FS variables previously discussed,
awk provides other useful variables. Among them are NR and
NF.

• NF

and ...

1-64

This variable is an integer which represents the
number of fields in a given record.

AWK

• NR
This variable is an integer which represents the
number of the given record - in relationship to all
the records in a given file.

For example:

% awk '{print NR, NF, $0}' countries

prints each record number (NR), and the number of fields in
each record (NF), followed by the entire record itself ($0).

Using the text file countries (used in previous examples) as the
input file, the following awk command line:

awk - F\t '{ print NR, NF, $0 }'countries

will produce the following output:

1 4 Russia 8650 262 Asia
2 4 Canada 3852 24 North America
3 4 China 3692 866 Asia
4 4 USA 3615 219 North America
5 4 Brazil 3286 116 South America
6 4 Australia 68 14 Australia
7 4 India 1269 637 Asia
8 4 Argentina 72 26 South America
9 4 Sudan 968 19 Africa
10 4 Algeria 920 18 Africa

Notice that the columns are not perfectly aligned due to the
fact that the OFS variable was not changed from its default
space and the names of the 10 countries are not the same
length. There are several ways to "fine tune" output format.
One of which is the output field separator variable (OFS) dis­
cussed previously.

1-65

AWK

The print command, without any arguments, prints each input
record.

To print an empty line, use print with the argument "" (no
space inbetween the double quotes).

The awk program also recognizes printf format indicators to
enable more exact output instructions. The print command
uses the default printf format %.6g for each variable printed. It
is possible to change this default format with a printf format
statement just as you would use printf in a C program. For
example:

awk '{ printf "%lOs %6d 1Vt16d \n", $1, $2, $3)'countries

The printf statement in this example instructs awk to print $1
as a right-justified string, 10 characters long (%lOs); and to
print $2 and $3 as 6-digit numbers. Using this printf state­
ment, then, will align the columns and produce the following
table:

Russia 8650 262
Canada 3852 24

China 3692 866
USA 3615 219

Brazil 3286 116
Australia 68 14

India 1269 637
Argentina 72 26

Sudan 968 19
Algeria 920 18

With printf no output field separator (OFS) or newline is pro­
duced automatically. This is why the printf format statement
used in the example above contained an explicit newline at the
end of the format specifiers (\n).

1-66

AWK

Other escape characters used with print(in a C program are
also understood when used in a awk program. These escape
characters are:

AWK print! ESCAPE CHARACTERS
\n Newline
\t Tab
\b Backspace
\r Carriage Return

Figure 1.13. A WK printf Escape Characters

When a pattern is specified, but no action is associated with
that pattern, the entire record $0 is printed.

The value of the variable OFS (output field separator) is
printed wherever the comma appears in a print statment. For
example, using the following pattern·action statements in a file
called cmd.awk:

BEGIN { FS="G:>" ; OFS="•" }
{print $1, $2, $3 l

giving the command:

awk -f cmd.awk countries

produces the following output:

1-67

AWK

Russia•8650•262
Canada•3852oo24
China•3692*866
USA•3615*219
Brazil,..3286•ll6
Australia •68• 14
India"'l269•637
Argentina*72*26
Sudan*968•19
Algeria .. 920•18

To get a literal comma on the output, you can either insert it in
the print statement:

% awk '{print $1".", $2",", $3 }'countries

or you can assign a different value to the variable OFS (output
field separator) in the BEGIN section:

'I• awk 'BEGIN {OFS=", ") {print $1, $2, $3)' countries

Both of these last two ways of printing a comma produce the
following output:

Russia, 8650, 262
Canada, 3852, 24
China, 3692, 866
USA, 3615, 219
Brazil, 3286, 116
Australia, 68, 14
India, 1269, 637
Argentina, 72, 26
Sudan,968, 19
Algeria, 920, 18

15.2 Output to Files

The UNIX operating system shell allows you to redirect stan­
dard output to a file. The awk program also lets you direct out­
put to many different files from within your awk program.

1-68

r \ _____ _

AWK

To direct output into a file after a print or a printf statement,
use a statement of the general form:

% awk '{print $1 > "NAMES"}' countries

The file names MUST be quoted (e.g., "NAMES"). Without
quotes, the file names are treated as uninitialized variables and
all output then goes to the same file.

If > "NAMES" is replaced by >> "NAMES", output is
appended to FILE.

The number of files that may be written in this way is presently
limited to 10.

Using the text file countries (used in previous examples) as
input, and placing the following pattern-action statements in a

,;---- file called cmd.awk:

if ($4 -- "Asia") print > "ASIA"
if ($4 == "Europe") print > "EUROPE"
if ($4 "North") print > "N_AMERICA"
if ($4 "South") print > "S AMERICA"
if ($4 == "Australia") print > "AUSTRALIA"
if ($4 == "Africa") print > "AFRICA"

the following command:

awk -f cmd.awk countries

wll automatically place the information regarding Asia in a file
called ASIA, etc.

Notice that the field separator was not changed in the command
line above - nor was it changed in the command file cmd.awk,
therefore the fields are assumed to be separated by spaces, and

1-69

AWK

the fourth field of the third record will be equal to North. Had
the field separator been assigned the value of tab, the fourth
field of the third record would be equal to North America.

15.3 Output to Pipes

In addition to redirecting output to a file. it is possible to direct
output to a pipe. For example,

% awk '{print $1 I "sort"}' countries
Algeria
Argentina
Australia
Brazil
Canada
China
India
Russia
Sudan
USA

This example command line will take the first field of each
input record, sort these fields, and then print them on the stan­
dard output (stdout):

Another example of using a pipe for output is the following
idiom which guarantees that its output goes to your terminal:

% awk '{print $1 I ~cat -u > /dev/tty"} • countries

Only one output statement to a pipe is permitted within an awk
program.

In all output statements involving redirection of output, the
files or pipes are identified by their names but they are created
and opened only once in the entire run.

1-70

c

c

Chapter 2

SED: A Stream Editor

CONTENTS

1. Introduction

2. Overall Operation
2.1 Command Line Options
2.2 Usage . . • • • .
2.3 Editing Command Syntax
2.4 Command Application Order
2.5 Pattern Space

3. Addressing • . . . • •
3.1 Line Number Addresses
3.2 Context Addresses •
3.3 Examples • . • • .

4. SED Editing Commands
4.1 Line-Oriented Commands
4.2 The Substitute Command
4.3 Input/Output Commands
4.4 Multiple Input Line Commands
4.5 Hold and Get Commands
4.6 Flow of Control Commands .
4. 7 Miscellaneous Commands

- i -

I

2
2
3
4
5
5

6
6
7
9

11
11
IS
18
20
21
23
25

r

SED

Chapter 2

SED: A Stream Editor

1. Introduction

The UniPlus+ stream editor (sed) is a noninteractive text edi­
tor. It is especially useful for:

• Editing large files that cannot be contained in a buffer.

•

The size of a file to be edited with sed is limited only by
the amount of secondary storage, which must be able to
hold both the input and output files at the same time.
Only a few lines of the current input file are in physical
(volatile) memory at one time, and no temporary files
(buffers) are used.

Performing complicated editing sequences on any size file .
The sed editor is most commonly used in shell scripts,
where complicated editing actions can be stored, edited,
and applied to the input file(s) as a command.

• Efficiently performing multiple global editing commands
in one pass. The sed program running from a command
file is faster and more efficient than an interactive editor
like ex, even when ex is also running from a command
file. However, sed does not provide certain commands
provided by an interactive editor. For example, sed does
not provide relative addressing. Because it operates on
one line at a time, sed cannot move backward or forward
relative to the current line in a file. In addition, sed does
not inform you about the effects of your commands, or
allow you to immediately undo them.

2-l

SED

2. Overall Operation

By default, sed copies standard input to standard output, per­
forming zero or more editing actions on each line before writ­
ing it to the output. Editing actions are specified by sed editing
commands, described below. The lines to be affected by these
commands are specified by addresses, either context addresses
or line numbers.

Input files are never modified; the changes are scrolled on stan­
dard output. If output is redirected to a file then the new file
contains the modifications created by your editing actions.

2.1 Command Line Options

The sed editor is invoked via the following prototype command
line:

sed 1-nll-e scrip~ 1-f s.lilel 1./ile(sA

The options are as follows:

-n (no-copy). Copy only those lines explicitly specified
either by p (print) commands or p arguments after s
(substitute) commands.

-e (expression). The script argument is an 'expression'
Online sed command(s) using the syntax of regular
expressions and enclosed in single or double quotes) to be
run on the input stream. There may be more than one -e
(with its corresponding expression) on a command line. If
the newlines are escaped, there may be more than one
line in an expression.

-f (source file). The sji/e argument is a file containing sed
commands - one to a line.

2-2

SED

2.2 Usage

,f· Editing commands are provided on the sed command line. They
can either be embedded inline (with the-e option) or enclosed
in a file and provided as an argument to the -f option. The fol­
lowing are examples of sed usage.

%sort inpur.jile I sed -e 's/.dc./.dec./' -e 's/.3b./.u3b./'

(Sorts the contents of input.jile, and performs substitutions on
the first instance of '.de' and '.3b' in each line~ the results are
written to standard output.)

% sed -e 's/\.dc/ .dec./\
s/\.3b\./.u3b./' inpur . .file

(Performs the same substitutions as previous command on
input../ife:, the results are written to standard output.)

% sed -e 's/ ,/ /g' input.ji/e > output . .fi/e

(Every comma in input..fife is replaced with a space; the
modified file is contained in output . .fife.)

If you contain the following sed commands in a file named
cmd . .file:.

s/\.dc/.dec./g
s/\.3b\./.u3b./
s/.//g

Then you can use the following syntax:

2-3

SED

% sed -f cmd.ftle input ..file > output..file

(Performs substitutions on input..file; the modified file is con­
tained in output.jile.)

You can also use the syntax::

% sed -n -f cmd..file input.ftle

(Performs substitutions on input..file, only the modified lines are
written to standard output.)

Before any input file is opened, all editing commands are com­
piled in the order encountered (which is also the order in which
they are attempted at execution time), into a form that will be
moderately efficient during the execution phase (when the com­
mands are actually applied to lines of the input file).

2.3 Editing Command Syntax

The general editing command syntax is:

[address/, address2J command [argumeflts]

The square brackets indicate that the enclosed argument is
optional, although arguments may be required or optional
according to the command given. Addresses may be line
number(s) or contextual~ one or both addresses may be omit­
ted. Any number of blanks or tabs may separate addresses from
the command, and blanks and tab characters at the beginning of
lines are ignored.

2-4

SED

2.4 Command Application Order

(Commands are applied one at a time, in the order encountered;
,_ the input to each command is the output of all preceding com­

mands.

This default linear ordering can be changed by the t (test sub­
stitution) and b (branch) flow-of-control commands. When the
order of application is changed by these commands, it is still
true that the input line to any command is the output of any
previously applied commands.

2.5 Pattern Space

The range of pattern matches is called the pattern space. Ordi­
narily, pattern space is one line of the input text, but more than
one line can be read into the pattern space by using the next
command (n).

2-5

SED

3. Addressing

Input file lines to be affected by your editing commands are
specified by addresses. These addresses can be either line
numbers, or context addresses. If no address is present the
command is applied to every line in the input file.

Multiple commands can be applied to a single address (or
address pair) by grouping commands with braces in the follow­
ing format:

address (es)
command
command

3.1 Line Number Addresses

A line number is a decimal integer (greater than or equal to l)
that is incremented (by an internal counter) as each line is read
from the input. A line number address matches the input line
that causes the internal counter to equal the address line
number. As a special case, the S character matches the last line
of the last input file.

,... Note: The line counter runs cumulatively through multi­
ple input files. It is not reset when a new consecutive
input file is opened.

Commands can be preceded by 0, l, or 2 addresses. The max­
imum number of allowed addresses Oess than or equal to 2) is
given with each command description below. It is an error
when a command has more addresses than the maximum
allowed.

2-6

SED

If a command has zero addresses it is applied to every line in

1
- the input.

If a command has one address it is applied to all lines that
match that address.

If a command has two addresses separated by a comma, it is
applied to the first line that matches the first address and to all
subsequent lines until (and including) the first line which
matches the second address. An attempt is made on subse­
quent lines to again match the first address, and the process is
repeated.

3.2 Context Addresses

A context address is a regular expression enclosed in slashes
(/pattern/). Sed recognizes regular expressions that have the
following construction:

[1] An ordinary character is a regular expression and matches
that character.

[2] A circumflex r> at the beginning of a regular expression
matches the null character at the beginning of a line.

[3] A dollar sign ($) at the end of a regular expression
matches the null character at the end of a line.

[4] The \n character matches an embedded newline character
but not the newline character at the end of the pattern
space. (That is, newlines get embedded by using the next
command n.)

[5] A period (,) matches any character except the terminal
newline character of the pattern space.

[6] A regular expression followed by an asterisk (•) matches
any number (including zero) of adjacent occurrences of
the regular expression it follows.

[7] A string of characters in square brackets (II) matches any
character in the string and no others. If, however, the
first character of the string is a circumflex ("), the regular

2-7

SED

expression matches any character except the characters in
the string and the terminal newline character of the pat­
tern space. The circumflex is the only metacharacter
recognized within the square brackets. If ']' needs to be
in the set of square brackets, it should be the first nonme­
tacharacter. For example:

11...1
n . .J

Includes '1'
Does not include '] '

[8] A concatenation of regular expressions is a regular expres­
sion which matches the concatenation of strings matched
by the components of the regular expression.

[9] A regular expression between the sequences'\(' and'\)'
is identical in effect to the unadorned regular expression,
but has side effects which are described under the substi­
tute command (s command) below.

{10] The expression '\d' (where d is a digit, 0 through 9)
refers to the string of characters found earlier in the same
pattern by an expression using the '\ (' and '\)' construc­
tion. The '\ (' and '\)' sequences perform just as those in
the other UniPlus+ editors, and are used to establish
'fields' or sections in a line of text (or all lines of text) in
a file.

2-8

For example, suppose a file contained the following list of
names:

Dick Powell
William Powell
Eleanor Powell
Jane Powell

The following expression will reverse the order of the
names, placing a comma and a space between each first
name and last name:

s/\UA-Z].o\ \)\(]A-Z].o\)/\2, \1

SED

For example, the following expression matches a line
,r--- beginning with two repeated occurrences of the same

string:

"3(.*\)\1

[11] A null regular expression standing alone (e.g., //)is
equivalent to the previous compiled regular expression.

[12] Special characters r , $ • ,.. , [1 , \ , I), when used as
literal characters, must be preceded by a backslash (\).

[13] For a context address to match, the whole pattern within
the input address must match some portion of the pattern
space.

3.3 Examples

The following shows a sample input text and the output of a
sed command using line number addressing.

,,-- Create a text file named input.file that contains the following
lines. (Except where noted, all examples in this chapter use
the following text.)

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

The command:

% sed -e '2q' input../ile

copies the first two lines of the input and quits. The output on
your screen will be:

2-9

SED

In Xanadu did Kubla Khan
A stately pleasure dome decree:

On the same input text, the following indicates the matches
resulting from several sed commands using context addressing.

/an/
/an.*an/
ran/
1./
fl./
/r*an/
/\(an\}.*1/

2-10

-- matches lines I, 3, and 4
-- matches line 1
-- matches no lines
-- matches all lines
-- matches line 5
-- matches lines 1, 3, and 4 (number = 0)
-- matches line 1.

(~

I

SED

4. SED Editing Commands

Sed commands consist of a single alphabetic character. In the
following command summaries, the maximum number of
allowable addresses are shown in parentheses preceding the sin­
gle character command name. Possible arguments are enclosed
in angle brackets (< >), and a description of each command is
given. Parentheses and angle brackets are not part of the com­
mand syntax.

4.1 Line-Oriented Commands

The commands in this section apply to whole lines of the input.

Command

(2)d

(2)n

Description

(delete). The d command deletes from
the file (does not write to the output)
those lines matched by its addresses.
It also has the side effect that no
further commands are attempted on the
corpse of a deleted line. As soon as the
d command is executed, a new line is
read from the input, and the list of
editing commands is restarted from the
beginning on the new line.

(next). The n command reads the next
line from the input, replacing the
current line, and the current line is
written to the output. The list of edit­
ing commands is continued following
the n command.

2-11

SED

(!)a\
<text>

(l)i\
<text>

2-12

(append). The a command causes the
text argument (<text>) to be written
to the output after the line matched by
its address.
The a command is inherently multiline;
a must appear at the end of a line, and
<text> may contain any number of
lines. To preserve the one-command­
to-a-line fiction, interior newline char­
acters must be hidden by a backslash
character (\) immediately preceding
the newline character.
The <text> is terminated by the first
newline character not immediately pre­
ceded by a backslash. Once an a com­
mand is successfully executed, text will
be written to the output regardless of
what later commands do to the line
which triggered it. Even if that line is
deleted, text will still be written to the
output.
The <text> is not scanned for address
matches, and no editing commands are
attempted on it. The a command does
not cause a change in the line number
counter.

(insert). The i command causes the
text argument (<text>) to be written
to the output before the line matched
by its address.

(2)c\
<text>

SED

The i command is inherently multiline;
l must appear at the end of a line, and
<text> may contain any number of
lines. To preserve the one-command­
to-a-line fiction, interior newline char­
acters must be hidden by a backslash
character (\) immediately preceding
the newline character. The <text> is
terminated by the first newline charac­
ter not immediately preceded by a
backslash.
Once an i command is successfully exe­
cuted, text will be written to the output
regardless of what later commands do
to the line which triggered it. Even if
that line is deleted, text will still be
written to the output.
The <text> is not scanned for address
matches, and no editing commands are
attempted on it. The i command does
not cause a change in the line number
counter.

(change). The c command deletes lines
selected by its addresses and replaces
them with the lines in the text argu­
ment (<text>).
Like a and i, c must be followed by a
newline character hidden by a
backslash; interior newline characters in
<text> must be hidden by
backslashes. The c command may have
two addresses, and therefore select a
range of lines. If it does, all lines in
the range are deleted, but only one
copy of text is written to the output,
not one copy per line deleted.

2-13

SED

As with a and i, <text> is not
scanned for address matches, and no
editing commands are attempted on it.
It does not change the line number
counter.
After a line has been deleted by a c
command, no further commands are
attempted on the corpse. If text is
appended after a line by a or r com­
mands and the line is subsequently
changed, the text inserted by the c
command will be placed before the text
of the a or r commands (the r com­
mand is described later).

Leading blanks and tabs disappear from text inserted in the out­
put by the a, i, and c commands. To get leading blanks and
tabs into the output, precede the first desired blank or tab by a
backslash. The backslash will not appear in the output.

The following example shows line-oriented sed commands used
on the standard input example shown in Section 3.3.

If your cmd .. /ile contains the lines:

n
a\
xxxx
d

The command:

% sed -f cmd.file input.file > output..file

Z-14

f
'

produces an output .. /ile that contains the following lines:

In Xanadu did Kubla Khan
xxxx
Where Alph, the sacred river, ran
xxxx
Down to a sunless sea.

4.2 The Substitute Command

The substitute command uses the following syntax:

(2)s < paffern> <replacement> <flags>

SED

The s command replaces the part of a line selected by <pat·
tern> with <replacement>. It can be read 'substitute for pat­
tern, replacement' The command arguments are described as
follows:

<pattern> The pattern argument is a regular expres­
sion, like the patterns in context addresses.
The only difference between <pattern> and
a context address is that the context address
must be delimited by slash (I) characters;
<pattern> may be delimited by any charac­
ter other than space or newline. By default,
only the first string matched by <pattern>
is replaced unless the g flag (below) is
invoked.

<replacement> The replacement argument begins immedi­
ately after the second delimiting character of
<pattern> and must be followed immedi­
ately by another instance of the delimiting
character (thus there are exactly three
instances of the· delimiting character). The

2-15

SED

<flags>

2-16

<replacement> is not a pattern, and the
characters which are special in patterns do
not have special meaning in <replace­
ment>. Instead, the following other charac­
ters are special:
& is replaced by the string matched

by <pattern>.
\d is replaced by substring d (d is a

single digit), matched by parts of
<pattern>, and enclosed in
'\(' and '\)'. If nested sub­
strings occur in <pattern>, sub­
string d is determined by count­
ing opening delimiters (\ (). As
in patterns, special characters
may be made literal characters
by preceding them with
backslash (\).

The flags argument may contain the follow-
ing:
g

p

(global). Substitute <replace­
ment> for all nonoverlapping
instances of <pattern> in the
line. After a successful substitu­
tion, the scan for the next
instance of <pattern> begins
just after the end of the inserted
characters. Characters put into
the line from <replacement>
are not rescanned.
(print). Print the line if a suc­
cessful replacement was done.
The p flag causes the line to be
written to the output if and only
if a substitution was actually
made by the s command. If
several s commands, each

The command:

SED

followed by a p flag, successfully
substitute in the same input line,
multiple copies of the line will
be written to the output - one
for each successful substitution.

w <.file> (write to file). Write the line to
a file if a successful replacement
was done. A single space must
separate w and <file>. Thew
flag causes lines which are actu­
ally substituted by the s com­
mand to be written to a file
named by <file>. If <file>
exists before sed is run, it is
overwritten; if not, it is created.
The possibilities of multiple,
somewhat different copies of one
input line being written are the
same as for p. A maximum of
ten different file names may be
mentioned after w flags and w
commands.

%cat input .. /ile I sed -e 's/to/by/w changes'

produces a file named changes that contains only the lines that
were changed:

Through caverns measureless by man
Down by a sunless sea.

If the no-copy option is in effect (using the -n option on the
sed command line), then the same effect can be achieved with
the command:

2-17

SED

%sed -n -e 's/to/by/p' input.ftle > changes

If your command file contains the line:

s/1.,;? :1/*P&* /gp

Then the command:

% sed -n -f cmd . .file inpur.ji/e

produces the output:

A stately pleasure dome decree"P:•
Where Alph"P,"' the sacred river"P,'10 ran
Down to a sunless sea"P."'

If the g flag is not used, the substitution only takes effect on
the first instance of the pattern in a given line. For example,
the command:

%sed -n -e '/X/s/an/AN/p' input..file

causes the substitution to occur only on the first instance of
'an':

In XANadu did Kubla Khan

4.3 Input/Output Commands

Note: Since there is a limit to the number of files that can be
opened simultaneously, care should be taken that no more than
ten files be mentioned in w commands or flags. That number
is reduced by one if any r commands are present (only one read

2-18

(
'

SED

file is opened at a time).

Command

(2)p

(2)w <file>

(l)r <file>

Description

(print). The print command writes
addressed lines to the standard output
file. They are written at the time the p
command is encountered regardless of
what succeeding editing commands may
do to the lines.

(write to file). The write command
writes addressed lines to the file named
by <file>. Exactly one space must
separate thew and <file>. If the file
previously existed. it is overwritten; if
not, it is created.
The lines are written exactly as they
exist when the write command is
encountered for each line regardless of
what subsequent editing commands
may do to them.
A maximum of ten different files may
be mentioned in write commands and
w flags after s commands combined.

(read from file). The read command
reads the contents of <file> and
appends them after the line matched by
the address. Exactly one space must
separate the rand <file>. The file is
read and appended regardless of what
subsequent editing commands do to the
line which matched its address.

2-19

SED

If r and a commands are executed on
the same line, the text from a com­
mands and r commands is written to
the output in the order that the com­
mands are executed.
If a file mentioned by an r command
cannot be opened, it is considered a
null file, not an error, and no diagnostic
is given.

If a file note/ has the following contents:

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan and fOunder
of the Mongol dynasty in China.

then the command:

% sed -e '/Kubla/r note r input .file

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kub/ai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan and fOunder
of the Mongol dynasty in China.
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

4.4 Multiple Input Line Commands

The following three commands, all spelled with capital letters,
deal with pattern spaces containing embedded newline

Z-ZO

SED

characters. They are intended principally to provide pattern
matches across lines in the input. The P and D commands are
equivalent to their lowercase counterparts if there are no
embedded newline characters in the pattern space.

Command

(2)N

(2)D

(2)P

Description

Append the next input line to the
current line in the pattern space. The
two input lines are separated by an
embedded newline character. Pattern
matches may extend across embedded
newline characters.

Delete first part of the pattern space.
Delete up to and including the first
newline character in the current pattern
space. If the pattern space becomes
empty (the only newline character was
the terminal newline character), read
another line from the input. In any
case, begin the list of editing com­
mands again from the beginning.

Print first part of the pattern space.
Print up to and including the first new­
line character in the pattern space.

4.5 Hold and Get Commands

The following commands save and retrieve part of the input for
possible later use.

2-21

SED

Command

(2)h

(2)H

(2)g

(2)G

(2)x

Description

Hold pattern space. The h command
copies contents of the pattern space
into a hold area, destroying previous
contents of the hold area.

Hold pattern space. The H command
appends contents of the pattern space
to contents of the hold area. Former
and new contents are separated by a
newline character.

Get contents of hold area. The g com­
mand copies contents of the hold area
into the pattern space destroying previ­
ous contents.

Get contents of hold area. The G com­
mand appends contents of the hold area
to contents of the pattern space.
Former and new contents are separated
by a newline character.

Exchange. The exchange command
interchanges contents of the pattern
space and the hold area.

For example, if your sed command file contains the commands:

lh
ls/ did.*//
lx
G
s/\n/ :/

When applied to input.file, this produces:

2-22

r-·
'

··~

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

SED

4.6 Flow of Control Commands

These commands do no editing on the input lines but control
the application of commands to the lines selected by the
address part.

Command

(2)!

(2){

(O):<label>

Description

(don't). The don't command causes
the next command (written on the
same line) to be applied to those input
lines not selected by the address part.

(grouping). The grouping command
causes the next set of commands to be
applied (or not applied) as a block to
the input lines selected by the addresses
of the grouping command.
The first of the commands under con·
trot of the grouping may appear on the
same line as the { or on the next line.
The group of commands is terminated
by a matching } standing on a line by
itself. Groups can be nested.

(place labeO. The label command
marks a place in the list of editing com·
mands which may be referred to by b
and t commands.

2-23

SED

(2)b< label>

(2)t< label>

2-24

The <label> argument may be any
sequence of eight or fewer characters.
If two different colon commands have
identical labels, a compile time diagnos­
tic will be generated; and no execution
attempted.

(branch to label). The branch com­
mand causes the sequence of editing
commands being applied to the current
input line to be restarted immediately
after the place where a colon command
with the same <label> was encoun­
tered.
If no colon command with the same
label can be found after all editing com­
mands have been compiled, a compile
time diagnostic is produced; and no
execution is attempted.
A b command with no <label> is a
branch to the end of the list of editing
commands. Whatever should be done
with the current input line is done, and
another input line is read. The list of
editing commands is restarted from the
beginning on the new line.

(test substitutions). The t command
tests whether any successful substitu­
tions have been made on the current
input line; if so, it branches to
<label>~ if not, it does nothing.
The flag which indicates that a success­
ful substitution has been executed is
reset by reading a new input line and
executing at command.

SED

4. 7 Miscellaneous Commands

r
1

\ Command

(I)~

(l)q

Description

The = command writes the line
number of the line matched by its
address. to standard output.

The q command causes the current line
to be written to the output (if it should
be), any appended or read text to be
written, and execution to be ter­
minated.

2-25

('·
'

Chapter 3: LEX

CONTENTS

l. Introduction

2. Syntax • •

3. Character Set
3.1 Character Classes
3.2 Arbitrary Characters
3.3 Operators

4. Compilation

5. Definitions
5.1 Repetitions and Definitions

6. Rules •
6.1 Regular Expressions .
6.2 Optional Expressions .
6.3 Repeated Expressions
6.4 Alternation and Grouping
6.5 Context Sensitivity

6.5.1 Left Context Sensitivity
6.6 Ambiguous Rules • •

7. Actions . . . • • .
7.1 yymoreO and yylessO
7.2 input(), output(c) and unput(c)
7.3 yywrap()
7.4 REJECT

8. Examples

9. Summary

10. LEX and YACC

- i -

I

5

7
7
9
9

12

13
15

16
16
16
16
17
17
19
23

25
27
29
30
31

34

36

39

LIST OF FIGURES

Figure 3.1. Overview of lex

Figure 3.2. Lex With Yacc

- ii -

2

39

('
Chapter 3

LEX-

LEX

A LEXICAL ANALYZER GENERATOR

1. Introduction

The lex is a program generator that produces a program in a
general purpose language that recognizes regular expressions.
It is designed for lexical processing of character input streams.
It accepts a high-level, problem oriented specification for char­
acter string matching.

The lex program generator source is a table of regular expres­
sions and corresponding program fragments. The table is
translated to a program that reads an input stream, copies the
input stream to an output stream, and partitions the input into
strings that match the given expressions. As each such string is
recognized, the corresponding program fragment is executed.

The recognition of the regular expressions is performed by a
deterministic finite automaton generated by lex. The program
fragments are executed in the order in which the corresponding
regular expressions occur in the input stream.

The lex written code is not a complete language, but rather a
generator representing a new language feature which can be
added to different programming languages, called "host
languages." For example, one higher-level language is used
for recognizing patterns, while a more general purpose language
is used for action statements.

Just as general purpose languages can produce code to run on
different computer hardware, lex can write code in different
host languages. The host language is used for the output code
generated by lex and the program fragments which comprise

3-1

LEX

the lex source program.

Compatible run·time libraries for the different host languages
are provided, making lex adaptable to many environments and
users.

At present, the only supported host language is the C language,
although FORTRAN (in the form of RATFOR) has been avail­
able in the past.

The lex generator exists on the UNIX 1M operating system, but
the codes generated by lex may be taken anywhere the
appropriate compilers exist.

The program generated by lex is called yylex. The yylex pro­
gram recognizes expressions in an input stream and performs
the specified actions for each expression as it is detected. See
Figure 3.1.

For example:

%\I
I \tl + S

Source - Lex - yylexO

Input - yylex - Output

Figure 3.1. Overview of lex

UNIX is a trademark of AT&T Bell Laboratories.

3-2

r

LEX

This example lex source program is all that is required to gen­
erate a program to delete all blanks or tabs at the ends of the
input lines. The %% delimiter is a lex convention to mark the
beginning of the "rules" - the pattern matching expressions.
The rule itself, I \tl +$;, matches one or more instances of
the characters blank and tab. The brackets enclose the charac­
ter class consisting of blank and tab~ the + indicates "one or
more instance of the previous character(s) or character class"
and the$ indicates "end of line." No "action" is specified, so
the yylexO program, (generated by lex), ignores these charac­
ters. Everything else is copied.

Consider this next example:

%%
I \tl+$
I \tl+

The coded instructions in yylex scan for both rules at once.
Once a string of blanks or tabs is recognized, yylex determines
if the string is followed by a newline character, If it is, then the
first rule has been matched so the the corresponding action is
performed - yylex does not copy the string to output. The
second rule matches strings of one or more blanks and tabs not
already satisfying the first rule, and causes yylex to replace a
string of one or more blanks and tabs with a space.

The lex program generator can be used alone for simple
transformations or for analysis and statistics gathering on a lexi­
cal level. The lex generator can also be used with a parser gen­
erator to perform the lexical analysis phase.

In yylex, the program generated by lex, the actions to be per­
formed as each regular expression is found are gathered as
cases of a switch. The automaton interpreter directs the control
flow. It is possible to insert either declarations or additional
statements in the routine containing the actions and to add sub­
routines outside this action routine, should you need to do so.

3-3

LEX

The lex program generator is not limited to one character
look-ahead. For example, if there are two rules, one looking
for "ab" and another for "abcdefg" and the input stream is
"abcdeflt," lex recognizes "ab" and leaves the input pointer
just before "cdefh."

3-4

2. Syntax

The general format of lex is:

{definitions}
%%
[rules}
%%
{user subroutines}

LEX

where the definitions and the user subroutines are often omit­
ted. The first Y.'le is required to mark the beginning of the
rules, but the second %'/e is optional. The absolute minimum
lex program is:

%%

This lex source would generate a program that copies the input
to output unchanged.

In the outline of lex programs shown above, the rules consist
of two parts:

1. A left column with regular expressions

2. A right column with actions and program fragments
to be executed when the expressions in the left
column are recognized.

For example:

integer printf("found keyword INT");

The example rule above gives the instructions to look for the
string "integer," and, when found, output the statement
"found keyword INT." In this example, since the host pro­
cedural language is C, the C language library function printf is
used to print the string.

3-5

LEX

The end of the expression is indicated by the first blank or tab
character. If the action is a single C language expression, it can
just be given in the right column, as illustrated in the example.
If the action is compound or requires more than one line, it
should be enclosed in braces.

Consider the following example:

colour
mechanise
petrol

prlntf("color");
printf("mechanize"};
printf("gas");

This lex source segment could be used to generate a program
to change a number of words from British to American spelling.
Actually, these rules would have to be changed somewhat to be
useful. This is because were the word "petroleum" in the
input stream, the program generated by this segment would
cause it to be changed to "gaseum."

3-6

LEX

3. Character Set

The programs generated by lex handle character 1/0 only
through the routines input(), output(), and unputO. The
character representation provided in these routines is accepted
by lex and used to return values in yytext (). (See the section
entitled "input(), output() and unputO," in this Chapter for
more information on these routines.)

For internal use, a character is represented as a small integer.
If the standard library is used, a character's value is equal to
the integer value of the bit pattern representing the character
on the host computer, i.e., the character "A" has the value
\101 (octal) in ASCll.

Of course, you need not use the integer value of a charcter to
access the value. The character "a" is represented in the same
form as the character constant 'a'. If this interpretation is
changed by providing 1/0 routines that translate the characters,
lex must be given a translation table that is in the "definitions"
section of the source, and this translation table must be brack­
eted by lines containing only ~T. The translation table, then,
contains lines of the form:

\IT
{integer} {character string}
\IT

which indicate the value associated with each character.

3.1 Character Classes

Classes of characters can be specified using the operator pair "I
and). " For example, the construction label matches a single
character which may be "a," "b" or "c."

Within square brackets, most operator meanings are ignored.
Only three characters are special:

3-7

LEX

1. \

2.

3.

The"-" character indicates "ranges." For example,

[a-z0-9<>-1

indicates the character class containing all the lowercase letters
(a to z), digits (0 through 9), angle brackets (< and >) and
the underline character (_).

Using "-" between any pair of characters which are not both
uppercase letters, both lowercase letters, or both digits is some­
times acceptable to lex, but this is implementation dependent.
Therefore, if such a range is declared, lex will issue a warning
message. One reason for this is that [0-z] in ASCII is many
more characters than is in EBCDIC.

If it is desired to include the character "-" in a character class,
it should either be first or last within "I I." For example:

[.+0-9]

matches ALL digits, (0 through 9) and the two symbols - and
+.

If the A operator appears as the first character after the left
bracket, lex will ignore the characters within the brackets,
therefore matching all characters EXCEPT those within the
designated character class range. If an operation is to be per­
formed on recognition of a string expressed using this construc­
tion, it will be done on strings OTHER THAN those within the
brackets. For example:

["abel

3-8

/'
'

LEX

matches all characters EXCEPT "a," "b" or "c" including all
special and control characters. Also:

["a-zA-Z]

matches any character that is NOT a letter - (neither in the
range a through z nor A through Z).

The \ character provides the escapes within character class
brackets. For example:

[a-z\•1
matches all lower case letters (a through z) and the character
"•."

3.2 Arbitrary Characters

The operator "." instructs lex to match ANY character -
except newline.

All characters and ranges can be designated using the octal
representations of those characters. This method, however, is
difficult to read and, most likely, unportable. Nontheless, the
following character class range:

[\40-\176]

matches all printable ASCII characters from octal 40 (blank) to
octal 176 (tilde - -).

3.3 Operators

The operator characters are

"\[]"-?.•+1()$/{}%<>

and if they are to be used as text characters, an appropriate
"escape" should be used, i.e., to get the character "\," you
must escape its significance as an "operator" and can do so

3-9

------------------- --

LEX

easily with another backslash, "\ \." (For more information on
"escaping," refer to the UniP/ust User Guide, chapter on the C
Shell, under the heading "Quoting Mechanisms.")

The quotation mark operator, ", indicates that whatever charac·
ters follow - up to a second " character - are to be taken as
text characters without any "magic" meaning or operator
significance. The quotation mark, then, is another way to
"escape" the special meaning of a character. Thus:

xyz"++"

matches the string "xyz++" wherever it appears. Of course, it
is harmless, though unnecessary, to quote an ordinary text
character, so the expression:

"xyz++"

is equivalent to the one which only quoted the "++." How­
ever, by quoting every character being used as a text character,
the user can avoid remembering the list of current operator
characters, and is safe should further extensions to lex lengthen
the list.

Another use of the quoting mechanism is to get a blank into an
expression. Normally, as explained above, blanks or tabs end a
rule. Any blank character not contained within II MUST be
quoted.

Several C language "escapes" with\ are recognized:

\n newline
\I tab
\b backspace

\\ backslash

3-10

LEX

Since newline is illegal in an expression, \n must be used.

--

3-11

LEX

4. Compilation

The following are the two steps involved in compiling a lex
source file:

1. The lex source must be turned into a generated program
in the "host general purpose language." The generated
program is in a file named lex.yy.c.

2. Then that program must be compiled and loaded, usually
with a library of lex subroutines. The 1/0 library is
defined in terms of the C language standard library. On
the UNIX operating system, the library is accessed by the
loader flag -1/. In this case, an appropriate set of com­
mands is

lex inputfile
cc lex.yy.c -II

The resulting program is placed in the file a.out for later execu­
tion.

(To use lex with yacc, see the section entitled "LEX and
Y ACC. ") Although the default lex 1/0 routines use the C
language standard library, lex routines such as input, output
and unput do not. Therefore, if your own versions of these
routines are given, the library is avoided.

3-12

I~

LEX

S. Definitions

The basic format of a lex source is:

{definitions}
%%
[rules}
%%
{user routines}

In addition to the rules, there are options to define variables.
Variables can go either in the definitions section or in the rules
section.

Remember lex is generating the rules into a program, and any
source NOT intercepted by lex is copied into the program gen­
erated. Also:

I. Any line not part of a lex rule or action and that begins
with a blank or tab is copied into the lex generated pro­
gram.

2. Any line not part of a lex rule or action, that begins with
a blank or tab and is found PRIOR to the first%% delim-
iter is "external" to any function in the code.

3. Any line not part of a lex rule or action that begins with a
blank or tab and is found IMMEDIATELY AFTER the
first %%, appears in an appropriate place for declarations
in the function written by lex which contains the actions.
This material MUST look like program fragments and
should precede the first lex rule.

4.

5.

Lines that begin with a blank or tab, and that contain a
comment, are passed through to the generated program.
This can be used to include comments in either the lex
source or the generated code. The comments should fol­
low the host language convention.

Anything included BETWEEN lines containing only %{
and %} is copied to output. The delimiters are discarded.

3-13

LEX

This format permits entering text like preprocessor state­
ments that must begin in column 1 or copying lines that
do not look like programs.

6. Anything AFTER THE THIRD %% delimiter, regardless
of formats, etc., is copied to output AFTER the lex out­
put.

Definitions intended for lex are given before the first %% del­
imiter. Any line in this section not contained between %{ and
%} and beginning in column 1 is assumed to define lex substi­
tution strings. The format of such lines is

name translation

This facility enables the string given as "translation" to be
associated with the "name." The "name" and "translation"
MUST be separated by at least one blank or tab, and the
"name" MUST begin with a letter. The "translation" can be
called by the {name] syntax in a rule. Using {D} for the digits
and {E} for an exponent field. For example:

D
E
%%
{D)+
{D)+"."{D)•({E))?
{D)•"."{D)+({E)}?
{D)+{E)

[0-9]
[DEdell-+]?{D)+

printf("integer");
I
I
printf("real");

This example abbreviates rules to recognize numbers. The first
two rules for real numbers both require a decimal point and
contain an optional exponent field. The first requires at least
one digit before the decimal point ({D}+".~{D}•({E))?), and
the second requires at least one digit after the decimal point
({D)•"."{D)+({E))?). To correctly handle the the FOR­
TRAN expression "35.EQ.I," which does NOT contain a real
number, a context-sensitive rule such as:

3-14

LEX

[0-9)+1" ."EQ printf("integer");

could be used, in addition to the normal rule for integers.

The "definitions" section may also contain other commands
including the selection of a host language, a character set table,
a list of start conditions or adjustments to the default size of
arrays within lex itself for larger source programs.

5.1 Repetitions and Definitions

The operators {} specify EITHER:

• repetitions (if they enclose numbers), OR

• definition expansion (if they en-close a name).

For example:

,----. [digit}

('
'

looks for a predefined string named "digit" and inserts it at
that point in the expression. The definitions are given in the
first part of the lex input - BEFORE the rules.

The expression:

a[1,5}

looks for 1 to 5 occurrences of "a."

An initial % is not an ordinary character. but has a special
meaning to lex as the the separator for source program seg­
ments.

3-15

LEX

6. Rules

6.1 Regular Expressions

The regular expressions in lex function just as do those in the
UNIX Operating System text editors (i.e., vi, ed, etc.). A regu­
lar expression specifies a set of strings to be matched. It con­
tains "text characters," which match characters in the input
stream, and "operator characters," which, together with those
"text characters," express a string which is to be recognized
before the action in the right hand column takes place.

Letters of the alphabet and digits are always text characters.
For example:

integer

matches the string "integer" wherever it appears, and the
expression:

a57D

looks for the string "a57D."

6.2 Optional Expressions

The operator ? indicates an optional element of an expression.
Thus:

ab?c

matches either "ac" or "abc".

6.3 Repeated Expressions

Repetitions of classes are indicated by the operators .. and +.
The expression:

••

3-16

LEX

matches zero (0) or more consecutive ''a" characters. The
expression:

a+

matches one (l) or more instances of ''a" characters. The
expression:

(a-zl+

matches ALL strings of lowercase letters. The expression:

IA-Za-ziiA-Za-z0-9)•

matches ALL alphanumeric strings which have a leading alpha­
betic character. This is a typical expression for recognizing
identifiers in computer languages.

6.4 Alternation and Grouping

The operator I indicates alternation. For example:

(ablcd)

matches either "ab" OR "cd." The parentheses are used here
for grouping, only. They are not required in such a simple and
clear-cut example, but are often used for clarity or to force
correct interpretation of more complex expressions. For exam­
ple:

(ablcd+)?(ef)•

matches the strings as "abefef," "efefef.'' "cder' or "cddd;"
but NOT "abc," "abed" or "abcdef."

6.5 Context Sensitivity

The lex program recognizes a small amount of surrounding
context. The two simplest operators for this are A and $.

3-17

LEX

As in the UNIX Operating System text editors, if the first char­
acter of an expression is ~, the expression is matched only if
found as the FIRST character on a line - either after a newline
character or at the beginning of the input stream.

NOTE: Do not confuse the use of the ~ operator within
brackets (II) which instructs lex to match any char­
acter EXCEPT those designated character class range.

If you want to lex to find occurrences of a particular range of
characters - but only if they occur as the first character on a
line, you must use the - operator on the OUTSIDE of the
brackets. For example, the expression:

'10-91

matches lines whose first character is a digit, 0 through 9; while
the expression:

T0-91

matches lines whose first character is NOT a digit 0 through 9.

The operator $, is only matched at the end of a line - immedi·
ately followed by newline. This operator is a special case of the
I operator character which indicates "!railinx context." The
expression

ab/cd

matches the string "ab" ONLY if followed by "cd." Therefore,
the expression:

ab$

could be expressed:

ab/\n

That is, the use of the S operator could be interpreted as an
instruction to match the character(s) ONLY when followed by a

3-18

LEX

newline.

"Left context" is handled in lex by "start conditions." If a
rule is only to be executed when the lex automaton interpreter
is in "start condition" x, the rule should be prefixed by the
angle bracket operator characters:

<x>

If we considered "being at the beginning of a line" to be start
condition "ONE," then the A operator would be equivalent to

<ONE>

See the sections entitled "Left Context Sensitivity," "Exam­
ples" and "Summary" for further explanation and illustration
of "start conditions."

6.5.1 Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to
be applied at different times in the input. For example, a com­
piler preprocessor might distinguish preprocessor statements
and analyze them differently from ordinary statements. This
requires "sensitivity" to prior context. There are several ways
of handling such occurrences. For example, the " operator is a
"prior context operator" because it must recognize the
immediately preceding left context in order to discern if a char­
acter appears at the beginning of a line, just as the $ operator
must recognize the immediately following right context in order
to discern if a character appears at the end of a line.

Adjacent left context could be extended to produce a facility
similar to that for adjacent right context, but it is unlikely to be
as useful since often the relevant left context appeared some
time earlier such as at the beginning of a line.

This section describes three ways of dealing with different
environments:

3-19

LEX

1. A simple use of flags (when only a few rules change from
one environment to another),

2. use of "start conditions" on rules, and

3. the possibility of making multiple lexical analyzers all run
together.

In each case, there are rules that recognize the need to change
the environment in which the following input text is analyzed
and a parameter is set to reflect the change.

The simplest way of doing this is by use of a flag explicitly
tested by the user's action code. If done in this way, lex is not
involved at all. It may be more convenient, however, to have
lex "remember" the flags as "start conditions" on the rules.
Any rule may be associated with a "start condition." That
rule, then, would only be recognized when lex is in that start
condition. The current start condition may be changed at any
time.

If the sets of rules for the various environments are very
different, clarity may be best achieved by writing several dis­
tinct lexical analyzers and switching from one to another as
desired

Consider the following example which is written to generate a
program to perform the following actions:

3-20

• Copy the input to the output.

• Change the word "magic" to "first" on every line
which begins with the letter "a."

• Change "magic" to "second" on every line which
began with the letter "b."

• Change "magic" to "third" on every line which
began with the letter "c."

·~.

LEX

All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is
with a "flag." For example:

int flag.
%%
Aa {flag 'a'; ECHO;}
"b [flag 'b'; ECHO;}
"c [flag - 'c'; ECHO;}
\n [flag - 0 ; ECHO;}
magic {

switch (flag)
[

case 'a': printf("first~); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;

To handle the same problem using "start conditions," begin by
introducing each start condition to lex in the "definitions" sec­
tion with a line reading:

%Start namel name2 ...

where the conditions, (namel, name2, etc.), may be named in
any order. The word "Start" may be abbreviated to "s" or
"S."

Then, to reference the conditions use angle brackets (< >)
brackets:

< namel >expression

The rule illustrated above will ONLY be recognized when lex is
in the "start condition" namel. To enter that "start

3-21

LEX

condition," execute the following action statement:

BEGIN name I;

The action statement:

BEGIN 0;

resets the initial condition of the lex automaton interpreter.

A rule may be active in several start conditions.

< namel ,name2,name3 >expression

is a legal expression.

Any rule NOT beginning with the < > prefix operator is
ALWAYS active.

The following example illustrates the use of "start conditions:"

%START AA BB CC
%%
"a
"b
"c
\n
<AA>magic
<DB> magic
<CC>magic

[ECHO; BEGIN AA;)
[ECHO; BEGIN BB;)
[ECHO; BEGIN CC;)
[ECHO; BEGIN 0;)
printf("first~);

printf("second");
printf("third");

Obviously, the above is a re-write of the previous example -
the problem-solving logic is exactly the same. However, in this
case, lex, has been instructed to do the work instead of the
host language code.

3-22

(
'

LEX

6.6 Ambiguous Rules

The lex program can handle ambiguous specifications. When
more than one expression can match the current input, lex
chooses as follows:

1. The longest match is preferred.

2. Among rules that matched the same number of charac­
ters, the rule given first is preferred.

For example, using the following rules:

integer
[a-z[+

keyword action ... ;
identifier action ... ;

if the input were "integers," lex would interpret the input as
an identifier because "[a-z]+" matches all eight characters
(including the final "s"), while .. integer" matches only seven
characters.

If the input were "integer," both rules would match the seven
characters. In that case, lex would select the keyword rule
because it was given first. If the input were anything shorter,
(e.g., "int''), the input would not match the expression
"integer." It would, however, match the "[a-zl+" expression,
so the identifier interpretation would be used.

The principle of preferring the longest match makes rules con­
taining expressions like .• dangerous. For example:

'.•'

appears to instruct lex to find a match for a string in single
quotes. However, it is an instruction for the program to read
far ahead looking for a distant single quote. For example, if
the above expression were given the following input

'first' quoted string here, 'second' here

3-23

LEX

the expression would match almost the entire input line:

'first' quoted string here, 'second'

which is most likely NOT the desired result. A better rule to
match strings within single quotes might be:

T'\nl•'

which, given the same input, will match '"first'."

