frea T

COPYRIGHT

00
Copyright ® 1985 by UniSoft Systems. Portions of this material have !
been previously copyrighted by AT&T Bell Laboratoriess, Western
Electric Company, and Regents of the University of California. Hold-
ers of a UNIX and UniPlus"” software license are permitted to copy this
document, or any portion of it, as necessary for licensed use of the
software, provided this copyright notice and statément of permission
dre includad,

DISCLAIMER

While UniSoft Systems has endeavored to exercise care in the
prepaiation of this guide, it nevertheless makes no wartanties of any -
kind with regard ta the documentation contained herein, includingan
warranty of merchantability or fliness for a particular purpese. In no

event shall UniSoft be Hable for Incidental or consequential damages

i connectfon with or arising ent of the furnishing, performance, or

use of amny of this documentstion.

TRADEMARKS

'Uhux is & trademark of AT&T Bell Laboratories. UniPlus"‘ and UniSoft
egistered trademarks of UniSeft Systems.

Adapted to-UniiPlus* by Heather Allen of UniSoft Systems. . - D

INTRODUCTION

This manual describes the features of System V UniPlust, a UNIX
operating system. All commands, features, and facilities. described in
this manual are available on UniPlus*,

This manual is divided into two volumes containing a total of six sec-
tions, some divided into subsections.

1. Commands and Application Programs:
1. General-Purpose Commands.
1C. Communications Commands.
1G. Graphics Commands.

IN. Networking Cornmands.

2. System Calls.
2N. Networking Calls.

3. Subroutines:
3C. C and Assembler Library Routines.
3F, FORTRAN Library Routines.
3M. Mathematical Library Routines.
3N. Networking Routines.

38. Standard 1/0 Library Routines.
3X. Miscellaneous Routines.

4, File Formats.
4N. Networking Formats.

5. Miscellaneous Facilities.

SF. Protocol Family.
5P. Protocol Descriptions.
6. Games.

Section 1 {Commands and Application Programs) describes programs
invoked directly by the user or by command language procedures, as
opposed to subroutines, which are called by the user’s programs. Com-
mands generally reside in the directory /bin (for bimary programs).
Some programs also reside in /usr/bin, to save space in /bin. These
directories are searched automatically. Subsection 1C contains com-
munication programs such as cu, send, uucp, etc.

Section 2 (System Calis) describes the entries into the UNIX System
kernel, including the C language interface,

INTRODUCTION

Section 3 (Subroutines) describes the available subroutines. Their
binary versions reside in various system libraries in the directories /lib
and fusr/lib. See imtro(3) for descriptions of these libraries and the
files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of
files. Exciuded are files used by only one command (for exampie, the
assecmbler’s intermediate files). In general, the C language struct
declarations corresponding to these formats can be found in the direc-
tories /usr/include and /usr/include/sys,

Section 5 {Miscellaneous Facilities) contains descriptions of character
sets, macro packages, etc.

Section 6 ({Games) describes the games and educational programs that
reside in the directory /usr/games.

Each section consists of several entries, each a page or so long. The
name of the entry appears in the upper corners of its pages. Entries
within each section are alphabetized, except the introduction that begins
each section. The page numbers of each entry start at 1. Some entries
may describe several routines, commands, etc. In such cases, the entry
appears only once, alphabetized under its “major’” name.

All entries are based on a common format, not all of whose parts
always appear:

NAME gives the name(s) and a brief description of the entry.

SYNOPSIS summarizes the use of the program. A few conven-
tions are used, particularly in Section 1 {Commands):

Boldface strings are typed just as they appear.

fralic strings usually represent substitutable argument proto-
types (such as filename)} which you are expected to substitute
for the actual name. When an argument prototype is given as
“‘name’’ or “‘file”, it always refers to a file name.

INTRODUCTION

Square brackets [| around an argument prototype indicate that
the argument is optional.

Ellipses ... show that the previous argument prototype may
be repeated.

A final convention is used by the commands themselves. An
argument beginning with a minus -, plus +, or equal sign = is
often taken to a flag argument, even if it appears in a position
where a file name could appear. Therefore, it is unwise to
have files whose names begin with —, +, or =.

DESCRIPTION discusses the program.

EXAMPLE(S) gives example(s) of usage.

FILES gives the file names that are built into the program.
SEE ALSO gives pointers to related information.

DIAGNOSTICS discusses the diagnostic indications that may be
produced. Self-explanatory messages are not listed.

WARNEINGS points out potential pitfalls.

BRUGS gives known bugs and sometimes deficiencies. Occasionally,
the suggested fix is also described.

At the front of each volume there is a a table of contents and a per-
muted index. The permuted index lists the commands by the informa-
tion in the NAME part of each entry in the User and Administrator
Manual. The permuted index contains three columns. The center
column is an alphabetic list of keywords. The last column is the entry
that the keyword in the center column refers to. This entry is followed
by the appropriate section number in parentheses. The first column
contains the remaining information from the NAME part that either
precedes or follows the keyword.

INTRODUCTION

For example, to look for a text editor, scan the center column for the
word "editor." There are several index lines containing an "editor refer-
ence, i.e.:

ed, red; text editor e ed(1)
files. Id: link editor for common objectoviiene 1d(1}

You can then turn to the entries listed in the last column, e4(1) and
id(1), to find information on the editor.

On most systems, all entries are available on-line via the man(1) com-
mand.

e
—

TABLE OF CONTENTS

1. Commands and Application Programs

intre + + « . introduction te commands and application programs
00 handle special functions of DASI 300 and 3003 terminals
014 e e e e paginator for the Tektronix 4014 terminal
450 . o0 e e e e .. handle special functions of the DASI 450 terminal
ACCIEOTH « v v = & & v v 4 w w o . search and print process accounting file(s)
admin . . . L 0L o L 0 o L e create and administer SCCS files
ar+« « s« . .archive and library maintainer for portable archives
50 L L s i e e e e e e e e e e e e e e archive and library maintainer
Tcommon assembler
ass0 e e h v s v v s s v v w w4 e o« o« o« «assembler
. . interpret ASA carriage control characters
At . . s . s 4 s e s e e s e s e s . . . eXecute commands at a later time
AWK . . . s e e e e s e e e e pattern scanning and processing language
banner i 4 s s e s e e s s s s s . . s« » . make posters
-banner? Lo + s+ + « o« « « . print large banner on printer
basename's 4 4 4 e e om e e e . deliver portions of path names
bc . ..+ v s+ e« s . .arbitrary-precision arithmetic language
bdiff I g i
Bfs & . . s s e e e e e e e e e e e e e e e big file scanner
bs+acompilerfinterpreter for modest-sized programs
cal 0. e .. v s ow m e n s e s s s s s v v v o print calendar
calendar L 0 L i e e e e e e e e e e e e e e reminder service
cat . UL e v v 4 s s s s s e+ s+ . concatenate and print files
) “u w4+« « Cprogram beautifier
S C compiler
ec50 ... L. v e r 4 s s s s e e e s s s s s s s« «Ccompiler
o « + + » change working directory
ed¢ . .« 4 4+ + + s+ s+ + + . change the delta commentary of an SCCS delta
clow 0. v+ v s e v v s« . generate C flowgraph
chmod. « v v v v v o e e e e e e e e e e e e e e . change mode
chown v v v s s s s s s s s s+« «change owner or group
Clear v v v v v v v e e e e e e e e e e e e e e clear terminal screen
CIP « - 'v v v & 2 s 5 v b v 4 6 4 4 4 s b b woe e . compare two files
o) e+ e« o s s v s filter reverse line-feeds
[3 1 combine SCCS deltas
comm+ .+ » »5elect or reject lines common to two sorfed files
CONY & & v v v n s s s o o o n o ns v e s o« o« .« Object file converter
o 1 copy, link or move files
CPIO - - - i s e e e e e e e e e e + « « + « copy file archives in and out
CPP & 5 » o + 4 & & & 4 & = = s = o = = = x » the C language preprocessor
epp5.0 v 4 4 i v e 4 v s s v s+« «the C language preprocessor
crontab e+ v x s x4« =« s v« »user crontab file
CIYPL o o v 4 o o = v & & & & + o o o s = « s s & = » » & = encode/decode
esh » v+ v+ ¢+« .+ + . . ashell command interpreter) with C-like syntax
csplit'. e n s s s s s s e v on v s s s« s «coNntext split
L spawn getty to a remote terminal
CHEIES . « + « v + ¢« o s o + » « a « « . maintain a tags file for a C program
o T ¢ « + + » + » « C program debugger
CU & © v v s v v v b e s s e e e e e e e e call another UNIX system
CUL & v v h v e e . + « « + + » cut out selected fields of each line of a file
CW v 4 s s o s b e h n e e e e prepare constant-width text for troff
exref vgenerate C program cross-reference
date e s+ s s s s s s s s s s« » .print and set the date

-1-

Table of Cantents

de v v s e e e e e e e e e e e e v+ » « « « »desk calculator
L « + « + « convert and copy a file
delta © . 0 v v v e e e e e make a delia {change) to an SCCS file
deroff,remove nroff/troff, tbl, and eqn constructs
diff v e 4 e s e s v s 4 s« . .differential file comparator
giff3 + » + + s« « 3-way differential file comparison
diffdir L s e e e e e e e e e e e .. diff directories
diffmk«.0 04 e+ markdifferences between files
diremp L. e e e e . + « .« directory comparison
L disassembler
dv 0. v 4 e s s s s s s+« « «summarize disk usage
dUmp .« ¢ - f h e e e e e e e e . dump selected parts of an object file
ECHO & v i e s b e e 4 s e e e e e e e e e e e e echo arguments
= e m e v v ow e e 4 e s lext editor
1 Extended Fortran Language
enable i ¢« 4 s s 4 s 4 4« « « s« »cnable/disable LP printers
Y & v v v h hh e e e e e ek set environment for command execution
BQM + » + + « s+ ¢« « « +« s + « « « format mathematical text for nroff or troff
BX 4 4 4 4k xmm e e e aen e e e e s v v on v v o« . . text editor
BXPT « o o o o o 0 4 4 s » v o 5 x4 » evaluate arguments as an expression
exterr ., . .,turn on/off the extended errors in the specified device
770 ... ¢+ s o s o o v v v o« «Fortran 77 compiler
FACIOT o« & v v 4 4 4 b v v e e e e e e e e e e e e e e e factor a number
file « v v v i e e e e e e e e e e e e e e e e . determine file type
find v rn e s s s e s s s 44 s s s e s a . ohndfiles
fre@ « « + v v 0 v e e e report on character frequencies in a file
fsplit & & & v ¢ v o b v v v e e e v e s oo o . split F77, ratfor, or efl files
1 ¢« v v v« + s+« o file transfer program
L get a version of an SCCS file
BELOPL . & & v v+ e b s s 4 s e s s e s « « « . . parse command options
graph w s a v v 4 a4 s s s «draw a graph
- 1 select terminal filter
BrEP .« + . v o o oo e e e e e e e e e e e s search a file for a pattern
head e v s 4 s s o+ give first few lines
help « v v v v v s e s e e e e e e e e e e e ask for help in using SCCS
Hex . v v v f e e e s s e e e e e e e e e e . translates object files
hostid set or print identifier of current host system
hostpame v v v ... set or print name of current host system
hyphen« ¢« v v « « ¢« s ¢« s s + « « . .lind hyphenated words
1 . « « v » » . print user and group IDs and names

iperm remMOVe a message queue, semaphore set or shared memory id
iPCS « « « « + + + + » . .report inter-process communication facilities status
T 7 relational database operator
Kill & . v ¢ o v 4 v i v i e e s i s s 4w s s« s . .terminate a process
last. . . .+ .+ v+ ..+« .+ .indicate last logins of users and teletypes

lav e e e e e e e e e print load average statistics
... v v v v v« e s v o link editor for common object files
W50 . . 0 v v v f s e e e e e e e e e e s v v v = o« s o link editor
lex . . ¢ @ @ v v i h e e generate programs for simple lexical tasks
HOE « v v v v v s v v v« o v s o v s v s v s e e s s s «Tead one line
T a C program checker

IOZID - & v & 4 4 v 4 & & 5 4 4 4 4 4 4 & s s s s 4 s 4+ s+« -Bignon
IOZOAINE &+ & & « & o 4 v s s o s o s = o v 1 0 + s s+ « » Eetlogin name
lorder 0. find ordering relation for an object library
lorder50find ordering relation for an object library
Ip .. v v v v i v s s v v v e . . sendfcancel requests to an LP line printer
T print LP status information

P

Table of Contents

ls e e e e e e e e e, list contents of directory
md L. e e e e e e s h e e e s w e e s s v » MACTO PrOCessSOr
machid provide truth value about your processor type
mail. . . . v e e s e e e e e e e e e send mail to users or read mail
mailx « .+ 000000 + + .+ . i0teractive message processing system
make maintain, update, and regenerate groups of programs
makekey v i h ot e e e e e e e e e generate encryption key
117 1 print entries in this manual
T T v+ s s v s« C compiler
MEBE + v 4 v v v v v o x4 4 5 4 s s s s+« « . permit or deny messages
mkdir e v s v s s e s s v s« » . make a directory
mkstr create an error message file by massaging C source
mm + « « . print/check documents formatted with the MM macros
MINt « « « « « s « v » « « »+ » .+ typeset documents, view graphs, and slides
MO8 & & « « o & & & = = = = = = &« « + + . file perusal filter for crt viewing
netstat e e ke e e e e e e e e e e show network status
newform+ 4+« 44 4.+ . . .change the format of a text file
NBWETP « = « = + « = » = = = = = 2 = = = « = + - » »login to a new group
news e e s e e e e e e e e e e e e e prini news items
DICE v v v v v v 4 v ¢ o s o s s o o s« » «funacommand at low priority
11 v « v « + « «line numbering filter

OM + + = + & 4 « « + « s + « =« « = .print name list of common object file
nm3D s s e e a e e s e e et s s e e e s s« «Drint name list
nohup0 0. run a command immune to hangups (sh only)
oroff . . . o o e i e s i h v a e e v s s s fOrmat text

' e e e e e s octal dump
PACK & v v i h i i e e e e e e e e e e e e e e compress and expand files
PASSWA . . v v v v v s s x s s 4 s s e s s+« o «change login password
paste merge same lines of several files or subsequent lines of one file
"PE o+ v v+ v s v v v o o o v o+« o file perusal filter for soft-copy terminals
1) print files
PrNIENY & & + & ¢ 4 & 2 4 v v e nem e print out the environment
Prof . . v 4 v v i i s b e e h v w e e e s s o « display profile data
PrS v « & & 4 v s m ma e e e e ek « v =+ s -+ ,print an SCCS file
2. report process status
PEK & v v v v e s e e e e e s s s s e s s s s s s s s «permuted index
put L. e s e e e e e e e puts a file onto a remote machine
PRA . . v v v s s v e e s s e e e e v v« .« woTking directory name
fatfor « .« . o L h e e e e e e e e e e e e e e s rational Fortran dialect
{1 J e e e e e e e e e e e e e e e remoie file copy
rcvhex translates Motorola S-records from downloading into a file
TEECIMP + + 4 & ¢ & & & 2 = = = = = = = = + = &« regular expression compile
remsh o o v v v s e e e e e e e e e e e e e e e e remote shell
TlogIn . v v v v r e e e e e e s e e e e e s e s s . . IEMOtE login
1 1 remove files or directories
mdel Temove a delta from an SCCS file
ruptime ¢ « « + « o« »8how host status of local machines
rwho L « « « who's logged in on local machines

S8CL+ + + « = + « « « « « « « « « - . print current SCCS file editing activity
SAZ + « + s s s 4 s s v s v w e v 4 4 s v 4+ s s . - System activity graph
7 T system activity reporter
seesdifcompare two versions of an SCCS {ile
SCTiPE o o o o o o o s v » v o v + + « « make typescript of terminal session

=1 T, symbolic debupger
sdiffside-by-side difference program
sed ... 0000 t s s s s s s s s s s s+ »5Stream editor
sh shell, the standardlrestrlcted command programming language

-3-

PO

Table of Comtents

shh e e r e e e e e e aa shell layer manager
SIZE 4 v v v e e s e e e e e e e print section sizes of common object files
SiZeS.0 L . e e e e e e e e e e e e e e e .. size of an object file
sleep L e s s e e e e e suspend execution for an interval
SN0+« v v ow e owoa s v e w a s s s s b v v s s 4+ « SNOBOL interpreter
SOTE 4 & v 4 e v e e e e e e e e e e e e e e sort and/or merge files
spell . . L L s L s e e e e e e e e e e e e e e find spelling errors
SPING » + ¢ ¢ ¢ ¢ v b v v v 1 e e e v e e v+ 4 . interpolate smooth curve
split L . e e e s e e e e e e . . split a file into pieces
L2 -makeoutputsmglespaced
strings . . . + . . . find the prlntable strmgs in an object, or other binary file
strip strip symbol and line number information from an object file
stripd.0 « « « «» « . Iemove symbols and relocation bits
BIY o 4 4 4« s+ v v s s« s v v s v s« . . o 5etthe options for a terminal
1 become super-user or another user
SUMM & 4 4 o o v = = = = » o & = = print checksum and block count of a fite
sum? .. . e i e e e . + + s+ v s » v »sum and count blocks in a file
sumdir sum and count characters in the files in the given directories
BYMC &+ « o 2 s+ « + s+ o s o + 4 4 s+ « » « =+ + o« »update the super block
tabs . ., . . - e » » » v v v v+ » »5ettabs on a terminal
3 . deliver the last part of a file

BKE « 4 + v v v « 4 s v s 4 4 s s o+ otakes a file from a remote machine
talk . . s v s s s e h v v e s a e on v v e s . s talk to another user

. e e e e e e e e e e e tape file archiver
1+ format tables for nroff or troff’
I & « + + 4 4 s o o 4 4 4 s s s s s« = s+ s« »Dhototypesetter simulator
tee e pipe fitting
telnet user interface to the TELNET protocol
85t . = v o v s v s e v v r e« o« s »condition evaluation command
HmMe . . & & & L . et et i e e e e e e e e e e time a command

timextimeacommand; report process data and system activity
touch.,+ + « .+ . . . «update access and modification times of a file

T manipulate tape archive
tplot e e e e e i =« s = = s« s v . ographics filters
1 query terminfo database
o translate characters
troff e e e s e a4 e s e s s . lypeset text
IMUE . 4 4 « ¢« s + o n ¢ ¢ s 2+ ¢ s v v v v+« + « . «provide truth values
tset set or reset the teletype bits to a sensible state
tsort e e e e e e e e v o s s o o s v v« . topological sort
BF o o o o v b v v e e s r e s s e e s e e e s get the terminal’s name
e « + « « « do underlining

umask 4 v 4 s s s 4 4 4w o s o+ s o3t file-creation mode mask
UDAME . . « « « « s s s v « s + + o o print name of current UNIX system

UBZEL + & & o 4 v 2 m mh e e e e . undo a previous get of an SCCS file
uniq - - - .. i+« s 4+ 4 & s+ 1 «eport repeated lines in a file
UBIE & o o o o o 2 b v 0 o 2 s a n v 8 1 v = oa e conversion program
updater . ¢ v h v e e e e e e e e update files between two machines
BUCP + « « « « o o ¢ o s s+ « + » « «» UNIX system to UNIX system copy
UUSEAL © v v v 4 e e e e e e e s . uucp states inquiry and job conirol
HUID = & & 4 & = a2 s s & + = . » » public UNIX-to-UNIX system file copy
(111§ S v v e s s+ s » UNIX-10-UNIX system command execution
71 e+ o+« « « validate SCCS file
WC i v v s s v e e e e s « 4 s e s s 2 v s s« . version control

VErSIOM . . v + « v v 2 2 v 1 o + o+ « » .reports version number of files
Vi e oo o u o« s+ v «screen-oriented (visual) display editor based on ex
WEC & v 4 v s nonm e om e e n e e e s+ v s s s s - = »word count

Tabie of Comients

what ot e v e e e e e e e e e . .identify SCCS files
whereis « . . « . . locate source, binary, and/or manual for program
WhO &+ . v s h e e e e e e e e e e e e s « « « « » who is on the system
whoami e e+ s « s + + + s «print effective current user id
write D h e e e e s e h e e e e write to another user

KATES + = + o 2 o s 2 v & & construct argument list{s} and execute command
XStIextract strings from C programs to implement shared strings
VYACE « ¢ « 4 s + s ¢ v s v x 0 x x s x s« Yot another compiler-compiler

()

1)

COMMANDS

mandle special functions of DASI 300 terminal

308s (See I00(L)
#14(1)

handie special functions of DASI 300s terminal
..... paginator for the Tektronix 4014 terminal

456(1) _
_exit {See exit(2))

handle special functions of the DASI 450 terminal
terminate process

translate characters

_tolewer {See conv(IC)H
_towpper {See conv(2CH

transiate characters

a.outi4)

common assembler and link editor output

noutS.0)as5cmbler and link editor owtput (System V a.out format only}
a641(3C) convert between long integer and base-64 ASCIl string
abert 3C) generate an JOT fault
whort (3F) terminate Fortran program
abs (3C) return integer absoluie value
2bs(3F) Fortran absolute value
accept (1M) allow LF requests
accept(2N) accept a connection on a socket
access(2) determine accessibility of a file
acet {1M) overview of accounting
aoct(2) enable or disable process accounting
acct{d) per-process accounting file formal
acctems(IM)coonccveemnverenn.COMMand summary from per-process accounting records
BCCACOBEL) Loooreeee i ea s e rng g e e search and print process accounting file(s)
sceteon (1M) connect-time accounting
accieon] (See accicon (M) I {-time accounting
accteon? (See accieon(IMB connect-time accounting

scctdisk (See accr(IMD)

scctdusg {See acer{IM))

miscellaneous accounting command
miscellaneous accounting command

scttmerg{1M)
sccten. (See gcct(IM))

metge or add total accounting files
miscellanecus accounting command

sectpre(1M)
acctprel (See accipre (IM)
acetpre? (See aceipre(IM)
accish (1M)

process accounting
process accounting

process accounting
shell procedures for accounting

scciwtmp {See acer(IM)
acos (See trig(IM)}

miscellaneous accounting command
trigonometric function

acox(3F)

Foriran arccosine intrinsic function

sdmin (1)

create and administer SCCS files

=l

COMMANDS

adventure{6}
aimag(3F)

an exploration game
Fortran imaginary part of complex argument

aint(3F)

Fortran inleger part intrinsic function

alarm(2)

set a process’s alarm clock

aliases file for delivermail

aliases{7N)
aliens(6)

the alien invaders atlack the earth

alog (Sew log(2FD
alogl® (Sev log I0(IFD

Fortran natural logarithm intrinsic function
Fortran common logarithm intrinsic function

altblk (4}
amax0 {See max(IF)

alternate block information for bad block handling
Fortran maximum-value function

Foriran maximum-value function

amax1 (See max(3F)
amin® (See min(3F))

Foriran minimum-valuve function

Fortran minimum-value function

aminl (See min(IF).
amod (Sve mud (3F))

Fortran remaindering intrinsic function

Foctran bitwise boolean function

and {See boal{IFH
anint {See round(3F)

Fortran nearest integer function

southdr(4)
ar(l}

a.0ut header for common object files
srchive and library maintainer for portable archives

common archive file format

arld)

archive and library maintginer (System V a.out format only)

ar5.0(4)
arithmetic(6)

archive {library) file formai {System V a.out format only)
provide drill in number facts

Address Resolution Protocol

arp{3P)
as(l)

common assembler

2s5.0(1)

asa(l)

assembier (System V z.out formal only)
interprel ASA carriage control characters

ascii(5)

asctime {See ctime(ICH

map of ASCI) character set
converl date and time 1o string

asin (See rrig(3M))
asin (3F)

trigonometric function
Fortran sresine intringic function

assert(3X)

verily program assertion

at(1}

execule commands at a later time

atan (See wig(IM))
atan (3F)

trigonometric function
Fortran arctangent intrinsic function

atan2 (See trig (M) .
atan2 (3F)

trigonometric funclion
Fortran arctangent intrinsic function

atef(AC)
atol (See striof(3CH

convert ASCH string to Boating-point number
converl string to integer

atel (See siral(3CH

convert string to integer

22

sutorobots {6}

COMMANDS

escape from the automatic robots

awk(l)

pattern scanning and processing language

back {6)

the game of backgammon

badblk (1M)

program to set or update bad block information

banner(l)

make posters

banner?(1)

print large banner on printer

basename(1)}

deliver portions of path names

batch (See at(1))

execute commands at a later time

be(1)

arbitrary-precision arithmetic language

bed{(6)

vert to antique media

bebreckre (See bro(IMD
bemp (See bswing (IND

systemn initialization shell script

byte string operation

beopy (See bstring (3N byte string operation
boopy (1M} interactive block copy
»Ifi(1) big diff
bessel (3M) Besszl functions
bis(1) big file scanoer
bind (ZN) bind & name to a socket
bj {6} the game of black jack
b1t (3C) block transfer data

blt512 (Sec bir(ICH

block transfer data

bool (3F)

Foriran bitwise boolean functions

boet(B)

starlup procedures

bre(1M)

system initialization sheil scripi

brk (2)

change data segment space allocation

bs (1)

a compiler/interpreter for modest-sized programs

bsearch{3C}

binary search a sorted table

bstring (3N)

bit and byte siring operations

by der(3N)
bzere (See bsiring (IN))

convert values between host and network byte order
byte string operalion

cabs {See abs(3F)
cal{l)

Fortran absolue value
print calendar

lender(l)
catloe (See matloc(3CH

reminder service
main memory allocator

calloc (See malioc(2X)

fast main memory allocator

C program beautifier

cancel {See Ip(1h cancel requests 1o an LP line printer
cat(l) concatenate and print files
ch(1}
eell)

C compiler

COMMANDS

cc5.0(1)

C compiler (System V a.oul format only)

ceas {See cos(IF)

Fortran cosine intrinsic function

ed{1}

change working directory

cde(1)

change the delia commentary of an SCCS delta

cell {See Hoor(IM)
cexp (Ser exp(IF)

ceiling function
«......Fortran exponential intrinsic funclion

cllow(1)
char {(See fiype(3FD

generate C Bowgraph
explicit Fortran type conversion

chargefee (Sev acctsh(M)
chaze($)

shell procedure for accounting

....tr¥ 10 escape the killer robots

chdir(2)
checkall{1M).

change working directory
faster file system checking procedure

checkew (See cw(ih

..check text prepared with CW commands

checkeq (See equ(l))

check text prepared with eqn or neqn commands

checklist{4}

checkmm (See mme(IH

«e-....list of file systems processed by Fsck
...check documents formatted with the MM macros

chgnod (1M}change current UNIX system nodename
chgrp {See chown(1}} change group
chmeod (1) change mode
chmod(2) hange mode of file
chewn(1) change owner
CHOWBEL) ... iiiserrre e e crse s sess s nbr s ar e e e e s emme e change owner and group of a file
chreot (1M) change root directory for a command
chroet(2) hange rool directary

ckpacct (See acersh(IMD
clear(l)

,shell procedure for accounling
clear lerminal screen

clearerr (See ferror{3Sh
cleck (3C}

stream status inquiry
report CPU time used

clog {See log(3F)
close(2)

Fortran natural logarithm intrinsic function
close a file descriptor

closedir (See direcrory(3X)
cirl (1M}

fexible length directory operation
clenr inode

cmp(l)

compare two files

cmplx (See fiype(FFD

ceenanenr-&Xplicit Fortran type conversion

col{1}

filter reverse line-feeds
combine SCCS delias

configure system

comb(1)

comm (1) select or reject lines common to two sorted files
config (IM)

conjg(3F} Fortran complex conjugate intrinsic function

-4~

conneci N}

COMMANDS

initiate a connection on & socket

conv (1}

object file converter

conv{3C}

translate characters

core(d)

format of core image file

cos (See trig(3M))

trigonometric function

cos (3F)

Fortran cosine intrinsic function

cosh (See sinh (IM)) hyperbolic function
cash (3F) Fortran hyperbolic cosine intrinsic function
ep(l) copy files
cpio(l) copy file archives in and out
cpield) format of cpio archive
cpp(1) the C language preprocessor
ceppS 1) the C language greprocessor (System V a.out format only)
cpset (1IM) rueeuinstall object files in binary directories
craps{6) the game of craps
crash(B) what t¢ do when the system crashes
creat(2) creale a new file or rewrite an existing one
cribbage{6) the card game cribbage
cron{l M) clock daemon
crontab(l} user crontab file
erypt(l} encode/decode
crypt(3C) generate DES encryplion
esh(1) a shell {(command interpreter) with C-like syntax
csin (See sin(3F) Fortran sine intrinsic function
esplit{1} context split

esqrt (See sqri(3F)
ct{1C)

Fortran square root intrinsic function
spawn gelty to & remote terminal

ctags{1)
ctermid(38)

maintain a tags file for a C program
generate filkename for terminal

ctime (3C)
ctrace(1}

convert daie and time 1o siring
C program debugger

ctype(3C)

classify characters

eu{1C)

call another UNIX system

cuble (See rd))

tic-tac-toe

curses (3X)

CRT screen handling and optimization packege

cuserid(35)

gel character login name of the user

cut{l)

cul out selected fields of each line of a fike

ew{l}

prepare constant-width text for troff

exref(l)

generate C program cross-reference

5

COMMANDS

dabs {(See abs(7F)

....... Fortran absolute value

dacos (See acos(IF)

......... Fortran arccosine intrinsic function

dasin (Sev asin(iFhH

Fortran arcsine intrinsic function

datan (Se¢ atan (3F))

Fortran arctangent intrinsi function

datan? (Sev atan 2{IF)
date(1)......

Fortran arctangen intrinsic function
print and set the date

dble (See firpe(IFD e,

de(l)

... explicit Fortran type conversion

desk calculator

demplx (See fiype(IFN ...

deonjg {Sev conju(IFD
deopy (IM)

explicit Fortran type conversion

........................ Foriran complex conjugate intrinsic function

copy file sysiems for optimal access time

deepy1b(1M)

copy fle systems for optimal access time

deos (See cos(IFD

..Forwran cosine intrinsic funciion

deosh (See cosh(3FD ...

Fortran hyperbolic cosine intrinsic function

ad(l)
ddim {See dim (3F)

converl and copy & file
positive difference intrinsic function

delivermalk{BN)

deliver mail 1o arbitrary people

delta(l)

deroff(1) ..

make a deMa {rhange} to an SCCS file
remove nroff/troff, thl, and eqn construcis

dexp (Sec exp(3Fh
deynm (1M)

....... Foriran exponentis] intrinsic function
device name

af{1M)

repori number of free disk blocks

disck (See fick (IMD vvvenen.

dial{3C)

.............. file system consistency check and interactive repair

establish an out-going terminal line connection

diff{1)
diff3(1)

differential file comparator
3-way differential file comparison

diffdir(1)

diff directories

d1fmk (1)

..... mark differences between files

dim (3F)

positive diference intrinsic functions

dimag (See aimuz(IF)
dint {(Se¢ atnr(3ED

........................ Fortran imaginacy part of complex argument

Fortran inleger part intrinsic function

dir(4)

format of directories

dircmp(1) directory comparison
directory (3X) flexible length directory operations
dirname (See dusename(1)) deliver portions of path names
dis(1) disassembler
disable {See enablefi)..... disable LP printers
disk format (1M} formal a disk
dlsktune(IM) tune floppy disk settling time parameiers

diskusg{1M}

COMMANDS

~.generaie disk accounting daia by user ID

dlog (See log(IF)

Fortran natural logarithm intrinsic function

dlegl1® (See logi0(3FD

Fortran common logarithm intrinsic function

dmax] (See max(3F)

Fortran maximum-value function

dminl (See min{3F)

Fortran minimum-value function

dmod (See mod (3F)

Fortran remaindering intrinsic function

doint {See round(3FR

Fortran nearest integer function

dodisk (See acctsh{IM))
dprod(3F)

shell procedure for accounting

double precision product intrinsic function

drand48(3C)

generate uniformly distributed pszudo-random numbers

dsign (See sign(3F))

«Fortran transfer-of-sign intrinsic function

dsin {See sin(3F))

Fortran sine intrinsic function

dsinh {See sinh(3F))

Fortran hyperbolic sine intrinsic function

dsqrt {See sgr(3F)
dtan {See ran{3F)

Fortran square roct intrinsic function
Fortran tangent intrinsic function

dtanh {See rwnh (3F))
du(l)

Fortran hyperbolic tangent intrinsic function
summarize disk usage

dump(l)} dump selected parts of an ohject file
dup(3) duplicate a descriptor
dup2 (3N} dupticate a descriptor
echo(1) echo argumenis
ecvi(3C) convert floating-point number 10 string
ed(1) text editor
edata (Sev end(3CH last locations in program
edit {See ex(1) text editor

ef{l)

egrep (See prep(l))

Extended Fortran Language
search a file for a pattern

enable{1)

encrypt (See crvpt(3C)

enable LP printers
& te DES encryption

end (3C)

endgrent {See gergrem{(3C)H
endhestent (See gerhostent (IND
endoetent {See gemetem (IND
endprotoent (See gerprotoent (IND
emdpwent {See getpwent(3CH
endservent {See getservent(IND)

endutent (See gent{3CH
env(l)

last locations in program
obtain group file entry from a group file

get nétwork host entry
et network entry

get protocol entry
get password file entry

get service entry
access utmp file entry

set environment for command execution

enviren(S)

user environment

1.

COMMANDS

error function

error-logging daemon

eqn(l) format mathematical text for wroff
eqnchar(5) special character definitions for eqn and neqn
erand48 (See drand48(3C))generate uniformly distributed pseudo-random numbers
erf(3M)

erfc (See erf(IMI .ottt st complementary error function
errdead(1M) extract error records from dump
errdernon (1M)

errfile(4)

error-log file formai

errno (See perror(3CH

Syslem error message

error(?)

error-logging interface

errpt(1M)

process a report of logged errors

errstop(1M)

terminate the error-logging daemon

etext (See end(3CH

fast locations in program

ex(1)

text editor

exec{l)

execute g file

execl (See exec(2))

execute a file

execle {See exec(2h

a file

execlp {See exec(2B

execute a file

execy (See exec(2)

execute a file

execvre {See execl(2))

execute a fAle

execyp (See exec(2))

execute a file

exit(2)

terminate process

exponential function

exp(3F) Fortran exponential intrinsic function
exp(OM)}

expr(l) evaluate arguments as an expression
extere{1) turnt on/off the extended errors in the specified device
7

Foruran 77 compilet

tabs (See floor(IM))

absolute value function

Iactor(1}

factor 2 number

false {See rrue(ih

provide truth values

felose (38)

close a stream

fenti{2)

file control

fentl(5)

file controf options

fevt (See ecwt(3CH

converi foating-point number to string

fdopen {See fopen(3S)
feof (See ferror(35H

Open a stream

siream slatus inguiry

ferror (35)

stream Statits inguiry

fiiiM)

list file Rames and statistics for a fle system

tlusk {See feiose(ISH

flush a stream

fIs (See bstring(IN))

COMMANDS

bit string operation

Igete {See geir (3SH

gel character from a stream

fgetgrent {See getgrem(ICH
fgetpwent (See geipweni (ICH

fgets (See zers(35))

obuain group file entry from a group file

get password file entry

gel a string from a stream

fgrep (See grep(iD)

search a file for a pattern

file(1)

determine file type

filehdr (4} file header for common object files
fiteno (See ferror(35)) stream status inquiry
flesave (1M) dailyfweekly UNIX file sysiem backup
finc(1M) fast incremental backup
find{(1} find files
fish(#) play “"Go Fish™

flost {See fivpe(3ED

explicil Fortran type conversion

floor (3M)

floor funpction

fmod {Ser toor(IM)

remainder function

fepen(38)

apen a stream

ferk(2)

create & new process

fortune{5)

print & random, hopefully interesting, adage

forintf (See printf(3S)

print formatted output

fputc (See putc{38)

put character on a stream

fputs {Ser puts(3S)

put a string on » stream

fread (38)

hinary input

trec(1M}

recover files from a backup lape

free {See malloc(3C) .

main memory allocator

free (See malloc(IX)

fast main memory allocator

freopen (See fopen(35D
freq(1) ;

open a stream

report on character frequencies in a file

frexp(3C}

manipulate parts of floating-point numbers

fs(4)

format of system volume

fscanf {See scanf(35))

convert formatted input

fack {1M}

file system consistency check and interactive repair

fsev(1M)

convert files between M63000 and VAX-11/780 processors

fsdb(IM)

file system debugger

fseek (3S)

repogition a file pointet in a stream

fspecid)

format specification in text files

faplit{l)

split 77, ratfor, or efl files

fstat (See stat{2)

get Ble stas

ftell (See fseek{SH

reposition a file pointer in 2 stream

COMMANDS

ftok (See sidipc (ICH

standard interprocess communication package

ftp(IN)

file trapsfer program

ftpd (8N}

:DARPA Internet File Transfer Protocol server

ftw (3C)

walk a file tree

ftype (3F)

explicit Foriran type conversion

fuser{1M)

identify processes using & file or file structure

Twrite {See fread(ISh

binary output

fwtmp(IM)

...... manipulste connect accounting records

samma(3M)

log gamma function

geve (See ecw(GCH

convert floaling-point number Lo string

get(l)

gel a version of an 5CCS file

getarg (3F)

return Fortran command-line argument

gete(35)

gel character from a stream

getchar {See gerc(ISH

get character from s stream

retewd (3C)

get pathname of current working directory

getdiablesize (3N)
getegid (Ser gemid(2))

gel descriplor table size
get effective group 1D

geteny{3C)

LTeturn value for environment name

geteny (3F)

return Fortran environment variable

geteudd (See getuid(2))
geigid {See geruid(2))

et effective user ID
gel real group ID

getgrent(3C)
getgrgid (See gergrent (3CH

....0btain group file eniry from a group file
obtain group file entry from a group file

getgrnam (See 2ergrent(ICN cevcvniovrnernermennnne

gethostbyaddr (See gethostent (3N}

weeee 010N Group fike entry from a group file
get network host entry

gethostbyname (See gethostent (INA
gethostent (3N}

get network host entry
.-get network host entry

gethostid (2N)
gethostname (ZN)

gt unique identifier of current host
get name of current host

getlegin{3C)
getnetbyaddr (See getnetent(IND

gel login name
get network entry

getnethyname (See gemetent(IN}
getnetent (3N)

get network entry
get network entry

getopt (k)

parse command options

getopt(3C)

get option letier from srgument vector

getpass{3C)

read & password

getpeername (2N}

get name of connected peer

gecprrp (See gerpid(2)
getpid{(2)

get process group 1D
get process ID

-10-

{

getppid (See getpid (2}

COMMANDS

get parent process 1D

getprotobymame (See getprotoent(INJ

get protocol entry

getprotobynnmber {See zetp (InD

get protocol entry

getpreteent(3N).....

get protocok entry

getpw(3C)

get name from UID

getpwent{3C)

get password file entry

getpwnam (See gerpwem (2CH

get password file entry

getpwaid {See zetpwent(3C))

get password file entry

gets (38}

get a string from a stream

getservhyneme (Ser gewservent(IN))

get service entry

getservbypert {See gerservent(IN))

get service entry

getservent (3N}

get service entry

getsock name(2N)

get socket name

getsockopt (ZN)

get options on sockels

getty (IM)

set terminal type, modes, speed, and line discipline

petiydefs{d)

..5peed and terminal settings used by getty

getnid{2)
petut (3C)

get real user 1D
access utmp file entry

getutent {See gent(3CH.
getutid (See petn(GCH

access utmp file entry
access utmp file entry

getntllne {See gerur(3CH
getw (See getc(3SDH

access utmp file entry
get word from a stream

gmtime {See ctime(3CH

convert date and time to string

graph(1G) draw a graph
greek (1) select terminal filter
greek (5) .graphics for the extended TTY-37 type-box
grep(l) search a file for a pauern
proupid) group file
grpck (See pwek (IM)) group file checker
gsignal (Ser ssignal(3CH software signal
hangman($) .-guess the word
hashcheck (See speit(1)) work with the spell program’s hash lists
hashmake spell(1) work with the spell program’s hash lists

hereate (See hsearch(ICH

hdestroy {See hsearch(ICH

head (1)

manage hash scarch tables

manage hash search tables

give first few lines

help(l)}

ask for help in using SCCS

bex(1)

translates object files

hostid (1IN}

set or print jdentifier of current host system

“11.

COMMANDS

bestname(IN}

set or print name of current host system

bosts (4N}

host name daia base

bsearch(3C)

btonl (See byteorder(INDcovivmins
htowns (See byweorder(GND

hypben{1)

manage. hash search tables

{convert values between host and netwerk byte order
.convert values between host and network byte order

find hyphenated words

Euclidean distance function

hypot 3M)
inbs (See abs(iF))

Fortran absolute value

count command line arguments

inrge(3F)
ichar (See fiype(3FH

explicit Fortran type conversion

a1}

print user and group IDs and names

idim (See dim{3F)

positive difference intrinsic function

idint (See fiype(3F)

explicit Fortran type conversion

idnint (See round(3F))

Fortran nearest lnteger function

ifcomfig (BN)

configure network interface parameters

ifix (See fiype(IFH

explicit Fortran type conversion

index (3F)

return location of Fortran substring

inet{3N}

Internet address manipulation routines

inet(5F)

Internet protocol family

Inet_addr (See inet(IND

Internet address manipulation routine

Interpet address manipulation routine

lnet_Insof {See inet(3N)
Inet_makesddr {See inet(INJ)

Internet address manipulation routine

Internet address manipulation routine

inet_netof (See iner(INJ
Inet_netwark (See inet(INJ)

lnternet address manipulation routine

Internet address manipulation routine

Inet_ntea {See ines(IN)
ipit{(1M)

proceds control initialization

Ioittab{4)

script for the init process

imode (4}

format of an inode

insert eiement from a queue

inzque (IN)
install (1)

install commands

int {See fivpe(3FH

explicit Fortran type conversion

foeti(2}

control device

Internet Protocol

ip(5P)

remove a message queue, semaphore set or shared memory id

ipes{l)
irand {See rand(3F)

report inter-process communication facilities status
Fortran uniform random-number generalor

isalomum (See coype{3CH

classify characters

isalpha (See cope(3CH

classify characlers

clagsify characters

ksagcii {See ciype(ICH

-12-

isatty (See nymame(3CH

COMMANDS

find name of a terminal

iscotrl (See ciype(3CH

classify characters

Isaight (See cowpe(ICH

classify characters

isgraph (Ser ciype(3CH
isign {See sign(3F}

classify characters
..Fortran transfer-of-sign intrinsic function

tslower {See ctype{3CH
isprint (See cippe(FCH

classify characters
classify characters

ispunct {See cpe(3C))
isspace (See ctype(3C)H

classify characters
classify characters

issue(d)
isupper {See ctype(3CH

issue identification file
classify characters

isxdigit {See ctype(IC)H
J0 (See bessel{3MD

classify characters
Bessel function

j1 (See bessel(3MD
jn (See bessel(IM))

Bessgel function
Besse] Munction

joln(1}

relational database operator

jrandd8 (See drand48(3CH..........

.generate uniformly distributed pseudo-random numbers

kill (1)
kllz)

teriminate a process
send a signal to a process or a group of processes

killall(1M)
kllipg (3N}

kil oll active processes
send signal {0 a process group

kmem {See mem(7}
13tol (3C)

coTe memory
convert between 3-byte integers and long integers

1642 (See ab4iICHccovnvecriirene

labelit {See volcopy(iM)}

....convert between long integer and base-64 ASCII string
copy file systems with label checking

lastil)

lastlagin {See accish{iM}D
lav{1)

....indicate last logins of users and teletypes
shell procedure for accounting

Icongd8 {(See drand48(3CH..........

(1}

print load average statistics
-generate uniformly distributed pseudo-random numbers

1d5.041)

link editor for common object files
walink editor {System ¥ a.out format only)

Idaclose {See idclose(3X))
tnhresd (3X)

close a common object file
read the archive header of a member of an archive file

\dnopen {See idopen{IX)

Hiclose (3X)

.................................... open a commeon object file for reading

close a common object file

Mexp (Sere frexp(IC)
1fcn{4)

.manipulate parts of floating-point numbers
common object file access routines

ldihresd (3X}
logetname(3X)

read the file header of a common object file
retrieve symbol name for object file

-13-

COMMANDS

Idlinit (Se¢ fdiread (3X) _manipulate line qumber entries of a common ohject file function
Mlitem (See ldiread (2X)) .manipulate line number entries of 8 common object fite function
Mirend (3X)manipulate line number entries of a common object file function
Idlseek AX)........oovirsnneeen seek 1o line number entries of a section of a common object file
ldnlseek {See ldfscek (3XDseek to line number entries of a section of a common object file
Idnrseek (See idrseek (3X)) .. seek 1o retocation entries of a section of a common object fite
ldnshresd (See idshread (3XBad an indexcd/named section hesder of a common object file
Mnsseek (See idsseek (3X)seek 1o an indexed/named section of 2 common object file

Hehseek (3X) seek 1o the optional file header of 8 common object file
1dopen (3X) open a common object Gle for reading
ldrseek(3X)seek 10 relocation eniries of a section of 2 common object Gie
ldshresd(3X) read an indexed/named section header of 2 commeon object file
Idsseek (3X)ccovevmenne...588K 0 an indexed/named section of a common object fle
YWtbindex(3X)compute the index of a symbol able entry of 2 common object file
Htbread (3X) read an indexed symbol table entry of a common object file
ldthseek (3X) seck 10 the symbol table of a common object Ble
len{3¥F) return lengih of Fortran string
lex(1) generate programs for simple lexical tasks

iind (See fsearch(ICH

linear search and update

Ige {See stromp(3F)

string comparision intrinsic fupction

Igt {See stremp(IF))

siring comparision intrinsic function

lite{6)

play the game of life

lined{l}

read one line

linenum(4)

line number entries in 2 common object file

link (1M}

exercise link system call

link {2}

link to a file

lint(1)

a C program checker

listen (ZN)}

listen {or connections on a sockel

Ue {See stremp(3IFH

string comparision intrinsic function

1t {Sce stremp (3FD

string comparision intrinsic function

In (Sve cp(1)) link Kiles
lo (%) software loopback network interface
localtime (See clime(ICH convert daie and time 10 siring
lockf(3C) record Jocking on fles

locking (2)

provide exclusive file regions for reading or writing

tog (See exp(IMD

logarithm function

log (3F}

logl® (See exp(IMD

Foriran natural logarithm intrinsic function
Jogarithm function

log18(3F)

Fortran common Jogarithm intrinsic function

-14-

COMMANDS

login(1) sign on
logname{1) get login name
logname{3X) requrn login name of user
longjmp {See setimp(3C)H non-local gote
lorder(1) [find ordering relation for an object library
lorder5.0(1)find ordering relation for an object library (System V a.out format only)
Lp{1} send requests to an LP line printer
Ipadmin(1M) configure the LP spooling system
ipmove (See ipsched(IM)) move LP requests
lpsched(1M) siart the LP request scheduler
Ipshut {See ipsched (1M} ...5lop the LP request scheduler
Ipstae(l) print LP status information
Irand48 (See drand48{3ChHgenerate uniformly distributed pseudo-random numbers
Is{1})... list contents of directory
Isearch(3C) linear search and update
1seek (2} move read/write file pointer
Ishift {See booi(3F) Fortran bitwise boolean function
Ital3 (See i210i(3CH convert between 3-byte integers and long integers
m4(1) MAacTe processor
m68k (See mackhid (1)ccovernrrevecenene.....provide truth value aboul your processor type
machld (1} provide truth value about your processor type
mait{1) send mail to users or read mail
mailx{1) inleractive message processing system
make{l) maintain, update, and regenerate groups of programs
makekey(1) generate encryption key
malllnfo (See malioc{IX} fast main memory allocator
malloe(3C) main memory allocator
malloc(3X) fast main memeory gllocator
mallept { See malloc(IX)) fast main memory allocator
man(1) print entries in this manuat
mzn {5) macros for formatting entries in this manual
master{4) master device information 1able
math (5}math functions and constants
matherr (3M) error-handling function
max{3F) Fortran maximum-value function
maxl {(See max(IF) Fortran maximum-value function
maxl (See max(3F) Fortran maximum-value function
maze(6) generate a maze
meb8ec(l) C compiler

-18-

COMMANDS

mclock (3F)

..... return Fortran time accounting

mem(7)

core memory

memecpy (See v (3CH
memche (See memory(3C)H)

memory operation
memory operation

mememp {Sec memory (3CJ)

memory operation

memepy {See memory(3CH

memory operation

memory(3C)

memory operation

memset {See (3CH
mesg(l)

memory operation
permit or deny messages

mln(3F)
min® (See min(3F))

JFortran minimum-value function
..Fortran minimum-value function

minl {See min(2FH

Fortran minimum-value function

mkdir(1)

mkis{1M)}

make a directory
constrict a file system

mkfx1b{1M}
mklost +fmd (1M)

construct a file system
make a lost+found directory for fsck

mkned (iM)

build special file

mkoed (2)

mkzer{l)

make a direclory, or » special or ordinary file
creale an error message file by massaging C source

mktemp (3C)

make a unique filename

mm (1)

print documents formatted with the MM macros

mm{5}

the MM macro peckage for formatling decuments

mmi(l)

mntiak (4}

typeset documents
mounted file system table

mod(3F)

Fortran remaindering intrinsic function

medf {See frexp(3CH

manipulate parts of floaling-point numbers

menscct {Se# accish(IM)

shell procedure for accounting

meanltor{3C})

meot6)

prepare execulion profile
guessing game

mare{1}

file perusal filter for crt viewing

mesd (5)

maunt (1M}

the OSDD adapier macro package for formatting documents
mount file system

mount{(2}
mptx(5)

mount a file systam
the macro package for formatting a permuted index

mreanddB (See drand48(3CH.....

—...generate uniformly distributed pseudo-random numbers

magstl(2)
mgget(2)

message control operations
get message queue

msgopi2)

message operations

my (See cp(ih

move files

-16-

my(5)

mvdir{(1M)

COMMANDS

a troff macro packege for wpeseuing view graphs and slides

move a directory

myt (See manu(1)})

typeset view graphs and slides

ncheck (IM)

generate names from inumbers

neqn (See eqn(i)

format mathematical text for nroff

netmail (3N}

the B-NET network mail sysiem

netmaller{8N)

defliver mail to B-NET

netstut {(IN)

show network status

networks (4N)
newform(1)

network name data base
change the formal of a text file

newgrp(1}

log in to a new group

news (1}

print news items

nice(1}

run a command at low priority

nice(2)

change priority of a process

nint {See round(3F)
nl(n)

Foriran nearest integer function
line numbering filter

nlist{3C)
nm{l)

get entries from neme list
print name list of common object file

nm5.0(1)
nohup(l)

print name list {System V a.cut format only)
run & command immuné o hangups (sh only)

Fortran bitwise boolean function

not {See bool{3F))

nrand48 {See drandd8(3CH

nroff(1)

.generate uniformly distributed pseudo-random numbers
format text

ntohl (See dyteorder(IND .oeeneeen.
ntohs (See byteorder (IND ...,

ml?

......convert values between host and network byte order
eCORVErt values between host and network byte order
the null file

nwlladm (See accish(iM)

nember{6)

shell procedure lor accounting
convert Arabic numerzls to English

od(1) octal dump
open(2)o0pen for reading or wriling
opendlr (See directory(3X) flexible length directory operalion
or (See bool(3F} Fortran bitwise boolean funciion
osdd (See mm (LDcceescoun..print documenis formatied with the MM and 0SDD macros
pack (1) compress files
passwd(l) change login password
passwi(d) password file
paste{l)coocccrnnrucnnn . I8TgE same lines of several files or subsequent lines of one file
pawse(2) suspend process until signal

peat {See pack(1)h

expand compressed files

-17-

COMMANDS

pclose (See popen (35

initiate pipe 10/from a process

pdpll (See machid(1h

provide truth value about your processor type

perror(3C)

SyStem error message

graphics interface

power function

pgil) --...file perusal filter for soft-copy terminals
phrs(2} allow a process to access physical addresses
pipe(2) create an interprocess channel
plock (2) lock process, text, or data in memory
plot(3X) graphics interface subroutines
plot{4)

pnch{4} file format for card images
popen{3S) initiate pipe to/from a process
pow (See exp(IMB

powerfall {See bre(IMB system initialization shell script
pr(l)

print files

pretmp {See acosh{iMh
prdaily {See accish(IM)

shell procedure for accounting

shell procedure for accounting

printenv{l} print out the environment
printf{38), print formatted output
prof{1) display profile daia
prof(5) profile within a function
profil{(2) execution time profile
PrOBIE(M)ooemee e cretirecsacrsossen s oo b setting up an environment at login time
Protocels (4N) protocol pame data base
prs(1) print an SCCS file
priscet (See acesh{iMh shell procedure for accounting
ps(l) report process status
pstat(1M) print system facts
pirace(2) process trace
ptx(1) permuted index
pty(5) pseudo terminal driver
put{1C) puts a file onto a remote machine
Putc(3S) put character on a stream
putchar (See putc(35)) put character on a stream
puteny(3C) change or add value to environment
putpwent{3C) write password file entry
puts(IS) put & string on a stream

pututiine (See gerut(3CH

access utmp file entry

it word on a siream

putw (See putc (3SH
pwek (AM)

password file checker

COMMANDS

pwddl)} working directory name
qsort(3C) quicker sort
quiz{€) test your knowisdge
rain(8) animated raindrops display
rand(3C) simple random-number generator
rand (3F) ..Fortran uniform random-number generator
ratfor(l) rational Fortran diakect
e (See bre(IM) system initialization shell script
remd {(3N) routine for returning & stream to a remole command
rep{IN) remote file copy
revhex(1) translates Motorola S-records from downloading into a fle
resd (2) read from fle
readdir (See directory(iX} flexible length directory operation
ready (3N) read from fike

resl {See fype(IF)

explicit Fortran type conversion

realloc {See matloc(3CH

main memory allocator

realiec (See malloc(2XH

fast main memory allocator

reboot (1M)

reboot the system

boot{2)
recv{(2N)

reboot the system
receive a message from a socket

recyfrem (See recv(2N)
recvinsg (See recvOND

receive a message from.a socket
receive a megsage from a socket

text editor

red (See ed (1))
regcmp (L)

reguler expression compile

regcmp(3X)
regex {Sec regcmp(3X))

compile a regular expression
eéxecuie a regular expresgion

regexp{5}
reject {See aceepi(iM)

regular expression compile and match routines
prevent LP requests

reloc(d)
remqwe (See insgue (IND

retocation information for a common object file
remove element frtom a queue

remote shell

remsh (1N}
remshd(8N)

remote shell server

reset (See rser (1)
rewlnd (See fieck (3SH

ennaTESEL the tejetype bils to a sensible state
reposition a file pointer in a stream

rewinddir (See direcrory(IX))

rexec(IN)

flexible length directory operation
return stream io a remote command

remote execution server

d(8N)
rlogln{1N)

remoie ogin

rlogind (3N)

remoie login server

COMMANDS

rm{1}

.remove files

rmail (See mail(i))

send mail to users or read mail

rudel (1)

remove a delta from an SCCS file

rmdir (See rm {1}

«-TeMove directoties

robots {6)

escape lrom the robots

rourd (3F)

Fortran nearest integer functions

route (8N}

manually manipulate the rouling lables

routed (8N}

network routing deemon

rresvpert {See remd (GND
rsh (See shOLD e

rshift (See bool (3FD

....routine for returning a siream to a remoie command
....5hell, the restricted command programming language
..Fortran bitwise boolean function

runscct{iiM)

run daily accounting

ruptime(1N}

show host status of local machines

ruserek {(See remd(IND

rwho(IiN)

..Toutine for returning a stream to a remote command
who’s logged in on local machines

rwhod (8N}

system stalus server

sal (See sar{iM))

system activity report package

sa2 (See sar(IMP

system aclivity report package

sact(l)

print current 5CCS file editing activity

sade {See sar(iM))

system activity report peckage

sag(1G}

system activity graph

sar(l)

system dctivity reporter

sar{1M)

system activity repori package

sbrk (See brk(2)

change data segment space allocation

scanf(38)

convert formatted input

scesdiff (1)

compare two versions of an SCCS file

scesfile(4)

format of SCCS file

scabdr(4)

.....BECtioN header for a common object file

seript{l}

make typescript of terminal session

sdb{1)

symbolic debugger

sdiff (1)

side-by-side difference program

sed (1)

siream editor

seed48 (See drand43(3CH

seckdir (See directory(3X)
select(ZN)

.generate uniformly distributed pseudo-random numbers

flexible length directory cperation

synchronous [/Q multiplexing

semctl (2}

semaphore conirol operations

get set of semaphores

semget(2)
semop(2)

semaphore operation

send{2N)

send a message from a socket

-20-

sendmag (See send(2NJ)

COMMANDS

send a message from a socket

sendte (See send(IND

services (4N)

send a message from a socket
service name data base

setbuf{38)

setgid (See setdd(2))

assign buffering to a stream
set group 1D

setgrent (See pesgrent (3CH
sethestent (See gethostent (3N

obtain group file entry from a group file
gel network host entry

sethostid {See gethostid (2N))
sethostname {See gethostmame (2N

set unique identifier of current host
set name of current host

setimp{3C)
setkey (See copt{3CH

non-local goto
generate DES encryption

setmnt{1M}

establish mount table

setnetent (See gemetent (3N)

get network entry

set process group D

setpgrp{(2)
setprotoent {See getprotoeni (IND

get protocol entry

get password file entry

setpwent (See geipwent (3C))
setreghd (2}

set real and effective group 1D

setrenid(2)

set real and effective user iDs

setservent {See getservent{IND

get service eniry

seisockept (See getsockapt (2N}

set options on sockets

setuid (2}

se1 user D

setutent (See gernt{3C))

access utmp file entry

setvbuf (See setbuf(3SH assign buffering 10 a stream
agetl (See sputf(3AD ..ocviirivn atCess long integer daia in a machine independent fashion
shil) shell, the standard command programming language
shl(1) shell layer manager
shmcti{2) shared memory control operations
shmget{2) get shared memory segment
shmop{(2) shared memory operations
shutscet {See accrsh{iM) shell procedure for accounting
shutdewn (1M) terminate all processing
shutdewn (2N} shuy down part-of a full-duplex connection
sign (3F) Fortran transfer-of-sign intrinsic function
signal(2) .specify what to do upon receipt of a signal
signal (3F) specify Fortran action on receipt of a system signal
sin (See trig(3M) trigonometric function
-sin{3F) Fortran sine intrinsic function
sinh (3F) Fortran hyperbolic sine intrinsic function
sink{(3M) hyperbolic function

21-

COMMANDS

size(l)

size5.0(1)

print section sizes of common object files
size of an object Gle (System V a.out format only}

sleep (1)
sleep(3C)

suspend execution for an interval
suspend execution for interval

sngl (See fupe(3FD
sno(l)

explicit Fortran type conversion
SNOBOL interpreter

socket(ZN)

create an endpoint for communication

sort(1)

sort and/or merge filkes

find spelling errors

spell(1)
spellin {See speli(1)

work with the spell program’s hash lisis

interpolale smooth curve

spllne(1G)
split(1}...

split & file inlo pleces

sprintf (See prinif(3Sh

print formatted output

sputl 3X)

access long integer data in a machine independent fashion

sqrt (See exp(3MB

square rool Tunction

sqrt(3F)

Fortran square root intrinsic function

srand (See rand(3C))

simple random-number generator

stand {See rand (3FN

Fortran yniform random-number gencrator

srand48 (See drand4803C))
sscank (See scanf/(ISh

....... generate uniformly distributed pseudo-random nun.bers

copvert formatted input

ssigmal(3C)

sofiware signal

ssp(l)

make putput single spaced

startup (Ser accish{IMD

shell procedure for accounting

stat(2)

get file status

stat{5) data returned by stat system call
stdlo(3S) standard buffered inpur/output package
stdipe{3C) standard interprocess communication package
stime(2) et time
streat (See siring(3C)H string operation
strehr (See siring(3CH string operation
stremp {See siring (3CH siring operation

stremp{3F)

siring comparision intrinsic function

strepy (See sring(3ChH

siring operation

streapn (See string (2

siring operation

" string(3C)

stritg operation

strings (1} find the printable strings in an object, or other binary fike
strip{l}he....oeccrrvsnsssrisens....SLTIP SYMboI and line number information from an object Ale
stripS. 81}remove symbols and relocation bits {System V z.out format only)

strien (See string(3C)

string operation

22

COMMANDS

strocat {See siring(3CH string operation
strncmp (See string(3CH string operation
strnepy (See siring(3CH string operation
strphrk (See siring(3C) string operation
strrchy (See string(3CH siring operation
strspm {See string(3CH siring operation
streod (3C) .Convert string to double-precigion number
strtok (See string(3C) string operation
strtol (3C) convert gtring to integer
stty (1) set the options for a terminal
sufl) become super-user or another user
sum(1)print checksum and block count of a file
sum (1) sum and count blocks in a fle
sumdllr{1)c...ocerernrnnene8UN and count characters in the files in the given directories
swab(3C) swap bytes
sxt(7) psendo-device driver
syms(4) wencOmMmon object file symbol table format
syne(l) update the super block
syncl?) update super-block
sys_errlist {See perror(3C)) system error message
sys_perr (See perror(3CH System error message
sysdef (M) sysiem definition
system(3F) issue a shell command from Fortran
system (38) issue & shell command
tabs{1) set tabs on a terminal
tall{1) deliver the last part of a file
take(1C) takes o file from a remote machine
talk (IN} talk to another user
tan (See wrig(3MD trigonometric function
tan (3F) Fortran tangent intrinsic function
tanh (See sink (IM) hyperbolic function
tanh (3F) Fortran hyperbolic tangent intrinsic function
tapesave {See filesave(IMD daily/weekly UNIX file system backup
tar (k) tape file archiver
thi{1) format tables for nroff or troff
te(1) phototypesetter simulator
tep (5P) Internet Transmission Control Protocol
tdelete {See rsearch(3CH manage binary search irges
tee(1) pipe fitting

23«

COMMANDS

tellnit {See init(IM)

process control initialization

telldir {See directory(IXh

flexible length directory operation

telnet (AN}

user interface 1o the TELNET protocol

telnetd (BN)

DARPA TELNET protocol server

tempnam (See tmprom (3SH

create a name for a temporary file

term {4)

format of compiled term file.

term{5}

ventional names for terminals

termeap(3X)

terminal independent operation routines

termeap (5}

terminal capability data base

terminfo(4)

terminal capability data base

termio(7)

general terminal interface

test{1}

condition evaluation command

tind (Ser rsearch(IC))

manage binary search tress

tftpd (BN)

.DARFPA Trivial File Transfer Protocol server

tgetent {See rermeap(iXh

tgetliag (See termeap (X)) ..ot

tgetnum {See termcap(IX)

terminal independent operation routine
terminal independent operation routine
terminal independent operation routine

tgetstr (See termeap (3X)}

terminal independent operation routing

tgote (See termcap(3X))

terminal independent operation routine

tic(LM)

terminfo compiler

get time

time{l) time a command
time(2)

times(Z) .zet process and child process times
timex(1) time a command; repori process data and system activity
tmplile (3S) create a temporary file
tmpnam (38) create a name for a temporary file

teasclt (See conv(3CH
tolewer (See conv(3CH

translate characters
translate characters

touch(1)

update access and modification times of a file

toupper {See conviiCH

translate characters

tp(D)
tplot (1G)

manipulate tape archive
graphics filters

tput(1)

query terminfo database

tpwts {See termcap(3X)

terminal independent operation routine

tr(1}
trek (6)

translate characters
trekkie game

rig(3MD
trefi (1)}

trigonometric functions
typeset text

trpt(8N)

transliterate protocol trace

COMMANDS

tic-tac-toe

true(1) provide truth values
tsearch(3C) manage binery search trees
tset{l) set the teletype bits Lo a sensible state
tsori(l) topological sort
1Ht{6)

tty (1) gel the lerminal’s name
tty(7) controlling terminal interface
ttyname (3C) find name of a terminal
tiyslot (3C) find the slot in the utmp file of the current user
ttytype (4} data base of lerminal types by port

twrnacet {See acctshiiMD

shell procedure for accounting

twalk (See tsearchi{ICH

manage binary search trees

twinkle(6)

twinkle slars on the screen

types(5)

primitive sysiem data types

tzset (See ctime(3C))

convert date and (ime to string

ulk {See machid (1))

provide truth value aboul your processor type

u3bs {See machid(1))

provide truth value about your processor type

udp{5P)

Internet User Datagram Protocol

ul{l)

do underlining

ulimit(2)

get and set user limits

umask (1}

set file-creation mode mask

wmask (2}

....... set and get file creation mask

wmount (See (IM)

dismount file system

wmoant(2)

unmouni 2 file system

wname(l)

print name of current UNIX system

uname(2)

get name of current UNIX sysiem

unget(l}

undo a previous get of an SCCS fite

ungete(3S)

push character back into input stream

unig(t}

report repested lines in a file

units (1)

CONversion program

unbimk (See link(IAM)}

exercise unlink system call

unlink(2)

remove direclory entry

expand compressed files

wnpack (See pack(i))
updater{l)

update files between wo machines

update files between two machines

wpdater(1M)
ustat(2) .

get file system statistics

utime(2)

sel fle access and modification times

utmp(4)

utmp entry formal

ntmpname (See gerr(ICH

access utmp file entry

-28.