The consequences of errors like this are greatly lessened by the
fact that the dot (.) operator does NOT match newline.
Expressions like ·"' stop on the current line.

NOTE:

3-24

Do NOT try to defeat the protection of. not match­
ing the newline character with expressions such as:
(.\nl+ or an equivalent because the program gen­
erated by lex will then try to read the entire input
file causing internal buffer overflows.

LEX

7. Actions

When an expression written as above is matched, lex executes
the corresponding "action." The following describes the
features of lex used to write "actions."

NOTE: The default "action" for lex copies input to output,
and is performed on ALL strings not otherwise
matched. Therefore, a rule which merely copies,
can be omitted. If you want to absorb the entire
input, WITHOUT producing any output, you MUST
provide rules to match everything. (When lex is
being used with yacc, this is the normal situation.)
In other words, by default, a character combination
in input, which was omitted from the rules, will be
printed on the output.

One of the simplest things that can be done is to ignore the
,r-- input. To accomplish this, use a semicolon ";" (semicolon is

the C language "NULL statement") as the action.

The following rule:

I \t\nl

causes the spacing characters, (i.e., blank, tab and newline), to
be ignored since it gives the NULL statement as its associated
action.

The action character, I , represents the instruction to use the
action designated for the next rule for the current rule as well.
For example:

II II

''\t"
"\n"

3-25

LEX

This example instructs lex to ignore the spacing characters -
as did the previous example. The first line gives the rule
"match " " characters" and instructs the program to perform
the action indicated for the next rule. Then, the second line
gives the rule "match "\t" characters" and instructs the pro­
gram to perform the action indicated for the next rule. Finally,
the third line gives the rule "match "\n" characters," and gives
the action ";" - the NULL statement. Therefore, the action
for all three rules is the NULL statement.

In more complex actions, you may often want to know the
actual text that matched a regular expression. The lex program
leaves this text in an external character array. Consider the fol­
lowing example:

la-zl+ printf("'les", yytext);

This example illustrates a way of accessing the characters
matching a regular expression. Using this example, the rule
given is to find the strings matching the regular expression
"[a-z]+" and the action is to print those strings in the charac­
ter array yytextll using the C language function printf.

The printf function accepts a format argument and data to be
printed.· Still using this example, the format is "%s" (print
string). The % character indicates data conversion, and s indi­
cates data type string - in this case, the character array,
yytextll. This places the matched string on the output.

The action of printing the strings matching the regular expres­
sions is so common, that it may be written simply as "ECHO."
For example:

la·zl+ ECHO;

This example accomplishes the same action as the previous
example using the printf statement.

3-26

LEX

Even though the default action is to copy input to output, the
ECHO facility is included explicitly to provide a more "discrim­
inating" copy function. For example, a rule that matches read,
will normally match ALL instances of read, even those con­
tained in other words (bread, treadmill, etc.). To avoid this, a
rule of the form "[a-z]+" is needed.

The lex routine yyleng is used to facilitate counting both the
number of words in the input, and the number of characters in
those words. Consequently, this routine enables access to the
last instance of a string matched, or even the last character of
that string.

Consider the following example:

[a-zA-Z]+ {words++; chars +- yyleng;}

This instruction takes the strings which match the regular
expression [a-zA-Z]+ and accumulates the number of charac­
ten: in these strings in chars. Then, the following action
instruction:

yytext(yyleng-1]

could be used to access the last character in the string matched.

7.1 yymoreO and yylessO

Occasionally, a lex action may decide that a rule has not recog­
nized the correct span of characters. Two routines are provided
to aid with this situation:

1. yymoreO

2. yyless(n)

This routine instructs lex to tack the next
input expression recognized on to the end of
this input. Normally, the next input string
would overwrite the current entry in yytext.

This routine instructs lex to retain in yytext
ONLY n number of those characters resulting
from the current expression. Further

3-27

LEX

characters previously matched are returned to
the input. This provides the same sort of
look ahead offered by the I operator, though
in a very different form.

Consider a language that defines a string as a set of characters
between quotation marks ("}, and provides that to include a the
" character in a string, that character MUST be preceded by a\.
The regular expression which matches that is somewhat confus­
ing, so that it might be preferable to write the following:

\"!'"]•
if (yytext[yyleng-1] ~~ \\1

yymoreO;
else

... normal user processing

The above lex segment will, when it finds the string:

"abc\"def",

first match the five characters "abc\; then call the yymoreO
routine which will cause the next part of the string "def to be
tacked on the end of the input. Note that the final quote ter­
minating the string should be picked up in the code labeled
('normal processing."

The function yyless 0 might be used to reprocess text. For
example:

~-(a-zA-Z]
printf{~Operator (=-) ambiguous\n~);
yyless{yyleng-1)~
... action for =- ...

This lex segment will print a message, treat the operator as
"--" and return the letter found after the operator to the

3-28

LEX

input stream. However, you might want to treat this syntax as
"=-a." In that case:

--[a-zA-Z[
printf("Operator (--) ambiguous\n");
yyless(yyleng-2);
... action for = ...

This lex segment will print a message, treat the operator as
"="and return "-a" to the input stream.

NOTE: It is possible to avoid the misinterpretation of opera­
tors by re-writing the regular expression. Using the
same example: To indicate that the operator is
"=-,"use the following rule:

--/[A-Za-z[

to indicate that the operator is"=," use the follow­
ing rule:

-1-[A-Za-z[

No backup is required in the rule action. It is not
necessary to recognize the whole identifier to
observe the ambiguity. However, the possibility of
"--3" makes

--1 [" \t\n[

a still better rule.

7.2 inputO, output(c) and unput(c)

In addition to these routines, lex also permits access to the 1/0
.r- routines it uses. The following are provided as lex macro

definitions:

1. input() This routine returns the next input character.

3-29

LEX

2. output(c) This routine writes the character "c" on the
output.

3. unput(c) This routine pushes the character "c" back
onto the input stream to be read later by
input().

These routines are provided by default, but you can override
them by providing your own versions. However, since these
routines define the relationship between external files and inter­
nal characters, they must all be retained and/or modified con­
sistently.

These routines may be redefined to cause input or output to be
transmitted to or from other programs or internal memory.
The character set used MUST be consistent in all routines and
a value of zero returned by input() MUST mean end-of-file.

The relationship between unput and input must be retained or
the lex look-ahead will not work. The lex program does NOT
look-ahead unless explicitly instructed to do so, either by rules
ending in+, •,? or S, or by those containing a/. Look-ahead
is necessary to match an expression that is a prefix of another
expression. The standard lex library imposes a 1 00-character
limit on backup.

7.3 yywrap 0

Another lex library routine that you may sometimes want to
redefine is yywrap. This routine is called whenever lex reaches
an end-of-file.

If yywrap returns a 1, which it does by default, lex continues
with the normal wrap-up on end of input.

It is sometimes convenient to arrange for input to continue
from a new source. In this case, yywrap could be redefined to
arranges for new input and returns 0. This would then instruct

3-30

(
'
··--

LEX

lex to continue processing.

This routine provides a convenient way to print tables, sum­
maries, etc. at the end of a program.

NOTE: It is NOT possible to write a normal rule that recog­
nizes end-of-file. The only access to this condition
is through yywrap. In fact, unless a private version
of input() is supplied, a file containing NULLs can­
not be handled since a value of 0 returned by input
is taken to be end-of-file by yywrap.

7.4 REJECT

Note that lex is normally partitioning the input stream, NOT
searching for all possible matches of each expression. This
means that each character is accounted for once and only once.
Consider the following example:

she s++;
he h++;
\n I

The first rule matches all occurrences of the string "she" and
the action increments "s" for each one found. The second
matches all occurrences of the string "he" and its action incre­
ments "h" for each one found. The last two rules match new­
line and everything else and takes the action of ignoring them.
Normally, lex would not recognize the instances of "he"
included in "she," since once it has passed a "she" those char­
acters are gone. To override this default, the action REJECT
could be used to instruct lex to "go do the next alternative."
REJECT causes the rule AFTER the current rule to be exe­
cuted. The position of the input pointer is adjusted accordingly.

Suppose you want to count the instances of "he" included in
"she." To do that, use the following rules:

3·31

LEX

she {s++; REJECT;)
he {h++; REJECT;)
\n I

In this example, after counting each expression, it is "rejected"
(whenever appropriate), and the other expression is evaluated.
In this example, since "he" does not include "she" the
REJECT action on "he" could be eliminated. In other cases, it
is not possible to state which input characters are in both
classes.

Consider the following two rules:

a[bc]+
a[cdl+

{ ... ; REJECT;)
{ ... ; REJECT;)

• If the input to the rules above were "ab," only the
first rule would match.

• If the input to these same rules were "ad," only the
second would match.

• If the the input were "accb," the first rule would
match four characters, and then the second rule
would match three characters.

• If the input were "aced," however, the second rule
would match four characters, and then the first rule
would match three characters.

In general, REJECT is useful whenever the purpose of lex is to
detect all examples of some items in the input for which the
instances of these items may overlap or include one another,
instead of lex's usual purpose of partitioning the input stream.

Suppose you want a digram of some input. Normally, the
digrams overlap, that is, the word "the" is considered to con­
tain both "th" and "he." Assuming a 2-dimensional array

3-32

LEX

named digram[) to be incremented, an appropriate lex pro­
cedure would be:

%%
[a-zlla-z[{digram[yytext[O[][yytextUII++; REJECT;}

I
\n

In this example, REJECT is used to pick up a letter pair begin­
ning at EVERY character, rather than at every other character.

The action REJECT does not rescan the input. Instead, it
"remembers" the results of the previous scan. Therefore, if a
program instructs lex to find a rule with trailing context and
execute REJECT, unput CANNOT have been called to change
the characters forthconiing from the input stream. This is the
only restriction on the user's ability to manipulate the not-yet­
processed input.

3-33

LEX

8. Examples

For the sake of example, consider copying an input file while
adding three to every positive number divisible by seven. A
suitable lex source program follows:

%%
int k;
[0-9]+

k = atoi(yytext);
if(k%7~~0)

printf("%d", k+3);
else

printf("%d" ,k);

The rule "[0-9]+" recognizes strings of digits, 0 through 9;
atoiO converts the digits to binary and stores the result in
"k." The operator 'lo (remainder) is used to check whether
"k" is divisible by seven; if it is, "k" is incremented by three
as it is written out. It may be objected that this program alters
such input items as "49.63" or "X7." Furthermore, it incre­
ments the absolute value of all negative numbers divisible by
seven. To avoid this, add a few more rules after the active
one, for example:

%%
int k;
-?[0-9]+

}

k """ atoi(yytext);
printf("%d", k%7 == 0 ? k+3 k);

-? [0-9.1+ ECHO;

Numerical strings containing a dot (.),or preceded by a letter,
will be picked up by one of the last two rules and not changed.
The "if-else" has been replaced by a C language conditional
expression to save space. The expression "a ? b : c" is
evaluated as "if a then b else c."

3-34

r
I
·~

LEX

The following is an example using lex for statistics gathering.
This program "histograms" the lengths of words. (A word is
defined here as a string of letters).

intlengs[IOO);
%%
[a-z]+ lengs[yyleng]++;

\n
%%
yywrap()

I

)

int i;
printf("Length No. words\n"};
for(i=O; i< 100; i++}

if Oengs[i) > 0)
printf("%5d% 1 Od\n", i,lengs [i]) ;

return(});

In the above example, the histogram is accumulated, but no
output is generated until, at the end of the input, it prints the
table. The final statement, ("return(l);"), indicates that lex is
to perform wrap-up. If yywrap returns zero {false), it implies
that further input is available and the program is to continue
reading and processing. Remember, providing a yywrap that
never returns true causes an infinite loop.

3-35

LEX

9. Summary

The general form of a lex source file is

{definitions}
%%
{rules}
%%
{user subroutines}

The "definitions" section contains a combination of the follow­
ing:

1. Definitions in the form "name space translation."

2. Included code in the form "space code."

3. Included code in the form:

%{
code
%}

4. Start conditions given in the form:

%S namel name2 ...

S. Character set tables in the form:

%T
number space character-string

%T

6. Changes to internal array sizes in the form:

3-36

%x nnn

where "non" is a decimal integer representing an array
size and "x" selects the parameter as follows:

r
'

LETTER PARAMETER

p positions
n states

• tree nodes
a transitions
k packed character classes
0 output array size

Lines in the "rules" section have the form:

expression action

LEX

where the "action" may be continued on succeeding lines by
using braces to delimit it.

Regular expressions in lex use the following operators:

3-37

LEX

REGULAR EXPRESSION OPERATORS

X the character "x".
"x" an "x", even if x is an operator.
\x an "x", even if xis an operator.

(xy(the character x or y.
lx-zl the characters x, y, or z.
l"xl any character but x.
. any character but newline . . an x at the beginning of a line. X

<y>x an x when lex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
x• 0 or more instances of x.
x+ 1 or more instances of x.
xly anxORay.
(x) an x.
x/y an x but only if followed by y.
[xx) expands to xx definition in lex definition section.

x{m,n} m through n occurrences of x.

3-38

LEX

10. LEX and Y ACC ,.-
(It is particularly easy to interface lex and yacc. The lex pro­

gram recognizes only regular expressions; yacc writes parsers
that accept a large class of context free grammars but requires a
lower level analyzer to recognize input tokens. Thus, a combi­
nation of lex and yacc is often appropriate. When used as a
preprocessor for a later parser generator, lex is used to partition
the input stream; and the parser generator assigns structure to
the resulting pieces. The flow of control in such a case is
shown in Figure 3.2. Additional programs, written by other
generators or by hand, can be added easily to programs written
by lex. You will realize that the name yylex is what yacc
expects its lexical analyzer to be named, so that the use of this
name by lex simplifies interfacing.

(

lexical grammar
rules rules

J J

lex yacc

J J

Input - yylex - yyparse - parsed output

Figure 3.2. Lex With Yacc

To use lex with yacc, observe that lex writes a program named
yylexO which is the name required by yacc for its analyzer.
Normally, the default main program on the lex library calls the
yylexO routine, but if yacc is loaded and its main program is
used, yacc calls yylexO. In this case, each lex rule ends with

return (token);

--- where the appropriate token value is returned. An easy way to
get access to yacc's names for tokens is to compile the lex out­
put file as part of the yacc output file by placing the line

3·39

LEX

#include "lex.yy.c"

in the last section of yacc input. If the grammer is to be
named "good" and the lexical rules are to be named "better,"
the UNIX Operating System command sequence could be

yacc good
lex better
cc y.tab.c -ly -ll

The yacc library, (-ly), should be loaded before the lex
library to obtain a main program that invokes the yacc parser.
The generations of lex and ya« programs can be done in either
order.

3-40

Chapter 4: YACC

(' CONTENTS

c

c

I. Introduction . . l

2. Basic Specifications 6

3. Actions 11

4. Lexical Analysis 16

5. Parser Operation 19

6. Ambiguity and Conflicts

7. Precedence

8. Error Handling

9. The yacc Environment

10. Input Style

11. Left Recursion

12. Lexical Considerations

13. Reserved Words . . •

14. Simulating Error and Accept in Actions

15. Accessing Values in Enclosing Rules

16. Arbitrary Value Types

17. Appendix 4.1

18. Appendix 4.2

19. Appendix 4.3

20. Appendix 4.4

- i -

27

35

40

44

47

48

50

52

53

54

56

60

65

69

80

LIST OF FIGURES

Figure 4.1. C Language Escapes Recognized by
Yacc • • • • • • • • • • 8

- ii -

Chapter 4

YACC-

YACC

YET ANOTHER COMPILER COMPILER

1. Introduction

The yacc program provides a general tool for imposing struc·
ture on the input to a computer program.

The first step in using the yacc program is to create a
specification of the input process, which includes rules describ­
ing the input structure, code to be invoked when these rules
are recognized, and a low-level routine to do the basic input.

The yacc program then generates a function to control the
input process. This function, called a parser, calls the user­
supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream.

Tokens are organized according to the input structure rules,
called grammar rules. When one of these rules has been recog­
nized, then user code supplied for this rule (i.e., an action), is
invoked.

Actions have the ability to return values and make use of the
values of other actions.

The yaec program is written in a portable dialect of the C
language, and the actions and output subroutine are in the C
language as well. Moreover, many of the syntactic conventions

(of yaec follow the C language.
'

The heart of the input specification is a collection of grammar
rules. Each rule describes an allowable structure and gives it a

4-1

YACC

name. For example, one grammar rule might be

date month name day year

where date, month_name, day and year represent structures of
interest in the input process; presumably, month_name, day
and year are defined elsewhere.

The comma (·;) is enclosed in single quotes. This implies that
the comma is to appear literally in the input.

The colon and semicolon merely serve as punctuation in the
rule and have no significance in controlling the input.

With proper definitions, the follOwing input might be matched
by the rule given above:

July 4, 1776

An important part of the input process is carried out by the lex­
ical analyzer. This user routine reads the input stream, recog­
nizes the lower-level structures, and communicates these
tokens to the parser.

For historical reasons, a structure recognized by the lexical
analyzer is called a terminal symbol, while the structure recog­
nized by the parser is called a nonterminal symbol. To avoid
confusion, terminal symbols will usually be referred to as
tokens.

There is considerable leeway in deciding whether to recognize
structures using the lexical analyzer or grammar rules. For
example, the following rules might be used in the above exam­
ple:

4-2

I
'

month_name 'J' 'a' 'n'
month name 'F' 'e' 'b'

month_name : 'D' 'e' 'c'

YACC

The lexical analyzer only needs to recognize individual letters,
and month name is a nonterminal symboL

Such low-level rules tend to waste time and space and may
complicate the specification beyond the ability of yacc to deal
with it.

Usually, the lexical analyzer recognizes the month names and
returns an indication that a month name is seen. In this case,
month name is a token.

Literal characters such as a comma must also be passed through
the lexical analyzer and are also considered tokens.

Specification files are very flexible. If the following rule were
added to the above example, entering 7/4/1776 would then be
equivalent to July 4, 1776 on input:

date month '/' day '/' year

In most cases, this new rule could be "slipped in" to a working
system with minimal effort and little danger of disrupting exist­
ing input.

The input being read may not conform to the specifications.
These input errors are detected as early as is theoretically possi­
ble with a left-to-right scan. Thus, not only is the chance of
reading and computing with bad input data substantially
reduced, but the bad data can usually be quickly found.

4-3

YACC

Error handling, provided as part of the input specifications, per­
mits the reentry of bad data or the continuation of the input
process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set
of specifications. For example, the specifications may be self­
contradictory, or they may require a more powerful recognition
mechanism than that available to yacc. The former cases
represent design errors; the latter cases can often be corrected
by making the lexical analyzer more powerful or by rewriting
some of the grammar rules.

While yacc cannot handle all possible specifications, its power
compares favorably with similar systems. Moreover, the con­
structions which are difficult for yacc to handle are also fre­
quently difficult for human beings to handle.

Some users have reported that the discipline of formulating
valid yacc specifications for their input revealed errors of con­
ception or design early in the program development.

The yacc program has been extensively used in numerous prac­
tical applications, including lint, the Portable C Compiler, and a
system for typesetting mathematics.

The remainder of this document describes the following sub­
jects as they relate to yacc

4-4

• Basic process of preparing a yacc specification
• Parser operation
• Handling ambiguities
• Handling operator precedences in arithmetic expres­

sions
• Error detection and recovery
• The operating environment and special features of

the parsers yacc produces
• Suggestions to improve the style and efficiency of

•
the specifications
Advanced topics

In addition, there are four appendices:

YACC

Appendix 4.1 This appendix contains a brief example.

Appendix 4.2 This appendix contains a summary of the yaec
input syntax.

Appendix 4.3 This appendix contains an example using some
of the more advanced features of yaec, and

Appendix 4.4 This appendix contains a description of the
mechanisms and syntax which, though no
longer actively supported, are provided for his­
torical continuity with older versions of yace.

4-5

YACC

2. Basic Specifications

Names refer to either tokens or nonterminal symbols.

The yacc program requires token names to be declared as such.
In addition, it is often desirable to include the lexical analyzer
as part of the specification file.

It may be useful to include other programs as well.

Every specification file consists of three sections:

• The declarations
• The grammar rules
• The programs

These sections are separated by double percent (%'/o) marks.
(The percent symbol is generally used in yacc specifications as
an escape character.)

The following is a syntactic description of a yacc specification
file:

declarations
%%
rules
%%
programs

The declaration section may be empty, and, if the programs
section is omitted, the second %% mark may also be omitted.

The smallest legal yacc specification is therefore:

%%
rules

4-6

r
'

YACC

since the other two sections may be omitted.

Blanks, tabs, and newlines are ignored, but they may not appear
in names or multicharacter reserved symbols.

Comments may appear wherever a name is legal. They are
enclosed in /• •.• •!, as inC language.

The rules section is made up of one or more grammar rules. A
grammar rule has the following form:

A BODY

In this example, A represents a nonterminal name, and BODY
represents a sequence of zero or more names and literals.

The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length and may be made up of
letters, dots, underscores, and noninitial digits.

Uppercase and lowercase letters are distinct. The names used
in the body of a grammar rule may represent tokens or nonter­
minal symbols.

A literal consists of a character enclosed in single quotes (').

As in C language, the backslash (\) is an escape character
within literals, and all the C language escapes are recognized.

4-7

YACC

C LANGUAGE ESCAPES
RECOGNIZED BY YACC
'In' newline

'\r' retum
'\" single quote (•)
'\ , . backslash (\) . , .. tab
'\b' backspace
'\(form feed
\xxx . xxx in octal

Figure 4.1. C Language Escapes Recognized by Yacc

For a number of technical reasons, the NULL character C\0' or
0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand side,
the vertical bar ((> can be used to avoid rewriting the left-hand
side.

The semicolon at the end of a rule can be dropped before a
vertical bar. Thus the following grammar rules:

A B C D
A E F
A G

can be given to yacc using the vertical bar:

A B C D
E F
G

It is not necessary that all grammar rules with the same left side
appear together in the grammar rules section although it makes

4-8

YACC

the input much more readable and easier to change.

r
1
• If a nonterminal symbol matches the empty string, this can be

indicated by the following:

empty :

Names representing tokens must be declared in the declarations
section. For example:

%token namel name2 ...

Every name not defined in the declarations section is assumed
to represent a nonterminal symbol.

Every nonterminal symbol must appear on the left side of at
least one rule.

Of all the nonterminal symbols, the start symbol has particular
importance.

The parser is designed to recognize the start symbol. Thus, this
symbol represents the largest, most general structure described
by the grammar rules.

By default, the start symbol is taken to be the left-hand side of
the first grammar rule in the rules section.

It is possible and desirable to declare the start symbol explicitly
in the declarations section using the %start keyword. For
example:

%start symbol

The end of the input to the parser is signaled by a special
token, called the end~marker.

4-9

YACC

If the tokens up to but not including the end-marker form a
structure that matches the start symbol, the parser function
returns to its caller after the end-marker is seen and accepts the
input.

If the end-marker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the
end-marker when appropriate.

Usually the end-marker represents some reasonably obvious
1/0 status, such as "end-of-file" or "end-of-record".

4-10

YACC

3. Actions

With each grammar rule, the user may associate actions to be
performed each time the rule is recognized in the input process.

These actions may return values and may obtain the values
returned by previous actions. Moreover, the lexical analyzer
can return values for tokens if desired.

An action is an arbitrary C language statement and as such can
do input and output, call subprograms, and alter external vec­
tors and variables.

An action is specified by one or more statements enclosed in
curly braces ({) and(}). For example:

A '(' B ')'

hello(1, "abc");

and the following is an example of grammar rules with actions:

XXX YYY ZZZ

printf("a message\n");
flag = 25;

To facilitate easy communication between the actions and the
parser, the action statements are altered slightly.

The dollar sign symbol ($) is used as a signal to yacc in this
context.

4-11

YACC

To return a value, the action normally sets the pseudo-variable
$$ to some value.

The following action does nothing but return the value of one:

$$ = I;

To obtain the values returned by previous actions and the lexi­
cal analyzer, the action may use the pseudo-variables $1, $2,
... , which refer to the values returned by the components of
the right side of a rule, reading from left to right.

For example, if the rule is:

A B C D

then $2 has the value returned by C, and $3 the value returned
by D.

With the following rule, the value returned by this rule is usu­
ally the value of the expr in parentheses:

expr '(' expr ')'

By default, the value of a rule is the value of the first element
in it ($1).

Grammar rules of the following form frequently need not have
an explicit action:

A B

In the examples above, all the actions came at the end of rules.
Sometimes, it is desirable to get control before a rule is fully

4-12

r

YACC

parsed. The yacc permits an action to be written in the middle
of a rule as well as at the end.

This rule is assumed to return a value accessible through the
usual $ mechanism by the actions to the right of it.

In turn, it may access the values returned by the symbols to its
left. For example, in the following rule x is set to 1 and y is
set to the value returned by C:

A B

S$ =1;

c

X - $2;
y = $3;

Actions that do not terminate a rule are actually handled by
yacc by manufacturing a new nonterminal symbol name and a
new rule matching this name to the empty string.

The interior action is the action triggered off by recognizing this
added rule.

The yacc program actually treats the above example as if it had
been written like the following: ($ACT is an empty action.)

4-13

YACC

$ACT

A

I• empty •/

$$ - I;

B $ACT C

X = $2;
y = $3;

In many applications, output is not done directly by the actions.

A data structure, such as a parse tree, is constructed in memory
and transformations are applied to it before output is generated.

Parse trees are particularly easy to construct given routines to
build and maintain the tree structure desired.

In the following example, the C function node creates a node
with label L and descendants nl and n2 and returns the index
of the newly created node:

node(L, nl, n2)

Then a parse tree is built by supplying the actions following in
the yacc specification file:

expr expr • +' expr

$$ - node('+', $1, $3);

The user may define other variables to be used by the actions.

4-14

YACC

Declarations and definitions can appear in the declarations sec­
tion enclosed in the marks %{ and %) . These declarations and
definitions have global scope, so they are known to the action
statements and the lexical analyzer. For example:

%{ int variable = 0; %}

could be placed in the declarations section making variable
accessible to all of the actions.

The yacc parser uses only names beginning with yy. The user
should avoid such names.

In these examples, all the values are integers. A discussion of
values of other types is found in the part Advanced Topics.

4-15

YACC

4. Lexical Analysis

The user must supply a lexical analyzer to read the input stream
and communicate tokens (with values, if desired) to the parser.

The lexical analyzer is an integer-valued function called yylex.
The function returns an integer, the token number, representing
the kind of token read. If there is a value associated with that
token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token
numbers in order for communication between them to take
place. The numbers may be chosen by yacc or the user. In
either case, the #define mechanism of C language is used to
allow the lexical analyzer to return these numbers symbolically.
For example, suppose that the token name DIGIT has been
defined in the declarations section of the yacc specification file.
The relevant portion of the lexical analyzer might look like the
following:

4-16

yylexO
{

extern int yylval;
int c;

c = getcharO;

switch(c)
{

case '0':
case '1':

case '9':
yylval - c- ·o·;
return(DIGIT);

YACC

The intent is to return a token number of DIGIT and a value
equal to the numerical value of the digit.

Provided that the lexical analyzer code is placed in the pro­
grams section of the specification file, the identifier DIGIT is
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers.
The only pitfall to avoid is using any token names in the gram­
mar that are reserved or significant in C language or the parser.
For example, the use of token names if or while will almost
certainly cause severe difficulties when the lexical analyzer is
compiled.

The token name error is reserved for error handling and should
not be used naively.

4-17

YACC

As mentioned above, the token numbers may be chosen by
yacc or the user. In the default situation, the numbers are
chosen by yacc. The default token number for a literal charac­
ter is the numerical value of the character in the local character
set.

Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the
first appearance of the token name or literal in the declarations
section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or
literal. Names and literals not defined by this mechanism retain
their default definition.

It is important that all token numbers be distinct.

For historical reasons, the end-marker must have token
number 0 or negative. This token number cannot be redefined
by the user. Thus, all lexical analyzers should be prepared to
return 0 or a negative number as a token upon reaching the
end of their input.

A very useful tool for constructing lexical analyzers is the lex
program. These lexical analyzers are designed to work in close
harmony with yacc parsers. The specifications for these lexical
analyzers use regular expressions instead of grammar rules.

Lex can be easily used to produce quite complicated lexical
analyzers, but there remain some languages (such as FOR­
TRAN) which do not fit any theoretical framework and whose
lexical analyzers must be crafted by hand.

4-18

YACC

S. Parser Operation

The yacc program turns the specification file into a C language
program, which parses the input according to the specification
given.

The algorithm used to go from the specification to the parser is
complex and will not be discussed here. The parser itself, how­
ever, is relatively simple and understanding how it works will
make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists of a finite state machine
with a stack.

The parser is also capable of reading and remembering the next
input token (called the look-ahead token).

The current state is always the one on the top of the stack.
The states of the finite state machine are given small integer
labels.

Initially, the machine is in state 0 (the stack contains only state
0) and no look-ahead token has been read.

The machine has only four actions available-shift, reduce,
accept and error.

A step of the parser is done as follows:

I. Based on its current state, the parser decides if it
needs a look-ahead token to choose the action to be
taken. If it needs one and does not have one, it
calls yylex to obtain the next token.

4-19

YACC

2. Using the current state and the look-ahead token if
needed, the parser decides on its next action and
carries it out. This may result in states being pushed
onto the stack or popped off of the stack and in the
look-ahead token being processed or left alone.

The shift action is the most common action the parser takes.

Whenever a shift action is taken, there is always a look-ahead
token. In the following example, in state 56, if the look-ahead
token is IF, the current state (56) is pushed down on the stack,
and state 34 becomes the current state (on the top of the
stack):

IF shift 34

The look-ahead token is cleared.

The reduce action keeps the stack from growing without
bounds. Reduce actions are appropriate when the parser has
seen the right-hand side of a grammar rule and is prepared to
announce that it has seen an instance of the rule replacing the
right-hand side by the left-hand side.

It may be necessary to consult the look-ahead token to decide
whether to reduce or not (usually it is not necessary). In fact,
the default action (represented by a dot) is often a reduce
action.

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, and this
leads to some confusion. For example, in the following
display, the action refers to grammar rule 18:

reduce 18

4-20

YACC

While in the following example, the action refers to state 34:

(IF shift 34

Suppose the following rule is being reduced:

A X y z

The reduce action depends on the left-hand symbol (A in this
case) and the number of symbols on the right-hand side (three
in this case).

To reduce, first pop off the top three states from the stack. (In
general, the number of states popped equals the number of
symbols on the right side of the rule.) [n effect, these states
were the ones put on the stack while recognizing x, y, and z
and no longer serve any useful purpose.

After popping these states, a state is uncovered which was the
state the parser was in before beginning to process the rule.

Using this uncovered state and the symbol on the left side of
the rule, perform what is in effect a shift of A. A new state is
obtained, pushed onto the stack, and parsing continues.

There are significant differences between the processing of the
left-hand symbol and an ordinary shift of a token, however, so
this action is called a goto action. In particular, the look-ahead
token is cleared by a shift but is not affected by a goto. In any
case, the uncovered state contains an entry such as the follow­
ing which causes state 20 to be pushed onto the stack and
become the current state:

A goto 20

In effect, the reduce action "turns back the clock" in the parse
popping the states off the stack to go back to the state where

4-21

YACC

the right-hand side of the rule was first seen.

The parser then behaves as if it had seen the left side at that
time. If the right-hand side of the rule is empty, no states are
popped off of the stacks.

The uncovered state is in fact the current state.

The reduce action is also important in the treatment of user­
supplied actions and values. When a rule is reduced, the code
supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack run­
ning in parallel with it holds the values returned from the lexi­
cal analyzer and the actions.

When a shift takes place, the external variable yylval is copied
onto the value stack.

After the return from the user code, the reduction is carried
out.

When the goto action is done, the external variable yyval is
copied onto the value stack.

The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler.

The accept action indicates that the entire input has been seen
and that it matches the specification. This action appears only
when the look-ahead token is the end-marker and indicates that
the parser has successfully done its job.

4-22

r

YACC

The error action, on the other hand, represents a place where
the parser can no longer continue parsing according to the
specification. The input tokens it has seen (together with the
look-ahead token) cannot be followed by anything that would
result in a legal input.

The parser reports an error and attempts to recover the situa­
tion and resume parsing. The error recovery (as opposed to the
detection of error) will be discussed later.

Consider the followng example as a yacc specification:

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When yacc is invoked with the -v option, a file called y.output
is produced with a human-readable description of the parser.

The following example is the y .output file corresponding to the
above grammar (with some statistics stripped off the end)
where the actions for each state are specified and there is a
description of the parsing rules being processed in each state:

4-23

YACC

state 0

state 1

state 2

state 3

state 4

state S

state 6

$accept : _rhyme Send
DING shift 3
. error
rhyme goto 1
sound goto 2

$accept : rhyme_ Send
Send accept
. error

rhyme
DELL
• error

: sound _place
shift 5

place goto 4

sound : DING_DONG
DONG shift 6
. error

rhyme sound place_
reduce I

place DELL (3)
reduce 3

sound DING DONG
reduce 2

(1)

(2)

The _ character is used to indicate what has been seen and
what is yet to come in each rule.

The following input can be used to track the operations of the
parser:

DING DONG DELL

4-24

YACC

Initially, the current state is state 0.

The parser needs to refer to the input in order to decide
between the actions available in state 0, so the first token
{DING) is read and becomes the look-ahead token.

The action in state 0 on DING is shift 3. State 3 is pushed
onto the stack, and the look-ahead token is cleared.

State 3 becomes the current state.

The next token (DONG) is read and becomes the look-ahead
token.

The action in state 3 on the token DONG is shift 6. State 6 is
pushed onto the stack, and the look-ahead is cleared.

The stack now contains 0, 3, and 6. In state 6, without even
consulting the look-ahead, the parser reduces by the following,
which is rule 2:

sound DING DONG

Two states, 6 and 3, are popped off of the stack uncovering
state 0.

Consulting the description of state 0 {looking for a goto on
sound), the following is obtained:

sound goto 2

State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token (DELL) must be read.

4-25

YACC

The action is shift 5, so state 5 is pushed onto the stack, which
now has 0, 2, and 5 on it, and the look-ahead token is cleared.

In state 5, the only action is to reduce by rule 3. This has one
symbol on the right-hand side, so one state, 5, is popped off,
and state 2 is uncovered.

The goto in state 2 on place (the left side of rule 3) is state 4.

Now, the stack contains 0, 2, and 4.

In state 4, the only action is to reduce by rule 1. There are two
symbols on the right, so the top two states are popped off,
uncovering state 0 again.

In state 0, there is a goto on rhyme causing the parser to enter
state 1.

In state 1, the input is read and the end-marker is obtained
indicated by Send in the y .output file.

The action in state 1 (when the end-marker is seen) success­
fully ends the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as DING DONG
DONG, DING DONG, DING DONG DELL DELL, etc. A
few minutes spent with this and other simple examples is repaid
when problems arise in more complicated contexts.

4-26

,1'

YACC

6. Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input
string that can be structured in two or more different ways.

For example, the following grammar rule is a natural way of
expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a
minus sign between them:

expr expr expr

Unfortunately, this grammar rule does not completely specify
the way that all complex inputs should be structured. For
example, if the input is

expr expr expr

the rule allows this input to be structured as either

(expr expr) expr

or as

expr (expr expr)

{The first is called left association, the second right associa­
tion.)

The yacc program detects such ambiguities when it is attempt­
ing to build the parser.

Consider the problem that confronts the parser when provided
(with the following input:

,_ expr expr expr

4-27

YACC

When the parser has read the second expr, the input seen
matches the right side of the grammar rule above:

expr expr

The parser could reduce the input by applying this rule. After
applying the rule, the input is reduced to expr (the left side of
the rule).

The parser would then read the final part of the input
(displayed in the following example) and again reduce:

expr

The effect of this is to take the left associative interpretation.

Alternatively, if the parser sees the following:

expr expr

it could defer the immediate application of the rule and con­
tinue reading the input until it sees the following:

expr expr expr

It could then apply the rule to the rightmost three symbols
reducing them to expr which results in the following being left:

expr expr

Now the rule can be reduced once more. The effect is to take
the right associative interpretation. The parser can do one of
two legal things, a shift or a reduction. It has no way of decid­
ing between them. This is called a shift/reduce conftict.

It may also happen that the parser has a choice of two legal
reductions. This is called a reduce/reduce conftict.

4-28

YACC

Note that there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc
still produces a parser. It does this by selecting one of the valid
steps wherever it has a choice.

A rule describing the choice to make in a given situation is
called a disambiguating rule.

The yacc program invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the
shift.

2. In a reduce/reduce conflict, the default is to reduce
by the earlier grammar rule (in the input sequence).

Rule I implies that reductions are deferred in favor of shifts
when there is a choice.

Rule 2 gives the user rather crude control over the behavior of
the parser in this situation, but reduce/reduce conflicts should
be avoided when possible.

Conflicts may arise because of mistakes in input or logic or
because the grammar rules (while consistent) require a more
complex parser than yacc can construct.

The use of actions within rules can also cause conflicts if the
action must be done before the parser can be sure which rule is
being recognized. In these cases, the application of disambi­
guating rules is inappropriate and leads to an incorrect parser.

For this reason, ya« always reports the number of shift/reduce
and reduce/reduce conflicts resolved by Rule I and Rule 2.

4-29

YACC

In general, whenever it is possible to apply disambiguating rules
to produce a correct parser, it is also possible to rewrite the
grammar rules so that the same inputs are read but there are no
conflicts.

For this reason, most previous parser generators have con­
sidered conflicts to be fatal errors.

Our experience has suggested that this rewriting is somewhat
unnatural and produces slower parsers. Thus, yacc will produce
parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider

stat IF '(' cond ·r stat
IF '(' cond T stat ELSE stat

which is a fragment from a programming language involving an
"if- then-else" statement.

In these rules, IF and ELSE are tokens, cond is a nonterminal
symbol describing conditional (logical) expressions, and stat is
a nonterminal symbol describing statements.

The first rule will be called the "simple-ir' rule and the second
the "if-else" rule.

These two rules form an ambiguous construction since input of
the following form can be structured according to these rules in
two ways:

IF (Cl) IF (C2) Sl ELSE 82

The input can be structured either as in the following example,
or in the subsequent example which is the one given in most

4-30

programming languages having this construct:

or:

IF (Cl)
{

IF (C2)
Sl

I
ELSE

S2

IF (Cl)
{

IF (C2)
Sl

ELSE
S2

YACC

Each ELSE is associated with the last preceding "un-ELSE'd"
IF.

In the following example, consider the situation where the
parser has seen the IF-ELSE construct and is looking at the
ELSE.

IF (Cl) IF (C2) Sl

It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input

.r' ELSE S2

and reduce by the if-else rule.

4-31

YACC

This leads to the first of the above groupings of the input.

On the other hand, the "ELSE" may be shifted, "S2" read,
and then the right·hand portion can be reduced by the if-else
rule to get the following which can be reduced by the simple-if
rule:

IF (Cl) stat

This leads to the second of the above groupings of the input
which is usually desired.

Once again, the parser can do two valid things- there is a
shift/reduce conflict. The application of disambiguating Rule 1
tells the parser to shift in this case, which leads to the desired
grouping.

This shift/reduce conflict arises only when there is a particular
current input symbol, ELSE, and particular inputs, such as
have already been seen:

IF (Cl) IF (C2) Sl

In general, there may be many conflicts, and each one will be
associated with an input symbol and a s:et of previously read
inputs.

The previously read inputs are characterized by the state of the
parser.

The conflict messages of yacc are best understood by examining
the verbose (-v) option output file. For example, the output
corresponding to the above conflict state might be

4-32

YACC

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF
stat : IF
ELSE

(cond)
(cond)

shift 45
reduce 18

stat_
stat_ELSE

(18)
stat

where the first line describes the conflict-giving the state and
the input symbol.

The ordinary state description gives the grammar rules active in
the state and the parser actions.

Recall that the underline marks the portion of the grammar
rules which has been seen. Thus in the example, in state 23
the parser has seen input corresponding to
IF (cond) stat and the two grammar rules shown, are

,r- active at this time.

The parser can do two possible things:

• If the input symbol is ELSE~ it is possible to shift
into state 45. State 45 will have, as part of its
description, the following line:

•

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state.
In state 23, the alternative action [describing a dot
(.)] is to be done if the input symbol is not men­
tioned explicitly in the actions.

If the input symbol is not ELSE, the parser reduces
to

stat : IF · (' cond T stat

by grammar rule 18.

4-33

YACC

Once again, notice that the numbers following shift commands
refer to other "states," while the numbers following reduce
commands refer to "grammar rule numbers."

In the y.output file, the rule numbers are printed after those
rules which can be reduced.

In most one states, there is a reduce action possible as the
default command.

The user who encounters unexpected shift/reduce conflicts will
probably want to look at the verbose output to decide whether
the default actions are appropriate.

4-34

YACC

7. Precedence

There is one common situation where the rules given above for
resolving conflicts are not sufficient. This is in the parsing of
arithmetic expressions.

Most of the commonly used constructions for arithmetic
expressions can be naturally described by the notion of pre­
cedence levels for operators, together with information about
left or right associativity.

It turns out that ambiguous grammars with appropriate disambi­
guating rules can be used to create parsers that are faster and
easier to write than parsers constructed from unambiguous
grammars.

The basic notion is to write grammar rules of the following two
forms for all binary and unary operators desired:

expr expr OP expr

and

expr UNARY expr

This creates a very ambiguous grammar with many parsing
conflicts.

As disambiguating rules, the user specifies the precedence or
binding strength of all the operators and the associativity of the
binary operators.

This information is sufficient to allow yacc to resolve the pars~
ing conflicts in accordance with these rules and construct a
parser that realizes the desired precedences and associativities.

4-35

YACC

The precedences and associativities are attached to tokens in
the declarations section. This is done by a series of lines begin­
ning with one of the following yacc: keywords: %left, %right or
%nonassoc, followed by a list of tokens.

All of the tokens on the same line are assumed to have the
same precedence level and associativity~ the lines are listed in
order of increasing precedence or binding strength. For exam­
ple:

%left '+'
%left '*' ·r

describes the precedence and associativity of the four arithmetic
operators.

Plus and minus are left associative and have lower precedence
than star and slash, which are also left associative.

The keyword %right is used to describe right associative opera­
tors, and the keyword %nonassoc is used to describe operators,
like the operator .LT. in FORTRAN, that may not associate
with themselves. For example, the following is illegal in FOR­
TRAN and such an operator would be described with the key­
word o/.nonassoc in yacc:

A .LT. B .LT. C

As an example of the behavior of these declarations, the fol­
lowing description might be used to structure the subsequent
input:

4-36

r
'

%right ,_,

%left '+'
%left '*' '/'

%%

expr expr
expr
expr
expr
expr

. . -
'+'
•••

'I'
NAME

YACC

expr
expr
expr

expr
expr

The following is the input to be structured by the above
description in order to perform the correct precedence of opera­
tors:

• f•g

The result of the structuring is as follows:

a - (b - (((c•d)-e) - (f•g)))

When this mechanism is used, unary operators MUST, in gen­
eral, be given a precedence.

Sometimes a unary operator and a binary operator have the
same symbolic representation but different precedences.

An example is unary and binary minus (-). Unary minus may
be given the same strength as multiplication, or even higher,
while binary minus has a lower strength than multiplication.

The keyword, %prec, changes the precedence level associated
with a particular grammar rule.

4-37

YACC

The keyword '!.prec appears immediately after the body of the
grammar rule, before the action or closing semicolon, and is
followed by a token name or literal.

The keyword %prec causes the precedence of the grammar rule
to become that of the following token name or literal. For
example, the following rules might be used to give unary minus
the same precedence as multiplication:

%left '+'
%left '•' 'I'

%%

expr expr '+' expr
expr expr
expr .•. expr
expr 'I' expr

expr %prec ...
NAME

A token declared by '!.left, %right, and %nonassoc need not
be, but may be, declared by %token as well.

The precedences and associativities are used by yacc to resolve
parsing conflicts. They give rise to disambiguating rules. For·
mally, the rules work as follows:

4-38

l. The precedences and associativities are recorded for
those tokens and literals that have them.

2. A precedence and associativity is associated with
each grammar rule. It is the precedence and associa­
tivity of the last token or literal in the body of the
rule. If the o/oprec construction is used, it overrides
this default. Some grammar rules may have no pre­
cedence and associativity associated with them.

(
'

3.

YACC

When there is a reduce/reduce conflict or there is a
shift/reduce conflict and either the input symbol or
the grammar rule has no precedence and associa­
tivity, then the two disambiguating rules given at the
beginning of the section are used, and the conflicts
are reported.

4. If there is a shift/ reduce conflict and both the gram­
mar rule and the input character have precedence
and associativity associated with them, then the
conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If
the precedences are the same, then the associativity
is used~ left associative implies reduce, right associa­
tive implies shift, and nonassociatirlg implies error.

Conflicts resolved by precedence are not counted in the number
of shift/reduce and reduce/reduce conflicts reported by yacc.
This means that mistakes in the specification of precedences
may disguise errors in the input grammar. It is a good idea to
be sparing with precedences and use them in an essentially
"cookbook" fashion until some experience has been gained.

The y.output file is very useful in deciding whether the parser
is actually doing what was intended.

4-39

YACC

8. Error Handling

Error handling is an extremely difficult area, and many of the
problems are semantic ones. When an error is found, for
example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, and, typically, set switches
to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is
found. It is more useful to continue scanning the input to find
further syntax errors. This leads to the problem of getting the
parser "restarted" after an error.

A general class of algorithms to do this involves discarding a
number of tokens from the input string and attempting to
adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides
a simple, but reasonably general feature. The token name
"error" is reserved for error handling. This name can be used
in grammar rules. In effect, it suggests places where errors are
expected and recovery might take place.

The parser pops its stack until it enters a state where the token
"error" is legal. It then behaves as if the token "error" were
the current look-ahead token and performs the action encoun­
tered.

The look-ahead token is then reset to the token that caused the
error. If no special error rules have been specified, the process­
ing halts when an error is detected.

In order to prevent a cascade of error messages, the parser,
after detecting an error, remains in error state until three
tokens have been successfully read and shifted.

4-40

YACC

If an error is detected when the parser is already in error state,
no message is given, and the input token is quietly deleted.

As an example, a rule of the following form means that on a
syntax error the parser attempts to skip over the statement in
which the error is seen:

stat error

More precisely, the parser scans ahead, looking for three tokens
that might legally follow a statement, and start processing at the
first of these. If the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle
of a statement and end up reporting a second error where there
is in fact no error.

Actions may be used with these special error rules. These
.r- actions might attempt to reinitialize tables, reclaim symbol table

space, etc.

Error rules such as the above are very general but difficult to
control. Rules such as the following are somewhat easier.
Here, when there is an error, the parser attempts to skip over
the statement but does so by skipping to the next semicolon:

stat error ';'

All tokens after the error and before the next semicolon cannot
be shifted and are discarded. When the semicolon is seen, this
rule will be reduced and any "cleanup" action associated with it
performed.

Another form of error rule arises in interactive applications
where it may be desirable to permit a line to be reentered after
an error. The following example is one way to do this:

4-41

YACC

input error '\n'
{

printf("Reenter last line: ");

input

$$ - $4;

There is one potential difficulty with this approach. The parser
must correctly process three input tokens before it admits that
it has correctly resynchronized after the error. If the reentered
line contains an error in the first two tokens, the parser deletes
the offending tokens and gives no message. This is clearly
unacceptable.

For this reason, there is a mechanism that can force the parser
to believe that error recovery has been accomplished. The fol­
lowing statement in an action resets the parser to its normal
mode:

yyerrok

The last example can be rewritten, somewhat more usefully, as
the following:

input error '\n'
{

yyerrok;
printf("Reenter last line: ") ;

input

$$ - $4;

4-42

YACC

As previously mentioned, the token seen immediately after the
"error" symbol is the input token at which the error was
discovered. Sometimes, this is inappropriate. For example, an
error recovery action might take upon itself the job of finding
the correct place to resume input. In this case, the previous
look-ahead token must be cleared. The following statement in
an action will have this effect:

yyclearln ;

For example, suppose the action after error were to call some
sophisticated resynchronization routine (supplied by the user)
that attempted to advance the input to the beginning of the
next valid statement. After this routine is called, the next
token returned by yylex is presumably the first token in a legal
statement. The old illegal token must be discarded and the
error state reset. A rule similar to the one following could per·
form this:

stat error

resynchO;
yyerrok
yyclearin;

These mechanisms are admittedly crude but do allow for a sim·
ple, fairly effective recovery of the parser from many errors.
Also, the user can get control to deal with the error actions
required by other portions of the program.

4-43

YACC

9. The yacc Environment

When the user inputs a specification to yacc, the output is a file
of C language programs, called y.tab.c on most systems. (Due
to local file system conventions, the names may differ from
installation to installation.)

The function produced by yacc is an integer valued function
called yyparseO. When it is called, it in turn repeatedly calls
yylexO, the lexical analyzer supplied by the user (see Lexical
Analysis), to obtain input tokens.

Eventually, an error is detected, yyparseO returns the value 1,
and no error recovery is possible, or the lexical analyzer returns
the end-marker token and the parser accepts. In this case,
yyparseO returns the value 0.

The user must provide a certain amount of environment for
this parser in order to obtain a working program. For example,
as with every C language program, a program called main 0
must be defined that eventually calls yyparseO.

A routine called yyerrorO prints a message when a syntax error
is detected.

These two routines (mainO and yyerrorO) must be supplied in
one form or another by the user.

To ease the initial effort of using yaa:, a library has been pro·
vided with default versions of main 0 and yyerrorO. The
name of this library is system dependent. On many systems,
the library is accessed by a -ly argument to the loader.

The following source code examples show the triviality of these
routines:

4-44

and

main()
{

return (yyparseO) ;

include <stdio.h>

yyerror(s)
char *s;
{

fprintf(stderr, "'les\n", s);

YACC

The argument to yyerrorO is a string containing an error mes­
sage, usually the string "syntax error."

The average application wants to do better than this. Ordi­
narily, the program should keep track of the input line number
and print it along with the message when a syntax error is
detected.

The external integer variable yyebar contains the look-ahead
token number at the time the error was detected. This may be
of some interest in giving better diagnostics.

Since the mainO program is probably supplied by the user (to
read arguments, etc.), the yacc library is useful only in small
projects or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it
is set to a nonzero value, the parser will output a verbose

.r--- description of its actions including a discussion of the input
symbols read and what the parser actions are.

4-45

YACC

Depending on the operating environment, it may be possible to
set yydebug by using a debugging system.

4-46

YACC

10. Input Style

It is difficult to provide rules with substantial actions and still
have a readable specification file. The following are a few style
hints:

1. Use all uppercase letters for token names and all lower­
case letters for nonterminal names.

2. Put grammar rules and actions on separate lines. This
allows either to be changed without an automatic need to
change the other.

3. Put all rules with the same left-hand side together. Put
the left-hand side in only once and let all following rules
begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left­
hand side and put the semicolon on a separate line. This
allows new rules to be easily added.

s. Indent rule bodies by two tab stops and action bodies by
three tab stops.

The example in Appendix 4.1 is written following this style, as
are the examples in this section (where space permits).

The user must make up his own mind about these stylistic
questions.

The central problem, however, is to make the rules visible
through the morass of action code.

4-47

YACC

11. Left Recursion

The algorithm used by the yacc parser encourages so called
"left recursive" grammar rules. Rules of the following form
match this algorithm:

name name rest of rule

Rules such as the two following frequently arise when writing
specifications of sequences and lists. In each of these cases, the
first rule will be reduced for the first item only; and the second
rule will be reduced for the second and all succeeding items:

and

list item
list

seq item
seq item

item

With right recursive rules, such as the following, the parser is a
bit bigger; and the items are seen and reduced from right to
left:

seq item
item seq

More seriously, an internal stack in the parser is in danger of
overflowing if a very long sequence is read. The user should
use left recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any
meaning, and if so, consider writing the sequence specification
as in the following, using an empty rule:

4-48

seq l" empty */
seq item

YACC

Once again, the first rule would always be reduced exactly once
before the first item was read, and then the second rule would
be reduced once for each item read.

Permitting empty sequences often leads to increased generality.
However, conflicts might arise if yacc is asked to decide which
empty sequence it has seen when it hasn't seen enough to
know!

4-49

YACC

12. Lexical Considerations

Some lexical decisions depend on context.

For example, the lexical analyzer might want to delete blanks
normally but not within quoted strings, or names might be
entered into a symbol table in declarations but not in expres·
sions.

One way of handling this situation is to create a global flag that
is examined by the lexical analyzer and set by actions. For
example, the following example specifies a program that con­
sists of zero or more declarations followed by zero or more
statements. The flag dftag is 0 when reading statements and 1
when reading declarations, except for the first token in the first
statement. This token must be seen by the parser before it can
tell that the declaration section has ended and the statements
have begun. In many cases, this single token exception does
not affect the lexical scan.

4-SO

(

r-'

YACC

%{
int dftag;

%)
other declarations

%%

prog decls stats

decls I• empty •/

dftag = 1;

decls declaration

stats I• empty •/

dflag = 0;

stats statement

other rules

This kind of "back-door" approach can be elaborated to a noxi­
ous degree. Nevertheless, it represents a way of doing some
things that are difficult if not impossible to do otherwise.

4-51

YACC

13. Reserved Words

Some programming languages permit you to use words like If,
which are normally reserved as label or variable names, pro­
vided that such use does not conflict with the legal use of these
names in the programming language. This is extremely hard to
do in the framework of yacc. It is difficult to pass information
to the lexical analyzer telling it "this instance of i{is a keyword
and that instance is a variable". The user can make a stab at it
using the mechanism described in the last subsection, but it is
difficult.

A number of ways of making this easier are under advisement.
Until then, it is better that the keywords be reserved, i.e., for­
bidden for use as variable names.

4-52

YACC

14. Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an
action by use of macros YYACCEPT and YYERROR.

The YYACCEPT macro causes yyparseO to return the value
0.

YYERROR causes the parser to behave as if the current input
symbol had been a syntax error. The funcition yyerrorO is
called, and error recovery takes place.

These mechanisms can be used to simulate parsers with multi­
ple end-markers or context sensitive syntax checking.

4-53

YACC

15. Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of
the current rule. The mechanism is simply the same as with
ordinary actions, a dollar sign followed by a digit.

sent adj noun verb adj noun

look at the sentence ...

adj THE

$$ - THE;

YOUNG

$$ ~ YOUNG;

noun DOG

$$ - DOG;

CRONE

if($0 ~ ~ YOUNG J
I

printf("what?\n");
l
$$ ~ CRONE;

In this case, the digit may be 0 or negative.

4-54

r
'

YACC

In the action following the word CRONE, a check is made that
the preceding token shifted was not YOUNG. Obviously, this
is only possible when a great deal is known about what might
precede the symbol noun in the input.

There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism prevents a great deal of
trouble especially when a few combinations are to be excluded
from an otherwise regular structure.

4-SS

YACC

16. Arbitrary Value Types

By default, the values returned by actions and the lexical
analyzer are integers.

The yacc program can also support values of other types includ·
ing structures.

The yacc program keeps track of the tyrtes and inserts appropri­
ate union member names so that the resulting parser is strictly
type checked.

The yacc value stack is declared to be a union of the various
types of values desired.

The user declares the union and associates union member
names to each token and nonterminal symbol having a value.

When the value is referenced through a $$ or $n construction,
yacc will automatically insert the appropriate union name so
that no unwanted conversions take place.

Type checking commands such as lint is far more silent.

There are three mechanisms used to provide for this typing.

4-56

• First, there is a way of defining the union. This
must be done by the user since other programs, not­
ably the lexical analyzer, must know about the union
member names.

• Second, there is a way of associating a union
member name with tokens and nonterminals.

• Third, there is a mechanism for describing the type
of those few values where yacc cannot easily deter­
mine the type.

r

YACC

To declare the union, the user includes the following in the
declaration section:

%union
[

body of union ...
}

This declares the yacc value stack and the external variables
yylval and yyval to have type equal to this union.

If yacc was invoked with the -d option, the union declaration
is copied onto the y.tab.h file.

Alternatively, the union may be declared in a header file, and a
typedef used to define the variable YYSTYPE to represent this
union.

Thus, the header file might have said the following, instead:

typedef union
[

body of union
}
YYSTYPE;

The header file must be included in the declarations section by
use of%[and%}.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and nonterminal names.

The following construction is used to indicate a union member
name.

< name >

4-57

YACC

If this follows one of the keywords %token, %left, o/oright, and
%nonassoc, the union member name is associated with the
tokens listed.

For example, the following causes any reference to values
returned by these two tokens to be tagged with the union
member name optype:

%left < optype > '+'

Another keyword, %type, is used to associate union member
names with nonterminals. For example, the following may be
used to associate the union member nodetype with the nonter­
minal symbols expr and stat.

%type <nodetype> expr stat

There remains a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the value
returned by this action has no a priori type.

Similarly, reference to left context values (such as $0) leaves
yacc with no easy way of knowing the type. In this case, a type
can be imposed on the reference by inserting a union member
name between < and > immediately after the first $, as in the
following example:

rule aaa

S<intval>$ = 3;

bbb

fun(S<intval>2, S<other>O);

4-58

YACC

This syntax has little to recommend it, but the situation arises
rarely.

A sample specification is given in Appendix 4.3.

The facilities in this subsection are not triggered until they are
used. In particular, the use of %type will turn on these
mechanisms. When they are used, there is a fairly strict level
of checking.

For example, use of $n or $$ to refer to something with no
defined type is diagnosed.

If these facilities are not triggered, the yacc value stack is used
to hold lot's, as was true historically.

4-59

YACC

17. Appendix 4.1

This section contains an example which gives the complete yacc
applications for a small desk calculator.

The calculator has 26 registers labeled a through z and accepts
arithmetic expressions made up of the following operators:

Arithmetic Operators

+ Addition
Subtraction

• Multiplication

I Division

% Modulus (Remainder)

& Binary AND

I Binary OR

- Assignment

If an expression at the top level is an assignment, the value is
printed. Otherwise, the expression is printed.

As in C language, an integer that begins with 0 (zero) is
assumed to be octal. Otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does
a resonable job of showing how precedence and ambiguties are
used and demonstrates simple recovery.

The major oversimplications are that the lexical analyzer is
much simpler for most applications, and the output is produced
immediately line by line.

Note the way that decimal and octal integers are read in by
grammar rules. This job is probably better done by the lexical
analyzer.

4-60

%{
includes<stdio.h> r # includes<ctype.h>

lnt regs(Z61;
lot base;

%}
%start list
%token DIGIT LETTER
%left 'l'
%left '&'
%left'+'·-·
%left '•' '/' '%'
'!.left UMINUS /• precedence for unary minus •/

%% /* beginning of rule section */

list /* empty */
list stat '\n'
list error '\n'

yyerrork;

stat expr

printf("%do", $1);

LETTER '=' expr

regs($!(- $3

YACC

4-61

YACC

expr ·r expr ')'

$$ ~ $2;

expr · + · expr

$$ ~ $1 + $3

. .
expr - expr

$$ ~ $1 - $3

expr .. · expr

$$ ~ $1 * $3;

expr · /' expr

$$ ~ $1/$3;

exp '%' expr

$$ ~ $1 %$3

expr · &' expr

$$ ~ $1 & $3;

expr 'I' expr

$$ ~ $1 I $3

. - expr %prec UMINUS

$$ ~ - $2;

LETTER

$$ ~ reg($1);

4-62

YACC

number

number : DIGIT
I

$$ = $1; base - ($1- -0) ? 8 10;
}
I number DIGIT
I

$$ = base • $1 + $2

4-63

YACC

%% /* start of program *I
/*
* lexical analysis routine
* return LETTER for lowercase letter
* (i.e., yylval = 0 through 25)
* returns DIGIT for digit
* (i.e., yylval = 0 through 9)
* all other characters are returned immediately
•
*I

yylex ()
(

int c;
while (c=getchar()) = = ' ') I* skip blanks •/

if(islower(c))
(

yylval = c 'a';
return(LETTER);

if(isdigit (c))
(

yylval = c - ·o·;
return(DIGIT);

return(c);

4-64

YACC

18. Appendix 4.2

This appendix has a description of the yacc input systax as a
yacc specification.

Context dependencies, etc. are not considered.

The yacc input specification language is most naturally specified
as an LR (2) grammar. The sticky part comes when an
identifier is seen in a rule immediately following an action. If
this identifier is followed by a colon, it is the start of the next
rule. Otherwise, it is a continuation of the current rule which
just happens to have an action embedded in it.

As implemented, the lexical analyzer looks ahead after seeing
an identifier and decides whether the next token (skipping
blanks, newlines, and comments, etc.) is a colon. If so, it
returns the token C_IDENTIFIER. Otherwise, it returns
IDENTIFIER.

Literals (quoted strings) are also returned as IDENTIFIERS
but never as part of C_IDENTIFIERs.

YACC INPUT GRAMMAR
BASIC ENTRIES

%token IDENTIFIER Includes identifiers and literals.
%token C IDENTIFIER Identifier (but not literal)

followed by a colon.
%token NUMBER Zero through nine.

4-65

YACC

Y ACC INPUT GRAMMAR
RESERVED WORDS

%token LEFT %left - > LEFT

%token RIGHT %right ... > RIGHT

%token NONASSOC %nonassoc - > NON AS SOC
%token TOKEN %token - > TOKEN

%token PREC %prec - > PREC

%token TYPE %type - > TYPE
%token START %start == > START

%token UNION %union - > UNION

%token MARK That is, the %% mark.
%token LCURL That is, the %{ mark.
'letoken RCURL That is, the %} mark.

I• ASCII character literals stand for themselves •/
%token spec

%%

spec defs MARK rules tail

tail MARK

In this action, eat up the rest of the file

I• empty: the ~ond MARK is optional •/

defs /• empty •/
defs def

defs START IDENTIFIER
UNION

Copy union definition to output

LCURL

Copy C code to output file

4-66

rword

tag

nlist

nmno

RCURL

ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/• empty: union tag is optional •/
'<' IDENTIFIER '>'

nmno
nlist nmno
nlist '; nmno

YACC

IDENTIFIER /• Note: literal illegal with Y.type •/
IDENTIFIER NUMBER /• Note: illegal with %type •/

4-67

YACC

t• rule section •/

rule

rule

rbody

act

C_IDENTIFIER rbody proe
rules rule

C IDENTIFIER rbody prec
'I' rbody prec

I• empty •/
rbody IDENTIFIER
rbody act

. ('
Copy action translate $$' s etc.

prec /• empty •/

4-68

PREC IDENTIFIER
PREC IDENTIFIER act
prec';'

YACC

19. Appendix 4.3

This appendix gives an example of a grammar using some of
the advanced features.

The desk calculator example in Appendix 4.1 is modified to
provide a desk calculator that does floating point interval arith·
me tic.

The calculator understands floating point constants, as well as
the arithmetic operations+,-, •, /,unary-, and the letters a
through z.

The calculator also understands intervals written as is the fol­
lowing example, where X is less than or equal to Y:

(X.Y)

There are 26 interval valued variables A through Z that may
also be used.

The usage is similar to that in Appendix 4.1. That is, assign­
ments return no value and print nothing while expressions print
the (floating or interval) value.

Intervals are represented by a structure consisting of the left
and right endpoint values stored as doubles. This structure is
given a type name, INTERVAL, by using typedef.

The yacc value stack can also contain floating point scalars and
integers which are used to index into the arrays holding the
variable values.

The entire strategy depends strongly on being able to assign
structures and unions in C language. In fact, many of the

4-69

YACC

actions call functions that return structures as well.

Note the use of YYERROR to handle error conditions - divi­
sion by an interval containing 0 and an interval presented in the
wrong order. The error recovery mechanism of yacc is used to
throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this
grammar also demonstrates an interesting use of syntax to keep
track of the type (for example, scalar or interval) of intermedi­
ate expressions.

Scalars can be automatically promoted to an interval if the con­
text demands an interval value. This causes a large number of
conflicts when the grammar is run through yacc-18
Shift/Reduce and 26 Reduce/Reduce. The problem can be
seen by looking at the following input lines:

2.5+(3.5-4.)

and

2.5 + (3.5.4)

Notice that the 2.5 is to be used in an interval value expression
in the second example, but this fact is not known until the
comma is read. By this time, 2.5 is finished, and the parser
cannot go back and change its mind.

More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an
interval.

This problem is evaded by having two rules for each binary
interval valued operator - one when the left operand is a scalar
and one when the left operand is an intervaL In the second
case, the right operand must be an interval, so the conversion
will be applied automatically.

4·70

YACC

Despite this evasion, there are still many cases where the
conversion may be applied or not, leading to the above
conflicts. They are resolved by listing the rules that yield
scalars first in the specification file. In this way, the conflict will
be resolved in the direction of keeping scalar valued expres­
sions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive but not
very general. If there were many kinds of expression types
instead of just two, the number of rules needed would increase
dramatically and the conflicts even more dramatically. Thus,
while this example is instructive, it is better practice in a more
normal programming language environment to keep the type
information as part of the value and not as part of the gram­
mar.

Finally, a word about the lexical analysis. The only unusual
feature is the treatment of floating point constants.

The C language library routine atofO is used to do the actual
conversion from a character string to a double precision value.

If the lexical analyzer detects an error, it responds by returning
a token that is illegal in the grammar provoking a syntax error
in the parser and thence error recovery.

4-71

YACC

Ill

#include<~tdio.h>
#include< ctype.b>

typedef struct Interval
I

double lo, hi;
I INTERVAL;

INTERVAL vmuiO, vdiv();

double atofO;
double dregl26l;
INTERVAL vreg(26(;

%1

%start line

%union
I

I

int ivai;
double dval;
INTERVAL vval;

%token <ivai> DREG VREG /*indices into dreg, vreg */
%token <dval> CONST /*floating point constant*/

%type <dval> dexp
%type <vval> vexp

/* expression */
/* interval expression • I

/* precedence information about the operators .. I

%left '+' ·-·
%left .••. r
%left UMINUS /*precedence for unary minus'*/

4-72

(
'·---

%%
lines I• empty •/

lines line

line dexp '\n'

prlntf("%15.81\n".$1);
)
I vexp '\n'
{

YACC

printf("(%15.81 , %15.81)\n",$1.1o,$1.bi);

dexp

)
I DREG ·~· "\n"
{

)
I
{

)
I
{

I
{

)
I
{

)
I
{

dregl$11 ~ $3;

VREG ·-· vexp '\n'

vreg($1(- $3;

error '\n'

yyerrork;

CONST
DREG

$$ - dregl$11

dexp '+' dexp

$$-$1+$3

dexp
. -· dexp

$$-$1-$3

4-73

YACC

dexp '•' dexp

ss~st•sJ

dexp • /' dexp

ss~st/S3

'-' dexp %prec UMINUS

$$ -- $2
I
1 ·c dexp ·r
{

$$ - $2
I

vexpp dexp

4-74

$$.hi - $$.lo - $1;
I
1 '(' dexp ·; dexp ·r
{

I

$$.lo - $2;
$$.hi - $4;
If($$.lo > SS.hi)
{

printf("interval out of order n~) ;
YYERROR;

I VREG
{

$$ - vreg[$1)

vexp • +' vexp

$$.hi - $!.hi + S3.hi;

}

SS.Io - Sl.Io + SJ.Io

dexp • +' vexp

SS.hi - $1 + $3.hi;
$$.Io - $1 + $3.Io

I vexp • =' vexp
(

}

SS.hl - St.hi - $3.Io;
$$.Io - Sl.Io - $3.hi

I dvep ·-• vdep
[

}

$$.hi - $1 - SJ.Io;
$$.Io - $1 - SJ.hi

I vexp '•' vexp
[

}
I
[

}

$$ - vmuH $1.Io,$.hi,$3)

dexp '•' vexp

$$ - vmul($1, $1, $3)

I vexp '/' vexp
[

}

if(dcheck($3)) YYERROR;
$$ - vdiv($1.Io, $1.hi, $3)

I dexp '/' vexp
[

if(dcheck($3)) YYERROR;
$$ - vdiv($1.Io, $l.hi, $3)

·-· vexp %prec UMINUS

$$.hi - -$2.Io;$$.Io --$2.hi

YACC

4-75

YACC

'(' vexp •)'

%%
define BSZ SO /* buffer size for Boating point number *I ,.
*lexical analysis .,

yylex()
{

,.

register c;
while ((c=getcharO) = = · ') /• skip blanks •/

ifOsupper(c))
{

yylval.ival - c - 'A'
retum(VREG);

)
if(islower(c))
{

yylval.ival """ c - 'a',
return (DREG);

* gobble up digits. points, exponents .,
iWdlglt(cJ I c -- ·:l
{

4-76

char buf(BSZ + 11, •cp ""' buf;
tnt dot - 0, exp - 0;

for(;(cp - buO < BSZ ; + +cp,c=getcharO)
{

•cp - c;
if(isdiglt(c))

continue;

YACC

lf(c-- '.')
{
lf(dot+ + II exp)

return ('.') ; /* causes syntax error *I
continue;

}
if(c = ... 'e')
{

if(exp+ +)
return('e'); /*causes syntax error*/

continue;
}
break; /* end of number *I

*cp - '\0';
if((cp - buffl >- BSZ)

prlntcf("constant too long truncated\n");
else

ungetc<c, stdin); /* push back last char read *I
yylval.dval - atof(buf);
return(CONST);

retum(c);

4-77

YACC

,.
* returns the smallest interval
* between a, b, c and d .,

INTERVAL hilo(a, b, c, d)
double a, b, c, d;
I

INTERVAL v;
lf(a>b)

I
v.hi = a;
v.lo = b;

else
I

v.hi = b;
'V.lo = a;

if(c>d)
I

if(c>v.hi)
v.hi = c;

if(d<v.lo)
v.Io = d;

else
I

if(d>v.hi)
v.hi = d;

if(c<v.Jo)
v.lo = c;

return(v);

4-78

INTERVAL vmuH a, b, v)
double a, b;
INTERVAL v;
[

return(hilo(a"'v.hi, a•v,lo, b*v.hi, b•v.lo));
}

dcheck(v)
INTERVAL v;
[

if(v.hi > =0.&& v.lo < =0.)
[

}

printf("divisor internal contains 0.\n") ;
return(t);

return(0);

INTERVAL vdiv (a, b, v)
r' double a, b;
I INTERVAL v;

[
return(hilo{ a/v.bi, a/v,Io, b/v.hi, b/v.lo));

YACC

4-79

YACC

20. Appendix 4.4

This appendix mentions synonyms and features that are sup­
ported for historical continuity but, for various reasons, are not
encouraged.

1. Literals may also be delimited by double quotes.

2. Literals may be more that one character long. If all the
characters are alphabetic, numeric, or _ the type number
of the literal is defined just as if the literal did not have
the quotes around it.

Otherwise, it is difficult to find the value for such literal.

The use of multicharacter literals is likely to mislead those
unfamiliar with yacc since it suggests that yacc is doing a
job which must be actually done by the lexical analyzer.

3. Most places where ('!e) is legal, backslash (\) may be
used. In particular,\\ is the same as%%, \left the same
as %left, etc.

4. There are a number of other synonyms:

% < is the same as %left

% > is the same as %right

%binary is the same as %nonassoc
%2 is the same as %nonassoc

%0 is the same as %token
%term is the same as %token

% = is the same as o/oprec

5. Action may also have the form

4-80

~{ ...)

and the curly braces can be dropped if the action is a sin­
gle C language statement.

6.

r

r

YACC

The C language code between %{ and %} use to be per­
mitted at the head of the rules section as well as in the
declaration section.

4-81

c

c

c

1. Introduction

2. Usage

3. Syntax • •
3.1 Comments
3.2 Constants
3.3 Keywords
3.4 Identifiers

Chapter 5: BC

CONTENTS

3.4.1 Functions
3.4.2 Arrays or Subscripted Variables
3.4.3 Storage Classes

3.5 Statements . . . • •
3.6 Expressions . . . •
3. 7 Assignment Statements
3.8 Bases- "ibase" and "abase"
3.9 Scaling • •
3.10 Control Statements • • .

3.10.1 Relational Operators
3.10.2 The "if" Statement .
3.10.3 The "while" Statement
3.10.4 The "for" Statement

- i -

I

2

4
4
4
4
4
5
8
8
9

10
13
16
17
19
20
20
21
21

Chapter 5

BC-

AN ARBITRARY PRECISION

DESK CALCULATOR LANGUAGE

1. Introduction

BC

The be language and compiler were developed on the UNIX™
operating system to facilitate arbitrary precision arithmetic.

The output of the be compiler is interpreted and executed by a
collection of routines that can input, output and do arithmetic
on infinitely large integers and on scaled fixed-point numbers.

The be routines are based on a dynamic storage allocator.
Overflow does not occur until all available core storage is
exhausted.

The be language has a complete control structure as well as
immediate-mode operation. Functions can be defined and
saved for later execution.

A small collection of library functions is also available, includ­
ing sin, cos, arctan, log, exponential and Bessel functions of
integer order.

,f' UNIX is a trademark of AT&T Bell Laboratories.

5-l

BC

The be compiler was written to utilize those routines of DC
which are capable of doing arithmetic on integers of arbitrary
size.

The be compiler is not intended to provide a complete program­
ming language, but may be effectively used to do a number of
tasks. For example:

• Compile large integers
• Compute accurately to many decimal places
• Convert numbers from one base to another base

There is a scaling provtston that permits the use of decimal
point notation, and one made for input and output in bases
other than decimal. Numbers can be converted from decimal
to octal simply by setting the output base to eight. The limit on
the number of digits that can be handled depends on the
amount of core storage available.

2. Usage

Entering the command:

$be

enables you to execute be commands directly.

If the calculations you need to perform are complicated, you
may find it more efficient to define the functions or procedures
you need in a file and give the file as an argument to be on the
command line using the - f option.

The be reads and executes the argument file before accepting
commands from the keyboard. This is the way be loads pro­
grams and function definitions.

Be has its own set of library functions which can be accessed
with the -I (library) option. The be library functions include:

5-2

~

BC

s sine

c cosine

a arctangent

I natural logarithm

e exponential

U (n,x)l bessel function integer order

The be library option also initially sets the scale to 20, but this
can be reset using the scale function call. (See the section on
"Functions".)

For the immediate evaluation of simple arithmetic expressions
which do not involve standard be library functions or need any
specially user-designed functions, simply access be directly. To
do a simple addition, first issue the be command as demon-

r~ strated above, and then enter the calculation to be done. For
, example:

$be
142857 + 285714

be will then respond immediately with the result: (Response
from be indicated with bold.)

$be
142857 + 285714
428571

Then, to exit IK:, use either quit or CTRL-D, which will stop
execution of a be program and return your shell prompt.

NOTE: The quit statement is not treated as an executable
statement, and so cannot be used in a function
definition or in an if, for or while statement.

Even if you were to put this explicit addition request, or series
of such requests, in a file, and use that file as an argument to

S-3

DC

be on the command line; once it completed the calculations, be
would wait for further input from the terminal. Reaching the
end of the command argument file will NOT instruct be to exit.

3. Syntax

The syntax of be is very similar to that of the C language,
which should help those of you already familiar with C to begin
using be quickly and with a minimum of difficulty.

3.1 Comments

The characters /• introduce a comment which terminates with
the characters •/.

3.2 Constants

Constants consist of arbitrarily long numbers with an optional
decimal point. The hexadecimal digits A through F are also
recognized as digits with values lO through 15, respectively.

Constants are "primitive expressions."

3.3 Keywords

auto
break
define

3.4 Identifiers

for
ibase
if

length
obase
quit

return
scale
sqrt

while

Identifiers, or named-expressions, are places where values are
stored. Therefore, named-expressions are legal on the left side
of an assignment The value of a named-expression is the
value stored in the place named.

There are three kinds of identifers:

1. Simple identifiers

5-4

DC

2. Array, or subscripted, variables

3, Function calls

All three types are single lowercase letters, but these identifiers
do not conflict. That is, a be program may have a simple vari­
able identifer named x, an array named x and a function named
x all of which are separate and distinct.

3.4.1 Functions

The name of a function is a single lowercase letter. Function
names are permitted to coincide with simple variable names.
Twenty-six different defined functions are permitted in addition
to the 26 variable names. The input line

define a(x){

begins the definition of a function with one argument. This
,~ line must be followed by one or more statements which make

up the body of the function ending with a right brace (}).
The general form of a function is

define a(x)

return

A function call consists of a function name followed by
parentheses containing a comma-separated list of expressions,
which are the "function arguments." A whole array passed as
an argument is specified by the array name followed by empty
square brackets. All function arguments are passed by value.
As a result, changes made to the formal parameters have no
effect on the actual arguments.

Return of control from a function occurs when a return state­
ment is executed, or when the end of the function is reached.

5-5

BC

The return statement can take either of the following two
forms:

return
return(x)

In the first case, the value returned from the function is 0; and
in the second, the value returned from the function is the
expression in parentheses.

Variables used in the function can be declared as automatic by a
statement of the form

auto x,y,z

There can be only one such auto statement in a function, and it
must be the first statement in the definition. These automatic
variables are allocated space and initialized to zero on entry to
the function and thrown away on return (exit). The values of
any variables with the same names outside the function are not
disturbed. Functions may be called recursively and the
automatic variables at each level of call are protected.

The parameters named in a function definition are treated in
the same way as the automatic variables of that function with
the single exception that they are given a value on entry to the
function. The following is an example of a function definition:

define a(x,y){
auto z
z = x•y
return(z)

The value of this function a, when called, is the product of its
two arguments, "x" and "y."

S-6

(
•

DC

A function is called by the appearance of its name followed by
a string of arguments which are enclosed in parentheses and
separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using
empty parentheses.

Using the function a(x,y) defined above, the following input:

a(7,3.14)

would send the result 21.98 to standard output. Using this
same function, the following input:

z ~ a(a(3,4),5)

would send the result 60 to standard output.

The following are brief descriptions of three pre-defined be
functions:

sqrt (expression)

length (expression)

seale(expression)

The result is the square root of the
expression. The result is truncated in
the least significant decimal place. The
scale of the result is the scale of the
expression or the value of scale, which­
ever is larger.

The result is the total number of
significant decimal digits in the expres­
sion. The scale of the result is zero.

The result is the scale of the expression.
The scale of the result is zero.

5-7

DC

3.4.2 Arrays or Subscripted Variables

A single lowercase letter variable name followed by an expres­
sion in brackets is called a subscripted variable or an array vari­
able. The variable name is called the array name, and the
expression in brackets is called the subscript.

Only 1-dimensional arrays are permitted. The names of arrays
are permitted to coincide with the names of simple variables
and function names. Any fractional part of a subscript is dis­
carded before use. Subscripts must be greater than or equal to
0 and less than or equal to 204 7.

Subscripted variables may be used in expressions, in function
calls, and in return statements. An array name may be used as
an argument to a function or may be declared as automatic in a
function definition by the use of empty brackets.

f(a[])
define f(a[])
auto a[J

When an array name is so used, the whole contents of the array
are copied for the use of the function and thrown away on exit
from the function. Array names that refer to whole arrays can­
not be used in any other contexts.

3.4.3 Storage Classes

There are only two storage classes in be:

1. global

2. automatic (local).

Only identifiers that are to be local to a function need be
declared with the auto command. The arguments to a function
are local to the function. All other identifiers are assumed to
be global and available to all functions. All identifiers, global
and local, have initial values of zero. Identifiers declared as

5-8

DC

auto are allocated on entry to the function and released on
returning from the function. They therefore do not retain
values between function calls. The auto arrays are specified by
the array name followed by empty square brackets.

Automatic variables in be do not work in exactly the same way
as in C language. On entry to a function, the old values of the
names that appear as parameters and as automatic variables are
puShed onto a stack. Until return is made from the function,
reference to these names refers only to the new values.

3.5 Statements

Statements must be separated by a semicolon or newline.
Except where altered by control statements, execution is
sequential.

When a statement is an expression (unless the main operator is
(an assignment) the value of the expression is printed followed

by a newline character.

Statements may be grouped together and used when one state­
ment is expected by surrounding them with braces { }.

The following statement prints the string inside the quotes.

"any string"

The break statement causes termination of a for or while state­
ment.

auto identifier[, identifier]

The auto statement causes the values of the identifiers to be
pushed down. The identifiers can be ordinary identifiers or
array identifiers. Array identifiers are specified by following the

5-9

BC

array identifiers. Array identifiers are specified by following the
array name with empty square brackets. The auto statement
must be the first statement in a function definition.

define ([parameter[,parameter .. .]]) {
statements}

The define statement defines a function. The parameters may
be ordinary identifiers or array names. Array names must be
followed by empty square brackets.

return
return (expression)

The return statement causes the following:

• Termination of a function

• Popping of the auto variables on the stack

• Specifies the results of the function.

The first form is equivalent to return(O). The result of the
function is the result of the expression in parentheses.

The quit statement stops execution of a be program and returns
control to the UNIX system software when it is first encoun­
tered. Because it is not treated as an executable statement, it
cannot be used in a function definition or in an if, for, or
while statement.

3.6 Expressions

Any term in an expression may be prefixed by a minus sign to
indicate that it is a negative (the unary minus sign).

The value of an expression is printed unless the main operator
is an assignment.

5-10

DC

Division by zero produces an error comment.

('
I The following is a table of the operators that can be used with

be.

OPERATOR FUNCTION
+ Addition
- Subtraction
• Multiplication
I Division
% Remaindering -

(integer result truncated toward zero} .
Exponentiation

- Assignment Operator

More complex expressions with several operators and with
parentheses are interpreted with the following precedence:

• II I
+ -

NOTES: Contents of parentheses are evaluated BEFORE
material outside the parentheses.

Exponentiations are performed from right to left,
while the other operators are performed from left to
right.

aAbAc and aA(bAc) are equivalent

a/b•c is equivalent to (a/b)•c and NOT to a/(b•c).

Following are brief descriptions of the various types of expres­
sions understood by be:

~ -expression

+ +named-expression

The result is the negative of the
expression.

The named expression is incre­
mented by one. The result is the

5-ll

DC

--named-expression

named-expression+ +

named-expression--

value of the named expression after
incrementing.

The named expression is decre­
mented by one. The result is the
value of the named expression after
decrementing.

The named expression is incre­
mented by one. The result is the
value of the named expression
before incrementing.

The named expression is decre­
mented by one. The result is the
value of the named expression
before decrementing.

The exponentiation operator binds
right to left.

expression A expression The result is the first expression
raised to the power of the second
expression. The second expression
must be an integer. If a is the scale
of the left expression and b is the
absolute value of the right expres­
sion, then the scale of the result is

min(axb,max(scale,a))

The operators *, I, and % bind left
to right.

expression * expression The result is the product of the two
expressions. If a and b are the
scales of the two expressions, then
the scale of the result is

min(a + b,max(scale,a,b))

expression I expression The result is the quotient of the two
expressions. The scale of the result

5-12

BC

is the value of scale.

r-- expression % expression The % operator produces the
(remainder of the division of the two

expressions. More precisely, a%b is
a-a/ b•b.

('
'

The scale of the result is the sum of
the scale of the divisor and the
value of scale.

The additive operators bind left to
right.

expression + expression The result is the sum of the two
expressions. The scale of the result
is the maximum of the scales of the
expressions.

expression - expression The result is the difference of the
two expressions. The scale of the
result is the maximum of the scales
of the expressions.

3. 7 Assignment Statements

The assignment operators bind right to left.

Ordinary variables are used as internal storage registers. They
have single lowercase letter names, are used to hold integer
values and have an initial value of 0. The statement

x=x+3

has the effect of increasing by three the value of the contents
of register x. In this case, although the increase in value is per­
formed, that value is not printed. To print the value of x after
the assignment, either explicitly call x, as in the following:

5-13

DC

x=x+3
X

or surround the assignment with parentheses which instructs be
to treat the statement as the value of the result of the opera·
tion. The assignment can then be used anywhere an expression
can. For example:

(x=x+3)

In this example, the value of x is incremented and the resulting
value is printed.

The following is an example of the use of the value of an
assignment statement even when it is not parenthesized. The
input line:

x=a(i=i+l]

instructs be to increment i before using it as a subscript and
then assign the resulting value to x.

Since these registers must be unique, single lowercase letter
names, only 26 of these named storage registers are available.

The assignment statements work in exactly the same manner as
in the C programming language. The following table lists the
assignment statement constructs:

5-14

•NOTE:

BC

ASSIGNMENT STATEMENTS

x-y-=z is the same as x~ (y-z)

X =+y is the same as x = x+y

X --y is the same as x = x-y•

X- -y is the same as X- -y•

X -•y is the same as x = x•y

X =/y is the same as X- x/y

X -%y is the same as x = x%y

X =~y is the same as x = x~y

x++ is the same as (x-x+l)-1

x-- is the same as (x~x-1)+1

++x is the same as x = x+l

--x is the same as x = x-1

In some of these constructions, spaces are
significant. There is an important difference
between x=-y and x= -y. The first replaces x by
x-y and the replaces x by -y.

5-15

BC

3.8 Bases - "ibase" and "obase"

There are two special internal quantities:

1. ibase (input base)

2. obase (output base}

The contents of ibase determines the base used for interpreting
the numbers input, and is initially set to 10 (decimal). To set
the input base to be something else, use the .. _ .. assignment
operator. For example, the following sets the input base to
base 8:

ibase = 8
11

Assuming that the output base is 10, be would interpret 11 in
base 8 and return the decimal value 9. This is an easy method
of doing octal to decimal conversions.

If, after having changed the value of ibase, you want to change
the input base back to decimal, you must use:

ibase = 12

Because, having changed the input base to 8, the number 10
would be interpreted as octal, and 10 in octal is equal to 8,
therefore effecting no change on ibase.

For dealing in hexadecimal notation, the characters A through
F are permitted in numbers (regardless of what base is in
effect) and are interpreted as digits having values 10 through
15, respectively. The statement

ibase - A

changes the base to decimal regardless of the current input
base. No error message is given if negative and large positive
numbers are assigned to ibase, but they have no effect. No

5-16

r
'

BC

mechanism has been provided for the input of arbitrary
numbers in bases less than 1 and greater than 16.

The content of obase is used as the base for output numbers,
and is initially set to 10 (decimal). Assuming that ibase is set
to 10, the following input lines:

abase - 16
1000

produce the following output line:

3E8

Thus providing a simple decimal to hexidecimal conversion
facility.

Very large output bases are permitted and are sometimes use·
ful. For example, large numbers can be output in groups of
five digits by setting obase to 100000.

Very large numbers are split across lines with 70 characters per
line. To force the continuation of a line, end it with a
backslash (\). Decimal output conversion is practically instan­
taneous, but output of very large numbers (i.e., more than 100
digits) with other bases is rather slow. Nondecimal output
conversion of a 100-digit number takes about 3 seconds.

The ibase and obase have no effect on the course of internal
computation or on the evaluation of expressions. They only
affect input and output conversions, respectively.

3.9 Scaling

The number of digits after the decimal point of a number is
referred to as its scale. Numbers may have up to 99 decimal
digits after the decimal point. This fractional part may be
retained for use in further computations by use of the third

S-17

DC

internal quantity - scale.

The contents of scale must be no greater than 99 and no less
than its initial value of 0. However, appropriate scaling can be
arranged when more than 99 fraction digits are required.

When two scaled numbers are combined by means of one of
the arithmetic operations, the result has a scale determined by
the following rules:

Addition and Subtraction The scale of the result is the larger
of the scales of the two operands.
In this case, there is never any
truncation of the result.

Multiplication The scale of the result is never less
than the maximum of the two
scales of the operands and never
more than the sum of the scales of
the operands. Subject to those two

Division

Exponentiation

Square root

5-18

restrictions, the scale of the result --
is set equal to the contents of the
internal quantity scale.

The scale of a quotient is the con­
tents of the internal quantity scale.
The scale of a remainder is the
sum of the scales of the quotient
and the divisor.

The result of an exponentiation is
scaled as if the implied multiplica­
tions were performed. An
exponent must be an integer.

The scale of a square root is set to
the maximum of the scale of the
argument and the contents of
scale.

DC

All of the internal operations are actually carried out in terms
of integers with digits being discarded when necessary. In
every case where digits are discarded, truncation - NOT
rounding - is performed.

The internal quantities scale, lbase and obase can be used in
expressions just like other variables. The input line

scale = scale + I

increases the value of scale by one, and the input line

scale

causes the current value of scale to be printed.

The value of scale retains its meaning as the number of
decimal digits to be retained in internal computation even when
lbase or obase are not equal to 10. The internal computations
are always conducted in decimal regardless of the value of ibase
and obase.

3.10 Control Statements

There are three control statements available with be:

1. The "if" statement

2. The "while" statement

3. The "for" statement

The if, while and for statements may be used to alter the flow
within programs or to cause iteration. The range of each of
them is a simple statement or a compound statement. A com­
pound statement consists of a collection of statements enclosed
in braces. Additionally, each of these control structures relies

5-19

BC

in part on the evaluation of a relation.

3.10.1 Relational Operators

Unlike all other operators, the relational operators are only
valid as the object of an if or while statement or inside a for
statement.

expression < expression
expression > expression
expression < - expression
expression > = expression
expression = = expression
expression ! = expression

The following table illustrates the six ,·e/ational operators and
their definitions:

RELATIONAL OPERATORS
OPERATOR DEFINITION

< less than
> greater than
<- less than or equal to
>- greater than or equal to -- equal to
!- not equal to

NOTE: DO NOT use "=" instead of ··--" as a relational
operator. Unfortunately, both of these are legal, so
there will be no diagnostic message, but "-" will
NOT do a comparison. The "=" operator is an
Assignment Operator.

3.10.2 The "ir' Statement

The if statement causes execution of its range If and only if
the relation is true. Then control passes to the next statement
in sequence.

5-20

c

I
'

BC

3.10.3 The "while" Statement

The while statement causes execution of its range repeatedly as
long as the relation is true. The relation is tested BEFORE
each execution of its range; and if the relation is false, control
passes to the next statement beyond the range of the while
statement.

The following function computes values of the exponential
function by summing the appropriate series without regard for
possible truncation errors:

scale = 20
define e(x){

auto a, b, c, d, n
a- I
b ~ I
c = I
d ~ 0
n = 1
while (I~~ I) I

a- a•x
b = b•n
c = c + a/b
n = n + 1
if(c= =d) return(c)
d = c

3.10.4 The "for" Statement

The typical use of a for statement is for controlled iteration,
For example:

for(expressionl; relation; expression2) statements

The for statement begins by executing ·expression!. Then the
relation is tested. If the relation is true, the statements in the
range of the for are executed. Then expression2 is executed.
The relation is then tested, etc.

S-21

BC

Following are a few more examples using the for statement.
The first is a control statement which, if given a positive
integer, will return the factorial of that number. The numbers
in bold are responses from be, the $'s are the shell prompts and
everything else is user input.

$be
define f(n){
auto i, x
x-1
for(i=I; i< =n; i=i+O x=x•i
return(x)
)
f(S)
120
f(3)
6
quit
$

The following is the definition of a function that computes -·
values of the binomial coefficient (m and n are assumed to be
positive integers):

5-22

define b(n,m){
auto x, j
x=l
for(j= l; j< =m; j-j+ 1) x=x•(n-j+ 1)/j
return(x)
)

Chapter 6: DC

c CONTENTS

1. Introduction . . • . .

2. Representation of Numbers

3. The Allocator

4. Internal Arithmetic

5. Usage

6. Special Character Commands

7. Addition and Subtraction

8. Multiplication

9. Division

c 10. Remainder

11. Square Root

12. Exponentiation

13. Input Conversion and Base

14. Output Commands . .

15. Output Format and Base

16. Stack Commands

17. Subroutine Definitions and Calls

18. Internal Registers

19. Programming DC

20. Pushdown Registers and Arrays

21. Miscellaneous Commands

C 22. Design Choices . . • .

- i -

I

3

4

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

Chapter 6

DC-

DC

A INTERACTIVE DESK CALCULATOR

1. Introduction

The de program is an interactive desk calculator program imple·
mented on the UNJXIM operating system to do arbitrary­
precision integer arithmetic. It has provisions for manipulating
scaled fixed-point numbers and for input and output in bases
other than decimal.

The size of numbers that can be manipulated by de is limited
only by available core storage.

The de program works like a stacking calculator using reverse
Polish notation. Ordinarily, de operates on decimal integers;
but an input base, output base, and a number of fractional
digits to be maintained can be specified.

A language called be has been developed which accepts pro­
grams written in the familiar style of higher-level programming
languages and compiles the output which is interpreted by de.
(See the chapter "BC - AN ARBITRARY PRECISION DESK
CALCULATOR LANGUAGE" in the UniPlus+ Program­
ming Tools Guide for more information.)

Some of the commands described below were designed for the
compiler interface and are not easy for a human user to mani­
pulate.

Numbers that are typed into de are put on a pushdown stack.
The de commands work by taking the top number or two off
the stack, performing the desired operation, and pushing the

6-1

DC

result on the stack. If an argument is given, input is taken
from that file until its end, then it is taken from the standard
input.

6-2

DC

2. Representation of Numbers

Numbers are stored internally using a dynamic storage alloca­
tor. Numbers are kept in the form of a string of digits to the
base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the
string.

For example, the representation of 157 is 57,1. After any
arithmetic operation on a number, care is taken that all digits
are in the range 0 to 99 and that the number has no leading
zeros. The number zero is represented by the empty string.

Negative numbers are represented in the lOOs complement
notation, which is analogous to twos complement notation for
binary numbers. The high-order digit of a negative number is
always -1 and all other digits are in the range 0 to 99. The

,,-- digit preceding the high·order -1 digit is never a 99.

The representation of -157 is 43,98,-1. This is called the
canonical form of a number. The advantage of this kind of
representation of negative numbers is ease of addition. When
addition is performed digit by digit, the result is formally
correct. The result need only be modified~ if necessary, to put
it into canonical form.

Because the largest valid digit is 99 and the byte can hold
numbers twice that large, addition can be carried out and the
handling of carries done later when it is convenient.

An additional byte is stored with each number beyond the
high·order digit to indicate the number of assumed decimal
digits after the decimal point. The representation of .001 is
"1,3" (the scale has been emboldened to emphasize the fact
that it is not the high·order digit. The value of this extra byte
is called the scale factor of the number.

6-3

DC

3. The Allocator

The de program uses a dynamic string storage allocator for all
of its internal storage. All reading and writing of numbers
internally is through the allocator.

Associated with each string in the allocator is a 4-word header
containing pointers to the beginning of the string, the end of
the string, the next place to write, and the next place to read.
Communication between the allocator and de is via pointers to
these headers.

The allocator initially has one large string on a list of free
strings. All headers except the one pointing to this string are
on a list of free headers.

Requests for strings are made by size. The size of the string
actually supplied is the next higher power of two.

When a request for a string is made, the allocator first checks
the free list to see if there is a string of the desired size. If
none is found, the allocator finds the next larger free string and
splits it repeatedly until it has a string of the right size.

Leftover strings are put on the free list. If there are no larger
strings, the allocator tries to combine smaller free strings into
larger ones. Since all strings are the result of splitting large
strings, each string has a neighbor that is next to it in core and,
if free, can be combined with it to make a string twice as long.

If a string of the proper length cannot be found, the allocator
asks the system for more space. The amount of space on the
system is the only limitation on the size and number of strings
in de. If the allocator runs out of headers at any time in the
process of trying to allocate a string, it also asks the system for
more space.

6-4

I~

'

DC

There are routines in the allocator for reading, writing, copying,
rewinding, forward spacing, and backspacing strings. All string
manipulation is done using these routines.

The reading and writing routines increment the read pointer or
write pointer so that the characters of a string are read or writ­
ten in succession by a series of read or write calls.

The write pointer is interpreted as the end of the information­
containing portion of a string and a call to read beyond that
point returns an end of string indication. An attempt to write
beyond the end of a string causes the allocator to allocate a
larger space and then copy the old string into the larger block.

6-5

DC

4. Internal Arithmetic

All arithmetic operations are done on integers.

The operands (or operand) needed for the operation are popped
from the main stack and their scale factors stripped off. Zeros
are added or digits removed as necessary to get a properly
scaled result from the internal arithmetic routine.

For example, if the scale of the operands is different and
decimal alignment is required, as it is for addition, zeros are
appended to the operand with the smaller scale. After perform­
ing the required arithmetic operation, the proper scale factor is
appended to the end of the number before it is pushed on the
stack.