COMMANDS

nuclean(1M) ..

VUCP spool directory clean-up

uncp(1C)

uulog (See wircp(ICH..ucunnnn.

UNIX system o UNIX sysiem copy

e PPN & Stmmary log of UUCP and UUX transactions

lists the UUCP names of known sysiems

vaname (See uncp(ICH
uupick (See unto(ICH

public UNIX-to-UNIX system file copy

nustat (1C)

uusub{1M)

UUCP status inquiry and job control
monitor UUCP network

uute (1C)

public UNIX-10-UNIX system fle copy

wux{IC)

UNIX-to-UNIX system command execution

uvar(2)

wal(l)

returns system-specific configuration information
validate 5CCS file

values(5)

machine-dependent values

varargs{5)

handle variable argument list

vax (See machid (1))

vel(l}

provide truth value about your processor type
version control

version checkup

reporls version number of files

vchk (1M

vedlt {See vi(ih screen-oriented {visual) display editor based on ex
verslon{(1}

viprintt (See vpringf(3Shc.ocosussnsonsnnprint formatied output of & varargs argument list

viprintf (See eprinfT3X)) ...

vi(l)

weeeree.print formatied output of a varargs argument list

screen-oriented (visual) display editor based on ex1

vlew (See vi(1) screen-oriented {visual) display editor based on ex
volcopy (IM) copy file systems with label checking
¥printf(35) print formatted output of a varargs argument list
vprintf(3X) print formatted output of a varargs argument list
vaprintf (See voringf(35hcoumenrceme......print formatted output of a varargs argument list
vsprintf (See vprint/TIX))ocvcevsrirernnen DFiNt Formatied output of a varargs argument list
wait(2) ; wait for child process to stop or terminate
walt3{2N) wait for child process to stop or terminate
wall(M) write to all users
well) word count
what{1) identify SCCS files
wherels(1) locate source, binary, and/or manual for program
who(l) who is on the sysiem
wheamt(1) print effective current user id
whedo (1M} who is doing what
worm{6} piay the growing worm game
worms/(6) animate worms on a display terminal
write(1) write to wnother user

-26-

write(3)

COMMANDS

wrile on a file

writey (3N}

write on a file

wimp (See wimp(4)

wimp entry format

wtmpfix (See fwimp(IM))
wump(§)

manipulate connect accounting records

the game of hunt-the-wumpus

xargsi{l)

construct argument list(s} and execute command

xor {See bool{IF))

Fortran bitwise boolean function

xstril)

extract strings from C programs to implement shared sirings

¥0 {See bessel(IMD

Besse] function

¥1 (See bessel(3MD

Bessel function

yace(l)

yet another compiler-compiler

yo (See bessel(IM))

Bessel function

zaba (See abs(IF)

Fortran absolute value

227-

PERMUTED INDEX

functions of DAS] 300 and/
/special functions of DASI
of DASI 304 and 300s/ 300,
functions of DAS] 300 and
13101, Itol3: convert between
comparison, diff3:
Tektronix 4014 terminal.
paginator for the Tekironix
of the DASI 450 terminal.
special functions of the DASI
f77: Fortran

long inleger and base-64/

program.

Fortran absolute value.
value.

abs: retuen integer

dabs, cabs, zabs: Fortran
Hloor, ceiling, remainder,
socket. accepi:

a socket.

LP requests.

of a file. touch: update
utime: set file

accessibility of a file.
machine/ sputl, sgetl:

phys: allow a process 1o
ldfen: common object file
copy file systems for optimal
/setutent, endutent, utmpname:
access: determine

enabke or disable process
acctoon: conneci-time
acctprel, acctpre2: process
turnacct: shell procedures for
faccion, acctwtmp: overview of
sccounting and miscellansous
diskusg: generate disk

acct: per-process

search and print process
accimerg: merge or add tolal
mclock: return Fortran time
summary from per-process
wtmpfix: manipulate connect
runacct: run daily

process accounting.

file format.

per-process accounting/
process accounting file(s).
connect-time accounting.
sccounting. acctoonl,
acctwimp: overview of/
overview of/ accldisk,
accounting files.

acctdisk, acctdusg,
accounting.

acctprel,

acctdisk, acctdusg, accton,
sin, cos, tan, asin,

intrinsic function.

kitlall: kill all

300, 300s: handle special
300 and 300s terminals.
300s: handle special functions
300s termvinals. /special , , .,
3-byte integers and long/ .

3-way differential ile , ., .

4014: paginator for the
4014 tarminal. 4014: , . .
450: handle special functions

450 terminal. 450 handle

Tlcompiler.
a64l, 164a: convert between
abort; generate an [OT fault.
abort: terminate Fortran
abs, iabs, dabs, cabs, zabs:
abs: return integer absolute
absolute value., . ‘e
absolute value. abs, iabs, . .
absolute value functions, ., .
accept 3 connectionona .
accepl: accept a ¢connection on
accept, reject: allow/prevent
access and modification limes .
access and modification times, .
access: determine
access long integer data in a
access physical addresses,
access roulines.
access time. deopy:
access utmp file entry.
accessibility of a file.
accounting. acct:
accounting. acctconl, . . .
accounting.
accounting. /startup,
accounting and miscellaneous/ .
accounting commands. fol . .

F e T

P

PR

I

P I

a641(3C)

. abort(3C)

abort(3F)
abs(3F)

. abs(3C)
. abs(3C)
. abs(3F)

floor{3M)
accept{ZN)
accept{ZN)
accept{1M)
touch(l)
utime(2)

. access(2)

sputl(3X)
phys(2)

. Idfen{4)
. deopy(IM)

getut(3C)
access(2)

. acct(2)

accounting data by user ID, ,

accounting fike format.
accounting fike{s). acctcom: . .
accounting files.
accounting.

accounting records. fcommand
accounting records. fwimp,
accounling.
acct: enable or disable
&cck: per-process accounting

.o

acctems: command summary from

acctcom: search and print
accteonl, accteond: .

accteon: conneci-time
acctdisk, acctdusg, acclon, . . .
acctdusg, accton, acctwimp: . .
acctmerg: merge or add total .
accton, acctwimp: overview of/

acctprel, acctpre?: process

LI S

acctcon(1M)
acetprc{1M)
acctsh(1M)
acct(IM)
acct{1M)
diskusg(1M)
acct(4)
accteom(1)
acctmerg (1M}
mclock(3F)
accterns(1M)
fwtmp(1M)
runacci{1M)
acct{2)
acct{4)
acctems(1M)

. aecteom(l)

secieon{1M)
accteon{iM)
acct{1M)
acct(1M)

. acctmerg(1M)

acclpre: process accounting.

acctwimp: overview of/
acos, atan, atan2y/
acos, dacos: Fortran arccosine .
active processes.

acct(1M)
acctpre{1M)
acctpre(1M)
acct(IM)

. trig(3M)

acos(3F)
killall(IM)

Permuted Index

sag: System

sal, sa2, sadc: system

Sar: system

current SCCS file editing
report process data and system
random, hopefully inleresting,
formatting/ mosd: the OSDD
acctmerg: merge or

putenv: change or
Jinet_netof: Internet

arp:

a process t¢ access physical
SCCS files.

admin: create and

game.

imaginary part of complex/
part intrinsic function.
alarm: set a process’s

clock.

delivermail.

aliases:

earth. aliens: The

attack the earth.

change data segment space
realloc, calloc: main memory
mallinfo: fast main memory
physical addresses. phys:
accept, reject:

natural logarithm/ log,
logarithm intrinsic/ loglQ,
information for bad block/
for bad block/ altblk:
Fortran/ max, max0,

mex, max0, amaxl, maxl,
Fortrend min, min0,

min, mind, amin®, minl,
remaindering intrinsic/ mod,
rshift: Fortran bitwise/
/locate source, binary,

sort: sort

terminal. worms:

rain:

Foruran nearest integer/
bed: convert to

link editor output.

files. aouthdr.h -

editor oulput.

common abject files.
introduction 1o commands and
maintengnce commands and
maintainer for portable/
format.

maintainer., -

format.

number: converl
delivetmail: deliver mail to
language. bc:

acos, dacos: Fortran
maintainer. ar5.0:

for portable archives. ar:
cpio: format of cpio

ar: common

header of a member of an
an archive/ idshread: read the

activity graph. .
activity report package.
activity reporter. .)
activity sact: print .
aclivity. /time a command; . .
adage. fortume: print a
adapier macro package for . .

add total accounting Gles.

add value 1o environment., . .
address manipulation routines. .
Address Resolution Protocol. .
addresses. phys:allow
admin: create and administer .
administer SCCS files. .
adventure: an exploration . . .
aimag, dimag: Fortran
aint, dint: Fortran integer .
alarm clock. . . .
alarm: set a process’s alarm . .

L I

aliases: sliases filefor

aliases file for delivermail.
alien invaders attack the . . .
aliens: The alien invaders . . .
allocation, brk, sbrk: . . . , .
allocatoy. mallec, free, .
allocator. fcalloc, mallopt, .
allow a process (o acoess . .
allow/prevent LP requests. . .
alog, dlog, clog: Fortran . .
alogl@, diogl0: Fortran common
altblk: alternate block , .
alternate block information . .
amax0, max], amaxl, dmaxl: .
amaxl, dmax!: Fortran/
amin0, minl, aminl, dminl:
aminl, dmini: Fortran/
amod, dmod: Fortran
and, or, xor, not, shifl, .
and/or manual for program. .
and/or merge files.

animate worms on & display
animated raindrops display.
amnl dmnt, nint, Kinint; .

a.out: common assembler and .
a.out header for common object
a.0ut5.0; assembler and link .
aouthdr.h - a.out header for .
application programs. intro: .
application programs. /system
ar: archjve and library
ar: common archive file . . .
#r3.0: archive and library .
ar5.0: archive {library) file .
Arabic numerals to English,
arbitracy people.
arbitrary-precision arithmetic

arccosing inctrinsic function. .
archive and library e
archive and library maintsiner .
archive.
archive file format.
archive file. /the archive . . .
archive header of 8 member of

.
.
.
L3
LI I Y -
-
.

PRI R

-2.

« 4 & n

sag(1G)

. sar{IM}
. sar{l)

sact{!)
timex{1)
fortune(6)
mosd(5)
acctmerg(iM)
putenv{3C)
inet{3N)
arp(5P}
phys(2)
admin(1)
admin(1)

. adventure(6}
. aimag(3F)

ain{3F}
atarm{2)}
alarm(2)
aliases{IN)
gliasez(TN)
aliens(6)

" . aliens(6)

. brk(2)

R

malloc{3C)
malloc(3X}
phys(2)
acoept{1M)
log (3F)
gl 0GF)
altblk (4)
altbik{4)
max (3F}
max (3F)
min{(3F)
min(3F)

. mod{IF}
. bool(3F)

whereis(l)
sort(1)
worms(6)
rain{6)
round(3F)
bod(6)
a.out(d)
aputhdr(4)
a.out5.0(4)
aouthdr(4)
intro(1)
intro(1M)
ar{l)

ar{d)
ar5.0(1)
ar3,0(4}
number{6)
delivermnil(8N)

ars.0:

tp: manipulaté tape

tar: tape file

maintainer for portable
cpic: copy file

asin, dasin: Fortran
atan?, datan?: Fortran
atan, datan: Fortran
imaginary part of complex
" return Fortran command-line
varargs: handle variable
formaited output of a varargs
formatied output of a varargs
command. Xargs: cOnstruc!
gelopt: get option letter from
expr: evaluate

echo: echo

be: arbitrary-precision
number facts.

Protocol.

expr: evaluate arguments

characters. aga: interpret
control characters.

ascii: map of

set.

long integer and bage-64
number. atof’ converl
and/ ctime, locallime, pmtime,
trigonometric/ sin, cos, tan,
intrinsic function.

help:

cutput. a.0ul: commen
output. a.out5.0;

as: common

as5.0:

asserlion.

asserl: verify program
setbuf, setvbuf:

a later time.

sin, cos, tan, asin, acos,
arclangent intrinsic/
arclangent intrinsic/

cos, lan, asin, acos, atan,
Noating-point number.
double-precision/ strtod,
integer. striol, atol,
integer. striol,

aliens: The alien invaders
autorobots: Escape from the
autpmatic robots.

lav: print load

processing language.
ungetc: push character

J— back: the game of
4 dally/weekly UNIX file system
: finc: fast incremental
frec: recover files from a
block informaltion for
/program to set or update
update bad block information.

Permuted Index

archive (library} fle format. ar5.0(4)
archive. e v el tpil)
archiver. e .. tar(l}
archives. /archive and library ar{i}
archivesinendiout. cpio(1)
arcsine intrinsic function. asin(3F)
arclangent intrinsic function. .+ . atan2(3F)
arclangent intrinsic functiot. aan(3F}
argument. fdimag: Fortran aimag(3F)
argument. getarg: getarg{dF)
argument list.« . varargs(5)
argument list. Jprint+ + vprintf(38)
argument list. Sfprint « » » vprintf(3X)
argument list(s) and execute xargs(l)
argument vector. « v . getopl(3C)
arguments as an expression, expr{l)
ATEUMENES. +« 4 4 « o & x 8 & o« = u echo(l)
arithmetic language. be(l}
arithmetic: provide drillin arithmetic(6)
arp: Address Resolution arp(5P)

as an expression. e v o expr(l)
as: common assembler. as{l)
as5.0:assembler.« 4 285.0{1)
ASA carriage contred asa(l}

asa: interpret ASA carriage . . asa(l}
ASCII character set. o ascii(5)
ascii: map of ASCII character ascii(5)
ASCII string. Fconvert between . . . a641{3C)
ASCII string to foating-peoint . . . atof(3C)
asctime, tzset: convert date ctime{3C}
asin, acos, atan, atanZ: teig(IM)
asin, dasin: Fortren arcsine asin{3F)
ask for help in using SCCS. help(1)
assembler and link editor s.out{4}
assembler and link editor s.ow5.0(4)
assembler. .+ « .+ v 4 0 v 4w e 0w s as(1)
assembler, « - . . . i e e ou s as5.0(1)
asserl; verily program assert{3X}
assertion. - e v v e oo assert(3X})
assign buffering to a stream. setbuf(38}
at, batch: execute commands at . . . at{l)

atan, atan2: trigonometric/ trig(IM)
atan, datan: Fortran atan(3F)
atan2, datan2: Fortran atan2(3F)
atan2: trigonometrie/ sin, « trig (3M)
atof: convert ASCI string to atof(3C}
atof: copvert siring to sirtod(3C)
atoi: convert string 10 strtol(3C)
atol, atoi: convert string to striol(3C)
attack theearth. aliens{6)
automatic robots. autorobois(6}
autorobots: Escepe from the auiorcbois(6)
average statistics., . . . lav(l)
awk: pattern scanning and awk(1)
back into input stream. ungetc(38)
back: the game of backgammon. . . . back(6)
backgammon. .« .+ .+ . 4 « + + o - back(6)
backup. filesave, tapesave: filesave{IM}
BOCKUD- « « =+ « s v v m s e e finc(1M}
bDackuptape. 4 . o4 - . . o frec(1M)
bad block handling. /alternate altblk{4)
bad block information. badblk{IM)
badbik: program te setor . , , . . . badblk(iM}
banner: make posiers. banner(1)

.3.

Permuted Index

banner?: print large

printer.

hosts: host name datla
networks: network name data
port. ttytype:! data

protocols: protocel name data
services: service name data
terminal capability data
terminal capability data
beiween long integer and
(vigual) display editor
portions of path names.

later time. at,

arithmetic language.

system initialization/ bre,
string operations. beopy,
and byte string operations.

cb: C program
0,51, jn, y0, y1, yn:

whereis: locate source,
cpset; install object files in
strings in an object, or other
fread, fwrite:

bsearch:

tfind, tdelete, twalk: manage
bind:

bcopy, bemp, bzero, fis:
remove symbols and relocation
/set or reset the teletype

/not, Ishift, rshift: Fortran

bi: the game of

beopy: interactive

sum: print checksum and
block information for bad
program to set or update bad
block/ altblk: alternate

sync: update the super

blt, blt512:

df: report number of free disk
sum?7: sum and count

data.

bit,

netmailer: deliver mail to
netmail: the

rshift: Fortran bitwise

system initialization shell/
space allocation.
modest-sized programs.
sorted table.

gtdio: gtandard

setbuf, setvbuf: assign
mknod:

between host and network
Ibcmp, bzero, fis: bit and
swab: swap

string/ beopy, bomp,

o

bannet on printer. v e s s o . banmer7(1}
banner?: print large banner on baaner7{1)
BESE. + = « & ¢ v+ s r m e e s hosts(4N}
DESE. & = v v v r e e m e e networks{4N)
base of terminal typesby ttytype(4)
DESE. & & v b h i ahn e e e e protocols{4N)
BESE. + = = ¢ & s« rm e r e . services(dN)
base. IEIMCAP: . + « 4+ + « « » + « o termeap(3)}
base. terminfo: terminfol(4)
base-64 ASCII steing. /convert . . . a641(3C)
based on ex. /ecreen-oriented . vill)
basename, dirname: deliver basename(1)
batch: execute commands ata at(l)

bc: arbiirary-precision bell1)

bed: convert to anligue media. bed(6)
beheckre, ve, powerfail: bre(lM)
bemp, bzero, ffs: bitand byte bstring(3N)
beopy, bemp, bzero, Hs: bit bstring (3N}
beopy: interactive block copy. bcopy({1M)
bdiff: big diff. » . . bdiff(1)
beautifier. 20 b s 4 ch(1)
Bessel functions. . . .+ . .« bessel(3M)
bfs: big file scanmer. bis{1)
binary, and/or manual fer/ whereis{l)
binary directories. cpset(1M)
binary file. /the printable strings(1)
binery inputfoutput. fread(38)
binary search & sorted 1able. bsearch(3C)
binary search tregs. tsearch, tsearch{3C)
bind 2 name to asocket. bind{2N)
bind: bind a name to a socket. bind(2N)
bit and byte string/ bstring(3N)
bits. strip5.0: 00 .. strip5.0(1)
bits to a sensible state. tset(1)
bitwise boolean functions. bool{3F)
bj: the game of black jack, bj(6)
blackjack. + . « « « s + o v v v+ + BB
block COPY. + v o s v & o« = = « « beopy(1M)
block countofafile. sum(1}
block handling. /aliernate altblk{4)
block infermation. badblk: badblk(lM)
block information for bad altblk(4)
block. e v s e e v e v s syne(l)
block transfer data, » bIt{3C)
blocks. . + ¢ & & 0 & 0 o 000w di{1M)
blocksinafile.« sumM1)
blt, bit512: block transfer , blt(3C)
bit512: block transfer data. blt(3C)
B-NET., & v v v v v vt v n v e s netmailer (3N}
B-NET network mail system. . netrnail(8N)
boolean functions. /lshift, .+ + bool(3F)
boot: startup procedures. boot(8)
bre, beheckee, e, powerfail: bre(IM)
brk, sbrk: change data segment . . . brk(2)

bs: a compiler/interpreter for bs(l)
bsearch: binary searcha bsearch(3C)
buffered input/output package. . . . sidio(38)
buifering to a stream. setbuf(35)
build special file. mkood(lM)
byte order. /convert values byteorder(IN)
byte string operations. bsiring(3N)
BYEES. « o v v 2 ¢ v n s nm e swab(3C)
bzero, Ms: bit and byic e s e s s+ . bstring(3N)
Ceompiler, . . « v v v v v 0«2 coll}

-4-

¢c5.0:

meb8cc:

cllow: generate

cpp: the

cpp: the

cb:

lint: a

cxref: generate

maintain a tags file for a
ctrace;

xstr! extract strings from
message file by massaging
value. abs, iabs, dabs,

de: desk
cal: print

ou:
data returned by stat system
maloc, free, realloc,

fast/ malloc, free, realloc,
intro: introduction to system
link and unlink system

to an LP line printet. Ip,
termeap: terminal

terminfo: terminal

cribbage: the

pnch: file format for

asa: interpret ASA

files.

function. cos, deos,

commentary of an SCCS delta.
ceiling, remainder,/ floor,
fceil, fmod, fabs: floor,
intringic/ exp, dexp,

delta: make a delta

pipe: create an interprocess
/dble, emplx, demplx, ichar,
stream. ungete: push

and neqn. eqnchar: special
file. freq: repori on

user. cuserid: get

/getchar, fgetc, getw: get

/ putchar, fputc, putw: put
ascii: map of ASCII

interpret ASA carriage control
_tolower, toascii: translate
iscnir), isascii: classify

given/ sumdir: sum and count
tr: translate

Ipstlogin, monacct, nulladm,/
killer robots.

directory.

/dfsck: file system consistency
checking procedure.
constant-width text for/ cw,
text for nroff or/ egn, neqn,
lint: a C program

grpck: password/group file

Permurted Index

C compiler. . .
C compiler.
Cllowgraph, v v v v s v 4«
C language preprocessor. . + » 4 4 o

cc5.0(1}
mebBec(i)
cllow(l)
cppll)

C langusge preprocessor, cpp5.0(1}
C program beautifier. ch(l)

C program checker. lint (1}
 program cross-reference. cxref(l)
C program. ctags: . . . « + + + « . clags(D)

C program debugger. ctracel(l)
C programs to implement shared/ . . xstr(l)

C source. /create anerror mkstr(l}
cabs, zabs: Fortran absolute abs(3F)
cal: printcalendar. cal(1)
calulator. . . 4 v . v w e e w4 o dell)
calendar. e e e .. calD)
calendar: reminder service. calendar(l}
call another UNIX system. cu(1C)
call. s1at: u e a .. stat(5)
catloc: main memory allocator. malloc(3C}
calloc, mallopt, mallinfo: mallec(3X)

cails and error numbers.

intre(2)

calls. link, unlink: exercise link{IM)
cancel: send/cancel requests ipll)
capability database. termcap(5)
capability data base. terminfo(4)
card game cribbage. « cribbage(6}
cardimages. . .+ v o v o v 0 0 .. . pach{d)
carriage control characters. asa(l}

cal; concatenate and print cat(l)

cb: C program beaulifier. cb{l)
cc:Ceompiler. + o . v v v« oo .. cell)
eci.0: Coompiler. . . . 0« 0 b .. ce5.0{(1)
ccos: Foriran cosine intrinsic cos(3F}
cd: change working directory. cd(1}

cdc: change thedelta cde(l)

ceil, fmod, fabs: floor,
ceiling, remainder, absolute/
cexp: Fortean exponential
cllow: generate C flowgraph.
(change) 1o an SCCS file.

char: explicit Fortran type/
character back into input
character definitions foregn
character frequencies in a

character login name of the
character or word froma/
character or word on a stream.
character set.
characters. asa: ., . .
characters. /_toupper,
characters. /isprin, isgraph,
characters in the files in the
characters. « v &+ 4« x4 .
chargefes, ckpacct, dodisk,
chase: Try to escape the
chdir: change working
check and interactive repair. . . . , .
checkall: faster file system
checkew: prepare
checkeq: format mathematical
checker, . . v . v o b v v e e w
checkers. pwek,

LR I

I I

-5.

floor(3M)
floor(3M)
exp{3F)
chow(l)
delta(l}
pipe(2)
ftype (3F)
ungetc(38)
eqnchar(s)
freq(l)
cuserid(35)
getc(3S)
putc(38)
ascii(5)
asa(l)
conv(3C)
ctype(3C)
sumdir{1)

. chdir(2)

fsck(1M)
checkall{1M)
cw(l)
eqn(l}
lint{1)
pwek{1M)

Permuted Index

checkall: faster file system
copy file systems with label
systems processed by Isck.
formatted with the/ mm, osdd,
file. sum: print

vchk: version

system nodename.

chown,

times: get process and
terminale, wait: wait for
terminale. waild: wait for

of a file.
group.

for a command.

monaccl, nulladm,/ chargefee,
isgraph, iscnirl, isascii:
uuclean: uucp spool directory

clri:

clear:

status/ ferror, feof,
{command interpreter) with
alarm: set a process’s alarm
cron:

logarithm/ log, alog, dlog,
ldclose, ldaclose:

close:

descriptor.

felose, Mush:

/telldir, seekdir, rewinddir,

freal, float, sngl, dble,
line-feeds.

comb:

commeon o two sorted files.
nice: run a

change rool directory for a
env: sel environment for
uux: UNIX-to-UNIX sysiem
system: issue a shell

only}. nohup: run a

C-like syntax. ¢sh: & shell
getopl: parse

/shell, the standard/restricted
reiurning & stream Lo 8 remotg
and system/ limex: time a
relurn stream {0 & remote
per-process/ accicms:
system: issue a shell

test: condition evaluation
lime: time &

argument list(s) and execule
gelarg: return Fortran

and miscellaneous accounting
intro: intreduction to

{10 system mainlenance

al, baich: execute

install: install

checking procedure.
checking. voloopy, labelit:
checklist: list of file
checkmm: print/check documenis

a4 b oam

CRE I]

checksum and block countofa . . .
. vchk{lM)

checkup.

. s s

chgnod: change current UNIX
chgep: change owner or group. . . .

child process times. , . ,
child process to stop or
child process to stopor
chmod: change mode.
chmod: change mode of file. . .
chown: change owner and group

chroot: change root directory.
chroot: change rool direclory
ckpacct, dodisk, lastlogin,
classify characters. !i.sprint. .
Clean-up.
clear: clear lerminal sew:n
ckar i-node.
clear terminal screen.
clearerr, fileno: stream
C-like syntax. csh: a shell
clock, .
clock daemon. . .
clock: report CPU time used. . .
clog: Fortran natural
close a comman ohject file.
close a file descriptor. . .
close: close a file
close or flush a stream.
closedir: flexible lengthy
clri: clear i-node.
cmp: compare two fles,
cmplx, demplx, ichar, chars/ . . .
col: filter reverse 4 « «
comb: combine SCCS deltas.
combine SCCS delias,
comm: select o reject lines . . .
command at low priority. . . .
command. chrool:
command execution.
command execution.
command from Fortran. .
command immune 1o hangupe (sh
{command interpreter) with . . .
command options.
command programming language.,
command. frouiines for .
command; report process data . .
command. rexec: | .
command summary from
command.
command.
command.
command. xargs: construct
command-line argument.
commands. fof accounting . .
commands and application/ . .
commands and application/ .
commands at a laler time. . . .
commands. .

chown, chgrp: change owneror . . .

CEE
.
...... -

=

..... P L

e o

T

P Y

..... .

P
. o+

o6 -

checkali(1M)
volcopy(1M)
checklisi{4)
mmi1)
sumfil)

chgnod(IM}
chown(1}
times(2)
wait(2)
wait3(IN}
chmod(1)
chmod(2)
chown(2)
chown(l)
chroot{2)
chroot(LM)
acctsh(1M)
ctype(3C)
uuciean{lM)
clear{l)
ciri{IM)
clear{1}
ferror{3s)
cshil)
alarm(2}
cron{1M)

. clock(3C)

log{3F)
Hclose(3X}
close(2)
close(2)
fclose{35)
directory(3X)
clril1M)
cmp(l)}
fiype GF)
col(1)
combil)
comb(l)
comm(1)
nice(1)
chroot{I1M)
env(l)
uux{(1C}
system(3F}
nohup(l)
csh(l)
getopt(l)
sh{l)

remd (3N)
timex(1}
rexec(3N)
accicns(1M)
system(38)

. test(1)

time{l)
xargs(1)
getarg{3F)
acct(1M)
intro(1)
intro(1M}
at(1}
insull{1M)

cdc: change the delta
ar:
edilor output. a. out

log10, alogl0, dlogl(: Fortran
routines. ldfen:

Idopen, Idaopen: open a

/line number entries of a
Idclose, Idaclose: close a

read the file header of a
entries of a section of a

the optional file header of a
fentries of a section of a
/section header of a

an indexed/named section of a
of a symbol table entry of a
symbot table entry of a

seek to the symbol table of a
line number entries in a

nm: print name list of
relocation information for a
scnhdr: section header for a
table format. syms:
aputhdr.h - a.out header for
filehdr: file header for

Id: link editor For

size: print section sizes of
comm: select or reject lines
ipcs: report inter-process
ftok: standard interprocess
socket: creste an endpoint for
diff: differential file

cmp:

SCCS file. sccsdiffl:

Ige, lgt, lle, llt: string

diff3: 3-way differential file
dircmp: directory
expression. regcmp, regex:
regexp: regular expression
regemp: regular expression
term: format of

c: C

5.0 C

177: Fortran 77

mcblec: C

tic: terminfo

yacc: yet another
modest-sized programs. bs: a
erf, erfc; ercor function and
Fortran imaginary part of
conjg, dconjg: Fortiran
pack, pcat, unpack:

table entry of a/ ldtbindex:
cat:

test:

uvar: returns system-specific
parameters. ifconfig:

config:

system. lpadmin:

conjugate inwrinsic function.
conjg., deonjg: Fortran complex
fwtmp, wtmpfix: manipulate
on a sockel.

commentary of an SCCS delta,
common archive file format.

common assembler and link .
common assembler,
common logarithm intringic/
common object file access
common object file for/
common object fite function.
common object file.
common object file,
common object file.
common object file.
common object file.
common object file.
common object file.
common object fike,
common ohject fite.
common ohject file.
common ohject file.
common object file.
common object file. .
common object file. .
common object file syrnbol .

oy

idfhread:
/number
/seek to
/seek to
/the index
Jindexed
Idibseek:
linenum:

reloc:

common object files.
commeon object Rles,
common object files, .
common ohject files.
common ko two sorted files, .
communication facilities/
communication package.
communicalion.
comparator. . . .
compare two files.

compare two versions of an
comparision intrinsic/
comparison.
comparison.
compile and execute 8 regular
compile and match routines, .
compile.

e e e

compiled erm file..

compiler.
compiler.
compiler.
compiler.
compiler,
compiler-compiler.

LRI A I

compilec/interpreter for

complkementasy error function.
complex argument. fdimag: .
complex conjugale intrinsic/
compress and expand files. .
compute the index of a symbol

‘concatenate and print files. .

condition evaluation command.
config: configure system.

configuration information.

configure network interfece . .

configure system.
configure the LP spocling . .
conjg, deonjg: Fortran complex
conjugale intrinsic function.
connect accounting records.
connect: injtiate a connection

-7

Permmted Index

. cdcll1)
. ar(4)

. a.out{d)
. as(l)

. loglO3F)
Wfcn{4)
Idopen(3X)
. Kltead(3X)
+ ldclose(3X)
. ldfhread (3X)
. Idlseek(3X)
. Wohseek(3X)
. ldrseek(3X)
. ldshread{(3X)
. ldsseck(3X)
. Idtbindex{3X}
. Idtbread(3X}
. ldtbseek{3X)
. linenumi4)
. am(l)

. reloc(d)

. scnhdr{4)

. syms{d)

. aouthdr(4)
. filehdr{4)
(1)
size(1)
comm(1)
ipes(1)
stdipe{3C}
socket{2N)
iff(1)
emp(1)
scesdiff (1)
stremp(3F)
. . diff3(1)

. o dirtcmpll)

« o Tegemp(3X)
. . regexp(5)
regecmp{1}
term{4)

. eell)

. oc5.0(1)

. L

. meb8cc(l)
tic(IM)
yace(l)

. . bs(l)
erf(3M)
aimag(3F)
conjg{3F)
pack(1)
Idibindex (3X}
. cat(l)

. test(1)
config{l1M)
uvar(?)
ifconfig(8N)
config(1M)

. Ipadmin(1M)
. conjg(3F)
conjg 3F)
fwimp(1M}
connect(IN)

Permured Index

gelpeername: get name of
an oul-going terminal line
aceept: accept &

connect: initiate a

down part of a full-duplex
listen: listen for

acctconl, acctcon2:

fsck, dfsck: file system
math: math functions and
cw, checkew: prepate
mkfslb:

mkfs:

execute command, xargs:
nroff/troff, tbl, and eqn
Is: list

csplit:

asa: interprel ASA carriage
ioctl:

fenotl: file

init, telinit: process
msgeth message

semct]: semaphose
shmctl: shared memory
fenul: file

tcp: Internet Transmission
uucp status inquiry and job
ve! version

interface. tty:

lerminals. term:

char: explicit Fortran type
units:

dd:

English, number:
floating-poini number. atof:
integers and/ 13tol, ol
and base-64 ASCII/ abdl, 164a;
/gmtime, asctime, tzset:
and VAX-11/780/ fsov:

10 string. ecvt, fovt, gevl:
scanf, fscanf, sscanf:
strtod, atof:

strtol, alol, atoi:

bod:

hionl, hions, niohl, ntohs:
conv: object file

dd: convert and

beopy: interactive block
cpic:

access lime, deopy:
checking. volcopy, labelit
¢p, In, mv:

rep: remote file

UNIX gystem o UNIX system
UNIX-10-UNIX systemf{lh
le.

core: format of

mem, kmem:

cosine intrinsic function.
atan2: trigonometric/ sin,
hyperbolic cosine intrinsic/
lunctions. sinh,

cos, dcos, ccos: Fortran
/dcosh: Fortran hyperbolic

connected peer. - . getpeername(2N)
connection. dial: establish dial(3C)
connection on a socket. accept(ZN}
connection on & socket. . ., , connect(ZN)
connection. shutdown: shut , shutdown(2N)
connections on a sockel. . . , . . . listen(2N)
connect-time accounting, acctcon{1M)
consistency check and/ , fsck(IM)
constants. « « v v« . math(§
constant-width text for troff. . ew(l}
construct a file system. mkfslb(1M)
construc a file system.« mkfs{1M}
construct argument lisi{s) and xargs{l)
constructs. deroff: remove deroff{l)
contents of divectory. Is(l)
comtexa split. v s« « . csplit(])
contro] characters. asa(l)
control device. . . .« iocu{2)
COMEOL. & « + 4 4« x o oa . .o . fenti(2)
conirol initialization. init(1M}
control operalions. msgc1i{2)
control operations. semctl{2)
control cperations. « + «» shmetl(2)
control options. v v o+ . Eenul(s)
Control Protocol. v v oo« ep(5P}
control. wustat: . . ., uustat{1C)
control e e e e vel(l)
controlling terminal Ayl
conv: object file converter. conv(l)
conventiongl namesfor . , , , . . . term{3)
conversion. /dcmpix, ichar, ftype(3F)
CONVErsion program. units(1)
convertandcopyafile,« dall)
convert Arabic numeralsw number(6)
convert ASCll string to atf{3C)
convert between 3-byte , L}ol(3C)
convert between long integer 8641(30)
convert date and time to/ ctime{3C)
convert files between M68000 fscv(IM)
converl Noating-poinl number ecvt{3C)
convert formatted input. scanf(}5)
converl string o/ strlod(3C})
converl siring to integer. striol(3C)
converl to antique media, bed(6)
converl values between host/ byteorder(3N}
converler. . . + « « « + 2 4 a0 . . convll)
copyafile. ., v .. ddil)

COPY. « + + o v v s + v o« = « « « « beopy(1M)
copy file archives inand out. cpio(l)
copy fle systems for optimal dcopy(1M)
copy file systems with label volcopy (1M}
copy, link or move files. epl)

COPY. =« « « = » et e e . replIN)
copy. uucp, uulog, uuname; uucp{IC)
copy. uuto, uupick: public watolIC)
core: format of core image coreld)
core image file. core(4)
COTEMEMOTY. + + o « « & = « » .« mem(7}
¢os, deos, ccos: Fottran cos(3F}

cos, tan, asin, #cos, atan, . , trig(3M)
cosh, decosh: Fortran . . ., cosh(3F}
cosh, tanh: hyperbolic sinh(IM)
cosing intringic lunction. cos{IF)
casine intrinsic function. cosh{3F)

.8-

‘

sum7: sum end

in the given/ sumdiv: sum and
sum: print checksum and block
we: word

files.

cpio: format of

and out.

Preprocessor.
Preprocessor.
binary direciories.
clock: report
craps: the game of

system crashes.

what to do when the system
rewrite an existing one.

file, tmpnam, tempnam:

an existing one. creal

fork:

tmpfile;

communication. socket:

by massaging C source. mkstr:
chennel. pipe:

files. admin:

umask: set and gel file
cribbage: the card game
crivbage.

crontab: user

cxref’ generate C program
optimization packege. curses:
more: file perusal filter for

generate DES encryption.
interpreter) with C-like/
function. sin, dsin,

intrinsic/ sqrt, dsqrt,
terminak.

for a C program.

terminal.

asctime, Zset: convert date/

ttt,

get/set unique ideniifier of
sethostname: get/set name of
set or print identifier of
hostname: set or print name of
activity. sact: print

chgnod: change

uname: print name of
uname: get name of

whoami: print effective

slot in the wimy file of the
getcwd: get pathname of

and optimization package.
spline: interpolate smooth
name of the user.

of each line of a file.

each line of a file. cut:
constant-width text for/

Permuted Index

count blocks inafile. . , sum7(1}
count characters in the files sumdir(l)
countofafile., .. su;m(l)
count. e e e e we(l)
¢p, In, mv: copy, link or move cp(l}
cpioarchive, + + + v + « v 4 = v 4 & cpio(4)
cpio: copy file archivesin cpiol)
cpio: format of cpio archive, cpio(4)
cpp:the C language cppll)
cpp:the C language cpp3.0(1}
cpset: install object filesin cpset{1M)
CPU time used. e e e clock (3C)
CTAPS. + « « = o » « e e e craps{5)
craps: the game of craps. craps(6)
crash: what to do when the crash{8}
crashes. crash: . + + - - crash(8}
creat: creste s mew fileor creat(?)
create a name for a temporary . . , . tmpnam(3S}
create a new flle or rewrite creat(2)
Creale 2 NEW DrOCESS. + « 4 « o & . » fork{2)
create a temporary filke, tmpfile(38)
create an endpointfor socket(ZN)
create an error message file mksir(1)
create an interprocess« pipe(2)
create and administer SCCS admin{1}
creationmask. oo o o umask(2)
cribbage. + v s s+« . . cribbage(6)
cribbage:; the card game ., cribbage (6)
cron: clock deemon. . . L ., . . . cron(iM)
crontabfile. v v+ « . croniab{l}
crontab: user crontab file, , , , . . . crontab{l)
cross-reference. 2 4 cxref(1)
CRT screen handlingand curses(3X)
criviewing. « o+ . more(l}
crypt: encodefdecode. cryptil)
cIypt, setkey, encrypt: crypt(3C)
csh: a shell (command csh(l)
csin: Fortran sine intrinsic . . ., . . . sin(3F)
csplit; context split. oo oe o csplia(l)
csqrt: Fortran square root sgrt(3F)
cl: spawn gelty to aremote ct{lC)
ctags: maintaina tags file ctags{1)
ctermid: generate filename for clermid{38)
ctime, localtime, gmtime, ctime(3C)
ctrace: C program debugger. ctrace(l)
cu: call another UNIX system. cu(lC)
cubic: tictactoe. . . ., L, GE(6)
current host. fsethostid: gethostid (2N)
current host. gethostname, gethostname(2N)
current host system. hostid: hostd(IN)
current host system. hostname(IN)
current SCCS file editing sact{l)
current UNIX system nodename. . chgnod(1M)
current UNIX system., . . uname(l)
current UNIX system. « « uname(2}
current userid. v + « + whoami(l)
current user. fMindthe , . , tysiot(3C)
current working directory, , . , . . . gelewd(3C)
curses: CRT screen handling curses(3X)
CUTVE. v o o & o v = o 2 = = = = » » spline(1G}
cuserid: gel characler login cuserid (35)
cut: cut out selecied fields cut(l)

cut out selected felds of ., cu(l)

cw, checkew: prepare cwl(l)

-9.

Permnivd Index

cross-reference,

absolule value. ubs, iabs,
intrinsic function. acos,
cron: clock

errdemon: error-logging
terminate the error-logging
routed: network rouling
runacct: run

backup. filesave, lapasave:
Protwocol server. lipd:
lelnetd:

Protocol secver, Uipd:
fhandle special funclions of
special functions of the
intrinsic function. asin,
flime 4 command; report process
hosts: host name

networks: nelwork name
port, ltytype:

protocols: protocol name
services: service name
termeap: terminal capability
terminlo: terminal capability
blt, bit512: block transier
generate disk accounting
/sgetl: access long integer
plack: lock process, lext, or
profl: disptay profile

call. stal;

brk, sbrk: change

types: primitive syslem
join: relationa)l

tput: query terminfo

udp: Internst User

intrinsic function. alan,
intrinsic function. atan?,
/asctime, tzset: convert
date: print and set the

fidint, real, foat, sngl,

/float, sngl, dble, cmplx,
conjugate intrinsic/ conjg,
opiimal access Lime.
intrinsic function. cos,
cosine intrinsic/ cosh,

difference intrinsic/ dim,
ctrace: C program

fsdb: file system

sdb: symbolic

sysdef: sysiem

eqnchar: special characler
people. delivermail:
petmailer:

names. basaname, dirname:
file. tail:

aliased: aliases file for
arbitrary people.

delta commenlary of an SCCS
file. delta: make a

delta. cde: change the
rmdel: remove a

to an SCCS file.

cxref: generate C program cxref(1)
dabs, cabs, zabs: Fortran abs(3F)
dacos: Foriran arccosine v « + « 800s(3F}
daemon. v v oo s cron(lM)
daemon. v v« . . crvdemon(1M)
daemon. errstop: v e - .« errstop({1M)
daemon.4 a e s s e e routed (8N)
daily sccounting. runscct(EM)
daily/weekly UNIX file system filesave(IM)
DARPA Internet File Trensfer . . . fipd{8N)
DARPA TELNET protocol server. . . telnetd(8N)
DARPA Trivial File Transfer Hipd{8N)
DASI 300 and 300s terminals. 300{1)

DASI 450 terminal. fhandle 450{1)

dasin: Fortran arcsine asin{3F)

data and system sclivily. timex{l)
database. hosts(4N)
databese. s v v v v+ o o Networks{4N)
data base of terminal types by Uytypeid)
database. v . v v e .. prolocols(4N}
database. ¢ s 4 4 oo . - - SETViCCS(AN)
database. . . « v v oxan e ... termcap(5)
database. terminfo{4}
data. e i e a bh(3C)

data by user 1D, diskusg:
data in a machine independent! . . .
data in memory.
data.
data returned by stat system
data segment space allocation.
BRlA IFPES. « « & 4 5 s b v e e oaow s
database operator.
database.
Datagram Protocol.
datan: Fortran arctangent
datan2: Foriran arctangent«
date and time to string. .
T8, + + ¢ & o v & 4 4 &
date: print and set the date.
dble, cmplx, demplx, ichar,/
de: desk calculator.
demplx, ichar, char: explicit/
deonjg: Fortran complex
deopy: copy file systems for
deos, ccos: Fortran cosine
dcosh: Fortran hyperbolic
dd: convert and copy a Ble,
ddim, idim: positive
debugger.
debugger.
debugger.
definition.
definitions for eqnand neqn. . + .
deliver mail to arbitrary .
deliver mailto B-NET. . . ., . ..
deliver portions of path
deliver the last partofa »
delivermail.
delivermail: deliver mailto
delta. cdc: change the
deha (change) oan SCCS
delta commentary of an SCCS . ., . .
delta from an SCCS filke. .)
delia: make a deita {change)

DI A |

-10 -

diskusg(IM)
sputl(3X)
plock {2}
prof(1)
stat(s)
brk(2)
types(5}
join(1}
tput(l)
udp(5P)
atan{3F)
atan2(3F}
clime(3C)
date{1}
date{l}
fiype3F)
de(l)
fype(3F)
conjg{3IF)
deopy(1M)
cos(3F)
cosh(3F}
dd(1)
dim{3F)
ctrace(1}
fadb(IM)
sdb{l)
sysdef(IM)
cqnchar(5)
delivermail (8N)
netmailer (8N}
basename(1)
wil(2)
aliaxex(TN)
delivermail(BN)
odc(1)
deltal(l)
ode(l)
rmadel(1)}
deltall)

comb: combine SCCS

. mesg: permit or

tbl, and eqn constructs.
setkey, encrypt: generate
close: ¢lose a file

dup2: duplicate a

dup: duplicale a
getdtablesize: get

de:

s file. access:
file:

errors in the specified

master: master

ioctl: control

devom:

expcmential intringic/ exp,
blocks.

check and interactive/ fsck,
terminal line connection.
catfor: rational Fortran
baifl: big

COMPArator,

diffdir:

coOmparison.

dim, ddim, idim: positive
sdiff: side-by-side

diffmk: mark

diff:

diff3: 3-way

between files.

difference intrinsic/

of complex argument. aimag,
intrinsic funciion. aint,

install object files in binary

diffdir: diff

dir: format of

rm, rmdir: remove flles or

in the files in the given

od: change working

chdir: change working

chroot: change root

uuclean: uucp spool

dircmp:

unlink: remove

chroot: change root

fmake a lost+ found

pathname of current working

Is: list contenis of

mkdir: make 8

mvdir: move a

pwd: working

fclosedir: flexible length

/“\ ordinery file. mknod: make a

| path names. basename,
S -

printers. enable,

acct: enable or

dis:

type, modes, spead, and line

ID. diskusg: generate

Permuted Index

deltas. e st v e s s comb(l)
deny messages. e hh e e e mesg(1)
deroff: remove nroff/woff, deroff(1)
DES encryption. crypt, crypt(3C)
descriptor. v e close()
descriptor. . . . « . + « . . v oo v dup2(3N)
descriptor. . - dup(3)
descriptor table size. geldtablesize(3N)
desk cakkulator. do(l)
determine accessibility of &8 access(2)
determine file type. v . filedD)
device. /on/off the extended exterr(l)
device information lable. , ., master{4)
device. vee s e w s d0CH(2)
devicename., .. devim(IM)
devnm; device name. devam(1M)
dexp, cexp: Fortran exp(3F)
df: report number of free disk df{IM)
dfsck: file system consistency Ffsck(IM)
dial: establish an out-going dial(3C)
dialect. v eov e s ratfor(l)
diff, e . bdiff(1)
diff: differential file diff(1)
diff directories. diffair(1)
diff3: 3-way differential ile diff3(1}
diffdir: diff directories. diffdir(1)
difference intringic/ dim(3F)}
difference program.« Sdiff(l1)
differences between files. diffmk(1)
differential file comparator, diff(l)
differential file comparison. . . ., . . Jif3D)
diffmk: mark differences diffmk(1)
dim, ddim, idim: positive dim(3F)
dimag: Fortran imaginary part aimag(3F)}
dint: Fortran integer part. aint(3F)
dir: formal of directories., . dir(d)
dircmp: direciory comparison. .« .« diremp(l1)
directories. cpset: . ., cpset{IM)
ditectories. voe o0 . diffdir(D)
directorles. o o+ dir(4)
directories, + + v v v v v v e .. s rm{1}
directories. /oount characters . « sumdir(1)
directory., .. 44 cdll)
directory. + v+ s - - chdir(2}
directory. « + « « chroot(2)
directory clean-up. + « vuclkean{iM}
directory comparison. dircmp(1)
directory entry. e e e s unlink{2)

directory for acommand.
directory for fsck.
directory, getewd: get . .,

directory, .+ P
directory. . . « 4o v 4 4 2 oo .
director¥. + v ¢ 4 v 4 4 s e e e e
directory pame. - ..

directory operations.

. chroot(1M}
. mklost+fnd(1M)

getowd(3C)
is(1)
mkdir(1)
mvdir(1M)
pwd(1)

. directory{3X)

directory, or a special or e v« mknod{2)
dirname: deliver portions or v + « « » basename(l)
dig: disassembler. v v o dis(l)
disable: enable/disable LP enable(l)
disable process unting. acct(2)
disassembler. .., dis{l)
discipline, /set terminal , getiy(1M)
disk accounting data by user . , , . . diskusg{lM)

211 -

Permuted Index

df: report number of free
diskformat: format a
diskiune: wne floppy

du: summarize

selling lime paramelers.
accounting data by vser ID.
mount, umount: mount and
vi: screen-oriented (visual)
prof:

rain: animated raindrops
WOTms: animate worms on a
hypot: Euclidean

/lcong48: generate uniformly
logarithm/ log, alog,
fogarithm/ logld, alogl®,
max, max0, amax0, maxl, amax],
min, minD, amin0, minl, aminl,
intrinsic/ mod, amod,
nearest integer/ anint,

mm, osdd, checkmm: print/check
macro packege for formatting
macro package for formauting
slides. mmt, mvi: typeset
nulladm,/ chargefee, ckpaccl,
whodo: who is

intrinsic function. dprod:
fatof: convert string to
/Motorola S-records from
product intrinsic function.
nrand48, mrand48, jrand48./
graph:

arithmetic: provide

pty: pseudo terminal

sxt: pseudo-device
transfer-of-sign/ sign, isign,
intrinsic function. sin,
intringic function. sinh,

rood intrinsic/ sqrt,

intrinsic function. tan,
tangent intrinsic/ tanh,

an object file.

extracl error records from
od: octal

object Rle. dump:

dupl:

: dup:

The alien invaders attack the
echo:

fioating-point number to/
program. end, etext,

. ex,
sact: print current SCCS file
{(visuat) display

ed, red: text

ex, edit: text

filea, id: link

. 145.0: link
commron assembler and link

disk blocks. df(1M)
1 diskformat{IM)
disk settling time parameters. . disktune(1M)
disk usage.40 4. dull}
diskformat: format a disk. diskformat{IM)
disktune: tune floppy disk disktune(1M)
diskusg: generate disk diskusg{1M)
dismount file system. mount(iM)}
display editor based onex. vi{l}

display profile data. profi1}
display. o0 . . . rain(b)
display terminal. worms{6}
distance function. hypot(IM)
distributed pseudo-random/ drand48{3C}
dlog, clog: Fortran nateral log{3F)
dlogl0: Fortrancommon log! M{3F)
dmaxl: Fortran maximum-value/ . max(3F)
dminl: Fortran minimum-value/ . . . min(3F}
dmod: Fortean remaindering mod(3F)
dnint, nint, idnint; Fortran round{3F)
documents formatted with the/ . . . mm{l)
documents. mm: the MM mm(53)
documents. fthe OSDD adapter . . . mosd(5)
documents, view graphs, and . mmt{l)
dodisk, lastlogin, monacet, accish{1M}
doingwhat. « + + « « v« + + + + + . whado(IM)
double precision product dprod(IF}
double-precision number. strtod (3C)
downloading intoa file. revhex{1)
dprod: double precision dprod(3F}
drand48, erand48, Icand48, drand48(3C)
drawagraph. graph{lG}
drill in number facts, arithmetic(6)
driver. & 4 .+ v e e e h e e e e s py(5)
driver. 0 h s e h e e e sxt(?)

dsign: Fortran sign(3F)

dsin, csin: Fortran sine
dsinh: Fortran hyperbolic sine
dsqgrt, csgri: Fortean square
dtan: Fortran tangent
dtanh: Fortran hyperbolic
du: summarize disk usage.
dump: dump selected partsof
dump. errdead:
dump.
dump selected parts ofan
dup: duplicate a descriptor.
dup2: duplicate a descriptor.
duplicate a descriptor. PP
duplicate a descriptor.
earth, aliens:
echo arguments.
echo: echo arguments.
ecvl, fovt, gevticonvert
ed, red: teteditor. v v . ..
edata: last kocations in
edit: text editor.
editing sctivity.
editor basedonex.+
editor.
editot.
editor for common object
editor. . . cO0. L. L.
editor output. a.ont:

P

I R e R N L]

T I R A L]

-12.

sin{3F}
sinh{3F)
sqri(IF}
tan (3F)
tanh (3F)
du(l)
dump{l)
errdead(1M)
ad{1}
dump(1)
dup(3)
dup2(3N)
dup2(IN)
dup({3)
aliens(6)
echo(l)
echo(l)
ecvt(3C)
ed(1)
end(3C)
ex(1)
sact(1)
vi(l}
ed(1)
ex(l)

(.

a.outs.0: assembier and link
sed: stream

whoami: print

setregid: set réal and

fuser, real group, and
setrevid: set real and

and/ /getegid: get real user,
Language.