A register called scale plays a part in the results of most arith­
metic operations. The scale register limits the number of
decimal places retained in arithmetic computations. The scale
register may be set to the number on the top of the stack trun­
cated to an integer with the k command.

The K command may be used to push the value of scale on the
stack. The value of scale must be greater than or equal to 0
and less than 100. The descriptions of the individual arithmetic
operations includes the exact effect of scale on the computa­
tions.

6-6

DC

S. Usage

Any number of commands are permitted on a line.

Blanks and new-line characters are ignored except within
numbers and in places where a register name is expected.

A number is an unbroken string of digits 0 through 9 and
uppercase letters A through F (treated as digits with values lO
through 15, respectively). The number may be preceded by an
underscore (_) to input a negative number and numbers may
contain decimal points.

The value of a number is pushed onto the stack. The top two
values on the stack may be added (+), subtracted (-), multi­
plied (•), divided (/), remaindered (%) and/or exponentiated
(~) by using the appropriate operator.

The two entries are popped off the stack, and the result is
pushed on the stack in their place.

The result of a division is an integer truncated toward zero.

An exponent must not have any digits after the decimal point.

6-7

DC

6. Special Character Commands

The following is a list of special characters, and their functions
in de:

I ... I

?

c

d

f

i and I

k and K

Puts the bracketed character string onto the top of
the stack.

Interprets the rest of the line as a UNIX software
command. Control returns to de when the com­
mand terminates.

A line of input is taken from the input source
(usually the console) and executed.

All values on the stack are popped; the stack
becomes empty.

The top value on the stack is duplicated.

All values on the stack and in registers are printed.

The top value on the stack is popped and used as
the number radix for further input.

The command I pushes the value of the input base
on the stack.

The top of the stack is popped, and that value is
used as a scale factor that influences the number of
decimal places that are maintained during multipli­
cation, division, and exponentiation. The scale fac­
tor must be greater than or equal to zero and less
than 100.

The K command may be used to push the value of
scale on the stack.

Ix and Lx The I command puts the contents of register x on
top of the stack. The initial value of a new register
is treated as a zero by the command I, but treated
as an error by the command L.

6-8

~- oandO

DC

The Lx command pops the stack for register x and
puts the result on the main stack.

The top value on the stack is popped and used as
the number radix for further output.

The command 0 pushes the value of the output
base on the stack. base is pushed onto the stack.

p The top value on the stack is printed. The top
value remains unchanged.

q and Q Exits the program. If executing a string, the recur­
sion level is popped by two. If q is uppercase, the
top value on the stack is popped; and the string
execution level is popped by that value.

sx and Sx The top of the main stack is popped and stored in a
register named x (where x may be any character).
The value of register x is pushed onto the stack.
Register x is not altered.

v

x and X

z and Z

Sx pushes the top value of the main stack onto the
stack for the register x.

Replaces the top element on the stack by its square
root. The square root of an integer is truncated to
an integer.

The x command assumes the top of the stack is a
string of de commands, removes it from the stack,
and executes it.

The command X replaces the number on the top of
the stack with its scale factor.

The value of the stack level is pushed onto the
stack.

The command Z replaces the top of the stack with
its length.

6-9

DC

7. Addition and Subtraction

The scales of two numbers are compared and trailing zeros are
supplied to the number with the lower scale to give both
numbers the same scale.

The number with the smaller scale is multiplied by 10 if the
difference of the scales is odd. The scale of the result is then
set to the larger of the scales of the two operands.

Subtraction is performed by negating the number to be sub­
tracted and proceeding as in addition.

The addition is performed digit by digit from the low-order end
of the number. The carries are propagated in the usual way.
The resulting number is brought into canonical form, which
may require stripping of leading zeros, or for negative numbers,
replacing the high-order configuration 99,-1 by the digit -1.
In any case, digits that are not in the range 0 through 99 must
be brought into that range, propagating any carries or borrows
that result.

6-10

r

DC

8. Multiplication

The scales are removed from the two operands and saved. The
operands are both made positive. Then multiplication is per­
formed in a digit by digit manner that exactly follows the hand
method of multiplying.

The first number is multiplied by each digit of the second
number, beginning with its low-order digit.

The intermediate products are accumulated into a partial sum
which becomes the final product.

The final product is put into the canonical form and its sign is
computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of
the two operands. If that scale is larger than the internal regis­
ter scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest
of these three last quantities.

6-11

DC

9. Division

The scales are removed from the two operands.

Zeros are appended, or digits are removed from the dividend to
make the scale of the result of the integer division equal to the
internal quantity scale.

The signs are removed and saved.

Division is performed much as it would be done by hand. The
difference of the lengths of the two numbers is computed. If
the divisor is longer than the dividend, zero is returned. Other­
wise, the top digit of the divisor is divided into the top two
digits of the dividend. The result is used as the first (high­
order) digit of the quotient. If it turns out to be one unit too
low, the next trial quotient is larger than 99; and this is
adjusted at the end of the process.

The trial digit is multiplied by the divisor, the result subtracted
from the dividend, and the process is repeated to get additional
quotient digits until the remaining dividend is smaller than the
divisor.

Finally, the digits of the quotient are put into the canonical
form with propagation of carry as needed.

The sign is set from the sign of the operands.

6-12

DC

10. Remainder
('
1, The division routine is called, and division is performed exactly

as described. The quantity returned is the remains of the divi­
dend at the end of the divide process.

Since division truncates toward zero, remainders have the same
sign as the dividend.

The scale of the remainder is set to the maximum of the scale
of the dividend and the scale of the quotient plus the scale of
the divisor.

6-13

DC

11. Square Root

The scale is removed from the operand.

Zeros are added if necessary to make the integer result have a
scale that is the larger of the internal quantity scale and the
scale of the operand.

The method used to compute the square root is Newton's
method with successive approximations by the following rule:

X +I~(X +Y/X)
" " "

The initial guess is found by taking the integer square root of
the top two digits.

6-14

r

DC

12. Exponentiation

Only exponents with 0 scale factor are handled.

The scale of the base is removed.

If the exponent is 0, the result is 1. If the exponent is nega·
tive, it is made positive, and the base is divided into l.

The integer exponent is viewed as a binary number.

The base is repeatedly squared, and the result is obtained as a
product of those powers of the base that correspond to the posi·
tions of the one-bits in the binary representation of the
exponent.

r--
i Enough digits of the result are removed to make the scale of
'~- the result the same as if the indicated multiplication had been

performed.

r

6-15

DC

13. Input Conversion and Base

Numbers are converted to the internal representation as they
are read in.

The scale stored with a number is simply the number of frac­
tional digits input.

Negative numbers are indicated by preceding the number with
an underscore (_). The hexadecimal digits A through F
correspond to the numbers I 0 through 15 regardless of input
base.

The i command can be used to change the base of the input
numbers. This command pops the stack, truncates the result­
ing number to an integer, and uses it as the input base for all
further input.

The input base (ibase) is initialized to 10 (decimal) but may,
for example, be changed to 8 or 16 for octal or hexadecimal to
decimal conversions.

No mechanism has been provided for the input of arbitrary
numbers in bases less than 1 or greater than 16.

The command I pushes the value of the input base on the
stack.

6-16

-

DC

14. Output Commands

The command p causes the top of the stack to be printed. It
DOES NOT remove the top of the stack.

All of the stack and internal registers are output by typing the
command f.

The o command is used to change the output base (obase).
This command uses the top of the stack truncated to an integer
as the base for all further output.

The output base in initialized to 10 (decimal). It works
correctly for any base.

The command 0 pushes the value of the output base on the
(,.._ stack.

('
'

6-17

DC

15. Output Format and Base

The input and output bases only affect the interpretation of
numbers on input and output. They have no effect on arith­
metic computations.

Large numbers are output with 70 characters per line; a
backslash (\) indicates a continued line. All choices of input
and output bases work correctly, although not all are useful. A
particularly useful output base is 100000, which has the effect
of grouping digits in fives. Bases of 8 and 16 are used for
decimal-octal or decimal-hexadecimal conversions.

6-18

'·-

DC

16. Stack Commands

The command c clears the stack.

The command d pushes a duplicate of the number on the top
of the stack onto the stack.

The command z pushes the stack size on the stack.

The command X replaces the number on the top of the stack
with its scale factor.

The command Z replaces the top of the stack with its length.

6-19

DC

17. Subroutine Definitions and Calls

Enclosing a string in brackets "[]" pushes the ASCII string on
the stack.

The q command quits or (in executing a string) pops the recur­
sion levels by two.

6-20

('

DC

18. Internal Registers

Numbers or strings may be stored in internal registers or loaded
on the stack from registers with the commands s and I:

sx The command sx pops the top of the stack and stores the
result in register x. The x can be any character - even
blank or newline, is a valid register name.

lx The command lx puts the contents of register x on the
top of the stack. The x can be any character - even
blank or newline, is a valid register name.

NOTE: The l command has no effect on the contents of
register x. The s command, however, is destruc·
tive.

6-21

DC

19. Programming DC

By combining a few of the available constructs, such as:

• The load, store, execute and print commands,

• the "II" construction to store strings and

• the testing commands,
it is possible to program de.

The testing commands

<x >x =x !<x !>x !=x

cause the top two elements of the stack to be popped and com­
pared. Register x is executed if the top two elements of the
stack satisfy the stated relation. Exclamation point is negation.

For example, the following expressions instruct de to print the
numbers 0 through 9:

[lipl+ si lilO>a]sa
Osi lax

Consider the first expression in this example:

llipl+ si IilO>alsa

This first instruction makes use of the "II" construction for
storing strings. The entire expression is stored as a character
string on top of the stack. Reading from left to right, this char­
acter array holds the following commands:

• load the contents of register i on top of the stack, and
print it. (Note: Using the print command does not
remove the top of the stack.)

• Add (+) 1 to the value found on top of the stack, and
place the result on top of the stack.

• store the value currently found on top of the stack in
register i.

6-22

r
'

•

DC

load the contents of register i on top of the stack, then
load the number "10" onto the stack. Use the testing
operator > on these top two stack elements and see if 10
is greater than the number which was loaded from register
i. If 10 is greater, then execute register a.

This is the "control element" of the de example program,
since it will stop the processing of the expressions as soon
as the value in register I is equal to 10.

Continuing to read from left to right, the character array is
stored in register a.

The second line of the example contains, the expressions:

Osi lax

The Osi instruction clears register l by storing 0 in that register,
thereby clobbering any previous value it may have had.

The lax instruction loads the contents of register a on top of
the stack and executes it.

6-ZJ

DC

20. Pushdown Registers and Arrays

NOTE: These commands are designed for use by a com­
piler, not directly by programmers. They involve
pushdown registers and arrays.

De can be thought of as having individual stacks for each regis­
ter. These registers are operated on by the commands S and
L:

Sx Sx pushes the top value of the main stack onto the stack
for the register x.

Lx Lx pops the stack for register x and puts the result on the
main stack.

The commands s and I also work on registers but not as push­
down stacks. The command I does not affect the top of the
register stack, but s destroys what was there before.

The commands to work on arrays are : and ; :

:x The command :x pops the stack and uses this value as an
index into the array x. The next element on the stack is
stored at this index in x. An index must be greater than
or equal to 0 and less than 2048.

;x The command ;x loads the main stack from the array x.

6-24

The value on the top of the stack is the index into the
array x of the value to be loaded.

DC

21. Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
software command and passes it to the UNIX operating system
to execute.

One other compiler command is Q. This command uses the
top of the stack as the number of levels of recursion to skip.

6-25

DC

22. Design Choices

The reason for the use of a dynamic storage allocator is that a
general purpose program can be used for a variety of other
tasks. The allocator has some value for input and for compiling
(i.e., the bracket "[. ..]" commands) where it cannot be known
in advance how long a string will be. The result is that at a
modest cost in execution time:

• All considerations of string allocation and sizes of strings
are removed from the remainder of the program.

• Debugging is made easier.

• The allocation method used wastes approximately 25 per­
cent of available space.

The choice of 100 as a base for internal arithmetic seemingly
has no compelling advantage. Yet the base cannot exceed 127
because of hardware limitations and at the cost of 5 percent in
space debugging was made a great deal easier, and decimal out­
put was made much faster.

The reason for a stack-type arithmetic design was to permit all
de commands from addition to subroutine execution to be
implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program
into modules with very little communication between modules.

The rationale for the lack of interaction between the scale and
the bases is to provide an understandable means of proceeding
after a change of base or scale {when numbers had already been
entered).

An earlier implementation which had global notions of scale
and base did not work out well. If the value of scale is inter­
preted in the current input or output base, then a change of
base or scale in the midst of a computation causes great

6-26

r
'

DC

confusion in the interpretation of the results. The current
scheme has the advantage that the value of the input and out­
put bases are only used for input and output, respectively, and
they are ignored in all other operations.

The value of scale is not used for any essential purpose by any
part of the program. It is used only to prevent the number of
decimal places resulting from the arithmetic operations from
growing beyond all bounds.

The rationale for the choices for the scales of the results of
arithmetic is that in no case should any significant digits be
thrown away if, on appearances, the user actually wanted them.
Thus, if the user wants to add the numbers 1.5 and 3.517, it
seemed reasonable to give them the result 5.017 without
requiring to unnecessarily specify rather obvious requirements
for precision.

On the other hand, multiplication and exponentiation produce
results with many more digits than their operands. It seemed
reasonable to give as a minimum the number of decimal places
in the operands but not to give more than that number of digits
unless the user asked for them by specifying a value for scale.

Square root can be handled in just the same way as multiplica­
tion.

Division gives arbitrarily many decimal places, and there is sim­
ply no way to guess how many places the user wants. In this
case only, the user must specify a scale to get any decimal
places at all.

The scale of remainder was chosen to make it possible to
recreate the dividend from the quotient and remainder. This is
easy to implement - no digits are thrown away.

6-27

c

c

Chapter 7: M4 MACROS

CONTENTS

1. Introduction

2. Usage

3. Built-In Macros
3.1 Arithmetic Built-in Macros

4. Defining Macros
4.1 define()
4.2 Quoting
4.3 changequoteO
4.4 undefineO
4.5 ifdefO
4.6 Arguments •

5. File Manipulation
5.1 include() and sincludeO
5.2 divert(), undivertO and divnum

6. String Manipulation
6.1 len()
6.2 substrO
6.3 index() and translitO
6,4 dnl , • • • • •
6.5 ifelseO

7. Executing System Commands
7.1 syscmdO and maketemp

8. Printing . .
8.1 errprintO
8.2 dumpdef

- i -

l

2

2
4

5
5
7
8
9
9

10

ll
ll
ll

12
12
l3
13
14
14

15
15

16
16
16

,~

:.

Chapter 7

M4-

MACRO PROCESSOR

1. Introduction

M4MACROS

The M4 macro processor is a front end for rational Fortran
(Ratfor) and the C programming languages. The #define state­
ment in C language and the analogous define in Ratfor are
examples of the basic facility provided by any macro processor.

The basic operation of M4 is to read every alphanumeric token
(string of letters and digits) input and determine if the token is
the name of a macro. The name of the macro is replaced by its
defining text, and the resulting string is pushed back onto the
input to be rescanned.

Macros may be called with arguments. The arguments are col­
lected and substituted into the right places in the defining text
before the defining text is rescanned.

Besides the straightforward replacement of one string of text by
another, the M4 macro processor provides the following
features:

• Arguments
• Arithmetic capabilities
• File manipulation
• Conditional macro expansion
• String and substring functions

The M4 macro processor accepts user-defined macros, as well
as its .. built-in" macros. Both types of macros work exactly the
same way except that some of the built-in macros have side
effects on the state of the process.

7-1

M4MACROS

2. Usage

At the beginning of a program, a symbolic name or symbolic
constant can be defined as a particular string of characters. The
M4 compiler will replace later unquoted occurrences of the
symbolic name with the corresponding string.

To run the M4 compiler, give the command:

m4 (optional files)

Each argument file is processed in order. If there are no argu­
ments or if an argument is"-", the standard input is read at
that point.

The processed text is written on the standard output which may
be captured for subsequent processing with the following input:

m4 lfilesl >outputfile

3. Built-In Macros

The following are the 31 M4 built-in macros:

changequote Restores original characters or makes new quote
characters the left and right brackets.

changesoom Changes left and right comment markers from
the default # and newline.

deer Returns the value of its argument decremented
by l.

define Defines new macros.

defn Returns the quoted definition of its argument(s).

divert Diverts output to l·out·of·lO diversions.

divnum

dol

7-2

Returns the number of the currently active
diversion.

Reads and discards characters up to and includ­
ing the next newline.

, __ _

r

dumpdef

errprint

eval

ifdef

if else

include

iner

index

len

m4exit

m4wrap

maketemp

popdef

pushdef

shift

slnclude

substr

syscmd

M4MACROS

Dumps the current names and definitions of
items named as arguments.

Prints its arguments on the standard error file.

Prints arbitrary arithmetic on integers.

Determines if a macro is currently defined.

Performs arbitrary conditional testing.

Returns the contents of the file named in the
argument. A fatal error occurs if the file name
cannot be accessed.

Returns the value of its argument incremented
by I.

Returns the position where the second argument
begins in the first argument of index.

Returns the number of characters that makes its
argument.

Causes immediate exit from M4.

Pushes the exit code back at final EOF.

Facilitates making unique file names.

Removes current definition of its argument(s)
exposing any previous definitions.

Defines new macros but saves any previous
definition.

Returns all arguments of shift except the first
argument.

Returns the contents of the file named in the
arguments. The macro remains silent and con·
tinues if the file is inaccessible.

Produces substrings of strings.

Executes the UNIX System command given in
the first argument.

7-3

M4MACROS

traceoff

traceon

translit

undefi.ne

undivert

Turns macro trace off.

Turns the macro trace on.

Performs character transliteration.

Removes user-defined or built-in macro
definitions.

Discards the diverted text.

3.1 Arithmetic Built-in Macros

The M4 provides three built-in functions for doing arithmetic
on integers (only).

1. incr
2. deer
3. eval

The simplest is incr which increments its numeric argument by
1. The built-in deer decrements by I. Thus to handle the com­
mon programming situation where a variable is to be defined as
"one more than N," use the following:

define(N, 100)
deftne(Nl, "incr(N)")

Then Nl is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called
eval which is capable of arbitrary arithmetic on integers. The
operators in decreasing order of precedence are

7-4

unary + and -

"'"' or (exponentiation)

.. I % (modulus)

+
== != <
! (not)

& or && (logical AND)

or II (logical OR).

M4MACROS

>

Parentheses may be used to group operations where needed.
All the operands of an expression given to eval must ultimately
be numeric. The numeric value of a true relation (like 1 > 0) is
1 and false is 0. The precision in eval is 32 bits under the
UNIX operating system.

As a simple example, define M to be 2= = N + 1 using eval as
follows:

define(N, 3)
define(M, 'evaH2= = N + 1)')

The defining text for a macro should be quoted unless the text
is very simple. Quoting the defining text usually gives the
desired result and is a good habit to get into.

4. Defining Macros

4.1 define()

The primary built-in function of M4 is define. Define is used
to define new macros. The following input:

I" deftne(name, stuff)

M4MACROS

causes the string name to be defined as stu.tl: All subsequent
occurrences of name will be replaced by srujf.· Name must be
alphanumeric and must begin with a letter (the underscore
counts as a letter). Stuff is any text that contains balanced
parentheses.

Use of a slash may stretch stuff' over multiple lines. The follow­
ing is a typical example of the use of define, in which N is
defined to be 100 and is then used in a later if statement:

define(N, 100)

If (I > N)

The left parenthesis must immediately follow the word define
to signal that define has arguments.

If a user-defined macro or built-in name is not followed
immediately by "(", it is assumed to have no arguments.

Macro calls have the following general form:

name(argl,arg2, ... argn)

A macro name is only recognized as such if it appears sur­
rounded by nonalphanumerics.

In the following example the variable NNN is absolutely unre­
lated to the defined macro N even though the variable contains
a lot of Ns:

define(N, 100)

if (NNN > 100)

Macros may be defined in terms of other names. For example,
the following example defines both M and N to be 100. If N is
redefined and subsequently changes, M retains the value of 100

7-6

M4MACROS

not N.

define(N, 100)
define(M, N)

The M4 macro processor expands macro names into their
defining text as soon as possible. The string N is immediately
replaced by 100. Then the string M is also immediately
replaced by 100. The overall result is the same as using the
following input in the first place:

deftne(M, 100)

The order of the definitions can be interchanged as follows:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is
requested later, the result is the value of N at that time
(because the M will be replaced by N which will be replaced by
100).

4.2 Quoting

The more general solution to delay the expansion of the argu­
ments of define by quoting them.

Any text surrounded by left and right single quotes is not
expanded immediately but has the quotes stripped off. The
value of a quoted string is the string stripped of the quotes. If
the input is

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is
being collected. The results of using quotes is to define M as
the string N, not 100.

7-7

M4 MACROS

The general rule is that M4 always strips off one level of single
quotes whenever it evaluates something. This is true even out­
side of macros.

If the word define is to appear in the output, the word must be
quoted in the input as follows:

'define' = 1;

Another example of using quotes is redefining N. To redefine
N, the evaluation must be delayed by quoting

define(N, 100)

defineCN', 200)

In M4, it is often wise to quote the first argument of a macro.
The following example will not redefine N:

define(N, 100)

define(N, 200)

The N in the second definition is replaced by 100. The result is
equivalent to the following statement:

defineUOO, 200)

This statement is ignored by M4 since only things that look like
names can be defined.

4.3 changequoteO

If left and right single quotes are not convenient for some rea­
son, the quote characters can be changed with the following
built-in macro:

changequote(f,))

7-8

M4MACROS

The built·in changequote makes the new quote characters the
left and right brackets. The original characters can be restored
by using changequote without arguments as follows:

changequote

4.4 undefine 0

There are two additional built-ins related to define. The
undefine macro removes the definition of some macro or built­
in as follows:

undefine('N')

The macro removes the definition of N. Built-ins can be
removed with undefine, as follows:

undefinefdefine')

But once removed, the definition cannot be reused.

4.5 lfdefO

The built-in ifdef provides a way to determine if a macro is
currently defined.

Depending on the system, a definition appropriate for the par­
ticular machine can be made as follows:

ifdef('pdpll', • define(wordsize,16)')
ifdef('u3b', • define(wordsize,32)')

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first
argument is defined, the value of ifdef is the second argument.

If the first argument is not defined, the value of ifdef is the
third argument.

7-9

M4MACROS

If there is no third argument, the value of ifdef is null.

If the name is undefined, the value of ifdef is then the third
argument, as in

ifdef('unix', on UNIX, not on UNIX)

4.6 Arguments

User-defined macros may also have arguments, so different
invocations can have different results. Within the replacement
text for a macro (the second argument of its define), any
occurrence of Sn is replaced by the nth argument when the
macro is actually used. Thus, the following macro, bump, gen­
erates code to increment its argument by 1:

define(bump, $1 = $1 + 1)

The 'bump(x)' statement is equivalent to 'x = x + 1'.

A macro can have as many arguments as needed, but only the
first nine are accessible ($1 through $9). The macro name is $0
although that is less commonly used. Arguments that are not
supplied are replaced by null strings, so a macro can be defined
which simply concatenates its arguments like this:

define(cat, Sl$2$3$4$5$6$7$8$9)

Thus, 'cat(x, y, z)' is equivalent to xyz·. Arguments $4
through $9 are null since no corresponding arguments were
provided. Leading unquoted blanks, tabs or newlines that
occur during argument collection are discarded. All other white
space is retained. Thus:

deftne(a, b c)

defines' a' to be 'b c·.

7-10

M4 MACROS

Arguments are separated by commas; however, when commas
are within parentheses, the argument is not terminated nor
separated. For example,

define(a, (b,c))

has only two arguments. The first argument is a. The second
is literally (b,c). A bare comma or parenthesis can be inserted
by quoting it.

5. File Manipulation

5.1 include() and sincludeO

A new file can be included in the input at any time by the
built·in function include. For example,

include(filename)

inserts the contents of filename in place of the include com­
mand. The contents of the file is often a set of definitions.
The value of include (include's replacement text) is the con­
tents of the file. If needed, the contents can be captured in
definitions, etc.

A fatal error occurs if the file named in include cannot be
accessed. To get some control over this situation, the alternate
form sinclude can be used. The built-in sinclude (silent
include) says nothing and continues if the file named cannot be
accessed.

5.2 divert(), undivertO and divnum

The output of M4 can be diverted to temporary files during
processing, and the collected material can be output upon com­
mand. The M4 maintains nine of these diversions, numbered 1
through 9. If the built-in macro

divert(n)

7-11

M4MACROS

is used, all subsequent output is put onto the end of a tern·
porary file referred to as n. Diverting to this file is stopped by
the divert or divert(O) command which resumes the normal
output process.

Diverted text is normally output all at once at the end of pro­
cessing with the diversions output in numerical order. Diver­
sions can be brought back at any time by appending the new
diversion to the current diversion. Output diverted to a stream
other than 0 through 9 is discarded.

The built-in undivert brings back all diversions in numerical
order. The built-in undivert with arguments brings back the
selected diversions in the order given. The act of undiverting
discards the diverted text (as does diverting) into a diversion
whose number is not between 0 and 9, inclusive.

The value of undivert is not the diverted text. Furthermore,
the diverted material is not rescanned for macros.

The built-in divnum returns the number of the currently active
diversion. The current output stream is zero during normal
processing.

6. String Manipulation

6.1 lenO

The built-in len returns the length of the string (number of
characters) that makes up its argument. Thus:

len (aiK:def)

is 6, and len((a,b)) is 5 (the parentheses and comma are
counted along with a and b).

7-12

('
i

f
\

~

M4MACROS

6.2 substrO

The built-in substr can be used to produce substrings of strings.
Using input, substr(s, i, n) returns the substring of s that starts
at the ith position (origin zero) and is n characters long. If n is
omitted, the rest of the string is returned. Inputting

substrfnow is the time',l)

returns the following string:

ow is the time.

If i or n are out of range, various actions occur.

6,3 index() and translitO

The built-in index(sl, s2) returns the index (position) in sf
where the string s2 occurs or -I if it does not occur. As with
substr, the origin for strings is 0.

The built-in translit performs character transliteration and has
the general form

translit (s, f, t)

which modifies s by replacing any character found in fby the
corresponding character oft. Using input

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter
than}; characters that do not have an entry in tare deleted. As
a limiting case, if t is not present at all, characters from fare
deleted from s. So

translit(s, aeiou)

would delete vowels from s.

7-13

M4 MACROS

6.4 dnl

There is a built-in macro called dol that deletes all characters
that follow it up to and including the next new line. The dol
macro is useful mainly for throwing away empty lines that oth­
erwise tend to clutter up M4 output. Using input

define(N, 100)
define(M, 200)
define(L, 300)

results in a new line at the end of each line that is not part of
the definition. The new line is copied into the output so that
each define statement is followed by a blank line. If the built­
in macro dol is added to each of these lines, the newlines will
disappear.

define(N, lOO)dnl
define(M, 200)dnl
define(L, 300)dnl

Another method of achieving the same results is to input

divert(-1}
deftne(N, 100)
define(M, 200)
define(L, 300)
divert

6.5 ifelseO

Arbitrary conditional testing is performed via built-in ifelse. In
the simplest form

if else (a, b, c, d)

compares the two strings a and b. If a and b are identical,
ifelse returns the string c. Otherwise, string d is returned.
Thus, a macro called compare can be defined as one which I

compares two strings and returns "yes" or "no" if they are the
same or different as follows:

7·14

r
'

M4MACROS

define(compare, 'ifelse($1, $2, yes, non

Note the quotes which prevents evaluation of lfelse occurring
too early. If the fourth argument is missing, it is treated as
empty.

The built-in ifelse can actually have any number of arguments
and provides a limited form of multiway decision capability. In
the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise,
if d is the same as e, the result is f Otherwise, the result is g.
If the final argument is omitted, the result is null, so

ifelse(a, b, c)

r is c if a matches b, and null otherwise.

7. Executing System Commands

7.1 syscmdO and maketemp

Any program in the local operating system can be run by using
the syscmd built-in. For example,

syscmd (date)

on the UNIX system runs the date command. Normally,
syscmd would be used to create a file for a subsequent include.

To facilitate making unique file names, the built-in maketemp
is provided with specifications identical to the system function
mkremp. The maketemp macro fills in a string of XXXXX in
the argument with the process id of the current process.

7-15

M4MACROS

8. Printing

8.1 errprintO

The built-in errprint writes its arguments out on the standard
error file. An example would be

errprintt'fatal error')

8.2 dumpdef

The built-in dumpdef is a debugging aid that dumps the current
names and definitions of items named as arguments. If no
arguments are given, then all current names and definitions are
printed. Do not forget to quote the names.

7-16

Chapter 8: MAKE

c CONTENTS

1. Introduction

2. Basic Operation

3. Usage

4. Substitutions
4.1 $@, $?, $< and $•
4.2 .DEFAULT and .PRECIOUS

5. Command Usage • . . .

6. Suffixes and Transformation

7. Implicit Rules . . . •

8. Suggestions and Warnings

r
'- LIST OF FIGURES

Figure 8.1. Default MAKE Suffix List

c
- i -

I

3

13

18
20
21

22

24

27

29

27

Chapter 8

MAKE-

MAKE

MAINTAINING COMPUTER PROGRAMS

1. Introduction

It is a common practice is to divide large programs into smaller
pieces that are more manageable individually, but which create
a complicated process to update and maintain.

The pieces may require several different treatments, or have to
be compiled with special options, definitions and declarations.
The resulting code may need further transformation by loading

.r--- the code with certain libraries under control of special options.

, ___ _

Another activity that complicates program development is a
long editing session. A programmer may lose track of the files
changed and the object modules still valid especially when a
change to a declaration can make a dozen other files obsolete.

The programmer must also remember to compile a routine that
has been changed or that uses changed declarations.

The make program is a software tool that maintains, updates,
and regenerates groups of computer programs.

The make program was written to facilitate the process of
updating programs by maintaining information on the following:

• Files that are dependent upon other files
• Files that were modified recently

8-1

MAKE

• Files that need to be reprocessed or recompiled after a
change in the source

• The exact sequence of operations needed to make and
exercise a new version of the program

The make program keeps track of program file dependencies,
and whenever a change is made in any part of a program, the
make command creates the proper files simply, correctly, and
with a minimum amount of effort.

The make program also provides a simple macro substitution
facility and the ability to encapsulate commands in a single file
for convenient administration.

8-2

MAKE

2. Basic Operation
r
' The basic operation of make is:

• Find the name of the needed target file in the description.
• Ensure that all of the files on which it depends exist and

are up to date.
• Create the target file if it has not been updated since its

generators were modified.

A descriptor file is used to define the graph of dependencies.
The make program determines the work necessary to update a
given program by performing a depth·first search of this list of
dependencies. The descriptor file make expects is called a
makefile, often easy to write and only infrequently changed.

Once the interfile dependencies and command sequences have
been included in such a file, the command:

make

is often sufficient to update the appropriate files - regardless of
the number of files edited since the last make. Obviously,
then, the operation of make is highly dependent on the ability
to find the date and time that a file was last modified.

As an example of the use of make, the following is the descrip­
tion file used to maintain the sed command;

8-3

MAKE

#Description file for the sed command:

ROOT-
OL - $(ROOT)/

SL = S(ROOT)/usr/src/cmd
RDIR = $(SL)/sed
INS = :

KEL = current
CSID = -r'~:sld sed $(REL)'
MKSID = -r'gsid sed.mk $(REL)'

LIST = lp

INSDIR = $(0L)bin

IFLAG - -n

BID -

CFLAGS .. -0 $(810)

LDFLAGS = - s $(1FLAG)

SOURCE = sed.b sedO.c sedl.c

FILES = sedO.o sedl.o

MAKE = make

compile all: sed

sed: $(FILES)
$(CC) $(LDFLAGS) - o sed $(FILES)
SUNS) $(1NSDIRJ sed

$(FILES):: sed.b

install:
$(MAKE) -f sed.mk INS-"lnstall -f' OL=S(OL)

build: bldmk
get -p S(CSID) s.sed.src $(REWIRE) I ntar -d $(RDIR) -g

bldmk: ; get -p $(MKSJD) s.sed.mk > $(RDIR)/sed.mk

llstinK:
pr sed.mk $(SOURCE) I $(LIST)

8-4

r

(

MAKE

listmk: ' pr sed.mk I $(LIST)

edit:

"' -· - p s.sed.src I ntar -g

delta:

ntar -p $(SOURCE) > sed.src
delta s.sed.src

tm - f $(SOURCE)

mkedit: ... -e s.sed.mk

mkdella:; delta s.sed.mk

clean:

tm -f $(FILES)

clobber: clean

tm -r sed

delete: clobber

tm -r $(SOURCE)

Assuming that the source for sed and the makefile, called
sed.mk, are both in the current directory, giving the command:

make -n -p -d -f sed.mk > make.out

will cause make to do the following:

• Print the commands it would have executed, without
actually executing them (- n).

• Print the complete set of macro definitions and target
descriptions (-p).

• Print out detailed information on files and times exam­
ined (-d) for debugging purposes.

• Use the file sed.mk as the descriptor file (-f).

Using this example, the following is a large excerpt of the out­
put saved in the file make.out:

8-5

MAKE

doname(sed,l)
doname(sedO.o,2)
doname(sed.h,3)
TIME(sed.h) ~469758551
doname(sed0.c,3)
TIME(sedO.c) ~469758582
TIME(sedO.o) =475912131
doname(sedl.o,2)
doname{sed.h,3)
TIME(sed.h) =469758551
doname(sedl.c,3)
TIME(sedl.c) =469758590
TIME(sedl.o) ~ 475912301
cc -s -n -o sed sedO.o sedl.o
: /bin sed
TIME(sed) ~483750638

Open directories:
3: .

Macros:

8-6

? = sed
@ ~
< = sedl.c
* = sedl
MAKE = make
FILES ~ sedO.o sed1.o
SOURCE = sed.h sedO.c sedl.c
LDFLAGS ~ - s $((FLAG)
810 -
IFLAG - -n
INSDIR ~ $(0L)bin
LIST ~ lp
MKSID = -r"gsid sed.mk $(REL)'
CSID = -r'gsid sed S(REL)'
REL = current
INS ~ :
RDIR ~ $(SL)/sed
SL = S{ROOT)/usr/src/cmd

OL - $(ROOT)/
ROOT­
LOADLIBES -
FFLAGS -
EFLAGS -
FC - 177
RFLAGS -
RC - 177
CFLAGS - -0 $(810)
PFLAGS -
PC pc
AS = as
cc = cc
LFLAGS -
LEX = lex
YFLAGS -
YACCE - yacc -e
YACCR = yacc -r
YACC = yacc

$ - $
sedl.c done= 2
sedO.c done=2
delete: done= 0

depends on: clobber
commands:

nn -f $(SOURCE)
clobber: done-0

depends on: clean
commands:

nn -f sed
clean: done= 0
commands:

rm - f $(FILES)
mkdelta: done=O
commands:

delta s.sed.mk
mkedit: done=O
commands:

MAKE

8-7

MAKE

get -e s.sed.mk
delta: done=O
commands:

ntar - p $(SOURCE) > sed.src
delta s.sed.src
nn -f $(SOURCE)

edit: done=zO
commands:

get -e -p s.sed.src I ntar -g
Iistmk: done= 0

commands:
pr sed.mk I $(LIST)

listing: done=O
commands:

pr sed.mk $(SOURCE) I $(LIST)
bldmk: done=O
commands:

get -p $(MKSID) s.sed.mk > $(RDIR)/sed.mk
build: done- 0

depends on: bldmk
commands:

get - p $(CSID) s.sed.src $(REWIRE) l \
ntar -d $(RDIR) -g

install: done=O
commands:

$(MAKE) -I sed.mk INS-"install -f' OL-$(0L)
sed.h done=2
sedl.o: done= 2
depends on: sed.h
commands:

sedO.o: done=2
depends on: sed.h
commands:

sed: done=2
depends on: sedO.o sedl.o
commands:

8-8

(
'

MAKE

$(CC) S(LDFLAGS) - o sed $(FILES)
$(INS) $(INSDIR) sed

all: done-0
depends on: sed
commands:

compile: done=2 (MAIN NAME)
depends on: sed
commands:

.l.out: done=O
commands:

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) lex.yy.c $(LOADLIBES) -ll -o $@
rm lex.yy.c

.y.out: done=O
commands:

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) y.tab.c $(LOADLIBES) -ly -o $@
rm y.tab.c

.e.out: done-0
commands:

$(FC) $(EFLAGS) S(RFLAGS) S(FFLAGS) S< \
$(LOADLIBES) -o $@

-rm S*.o
.r.out: done==O
commands:

$(FC) $(EFLAGS) $(RFLAGS) $(FFLAGS) $< \
$(LOADLIBES) -o $@

-rm $"".o
.f.out: done-0
commands:

$(FC) $(EFLAGS) $(RFLAGS) $(FFLAGS) S< \
$(LOADLIBES) -o $@

-rm s•.o
.o.ont: done-0

commands:
S(CC) $(CFLAGS) S< $(LOADLIBES) -o $@

8-9

MAKE

.c.out: done=O
commands:

$(CCJ $(CFLAGS) $< $(LOADLIBES) -o $@
.s.out: done=O
commands:

$(CCJ $(CFLAGS) $< $(LOADLIBES) -o $@
.ye.e: done=O
commands:

$(Y ACCE) $(YFLAGS) $<
mv y.tab.e $@

.yr.r: done=O
commands:

$(YACCR) $(YFLAGS) $<
mv y .tab.r $@

.I.e: done=O
commands:

$(LEX) $(LFLAGS) $<
mv lex.yy.c $@

.y.c: done=O
commands:

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

.I.o: done=O
commands:

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy,c
rm lex.yy.c
mv lex.yy .o $@

.ye.o: done=O
commands:

$(YACCE) $(YFLAGS) $<
$(EC) $(RFLAGS) -< y.tab.e
nn y.tab.e
mv y.tab.o $@

.yr.o: done=O
commands:

8-10

$(YACCR) $(YFLAGS) $<
$(RC) $(RFLAGS) -c y.tab.r

(
'

(

rm y.tab.r
mv y.tab.o $@

.y.o: done=O
commands:

S(YACC) S(YFLAGS) S<
$(CC) $(CFLAGS) -c y.tab.c
nn y.tab.c
mv y.tab.o $@

.s.o: done-o
commands:

$(AS) -o $@ S<
.f.o: done=O
commands:

MAKE

$(FC) S(RFLAGS) S(EFLAGS) S(FFLAGS) -c $<
.r.o: done=O

commands:
S(FC) S(RFLAGS) $(EFLAGS) $(FFLAGS) -c S<

.e.o: done=O
commands:

$(FC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c S<
.cl.o: done=O
commands:

class -c $<
.p.o: done=O
commands:

$(PC) $(PFLAGS) -c S<
.c.i: done=O

commands:
$(CC) S(CFLAGS) -P S<

.c.s: done=O
commands:

$(CC) $(CFLAGS) -s S<
.c.o: done=O
commands:

$(CC) $(CFLAGS) -c $<
.i done-0
.p done=O
.cl done=O

8-11

MAKE

.s done-o

.I done-0

.ye done=O

·Y' done-0
.y done-o ,, done-o
.e done=O
.f done=O
.c done=O
.o done=O
.out done=O
.SUFFIXES' done=O

depends on: .out .o .c .f .e ·' .y
.yr .ye .I .s .cl .p .i

Although none of the source files or grammars were mentioned
by name in the description file, make found them using its
suffix rules and issued the necessary commands.

The printed output could have been sent to a file by changing
the definition of the LIST macro on the command line to the
following:

make listing "LIST= cat >zap"

Or, this macro could be changed in the makefile to always
direct the output of make to the file zap.

8·12

MAKE

3. Usage

The basic operation of make is to accomplish the following:

• Update a target file by ensuring that all of the files on
which the target file depends exist and are up to date.

• Create the target file if it has not been modified since the
dependents were modified.

• Perform a depth-first search of the graph of dependencies.

To illustrate, consider a simple example in which a program
named prog is made by compiling and loading three C language
files x.c, y.c and z.c with the IS library. By convention, the
output of the C language compilations will be found in files
named x.o, y .o and z.o.

Assume that the files x.c and y.c share some declarations in a
file named defs, but that z.c does not. That is, x.c and y.c
have the line

#include "defs"

while z.c does not.

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -o prog

x.o y .o : defs

If this information were stored in a file named makefile, the
command:

make

(~ would perform the operations needed to recreate prog after any
changes had been made to any of the four source files x.c, y.c,
z.c or defs. Even the -f option is unnecessary if the

8-13

MAKE

descriptor file is named makefile.

The make program operates using the following three sources
of information: --

• A user-supplied description file
• File names and "last-modified" times from the file sys­

tem
• Built-in rules to bridge some of the gaps

In the example, the first line:

prog : x.o y .o z.o

is understood by make to mean that prog depends on three
''.o'' files.

Once these object files are current, the second line:

prog : x.o y.o z.o
cc x.o y.o z.o -IS -o prog

describes how to load them to create prog.

The third line

prog :

x.o y.o

x.o y.o z.o
cc x.oy.oz.o-18 -oprog
defs

states that x.o and y.o depend on the file defs.

From the file system, make discovers that there are three ".c"
files corresponding to the needed ".o" files and uses built-in
information on how to generate an object from a source file
(i.e., issue a "cc -c" command).

By not taking advantage of make's innate knowledge, the fol·
lowing longer descriptive file results.

8-14

(
'

' ,_

MAKE

prog: x.o y.o z.o
cc x.o y.o z.o -IS -o pro•

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o : z.c
cc -c z.c

If none of the source or object files have changed since the last
time prog was made, all of the files are current, and the com­
mand

make

announces this fact and stops.

If, however, the defs file has been edited, x.c and y.c (but not
z.c) are recompiled. Then prog is created from the new ".o"
files.

If only the file y.c had changed, only it is recompiled, but it is
still necessary to reload prog.

If no target name is given on the make command line, the first
target mentioned in the description is created. Otherwise, the
specified targets are made.

The command

make x.o

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, the file's
time of last modification is used in further decisions.

8-15

MAKE

If the file does not exist after the commands are executed, the
current time is used in making further decisions. A useful
method is to include rules with mnemonic names and com­
mands that do not actually produce a file with that name.
These entries can take advantage of make's ability to generate
files and substitute macros. For example: "save" might be
included to copy a certain set of files, or an entry "cleanup"
might be used to throw away unneeded intermediate files.

It is also possible to maintain a zero-length file purely to keep
track of the time at which certain actions were performed. For
example:

print' $(FILES)
pr $?I SP
touch print

The "print" entry prints only the files changed since the last
make print command. A zero-length file print is maintained
to keep track of the time of the printing, the time since the file
print was last touched.

The $? macro in the command line then picks up only the
names of the files changed since print was touched.

The make program has a simple "macro" mechanism for sub­
stituting in dependency lines and command strings. Macros are
defined by command arguments or description file lines with
embedded equal signs.

A macro is invoked by preceding the name by a dollar sign.
The name of the macro is either the single character after the
dollar sign or a name inside parentheses. (Macro names longer
than one character must be parenthesized.)

The following are valid macro invocations:

8-16

$(CFLAGS)
S2
$(xy)

sz
$(Z)

MAKE

The last two invocations are identical. A $$ is a dollar sign.

The $,.., $@, $?, and $< are four special macros which change
values during the execution of the command.

The following fragment shows assignment and use of some
macros:

OBJECTS - x.o y .o z.o
LIBES - -IS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -o prog

Using the example illustrated above, the make command loads
the three object files with the IS library. The command:

make ~LIBES= -II -IS"

would load them with both the LEX (-II) and the standard
(-IS) libraries. Macro definitions on the command line over­
ride definitions in the description file.

NOTE: Remember to QUOTE arguments with embedded
blanks in UNIX Operating System commands.

8-17

MAKE

4. Substitutions

A description file contains the following information:

• Macro definitions
• Dependency information
• Executable commands

Comments are introduced with a hash symbol (#) and all char·
acters on the same line after a hash symbol are ignored. Blank
lines and lines beginning with a hash symbol (#) are totally
ignored.

If a non·comment line is too long, the line can be continued by
using a backslash. If the last character of a line is a backslash,
make replaces the backslash, the newline and all following
blanks and tabs with a single blank.

A macro definition is a line containing an equal sign NOT pre­
ceded by a colon or a tab. The macro name is composed of a
string of letters and digits to the left of the equal sign (trailing
blanks and tabs are stripped). The macro name is assigned the
value of the string of characters following the equal sign (lead­
ing blanks and tabs are stripped).

The following are valid macro definitions:

2- xyz
abc= -II -ly -IS
LIBES-

The last definition assigns LIBES the NULL string. A macro
that is never explicitly defined has the NULL string as the
macro's value.

8-18

MAKE

Macro definitions may also appear on the make command line.

The general form of an entry in a make descriptor file is:

targetl ltargetl •.) :1:1 (dependentl .•) I; commands) I# •. J
((tab) commands] [# .. .]

• Items inside brackets may be omitted.

• Targets and dependents are strings of letters, digits,
periods, and slashes.

• Shell metacharacters such as "•" and "?"are expanded.

• A command is any string of characters not including a
sharp (#) except when the sharp is in quotes or not
including a newline.

• Commands may appear either after a semicolon on a
dependency line or on lines beginning with a tab immedi­
ately following a dependency line.

• A dependency line may have either a single or a double
colon.

• A target name may appear on more than one dependency
line, but all of those lines must be of the same (single or
double colon) type.

For the usual SINGLE-COLON case, a command sequence
may be associated with, at most, ONE dependency line.

If the target is out-of-date with any of the dependents on any
of the lines, and a command sequence is specified (even a
NULL one following a semicolon or tab), it is executed. Oth­
erwise, a default creation rule may be invoked.

In the DOUBLE-COLON case, a command sequence may be
associated with each dependency line. If the target is out of

8-19

MAKE

date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed.
If a tlllget must be created, the sequence of commands is exe­
cuted. This detailed form is of particular value in updating
archive-type files.

Normally, each command line is printed and then passed to a
separate invocation of the shell after substituting for macros.
The printing is suppressed in the silent mode or if the com­
mand line begins with an @ sign. For example:

@size make /usr/bin/make

If the command line above were in a descriptor file, the print­
ing of the command line itself would be suppressed by the @
sign, but the output of the command would be printed.

The make program normally stops if any command signals an
error by returning a nonzero error code. Errors are ignored by
the following actions:

• Use of the -i flags on the make command line
• Using the "fake" target name ".IGNORE" appears in

the description file
• Beginning the command string in the description file with

a hyphen

Some commands return meaningless status. Because each com­
mand line is passed to a separate invocation of the shell, care
must be taken with certain commands (e.g., cd and shell con­
trol commands) that have meaning only within a single shell
process. These results are forgotten before the next line is exe­
cuted.

4.1 $@, $?, $< and$"'

Before issuing any command, certain internally maintained
macros are set. ____..-

8-20

MAKE

The $@ macro is set to the full target name of the current tar­
get. The $@ macro is evaluated only for explicitly named

(dependencies.
'

The $? macro is set to the string of names that were found to
be younger than the target. The $? macro is evaluated when
explicit rules from the makefile are evaluated.

If the command was generated by an implicit rule, the $<
macro is the name of the related file that caused the action.

If the command was generated by an implicit rule, the $* macro
is the prefix shared by the current and the dependent file
names.

4.2 .DEFAULT and .PRECIOUS

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
".DEFAULT" are used. If there is no ".DEFAULT," make
prints a message and stops.

If a file or files are assigned as dependent to .PRECIOUS, those
files will not be removed regardless of any command to the
contrary.

8·21

MAKE

5, Command Usage

The make command takes:

• macro definitions,

• flags,

• description file names,

• target file names as arguments in the form:

make [.flm;s] [macro definitions] [tarxets]

The following summary of command options explains how
these arguments are interpreted:

1. First, all macro definition arguments (arguments with
embedded equal signs) are analyzed and the assignments
made. Command-line macros override corresponding
definitions found in the description files.

2. Next, the flag arguments are examined. The permissible
flags are as follows:

8-22

- i Ignore error codes returned by invoked commands.
This mode is entered if the fake target name
".IGNORE" appears in the description file.