Isplit: split {77, ratfor, or

for a pattern. grep,

insque, remque: insert/remove
enable/disable LP printers.
accounling. acct:

enable, disable:

crypl:

encryption. crypl, setkey,
setkey, encrypt: generate DES
makekey: generate

locations in program.
/getgrgid, getgrnam, seigrent,
/gethostbyname, sethostent,
fgeinetbyname, seinetent,
socket; create an
/gelprotobyname, setprotoent,
fgetpwuid, gelpwnam, seipwent,
/getservbyname, setservent,
utmp/ /pututline, setutent,
convert Arabic numerals to
nlist: get

file. linenum: line number
man: print

man: macros for formatting
file/ /manipulate line number
{ldnlseek: seek to line number
/ldnrseek: seek to relocation
utmp, wtmp: utmp and wimp
/fgetgrent: obtain groop file
endhostenl: get network host
endnetent: get network
endprotoent: get protocol
fgetpwent: get password file
endservent: get service
uimpnume: access wump file
/ihe index of a symbol table
fread an indexed symbol table
pulpwent; wrile password file
unlink: remove directory
command execulion.

profile: setiing up an

environ: user

execution. env: set

getenv: return value for
printenv: print out the

putenv: change or add value to
getenv: return Foriran
character definitions for
remove nroff/troff, tbl, and
mathematical texi for nrofl/
definitions for eqn and neqn.
mrand48, jrand48./ drand48,
compiementary error function.
complementary error/ erf,
from dump.

editor output.
editor,
effective current user id.
effective group ID.
effective group IDs.
effective user ID’s,
effective user, real group,
ell; Extended Forwran
efl files.
egrep, lgrep: search a file
ekement from a queue.
enable, disable:
enable or disable process
enable/disable LP printers.

P

encrypl: generate DES
encryplion. crypt,
encryplion key. T
end, etext, edata; last . , .
endgrent, fgetgrent: obain/

P T

endhostent: get network host/ .

endnelent: gel network entry.
endpoint for communication.
endprotoent: get protocol/
endpwen, fgelpwent: get/ . .
endservenl: gel service entry.
endulent, utmpname: access .
English. number: ., . ,
entries from neme list.
entries in a common object .
entries in this manual.
entries in this manual.
entries of a common object .
entries of & section of o/ , ,
eniries of a section of af
entry formats.
entry from & group file.
entry. /sethostent,
entry, /setnetent,
enlry, fsetprotoent,
entry. /setpwent, endpwent, .
entry. /setservent,
eniry. /setutent, endutent,

PR

Permuted Index

a.out5.0(4)
sed{!)
whoami(1}
setregid(2)
getuid{2)
setreuid(2)
getuid(2)
efi(1)
faplit(1}
grep(l)
insque{3N}

. enable{l}
. aect(®)

enable(l}
crypt(1)
crypt(3C)
crypt(3C)
makekey (1}

. end(3C)

. getgrent{3C)

. gethostent{3IN)
. geinelent(3N)
. socket(2ZN)

getprowent(3N)
getpwent(3C)
getservent{3N)

. getut(3C)

number (6}
nlist{3C)
linenum{4}
man(1)
man(5)
Idiread (3X)

. Miseek{3X}

entry of a common object file.

entry of a common object file.
eniry.
enfry. . . .« .+ .« . .
env: sel environment for
environ: user environment.
environment at login time.
environment.
environment for command .
environment name,
environment.
environment. .
environment variable.
eqn and neqn. /special
eqn construcls. deroff:
eqn, neqn, checkeq: format
eqnchar: speciat characler
erand48, irand48, nrand4s, .
erf, erfc; ervor function and .
erfe: error function and , , .
errdead: extract error records

L

LRI

- 13-

LI L R I B

Idreeek (3X)
utmp{4)
getgrent(3C)
gethostent{(3N)
getnetent(3N)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getut{3C)
Idtbindex (3X)
Idtbread{3X)
putpwent{3C)
unlink{2)
env{l}
environ(5)
profile(4}
environ($)
env(l)

. getenv(3C)
. printenv(l)
. putenv(3C)

getenv(3F)
eqnchar(5)
deroff{l)
eqnil}
eqnchar(5)
drand48(3C)
erf(3M)

. erf(3M)
. eredead(1M)

Permuted Index

daemon.

formal.

system error/ perror,
interface.

complementary/ erf, erfc:
function and complementary
massaging C/ mkstr: create an
sys_errlist, sys_nerr: system
10 sysiem calls and

errdead: extract

mathert:

errfile:

errdemon:

errstop. terminate the
error:

process » report of logged
/turn onfofl the extended
hashcheck: find spelling
logged errors.

error-logging daemon.
robots. autorobots:

robots:

chase: Try 10

terminal line/ dial:

setmnl

in program. end,

_ hypot:

eXpression. exp:

test: condition

display editor based on
reading or/ locking: provide
execlp, execvp: execute af
execyp: executed execl, execy,
execl, execv, execle, execve,
execve, execlp, execvp:
regemp, regex: compile and
construct argument list{s) and
time. at, batch:

set environment for command
sleep: suspend

sleep: suspend

monilor: prepare

rexecd: remote

profil:

UNIX-to-UNIX system command
execvp: execute af execl,
execute/ execl, execv, execle,
fexecv, execle, execve, execlp,
system calls, link, unlink:

a new file or rewrite an
Process.

exit,

exponential intrinsic/
exponential, logarithm,/

peat, unpack: compress and
cmplx, demplx, ichar, char:
adventure: an

exp, dexp, cexp: Fortran

exp, log, logll, pow, sqrt:
expression.

routings. regexp: regular
regcmp: regular

expr: evaluate arguments as an

errdemon: error-logging errdemon{lM)
errfile: error-log file errfile(d4)
errno, sys_errlist, sys_perr: perror(3C)
error: error-logging error(?)
error functionand . ., ., erf(IM)
erfor function. ferfc error erf(3M}
error message fileby « « «» mkstr(l)
€ITOr messages. /ermo,« . . perror{}C)
error numbers, fintroduction . ., . . intro(2)
error records from dump. errdead(IM)
error-handling function. . . + matherr{3M}
error-log file format . . ., errfile(4)
error-logging deaemon, errdemon(1M)
error-logging daemon, « errstop{lM)
error-logging inlerface. « error(?)
Erfors. errpt: & + = w - . - v v o errpt(1M)
erfors in the specified/ exterr(D)
errors. fhashmake, spellin, speli(!}
errpt: process a reportof errpi(IM)
errstop: terminate the ., . . ., errstop(lM)
Escape from the avtomatic autorobots{f)
Escape from the robots. robots(é)
escape the killer rebos. chase(§)
establish an out-going dial(3C)
establish mount table. setmai{1M)
etext, edatas last locations end(3C)
Euclidean distance function. hypot(3M)
evaluate argumentsasan expr{l)
evaluation command. test(l)

ex, edit: lext editor. ex{])

ex. /screen-oriented (visval) vi(l)
exclusive file regions for locking(2)
execl, execv, execle, execve, exec(l)
execle, execve, execlp, exec(d)
execlp, execvp: execute &/ exec()
execute o file. fexecle, ., exec(2)
execule a regular expression. regemp(3IX)
execute command. Xergs: xargs(l)
execute commands at a later . . ., . at(l)
execution. €nv: v e« . envll)
execution for an interval. sleep(l)
execulion for interval. , sleep(3C)
execution profile. . . , monitor(3C)
EXECULION SEIVER. « » = = . « . + « « rexecd(8N)
execution lime profile. profil(2)
execution. VUK v oo s« uuxfiC)
execv, execle, execve, execlp, exec(2)
execve, execlp, execvp: exec(2)
execvp: execute afile. exec(2)
exercige link and unfink link{IM)
caisting one. creal: create creat(2)
exit, _exit: ferminate exitt}
_eXit: terminate process. exil{2}

exp, dexp, cexp: Fortran exp{iF)
exp, log, loglD, pow, sart: exp(IM}
expand files. pack, pack(1)
explicit Fortran type/ /dble, fiype(3F)
exploration game.« . . adventure(6}
exponential intrinsic/, ., . . exp{IF)
exponential, logarithm, power,/ . . . exp(3M)
expr: evaluate arguments as an . . . expr(l)
expression compile and match regexp(5)
expression compile. regemp{l}
EXPTESSION. + + « v 4 4 4 o w . . . expr(l)

-14-

compile and execuie a regular
exterr: turn on/off the
eﬂ.

greek: geaphics for the
extended errors in thef
dump. errdead:

programs (o implement/ xsir:

faplit: sphil
remainder,/ floor, ceil, fmod,
factor:

rue,

data in a machine independent
fine:

fcalloc, mallopt, mallinfo:
procedure. checkall:

aborl: generate an 10T

4 stream.

floating-point number/ ecvt,
fopen, freopen,

status inquiries. ferror,
fileno: stream stalus/
statistics for a file system.
stream. fclose,

beopy, bomp, bzero,

word from a/ getc, gelchar,
/getgrmam, ssigrent, endgrent,
/gelpwnam, setpwent, endpwenl,
stream. gets,

pattern. grep, egrep,

times. utime: sel

Idfcn: common objest
determine accessibility of a
Lar: tape

cpio: copy

mstr: créale an error message
pwek, grpck: password/group
chmod: change mode of
change owner and group of a
diff; differential

diff3: 3-way differential

fentl:

fentl:

conv: object

rcp: remote

public UNIX-to-UNIX system
core: format of core image
umask: set and gel

croniab: user crontab

fields of each line of &

dd: convert and copy &

a delta (change) to an SCCS
close: close A

selected parts of an object
sact: print current SCCS
{fgeigrent: obtain group
fgelpwent: get password
uimphame: access utmp
putpwenlt: write password
execlp, execvp: execuie a

expression. regomp, regex: . .
extended errors in the/
Extended Foriran Language.
extended TTY-37 type-box.
exterr: wrn on/ofl the .

extract error records from . . .
extract strings from C . .,
f17: Foriran 77 compiler. .
177, ratfor, or efl files. . .
fabs; floor, ceiling, .
factor a number. .
factor: factor a number, ,
false: provide truth values. . .
fashion. /faccess long integer
fast incremental backup. .
fast main memory allocator.
faster Ale system checking .
fault.
fclose, fllush: close or flus

n e e e

L I

fentl: ije control, = . .,

fentl: fle conitrol options. .
fevy, gevt convert
fdopen: open a stream. . . .
feof, clearerr, fileno: siream .
ferror, feof, clearerr, . . .
fF: list file names and

filush: close or flush a

fl's: bit and byte string/
faete, getw: get character or
fgetgrent: obtain group fle/

fgetpwent: gel password file/
fgets: gel & string from a
ferep: search a file fora
file access and modification . .
file access routines.
file. access: . . .
file avchiver.
file archives in and out. . . .
file by massaging C source.
file checkers.
file.
file. chown: . .
file comparator.

file comparison.

Y
.o
.

ke s s
P

file control. . .

file control options.
file converter.
filkecopy.

file copy. wuto, uupick: . .
file.
file creation mask.
file. ...
gle. cult: cut out selected
file. delta: make
file descriptor.

L)

LI)

T U I

+ w oo

D

L L L I)

file: determine fils iype.

file. dump: dump
file editing activity.
file entry from a group file.
fle entry. /endpwent, . ,
file entry. fendutent, . . .
file entry. . .
file. /execv, execle, execve, . .

-15 -

Permuted Index

regemp(3X)
exterr(1)
efl(1)
greek(5)
exterr(l)
errdead(1M)

. xstr(1)

. I

. . faplit(L}
. Hoor(3M)

. Factor(l}

factor(l)
true(l)
sputl(3X)

. finc(IM)

malloc(3X)
checkall{1M)
abort(IC)
felose(38)
fentl(2)
fentl(5)
ecvt{3C)
fopen(38)
ferror(38)

. fTerror(38)
. (M)
. felose (35)

bsiring (3N)
getc(3S)

. geigrent(3C)
. getpwent{3C)

gets(15)
grep(l)
utime{2)
1dfen(4)
access(2)
tar(l)
cpio(l)
mkstr(1)

. pwek(IM)
. chmod(2)

chown(2)
diff (1)
diffa(1)
fentl(2)
fonti(5)
conv(l)

. rep{IN}
. uuto(1C)
. core(4)

P

umask(2}
croptab(l)
cut(l)

dd{l}
delta(1)
close(2)
fije(1)
dump(l)
sactfl)
geigrent{3C)
getpwent(3C)
geiut(3C)
putpwent(3C)

. exec(2)

Permuted Index

ctags: matnigin a tags

grep, egrep, fgrep: search a
aliases: alinses

Kaopen: open a common object
acct: per-process accounting
ar: common archive

ars.0: archive (library)

errfile: error-log

pnch:

intro: introduction

on character frequencies in a
take: takes a

eniries of a common object
get: get a version of an SCCS
group file entry from a group
group: gtouy

files. filehdr:

file. 1dihread: read the
Idohseck: seek to the optional
split: split a

issue: issue identification

of a member of an archive
close a common object

file header of a common object
symbol name for object

a section of a common object
file header of a common object
a section of a common object
header of a common ohject
section of a common object
table entry of a common object
table entry of a common object
table of a common object
entries in a common object
link: link to a

mknod: bulid special

or a special or ordinary

a file system. fT: list

change the format of a text
name list of common object
null: the null

/find the slot in the utmp
put: puts a

{identify processes using a
one. creat: creale a8 new
passwd: pagsword

or subsequent lines of one
viewing. more:

soft-copy terminals. pe:
frewind, frell: reposition &
Iseek: move read/ write

prs: print an SCCS

from downloading into a
read: read from

readv: read from

locking: provide exclusive

for a common object

remove a delta from an SCCS
bis: big

two versions of an SCCS
sccsfile: format of SCCS
header for a common object
size3.0: size of an-ebject

siat, fstat: get

flleforaC program. ctags(l)
file forapatiern. . . « . « « grep(l)
file for delivermail. aliases{7N}
file for reading. Mopen,, Idopen(3IX)
fileformat. écctid)
fileformat.+ v v v v .., ar{d)
fileformat. . .+ .+ « - « . 4 . ., ., 875.0{4)
fileformat. . . v 4 . 2 2 0 4. . errfile(4d)
file format for card images. pach{4)
fileformats. .« . « = v o & v 4 . n intro(4)
file. freqgzreport freq(1)

file from a remote machine. take{1C}
file function. /line number v v v o Kiread(3X)
file, . v . . i v v v v s, get(l)
file. /fgelgrent obtain getgrent(3C)
file. © v v v vt o v v a v v u e groupld)
fite header for common object . . . , filchdr(4)

file header of 2 common object . . .
file header of a common object/
file into pieces.

P N R

Idfhread(3X)

. . ldohseek(3X)
. split{1}

issue(4)

file. frzad the archive header ldahread(3X)
file. ldclose, Idaclose: Idclose(3X}
file. Idfhread: read the ldfhread({3X)
file. idgetname: retrieve ldgetname(3X)
file. /line number entriesof Idizeek{3X)
file. /seek to the optional Idohsesk (3X}
file. frelocation entriesof ldrseek(3X)
file. findexed/named section ldshread(3X)
file. /to an indexed/named ldsseek(3X)
file. /the index of a symbol ldtbindex(3X)
file. /read an indexed symbol! ldtbread(3X)
file. /seek tothesymbol Idtbseek (3X)
file. linenum: line number linenum{4}
file.00.0.... + 0 . link(2)

file. v e e s s .« mknod(IM}
file. /make a directory, mknod(2}
file names and statistics for T{IM)

file. newform: newform{l}
file. nmzprint nm({l)

file. ¢ i v ee e « null(?)

file of the current user. o ttyslot(3C)

fils onto a remote machine.

put{1C)

file or Alle structure. fuser(I1M)
file or rewrite an existing creat{2)
Ble. . v v v v e e e e passwd (4}
file. /lines of several files paste{l)
file perusal filer forert more(1}
file perusal filer for pg(l}

file pointer in a stream. [seek(38)
file pointer. voeoas . Iseek(D)
file.¢.... v eoooa s prsil}
file. /Motorola S-records revhex(l)
file. e e e s e e s tead(2)
file. t h 4 e+ s s v v = o+« readv(3N)
file regions for reading or/ locking(2)
file. /relocation information reloc{4)
file. rmdel: rmdel(1)
file scanmer. v o o. s bfs(1)
file. scesdiff: compare+ . .+ . . scesdiff(l)
file. © v v v v v e e e e socsfile(4)
file. scnhdr: section senhdri4)
Ble, + & ¢ 4 v o o e e e e e, size5.0(1)
filestatus. .+ « . . <t 4. a0 .y stat(2)

)

in an object, or other binary
information from an object
processes using a file or
checksum and block count of a
sum and count blocks in a
syms: common object
tapesave: daily/weekly UNIX
procedure. checkall: faster
and interaclive/ Isck, dfsck:
fsdb:

names and statistics for a
volume.

mkfsib: construct a

mkfs: consiruct a

umount: mount and dismount
mount: mount a

ustat: gel

mntlab: mounted

umount: unmount a

access lime, dcopy: copy

fsck. checklist: list of
volcopy, labelit: copy

deliver the last part of &

term: format of compiled term
tmpfile: create a temporary
create a name for a temporary
and modification times of &

fip:

fipd: DARPA Internst

tftpd: DARPA Triviel

ftw: walk

file: determine

undo a previous get of an SCCS
report repeated lines in a

val: validate SCCS

write: write on a

wrilev: write on a

umask;: set

common object files.

ctermid: generate

mkiemp: make a unique
ferror, feof, clearerr,

and print process accounting
merge or add total accounting
create and administer SCCS
a.out header for common object
VAX-11/780/ fscv: convert
updater: update

updater: update

cat: concatenale and print
Cmp: COMpare wo

lines common to two sorted
cp, In, mvy: copy, link or move
mark differences between

file header for common object
find: find

frec: recover

format specification in 1ex1
split 77, ratfor, or efl

hex: transiates object

cpsel: install object

and count characters in the
intro: introduction 1o special
link editor for common object

Permuted Index

file. /the printable swrings strings(1)
file. /symbol and line number strip(l)

file structure. fidentify fuser(IM)
file. sum:print . « « « + 4 + . « « . Sum{l)

file. sSum?: . v 4 a e e e e s sum7(1}
file symbol table format. syms(4)
filz sysiem backup. filesave, filesave(IM)
file system checking « =+ s+ s s checkall{1M)
file system consistency check fsck(IM)
file system debugger.+« [3AD(IM)
file system. M: listfile (M)

file system: format of system fs(4)
flesystem.. v v v+ . mkislb(iM)
filesystem. v+ » mkfs(IM)
file system. mount, . . + mount{IM}
filesystem. . « o v & v o o & = = « mount(2}
file system statistics. . . . + ustat(2)

file systemtable. mntiab(4)
filesystem. 4. .. . umount(2)
file systems for optimal, deopy(1M)
file systems processed by checklist(4)
file systems with labely volcopy(1M)
file. sail: . « + . v v 00 v v . .. tal{l}
file. .. v o v v v e e .. lermid)
file. + o v v o v v h e e e tmpfite(38)
file. impnam, tempnam: tmpnam(38)
file. touch: update access .« .+ tonch(l)
file transfer pregram, Fp{IN)
Fite Transfer Protocol server. fipd(BN)
Fite Transfer Protocol server. ifipd(8N)
filetree. . . & v v 2 2 v 0w s + o+« Aw(3C)
filetype. e e o . file(l)

file. UNEEL: . v 4+ ¢ b i e e e e unget(1)
Ale. unil: . - - .« v v v o o ou . . unig(1)

file, e v s s . val(l)

file. e e e e e e e . write(3)
file. it e e e e s writev(3N)
Rle-creation mode mask. - umask(1)
Rlehdr: file header for ftlehdr{(4)}
filename for terminal. ctermid(38)
filename. . « « v « 4 ¢ o + + +» « » Mkiempl3C)
fileno: stream swaws/ ferror(3S)
file(s), accicom: search acctcom (1)
files. BCCAMIBIE: + =« v = « «+ 4 = » 4« & acctmerg{1M}
files. admin: admin(1}
files. aputhdr.h- Aouthdr4)
flles between M68000 and Fscv(IM)
files between two machines. updater(l}
files between two machines. updater{1M}
files.+ v uvneuoenn cat(1}

files. e o v o cmpll)
files, comm: select or reject o ., . . commil)
fIES. 4 o v v or e v e e cp(l)
files. diffmk: diffmk (1)
files. filehdr: filehdr(4)
Fles. . . . v e v v v o s s s v .« Gnd{l)
files from a backup tape. frec(iM)
files. FSPEC: « « v v ¢ « v v v« » « f5pec(d)
files. fsplit: e i e e fsplit(1)
1 hex(1)
files in binary directories. c¢pset{IM)
files in the given/ faum sumdir(l)
filss,. . . vt v e a s intra(D)
files, Id: . . . v v v v s v e e KD

-17 -

Permuted Index

lockl: record locking on

rm, Imdir: remove

/merge same lines of several
unpack: compress and expand
pr: print

section sizes of common object
sort: sort and/or merge

reports version number of
what: identify SCCS
daily/weekly UNIX file system/
more: file perusal

terminals. pg: file perusal
greek: select terminal

nl: line numbering

col:

tplot: graphics

find:

hyphen:

tiyname, isatty:

object library. lorder:

object library. lorder5.0:
hashmake, spellin, hashcheck:
an object, or other/ strings:
of the current user. tiyslol:
fish: play “Go

tee: pipe

/seekdir, rewinddir, closedir:
int, ifix, idint, real,

atol: convert ASCII string to
ecvi, fovt, geve: convert

/ modf: manipulate parts of
flogr, ceiling, remainder,/
floor, ceil, fmod, fabs:
parameiers. disktune: tune
ow: generaie C

fclose, Mush: close or
remainder,/ foor, ceil,
stream.

diskformat:

per-process accounting file
ar: commen archive file
ar5.0: archive (library) file
errfile: error-log file

pnch: file

nroff or/ eqn, neqn, checkeq:
newform: change the

inode:

term:

core:

cpio:

dit:

scesfile:

file system:

files. fspec:

object file symbol table

' troff, tbi:

nroff:

intro: introduction to file
wimp: utmp and wimp eniry
scanf, fscanf, sscanf: convert

files. v 0o v b i e . locki(3C)
files or directories. . . v rmi{1)

files or subsequent linesof/ paste(1)
files. pack, peat, « + = & - « .« . . « pack(1)
BleS. v v o e e h e e e e .« pr(l)
files. size: print o o o size(l)
files. . v v v o v u . « o+« sort(l)
files. version: v o s+ o« version(l)
files. v o0 s e« what(l)
filesave, fapesave: . .., flesave(IM)
filter for crt viewlng. more{l}
filter for soft-copy pa(l)

flIBT, « « o v v e i w e, + + » greek(l)
filler.o ... 1 (4)

filler reverse line-feeds. col{l)
fiMers. . . . + 4 = 4 ve a o =« » - tplot(1G)
finc: fast incremental backup. fnc(1M)
findfiles.+ o fnd(l)
find: findfites. « . bnd(1)
find hyphenated words. . . . » - . . hyphen(l}
find name of a terminal. tiyname{3C)
find ordering relation foran lorder(l)
find ordering relation foren . . . - . lorder5.0(1)
find spelling errors. spell, spell(})
find the printable stringsin strings(l)
find the slot in the uimp file ttysiot{3C)
Fish”. D 11 (4]
fish; play “Go Fish”. ., fish{6}
fiting,. .+ .+« ¢ ¢ v v v o u e teell)
flexible length direclory/ directory(3X)
float, sngl, dble, cmplx,/ fitype(3F)
floating-point number, , . . atof(3C)
floating-point number to/ ecvt(3C)
floating-point numbers, . ., frexp(3C)
floor, ceil, fmod, fabs: floor{3M)
floor, ceiling, remainder,/ fioor{(3M)
floppy disk setding time disktune{lM)
fiowgraph. e v oo . cllow(l)
flushastream. fclose(35)
fmod, fabs: fioor, ceiling, fioor(3M)
fopen, freopen, fdopen: opena . . . fopen(3S)
fork: create a new process. fork(2)
formatadisk. v o v e o diskformat(1M)
format. acct: e e e e o - acct4)
Format. et e e . arid)
formal . . v v o v v v o a oo arS 04
formal. + + « « + « o o o - . o« o errfile(4)
format for card images,, . . pnch(4)
format mathematical text for eqn(l)
formatof atextfile. ..., newform(1)
formatofaninode. , . ., inode{d}
format of compiled term file.. term(4)
format of core image file. core(d)
format of cpio archive. cpiol{d)
format of directoties. , dir(4)
format of SCCSfile. « sccefiledd)
format of system volume. [5(#)
format specification in text fapec(4)
format. syms: common - . - Syms(4)
formal tables for nroffor tbl(1}
formattext. . « « v v v o = « « » » nroff(l)
formats, + + « + ¢ v = v u & e« o+ o intro(4}
formats. wtmp, v e+ o« utmp(4)
formatted inpwt. scanf(38)

-18 -

Fvfprintf, vsprintf: print
Fvfprintd, vsprintf: print
fprintf, sprintf: print
feheckmm: print/check documents
mptx: the macro package for
mm: the MM macro package lor
0OSDD adapter macro package lor
manual. man; macros for
o

abs, iabs, dabs, cabs, zabs:
system/ signal: specily
function. acos, dacos:
function. asin, dasin:
function. atan?, datan2:
function, stan, datan:

or, xor, not, Ishifi, rshift:
getarg: return

log10, aloglO, dlogl0:
intrinsic/ conjg, deonjg:
function. cos, dcos, ccos:
ratfor: rational

gelenv: return

function. exp, dexp, cexp:
intrinsic/ cosh, dcosh:
inttinsic/ sinh, dsinh:
intrinsic/ tanh, dlanh:
complex/ asimag, dimag:
function. aint, dint:

efl: Extended

gmax@, maxl, amaxl, dmaxi:
amin®, mini, aminl, dminl:
{og, alog, dlog, clog:

anint, dnint, nint, idnint:
abort terminate

functions. mod, amod, dmod:
function. sin, dsin, csin:
function. sqrt, dsqrt, csgrt:
len: return length of

index: retura location of
issue 8 shell command from
function. tan, dtan:

mclock: return

intringic/ sign, isign, dsign:
fdemplx, ichar, char: explicit
irand, srand, rand:

hopefully interesting, adage.
formatted output. printf,
word on a/ putc, putchar,
stream. puts,

inputfoutput.

backup tape.

df: report number of
memory allocator. malloc,
mallopt, mallinfo:/ malloc,
stream. fopen,

frequencies in a file.

freq: report on cheracter
parts of floating-point/

frec: recover files

obtain group fils entry
remque: insert/remove element
take: takes a file

recvmsg: receive a message
sendmsg: send & message

formatted output of a varargs/

formatted output of a varargs/ .
formatted output. printf,
formatted with the MM macros. .
formatting a permuted index.
lormatting documents.
formatting documents. /the
formatling entries in this .
Fortran 77 compiler.
Fortran abselute value, |,

Fortran action on receipt of a
Foruran arccosine intrinsic . .
Fortran arcsine intrinsic . .
Fortran arctangent intrinsic

Fortean arctangent intrinsic ..
Fortran bitwise bookean/ and, . .
Fortran command-line argument.

.

.
P
.

Fortran commeon logarithm/
Fortran complex conjugate

Fortran cosine intrinsic
Fortran dialect.
Fortean environment variable. . .
Foriran exponential intrinsic . . .
Fortran hyperbolic cosine
Fortran hyperbolic sine

s s oa

L L |

PR

Fortran hyperbolic tangent ., . , . .

Fortran imaginary part of .
Fortran int=ger part intrinsic . . .
Fortran Language.
Fortran maximum-value/ Imaxo
Foriran minimum-value/ /mind,
Fortran natural bogarithm/ . . .
Fortran nearest integer/
Fortran program.
Fortran remaindering inirinsic
Foriran sine intrinsic
Fortran square root intrinsic .
Fortran string. . . .
Foriran substring.
Fortran. system: .
Fortran tangent inlringic
Fortran time accounting.
Fortran transfer-of-sign , . ., . .
Foriran type conversion,
Fortean uniform random-number/

. o

T

forwune: print & randem,
fprintf, sprintf: print
fpute, putw: put character or . .+ »
fputs: putastringona
fread, fwrite: binary .,

frec: recover files froma
free disk blocks.
free, realloc, calloc: main .
free, realloc, calloc,+ .
freopen, fdopen: opena .

freq: report on character

frequencies ina file. ,
frexp, ldexp, modf: mauipulate .
from a dpackup tape.
from a growp file. Iflgtgrent .
from a queue. insque,

from a remote machine,
from a socket. frecvfrom, . . .
from a socket. send, sendto, . .

-19.

Permuted Index

vprintf(35)
vprintf(3X)
printf(38)
mm{1)
mpix{5)
. mmf5)
. mosd(5)
. man{s)
B rit}]
. aba(3F)
. sighal(3F)
acos(3F}
asin(3F)
atan2 (3F)
atan(3F)
bool(3F)
. . getarg(3F)
logl0(3F}
conjg{(3F)
cos({IF}
ratfor{(1)
. . getenv(iF}
+ « exp(3IF)
+ « cosh(3F)
« . sinh(3F}
tanh(3F}
aimag(3F}
. aint(3F)

. efi(1)
. «» max{3F}

P T T

min(3F)
log(3F)
. round{3F)
abort(3F)
mod(3F)
sin{3F)
. sqrt(3F)
len(3F)
index(3F)
system(3F)
tan(3F}
mclock (3F)
sign(3F)
fiype(3F)
+ . rand{3F)
. + fortune(6)
« » printf(38)
. . puic(3S)
puts{33)
fread(1s)
. frec{1M)
. Af(1M)
. malloc(3C)
. malloc(3X)
. fopen(3S)
. freq{l)

freq(1)
frexp(3C)
. frec(lM)
. - getgrent(3C)
insque (3N)
ake(1C)
recy(2N)
send(2N)

Permuuted Index

getw: get character or word
gels, fgets: get o string

and line number information
rmdel: remove a delta

gelopt: gel option letter
shared/ xstr: extract sirings
/iranslates Motorola S-records
ertdead: extracl error records
read: read

readv: read

system: issue a shell command
ncheck: generate names

nlist: gel entries

acctems: command summary
autorobots: Escape

robots: Escape

gelpw: get name

formatied input. scanf,

of file systems processed by
consistency check and/

a lost+ found directory for
M&8000 and VAX-11/780/

reposition a file pointer inf
text files,

efl files.

stat,

peointer in &/ fseek, rewind,
communication package.

Transfer Protocol server,

shutdown: shut down part of a
Fortran arccosing intrinsic
Fortran integer part intrinsic
error/ erf, erfc: error
Fortran arcgine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
complex. conjugate intrinsic
ccos: Foriran cosine intrinsic
hyperbolic cosine intrinsic
precigion product intrinsic
and complementary error
Forwan exponential intrinsic
gamma: log gamma

hypot: Euclidean distance

of a common object file
common logarithm intrinsic
naturel logarithm intrinsic
matherr: ercor-handling
prof; profile within a
transfer-of-sign intrinsic
¢sin: Fortran sine intrinsic
hyperbolic gine intrinsic
Fortran square root intrinsic
Fortran tangent ntrinsic
hyperbolic tangent intrinsic
math: math

10, j1, in, y0, y1, yn: Bessel
Fortran bitwise boolean
positive difference intringic
logarithm, power, square root
remsinder, absolute velue

from a stream. /fgetc,
fromastream. . «
from an object file. fsymbol .
from an SCCS file.
from srgument vector, .
from C programs to implement
from downloading into a file.
from dump.
from file.
from file.
from Fortran. .
from i-numbers.
from name lisl.
from per-process accountmg!
from the aulomatic robots.
fromtherobots. . . ., . ..
from UID. .
fscanf, sscanf: convert . . .
fsck. checklist: list . ., . . .
fsck, dfsck: file system
fsck. mklost+found: make
fscv: convert files between
fsdb: file system debugger. .
fseek, rewind, ftell: . , .
{spec: format specification in .
fsplit: split £77, ratfor, or . .
fstat: get file stawns.
ftell: reposition a file

P

. gete(38)
. gets{3s5)

strip{l)

. rmdel(1)
. getopt{3C)
. xstr{l)

. o+ o+ a e

revhex(1)
errdead(1M)
read{2)
readv (IN)
system(3F)

. ncheck{lM)
. alist(3C})
. acctems(tM}

auterobots(b)
robots(6)
getpw(3C)
scanf(35)

. checklist(4)

fsck (1M}
mklost+fnd(tM)
fsev(1M)

. fsdb(l1M)

fseek(38)
fspec(4)
fsplit(1)
stat(2)

. fseek(38)

ftok: standard interprocess

fip: file transfer program.

fipd: DARPA Internet File .
fiw: walk a flle tree.
full-duplex connection. . . .
function. acos, dacos: ,
function. aint, dint: , ., .
function and complementary
function. asin, dasin:
function. atan?, datan2; . , .
function.
function,
function.
function.
function.
function.
function.
function.
function.
function.

{dconjg: Fortran .
cos, deos, . .,
/dcosh: Fortran
dprod: double . . .
Jerror function . .
exp, dexp, cexp: .

...... P

fline number entries
function. /dloglQ: Fortran .
function. fdlog, clog: Fortran
function. .
function.
function.
function.
function.
function.

fdsiah: Fortran

sqrt, dsqrt, csqrt:
function. tan, dtamy . , . .
function. /dtanh: Fortran .
functions and constants. .
functions. .
functions. .
functions.
functions.
functions.

f1shift, rshlft
dim, ddim, idim:
/sqrt: exponential,
/floor, ceiling,

S R

-20-

atan, dalen:

P R

P R T T T S

P R

stdipc{3C)
fip(IN}

fipd (BN)
ftw{(3C)
shutdown(2N)
acos(3F)
aint(3F)
erf(3IM)
asin{3F)

. atan2{3F)
. atan(3F}
. conjg(3F}

cos(3F)
cosh(3F)
dprod(3F)
erf(IM}
exp(3F)

. gamma(3M)
. hypot(3M)

+ e a o s s

{diread{3X)
log10(3F)
log (3F)
matherr(3IM)
prof{(5)
sign(3F)}

. sin(3F)
. sinh(3F)
. sqri(3IF)

tan{3F)
tanh{3F)
math{3)
bessel(3M)
bool(3F}
dim(3F)
exp(3M)
floor(3M)

()

dmaxl: Fortran maximum-value
dminl: Fortran minimum-value
Fortran remaindering intrinsic
300, 300s: handle special
terminal. 450: handle special
Fortran nearest integer

ginh, cosh, tanh: hyperbolic
siring comparision intrinsic
atan, atan: trigopnometric
using a file or file/

fread,

connecl accounting records.
adventure: an exploration
cribbage: the card

moo: guessing

back: the

bj: the

craps: the

wump: the

life: play the

trek: trekkie

worm: Play the growing worm
intro: introduction to

gamma: log

number o siring. ecvy, fovt,
maze:

abort:

cflow:

cross-reference. cxrel:
crypt, setkey, encrypt:

by user ID. diskusg:
makekey:

terminal. ctermid:

ncheck:

lexical tasks, lex:

fsrand48, seedds, kongds:
srand: simple random-number
Fortran uniform random-number
gets, fgets:

gel:

getsockopl, setsockopl:
ulimit:

the user. cuserid:

gelc, getchar, fgetc, getw:
getdtablesize:

nlist:

urnask: set and

staL, fstau

ustat:

file.

getiogin:

logname:

msgget:

getpw!

gelpeername:

S¥slem. uname:

/setnetenn, endnetent:
/sethostent, endhosient:
unget: undo a previous
argument vector. getopt:
/setpwent, endpwent, fgetpwent:
working directory. getcwd:
times. times:

functions. /maxl, amaxl,

functions. fminl, aminl,

Permured Index

max (3F)

« + + min(3F)

functions. mod, amed, dmod: . .

functions of DASI 300 and 300s/
functions of the DAS] 45¢ , .
functions. /nint, idninu
functions. . .
functions. /g1, lbe lll
functicns. /tan, asin, acos,
fuser: identily processes
fwrite: binary input/oulput .
fwimp, wtmpfix: manipulate . .
game. . .
game cribbage. -
game. .
game of backgammon,
game of black jack.
game of craps.
game of hunt—lhe-wumpus
game of life.
game.
game.
games. . . .
gamma function.
gamma: log gamma function.
geve: convert lloating-point
generate a maze.
generate an [OT fault,

..

P T

P A L

Por on e
P T T Y
2 b b a4 s m o

s s e om e

generate C flowgraph.

generate C program . ., ., .
generate DES encryption.

generale disk accounting date
generate encryption key.
generate filename for . ., .

. . mod(3F)
. . 300Q1)

. 450(1)
round(3F)
sinh(3M)
stremp(3F)
. trig(3IM)

+ fuser{1M}

+ fread{(3S)

+ fwtmp(1M)
. adventure{(6)
cribbage{6)
moo(6)

.+ back(8)

. bi(®)

. craps(6)
wump{8)
life(6)

. . trek{6)
.« worm(f)

. intro(6)

- gamma(3M)

. gamma(3M)
ecvi(3C)
maze(6)
abort(3C}

« .« cflow(1}

. cxrel(1)
crypt{3C)
diskusg(1M)
makekey (1)

. ctermid(3S)

generate names from i-numbers. . . . ncheck(1M)
generate programs for simple v o ex(l)
generate uniformly distributed/ . . . drand48(3C)
generator. rand, + v » . 1and(3C)
generator. fsrand, tand: . . ., . . . rand(3F)
get a string from a stream. gets(35)

get a version of an SCCS file, . - . getll)

get and set options on/ geisockopt(2N)
gel and set user limits, « .+ ulimit(2)

gel characier login neme of cuserikd(35}
get character or word froma/ getwc(3S)

get descripior table size. getdtablesize(3N)
get entries from name list. nlist(3C)

get file creation mask. umask(?)
getfilestatue0 stat{2}

get file system statistics, ustat(2)

gel: get a version of an SCCS get{l)

gel login name, + v+« getlogin(3C)

get login name. . . .
got message queue.
get pame from UID.
get name of connected peer. . .
pel name of current UNIX

get network entry,
get network hostentry.
get of an SCCS file.

get option letter from , . ., . .

pet password file entey. .
get pathname of current

get process and child process .

-21-

. . logname(l)
msgget(2)
getpw(3C)
getpeername (2N)
uname(2)
getnetent(3N)
. gethostent(3N)
unget{1)
getopt{(3C)
getpwent{(3C)
getowd(3C)
times(2)

Permuted Index

and/ getpid, getperp, geippid:
/setprotoent, endprotoent:
/geteuid, getgid, getegid:
/setservent, endservent:
semget:

shmgel:

geisockname!

ty:

time:

command-line argument.

get character or word from a/
character or word from/ gele,
current working directory.
table size.

getuid, geteuid, getgid,
environment variable.
environment name.

real user, effective/ getuid,
user,/ getvid, geteuid,
setgrent, endgrent,/
endgrent,/ getgrent,
gelgrent, getgrgid,
sathostent,/ gethostent,
gethostent, gethostbyaddr,
gethostbyname, sethostent,/
unique identifier of current/
get/set name of current host.

setnetent,/ getnetent,
getnetent, getnetbyaddr,
getnetbyname, setnetent,/
argument vector.

connected peer.

process group, and/ getpid,
process, process group, and/
group, and/ getpid, getperp,
getprotoent, getprotobynumber,
getprotobyname,/ getprotoent,
petprolobyname, selprotoent,/

setpwent, endpwent,/
geLpwent, getpwuid,
endpwent,/ gelpwent,

a stream.

getservenl, getservbyport,
setservent,/ gelservent,
getservbyname, setservent,/
gethostname, sethostname:
current/ gethostid, sethostid:

and set options on sockets.
and terminal settings used by
modes, speed, and line/

cl: spawn

settings used by geity.

getegid: get real user,/ -

pututline, setutent,/

setutent, endutent,/ getutent,
- setutent,/ getutent, getutid,
from a/ getc, getchar, fgetc,
convert/ ctime, localtime,
fish: play

get process, prooess group,
get protocol entry. . .
get real user, effective uset,/
get service entry.

get set of semaphores.
get shared memory segment.
get socket name.
get the terminal’s name. ., , .
gel time,
getarg: return Fortran
selc, getchar, figetc, getw:
getchar, fgetc, getw: get

.o

..... L]

LI]

getewd: get pathname of
getdublesize: get descriptor . . .

getegid: get real user,f
geteny; return Fortran . , ., ,
geteny: return value for . . ., .
geteuid, getgid, gelegid: get
getgid, getegid: get real |
gelgrent, getgrgid, peigrnam, .
gelgrgid, getgrnam, setgrent, .
getgrnam, setgrent, endgrent,/
gethostbyaddr, gethostbyname,

gethostbyname, sethostent,/ . . .

gethostent, gethostbyaddr,

gethostid, sethostid: get/set . . .

gethostname, sethostname:

getlogin: get login name. .
getnetbyaddr, getnetbyname,
getnetbyname, setnelent,/ .
getnetent, getnetbyaddr,
getopl: get option letter from

getopt: parse command options.
petpass: read a password.
getpeername: get name of . . .
getperp, getppid: get process,
getpid, getpgrp, getppid: get . .

P

geippid: get process, process .
getprotobyname, setprotoent,/
getprotobynumber,
getprotoent, getprolobynumber,
getpw: get name from UID.
getpwent, getpwuid, getpwnam,

getpwnam, setpwent, endpwent,/
getpwuid, getpwnam, setpwent,

gets, fgets: get a string from . .
petservbyname, setservent,/ . .
getservbyport, getservbyname;

getservent, getservbypory, . . .
get/set name of current host. .
get/set unique identifier of . .
getsockname: get socket name.
getsockopt, setsockopt: get .
petty. gettydefs: speed . . .
petty: set terminal type, . . .
gelly to a remote terminal. .
getivdefs: speed and terminal

getuid, geteuid, getgid,

P

LR T S

P

gelutent, getutid, gewtline, . . .

getutid, getutfing, pututline, . .
getutline, pututline,
getw: get character or word

gmitime, asctime, tzset: . . .
“Go Fish™.

LRI]

A r s owow

-22.

L I I)

S T T T S

getpid(2)
getprotoent{IN)
setuid(2)
getservent (3N}

. semge1(2)

. shmget(2}

. . getsockname{2N)
. ty{l)

time(2)
getarg(3F)
getc(3S})

ge1c(3S)

ge1cwd (3C)
getdiablesize {(3N)
getuid(2)
getenv(3F)

. getenv(3C)

getuid(2)
getuid(2)

. getgrent(3C)

geigren{3C)
getgrent{3C)
gethosient{3N}
gethosient(3N)
gethostent (3N}
gethostid (ZN)
gethostname (2N)
getlogin(3C)

. getnetent(3N)
. getnetent(3N)

getnetent(3N)
getopt(3C)
getope(l)
getpass(3C)
getpeername (2N}
getpid(2)

. getpid(2)

LI

getpid{2)
getprotoent(3N)
getprotoent(3IN}
setprotoent (3N}
setpw{3C)
getpwent(3C)
getpwent{IC)
geipwent(3C)
gets(38)

. getservent(IN)
. getservent(IN)

[

getservent{3N)
gethostname (2N)
gethostid(2N)
getsockname{ZN)

getsockopt{2N)

. gettydefs{4)
. geny(1M)

P T

allc)
gettydefs(4)
getuid(2)
getut{3C)
gemt(3C)
getut(3C)
getc(38)

. ctime(3C)
. fish(6)

setjmp, longimp: non-local

graph: draw a

sag: system activity

tplot;

TTY-37 type-box. greck:
plot:

subroutines. plot:

mvt: (ypeset documents, view
package for typesetting view
extended TTY-37 type-box.

file for a pattern.

fuser, effectlive user, real
/getppid: get process, process
chown, chgrp: chenge owner or
fendgrent, fgetgrent: oblain
obtain group file entry from a
group:

Setpgrp: 561 process

set real and effective

id: print user and

real group, and effective
setuid, setgid: set user and
send signal to a process
Newgrp: log in 1o & pew
chown: change owner and

a signal to & process or a
updute, and regenerate
worm: Play the

checkers, pwck,

ssignal,

hangman:

moo:

DASI 300 and 3008/ 300, 300s:
the DASL 450 terminal, 450:
varargs:

information for bad block
package. curses: CRT screen

nohup: run a command immune to

hcreate, hdestroy: manage
spell, hashmake, speltin,
find spelling errors. spell,
search tables. hsearch,
tables. hsearch, hereate,
file. scnhdr: section

fifes. aouthdr.h - a.out
files. filehdr: file

file. ldfhread: read the file
/seek to the opiional file
/read an indexed/named section
ldahread: read the archive
SCCS.

help: ask for

fortune: print & random,
Intohs: convert values between
endhostent: get network
unique identifier of current
get/sel name of current

hosts:

ruptime: show

BOO. -« = v ¢ o o v v = + « +
graph: drawagraph.
graphics filters.
graphics for the extended P
graphics interface. | ., .
graphics interface
graphs, and slides. mmt, . .
graphs and slides. fmacro . .
greek: graphics for the . . .
greek: select terminal filter, .
grep, egrep, fgrep: searcha .
group, and effective group/ .

Permuted Index

setimp(3C)
graph{1G)
graph(1G)
sag(1G)
tplot{1G}

. greek(s)

group, and parent process IDs.

group. . . .
group file entry from a groupl
group flle. /fgetgrent: . . .

group file.
group: group fle. .
group 1D.
group ID. setregid:
group IDs and names. . .
group [Ds. feffective user,
group IDs. .
group. killpg:
group. . - . ..
group of a ile.
group of processes. fsend . . .
groups of programs. /maintain,
growing worm game.
grock: password/group file . .
gsignal: goftware signals. . . .

.
L A
.

.
.
*
..... . o
.

e ke

T L

L

P R R S

TR

guesstheword.

guessing game.
handie special functions of .
handle special functionsof . .
handle variable argument list. .
handling. /elternate block . . .
handling and optimization P
hangman: guess the word. . . .
hangups (shonly).,
hash search tables. hsearch ..
hashcheck: find spetling/ .. .
hashmeke, spellin, hashcheck: .
heeeate, hdestroy: manage hash
hdesiroy: manage hash search
header for a common object .
header for common object .
header for common object .
header of a common object .
header of 2 common object/
header of 2 common object/
header of a member of an/ .
help: ask for help in using .
help in using SCCS.
hex: translates object files.
hopefully interesting, adage. .
host and network byte order.
host entry. /sethostent, . . .
host, /sethostid: get/set
host, /sethostname:
host name data base,
host status of local machines. .

*
L T T T T T |

.23 .

LI I R

n ks s

LI BT

L

L N L

ploi(4)
plot{3X)
mmt(l)
mv(5)
greek(5)
greek (1)
grep(l)
getuid (2)
getpid (2)
chown(l)
gelgrent(3C)

. getgrent(3C)
. group(d4)

group(4)
setpgrp(2)
setregid(2)
id(1)
getuid(2)
setuid(2)
killpg 3N)
newgrp(1}
chown{2)}

. kill(2)
. make(l)

*

worm(8)
pwek (1M)
anignal(3C)

. hangman{6)

moo(s)
300{1)

. 450(1)
. varargs(s)
. altbik{4)

A v b 4 B 4 & s m a b e o e

curses(3IX)
hangman{6)
nohup(})
hsearch(3C)
apel(l)}
apell(1)
hsearch(3C)
hsearch(3C})
scnhdri4)
aouthdr(4)
filehdr (4)
Idfhread (3X}
iohseek (3X)
ldghread (3X)

. Idahread(3X)
. help(1}

hetp(1}

hex(1)
fortune(6)
byteorder{IN)
gethostent(3N)
gethostid(2N}
gelhogtname(2N)
hosts(4N)

. ruptime{1N)

Permuted Index

or print identifier of current
set or print name of current
identifier of current host/
current host system.

munage hash search wbles.
convert values between host/
values between host/ htonl,
wump: the game of

cosh, dcosh: Fortran

sinh, cosh, anh:

sinh, dsinh: Fortran

tanh, dtanh: Fortran

hyphen: find
function.
Fortran absoluie value. abs,

fangl, dble, capix, demplx,
disk accounting data by user
semaphore set or shared memory
and pames.

SELpErP: sel process group
set real and effective group
print effective current user
issue: issue

Zzethostid: get/set unique
system. hostid: set or print
file or file/ fuser:

what:

intrinsic/ dim, ddim,

dble, cmplx,/ int, ifix,
integer/ anint, dnint, nint,
id: print user and group
group, and parent process
group, and effective group
set real and effective user
seigid: set user and group
interface parameters.

sngl, dble, cmplx,/ int,
core: format of core

pnch: file format for card
aimag, dimag: Fortran
nohup: run a command
/strings from C programs 1o
fine: fast

long integer data in a machine
fgoto, tputs: terminal

for formatting a permuted
of / Itbindex: compute the
pix: permuted

Fortran substring.

a common/ kitbread: read an
Mdshread, idnshread: read an
Idsseck, ldnsseck: seek to an
and ieletypes. last:

family.

inet_ntoa, inet_makeaddr,/
finet_ntoa, inet_makeaddr,
Jinet_network, inet_ntos,
finet_makeaddr, inet_lnaof,
inet_makeaddr,/ inet_addr,
inet_addr, inei_network,
inittab: script for the

host system, hostid: set ,, . . hostid(IN)
host system, hostname: , hostname{IN)
hostid: set o print . , . . « « .« hostid(1N)
hostname: set or print name of . + + hostname({IN)
hosts: host name data base. hosts(4N)
hsearch, hereate, hdestroy: hsearch(3C)
htonl, hions, ntohl, ntohs: . « . byteorder(3N}
hions, ntohl, ntohs: convert byteorder(3N}
huni-the-wumpus. « . . . wump{6)
hyperbolic cosine intrinsic/ cosh(3F)
hyperbolic functions., sinh{3M)
hyperbolic sine intringic/ sinh{JF)
hyperbolic tangent inirinsic/ tanh(3F}
hiyphen: find hyphenated words. . . . hyphen(l}
hyphenated words. hyphen(l)
hypot: Euclidean distance . . . , . . hypot(3M)
labs, dabs, cabg, zabs: abs(3F}
TR « 4 = = « s v = v w4+ =« . v i6fge(3F)
ichar, char: exphc:t Fortranl e e v+ . Ftype(3F)
1D, diskusg: generate . . ,, . diskusg(lM)
id. /remove a message queue, . , . . iperm(l)

id: print user and groupIDs . . , . . id(1)

ID. i e a .. selpgp(d)
ID.setregicd: - . . . setregid(2)
id, whoami: . ,.......,.. whoami(l)
identification file. issue(4)
identifier of current host. gethostid (2N)
identifier of current host hosiid{(IN)
identify processes usinga fuser(iM)
identify SCCS files. what(l)
idim: positive difference+ dim{3F)
idint, real, foal, sngl, « ftype(3F)
idnint: Fortran nearest round{IF)
IDsand names. . . . v . .« . . . WD)

IDs. /get process, process gepid{2)
IDs. feffective user, real getuid(2)
ID's, setrewid;: . . - . . .+ Setreaid(2)
IDs, setid, & 4+ = v . b 4 o v b . setuid(2)
ifconfig: configure network . . , . . ifconfig(8N)
ifix, idint, real, float, fiype(3F)
image file. . ,, coreld)
images.+ pnchid}
imaginary part of complex/ aimagQ3F)
immune to hangups (sh only). nohup(l)
implement shared strings. xsie(1)
incremental backup. finc{IM)
independent fashion. faocws e« . . SPULH(IX)
independeni operation/ termcap(3X)}
index. /the macro package mpix(5}
index of a symbol table entry .« v . ldtbindex(3X)
index. e e s« pEx{1)
index: return locat:on of v a4« . . index(3F)
indexed symbol table entry of ldtbread(3X)
indexed/named section header/ . . . ldshread(3X)
indexed/named section of a/ .+ » Mdsseek(3X)
indicate last logins of users lasi(1)

inet: Internet protocel, . . inet(5F)
inet_addr, inet_network, inet(3N)
inet_lnaof, inet_netofif , inet(IN}
inet_makeaddr, inet_lnaof,/ inet(3N)
inet_netof: Internet address/ inet(IN)
inet_neiwork, inet_ntoa, , . inet(3N)
inet_ntoa, inet_makeaddr,/ inet(3N)
initprocess., inittab(4)

-4 .

()

initializalion.

inil, telinil: process control
/e, powerfail: system
sockel. connect:

process. popen, polose:
Process.

clri: clear

inode: formai of an
sseanl: convert formaited
push character back into
“fread, fwrite: binary
stdio: standard buffered
fileno: stream status
uygiat: uucp status
queue. insgque, remque;
element from a queue.
install:

directories. cpset!

sngl, dble, cmplx, decmpix,/
abs: relurn

/164a: convert between long
sputl, sgetl: access long

nint, idnint: Fortran nearest
function. sint, dint: Fortran
atol, atoi: converl string to
fold: convery beiween 3-byie
3-byte integers and long
beopy:

sysiem. mailx:

system consistency check and
print a random, hopefully
error: error-logging

io: software loopback network
ifconflg: configure network
plot: graphics

plot: graphics

termio: general terminal
protocol. telnet: user

tty: controlling ferminat
finet_lnaof, inet_netof:
Protocol server. fipd: DARPA
inet:

ip

Protocol. tep:

Protocol. udp:

spline:

characters. asa:

sno: SNOBOL

syntax. csh: a shell (command
pipe: create an

facilities/ ipcs: report
packege. fiok: standard
suspend ‘execution for an
sleep: suspend execution for
&cos, dacos: Fortran arccosine
dimt: Fortran integer part
asin, dasin: Fortran arcgine
datan2: Fortran arctangent
datan: Fortran atctangent
Fortean complex conjugate
dcos, ocos: Fortran cosine
Fortran hyperbolic cosine

Pernitted Index

inil, telinit: process contrel . ., , . . init{IM)
initialization. + + + 4 ¢ o v 4 4 0 o+ iNi(IMY)
initialization shell scripts. bre(1IM)
initiate a connectionona connect(ZN)
initiafe pipe toffroma poepen(3s)
inittaby; script for theinit inittab(4)
Fnode. .. 0. i e e . elrillM)
inode: formal of an inode. inode(d)
node. + . v v v s i e e e . . inode(d)
input. scanf, fecanf, seanf(38}
input stream, UNEREHE+ .« » UAESIC(3S)
inputfowtput. .+ . . . o v 4 v . o o fread(3S)
input/output package. . . + .+ Stdio(38)
inquiries. /feof, clearerr, ferror(3s)
inquiry and job control. Lustat({1C}
insert/remove element from 4 insque(3N)
insque, remque; insert/remove . . . insque(3N})
install commands. install(1M)
install: install commands. install{1IM)
install object files in binary cpset(IM)
int, ifix, idint, real, float, fiype (3F)
integer absolute value. abs(3C)
integer and base-64 ASCII/ a641(3C)
integer data inm a machine/ sputl(3X)
integes functions. /dnint, round(3F}
integer part intrinske aini(3F}
integer. strtol, . ., ., . . ., . . StEGH(3C)
integers and long integers. 13tol1(3C)
integers. /convert between 13t01(3C)
interactive block copy. beopy(IM}
interactive message processing mailx(l)
interaclive repair. /file fsck (1M)
interesting, adage. fortune: fortune(6}
iMterface. . . o o v v v e e v o o . efror(T)
interface. v e e s 1005)
interface parameters. ifconfig(8N)
interface. plot{4)
interface subroutines. plot(3X)
interface. 4 s s . . termio(?)
interface 10 the TELNET telnei(1N)
interface. tty ()
Internet address manipulation/ . . . inet(3N)
Internet File Transfer fipd{8N)
Internet protocol family. ipet(5F)
Internet Protocol. ip(5P)
Internet Transmission Control tcp(SP)
Internet User Datagram udp(5P)
interpolate smooth curve. spline{1G)
interpret ASA carriage control asa(l}
interpreter.4 .. . sno(l)
interpreter) with C-like esh(1}
interprocess channel, pips(2)
inter-process communication ipes(l)
interprocess communication stdipc(3C)
intesval. sleep: e v v v s Sheep(l)
interval, v e v . Sleep(3C)
intrinsic function. ¢ « + 80og(3IF)
intrinsic function. aint, 2int{3F)
intrinsic function. asin(3F)
intrinsic function. awn2, atn2(3F)
intrinsic function. atan, a@En(3F)
intringic function. /deonjg: conig(3F)
intrinsic function. cos, « « cos(3F)
intrinsic function. /decosh: cosh(3F)

-25.