- s Silent mode. DO NOT print command lines before
executing. This mode is also entered if the "fake"
target name ".SILENT" appears in the description
file.

- r DO NOT use the built-in rules.

- n NO EXECUTE mode. Print commands, but do not
execute them. Even lines beginning with an "@"
sign are printed.

-t Touch the target files (causing them to be
up-to-date) rather than issue the usual commands.

MAKE

- q Question. The make command returns a zero or
nonzero status code depending on whether the target

,f file is or is not up to date.

-p Print out the complete set of macro definitions and
target descriptions.

-d DEBUG mode. Print out detailed information on
files and times examined.

- f Description file name. The next argument is
assumed to be the name of a description file. A file
name of "-" denotes the standard input. If there
are no "-f" arguments, the file named makefUe or
Makefile in the current directory is read. The con­
tents of the description files override the built-in
rules if they are present.

- b Compatibility mode for old makefiles.

-k Abandon work on the current entry, but continue
,.--. work on other branches that do not depend upon

that entry

-e Cause environment variables to override assign­
ments within makeflles.

-m Print a memory map showing text, data and stack.
DOES NOT operate on systems with a getu system
call.

3. Finally, the remaining arguments are assumed to be the
names of targets to be made, and are done in left-to-right
order. If there are no remaining arguments, the first
name in the description files that does not begin with a
period is "made."

8-23

MAKE

6. Suffixes and Transformation

The make program does not know what file name suffixes are
interesting or how to transform a file with one suffix into a file
with another suffix. This information is stored in an internal
table that has the form of a description file. If the -r flag is
used, the internal table is not used.

The list of suffixes is actually the dependency list for the name
".SUFFIXES" in the description file. The make program
searches for a file with any of the suffixes on the list. If such a
file exists and there is a transformation rule for that combina­
tion, make transforms a file with one suffix into a file with
another suffix.

The names of the transformation rules are the concatenation of
the two suffixes. For example, the name of the rule to
transform a .r file to a .o file is ".r.o"

If the rule is present and no explicit command sequence has
been given in the description file, the command sequence for
the rule .r.o is used.

If a command is generated by using one of these suffixing
rules, the macro $* is given the value of the "root" name of
the file to be "made" - the "root" name is everything but the
suffix. The macro S< is the name of the dependent that
caused the action.

The order of the suffix list is significant since the list is scanned
from left to right. The first name formed that has BOTH a file
and a rule associated with it is used.

If new names are to be appended, an entry can be added for
".SUFFIXES" in the description file. The dependents are

8-24

' , __ _

MAKE

added to the usual list.

A ".SUFFIXES" line without any dependents deletes the
current list. It is necessary to clear the current list if the order
of names is to be changed.

The following is an excerpt from the default rules file
(rules.c):

8-25

MAKE

8-26

.SUFFIXES : .o .c .e .r .f .y .yr .ye .I .s
YACC = yacc
YACCR = yacc -r
YACCE = yacc -e
YFLAGS-
LEX = lex
LFLAGS-
cc = cc
AS= as -
CFLAGS-
RC- ec
RFLAGS-
EC = ec
EFLAGS-
FFlags =
.c.o :

$(CC) $(CFLAGS) -c $<
.e.o .r.o .f.o :

.s.o :

.y.o :

.y.c :

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

$(AS) -o $@ $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(Y ACC) $(YFLAGS) $<
mv y.tab.c $@

MAKE

7. Implicit Rules

The make program uses a table of interesting suffixes and a set
of transformation rules to supply default dependency informa­
tion and implied commands.

The default suffix list is as follows:

DEFAULT SUFFIX LIST

•• Object file
.c C source file
.e EFL source file
.r RATFOR source file
.f FORTRAN source file
.s Assembler source file [as(l)]
.y Y A CC-C source grammar
.yr YACC-RATFOR source grammar
.ye Y ACC-EFL source grammar
. I LEX source grammar .

Figure 8.1. Default MAKE Suffix List

If there are two paths connecting a pair of suffixes, the longer
one is used ONLY if the intermediate file exists or is named in
the description.

If the file x.o were needed, and a file called x.c was found in
the description or directory, the x.o file would be compiled. If
there were also an x.l, that grammar would be run through
LEX BEFORE compiling the result.

If the file x.o were needed and no x.c was found, but an x.l
existed, make would discard the intermediate C language file
and use the direct link.

8-27

MAKE

It is possible to change the names of some of the compilers
used in the default or the flag arguments with which they are
invoked by knowing the macro names used.

The compiler names are the macros AS. CC, RC, EC, YACC,
YACCR,YACCEandLEX.

The command

make CC- newcc

will cause the newcc command to be used instead of the usual
C language compiler.

The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS and
LFLAGS may be set to cause these commands to be issued
with optional flags.

For example:

make "CFLAGS =-0"

causes the C language optimizer to be used.

8-28

MAKE

8. Suggestions and Warnings

The most common difficulties arise from make's specific mean­
ing of dependency. For example, if file x.c contains the line
"#include "defs"," the object file x.o depends on defs. How­
ever, the source file x.c does NOT depend on defs. If defs is
changed, nothing is done to the file x.c, but file x.o must be
recreated.

To discover what make would do, the - n option is very use­
ful. For example:

make -n

instructs make to print out the commands which it would issue
without actually executing them.

If a change to a file is absolutely certain to be mild in character,

1
r-' such as adding a new definition to an include file, the - t
\ (touch) option can save a lot of time. When -t is used, make

updates the modification times on the affected file, but does not
perform a large number of superfluous recompilations. For
example:

make -ts

("touch silently") causes the relevant files to appear up to date.
Obvious care is necessary since this mode of operation subverts
the intention of make and destroys all memory of the previous
relationships.

The debugging flag (-d) causes make to print out a very
detailed description of what it is doing including the file times.
The output is verbose and recommended ONLY as a last resort.

8-29

c -

Chapter 9: AUGMAKE

CONTENTS

1. Introduction • . . .

2. Environment Variables
2.1 MAKEFLAGS
2.2 Precedence • .

3. Internal Definitions

4. Recursive makefiles

5. Shell Command Format

6. Archive Libraries

7. Example

8. SCCS File Names
8.1 SCCS Suffixes .
8.2 SCCS Transformation Rules
8.3 Invisible SCCS makefiles

9. The NULL Suffix

10. Include Files . .

11. Dynamic Dependency Parameters
11.1 Extensions of Internally Generated

Macros • . .

12. Output Translations

13. Incompatibility with Old Version of make

14. The Hidden Variable

- i -

1

2
2
2

5

9

10

11

15

17
17
17
18

19

20

21

22

24

26

27

Chapter 9

MAKE-

AUG MAKE

AN AUGMENTED VERSION

1. Introduction

This section describes an augmented version of the UNIX~"M
Operating System's make command. This new version of make
is presented through brief descriptions and examples of working
makefiles. Only the additional features are described in this
chapter, See the chapter entitled "MAKE - MAINTAINING
COMPUTER PROGRAMS" in the UniPius+ Programming
Tools Guide.

This augmented version is upward compatible with the old ver­
sion.

Some justification will be given for the chosen implementation,
and examples will demonstrate the additional features.

This augmented version was developed primarily due to the fact
that the previous version of make had the following shortcom­
ings:

• Handling of libraries was tedious.

• Handling of the Source Code Control System (SCCS) file
name format was difficult or impossible.

• Environment variables were completely ignored by make.

• There was a general lack of ability to maintain files in a
remote directory.

These shortcomings hindered large scale use of make as a pro­
gramming tool.

9-1

AUG MAKE

This augmented version of make is modified to handle the
above problems.

2. Environment Variables

2.1 MAKEFLAGS

A new macro, MAKEFLAGS, is maintained by make. This
new macro is defined as the collection of all input flag argu­
ments into a string (without minus signs). The new macro is
exported and accessible to further invocations of make.

Command line flags and assignments in the makefile update
MAKEFLAGS.

:MAKEFLAGS are read and set again when the environment
settings are read by make.

2.2 Precedence

Environment variables are read and added to the macro
definitions each time make executes. Precedence is a prime
consideration in doing this properly. The following is the pre­
cedence of assignments:

l. Command line
2. Makefile(s)
3. Environment
4. Internal definitions from rules.c

When executed, make assigns macro definitions in the follow­
ing order:

1. Read the MAKEFLAGS environment variable.

9-2

Each letter in MAKEFLAGS is processed as an input flag
argument, unless the letter is one of the following:

• -f
• -p

2.

AUG MAKE

• -r

If the MAKEFLAGS variable is NULL, or is not present,
MAKEFLAGS is set to the NULL string.

Read and set the input flags from the command line.

The command line adds to the previous settings in the
MAKEFLAGS environment variable.

3. Read macro definitions from the command line.

Any macro definitions set from the command line CAN­
NOT be reset. Further assignments to these macro names
are ignored.

4. Read the internal list of macro definitions.

Make reads the file rules.c in the source for make, which
contains the internal list of macro definitions.

Consider the following:

If the command make - r ... is given, and a makefile
includes the internally defined rules and macros of the
current version of make, the - r option would have no
effect. In fact, the effect would be identical to that occur­
ring if both the - r option and the include line in the
makefile where excluded.

The section of this document entitled Internal
Definitions contains the complete makefile that
represents the rules and internally defined macros of the
current version of make. The contents of this makefile
can be directed to standard output with the following
command:

make -fp < /dev/null 2>/dev/null

5. Read the environment.

The environment variables are treated as macro

9-3

AUG MAKE

definitions and marked as exported.

NOTE: Because MAKEFLAGS is NOT an internally
defined variable in the file rules.c, this step has
the effect of doing the same assignment twice.
(The exception to this is when MAKEFLAGS is
assigned on the command line.) The reason
the MAKEFLAGS variable was read previously
was to make sure that the debug flag was turned
on, if necessary, before anything else was done.

:MAKEFLAGS is read and set again.

6. Read the makefile(s).

9-4

The assignments in the makefile(s) override the environ~
ment unless the -e flag is used. The command line
option - e instructs make to override the makeflle
assignments with the environment settings.

MAKEFLAGS override the environment if assigned.
This is useful for further invocations of make from the
current makefile.

There is no way to override the command line assign­
ments.

Consider the following:

If the command make - e ••• is given, the variables in the
environment override the definitions in the makeftle and
reset the precedence of assignments to the following:

l. Command line
2. Environment
3. Makefile(s)
4. Internal definitions from rules.c

.,--.

AUG MAKE

3. Internal Definitions

The folllowing is the contents of the makefile representing the
internally defined macros and rules:

LIST OF SUFFIXES

.s .s- .sh .sb- .h .h-

PRESET VARIABLES

MAKE-make
YACC-yaec
YFLAGS­
LEX=lex
LFLAGS­
LD-Id
LDFLAGS­
CC=cc
CFLAGS=-o
AS=as
ASFLAGS­
GET-get
GFLAGS-

SINGLE SUFFIX RULES

.c:

.sb:

$(CC) -n -0 S< -o $@

$(GET) $(GFLAGS) -p S< > S•.c
$(CC) -n -0 $o.c -o $•
-rm -f S..c

cp $< @

$(GET) &(GFLAGS) -p S< > .sb
cp S. .sh $•
-rm -f $- .sh

9-S

AUG MAKE

DOUBLE SUFFIX RULES

.c.o:

.c~.c:

.s.o:

.y.o:

9-6

$(CC) $(CFLAGS) -c $<

$(GET) $(CFLAGS) - p $< > S•.c
$(CC) $(CFLAGS) -c $o.c
-rm -f S•.c

$(GET) $(GFLAGS) -p $< >$•,c

$(AS) $(ASFLAGS) -o $@ $<

$(GET) $(GFLAGS) - p $< > $•.s
$(AS) $(ASFLAGS) -o $•.o $•.s
-rm -f s ... s

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
nn y.tab.o$@

$(GET) $(GFLAG) -p $< > $o.y
$(YACC) $(YFLAGS) S•.y
$(CC) $(CFLAG) -c y.tab.c
rm -f y.tab S*.y
mv y .tab.o S•.o

AUG MAKE

.l.o:
$(LEX) $(LFLAGS) $<

r $(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c
mv lex.yy.o $@

.1~.o:

$(GET) $(GFLAGS) -p S< > $•.1
$(LEX) $(LFLAGS) $>.1
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $•.1
mv lex.yy.o S•.o

.y.c:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

.y-.c:
$(GET) $(GFLAGS) - p $< > S•.y
$(YACC) $(YFLAGS) $-.y

(mv -f S*.c
-rm -f S..y

' -
.I.e:

$(LEX) $<
mv lex.yy.c$@

.c. a:
$(CC) - c $(FLAGS) $<
ar rv $@ S•.o
nn -f S•.o

.c-.a:
$(GET) $(GFLAGS) - p $< > S•.c
$(CC) -c $(CFLAGS) S•.c
ar rv $@ S•.o

9-7

AUG MAKE

9-8

$(GET) $(GFLAGS) - p $< > S•.s
$(AS) $(ASFLAGS) -o S•.o S•.s
ar rv $@ S•.o
-rm -f S*.(sol

$(GET) $(GFLAGS) - p $< > S•.b

~
I

--

AUG MAKE

4. Recursive makefi.les

If the sequence $(MAKE) appears anywhere in a shell com­
mand line, the command line is executed even if the -n flag
has been set.

Since the -n flag is exported across invocations of make by
the MAKEFLAGS variable, the only thing that actually gets
executed is the make command itself. This feature is useful
when a hierarchy of makefile(s) describes a set of software
subsystems.

For testing purposes, make - n ... can be executed and every­
thing that would have been done will be echoed to standard
output, including output from lower level invocations of make.

9-9

AUGMAKE

5. Shell Command Format

The make program remembers embedded newlines and tabs in
shell command sequences. If there is a for loop in the makefile
with indentation, make will print it out with the indentation
and backslashes.

Output can still be piped to the shell and is readable.

This is a cosmetic change - no new function is gained.

9-10

AUG MAKE

6. Archive Libraries

(' The augmented version of make has an improved interface to
-- archive libraries. The previous version of make allows a user

to name a member of a library in either of the following ways:

• lib(object.o)
• libH_localtime))

Use of Hb((_localtime)) actually refers to the entry point of an
object file within the library, and instructs make to look
through the library, locate the entry point and translate the
reference given to the correct object file name.

Using the old version of make, to maintain an archive library
the following type of makefile is then required:

lib:: lib(ctime.o)
$(CC) -c -0 ctime.c
ar rv lib ctime.o
rm ctime.o

lib:: lib(fopen.o)
$(CC) -c -0 fopen.c
ar rv lib fopen.o
rm fopen.o

and so on for each object ...

This method is tedious and error prone. Obviously, the com­
mand sequences for adding a C language file to a library are the
same for each invocation. In most cases, the file name is the
only difference each time. Therefore, the augmented version
of make provides a rule for building libraries.

,r- The rule for building libraries using the augmented version of
make is the .a suffix rule. For example, the .c.a rule is the
rule for:

9-11

AUGMAKE

• Compiling a C language source file
• Adding a C language source file to the library
• Removing the .o cadaver of the C language source

file

The .y.a rule is the rule for perfoming the same functions on a
YACC file.

The .s.a rule is the rule for performing the same functions on
an assembler file.

The .l.a rule is the rule for performing the same functions on a
LEX file.

The current archive rules defined internally are .c.a, .c-.a, and
.s-.a. (See the section of this document concerning SCCS files
for an explanation of the tilde (-) syntax.)

Programmers may choose to define additional rules in the
makefile(s).

A library is then maintained with the following shorter
makefile:

lib:
lib(ctime.o)
@echo lib up-to-date.

It should be understood that it is the first parenthesis in the
name of the file and not an explicit .a suffix which identifies
the target suffix rule. For example, the actual rule .c.a is
defined as follows:

.c. a:

9-12

$(CC) -c $(CFLAGS) $<
ar rv $@ S*.o
rm -f$*.0

AUG MAKE

In the .c.a rule:

,r- $@ This macro is the .a target. (Using the previous
example, this macro would be defined as lib.)

S< and $• These macros are set to the out-of-date C language
file, and the file name scans the suffix Using the
previous example, these macros would be defined
as ctlme.c and ctime. Using this example, the $<
macro could have been changed to S..c.

When make sees this instruction in the makefile (assuming the
object in the library is out of date with respect to ctime.c, and
there is no ctime.o file) it translates that construction into the
following sequence of operations:

I. Do lib.

2. To do lib, do each dependent of lib.

3. Do lib (ctime.o).

4. To do lib(ctime.o), do each dependent of Iib(ctime.o).
(There are none in this example.)

5.

To let ctime.o have dependencies, the following syntax is
required:

lib(ctime.o): $0NCDIR) /stdio.h

Thus, explicit references to .o files are unnecessary.

There is also a new macro for referencing the archive
member name when this form is used. The S% macro is
evaluated each time $@ is evaluated. If there is no
current archive member, S% is NULL. If an archive
member exists, then $% evaluates to the expression
between the parentheses.

Use internal rules to try to build Ub(ctime.o). (There is
no explicit rule.)

9-13

AUG MAKE

Note that it is the first parenthesis in the name
llb(ctime.o) which identifies the target suffix. This is the
key. There is no explicit .a at the end of the lib library
name. The parenthesis forces the .a suffix. In this sense,
the suffix is hard·wired into make.

6. Break the name Iib(ctime.o) up into lib and ctime.o.
Define two macros,$@ (-lib) and S• (=ctime).

7. Look for a rule .X.a and a file $•.X. The first .X (in the
.SUFFIXES list in rules.c) which fulfills these conditions
is .c so the rule is .c. a and the file is ctime.c.

8. Set $< to be ctime.c and execute the rule.

In fact, make must then do ctime.c. However, the
search of the current directory yields no other candidates,
and the search ends.

9. The library has been updated. Do the next instruction
associated with the lib: dependency. Therefore, make
will echo lib up to date.

9-14

AUG MAKE

7. Example
r
' The following is an example makeftle for a larger library:

Example makefile

LIB=lsxlib
PR-Ip
INSDIR- /rl/ftopO/
INS=eval

lsx: $(LIB) low.o mch.o
ld -x low.o mch.o $(LIB)
mv a.out lsx
@size lsx

Here, $(INS) as either "." or "eval".

lsx:

print:

SONS)' cp lsx $(1NSDIR)Isx .
strip $(INSDIR)lsx .
Is -I $(INSDIR)Isx"

$(PR) header.slow.smch.s•.h•.c Makeftle

$(LIB):
$(LIB)(CLOCK.o)
$(LIB)(maln.o)
$(LIB)(tty.o)
$(LIB) (trap.o)
$(LIB) (sysent.o)
$(LIB)(sys2.o)
$(LIB) (synJ.o)

!' $(LIB)(syn4.o)
$(LIB) (sysl.o)
$(LIB) (sig.o)
$(LIB) (fio.o)

9-15

AUG MAKE

. s.o:

.o.a:

.s.a:

$(LIB) (kl.o)
$(LIB) (alloc.o)
$(LIB) (nami.o)
$(LIB) (iget.o)
$(LIB) {rdwri.o)
$(LIB) (subr.o)
$(LIB) (bio.o)
$(LIB) (decfd.o)
$(LIB) (sip.o)
$(LIB) (space.o)
$(LIB) (puts.o)
@echo $(LIB) now up to date .

as -o S•.o header.s $•.s

ar rv $@ $<
rm -f $<

as -o S•.o header.s S*.s
ar rv $@ $•.o
rm -f $•.o

.PRECIOUS:
$(LIB)

Note that using this makefile, there will not be any lingering
•.o files. The result is a library maintained directly from the
source files (or more generally from the sees files).

9-16

AUG MAKE

8. sees File Names

.r- The syntax of make does not directly permit prefix references.
,___ Commonly, UNIX Operating System users distinguish most

types of files, by means of a suffix, so references to prefixes are
seldom necessary. That is, with one important exception -
sees files.

I

SCCS file names are preceded with a .s prefix. To allow make
easy access to this prefix, the augmented version of make uses
the tilde r> as an identifier of sees files.

The expression .c-.o refers to the rule which transforms an
sees C language source file into an object file .

. c-.o:
$(GET) $(GFLAGS) -p $< > S•.c
$(CC) $(CFLAGS) -c S•.c
-rm -r S*.c

The tilde appended to any suffix transforms the file search into
an SCCS file name search with the actual suffix named by the
dot and all characters up to (but not including) the tilde(-).

8.1 sees Suffixes

The following sees suffixes are internally defined:

.c- .y- .s- .sh- .h-

8.2 sees Transformation Rules

The following rules involving sees transformations are inter­
nally defined:

- .r.o: .sb-: - -.c : .y .c: .c .o:

- -.o: -.a: -.o: .h-.h: .c .a: .s .s .y

9·11

------------------- --

AUG MAKE

Other rules and suffixes which may prove useful can be defined
using the tilde as a handle on the sees file name format.

8.3 Invisible SCCS makefiles

sees makefiles are invisible to make in that if make is typed
and only a file named s.makefile exists, make will get, read
and remove the file.

If the - f option is used, make will get, read and remove argu­
ments and include files.

9-18

AUG MAKE

9. The NULL Suffix

f In the UNIX Operating System source code, there are many
commands which consist of a single source file. It was wasteful
to maintain an object of such files for make. The current
implementation supports single suffix rules (a NULL suffix).

For example, to maintain the program cat, a rule in the
makefile of the following form is needed:

.c:
$(CC) -n -0 $< -o $@

This .c: rule is internally defined so no makefile is necessary at
all. To make the programs cat, dd, echo and date (all single
file programs), the command line would simply be:

make cat dd echo date

Giving this command instructs make to pass all four C
language source files through the above shell command line
associated with the .c: rule.

The following are the internally defined single suffix rules:

.c: .c~: .sh: .sh~:

Others may be added in the makefile by the user.

9-19

AUG MAKE

10. Include Files

If the string include appears as the first seven letters of a line
in a makefile and is followed by a blank or a tab, the string fol­
lowing is assumed to be a file name to be read by the current
invocation of make.

The file descriptors are stacked for reading include files, there­
fore no more than approximately 16 levels of nested includes
are supported.

9-20

AUG MAKE

11. Dynamic Dependency Parameters

A new dependency parameter has been defined which has
meaning ONLY on the dependency line in a makefile. This
parameter, $$@, refers to the current thing to the left of the
colon (which is$@).

For example, consider the following:

cat: $$@.c

In this example, the dependency is translated into the string
cat.c at execution time. This is useful for building a large
number of executable files, each of which has only one source
file.

For example, the UNIX software command directory could
/"'""""' have a makefile like the following:

CMOS = cat dd echo date cc cmp comm ar ld chown

$(CMDS): $$@.c
$(CC) -0 $? -o $@

In this example, CMDS is defined as a subset of all the single
file programs.

For multiple file programs, a directory is usually allocated and a
separate makefile is made. For any particular file that has a
peculiar compilation procedure, a specific entry must be made
in the makefile.

The second useful dependency parameter is $$(@F). The
;---- parameter $$(@F) is another form of$$@ which represents the
i,_ file name part of $$@. This parameter is also evaluated at exe·

cution time.

9-21

AUGMAKE

To illustrate the usefulness of this parameter, consider the fol­
lowing example. To maintain the /usr/include directory from a
makefile in another directory (called ·/usr/src/head in this
example), the makefile would look like:

INCDIR = /usr/include

INCLUDES - \
$(1NCDIR)/stdio.h \
$(1NCDIR)/pwd.h \
$(1NCIDR)/dir.h \
$(1NCDIR)/a.out.h

$(INCLUDES): $$(@F)
cp $? $@
chmod 0444 $@

This makefile would completely maintain the /usr/include
directory whenever one of the above files in /usr/src/head was
updated.

11.1 Extensions of Internally Generated Macros

The internally generated macros:

• $•
• $@
• $<

are useful generic terms for current targets and out-of-date
relatives.

To this list have been added the following related macros:

• $(@D)

• $(@F)

• $(•D)

• $(•F)

• $(<D)

• $(<F)

9·22

AUG MAKE

The D refers to the Directory part of the single letter macro,
and the F refers to the File name part of the single letter

,~ macro. These additions are useful when building hierarchical
makefiles.

For example, the following instruction uses the D to gain
access to directory names for purposes of using the cd com­
mand:

cd $(<D); $(MAKE) $(<F)

Also consider the following example, which forces a complete
rebuild of the operating system:

FRC=FRC make -f 70.mk

where the current directory is the top of the file system.

FRC is a convention for FoRCing make to completely rebuild a
target starting from scratch.

9-23

AUG MAKE

12. Output Translations

Macros in shell commands can now be translated when
evaluated. To accomplish this, use the following format:

$(macro:stringl =string2)

When make encounters this construction, it first evaluates the
meaning of $(macro) by considering $(macro) as a bunch of
strings each delimited by white space (blanks or tabs). Then,
for each appearance of stringl in $(macro), string2 is substi~
tuted. The stingl is located when the following regular expres­
sion is matched:

.•<strlngl>ITABIBLANK I

This particular form of regular expression is used because make
generally concerns itself with suffixes.

A more general regular expression match can be implemented
if necessary.

To illustrate the usefulness of this facility, consider the follow­
ing example situation:

To maintain an archive library, the out-of-date members must
be accumulated and a shell script must be written to handle all
the C programs. The following fragment will optimize the exe­
cutions of make for archive libraries:

9-24

.SUFFIXES: .c .a

.c.a:;
$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIBHc.o)

$(CC) -c $(CFLAGS) $(?:.o-.cl
ar rv $(LIB) $?
rm $?

r
'

AUG MAKE

The translation ($(?:.o=.c)) is added in an effort to make
more general use of the wealth of information which make
generates.

9-25

AUG MAKE

13. Incompatibility with Old Version of make

The only known incompatibility with the older version of make
is seen in the following example makefile:

all: cat dd

dd: dd.o
$(CC) -o $@ $?

cat: cat.o
$(CC) -o $@ $?

The old version of make will NOT complain that all does not
have a rule associated with it, but the augmented version will.

The - b option instructs make to revert to the old method, so
that old makefiles can be run with this augmented version of
make.

Any other differences are unintentional.

9-26

AUG MAKE

14. The Hidden Variable

There is an interesting hidden variable in this version of make
- $! which represents the current predecessor tree.

For example, using the following makeftle:

all: cat
@echo cat up-to-date

cat: cat.c
echo$!

when the echo $! is executed, the variable $! evaluates to

cat.c cat all

which is not all that useful! Further, it occasionally prints the
following message:

$! nulled, predecessor circle

This message means that the predecessors of a file are circular.
The actual evaluation of the S! macro was aborted, and its
value set to NULL. Otherwise, there is no effect.

9-27

('

c

r

Chapter 10

SCCS: Source Code Control System

CONTENTS

I. Introduction

2. SCCS for Beginners
2.1 Terminology
2.2 Creating an SCCS File
2.3 Retrieving an SCCS File
2.4 Record Your Changes in a New

Version • • • • • • •
2.5 SIDs: More on Retrieving Versions
2.6 Help . .

3. sees Files
3.1 Protection . . .

3.1.1 SCCS Administrator
3.1.2 An Interface Program

3.2 Formatting . .
3.3 Auditing
3.4 Delta Numbering . . .

4. SCCS Commands Conventions
4.1 Command Arguments
4.2 Flags
4.3 Diagnostics
4.4 Temporary Files

5. SCCS Command Summary
5. t The ad min Command

5.1.1 Creating SCCS Files
5.1.2 sees Flags . . .
5.1.3 Comments and MR Numbers
5.1.4 Descriptive Text

5.2 The cdc Command

- i -

2

4
4
4
6

7
8
9

II
II
13
13
16
17
19

23
23
24
24
24

28
30
30
31
34
35
36

5.3 The comb Command
5.4 The delta Command
5.5 The get Command

5.5.1 lD Keywords
5.5.2 Retrieving Different Versions
5.5.3 Retrieving Files to Make Deltas
5.5.4 Concurrent Edits of Different

S!Ds
5.5.5 Concurrent Edits of Same SID
5.5.6 Keyletters That Affect Output

5.6 The unget Command
5.7 The help Command .
5.8 The prs Command
5.9 The rmdel Command
5.10 The sact Command
5.11 The sccsdiff Command
5.12 The val Command
5.13 The what Command .

LIST OF FIGURES

Figure 10-1. A Project-Dependent Interface
Program

Figure 10-2. Evolution of an SCCS File

Figure 10-3. Tree Structure With Branch
Deltas

Figure 10-4. Extending the Branching Concept

Figure 10-5. Determination of New SID (Sheet I of

37
39
44
45
46 ~
49

52
58
58
62
63
64
67
69
70
71
72

14

20

21

22

31 . • • • • . • 55

Figure 10-5. Determination of New SID (Sheet 2 of
3) . • • • • • • • • . . . 56

Figure 10-5. Determination of New SID (Sheet 3 of
3) 57

- ii -

sees

Chapter 10

(SCCS: Source Code Control System
--

(

1. Introduction

The Source Code Control System (SCCS) is a collection of
UniPlus+ software commands that controls and accounts for
changes to files of text. sees provides facilities for:

• Storing text files

• Retrieving earlier versions of files

• Controlling update privileges to files

• Identifying the version of a retrieved file

• Recording when, where, why, and by whom each change
is made to a file.

'~ It is convenient to think of sees as a custodian of files. It
stores the original file on disk, and whenever changes are made
to the file, sees stores only the changes. Each set of changes is
called a delta. Different versions of the file can then be recon­
structed by applying deltas to the original version of the file.

This chapter and the relevant portions of the UniP/us+ User
Manual provide a complete guide to sees. The following topics
are covered here:

• sees for Beginners: A step-by-step tutorial that demon­
strates how to create, update, and retrieve a version of an
sees file.

• sees Files: A description of the protection mechanisms,
format, auditing, and delta numbering of sees files. The
differences between individual sees use and group or
project sees use are discussed, and the role of the sees
Administrator is introduced.

10-l

sees

• SCCS Command Conventions: A description of the con­
ventions that generally apply to SCCS commands and the
temporary files generated by sees commands for various
purposes during their execution.

• SCCS Command Summary: A description of all SCCS
commands and their most frequently used arguments.

Neither the implementation of SCCS nor the installation pro­
cedure for sees is described in this chapter.

Throughout this chapter, references to name(lM), name(?), or
name(8) refers to the name entry in the UniP/us+ Administrator
Manual. All other references of the form name(n), (where n is
a number 1 through 6 possibly followed by a letter) refer to the
name entry in section n of the UniP/us+ User Manual

The percent sign (%) at the beginning of command lines
represents the default C Shell prompt and is not part of the
command.

10-2

sees

1 2. SCCS for Beginners
'

r-
'

This section assumes that you know how to login to a
UniPius+ system and create files using a text editor. To sup­
plement the material in this section, see the detailed sees
command descriptions in the UniP/us+ User Manual.

2.1 Terminology

Each SCCS file is composed of one or more sets of changes
applied to the null (empty) version of the file. Each set of
changes is called a delta. Each delta normally depends on all
previous deltas.

Each delta is assigned a name, called the SID (SCCS
IDentification String). The SID is normally composed of two
components: the release number and level number, separated
by a period. The first delta (for the original file) is called 1.1,
the second 1.2, the third 1.3, etc. The release number can also
be changed (allowing, for example, deltas 2.1, 3.1, etc.) to indi­
cate a major change to the file. Under special conditions, SIDs
can be created with four components. See the section on
"Delta Numbering" for more information.

Each delta of an sees file defines a particular version of the
file. For example, delta 1.5 defines version 1.5 of the sees
file. This version is obtained by applying to the null (empty)
version of the file the changes that constitute deltas 1.1, 1.2,
etc., up to and including delta 1.5 itself, in that order.

2.2 Creating an SCCS File

Consider an ordinary text file called lang that contains a list of
programming languages:

10-3

sees

c
pl/i
fortran
cobol
algol

The following admin command creates an SCCS file and initial­
izes delta 1.1 from the file lang:

% admin -liang s.lang

The -i keyletter, together with its value lang, indicates that
admin is to create a new SCCS file and 'initialize' the new
(null) version with the contents of the file named lang. This
initial version is a set of changes (delta 1.1) applied to the null
sees file.

The s.lang argument is the file name for the new SCCS file .

..- All SCCS files must have names that begin with 's.'.

The ad min command returns a warning message (which may
also be issued by other sees commands):

No id keywords (cm7)

The significance of this message is described under the get
command in the section on "SCCS Command Summary"
below. In the following examples, this warning message is not
shown although it may actually be issued by the commands.

You can now remove the lang file from your directory:

10-4

sees

% rm lang

since it can be easily reconstructed using the SCCS get com­
mand.

2.3 Retrieving an SCCS File

The lang file can be reconstructed using the following get com­
mand:

%get s.lang

This retrieves the latest version of file s.lang and prints the fol­
lowing messages:

1.1
5 lines

These messages indicate the SID of the version retrieved, and
the length of the retrieved text. The text is placed in a file
(called the g-fi/e) whose name is formed by deleting the 's.'
prefix from the name of the SCCS file. Hence, the file lang is
reconstructed.

When you use the get command with no keyletters (in the for­
mat above) the lang file is created with read-only mode (mode
440), and no information about the sees file is retained. If
you want to be able to change an SCCS file and create a new
version, use the -e key letter on the get command line:

%get -e s.lang

The -e key letter causes get to create lang with read-write per­
mission (so you can edit it) and places certain information
about the sees file in another file (called the p-file), which will

10-5

sees

be read by the delta command when the time comes to create a
delta.

The same messages display, except the SID of the next delta
(to be created) is also issued. For example:

%get -e s.lang

1.1
new delta 1.2
5 lines

After this command you can vi into the lang file and make
changes. For example:

%vi lang

c
pili
fortran
cobol
algol
ada
pascal

2.4 Record Your Changes in a New Version

The command:

% delta s.lang

records the changes you made to the lang file within the sees
file.

Delta prompts with:

comments?

10-6

I
'

sees

Your response should be a description of why the changes were
made. For example,

comments? added more languages

The delta command then reads the p-jile and determines what
changes were made to the file lang. When this process is com­
plete the changes to lang are stored in s.lang and delta displays:

1.2
2 inserted
0 deleted
5 unchanged

The number 1.2 is the SID of the new delta, and the next three
lines refer to the changes recorded in the s.lang file.

2.5 SIDs: More on Retrieving Versions

The -r keyletter allows you to retrieve a particular delta by
specifying its SID on the get command line. For our previous
example, the following commands are all equivalent:

%get s.lang
%get -rl s.lang
% get -r1.2 s.lang

The numbers following the -r keyletter are SIDs.

• The first command retrieves the most recent version of
the sees file, since no SID is specified.

• When you omit the level number of the SID (as in the
second command), sees retrieves the most recent level
number in that release. On our previous example, the
latest version in release 1, namely 1.2.)

10-7

sees

• The third command explicitly requests the retrieval of a
particular version (in this case, also 1.2).

Whenever a major change is made to a file, the significance of
that change is usually indicated by changing the release number
(first component of the SID) of the delta being made. Since
normal automatic numbering of deltas proceeds by increment~
ing the level number (second component of the SID), the user
must explicitly change the release number as follows:

%get -e -r2 s.lang

Because release 2 does not yet exist, get retrieves the latest ver­
sion be}Ore release 2 and changes the release number of the
next delta to 2, naming it 2.1 rather than 1.3. This information
is stored in the p-.file so the next execution of the delta com­
mand will produce a delta with the new release number. The
get command then outputs:

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1
is the version delta will create. Subsequent versions of the file
will be created in release 2 (deltas 2.2, 2.3, etc.).

2.6 Help

The help command is useful whenever there is any doubt about
the meaning of an sees message. Detailed explanations of
almost all sees messages can be found using the help com­
mand and the code printed in parentheses after the message.

If you give the command:

10-8

!~

sees

%get abc

sees will print the message:

ERROR [abc]: not an SCCS file (col)

The string 'col' is a code that may be used to obtain a fuller
explanation of that message using the help command. The
command:

%help col

produces:

col:
'not an sees file'

r-- A file that you think is an SCCS file
does not begin with the characters 's. '.

10-9

sees

3. sees Files

This section discusses the protection mechanisms used by
sees, the format of sees files, recommended procedures for
auditing sees files, and how deltas are numbered.

3.1 Protection

sees provides certain protection features directly, i.e., three
sees file flags (release ceiling, release floor, and release lock),
and the user list for sees files.

The flags are set using the -f keyletter with the admin com­
mand (see the section on "SCCS Flags" under the admin com­
mand below.) The flags used for file protection are:

-f./fag This keyletter specifies a flag and possibly a value for
the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin command
line.

10·10

ccei/ The highest release (•ceiling') that may be
retrieved by a get command for editing. ceil is
a number less than or equal to 9999. The
default value is 9999.

ffloor The lowest release ('floor') that may be
retrieved by a get command for editing. floor
is a number less than 9999 and greater than 0.
The default value is I.

llist A list of 'locked' releases to which deltas can
no longer be made. (See admin(l) for the syn­
tax of this list.) The get -e command on one of
these locked releases fails. The character a in
list is equivalent to specifying all releases for
the named sees file.

('
'

sees

SCCS files also contain a user list of login names and/ or group
IDs of users who are allowed to create deltas of that file. This
list is empty by default, which means that anyone may create
deltas. To add names to the list (either to allow permission or
deny it) the -a keyletter is used with the admin command.

-a login A login name or numerical group ID. A group ID is
equivalent to specifying all login names common to
that ID. If login or group ID is preceded by an excla­
mation character ! they are denied permission to make
deltas.

These features are described in more detail under the admln
command below.

In addition to the above features, SCCS uses standard
UniPlus+ protection mechanisms to prevent unauthorized
changes to SCCS files (i.e., changes made by non-Sees com­
mands). These include:

1. New sees files created by the admin command are given
mode 444 (read-only). It is recommended that you don't
change this mode, since it prevents any direct
modification of the files by non-sees commands. It is
further recommended that the directories containing
sees files should be mode 755, which allows only the
owner of the directory to modify its contents.

2. sees files should be kept in directories that contain only
sees files and any temporary files created by sees com­
mands. This simplifies protection and auditing of sees
files. The contents of directories should correspond to
convenient logical groupings, e.g., subsystems of a large
project.

r 3. sees commands will not process an sees file that is
linked to another file. The commands that modify sees
files do so by creating a copy (called the x-.fi/e), modifying

10-11

sees

it, then removing the old s.file and renaming the x-ftle.
(Remember that all SCCS files must have names that
begin with 's. '.) If the old file had more than one link,
this process would break the links. sees commands pro­
duce an error message rather than process a file that has
been linked.

3.1.1 SCCS Administrator

For these protection mechanisms to be most effective, a single
user should own the sees files and directories. If you are the
only SCCS user, the real and effective user IDs are the same·
and the user ID owns the directories containing SCCS files:
(See passwd(l} in the UniPtust User Manual.) In this case,
you can simply use sees directly.

However, when there are several users assigned responsibility
for one sees file (e.g., in large software development pro­
jects), one user (i.e., one user ID) must be chosen as the
'owner' of the sees files. This single user will be the only one
to 'administer' the sees files (e.g., using the admin com­
mand). This user is called the •sees Administrator' for that
project.

This means that no sees users other than the sees Adminis­
trator are able to use those commands that require write per­
mission in the directory containing the sees files. Instead, a
project-dependent program must be written to provide an inter­
face to certain sees commands, usually the get, delta, and, if
desired, nndel and cdc commands.

3.1.2 An Interface Program

An example interface program follows:

10-lZ

nmain (argc, arg~)
int aq:c;
char *argvll;

register inl i;
char cmdstr)LENGTH);
t•
Process file arguments (those that don't begin wilh '-')
•t
for (i =I; i < argc; i + +)

if (argv IillO) != '-')
argvlil = ftlearg (argl'liD;

t•

sees

Get 'simple name' of name used to Invoke this program (strip
off directory prefix, if any)
•t
argviOI.., sname (Brjl')OJ);

t•
IDl'Oke RCIUBI SCCS command, passin& BfiUments
•t
sprlntf(cmdstr, ~/usr/bin/%s\ argv(OJ);
execv (c,dstr,argv };

Figure 10-1. A Project-Dependent Interface Program

A program such as this invokes the desired SCCS command
and causes it to inherit the privileges of the interface program
for the duration of that command's execution. Users whose
login names or group IDs are in the user list for that file (but
who are not the owner), and who have the path to the execut­
able interface program in their PATH variable, are given the
necessary permissions only for the duration of the execution of
the interface program. They can modify the SCeS files only
through the use of those commands that are linked to the inter­
face program.

The interface program must be owned by the sees administra­
tor, must be executable by the new owner. and must have the

10-13

sees

'set user ID on execution' bit 'on'.

Links can then be created between the executable interface pro­
gram and the command names. For example, if the path to the
file is:

/sccs/interjGce.c

Then the commands:

% cd /sees

% cc interfOce. c -o inter [args]

compile the program into the executable module inrer. At this
point, the command:

% chmod 47SS inter

sets the proper mode and 'set user ID on execution bit.' You
can then create links from any directory with the commands:

% In /sees/inter get

% In /sees/inter delta

% In /sccs/inrer nndel

% In /sees/inter cdc

,.. The path to the directory containing the links must then
be included prior the /usr/bin directory in the PATH vari­
able (in the .login or .pro./ile files of all sees users who
need to use the desired SCCS commands). For example:

set path=(. /usr/new /bin /sees /usr/bin /usr/loeal/bin~

10-14

sees

Depending on the type of interface program you have written,
the names of the links can be arbitrary (if the program can
determine from them the names of the commands to be
invoked), the pathname to your project can be supplied, and so
on. If the pathname to your project is supplied in the interface
program, the user can use the syntax:

%get -e s.abc

regardless of where he is currently located in the file system.

The project-dependent interface program, as its name implies,
must be custom-built for each project.

3.2 Formatting

SCCS files are composed of lines of ASCII text arranged in six
parts as follows:

Checksum

Della Table

User List

Flags

Descriptive Text

A line containing the sum of all the charac­
ters of the file (not including this checksum
itself).

Information about each delta, such as type,
SID, date and time of creation, and commen­
tary.

List of login names and/ or group IDs of
users who are allowed to modify the file by
adding or removing deltas.

Indicators that control certain actions of
sees commands.

Arbitrary text provided by the user~ usually a
summary of the contents and purpose of the
file.

10-15

sees

Body Actual text that is being administered by
sees, intermixed with internal sees control
lines.

See sccsjile(4) for detailed information about the contents of
these parts of an SCCS file. The user list is described in the
section on "Protection" above. Flags and descriptive text are
discussed in the section on ''The admin Command" below.
The checksum is described in the "Auditing" section that fol­
lows.

It is important to note that, because SCCS files are ASCII files,
they can be processed by 'normal' UniPius+ commands such as
vi, grep, and cat. t This is very convenient when an SCCS file
must be modified manually or when you simply want look at
the file. However, it is important to be careful about introduc­
ing changes that will affect future deltas.

r11r Caution: Use extreme care when modifying SCCS files
with non·SCCS commands.

3.3 Auditing

On rare occasions (such as a system crash) an SCCS file or one
or more 'blocks' of it can be destroyed. The SCCS commands
issue an error message when a file you attempt to process does
not exist; they also use the checksum stored in the sees file to
determine whether a file has been corrupted since it was last
accessed.

If an SCCS file has been corrupted (if part of its contents are
lost) the only sees command that will process the file is the

t Described in Section I of the Uw/'/n, Cwr .\lwmal.

10-16

sees

admin command with the -h or -z keyletters, as described
below. It is recommended that sees files be audited for possi­
ble corruptions on a regular basis. The simplest and fastest way
to audit your sees files is to execute the admin command with
the -h keyletter:

% admin -h s.filel s.ji/e2 ...

If the new checksum of any file is not equal to the checksum in
the first line of that file, the message

corrupted file (co6)

is produced for that file. This process continues until all the
files have been examined. The admin -h command can also be
applied to directories:

% admin -h directory] directory2 ...

Note that this will not automatically report whether any sees
files are missing. As with any other directory in the UNIX file
system, use the Is command t to list the contents of each
directory and ensure that no files are missing.

If you have an sees file that has been extensively corrupted,
the best solution is to restore the file from a backup copy. If
there is only minor damage, you may be able to repair it using
vi.

t Described in Section I of the UniP/us <- User Manual.

10-17

sees

After you have repaired the file with a text editor, use the com­
mand:

% admin -z s.ftle

This command recomputes the checksum so that it agrees the
actual contents of the file. After this command is executed on
a file, any corruption that existed in the file will no longer be
detectable by the admin -b command.

3.4 Delta Numbering

It is convenient to think of the deltas applied to an sees file as
a tree structure where the root is the initial version of the file.
Deltas are named with numbers that contain exactly two com­
ponents~ the release number and level number, separated by a
period:

release.level

The root delta is normally named 1.1 and successor deltas are
named 1.2, 1.3, etc., by successively incrementing the level
number. This is performed automatically by sees whenever a
delta is made.

You can also change the release number (using the -r
keyletter) to indicate a major change to the file. When you
have done this, the release number also applies to all successor
deltas unless specifically changed again.

The evolution of a particular file may be represented as in Fig­
ure 10-2.

10-18

sees

1.1 1.2 1.3 1.4 2.1 2.2

R£LEASE 1 RElEASE 2

Figure 10-2. Evolution of an SCCS File

Figure 10-2 represents the normal sequential development of
an SCCS file. Changes that are part of any given delta are
dependent upon all preceding deltas. This linear progression of
file versions is sometimes called the 'trunk' of the sees tree
for that file.

However, there can be more complex situations (where changes
in a given delta are not dependent on all previous deltas) that
require a branching in the tree. Although this capability has
been provided for certain specialized uses, it is strongly recom­
mended that the sees tree be kept as simple as possible.

To illustrate the branching concept, consider a program that is
being used at Version 1.3. Development work on Release 2 of
that program is already in progress. Release 2 may already
have some deltas (as shown in Figure 10-2}.

Assume that a user reports a problem in Version 1.3 that
requires changes only to Version 1.3, without affecting subse­
quent deltas O.e., in Figure 10-2, deltas 1.4, 2.1, 2.2, etc.).
This requires a 'branch' from the previous linear ordering.

10-19

sees

The new delta's name consists of four components; the release
and level numbers (as in the 'trunk' delta) plus a branch
number and sequence number. Each number is separated by a
period.

release.level.brancb.sequence

The names of 'branch' deltas contain exactly four components,
and thus a branch delta can always be identified as such from
its name. The numbers are assigned sequentially as shown in
Figure 10-3. The delta number 1.3.1.2 identifies the second
delta of the first branch derived from delta 1.3.

1.3.1.2
PANCH 1

1.1 1.2 1.3 1 .• 2.1 2.2

Figure 10-3, Tree Structure With Branch Deltas

The concept of branching can be applied to any delta in the
tree. However, although the 'trunk' delta may be identified
from the 'branch' delta's name, (by the release and level
numbers) it is not possible to determine the entire path leading
from the ancestor 'trunk' delta to the 'branch' delta. This is
because the branch number is assigned chronologically, in order
of creation of the branch, independent of its location relative to
the ancestor delta.

10-20

(
'

sees

For example, if delta 1.3 has one branch emanating from it, all
deltas on that branch will be named 1.3.1.n. If a delta on this
branch then has another branch emanating from it, all deltas on
the new branch will be named 1.3.2.n (see Figure 10-4). The
only information that can be derived from the name of delta
1.3.2.2 is that it is chronologically the second delta on the chro­
nologically second branch whose trunk ancestor is delta 1.3.

In particular, it is not possible to determine from the name of
delta 1.3.2.2 all the deltas between it and ancestor 1.3.

Figure 10-4. Extending the Branching Concept

It is obvious that the concept of branching deltas allows the
generation of arbitrarily complex tree structures. Although this
capability has been provided for certain specialized uses, it is
strongly recommended that the sees tree be kept as simple as
possible. Comprehending the tree structure becomes very
difficult as it becomes more complex.

10-21

sees

4. SCCS Commands Conventions

This section discusses the conventions and rules that apply to
SCCS commands. Except where noted otherwise, these con­
ventions apply to all SCCS commands. A list of the temporary
files generated by various commands (and referred to in the
Command Summary) is also provided.

4.1 Command Arguments

sees commands accept two types of arguments:

• Keyletters

• File arguments

Keyletters begin with a minus sign(-), followed by a lowercase
alphabetic character, which is in some cases followed by a
value. Keyletters control the execution of the command to
which they are supplied. All keyletters specified for a given
command apply to all file arguments of that command.