Permuted Index

double precision product
cexap: Fortran exponential
Fortran common logarithm
Fortran natural logarithm
Fortran transfer-of-sign

sin, dsin, ¢sin: Fortran sine
dsinh: Fortran hyperbolic sine
csqrt: Fortran square root
tan, dtan: Fortran tangent
Fortran hyperboelic tangent
idim: positive difference
dmad: Fortran remaindering
lie, lit: string comparision
commands and application/
formats.

miscellany.

files.

subroutines and libraries.
calls and error numbers.
maintenance commands and/
maintenance procedures.
application programs. intro:
intro:

intro:

intro:

facilities. networking:

intro:

and libraries. intro:

and etror numbers. intro:
mainenance commands/ intro:
maintenance/ intro:

ncheck: generate names from
aliens: The alien

select synchronous

abort: generale an

semaphore set or shared/
communication facilities/
uniform random-numbet/
fislower, isdigit, isxdigit,
isdigit, isxdigit, isalnum,/
/isprint, isgraph, iscntri,
terminal. ityname,
/ispunct, isprint, isgraph,
isalpha, isupper, islower,
{isspace, ispunct, isprint,
transfer-of-sign/ sign,
isalnum,/ isalpha, isuppet,
fisalnum, isspace, ispunct,
{tsxdigit, isalnum, isspace,
fisdigil, isxdigit, isalnum,
Fortran. system:

systemn:

issue:

file.

isxdigit, isalnum,/ isalpha,
fisupper, islower, isdigit,
news: print news
functions.

functions, j0,

bj: the game of black
functions. j0, i1,

intrinsic function. dprod: dprod(3F)
intrinsic function. /dexp, exp(3F)
intrinsic function. /dlogll: logl100IF)
intrinsic function. fclog: log(3F)
intrinsic function. /dsign: sign(3F)
intrinsic function. sin(3F)
intrinsic function. ginh, » » sinh(3F)
intrinsic Munction. /dsqet, sqrt(3F)
intrinsic function. tan(3F)
intringic function. fdtaah: tanh (3F)
intrinsic functions. /ddim, dim(3F)
intrinsic functions. famod, mod(3F)
intrinsic functions. flgt, siremp(3F)
intro: introduction to intro(l)
intro: introduction to file intro(4)
intro: introduction to games. . . intro(6)
intro: introductionte+ inro(S)
intro: introduction 1o special intro{7)
intro: introduction to intro{3)
intro: introduction to system intre(2)
intro: introduction io system intro{IM}
intro: introduction to system . ., . . intro(8)
introduction o commands and . . intro(1)
introduction to file formats. intro(d)
introduction togames. intro(6)
iniroduction to miscellany. intro(5)
introduction to networking inwo(5N}
introduction to special files. intro(7}

introduction to subfoutines
introduction to systemcalls
introduction to system . .
introduction to system
i-numbers., .
invaders attack the earth.

ifo multiplexing.
joctl: conirol device,
IOTfauit., ...,
ip: Internet Protocot.
iperm: remove & Message queue, . . -

intro{3}
intro{2)
intro{1M}
intro(8)
ncheck{1M)
alienz{6)
select(2N)
ioctl(Z)
abort(3C)
ip(5P)
ipcrm(1)

ipcs: report inter-process ipes(l)
irand, srand, rand: Fortran rand{3F)
isalnum, isspace, ispunct,/ ctype (3C)
isalpha, isupper, islower, ctype(3C)
isascii: classify characters. ctype(3C)
isatty: Bnd name ofa ttyname(3C)
iscotrl, isascii: classify/ e e .+ e . ctype(3C)
isdigit, isxdigit, salnum,/ ctype(3C)
isgraph, iscntrl, isagcii/ ctype(3C)
isign, dsign: Fortran sign{3F)
islower, isdigit, isxdigit, ctype(3C)
igprint, isgraph, iscntrl,/ .« . . Clype(3C)
ispunct, isprint, isgraph,/ v v s v 4 Glype(3C)
isspace, ispunct, sprint,/ ctype(3C)
issue a shell command from system{3F)
issue a ghell command, system{35)
issue identification file. o issue{d)
issue; issue identificetion issue(d)
isupper, islower, isdigit, ciype(3C)
isxdigit, isalnumi, isspace,/ ctype(3C)
fems. . o v v s v v awuawn « v+ news(l)
josjlrjnn v0, ¥l yn:Bessel . . ., . bessel(3IM)
jl,jn, y0, yl, yo: Bessel bessel(3M)
mek. s e s . bj(6}
jn, ¥0, y1, yn: Bessel , . ., bessel{3M}

26 -

operator.

flrand48, nrand48, mrand48,
makekey: generate encryption
killath:

process or a group of/

processes,
chase: Try 10 escape the
process group,

mem,

quiz: test your

3-byte integers and long/
integer and base-64/ abdl,
copy file sysiems with

with label checking. volcopy,
scanning and processing
arbitrary-precision arithmetic
efl: Extended Fortran

cpp: the C

cpp: the C

command programming
chargefee, ckpacct, dodisk,
statistics.

shl: shell

{jrandd8, srand48, seed48,
object files,

object file. Idclose,

header of a member of an/
file for reading. Idopen,
common object file.

of floating-point/ frexp,
access routines.

of a commen object fiie,
name for object file.

line number entries/ Kiread,
number/ ldiread, Idkinit,
manipulate line number/
line number entries of a/
entries of a section/ kiseek,
entries of a section/ Mrseek,
indexed/named/ ldshread,
indexed/named/ ldsseek,
file header of a commeon/
object flle for reading.
relocation entries of a/
indexed/named section header/
indexed/named section of a/
of a symbol table entry of a/
symbol table entry of a/
table of a common object/
string.

frewinddir, closedir: flexible
len: return

getopt: get option

simple lexical tasks.
generate programs for simpie
update. Isearch,
comparigion intrinsic/
comparision intringic/ lge,
to subroutines and

ar5.0; archive

relation for an object
relation for an object

join: relational database . . ., . .
jrand48, srand48, seed48,/
key.
kill all active processes.
kill: send a signal ic a

kill: terminate a process.
killall: kill all active
killerrobots.
killpg: send signal o a
kmem: core memory.
knowledge.
I3tol, Itol3: convert between
[64a: convert between long

label checking. /labelit:

labelit: copy file systems
language. awk: pattern .
language. be:
Language.
language preprocessor.
language preprocessor. .
language. /siandard/resiricted .
lastlogin, monacct, nulladm,/ .

- e
P N N L

LI T T TR R R A}

lav: print load average
layer manager,
Icong48: generate uniformly/
1d: link editor for common

5.0 link editor,
Idaclose: ¢lose s common
Idahregd: read the archive
Idaopen: open a common object .
Idclose, ldaclose: close a
idexp, modf: manipulate purts . .
Idfcn: common object file
Idfhread: read the file header . ,
Idgetname: retrieve symbol
dlinit, Wlitem: manipulate . . .
idlitem: manipulate line
idlread, MWlinit, Idlitem: ,
Idiseck, ldniseek: seek to
Idnlseek: seek to line number . .
ldnrseek: seek to relocation . . .
Knshread: readan
Idnsseck: seek to an

P

LI T T)

kdohseek: seek to the optional . . .

idopen, Idaopen: open & common
ldreeek, ldnrseck: seek to
ldshread, ldnshread: readan . . .
ldsseck, ldnaseek: seek toan .
Idtbindex: compute the index .
Idtbread: read an indexed .
Ildthseek: seek to the symbol . .
len: return length of Fortran .
length directary operations.
length of Fortran string.
letter from argument vector. .
lex: generate programs for . . .
lexical tasks, lex:, ...
{find: linear searchand . , . . .
Ige, 1gt, lie, Mt string
Igt, lle, lic: string .
libraries. /introduction
(library} file format.

library. /ind ordering
library. /find ordering

=27 -

L R TR

Permuted Index

« + Join(1)

v v drand48(3C)
« + makekey(1}
killall{(1M)
kilt(2)
kill(1) .
killall(1M}
chaze(6)

valcopy (IM)
voleopy (1M}
. . awk(l)
. bel(l}
efi(l)
cppll)
. ¢pp5.0(1)
. sh{l)
. acctsh{iM)
. lav(D)
shi{1}
.+ drand48(3C}
1d{1}
1d5.0(1}
. Keclose(3X}
Idahread (3X)
open(3X)
Mclose{3X}
frexp(3C)
Wfcn(4)
Mfhread (3X)
getname (3X)
Mdiread(3X)
tdlread (3X)
Miread (3X)
Idiseek (3X)
Idlsesk (3X)
Idrseek(3X)
Idshread(3X)
ldsseek (3X)
Idohseck (3X)
. idopen{3X}
. o ldrseek(3X)
+ o« ldshread(3X)
+ + Wdsseek(3X)
« - ldtbindex(3X)
Ktbread{(3X)
Idtbseek (3X)
len(3F)
directory (3X)
len(3F)
. . getopt{3C)
o . lexd(D)
lex(1)
Isearch(3C)
stremp(3F)
stremp(3F)
. - intro{3)
. . ars.0(8)
. « lorder(1}
+ + Jorder5.0(1)

Permuited Index

at5.0: archive and

portable/ ar: archive and
ulimit; get and set user

an out-going terminal

type, modes, speed, and

line: read one

commeon object file. linenum:
Adiinit, Idlitemn: manipulate
Idiseek, ldniseek: seek 10

an/ strip: strip symbel and

nl:
out selected fields of each
send/cancel requests (o an LP

Isearch, lfind:

col: filter reverse

in a common object file.

files. comm: select or raject
head: give first few

uniq: report repeated

of several files or subsequent
subsequent/ paste: merge same
link, unlink: exercise

files. 1d:

5.0

&.0ut! common assembler and
&.0uts.0: assembler and

¢p, In, mv: copy,
link:
and unlink system calls.

1s:

for a flle system. ff:

nlist: get entries from name
omS5.0: print name

nm: print name

by fsck. checklist:

handle variable argument
output of a varergs argument
output of a varargs argument
socket. listen:

on a socket.
XArgs: construct argument
intri ige, lgt,

intrinsic/ Ige, Igt, e,

files. cp,

interface.

lav: print

tzset: convert date/ clime,
manual for program. whereis:
index: return

end, etext, edata: last
memory. plock:

files.

lockf: record

file regions for reading or/
natural logarithm intrinsic/
gamma:

OewWgrp:

exponential, logarithm,/ exp,
common logarithm intrinsic/
logarithm, power,/ exp, log,
/alogl0, dloglC: Fortran common

library maintainer.
library maintainer for
limits. . . .
line connection. festablish

line discipline. /set terminal .
line. [
line number entries ing . .
line pumber entries of a/ .
line nuimber entries of a/
line number information from
line numbering filter.
line of a file. cut:cut

L L]

ling printer. Ip, cancel:
line: read one line.

linear search and update.
line-feeds.
linenum: line number entries

lines common 10 two sorted .
lines, .
lines in a file.
lines of ane file. /same lines

lines of several filesor . . .
link and unlink system calls. .
link editor for common object
link editor,
link editor output. . .
link editor output.
link: link to g file.
link or move files. . .
link to a file.

o e .

link, unlink: exercise link . . .

lint: a C program checker. . .
list contenis of directory. . .
list file names and statistics .
list.
lis.

P T

list of common object ﬁle

list of file systems processed
list. varargs:
list. /print formatted . . .
list. /print formatied
Esten for connections on a
listen: kisten for connections .
ligt(s) and execute command.
lle, lit: string comparision
t: string comparision . .

L
.
.

In, mv: copy, link or move . .

lo: software loopback network
load average statistics,
localtime, gmtime, asctime,

locate source, binary, and/or
location of Fortran substring.
locations in program.
lock process, text, or data in

lockf: record locking on . . .
locking on files. , . .
locking: provide exclusive . .
log, alog, dlog, clog: Fortran

log gamma function.
log in to & new group. . . .
log, log10, pow, sqrt:
fogl0, alogl0, dioglQ: Forran
logl0, pow, sqrt: exponential,
Jogarithan intrinsic function.

.28 -

P

PR R B

P

a4 v 4=

ar5.0(1)

. ar(l)
. ulimit(2}
. dial(3C)

getty(1M)

. line(1)

linenum(4)
Idlread(3X)
idlseek (3X}
strip(1)

. alll)

cut(l)

p(1)
line(1)
Isearch(3C)

. col(1}

linenum{4)
comm{1)
head(1)
unig(1)
paste(})

. pasie{l}

link{1M)
19(1)
d5.041)
s.out(4)}

. a.outs.0(4)
. link{2)

epll)
link{2}
link (1M)

. lint(1)
. 1s(1)

. nlist(3C)

(1M}

am3.001)
am(l)
checklist(4)
varargs(5)
vprintf(3S)

. vprind(3X)

fisten{2N)
listen (2N)
xargs(l)
stremp(3F)

. stremp(3F)
. ep(l)

1o(5)
lav{1)
ctime(3C)

. whereis(l}

index (3F)
end(3C)
plock(2)
tlocki(3C)
lockf(3C)
locking (2)

. log(3F)

'-\—.--‘.

gamma(3M)
newgrp(1)

. exp(3M)

logl0(3F)
exp(IM)

. fogl0GF)

/dlog, clog: Fortran natural
fogl0, pow, sqrt: exponential,
errpt: process a report of
rwho: who's

getlogin: get

logname: get

cuserid: get character
logname: return

passwd: change

flogin: remote

rlogind: remote

setting up an environment at
last: indicate last

user.

a64], 164a: convert between
sputl, sgetl: access

between 3-byte integers and
se{jmp,

lo: sofiware

for an object library.

relation for an object/
mklost+ found: make &

nice: run a command at
requests to an LP line/
send/cancel requests 10 an
disable: enable/disable
{1pshut, Ipmove: start/stop the
accepl, reject: ailow/prevent
Ipadmin: configure the
Ipstat: print

spooling system.

request/ lpsched, lpshut,
siary/stop the LP request/
LP request scheduler/ Ipsched,
information.

jrand48,/ drand48, erand48,
directory.

and update.

pointer.

bitwise/ and, or, xot, not,
integers and long/ 13tol,

fscv: convert files between
provide truth value about/
faccess long integer data in a
put: puis a file onto a remote
takes a file from a remote
values:

show host status of local
rwho: who's logged in on local
update files between iwo
update files between two
permuted index. mptx: the
documents. mm: the MM
mosd: the OSD) adapter
view graphs and/ mv: a troff
mé:

in this manual. man:
formatted with the MM
send mail to users or read
users or read mail.

netmail: the B-NET network

logarithm intrinsic function. . .
logarithm, power, square root/
logged errors.
logged in on local maclnnes
login name.
login neme.
login name of the user
login name of user.
login password, . .
login,

login server.
login: signon. . . .
login time. profile: .
{ogins of users and telelype \
logname: get login name.
logname: return login name of .
long integer and base-64 ASCIL/
long integer data in a machine/
long integers. /ltol3: convert
longimp: non-iocal goto.
loopback network interface,
lorder: find ordering relation
lorder5.0: find ordering . . .
lost+found directory for fsack.
low priority.
Ip, cancel send/cancel
LP line printer. Ip, cancel: . .
L.P printers. enable,
LP request scheduler and move/
LP requests.
LP spocling system.
LP status information.
ipedmin: configure the LP . . .
Ipmove: siart/stop the LP . .
Ipsched, lpshut, lpmove: .
Ipshut, lpmowve: starl/stop the
Ipstat: pring L.P status .,
Irand48, nrand48, mrand48, . .
Is: list contents of
Isearch, Hind: linear search . .
Iszek: move read/wrile file
Ishift, rshift: Fortran , , . . .
itol3: convert between 3-byte .
m4: macro processor. .
M68000 and VAX-11/7804 . .
mb8k, pdpll, ulb, u3bs, vax: .
machine independent fashion.
machine.
machine. take:
machine-dependent values.
machines. raptime:
machines.
machines. updater:
machines. updater:
macro package for formatting a
macro package lor formatting

P

e oaom

P -

LR B |

LI R

Bk E Y 4 a oa oaow ow e

.
.
.
.
..
.
S,
.

.

.
]
..

.o

= 4 v .

-

P T

PR

macro package for formatting/ .

macro package for typesetting .
MACTo ProCessor,

mail. mail, rmail:
mail, rmail: send mail to
mail system. . . .

L

4 e = omm

-29-

Permuted Index

. exp(3M)
. errpt{1M)

[

e e 4w m

log(3F)

rwho({IN)
getlogin(3C)
logname(1})
cuserid(38)

. logname(3X)

passwd(1)

. rogin(IN}
. rlogind (8N)

N N

login{1}
profile(4)
last(1)
logname(1)
logname(3X)
a641(3C)
sputk(3X)

. Bto1(3C)

. v s

setimp(3C)
lo(5)
lorder{l)
lorder5,0(1}

. mklost+fnd(1M)
. nice(1)
. Ip(1)

ip(1)
enable(l)
Ipsched (1M}
accept{1M)
Ipadmin{lM)
Ipstat(l)
Ipadmin{IM)
Ipsched (1M}
Ipsched(1M}
Ipsched (1M)
Ipstat{1}
drand48(3C}

. Is(1)

Isearch(3C)
lseek(2)
bool(3F)

. Biol{3C)
. md{1}

. fsev(IM)
. machid(])
. sputh(3X)

put(1C)
take(1C)
values(3)
ruplime (1N}
who{IN)

. updater(})
. updater{(iM}

mptx{3)
mm(5)
mosd(5)
mv(5)

. ma(l1)
macros for formauting entries
macros. fprint/check documents . . .

man(5)
mm(1)
mail(1)}
rail(1)
netmail(§N)

Permuted Index

delivermail: deliver
netmaiker: deliver

mail, rmail: send

processing system,

malloc, free, realloc, calloc:
! mallopl mallinfo: fast
program. clags:

regenerate groups of/ make:
ar3.0: archive and library

ar: archive and library

intro: introduction to system
intro: introduction to system
SCCS file. delta:

mkdir:

or ordinary file. mknod:

for fsck. mklost+ found:
mktemp:

regenerate groups of/

ssp:

banner:

session. script:

key.

frealloc, calloc, mallopt,
main memory allocator,
mallopt, mallinfo: fast main/
malloc, free, realloc, calloc,
entries in this manual,
manual.

ftfind, uielete, twalk:
hsearch, hereate, hdestroy:
shi: shell layer

records. fwimp, wimpfix:
of/ Idiread, Idlinit, ldlitem:
frexp, ldexp, modf:

P

route: manually

/inet_netof: Internet address
locate source, binary, and/or
man: print entries in this

for formatting entries in this
routing tables. route:

ascii;

files. diffmk:

umask: set file-creation mode
set and get file creation

an error message file by
table. master:

information table.

regular expression compile and
math:

constants.

eqn, neqgn, checkeq: formal
function.

dmaxl: Fortran maximum-vaiue/
dmax1: Fortran/ max,

max, max0, amax0,

fmaxi, amaxl, dmax1: Fortran

maze: generale a

accounting.
bod: convert (0 antique

memcpy, memset: memory/

madl to arbilrary people. , . . .
mail to B-NET.
mail to users or read mail. . .
mailx: interactive message . .
main memory allocator. . .
main memory allocator. . .
malntain a tags file for a C
maintain, update, and
mainlainer, .
maintainer for porlablel ..
maintenance commands and/
maintenance procedures. . .
make a delta {change) to an .
make a directory. . .
make a directory, or a special
make a lost+ found directory
make a unique filename.
make: maintain, update, and
make output single spaced. .
meke posters.
make typescript of terminal . .
makekey: generate encryplion
mallinfo: fast main memory/
malloc, free, realloc, calloc: .
malloc, free, realloc, calloc, .
mallopt, mallinfo: fast main/
man: macros for formatting .
man: print entries in this . .
manage binary search trees. .
manage hash search tables. .
manager.
manipulaté connect accounting
manipulate line number entries
manipulate parts off
manipulate tape archive. , .
manipulate the routing tables.
maniptlation routines.
manuyaf for program. wheregis:
manual. . . .
manual. man: macros . . .
manually manipulate the . .

L I A

= e o

FRE]

I

T I

* v =2 o= o2 b oy oaom

L T S

L I

4 s o

e

map of ASCIl character set.
mark differences between .
mask.
mask. umask:
massaging C source. fcreate
master device information
muaster: master device
maich roulines. regexp: . .
maih lunclions and constants.
math: math functions and
mathematical text for nroff or/
matherr: error-handling . , . .
max, max0, amax0, max1, amaxl
max0, amax0, maxl, amaxl, .
maxi, amaxl, dmax1: Fortran/
maximum-vilue functions.
mize: generate a maze.

D

LI I
L T

-

me6Bec: Coompller I
mclock: return Fortran time .
media. .
mem, kmem: core memory. .
memecpy, memchr, memcemp, .

L R T T R

-30-

L L R e L e e R I L T e e e N R I I T

- s s v 0w

LI T N]

LI

L S T T

A E B B b s b a B P A R h h 4 F s e E w Ny s

delivermail (8N}
netmailer(8N)
mail(1)
mailx(1)

. malloc(3C)

R

maltoc(3X)
ctags(1)
make{1)
ar5.0(1)
ar(1}

. intro{1M}

[T T T TR T S Y

intro(8)
dehta(l)
mkdir(1}
mknod{2)
mklost+End(1M)
mktemp(3C)
make(1)
ssp{l)
banner(1)
script{1)
makekey(1)

. malloc(3X)
. malloc(3C)

[]

malloc(3X}
malloc{3X)
man (5}
man(l)

. tsearch{3C)

L N N . I L T T TR

hsearch{3C)
shi{l)
Fwtmp(1M)
Mdiread(3X)
frexp(3C)
wpil)
route(8N}
inet(IN)
whereis(1)
man{1}
man{s)
route(8N)
ascii(5)
diffmk(l)
umask(1)
umask(2)
mksir{l}

. master(4)

LI T T

masier(4)
regexp(5)
math(s)
math{5}
eqn(l}

. matherr(3M)

L R

max{3F}
max{3F}
max(3F)
mux (3F)
maze(6)
maze(f)
mchBec(l)
mclock (3F}
bed(6)
mem{7)
memory{3C)

memset: memory/ memccpy,
operations. memccpy, memchr,
memccpy, meémchr, mememp,
free, realioc, calloe: main
mallopt, mallinfo: fast main
shmetl: shared

gueue, semaphore set or shared
mem, kmem: core

memcmp, memcpy, memsel:
shmop: shared

lock process, text, or data in
shmget: get shared

/memchr, memcmp, memcpy,
sort; sort and/or

files. acctmerg:

files or subsequent/ paste:

msgetl:

mksir: crezie an efror
recvirom, recvmag: receive a
send, sendto, sendmsg: send a
msgop:

mailx; interactive

msgget: gel

or shared/ ipcrm: remove a
mesg: permit or deny
SYs_nerr: system error

dminl; Fortran minimum-value/
dminl: Fortran/ min,

min, mind, amin0,

/minl, aminl, dminl: Fortran

system.
lost + found directory for/

special or ordinary file.

flle by massaging C source.
filename.

formatting documents. mm: the
documents formatted with the
dociments formatied with the/
formatting documents.

view graphs, and slides.

tabie.

remaindering imtrinsic/
chmod: change

umask: set file-creation
chmod: change

getty: set terminal type,

bs: a compiler/interpreter for
fouting-point/ frexp, kdexp,
touch: update access and
utime: set file access and
fckpacet, dodisk, lastlogin,
profile.

uusub:

package for formatting/
rcvhex: translates
mount:

system. mounl, umount:

setmnt: establish

memchr, memcmp, memcpy, memory(3C)
memcmp, memcpy, memset: memory memory(3C)
memcpy, memset: memory/ memory{(3C)
memory allocator. malloc, . v oo malloc(3C)
memory allocator. fcalloc, malloc{3X)}
memory control operations. shmctl{2)
memory id. /remove a message . ., iperm(l)
MEMOIY. « » v = « = v « ¢ + + » » mem{7)
memory operations. /memchr, . . . memory{3C)
memory operations. « » » o + Shmop(2}
memory. plock: plock(?)
memory segment., . . shmget(2)
memset: memory operations. memory{3C)
mergefiles. . . - sort(l}
merge or add totsl accounting accimerg{1M)
metge same lines of several paste(l)
mesg: permit or deny messages. . . . mesg(l)
message control operations. msgetl(d)
message file by massaging C/ mkst(l}
message from a socket, recv, recv(IN)
message from a socket, . , send(2N)
message operations. msgop(2)
message processing system. mailx(1)
message QUBUE,+« msgget(2)
message queue, semaphore set . . . iperm{l}
MesSages. « - « =« 4 o s v o+« . - mesg{l)
messages. /errno, sys ;_errlist, . -« perror(3C)
min, min0, amin0, minl, aminl, . . . min(3F)
min0, amino. minl,aminl, . o« o min(3F)
minl, aminl, dminl: Fortran/ min(3F)
minimum-value functions. min{3F)
mkdir: make a directory, . , mkdir(1}
mkfs: construct a file system. mkis(IM}
mkfsib: construct a file mkislb(IM)
mklost+found: makea mklost+fnd(iM)
mknod: build special file. mknod(IM)
mknod: make a directory, ora mknod(2)
mkstr: create an error message . . - mkstril)
mkiemp: make a uniqgue mkiemp(iC)
MM macro package for . ., mm(5)
MM macros. /print/check, mm(l)
mm, osdd, checkmm: print/check . . mm(l)
mm: the MM macro peckage for . . . mm{5)
mmt, mvL typesel documents, . . mmi{l)
mntiab: mounted file sysiem mntab{4)
mod, amod, dmod: Fortran mod (3F)
MOGE. . 4 « « ¢ + v o v« = « 4 o+ chmod(l)
modemask. « + v« « « + » umask(l)
mode of file. « + + « « chmod(2)
mades, speed, and line/ ., geity(IM)
modest-sized programs, bs(l)

modf: manipulate partsof , frexp(3C)
modification times of a file. . =« .« touch(l)
modification times. <« utime(2)
monacet, nulladm, preimp,/ accish(1M}
MmOnitor: prepare execution . ., . . . monitor(3C)
monitor uucp network, ., , uusub(1M)
moo: guessing game. . , . -« v moo(t)
mosd:; the OSDD sdapter macro . . . mosd(5}
Motorola S-records from/ revhex(1)
mount a Gle system. , . , mount{2)
mount and dismount file mount(1M)
mount: mount a file system. mount{2)

mount table, .

-31-

Permuted Index

. .« setmm{I1M)

Permuted Index

dismount flle system,
munttab:

mvdir:

cp, In, mv: copy, link or
Iseek:

the LP request scheduler and
formatting a permuted index.
ferand48, lrand48, nrand48,
operations.

select: synchronous ifo
typeselting view graphs and/
cp, In,

graphs, and slides, mmi,
log, alog, dlog, clog: Fortran
i-numbers,

/dnint, nint, idnint: Fortran
mathemnatical wext for/ eqn,
definitions for eqn and

mail system.

B-NET.

values between host and
selnelent, endnetent: get
/sethostent, endhostent: get
lo: software loopback
ifconfig: configure

netmail: the B-NET
neiworks:

routed:

netstat: show

unsub: monitor uucp
networking: introduction to
networking facilities,

base,

a text file.

news: print

process,
priority,
integer/ anint, dnint,

list.
object file,

change current UNIX system
hangups (sh only).

seymp, longimp:

bitwise boolean/ and, or, xor,
drand48, erand48, Irand48,

format mathematical tex! for
tbl: format tables for
constructs. deroff: remove
between host/ htonl, htons,
host and/ htonl, htons, ntohi,
nutl: the

/dodisk, lastiogin, monacel,
nk ling
number: converl Arabic

mount, umount: mount and
mounted file system table, . . .
move a direclory.
move files. . ..
maove read/write file pointer. . .
move requests. fstartfstop . . .
mpix: the macro package for
mrand48, jrand48, srand48,/
msgetl: message control . . .
msgget: gel message queue. .
Msgop: message operations.
multiplexing.

mv: copy, link or move files.
mvdir: move a directory,
mvt: iypesef documents, view
natural logarithm intrinsic/
ncheck: generate names from
nearest integer funclions.
neqn, checkeq: format .
negn. /special character
netmail: the B-NET network . .

PR

mv: a troff macro package for R

netmailer: deliver mailio . . ., .
netstal: show network status. . . .

network byte order. fconverl

network entry. /getnetbyname,
network host entry.
network interface.

nelwork interface parameters
network mail system.
network name data base, ., .
network routing daemon. .
network status. .
network.

4 4w owom .

LIRS

networking facilities. .
networking: introduction to
networks; network name date
newlorm; change the format of
newgrp: log in Lo a new group.
news items.. . . .
news: print news items. . . .
nice: change priority ol a .
nice: run a command at low .

e rom

L

nint, idnint: Foriran pearest
nl: line numbering filer. .
nlist: get entries from name

nm: print name kst of common ., . .

mount{1M)
mntiabi4)
mvdir{(1M)
cpll)

Iseek (2)
Ipsched (M)
mptx(5)
drand48{3C)

. msgctl(2)
. msgget(2}

. msgop(})
. select{2N)

mv{5)

cpil)
mvdir{1M)
mmi(l)
log(3F)
ncheck(1M)

. round(3F)}

eqni{l)
eqnochar(5)

. netmail(8N}

netmailer (8N)
netstat(1N)
byigorder(3N)
getnetent(3N)
gethostent{IN)

. {5}
. ifconfig(8N}
. netmail(EN)

.or v s

nelworks{4N)
rouied (3N}
netstat{IN)
uusub(1M)

. inko{5N}
. intro{5N)

networks (4N)
newform{1}

. newgrp(l)
. news(l)

nm3.G print name lis,,

nodename. chgnod:
nohup: run a command immune 1o
non-local goto. e s
nol, Ishift, rshifc Foruwean
nrand48, mrand48, jrand4d./ . .
nroff: format text.

L

news(1)
nice(2)
nice(1)
round(3F)
nif1)
nalist(3C)
nm(l)
nm3.0(1}
chgnod (1M)
nohup(1)
setimp(3C)
bool(3F)

. drand48(3C)
. nroff(1}

nroff or wrofl. /checkeq:
. thi(l)

nroff or wofl. . .

nroff/troff, tbl, andeqn
niohl, ntehs: convert values

niohs: convert values between .
null file.
nuli: the nall file.
nulladm, prctmp, prdaily,/ . . .
numbering filter.

P

L

> b w4 om e o

eqni{l}
deroffi{l)

. byieorder(IN}

-

-

byteorder(3N}
null(7}

. nuli(h)
. accish{1M)
. nl{l)

numerals to English.

-33.

number(6)

Idfen: common

conv.

dump selected parts of an
Kopen, Idaopen: open a common
number entries of a common
iaclose: close a common

the file header of a common
retrieve symbo! name for

of a section of a common

file header of a common

of a section of a common
section header of a common
section of a common

symbol table entry of a common
symbol table entry of & common
the symbol table of 8 comrmon
number entries in a common
nm: print name list of common
information for a common
section header for a common
sized.0: size of an

number information from an
format, syms: common

- g.oul header for common

file header for common

hex: translates

directories. cpset: install

W: link editor for common
print section sizes of common
find ordering reiation for an
find ordering relation for an
fthe printable strings in an
/uetgrent, endgrent, fgetgrent:
od:

command immune to hangups {sh
the specified/ exterr: turn

put: puts a fite

reading. idopen, ldaopen:
fopen, freopen, fdopen:

open:

writing.

seekdir, rewinddir, closedir:/
tputs: terminal independent

ffs: bit and byte siring

flexible length directory
memcmp, MeMCpy, memsel: memory
msgetl: message control

megop: message

semctl: semaphore control
semop: semaphore

shmctl: shared memory control
shmop: shared memory

sircspn, Striok: siring

Join: relational detabase

deopy: copy file systems for
CRT screen handling and
vector. getopt: get

common/ kohseek: seek to the
fentk: file control

atty: st the

getopt: parse command
fsetsockopt: get and sei

Fortran bitwise boolean/ and,

Permuted index

object file access routines.
object file converter.

object fle. dump:
object file for reading.
object file function, /line
object file. ldclose, PP
obiect file,]dﬂ'lre.ad read
object file, ldgetname:
object file. /number entries
object file. /to the optional
object file. fentries ., .,

object Aile. /an indexed/named . . .
ohject file. /an indexed/named . . .

object file. /the index of 2
ohject file. /read an indexed
object file. /seekto
object file. linenum: line
objectfile. PP

object file. /relocation
object file. scnhdr: . . . L . . . -
objectfile.

object file. Isymbol and line
object file symbol iable -
object files, aouthdr.h
object files. filehdr:
object flles. . .,«
object files in binary
object files. .., ..,
object files. size: C e
object library. lorder:
object library. lordes5.0:
object, or other binary file. . . .

obisin group filke entry from 2/ .
octaldump. e e e
od:octaldump.
only}, nohup:runa
on/off the extended errorsin
onte a remote machine.,
open a common object file for
opeoasiream. « . . . 4 0 0o on oa s
open for reading or writing.
open: open for readingor
opendir, readdir, telldir,
operetion routines, /figoto,
operations. /bemp, bzero,
operations, fclosedir:
operations. memccpy, memchr, . . .
operationE. L4 e a v

Operations. . « . . . 4. a oo ..
operations. . ., . 4 . . ox s x . s
operations.
operations. NN
operations. PN
operations. fstrpbrk, strspn, [
ODEIELOT. & 4 4 o o s v o 2 + = = »
optimal sccess time.

optimization package, curses:
option letter from argument
optional Ble header of a . .
oplions. .+ « 4 4. 4.
options for a terminal. . .
options. . . .+ . . 44 .
opionsonsockels.
or, xor, not, kshift, rshift:

3.

ldfcn{4}
conv(l)
dump(l)
Idopen(3X}
idiread{3X)
Idclose(3X)
ldfhread (3X)
Idgetname(3X)
1dlseek (3X)
ldohsesk (3X)
Idrseek(3X)
Idshread (3X)
Idsseek(3X)
Ktbindex{3X}
Idtbread(3X)
Idwbseek (3X)
linenum (4)
am{1)
reloc(4)

. scnhdr{4)

sizes.0(1)
steip(1)
syms(4)
aouthdr(4)
filehdr (4}
hex(1)
cpset{(IM)
K1)
size(1)
lorder(1)
lorder5.0(1)
strings(1)
getgrent(3C)
od(1)

. od(1}

nohup(l)
exterr(l)
put(1C)
Idopen(3X)
fopen(3s)
open(2)
open(2)
directory(3X)
termcap(3X)
bstring(3N)
directory(3X)
memory(3C}
msgctl(2}
msgop(2)
semcti(2)
semop(2}
shmetl(2)
shmop(2)
string (3C)
join(1)

deopy (1M}
curses(3X)
getopt(3C)
Idohseck(3X)
fentl(5)

siy (1)
getopt{l)
getsockopt{2N)
bool{3IF)

Permured Index

object library. lorder: find
object/ lorder5.0; find

a directory, or a special or
formauting/ mosd: the
documents formatied with/ mm,
dial: establish an

assembler and link editor
assembler and link editor
{vsprintfl: print formatied
fwsprinif: print formaned
sprintl: print formanted

ssp: make

facctdusg, accton, acctwtmp:
chown: change

chown, chgep: change

and expand files.

handling and optimization
permuted/ mptx: the macro
documents. mm: the MM macro
mosd: the OSDD adapter macro
graphs and/ mv: a trofl macro
sadc: system actlvity report
siandard buffered input/output
interprocess communication
4014 terminal. 4014:

tune floppy disk setiling time
configure network interface
process, process group, and
getopt:

{endpwent, fgetpwent: get
putpwent: wrile

passwd:

getpass: read a

passwd: change login

pwik, grpck:

seversl files or subsequent/
dirname: deliver portions of
directory. getcwd: get
fgrep: search a file for a
processing language. awk:
signal,

expand files. pack,

a process, popen,

truth value aboul your/ mé68k,
get name of connected
mesg:

macre package for formatting a
pUx:

formal. acct:

agctems: command summary from
$YS_Nerr: system error/
viewing. more: file
terminals. pg: file

soft-copy terminals.

tc

access physical addresses.
allow a process to access
split: split a file into
channel.

tee:

popen, pclose: initiate

fish:

ordering relation lor an
ordering relation for an
ordinary file. mknod: make . . .
OSDD adapter macro package for

osdd, checkmm: print/check . . .
out-going lerminal line/ . ., . . .
oulput, a.out: common
output. a.out5.0;

P

LI T)

[T T T

lorder(1)
{order5.0(1)
mknod(2)
mosd(5)
mm(l)
dial(3C)

. a.ocut{d}

outpul of & varargs argument/
output of a varargs argument/

outpul. printf, fpwintf,
outpul single spaced.
overview of accounting and/ . .

owner and groupof a file,

OWner or group.
pack, peat, unpack: comprass . .
packege. curses: CRT screen . .
package for formatlinga
package lor formatting
package for formating/
package for typeseuting view . . .
package. sal, sa2,
package. stdio:
package. ftok: standard
paginator for the Tekitronix . . .
parameters. disktune: . , ., .
parameters. ifconfig:
parent process 1Ds. /fget
parse command options,

L Y

L A

a.out5.0{4)
vorintf{35)
vprintf(3X)
printf(38)
sspll)
accl(1M}
chown(2)
chown(l)
pack(1)
curses(3X)
mptx{5)
mm{5}
mosd(5}
mv(5}
sar{(1M)
stdio (35}
stdipc(3C)
4014(1)

. disktune{1M)

L

passwd: change login password. . . .
passwd: password file.

password file entry.
password file entry.
password fite.
password.
password. . .
password/group file checkers.
paste: merge same linesof . .

LI IR

pathname of current working .
patlern. grep, €grep,
paltern scanming and .
pause: suspend process until . . .
pcat, unpack: compressand . . .
pclose: initiate pipe toffrom . . .
pdpll, udb, u3bs, vax: provide .

path names. basename, . ., . ., . . .

ifconfig{8N)
getpid(2)
getopt{1}
passwd(l)
passwd{4)
getpwent(3C)
putpwent{(3C)
passwd(4)

basename(1)
geicwd (3C)

. grep(l)

ewk(l)
peuse(2)
pack(l)
pepen{3s)

. machid(1)

peer. ECLPSCrNAmE: . . , .« & & + = =
permit or deny messages.

permuted index. mpix: the . . .
permuted index.
per-process accounting file . . .
per-process accounting/
perror, errno, sys_errlist,
perusal filter forert
perusa) filter for softcopy . . .
pg: file perusal filter for . . . ,
phototypesetter simulator, , . .
phys: allow a process to

[)

.

getpeername (2N)
mesg(l)

mpix{5)

ptx(l)

acct(4)
acctems{1M)
perror(3C)
more{l}

. pg(l}
. pa(l)

physical addresses, phys:

pieces. .
pipe: create an interprocess . . .
pipe fitting.
pipe to/from s process.,
play “Go Fish™.

P

.34-

LI

...... L

[

wil)
phys(2)
phys(2)
splic(1)
pipe(2)
tee(l)
popen(38)
fish{6)

life:
WOTm:
data in memory.

subroutines.

images.

ftell: reposition a file

Iseek: move read/write file
to/from a process.

data base of terminal types by
and library maintainer for
basename, dirname: deliver
functions, dim, ddim, idim:
banner: make

logarithm,/ exp, log, 10g10,
/sqrt: exponential, logarithm,
bre, beheckre, re,

/lastiogin, monacct, nulladm,
/monscct, nulladm, pretmp,
function. dprod: double
for troff. cw, checkcw:
monitor:

cpp the C language

cpp: the C language

unget! undo a

types:

interesting, adage. fortune:
prs.

al:
of a file. sum:
editing activity. sact:
id. whoami:

man:

cat: concatenate and

pr:
vprintf, viprintf, vsprintf:
vprintf, viprintf, vsprinif:
printf, fprintf, sprintf:

host system. hostid: set or
banner?:

lav:

ipstat:

nm5.0:

object file. nm:

system. hosiname: set of
gystem. uname:

news:

printeny:

file(s). accteom: search and
object files. size:

psiat:

names. id:

object, or/ strings: find the
formatted/ mm, osdd, checkmm:
enviromment.

banner?: print large banner on
requests to an LP line

disable: enable/disable LP
print formatted output.

nice: run a command at low
nice: change

errors. errpi:

play the game of life.

Play the growing worm game.
plock: lock process, text, or

plot: graphics interface,
plot: graphics interface
pnch: file formst forcard
pointer in a stream. frewind, . .

POIRtEL. . . v f s e e e
popen, pelose: initiate pipe . . .
port. tiytype: e

portable archives. farchive
portions of path names, . .
positive difference infrinsic
posters.
pow, sqrL: exponential, . .
power, square root functions.
powerfail: system/
pr: print files, ., .
pretmp, prdaily, priscet,/ .
prdaily, prtacct, runacct,/ .
precision product intrinsic . . .
prepare constani-width text .
prepare execulion profile. .
preprocessor.
preprocessor,
previous get of an 5CCS file. . .
primitive system data types, . . .
print a random, hopefully .
print an SCCS file.
print and set the date. ., ., , .
print calendar.

L Y

L e L

LI IR)

print current SCCS file
peint effective current user . .

print checksum and block count . . .

P

Permuted Index

. life(6)
worm(6)
plock(2)
plot(4)
plot(3X)
pnch{4)
fseek(3S)
Iseek(2)
popen(3S)
. . lytype(®)
<. ar(l)

. . basename(1)
« . dim(3F)
. . banner{1}

. exp(3M)

. exp(3M)
bre{iM)
pr(l)

. acctsh{1M)
. acctsh(1M)
. dprod(3F)
. cwll)
monitor(3C)
cppl(l)
cpps.0{1)
unget(1)
types(5)
fortune(6)
prs(1)
date(D)
. cal(l)
sum(1)
sact(l)
whoami(l}

print entries in this manual. man(l)
printfiles. . .+ 4 v . . 4 4 ... cat{1}
printfiles. . . . 0 fu i e .. pr{l)
print formatted outputof 2/ vprintf(3S)
print formatted output of &/ vprintf(3X)
print formatted output,, , . . printf(35)
print idemtifier of currenz hostid{IN}
print large banner on printer. bannet7(1)
print load average statistics. Bv(1)}
print LP status information. Ipstat{l)
printname dist. . . ., ., ¢ES0(1)
print name list of common nm(l)
print name of current host . - « + hostname({IN)
print name of current UNIX ., . , . . uname(l)
print news items., ., ., . . . news{l)
print out the enviroament, printenv{(1)
print process accounting Becteom(1)
print section sizes of common size(1)
print systern facts. pstat(lM)
print user and group IDsand id(1)
printable stringsinan strings(1}
ptint/check documents mmil}
printenv: prict out the , . , ., . . ., printenv{l)}
Printer.+ v . 4 v 4« 4+ » banner7(l}
printer. feancel: send/cancel Ip(l)
printers. enable, enable(l)
printf, fprintf, sprintf: « + o printf(3S)
priority. .+ .+ . . o0 o+ . nice(l)
priority of a process. nice(2)
process & report of logged errpt{iM)

-35-

Permuted Index

acct: enable or disable
acctprel, accipre:

acctcom: search and print
times. times: get

init, telinit:

timex: time a command; report
exit, _exil: terminate

fork: creale a new

/petperp, getppid: get process,
selpgrp: set

killpg: send signal to a
process group, and pargnt
inittab: script for the init

kill: terminate a

nice: change priority of a

kill: send » signal to &

initiate pipe to/from a

getpid, getpgrp, getppid: got
Ps: report

memory. plock: lock

times: get process and child
addresses. phys: allow a

wait: wait for chikd

waild: wait Tor child

ptrace:

pause: suspend

list of file systems

to a process or a group of
killafl: kill all active

structure. fuser: identify
awk: pattern scenning and
shutdown: terminate all
mailx: inleraclive message
m4: macro

provide truth value about your
between M68000 and VAX-11/780
alarm: set a

dprod: double precision

function.

profile.

prof: display

monitor: prepare execution
profil: execution time
eavironment at login lime.
prof:

standard/restricted command
arp: Address Resolution
faetprotoent, endprotoent: get
inei: Internetl

ip: Internet

protocois:

DARPA Internet File Transfer
teinetd: DARPA TELNET
DARPA Trivial File Transfer
Internet Transmission Control
user Interface to the TELNET
trpt: transliterate

udp: Internet User Datagram
base.

arithmetic:

for reading or/ locking:
mé8k, pdpll, udb, uibs, vax:
true, false:

process accounting. acct(2)
process accounting. acctpre(1M)
process accounting fle{s). accteom(1)
process and child process times(2)
process control/ init(1IM}
process date and system/ timex{l}
PPOCESS. « » o v « s o » o v+« o« €Xit{l)
PIOCESS. « o » + o v v o o » » + o « FoOrk(®
process group, and parent/ « . getpid(2)
processgroup ID. setpgrpi2)
PIOCESSELOUP. .+ + v = =« = = + &+ » killpg (3N)
process IDs. /get process, getpid(2)
PrOCESE. . « = = « « 2 « = = = = « » inittab(4)
PrOCESE. . + = = « + + « « - v ooo. . Kill(1)
PrOCESS. « + + « o v + v v v + + « » Nice(2)
process ora gronpof/ kilt(2}
process. popen, pclose: . . 0 popen{38)
process, process group, and/ ., . . . getpid(2}
PrOCEsSs SEAUS. . o v o « » » = & .« . p8il)
process, text, ordatain plock (2}
process times. v . 0 .. . s limes(2)
process to access physical phys(2}
process to stop or terminate, wait(2)
process to stop or lerminate. wait3(2N}
PFOCESS LFACE. . « « = = = « = & « » ptrace(2)
process until signal. pause(2)
processed by fsck. checklist: checklist(4)
processes. /send asignal KilK2)

processes.

P T R T R T)

. killall{tM)

processes using a fileor file fuser(1M)
processing lenguage. awk(1)
PIOCESSING. - - « « « « - = = - . . shutdown(1M)
processing system.+ . mailx(l)
PIOCESSOT. . « + + o+ « ¢ + » = « + « md{l}
processor type. Fu3bs, vax: machid(1)}
processors, /fconvertfiles fsev(1M)
process’salarmclock.« Blartm{(2)
product intrinsic function. dprod(3F)}
prof: display profile data. prof(1)

prof: profile withina ., prof(5)
profil: execution time profil(2}
profiledata. prof(1)
profile. « o+« monitor(3C)
profile. v v v e e v . profil(2)
profile;: setting upan profile®
profile within a function. prof(5)
programming language. /the sh(l)
Protacol. .+ « « - & o o n ma e . arp{5P}
protocolentry. « petprotoent(3N}
protocof family. « . . . inet(5F}
Protocol. .« v v v e v v 0o« iplSP)
protocol name data base. protocols(dN}
Protocol server. ftpd: o fpd(8N)
protocol BeTver.« .+ + . leinetd(8N)
Protocol server. tftpd: titpd{8N)
Protocol. 1€P! . « - + + « + o « « » tcpl(SP)
protocol. telnet: telnet(LN)
protocol trace. o« . - - . « o trpt8N)
Protecol, « + o+ + Ldp(5P)
protocols: protocol name dats protocols(4N)
provide drill in number facts. ., , . . arithmetic(6)
provide exclusive file regions . « . locking(2)
provide truth value about your! . . . machid(1}
provide truth values. true(l)

- 36 -

fnulladm, pretmp, prdaily,

pty:
sxL:
/generate uniformly distributed

siream. ungelc;

put character or word on a/
cheracter or word on a/ puic,
environment,

entry.

machine. put:

stream.

getutent, getutid, getutline,
af puic, putchar, fpulc,

file checkers.

tpul:

inser/remove element from a
msgget: gel message

ipcrm: remove a message
qsort:

display.

rain: animated
random-number/ irand, srand,
random-number generator.
adage. fortune: print &

rand, srand: simple

#srand, rand: Foriran uniform
fsplit: split {77,

dialect.

ratfor:

initialization/ bre, beheckre,
routines for rewurning af

S-records from downloading/
getpass:

entry of a common/ kdtbread:
header/ ldshread, idnshread:
read:

readv:

rmail: send mail 1o users or
line:

member of an/ Idahread:
common object fle. Kdfhread:
rewinddir, closedir:/ opendir,
open a common object file for
exclusive file regions for
open: open for

Iseek: move
emplx,/ int, ifix, iding,
allocator. malloc, free,

mallinfo: last/ mallog, free,

reboot:

prs: print an SCCS file. , . .
priaccl, runacct, shutacet,/ .
ps: Teport process status, .
pseudo terminel driver. ., . ,
pseudo-device driver. , ., .,
pseudo-random numbers,
pstat: print system Facts. .
ptrace: process trace.
pix: permuted index.
pty: pseudo terminal driver. . .
push character back into input .
putc, putchar, fpute, putw: . .
putchar, fputc, putw: put . . .
putenv: change or add value 1o
putpwent: write password file .
puts a file onto a remote . . .
puts, fputs: put a string on 2
pulutline, setuient, endutent,/ .
putw.: put character or word on
pwek, grpek: password/ group
pwd: working directory name.
qsort: quicker sort.
query terminfo database. . .
quede. insque, remque:
queue,

P R T)

Fermuted Index

. oprs(l)
.« acctsh{1M)
. ps(1)

... py(3)

sxt(T)

« v+ drand48(3C)

.« pstat{IM)
+ - pirace(2)
. pix(1}
. py{5)
. ungetc(3S)
putc(3S)
putc{3S)
putenv(3C)
putpwent(3C)
. put{IC)
puts(35)
. getut(3C)
« putc(3s)
. pwck{iM)
. . pwd(l)

gsort{3C)
tput{l)

. - .« insque(3N)

queue, semaphore set or sharedl

quicker sort.
quiz: test your knowledge. . . .
rain: animated raindrops . . .
raindrops display.
rand: Fortran uniform
rand, stand: simple
random, hopefully interesting, .
random-number generator,
tandom-number generator.
rotfor, or efl files. ., . .
ratfor: rattonal Fortran , .
rational Fortran dialect, . .
rc, powerhail: system
remd, rresvpori, Tuserok:
rep: remote file copy.
revhex: translates Motorpla . .
read a password,
read an indexed symbol tal:le .
read an indexed/named section
read from file.
read from file.

read mail. mail,

.o

read one line.
read: read from file. .
read the archive header of a.
read the file header ofa . . .
readdir, welldir, seakdir, . .
reading. ldopen, ldaopen:
reading or writing. /provide .
reading or writing,.
ready; read from file.

read/write file pointer. , ., ,

real, float, sngl, dble, , .
realloc, calloc: main memory .
realloc, calloc, mallopt,
reboot: reboot the system. . .
reboot; reboot the system, . .
reboot the system.

e

-37-

.+ msgget(2)
. + ipcrm{l)
+ « gsort(3C)
. . quiz{6)
. . rain{6}
rain(6)
+ » rand{3F)
+ » rand{3C)

. « « lortune(6)

rand {3C)

. rand(3F}

. fsplit{l)

. rtatfor(1)

. ratfor(l)

bre(1M)

remd{3N)

+ replIN)

. revhex(l)

+ + Betpass(3C)
. Idtbread(3X)
. ldshread(3X)

read(2)

readv{IN)

« » mail{l)

+ o line(1)

v+ read(2)

. - ldehread(3X)
. Idfhread(3X)

directory (3X)

Idopen{3X)

« » locking(2)

. + open(2)

. + « readv(3N)

. Iseek(2)
Mype(3F)
.+ malloc(3C)
« + malloc(3X)
. - reboot(IM}
. Teboot(2)
reboot{LM)

Permuted Index

reboot:

specify what to do upon
{specify Fortran action on
recv, recvirom, recvinsg:

" lockf:

from per-process accounting
errdead: extract error
manipulate connect accounting
tape. frec:

receive a message from a/
message from a socket. recv,
from a/ tecv, recvfrom,

ed,

execute a regulac expression.
compile.

make: maintain, update, and
tegular expression. regemp,
compile and match routines.
{provide exclusive file
match roulines. regexp:
regemp:

regex: compile and execute a
requests. accept,

sorted files. comm: select or
lorder: find ordering
lorder5.0; find ordering

join:

for a common object file.
strip5.0: remove symbols and
Idrseek, ldnrseek: seek to
comman oblect file. refoc:
/fmod, fabs; floor, ceiling,
mod, amod, dmod: Fortran
calendar:

for returning a stream to a
eXec: relurn stream to a
rexecd:

rop:

rhogin:

rlogind:

put: puts a file onto a

take: takes a file from a
remsh:

remshd:

cl: spawn getty 0 2

file. rmdek:

semaphore set or/ iperm:
unlink:

rm, cmdir:

eqn constructs., deroff:

bits. strip5.0:

from a queue. insque,

check and interactive
uniq: report

clock:

communication/ ipes:
blocks. df:

errpt: process a
Irequencies in a file. freq:
sa2, sade: system activity
timex: time a command;
ps:

rebool the sysiem.
receipt of a signal. signal:
receipt of a system signal.

LI

» oo

receive & message froma/

record locking on files,
records. /command summary . .
records from dumgp.
records. fwitmp, wimpfix:

recover files from a backup
recv, recvirom, recymsg:
recvirom, recvmsg: receivea . .
recvmsg: receive a message . . .
red: ext editor. .
regemp, regex: compile and . . .
regemp: regular expregsion . . .

PR

regenerate groups of programs.
regex: compile and execute a
regexp: regular expression . . .
regions for readingor/ . . , .
regular expression compile and
regular expression compilke.
regular expression. regemp, - - -
reject: allow/prevent LP

reject lines common 1o two

relation for an object/
relation for an object/
relations! database operator. . . .
reloc: relocation information . . .

. o+

signal(2}
signal{IF}
recv(IN)
lockf{3C)
wectems{LM)
errdead(1M)
fwtmp{IM)
frec{1M)

+ recv(2N)

recv(2N)

- recv(2N)

relocation bits.
. ldrseek(3X)

relocation entries of a/
relocation information for a
remainder, absclute value/ .
remaindering intrinsic/ . . .
reminder service. . . , . . .
remote command. froutines

remotecommand.
remoie execution server,
remote file copy.
remote login. . . .
remote login server.

a b #.a

remote machine, . .,

remote machine.
temole shell,

remote shell server. .
remote terminal. .
remove a delta from an SCCS
TEMOVE & Messsge quede, . . -

ERE R A}
e o

remove directory entry, . . .

remove fikes or directories. .

remove ncoff/troff, thi, and .

remove symbols and relocation
remaque: insert/remove element
remsh: remote shell.
remshd: remote shell server,
repair. /sysiem consistency

repeated lines in a file, . .
report CPU time used. . .
reporl inter-process
report number of free disk

report of logged errors.
report on character, . . .
regort package. sal,
reporl process data and system/ .
report process status.

-

PR I}

- 38 -

ed(1}
regemp(3X)
regempil)
make(l)
regemp(3X)
regexpl(5)
locking (2}
regexp(5)
regemp(1)
regemp{3X}
ucoept{1M)}
commi!)
Jorder(1)
lorder5.0(1)
join(1)
reloc(4)
strip5.0(3)

reloc(4)
floor (3M)
mod(3F)
calendar{1)
remd(3N)
rexec(3N)
rexecd(8N)

. rcp({IN)

riogin(IN)
rogind (8N)
put(IC}
take(1C)
remsh(1N}
remshd{EN)
e1(1C)
rmdel{1)

. ipcrm(1)

unlink(2)
rmfi)
deraff(1}
strip5.0(1)
insque(IN)
remsh{IN}
remshd(3N)
fsck(1M)

. unig(1)

clock (3C)
ipes{l)
di{1M)
errpr{l1M}
freq(1)
sar(LM)
timex{1}
psil)

file. uniq:

sar: system activity

files. version:

stream. fseek, rewind, ftell
/lpmove: start/stop the LP
reject: allow/prevent LP
LP request scheduler and move
Ip, cancel: send/cancel
teletype bits to a/ tset,
sengible/ tset, resel: set or
arp: Address

object file. ldgetname:
argument. getarg:
variable, getenv:
accounting. meclock:

abs:

string. len:

substring. index:
logneme:

command. rexec:

name. geleny:

stat: data

{ruserok: routines for
configuration/ uvar:

col: filter

file pointer in a/ fseck,
/readdir, telidir, seekdir,
creat: creale a pew file or
remete command.

Server.

directories.

read mail. mail,

SCCS file.

directories. rm,

Escape from the automatic
Try to escape the killer
robots.

robots: Escape from the
chrpot: change

chroot: change

fogarithm, power, square
/dsqgrt, csqrt: Fortran square
routing tables,

daemon.

remd, rresvport, ruserok:
Internet address manipulation
common object file access
expression compile and match
terminal independent operation
routed: network

route: manually manipulate the
for returning a stream/ rcmd,
standard/ restricted/ sh,

and, or, xor, not, kshift,

nice:
hangups {sh only}. nohup:
runacct:

/pecump, prdaily, priacet,
local machines.

returning a/ remd, rresvport,
machines.

report repeated linesina
TEPOrtEr. .+ = = + « » v » o &
reports version number of . .
reposilion a file pointerina . .
request scheduler and move/ .
requests. accept, .
requests. fstart/stop the .
requests 1o an LP line/
reset: set or reset the ,
reset the teletype bitstoa . . .
Resolution Protocol,
retrieve symbol name for .
return Fortran commang-line .
relurn Fortran environment . .
return Fortran time

return integer absolute value.
return length of Fortran . .
return location of Fortran .
return login name of user.
return stream to a remote . . .
return value forenviropment .
relurped by stat system call. . .
reiurning & stream (o a remote/
returns system-specific
reverse line-feeds. . , , .
rewind, feell: reposition &
rewinddir, closedir: Bexible/
rewrite an existing one.
rexec: relurn siream 10a .
rexecd: remoie execution .
rlogin: remote login. . . .
rlogind: remote login server,
rm, rmdir: remove files or
rmeil: send mail to usersor . .
rmdel: remove 8 delta from an
rmdir: remove filksor ., . ., .
robots. autorobots: . , , ,
robots. chase:
robois: Escape from the .
robots.
rool directory.
root directory for a command.
rool functions. /exponential,
root intrinsic function. . , . .
route: manually manipulate the
routed: network routing .
routines for relurning a/ , . .
reutines. finel_netof: , , .
routines. Idfcn:
routines. regexp: regular . . .
routines. /igoto, tputs:
routing deemon.
routing tables.
rrésvport, ruserok: routines . .
ish:shell, the, .
rshift: Fortran bitwise/
run 2 command at low priority.
run 2 command immune to . .
run daily accounting. .
runacct: run daily accounting. .

R T R R
P T T T

T
P
. oe s

..... .

LI

runecct, shutacet, startup,/ .
ruptime: show host status of .
ruserok: routines for
rwho: who’s logged in on local .

-39 .

Ipsched(1M)
Ip(1}

tset{l}

1set{l)

arp(5PF)
dgetnante(3X)}
getarg(3F)
getenv(3F)
mclock (3F)
abs(3C)

. len{3IF)

index (3F)
logname(3X)
rexec(3N)
getenv{3iC)
stai(5)
rernd(IN}
uvar(2)
col(1)
Feeek(38)

. directory (3X)
. creat{2)

rexec(IN)
rexecd (BN)
rlogin(1N)
rlogind (8N}
rm(1)
mail(1)
rmdel{1}

. mmfl}

autorobots(6)
chase(6)
robots(6)
robots(6)
chroot(2)

. chroot{iM}

exp(3IM)
sqrt(3F)
route(8N)
routed(8N)
remd(3N)
inet(3N)
Idfcn(4)
regexp(5}
termecap(3X)
routed(BN)
route{8N)

. remd (3N}

sh(1)
bool{3F)
nice (1)

. nohup(l)
. runacct(1M)

4 s s 0w

runacct(1M)
acctsh(LM}
ruptime (1IN}
remd (3N)
rwho(IN)

Permuted Index

activily report package.
report package. sal,
editing activity.
package. sal, sa2,

space allocation. brk,
formatted input.

bi's: big file

language. awk: pattern

the delta commentary of an
comb: combine

make & delta (change) to an
sacl: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an
compare iwo versions of an
be: forman of

undo a previous get of an
val: validate

admir: create and administer
what: identify

help: ask for help in wsing
of an SCCS file.

/start/siop the LP request
common object file.
clear: clear terminal

optimization/ curses: CRT
twinkle: twinkle stars on the
display editor based on/ vi:
inittab:

terminal session.

system initialization shell

PrOEranm.

grep, egrep, lgrep:

bsearch: binary

accavnting file{s). acctcom:
Isearch, find: linear

hcreete, hdestroy: manage hash
tdelere, wwalk: manage binary
object file. scnhdr:

obiect/ fread an indexed/named
f1o line number entries of a
/1o relocation entries of a
/seek to an indexed/named
files. size: print

/mrand48, jrand48, srand48,
section of/ ldsseek, idnsseek:
a section/ Idiseck, ldniseek:
a section/ Idrseck, ldnrseek:
header of 2 common/ ldohseck:
common object file. ldibseeck:
opendir, readdir, telldir,
shmget: get shared memory
brk, sbrk: change data

to two sorted files. comm:
multiplexing.

greek:

of a file. ¢ut: cut out

rwhod: system status server. rwhod(3N)
sal, sa2, sadc: system sar{1M)
sa2, sadc: system actlvity sar{1M)
sacl print current SCCS file sact{l)
sadc: system activity report sar{IM)
sag: system ectivity graph. sag{lG)
sar: system activity reporter. sar(1)
sbrk: change data segment k(D
scanf, fscanf, sscanf: convert scanf(35)
SCRBpNeL. e e e e « « bfs(1)
scanning and processing awk{l)
SCCS delta. cdc: change ede(l)
SCCSdeltas. . . +« « « comb{l}
SCCS file. delta: delta(l)
SCCS file editing activity, sact(l)
SCCShile.0 i i get(1)
SCCSfile. prs(1}
SCCSfile. « . rmdel(l)
SCCS file. socsd:ﬂ' e e e e e« . . ScCsdiff(1)
SCCSHle. W e e e s scesfile(4)
SCCS file. unget: unget (1)
SCCSfile. valll}
SCCSfiles., + » admin{l}
SCCSfiles. + + » what(l}
SCC8. . . . e e . . help(l)
sccsdiff; compare two versions scesdiff{1}
scesfile: format of SCCS file. . scesfile (4)

scheduler and move requests.

« Ipsched(1M)

scrthdr: section header for a . scnhdr(4)
scTeem. . . . clear(l)
screen handlms and curses(3X)
SCTEEM. + » 4 v + 4 u + o » o v . . twinkle(d)
screen-onenled (\rlsual) I 14§

script for the init process. inittab(4}
script: make typescriptof seript{1}
scripts. frc, powerfail: bre{1M)
sdb: symbolic debugger. « v 5db{)
sdiff; side-by-side difference sdiff(1)
search a file for a pattern. grepil)
search a sorted table. bsearch(3C)
search and print process acctecom(l}
search and update. e e e e e Isearch{3C}
search tables. hsearch, hsearch(3C)
search trees. tsearch, thnd, tsearch{3C)
seclion header for a common senhdc{4)
section header of 2 common . . ., . . ldshread(3X)
section of a common object/ Idiseek(3X}
section of a common object/ ldrseek(3X)

section of & common object/ ..
section sizes of common object . .
sed: stream editor. ,
seed48, lcongd8: generate/ . ., . L
seek to an indexed/named
seek to line number entries of . . .
seek 1o relocation entries of -
seek to the optional file
seek to the symbol table ofa
seekdir, rewinddir, closedir:/
segment.
segment space allocauon e e e e
select or reject lings common
select: synchronous o
select terminal filter. . . .
selected fields of each line

- 40 -

. dsseek(33)

size(1)

. sed(1}

drand48{(3C)
ldsseek (3X}
Idlseek(3X)
ldrseek (3X)
Idohseek(3X)
Idtbseek{3X)
directory{3X)
shmge1{2)
brk{2)
commf(l)
selec1(2N)
greck(l}
cut{l)

file. dump: dump

semctl:

semop:

iporm: remove a message queue,
semget: get set of

operations.

send, sendto, sendmsg:

a group of processes. kill:
mail. mail, rmail:

message from a socket.
group. killpg:

line printer. Ip, cancel:
socket, send, sendto,
message from a socket. send,
reset the teletype bits to a
File Transfer Protocol
remshd: remote shell

rexecd: remote execution
rlogind: remote login

rwhod: system status

telnetd: DARPA TELNET protocol
Trivial File Transfer Protocol
make typescript of terminal
buffering to a stream.

IDs. setuid,

getgrent, gelgrgid, getgrnam,
/gethosibyaddr, gethostbyname,
identifier of/ gethostid,
current host. gethostname,
goto.

encryption. crypt,

/getnetbyaddr, getnetbyaame,

protocol/ /getprotobyname,
geipwent, getpwuid, getpwnam,
ective group ID.

effective user 1Ds.
/getservbyport, getservbyname,
options on/ getsockopt,

login time. profile:

geitydefs: speed and terminal
disktune: wune floppy disk
group IDs.

fgetutid, getutline, pututline,
stream. setbuf,

data in & machine/ sputl,

a command immune to hangups
standard/ restricted command/
operations. shmeth:

queue, semaphore set or
shmop:

shmgel: get

from C programs to implement
system; issue a

with C-like syntax. csh: a
system: issue a

shl:

shutacct, startup, turhacct:
remsh: remote

system initlatization

remshd: remote

Permuted Index

selected parts of anobject
semaphore control operations.
semaphore operations,
semaphore set or shared memory/
semaphores. v 4o v v - . ..
semctl: semaphore control
semget: get set of semaphores.
semop: semaphore operations.
send a message from a socket, . . . -

dump(l)
semctl(2)
semop(2)

. iperm(1)

semget(2)
semetl(?)
semget(2)
semop(2)
send (2N}

send a signal to a process or kil(2)
send mail tousersorread mail{1)
send, sendto, sendmsg: senda send(2N)
send signal to 2 Process . + « . - - - killpg(3N)
send/cancel requests o an LP Ip{l}
sendmsg: send a message froma . . . send(2N)
sendto, sendmsg:senda send(2N)
sensible state. /reset: set or o v tset(l)
server. ftpd: DARPA Internet . . Fpd(8N)

SETVer.
SEerver.
SETYET,
SErver.
server.
server. ifipd: DARPA
session. script: . . ., .
setbuf, setvbuf: assign
setgid: set userandgroup
setgrent, endgrent, fgetgrent/
sethostent, endhostent: gew/
sethostid: get/set unique ..
sethostname: get/set name of e

...... .o

setjmp, longimp: non-local . .
setkey, encrypt: generate DES . . .
setmnt: establish mount ble.
setnetent, endnetent: get/
selpgrp: set process group ID,
setprotoent, endprotoent: get -
sstpwent, endpwent, fgetpwent:/ . . .
setregid: set real and
setrenid: set real and
setservent, endservent: get/ .
setsockopt: get and set . . .
seiling up an environment at

settings used by getty.

settling time parameiers,
setuid, setgid: set user and
setutent, endutent, utmpname:/
setvbuf: assign buffering toa .
sgetl: access long integer
(sh only}. nohup’tun
sh, rsh:shell, the . . ., ..,
shared memeory control
shared memory id. /a message
ghared memory operations. . .
shared memory segment. .
shared strings. /strings

.o
. .

oo

..

shell command from Fortran.
shell {command interpreter}
shell command., . ,
shell layer manager,
shell procedures for/ /runacct, . . .
shell.
shell scripts. /re, powerfail:
shell server.

LI R A]

- 4] -

. . remshd(8N)
. rexecd(8N)

rlogind(8N)
rwhod (8N)
teinetd(3N)
titpd{8N}
script(1)
setbuf(38)
setuid (2)
gelgrent{3C)
gethostent(3N)
gethostid (2N)
gethostname (2N)

. . setimp(3C}
. eoypt(3C)

setmnt{1M)
getnetent (3N)
setpgrp(2)
getprotoent (3N)
getpwent(3C)
setregid(2)
setreuid(2)
getservent(3N)
getsockopt(2N)
profile(4)
getiydefs(4)
disktune(1M)
setuid(2)
getut{3C)
setbuf(38)
spuil(3X)
nohup(1}
sh(l)
shmeil(2)
iperm(1)
shmop(2)
shmget(2)
xstr{1)
system (3F)
csh{l)
system(35)
shi(1)
acctsh({1M)
remsh(IN}
bre(1M)
remshd (3N}

Permured Index
command programming/ sh, rsh:

operations.

segment.

operations.

full-duplex/ shutdown:
fprdaily, preacct, runacct,
Muli-duplex connection.
processing.

program. sdiff:
transfer-of-sign intrinsic/
login:

pause: suspend process until
what to do upon receipt of a
action on receipl of a system
on receipt of a system/
upen receipt of a signal.
killpg: send

of processes. kill: send a
ssignal, gsignal: software
lex: generate programs for
generator. rand, srand:

tc: photlotypesetier

atan, atan2: frigonometric/
intrinsic function.

sin, dsin, ¢sin: Fortran
/dsinh: Fortran hyperbolic
s5p: make output

functions,

hyperbolic sine intrinsic/
get descriptor table

sizes. 0

common object files,

file.

size: print section

an intervel.

interval.

documents, view graphs, and
typeseiting view graphs and
current/ tiyslot: find the
spline: interpolate

int, ifix, idint, real, float,

sno:

accept a connection on a
bind: bind a name 1o a
initiate a connection on a
communication.

listen for connections on a
gelsockname: get

receive a message from a
sendmsg: send a message from a
get and set options on

pg: file perusal filser for
interface. lo:

ssignel, gsignak:

sort;

gsort: quicker

tsort: topological

or reject lines common 1o two
bsearch: hinary search a

for program. whereis: locate
meszage file by massaging C

shell, the standard/restricted
shl: shell layer manager.
shmctl; shared memoty control . . .
shmgel: get shared memory
shmop: shared memory
shut down part of 2
shutacct, startup, wenaccet:/ ., . . .
shutdown: shut down part of a
shutdown: terminate all
side-by-side difference
sign, isign, dsign: Fortran
sign on,
signal. signal: specify
signal. /specify Foriran ., .
signal- specify Fortran action
signal: specify what to do
signal to a process group.
gignal (0 A IOCESS OT B RTOUP + + « »
signals.
simple lexical tasks.
simple random-number
simulator. . .« . v . 4 v e e s e
sin, ¢os, tan, asin, Acos,
sin, dsin, csin: Fortran sine
sine intrinsic function.
sine intrinsic function.
singlespaced.0 s ..
sinh, cosh, tanh: hyperbolic
ginh, dsinh: Fortran
size. getdtablesize:
size of an object file.
size: print section sizesof
size5.0: size of an object
sizes of common object files.
sleep: suspend execution for
sleep: suspend executionfor
slides. mmt, mvl typeset+ +
slides. /macro package for

L

LT I A

sh(l)

shi(1)
shmct(2)
shmget(2)
shmop(2)
shutdown{2N)
acctsh{IM}
shutdown{2N)
shutdown({1M)
sdiff (1)
sign{(3F)
login(1)
pause{2)
signal(2)
signal(3F)
signal(3F)
signal(2)

killpg (3N}
kill(2)

ssignal (3C)
kex(1)

rand (3C)
tc(1}

trig(3M)
sin(3F)
sin(3F)

sinh (3F
ssp(l}-

size5.0(1)
size(i)
sleep(l)
sleep(3C)
mmt(1)
mv(5)

slot in the wimp file of the tiyslot(3C)
smoothourve.« . .+ o & spline(1G)
sngl, dble, cmplx, demplx,/ fiype(3F)

sno: SNOBOL interpreter. sno(l)
SNOBOL interprefer. . . o « o « - « sno(l)

SOCKEL, BCOEPL .« 4 - . 4 . x w s e e accept{(2N}
SOCKEL « v s i h s s e e e bind{2N)
socket. conneck: - - . - . connect{2N)
sockel: create an endpoint for socket(2N)
socket. listen:4 o . . . o listen(2N)
SoCket DAME. « + + « o + + » + » « Betsockname(2N}
socket, frecvirom, tecvmsg: recv{2N)
socket. send, sendto, send (2N)
sockets. /seimsockopt: getsockopt(IN)

soft-copy terminals.
software loopback network

software signals, ssignal{3C)
sort and/or merge files. sort(l)
BOM. + v s e v eomoa + + « gsort(3C)
sort: sorl and/or merge files. sort(l)
BOTL. + v v v s v v o oo s =« » tsOrt(l)
sorted files. comm:select comm(l)
sortedtable. bsearch(3C)

source, binary, and/or manual
source. /oredle BDETTOT . . + + & « »

-42.

brk, sbrk: change data segment
ssp: make outpul single
terminal, ct:

fspec: format

the extended errors in the
receipt of a system/ signal:
receipt of a signal. signal:
/set terminal type, modes,
used by getty. gettydefs:
hashcheck: find spelling/
spelling/ spell, hashmake,
spellin, hashcheck: find
curve.

split:

csplil: context

files. faplit:

pieces.

auclean: vuep

Ipadmin; configure the LP
output, printf, fprintf,
integer data in a machine/
square root intrinsic/

power,/ exp, log, logl0, pow,
exponential, logarithm, power,
sqrt, dsqrt, csqrt: Fortran
random-number/ irand,
generator, rand,

/nrand48, mrand48, jrand48,
revhex: translates Moitorola
input. scanf, fscenf,

signals.

spaced.

package. stdio:
communication package. NMok:
sh, rsh: shell, the

twinkle: twinkle

tpsched, Ipshut, lpmove:
boot:

{ preacel, runacet, shutacet,
system call.

stat: data returned by
IT: tist file names and
lav: print load average
ustat: get file system
Ipstat: print LP

feof, clearerr, fileno: stream
control. vustat: uucp
communication facilities
netstat: show network
ruptime: show host

P5: [EPOTL ProCess
rwhod: system

stat, fstat: get file
input/output package.

wail for child process 1o
wait for child process to
strnemp, strepy, strocpy,/
/atrepy, stracpy, strien,
sirncpy,/ streat, strncat,
/strncat, stremp, strnemp,
Isirrchr, sirpbrk, strspn,
sed:

Permuted Index

space allocation.« brk(2}
spaced. v s o. .. sspll)
spawn getty o aremote ct(I1C)
specification in text files, fspec(d)
specified device, fturn onfoff exterr(1)
specify Fortran actionon signal(3F)
specify whatto doupon signal(2) .
speed, and line discipline. getty(IM)
speed and terminal sellings gettydefs(4)
spell, hashmake, spetlin, spell(1}
spellin, hashcheck: find spell{l}
spelling errors. /hashmake, spell(l}
spline: interpolate smooth spline{1G)
split a file into pieces. split(1)
split. . v i v v e e e e e . . caplit(l}
split f77, ratfor,orefl faplit(1)
split: splita file into split(D)
spool directory clean-up, Luclean(1M)
spooling system. + + + .« . . lpadmin{1M)
sprintl: print formacted prinif(38)
spull, sgetl: access long sputl{3X)
sqrt, dsqrt, csqrt: Fertran sqrt(3F}
sqrt: exponential, logarithm, exp(IM)
square root functions. fsqret exp(IM)
square root intrinsic/ sqrt{3F)
stand, rand: Fortran uniform rand(3F)
srand: simple random-pumber- rand{(3C)
srand48, seed48, lcongd8:/ drand48{3C)
S-records from downloading/ rcvhex(l)
ssconl convert formatted scanf(3%)
ssignal, gsignal: software ssignal(3C)
ssp; make output single ssp(i)
standard buffered input/output . . . stdio(38)
standard interprocess Stdipe(3C)
standard/restricted command/ sh{l)
starsonthescreen. iwinkle(6)
start/stop the LP request/ Ipsched{1M)
startup procedures. - . . . - boot(8)
startup, turnacet: shellf acctsh(IM)
stat: data returned by stat stat(5)
stat, fstat: get file status, stat(2)
statsystemcall. stat(5)
statistics for a file system. (1M}
SILSHES. + « 4 v b 4 a e e e e lav(1)
SLSHES. o v v v s 0w e v s . o ustat(d)
status information., . . Ipstat(})
status inquiries. ferror,, . . ferror(3s)
status inquiry and job uustat(1C)
status. /report inter-process ipes(1}
SIS+ ¢ s b b h e e e e netstat(IN)
status of local machines. ruptime{IN)
SIALUS. D 10 0
SAtUS SETVET. - + &« = = « « « + « « rwhod{(8N)
Status. e e e e .. stat(2)
stdio: standard buffered stdio(38)
stime:settime. stime{?)
stop or terminate, wait, . . wait(d)
siop or terminate. waitd: ., ., , , . . wait3(2N)
strcat, strncat, stremp, string(3C)
strchr, strrchr, strpbrk,/ string(3C)
strcmp, strocmp, strepy,« . . string(3C)
strcpy, stencpy, stelen,/ string(3C)
strespn, striok: siring/ string(3C)
streameditor. sed(1)

-43 -

Permuted Index

fflush: close ar flush a

fopen, freopen, fdopen: open a
reposition a Rle pointer in a
get character or word from a
Tgets: get a string from a

put character or word on a
puts, (puts: put a string on a
sewvbuf: assign buffering to 2
IHeof, clearert, filenc:
/routines for returning a
rexec: return

push characier back into input
long integer and base-64 ASCIL
Ige, lgt, He, Hi:

converl date and time to
floating-point number to
gets, fgets: get a

len: return length of Fortran
puts, fpuls: put a

bemp, bzero, Ms; bit and byte
strspn, strespn, striok:
number. streod, atof: convert
number. atof: convert ASCII
strtol, atol, atoi: convert
strings in an object, or/
implement/ xstr: extract
strings: find the printable

C programs to implement shared
number information from an/
information from an/ strip:
relocation bits.

/strocmp, strepy, strocpy,
Strepy, strncpy,/ streat,
streat, strocat, stremp,
/stremp, strocmp, strepy,
/strlen, strchr, strechr,
fstrncpy, strlen, sirchr,
Istrchr, sterchr, strpbrk,

te double-precision number,
fsurpbrk, strspn, strespn,
siring to intager.

processes using a file or file
terminal.

another user.

intro: introduction to

plot: graphics interface

Fsame lines of several files or
return location of Fortran
file. sum7:

the files in the/ sumdir:
count of a fike.

a file.

characters in the files in/

du:

accounting/ acctcms: command
sync: update the

sync: update

su: become

interval. sleep:

interval. sleep:

pause:

swab:

stream. felose, « felose(3S)
SITBAML + v v« + + ¢ s ¢ 0 2 o s s fopen{3S}
stream. fseek, rewind, fell: fseek (35}
stream. /geichar, fgeic, gelw: . getc(3s)
stream. gets, . . « .« v« . o0 . . gets(15)
stream. fputchar, fpuic, putw: . putc(3s)
SITEAIM. v v v v v v v ot e v n e puts{3s)
stream. setbuf, setbuf(3S)
siream slatus inquiries. ferror (38}
siream o a remote command. remd{3N)

slream to a remote command.

. rexec{3N)

stream. UNEeIC: a s ungetc{3S)
string. /l64a: convert between . abdi{3C)
string comparision iniringic/ stremp{3F)
string. fasctime, tzset: clime(3C)
string. /lcvt, gevi: convert ecvt(3C)
string lrom a stream. gels{3s)
. 1 len(3F)
string ona stream. puts(38)
siring operations. bcopy, bstring{3N}
string operations. /strpbrk, string(3C}
string to double-precision sirted{3C)
string to floating-point ataf(3C)
string to integer. striel(3C}
strings: find the printable strings{1)
strings from C progrems te xste(l)
strings in an object, or ather/ . sirings(1)
strings. fextract strings from . xastr(l}
strip: strip symboland line stripil)
strip symbol and line number . siripl)

strip5.0; remove symbols and

. strip3.0(1)

strlen, strche, strrche,f o 0 0 . . L string(3C)
strocat, stremp, stroemp, string(3C}
stracmp, steepy, strnepy,/ string(3C}
strncpy, stelen, stechr,/ L . string(3C)
strpbrk, sirspn, strespn,/ stying(3C)
strrche, strpbrk, siespn,/ L string (3C)
strspn, siecspn, striok/ string{3C)
streod, atof: convert string stried (3C)
sirtok: string operations. string (3C)
strtol, atel, atoi; convert strtel{3C)
structure. fuser: identify fuser{lM)
stty: set the options fora siy(1)

su: become super-uset or sufl)
subroutines and libraries. intro(3)
SUbroutines.0 ... s plot{3X)
subsequent lines of one file. paste{l)
substring. index; index (3F)
sum and count blocksina sum7(1)
sum and count characters in sumdir{)
sum: print checksum and block . sum(1}
sum7: sum and count blecks in . . . sum?(1)
sumdir: sum and count sumdir{1)
summarize disk usage. du(i)
summary from per-process acctems{IM)
superblock. v e e oo syne(l)
super-block. sync(2)
super-us¢r or another user. suf(l)
suspend execution foran sleep(1}
suspend executionfor sleep(3C)
suspend process until signal. pause(2)
swab: swapbytes. swab(3C)
swap bytes. e e e e e e e e swab(3C}
sxi: pseudo-device driver. sxt{7)

- 44 -

information from/ strip: strip

kigetname: retrieve

object! fcompute the index of a
Idibread: read an indexed

syms: common object file

object/ Idibseck: seek to the

sdb:

Vs strip5.0: remove
. symbol table format.

select:
interpreter) with C-like

error/ perror, errno,

perror, errna, sys_errlist,
information. uvar: relurns
binary search a sorted
{compute the index of a symbol
file. /read an indexed symbol
common object file symbol
master device information
mntab: mounted file system
kdthseek: seek to the symbol
setmnt: establish mount
getdiablesize: get descriptor
tbl; format

hdesiroy: manage hash search
manipulate the routing

tabs: sel

ctags: maintain a
! a file,
) remote machine.

machine. lake:

1alk:

trigonometric/ sin, cos,
intrinsic Tfunction.

an, dtan: Fortran

/dtanh: Fortran hyperbolic
hyperbolic tangent intrinsic/
sinh, cosh,

(p: manipulate

tar:

recover files from & backup
file system backup. filesave,

programs for simple lexical
deroff: remove nroff/troff,
or troff.

Control Protocol.
search trees. tsearch, thind,

4014: paginator for the
tset, reset: sel or reset the
last logins of users and
initialization. init,
closedir:/ opendir, readdir,
telnetd: DARPA

telnet: user interface 1o the
TELNET protocol.

server.

symbol and line number . . ., .
symbol name for object file.
symbol table entry of a common .
symbol iable entry of a comman/
symbol table format.
symbol tablke of & common
symbolic debugger.
symbols and relocation bits. . .
syms: common object file . . .
sync: update super-block.
sync: update the super block.
synchronous i/o multiplexing.
syntax. csh a shell {command
sysdef: system definition.
sys_errlist, sys_nerr: system
5YS_nerr: system error/
system-specific configuration . . .
table. bsearch:

R

. .
.

Permuted Index

.
.

e e e .

.o

.
.

strip(1)
|dgetname{3X}
Idtbindex (3X}
Idibread (3X)}
syms{4)

. Idtbseek (3X)

sdb(l)
strip5.0(1)
syms{4)

. sync(2)
. syacil)

.
.

select{ZN)
cshil)
sysdef{1M)

. perror{3C)

.
-

perror (3C)
uvar(2)

. bsearch(3C)

1able entry of a common objectl « = .« ldibindex(3X)
table entry of a common object . . . ldtbread(3X}
table format. syms: , . . . syms{4)
table. master: , master{d)
table.,... mnotab{4)
table of a commaon obJecl ﬂle « « « o ldibsesk(3X)
Wmble. setm{IM)
table size. . . . e s v o« . getdtablesize(IN)
1ables for nroff or lroﬂ' B 1118
webles. hsearch, hereate, hsearch(3C)
tables. route: manuvally , . route{§N)
mbsonaterminal labs(l)
tabs: set tabs on a ferminal. tabs(l)

togs file for a C program. ctags(l)
tail: deliver the last partof tail(})

take: takes a file roma lake(lC)
takes a file from a remote take(1C)
alk: talk to another user. talk{IN}
talk to another user. N « « talk{IN)
tan, asin, acOs, atan, atan2 v e o= trig(3M)
tan, duan: Fortran tangent tan(3F)
tangent intrinsic function., . . tan(3F)
tangent intrinsic function, .+ « - tanh(3F)
tanh, dtanh: Fortran tanh(3F)
tanh: hyperbolic functions. sinh(3M)
tape archive.+ .. . tp{l}

tape file archiver, v lar(l)

BpE. fret: « . o« v . v n v 0 b = . frec{lM)
tapesave: daily/weekly UNIX | . . . filesave(lM)
tar: tape file archiver. tar(l)
tasks. lex: generate lex(l)

tbl, and eqn constructs. deroff (1}
thl: format trbles for nroff .+ thl{1}

tc: phototypesetier simulator, .o}

tep: Internet Transmission tcp{5P)
tdelete, twalk: manage binary tsearch(3C)
tee: plpeﬁtuns B Y183
Tektronix 4014 termln.al 4014(1)
teletype bits 1o a sensible/ tset(l)
ieletypes. last indicate last{l)
telinit: processcontrol init{IM)

telldir, seekdir, rewinddir, . . .

TELNET protocol.
telnet: user interface to the . . .
teinetd: DARPA TELNET protwcol

-45.

.

.
.

.« « directory(3X)
TELNET protocol server,

telnetd (8N}
telnee(1N)
telnet{IN)
telnetd(§N)

Permuted index

temporary file. tmpnam,
tmpfile: create a

tempnam: creale a name for a
terminals.

term: format of compiled
file..

data base.

for the Tektronix 4014
functions of the DASI 450
lermcap:

terminfo;

ct! spawn gelty to a remote
ctermid: generate filename for
pty: pseudo

grezk: select

/1getsir, tgoto, tpuls
termio: general

tty: controlling

dial: establish an out-going
clear: clear

script: make typescript of
getty. gettydefs: speed and
stty: set the options for a
tabs: set tabs on 2

isatty: find name of a

and line/ getty: set

tiytype: data base ol
animate worms on a display
functions of DASI 300 and 300s
tty: get the

perusal filter for seft-copy
term: conventiopal names for
kill:

~ shuidown:

abort:

exit, _exit:

daemon. errstop:

for child process io stop or
for child process to stop ot
tic:

tpul; query

duta base.

interface.

command.

quiz:

ed, red:

ex, edit:

change the format of a
fspec: format specification in
/checkeq: format mathematicat
prepare constant-width
nroff: format

plock: lock process,

troff: typesel

binary search trees. tsearch,
Transfer Pratocol server.
igeistr, tgoto, tputs:/

tputs:/ tgetent, tgetnum,
tgoto, tputs:/ tgetent,
Igetent, \getnum, tgetilag,
ftgetnum, tgetllag, tgetsir,

w, cubic:
data and system/ timex:

tempnant: create a name fora . . . - tmpnam(35)
temporary file. tmplile(3S)
temporary fle. tmpnam, tmpnam (38)
term: conventional names for term(5)
termfile.. - e e e e term{4)
term: formal of compiled term . . . term{4}
termcap: terminal capability termcap(5)
terminal. 4014: paginator 4014(1)
terminal. 450: handle special 450(1)
terminai capability data base, termcap(5)
terminal capability data base. terminfo{4)
termipal. L et(iC)
terminal. ot h e e . ctermid(38)
terminal driver. v e piy(S)
terminal fiter.« . greek(1)
terminal independent opemtlonl . « .« termcapi3X)
terminal interfece. termic(7)
terminal interface. e e e e l¥(D)
terminal line connection. dial{3C)
terminal screen. e e e clear{l)
terminal session.+ scripe()

terminal seftings used by

. getiydefs(4)

terminal. e e e oa s Sty
terminal e r e e e e e tabs(1}
terminal. ttyname, ttyname(3C)

termingl type, modes, speed,

terminfo: terminal capability

geity (IM)

. terminfo(4}

terminal types by pore. ttytype(d)
terminal, worms: worms{6)
terminals. /handle special p0(1)
terminal’s name. . ., o o liyp(l)
terminals. pg:file pe(l)
terminals. « + « lerm(5)
terminale @ process. kill{l}
terminate all processing. shuidown(1M)
terminate Fortran program. , abort{3F)
tErMinate Process. . . « « « + « = « exit(2)
terminate the error-logging .« .+ . errstop(iM)
terminate. wait wait wai(2)
terminate. wait3: wait, . wait3(2N)
terminfo compiler. tic(IM)
terminfo database., . tput(l)

lermio: general terminal . . termio(7)
lest; condition evaluation test(1}

test your krowledge. quiz{6)
text editor. e e e b e aaaa ed{l)
exteditor., .o .. . ex{l)

text file. newform: « » newform(1)
textfiles. e v v . . fupecld)
text foraroff orireff,, . . . egn(l)
text for troff, cw, checkew: cw(l)
1723 3 T e r e e e e, nroffi(1)
text, or data in memory e e phock (2}
1777,1 T e e e e troff{1)
thind, wdelete, twalk: manage tsearch(3C)
tftpd: DARPA Trivial File, . titpd(8N)

tgetent, tgetnum, tgetflag, . .
tgetflag, igetsty, igoto, . . .
tgetnum, tgetflag, geistr, . .
igetstr, tgoto, tputs:/ .
tgoto, Iputs: terminal/
tic: terminfo oompiler .
lic-tac-tog.
time a command, report Process . . .

.46 -

. termcap(3X)
. termecap(3X)
. termecap(3X)
. termcap(3X)

termeap(3X)
tic(IM)
{6}
timex{1)

time:

mclock: return Fortran
execute commands at a later
systems for optimal access

tune floppy disk seitling
profil: execution

up an environment at login
slime: set

time: gei

tzset: convert date and

clock: report CPU

process limes,

update access and modification
gel process and child process
file access and modification
process data and systei_lm!

le.

for a temporary fle.
flolower, _toupper, tolower
popen, pelose: infliate pipe
toupper, tolower, _loupper,
toascii: translate/ toupper,
tsort:

acelmerg: merge or add
modification times of a file.
translate/ Loupper, tolower,
_tolower, toascii: translatef

Fgetflag, tgelstr, tgolo,

pirace: process

trpt: transliterale protocol
bit, blt512; block

fip: file

ftpd: DARPA Internet File
ftpd: DARPA Trivial File
sign, isign, dsign: Forttan
/_toupper, _tolower, toascii:
tr:

from downloading into/ rcvhex:
hex:

trpt:

fcp: Internet

Ntw: walk a file

twalk: manage binary search

trek:

1an, asin, acoy, alan, atan2:
server, thipd: DARPA
constant-width text for
mathemalical text for nroff or
typesetting view graphs/ mv: a
format 1ables for nroff or

trace,

values.

pdpll, u3b, ulbs, vax: provide
true, faise: provide

robots. chase:

twalk: manage binary search/

time a command. . . .
time accounting.
time. at, baich:
time. deopy: copy file . .
time: get time.
time parameters. dlsktune:
time profile.
time. profile: setting .
time. ., ..
time: time a command.
time. .,
time to string. /asctime, .
time used.
times: get pracess end child
times of a file. touch:
times. times:
times. utime: sel . . .
timex: time & command; report
tmpfile: create a temporary
impnam, tempnam: create & name
oascii: transkate characters.
w/from a process.
_lolower, toascii: translate/ . .
tolower, _loupper, _tolower, . .
topological sort.

r ot s s ow
Ak s s .
.

-

4 s s
.

L T T
.
.
.

P TR

total accounting files.

touch: update accessand . . .
_toupper, _tolower, toascii: . .
toupper, tolower, _loupper, . .

tp: manipulate tape archive. . . .

tplot: graphics filters.
tpul: query terminfo database. .
tputs: terminal independent’ .

tr: translate characters,, .

trace.
trace.
transfer data.
transfer program.
Transfer Protocol server.
Transfer Protocol server. .
trangfer-of-sign intrinsic/ .
translate characlers. . . . - .
translate characters.
translates Motorola S-records
transiates object files, . .
transliterate protocol trace. . .
Transmission Control Protocol.
e o 0 o e e e
trees. fifind, tdelete,
trek: trekkie game.
trekkie game,
trigopometric functions. !oos,
Trivial Fike Transfer Protocol
wofl. cw, checkcw: prepare .
troff. fneqn, checkeq: format .
troff macro package for
troff. bl
wroflt typeset text.
trpl: trapsliterate protocol
true, false: provide truth . . .
truth value about your/ mb8k,
truth values, . .
Try o escape the killer
tsearch, tfind, tdelete,

R o
L

P s v 4w

.+

LI

P R |

.

L T L
b o o4 oo

L
PR

T

-47 .

LI R T T

Permuted index

R |

P

P T R R |

At s s e

time(1)
melock (3F)
at(1)
deopy(1M)
time(2)

. diskwne{1M}
. profil(2)

profile(4)
stime(2)
time(1)

. lime(2)

clim=(3C)
clock (3C)
times(2)
touch{!)
times{2)
utime(2)
timex{1)

. tmpfile(3S}
. tmpnam(35)

I

conv(3C)
popen(3S}
conv{(3C)
conv{3C)
tsort(1)
acctmerg{1M)
touch{l)

. conv(3C)
. conv{3C)

*

tp(1}
1plot(1G)

. tput{l}
. termcap(3X)

(1)

. purace(2)

oaow o 4w

trpt(BN)
bit(3C)
fip(IN)
ftpd (3N)
tfpd (8N)
sign(3F)

. conv(3C)
. i1}

revhex (1)
hex{1}
rpt{EN)
tcp(5P)
fiw(3C)
tsearch(3C)

. trek(6)

trek{6)
trig(3M)
tfipd (8N}

. owll)

eqnil)

. mvi(5)
. 1bl{1)

-

twroff(1}
trpt(8N)
true(l}
machid{1)

. true(l)

chase(6)}
tsearch(3C)

Permuted Index

teletype bits to a sensible/

interface.

graphics for the extended

& terminal.

utmp file of the current/
types by port.

perameters. digsktune:
frunacct, shutacct, startup,
tsearch, tfind, tdelete,
twinkle:

screen.

ichar, char: explicit Fortran
file: determine file

value aboul your processor
getty: set terminal

for the extended TTY-37
tiytype: daia base of terminal
types.

types: primitive system data
session. script: make

graphs, and slides, mmt, mvi:
troff:

mv: a troff macro package for
/localtime, gmtime, asctime,
value about your/ mé68k, pdpll,
about your/ mé8k, pdpll, udb,
Protocol.

getpw: get name from

limits,

creation mask.
mask.

file system. mount,

UNIX sysiem.

UNIX sysiem.

ul: do

file. unget:

an SCCS file.

into input stream.

irend, srand, rand: Fortran
/seed48, Icongdl: generate
a file.

mkiemp: make a
gethostid, sethostid: get/set

execution. uux:

uulo, uupick: public
unlink system calls. link,
eniry.

unlink: exercise link and
umennt;

files. pack, peat,

times of a file. touch:

of programs. make: maintain,
badblk: program to set or
machines. updater:
machines. updatet:
tfind: linear search and
sync:

sync:

1set, reset: set or reset the 1seu(l)
tsort: topological sort. tsort(1)

i1, cubic: tic-tac-loe. tti(6)

tty: controlling terminal U¥(7)

tty: get the terminal’s name. uy(l}
TTY-37 type-box. greek: greek(s)
ttyname, isatty: find name of Uyname(3C)
ttyslot: find the slotinthe Uyslot(3C)
ttytype: data base of terminal tiytype(d)
tune floppy disk settling ime disktune{IM)
turnacet: shell procedures for/ . . acctsh{IM)
twalk: manage binary search/ . . Isearch{3C)
twinkle stars on the screen. twinkle(6)
twinkle: twinkle stars on the twinkle(6)
type conversion. fdemplx, Rype(3F)
WPE. o - e v e e e e e w s file(l)
type. /vax: provide truth . . ., . . . machid{l)
type, modes, speed, and line/ getty(IM)
type-box. greek: gtaphics greek(5)
types by port. tiytype(4)
types: primitive system data types(5)
PES. + m o 2 v 4 v w .. . v v+ types(5)
typescript of terminal , scrip(l)
typeset documents, view mmt{l)
typeset tEXL . &« 4 v 4 o2 f ow e . s troff (1}
typeselling view graphs and/ e e mv(B)
1zset: convert date and time/ ., . . ., ctime{3C)
udb, ulbs, vax: provide truth machid(1)
udb5, vax: provide truth value machid(1}
udp: Internet User Datagram . . udp(5P)

LT 1 1 getpw(3C)
ul: do underlining. ul{1}
ulimit: get and seluser ulimit(2)
umask: setand getfike umask(2)
wmask: set file-creation mode umask(l}
umount: mount and dismount mount{1M)
umount: unmount a file system. . . . umouni(2)
uname: get name of current uname(2)
uname: print name of current uname(l)
underlining. ul(l)
undo a previous get of an SCCS . . . ungei(l)
unget: undo a previous get of . , . . unget(l)
ungetc: push character back ungetc(3S)
uniform random-number/ . . ., . . rand(3F}
uniformly distributed/ drand48{3C}
uniq: report repeated lines in - unig(l)
unique filename. mktemp(3C)
unique identifier of current/ gethostid (2N)
uniis: conversion program. units(l)
UNIX-to-UNIX system command . . wux{IC)
UNIX-t0-UNIX system file copy. . . wuto{IC}
unlink: exercise link and link(1M)
unlink: remove divectory unlink(2)
unlink system calls. link, link (1M}
unmount a file system. umount{?)
unpack: compress and expand pack(l)
update access and modification . . touch(l)
update, and regenerate groups make(l)

update bad block information.
update files between two

update files between two

update. lsearch,
update super-block,

-48 -

. badblk(IM)

. . updater{1}

updater{1M)
isearch{3C)

. sync(2)
update the superblock.

sync(l)

two machines.

two machines.

du: summarize disk

id: print

setuid, setgil: set

crontab;

) character login name of the
I udp: Internet
- fgeigid, getegid: get real
S environ:
disk accounting data by

print effective current

set real and effective

protocol. telnet:

ulimit: get and set

logname: return login name of

fget real user, effective

become super-user or anolher

talk: talk to another

the wimp file of 1he current

write: write 10 another

last: indicate last logins of

mail, rmail: send mail 1o

wall: write to all

fuser: identify processes

help: ask for help in

Stalistics.

modification times,

uwmp, wimp:

enduient, utmpname: ACCESS

tiysiot: find the slot in the

. entry Tormats.
! fpututline, sctutent, endutent,
clean-up.

wusuby monitor

uuclean:

conlral. uustat:

system to UNIX system copy.
UNIX system copy. uucp,
system copy. uucp, uulog,
system file copy. uuto,

and job control.

UNIX-10-UNIX system file/
command execution.
configuration information.

val:

Julb, ulb5, vax: provide truth

abs. return integer absolute

cabs, zabs: Fortran absolute

geienv: returit

ceiling, remainder, absolute

putenv: change or add

{htons, nohl, ntohs: convert

values.

/) true, false: provide truth
' values: machine-dependent
{peint formatied output of &
Jpcini formatied output of &
argument Jist.

varargs: handle

return Fortran environment
your! mé8k, pdpll, ulb, ulb5,

updater: update files between
updater: update files between .
usage,
user and group IDs and names.
user and group IDs.
uset croniab file. N
user. cuserid: get
User Datagram Protocol,
user, cffective user, real/

user environment. . . .
user 1D. diskusy: genefate
user id. whoami:
user ID’s, setrewid: . .

R L R T

e e e

PR

Permuted Index

user interface to the TELNET . .

user limits.
user. R
user, real group, and/ .
user, su:
user,

[S T S T

P |

user
users and teletypes. '
users or read mail.

A

using a file or file/
using SCCS.
ustat: gel file system
utime: set file access and

utmp file entry. /setutent,
utmp file of the current user.
utmp, wimp: utmp and wimp
utmpname: access utmp file/
uuclean: uucp spool directory .
wucp neiwork.
uucp spool directory clean-up, .
uucp status inquiry and job
wucp, wulog, uuname: UNIX

P R U S,

uulog, uuname: UNIX gystem to
uuname: UNIX system to UNIX .

uupick: public UNIX-to-UNIX .
vustat: uucp status inquiry . .
uusub: monitor vucp network. .
uuto, uupick: public . . ., .
uux: UNIX-10-UNIX system

UVar: relurns system-spacific , .
val: validate SCCS file.
validate SCCS file.
value about your processor/ . .
value, ,
vulue. abg, iabs, dabs,
value for environment name.

value functions. /fabs: Boor,

velue to environment.
values between host and/ . . .
values: machine-dependent . .
values.
values,.
varargs argurnent list. .
varargs argument list. . , . . .
varargs: handle variable
varieble argument list.

variable. getenv:
vax: provide truth value about

PR

-49 .

T)

I R

« v « . updater{1)

. updater(1M}
. dull)
. . (1)

. setuid(2}

crontab(l)
cuserid(38)
udp(5P)
getuid(2)
environ(5)
diskusg {1 M)
whoami{l)
setreuid(2)
teinet{(IN)
ulimit(2)
logname(3X)
getuid(2)
su(l)

]k (IN)
ttyslot(3C)
write (1)
last(1)
mail(1}

. wall(iM)
. fuser(1M)

help(1)
ustat{2)

. utime(2)
utmp and wimp entry formats.

utmp(4)
getut{3C)
ttyslot(3C)

. utmp{4)
. §etut(3C)

uuclean(1M)
uusub{1M}

. tuclean(IM}

uustat(1C}

. uucpl1C)

vucp(1C)
uncp(1C)
uuto{1C)
uustat(1C)

. uusub(1M)

unto{1C)
uuxf1C)

. uvar{2}

val(l)
val(l)
machid(1)
abs{3C)
abs{3F)
getenv(3C)
floor{3M)
putenv{3C)

. byteorder{3N)
. values(5)

true(l)
values(5)
vprintf(35)
vprintf{3X)
varargs(5)
varargs(5)
getenv{3IF}
machic{1}

Permunted Index
/files between M4S300D and

option letter from argumeni
asserl:

wchk:

ve!

version: reports

gel:geta

number of files.

sccsdilf: compare two
formatted output of/ vprintf,
formatied output of/ vprintf,
display editor based on ex.
mmt, mvt typeset documents,
macro package for typesetting
fite perussl filter for crt

on eX. vi: screen-oriented
systems with label checking.
file system: format of gysiem
print formatted output of a/
print formatied output of a/
output of/ vprintf, viprintf,
output of/ vprintf, viprintf,
or terminate. wail:

or terminate. waitd:

to stop Or Lwerminate.

10 stop of lerminate.

fiw:

signal. signal: specify
crashes. crash:

binary, and/or manual for/
whodo:
who!

current user .

machines. rwho:

cd: change

chdir; change

get pathname of current
. pwd:

worm: Play the growing
game.

display terminel.
worms: animate

write:

writev:

pulpwent:

wall:

write:

hle regions for reading or
open: open for reading or
utmp, wtmp: uimp and
formals. utmp,

accounting records. fwtmp,
hunt-the-wumpus.

list{s) and execute command.

VAX-11/780 processors. fscv(IM)
ve: versioncontrol. v we(l)
vchk: version checkup. vchk (1M}
vector. getoptiget v getopt(3C)
verify program assertion. assert(3X)
version checkup. +» » » » . . vchk(1M)
version control.4 - .. . ve(l)
version number of filkes. version(1)
vergion of an SCCS file. get{l)
version: reports version « version(l)
versions of an SCCS file. o« s+ Secsdilf(l)
viprintf, vsprimtf: print vprintf(35)
viprintf, vsprintf print vprimtf(3X)
vi: screen-oriented (visual), vi(l)

view graphs, and slides. mmt(l)
view graphs and slides. furoff mv(5)
viewing. more:- . .. more(1)
(visual) display editor based vi(l)
volkopy, labelit: copy file volcopy(IM)
volume, c e e s, [8(4)
vprintf, viprimif, vsprintE: vprintf(35}
vprintf, vipeintf, veprintf: vprintf{3X)
vsprintf; print formatted vprind(385)
vsprintf: print formatted vprinif(3X)
wait for child process to stop wail(2)
wait for child process tostop wait3(2N)
wait: wail for child process wait{2}
waitd: wait for child process wail3{(ZN)
walkaBletree. 4.4 ., . BW(3C)
wall: write toallusers. wall(1M)
wewordoount, . . 4 s s oa oo oa s we(l)
what: identify SCCS files. what(1}
what to do upon receipt of 2 signal(2}
what to do when the system crash(8}
whereis: locate source, whereis(l)
who is doing what. whodo(IM)
who is on the system. . . . « + . . . who(l)
who: who is on the system. who(l)
whoami: print effective whoami{l)
whodo: who is doing what. whodo(IM)
who’s logged inon local rwho (1N}
working directory. . . « < < < . . . ed(1)
working directory. chdir(2)
working directory. getewd: gelewd(3C)
working directory name. pwd(l)
WOIMBAME. . + + 4+ « + s + = = « . Worm(6}
worm: Play the growing worm worm(6)
worms: animate wormsona worms(6)
worms on a display lerminal + . worms(6)
writtomafile. s v e write(3)
writtomafil., .. writev(3N)
write password file entry. putpwent(3C)
write toallosers. . . . « . - - . . . wall(iM)
write to anotheruser. write(1}
write: writt onafile. e e write(3)
write: write to another user. . . , . . write{l)
writev: writcona file., . . writev(3N)
writing. /provide exclusive . . , . . locking(2)
WEtBE. « v« ¢ v v s e w e e e e openi{?)
wimp entry formats.+« utmp(4)
wimp: wtmp and wimp entry uimp{4)
wtmpfix: manipulate connect . ., . . fwtmp(IM)
wump: the gameof - . wump(6}
Xargs: construct argument xargs{1)

-50-

Fortran bitwise/ and, or,
programs to implement shared/
B, jl. n,

i0, i1, jn, ¥0,
compiler-compiler.

10, 31, jn, ¥0, ¥1,

abs, iabs, dabs, cabs,

Pernmusted Index

xor, nod, Ishift, rshift: bool(3F)
Xstr? extract strings from C xstr(l)
y0, y1, yn: Bessel functions. bessel(3IM)
yi, yo: Bessel functions. besssl(3M)
yacc:yetanother vaccll)
yn: Bessel functions. bessel(3M)
zabs: Foriran pbsoluie value. abs(3F)

-51-

INTRO(1) INTRO(1)

NAME
intro — introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands,
Certain distinctions of purpose are made in the headings:

(1) Commands of general utility.
(1C} Commands for communication with other systems.
(1G} Commands used primarily for graphics and computer-asided design.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options
and other arguments according to the following syntax:

name Loption(s)] [emdarg(s)]

where:
name The name of an executable file,
option — noargletter (5} or,

— argletter < > optarg
where < > is optional white space.

noargletter A single letter representing an option without an argument.
argletter A gingle letter representing an option requiring an argument.
optarg Argument (character string) satisfying preceding argletter.

cmdarg Path name (or other command argument) nor beginning with
— or, — by itself indicating the standard input.

SEE ALSO
“getopt(l), exit(2), wait(2), getopt{(3C).

DIAGNOSTICS
Upon termination, each command returas two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
*normal” termination) one supplied by the program (see wait{2) and
exit(2)). The former byt is 0 for normal termination; the latter is cus-
tomarily 0 for successful execution and non-zero to indicate troubles such
as erroneous parameters, bad or inaccessible data, or other inability to cope
with the task at hand. It is called variously "exit code”, "exit status”, or
"return code”, and is described only where special conventions are invelved.

BUGS
Regretfully, many commands do not adhere to the aforementioned syntax.

WARNINGS
Some commands produce unexpected results when processing files contain-
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator} within a line.

300(1)

NAME

Jo0(1)

300, 300s ~ handle special functions of DASI 300 and 300s terminals

SYNOPSIS

300 [+12] [-m] [—dtle]
s [+12] ~n) [~dtle]

DESCRIPTION

300 supports special functions and optimizes the use of the DASI 300 (GSI
300 or DTC 300) terminal; 300s performs the same functions for the DASI
300s (GSI 300s or DTC 300s) terminal. It converts haif-line forward, half-
line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special symbols. It permits
convenient use of 12.pitch text. It also reduces printing time 5 to 70%.
300 can be used to print equations neatly, in the sequence:

neqn file ... | nroff | 300

WARNING: if your terminal has a PLOT switch, make sure jt is turned on
before 708 is vsed.

The behavior of 300 can be modified by the optional flag arguments to
handle 12-pitch text, fractional line spacings, messages, and delays.

+12 permits wse of 12-pitch, 6 lines/inch text. DASI 300 terminals nor-
mally allow only two combinations: 10-pitch, 6 lines/inch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch combi-
nation, the user should turn the PITCH switch to 12, and use the
+12 option.

- controls the size of half-line spacing. A half-line is, by default,
equal to 4 vertical plot increments. Because each increment equals
1/48 of an inch, a 10-pitch line-feed requires 8 increments, while a
12-pitch fine-feed needs only 6. The first digit of » overrides the
default value, thus allowing for individual taste in thé appearance
of subscripts and superscripts.” For example, nroff half-lines could
be made to act az quarier-lines by using —2. The user could also
obtain appropriate half-lines for 12-pitch, 8 lines/inch mode by
using the option —3 alene, having set the PITCH switch to 12-
pitch.

—d¢lc controls delay factors. The default setting is —d3,90,30, DASI 300
' terminals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless,
non-identical characters. One null (delay) character is inserted in
2 line for every set of ¢ tabs, and for every contiguous string of ¢
non-blank, non-tab characters. If a line is lenger than [/ bytes,
1+ (total length)/20 nulls are inserted at the end of that line.
Items can be omitted from the end of the list, implying use of the
default values. Also, a value of zero for ¢ (¢} results in two null
bytes per tab (character). The former may be needed for C pro-
grams, the latter for files like /etc/passwd. Because terminal
behavior varies according to the specific characters printed and the
load on a system, the user may have to experiment with these
values to get correct output. The —d option exists only as a last
resort for those few cases that do not otherwise print properly.
For example, the file /etc/passwd may be printed using —d3,30,5.

-1-

300(1)

300(1)

The vatue —d0,1 is a good one to use for C programs that have
many levels of indentation.

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The stiy(1) modes nl® er or
nld cr3 are recommended for most uses.

300 can be used with the nroff — s flag or .rd requests, when it is necessary
to insert paper manually or change fonts in the middle of a document
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many {but not all}) cases, the following sequences are equivalent:

nroff —T300 files... and nroff files... | 300
atoff —T300—12 files ... and nroff files... | 300 +12

The use of 300 can thus often be avoided unless sperial delays or options
are required; in a few cases, however, the additional movement optimiza-
tion of 200 may produce better-aligned output.

The negn names of, and resulting output for, the Greek and special charac-
ters supported by 700 are shown in greek (5),

SEE ALSO

BUGS

450(1), eqn(l1}, mesg(l), nroff(1), sty(1), tabs{1), tbl(1), tplot(1G),
greek(5).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor, although good enough for drafts, the
latter has a tendency to slip when reversing direction, distorting Greek
characters and misaligning the first line of text after one or more reverse
line-feeds.

3008 (1) SEE 204 3008 (1)

4014 (1) 4014 (1)

NAME

4014 — paginator for the Tektronix 4014 terminal
SYNOPSIS

4004 [=t][-n][—eN])[—pL]I[fie]
DESCRIPTION

The output of 40/4 is intended for a Tektronix 4014 terminal; 4014
arranges for 66 lines to fit on the screen, divides the screen into N
columns, and contributes an eight-space page offset in the (default} single-
column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. TELETYPE® Teletypewriter Model 37 half- and reverse-line
sequences are interpreted and plotted. At the end of each page, 4014 waits
for a new-line {empty line) from the keyboard before continuing on to the
next page. In this wait state, the command !cmd will send the emd to the
shell.

The command line options are:
—t Don't wait between pages (useful for directing output into a file),

—n Start printing at the current cursor position and never erase the
screen.

~eN Divide the screen into N columns and wait after the last column.

—pi Set page length to L; L accepts the scale factors i (inches) and |
(lines); default is lines.
SFE ALSO
pr(1), (1), troff(1).

450(1) 450¢1)

NAME
450 — handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DAS] 450
terminal, or any terminal that is functionally identical, such as the DIABLO
1620 or XEROX 1700. It converts haif-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempis to
draw Greek letters and other special symbols in the same manner as
300(1). 450 can be used to print equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position
(either 10- or 12-pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an appropriate escape
sEQUence.

450 can be used with the araff —s flag or .rd requests, when it is necessary
to insert paper manually or change fonts in the middle of a document.
Instead of hitting the retorn key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of
one of the following:

nroff —T450 files ...
or
nroff —T450--12 files ...

The use of 450 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza-
tion of 450 may produce better-aligned output.

The negn names of, and resulting output for, the Greek and special charac-
ters supported by 450 are shown in greek (5).

SEE ALSO
300(1), eqn(l), mesg(l), nroff(1), stty(1), tabs(1), tbl{l), iplot(1G},
greek(5).

BUGS

Some special characters cannot he correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the
latter has a tendency to slip when reversing direction, distorting Greek
characters and misaligning the first line of text after one or more reverse
line-feeds.

ACCTCOM (1) ACCTCOM (1)

NAME

acctcom — search and print process accounting file(s}
SYNOPSIS

acctcom [[options] [hlel] . . .
DESCRIPTION

Acctcom reads file, the standard input, or /usr/adm/pacet, in the form
described by acct{4) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K}, and optionally, F (the fork/ exec flag: 1
far ferk without exec}, STAT (the system exit status), HOG FACTOR,
KCORE MIN, CPU FACTOR, CHARS TRNSFD, and BLOCKS READ (total
blocks read and written}.

The command name is prepended with a # if it was executed with super-
user privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a termi-
nal or /dev/null (as is the case when using & in the shell}), /usr/adm/pacct
is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normatly read forward, ie., in chronological order by process
completion time. The file /usr/adm/pacct is usually the current file to be
examined;, a busy systemi may need several such files of which all but the
current file are found in /usr/adm/pacct 7. The options are:

—a Show some average statistics about the processes selected. The
statistics will be printed after the ocutput records.

-b Read backwards, showing latest commands first. This option
has no effect when the standard input is read.

—f Print the fork/exec flag and system exit status columns in the
output,

-h Instead of mean memory size, show the fraction of tolal avail-

able CPU time consumed by the process during its execution.
This “‘hog factor’’ is computed as:
(total CPU time)/(elapsed time).

| Print columns containing the 1/0 counts in the output.
-k Instead of memory size, show total kcore-minutes.

—~m Show mean core size {the default).

-r Show CPU factor (user time)/(system-time + user-time).
-t Show separate system and user CPU times.

—-v Exclude column headings from the output.

=1 line Show only processes belonging to terminal /dev/ fine.

—un user Show only processes belonging to wser that may be specified by:
a user ID, a login name that is then converted to a user ID, a #
which designates only those processes executed with super-user
privileges, or ? which designates only those processes associ-
ated with unknown user I1Ds,

—g group Show only processes belonging to group. The group may be
designated by either the group ID or group name.

—§ time Select processes existing at or after time, given in the format
brlmin:secl].

ACCTCOM (1) ACCTCOM({(1)

FILES

—e time Select processes existing at or before time.

—8 time Select processes starting at or after fime.

—E time Select processes ending at or before time. Using the same time
for both —8 and —E shows the processes that existed at fime.

—n patiern Show only commands matching partern that may be a regular
expression as in ed(l) except that + means one or more
occurrences.

—-q Do not print any output records, just print the average statistics
as with the —a option.

—o ofile Copy selected process records in the input data format to ofile;
suppress standard output printing.

—H facror Show only processes that exceed factor, where factor is the
"hog factor” as explained in option —h above,

-0 sec Show only processes with CPU system time exceeding sec
seconds.

-C sec Show only processes with total CPU time, system pius user,
exceeding sec seconds.

—1I chars Show only processes transferring more characters than the cut-
off number given by chars.

fetc/ passwd
fusr/adm/pacct
fete/group

SEE ALSO

BUGS

ps(1), sul), acct(2), acct(4), utmp(4)

acct(1M), acctems(1M}, accteon({1M), acctmerg(1M), acctpre(1M),
acctsh(IM}, fwtmp(1M), runacct(1M) in the UniPlust System Adminisirator
Reference Manual.

Acctcom only reports on processes that have terminated; use ps(1)} for
active processes. If time exceeds the present time, then time is interpreted
as occurring on the previous day.

ADB(1) ADB(1)

NAME

_ adb — debugger

SYNOPSIS
adb [-w] [objfle [corfile]]

DESCRIPTION]
adb is a general purpose debugging program. It may be used to exmmine files
and to provide a controlled environment for the execution of UNIX programs.

Objfile is normally an executable program file, preferably containing a symbol
table; if not, then the symbolic features of adb cannot be used, although the file
can still be examined, The default for objfile is a.out. corjile is assumed to be
a core image file produced after executing objfile ; the defanlt for corfile is core,
Requests o adb are read from the standard input and responses are to the stan-
dard cotput. If the —w flag option is present, then both objfile and corfile are
created (if necessary) anxl opened for reading and writing so that files can be
modified using adb. adb ignores quit signals; an interrupt causes return to the
next adb commmnd.
To exit adb: use $qor $Q or -d.
In general, requests to adb are of the form

[address] [,count] [command] [;]

If address is present, then *‘dot’’ i$ set to address, Initially, dot is set to 0. For
most commands, count specifles how many times the command will be exe-
cuted. The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context in which it is used, If a
subprocess is being debugged, then addresses are interpreted in the usual way in
the address space of the subprocess. If the operating system is being debugged
either post-mortem or using the special file /dev/kmem to examine interactively
and/or modify memory, the maps are set t0 map the kemel virtual addresses.
For further details of address mapping, see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot, incremented by the current increment,

. The value of dot, decremented by the current increment,
" The last address typed.

integer A number. The prefix 0 (zero) forces interpretation in octal radix; the
prefixes 0d and 0D force interpretation in decimal radix; the prefixes
Ox and 0X force interpretation in hexadecimal radix. Thus 020 =
0d16 = 0x10 = 16. If no prefix appears, then the default radix is
used; see the $d command, The default tadix is initially hexade-
cimal. The hexadecimal digits are 0123456789abcdefABCDEF, with
the obvious values. Note that a hexadecimal number the most
significant digit of which would otherwise be an alphabetic character

Page 1 May 1988

ADB(1)

ADB(1)

must have a Ox or 0X prefix (or a leading zero, if the default radix is
hexadecimal),

integer fraction

F) *

cece
<name

symbaol

A 32-bit floating point number.

‘The ASCII value of up to 4 characters. \ may be used to escape a *.
The value of name, which is either a variable name or a register
name, adb maintaine a number of variables (ses VARIABLES) named
by single letters or digits. If name is a register name, then the value
of the register is obtained from the system header in corfile. The
register names are those printed by the $r command,

A symbol is a sequence of upper or lowercase letters, underscores or
digits, not starting with a digit. \ may be used to escape other charac-
ters. The value of the symbol is taken from the symbal table in
objfile. An initial _ or = will be prefixed to symbol, if needed.

_symbol In C, the **true name” of an extemnal symbol begins with _ . It may

be necessary 1o uiter this name to distinguish it from internal or hid-
den variables of a program,

(exp)} The value of the expression exp.,
Monadic Operators
*2xp The contents of the location addressed by exp in corfile.
@exp The contents of the location addressed by exp in objfile,
—-exp Integer negation.
~exp Bitwise complement.
#exp Logical negation.
Dyadic operators are left associative and are less binding than monadic opera-
tors.
el+e2 Integer addition.
el—e2 Integer subtraction.
el+¢2 Integer multiplication,
el%e2 Integer division.
el&e2 Bitwise conjunction.
el|e2 Bitwise disjunction,
el#e2 ¢l rounded up © the next multiple of 2.
COMMANDS

Most commands consist of a verh followed by a modifier or list of modifiers.

The fo

llowing verbs are available. (The commands “‘?"' and *‘/*’ may be foi-

lowed by ““«’*; see ADDRESSES for further details.)