Keyletters are processed before any file arguments, with the
result that the placement of keyletters is arbitrary (i.e.,
keyletters may be interspersed with file arguments). File argu­
ments, however, are processed left to right. Somewhat
different argument conventions apply to the help, what,
sccsdiff, and val commands.

File arguments (names of files and/ or directories) specify the
file(s) that the given sees command is to process. Naming a
directory is equivalent to naming all the sees files within the
directory. Non-Sees files in the named directories are silently
ignored. In general, file arguments may not begin with a minus
sign, but if the name '-' (a single minus sign) is specified as an
argument to a command, the command reads the standard
input (until end-of-file) and takes each line as the name of an

10-22

sees

SCCS file to be processed. This feature is often used in pipe­
lines with, for example, the find or Is commands. t

4.2 Flags

Certain actions of sees commands can be controlled by flags
that appear in SCCS files. Some of these flags are discussed in
the section on "SCCS Flags" below. For a complete descrip­
tion of flags, see admin(l) in the UniPius+ User Manual.

4.3 Diagnostics

The distinction between the real user and the effective user
(see passwd(l) and the section on "Protection" above) of a
directory or file affects certain SCCS commands. For the
present, we assume that the real and effective user are the
same.

sees commands produce diagnostics (on the diagnostic out­
put) of the form:

ERROR [filename] : message text (code)

The code in parentheses may be used as an argument to the
help command to obtain a further explanation of the diagnostic
message. Detection of a fatal error during the processing of a
file causes the sees command to stop processing that file and
to proceed with the next file, in order, if more than one file has
been named.

4.4 Temporary Files

Several sees commands generate temporary files and file
copies during the process of creating, retrieving, and updating

t Described in Section I of the Unil'lm Uwr .\/mow/.

10-23

sees

sees files. These temporary files are normally named by strip­
ping off the 's.' prefix of the sees file name and replacing it
with another single alphabetic character. The g-file is named by
simply deleting the 's.' prefix. Thus, if the SCCS file is named
's.abc' the g-}ile will be named 'abc' and the p-./ile will be
named 'p.abc'.

These files are as follows:

g-.fi/e This is the text file created by a get command. It con­
tains a particular version of an SCCS file, and its name
is formed by stripping off the s. prefix from the sees
file.

The g-./ile is created in the current directory and is
owned by the real user. The mode assigned to the &-.file
depends on how the get command is invoked. The ver­
sion it contains also depends on how the get command
is invoked. The default version is the most recent
'trunk' delta (i.e., excluding branches).

d-}ile When you invoke a get command, SCCS creates its
own temporary copy of the &-.tile by performing an
internal get at the SID specified in the p-.fi/e entry. This
temporary copy is called the d-.tile.

When you record your changes in a new version, the
delta command compares the d-.tile to to the g-.file
(using the difl' command). t The differences between
the &-.file and the d-.tile are the changes that constitute
the delta.

t Described in Section I of the U'nil'ln' U's<'l' .\1mwal.

10-24

sees

p- file When the get -e command creates a g- file with read­
write permission (so you can edit it), it places certain
information about the SCCS file (i.e., the SID of the
retrieved version, the SID to be given to the new delta
when it is created, and the login name of the user exe­
cuting get) in another new file called the p-file.

When you record your changes in a new version, the
delta command reads the p- file for the SID and the
login name of the user creating the new delta.

When the new delta has been made, the p-file is
updated by removing the relevant entry. If there is only
one entry in the p-fi/e, then the p-fi/e itself is removed.

q-file Updates to the p-file are made to a temporary copy, the
q-jile, whose use is similar to the use of the x-file.

x-file All SCCS commands that modify an sees file do so by
writing a temporary copy, called the x-file (to ensure

,,.- that the sees file is not damaged if processing ter­
minates abnormally.) When processing is complete, the
old sees file is removed and the x-file is renamed
(with the s. prefix) to be the sees file.

z-file

The x-file is created in the directory containing the
sees file, given the same mode as the sees file, and
owned by the effective user.

To prevent simultaneous updates to an sees file, com­
mands that modify sees files create a 'lock-file' called
the z-file. This file exists only for the duration of the
execution of the command that creates it. The z-file
contains the process number of the command that
creates it. While the z-file exists, it indicates to other
commands that the sees file is being updated. sees
commands that modify sees files will not process a file
if the corresponding z-file exists.

The z-fi/e is created with read-only mode (mode 444)
(possibly modified by the user's umask), in the

10-25

sees

directory containing the sees file. It is owned by the
effective user.

1-ft/e The get -1 command creates an 1-fi/e containing a table
showing the deltas used in constructing a particular ver­
sion of the sees file. This file is created in the current
directory with mode 444 (read-only) and is owned by
the real user.

In general, users can ignore q-fi/es, x-fi/es and z-files, although
they can be useful in the event of system crashes or similar
situations.

10-26

sees

S. SCCS Command Summary

This section describes the major features of all the SCCS com­
mands. Detailed descriptions of the commands and of all their
arguments are given in the UniPlus+ User Manual. The discus­
sion below covers only the more common arguments of the
various SCCS commands. The relevant manual pages should
be consulted for further information.

The SCCS commands are as follows:

admin Creates SCCS files and applies changes to parame­
ters of sees files.

cdc Changes the commentary associated with a delta.

comb Combines two or more consecutive deltas of an
sees file into a single delta; often reduces the size
of the sees file.

delta Applies changes (deltas) to the text of SCCS files,
i.e., creates new versions.

get Retrieves versions of SCCS files.

unget

help

prs

rmdel

sact

'Undoes' a get -e command if invoked before the
new delta is created.

Prints explanations of diagnostic messages.

Prints portions of an sees file in user specified for­
mat.

Removes a delta from an sees file; allows the
removal of deltas that were created by mistake.

Accounts for sees files in the process of being
changed .

. ~ sccsdlff Shows the differences between any two versions of
an sees file.

10-27

sees

val Validates an SCCS file.

what Searches any UNIX system file(s) for all occurrences
of a special pattern and prints out what follows it; is
useful in finding identifying information inserted by
the get command.

10-28

r

sees

5.1 The admin Command

The admin command creates new SCCS files or (using
keyletters) changes parameters of existing ones. See admin(l)
in the UniP/us+ User Manual for a complete list of keyletters
and flags to the admin command.

5.1.1 Creating SCCS Files

SCCS files are created in read-only mode (444) and are owned
by the effective user (see the section on "Protection" above).
Only a user with write permission in a directory containing
sees files can use the admin command on a file in that direc­
tory.

An SCCS file is created with the command:

% admin -i}irsr s.abc

where first (the value of the -i keyletter) is a file from which
the text of the initial delta of the sees file s.abc is to be taken.

If you omit the value of the -i key letter, admin reads the stan­
dard input for the text of the initial delta. Thus, the command:

% admin -1 s.abc < .first

is also valid. Only one sees file may be created at a time
using the -i keyletter.

If the text of the initial delta does not contain ID keywords, the
message:

. .--. No id keywords (cm7)

10-29

sees

is issued as a warning. See the section on "ID Keywords"
under the get command for more information.

If the invocation of the admin command sets the i./fag (using
the -f keyletter described in the section on "SCCS Flags"
below) the above message is treated as a fatal error and the
sees file is not created.

When an SCCS file is created, the release number assigned to
its first delta is normally '1', and its level number is always 'I'.
Thus, the first delta of an SCCS file is normally '1.1 '.

The -r keyletter to the admin command is used to specify a
different release number for the initial delta. Because it is only
meaningful in creating the first delta (with admin), its use is
only permitted with the -i keyletter. The command:

% admin -i!irst -rJ s.abc

indicates that the first delta should be named '3.1' rather than
'1.1 '.

s.u sees Flags

The flags of an sees file are used to direct certain actions of
the various commands. See admin(l) in the UniP/us+ User
Manual for a description of all the flags.

When you create an sees file, its flags are either initialized by
the -f keyletter (which you supply on the command line), or
assigned default values if no keyletters are supplied. The flags
of an sees file are initialized or changed using the -f keyletter,
and deleted using the -d keyletter.

10-30

;-'
'

sees

The -f keyletter is used to set a flag and, possibly, to set its
value.

For example, the command:

% admin -ifirst -fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The i flag
specifies that the warning message (stating that there are no ID
keywords contained in the sees file) should be treated as an
error. The value modname specified for the m flag is the value
that the get command will use to replace the sccs2 ID keyword.
(When the get command retrieves a delta, it creates a text file
called g-.file, whose name is formed by stripping off the 's.'
prefix on the SCCS file name. In the absence of the m flag, the
name of the g-fi/e is used as the replacement for the sccs2 ID
keyword.)

Note that several -f key letters may be supplied on a single invo­
cation of admin and that -f keyletters may be supplied whether
the command is creating a new sees file or processing an
existing one.

The -d keyletter is used to delete a flag from an sees file and
may only be specified when processing an existing file. For
example, the command:

% admin -dm s.abc

removes the m flag from the sees file. Several -d keyletters
may be supplied on a single invocation of admin and may be
intermixed with -f keyletters.

10-31

sees

SCCS files also contain a user list of login names and/or group
IDs of users who are allowed to create deltas of that file. This
is an important file parameter that is checked by several sees
commands to ensure that the delta is authorized.

This list is empty by default, which means that anyone may
create deltas. The -a keyletter is used to specify users who are
given permission or denied permission to create deltas. Speci­
fying a group ID is the equivalent of naming all login names
common to that group ID. For example, the command:

% admin -al'Z-aram-a1234s.abc

gives permission to create deltas to the login names l'z and ram
and the group ID 1234. The command:

% admin -a! l'Z s.abc

denies permission to create deltas to the login name I'Z. You
can use the -a key letter whether admin is creating a new
sees file or processing an existing one, and it can appear
several times on a command line.

Similarly, the -e keyletter is used to remove (erase) login
names or group IDs from the list. For example:

% admin -e vz s. abc

removes the login name llZ from the user list of the sees file
's.abt'.

10-32

r

sees

5.1.3 Comments and MR Numbers

When an SCCS file is created, you may choose to insert com­
ments stating your reasons for creating the file.

In a controlled environment, it is expected that deltas are
created only as a result of some trouble report, change request,
trouble ticket, etc., collectively called MRs. The creation of an
sees file may sometimes be the direct result of an MR. They
can be recorded by number in a delta via the -m keyletter,
which can be supplied on the admin (or the delta) command
line.

The -y keyletter can also be used to supply comments on the
command line rather than through the standard input.

If comments (-y keyletter) are omitted, a comment line of the
.f form:

date and time created YY/MM/DD HH:MM:SS by logname

is automatically generated.

If you want to supply an MR number (using the -m keyletter),
the v flag must also be set (using the -f keyletter described
below). as in the command:

% admin -ifirst-mmrlist-fv s.abc

The v flag simply causes the delta command to prompt for MR
numbers as the reason for creating a delta. (See sccsflle(4) in
the UniP/ust User Manual.) Note that the -y and -m

,,--.- key letters are only effective if a new sees file is being created.

10-33

sees

5.1.4 Descriptive Text

The portion of the sees file reserved for descriptive text can
be initialized or changed using the -t keyletter. The descriptive
text is intended as a summary of the contents and purpose of
the sees file.

To insert descriptive text in a file you are creating, the -t
keyletter is followed by the name of a file from which the
descriptive text is to be taken. For example, when an SCCS file
is being created, the command:

% admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from a file
named desc.

When processing an existing SCCS file, the -t keyletter specifies
that the descriptive text (if any) currently in the file is to be
replaced with the text in the named file. Thus:

% admin -tdesc s.abc

specifies that the descriptive text of the sees file is to be
replaced by the contents of desc. If you omit the file name
after the -t keyletter as in:

% admin -t s. abc

the descriptive text currently in the sees file is removed.

10-34

sees

5.2 The cdc Command

,f The cdc command changes the comments or MR numbers that
were supplied when that delta was created. It is invoked as fol­
lows:

%cdc -rJ.4 s.abc

This specifies that you want to change the comments of delta
3.4 of the sees file s.abc.

The cdc command also allows you to delete selected MR
numbers associated with the specified delta by preceding the
selected MR numbers by the exclamation character '!'.

Cdc prompts for new comments and MR numbers:

%cdc -r3.4s.abc

MRs? mrlist !mrlist
comments? deleted wrong MR number and inserted

correct MR number

The new MR number(s) in the first mrlist are inserted, and the
old MR number(s) (preceded by the exclamation character) are
deleted. The old comments are kept and preceded by a line
indicating that they have been changed (i.e., superseded). The
new comments are entered ahead of this comment line. The
'inserted' comment line records the login name of the user exe­
cuting cdc and the time of its execution.

10-35

sees

5.3 The comb Command

The comb command generates a shell script (see csh(l) in the
UniP/us+ User Manual), which is written to standard output.
When executed, the script attempts to reconstruct the named
sees files to save space by discarding deltas that are no longer
useful and combining other specified deltas.

r It is not recommended that comb be used as a matter of
routine; its use should be restricted to a very small
number of times in the life of an sees file. It is recom·
mended that comb be run with the -s keyletter (in addi­
tion to any other keyletters desired) before any actual
reconstructions.

In the absence of any keyletters, comb preserves only 'leaf'
(most recent) deltas and the minimum number of ancestor del­
tas necessary to preserve the 'shape' of the SCCS file tree. The
effect of this is to eliminate middle deltas on the trunk and on
all branches of the tree. Thus, in Figure 10-4, deltas 1.2,
1.3.2.1, 1.4, and 2.1 would be eliminated.

Some of the keyletters are summarized as follows:

-p The -p keyletter specifies the oldest delta that is to be
preserved in the reconstruction. All older deltas are dis­
carded.

-c The -c keyletter specifies a list (see get{l) in the UniPlus+
User Manual for the syntax of this list) of deltas to be
preserved. All other deltas are discarded.

-s The -s keyletter causes the generation of a shell script
that, when run, produces only a report summarizing the
percentage space (if any) to be saved by reconstructing
each named sees file. It is recommended that comb be
run with this keyletter (in addition to any others desired)
before any actual reconstructions.

10-36

r

sees

It should be noted that the shell script generated by comb is not
guaranteed to save space. In fact, it is possible for the recon­
structed file to be larger than the original. Note, too, that the
shape of the sees file tree may be altered by the reconstruc­
tion process.

10-37

sees

5.4 The delta Command

When a version of an SCCS file is retrieved using the get -e
command, it is copied into a text file calJed the g-.file, which can
then be edited.

The delta command is used to incorporate the changes made to
a &-.file into the corresponding sees file, i.e., to create a delta
(a new version of the sees file).

Execution of the delta command requires the existence of a p­
.fi/e. The delta command examines the p-.fi/e to verify the pres­
ence of an entry containing the user's login name and a valid
SID for the next delta. If the user's login name is not found,
an error message results, because the user who retrieved the g­
./ile must be the same user who creates the delta. If the login
name of the user appears in more than one entry in the p-./ile,
the same user has executed more than one get -e on the same
Sees file. In this case the -r keyletter must then be used with
delta to specify the SID that uniquely identifies the p-.fi/e entry.
This entry is the one used to obtain the SID of the delta to be
created.

The delta command also performs the same permission checks
performed by get -e. If all checks are successful, delta deter­
mines what has been changed in the g-.fi/e (using the dltr com­
mand on the new version and its own temporary copy of the g­
.fi/e as it was before editing). This temporary copy of the g-.file is
called the d-./i/e (its name is formed by replacing the 's.' of the
sees file name with 'd.'). It is obtained by performing an
internal get on the SID specified in the p-.file entry.

In practice, the most common use of delta is:

%delta s.abc

10-38

sees

which prompts on the standard output (but only if it is a termi­
nal):

comments?

to which the user replies with a description of why the delta is
being made. Your response may be up to 512 characters long if
you escape all newlines with a backslash (\). The response is
terminated by an unbidden newline character.

In a controlled environment, it is expected that deltas are
created only as a result of some trouble report, change request,
trouble ticket, etc., collectively called MRs. It is desirable (or
necessary) to record such MR number(s) within each delta. If
the sees file has a v flag set, delta first prompts with:

MRs? (Modification Requests)

on the standard output. (Again, this prompt is printed only if
the standard output is a terminal.) The standard input is then
read for MR numbers, separated by blanks and/or tabs. Your
response may be up to 512 characters long if you escape all
newlines with a back slash (\). The response is terminated by an
unbidden newline character.

The-y and/or -m keyletters on the delta command line may be
used to supply comments and MR numbers, respectively,
instead of supplying these through the standard input. The for­
mat of the delta command is then:

%delta -ydescriptive comment -mmrlist s.abc

In this case, the corresponding prompts are not printed, and the
standard input is not read. The -m keyletter is allowed only if
the sees file has a v flag. These keyletters are useful when
delta is executed from within a shell script (see csh(l) in the

10-39

sees

UniPlus + User Manua/).

The comments and/or MR numbers, whether prompted for by __­
delta or supplied via keyletters, are recorded as part of the
entry for the delta being created, and apply to all sees files
processed by the same invocation of delta. This implies that (if
delta is invoked with more than one file argument and the first
file named has a v flag) all files named must have the v flag.
Similarly, if the first file named does not have this flag, then
none of the files named may have it. Any file that does not
conform to these rules is not processed.

When processing is complete, the SID of the created delta
(obtained from the p-.file entry) and the counts of lines
inserted, deleted, and left unchanged by the delta, are written
to the standard output.

Thus, a typical output might be:

1.4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as inserted,
deleted, or unchanged by delta do not agree with the user's
perception of the changes applied to the g-./ile. The reason for
this is that there usually are a number of ways to describe a set
of changes, especially if lines are moved around in the g-./ile,
and delta is likely to find a description that differs from the
user's perception. However, the total number of lines of the
new delta (the number inserted plus the number left
unchanged) should agree with the number of lines in the edited
g-.file.

10-40

sees

If On the process of making a delta) delta finds no ID key­
,,-- words in the edited g-file, the message:

No id keywords (cm7)

is issued after the prompts for comments but before any other
output. This indicates that any ID keywords that may have
existed in the sees file have been replaced by their values or
deleted during the editing process. This could be caused by:

• Creating a delta from a g-file that was created by a get
command without the -e keyletter OD keywords are
replaced by get in that case).

• Accidentally deleting or changing the ID keywords while
you are editing the g-file.

• The file had no ID keywords to begin with.

,;-- In any case, it is left up to the user to determine what to do
about it. The delta is created whether or not ID keywords are
present, unless there is an i flag in the sees file indicating that
this should be treated as a fatal error. In this last case, the
delta is not created until the ID keywords are inserted in the I·
file and the delta command is executed again.

After the processing of an sees file is complete, the
corresponding p-file entry is removed from the P-file. All
updates to the p- file are made to a temporary copy called the q­
file. If there is only one entry in the p-file, then the p- file itself
is removed.

Once processing of the corresponding sees file is complete,
delta also removes the edited g-file unless the -n keyletter is
specified. Thus:

10-41

sees

%delta -n s.abc

keeps the g-}ile upon completion of processing.

The -s keyletter suppresses all output that is normally directed
to the standard output except for the prompts 'comments?' and
'MRs?'. Use of the -s key letter together with the -y keyletter
(and possibly, the -m keyletter) causes delta neither to read
standard input nor to write to standard output.

The differences between the g-fi/e and the d-file (see above),
are the changes that constitute the delta. These may be printed
on the standard output by using the -p keyletter. The format of
this output is similar to that produced by diH.

10-42

sees

5.5 The get Command

.~ The get command creates a text file that contains a particular
version of an SCCS file. The particular version is retrieved by
beginning with the initial version and then applying deltas, in
order, until the desired version is obtained. The created file is
called the g-jile.

The g-.file name is formed by removing the 's.' from the SCCS
file name. The g-}ile is created in the current directory and is
owned by the real user. The mode assigned to the g-file
depends on how the get command is invoked.

The simplest invocation of get is:

%get s.abc

which retrieves the latest "ancestor" (version) of the sees file
tree (i.e., excluding branches) and produces (for example} on
the standard output:

1.3
67 lines
No id keywords (em?)

This indicates that:

1. Version 1.3 of file s.abc was retrieved (1.3 is the latest
delta).

2. This version has 67 lines of text.

3. No ID keywords were substituted in the file .

. r-· The generated a· file (file 'abc') is given mode 444 (read·only).
This particular way of invoking get is intended to produce g.
files only for inspection, compilation, etc. It is not intended for

10-43

sees

editing (i.e., not for making deltas).

When several file arguments (or directory-name arguments) are
given on the get command line, similar information is displayed
for each file processed, but the sees file name precedes it.
For example, the command:

%get s.abcs.def

produces:

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
85 lines
No id keywords (cm7}

5.5.1 ID Keywords

In generating a g-file to be used for compilation, it is useful to
record the date and time of creation, the version retrieved, the
module's name, etc., within the g-}ile. This information
appears in a load module when one is eventually created.

sees provides a mechanism for recording such information
about deltas automatically, using Identification (ID) keywords.
Identification (ID) keywords can appear anywhere in the gen­
erated file, and will be replaced by appropriate values according
to the definitions of these ID keywords.

The format of an ID keyword is an uppercase letter enclosed by
percent signs (%). When these appear in the generated sees

10-44

sees

file they are replaced by appropriate values according to the
. .----. definitions of these ID keywords.

For example:

%1%

is defined as the ID keyword that is replaced by the SID of the
retrieved version of a file. Similarly:

%H%

is defined as the ID keyword for the current date (in the form
'mm/dd/yy').

When no ID keywords are substituted by get, the following
message is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, although
the presence of the l flag in the sees file causes it to be treated
as an error.

For a complete list of the approximately 20 ID keywords, see
get(I) in the UniPius+ User Manual

5.5.2 Retrieving Different Versions

Normally, the default version of an SCCS file is the most
recent delta of the highest-numbered release on the basic
'trunk' of the sees file tree (exclusive of branches). How­
ever, if the sees file being processed has a d (default SID)
flag, the SID specified as the value of this flag is used as a
default. The default SID is interpreted ·in exactly the same way
as the value supplied with the -r keyletter of get.

10-45

sees

Various keyletters allow the retrieval of other than the default
version of an SCCS file. When these key letters are used on the
get command line, the d (default SID) flag (if any) is ignored.

The -r keyletter is used to specify which SID you want to
retrieve. For example:

%get -r 1.3 s.abc

retrieves version 1.3 of file s. abc and produces (for example)
on the standard output:

1.3
64 lines

A branch delta can be retrieved similarly:

%get -r/.5.2.Js.abc

which produces (for example) on the standard output:

1.5.2.3
234 lines

When a 2- or 4-component SID is specified as a value for the -r
keyletter (as above) and the particular version does not exist in
the SCCS file, an error message results.

If you omit the level number:

%get -rJs.abc

the highest level number (most recent delta) within the given
release will be retrieved, if the given release exists. Thus, the

10-46

sees

above command might output:

3.7
213 lines

If the given release does not exist, get retrieves the most recent
'trunk' delta (not in a branch) with the highest level number
within the highest-numbered existing release that is lower than
the release you specify. For example, assuming release 9 does
not exist in file s. abc and that release 7 is actually the highest­
numbered release below 9, the command:

%get -r9s.abc

might produce:

7.6
420 lines

which indicates that delta 7.6 is the latest version of file s.abc
that is not in a branch and that is below release 9. Similarly,
omission of the sequence number, as in:

% a:et -r4.3.2s.abc

results in the retrieval of the branch delta with the highest
sequence number on the given branch if it exists. (If the given
branch does not exist, an error message results.) This might
result in the following output:

4.3.2.8
89 lines

.~ The -t keyletter is used to retrieve the latest (top) version in a
particular release (i.e., when no -r keyletter is supplied or when
its value is simply a release number). The latest version is

10-47

sees

defined as that delta which was produced most recently,
independent of its location on the SCCS file tree. Thus, if the
most recent delta in release 3 is 3.5,

%get-r3-t s.ubc

might produce:

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created
after delta 3.5), the same command might produce

3.2.1.5
46 lines

5.5.3 Retrieving Files to Make Deltas

When you specify the -e keyletter to the get command, the
resulting g-.fi/e has read-write permission and can be edited to
make a new delta. Consequently, the use of the-e keyletter is
restricted.

The presence of the -e keyletter causes get to check the follow­
ing SCCS protection devices (see the section on "Protection"
above).

1. The login name or group ID of the user executing get
must be on the user lis/ (a list of login names and/ or
group IDs of users allowed to make deltas). A null
(empty) user list behaves as if it contained all possible
login names.

2. The release of the version being retrieved must greater
than or equal to the f flag (!fool) and lower than or equal
to the c flag (ceilinx). These flags are specified in the
sees file; they have default values of 1 and 9999,

10-48

sees

respectively.

f 3. The release is not locked against editing. The 1lock' is
specified as a flag in the sees file.

~
'
'·--

4. Whether or not multiple concurrent edits are allowed for
the sees file as specified by the j flag in the sees file.

Failure of any of the first three conditions causes the processing
of the corresponding sees file to terminate.

If the above checks succeed, get -e creates a g-file in the
current directory with mode 644 (readable by everyone, writ­
able only by the owner). This is possibly modified by the user's
umask. The a-file is owned by the real user. If a writable g-fi/e
already exists, get terminates with an error. This is to prevent
inadvertent destruction of a g-file that already exists and is
being edited for the purpose of making a delta.

Any ID keywords appearing in the g-fi/e are not substituted by
get (when the -e keyletter is specified) because the generated
g-jile is subsequently used to create another delta. Replace­
ment of ID keywords causes them to be permanently changed
within the sees file. In view of this, get does not need to
check for the presence of ID keywords within the g-ji/e, so the
message

No id keywords (cm7)

is never output when get is invoked with the-e keyletter.

In addition, the -e keyletter causes the creation (or updating) of
a p-file which is used to pass information to the delta com­
mand.

10-49

sees

The following is an example of the use of the -e key letter:

%get -e s.abc

which produces (for example) on the standard output:

1.3
new delta 1.4
67 lines

The -r and/or -t keyletters can be used together with the -e
keyletter to specify a particular version to be retrieved for edit­
ing.

When you want to change the release number of a new delta,
specify the new release number on the command line. For
example, if the most recent delta of a particular sees file is 1.5
and you want to create delta 2.1, use the command:

% get -e -r2 s.lang

Because release 2 does not yet exist, get retrieves the latest ver­
sion bejOre release 2 and changes the release number of the
next delta to 2, naming it 2.1 rather than 1.6. This information
is stored in the p-.fife so the next execution of the delta com­
mand will produce a delta with the new release number. The
get command then outputs (for example):

1.2
new delta 2.1
7 lines

Subsequent versions of the file will be created in release 2 (del­
tas 2.2, 2.3, etc.).

10-SO

r
'

sees

The -I and -x keyletters can be used to specify a list of deltas to
be included and excluded by get. (See get(l) in the UniPius+
User Manual for the syntax of this list.) Including a delta means
forcing the changes that constitute the particular delta to be
included in the retrieved version. This is useful if you want to
apply the same changes to more than one version of the sees
file. Excluding a delta means forcing it not to be applied. This
may be used to undo (in the version of the sees file to be
created) the effects of a previous delta.

Whenever deltas are included or excluded, get checks for possi­
ble interference between those deltas and deltas that are nor­
mally used in retrieving the particular version of the sees file.
Two deltas can interfere, for example, when each one changes
the same line of the retrieved g-file. Any interference is indi­
cated by a warning that shows the range of lines within the
retrieved g-file in which the problem may exist. The user is
expected to examine the g-fi/e to determine whether a problem
actually exists, and to do whatever is necessary (e.g., edit the
file).

,.. Warning: The -i and -x keyletters should be used with
extreme care.

The -k keyletter facilitates regeneration of a g. file that may
have been accidentally removed or ruined after a get -e com­
mand, or to simply generate a &-file in which the replacement
of ID keywords has been suppressed.

A &-file generated by the -k keyletter is identical to one pro­
duced by get -e, except that no processing related to the p- file
takes place.

5.5.4 Concurrent Edits of Different SIDs

The ability to retrieve different versions of an SCCS file allows
a number of deltas to be 'in progress' at the same time. This

10-51

sees

means that a number of get -e commands can be executed on
the same file. However, unless multiple concurrent edits are
explicitly allowed, (see the section on "Concurrent Edits of
Same SID'' below) no two get -e executions can retrieve the --
same version of an sees file.

The P-./ile is created by the get command (with -e) and is
named by replacing the 's.' in the sees file name with 'p.'. It
is created in the directory containing the sees file, given mode
644 (readable by everyone, writable only by the owner), and
owned by the effective user.

The p-.fi/e contains the following information for each delta that
is still 'in progress':

• The SID of the retrieved version.

• The SID to be given to the new delta when it is created.

• The login name of the real user executing get.

The first execution of get -e causes the creation of the p-file for
the corresponding SCCS file. Subsequent executions only
update the p-file with a line containing the above information.
Before updating, however, get checks to assure that no entry
(already in the p-file) specifies that the SID (of the version to
be retrieved) is already retrieved (unless multiple concurrent
edits are allowed. See the section on "Concurrent Edits of
Same SID" below.)

If both checks succeed, the user is informed that other deltas
are in progress and processing continues. If either check fails,
an error message results. It is important to note that the vari­
ous executions of get should be carried out from different
directories. Otherwise, only the first execution succeeds since
subsequent executions would attempt to overwrite a writable g­
ji/e, which is an SCCS error condition. In practice, such

10-52

sees

multiple executions are performed by different users so that
this problem does not arise since each user normally has a
different working directory. (See the section on "Protection"
above for a discussion about how different users are permitted
to use sees commands on the same files.)

Figure 10-5 shows examples of the version of an SCCS file
retrieved by get, as well as the SID of the version to be eventu­
ally created by delta, as a function of the SID specified to get.

10-53

sees

SID -b KEY- OTHER SID SID OF
SPEC I- LETTER CONDI- RETRI- DELTA
FlED* USEDt TIONS EVED TOBE

CREATED

no net no R default mR.mL mR.(mL+l)
to mR

none:!= yes R default mR.mL mR.mL.(mB+ I)
to mR

R no R > mR mR.mL R.l§

R no R == mR mR.mL mR.(mL+l)
R yes R > mR mR.mL mR.mL.(mB+l).l
R yes R =- mR mR.mL mR.mL.(mB+l).l
R - R<mR
R R< mR hR.mL ** hR.mL.(mB+l).l

and
does
not
exist

R Trunk R.mL R.mL.(mB+l).l
successor
in release
>Rand
R exists

See footnotes on sheet 3 of 3.

Figure 10-5. Determination of New SID (Sheet 1 of 3)

10-54

sees

SID b KEY- OTHER SID SID OF
SPEC! LETTER CONDI- RETRI- DELTA
FlED* USEDt TIONS EYED TO BE

CREATED

R.L. no No trunk R.L R.(L+ I)
successor

R.L. yes No trunks R.L R.L.(mB+l).l
successor

R.L - Trunk R.L R.L.(mS+l).l
in release
>- R

R.L.b no No branch R.L.B.mS R.L.B.(mS+ I)
successor

R.L.B yes No branch R.L.B.mS R.L.(mB+l).l
successor

R.L.B.S no No branch R.L.B.S R.t.B. (S + 1)
successor

R.L.B.S no No branch R.L.B.S R.L.(mB+l).l
successor

R.L.B.S Branch R.L.B.S R.L.(mB+l).l
successor

See footnotes on sheet 3 of 3.

Figure 10-5. Determination of New SID (Sheet 2 of 3)

10-55

sees

Footnotes:

• R, L, 8, and S are release, level, branch, and sequence com­
ponents of the SID. m means maximum. Thus, for example,
R.mL means 'the maximum level number within release R ':
R.L.(mB+l).l means 'the first sequence number on the
(maximum branch number plus 1) of level L within releaseR'.

Also note that if the SID specified is of the form R.L, R.L.B,
or R.L.B.S, each of the specified components must exist.

t The -b keyletter is effective only if the b flag is present in the
file (see adminO)). In this state, an entry of -I means
irrelel'ant.

* This case applies if the d (default SID) flag is not present in
the file. If the d flag is present in the file, the SID obtained
from the d flag is interrupted as if it had been specified on the
command line. Thus, one of the other cases in this figure
applies.

§ This case is used to force the creation of the first delta in the
new release.

•• hR is the highest existing release that is lower than the
specified, nonexisting, release R.

Figure 10-5. Determination of New SID (Sheet 3 of 3)

10-56

sees

5.5.5 Concurrent Edits of Same SID

Under normal conditions, get -e commands are not permitted
to occur concurrently on the same SID. That is, delta must be
executed before another get -e is executed on the same SID.

However, if the j flag is set in the SCCS file, multiple con­
current edits (two or more successive executions of get -e on
the same SID) are allowed.

Thus, the command:

% get -e s. abc
1.1
new delta 1.2
5 lines

may be immediately followed by:

% get -e s. abc
1.1
new delta 1.1.1.1
5 lines

without an intervening execution of delta. In this case, a delta
command corresponding to the first get produces delta 1.2
(assuming 1.1 is the latest (most recent) delta), and the delta
command corresponding to the second get produces delta
1.1.1.1.

5.5.6 Keyletters That Afl'ed Output

See get(I) in the UniPius+ User Manual for a full description of
get keyletters.

10-57

sees

When you specify the -p keyletter to the get command, the
retrieved text is written on standard output rather than a c-.file.
In this case, all output normally directed to the standard output
(such as the SID of the version retrieved and the number of
lines retrieved) is directed instead to the standard error output.

The -p key letter is used, for example, to create g-Ji/es with arbi­
trary names:

% get -p s. abc> .filename

The -s keyletter suppresses all output that is normally directed
to the standard output (the SID of the retrieved version, the
number of lines retrieved, etc., are not written). This does not
affect messages to the standard error output.

This keyletter is used to prevent nondiagnostic messages from
appearing on the user's terminal, and is often used in conjunc­
tion with the -p keyletter to 'pipe' the output of get. For exam­
ple:

%get -p -s s.abc I nroff

The -g suppresses the actual retrieval of the text of a version of
the sees file. This can be used in a number of ways, for
example, to verify the existence of a particular SID in an sees
file:

%get -g -r4.3s.abc

10-58

sees

This outputs the given SID if it exists in the SCCS file, or gen­
erates an error message if it does not exist.

The -g key letter is also used to regenerate a p-file that has been
accidentally destroyed.

%get -e -g s.abc

The -1 keyletter creates an 1-file (named by replacing the 's.' of
the SCCS file name with '1.'). This file is created in the current
directory with mode 444 (read-only) and is owned by the real
user. It contains a table showing the deltas used in constructing
a particular version of the SCCS file. (See get(l) in the
UniP/us+ User Manual for a description of the format of this
table)

.~ For example, the command:

%get -rl.J-1 s.abc

generates an 1-file that shows the deltas applied to retrieve ver­
sion 2.3 of the sees file.

Specifying a value of p with the -1 keyletter:

%get -lp -r2.3s.abc

causes the generated output to be written to the standard out~
put rather than to the I-.file.

You can use the -g keyletter with the -1 keyletter to suppress
the actual retrieval of the text.

10-59

sees

The -m keyletter is used to identify the changes applied to an
SCCS file, line by line. When you specify this keyletter to the
get command, each line of the generated &-.file is preceded by
the SID of the delta that caused that line to be inserted. The
SID is separated from the text of the line by a tab character.

The -n keyletter causes each line of the generated g-fi/e to be
preceded by the value of the %M'Ie ID keyword (the module
name) and a tab character. The -n keyletter is most often used
in a pipeline with grep.t For example, the following command
searches the latest version of each sees file in a directory for
all lines that match a given pattern:

% get -p -n -s directory I grep pattern

If both the -m and -n keyletters are specified, each line of the
generated g- file is preceded by the value of the sccsl ID key­
word and a tab (caused by the -n keyletter) and shown in the
format produced by the -m keyletter.

Because the contents of the g-jile are modified when you use
the-m and/or -n key letters, this g-jile cannot be used for creat­
ing a delta, and neither -m nor -n can be used with the -e
key letter.

t Described in Section I of the UniP/u.1 ' User Manual.

10-60

r

sees

5.6 The unget Command

The unget command 'undoes' a get -e command if it is invoked
before the delta command is executed. There are three
keyletters that can be used with unget:

-rSID Uniquely identifies the delta that is no longer intended
{included in the p· file). This is only necessary if two
or more get ·e commands of the same sees file are in
progress.

·s Suppresses the display of the intended SID of the delta
on standard output.

-n Retains the g- file in the current directory instead of
removing it.

For example, the command:

% get -e s. abc

can be followed by:

% unget s. abc

even if the abc file has been edited. Invoking unget before
delta will cause the last version to be unchanged.

10-61

sees

5.7 The help Command

The help command prints explanations of SCCS commands and
of messages that these commands may print. Arguments to
help, zero or more of which may be supplied, are simply the
names of SCCS commands or the code numbers that appear in
parentheses after sees messages. If no argument is given,
help prompts for one. The help command has no concept of
keyletter arguments or file arguments. Explanatory information
related to an argument, if it exists, is printed on the standard
output. If no information is found, an error message is printed.
Note that each argument is processed independently, and an
error resulting from one argument will not terminate the pro·
cessing of the other arguments.

Explanatory information related to a command is a synopsis of
the command. For example, the command:

% help ge5 nndel

produces:

10-62

geS:
'nonexistent sid'
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name ...

sees

5.8 The prs Command

The prs command is used to print on the standard output all or
part(s) of an SCCS file in a format specified by the user. The
specific format is called the output data specification; it is sup­
plied via the -d key letter on the prs command line.

The data specification is a string consisting of SCCS file data
keywords (not to be confused with get ID keywords). These
keywords can (optionally) be interspersed with text.

Data keywords specify which parts of an SCCS file are to be
retrieved and output. All parts of an SCCS file (see sccsfile(4))
have an associated data keyword. Data keywords are strings
(usually an uppercase character, two uppercase characters, or an
upper- and lowercase character) enclosed by colons. For exam­
ple:

:1:

is defined as the data keyword that is replaced by the SID of a
specified delta. Similarly, :F: is defined as the data keyword for
the sees file name currently being processed, and :C: is
defined as the comment line associated with a specified delta.
For a complete list of the data keywords, see prs(l) in the
UniPius+ User Manual.

There is no limit to the number of times a data keyword can
appear in a data specification. For example, the command:

% prs -d":l: this is the top delta for :F: :1:" s.abc

may produce on the standard output:

2.1 this is the top delta for s.abc 2.1

10-63

sees

Information can be obtained from a single delta by specifying
the SID of that delta using the -r keyletter. For example:

% prs -d":F:: :1: comment line is: :C:" -r 1.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r key letter is not specified, the value of the SID defaults
to the most recently created delta.

In addition, information from a range of deltas may be obtained
by specifying the -e or -1 keyletters.

The -e keyletter substitutes data keywords for the SID desig­
nated by the -r key letter and all earlier deltas.

The -1 keyletter substitutes data keywords for the SID desig­
nated by the -r keyletter and all later deltas. Thus, the com­
mand:

% prs -d :1: -r/.4-e s.ab,·

may output:

1.4
1.3
1.2.1.1
1.2
1.1

and the command:

10-64

% prs ·d :1: ·r 1.4 ·I s.abc

may produce:

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

sees

Substitution of data keywords for all deltas of the SCCS file
may be obtained by specifying both the -e and -1 key letters.

10-65

sees

5.9 The rmdel Command

The rmdel command allows you to remove a delta from an
sees file. It should normally only be used when incorrect glo­
bal changes were made a part of the delta to be removed.

The delta to be removed must be a 'leaf' delta, that is, it must
be the most recently created delta on its 'branch' or on the
'trunk' of the SCCS file tree. In Figure 10-4, only deltas
1.3.1.2, 1.3.2.2, and 2.2 can be removed~ once they are
removed, then deltas 1.3.2.1 and 2.1 can be removed, etc.

To be allowed to remove a delta, the effective user must have
write permission in the directory containing the SCCS file. In
addition, the real user must either be the one who created the
delta being removed or be the owner of the SCCS file and its
directory.

The -r keyletter, which is mandatory, is used to specify the
complete SID of the delta to be removed (i.e., it must have two
components for a 'trunk' delta and four components for a
'branch' delta). The command:

% rmdel-r2.Js.abc

specifies the removal of delta 2.3 of the sees file. Before
removing the delta, rmdel checks that the release number (R)
of the given SID satisfies the relation:

floor < = R < - ceiling

The rmdel command also checks that the SID specified is not
that of a version for which a get -e is 'in progress', i.e., has
been executed and whose associated delta has not yet been
made.

10-66

sees

In addition, the login name or group ID of the user must
appear in the file's user list (or the user list must be empty}.
Also, the release specified cannot be locked against editing.
{See the section on "Protection" for an explanation of these
checks; and admin(l) in the UniP/us+ User Manual)

If these conditions are not satisfied, processing is terminated,
and the delta is not removed. After the specified delta has
been removed, its type indicator in the 'delta table' of the
SCCS file is changed from D ('delta') toR ('removed').

10-67

sees

5.10 The sact Command

The sact command accounts for the SCCS files that are in the
process of being changed (i.e., that have been retrieved by a get
-e command and have not been recorded by a delta command
yet). There are five fields reported for each named file:

Field 1 Specifies the SID of the existing SCCS file being
changed.

Field 2 Specifies the SID of the new delta to be created.

Field 3 Contains the login name of the user who executed
the get -e command.

Field 4 Contains the date that the get -e command was exe­
cuted.

Field 5 Contains the time that the get -e command was exe­
cuted.

The command:

% sact s.abc

produces a display such as:

l.2 1.3 john 85/06/20 16:15:15

10-68

sees

5.11 The sccsdiff Command

The sccsdiff command determines (and prints on the standard
output) the differences between two specified versions of one
or more SCCS files. The versions to be compared are specified
using the -r keyletter, in the same format used for the get com­
mand.

The two versions must be specified as the first two arguments
to this command in the order they were created, i.e., the older
version is specified first. Any following keyletters are inter­
preted as arguments to the pr command (which actually prints
the differences)t and must appear before any file names. The
SCCS files to be processed are named last. Directory names
and a name of '-' (a single minus sign) are not acceptable to
sccsdiff.

The differences are printed in the form generated by dlff(l).
,,..---- The following is an example of invoking sccsdiff:

% sccsdiff -r 1.4 -r 5.6 s.abc

t Described in Section I of the U11iPiu.1 · Us<'r .\Iammi.

10-69

sees

5.12 The val Command

The val command is used to determine if a file is an SCCS file
meeting the characteristics specified by an optional list of
keyletter arguments. Any characteristics not met are con­
sidered errors.

The val command checks for the existence of a particular delta
when the SID for that delta is explicitly specified via the -r
keyletter. The string following the -y or -m keyletter is used to
check the value set by the t or m flag, respectively (see
admin(l) in the UniP/w; + User Manual for a description of the
flags).

The val command treats the special argument '-' differently
from other SCCS commands. This argument allows val to read
the argument list from the standard input as opposed to obtain­
ing it from the command line. The standard input is read until
end of file.

This capability allows for one invocation of val with different
values for the keyletter and file arguments. For example,

%val-
·yc -mabc s.abc
-mxyz -yp/1 s.xyz

(EOF)

first checks if the s. abc file has a value c for its 'type' flag and
value abc for the 'module name' flag. Once processing of the
first file is completed, val then processes the remaining files, in
this case, s.xyz, to determine if they meet the characteristics
specified by the keyletter arguments associated with them.

10-70

sees

The val command returns an 8-bit code; each bit set indicates
the occurrence of a specific error (see val{ I) for a description of
possible errors and the codes). The appropriate diagnostic is
also printed unless suppressed by the -s keyletter. A return
code of '0' indicates all named files met the characteristics
specified.

5.13 The what Command

The what command is used to find identifying information
within any UNIX system file whose name is given as an argu­
ment to what. Directory names and a name of '-' (a single
minus sign) are not treated specially as they are by other sees
commands and no key letters are accepted by the command.

The what command searches the given file(s) for all
occurrences of the string'@(#)', which is the replacement for
the @(#) ID keyword (see get(l) in the UniP/us+ User
ManuaD, and prints (on the standard output) the balance fol­
lowing that string until the first double quote ("), greater than
(>), back slash (\), newline, or (nonprinting) NUL character.
For example, if the sees file s.prog.c (a e language program)
contains the following line:

char id[] - "@(#)sccs2:5.1";

The command:

% get .rJ.4 s.prog.c

is executed, the resulting 8·./ife is compiled to produce prog.o
and a.out. Then the command:

% what prog.c prog.o a.out

produces:

10-71

sees

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what does not need to be inserted in
the SCCS file via an ID keyword of get~ it can be inserted in
any convenient way.

10-72

c

(
' ,_

c

Chapter 11: CURSES

CONTENTS

1. Introduction

2. General Usage . • . . • •
2.1 Example Program - SCATTER

3. Initialization Routines

4. Structure Routines

5. Mini-Curses . •

6. Option-Setting Routines

7. Output Routines
7.1 Delays

8. Window-Manipulation Routines
8.1 Multiple Windows
8.2 Example Program - WINDOW

9. Terminal Mode-Setting Routines
9.1 TTY Mode Functions
9.2 Video Attributes
9.3 Special Keys
9.4 Scrolling Region
9.5 Highlighting
9.6 Example Program - HIGHLIGHT

10. Multiple Terminals . • . . .
10.1 Current Terminal
10.2 Example Program - TWO
10.3 Additional Terminals

11. Low Level Terminfo Usage . .
11.1 Terminfo Level Routines •
11.2 Example Program - TERMHL

12. Input • • • • • . . . •
12.1 Example Program - SHOW •

- i -

I

2
4

7

9

11

14

18
24

26
29
31

34
37
39
43
44
45
47

50
53
54
59

60
62
68

74
78

13. Portability . •
13.1 Portability Functions

14. Example Program - EDITOR

LIST OF FIGURES

Figure 11.1. Framework of a Curses Program

Figure 11.2. Use of Attributes

Figure 11.3. Using Multiple Terminals for
Output •

Figure 11.4. Terminfo level framework

Figure 11.5. Function Keys Returned by getchO (1 of

82
82

84

2

46

54

61

n n
Figure 11.6. Function Keys Returned by getch 0 (2 of

21 n

- ii -

r
'

1. Introduction

Chapter 11

CURSES

CURSES

This chapter is an introduction to curses(3X). It is intended
for the programmer who must write a screen-oriented program
using the curses package. This chapter documents each curses
function, supplies several examples and is intended as a refer­
ence.

Some information is also included on terminfo(4), since the
curses program uses terminfo to set its parameters for the
correct terminal screen type.

11-1

CURSES

2. General Usage

A curses program follows the framework shown in the follow­
ing figure (Figure 11.1):

#include < curses.h>

initscrO; I* Initialization*/

cbreakO; I* Various optional mode settings "'/
non!();
noechoO;

while (!done) { I* Main body of program *I

I* Sample calls to draw on screen "'I
move(row, col);
addch(ch);
printw("Formatted print with value %d\n", value);

r Flush output *I
refresh();

endwin (); I* Clean up "'I
exit(O);

Figure 11.1. Framework of a Curses Program

The first routine called in this example is inltscrO. A curses
program ALWAYS begins with a call to this routine.

The section which is commented "/* optional mode settings
"'!"contains some, not all, of the possible mode settings.

The mode settings given here are:

ll-2

r

CURSES

• cbreakO

•

This setting enables characters typed by the user to
become immediately available to the program.

noniO
This setting which disables the translation of
<return> to "newline" on input, thus enabling
curses to make better use of the "linefeed" capabil·
ity, maximizing the speed of cursor motion.

• noechoO
This setting turns off the immediate echoing of char­
acters as they are typed.

For the complete list of mode settings, see the section of this
document entitled, Terminal Mode Setting.

It is important to note that in spite of the ensuing functions
addchO and printwO, which work much like putcbarO and
printfO, no output is actually displayed on the screen until the
refresh routine is called.

The reason for this is that move(), addchO and the other rou­
tines controlling movement and drawing on a screen, send their
first output to the stdscr (standard screen) data structure. This
data structure, called a window, buffers the curses output until
refresh 0 is called.

The curses program keeps track of what is on the physical
screen as well as what is being saved in stdscr. When refresh
is called, the two windows are compared and the physical
screen is made to look like the one created in stdscr using the
fewest possible characters. This function, which takes into
account the capabilities of the terminal as well as the similari­
ties of the screens, is called cursor optimization, and is the
source for the name of the curses package.