May 1988

Page 2

ADB(1) ADB(1)

Y Locations starting at address in objfile are printed sccording to the
format £, Dot i8 incremented by the sum of the increments for each
format letter (q.v.).

if Locations starting at address in corjile are printed according to the
format f, and dot is incremented as for 7",

=f The value of gddress iiself iz printed in the styles indicated by the
format f, (For i format, **?"’ is printed for the parts of the instruction
that reference subsequent words.)

A format consists of one or more characters that specify a style of peinting,
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format, dot is incre-
mented by the amomnt given for each format letter. If no format is given, then
the last format is used. The format letsers available are as follows.

n Disassemble the addressed instruction,

2 Print 2 bytes in octal. All octal numbers output by adb are pre-
ceded by O.

4 Print 4 bytes in octal,

2 Print in signed octal,

4 Print long signed octal,

2 Print in decimal.

4 Print long decimal.

2 Print 2 bytes in hexadecimal.

4 Print 4 bytes in hexadecimal.

2 Print 2 an unsigned decimal numbes,

4 Print long unsigned decimal.

4 Print the 32-bit value as a floating point number.

8 Print double ficating point.

1 Print the addressed byte in octal,

1 Print the addressed character.

1 Print the addressed character using the standard escape convention
where control characters are printed as X and the delete character
is printed as 7.

r Print the addressed characters until a zero character is reached.

n Print a string using the "X escape convention (see C above), The
n is the length of the string including its zero eerminator,

4 Print 4 bytes in date format (see ctime(3)).

O Print the value of dot in symbolic form. Symbols are checked 0
ensure that they have an appropriate type as indicated below.

/ global data symbol

? global sext symbol

= global absolute symbol
p 4 Print the addressed value in symbolic form using the same rules for
symbol lookup as a.

LR A Y- T R LE-L =] -

o s

Page 3 May 1988

ADB(1) ADB(1)

t 0 When preceded by an integer tabs to the next appropriate tab stop. For
example, 8¢ moves to the next 8-space tab stop.
0 Print a space.
0 Frint a newline.
«" 0 Print the enclosad string,
Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed,
- Dot is decremented by 1, Nothing is printed.

P IE™

newline
Repeat the previous command with a count of 1.
(2 value mask
Words ing at dot are masked with mask and compared with walue

until a match 15 found. H L is used, then the match is for 4 bytes at a time
instead of 2, If no match is found, then dot is unchanged; otherwise, dot is
set to the masched location. If mask is omitted, then —1 is used.

[21w value ...
Write the 2-byie value into the addressed location, If the command is W,
write 4 bytes. Odd addresses are not atlowed when writing to the subpro-
cess address space.

[2/1m b1 el f1[?1
New values for (b1 ,el ,f1) are recorded, If less than three expressions are
given, then the remaining map parameters are left unchanged. If more
than 3 expressions are given, the values of (52, 2,/2) (b3, €3 ,/3) and 50
on, are changed, If the “‘7"* or **#* is followed by **«’*, then the first seg-
ment (bl ,e21,f1) of the mapping is skipped, and the second and subse-
quent segments are changed instead. (There are as many (bn, en,fn) tri-
ples as you have sections in your program.) If the list is terminated by
P or 7, then the file (objfile Or corfile, respectively) is used for subse-
quent requests. (So that, for example, “/m?*’ will cause “‘/"’ to refer to
objfile.)

> names
Dot is assigned to the variable or register named. This command is often
used in the form constant > name. This form of the command can be used
to enter 96-bit “'IEEE Extended Precision” numbers into the floating-point
data registers fp0-fp7. For example:

0x3FFF00008000000000000000 > £fp0

pats the value 1.0 into fp0. When this form of the command is used, only the
first 32 bits of the constant are stored in dot. See MC68881 Floating Point
Coprocessor User's Manual (available from Motorola Literature Distribution
Center, part number MC68881UM/AD), section 2.4, **Extended Real,”’ p. 211,
for a description of IEEE Extended Precision format,

May 1938 Page d

ADB(1) ADB(1)

A shell is called to read the rest of the dine following ““!1".

Smodifier
Miscellanecus commands. The available modifiers are;

<f Read commands from the file /. If this command is executed in a file,
further commands in the file are not seen, K f is omitted, the current
input seream is terminated. If a cownt is given, and is zero, the com-
mand will be ignored. The value of the count will be placed in vari-
able 9 before the first command in f is executed.

«<jf Similar 16 < except it can be used in a file of commands without caus-
ing the file to be closed. Variable 9 iy saved during the execution of
this command, and restored when it completes. There is a (small)
finite limit to the number of <« files that can be open at once.

»f Append cutput o the file f, which is created if it does not exist. If £ is
omitted, output is returned to the terminal.

? Print process ID, the signal which caused stoppage or termination, as
well ag the registers as $r. This is the default if modifier is omitted.

r Print the general registers and the instruction ackiressed by pe. Dot is
set to pe.

f Print the floating point data registers fp8-fp7 in IEEE Extended Pre-

cislon (see »name, above, for definition), and exponential notation,

along with the floating-point control registers fper, fpsr, and fplar.

Print all breakpoints and their associated counts and commands,

C stack backtrace, If address is given, then it is taken as the address

of the current frame (instead of aT). If C is used, then the names and

(16 bit) values of all antomatic and static variables are printed for

each active function. If couns is given, then only the first couns

frames are printed.

d Set the default radix to address and report the new value. Note that

address is interpreted in the (old) current radix. Thus 108d never

changes the defanlt radix, To make decimal the default radix, use
0d10%d.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address {defaulk 255).

Regard all integets subsequently input as octal.

Reset integer input as described in EXPRESSIONS.

Exit from adb.

Print all nonzero variables in octal.

Print the address map.

oo

T geRcAaceagn

Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is executed count—1-times
before causing a stop. Each time the breakpoint is encountered the
command c is executed. If this command is omitted or sets dot to

Page S | - May 1988

ADB(1)

-

k
VARIABLES

ADB(1)

zero then the breakpoint causes a stop.

Delete breakpoint at address.

Run objfile as a subprocess. Ifad&-esxlsglmexphcxﬂymenme
program is entered at this point; otherwiss, the program is entered at
its standard entry point. count specifies how many breakpoints are w
be ignored before stopping. Arguments to the subprocess may be
supplied on the same line as the command, An argument starting
with < or > causes the standard input or catput to be established for
the command. All signals are tumed on on entry (0 the subprocess.
The subprocess is continmed with signal ses (see signal(3)). If
address is given, then the subprocess is continued at this address. If
no signal i specified, then the signal that caused the subprocess to
stop is sent. Breakpoint skipping is the same as for r.

As for ¢ except that the subprocess is single stepped count times. If
there iz no current subprocess then objfile is run as a subprocass as
for r. In this case no signal can be sent; the remainder of the line is
treated as arguments o the subprocess.

The ciunrent subprocess, if any, is terminated,

adbmvidasam:berofvmables Named variables are set initially by adb
but are not used subsequently,. Numbered variables are reserved for communi-
cation as foliows.

0
1
2
9

The last value printed.

‘The last offset part of an instruction source.
The previous value of variable 1.

The count on the last $< of $<< command.

On entry, the following are set from the system header in the corfile. If corfile
does pot appear to be a core file, then these values are set from objfile.

b
d
]
m
]
t

ADDRESSES

‘The baze address of the data segment,

The data segment size.

Themt:ypomt.

The ‘magic’* nsumber (0407, 0410, 0413).
The stack segment size.

The text segment size,

Theadd:essmaﬁleassoaamdwnhawnmaddmss:sdetmnmedbyamap—
ping associated with that file. Each mapping is represented by = triples (b1, e,

), @2,

€2, f2), ... {bn, en, fn), comesponding to the number of sections in

your object file, and the file address corresponding 0 a written address is cal-
culated as follows,

bl<address<el w> file address=address+fI-bl, otherwise,
b2%address<e2 w> file address=address+f2—b2, and so on,

May 1988

Page 6

ADRB(1) . ADB(1)

otherwise, the requested address is not legal. In some cases (¢.g., for programs
with separated 1 and D> space), the two segments for a file may overlap, Ifa ?
or / is followed by an », then the first triple is not ysed.
The initial setting of both mappings is suitable for normal a.out and core files.
If either file is not of the kind expected, then for that file 57 is set to 0, ef is set
to the maximum file size and /7 is set to O; in this way the whole file can be
examined with no address translation.
So that adb may be used on large files, all appropriate values are kept as signed
32-bit integers.
EXAMPLE
. adb objl
will invoke adb with the executable object “‘obj1" when adb responds with
either
a.out file
ready

a.out (COFF format)
s.out a.ont
ready
the request:
main, 07
will cause 16 (10 hex) instructions to be printed in assembly code, starting from
location ‘‘main®’.
FILES
/bin/adb
a.out
core
SEE ALSO
a.out(4), core(4).
DIAGNOSTICS
adb when there is no cutrent command or format, Comments about inaccessi-
ble files, syntax errors, abnormal termination of commands, etc. Exltstatus isQ,
unless last command failed or returned nonzero stats,
BUGS
Use of # for the unary logical negation operator is peculiar.
There doesn’t seem 10 be any way to clear all breakpoinits.
In certain cases, disagsembled code cannot be used directly as input to as. This
is because adb gives more useful information than as accepts. For example,

explicit register names are given in the disassembly of movm and fmovmn
instructions.

Page 7 May 1988

()

ADMIN{(1) ADMIN{(1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [~n] [(-ilnamell [-rrell [—tlnamell [—Filag[flag-vall)
{—d?a[g[ﬂalg-g]alll [—alogin] [—elogin] [—m[mrlist]] [-y [comment]]
—h] [-z es

DESCRIFTION

Admin is used to create new SCCS files and change parameters of existing
ones. Arguments to admin, which may appear in any order, consist of
keyletter arguments, which begin with —, and named files (note that SCCS
file mames must begin with the characters s.). If a named file does not
exist, it is created, and its parameters are initialized according to the
specified keyletter arguments. Parameters not initialized by a keyletter
argument are assigned a default value. If a named file does exist, parame-
ters corresponding to specified keyletter arguments are changed, and other
parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-3CCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed.
Again, non-5SCCS files and unreadable files are silently ignored.

The keyletier arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

=il namel The name of a file from which the text for a new SCCS file is
to be taken. The text constitutes the first delta of the file
(see =r keyletier .for delta numbering scheme). 1If the i
keyletter is used, but the file name is omitied, the text is
obtained by reading the standard input until an end-of-file is
encountered. If this keyletter is omitted, then the SCCS file
is created empty (in this case, you need to explicitly use the
—n flag). Onily one SCCS file may be created by an admin
command on which the i keyletter is supplied. Using a sin-
gle admin to create two or more SCCS files requires that they
be created empty (no —i keyletier). Note that the —i
keyletter implies the —n keyletter.

—rsreffdevi The rekease [and levell into which the initial delta is inserted.
This keyletter may be used only if the —i keyletter is also
used. If the —r keyletter is not used, the initial delia is
inserted into release 1. The default level of the initial delta
is 1 (by default initial deltas are named 1.1},

—t[nenm] The wame of a file from which descriptive text for the SCCS
file is to be taken. If the —t keyletter is used and admin is
creating a new SCCS file {the —n and/or —i keyletiers also
used), the descriptive text file name must also be supplied.
In the case ol existing SCCS files: (1) a —t keyletter without

Page 1 July 12, 1985

ADMIN(1)

—{flag

July 12, 1985

ADMIN (1)

a file name causes removal of descriptive text (if any)
currently in the SCCS file, and (2) a ~1t keyletter with a file
name causes text (if any)} in the named file to replace the
descriptive text (if any) currently in the SCCS file.

This keyleiter specifies a flag, and, possibly, a value for the
fiag, to be placed in the SCCS fle. Several f keyletters may
be supplied on a single admin command line. The allowable
Jflags and their values are:

b

ceeif

fileor

d 51D

ilsi

Liist

Allows use of the —b keyletter on a get(l} com-
mand to create branch deltas.

The highest release (i.e., "ceiling"}), a number less
than or equal to 9999, which may be retrieved by a
2et(1) command for editing. The default value for
an unspecified ¢ flag is 9999,

The lowest release (i.e., "floor"), a number greater
than 0 but less than 9999, which may be retrieved
by a get(1) command for editing. The default value
for an unspecified f flag is 1.

The default delta number (SID) to be used by a
get(1) command.

Causes the "No id keywords (ge6)" message issued
by ger(1) or delta(l) to be treated as a fata) error.
In the absence of this flag, the message is only a
warning. The message iz issued if no SCCS
identification keywords (see ger(1)) are found in the
text retrieved or stored in the SCCS file. If a value is
supplied, the keywords must exactly match the given
string, however the string must contain a keyword,
and no embedded newlines.

Allows concurrent ger(l) commands for editing on
the same SID of an $CCS file. This allows multiple
concurrent updates to the same version of the SCCS
file.

A list of releases 1o which deltas can no longer be
made (get —e against one of these "locked" releases
fajls). The fist has the following syntax:

<list> ;1= <range> | <list> , <range>
<range> "= RELFASE NUMBER | a

The character a in the /ist is equivalent to specifying
ail releases for the named SCCS file.

Causes delta(l) to create a "null® delta in each of
those releases {if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as "anchor peints” so that branch delias
may later be created from them. The absence of
this flag causes skipped releases to he non-existent

Page 2

ADMIN{(1)

Page 3

—dflax

—alogin

—elogin

—yleommeni

ADMIN (1)

in the SCCS file, preventing branch deltas from being
created from them in the future.

gqrexr User definable text substituted for all occurrences of
the %Q% keyword in SCCS file text reirieved by
get (1}

mmod Module name of the SCCS file substituted for all
accurrences of the %M% keyword in SCCS file text
retrieved by ger{l). If the m flag is not specified,
the value assigned is the name of the 5CCS file with
the leading s. removed.

ttype Type of module in the SCCS file substituted for all
occurrences of %Y% Kkeyword in SCCS hle text
retrieved by ger(1).

vipgm] Causes detia{(l} to prompt for Modification Request
(MR} numbers as the reason for creating a delta.
The optional value specifies the name of an MR
number validity checking program {see dela{1)}).
(If this flag is set when creating an SCCS file, the m
keyletter must also be used even if its value is null).

Causes removal {deletion) of the specified flag from an
SCCS file. The —d keyletter may be specified only when
processing existing SCCS files. Several —d keyletters may be
supplied on a single admin command. See the —f keyletier
far allowable fleg names.

Ltist A flist of releases to be "unlocked". See the —f
keyletiter for a description of the 1 flag and the syn-
tax of a list.

A fogin mame, or numerical UNIX system group ID, to be
added io the list of users which may make deitas {changes)
to the SCCS file, A group ID is equivalent to specifying all
Jogin names common to that group ID. Several a keyletters
may be used on a single admin command line. As many
fogins, or numerical group 1Ds, as desired may be on the list
simultaneously. IF the list of users is empty, then anyone
may add deftas. If fogin or group ID is preceded by & ! they
are to be denied permission to make deltas.

A login name, or numerical group 1D, to be erased from the
list of users allowed to make deltas (changes)} to the SCCS
file. Specifying a group ID is equivalent to specifying all login
names common to that group ID. Several ¢ keyletters may
be used on a single admin command line.

The comment text is inserted into the SCCS file as a comment
for the initial delta in a manner identical to that of deka (1),
Cmission of the ~y keyletter results in a default comment
line being inserted in the form:

date and time created ¥/ MM/ DD I MM SS by login

July 12, 1985

ADMIN(1) ADMIN (1)

If the comment contains spaces, you must enclose the entire
comment in double gquotes.

The —y keyleiter is valid only if the —i and/or —n
keyleiters are specified {i.e., a new SCCS file is being
created).

—mlmrlis] The list of Modification Requests (AR} numbers is inserted
inte the SCCS file as the reason for creating the initial delta
in a manner identical to defra (1). The v uag must be set
and the MR numbers are validated if the v flag has a value
(the name of an MR number validation program}. Diagnos-
tics will occur if the v flag is not set or M# validation fails.

—h Causes admin to check the structure of the SCCS file (see
seesfile(5)), and to compare a newly computed check-sum
(the sum of all the characters in the SCCS file except those
in the first line} with the check-sum that is stored in the first
line of the SCCS file. Appropriate error diagnostics are pro-
duced.

This keyletter inhibits writing on the file, so that it nullifies
the effect of any other keyletters supplied, and is, therefore,
only meaningful when processing existing files.

-2 The SCCS file check-sum is recomputed and stored in the
first line of the SCCS file (see —h, above).

Note that use of this keyletter on a truly corrupted file may
prevent future detection of the corruption.

EXAMPLE

FILES

admin -ifilel s.filel
creates a new fite in SCCS format named "s.filel”, from "filel™.

The last component of all SCCS file names must be of the form s. file-name,
New SCCS files are given mode 444 (see chmed(1}). Write permission in
the pertinent directory is, of course, required to create a file. All writing
done by admin is to a temporary x-file, called x.fife-name, (see ger(1)),
created with mode 444 if the admin command is creating a new SCCS file,
or with the same mode as the S5CCS file if it exists. After successful execu-
tion of admin, the SCCS file is removed (if it exists), and the x-fle is
renamed with the name of the SCCS file. This ensures that changes are
made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and
that SCCS files themselves be mode 444, The mode of the directories
allows only the owner to modify SCCS files contained in the directories.
The mode of the SCCS files prevents any modification at all except by SCCS
commands.

If it should be necessary to patch an SCCS file for any reason, the mode
may be changed to 644 by the owner allowing use of e (1}, Care must be
taken! The edited file should afways be processed by an admin —h to check
for corruption followed by an admin —z to generate a proper check-sum.
Another admin —h is recommended to ensure the SCCS file is valid.

July 12, 1985 Page 4

ADMIN(1) ADMIN (1)

Admin also makes use of a transient lock file (called z./fife-name), which is
used to prevent simulianeous updates to the SCCS file by different users.
See ger (1} for further information.

SEE ALSO
delta(l), ed(1), gei(1}, help(1}, prs(1), what{1}, sccsfile(4).
SCCS in the Programming Tovls Guide.

DIAGNOSTICS
Use help(1) for explanations.

Page 5 July 12, 1985

AR(1) Aly(l)

NAME
ar — archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] archivename [filename | ...

DESCRIPTION
Ar maintains groups of files combined into a single archiy® file. Its main use is
to create and update library files as used by the link £ditor. It can be used,
thongh, for any similar purpose.
‘When ar creates an archive, it creates headers in a férmat that is portable across
all machines. The portable archive format and sgucture are described in detail
in ar{4). The archive symbol table {described iy ar(4)) is used by the link edi-
tor (ld(1)) to effect multiple passes over libragles of object files in an efficient
marmer, Whenever the ar(1) command is ngéd to create or update the contents
of an archive, the symbol table is rebuilt. /The s option described below will
force the symbol table to be rebuilt.

Unlike command arguments, the comméand key is a required part of ar's com-
mand line. The key is formed witl/ ome character from the following set:

The megnings of the key
d Delete the named files ffom the archive file.

r Replace the named files in the archive file. If the optional character w is
used with r, thea o i

fname argument mwust be present and specifies that new
ﬁlesaretobe heed after (a) or before (b or i) posname. Otherwise new

embers are already in the archive. Useful only to avoid qua-

avior when creating a large archive piece-by-piece.

Pnnta able of contents of the archive file. If no names are given, all files
e/archive are tabled. If names are given, only those files are tabled.

Page 1 September 24, 1987

AR(1) AR(1)

NAME

ar — archive and library maintainer for portable archives
SYNOPSIS

ar key {clsuv] [abi posname] afile name ...

DESCRIPTION
ar maintaing groups of files combined into a single archive file. Its main use is
10 creats and npdate library files as used by the link editor. It can be used,
though, for any similar purpose.
When ar creates an archive, it creates headers in a format that is portable across
all machines. ‘The portable archive format and strecture are described in detail
in ar(d). The archive symbol table described in ar(4) is used by the link editor,
(1), to effect multiple passes over libraries of object files in an efficient
manner, Whenever the ar(1) cormmand is used to create or update the contents
of an archive, the symbol table is rebuilt. The symbol table can be forced to be
rebuilt by the s option, described below.,
Key is one character from the set dmpqrtx. Key may optionally be con-
catenated with one or more of elsuv or abl. Afile is the archive file. The names
are constituent files in the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file, If the optional character w is
used with r, then only those files with modified dates later than the archive
files are replaced. If an optional positioning character from the set abi is
used, then the posname argument must be present and specifies that new
files are to be piaced after (a) or before (b or i) posname. Otherwise, new
files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid, The command does not check whether
the added members are already in the archive. Useful only to avoid qua-
dratic behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no narnes are given, all files
in the archive are tabled. If names are given, only those files are tabled

Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character
is present, then the posname argument must be present and, as in r,
specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive are
extracied. In neither case does x alter the archive file.

v Verbose. Under the verbose flag option, ar gives a file-by-file description

. of the making of a new archive file from the old archive and the consti-
tuent files, When used with t, it gives a long listing of alt information
about the files. When used with x, it precedes each file with a name.

Page 1 May 1988

AR(1} AR(1)

¢ Create. Normally ar creates afile when it needs to, The create flag option
suppresses the normal message that is produced when afile is created.

| Local. Normally sr places its ternporary files in the directory famp. This
fiag option causes them to be placed in the local directory.

s Symbol table creation, Force the regeneration of the archive symbol table
even if ar(1) is not invoked with a command which will modify the
archive contents. This command is useful to restore the archive symbol
table after the strip(l} command has been used on the archive.

EXAMPLE
arre

creates an archive file,
FILES
/bin/ar
/tmp/ar* temporaries
SEE ALSO
1d(1), lorder(1), strip(1), tar(1), a.out(4), ar(4).
BUGS
If the same file is mentioned twice in an argument list, it may be put in the
archive twice,

May 1988 Page 2

AR(D) AR(1)

Vs

rd

p Print the named files in the archive.

t m Move the named files to the end of the archive. If a'positioning character
— is present, then the posname argument mustbépresem and, as in T,
specifies where the files are to be moved.

x Bxtract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the additional key arguments are as follows:

v Verbose. Under the verbose optiop; ar gives a file-by-file description of
the making of a new archive file the old archive and the constiment
files. When nsed with t, it gives a long listing of all information about the
files. When uvsed with x, it edes each file with a name.

¢ Create. Normally ar c afile when it needs to. The create option
suppresses the normal m that is produced when afile is created.

its temporary files in the directory /tmp. This
option causes them ty'be placed in the local directory.

s Symbol 1able creation. Force the regeneration of the archive symbol table
even if ar(l) i§/not invoked with a command which will modify the

| archive contents. This command is useful to restore the archive symbol

e table after ﬂlersxrip(l) command has been used on the archive.

FILES

Amp/ar+ tempou:énes
SEE ALSO
14(1), lorder(d), strip(1), a.out(4), ar(4).
BUGS /
If the sagie file is mentioned twice in an argument list, it may be put in the
archive tvice.

/

September 24, 1987 Page 2

AR5.0(1}

NAME

System V a.out format oniy ARS5.0(1)

ar5.0 — archive and library maintainer

SYNOPSIS

ar5.0 [uvnbaill [mrxtdpg) [posname) archivename filename(s) ...

DESCRIPTION
The archive command ar3.0 maintains groups of files combined into a sin-
gle archive file. Its main use is to create and update library files as used by
the loader. However, ar3.(can be used for any similar archiving purpose.
Archives often congist of unlinked program modules.

Key is one character from the set mrxtdpq, optionally concatenated with
one or more of uvnbail. Archivename is the archive file. The fifename(s)
are constituent files in or destined for the archive file. The meanings of the
key characters are:

d
r

EXAMPLE

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u
is used with r, then only those files with modified dates later than the
archive files are replaced. If an optional positioning character from the
set abi is used, then the posmame argument must be present and
specifies that new files are 10 be placed after (a} or before (b or I)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive file, Optional
positionlng characters are invalid. The command deoes not check
whether the added members are already in the archive. Useful only to
aveid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning char-
acter is present, then the posmame argument must be present and, as in
1, specifies where the files are to be moved.

Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

Verbose. Under the verbose option, arS5.{ gives a file-by-file descrip-
tion of the making of a new archive file from the old archive and the
constituent files. When used with t, it gives a long listing of all infor-
mation about the files. When used with p, it precedes each file with a
name.

Create. Normally as3.0 will create afile when it needs to. The create
option suppresses the normal message that is produced when afile is
created,

Local. Normally ar3.0 places its temporary files in the directory /tmp.
This option causes them to be placed in the local directory.

ar5.0 rv libar.a text.o

places file "text.c" in archive "libar.a".

ARS50(1) System V a.out format only AR5.0(1)

ar5.0 bm filel archivename file2

changes the location of a file inside an archive. "File2" is the file to be
moved. "File2" is moved to a new position before *filel®.

FILES
ftmp temporaries

SEE ALSO
1d5.0(1), ar5.0(4).

BUGS
if the same file is mentioned twice in an argument list, it may be put in the
archive twice.
Sufficient disk space must be present to make an entire copy of the archive
or the ar5.0 command will fail.

As(1) __ AS(1)

NAME
as — common assembler

SYNOPSIS
as [—o objfile] [-n] [-m] [-R] [-V] filename

DESCRIPTION
The as command assembles the named file. THe following flags may be
specified in any order,

=o obifile Put the output of assembly in obffile. By default, the output
filename is formed by removing Ahe .s suffix, if there is one,
from the input filename and appeghding a .o suffix.

-n Turn off long/short address
optimization takes place.

timization. By default, address

-m Run the m4 macro pre-procgssor on the input to the assembler.

-R Remove {(unlink) the in;
This option is off by def!

-V Write the version nu
standard error output.

t file after assembly is completed.
1t.

er of ihe assembler being run on the

FILES

fust/tmp/asil-6] XXXXXX iemporary files
SEE ALSO

1d(1}, m4(1), nm{1}, strip(}), a.out(4}.
WARNING

If the —m (m4 macro pre-processor invocation) option is used, keywords
for m4 {see m4(1)} canpfot be used as symbols {variables, functions, labels)
in the input file becaugk m4 cannot determine which are assembler symbols
and which are real m4 macros.

BUGS
Arithmetic expressjons are permitted to have only one forward referenced
symbol per expresgion.

Page | July 22, 1985

AS(1) AS(1)

NAME
88 — common assembler
SYNOPSIS
a3 [-m] (=] (o objfile] [-R] [-V] filename
DESCRIFTION
The as command assembles filename. The following flags may be specified in
any order,
-0 objfile Put the output of assembly in objfile. By default, the cutput
filename is formed by removing the .3 suffix, if there is one, from
the input filename and appending 2 .o suffix,

-n Turn off long/short address optirnization, By default, address
-m Run the m4 macro pre-processor on the input to the assembler.
R Remove (unlink) the input file after assembly is completed. This
flag option is off by default,
-V Write the version number of the assembler being run on the standard
erTor outpat.
FILES
/binfas
fasr/mp/as[1-6]X XXX temporary files
SEE ALSOD
adb(1), id(1), md(1), nm(1), strip(1), a.out(4).
WARNING

If the —m (m4 macro preprocessor invocation) flag option is used, keywords for
m4 cannot be used as symbols (variables, functions, labels) in the input fle
because m4 cannot determine which are assembler symbols and which are real
mé4 macros. Seem4(1).

BUGS
Arithmetic expressions are permitted to have only one forward referenced sym-
bol per expression.

Page 1 May 1988

AS5.0{1) System V a.out format only AS5.0(1)

NAME
a55.0 — assembler

SYNOPSIS
855.0 [—oobifile] [—+] [—1] [name ...]

DESCRIPTION
As5.0 assembles the named files, or the standard input if no file name is
specified,

All undefined symbels in the assembly are treated as global.

The relocatable cutput of the assembly is left on the file obifile; if that is
omitted, a.out5.0 is used.

The —v option interprets 68010 instruction mnemonics.

The —1 option produces an assembly listing on file obifife.fsr. If the —1
option is specified and no —o parameter is specified, the assembly listing is
placed on a.is:.

EXAMPLE
as5.0 —o file.o filea fileb flec

would assemble the three named files and put the output of the assembly

into "file.o".
FILES
ftmp/ass default temporary file
a.out default resultant object file
a.lst default assembly listing file
SEE ALSO

1d5.0(1), nm3.0(1), a.out5.0(4)
AS in the Programming Guide.

ASA{1) ASA (1)

NAME
asa — interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage
control characters. It processes either the fifes whose names are given as
arguments or the standard input if no file names are supplied. The first
character of each line is assumed to be a control character; their meanings
are:

* ' (blank) single new line before printing
0 double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with " ‘. The first character of a line is not printed. If any such lines
appear, an appropriate diagnostic will appear on standard error. This pro-
gram forces the first line of each input file to start on a new page.

EXAMPLE
To correctly view the output of FORTRAN programs which use ASA carriage
control characters, asa could be used as a filter, thus:

a.out | asa | lp

and the output, properly formatted and paginated, would be directed to the
line printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO
efl(1), £77(1), fsplit{1)} ratfor(1).

AT(1) AT(1)

NAME
at, batch — execute commands at a later time

SYNOPSIS
at time [date] [+increment]
at —r job ...
at -1 [job ...]

batch

DESCRIFTION
At and batch read commands from standard input o be executed at a later time.
At allows you to specify when the commands should be execuied, while jobs
queued with batch will execute when system load level permits. A7 —r removes
jobs previously scheduled with a¢. The —1 option reports all jobs scheduled for
the invoking user,

Standard output and standard ermor output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory,
umask, and ulimit are retained when the commands are executed. Open file
descriptors, traps, and priority are lost.

Users are permitted to use a¢ if their name appears in the file
fusr/lib/cron/at.allow, If that file does not exist, the file /usr/lib/cron/at.deny
is checked to determine if the user should be denied access w at. If neither file
exists, only root is allowed t0 submit a job. The allow/deny files consist of one
user name per line.

The time may be specified as 1, 2, or 4 digits, One and two digit numbers are
taken to be hours, four digits to be hours and minutes. The time may alternately
be specified as two numbers separated by a colon, meaning hour:minute. A
suffix am or pm may be appended; otherwise a 24-hour clock time is under-
stood. The suffix zule may be used to indicate GMT. The special names noon,
midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a day
number (and possibly year number preceded by an optional comma) or a day of
the week (fully spelled or abbeeviated to three characters). Two special
‘‘days”’, today and tomorrow are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and tomorrow is
assumed if it is less. If the given month is less than the current month (and no
year is given), next year is assumed.

Page 1 September 24, 1987

AT(1) AT(1)

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at B:15am Jan 24
atnow + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to standard error.

Batch submits a baich job. It is almost equivalent to “*at now"’, but not quite.
For one, it gees into a different quene. For another, “*at now”” will respond
with the error message too late.

At —r removes jobs previously scheduled by at or batch. The job number is the
number given to you previously by the af or betch command. You can also get
job numbers by typing af —1. You can only remove your own jobs unlass you
are the super-user.

EXAMPLES
‘The at and baich commands read from standard input the commands 1o be exe-
cuted at a later time. Sh(1) provides different ways of specifying standard
input. Within your commands, it may be nseful to redirect standard output.

This sequence can be used at a terminal;
batch
uroff filename >outfile
<control-D> (hold down ’conirol’ and depress *I’)

This sequence, which demonstrates redirecting standard error t¢ a pipe, is use-
ful in a shell procedure (the sequence of output redirection specifications is
significant):

batch <<!

nroff filename 2>&1 >outfile | mail loginid

!

To have a job reschedule itself, invoke @t from within the shell procedure, by

including code similar to the following within the shell file:
echo "sh shelifile” | at 1900 thursday next week

September 24, 1987 Page 2

AT(1) AT(1)

FILES
JustAlib/cron main cron directory
fusrflib/cron/at.allow list of allowed users
Jusrflib/cron/at.deny list of denied users

Jusr/lib/cron/queue scheduling information
Jusr/spool/cron/atjobs spool area
SEE ALSO :
kill(1), maik(1), nice(1), ps(1), sh(1), cron(1M).
DIAGNOSTICS

Complaints about varicus syntax errors and times out of range.

Page 3 September 24, 1987

AWK (1) AWK(1)

NAME

awk — pattern scanning and processing language
SYNOPSIS

awk [—Fc] [prog] [parameters] {files]
DESCRIPTION

Page 1

Awk scans each input fife for lines that match any of a sel of patterns
specified in progz, With each patiern in prog there can be an associated
action that will be performed when a line of a file matches the pattern. The
set of patterns may appear literally as prog, ot in a file specified as —§ fife.
The prog string should be enclosed in single quotes ('} to protect it from
the shell.

Paramerers, in the form x=_. y=_.. etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The
file name — means the standard input. Each line is matched agaiiist the
pattern portion of every paitern-action statement; the associated action is
performed for each matched pattern.

An input line is made up of fields separated by white space. (This default
can be changed by using FS; see below). The fields are denoted 8§, $2, ...;
$0 refers to the entire line.

A pattern-action statement has the form:
pattern | action }

A missing action means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the fol-
lowing:

if { conditional } statement [else statement)

while (conditional) statement

for { expression ; conditional ; expression) statement
break

continue

{ [statement] ...}

variable = expression

print [expression-list] [> expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns-on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lings, or right braces. An
empty expression-list stands for the whole line. Expressions take on string
or numeric values as appropriate, and are built using the operators +, —, »
, /. %, and concatenation {indicated by a blank). The C operators + +,
= d=, —= »= [fm=_ and %= are alsc availabile in expressions. Vari-
ables may be scalars, array elements (denoted x[i]} or fields. Variables are
initialized to the null string. Array subscripts may be any siring, not neces-
sarily numeric; this allows for a form of associative memory. String con-
stants are quoted ("},

The print statement prints its arguments on the standard output (or on a
fle if > expr is present), separated by the current output field separator,
and terminated by the output record separator. The pring/ staternent

July 12, 1985

AWKI(1) AWK (1)

formats its expression list according to the format (see pring/(358)).

The built-in function /ewgeh returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in func-
tions exp, log, sqri, and inr. The last truncates its argument to an integer;
substr (5 ,m ,n) returns the n-character substring of s that begins at position
m. The function sprimf (fmt ,expr ,expr ,...) formats the expressions
according 10 the prinif(38) format given by Jini and returns the resulting
string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses)
of regular expressions and relational expressions. Regular expressions
must be surrounded by slashes and are as in egrep (see grep(1)). lsolated
regular expressions in a patiern apply to the entire line. Regular expres-
sions may also occur in relational expressions. A paitern may consist of
two patterns separated by a comma; in this case, the action is performed for
all lines between an occurrence of the first pattern and the next occurrence
of the second.

A relational expression is one of the following:

expression maichop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either ~ {for comrains) or ' {for does not romain). A conditional is an
arithmetic expression, a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pat-
tern, END the last.

A single character ¢ may be used to separate the fields by starting the pro-
gram with:

BEGIN [FS = ¢}
or by using the —F¢ option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; OFS, the output field separa-
tor {default blank); ORS, the output record separator (default new-line);
and OFMT, the outpui format for numbers {default %.6g).

EXAMPLE
awk "length > 72" filea

prints lines longer than 72 characters on the standard outpul.
awk '{ print $2, $1 |’ filea
prints the first two fields of each line in opposite order.

awk '{ § += 81 } END (print "sum is", s, "average is", sNR]
filea

adds up the first column and prints the sum and average.

July 12, 1985 Page 2

AWK (1) AWK (1)

awk '[for (i = NF; i > 0; ——10 print $i]’ filea
prints all the fields of each line in reverse order. The output prints one
field per line.

awk "/start/, /stop/* filea

prints all lines between start/stop pattern pairs, for every such pair in the
file.

SEE ALSOQ
grep(1), lex(1), sed{1) malloc{3X).
AWK in the Programming Tools Guide.

BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force
an expression 1o be treated as a number add 0 to it; to force it to be treated
as a string concatenate the null string ("} to it.

Page 3 July 12, 1983

BANNER({1) BANNER (1)

NAME

banner — make posters
SYNOPSIS

banner strings
DESCRIPTION

Banner prints its arguments (each up to 10 characters long) in large letters
on the standard output.
EXAMPLE
banner asa
will cause the characters "a", "s" and "a" to be printed as lerge letters on the
Screen.

SEE ALSO
echo(l).

BANNER7(1) UniSoft BANNER7(1)

NAME

banner7 — print large banner on printer

SYNOPSIS

bannex7 [—wn] message ...

DESCRIPTION

BUGS

Banner? prints a large, high quality banner on the standard output. If the
message is omitted, it prompts for and reads one line of its standard input.
If —w is given, the output is scrunched down from a wiith of 132 to n,
suitable for a narrow terminal. If # is omitted, it defaults to 80,

The output should be printed on a hard-copy device, up to 132 columns
wide, with no breaks between the pages. The volume is encugh that you
want a printer or a fast hardeopy terminal, but if you are patient, a dec-
writer or other 300 baud terminal will do.

Several ASCII characters are not defined, notably <, >, [, 1,\, ", _, 1.

], |, and ~. Also, the characters ", *, and & are funny looking (but in a
useful way.)

The —w option is implemented by skipping some rows and columns. The
stnaller it gets, the grainier the output. Sometimes it runs letters together.

AUTHOR

Mark Horton

BASENAME(1) BASENAME (1)

NAME

basename, dirname — deliver portions of path names
SYNOPSIS

basename string [suffix]

ditname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally
used inside substitution marks {* *) within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLE
Invoked with the argument /usr/stre/cmd/cat.c,

cc §1
my a.out ‘basename $1 '.c*

compiles the named file and moves the cutput to a file named "cat” in the
current directory.

NAME="dirname /usr/src/cmd/cat.c’
sets the shell variable NAME {o fusr/src/cmd.

SEE ALSO
sh(l).

BUGS
The basename of / is null and is considered an error.

BATCH (1)} SEE 4T BATCH(1)

BC(1) BC(1)

NAME
bc — arbitrary-precision arithmeiic language

SYNOPSIS
be [-¢] [-1] [file ...]

DESCRIPTION
Be is an interactive processor for a language that resembles C bul provides
unlimited precision arithmetic. It takes input from any files given, then
reads the standard input. The —1 argument stands for the name of an arbi-
trary precision math library. The syntax for b programs is as follows; L
means letter a—z, E means expression, S means statement.

Comments
are enclosed in /+ and */.

Names
simple variables: L
array elements: L [E]

L I TY

The words *‘ibase’’, “obase®, and *‘scale™

QOther operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sqrt { E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L{(E,...E}
Operators
4+ — = /% " (% is remainder; " is power)
++ —-- (prefix and postfix; apply to names}

== <= >=la <>
==t = =2=f =% ="
Statements
E
{8;..:8)
if(E}S
while (E) 8
for (E;E;E)S
null statement
break
quit
Function definitions
defineL (L ,....L){
auto L, ... , L
S5,..58
return (E)

Functions in —1 math library
s(x) sine
c{x} cosine
e{x}) exponential

Page 1 July 12, 1985

BC (1)

BC(1)

ix) log
a(x) arctangent
i{n,x) Bessel function

All function arguments are passed by valve.

The value of a statement that is an expression is printed unless the main
operator is an asgignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of dc{l). Assighments to
ibase or ehase set the input and output number radix respectively,

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. **Auto” variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables empty square brackets
must follow the array name.

Bc is actually a preprocessor for de (1), which it invokes automatically,
unless the —¢ (compile oniy) option is present. In this case the Jc input is
sent to the standard output instead.

EXAMPLE

FILES

scale = 20
define e(x) [
auto a, b, c, i, s
a=1
b=1
§=1
forli=1; 1= m=1; i+ +}{
a = asx
b = b+i
¢ = alb
if(c == 0} return(s)
s = s+c
!
}

defines a function f0 compute an approximate value of the exponential
function and

for(i=1; i< =10; i+ +) eli)

prints approximate values of the exponential function of the first ten
integers.

fust/lib/lib.b mathematical library
fusr/bin/dc desk calculator proper

SEE ALSO

BUGS

de(l).
BC in the Programming Tools Guide,

No &&, || yet.
For statement must have all three E’s.
Quir i3 interpreted when read, not when executed.

July 12, 1985 Page 2

BDIFF (1) BDIFF (1)

NAME
bdiff — big diff
e 18
| SYNOPSIS
N bdiff filel file2 [n] [—s]
DESCRIPTION
Bdiff' is used in a manner analogous to diff{1} to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow
processing of files which are too large for 4iff. Bdiff ignores lines common
to the beginning of both files, splits the remainder of each file into a-line
segments, and invokes 4 upon corresponding segments. The value of »
is 3500 by default. If the optional third argument is given, and it is
numeric, it is used as the value for »#. This is useful in those cases in
which 3500-line segments are too large for diff, causing it to fail. I filel
(fite2} is —, the standard input is read. The optional —s (silent) argument
specifies that no diagnostics are to be printed by bdiff (note, however, that
this does not suppress possible exclamations by diff. If both optional argu-
ments are specified, they must appear in the order indicated above.
The output of bdiff is exactly that of &iff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it jook as if the
files had been processed whole). Note that because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file
differences.
Ve EXAMPLE
: diff filel file2
— where *filel" and "file2" are two versions of the manual text for the cp com-
mand, produces:
22c22
< IR sh (1}
> IR sh\" (1)
35¢35
< IR chmod (2))
> IR ¢chmod\" (2})
50a51,56
> .SH EXAMPLE
> IP
> cp alpha beta gamma /unisoft/roxanne
> PP
> places copies of the three files in the directory
> .BR funisoft/roxanne .
FILES
ftmp/bd???77?
o SEE ALSO
' _ diff(1).
DIAGNOSTICS

Use heip(1) for explanations.

BFS (1) BFS(1}

NAME

bfs — big file scanner
SYNOPSIS

bfs [—] name
DESCRIPTION

Bfs is (almost) like ed(1) except that it is read-only and processes much
larger files. Files can be up to 1024K bytes (the maximum possible size)
and 32K lines, with up to 512 characters, including new-line, per line (255
for 16-bit machines). Bfs is usually more efficient than ed for scanning a
file, since the file is not copied to a buffer. It is most vseful for identifying
sections of a large file where csplit(l) can be used to divide it into more
manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any
file written with the w command. The optional — suppresses printing of
sizes. Input is prompted with » if P and a carriage return are typed as in
ed. Prompting can be turned off again by inputting another P and carriage
return. Note that messages are given in response to errors if prompting is
turned on,

All address expressions described nnder ed are supported. In addition, reg-
ular expressions may be surrounded with two symbols besides / and ?: >
indicates downward search without wrap-around, and < indicates upward
search without wrap-around. There is a slight difference in mark names:
only the letiers a through z may be used, and all 26 marks are remem-
bered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under
ed. Commands such as ———, +++—, +++=, —12, and +4dp are
accepted. Note that 1,10p and 1,10 will both print the first ten lines. The f
command only prints the name of the file being scanned; there is no
remembered file name. The w command is independent of output diver-
sion, truncation, or crunching (see the xo, xt and x¢ commands, below).
The following additional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrept signal is received or an error
occurs, reading resumes with the file containing the xf. The xf
commands may be nested to a depth of 10,

xn List the marks currently in use (marks are set by the k com-
mand),

xo [fiel
Furiher output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is
missing, output is diverted to the standard output. Note that
each diversion causes truncation or creation of the file.

s label
This positions a label in a command file. The Jabel is terminated
by new-line, and blanks between the : and the start of the label
are ignored. This command may also be used to insert com-
menis into a command file, since labels need not be referenced.

BFS (1) BFS (1)

(., .)xb/regular expressiont label
A jump {either upward or downward) is made to Jebel if the
command succeeds. It fails under any of the following condi-
tions:

1. Either address is not between 1 and $.
2. The second address is less than the first.

3. The regular expression does not match at least one line in the
specified range, including the first and last lines.

On success, . is set to the line matched and a jump is made to
label. This command is the only one that does not issue an error
message on bad addresses, 50 it may be used to test whether
addresses are bad before other commands are executed. Note
that the command

xbf*/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace
other than a terminal. If it is read from a pipe enly a downward
jump is possible.

xt number

Qutput from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digitl [spaces] [valuel
The variable name is the specified digir following the xv. xv5100
or x¥5 00 both assign the wvalue 100 to the veriable 3.
Xv61,E00p assigns the value 1,100p to the variable 6. To refer-
ence a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the frst 100 lines.
gl%5/p

would globally search for the characters 100 and print each
line centaining a maich. To escape the special meaning of %,
a \ must precede it.

g/" *\%lcdsl/p

could be used to match and list lines containing printf of char-
acters, decimal integers, or strings,

Another feature of the xv command is that the first line of
ouiput from a UNIX system command can be stored into a
variable, The only requirement is that the firsi character of
value be an !. For example:

W junk

xv5!cat junk

Irm junk

lecho "% 5"
xvblexpr %6 + 1

-2

BFS(1} BFS(1)

would put the current line into variable 5, print it, and incre-
ment the variable 6 by one. To escape the special meaning of
! as the first character of value, precede it with a \.

AvTyldate
stores the value 'date into variable 7.
xbz label

xbn fabel
These two commands will test the last saved refurn code from
the execution of a UNIX system command (!command} or
nonzero value, respectively, to the specified label. The two
examples below both search for the next five lines containing
the string size.

xv55
1
fsizel
xvSlexpr %3 — 1
lif 0%5 |= 0 exit 2
xbn 1
xv435
M|
/size/
xvdlexpr %4 — 1
lif 0%4 = 0 exit 2
xbz |
xe [switch)
If switch is I, output from the p and null commands is
crunched; if switch is 0 it js not. Without an argument, xe
reverses switch. Initially switch is set for no crunching.
Crunched output has strings of tabs and blanks reduced to one
blank and blank lines suppressed.

EXAMPLE
bfs text

will invoke &/ with the file named "text".

SEE ALSO
csplit(1), ed(1), regcmp(3X).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory
error messages when prompting is on.

BS(1) BS(1)

NAME
bs — a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file fargs]1]

DESCRIFTION
bs is a remote descendant of Basic and Snobold with a little C language thrown
in. bs is designed for programming tasks where program development time is
as important as the resulting speed of execution. Formalities of data declaration
and file/process manipulation are minimized. Line-at-a-time debugging, the
trace and dump statements, and useful run-time error messages all simplify
program testing. Furthermore, incomplete programs can be debugged; inner
functions can be tested before outer fimctions have been written and vice versa.

If the command line file argument is provided, the file is used for input before
the console is read. By default, statements read from the file argument are com-
piled for Iater execution. Likewise, statements entered from the console are
normally executed immediately (sce compile and execute below). Unless the
final operation is assignment, the result of an immediate expression statement is
printed.

bs programs are made up of input lines. If the last character on aline isa \, the
line is continued. bs accepts lines of the following form:

Statement
label statement

A label is a name (see below) followed by a colon, A label and a variable may
have the same name,

A bs statement is either an expression or a keyword followed by zero or more
expressions. Some keywords (clear, compile, !, execute, include, ibase,
obase, and rum) are always executed as they are compiled.

Statement Syntax
expression
The expression is executed for its side effects (value, assignment or function
call). The details of expressions follow the description of statement types
below.

break
break exits from the inner-most for/while loop.

Page 1 September 27, 1987

BS(1) BS(1)

clear
Clears the symbol table and compiled statements. clear is executed
immediately.

complile [expression]
Succeeding statemerts are compiled (overrides the immediate execution
defaplt). The optional expression is evaluated and used as a filename for
further input. A clear is associated with this latter case. compile is exe-
cuted immediately,

continue
continue transfers to the Joop-continuation of the current for/while loop.

dump [rame]
The name and current value of every non-local variable is printed. Option-
ally, only the named variable is reported. After an error or interrupt, the
number of the last statement and (possibly} the user-function trace are
displayed.
exit [expression]
Return 1o system level, The expression is returned as process status.
execute
Change to immediate execution mode (an inferrupt has a similar effect).
This statement does not cause stored statements to execute (see run below),

for name = expression expression siatement
for name = expression expression

next

for expression , expression , expression siatement
for expression , expression , expression

next

The for statement repetitively executes a statement (first form) or a group of
statements (second form) under control of a named variable. The variable
takes on the value of the first expression, then is incremented by one on
each loop, not to exceed the value of the second ¢apression. The third and
fourth forms require three expressions separated by commas. The first of
these is the initialization, the second is the test (true o continue), and the
third is the loop-continuation action (normally an increment).

September 27, 1987 Page 2

BS(1) ' BS(1)

fun K([a,...]) [v,

nuf
fun defines the fonction name, arguments, and local variables for a
user-written function. Up to ten arguments and local variables are allowed.
Such names cannot be arrays, nor can they be /O associated. Function
definitions may not be nested.

freturn
A way 1o signal the failure of a user-written function. See the interrogation
operator (?), below. If interrogation is not present, freturn merely returns
zero. When interrogation is active, freturn transfers to that expression
(possibly by-passing intermediate function returns).

goto name
Control is passed to the internally-stored statement with the matching label.

ibase N
ibase sets the input base (radix) to N. The only supported values for N are
8, 10 (the default), and 16. Hexadecimal values 10-15 are entered as a—{.
A leading digit is required (i.e., f0a must be entered as 0f0a). ibase {and
obase below) are executed immediately.

if expression statement
if expression

[else
e]

fi
The statement (first form) or group of statements (second form) is executed
if the expression evaluates to non-zero. The strings 0 and " (nuil) evaluate
as zero, In the second form, an optional else allows for a group of state-
ments to be executed when the first group is not. The only statement per-
mitted on the same line with an else is an if; only other £i’s can be on the
same line with a fi. The elision of else and if into an elif is supported. Only
a single fi is required to close an if.. elif. . felse...] sequence.

include expression
The expression must evaluate 1o a filename. The file must contain bs source
statements. Such statements become part of the program being compiled.
include statements may not be nested.

obase N
obase sets the cutput base to ¥V (see ibase above).

Page 3 September 27, 1987

BS(1) BS(1)

onintr label

onintr
The onintr command provides program control of interrupts. In the first
form, control will pass to the labal given, just as if a goto had been executed
at the dme onintr was executed. The effect of the statement is cleared after
cach intermupt. In the second form, an interrupt will cause bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of a
function call, If no expression is given, zero is returmed.

run
The random number generator is reset. Control is passed to the first internal
statement. If the run statement is contained in a file, it should be the last
Statement.

stop
Execution of internal statements is stopped. bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or
evaluates to zero), tracing is twrned off. Otherwise, a record of user-
function calls/returns will be printed. Each return decrements the trace
expression value.

while expression statement
while expression

next
while is similar to for except that only the conditional expression for loop-
continuation is given.

! shell command
An immediate escape to the Shell,

#...
This statement is ignored. It is used to interject commentary in a program.

Expression Syntax
name
A name is used to specify a variable. Names are composed of a letter
(upper or lower case), optionally followed by letiers and digits. Only the
first six characters of a name are significant. Except for names declared in
fun statements, all names are global to the program, Names can take on

September 27, 1987 Page 4

BS(1) BS(1)

numeric {double float) values, string values, or can be associated with
input/output (see the built-in function open() below).

name ([expression(, expression]...])
Functions may be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions (listed
below), the name must be defined with a fum statement. Arpguments to func-
tions are passed by value.

name {expression| yexpression]. . .]
This syntax is used to reference either arrays or tables (see built-in table
functions below). For arrays, each expression is tuncated to an integer and
used as a specifier for the name. The resulting array reference is syntacti-
cally identical to a name; a[1,2] is the same as a[l1][2]. The truncated
expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
FORTRAN style, and contains digits, an optional decimal point, and possi-
bly a scale factor consisting of an e followed by a possibly-signed exponent.
string
Character strings are delimited by ™ characters. The \ escape character
allows the double quote (\"), newline (\n}, camriage retum (\r), backspace
(\b), and tab () characters to appear in a string. Otherwise, \ stands for
itself,
(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression...]) expression]
The bracketed expression is used as a subscript to select 2 comma-separated
expression from the parenthesized list, List elements are numbered from
the left, starting at zero. The expression:

(False, True)[a==b]
has the value true if the comparison is true.
? expression
The intarrogation operator tests for the success of the expression, rather than
its value. At the moment, it is useful for testing for end-of-file (see exam-

ples in PROGRAMMING TIPS, below), the result of the eval built-in func-
tion, and for checking the return from user-written functions (see freturn).

Page 5 September 27, 1987

BS(1) BS(1)

An interrogation trap (end-of-file, etc.) causes an immediate transfer to the
most recent interrogation, possibly skipping assignment statements or inter-
vening fimction levels.

— expression
The result is the negation of the expression.

+4 name
Increments the value of the variable (or array reference). The result is the
new value.

-= name
Decrements the value of the varable. The result is the new valne.

! expression
The logical negation of the expression. Watch out for the shell escape com-
mand.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments
scparated by an operator denoting the function. Except for the assignment,
concatenation, and relational operators, both operands are converted to
numeric form before the function is applied.
Binary Operators
(in increasing precedence):

= is the assignment operator. The left operand must be a name or an array
element. The result is the right operand. Assignment binds right to left, all
other operators bind left to right.

B _ (underscore) is the concatenation operator.

& |
& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; | (logical or) has result zero
if both of its argumenis are zero. It has result one if either of its arguments
is non-zero. Both operators treat a null string as a zero.

< €= > »= == I=
The relational operators (< less than, <= less than or equal, > greater than,
»= greater than or equal, == equal to, != not equal 10) return one if their
arguments are in the specified reladon. They retum zero otherwise.

September 27, 1987 Page 6

BS(1) BS(1)

Relational operators at the same level extend as follows: a>b>c is the same
as a>b & b>c. A string comparison is made if both operands are strings.

+ —
Add and subtract.

* | %
Multiply, divide, and remainder,

Exponentiation.
BUILT-IN FUNCTIONS
Dealing with arguments
arg(i)
is the value of the i-th actual parameter on the current level of function call.
At level zero, arg returns the i-th command-line argument {arg(0) returns
bs).
narg()
retums the number of arguments passed. At level zero, the command arga-
ment count is retumed.
Mathematical
absix)
is the absolute value of x.
. atan(x)
is the arctangent of x. Its value is between —x/2 and 7/2,
ceil(x)
returns the smallest integer not less than x,
cos(x)
is the cosine of x (radians).

exp(x)
is the exponential function of x.

floor(x)
retums the largest integer not greater than x.

log(x)
is the natural logarithm of x.

rand()
is a uniformly distributed random number between zero and one,

Page 7 September 27, 1987

BS(1)

BS(1)

sin{(x)

is the sine of x {radians).

sqri(x)

is the square root of x.

String operations
size(s)

the size (length in bytes) of s is returned.

format(F, a)

returns the formatted value of 2. F is assumed to be a format specification
in the style of printf(3S). Oniy the %.. .f, %. ..e, and %. . .s types are safe.

index(x, y)

retums the number of the first position in x that any of the characters from y
matches. No match yields zero.

trans(s, f, ©)

Translates characters of the source s from matching characters inf o a char-
scter in the same position in £. Source characters that do not appear in f are
copied to the result. If the string f is longer than z, source characters that
match in the excess portion of £ do not appear in the result.

substr(s, start ,width)

returns the sub-string of s defined by the sterfing position and width.

match(siring, pattern)
mstring(n)

The pattern is similar 1o the regular expression syntax of the ed(1)} com-
mand. The characters ., [,], ~ (inside brackets), * and § are special. The
mstring function returms the #-th (1 <= n <= 10) substring of the subject
that occurred between pairs of the paiterm symbols \(and \) for the most
recent call to match. To succeed, patterns must match the beginning of the
string (as if all patterns began with ~). The function retums the number of
characters matched. For example:

match("al23ab123", " #\([a—zN") ==
mstring(1) == "b"

File Handling
open(name, file, function
close(name)

The neme argument must be a bs variable name (passed as a string). For

September 27, 1987 Page 8

BS(1)

BS(1)

the open, the file argument may be i) a 0 (zero), 1, or 2, representing stan-
dard input, cutput, of emor output, respectively, ii.) a string representing a
filename, or iii.) a suing beginning with an ! representing a command to be
executed (via sh —c). The function argument must be either r (read), w
(write), W (write without newline), or a (append). After a close, the name
reverts to being an ordinary variable, The initial associations are:

Open("get" ’ 0, llrll)
open('lput“’ 1, "W“]
open("puterr”, 2, "w")

Examples are given in the following section.,

access(s, m)

executes access(2).

ftype(s)

retumns a single character file type indication: f for regular file, p for FIFQ
{i.e., named pipe), d for directory, b for block special, or ¢ for character
special.

Tables
table{name, size)

A table in bs is an associatively accessed, single-dimension array. Sub-
scripts (called keys) are strings (numbers are converted), The name argu-
ment must be a bs variable name (passed as a string). The size argument
sets the minimum number of elements to be allocated. bs prints an error
message and stops on table overflow.

item(name, £)
key()

Page 9

The item function accesses table elements sequentially (in normal use, there
is no orderly progression of key values). Where the item function accesses
values, the key function accesses the subscript of the previous item call.
The name argument should not be quoted. Since exact table sizes are not
defined, the interrogation operator should be used to detect end-of-table, for
example:

table("t", 100)
If word contains the string "party”,

the following expression adds one
1o the count of that word:

September 27, 1987

BS(1) BS(1)

++i{word]

To print out the the key/value pairs:
for [= 0, ?(s ++iif key() pur= key()_: s
iskey{name, word)
The iskey function tests whether the key word exists in the table neme and
retums one for true, zero for false.

Odds and ends
eval(s)
The string argument is evaluated as a bs expression, The function is handy
for converting numeric strings to numeric intermal form. eval may also be
used as a crude form of indirection, as in:

name = "xyz"
eval("++"_ name}
which increments the variable xyz. In addition, eval preceded by the inter-
rogation operator permits the user to control bs error conditions. For exam-
ple:
?evﬂ(ﬂommﬂm|l’ \Ilnx\l!, \"l\.’)")
retums the value zero if there is no file named xxx (instead of halting the
user’s program). The following executes a goto to the label L (Gf it exists):
label="L"
if 1(2eval{"goto "_ label}} puterr = "no label”
ploi{request, args)
The plot function produces output on devices recognized by tplot(1G). The
reguests are as follows: '

Call Function

plot(C, term) causes further plot output to be piped into
tplot(1G) with an argument of —Trerm.

plot(1) erases the plotter.

plot (2, siring) labels the current point with string.
plot(3, x? y1 x2,y2) draws the line between (xl ,yI) and (x2,y2).
plot4, xy,n) draws a circle with center (x,y) and radius .