11-3

CURSES

Two important facts to note are that, first, due to the hardware
scrolling terminals, writing to the lower righthand corner char­
acter position is NOT possible with curses.

Secondly, some programs assume all screens are 24 lines by 80
columns. It is important to understand that many are not.

The variables LINES and COLS are defined by initscrO which
initializes the current screen size with information gathered
from terminfo. When writing a curses program, making use of
these variables will help make the code more generally useful.

2.1 Example Program - SCATTER

Following is the first example program, "SCATTER," which
reads a file and prints the characters of that file on the screen in
random order.

11-4

I'
•
•
•
•
'I

SCA TIER. This program takes the first
23 lines from the standard
input and displays them on the
CRT screen, in a random manner .

#include <curses. h >

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES][MAXCOLS];I"' Screen Array"'/

main()
{

register int row=O,col=O;
register char c;
int char_count=O;
long t;

(_,.-._ char buf[BUFSIZ];

initscrO;
for(row=O;row< MAXLINES;row+ +)

for(coi=O;col<MAXCOLS;col+ +)
s[rowHcol] =' ';

row= 0;
I* Read screen in "'I

CURSES

while((c=getcharO) !- EOF && row< LINES) {

r
'

if(c ! - '\n') {
I* Place char in screen array ,.I
s[rowHcol+ + J = c;
if(c ! = ' ')

char_count++;
I else {

col=O;
row++;

11-5

CURSES

11-6

time(&t); r Seed the random number generator •f
srand((int) (t&Ol77777L));

while(char_count) {

}

row= rand()% LINES;
col=(rand0>>2)% COLS;
if(s[row] [col] ! = ' ')
I

move(row, col);
addch(s[row] [col]);
slrow] [col]= EOF;
char count--·
rerreshO; '

endwinO;
exit(O);

r

r

CURSES

3. Initialization Routines

These functions are called when initializing a program:

initscrO

• Almost always the first function call in a curses pro~
gram.

• Determines the terminal type and initializes curses
data structures.

• Arranges that the first call to refresh will clear the
screen.

endwinO

•
•

Should be called before exiting a curses program .
Restores tty modes, moves the cursor to the lower
left corner of the screen, resets the terminal into the
proper non-visual mode, and tears down all
appropriate data structures.

newterm(a,b)

• Should be used instead of initscr in curses programs
which address more than one terminal.

• Takes 2 arguments:

•
•
•
•
•

a The first argument is a string represent­
ing the type of terminal.

b The second argument is a file descriptor
for output to the terminal.

The file descriptor should be open for reading AND
writing to receive input from the terminal.
Should be called once for each terminal .
Returns a pointer to a SCREEN data structure as a
reference to that terminal.
Should call endwin for each terminal.
If an error occurs, the NULL value is returned .

11-7

CURSES

set_term(a)

• Used to switch to a different terminaL
• Takes I argument:

a Pointer to a SCREEN data structure
which represents the "new" terminal.
This new terminal then becomes the
current terminal.

• Returns the PREVIOUS "current terminal;" all
other calls affect ONLY the current terminal.

longnameO

11-8

• This function returns a pointer to a static area con­
taining a verbose description of the current terminal.

• It is defined only AFTER a call to either

• initscr,
• newterm, or
• setupterm.

;-
'

CURSES

4. Structure Routines

All programs using curses should include the file <curses.h>.
This file defines several curses functions as macros, and defines
several global variables as well as the datatype "WINDOW."

There are two WINDOW constants stdscr (the standard screen)
and curser (the current screen).

Integer constants LINES and COLS are defined and contain the
size of the screen.

Constants TRUE and FALSE are defined, with values 1 and 0,
respectively.

Additional constants which are values returned from most
curses functions are ERR and OK. OK is returned if the func­
tion could be properly completed, and ERR is returned if there
was some error, such as moving the cursor outside of a win­
dow.

The include file <curses.h> automatically includes
<stdio.h> and an appropriate tty driver interface file,
currently either <sgtty.h> or <termio.h>.

NOTE: Including < stdio.h> again by including it explicitly is
harmless but wasteful. However, including
<sgtty.h> again by including it explicitly will usually
result in a fatal error.

A program using curses should include the loader option
-lcurses in the makefile. This is true for BOTH the terminfo
level and the curses level.

The compilation flag - DMINICURSES can be included if you
restrict your program to a small subset of curses concerned

11-9

CURSES

primarily with screen output and optimization. The routines
possible with mini-curses are listed in the following section
appropriately entitled Mini-Curses.

11-10

CURSES

5. Mini-Curses

Curses copies from the current window to an internal screen
image for every call to refresh.

If the programmer is only interested in screen output optimiza­
tion, and does not want the windowing or input functions, an
interface to the lower level routines is available. This will make
the program somewhat smaller and faster.

The interface is a subset of full curses, so that conversion
between the levels is not necessary to switch from mini-curses
to full curses.

The following functions of curses and terminfo are available to
the user of minicurses:

CURSES FUNCTIONS AVAILABLE
WITH MINI-CURSES

addch(ch) addstr(str) attroff(at)

attron (at) attrset(at) clearO
erase() initscr move(y,x)

mvaddch(y,x,ch) mvaddstr(y,x,str) new term

refresh() standendO standout()

The following functions of curses and terminfo are NOT avail­
able to the user of minicurses:

11-11

CURSES

CURSES FUNCTIONS NOT AVAILABLE
WITH MINI-CURSES

box clrtobot clrtoeol delch
deleteln delwin getch getstr
inch insch insertJn longname

makenew mvdelch mvgetch mvgetstr

mvinch mvinsch mvprintw mvscanw

mvwaddch mvwaddstr mvwdelch mvwgetch

mvwgetstr mvwin mvwinch mvwinsch
mvwprlntw mvwscanw newwin overlay
overwrite printw putp scanw
scroll setscrreg subwin touchwin

vidattr waddch waddstr wclear
wclrtobot wclrtoeol wdelch wdeleteln

werase wgetch wgetstr winsch
winsertln wmove wprintw wrefresh
wscanw wsetscrreg

The subset mainly requires the programmer to avoid use of
more than the one window stdscr. Thus, all functions begin­
ning with "w" are generally undefined.

Certain high level functions that are convenient but not essen­
tial are also not available, including printw and scanw.

Also, the input routine getch CANNOT be used with mini­
curses.

Features implemented at a low level, such as use of hardware
insert/delete line and video attributes, are available in both ver­
sions.

Mode setting routines such as crmode and noecho are allowed.

11-12

CURSES

To access MINI-CURSES, add -DMINICURSES to the
CFLAGS in the makefile.

If routines are requested that are not in the subset, the loader
will print error messages such as

Undefined:
m_getch
m_waddch

to tell you that the routines getch and waddch were used but
are not available in the subset.

Since the preprocessor is involved in the implementation of
mini-curses, the entire program must be recompiled when
changing from one version to the other.

11-13

CURSES

6, Option·Setting Routines

These functions set options within curses. In each case, win-
dow is the WINDOW affected, and ftag is a boolean flag with ---·
value TRUE or FALSE indicating whether to enable or disable
the option.

All options are initially FALSE.

It is not necessary to turn these options off before calling
end win.

clearok (window ,flag)

• If set, the next call to wrefresh with this window
will clear the screen and redraw the entire screen.

• If window is curser, the next call to wrefresh with
any WINDOW will cause the screen to be cleared.

• This is useful when the contents of the screen are
uncertain, or in some cases for a more pleasing
visual effect.

idlok (win,bf)

• If ENABLED, curses will consider using the
hardware insert/delete line feature of terminals so
equipped.

• If DISABLED, curses will never use this feature.
• The insert/delete CHARACTER feature is always

considered.
• If insert/delete line CANNOT be used, curses will

redraw the changed portions of all lines that do not
match the desired line.

keypad (window ,flag)

11-14

• This option "enables" the terminal keypad, if the
keypad has both the facility to transmit (keypad

(
,_

•

•

CURSES

"on") and work locally (keypad "off").
If ENABLED, when a function key is used, getch
will return a single value representing that function
key.
If DISABLED, curses will NOT treat function keys
specially.

leaveok (window ,ftagl)

• Causes the cursor to be left wherever the update
leaves it.

• Useful for applications where the cursor is not used,
since it reduces the need for cursor motions.

• When ENABLED, (if possible) the cursor is made
invisible.

meta (window ,flag)

•

•

If ENABLED, characters returned by getch are
transmitted with ALL 8 bits, instead of stripping the
highest bit.
The value OK is returned if successful; the value
ERR is returned if either the terminal or system
cannot receive 8·bit input.

• Useful for extending the non-text command set in
applications where the terminal has a meta shift key.

• Curses takes whatever measures are necessary to
arrange for 8-bit input. On some versions of the
UNIX Operating System, raw mode will be used.
On others, the character size will be set to 8, parity
checking disabled, and stripping of the 8th bit
turned off.

• Note that 8-bit input is a fragile mode.
• Many programs and networks ONLY pass 7 bits.
• If ANY link in the chain from the terminal to the

application program strips the 8th bit, 8-bit input is
impossible.

11-15

CURSES

node lay (window ,ftag)

• Causes getch to be a non-blocking call.
• If no input is ready, getch will return -1.
• If DISABLED, getch will "hang" until a key is

pressed.

intrflush (window ,flag)

• If ENABLED, when an interrupt key (interrupt,
quit, suspend) is used, all output in the tty driver
queue is "flushed" giving faster response to the
interrupt but causing curses to have the wrong idea
of what is on the screen.

• If DISABLED, prevents the '"flush."
• DEFAULT is for intrflush to be ENABLED.
• Depends on support in the underlying teletype

driver.

typeahead (fd)

• Sets the file descriptor for typeahead check.
• Takes one argument:

fd This flag is the "file descriptor" returned from
open or fileno. fd is an integer.

• Setting fd is -1 DISABLEs typeahead check.
• The DEFAULT for fd is 0. (0 is the standard input

file descriptor, just as I is the standard output file
descriptor and 2 refers to standard error.)

• Typeahead is checked independently for each screen,
and for multiple interactive terminals it should be
set to the appropriate input for each screen.

• A call to typeahead affects ONLY the current
screen.

scrollok (window ,Hag)

11-16

• Controls what happens when the cursor of a WIN­
DOW is moved "off the edge" (i.e., by reaching a

r-·
'

• •

•

CURSES

newline on the bottom line or by having finished
typing the last character on the last line.)
If DISABLED, the cursor is left on the bottom line .
If ENABLED, wrefresh is called on the WINDOW,
causing the physical terminal and WINDOW to be
"scrolled up" one line.
The idlok function MUST also be called to get the
"physical" scrolling effect on the terminal.

setscrreg(top,bottom)
wsetscrreg (window, top, bottom)

• Both functions are used to set a ''software scrolling
region" in a WINDOW (either curser or stdscr).

• The arguments are:

window Specifies the WINDOW affected by this
call to wsetscrreg.

top The line number of the top margin of the
scrolling region.

Line 0 is the top line of the WINDOW.
bottom The line number of the bottom margin of

the scrolling region.
• If ENABLED WITH scrollok, an attempt to move

off the bottom margin line will cause all lines in the
11 scrolling region" to scroll up one line.

• This has nothing to do with use of a terminal's
"physical scrolling region capability" - ONLY the
text of the window is scrolled.

• If idlok is ENABLED AND the terminal has either
a "scrolling region" or "insert/delete line" capabil­
ity, the curses output routines will use one of those
capabilities.

11-17

CURSES

7. Output Routines

refresh()
wrefresh(win)

• Must be called to get ANY OUTPUT on the termi­
nal,

• The wrefresh function is the "window" version of
refresh and copies the specified WINDOW, (win­
dow), to the physical terminal screen.

• The refresh function copies the default WINDOW
(stdscr) to the physical terminal screen.

• The physical cursor of the terminal is left at the
location of the WINDOW's cursor - UNLESS
leaveok is ENABLED.

doupdateO
wnoutrefresh (window)

• Used to allow multiple updates with more efficiency
than wrefresh.

• The wrefresh function works by first copying the
specified WINDOW to the virtual screen (what the
programmer wants to appear on the screen) with a
call to (wnoutrefresh). Then the (doupdate) rou­
tine is called to update the screen.

By using the wnoutrefresh function for each win·
dow, INSTEAD OF wrefresh, it is possible to call
the doupdate routine only once with probably fewer
total characters transmitted.

prefresh (pad,pminr ,pminc, sminr ,sminc,smax r, smaxc)
pnoutrefresh (pad, pminr, pminc, sminr, sminc, smaxr ,smaxc)

11-18

• These routines are analogous to wrefresh and
wnoutrefresh except that they involved PADS,
instead of WINDOWS.

• The following additional parameters are needed to

r"'
'

r"'
'

•

•

CURSES

indicate what part of the PAD and screen are
involved:

pminr Specifies the UPPER MOST ROW of the
rectangle PAD to be displayed.

Together with pminc, used to specify the
UPPER LEFT CORNER of the rectangle
PAD to be displayed.

pmlnc Specifies the LEFT MOST COLUMN of
the rectangle PAD to be displayed.

sminr Specifies the UPPER MOST ROW (on the
screen) of the rectangle in which the PAD
will be displayed.

Together with smlnc, smaxr and smaxc
used to specify the edges (on the screen)
of the rectangle in which the PAD will be
displayed.

sminc Specifies the LEFT MOST COLUMN (on
the screen) of the rectangle in which the
PAD will be displayed.

smaxr Specifies the BOTTOM ROW (on the
screen) of the rectangle in which the PAD
will be displayed.

smaxc Specifies the RIGHT MOST COLUMN
(on the screen) of the rectangle in which
the PAD will be displayed.

The LOWER RIGHT CORNER of the rectangle
PAD to be displayed is calculated from the screen
coordinates, since both the PAD and the rectangle
in which it will be displayed MUST be the same size.
Both rectangles must be entirely contained within
their respective structures.

The following routines are used to "draw" text on WINDOWS.
In all cases, the following conventions apply:

• If not explicitly stated, the WINDOW affected is
stdscr.

11-19

CURSES

• y and x are the row and column, respectively.

• The UPPER LEFT CORNER is ALWAYS (0,0).

• Functions beginning with mv imply a call to move
BEFORE the call to the other function.

move(y, x)
wmove(window, y, x)

• Used to move the cursor in the specified WINDOW
(window or stdscr) to the location specified by the x
and y parameters.

• The physical terminal cursor is NOT moved UNITIL
refresh is called.

• The position specified is relative to the UPPER
LEFT CORNER of the SCREEN. If the UPPER
LEFT CORNER of the specified WINDOW is NOT
the same as the UPPER LEFT CORNER of the
SCREEN, The SCREEN coordinates of that corner
of the window must be passed to move instead of
(0,0).

addch(ch)
waddch(window,ch)
mnddch (y,x,ch)
mvwaddch (window ,y ,x,h)

11-20

• The character ch is put in the WINDOW at the
current cursor position and the cursor position is
advanced.

• If ch is a tab, newline or backspace, the cursor will
be moved appropriately in the WINDOW.

• If ch is a control character OTHER THAN tab, new­
line or backspace, for example CTRL-u, it will
appear on the screen preceded by a """ (in this
case, as ~u).

• At the right margin, an automatic newline is per­
formed.

• If scrollok is ENABLED, when the cursor reaches

r •

CURSES

the bottom of the "scrolling region," the scrolling
region will scroll up one line.
The parameter ch is actually an INTEGER, NOT A
CHARACTER.

• Video attributes can be combined with a character
by "OR-ing" them into the parameter thereby SET­
TING THOSE A TTR!BUTES.

The intent here is that text, including attributes,
can be copied from one place to another with both
insch and addch.)

addstr(str)
waddstr (window ,str)
mvaddstr(y,x,str)
mvwaddstr(window ,y ,x,str)

• Used to write all the characters of a NULL­
terminated character string, str, on the given WIN­
DOW.

erase()
werase(window)

• Used to copy blanks to EVERY position in the
WINDOW.

clearO
wclear (window)

• These functions are analogous to erase and werase
but they also call clearok so that the screen will be
cleared on the next call to refresh that WINDOW.

clrtobotO
wclrtobot(window}

• The clrtobot routine causes all lines BELOW the
cursor in the WINDOW to be erased.

11-21

CURSES

• The clrtobotO routine also causes the rest of the
current line to the right of the cursor to be erased.

clrtoeoiO
wclrtoeol (window)

• These functions cause the rest of the current line to
the right of the cursor to be erased.

delchO
wdelch(window)
mvdelch(y,x)
mvwdelch (window ,y ,x)

• The character under the cursor in the window is
deleted.

• All characters to the right on the same line are
moved to the left one position.

• This DOES NOT USE the hardware "delete charac­
ter" feature.

deleteln 0
wdeleteln (window)

• The line under the cursor in the window is deleted.
• All lines below the current line are moved up one

line.
• The bottom line of the window is cleared.
• This DOES NOT USE the hardware "delete line"

feature.

insch(c)
winsch(window,c)
mvinsch(y,x,c)
mvwinsch (window ,y ,x,c)

11-22

• The character, c, is inserted BEFORE the character
under the cursor.

• All characters to the right are moved one space to

•

CURSES

the right, possibly losing the rightmost character on
the line.
This DOES NOT USE the hardware "insert charac·
ter" feature.

insertlnO
winsertln (window)

• A blank line is inserted ABOVE the current line.
• The bottom line is lost.
• This DOES NOT USE the hardware "insert line"

feature.

printw(fmt,args)
wprintw(window,fmt,args)
Unprintw (y ,x,fm t,args)
mvwprintw(window, y, x, fmt, args)

• These functions correspond to printf. The charac­
ters which would be output by printf are instead
output by the function waddch on the given WIN­
DOW.

box(window, vert, hor)

• A box is drawn around the edge of the WINDOW.
• The parameters vert and hor are the characters used

in drawing the box.

scroll(window)

• The WINDOW is "scrolled up" one line.

•
This involves moving the lines in the WINDOW
data structure.
As an optimization, if the WINDOW is stdscr and
the "scrolling regions" is the entire WINDOW, the
physical screen will be "scrolled" at the same time.

11-23

CURSES

7.1 Delays

The following functions are highly UNPORT ABLE, but are
often needed by programs that use curses (especially real-time
response programs).

Some of the following functions require modification before
they are prepared to run on a given operating system.

In ALL cases, the routine will compile and return an error
status if the requested action is not possible.

draino(ms)

• The program is suspended until the output queue
has "drained" enough to complete in the time
specified by the argument ms.

The argument ms is expected to be some number of
milliseconds

For example, draino(SO), at 1200 baud, would pause
until there are no more than 6 characters in the out­
put queue, because it would take 50 milliseconds to
output the additional 6 characters.

• The purpose of this routine is to keep the program
(and thus the keyboard) from getting ahead of the
screen.

• If the operating system DOES NOT support the
ioctls 0/0 controls) needed to implement draino,
the value ERR is returned.

• If the operating system DOES support the ioctls
(I/O controls) needed to implement draino, the
value OK is returned.

napms(ms)

11-24

• This function suspends the program for ms mil­
liseconds.

•
•

CURSES

This function is similar to sleep but has higher reso·
lution.
The resolution actually provided will vary with the
facilities available in the operating system, and often
a change to the operating system will be necessary to
produce the best results.

If resolution of at least .I second is not possible, the
routine will round to the next higher second, call
sleep, and return ERR. (Otherwise, the value OK is
returned.)

• Often the resolution provided is 1!60th second.

11-25

CURSES

8. Window-Manipulation Routines

newwin(num_lines, num_cols, beg_ row, beg_ col)

• Creates a new WINDOW with the number of lines
and columns specified in the first two parameters.

• The UPPER LEFT CORNER of the WINDOW is at
row beg_ row and column beg_ col.

• If either num_lines or num_cols is given as ZERO,
curses uses, by DEFAULT, the result of the expres­
sion LINES - beg_ row and COLS - beg_ col.

• Using newwin(O,O,O,O) creates a new full-screen
WINDOW.

newpad (nom _lines, num _ cols)

• Creates a new PAD data structure.
• A PAD is like a window - BUT it is NOT RES­

TRICTED by the screen size, AND it is NOT
ASSOCIATED with a particular part of the screen.

• PADS can be used when a large WINDOW is
needed, and only a part of the WINDOW will be on
the screen at one time.

• There are NO AUTOMATIC refreshes of PADS
(e.g. from scrolling or echoing of input).

• PAD is NOT a LEGAL argument to refresh - use
prefresh or pnoutrefresh instead.

• Just as "window versions" of functions must have
an extra parameter to specify the specific WINDOW
to be affected, the PAD routines require additional
parameters to:

• Specify the part of the PAD to be
displayed

• Specify the location on the screen to be
used for display

subwin(orig, num_lines, nnm_cols, x, y)

• Create a new WINDOW within another window.

11-26

(

-
•

•
•

•

CURSES

The original WINDOW is given to subwin as its first
parameter, orig.
The number of lines and columns of the "sub­
WINDOW" are given in the second and third
parameters, num_lines rows by num_cols columns.
The WINDOW is located at row x and column y -
relative to the screen, not orig.
The new sub-WINDOW is made in the WINDOW
orig, and changes made to one WINDOW affect
BOTH WINDOWS.
It is often necessary to call toucbwin before calling
wrefresh when using subwin.

delwin (window)

•
•

Used to delete the specified WINDOW (window),
and free any memory associated with it.
In the case of overlapping WINDOWS, sub­
WINDOWS should be deleted BEFORE the deleting
the main WINDOW.

mvwin(window, br, be)

• Used to move a specified WINDOW (window) so
that the UPPER LEFT CORNER is at row br and
column be.

• If the move would cause the WINDOW to be OFF
THE SCREEN, it is an ERROR, and the WINDOW
is NOT moved.

touchwin (window)

•

•

Used to "throw away" optimization information
concerning which parts of the WINDOW have been
"touched."
Sometimes necessary when using overlapping WIN·
DOWS, since a change to one WINDOW will affect
the other WINDOW but that change will NOT be
reflected in the record of "which lines have been

11-27

CURSES

changed" in the other WINDOW.

overlay(windowl, window2)
overwrlte(windowl, window2)

11-28

• Used to "overlay" windowl on top of window2.
All text in windowl is copied into window2.

• The overlay is NONDESTRUCTIVE (blanks are not
copied).

• The overwrite is DESTRUCTIVE.

CURSES

8.1 Multiple Windows

A window is a data structure representing all or part of the CRT
screen. It has room for:

• A two dimensional array of characters and attributes
for each character to a total of 16 bits per character
(1 for text and 9 for attributes)

• A cursor

• A set of current attributes

• A number of flags.

Curses provides two full screen windows:

1. stdscr

2.

This full screen window is the standard screen
buffer.

curser
This full screen window is the current screen which
represents the physical terminal screen.

It is important to understand that a window is only a data struc­
ture. Therefore, use of more than one window does not imply
use of more than one terminal, nor does it involve more than
one process.

A window is merely an object which can be copied to all or part
of the terminal screen. The current implementation of curses
does not allow windows which are bigger than the screen.

The programmer can create additional windows with the func­
tion newwin 0 which returns a pointer to a newly created win­
dow and takes four parameters:

lines The length of the screen

cols The width of the screen

11-29

CURSES

begin_ row The left most side of the screen

begin_ col The top of the screen

The upper left corner of the window will be at screen position
(begin-row. begin-con.

All operations that affect stdscr have corresponding functions
that affect an arbitrary named window. Generally, these func·
lions have names formed by putting a "w" on the front of the
stdscr function, and the window name is added as the first
parameter.

For example, the function waddch(mywin, c) would write the
character c to window mywin, and the function
wrefresh(mywin) would flush the contents of a window
(mywin) to the screen.

Windows are useful' for maintaining several different screen
images, and alternating the user among them.

It is possible to subdivide the screen into several windows,
refreshing each of them as desired. When windows overlap,
the contents of the screen will be the more recently refreshed
window.

In all cases, the "non-w" version of the function calls the "w"
version of the function, using stdscr as the additional argu­
ment.

For example, a call to addch(c) results in a call to
waddch(stdscr, c)

A set of "move" functions are also provided for most of the
common functions so that a call to move is made right before
the call to the other function.

11-30

CURSES

For example, mvaddch(row, col, c) is one function which actu­
ally peforms two function calls:

1.
2.

The first to move(row, col)
The second to addch (c)

There are "move" functions for the "window" functions as
well. For example, mvwaddch(row, col, mywin, c) causes first
the move to row, col and then the character c to be written to
the window mywin.

8.2 Example Program - WINDOW

The program "WINDOW" is an example of the use of multi­
ple windows.

• The main display is kept in stdscr.

• When the user temporarily wants to put something
else on the screen, a new window is created covering
part of the screen.

• A call to wrefresh on the temporary window created,
causes the window to be WRITTEN OVER stdscr
on the screen.

• Calling refresh on stdscr results in the original win­
dow being REDRAWN on the screen.

• The function touchwin is called before writing out
an overlapping window. This is necessary to defeat
an optimization in curses.

If you have trouble refreshing a new window which overlaps an
old window, it may be necessary to call touchwin on the new
window to get it completely written out.

Following is the fourth example program, "WINDOW:"

11·31

CURSES

I'
•
'I

WINDOW. This program is an example of
the use of multiple windows

#include <curses.h>

WINDOW *cmdwin;

main()
{

inti, c;
char buf[l20];

initscrO;
non!();
noechoO;
cbreakO;

cmdwin""" newwin(3, COLS, 0, 0);/* top 3 lines*/
for (i-O; i<LINES; i++)

mvprintw(i, 0, "This is line %d of stdscr", i);

for (;;) {
refresh();
c = getchO;
switch (c) {
case 'c': I* Enter command from keyboard •1

werase(cmdwin);
wprintw(cmdwin, "Enter command:");
wmove(cmdwin, 2, 0);
for (i=O; i<COLS; i++)

waddch(cmdwin, '-');
wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh (cmdwin);
wgetstr(cmdwin, buf);
touch win (stdscr);
I'
• The command is now in buf.

11-32

* It should be processed here . . ,
break;

case'q':
endwinO;
exit(O);

CURSES

11-33

CURSES

9. Terminal Mode-Setting Routines

The following functions are used to set modes in the tty driver.
The initial mode usually depends on the setting when the pro­
gram was called:

cbreakO
nocbreakO

• Calling the cbreak function puts the terminal setting
IN CBREAK mode.

• Calling the nocbreak function takes the terminal set­
ting OUT OF CBREAK mode.

• If CBREAK mode is SET. characters typed are
immediately available to the program.

• If NOCBREAK mode is SET, the teletype driver
buffers characters typed UNTIL newline is typed.

• INTERRUPT and FLOW CONTROL characters are
NOT AFFECTED by this mode.

• DEFAULT, initially, is CBREAK mode is NOT set.
Therefore, most interactive curses programs call
cbreak to set CBREAK mode.

ethoO
noechoO

• Control whether characters are "echoed" as typed.
• DEFAULT, initially, is that ECHO is SET and,

therefore, characters typed are echoed by the tele­
type driver.

• To control echoing to one area of the screen, or not
to echo at all, use the function noechoO to TURN
OFF ECHO.

niO
noniO

11-34

• Control whether "newline" is translated into "car­
riage return" and "linefeed" on output, and

•

CURSES

whether "return" is translated into "newline" on
input.
DEFAULT, initially, NEWLINE and RETURN
ARE TRANSLATED.

• If nonl is called, TRANSLATIONS ARE DIS­
ABLED. This is often used to make better use of
the linefeed capability to obtain faster cursor

raw()
norawO

motion.

• The raw() function SETS RAW mode.
• The norawO function ONSETS RAW mode.
• RAW mode is similar to cbreak mode in that char­

acters typed are immediately available to the pro­
gram. However, in RAW mode, the INTERRUPT
and CONTROL FLOW characters ARE AFFECTED

•
by RAW mode.
The INTERRUPT and CONTROL FLOW characters
(interrupt, quit and suspend) are UNINTER-
PRETED in RAW mode and DO NOT generate a
signal, but pass directly to the program.

(Just as when a terminal is set in RAW mode, giv­
ing the command "reset" followed by a
<RETURN> will result in an error messaged
"reseCM Command not found." The <LINE
FEED> key or a CTRL-1 must be used instead of
the <RETURN> key to transmit the reset com­
mand.)

• RAW mode causes 8-bit input and output.

resettyO
savettyO

•
•

The resetty function restores the state of the tty
modes.
The savetty function saves the state of the tty

11-35

CURSES

•
•

11-36

modes.
The savetty function saves the current state in a
buffer,
The resetty function restores the state to what it was
at the last call to savetty.

/'
I

CURSES

9.1 TTY Mode Functions

In addition to the save/restore routines savettyO and resetty(),
standard routines are available for going into and out of normal
tty mode. These routines are:

resetterm 0

• This routine puts the terminal back in the mode it
was in when curses was started.

• The endwin routine automatically calls resetterm.
• The routine to handle CTRL-z (on other systems

that have process control) also uses resetterm. Pro­
grammers should use this routine before and after
shell escapes, and also if they write their own rou­
tine to handle CTRL-z. This routine is also avail­
able at the terminfo level.

fixtermO

0 This routine undoes the effects of resetterm, i.e.,
restores the "current curses mode."

• The routine to handle CTRL-z (on other systems
that have process control) also uses fixterm. Pro­
grammers should use this routine before and after
shell escapes, and also if they write their own rou­
tine to handle CTRL-z. This routine is also avail­
able at the terminfo level.

savetermO

• This routine saves the current state to be used by
fixtermO.

nodelay(a, b)

0 nodelay takes two arguments:

a First argument is the window to be affected.
b Second argument is either TRUE (meaning

11-37

CURSES

ll-38

"ENABLE") or FALSE (meaning "DIS­
ABLE").

• A terminal is put in nodelay mode with the follow­
ing call:

nodelay (stdscr, TRUE)

• While in this mode, any call to getch will return -I
if there is nothing waiting to be read immediately.
This is useful for writing programs requiring "real
time" behavior where the users watch action on the
screen and press a key when they want something to
happen.

• For example, the cursor can be moving across the
screen, in real time. When it reaches a certain
point, the user can press an arrow key to change
direction at that point.

CURSES

9.2 Video Attributes

Video attributes can be displayed in any combination on termi­
nals with this capability. They are treated as an extension of
the standout capability, which is still present.

Each character position on the screen has 16 bits of information
associated with it. Seven of these bits are the character to be
displayed, leaving separate bits for nine video attributes. These
bits are used for standout, underline, reverse videe, blink,
dim, bold, blank, protect, and alternate character set.

The attribute standout is taken to be whatever highlighting
works best on the terminal, and should be used by any program
that does not need specific or combined attributes.

Underlining, reverse video, blink, dim, and bold are the usual
video attributes.

Blank means that the character is displayed as a space, for
security reasons. Protected and alternate character set depend
on the particular terminal. The use of these last three bits is
subject to change and not recommended.

Note also that not all terminals implement all attributes in
particular, no current terminal implements both dim and bold.

The routines to use these attributes include

attrset(attrs)
attron (attrs)
attroff(attrs)
standout()
standendO

wattrset(win, attrs)
wattron (win, attrs)
wattroff(win, attrs)
wstandout(win)
wstandend(win)

Attributes, if given, can be any combination of
A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK,
A_DIM, A_BOLD, A_INVIS, A_PROTECT, and

11-39

CURSES

A_ALTCHARSET.

These constants, defined in curses.h, can be combined with the
C r (OR) operator to get multiple attributes. ~

The attrset routine sets the current attributes to the given
attrs.

The attron routine turns on the given attrs in addition to any
attributes that are already on.

The attroff routine turns off the given attributes, without
affecting any others.

standout and standend are equivalent to
attron(A_STANDOUT) and attrset(A_NORMAL).

If the particular terminal does not have the particular attribute
or combination requested, curses will attempt to use some
other attribute in its place.

If the terminal has no highlighting at all, all attributes will be
ignored.

attroH(at)
wattrotf(window, attrs)
attron(at)
wattron(window, attrs)
attrset(at)
wattrset(window, attrs)
standout()
standendO
wstandout(wlndow)
wstandend (window)

• These functions set the current attributes of the

11-40

I

,,.---

•

•
•

•

•

•
•
•
•
•

beep()
ftashO

CURSES

specified WINDOW, (either stdscr or window).
The current attributes can be any combination of
A_STANDOUT, A_REVERSE, A_BOLD,
A_DIM, A_BLINK and A_UNDERLINE.
These constants are defined in < curses.h > and can
be combined with the C "I" (OR) operator.
The current attributes of a WINDOW are applied to
all characters that are written into the WINDOW
with waddch.
Attributes are a property of the character, and move
with the character through any scrolling and
insert/ delete line/ character operations.
To the extent possible on the particular terminal,
the attributes will be displayed as the graphic rendi­
tion of characters put on the screen.
The function attrset(at) SETS the current attri­
butes of the given WINDOW to at.
The function attroff(at) TURNS OFF the specified
attributes without affecting any other attributes.
The function attron(at) TURNS ON the named
attributes without affecting any others.
The function standout is equivalent to
attron(A_STANDOUT).
The function standend is equivalent to attrset(O),
that is, it TURNS OFF ALL attributes.

• These functions are used to produce "signals."

The function beep invokes the audible alarm on the
terminal, if possible. If the terminal is not capable
of producing an audible alarm, this function will
invoke a "flash" (or visible bell), if that is possible.

The function Hash invokes a visible bell, or "flash,"
on the screen. If the terminal is not capable of pro­
ducing a visible bell, this function will invoke a

11-41

CURSES

0

0

11-42

"beep" (audible bell), if that is possible.
If neither an audible nor visual signal is possible,
nothing will happen.
Nearly all terminals have an audible signal (bell or
beep) but only some can flash the screen.

CURSES

9.3 Special Keys

Many terminals have special keys, such as arrow keys, keys to
erase the screen, insert or delete text, and keys intended for
user functions. The particular sequences these keys send differ
from terminal to terminal.

Curses allows the programmer to handle these keys. For
example, a program using special keys should turn on the
keypad by calling the following routine at initialization:

keypad (stdscr, TRUE)

This will cause special characters to be passed through to the
program by the function getch.

These keys have values starting at 0401, so they should not be
stored in a char variable, as significant bits will be lost.

A program using special keys should avoid using the escape
key, since most sequences start with escape, creating an ambi­
guity.

Curses will set a one second alarm to deal with this ambiguity,
which will cause delayed response to the escape key. It is a
good idea to avoid escape in any case, since there is eventually
pressure for nearly any screen oriented program to accept arrow
key input.

11-43

CURSES

9.4 Scrolling Region

There is a programmer-accessible scrolling region.

Normally, the scrolling region is set to the entire window, but
the following calls set the scrolling region for stdscr or the
given window to any combination of top and bottom margins:

setscrreg(top, bot)
wsetscrreg(win, top, bot)

When scrolling past the bottom margin of the scrolling region,
the lines in the region will move up one line, destroying the top
line of the region. If scrolling has been enabled with scrollok,
scrolling will take place only within that window.

Note that the scrolling region is a software feature, and only
causes a window data structure to scroll. This may or may not
translate to use of the hardware scrolling region feature of a
terminal, or insert/delete line.

11-44

CURSES

9.5 Highlighting

The function addch always draws two things on a window:

1. The character itself
2. Its attribute

In addition to the character itself, a set of attributes is associ·
a ted with the character. These attributes cover various forms
of highlighting of the character. For example, the character can
be put in reverse video, bold, or be underlined.

A window always has a set of current attributes associated with
it. The current attributes are associated with each character as
it is written to the window.

The current attributes can be changed with a call to
attrset (attrs).

The names of the attributes are

ATTRIBUTES
A BOLD A REVERSE
A DIM A_STANDOUT
A INVIS A_UNDERLINE

Consider the following figure as an example of the use of both
the function attrsetO and the attribute A_BOLD:

11·45

CURSES

printw("A word in");
attrset(A_BOLD);
printw ("boldface");
attrset(O);
printw(" really stands out.\n");

refresh();

Figure ll.2. Use of Attributes

The output produced by this code, assuming a screen with the
capability to output bold characters, would be:

A word in boldface really stands out.

Not all terminals are capable of displaying all attributes. If a
particular terminal cannot display a requested attribute, curses
will attempt to find a substitute attribute. If none is possible,
the attribute is ignored.

Another attribute is called A_STANDOUT. This attribute is
used to make text attract the attention of the user. The partic­
ular hardware attribute used for standout varies from terminal
to terminal, and is chosen to be the most visually pleasing attri­
bute the terminal has. A_STANDOUT is typically imple­
mented as reverse video or bold.

Many programs don't really need a specific attribute, such as
bold or inverse video, but instead just need to highlight some
text. For such applications, the A_STANDOUT attribute is
recommended.

Two convenient functions, standout() and standendO turn the
A_STANDOUT attribute on and off, respectively.

Attributes can be turned on in combination. Thus, to turn on
blinking bold text, use:

11-46

CURSES

attrset(A_BLINK I A_ BOLD)

Individual attributes can be turned on and off with attron and
attrofl' without affecting other attributes.

In order to determine how to update the screen, curses must
know what is on the screen at all times. This requires curses to
clear the screen in the first call to refresh, and to know the cur­
sor position and screen contents at all times.

9.6 Example Program - HIGHLIGHT

The next example program is called "HIGHLIGHT" which
uses attributes. The program takes a text file as input and
allows embedded escape sequences to control attributes.

HIGHLIGHT comes about as close to being a "filter" as is
possible with curses. It is not a true filter, however, because

(curses must "take over" the CRT screen.

In this example program,

• \ U turns on underlining

• \8 turns on bold

• \N restores normal text

• scrollok allows the terminal to scroll - should the
file be longer than one screen (i.e., when an attempt
is made to draw past the bottom of the screen,
curses will automatically scroll the terminal up a line
and call refresh.)

Following is the third example program, "HIGHLIGHT:"

11-47

CURSES

!'
• HIGHLIGHT: a program to turn \U, \8, and
• \N sequences into highlighted
' output, allowing words to be
* displayed underlined or in bold.
'I

#include < curses.h>

main(argc, argv)
char .,..argv;
I

FILE *fd;
int c, c2;

if (argc != 2) {
fprintHstderr, "Usage: highlight file\n");
exitO);

fd = fopen(argv[l], "r");
if (fd ~ ~ NULL) I

perror(argv[l]);
exit(2);

initscrO;
scrollok(stdscr, TRUE);

for (;;) I
c - getc(fd);
if (c ~- EOF)

break;
if (c ~~ '\') I

c2 = getc(fd);
switch (c2) {
case '8':

attrset(A_BOLD);
continue;

case 'U':

11-48

attrset(A_ UNDERLINE);
continue;

case 'N':
attrset(O);
continue;

}
addch(c);
addch(c2);

else
addch(c);

}
fclose(fd);
refresh();
endwinO;
exit(O);

CURSES

11-49

CURSES

10. Multiple Terminals

The curses package can produce output on more than one ter­
minal at once. This is useful for single process programs that
access a common database, such as multi-player games. How- --
ever, such programs are plagued with difficult problems, and
curses does not solve all of them.

It is the responsibility of the program to determine the file
name of each terminal line, and what kind of terminal is on
each of those lines. This is a major problem, because the stan­
dard method (i.e., checking the $TERM variable in the
environment), does NOT work, since each process can only
examine its own environment.

Another problem that must be solved is that of multiple pro­
grams reading from one line. This situation produces a race
condition and should be avoided. A program wishing to take
over another terminal cannot just shut off whatever program is
currently running on that line (except, of course, for some
applications, such as an inter-terminal communication program,
or a program that takes over unused tty lines).

A typical solution requires the user logged in on each line to
run a program that notifies the master program that the user is
interested in joining the master program, telling it:

• The notification program's process id
• The name of the tty line
• The type of terminal being used

Then the program goes to sleep until the master program
finishes.

When done, the master program wakes up the notification pro­
gram, and all programs exit.

11-50

r-
1

CURSES

Since all information about the current terminal is kept in a
global variable:

struct SCREEN *SP;

and although the SCREEN structure is "hidden" from the
user, the C compiler will accept declarations of variables which
are pointers. The user program should declare one SCREEN
pointer variable for each terminal it wishes to handle.

The routine

struct SCREEN *SP
newterm (type, fd)

will set up a new terminal of the given terminal type which puts
its output on "file descriptor" fd.

A call to initscr is essentially:

newterm {geten v ("TERM'') ,stdout)

A program wishing to use more than one terminal should use
newterm for each terminal and save the value returned as a
reference to that terminal.

To switch to a different terminal, call

set_ter~n(ter~n)

The old value of "SP" will be returned.

The programmer should not assign directly to "SP" because
certain other global variables must also be changed.

(All curses routines always affect the current terminal. To han­
dle several terminals, switch to each one in turn with set_ term,
and then access it.

11-51

CURSES

r Each terminal must be set up with newterm, and closed
down with endwin.

11-52

CURSES

10.1 Current Terminal

The current terminal facility is how curses handles multiple
terminals. All function calls always affect the current termi­
nal. The master program sets up each terminal, saving a refer­
ence to the terminals in its own variables. When the master
program wishes to affect a terminal, it sets the current termi­
nal as desired, and then calls the ordinary curses routines.

References to terminals have type struct screen.

A new terminal is initialized by calling newtermhype, fd). The
parameter type is a character string, naming the kind of termi­
nal being used.

The parameter fd is a "stdio" file descriptor to be used for
input and output to the terminal.

The newterm function returns a screen reference to the termi­
nal being set up. If only output is needed, the file can be open
for output only.

The call to newterm replaces the normal call to initscr, which
calls newterm(getenv("TERM"), stdout)

The call "set_term(sp)" changes the current terminal. The
parameter sp is the screen reference to be made current. The
function set_term returns a reference to the previous terminal.

It is important to realize that each terminal has its own set of
windows and options. Each terminal must be initialized
separately with newterm.

Options such as cbreak and noecho must be set separately for
each terminal.

11-53

CURSES

The functions endwin and refresh must be called separately for
each terminal.

The following program fragment is an example of using multi~
pie terminals as output for an "Important Message":

for (i=O; I<nterm; i++) I
set term(termslil);
mv"'&ddstr(O, 0, "Important message");
refresh();

Figure 11.3. Using Multiple Terminals for Output

10.2 Example Program - TWO

The following sample program TWO does the following:

• Pages through a file, showing one page to the first
terminal and the next page to the second terminal

• Waits for a space to be typed on either terminal, and
shows the next page to the terminal typing the space

• Sleeps for one second between checks

Note that each terminal had to be separately put into nodelay
mode. Since no standard multiplexor is available in current
versions of the UN lXI ~~ Operating System, it is necessary to
either invoke wait, or call sleep (I), between each check for
keyboard input.

The TWO program is just a simple example of two terminal
curses. It does not handle notification, but instead, it requires
the name and type of the second terminal on the command
line.

The sleep 100000 instruction must be input by the user on the
second terminal to put it to sleep while the program runs, and
the first user must have both read and write permission on the

11-54

CURSES

second terminal.

I
' The following is the fifth example program, "TWO:"

11-55

CURSES

I'
•
•j

TWO. This program is a simple example
of two terminal curses .

#include <curses.h>
#include < signal.h>

struct screen *me, *you;
struct screen "'set_termO;

FILE "'fd, *fdyou;
char linebuf[512];

main(argc, argv)
char "'*argv;
{

int doneO;
int c;

if(argc!~ 4) {
fprintf(stderr, "Usage: two othertty otherttytype inputfile\n");
exit(l);

fd - fopen{argv[3], "r");
fdyou - fopen(argv[l], "w+"};
signal(SIGINT, done); /"'die gracefully *I

me= newterm(getenv("TERM"), stdout); I* initialize my tty*/
you = newterm(argv[2], fdyou); I* Initialize his terminal *I

set term(me); I* Set modes for my terminal*/
noechoO; I* turn off tty echo • I
cbreakO; renter cbreak mode *I
noniO; I* Allow linefeed >~<f
nodelay(stdscr,TRUE); I* No hang on input*/

set_ term (you); I* Set modes for other terminal""/

11-56

CURSES

noechoO;
cbreak(); r non!();
nodelay(stdscr, TRUE);

I* Dump first screen full on my terminal"'/
dump _page(me);

I* Dump second screen full on his terminal "'I
dump _page(you);

for (;;) { /"' for each screen full "'I
set term(me);
c ;;; getchO;
if (c == 'q') I* wait for user to read it"'/

done();
if(c~~")

dump _page(me);

set term (you);
c ~ getchO;
if (c = = 'q') I* wait for user to read it"/

done();
if(c ~~ ")

dump page{you);
sleep(!); -

dump_page(term)
struct screen •term;
{

int line;

set term(term);
mo;e(o, 0);
for (line=O; line<LINES-1; line++) {

if (fgetsOinebuf, sizeof linebuf, fd) = = NULL) {
clrtobotO;

11-57

CURSES

doneO;

mvprintw(line, 0, "%s", linebuf);
)
standout();
mvprintw{LINES-1, 0, "--More--");
standendO;
refresh 0; I* sync screen "'I

I"
* Clean up and exit.
'I

done()
{

I* Clean up first terminal "'I
set terrn(you);
mo;,e(LINES-1,0);
clrtoeo!O;

I* to lower left corner *I
I* clear bottom line "'/

refresh();
endwinO;

!"' flush out everything"'/
I* curses cleanup • I

I* Clean up second terminal *I
set_ term (me);
move(LINES-1,0);
clrtoeoiO;
refresh();
endwinO;

exit(O);

I* to lower left corner "I
I* clear bottom line "I
I* flush out everything *I
I* curses cleanup "'I

11-58

CURSES

10.3 Additional Terminals

Curses will work even if absolute cursor addressing is not possi­
ble, as long as the cursor can be moved from any location to
any other location. It considers local motions, parameterized
motions, home and carriage return.

Curses is aimed at full duplex, alphanumeric video terminals.
No attempt is made to handle half-duplex, synchronous, hard
copy or bitmapped terminals.

Bitmapped terminals can be handled by programming the bit­
mapped terminal to emulate an ordinary alphanumeric terminal.
This does not take advantage of the bitmap capabilities, but it is
the fundamental nature of curses to deal with alphanumeric
terminals.

The curses handles terminals with the "magic cookie glitch" in
their video attributes. (The term "magic cookie" means that a
change in video attributes is implemented by storing a "magic
cookie" in a location on the screen. This "cookie" takes up a
space, preventing an exact implementation of what the pro­
grammer wanted.) Curses takes the extra space into account,
and moves part of the line to the right, as necessary. In some
cases, this will unavoidably result in losing text from the right
hand edge of the screen. Advantage is taken of existing spaces.

11-59

CURSES

11. Low Level Terminfo Usage

Some programs need to use lower level primitives than those
offered by curses. For such programs, the terminfo interface is
offered.

This interface does not manage your CRT screen, but it does
give you access to the ways in which you can manipulate the
terminal.

Whenever possible, the higher level curses routines should be
used because using them will make your program more portable
to a wider class of terminals and versions of the UNIX Operat­
ing System.

Another consideration is that the glitches and misfeatures
present in physical terminals are taken care of in the higher
level curses routines. Working at the terminfo level, a pro­
grammer must be prepared to deal with them him/herself.

There are, however, two circumstances when it is appropriate to
use terminfo. The first is when you are writing a special pur­
pose tool that sends a special purpose string to the terminal,
such as programming a function key, setting tab stops, sending
output to a printer port, or dealing with the status line. The
second is when you are writing a filter.

A typical filter does one transformation on the input stream
without clearing the screen or addressing the cursor. If this
transformation is terminal dependent and clearing the screen is
inappropriate, use of terminfo is indicated.

A program writing at the terminfo level uses the framework
shown in the following display:

11-60

#include <curses.h>
#include < term.h>

setupterm(O, 1, 0)~

putp(clear _screen);

reset shell mode()~
exit(O); -

Figure 11.4. Terminfo level framework

Initialization is done by calling setupterm.

CURSES

Passing the values 0, 1, and 0 to setupterm invokes reasonable
defaults.

If setupterm can't figure out what kind of terminal is being
used, it will print an error message and exit.

All "terminfo-level" programs should call reset_shell_mode
before they exit.

Global variables, such as elear_screen and cursor_address, are
defined by the call to setupterm. They can be output by using
putp or tputs. (The tputs function allows the programmer
more control).

NOTE: These strings (clear_screen and cursor_address)
SHOULD NOT be directly output to the terminal
using printf since they contain padding information.