September 27, 1987 Page 10

BS(1) BS(1)

Plot(5, x1,y1.x2,y2 x3 ¥3)
draws an arc {(counterclockwisc) with center

(x! yiY and endpoints (x2.y2) and (x3,33).
plot(6) is not implemented.
plot(7,x,y) makes the current point (x,y).
plot(8,x,y) draws a line from the current point to (x,y).
plot(9:x,y) draws a point at (x.y).

plot(10,string) sets the line mode to string.

plot(11,x1,y1 x2.¥2) makes (xI,yl) the lower left corner of the plot-
ting area and (x2,y2) the upper right corner of the
plotting area.

plot(12,x1,y1 x2,y2) causes subsequent x(y) coordinates to be multi-
plied by xI (yI) and then added to x2 (¥2) before
they are plotied. The initial scaling is
plot(12,1.0,1.0,0.0,0.0).
Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to tplot(1G). See plot(4) for
more details,

Last()
in immediate mode, last returns the most recently computed value,

PROGRAMMING TIPS
Using bs as a calculator:

$bs

Distance (inches) light ravels in a nanosecond.
186000 # 5280 * 12 / 1e9

11.78496

Compound interest (6% for 5 years on $1,000).
int=.06/4

bal = 1000

fori=15+4 bal = bal + bal*int

bal — 1000

346.855007

Page 11 September 27, 1987

BS(1)

exit
The outline of a typical bs program:
initialize things:
varl=1
open(llreadll’ ".inﬁle”, "rﬂ)

compute:
while ?(str = read)

next
clean up:
close("read")

it last statement executed (exit or stop):
exit.

last input hine:

run

Input/Qutput examples:
Copy "oldfile" to "newfile”.
open{"read", "oldfile", "r")
open(ﬂwriteil’ 'lnewﬁle“, lel)

while ?(write = read)

close "read™ and "write":
close("read")
close("write")

Pipe between commands.
open("ls", L] !]s *N, llr“)

open("pr", "!pl' _2 —h 'Lisl'", llwn)
while ?(pr =18} ...

be sure to close (wait for) these:

close("1s™)
close{" pl'")

September 27, 1987

BS(1)

Page 12

BS(1) BS(1)

EXAMPLE
bs program 12 3

compiles andfor exccutes the file named program as well as statements typed
from standard input. The arguments 1, 2, and 3 are passed as arguments o the
compiled/executed program.

FILES
/hin/bs

SEE ALSO
ed(1), ksh(l), sh(1), tplot(1G), access(2), printf(35}, stdio(3S), ploi(4).
See UniPlus+ Programming Tools for further description of the mathematical
functions (pow on exp(3M) is used for exponentiation); bs uses the Standard
Input/Output package.

Page 13 September 27, 1987

CAL{(1) CAL(1)

NAME
cal — print calendar

SYNOPSIS
eal [[month J year |

DESCRIPTION
Cal prints a calendar for the specified year. If 2 month is also specified, a
calendar just for that month is printed. If neither is specified, a calendar for
the present month is printed. Year can be beiween 1 and 9999. The month
is a number between 1 and 12. The calendar produced is that for England
and her colonies.

EXAMPLE .
cal 91752
produces a calendar for September 1752,

BUGS
The year is always considered to start in January even though this is histor-
ically naive.
Beware that “‘cal 83" refers to the early Christian era, not the 20th century.

CALENDAK(1) ' CALENDAR (1)

NAME

calendar — reminder service

SYNOPSIS

calendar [—]

DESCRIFTION

Calendar consults the file calendar in the current directory and prints out
lines that contain today’s or tomorrow’s date anywhere in the line. Most
reasonable month-day dates such as “Dec. 7,”' “‘december 7.”" *“*12/7,"
etc., are recognized, but not *‘7 December’ or ““7/12". On weekends
“tomorrow’’ extends through Monday.

When an argument is present, calerdar does its job for every user who has
a file calendar in their login directory and sends them any positive results
by maif(l1). Normally this is done daily by facilities in the UNIX operating
system under control of cron{1M).

EXAMPLE

FILES

If the user has the following line, among other lines containing date infor-
mation, in the Ble "calendar” in the login directory:

Monday, September 6 Labor Day Holiday
typing in
calendar

either on the Friday before or on the specified Monday will cause this line
to be printed on the screen.

calendar

fusr/lib/calprog to figure out today’s and tomorrow’s dates
/etc/passwd

ftmp/cal*

/usr/lib/crontab

SEE ALSO

BUGS

mail(l).

Your calendar must be public information for you to get reminder service.
Calendar's extended idea of *‘tomorrow™ does not account for holidays.

CANCEL (1) SEE LF CANCEL (1)

CAT(1) CAT(1)

NAME

cat — concatenate and print files

SYNOPSIS

cat [—u 1 [—s1[~v [-t] [—el]file ...

DESCRIFTION

Cat reads each file in sequence and writes it on the standard output.

If no input file is given, or if the argument — is encountered, cat reads
from the standard input file. Output is buffered unless the —w option is
specified. The —s option makes cat silent about non-existent files,

The —v option causes non-printing characters (with the exception of tabs,
new-lines and form-feeds) to be printed visibly. Control characters are
printed "X (control-x); the DEL character (octal 0177) is printed “?. Non-
ASCII characters (with the high bit set) are printed as M-x, where x is the
character specified by the seven low order bits.

When used with the —v option, —t causes tabs to be printed as “F’s, and
—e causes a § character to be printed at the end of each line (prior {0 the
new-line). The ~t and —e options are ignored if the —v option is not
specified.

EXAMPLE

cat file
prints the file, and:
cat fitel file2 > file3
concatenates the first two files and places the result in the third.

WARNING

Command formats such as

cat filel file2 > filel
will cause the original data in #le! to be lost, therefore, tske care when
using shell special characters.

SEE ALSO

ep(1), pe(l), pr(l).

CB(1) CB(1)

NAME

cb — C program beautifier
SYNOPSIS

b [-s1[—=j)[-lleng]l [file..]
DESCRIPTION

Ch reads C programs either from its arguments or from the standard input
and writes them on the standard output with spacing and indentation that
displays the structure of the code. Under default options, cb preserves all
user new-lines. Under the —s flag cd canonicalizes the code to the style of
Kernighan and Ritchie in The C Programming Language. The —j flag
causes split lines to be put back together. The —1] flag causes cb to split
lines that are longer than leng.

EXAMPLE ’

If there is a C program called fest.c which looks like this:
#define COMING 1
#define GOING 0

main {)

{/* This is a test of the C Beautifier */
if (COMING)

printf (*Hello, worldin"):

else

i:r’mtf ("Goodbye, world\n");

Then using the ¢b command as shown below produces the output shown:
cb test.c
#define COMING 1
#define GOING 0

main ()

/* This is a test of the C Beautifier */
if {COMING)

printf (*Hello, world\n"};
else

printf ("Goodbye, worldin");

SEE ALSO
cell),
The C Programming Language by B. W. Kernighan and D. M. Riichie.
BUGS
Punctuation that is hidden in preprocessor statements will cause indentation
EITOTS.

€C) CC(1)

NAME
cc — C compiler

SYNOPSIS
cc [-B string] {—) [-C] [-D symboi[=def]] [-E] [-fm68331] [—g] [dir]
(~L dir] [x] (~n) [-o outfile] [-O1 [-p] [-F} [R] [-8] {-S]
-t [p0L2al]} [-T] (-U symboll [—v] [-W cargilarg2...] [-Z flags]
¥ ... files ...

DESCRIPTION
The cc command is a front-end program that invokes the preprocessor, com-
piler, assembler and linkage editor, as appropeiate. (The defanlt is to do them
all). It generstes assembly instructions. cc accepts the following types of argu-
ments:
Arguments whose names end with .¢ are taken to be C source programs; they
are compiled, snd each object program is left in a file whose name is that of the
source, with .o substituted for .¢. The .o file ig normaily deleted; however, if a
single C program is compiled and loaded all at one go, no .0 is produced. In the
same way, arguments whose names end with .8 are taken to be agsembly source
programs and are assembled to produce a .o file.
The following flag options are interpreted by cc. (Other flag options may be
passed to the assembler and the linker. See ld(1) for link editor flag options and
as(1) for assembler options.}

- Suppress the link-editing phase of the compilation, and force an
object file to be produced even if only one program is compiled.

- Pass along all comments except those found on cpp(l) directive lines.
The default strips out aif comments.

-p Arrange for the compiler to produce code which counts the number of
times each routine is called, Also, if link editing takes place, replace
the standard startoff routine by one which automatically calls
monitor(3C) at the start and atranges to write cut 2 mon.out file at
normal ermination of execution of the object program.

~{m68381
Generate inline code for MC68881 floating point coprocessor. When
using this option, the library —lc881 mast be inciuded on the com-
mand line. If functions from the math library are needed, then
~im881 must be included as well.

-g Generate additional information needed for the use of sdb(1).

-1 x Same as — in 1d(1). Search a library, libx.a, where x is up to seven
characters, A library is searched when its name is encountered, so the
placement of a -1 is significant, By default, libraries are located in
LIBDIR. If you plan to use the —L (see below) option, that option
must precede —1 on the command line.

Page 1 May 1988

CC(1) CC(1)

~L dir Same as -1, in }4(1). Change the algorithm of searching for lihx.a to
look in dir before Jooking in LIBDIR. This option is effective only if
it precades the —1 option on the command line.

—0 oulfile
Same a5 —o in 3d(I). Produce an output object file, outfile. The
defautt name of the object file is a.out.)

-0 Invoke an object-code optimizer. The optimizer moves, merges, and
deletes code, so symbolic debugging with line numbers could be
confuging when the optimizer is used. This option may not work

properly on code containing ast directives.
-R Have assembler remove its input file when done.
~We,argllarg2..)

Hand off the argomeni(s) argi (where i = 1,2, . . . ») to pass ¢,
where ¢ i3 one of [p012al] indicating preprocessor, compiler first
pass, compiler second pass, optimizer, assembler, or link editor,
respectively, For example:
-Wa,-m
Invoke the w4 macro preprocessor on the input to the assembler.
(The —m flag option 10 as causes it 0 go through m4.) This
must be done for a source file that contains assembler escapes,
—s
Same as -s in 1d(1). Strip iine number entries and symbol table infotmnation
from the output of object file.
-8
Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed .5.

—t [p012al]

Find only the designated preprocessor (p), compiler (0 and 1), optimizer (2),
assembier (8) and link editor (1) passes whose names are constructed with the
string argument to the —B flag option. In the absence of a —B option and its
argument, string is taken to be flib/n, Using —t with no argument is equivalent
to -tp012.

=T

Truncate symbol names to 8 significant characters. Many modern € compilexs,
as well as the proposed ANSI standard for C, allow arbitrary length variable
names. ¢¢ foliows this convention, The —T option is provided for compatibility
with earlier systems.

-E

Run only cpp(1} cn the named C programs, and send the resuit 1o the standard
output.

-P

Run only cpp{l) on the named C programs, and leave the result on

May 1988 Page 2

CcC() CC(1)

corresponding files suffixed i

=Dsymbol{=def} o)
Define the external symbol to the preprocessor and give it the value def (if
specified). If not daf is given, symbol is defined as 1. This mechanism is useful
with the conditional statements in the preprocessor by allowing symbols to be
defined external to the source file.

~Usymbol

Undefine symbol to the preprocessor,

=Kdir

Search for #include files (whose names do not begin with /} in dir before look-
ing in the directories on the standard Yist. Thas, #inciude files whose names are
enclosed in double quotes are searched for first in the directory of the . file
currenily being compiled, then in directories named in —I flag options, and last
in directoties on a standard list. For #include files whose names ars enclosed in
<, the directory of the file argument is not searched.

=Bstring

Construct pathnames for substitute preprocessor, compiler, assembler, and link
editor passes by concatenating string with the suffixes cpp, comp, optim, as,
and 1d. If string is empty it is taken to be /lib/o.

-¥
Print the contmand line for each subprocess executed.

-

Arrange for the loader 10 produce an executable which is linked in such a
manner that the text can be made read-only and shared (ronvirtuzl) or paged
(virtual).

-3

Special debug option which, without actually starting the program, echoes the
names and arguments of subprocesses which would have started.

Zflags
Special flags to ovemride the default behavior (sce NOTES). Currently recog-
nized flags are:

suppress returning poinaters in both 20 and d0

emit no code for stack growth

use Motorola $SGS compatible stack growth code

use tst.b stack probes

ignare all environment variables =
ﬂlpbmuﬂermmulﬁchmmcmmts

emit inline code for MC68881 floating point coprocessor
suppessselectionofaloadercommandﬁle
oomp:lﬂobeSVD—companble,

Page 3 May 1988

CC(1) CC(1)

Other arguments are taken 10 be either link editor flag option arguments or C-

compatible object programs, typically produced by an earlier c¢ run, or perhaps
libraries of C-compatible routines. These programs, together with the results of
any compilations specified, are link-edited (in the order given) to produce an
executable program with the name a.out unless the —o0 flag option of the tink
editor is used.

FILES

fusr/bin/ee

file.c input file

file.o object file

files assembly language file

a.out link-edited output

jusrAmp/me68? temporary

Nib/cpp Preprocessor

/ib/cO compiler, first pass /lib/c1 compiler, second
pass

flib/optim optimizer

/bin/as assembler, as(1)

fbinMd link editor, 1d(1)

Mib/lihc.n standard library, see (3)

/nsrlib/shareddd loader command file for shared text or
paged programs

fusr/lib/unshared.ld loader command file for unshared text pro-
grams

SEE ALSO
as(1), dis(1), 1d(1).

The C Programming Language by B. W, Kemighan and D. M. Ritchie,
Prentice—Hall, 1978.

DIAGNOSTICS
The diagnostics produced by the C compiler are sometimes cryptic, Occasional
messages may be produced by the assembler or link editor,

WARNING
By default, the retirn value from a C program is completely randorn. The only
two guaranteed ways to return a specific value are to cail exit(2) explicitly or to
leave the function main() with a refurn expression; construct.

NOTES
This version of cc is based on the cc released with the Motorola SGS, It has
been changed in the following ways:

e« The —Z flag option has been added to explicitly conirol generation of
stack prowth code for cross development environments or generation
of standalone code. The Motorola SGS looks for an environment
variable called M68000 and generates stack growth code if the

May 1988 Page 4

et

CC(1)

Page 5

CC(1)

varisble is set to STACKCHECK. This cc defaulis to stack probes

on 63000 host processors and no stack growth code on the 68020 pro-
cessors,

The defaylt is to produce shared text programs. To produce nonshared
textpmgrann,yonmustnmld

When used with the —g flag option, the arguments —u _dbargs -1g will
bemsmedmﬂaemmandlmeforthelinkphm “This causes the
contents of libg.a to be linked in, Note that the Motorola SGS only
generates the loader argument —lg, which is not sufficient to cavse
loading of the library's contents.

The —v (verbose) flag option has been added to print the command line
for each subprocess executed. This helps to isolate problems to a
specific phase of the compilation process by showing exactly what cc
is doing, 0 that each phase can be run by hand if necessary.

The Motorola SGS compiler expects funciions returning pointers or
structures to return their values in 20, and other functions 1o return their
values in d0/dl. Because of the large body of existing code that has
inconsistent type declarations, the version of the compiler released
with the generic 68000 port emits code ¢ return pointers in both a0
and d0 by copying a0 to d0 just prior o returning. This copy operation
can be suppressed with the —Zc flag option, thus generating skightly
smaller code,

May 1988

CC5.0(1}) System V a.out format only CC5.0(1)

NAME

¢c5.0 — C compiler
SYNOPSIS

ecs.0 { oplion 1 ... file ..

DESCRIPTION
Ce3.0 is the UNIX C compiler.

C'ed. 0 accepts several types of arguments:
Argumenis whose names end with “.c’ are taken to be C source programs,

they are compiled, and each object program is left on the file whose name

is that of the source with ‘.0’ substituted for *.¢’. The ‘.0’ file is normally

deleted if a single C program is compiled and loaded.

In the same way, arguments whose names end with .8’ are taken to be
assembly source programs and are assembled, producing a *.0" file.

The following options are interpreted by ¢c3.0, See M3.001) for link editor

options.

- Suppress the link edit phase of the compilation, and force an
object file to be produced even if only one program is compiled.

-n Passed on to {/5.f 10 make the text of the resulting program
shared.

—p Arrange for the compiler to produce code which counts the

number of times gach routine is called; also, if link editing takes
place, replace the standard startup routine by one which
automatically calls manitor (3C) at the start and arranges to write
out a mon.ont lile at normal termination of execution of the
object program. An execution profile can then be generated by
use of profil),

—fsky Use the sky foating poimi library.

—-({(BKPS)

Invoke an object-code improver {optimizer). If B is specified,
“jump 1o subroutine™ instructions are changed to ‘‘branch to
subroutine’ instructions {where possible}. If K is specified, cer-
tain UNIX Kernel optimizer functions are not performed. If P is
specified, stack probe instructions are removed. (Note: P
should only be used for the operating system source.) Il S is
specified, stack frame optimization is performed.

—R {addr)
Pass on to Xf5.0), making the resulting object module origined a1
cdedrfhox),

-5 Compile the named C programs, and leave the assembler-
language owipui on corresponding files suffixed *.s".

-E Run only ¢pp3.i2{1) on the named C programs, and send the
resull to standard output.

—P Run only the macro preprecessor on the named C programs,
and send the resull 1o the corresponding files suffixed. .¥

- Prevent the macro preprocessor from eliding (leaving out) com-

menis.

CC5.0(1)

System V a.out format enly CcCs.o(l)

—o onymy Name the final executable cutput file owpne. 1F this option is
used the file "a.cut” will be left undisturbed.

= Dname =det

~Duname Define the sume to the preprocessor, as if by #define. 1f no
definition is given, the name is defined as "1".

—=Uname Remove any initial definition of name.

—1dir #include files whose names do noi begin with */" are always
sought first in the directory of the fife argument, then in direc-
tories named in —1 options, then in the directory /ust/include.

—¥ print the name of each subprocess 45 il is executing.

Other arguments are taken to be either link editor option arguments, or C-
compatible object programs, typically produced by an earlier ced.f? run, or
perhaps libraries of C-compatible routines. These programs, together with
the results ol any compilations specified, are linked via X/5.4(1} (in the
order given)} to produce an executable program with name a.oni.

EXAMPLE

¢c5.0 —o output progl.c prog2.c progl.c

would compile code in the three named C programs and put the compiled
code into the file "output”. i

FILES
file.c
file.o
a.out
ftmp/etm?
fib/ 5.0/ cpp
Hib/5.0/c
Hib/5.0/c2
Hib/5.0/cri0.0
b/ 5.6/ mert0.0
flib/5.0/libc.a
fusr/include/ 5.0
/lib/5.0/libm.a
flib/ 5.0/ libsky.a
Alib/5.0/cri0sky.c
flib/ 5.0/ mertdsky.o

SEE ALSO

input file

object file

linked output

temporary

pPreprocessor

combined compiler passl and pass2
optional optimizer invoked with "-0"
runtime siartofl’

runtime startoff for profiling
standard library, see section 3
standard directory for "#include” files
math library

sky floating point routines

runtime startofl using sky

runtime stariofl’ for profiling using sky

Id5.01), lint(1), prof(i}, monitor(3C)
The C Programming Language, Prentice-Hall, 1978, by B. W. Kernighan und
D. M. Ritchie; Programming Guide.

DIAGNOSTICS

The diagnostics produced by C itself are intended 10 be sell-explanatory.
Occasional messages may be produced by ihe assembler or the link editor.
Confusing syntax may cause the C compiler to indicate an error on the line
following the actual error.

CcD(1) cD(1}

NAME
cd — change working directory

SYNOPSIS
ed [directory |

DESCRIPTION

If directory is not specified, the value of shell parameter $HOME is used as
the new working directory. 1f directory specifies a complete path starting
with /, ., .., direciory becomes the new working directory. If neither case
applies, ¢d tries to find the designated directory relative to ong of the paths
specified by the SCDPATH shell variable. $CDPATH has the same syntax
as, and similar semantics to, the SPATH shell variable. (4 must have exe-
cute (search) permission in directory,

Because a new process is created to execute each command, ¢d would be
ineffective if it were written as a normal command; therefore, it is recog-
nized and inlernal to the shell.
EXAMPLE
cd funisoftfusr/games

would relocate you to the directory funisofi/asr/games il this directory is
execuiable (searchable) by you.

SEE ALSO
pwd(1), sh{l}, chdir(2).

CDC(1) CDC (1)

NAME

cdc — change the delta commentary ol an SCCS delta

SYNOQPSIS

cde —rSID [—m[mrlist]] [—y[comment]] files

DESCRIPTION

Page 1

Cde changes the delta commentary, for the 5ib specified by the —r
keyletier, of each named SCCS file.

Detta commentary is defined to be the Modification Request {(MR) and com-
ment information normaily specified via the defra (1) command {(—m and
—vy keyletters).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-5CCS files (last component
of the path name does not begin with s.} and unreadable files are silently
ignored. If a name of — is given, the standard input is read {see
WARNINGS); each line of the standard input is taken to be the name of an
SCCS file to be processed.

Arguments to cde, which may appear in any order, consist of Aevieter argu-
ments, and file names.

All the described Aevietrer arguments apply independently to each named
file:

—r5in Used to specify the SCCS {Dentification (S5/) string of a
delta for which the delta commentary is to be changed.

—miwmriisil If the SCCS file has the v flag set (see admin (1))} then a list
of MR numbers to be added and/cr deleted in the delta com-
mentary of the $/0 specified by the —r keyletter may be sup-
ptied. A null MR list has no effect.

MR entries arg added to the list of MRs in the same manner
as that of defta(1). In order to delete an MR, precede the
MR number with the character ! (see £XAMPLE). Il the MR
to be deleted is currently in the list of MRs, it is removed
and changed inte a “‘comment’ line. A list of all deleted
MRs is placed in the comment section of the delta commen-
tary and preceded by a comment line stating that they were
deleted.

If —m is not used and the standard input is a terminal, the
prompt MRs? is issued on the standard output before the
standard input is read; if the standard input is not a termi-
nal, no prompt is issued. The MRs? prompt atways precedes
the comments? prompt (see —y keyletter}.

MRs in a list are separated by blanks and/or tab characters.
An unescaped new-line character terminates the MR list.

Note that if the v flag has a value (see admin (1)), it is taken
to be the name of a program (or shell procedure) which vali-
dates the correctness of the MR numbers. If a non-zero exit
status is returned from the MR number validation program,
cde terminates and the delta commentary remains

July 12, 1985

CDC(1} cDcC (1)

unchanged.

—ylconmmendl Arbitrary text used to replace the comment(s) already exisi-
ing for the della specified by the —r keyletter. The previous
comments are kept and preceded by a comment line stating
that they were changed. A null cosuncnt has no effect.

If —y is not specified and the slandard input is a terminal,
the prompl comments? is issued on the standard outpul
before the standard input is read; if the standard input is not
a2 terminal, no prompt is issued. An unescaped new-line
character terminates the comvnent text.

The exact permissions necessary 1o modily the SCCS file are documented in
the SCCS chapter of the Programming Tools Guide. Simply stated, they are
either (1} if you made the delta, you can change its delta commentary; or
(2) if you own the file and directory you ¢can modify the delta commentary.

EXAMPLE
edc —rl.6 —m"bIT8-12345 1bI77-54321 b179-00001" —ytrouble s file
adds bt78-12345 and bl79-00001 to the MR list, removes bl77-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.
cde —rl.6 s.file

MRs? 1b177-54321 bl178-12345 bI179-00001
comments? trouble

does the same thing.
WARNINGS
If SCCS file names are supplied to the cde command via the standard input

{— on the command line), then the —m and —y keyletters must also be
used.

FILES
x-file (see delta (1))
z-file (see delta (1))
SEE ALSO
admin(1), delia(l), get{1}, help(l}, prs(1), scesfile(4).
SCCS in the Programming Tools Guide,
DIAGNOSTICS
Use feip(1) for explanations.

July 12, 1985 Page 2

CFLOW (1} CFLOW (1)

NAME
cflow — generate C flowgraph

SYNOPSIS
cflow [—r] [—ix] [-1_] [—dnum] files

DESCRIPTION

Cflow analyzes a collection of C, YACC, LEX, assembler, and object files
and attemnpts to build a graph charting the external references. Files
suffixed in .y, .l, ., and .i are YACC'd, LEX'd, and C-preprocessed
(bypassed for .i files) as appropriatc and then run through the first pass of
fint(1). (The —I, —D, and —U options of the C-preprocessor are also
understood.) Files suffixed with .s are assembled and information is
extracted {as in .o files} from the symbol table. The output of all this
non-trivial processing is collected and turned into a graph of external refer-
ences which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by
a suitable number of tabs indicating the level. Then the name of the giobal
(normally only a function not defined as an external or beginning with an
underscore; see below For the —i inclusion option) a colon and its
definition. For information extracted from C source, the definition consists
of an abstract type declaration (e.g., char), and, delimited by angle brack-
ets, the name of the scurce file and the line number where the definition
was found. Definitions extracted from object files indicate the file name
and location counter under which the symbol appeared (e.g., fext}. Leading
underscores in C-style external names are deleted,

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For undefined references, only < > is printed.

When the nesting level becomes too deep, the —e option of pr{1} can be
used to compress the tab expansion to something less than every eight

spaces,
The following options are interpreted by cflow:
-r Reverse the *‘caller:callee™ relationship producing an inverted khist-

ing showing the caliers of each function. The listing is also sorted
in lexicographical order by callee.

—ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

—i Include names that begin with an underscore. The default is to
exclude these functions (and data if —ix is used).

—dnum The #num decimal integer indicates the depth at which the
flowgraph is cut off. By default this is a very large number.
Attempts to set the cutoff depth to a nonpositive integer will be
met with contempt.

EXAMPLE
Given the following in "file.c":

int i
main{)

(

CFLOW (1) CFLOW (1)

f();

g}

(),
}

fO
{
i=h0,
]
the command:
cflow —ix file.c
produces the cutput:

1 main: int{}, <file.c 4>

2 f: int0), <filec 11>

3 h: <>

4 izint, <file.c 1>»
5 go<>

DIAGNOSTICS

Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro-
grams used (e.g., the C-preprocessor).

P SEE ALS0Q

BUGS

as(1), cc(1), cpp(1), lex(1), line(1}, nm(1), pr{l), yacc(1).

Fites produced by lex(1)} and yacc{l1} cause the reordering of line number
declarations which can confuse ¢ffow. To get proper results, feed cflow the
yace or lex input.

CHECKCW{1)

CHECKEQ (1)

CHECKMM (1)

CHGRP (1)

SEE CW

SEE EON

SEE MM

SEE CHOWN

CHECKCW (1)

CHECKEQ (1)

CHECKMM (1)

CHGRP (1)

CHMOD (1) CHMOD (1}

NAME

chmod — change mode
SYNOPSIS

chmod mode files
DESCRIPTION

The permissions of the named fifes are changed accerding to mode, which
may be absoluie or symbolic. An absolute mode is an octzl number con-
structed from the OR of the following modes:

4000 set user 1D on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute {search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form;
[who 1 op permission | op permission)

The who part is a combination of the letters v {for user’s permissions), g
{group) and o (other}). The letter a stands for ugo, the default if who is
omitted.

Op can be + to add permission to the file’s mode, — to take away permis-
siom, or = to assign permission absolutely (all other bits wilt be reset).

Permission is any combination of the letters r (read), w (write), x (exe-
cute), s (set owner or group ID) and t (save text, or sticky); u, g, or o indi-
cate that permission is to be taken from the current mode. Omitting permis-
sion is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations
are performed in the order specified. The letter s is only useful with u or g
and t only works with u.

Only the owner of a file (or the super-user) may change iis mode. Ounly
the super-user may set the sticky bit. In order to set the group 1D, the
group of the file must correspond to your current group ID.

EXAMPLE
chmod 755 filename

changes the mode of “filename" to: read, write, execute (4004 200+ 100)
by owner; read, execute (40+10) for group; read, execute (4+1) for oth-
ers. An /s -f of filename shows [-rwxr-xr-x filenamel that the requested
meode is in effect.

chmod = filename

will take away all permissions from Jfidename, including yours.
chmod o-w file

denies write permission to others.
chmod +x file

makes a file executable.

CHMOD (1) CHMOD(1)

SEE ALSO
ts(1}, chmod(2).

CHOWN({}) CHOWN (1)

NAME

chown, chgrp — change owner or group
SYNOPSIS

chown owner file ...

chgrp group file ...

DESCRIPTION
Chown changes the owner of the files o0 owner. The owner may be either a
decimal wser 1D or a login name found in the password file.
Chgrp changes the group 1D of the fies to group. The group may be either
a decimal group ID or a group name found in the group file. ’
I either command is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respectively, will
be cleared.

EXAMPLE
chown unisoft filea fileb filec

would make "unisoft” the owner of the three files.

FILES
fetcf passwd
fetc/group

SEE ALS(D
chmod(1), chown(2), group(4), passwd{4).

CLEAR(}) UniSoft CLEAR (1)

NAME
clear — clear terminal screen

SYNOPSIS
clear

DESCRIPTION
Clear clears your screen if this is possible. 1t looks in the environment for
the terminal type (TERM) and capabilities string (TERMCAP). IT
TERMCAP is not found in the environment, it lcoks in fete/termeap to
fgure out how to clear the screen.

EXAMPLE
clear

clears the screen.

FILES
fetc/termcap terminal capability data base

SEE ALSO
environ{5), termecap(5)

Page 1 July 12, 1985

CMP(1) CMP(1)

NAME

Y cmp — compare two files

SYNOPSIS

— emp [~1] [~s 1 filel file2
DESCRIPTION

The two files are compared. (If filel is —, the standard input is used.}
Under default options, cmp makes no comment if the files are the same; if
they differ, it announces the byte and line number at which the difference
occurred. If one file is an initial subsequence of the other, that fact is
noted.

Options:

—1 Print the byte number {decimal} and the differing bytes {(octal) for
each difference.
—s Print nothing for differing files; return codes only.
EXAMPLE
cmp alpha beta
will report if the files are different and at what point they differ, such as:
alpha beta differ: char 33, line 2

SEE ALSO
_ comm(1), diff(1}.
{7 DIAGNOSTICS
S Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

CoL{(1) COL(1)

NAME
col — filter reverse line-feeds

SYNOPSIS
col [~Dbipx }

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse line feads (ASCIH code
ESC-7), and by forward and reverse half-line-feeds (ESC-9 and ESC-8).
Col is particularly useful for filtering multicolumn output made with the .rt
cornmand of sroff and output resulting from use of the t4/(1) preprocessor,

If the —b option is given, cof assumes that the ouiput device in use is not
capable of backspacing. In this case, if two or more characters are to
appear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally dees not-
emit them on ocuiput. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be
suppressed by the —f (fine) option; in this case, the output from col may
contain forward half-line-feeds (ESC-9), but will still never contain either
kind of reverse line motion.

Unless the — x option is given, cof will convert white space to tabs on out-
put wherever possible to shorten printing time.

The ASCII control characters SO (\(16) and 81 {\017) are assumed by cof tg-
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO char-
acters are generated as approprizte to ensure that each character is printed

in the cotrect character set.

On input, the only control characlers accepted are space, backspace, tab,
return, new-line, 81, SO, vT (\013}, and ESC followed by 7, 8, or 9. The
VT character is an aiternate form of full reverse line-feed, inciuded for
compatibility with some earlier programs of this type. All other non-
printing characters are ignored.

Normally, cof will ignore any unknown escape sequences found in its input;
the —p option may be used to cause cof to output these sequences as regu-
lar characters, subject to overprinting from reverse line motions. The use
of this option is highly discouraged unless the user is fully aware of the tex-
tual position of the escape sequences.

EXAMPLE
nroff -ms filealcol

pipes multicolumn sroff output through the cof filter to enable proper crea-
tion of columns.

SEE ALSO
nroff{l}, tblil).

NOTES
The input format accepted by cof matches the output produced by nroff
with either the —T37 or —Tlp options. Use —T37 (and the —f opticn of
vof) if the ultimate disposition of the output of cof will be a device that can
interpret haif-line motions, and — Tlp otherwise.

CoL (1) COL (1)

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of

the document are ignored. As a result, the first line must not have any
SUperscripts.,

COMB(1) COMB (1)

NAME

comb — combine SCCS deltas
SYNOPSIS

comb [—o] [~s5] [—psid] [—elist] files
DESCRIPTION

Comb generates a shell procedure {see s#{1}) which, when run, will recon-
struct the given SCCS files. The reconstructed files will, hopefully, be
smaller than the original files. The arguments may be specified in any
order, but all keyletter arguments apply to all named 5CCS files. If a direc-
tory is named, comb behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the
path name does not begin with s.) and unreadable files are silently ignored.
If a name of — is given, the siandard input is read; each line of the input is
taken to be the name of an SCCS file to be processed; non-SCCS files and
unreadable files are silently ignored.

The generated shell procedure is written on the standard ouiput,

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

—pS/0 The SCCS IDentification string (SID) of the oldest delia to be
preserved. All older deltas are discarded in the reconstructed file.

—elist A list (see ger(1) for the syntax of a fis) of deltas to be preserved.
All other deltas are discarded.

-9 For each get —e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, other-
wise the reconstructed file would be accessed at the most recent
ancestor. Use of the —o keyletier may decrease the size of the
reconstructed SCCS file. It may also alter the shape of the delta
tree of the original file.

-5 This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size {in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 = {original — combined) / original
It is recommended that before any SCCS files are actually com-
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

EXAMPLE
comb s.filel > wmpl

produces a sheit script saved in "tmpl" which will remove from the SCCS-
format file, "s.filel™, all deltas previous to the last set of changes, i.e.,
removes the capability to return o earlier versions.

FILES

Page 1 July 12, 1985

COMB (1) . COMB({1)

s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.
SEE ALSO

admin(1), delta(l), get(1), help(1), prs(1), sh(1), sccsfile(d).
SCCS in the Programming Tools Guide.
DIAGNOSTICS
Use help (1) for explanations.
BUGS
Comb may rearrange the shape of the tree of deltas. 1t may not save any

space;, in fact, it is possible for the reconstructed file to actually be larger
than the original.

July 12, 1985 Page 2

COMM({(1) COMM (1}

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCII collating
sequence (see sort(1)), and produces a three-column output: lines only in
JSilel; lines only in file2; and lines in both files. The file name — means the
standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm —12 prints only the lines common to the iwo files; comm —23
prints only lines in the first file but not in the second; comm -123 is a no-
op.

EXAMPLE
comm -12 filea fileb

prints only the lines common to filea and fileb,
comm -23 filea fileb

prints only lines in the first file but not in the second.
comm -123 filea fileb

is not an option, as it suppresses all output.
comm -3 filea fileb

prints only the lines that differ in the two files.

SEE ALSO
emp(1), diff (1), sort(1), unig{1).

CONV(1) CONV(1)

NAME

cony — object file converter
SYNOPSIS

conv (-] [-a] [—e] [-p] [-5] —t rarge: files
DESCRIPTION

Meonvoommmdoonvmsobjectﬁlesﬁomthmcmtfmnatmthefm
of the rarget machine. The converted file is written to file.v.

Flag options are:

- read files from standard input.

-a If the input file is an archive, produce the output file in the old
archive format.

-0 If the input file is an archive, produce the output file in the
UNIX 6.0 (Version &) portable archive format.

- UNIX V.0 random access archive format. This is the default,

-5 Function exactly as 3bswab, i.e., preswab all characters in the

object file, This is useful only for 3B20 object files which are
0 be swab-dumped from a DEC machine to a 3B20.

—t target Convert the object file to the byte ordering of the machine
(target) to which the object file is being shipped. This may be
another host or a target machine, Legal values for targer are:
pdp, vax, ibm, i86, x86, b16, n3b, m32, and m68k.

conv can be used 1o convert alt object files in common object file format. Tt can
be used on either the source (sending) or target (receiving) machine.

conv is meant 0 ease the problems created by a multihost cross-compilation
development environment. conv is best used within a procedure for shipping
object files from ane machine to another,

conv will recognize and produce archive files in three formats; the UNIX pre-
V.0 format, the V.0 random access format, and the 6.0 portable ASCIL

Page 1 May 1988

CONV(1) CONY(1)

EXAMPLE
*ghip object files from pdpll to ibm
$acho *.out | conv ~t ibm
Suucp *.v my370!~/rie/
FILES
Min/cony
DIAGNOSTICS
All diagnostics for the conv command are intended to be self-explanatory.
Fatal diagnostics on the command lines cause termination. Fatal diagnostics on
an input file cause the program to continue to the next input file,
WARNINGS
conty does not convert archives from one format o another if both the source

May 1988 Page 2

CP(1) CP(1)

NAME
¢p — copy files
SYNOPSIS
cp [l [filel file2
cp (-] [-r) file ... directory
DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are preserved if it

already existed; otherwise, the mode of the source file is used {(all bits set in the
current umask value are cleared).

In the second form, onc or more files are copied into the directory with their
original flenames.

Cp refuses to copy a file onto itself.

If the —i flag option is specified, cp will prompt the user with the name of the
file whenever the copy will canse an old file 1o be overwritten. An answer of y
will cause ¢p 10 continue. Any other answer will prevent it from overwriting
the file.

If the —r flag option is specified and any of the source files are directories, ¢cp
capies each subtree rooted at that name; in this case, the destination must be a
directory.

FILES
fbinjcp

SEE ALSO
cay(1), pr(1), mv(1}, rcp(IN).

WARNING
Cp does not copy the description of special files, but attempts to copy the con-
tents of the special file. This often occurs when using the —r flag option for a
recursive copy, For example, ¢p will hang when trying to copy a named pipe or
ity device. When a disk node is being copied, the contents of the disk partition
will be copied. To copy the description of the special files, use cpio(1).

Page 1 September 27, 1987

CPIO(1) CPIO(1)

NAME
¢pio — copy file archives in and out

SYNOPSIS
cpio —o[acBv]

¢pio ~i[BedmrtuvfsShé6] [patterns)

cpio —p[adimruv] directory

DESCRIPTION
Cpio —o {copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information. The list of pathnames must contain only one file per line. (Thus,
only some commands, such as find or Is without the —C option, will work in a
pipeline 1o ¢pie.) Output is padded to a 512-byte boundary.
Cpio —i (copy in) extracts files from the standard input, which is assumed to be
the product of a previous cpio —o. Only files with names that match paiterns
are sclected. Patferns are given in the name-generating notation of sk (1). In
patterns, meta-characters 7, +, and [...] match the slash / character. Multiple
patterns may be specified and if no parierns are specified, the defanlt for par-
terns is * (i.e., select all files). The extracted files are conditionally created and
copied into the current directory tree based upon the options described below.
The permissions of the files will be those of the previous cpio —o. The owner
and group of the files will be that of the cumrent user unless the user is super-
user, which canses cpio to retain the owner and group of the files of the previ-
ous cpio —0.

Cpio —p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree
based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.

B Inputfoutput is to be blocked 5,120 bytes to the record (does not apply o the
pass option; meaningful only with data directed vo or from /dev/rmt/27?).
Directories are 10 be created as needed.

Write header information in ASCII character form for portability.
Interactively rengme files. If the user types a null ling, the fike is skipped.
Print a table of contents of the input. No files are created.

Copy unconditionally (normally, an older file will not replace a newer file
with the same name).

[T - T -

Page 1 September 27, 1987

CPIO{1) CF10(1)

v Verbose: causes a list of file names to be printed. When used with the t
option, the table of contents looks like the output of an Is —1 command (see
Is(1)).

1 ‘Whenever possible, link files rather than copying them. Usable only with

the —i or —p options.

Retzin previous file modification time. This option is ineffective on direc-

tories that are being copied.

Copy in all files except those in patterns.

Swap bytes. Use only with the —i option,

Swap halfwords. Use only with the i option.

Swap both bytes and halfwords. Use only with the —i option.

Process an old (i.e., UNIX System Sixth Edition format) file. Only useful

with —i (copy in).

EXAMPLES

Is| cpic —o >/devimiOm

copies the contents of a directory into an archive;
cd olddir
find . —depth —print | cpio —pdl newdir
duplicates a directory hierarchy.

The trivial case “*find . —depth —print | cpio —oB >/dev/rmt/0m’" can be han-
dled more efficiently by:
find . —¢pio /dev/rmt/Om
SEE ALSO
ar(l), find(1), 1s(1) cpio(4).
DIAGNOSTICS
Cpio complains and takes no acton if current files are newer than those with

the same name being extracted from an archive. Thus, newer files are never
overwritten when exiracting files from an archive with cpio -1

BUGS
Path names are restricted to 128 characters. If there are too many unique linked
files, the program runs out of memory to keep track of them and, thereafter,
linking information is lost. Only the super-user can copy special files. The -B
option does not work with certain magnetic tape drives.

TN TE ™

September 27, 1987 Page 2

CPP(1) PP (1)

NAME

cpp — the C language preprocessor
SYNOPSIS

/lib/cpp {option ...J lifile [ofite] |
DESCRIPTION

Cpp is the C language preprocessor which is invoked #s the first pass of any
C compilation using the ¢c(1) command. The outpgt of cpp is designed 1o
be in a form acceptable as input to the next pass of the C compiler. As the
C language evolves, cpp and the rest of the C pilation package will be
muodified to follow these changes. Therefore, the use of cpp other than in
this framework is not suggested. The prefofred way to invoke cpp is
through the cc(i) command since the functighality of cpp may someday be
moved elsewhere. See m4(1) for a general facro processor.

Cpp optionally accepis iwo filenames as gfguments, Ifife is the input and
afile is the output for the preprocessor. Ahey default to standard input and
standard output if not supplied.

The following options to ¢pp are recogmized:

-P Preprocess the input withoul producing the line control information
used by the next pass of the C compiler.

-C Pass along all comments/except those found on ¢pp directive lines.
By default, cpp strips C-tyle comments.

—Uname
Remove any initial gefinition of name, where name is a reserved
symbo]l that is preflefined by the particular preprocessor. The
current list of these/ possibly reserved symbols includes:

operating systeph: ibm, gcos, 0s, 1ss, unix
hardware: interdata, pdpll, u370, u3b, vax, mb8k
UNIX Systemy'variant: RES, RT

—Drame

— D name =def

Define namd as if by a #deifine directive. If no =de/ is given,

—1Idir Change thg algorithm for searching for #include files whose names
do not bggin with / to look in dir before looking in the directories
on the Atandard list. When this option is used, #inclode files

and 45t in directories on a standard list. For #include files whose
&s are enclosed in < >, the directory of the ifile argument is

All obp directives start with lines begun by #. The directives are:

#define name ioken-string
Replace subsequent instances of name with token-string.

CPP(1) CPP(1)

NAME
cpp- mcwasemm
SYNOPSIS
Nib/epp [—C) [-Dname[=def1] [-1dir) [-P] [-Uname] [ifile[ofile]]
DESCRIPTION
cpp is the C language preprocessor which is invoked as the first pass of any C
compilation using the ce(1) command. The output of cpp iz designed tobe in a
form acceptsble as input to the next pass of the C compiler. As the C language
evolves, cpp and the rest of the C compilation package will be modified to fol-
low these changes. Therefore, the use of cpp other than in this framework is
not suggested. The preferred way to invoke cpp is through ¢the cc(1) command
since the functionality of cpp may someday be moved elsewhere. See md(l)
for a general macro prOCessor.
cpp optionally accepts two filenames as arguments. ifile is the input and ofile is
the output for the preprocessor. They default so standard input and standard
output if not supplied.
The following flag options 1o cpp are recognized:
—P Preprocess the input without producing the line control information used
by the next pass of the C compiler.
—C Pass along all comments except those found on cpp directive lines. By
defauit, cpp strips C-style comments.
—Uname
Remove any initial definition of name, where name is a reserved symbol
that is predefined by the particular preprocessor. The current list of these
possibly reserved symbols includes:
operating system: ibm, gcos, os, tss, unix
hardware: interdata, pdp11, 0370, ub, vax, mé68k
UNIX System variant: RES,RT
=Dname
—Dname=def
Define rame as if by a #define directive. If no =def is given, name is defined
asl,
=Ldir
Search for #include files (whose names do not begin with /) in dir before look-
ing in the directories on the standard list. When this flag option is used,
#include files whose names are enclosed in ™" are searched for first in the
directory of the ifile argument, then in directories named in -1 flag options, and
last in directories on a standard list. For #include files whose names are
enclosed in <>, the directory of the ifile argument is not searched.
Two special rames are ynderstood by cpp. The name LINE_ is defined as the
cument line number (as a decimal integer) as known by cpp, and _FILE is
defined as the current filename (as a C string) as known by cpp. They can be

Page 1 : May 1988

CPP(1) CPP(1)

used anywhere (including in macros) just as any other defined name.
All cpp directives start with lines begun by #. The directives are:

#define name token-,
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string
Notice that there can be no space between name and the left parenthesis
{(]. Replace subsequent instances of name followed by a left parenthesis
[(J. a list of comma-separated tokens, and a right parenthesis D] by token-
string where each occurrence of an arg in the token-siring is replaced by
the corresponding token in the comma-separated list

#undel name
Cause the definition of name (if any) to be forgotten from now on.

finclude "filename”

#include <filename
Include at this point the contents of filename (which will then be rn
through cpp). When the <filenane> notation is used, filename is only
swt_:hedforinmesmwdardplaces. See the I flag option abave for more

#line integer-constant "filename"®
Causes cpp to generate line control information for the next pass of the C
compiler. integer-constant is the line number of the next line and filename
is the file where it comes from. If "filename" is not given, the current
filename is unchanged.

#endil
Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef).
Each test directive must have a matching #endif.

#ifdef name
The lines following appear in the ouvtpat if and only if same has been the
subject of a previous #define {or --D} without being the subject of an inter-
vening #undef,

#ifodefl name
The lines following do not appear in the output if and only if mame has
been the subject of a previous #define (or —I) without being the subject of
an intervening #undef.

#if constant-expression
Lines following appear in the cutput if and only if the constanr-expression
eviluates t0 non-zero. All binary non-assignment C operators, the ?:
operator, the unary —, !, and ~ operators are all legal in constant-
expression. The precedence of the operators is the same as defined by the
C language, There is also a unary operator defined, which can be used in
consiant-expression in these two forms: defined (nrame) or
defined name. This allows the udlity of #ifdel and #ifndef in a #if

May 1988 Page 2

CPP(1) CPP(1)

directive, Only these operators, integer constants, and names which are
known by cpp should be used in constant-expression. In particular, the
sizeof operator is not available.
flelse
Reverses the notion of the (est directive that matches this directive, If lines
previous to this directive are ignored, the following lines appear in the out-
put. If fines previous to this directive are not ignored, the following lines
do not appear in the output.
The test directives and the possible #else directives can be nested.
FILES
fik'epp
/osr/include
SEE ALSO
ee(1), m4(1).
DIAGNOSTICS
The error messages produced by cpp are self-explanatory. The line number and
filename where the exror occurred are printed along with the diagnostic.
NOTES
When newline characters were found in argument lists for macros to be
expanded, previous versions of cpp put out the newlines as they were foand and
expanded, The current version of cpp replaces these newlines with blanks 1o
alleviate problems that the previous versions had when this occurred,

Page 3 May 1988

CPP5.0(1) System V a.out format only CPP5.0(1)

NAME

cpp — the C language preprocessor
SYNOPSIS

/1ib/S.0/cpp loption ...} lifile[ofile]]
DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first pass of any
C compilation using the ce3. (1) command. Thus the output of ¢pp is
designed to be in a form acceptable as input to the next pass of the C com-
piter. As the C language evolves, cpp and the rest of the C compilation
package will be modified to follow these changes. Therefore, the use of cpp
other than in this framework is not suggested, The preferred way to invoke
¢pp is through the ¢cl (1) command since the functionality of cpp may
someday be moved elsewhere. See m4 (1) for a general macro processor.

Cpp optionally accepts two file names as arguments. Ifile and ofile are
respectively the input and output for the preprocessor. They default to
standard input and standard outpat if not supplied.

The following options to cpp are recognized:

—P Preprocess the input without producing the line control information
used by the next pass of the C compiler and leave the resuit in
ifite.o.

—E Preprocess the input and put the resulting output on the standard
output.

—(C By default, cpp strips C-style comments. If the —C option is
specified, all comments {except those found on cpp direclive lines)
are passed along.

—Uname
Remove any initial definmition of name, where rame is a reserved
symbol that is predefined by the particular preprocessor. The
current list of these possibly reserved symbols includes:

operating system: ibm, geos, os, 185, UNix
hardware: interdata, mé63000, pdpll, u370, ulb, vax
UNIX System variant: RES, RT

—Dname

—Dname =def

Define name as il by a #define directive. If no =def is given, name
is defined as 1.

—Idir Change the algorithm for searching for #include files whose names
do not begin with / o look in dir before looking in the directories
on the standard list. Thus, #include fles whose names are enclosed
in ** will be searched for first in the directory of the {fife argument,
then in directories named in —1 options, and last in directories on a
standard list. For #inclade files whose names are enclosed in <>,
the directory of the ifife argument is not searched.

Two special names are undersiood by cpp. The name __LINE__ is defined
as the current line number (as a decimal integer) as known by ¢pp, and
__FILE__ is defined as the current file name (as a C string) as known by
cpp. They can be used anywhere (including in macros) just as any other
defined name.

CPP5.0(1) System V a.out format only CPP5.0(1)

All cpp directives start with lines begun by #. The directives are:

##define name token-string
Replace subsequent instances of name with roken-string,

#define mamel arg, ..., arg} token-string
Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma
separated tokens, and a) by token-string where each occurrence of an
arg in the roken-string is replaced by the corresponding token in the
comma separated list.

#undef nanme
Cause the definition of mame (if any) to be forgotten from now on.

#include " filename”

#ionclude < filename>
Include at this peint the contents of fifename (which will then be run
through cpp). When the < filername> notation is used, Jfierame is
only searched for in the standard places. See the —] option above
for more detail.

#line integer-constant " fitename"
Causes cpp to generate line control information for the next pass of
the C compiler. fnreger-constant is the line number of the next line
and filename is the file where it comes from. If "filename” is not
given, the current file name is unchanged.

#Fendif
Ends & section of lines begun by a test directive (#if, #ifdef, or
f#itndef). Each test directive must have a matching #endif.

#tifdef name
The lines following will appear in the ocutput if and only if »ame has
been the subject of a previous #define without being the subject of
an intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name
has been the subject of a previous #define without being the subject
of an intervening #undef.

JHif constant-expression
Lines following will appear in the output if and only if the constani-
expression evaluates to non-zeco. All binary non-assignment C
operators, the ?: operator, the unary —, !, and ~ operators are ail
legal in constani-expression. The precedence of the operators is the
same as defined by the C language. There is also a unary operator
defined, which can be used in consrani-expression in these two forms:
defined (name) or defined name. This allows the utility of #lfdef
and #ifndef in a #if directive. Only these operators, integer con-
stants, and names which are known by cpp should be used in
constant-expression. In particular, the sizeof operator is not available.

ftelse
Reverses the notion of the test directive which matches this direc-
tive. So if lines previcus to this directive are ignored, the following
lines will appear in the output. And vice versa,

CPP5.0(1) System V a.out format only CPP5.0(1}

The test directives and the possible #else directives can be nesied.

EXAMPLE
lib/epp —P —DXYZ —DMYFILE=myfile —Il./include myprog.c
myprog.i
would preprocess "myprog.c” input output file "myprog.i*, deleting output
line numbers { —P}, defining symbol XYZ to be null, symbol MYFILE to be
"myfile" and using include files from ../include.

FILES

fusr/include standard directory for #include files
SEE ALSO

cc5.0(1), ma{l),
DIAGNOSTICS

The error messages produced by cvpp are intended to be self-explanatory.
The line number and filename where the error occurred are printed along
with the diagnostic.

NOTES
When newline characters were found in argument lists for macros to be
expanded, previous versions ol cpp put out the newlines as they were
found and expanded. The current version of ¢pp replaces these newlines
with blanks to alleviate problems that the previous versions had when this
occurred.

CRONTAB(1) CRONTAB(1)

NAME
crontab — user crontab file

SYNOPSIS
crontab [file]
crontab —r
crontab -1

DESCRIPTION
Crontab copies the specified file, or standard input if no file is specified, into a
directory that holds all users’ crontabs. The —r option removes a user’s crontab
from the crontab directory, Crontab -1 will list the crontab file for the invoking
nser.

A user is permited to use crontab if their name appears in the file
fusrflib/cron/cronallow. If that file does not exist, the file
fusr/lib/cron/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job.
The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0—59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0—6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values), or a
list of elements separated by commas. An slement is either a number, or two
nurnbers separated by a minus sign {meaning an inclusive range). Note that the
specification of days may be made by two fields (day of the month and day of
the week). If both are specified as a list of clements, both are adhered to. For
example, 0 0 1,15 * 1 would run a command on the first and fifteenth of each
month, as well as on every Monday. To specify days by only one field, the
other field shoutd be set to * (for example, 0 0 * * 1 would run a command only
on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell
at the specified times. A percent character in this field (unless escaped by V) is
translated to a new-line character, Omly the first line (up to a % or end of Ling)

Page 1 September 24, 1987

CRONTAB(1) CRONTAB(1)

of the command field is executed by the shell, The other lines are made avail-
able to the command as standard input.

The shell is invoked from your $HOME directory with an arg0 of sh. Users
who desire to have their prafile executed must do so in the crontab file expli-
citly by prepending the statement:

. .profile &&

to the command being run, This must be specified for each line of the crontab
for which the .profile is to be sourced. Cron supplies a default environment for
every shell, defining HOME, LOGNAME, SHELL(=/bin/sh), and
PATH(=:/bin:/usr/bin:/usr/ibin).

NOTE: Users should remember to redirect the standard output and standard
errot of their commands! If this is not done, any generated output or errors will
be mailed to the user.

FILES
Just/libjcron main cron directory
Jusrfspoolfcronfcrontabs spool area
Jusrflibjcronflog accounting information
Jusrflib/cron/cron.allow ligt of allowed users
fusrflib/cron/cron.deny list of denied users

SEE ALSO

sh(1), cron{1M}.

September 24, 1987 Page 2

CRYPT(1) CRYPT(1)

NAME

crypt — encode/decode

SYNOPSIS

crypt [password]

DESCRIPTION

Crypt reads from the standard input and writes on the standard output.
The possword is a key that selects a particular transformation. If no pass-
word is given, crypt demands a key from the terminal and turns off printing
while the key is being typed in. Crypt encrypts and decrypts with the same
key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed
in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be
infeasible, *‘sneak paths™ by which keys or clear text can become visible
must be minimized.

Crypt implements 2 one-rotor machine designed along the lines of the Ger-
man Enigma, but with a 256-element rotor. Methods of atiack on such
machines are known, but not widely; moreover the amount of work
required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., 10 take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lower-
case letters, then encrypted files can be read by expending only a substan-
tial fraction of five minutes of machine time.

Since the key is an argument to the ¢rypt command, it is potentially visible
to users executing ps {1} or a derivative. To minimize this possibility, cryps
takes care to destroy any record of the key immediately upon entry. The
choice of keys and key security are the most vulnerable aspect of crypt.

EXAMPLE

FILES

crypt asa < sleeperc > zzz

will use the string "asa” as key to the encryption algorithm to encrypt the
contents of "sleeper.c”, and place the encrypted output in file "zzz". File
*zzz" at this point will be unreadable. NOTE that the original file,
"sleeper.c”, remains in readable form. To obtain readable print-out of the
file "zzz", it could be decoded as follows:

CTYpt < 222
After the response:
Enter key:
the user types in "asa”,

/dev/tty for typed key

CSH{1) (UniSoft) CSH{1)

strings separated by newlines, as for fgrep (1).

When the shell’s input is not a terminal, the character # introduces a comment
which continues to the end of the input line. It is prevented from having this
special meaning when preceded by \ or if bracketed by a pair of single or dou-
ble quotation marks.

Commands
A gimple command is a sequence of words, the first of which specifies the com-
mand to be executed.

A simple command or a sequence of simple commands separated by 1 charac-
ters forms a pipeline. The output of each command in a pipeline is connected to
the input of the next.

Sequences of pipelines may be separated by ;, and are then executed sequen-
Hally, A sequence of pipelines may be executed without immediately waiting
for it o terminate by following it with an &, which means "run it in back-
ground”.

Parentheses { and)} around a pipeline or sequence of pipelines cause the whole
scries to be treated as a simple command, which may in turn be a compenent of
a pipeline, etc. It is also possible to separate pipelines with |1 or && indicat-
ing, as in the C language, that the second is 10 be executed only if the first fails
or succeeds, respectively, (See Expressions.)

Process ID Numbers

‘When a process is run in background with &, the shell prinis a line which looks
like:

1234

indicating that the process which was started asynchronously was number 1234.
Statuz Reporting

This sheli learns immediately whenever a process changes state. It normally

informs you whenever a job becomes blocked so that no further progress is pos-

sible, but only just before it prints a prompt. This is done so that it does not oth-

erwise disturb your work.

To check on the status of a process, use the ps (process status) command.
Substitutions

‘We now describe the various transformations the shell performs on the input in

the order in which they oceur.

September 24, 1987 Page 2

CSH(1) (UniSoft) CSH(1)

History substitutions

History substitutions place words from previous command input as portions of
new commands, making it easy to repeat commands, repeat arguments of a pre-
vious commard in the current command, or fix spelling mistakes in the previous
commang with little typing and a high degree of confidence.

History substitutions hegin with the character ! and may begin anywhere in the
input stream (with the proviso that they do not nest.)

This ! may be preceded by a \ to turn off its special meaning; for convenience,
a 1 is also passed unchanged when it is followed by a blank, tab, newline, = or
(

Therefore, do not put a space after the ! and the cornmand reference when you
are invoking the shell's history mechanism. (History substitutions also occur
when an input line begins with T. This special abbreviation will be described
later.)

An input line which invokes history substitution is echoed on the terminal
before it is executed, as it wonld look if typed out in full.

The shell’s history list, which may be seen by typing the history command, con-
tains all commarnds input from the terminal which consist of one or more words.
History substilntions reintroduce sequences of words from these saved com-
mands into the input stream. The history variable controls the size of the input
stream. The previous command is always retained, regardless of its value.
Cotnmands are numbered sequentially from 1.

Consider the following output from the history command:
9 write michael

10 ex write.c

11 cat oldwrite.c

12 diff *write.c
The commands are shown with their event numbers. It is not usually necessary
to use event numbers, but the current event number can be made part of the
prompt by placing an ! in the prompt string, This is done by SETting Prompt = |
and the prompt character of your choice.
For example, if the current event is number 13, we can call vp the command
recorded as event 11 in several ways: !-2 [ie., 13-2]; by the first letter of one of
its command words, such as !¢ referring to the "c” in caf; or twri for event 9, or
by a string con@ined in a word in the command as in !?mic? also referring to

Page 3 September 24, 1987

CRYPT(1) CRYPT (1)

SEE ALSO
ed(1), makekey(1}, sty(1).

BUGS
If output is piped to areff and the encryption key is nor given on the com-
mand line, crypt can leave terminal modes in a strange state (see sty (1)),
If two or more files encrypted with the same key are concatenated and an
attempt is made (0 decrypt the result, only the contents of the first of the
original files will be decrypted correctly.

NOTE
This utility is not provided with international distribution.