A program that directly outputs strings will fail on terminals
that require padding, or that use the xon/xoff flow control pro­
tocol.

11-61

CURSES

In the terminfo level, the higher level routines described previ­
ously are NOT available.

For a list of capabilities and a description of what they do, see
terminfo(4) in the UniPlus+- User Manual, Sections 2-6.

11.1 Terminfo Level Routines

The following routines are called by low level programs that
need access to the specific capabilities of terminfo.

A program working at this level should include both

• <curses.h> and
• <term.h>

On that order).

After a call to setupterm, the terminfo capabilities will be avail­
able with macro names defined in <term.h>. See terminfo(4)
in the UniPiust User Manual, Sections 2-6, for more informa­
tion.

BOOLEAN-VALUED CAPABILITIES will have the value 1 if
the capability is AVAILABLE, and the value 0 if it is not.

NUMERIC CAPABILITIES have the value -l if the capability
is MISSING, and the value 0 (at least) if it is present.

STRING CAPABILITIES (both those with and without param·
eters) have the value NULL if the capability is MISSING, and
otherwise are character pointers which point to a character
string containing the capability.

The special character codes involving the \ and " characters
(e.g., \r notation for return and "A notation for the sequence
"CTRL·a") are translated into the appropriate ASCII charac·
ters.

11-62

CURSES

PADDING INFORMATION (of the form $<time>) and
parameter information (beginning with %) are left uninter­

,1' preted at this stage.

The routine tputs INTERPRETS PADDING INFORMATION.

The routine tparm INTERPRETS PARAMETER INFORMA­
TION.

If the program only needs to handle one terminal, the
definition - DSINGLE can be passed to the C compiler, result­
ing in static references to capabilities instead of dynamic refer­
ences. This can result in smaller code, but prevents use of
more than one terminal at a time.

setup term <term, filenum, status)

•
•

VALUE
I
0

-I

Used to initialize a terminal .
Takes three arguments:

term The first parameter is a character string
representing the name of the terminal
being used.

filenum The second parameter is the file descrip­
tor of the output terminal.

status The third parameter is a pointer to the
integer representing the relative status,
i.e. success or failure, of the function.

The values returned (and their interpreta­
tions) may be:

INTERPRETATION
SUCCESS
NO SUCH TERMINAL
PROBLEM IN LOCATING TERMINFO DATABASE

• If term is 0, curses will use the value of the

11-63

CURSES

11-64

•
•

environment variable STERM as the first parameter.
If errret is 0, curses will assume that NO ERROR
CODE IS WANTED.
If errret is 0 (DEFAULTED), and something goes
wrong, setupterm will print an appropriate error
message and exit, rather than returning.

Thus, by calling setupterm(O, 1, 0), potential wor­
ries regarding initialization errors can be avoided.

• If the environment variable STERMINFO is SET to
a pathname, the setupterm routine will check for a
compiled termlnfo description of the terminal under
the path $TERMINFO, BEFORE checking
/etc/term.

Otherwise, only /etc/term is checked.
• The setupterm routine checks the tty driver mode

bits, using filenum, and changes any that might
prevent the correct operation of other low level rou­
tines.

For example, if the system is expanding tabs, the
setupterm routine will REMOVE the definition of
the tab and backtab functions because curses
assumes if the hardware tabs are not used, they may
not be propoerly set in the terminal. (Other system
dependent changes, such as disabling a virtual termi­
nal driver, may be made here.)

• As a side effect, the setupterm function initializes
the global variable ttytype (an array of characters) to
the value of a list of names for the terminal. This
"name list" is taken from the beginning of the ter­
minfo description for the terminal.

• After the call to the setupterm routine, the global
variable cur_term is SET to point to the current
structure of terminal capabilities.

• By calling setupterm for each terminal, and saving
and restoring cur_term, it is possible for a program
to use two or more terminals at once.

•

CURSES

The mode that turns newlines into the sequence
<RETURN> <LINEFEED> on output is NOT
DISABLED. Therefore, programs that use either
cursor_down or scroll_forward should DISABLE
this mode.

• The setupterm routine calls reset_prog_mode after
ANY changes it makes.

reset_prog_modeO
reset shell mode()
def_p"'ft,g_~odeO
def_shell_modeO

• All are used to change the tty modes between the
two states:

•

shell The mode they were in BEFORE the pro­
gram was started

program The mode needed by the program
The def_prog_mode routine saves the current termi­
nal mode as PROGRAM MODE.

• setupterm and initscr call def_shell_mode automati­
cally.

• The reset_prog_mode routine puts the terminal into
PROGRAM MODE.

• The reset_shell_mode routine puts the terminal into
NORMAL MODE.

• A typical calling sequence is for a program to:

•

1 call initscr (or setnpterm);
2 then SET the PROGRAM MODE by cal·

ling routines such as cbreak and noecho;
3 then call def_prog_mode to save the

current state;
4 then, before a shell escape or CTRL·z

suspension, call reset_shell_mode, to
restore normal mode for the shell;

5 then, when the program resumes, call
reset_prog_mode.

All programs MUST call reset_shell_mode BEFORE

11-65

CURSES

•
•
• •

•

they exit.
The endwin routine automatically calls
reset_sbell_mode.
NORMAL MODE is stored in cur_term->Ottyb .
PROGRAM MODE is stored in cur_term->Nttyb .
Both cur_tenn->Ottyb and cur_term->Nttyb are
type sgttyb. Currently the possible types are struct
sgttyb and struct termio.
The def _prog_ mode routine should be called to save
the current state in Nttyb.

vidputs(newmode, putd

• Takes two arguments:

newmode Any combination of attributes, defined
in <curses.h>.

putc A "putchar-like" function. The proper
string to put the terminal in the given
video mode is output.

• The previous mode is remembered by this routine.
• The result characters are passed through putc.

vidattr(newmode)

• The string to put the terminal in the given video
mode, (newmode), is output to stdout.

tparm(instrlng, pl, p2, p3, p4, p5, pfi, p7, p8, p9)

• Used to instantiate a parameterized string.
• The character string returned has the given parame­

ters applied, and is suitable for tputs.
• Up to 9 parameters can be passed, in addition to the

parameterized string.

tputs(cp, alfcnt, outd

11-66

• Processes a string capability, possibly containing pad­
ding information.

•

•

•

•

putp(str)

CURSES

Enough padding characters to allow a specified delay
time replace the padding specification, and the
resulting string is passed, one character at a time, to
the routine outc, which expects a one character
parameter. This routine often just calls putchar.
This routine takes 3 arguments:

cp the capability string
affcnt the number of units affected by the capabil­

ity,
outc the routine to which the resulting string is

passed.
For example, the affcnt for insert_line is the
number of lines below the inserted line on the
screen, that is, the number of lines that will have to
be moved by the terminal, but affcnt is also used by
the padding information of some terminals as a mul­
tiplication factor.
If the capability does not have a factor, the value 1
should be passed.

• Used to output a capability with NO affcnt.
• The string specified by str is output to putcbar with

an affcnt of l.

delay _output(ms)

•

•

•
•

A delay is inserted into the output stream for the
number specified by the parameter ms in mil­
liseconds.
The current implementation inserts sufficient "pad­
ding" for the delay. This should NOT be used in
place of a high resolution sleep, but rather for delay
effects in the output.
Due to buffering in the system, it is unlikely that
this call will result in the process actually sleeping.
Since large numbers of pad characters can be output,
it is recommended that ms NOT exceed 500.

11-67

CURSES

mvcur(oldrow, oldcol, newrow, newcol)

•

•
•

This routine optimally moves the cursor from the
position specified in the first two parameters,
(oldrow, oldcol) to the position specified in the third
and fourth parameters, (newrow, newcol).
The user program is expected to keep track of the
current cursor position.
Unless a full screen image is kept, curses will have
to make pessimistic assumptions, sometimes result­
ing in less than optimal cursor motion.

For example, moving the cursor a few spaces to the
right can be done by transmitting the characters
being moved over, but if curses does not have
access to the screen image, it doesn't know what
these characters are.

If available, terminal insert and delete line and character func­
tions are considered by curses. Calling the following routine
will ENABLE insert/delete line:

idlok(stdscr, TRUE);

By default, curses will NOT use the terminal's insert/delete
line capability. This was not done for performance reasons,
since there is no speed penalty involved. but because many ter­
minal do not have this capability and if curses uses
insert/delete line, the result on the screen can be visually
annoying. Also many simple programs using curses do not
need this capability, the default is to avoid insert/delete line.
However, insert/ delete character is ALWAYS considered.

11.2 Example Program - TERMHL

The next example program, "TERMHL," shows a simple use
of terminfo. It is a version of the example program
"HIGHLIGHT" but uses terminfo instead of curses.

11-68

CURSES

TERMHL can be used as a filter. The following strings are
used:

•
•

To enter bold and underline mode
To turn off all attributes

The routine vidattr could have been used instead of directly
outputting enter_bold_mode, enter_underline_mode, and
exit_ attribute_ mode. In fact, the program would be more
robust if it did since there are several ways to change video
attribute modes.

This program was written to illustrate "typical" use of ter­
mlnfo.

The function tputs(cap, affcnt, outc) applies padding informa­
tion. Some capabilities contain strings like $< 20>, which
means "pad for 20 milliseconds," but tputs generates enough

(pad characters to delay for the appropriate time.

The first parameter to tputs, (cap), is the string capability to be
output.

The second parameter to tputsl, (aHcnt), is the number of
lines affected by the capability. Some capabilities maY require
padding that depends on the number of lines affected.

For example, insert_ line may have to copy all lines below the
current line, and may require time proportional to the number
of lines copied. By convention aHcnt is I if no lines are
affected. The value 1 is used, rather than 0, for safety, since
aHcnt is multiplied by the amount of time per item, and any­
thing multiplied by 0 is 0.

The third parameter to tputs (i.e., outc), is a routine to be
called with each character.

11-69

CURSES

For many simple programs, affcnt is always 1 and outc just calls
putcbar. In those cases, the routine putp(cap) is a convenient
abbreviation. In fact, TERMHL could be simplified by using
putp.

There is a special check in TERMHL for the underline_char
capability. Some terminals, rather than having a code to start
underlining and a code to stop underlining, have a code to
underline the current character. TERMHL keeps track of the
current mode, and if the current character is supposed to be
underlined, will output underline_ char.

The following is the sixth example program "TERMHL:"

11-70

r
•
•
'I

TERMHL. This program is a tenninfo- level
version of the HIGHLIGHT example program .

#include <curses.h>
#include < terrn.h>

int ulmode = 0; I"' Currently underlining *I

main(argc, argv)
char ••argv;
(

FILE *fd;
int c, c2;
int outchO;

if (argc > 2) {
fprintf(stderr, "Usage: termhl [file]\n");
exit(l);

if (argc - - 2) (
fd "'" fopen(argv[l], "r");
if (fd -- NULL) (

perror (argv [1 1) ;
exit(2};

)
) else (

fd = stdin;

setupterm(O, 1, 0);

for (;;) (
c - getc(fd);
if (c -- EOF)

break;
if (c -- '\') (

CURSES

11-71

CURSES

else

)

c2 ~ getc(fd);
switch (c2) {
case '8':

tputs(enter_bold_mode, 1, outch);
continue;

case ·u·:
tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;

case 'N':

}

tputs(exit_attribute_mode, I, outch);
ulmode = 0;
continue;

putch(c);
putch(c2);

putch(c);

fclose(fd);
mush(stdout);
resetterm 0;
exit(O);

,.
• This function is like putchar, but it checks for underlining.
'I

putch(c)
int c;
[

outch(c);
if (ulmode && underline char) {

outchC\b'); -
tputs(underline_char, 1, outch);

11-72

r
'

r
'

CURSES

I'
" Outchar is a function version of putchar that can be passed to
• tputs as a routine to call.
'I

outch(c)
int c~
[

putchar(c);

11-73

CURSES

12. Input

Functions are provided for input from the keyboard. The pri~
mary function is getchO which waits for a character from the
keyboard, and returns that character.

The getchO function is like getchar except that it goes through
curses. Its use is recommended for programs using the
cbreakO or noechoO options, since several terminal or system
dependent options become available that are not possible with
getchar.

Options available with getch include keypad which allows extra
keys such as arrow keys, function keys and other special keys
that transmit escape sequences to be treated as just another key.
The values returned for these keys are listed in Figure 11.2.

NOTE: The values for these keys are over octal 400, so they
should be stored in a variable larger than a char.

The option nodelay mode causes the value - I to be returned
if there is no input waiting. By default, getch will wait until a
character is typed.

Another routine available with getch is getstr(str). which
allows input of an entire line (all characters until the appear­
ance of a newline). This routine handles "echoing" and the
erase and kill characters.

getcbO
wgetch (window)
mvgetcb (y ,x)
mvwgetcb (window ,y ,x)

11·74

• A character is read from the terminal associated with
the WINDOW.

• In NODELAY mode, if there is no input waiting,

•

•

•

getstr(str)

CURSES

the value -1 is returned.
In DELAY mode, the program will "hang" until the
system passes text through to the program, which,
depending on the setting of cbreak, will either be
after one character, or after the first newline.
If KEYPAD mode is ENABLED, and a function key
is pressed, the code for that key will be returned
instead of the "raw" characters.
If a character is received that could be the beginning
of a function key (i.e., <ESCAPE>), curses sets a
1-second timer. If the remainder of the sequence
does not come in within that 1 second, the character
is passed through to the program. Otherwise the
function key value is returned.

wgetstr(window ,str)
mvgetstr(y,x,str)
mvwgetstr(window ,y ,x,str)

• Calls to getch are made until a newline is received.
• The resulting value is placed in the area pointed at

by the character pointer str.
• ERASE and KILL characters are interpreted.

scanw(fmt,args)
wscanw(wlndow,fmt,args)
mvsc:anw (y ,x,fmt,aqs)
mvwscanw(wlndow,y,x,fmt,args)

• This function corresponds to scanf in that first,
wgetstr is called on the WINDOW, and then the
resulting line is used as input for the scan.

getyx(window,y,x)

• The cursor position of the WINDOW is placed in
the two integer parameters, y and x.

11-75

CURSES

Since this is a macro, no address indicator (&) is
necessary.

inch()
winch(window)
mvinch (y ,x)
mvwincb (window ,y ,x)

• The character at the current position in the named
WINDOW is returned.

• If any attributes are set for that position, their
values will be "OR-ed" into the value returned.

• The pre-defined constants A_ATTRIBUTES and
A_CHARTEXT can be used with the operator "&"
to extract either just the character or just the attri­
butes.

The .following function keys might be returned by getch if
keypad has been enabled.

NOTE: Not all of these are currently supported, due to lack
of definitions in terminfo or the terminal not
transmitting a unique code when the key is pressed.

11-76

CURSES

NAME VALUE KEY NAME
KEY BREAK 0401 Break key

(unreliable)
KEY_DOWN 0402 Down arrow
KEY UP 0403 Up arrow
KEY LEFT 0404 Left arrow
KEY RIGHT 0405 Right arrow
KEY_HOME 0406 Home

(upper left)

KEY BACKSPACE 0407 Backspace
(unreliable)

KEY FO 0410 Function keys;
64 keys are reserved -
numbers 0410-0477

KEY DL OSlO Delete line
KEY IL osn Insert line
KEY DC 0512 Delete character
KEY IC 0513 Insert char

Enter insert mocle
KEY EIC 0514 Exit insert mode
KEY CLEAR 0515 Clear screen
KEY EOS 0516 Clear to

end of screen
KEY EOL 0517 Clear to

end of line

KEY SF 0520 Scroll 1 line
forward

KEY_SR 0521 Scroll 1 line
backwards (reverse)

Figure 11.5. Function Keys Returned by getchO (1 of 2)

ll-77

CURSES

NAME VALUE KEY NAME
KEY NPAGE 0522 Next page
KEY PPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY CTAB 0525 Clear tab
KEY CATAB 0526 Clear all tabs
KEY_ENTER 0527 Enter or send

(unreliable)
KEY SRESET 0530 Partial (soft) reset

(unreliable)
KEY_RESET 0531 (bard) Reset

(unreliable)
KEY PRINT 0532 Print or copy
KEY LL 0533 Home down

bottom (lower left)

Figure 11.6. Function Keys Returned by getchO (2 of 2)

12.1 Example Program - SHOW

The next program, "SHOW," gives an example of the use of
getch . SHOW pages through a file, showing one screen full
each time the user presses the space bar.

By creating an input file for SHOW made up of 24 line pages,
each segment varying slightly from the previous page, nearly
any exercise for curses can be created. Such input files are
called show scripts.

The following is a brief description of the functions used in the
example program:

• cbreak
This function is called so that the user can press the space
bar without having to hit return.

• noecbo
This function is called to prevent the space from echoing

11-78

•

CURSES

in the middle of a refresh, messing up the screen.

non I
This function is called to enable more screen optimiza­
tion.

• idlok
This function is called to allow insert and delete line,
since many show scripts are constructed to duplicate bugs
caused by that feature.

• clrtoeol and clrtobot
These functions clear from the cursor to the end of the
line and screen, respectively.

Following is the second example program, "SHOW:"

11-79

CURSES

I'
•
•
•
'I

SHOW. This program pages through
a file, showing one screen full
each time the user presses the space bar.

#include <curses.h>
#include < signal.h>

main(argc, argv)
int argc;
char "'argv[];
{

FILE 'fd;
char linebuf!BUFSIZ];
int line;
void doneO, perrorO, exitO;

if(argc ! = 2)
{

}

fprintf(stderr,"usage: %s file\n", argv[O]);
exitO);

if((fd- fopen(argv[l],"r")) -- NULL)
{

}

perror(argv[l]);
exit(2);

signal(SIGINT, done);

initscrO;
noechoO;
cbreakO;
non!O;
idlok{stdscr, TRUE);

while (I)
{

move(O,O);

11-80

for(line=O; line< LINES; line++)
[

CURSES

r if(fgets(linebuf, sizeof linebuf, fd) ~ ~ NULL)
[

void
done()

r- [

I

clrtobotO;
done();

move(line, 0);
printw("%s", linebuf);

refresh();
if(getch 0 ~ ~ 'q')

doneO;

move(LINES-1, 0);
clrtoeoiO;
refresh();
endwinO;
exit(O);

11-81

CURSES

13. Portability

Several useful routines are provided to improve portability.
The implementation of these routines is different from system
to system, and the differences can be isolated from the user
program by including them in curses.

Functions erasecharO and killcharO return the characters
which erase one character, and kill the entire input line, respec­
tively.

The function baudrateO will return the current baud rate, as an
integer. For example, at 9600 baud, the integer 9600 will be
returned, not the value B9600 from <sgtty.h>.

The routine flushinpO will cause all typeahead to be thrown
away.

13.1 Portability Functions

These functions DO NOT directly involve terminal dependent
character output, but tend to be needed by programs that use
curses.

Unfortunately, the implementation of these functions is highly
system~dependent. However, they have been included here to
provide at least a guideline for those concerned with writing
portable curses programs.

baudrateO

11-82

• baudrate returns the output speed of the terminal.
• The number returned is the "integer baud rate,"

(for example, 9600), rather than a "table index"
such as "89600."

CURSES

erasecbarO

• The ERASE character chosen by the user is
returned.

• This is the character typed by the user to ERASE
the character just typed.

killcharO

• The LINE KILL character chosen by the user is
returned.

• The KILL character is used when a decision is made
to abort the current input line before it has been
transmitted to the program (e.g., with a carriage
return).

flushinpO

• flushlnp throws away any typeahead not yet read by
the program.

11-83

CURSES

14. Example Program - EDITOR

The following program, ''EDITOR," is the last example in this
document. This program is a very simple screen editor, pat­
terned after the vi editor.

EDITOR keeps its buffer in stdscr, just to keep the program
simple. Obviously a real screen editor would keep a separate
data structure.

NO provision is made for the following:

• Files of any length other than the size of the screen

• Lines longer than the width of the screen

• Control characters in the file

The following are several important points concerning this sam­
ple program:

1. The routine to write out the file illustrates the use of the
mvlnch function, which returns the character in a window
at a given position.

2. The data structure used here does not have a provision
for keeping track of the number of characters in a line, or
the number of lines in the file, so trailing blanks are elim­
inated when the file is written out.

3. The program uses built-in curses functions:

11-84

• insch
• delch
• insertln
• deleteln

These functions behave much as the similar functions on
intelligent terminals behave, inserting and deleting a char­
acter or line.

(
'
~ ..

4.

CURSES

The command interpreter accepts ASCII characters AND
special function keys.

This is important because some editors are modeless,
using nonprinting characters for commands, so both arrow
keys and ordinary ASCII characters should be handled.

On the other hand, not all terminals have arrow keys, so a
program will be usable on a larger class of terminals if
there is an ASCII character which is a synonym for each
special key.

S. The addstr funtion is roughly like the C language fputs
function, which writes out a string of characters. Like
fputs, addstr does NOT add a trailing newline. The
addstr function works with strings with same way that
addch works with characters.

6. The mvaddstr function is the "move" version of addstr,
which moves to the given location in the window before
writing.

7. The CTRL-1 command illustrates a feature especially use­
ful in curses programs.

8.

Often some program, beyond the control of curses, may
write something to the screen, or some line noise may
mess up the screen and curses may not have been able to
keep track of what should and should not be on the
screen. The CTRL-1 command clears and redraws the
screen. This is done with the call to clearok(curscr),
which sets a flag causing the next refresh to first clear the
screen. Then refresh is called to force the redraw.

The ftashO function, flashes the screen if possible, and
otherwise rings the bell. Flashing the screen is intended
as a bell replacement, and is particularly useful if the bell
bothers someone within earshot of the user.

9. The routine beep() is similar to the ftashO function, but
is called when a real beep is desired. If for some reason
the terminal is unable to beep, but is able to flash, a call

11-85

CURSES

to beep will flash the screen.

10. Another important point is that the input command is ter­
minated by CTRL-d, NOT "<ESC> 11 (escape). Even
though < ESC > is one of the few special keys available
on every keyboard (<RETURN> and <BREAK> are
the only others), use of< ESC> as a separate key intro­
duces an ambiguity.

Most terminals use sequences of characters beginning
with <ESC> ("escape sequences") to control the termi­
nal, and some have special keys that send <ESC>
sequences to the computer. If the computer receives an
<ESC> from the terminal, there is no way to distinguish
whether the user pushed the <ESC> key, or whether a
special key was pressed.

One way to handle the ambiguity is to wait, which is what
curses does for up to I second. Then, if another charac­
ter is received during this second, and if that character
might be the beginning of a special key, more input is
read (waiting for up to one second for each character)
until either a full special key is read, one second passes,
or a character is received that could not have been gen­
erated by a special key.

While this strategy works most of the time, it is not
"foolproof." It is possible for the user to press
<ESC>, then to type another key quickly, which causes
curses to think a special key has been pressed.

Also, there is a one second pause until the <ESC> can
be passed to the user program, resulting in slower
response to the < ESC > key.

The following is the seventh and last example program, "EDI­
TOR:"

11-86

, __ _

I'
•
•
•
•
'I

EDITOR. A screen-oriented editor. The user
interface is similar to a subset of vi .
The buffer is kept in stdscr itself to simplify
the program.

#include <curses.h>

#define CTRL(c) (' c' & 037)

main (argc, argv)
char **argv;
{

inti, n, I;
int c;
FILE *fd;

if (argc !- 2) {
fprintf(stderr, ~usage: edit file\n");
exit(l);

fd = fopen(argv[l), "rn};
if (fd ~ ~ NULL) {

perror(argv[l]);
exit{2);

initscrO;
cbreak:O;
nonlO;
noechoO;
idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

I* Read in the file • I
while ((c ~ getc(fd)) !~ EOF)

addch(c);

CURSES

11-87

CURSES

fclose(fd);

move(O,O);
refresh();
edit();

I* Write out the file"'/
fd = fopen(argv[l], "w");
for o~o; 1<23; I++l I

n = len(l);
for (i==O; i<n; i++)

putc(mvinchO, i), fd);
putc('\n', fd);

}
fclose(fd);

endwinO;
exit(O);

len(lineno)
int lineno;
I

int linelen = COLS-1;

while Oinelen > =0 && mvinch(lineno, linelen) == '')
linelen--;

return linelen + I;

r Global value of current cursor position */
int row, col;

edit()

I
int c;

for U I
move(row, col);

11-88

refresh();
c = getchO;
switch (c) I r Editor commands *I

!* hjkl and arrow keys: move cursor *I
I* in direction india ted *I
case 'h':
case KEY LEFT:

if (col> 0)
col·-;

break;

case 'j':
case KEY DOWN:

if (ro-w < LINES-1)
row++;

break;

case 'k':
case KEY_ UP:

if (row > 0)
row--;

break;

case T:
case KEY RIGHT:

if (col < COLS-1)
col++;

break;

!* i: enter input mode *I
case KEY _IC:
case T:

inputO;
break;

I* x: delete current character • I
case KEY_ DC:

CURSES

11-89

CURSES

11-90

case 'x':
delchO;
break;

/" o: open up a new line and enter input mode"'/
case KEY_IL:
case'o':

move(++row, col-O);
insertlnO;
input();
break;

/" d: delete current line •1
case KEY_DL:
case'd':

deletelnO;
break;

I* CTRL-1: redraw screen */
case KEY_CLEAR:
case CTRL (L):

clearok(curscr);
refreshO;
break;

I" w: write and quit • I
case 'w':

return;

I* q: quit without writing*/
case'q':

endwinO;
exit(l);

default:
flashO;
break;

(
'

I'
* Insert mode: accept characters and insert them.
• End with CTRL·d or EIC .,

input()
{

int c;

standout();
mvaddstr(LINES-1, COLS-20, "INPUT MODE");
standendO;
move(row, col);
refresh();
for (;;) {

I

c = getchO;
if (c ~~ CTRL(D) lc -- KEY_E!C)

break;
insch(c);
move(row, ++col);
refresh();

move(LINES-l, COLS-20);
clrtoeo!O;
move(row, col);
refresh();

CURSES

11-91

Chapter 12: UUCP

CONTENTS

l. Introduction •

2. The Uucp Network

2.1 Network Hardware

2.2 Network Topology
2.2.1 Hardware Topology
2.2.2 Software Topology

2.3 Forwarding

2.4 Security

2.5 Software Structure

2.6 Rules of the Road
2.6.1 Queuing
2.6.2 Dialing and the DDD Network •
2.6.3 Scheduling and Polling . • .
2.6.4 Retransmissions and Hysterisis
2.6.5 Purging and Cleanup •

2.7 Special Places: The Public Area

2.8 Permissions
2.8.1 File Level Protection .
2.8.2 System Level Protection
2.8.3 Forwarding Permissions

3. Network Usage

3.1 Name Space . . .
3.1.1 Naming Conventions

3.2 Forwarding Syntax

3. 3 Types of Transfers

- i-

I

I

2

2
3
4

6

7

7

7
7
8
8
9
9

9

9
9

10
10

10

10
11

12

13

3.3.1 Transmissions of Files to a Remote 13
3.3.2 Fetching Files From a Remote 13
3.3.3 Switching 13
3.3.4 Broadcasting 14

3.4 Remote Executions 14

3.5 Spooling . 14

3.6 Notification 14

3.7 Tracking and Status 15
3.7.1 The Job ID 15

3.8 Job Status 16

3.9 Network Status 17

3.10 Job Control 17
3.10.1 Job Termination 17
3.10.2 Requeuing a Job 18
3.10.3 Network Names 18

4. Utilities That Use Uucp 18

4.1 The Stockroom 18

4.2 Mail 18

4.3 Netnews 19

4.4 Uuto 19

4.5 Other Applications 19

LIST OF FIGURES

Figure 12-1. UUCP Nodes 3

Figure 12-2. UUCP Network Excluding One Node 5

Figure 12-3. UUCP Network With Several Levels of
Permissions 5

-
- ii -

Chapter 12

(UUCP: UNIX TO UNIX SYSTEM COPY

1. Introduction
The uucp network has provided a means of information exchange
between UNIX systems over the direct distant dialing network for
several years. This chapter provides you with the background to·
make use of the network.

The first half of the document discusses concepts. Understanding
these basic principles helps the user make the best possible use of
the uucp network. The second half explains the use of the user
level interface to the network and provides numerous examples.

There are several major uses of the network. Some of the uses are:

• Distribution of software

• Distribution of documentation

• Personal communication (mail)

• Data transfer between closely sited machines

• Transmission of debugging dumps and data exposing bugs

• Production of hard copy output on remote printers.

2. The Uucp Network
The uucp(l) network is a network of UNIX systems that allows file
transfer and remote execution to occur on a network of UNIX sys­
tems. The extent of the network is a function of both the intercon­
nection hardware and the controlling network software. Membership
in the network is tightly controlled via the software to preserve the
integrity of all members of the network. You cannot use the uucp
facility to send files to systems that are not part of the uucp

12·1

UUCP

network. The following parts describe the topology, services,
operating rules, etc., of the network to provide a framework for dis­
cussing use of the network.

2.1 Network Hardware

The uucp was originally designed as a dialup network so that sys­
tems in the network could use the DOD network to communicate
with each other. The three most common methods of connecting
systems are:

I. Connecting two UNIX systems directly by cross-coupling (via
a null modem) two of the computers ports. This means of
connection is useful for only short distances (several hundred
feet can be achieved although the RS232 standard specifies a
much shorter distance) and is usually run at high speed (9600
baud). These connections run on asynchronous terminal ports.

2. Using a modem (a private line or a limited distance modem) to
directly connect processors over a private line (using 103- or
212-type data sets).

3. Connecting a processor to another system through a modem,
an automatic calling unit (ACU), and the DDD network. This
is by far the most common interconnection method, and it
makes available the largest number of connections.

The uucp could be extended to use higher speed media (e.g.,
HYPERchannel, Ethernet, etc.), and this possibility is being
explored for future UNIX system releases. Some sites already sup­
port local modifications to uucp to allow the use of Datakit, X.25
(pennanent virtual circuits), and calling through data switches.

2.2 Network Topology

A large number of connections between systems are possible via the
DDD netwmk. The topology of the network is determined by both
the hardware connections and the software that control the network.
The next two parts deal with how that topology is controlled.

12-2

('
'

UUCP

2.2.1 Hardware Topology

As discussed earlier, it if:; possible to build a network using per­
manent or dial up connections. In Figure 12.1, a group of systems
(A, B, C, D, and E) are shown connected via bard-wired lines. All
systems are assumed to have some answer-only data sets so that
remote users or systems can be connected.

LEOEID

~ - AUTOMATIC CALLINB UNIT

0 - COMPUTER SYSTEM

Figure 12-1. UUCP Nodes

®

12-3

UUCP

A few systems have automatic calling units (K, D, F, and G) and
one system (H) has no capability for calling other systems. Users
should be aware that the networK consists of a series of point~to­
point connections (A-B, B-C, D-B, E-B) even though it appears in
Figure 12.1 that A and Care directly connected through B. The fol­
lowing observations are made:

I. System H is isolated. It can be made part of the network by
arranging for other systems to poll it at fixed intervals. This is
an important concept to remember since transfers from systems
that are polled do not leave the system until that system is
called by a polling system.

2. Systems K, F, G, and D easily reach all other systems since
they have calling units.

3. If system A (E or G) wishes to send a file to H (K, F, or G),
it must first send it to D (via system B) since D is the only
system with a calling unit.

2.2.2 Software Topology

The hardware capability of systems in the network defines the max­
imum number of connections in the network. The software at each
node restricts the access by other systems and thereby defines the
extent of the network. The systems of Figure 12.1 can be
configured so that they appear as a network of systems that have
equal access to each other or some restrictions can be applied. As
part of the security mechanism used by uucp, the extent of access
that other systems have can be controlled at each node. Figures 12.2
and 12.3 show how the network might appear at one node.

12-4

UUCP

(

0 ~· ®
0 0

0 0
0 0 0

Figure 12-2. UUCP Network Excluding One Node

Figure 12-3. UUCP Network With Several Levels of Permissions

12-5

UUCP

Access is available from all systems in Figure 12.2, however, in Fig­
ure 12.3 some of the systems have been configured to have greater
or less access privileges than others (i.e., systems C, E, and G have
one set of access privileges, systems F and B have another set, etc.). -----'

The uucp uses the UNIX system password mechanism coupled with
a system file (lusrllibluucp!L.sys) and a file system permission file
(lusrllibluucp/USERFILE) to control access between systems. The
password file entries for uucp (usually, luucp, nuucp, uucp, etc.)
allow only those remote systems that know the passwords for these
IDs to access the local system. (Great care should be taken in
revealing the password for these uucp logins since knowing the
password allows a system to join the network.) The system file
(lusrllibluucp/L.sys) defines the remote systems that a local host
knows about. This file contains all information needed for a local
host to contact a remote system (including system name, password,
login sequence, etc.) and as such is protected from viewing by ordi­
nary users.

In summary, while the available hardware on a network of systems
determines the connectivity of the systems, the combination of pass­
word file entries and the uucp system files determine the extent of
the network.

2.3 Forwarding
One of the additions to uucp is a limited forwarding capability
whereby systems that are part of the network can forward files
through intermediate nodes. For example, in Figure 12.1, it is pos­
sible to send a file between node A and C through intermediate node
B. For security reasons, when forwarding, files may only be
transmitted to the public area or fetched from the remote systems
public area.

lU

UUCP

2.4 Security

The most critical feature of any network is the security that it pro­
vides. Users are familiar with the security that UNIX system pro­
vides in protecting files from access by other users and in accessing
the system via passwords. In building a network of processors, the
notion of security is widened because access by a wider community
of users is granted. Access is gt'll!lted on a system basis (that is,
access is granted to all users on a remote system). This follows
from the fact that the process of sending (receiving) a file to (from)
another system is done via daemons that use one special user ID(s).
This user ID(s) is granted (denied) access to the system via the uucp
system file (Jusrllib!uucp!L.sys) and the areas that the system has
access to is controlled by another file (Jusrllibluucp/USERFILE).
For example, access can be granted to the entire file system tree or
limited to specific areas.

2.5 Software Structure

The uucp network is a batch network. That is, when a request is
made, it is spooled for later transmission by a daemon. This is
important to users because the success or failure of a command is
only known at some later time via mail(l) notification. For most
transfers, there is little trouble in transmitting :files between systems,
however, transmissions are occasionally delayed or fail because a
remote system cannot be reached.

2.6 Rules of the Road

There are several rules by which the network runs. These rules are
necessary to provide the smooth flow of data between systems and to
prevent duplicate transmissions and lost jobs. The following
chapters outline these rules and their influence on the network.

2.6.1 Queuing

Jobs submitted to the network are assign~ a sequence number for
transmission. Jobs are represented by a file (or files) in a common
spool directory (lusr!spool!uucp). When a file transfer daemon

12-7

UUCP

(uucico) is started to transmit a job, it selects a system to contact
and then transmits all jobs to that system. Before breaking off the
conversation, any jobs to be received from that remote system are
accepted. The system selected as the one to contact is randomly -.-
selected if there is work for more than one system. In releases of
uucp prior to UNIX system 5.0, the first system appearing in the
spool directory is selected so preference is given to the most recently
spawned jobs. Uucp may be sending to or receiving from many
systems simultaneously. The number of incoming requests is only
limited by the number of connections on the system, and the number
of outgoing transfers is limited by the number of ACUs (or direct
connections).

2.6.2 Dialing and the ODD Network

In order to transfer data between processors that are not directly con­
nected, an auto dialer is used to contact the remote system. There
are several factors that can make contacting a remote system
difficult.

I. All lines to the remote system may be busy. There is a
mechanism within uucp that restricts contact with a remote
system to certain times of the day (week) to minimize this
problem.

2. The remote system may be down.

3. There may be difficulty in dialing the number (especially if a
large sequence of numbers involving access through PBXs is
involved). The dialing algorithm tries dialing a number twice
and the algorithm used to dial remote systems is not perfect,
particularly when intermediate dial tones are involved.

2.6.3 Scheduling and Polling

When a job is submitted to the network, an attempt to contact that
system is made immediately. Only one conversation at a time can
exist between the same two systems.

12-8

' -

UUCP

Systems that are polled can do nothing to force immediate transmis­
sion of data. Jobs will only be transmitted when the system is
polled (hourly, daily, etc.) by a remote system.

2.6.4 Retransmissions and Hysterisis

The uucp network is fairly persistent in its attempt to contact remote
systems to complete a transmission. To prevent uucp from continu­
ally calling systems that are unavailable, hysterisis is built into the
algorithm used to contact other systems. This mechanism forces a
minimum fixed delay (specifiable on a per system basis) to occur
before another transmission can take place to that system.

2.6.5 Purging and Cleanup

Transfers that cannot be completed after a defined period of time (72
hours is the value that is set when the system is distributed) are
deleted and the user is notified.

2. 7 Special Places: The Public Area

In order to allow the transfer of files to a system for which a user
does not have a login on, the public directory (usually kept in
!usr!spool!uucppublic) is available with general access privileges.
When receiving files in the public area, the user should dispose of
them quickly as the administrative portion of uucp purges this area
on a regular basis.

2.8 Permissions

2.8.1 File Level Protection

In transferring files between systems, users should make sure that the
destination area is writable by uucp. The uucp daemons preserve
execute permission between systems and assign permission 0666 to
transferred files.

12-9

UUCP

2.8.2 System Level Protection

The system administrator at each site determines the global access
pennissions for that processor. Thus, access between systems may __-
be confined by the administrator to only some sections of the file
system.

2.8.3 Forwarding Permissions

The forwarding feature is a recent addition to the uucp package.
You should be aware that

I. When forwarding is attempted through a node that is running
an old version of uucp, the transmissi:on fails.

2. Nodes that allow forwarding can restrict the forwarding feature
in several ways.

a. Forwarding is allowed for only certain users.

b. Forwarding to certain destination nodes (e.g., Australia)
should be avoided.

c. Forwarding for selected source nodes is allowed.

3. The most important restriction is that forwarding is allowed
only for files sent to or fetched from the public area.

3. Network Usage

The following parts discuss the user interlace to the network and
give examples of command usage.

3.1 Name Space

In order to reference files on remote systems, a syntax is necessary
to uniquely identify a file. The notation must also have several
defaults to allow the reference to be compact. Some restrictions
must also be placed on pathnames to prevent security violations.
For example, pathnames may not include " .. " as a component
because it is difficult to determine whether the reference is to a res­
tricted area.

12·10

r

r

UUCP

3.1.1 Naming Conventions

Uucp uses a special syntax to build references to files on remote sys­
tems. The basic syntax is

system-name!pathname

where the system-name is a system that uucp is aware of. The path­
name part of the name may contain any of the following:

1. A fully qualified pathname such as

mhtsa!/usr/you/file

The pathname may also be a directory name as in

mhtsa!/usr/youldirectory

2. The login directory on a remote may be specified by use of the
- character. The combination ·user references the login direc­
tory of a user on the remote system. For example,

mhtsa!-adm/file

would expand to

mhtsa!/usr/sysiadm/fi.le

if the login directory for user adm on the remote system is
lusr/sys/adm.

3. The public area is referenced by a similar use of the prefix
7user preceding the pathname. For example,

mhtsanyoulfile

would expand to r mhtsa!lusr/spool/uucp/youlfile

,_

12-11

UUCP

if /usrlspoolluucp is used as the spool directory.

4. Pathnames not l,lSing any of the combinations or prefixes dis­
cussed above are prefixed with the current directory (or the
login directory on the remote). For example,

mhtsa!file

would expand to

mhtsa!/usr/you/file

The naming convention can be used in reference to either the source
or destination tile names.

3.2 Forwarding Syntax

Uucp can pass files between systems via intermediate nodes. This is
done via a variation of the bang (!) syntax that describes the path to
be taken to reach that file. For example, a user on system a wishing
to transmit a file to system e might specify the transfer as

uucp file b!c!d!enyou/file

if the user desires the request to be sent through b, c, and d before
reaching e. Note that the pathname is the path that the file would
take to reach node e. Note also that the destination must be
specified as the public area. Fetching a file from another system via
intermediate nodes is done similarly. For example,

uucp b!c!d!enyou!file x

fetches file from system e and renames it x on the local system. The
forwarding prefix is the path from the local system and not the path
from the remote to the local system.

12·12

c
UUCP

3.3 Types of Transfers

Uucp has a very flexible command syntax for file transmission. The
following chapters give examples of different combinations of
transfers.

3.3.1 Transmissions of Files to a Remote

Any number of files can be transferred to a remote system via uucp.
The syntax supports the "'•? and[..] metacharacters. For example,

uucp * .[ch] mhtsa!dir

transfers all files whose name ends in c or h to the directory dir in
the users login directory on mhtsa.

3.3.2 Fetching Files From a Remote

Files can be fetched from a remote system in a similar manner. For
example,

uucp mhtsa!*.[ch] dir

will fetch all files ending in c or h from the users login directory on
mhtsa and place the copies in the subdirectory dir on the local sys­
tem.

3.3.3 S>vitclrUng

Transmission of files can be arranged in such a way that the local
system effectively acts as a switch. For example,

uucp mhtsb!files mhtsa!filed

will fetch files from the users login directory on mhtsb, rename it as
filed, and place it in the login directory on mhtsa.

12-13

UUCP

3.3.4 Broadcasting

Broadcast capability (that is, copying a file to many systems) is not
supported by uucp, however, it can be simulated via a shell script as ___.,
in

for i in mhtsa mhtsb mhtsd
do

uucp file $i!broad
done

Unfortunately, one uucp command is spawned for each transmission
so that it is not possible to track the transfer as a single unit.

3.4 Remote Executions

The remote execution facility allows commands to be executed
remotely. For example,

uux "!diff mhtsa!/etc/passwd mhtsd!letc/passwd > !pass.diff'

will execute the command diff(l) on the password file on mhtsa and
mhtsd and place the result in pass.dijf.

3.5 Spooling

To continue modifying a file while a copy is being transmitted across
the network, the ~ C option should be used. This forces a copy of
the file to be queued. The default for uucp is not to queue copies of
the files since it is wasteful of both Central Processing Unit time and
storage. For example, the following command forces the file work
to be copied into the spool directory before it is transmitted.

uucp -C work mhtsanyou/work

3.6 Notification

The success or failure of a transmission is reported to users asyn­
chronously via the mail(l) command. A new feature of uucp is to

12-14

r

r

UUCP

provide notification to the user in a file (of the users choice). The
choices for notification are:

I. Notification returned to the requesters system (via the -m
option). This is useful when the requesting user is distributing
files to other machines. Instead of logging onto the remote
machine to read mail, mail is sent to the requester when the
copy is finished.

2. A variation of the - m option is to force notification in a file
(using the - mfile option where file is a file name), For exam­
ple,

uucp -mans /etc/passwd mhtsb!/dev/null

sends the file /etc/passwd to system mhtsb and place the file in
the bit bucket (ldev!null). The status of the transfer is reported
in the file ans as,

uucp job 0306 (8120-23;()8:09) (0:31:23) letc/passwd copy succeeded

3. Uux(l) always reports the exit status of the remote execution
unless notification is suppressed (via the -n option).

3.7 Tracking and Status

The most pervasive change to the uucp package is revising the inter·
nal formatting of jobs so that each invocation of uucp or uux(l)
corresponds to a single job. It is now possible to associate a single
job number with each command execution so that the job can be ter·
minated or its status obtained.

3.7.1 The Job ID

The default for the uucp and uux command is not to print the job
number for each job. This was done for compatibility with previous
versions of uucp and to prevent the many shell scripts built around
uucp from printing job numbers. If the following environment vari·
able

12·15

UUCP

is made part of the users environment and exported, uucp and uux
prints the job number. Similarly, if the user wishes to tum the job
numbers off, the environment variable is set as follows:

JOBNO=OFF

If you wish to force pnntmg of job numbers without using the
environment mechanism, use the - j option. For example,

uucp - j /etc/passwd mhtsb!/dev/null
uucp job 282

forces the job number (282) to be printed. If the -j option is not
used, the IDs of the jobs (belonging to the user) are found by using
the uustat(l) command. This provides the job number. For exam­
ple,

uustat
0282 tom mhtsb 08/20-21:47 08/20-21:47 JOB IS QUEUED
0272 tom mhtsb 08/20-21:46 08/20-21:46 JOB IS QUEUED

shows that the user has two jobs (282 and 272) queued.

3.8 Job Status

The uustat command allows a user to check on one or all jobs that
have been queued. The ID printed when a job is queued is used as a
key to query status of the particular job. An example of a request
for the status of a given job is

uustat - j0711

0711 tom mhtsb 07/30-02:18 07/30-02:18 JOB IS QUEUED

12·16

UUCP

There are several status messages that may be printed for a given
job; the most frequent ones are JOB IS QUEUED and JOB COM­
PLETED (meanings are obvious). The manual page for uustat lists
the other status messages.

3.9 Network Status

The status of the last transfer to each system on the network is found
by using the uustat command. For example,

uustat -mall

reports the status of the last transfer to all of the systems known to
the local system. The output might appear as

mhb5c ,.,..,.
minima
austrn
ucbvax

08/10-12:35
08/20-17:01
07/22-16:31
08/20-18:36
08/20-20:37

CONYERS A TION SUCCEEDED
CONVERSATION SUCCEEDED
DIAL FAILED
WRONG TIME TO CALL
LOGIN FAILED

where the status indicates the time and state of the last transfer to
each system. When sending files to a system that has not been con­
tacted recently, it is a good idea to use uustat to see when the last
access occurred (because the remote system may be down or out of
service).

3.10 Job Control

With the unique job ID generated for each uucp or uux command, it
is possible to control jobs in the following ways.

3.10.1 Job Termination

A job that consists of transferring many files from several different
systems can be terminated using the - k option of uustat. If any
part of the job has left the system, then only the remaining parts of

12·17

UUCP

the job on the local system is tenninated.

3.10.2 Requeuing a Job

The uucp package clears out its working area of jobs on a regular
basis (usually every 72 hours) to prevent the buildup of jobs that
cannot be delivered. The - r option is used to force the date of a
job to be changed to the current date, thereby lengthening the time
that uucp attempts to transmit the job. It should be noted that the
-r option does not impart immortality to a job. Rather, it only
postpones deleting the job during housekeeping functions until the
next cleanup.

3.10.3 Network Names

Users may find the names of the systems on the network via the
uuname(l) conunand. Only the names of the systems in the net·
work are printed.

4. Utilities That Use Uucp

There are several utilities that rely on uucp or uux(l) to transfer files
to other systems. The following parts outline the more important of
these functions. This increases awareness of the extent of the use of
the network.

4.1 The Stockroom

The UNIX system stockroom is a facility whereby a library of source
can be maintained at a central location for distribution of source or
bug fixes. Access to and distribution of library entries is controlled
by shell scripts that use uucp.

The mail(l) command uses uux to forward mail to other systems.
For example, when a user types

mail mhtsa!tom

12-18

UUCP

the man command invokes uux to execute nnail on the remote sys­
tem (rmail is a link to the man command). Forwarding mail
through several systems (e.g., mail a!b!tom) does not use the uucp
forwarding feature but is simulated by the mail command itself.

4.3 Netnews

The netnews software (usenet) that is locally supported on many sys­
tems uses uw: in much the same way that mail does to broadcast
network mail to systems subscribing to news categories.

4.4 Uuto

The uuto(l) command uses the uucp facility to send files while
allowing the local system to control the file access. Suppose your
login is emsgene and you are on system aaaaa. You have a friend
(David) on system bbbbb with a login name of wldmc. Also assume
that both systems are networked to each other [See uuname(l)]. To
send files using uuto, enter the following:

uuto filename aaaaa!wldmc

where filename is the name of a file to be sent. The files are sent to
a public directory defined in the uucp source. In this example, David
will receive the following mail:

>From nuucp Tue Jan 25 ll:09:55 1983
/usr/spool/uucppublic/receivefw ldmc/aaaaa\
!/filename from aaaaa!emsgene arrived

See uuto(l) for more details.

4.5 Other Applications

The Office Automation System (OAS) uses uux to transmit elec­
tronic mail between systems in a manner similar to the standard mail
command. Some sites have replaced utilities such as lp(l), with
shell scripts that invoke uux or uucp. Other sites use the uucp ne.
work as a backup for higher speed networks (e.g., PCL, NSC

12-19

UUCP

HYPERchannel, etc.).

12-20

Colophon

Composed at UniSoft Systems Inc.
on the UniPlus+ Operating System
Designed by the Documentation Department
Printed in Times Roman on Sequoia Matt