CSH(1) (UniSoft) CSH(1)

NAME

csh — a shell {command interpreter) with C-like syntax
SYNOPSIS

csh [—cefinstvVxX] {arg ...]
DESCRIPTION

{sh is a command language interpreter incorporating a history mechanism (see
History Substitutions) and a C-like syntax.

An instance of ¢sh begins by executing commands from the file ".cshre” in the
home directory of the invoker, If this is 3 login shell, then it also executes com-
mands from the file "login" there. It is typical for users on CRTs io put the
command stty cr¢ in their ".login" file, and o also invoke sser (1) there.

In the normal case, the shell will then begin reading commands from the termi-
nal, prompting with "%", Processing of arguments and the use of the shell o
process files containing command scripts will be described later.

The shell then repeatedly performs the following actions: a line of command
input is read and broken into words. This sequence of words is placed on the
command history list and then parsed. Finally each command in the cumrent
line is executed.

When a login shell terminates, it executes commands from the file " logout” in
the user’s home directory,

Lexical Structure
The shell splits input lines into words at blanks and tabs with the following
exceptions. The characters &, |, 3, <, >, (,), form separate words. If doubled in
& &, ||, << or >>, these pairs form single words. These parser metacharacters
may be made part of other words, or their special meaning may be prevented,
by preceding them with a backslash (\). A newline preceded by a \ is
equivalent to a blank. It is usually necessary to use the backslash to escape the
parser metacharacicrs when you want to use them literally rather than as meta-

characters,
Strings enclosed in matched pairs of quotation marks, either single or double
quotation marks, ’, * or ", form parts of a word. Metacharacters in these

strings, including blanks and tabs, do not form separate words. Such quotations
have semantics to be described subsequently.

Within pairs of single or double quotation marks, a newline (carriage return)
preceded by a \ gives a true newline character. This is used to sct up a file of

Page 1 September 24, 1987

CSH(1) {UniSoft) CSH(1)

event 9,

These forms, without further modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a special case !! refers to
the previous command; thus !! alone is essentially a redo.

Words are selected from a command event and acted upon according to the fol-
lowing formula:

event:position:action
The event is the command you wish to retrieve. As mentioned above, it may be

summoned up by event number and in several other ways. All that the event
notation does is to tell the shell which command you have in mind.

Position picks out the words from the command event on which you want the
action to take place. The position notation can do anything from altering the
command completely to making some very minor substitution, depending on
which words from the command event you specify with the position notation,

To select words from a command event, follow the event specification with a :
and a designator (by position) for the desired words.

The words of a command event are picked out by their position in the input
line. Positions are numbered from 0, the first word (usually command) being
position 0, the second word having position 1, and so forth. If you designate a
word from the command event by stating its positon, means you want to
include it in your revised command. All the words that you want to include in a
revised command must be designated by positon notaton in order o be
included.

The basic position designators are:
0 first (command) word
n nth argument
T firstargument, ie., 1
$ last argument
% matches the word of an ?s? search which immediately precedes it;

used to strip one word out of a command event for use in another
command. Example; !2four?: %:p prints four,

x—y range of words (e.g,, 1-3 means "from position 1 to position 3").

—y abbreviates "0y

+ stands for "T-$", or indicates position 1 if only one word in event.

September 24, 1987 Page 4

CSH(1) {UniSoft) CS8H(1)

x» ahbreviates "x—$" where
x is a position number.
x— like "x+" but omitting last word "$"
The : separating the event specification from the word designator can be omit-
ted if the argument selector begins witha T, §, *, — or %.
Modifiers, each preceded by a :, may be used to act on the designated words in
the specified command event. The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
T Remove a trailing ".xxx" component, leaving the root name.
[Remove atl but the extension ".xxx" part. This does not work

in conjunction with the history command.
sfold/new/ Substitute new for old
Remove all leading pathmame components, leaving the tail.
Repeat the previous substitution.
Apply the change globally, prefixing the above, e.g., "g&".
Print the new command but do not execute it.
Quote the substituted words, preventing farther substitutions.
Like g, but break into words at blanks, tabs and newlines,

Unless preceded by a "g”, the modification is applied only to the first modifiable
word. With substitutions it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the
editors, but rather strings. Any character may be used as the delimiter in place
of /; a \ quotes the delimiter into the { and r strings. The character & in the
right hand side is replaced by the text from the left. A \ quotes & also. A null
! uses the previous string either from a / or from a contextual scan string s in
1757, The trailing delimiter in the substitution may be omitted if (but only if) a
newline follows immediately as may the trailing 7 in a contextual scan,

A history reference may be given without an event specification, e.g., !$. In
this case the reference is to the previous command. If a previous history refer-
ence occurred on the same line, this form repeats the previous reference. Thus
17f00?T !$ gives the first and last arguments from the command matching
?foo?.

LT~ - Sa

You can quickly make substitutions to the previous command Line by using the
T character as the first non-blank character of an input line. This is equivalent
to 1:sT providing a convenient shorthand for substitutions on the text of the pre-
vious line. Thus TibTlib fixes the spelling of "lib” in the previous command.

Page 5 September 24, 1987

CSH(1) {UniSoft) CSH(1)

Finally, a history substitution may be surrounded with [and] if necessary to
insulate it from the characters which follow. Thus, after Is —id “pavl we might
do !{I}a io do Is —Id "paula, while 'la would look for a command starting la.

Quotations with ’ and "

The quotation of strings by * and " can be used to prevent all or some of the
remaining substitutions which would otherwise take place if these characters
were interpreted as "metacharacters” or "wild card matching characters”.
Strings enclosed in single quotes, * are prevented any further interpretation or
expansion. Strings enclosed in " may still be variable and command expanded
as described below.

In both cases the resulting text becomes (all or part of) a single word; only in
one special case (see Commuand Substitution below) does a ™ quoted string yield
parts of more than one word; * quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and
modified by the alias and unalias commands, After a command line is
scanned, it is parsed into distinct commands and the first word of each com-
mand, left-to-right, is checked to see if it has an alias. If it does, then the text
which is the alias for that command is reread with the history mechanism avail-
able as though that command were the previous input line, The resulting words
replace the command and argument list. If no reference is made to the history
list, then the argument list is left unchanged.,

Thus if the alias for Is is Is —1 the command 1s /usr would map 1o Is—1/usr, the
argument list here being undisturbed. Similarly if the alias for lookup was grep
1T Jetc/passwd, then lookup bill would map to grep bill /etc/passwd.

If an alias is found, the word ransformation of the input text is performed and
the aliasing process begins again on the reformed input line. Locping is
prevented if the first word of the new text is the same as the old by flagging it to
prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus
we can alias print ‘pr \'* | Ipr” to make a command which pr s its arguments
to the line printer.

September 24, 1987 Page 6

CSH(1) ' (UniSoft) CSH(1)

Variable substitution

The shell maintains a sct of variables, each of which has as value a list of zero
or more words. Some of these variables are set by the shell or referred to by it
For instance, the argv variable is an image of the shell's argument list, and
words of this variable’s value are referred to in special ways.

The values of variables may be displayed and changed by using the set and
unset commands. Of the variables referred to by the shell a nermber are toggles;
the shell does not care what their value is, only whether they are set or not. For
instance, the verbose variable is a toggle which causes command input to be
echoed, The setting of this variable results from the —v command line option,

Other operations freat variables numerically. The @ command permits
nameric calculations to be performed and the result assigned to a variable.
Variable values are, however, always represented as (zero or more) strings. For
the purposes of numeric operations, the null string is considered to be zero, and
the second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is exe-
cuted, variable substitution is performed keyed by $ characters. This expansion
can be prevented by preceding the $ with a \ except within double quotes (")
where it always occurs, and within single quotes (*) where it mever occurs.
Sirings quoted by " are interpreted later (see Command substitution below) so
$ substitution does not occur there until later, if at all. A $ is passed
unchanged if followed by a blank, tab, or end-of-line,

Input/output redirections are recognized before variable expansion, and are
variable expanded separately. Otherwise, the command name and entire argu-
ment list are expanded together. It is thus possible for the first (command) word
10 this point to generate more than one word, the first of which becomes the
command name, and the rest of which become arguments.

Unless enclosed in double quotes or given the :q modifier, the results of vari-
able substitution may cventually be command and filename substituted. Within
double guotes, a variable whose value consists of multiple words expands to a
(portion of) a single word, with the words of the variables value separated by
blanks. When the :q modifier is applied to a substitution, the variable will
expand to multiple words with each word separated by a blank and quoted to
prevent later command or filename substitation.

Page 7 September 24, 1987

%

CSH(1) ' (UniSoft) CSHQ)

Metasequences for variable substitution

The following metasequences are provided for introducing variable values into
the shell input. Except as noted, it is an error to reference a variable which is
not set.

$name

${name)
Are replaced by the words of the value of variable name, each separated
by a blank. Braces insulate name from following characters which would
otherwise be part of it. Shell variables have names consisting of up to 20
letters and digits starting with a letter. The underscore character is con-
sidered a letter. '

If name is not a shell variable, but is set in the environment, then that
value is returned (but : modifiers and the other forms given below are not
available in this case),

F$name[selector]

${name[selector]}
May be nsed o select only some of the words from the value of name.
The selector is subjected to $ substitution and may consist of a single
number or two numbers separated by a —. The first word of a variables
value is numbered "1". If the first number of a range is omitted it defanlts
1o "1". If the last member of a range is omitted it defanlts 1o "$#name”.
The selector * selects all words. It is not an error for a range o be empty
if the second argument is omitted or in range.

$#mame

${#name}
Gives the number of words in the variable, This is useful for later use in a
"[selector]”.

£0
Substitutes the name of the file from which command input is being read.
An error occurs if the name is not known,
$number
${number)
Equivalent to "$argv[number] ",
$=
Equivalent to "$Sargv[*]".

September 24, 1987 Page 8

CSH(1) (UniSoft) CSH(1)

The modifiers ":h", "7, "ir", ":q" and ";x" may be applied to the substitutions
above as may ":gh", ":gt" and ":gr”. If braces { } appear in the command
form, then the modifiers must appear within the braces, The current implemen-
tation allows only one : modifier on each $ expansion.

The following substitutions may not be modified with : modifiers.
$?name
%{Mname}

Substitutes the string "1" if name is sat, "0" if it is not,
$70

Substitutes 1" if the current input filename is known, "0" if it is not.
$%

Substitute the (decimal} process number of the (parent) shell.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied
selectively to the arguments of builtin commands, This means that portions of
expressions which are not evaluated are not subjected to these expansions. For
commands which are not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-output
redirection is performed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in °. The output
from such a command is normaily broken into separate words at blanks, tabs
and newlines, with null words being discarded, this text then replacing the ori-
ginal string. Within double guotes ("), only newlines force new words; blanks
and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is
thus possible for a command substitution to yield only part of a word, even if
the command outputs a complete line.

Filename substitution

If a word contains any of the characters », 7, [or { or begins with the charac-
ter ~, then that word is a candidate for filename substitution, also known as
"globbing”. This word is then regarded as a pattern, and replaced with an
alphabetically sorted list of file names which match the pattern. In a list of
words specifying filename substitution it is an error for no pattern to match an
existing file name, but it is not required for each pattern to match. Only the

Pape 9 September 24, 1987

CSH(1) (UniSoft) CSH(1)

metacharacters #, ? and [imply pattem malching, the characters = and { being
more akin to abbreviations.

In matching filenames, the character . at the beginning of a filename or immedi-
ately following a /, as well as the character / must be matched explicitly. The
character * matches any string of characters, including the null string. The
character ? matches any single character. The sequence [...] matches any one
of the characters enclosed. Within [...], a pair of characters separated by —
matches any character lexically between the two.

The character ~ at the beginning of a filename is used to refer to home direc-
torics. Standing alome, ie., ~ it expands to the invokers home directory as
reflected in the value of the variable home. When followed by a name consist-
ing of letters, digits and — characters, the shell searches for a user with that
name and substitutes their home directory; thus “ken might expand to /usr/ken
and ken/chmach to /usr/ken/chmach. If the character ~ is followed by a char-
acter other than a letter or / or appears not at the beginning of a word, it is left
undisharbed.

The metanotation afb,c,d}e is a shorthand for abeaceade. Left wo right order is
preserved, with results of matches being sorted scparately at a low level to
preserve this order. This construct may be nested. Thus “source/s1/{oldls,Is}.c
expands to /usr/source/sl/oldls.c Jusr/source/s1/s.c whether or not these files
exist without any chance of emor if the home directory for source is
fusr/source. Similarly ./{memo,*box} might expand to ./meme ./box
Jmbox. (Notc that "memo” was not sorted with the results of matching
"»box".) As a special case [, } and {) are passed undisturbed.

Input/ontput

The standard input and standard cutput of a command may be redirected with
the following syntax:

< name
Open file name (which is first variable, command and filename expanded)
as the standard input.

<< word
Read the shell input up to a Yine which is identical to word. Word is not
subjected 1o variable, filename or command substitution, and each input
line is compared to word before any substitutions are done on this input
line, Unless a quoting \, ™, * or * appears in word, variable and command
substitution is performed on the intervening lines, allowing \ to quote §, \

September 24, 1987 Page 10

CSH(1) ' (UniSoft) CSH(1)

and *. Commands which are substituted have all blanks, tabs, and new-
lines preserved, except for the final newline which is dropped. The resul-
tant text is placed in an anonymous temporary file which is given to the
command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not exist then it is
created; if the file exists, it is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a charac-
ter special file (e.g., a terminal or /dev/null) or an error results, This helps
prevent accidental destruction of files. In this case the ! forms can be used
and suppress this check,

The forms involving &, route the diagnostic outpat into the specified file
as well as the standard output. Name is expanded in the same way as <
input filenames are.

>> name

>>& name

»>>! name

>>&! name
Uses file name as standard output like > but places output at the end of the
file, If the variable noclobber is set, then it is an error for the file not o
exist unless one of the ! forms is given. Otherwise similar to >.

A command receives the environment in which the shell was invoked as
modified by the input-output parameters and the presence of the command in a
pipeline. Thus, unlike some previous shells, commands run from a file of shell
commands have no access to the text of the commands by default; rather they
receive the original standard input of the shell. The << mechanism should be
used 10 present inline data. This permits shell cornmand scripts to function as
components of pipelines and allows the shell to block read its input.

Diagnostic output may be directed through a pipe with the standard output.
Simply use the form | & rather than just |.

Page 11 September 24, 1987

CSH(1) (UniSoft) CSH(1)

Expressions

A number of the builtin commands (to be described subsequently) take expres-
sions, in which the operators are similar o those of C, with the same pre-
cedence. These expressions appear in the @, exit, if, and while commands.
The following operators are available:

N&X 1 T & =t = Fa=b=<> << +-*[% 1" ()

Here the precedence increases to the right, =, !=, =" and !"; <=, >=, < and
>; << and >>; + and —; *, / and % being, in groups, at the same level. The
==, !=, =" and 1" operators compare their arguments ag strings; all others
operate on numbers. The operators =" and !~ are like != and == except that
the right hand side is. a partern (containing, e.g., *s, 75 and instances of [...])
against which the left hand operand is matched. This reduces the need for use
of the switch statement in shell scripts when all that is really needed is pattern
matching.

Strings which begin with "0" are considered octal numbers. Null or missing
arguments are considered "0". The result of all expressions are strings, which
represent decimal numbers. It is important to note that no two components of
an expression can appear in the same word; except when adjacent to com-
ponents of exprassions which are syntactically significant to the parser (& | <
> {)} they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions
enclosed in { and) and file enquiries of the form —1 name where 1 is one of:

read access

write access

execute access

existence

ownership

zeT0 Size

plain file

directory

The specified name is command and filename cxpanded and then tested to see if
it has the specified relationship to the real user, If the file does not exist or is
inaccessible, then all enguiries return false, i.e., "0". Command executions
succeed, returning true, i.e., "17, if the command exits with status 0, otherwise
they fail, returning false, i.c., "0". If more detailed status information is
required, then the command should be executed outside of an expression and

AN OO g

September 24, 1987 Page 12

CSH(1) (UniSoft}) CSH(1)

the variable starus examined,

Control Flow
The shell contains a number of commands which can be used to regulate the
flow of control in command files (shell scripts) and {in limited but useful ways)
from terminal input. These commands all operate by forcing the shell to reread
or skip in its input and, due 1o the implementation, restrict the placement of
some of the commands.

The foreach, switch, and while statements, as well as the jf~then—else form of
the if statement require that the major keywords appear in a single simple com-
mand on an input line as shown below.

If the shell’s input is not seckable, the shell buffers up input whenever a loop is
being read and performs seeks in this internal buffer to accomplish the reread-

ing implied by the loop. (To the extent that this allows, backward gotos will
succeed on non-seekable inputs.,)

Builtin Commands

Builtin commands are executed within the shell. If a builtin command occurs

as any component of a pipeline except the last, then it is executed in a subshell,

alias

alias name

alias name wordlist
The first formn prints all aliases. The second form prints the alias for name.
The final form assigns the specified wordlist as the alias of rame:; wordlist
is command and filename substitated. Name is not allowed to be alias or
unalias.

break
Causes execution 10 resume after the end of the nearest enclosing foreach
or while. The remaining commands on the current line are executed.
Multi-level breaks are thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below,

ced
cd name

Page 13 September 24, 1987

CBH(1) (UniSoft) CSH(1)

chdir

chdir name
Change the shells working directory to directory name. If no argument is
given, then change to the home directory of the user,

If name is not found as a subdirectory of the current directory (and does
not begin with /, ./ or ./), then each component of the variable cdpath is
checked to see if it has a subdirectory aagme. Finally, if all else fails but
name is a shell variable whose value begins with /, then this is tried to see
if it is a directory.
continue

Continue execution of the nearest enclosing while or foreach. The rest of
the commands on the current line are executed.

default:
Labels the default case in a switch statement, The default should come
after all case labels.

echo wordlist

echo —m wordlist
The specified words are written: 10 the shells standard output, separated by
spaces, and terminated with a newline unless the —n option is specified.

else
end
endif
endsw
See the description of the foreack, if, switch, and while statements below.

exec command
The specified command is executed in place of the current shell,

exit

exit(expr)
The shell exits either with the value of the status variable (first form) or
with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the
sequence of commands between this command and the matching end are
executed. (Both foreach and end must appear alone on separate lines,)

September 24, 1987 Page 14

CSH(1) (UniSoft} CSH(1)

The builtin command contintie may be used to continue the loop prema-
rely and the builtin command break to terminate it prematurely. When
this command is read from the terminal, the loop is read up once prompt-
ing with ? before any statements in the loop are executed. If you make a
mistake typing in a loop at the terminal, you can rub it out.

glob wordlist
Like echo but no \ escapes are recognized and words are delimited by null
characters in the output. Useful for programs which wish to use the ghell
to filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a string of
the form "label”. The shell rewinds its input as much as possible and
searches for a line of the form “label:” possibly preceded by blanks or
tabs. Execution continues after the specified line.

history
Displays the history event list,

if (expr) command
If the specified expression evaluates true, then the single command with
arguments is executed. Compmand must be a simple command, not a pipe-

ine, a command list, or a parenthesized command list. In the interactive

shell, the if statement can accept only one simple command after the expr
and on the same line as the expr . Variable substitution on command hap-
pens carly, at the same time it does for the rest of the if command.
Inputfoutput redirection occurs even if expr is false, when command is
not executed (this is a bug).

if (expr) then
else If (expr2) then
else

endif
If the specified expr is true, then the commands to the first else are exe-
cuted; else if expr2 is true, then the commands to the second ¢lse are exe-
cuted, etc, Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. (The words else and endif
must appear at the beginning of input lines; the {f must appear alone on jts
input line or after an else.)

Page 15 September 24, 1987

CSH(1) (UniSoft}) CSH(1)

kilt pid

kill -sig pid ...
Sends either the TERM (terminate) signal or specified signal to the
specified processes. Signals are either given by number or names (as in
/usr/include/signal.h, stripped of the prefix 8IG). There is no default, say-
ing "kill" does not send a signal to the current process. If the signal being
sent is TERM (terminate) or HUP (hangup), then the job or process will be
sent a CONT (continue) signal as well.

login
Terminate a login shell, replacing it with an instance of /bin/login. This is
one way to log off, included for compatibility with sk (1).

logont
Terminate a login shell. Especially useful if ignoreeof is set.

newgrp
changes the group identification of its caller resulting in the access permis-
sions being calculated with respect to the new group ID.

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell o 4. The second form sets the
nice to the given number. The final two forms run command at priority 4
and number respectively. The super-user may specify negative niceness
by using nice —number Command is always executed in a sub-shell,
and the restrictions place on commands in simple if statements apply.

nohup

nehup command
The first form can be vsed in shell scripts to cause hangups to be ignored
for the remainder of the script. The second form causes the specified com-
mand to be run with hangups ignored. All processes detached with & are
effectively nohup ed.

oninfr

oninfr —

onintr label
Control the action of the shell on interrupts. The first form restores the
default action of the shell on interrupts which is to terminate shell scripts
or to return to the terminal command input level. The second form onintr

September 24, 1987 Page 16

CSH(1)

{(UniSoft) CSH(1)

— causes all interrupts to be ignored. The final form causes the shell to
execute a goto label when an interrapt is received or a child process ter-
minates becanse it was interrupted.

In any case, if the shell is running detached and interrupts are being
ignored, all forms of erintr have no meaning and interrupts continue 1o be
ignored by the shell and all invoked commands,

rehash

Causes the internal hash table of the contents of the directories in the path
variable to be recomputed. This is needed if new commands are added to
directorics in the parh while you are logged in. This should only be neces-
sary if you add commands to one of your own directories, or if a systems
programmeér changes the contents of one of the system directories.

repeat count command

set

The specified command which is sabject to the same restrictions as the
cormand in the one line if statement above, is executed count times. I/O
redirections occur exactly once, even if count is 0.

set name

set name=word

set name[index])=word
set name=(wordlist)

The first form of the command shows the value of all shell variables.
Variables which have other than a single word as value print as a
parenthesized word list. The second form scts name to the null string.
The third form sets name to the single word. The fourth form sets the
indexth component of name to word; this component must already exist.
The final form sets name to the list of words in wordlist. In all cases the
value is command and filename expanded.

These arguments may be repeated to set multiple values in a single set
command. Note, however, that variable eéxpansion happens for all argu-
ments before any setting occurs.

setenv name value

Page 17

Sets the value of environment variable name to be value, a single string.
The variable PATH is automatically imported to and exported from the csh
variable path; there is no need to use setenv for these.

September 24, 1987

CSH(1) {UniSoft) CSH(1)

shift

shift variable
The members of argy are shifted to the left, discarding argv[1]. It is an
error for argv not to be set or 1o have less than one word as value. The
second form performs the same function on the specified variable.

source name
The shell reads commands from rame. Sowrce commands may be nested;
if they are nested too deeply, the shell may run out of file descriptors. An
erer in a sowrce at any level terminates all nested source commands.
Input during source commands is mever placed on the history list.

switch {string)

case strl:

breaksw
default:

breaksw

endsw
Each case label is successively matched apainst the specified string which
is first command and filename expanded. The file metacharacters #, 7 and
[...] may be used in the case labels, which are variable expanded. If none
of the labels mawch before a "default” label is found, then the execation
begins after the default label, Each case label and the defaalt label must
appear at the beginning of a line. The command breaksw causes execu-
tion to continue after the endsw. Otherwise control may fall through case
labels and default labels as in C. If no label matches and thers is no
default, execution continues afier the endsw.

time

time command
With no argument, a summary of time used by this shell and its children is
printed. If arguments are given, the specified simple command is timed
and a time summary as described under the time variable is printed. If
necessary, an extra shell is created to print the time statistic when the com-
mand completes.

umask

September 24, 1987 Page 18

CSH(1) (UniSoft) CSH(1)

umask value
The file creation mask is displayed (first form) or set to the specified value
(second form). The mask is given in octal. Common values for the mask
are 002 giving all access to the group and read and execute access to oth-
ers or 022 giving all access except no write access for users in the group
or others,

unalias pattern
All aliases whose names maich the specified pattern are discarded. Thus
all aliases are removed by unalias*. It is not an error for nothing to be
unaliased.

unhash
Use of the internal hash table to speed location of executed programs is
disabled.

unset pattern
All variables whose names match the specified pattern are removed. Thus
all variables are removed by umset*; this has noticeably distasteful side-
effects. Itis not an error for nothing to be unset.

wait
All backgroung jobs are waited for. If the shell is interactive, then an
interrupt can disrupt the wait, at which time the shell prints names and job
numbers of all jobs known t0 be outstanding,

while (expr)

end
‘While the specified expression gvaluates non-zero, the commangds between
the while and the matching end are evaluated. Break and continue may
be used to terminate or continue the loop prematurely. (The while and
end must appear alone on their input lines.) Prompting occurs here the
first time through the loop as for the foreach statement if the input is a ter-
minal,

@

@ name = exyxr

@ namelindex] = expr
The first form prints the values of all the shefl variables. The second form
sats the specified name 1o the value of expr. If the expression contains <,
>, & or |, then at least this part of the expression must be placed within (
). The third form assigns the value of expr to the indexth argument of

Page 19 September 24, 1987

CSH(1)

(UniSoft) CSH(1)

name. Both name and its index th component must already exist.

The operators *=, +=, ¢tc., are available as in C. The space separating the
name from the assignment operator is optional. Spaces are, however,
mandatory in separating components of expr which would otherwise be
single words.

Special postfix ++ and — operators increment and decrement name
respectively, i.e., @ i++.

Pre-defined and Environment Variables
The following variables have special meaning 1o the shell. Of these, argv,
home , path, prompt, shell and status are always set by the shell, Except for
Status, this setting occurs only at initialization; these variables will not then be
modified unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM
into term, and HOME into home, and copies these back into the environment
whenever the normal shell variables are reset. The environment variable PATH
is likewise handled; it is not necessary to worry about its setting other than in
the file ".cshrc” as inferior csh processes will import the definition of path from
the environment, and re-export it if you then change it.

argy

cdpath

echo

history

home

Set 1o the arguments to the shell, it is from this variable that posi-
tional parameters are substitnted, ic., "$1" is meplaced by
"$argv([1]", etc.

Gives a list of alternate directories searched to find subdirectorics
in chdir commands.

Set when the —x command line option is given, Causes ¢ach com-
mand and its arguments o be echoed just before it is executed.
For non-builtin commands all expansions occur before echoing.
Builtin commands are echoed before command and filename sub-
stitution, since these substitutions are then done selectively.

Can be given a numeric value to control the size of the history list,
Any command which has been referenced in this many events will
not be discarded. Tco large values of Aistory may run the shell
out of memory. The last executed command is always saved on
the history list.

The home directory of the invoker, initialized from the environ-
ment. The filename expansion of """ refers to this variable.

September 24, 1987 Page 20

CSH(1)

ignoreeof

noclobber

noglob

nonomatch

path

prompt

Page 21

(UniSoft) CSH(1)

If set the shell ignores end-of-file from input devices which are
terminals. This prevents shells from accidentally being killed by
control-Ds.

The files where the shell checks for mail. This is done after each
command completion which will result in a prompt, if a specified
interval has elapsed. The shell says "You have new mail." if the
file exists with an access time not greater than its rmodify time.

If the first word of the value of mail is numeric, it specifies a dif-
ferent mail checking interval, in seconds, than the default, which
is 10 minutes.

If multiple mail files are specified, then the shell says "New mail
in name when there is mail in the file name.

As described in the section on Inputioutput, restrictions are placed
on output redirection to insure that files are not accidentally des-
troyed, and that > redirections refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell
scripts which are not dealing with filenames, or after a list of
filenames has been obtained and further expansions are not desir-
able.

If set, it is not an error for a filename expansion to not match any
existing files; rather the primitive patters is returned. It is still an
error for the primitive pattem to be malformed, ie., "echo [7 still
gives an error.

Each word of the path variable specifies a directory in which com-
mands are to be sought for execution, A null word specifies the
current directory. If there is no path variable, then only full path
names will execute. The usual search path is ., /bin and /usr/bin,
but this may vary from system to System. For the super-user the
default search path is fetc, /bin and /usr/bin, A shell which is
given neither the —¢ nor the —t option will normally hash the con-
tents of the directories in the path variable after reading ".cshrc”,
and each time the path variable is reset. If new commands are
added to these directories while the shell is active, it may be
necessary to give the rehash or the commands may not be found.

The string which is printed before each command is read from an
interactive terminal input. If a 1 appears in the string, it will be

September 24, 1987

CSH(1) (UniSoft) CSH(1)

replaced by the current event number unless a preceding \ is
given. Default is %, or # for the super-user.

shell The file in which the shell resides. This is used in forking shells 1o
interpret files which have execute bits set, but which are not exe-
cutable by the system. (See the description of Non-builtin Com-
mand Execution below)) Initialized to the (system-dependent)
home of the shell.

status The status returned by the last command, If it terminated abnor-
mally, then 0200 is added 1o the stams. Builtin commands which
fail retorn exit statas "17, all other builtin commands set status
IIO".

time Controls antomatic timing of commands. If set, then any com-
mark] which takes more than this many cpu seconds will cause a
line giving user, system, and real times and a wilization percen-
tage which is the ratio of user plus system times to real time to be
printed when it terminates.

verbose Set by the —v command Line option, canses the words of each
command to be printed after history substitution,

Non-builtin Command Execution

When 2 command to be executed is found not to be a builtin command, the
shell attempts to execute the command via exec (2). Each word in the variable
path names a directory from which the shell will attempt to execute the com-
mand. If it is given neither a —¢ nor a —t option, the shell will hash the names in
these directories into an internal table so that it will only try an exec in a direc-
tory if there is a possibility that the command resides there. This greatly specds
command location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash), or if the shell was
given a —¢ or —t argument, and in any case for each directory component of
path which does not begin with a /, the shell concatenates with the given com-
mand name to form a path name of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus (ed ; pwd) ;
pwd prints the home directory; leaving you where yon were (printing this after
the home directory), while c¢d ; pwd leaves you in the home directory.
Parenthesized commands are most often used to prevent chdir from affecung
the current shell.

September 24, 1987 Page 22

CSH(1) : {UniSoft) CSH(1)

If the file has execute permissions but is not an executable binary to the system,
then it is assumed to be a file containing shell commands an a new shell is
spawned 10 read it

If there is an alias for sheil, then the words of the alias will be prepended to the

argument list to form the shell command. The first word of the alias should be

the full path name of the shell {e.g., "$shell”). Note that this is a special, late
oceurring, case of alias substitution, and only allows words to be prepended to
the argument List without modification.

Argument List Processing

If argument 0 to the shell is —, then this is a login shell. The flag arguments are

interpreted as follows:

—¢ Commands arc read from the (single) following argument which must be
present, Any remaining arguments are placed in argv.

—e The shell exits if any invoked command terminates abnormally or yields a
TOn-Zero exit status.

—f The shell will start faster, because it will neither search for nor execute
commands from the file ".cshrc” in the invokers home directory.

—i The shell is interactive and prompts for its top-level input, even if it
appears to not be a terminal. Shells are interactive without this option if
their inputs and outputs are terminals.

—n Commands arc parsed, but not executed. This may aid in syntactic check-
ing of shell scripts.

—s Command input is taken from the standard input.

—t A single line of input is read and executed. A \ may be used to escape the
newline at the end of this line and continue onto another line.

—v Causes the verbose variable to be set, with the effect that command input
is echoed after history substitution.

—x Causes the echo variable to be set, so that commands are echoed immedi-
ately before execution,

~V Causes the verbose variable to be set even before ".cshrc” is executed.
-X Isto-—xas-Yist—v.

After processing of flag arguments, if arguments remain but none of the —¢, —i,
—s, or —t options was given, the first argument is taken as the name of a file of

Page 23 September 24, 1987

CSH(1) ' (UniSoft) CSH(1)

commands to be executed. The shell opens this file, and saves its name for pos-
sible resubstitution by "$0". Remaining arguments initialize the variable argv.
Signal Handling

The shell normally ignores guir signals. Processes running in background (by
&) are immune to signals gencrated from the keyboard, including hangups.
Other signals have the values which the shell inherited from its parent. The
shells handling of interrupts and terminate signals in shell scripts can be con-
trolled by onintr. Login shells catch the ierminate signal; otherwise this signal
is passed on to children from the state in the shell’s parent. In no case are inter-
rupts allowed when a login shell is reading the file ".logout”.

EXAMPLE
csh

creates a new shell which will accept shell commands with Berkeley exten-
sions.
FILES
~/.cshre Read at beginning of execution by each shell.
-/ login Read by login shell, after ".cshre” at login.
~/logout Read by login shell, at logout.
fbin/sh Standard shell, for shell scripts not starting with a #.

ftmp/sh# Temporary file for <<.
fetc/passwd Source of home directories for "“name"”.

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument lists
1o 5120 characters. The number of arguments to a command which involves
filename expansion is limited to 1/6th the number of characiers allowed in an
argument list, Command substitutions may substitute no more characters than
are allowed in an argument list. To detect looping, the shell restricts the
number of aligs substitutions on a single line to 20.

SEE ALSO
sh(l), access(2), ecxec(2), fork(2), pipe(2), signal(Z), umask(2), wait(2),
a.out(4), environ(5)
CSH int the User Guide.

BUGS
1t suffices to place the sequence of commands in ()s to force it to a subshell,
ie,"(a;b;c)".

September 24, 1987 Page 24

CSH(D) (UniSoft) CSH(1)

Conirol over ity output after processes are started is primitive; perhaps this will
inspire someone to work on a good virtual terminal interface, In a virtual termi-
nal interface much more interesting things could be done with output control.
Alias substitution is most often used to clumsily simulate shell procedures; shell
procedures should be provided rather than aliases.

When an attempt is made o redirect standard emor messages during a source

command (as in “‘source command > & filename)), the shell creates filename
but sends both standard output and standard error to the terminal, not the file.

Commands within loops, prompted for by 7, are not placed in the history list.
Control structure should be parsed rather than being recognized as built-in com-
mands. This would allow control commands 1o be placed anywhere, to be com-
bined with 1, and to be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitu-
tions. All and more than one ; modifier should be allowed on $ substiations.

Symbolic links confuse the shell. In particular, dirs and ed .. don’t work prop-
erly once you've crossed through a symbolic link.

AUTHOR
William Joy.

Page 25 September 24, 1987

CSPLIT(1)

NAME

CSPLIT(1)

¢split — context split

SYNOPSIS

esplit [—s] [—-k] [~f prefix| file argl [... argnl

DESCRIPTION

Csplit reads Jfile and separates it into n+1 sections, defined by the argu-

ments argl. ..

argn. By default the sections are placed in xx00 ... xx»

(# may not be greater than 99). These sections get the following pieces of

JSile:

00: From the start of file up to {but not including) the line refer-
enced by argl.

01: From the line referenced by argl! up to the line referenced by
arg2,

n+1: From the line referenced by argn to the end of file.
If the file argument is a — then standard input is used.
The options to csplir are:

-5

-k

Csplir normally prints the character counts for each file
created, If the —s option is present, cspiit suppresses the
printing of all character counts.

Csplit normally removes created files if an error occurs. If
the —k option is present, cspiit leaves previously created
files intact.

—f{ prefix If the —f option is used, the created files are nmamed

prefix@0 . .. prefixn. The default is xx00 ... xxa

The arguments {(arg/ ... argn) to csplit can be & combination of the fol-

lowing:
/ rexpd

Y rexp%
{nno

{ num}

A file is to be created for the section from the current line up
to {but not including) the line containing the regular expres-
sion rexp. The current line becomes the line containing rexp.
This argument may be followed by an optional + or — some
number of lines {e.g., /Page/—5).

This argument is the same as /rexp/, except that no file is
created for the section.

A file is to be created from the current line up to (but not
including) lnno. The current line becomes /nno.

Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied nmum more times. If it follows lano, the
file will be split every lnno lines (nunr times) from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the Shell in the appropriate quotes. Regular expressions may
not contain embedded new-lines. Csplit does not affect the original file; it
is the users responsibility to remove it.

EXAMPLE

csplit —r cobol file '/procedure division/' /par5./ /parl6./

-1-

CSPLIT (1) CSPLIT{1}

creates four files, "cobol00 . .., cobol03". After editing the spiir files, they
can be recombined as follows:

cat cobol0[0—3] > fle
Note that this example overwrites the original file.
csplit —k file 100 {99]

splits the file at every 100 lines, up to 10,000 lines. The —Kk option causes
the created files to be retained if there are less than 10,000 lines; however,
an error message would still be printed.

csplit —k prog.c “hmain(%’ ‘#"j/+1' (20}

assuming that "prog.c” follows the normai C coding convention of ending
routines with a j at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in "prog.c”.

SEE ALSO
ed(l), sh{l}, regexp(5).

DIAGNOSTICS
Self explanatory except for:
arg — out of range
which means that the given argument did not reference a line between the
curreni position and the end of the file.

CT(1C) CT(1C)

NAME

¢t — spawn gelty to a remote terminal

SYNOPSIS

e[-h][—-v1[—-wn] [—sspeed] telno ...

DESCRIPTION

Ct dials the phone number of a modem that is attached to a terminal, and
spawns a getty process to that terminal. Tefno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropri-
ate places. If more than one telephone number is specified, ¢f will try each
in succession until one answers; this is useful for specifying alternate diai-
ing paths.

Cr will try each line listed in the file /usr/lib/uucp/L-devices until it finds
an available line with appropriate attributes or runs out of entries. If there
are no free lines, ¢ will ask if it should wait for one, and if so, for how
many minutes it should wait before it gives up. Ct will continue to try to
open the dialers at one-minute intervals until the specified limit is
exceeded. The dialogue may be overridden by specifying the —wa option,
where # is the maximum number of minutes that ¢t is to wait for a line.

Normally, ¢f will hang up the current line, so that that line can answer the
incoming call. The —h option will prevent this action. If the —v option is
used, ¢f will send a running narrative to the standard error output stream.

The data rate may be set with the —s option, where speed is expressed in
baud. The default rate is 300,

After the user on the destination terminal logs out, cf prompts, Recon-
nect? If the response begins with the letter n the line will be dropped; oth-
erwise, gefty will be started again and the login: prompt will be printed.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

EXAMPLE

FILES

ct -wl5 -51200 644-1234

dials from the terminal the given modem phone number (644-1234),
spawning a login process at 1200 baud. If the dialer line is busy, cf will
continue to try to open the dialer at one-minute intervals for a total of 15
minutes {as set by the —w option).

fuse/libfuucp/L-devices
Just/adm/ctlog

SEE ALSO

cuf1C), login(1}, uuep(1C).

CTAGS(1) (UniSoft) CTAGS(1)

NAME
ctags — maintain a tags file for a C program
SYNOPSIS
ctags [-a] {—u]l[-w][—x]name..
DESCRIPTION

Ctags makes a tags file for ex (1) and vi (1) from the specified C, Fortran, and
Pascal sources.
A tags file gives the locations of specified objects (in this case functions) in a
group of files. Each line of the tags file contains the function name, the file in
which it is defined, and a scanning pattern used to find the function definition.
These are given in separate fields on the line, sepamated by blanks or tabs.
Using the rags file, ex can quickly find these function definitions.

Options
The —a option canses the output to be appended to the tags file instead of
rewriting it.
The —u option causes the specified files to be updated in tags, that is, all refer-
ences o them are deleted, and the new values are appended to the file.
(Beware: this option is implemented in a2 way which is rather slow; it is usually
faster to simply rebuild the rags file.)
The —~w option suppresses waming diagnostics.
If the —x flag is given, ctags produces a list of function names, the line number
and file name on which ¢ach is defined, as well as the text of that line and prints
this on the standard output.

Files whose name ends in ".c” or ".h" are assumed to be C source files and are
searched for C routine and macro definitions.
The tag main is treated specially in C programs. The tag formed is created by
prepending "M" to the name of the file, with a trailing “.c" removed, if any, and
leading pathname compenents also removed. This makes use of ctags practical
in directories with more than cne program.

EXAMPLE

ctags *.c *h

puts the tags from all the ".c" and ".h" files into the tagsfile "tags".

FILES
tags output tags file

Page 1 September 24, 1987

CTAGS(1) (UniSoft) CTAGS(1)

SEE ALSO
ex(1), vi{l).

BUGS
Not all warning diagnostics are suppressed by —w.
If ctags is interrupted while executing under the —n option, a temporary file
named OTAGS is left in the current directory.

AUTHOR
Ken Amoid

September 24, 1987 Page 2

CTRACE(1) CTRACE({1)

NAME

ctrace — C program debugger

SYNOPSIS

ctrace [options] [file]

DESCRIPTION

Page 1

Cirace allows you o follow the execution of a C program, statement by
statement. The effect is similar to executing a shell procedure with the —x
option. Crrace reads the C program in fife (or from standard input if you
do not specify file), inserts statements to print the text of each executable
statement and the values of all variables referenced or modified, and writes
the modified program to the standard ouiput. You must put the output of
ctrace into a temporary file because the ¢c{l} command does not allow the
use of a pipe. You then compile and execute this file,

As each statement in the program executes it will be listed at the terminal,
followed by the name and value of any variables weferenced or modified in
the statement, followed by any cutput from the statement. Loops in the
trace putput are detected and tracing is stopped until the loop is exited or a
different sequence of statements within the loop is executed. A warning
message is printed every 1000 times through the loop to help you detect
infinite loops. The trace output goes to the standard output so you can put
it into a file for examination with an editor or the A/&%(1) or taiKl)} com-
mands.

The only options you will commonly use are:

—f functions Trace only these functions.
—v funciions Trace all but these functions.

You may want to add to the default formaits for printing variables. Long
and pointer variables ar¢ always printed as signed integers. Pointers to
character arrays ate also printed as strings if appropriate. Char, short, and
int variables are also printed as signed integers and, if appropriate, as char-
acters. Double variables are printed as Boating point numbers in scientific
notation. You can request that variables be printed in additional formats, if
appropriate, with these options:

-0 Octal
-X Hexadecimal
-u Unsigned

—e Floatifig point
These options are used only in special circumstances:
=1 n Check n consecutively executed statements for looping trace output,

instead of the default of 20. Use 0 to get all the trace cutput from
loops.

-8 Suppress redundant trace output from simple assignment state-
ments and string copy function calls. This option can hide a bug
caused by use of the = operator in place of the = = operator.

—t n Trace n variables per statement instead of the default of 10 (the
maximum number is 20). The Diagnostics section explains when to
use this option.

July 15, 1985

CTRACE(1)

-P

CTRACE (1)

Run the C preprocessor on the input before tracing it. You can

also use the —D, —1I, and —U cc(1) preprocessor options.

These options are used to tailor the run-time trace package when the traced
program will run in a non-UNIX system envircnment:

-b

EXAMPLE

Use only basic functions in the trace code, that is, those in
ctype(3C), pringf13S), and swring(3C). These are usually available
even in cross-compilers for microprocessors. In particular, this
option is needed when the traced program runs under an operating
system that does not have signaf(2)}, fHush(38), longimp(3C), or
serimp(3C),

;' Change the trace print function from the default of ’printf("’. For

example, "fprintf{stderr,” would send the trace to the standard error
output.

Use file fin place of the runrime.c trace function package. This lets
you change the entire print function, instead of just the name and
leading arguments (see the -~ p option),

If the file f.¢ contains this C program:

I #include <stdio.h>

2 Inain() /* count lines in input */
3
4 int ¢, nl;
5
6 nl =0,
7 while {{¢ = getchar{)) != EQF)
8 if ¢ = "\n"}
9 + +nl;
10 printf("%din", nl);
11)
and you enter these commands and test data:
cc le.c
a.out
!
(etel-d),

the program will be compiled and executed. The output of the program will
be the number 2, which is not correct because there is only one line in the
test data. The error in this program is common, but subtle. If you invoke
cirace with these commands:

ctrace Ic.c >temp.c
cc temp.c
aout

the output will be:

July 15, 1985

2 main()
6 nl =0

Page 2

CTRACE(1} CTRACE(1)

Mfal==0"
7 while {(c = getchar()} != EOF)

The program is now waiting for input. If you enter the same test data as
before, the output will be:

ffc==49 or "1’ */

8 if (¢ = "\n"
ffe==100r "\n'*/
9 + +nl;
f¥nl == 1%

7 while ({c = getchar{)} != EOF)
Me== Lor\n *

8 if {¢ = "\n")
c==100r "\n'/
9 + +nl;
nl==2%

7 while {(c = geichar()) != EOF)
If you now enter an end of file character (ctrl-d} the final cutput will be:

fFe==1.1%

10 printf{"%d\n", nl;
/5l == 2%2
return

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by cfrace at the end of the
trace outpui. This shows the implicit return at the terminating brace in the
function.

The trace output shows that variable ¢ is assigned the value '1° in line 7,
but in line 8 it has the value "\n". Once your attention is drawn to this if
statement, you will probably realize that you used the assignment operator
(=} in place of the equal operator {(==). You can easily miss this etror
during code reading.

EXECUTION-TIME TRACE CONTROL

Page 3

The default operation for cirace is to trace the entire program file, unless
you use the —f or —v options to trace specific functions. This does not
give you statement by statement contrel of the tracing, nor does it let you
turn the tracing off and on when executing the traced program.

You can do both of these by adding ctrefi(} and crron() function calls to
your program 1o turn the tracing off and on, respectively, at execution time.
Thus, you can code arbitrarily complex criteria for trace control with
statements, and you can even conditionally include this code because ctrace
defines the CTRACE preprocessor variable. For example:

#ifdef CTRACE
iflc=="1"&&i> 1000)
ctron();
#Hendif

July 15, 1985

CTRACE{1} CTRACE(1)

You can also call these functions from sdb(1)} il you compile with the —g
option. For example, to trace all but lines 7 to 10 in the main function,
enter:

sdb a.out
main:7b ctroff ()
main:11b ctron(}
T

You can also turn the trace off and on by setting static variable #_cf_to 0
and 1, respectively. This is useful if you are using a debugger that cannot
call these functions directly

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and ce{1), since
the traced code often gets some cc warning messages. You can get cc error
messages in some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some variables arve not traced in this statement
Oniy 10 variables are traced in a statement to prevent the C com-
piler "out of tree space; simplify expression™ error. Use the —t
aption to increase this number.

warning: statement 100 long 1o trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

canneot handle preprocessor code, use —P option
This is usually caused by #ifdef/#endif preprocessor statements in
the middle of a C statement, or by a semicolon at ihe end of a
#define preprocessor statement.

i ... else " sequence too long
Split the sequence by removing an else from the middle.

possible syniax error, try —P option
Use the -P option to preprocess the crrgee input, along with any
appropriate =D, —1I, and —VU preprocessor options. If you still get
the error message, check the Warnings section below.

Cc Diagnostics

warning: floating point nor implemented

warning. iftegal combination of pointer and imeger

warning: statement not reached

warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error* message above.

yace stack overflow
See the crace ™"if ... else il” sequence too long" message above.

out of tree space; simplify expression
Use the —t option to reduce the number of traced variables per
statement from the default of 10. Ignore the "ctrace: too many
variables {o trace” warnings you will now get,

July 15, 1985 Page 4

CTRACE(1) ' CTRACE({1)

redeclaration of signal
Either correct this declaration of sigwaf(2), or remove it and
#include <signal.h>.

WARNINGS

BUGS

FILES

You will get a ¢trace syntax error if you omit the semicolon at the end of
the last element declaration in a structure or union, just before the right
brace (}}. This is optional in some C compilers.

Defining a function with the same name as a system function may cause a
syntax error if the number of arguments is changed. Just use a different
name.

Crrace assumes that BADMAG is a preprocessor tnacro, and that EOF and
NULL are #defined constanis. Declaring any of these to be variables, e.g.,
"int EOF;", will cause a syntax error.

Ctrace does not know about the components of aggregates like structures,
unions, and arrays. It cannot choose a format to print all the componenis
of an aggregate when an assignment is made to the entire aggregate. Clrace
may choose to print the address of an aggregate or use the wrong format
(e.g., %e for a structure with two integer members) when printing the value
of an aggregate,

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a
multi-file program. This can result in functions called from a leop still
being traced, or the elimination of trace cutput from one function in a file
until another in the same file is called.

rontime.c run-time trace package

SEE ALSO

Page 5

signal(2), ctype(3C), flush(38), longimp(3C), printf(38), setimp(3C),
string(3C).

July 15, 1985

Cu(1C) cuic)

NAME
cu — call another UNIX system

SYNOPSIS
eu [—sspeed] [—Hine]l [-h] [—t] [-d} [-m] [—e] [—e] [-n]
telne | systemname | dir

DESCRIPTION
Cu calls up another UNIX systern, a terminal, or possibly a non-UNIX sys-
tem. It manages an interactive conversation with possible transfers of
ASCII files.

ou accepts the following options and arguments.

—sspeed
Specifies the transmission speed (110, 150, 300, 600, 1200, 4300,
9600); 300 is the default value. Most modems are either 300 or
1200 baud. Directly connected lines may be set to a speed higher
than 1200 baud.

—Lline Specifies a device name to use as the communication line. This can
be used to override searching for the first available line having the
right speed. When the — | option is used without the —s option, the
speed of a line is taken from the fie fusr/lib/uvcp/L-devices.
When the —! and —s options are used simultaneously, cu will
search the L-devices file to check if the requested speed for the
requested line is available. If so, the connection will be made at the
requested speed; otherwise an error message will be prinied and the
call will not be made. The specified device is generally a directly
connected asynchronous line (e.g., /dev/ityab), in this case a
phone number is not required but the string dir may be use to
specify a null acu. If the specified device is associated with an auto
dialer, a phone number must be provided.

~h Emulates local echo, supporting calls to other computer systems
which expect terminals to be set to half-duplex mode.

-t Used when dialing an ASCH terminal which has been set to auto
answer. Appropriate mapping of carriage-return to carriage-return-
line-feed pairs is set.

—d Causes diagnostic traces to be printed.

—e Designates that even parity is to be generated for data sent to the
remote.

-0 Designates that odd parity is 10 be generated for data sent to the
remote.

—~m Designates a direct line which has modem control.

-n Will request the phone number to be dialed from the user rather
than taking it from the command line.

telne When using an automatic dialer the argument is the telephone
number with equal signs for secondary dial tone or minus signs for
delays, at appropriate places.

systemname
A wuep system name may be used rather than a phone number; in
this case, cu will obtain an appropriate direct line or phone number

-1-

cu(ic) cu{ic)

from /usr/lib/uucp/L.sys (the appropriate baud rate is also read
along with phone numbers). Cu will try each phone number or
direct line for systemname in the L.sys file until a connection is
made or all the entries are tried.

dir Using dir insures that cu will use the line specified by the —I|
option.

After making the connection, cv runs as two processes: the fransmit process
reads data from the standard input and, except for lines beginning with ~ ,
passes it to the remote sysiem; the receive process accepts data from the
remote system and, except for lines beginning with = , passes it to the stan-
dard output. Normally, an automatic DC3/DC1 protocol is used to control
input from the remote so the buffer is not overrun. Lines beginning with ~
have special meanings.

The transmit process interprets the following:
- terminate the conversation.
-1 ' escape to an interactive shell on the local system.

“temd. .. run cmd on the local system (via sh —¢).

“$emd. ., run cmd locally and send its output to the remote sys-
tem.

“Yacd change the directory on the local system. NOTE: “!cd

will cause the command to be run by a sub-sheli; prob-
ably not what was intended.

“Ytake from [fo] copy file from (on the remote sysiem) to file #0 on the
local system. If to is omitted, the from argument is
used in both places.

“%put from [to] copy file from (on local system) to file to on remote
systern. If fo is omitted, the from argument is used in

both places.
L. send the line ~ ... to the remote system.
“Usbreak transmit a BREAK to the remote system.
“Ynostop toggles between DC3/DC]1 input control protocol and

no input contrel. This is useful in case the remote sys-
tem is one which does not respond properly to the DC3
and DC1 characters.

The receive process normally copies data from the remote system fto its
standard output. A line from the remote that begins with "> initiates an
output diversion to a file. The complete sequence is:

> [>1: file

zero or more lines to be written to fife

-

Data from the remote is diverted (or appended, if > is used) to jife.
The trailing ~>> terminates the diversion.

The use of “Y%put requires sty{1) and caz(1} on the remote side. I also
requires that the current erase and kill characters on the remote system be
jdentical to the current cnes on the local system. Backslashes are inserted
at appropriate places.

Cu(1C) cul(IC)

The use of “%take requires the existence of echo(l) and car(l) on the
remote system. Also, stiy tabs mode should be set on the remote system
if tabs are to be copied without expansion.

When cu is used on system X to connect to system Y and subsequently
used on system Y to connect to system Z, commands on system Y can be
executed by using . For example, uname can be executed on Z, X, and Y
as follows:

uname

“luname

X

““luname

Y

In general, * causes the command to be executed on the original machine,
" causes the command to be executed on the next machine in the chain.

EXAMPLES

To dial & system whose number is 9 201 555 1212 using 1200 baud:
cu -51200 9=2015551212

If the speed is not specified, 300 is the default value.

To login to a system connected by a direct line:
cu -] fdev/ttyXX dir

To dial a system with the specific line and a specific speed:
cu -51200 -1 /dev/tiyXX dir

To dial 2 system using a specific line:
cu -l fdev/culXX 2015551212

To use a system name:

cu YYYZZZ
FILES
Jusr/lib/uucp/L.sys
/usr/lib/ uucp/L-devices
fust/spool/uuep/LCK..(tty-device)
Jdev/null
SEE ALSO
cat{l), ct{1C}, echo{1}, stty(1}, uname(l), uucp(1C}.
DIAGNOSTECS
Exit code is zero for normal exit, non-zero {various values) otherwise.
BUGS
Cu buffers input internally.
There is an artificial siowing of transmission by cv during the “%put opera-
tion so that loss of data is uniikely.
NOTE

Any input character after an ~ will be preceded by [sysnamel (inserted by
cu).

cuT(1)

NAME

CUT(1)

cut — cut out selected fields of each line of a file

SYNOPSIS

cut ~clist [flel file2 ..]
cut —(list (—dchar) [—s] [filel file2 ..]

DESCRIPTION

Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by list can be fixed length, i.e., character positions as on a
punched card {—¢ option) or the length can vary from line to line and be
marked with a field delimiter character like rad (—1f option). Cut can be

used as

a filter; if no files are given, the standard input is used.

The meanings of the options are:

list

—clist

- f list

A comma-separated list of integer field numbers (in increasing
order), with optional — to indicate ranges as in the —o option of
nrofff roff for page ranges; e.g., 1,4,7, 1-3,8; —5,10 (short for
1-5,10); or 3— (short for third through last field).

The list following —¢ {no space) specifies character positions
(e.g., —c1—72 would pass the first 72 characters of each line).

The list following —f is a list of fields assumed to be separated in
the file by a delimiter character {see —d); e.g., —f1,7 copies the
first and seventh field only. Lines with no field delimiters will be
passed through intact {useful for table subheadings), uniess —s is
specified.

—dchar The character following —d is the field delimiter (—f option

only). Default is fab. Space or other characters with special
meaning to the shell must be quoted.

Suppresses lines with no delimiter characters in case of —f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the —c¢ or —f option must be specified.

HINTS

Use grep(1) to make horizontal “‘cuts” (by context) through a file, or
paste (1) to put files together column-wise {i.e, horizontally). To reorder
columns in a table, use cwf and paste,

EXAMPLE

cut —d: —{1,5 /etc/passwd

mapping of user IDs to names.

name="who am i | cut —f1 —d" **

to set name to current login name.

DIAGNOSTICS
line too

long
A line can have no more than 1023 characters or fields.

bad list for c/f oprion

Missing —¢ or —f option or incorrectly specified list. No erfor
occurs if a line has fewer fields than the fist calls for.

.1-

CUT{1)

no flelds

The iist is empty.

SEE ALSO
grep(1), paste(1).

CcuUT(1}

CwW(1)

NAME

cw(l)

cw, checkew — prepare constant-width text for troff

SYNOPSiIS

ew [—=1Ixx] {—¥xx] [-fa) [—t] [+t] [—d] [files]
checkew [—1Ixx] [—rxx] files

DESCRIPTION

Page 1

Cw is a preprocessor for /roff{l) input files that contain t xt to be typeset
in the constant-width {CW) font.

Text typeset with the CW font resembles the output of terminals and of line
printers. This font is used to typeset examples of programs and of com-
puter output in user manuals, programming texts, etc. (An -earlier version
of this font was used in typesetting The C Programming Langirage by B. W,
Kernighan and D. M. Ritchie.) It has been designed to be quite distinctive
{but not overly obtrusive)} when used together with the Times Roman font.

Because the CW font contains a ‘‘non-standard’ set of characters and
because text typeset with it requires different character and inter-word spac-
ing than is used for ‘‘standard’ fonts, documents that use the CW font
must be preprocessed by ¢w.

The CW font contains the 94 printing ASCII characters:

abedefghjklmnopqrstovwxyz

ABCDEFGHUKLMNQOPQRSTUVWXYZ

0123456789

1$%& 0"+ @ /=l > (HA
plus eight non-ASCll characters represented by four-character roff{l)
names (in some cases atfaching these names to ‘‘non-standard” graphics):

Character Symbol Trofi Name

“Cents® sign ¢ Vet

EBCDIC “*not’ sign - \{no
Left arrow — V<
Right arrow - \G->

Down arrow] \{da
Vertical single quote ' \({fm
Control-shift indicator + \idg
Visible space indicator O \(sq
Hyphen - \(hy

The hyphen is a synonym for the unadorned minus sign (-}, Cerain ver-
sions of ¢w recognize two additional names: \{ua for an up arrow and \(lh
for a diagonal left-up (home) arrow.

Cw recognizes five request lines, as well as user-defined delimiters. The
request lines look like waff(1) macro requests, and are copied in their
entirety by ¢w onto its output; thus, they can be defined by the wser as
sroff {1} macros; in fact, the .CW and .CN macros shouwld be so defined (see
HINTS below), The five requests are:

LW Start of text to be set in the CW font, .CW causes a break; it can take
precisely the same options, in precisely the same format, as are avail-
able on the cw command line.

July 15, 1985

Cw(1) cw(l)

LN End of text to be set in the CW font; .CN causes a break; it can take
the same options as are available on the cw command line.

LD Change delimiters and/or scttings of other options; takes the same
options as are available on the ¢w command line.

CP argd argl argd ... argn
All the arguments (which are delimited like #0#(1) macro argu-
ments) are concatenated, with the odd-numbered arguments set in
the CW font and the even-numbered ones in the prevailing font.

PC argd argl argd ... argn
Same as .CP, except that the even-numbered arguments are set in
the CW font and the odd-numbered ones in the prevailing font.

The .CW and .CN requests are meant to bracket text {e.g., a program frag-
ment) that is to be typeset in the CW font ‘‘as is.”" Normally, ¢w operates
in the #ransparent mode. 1n that mode, except for the .CD request and the
nine special four-character names listed in the table above, every character
between .CW and .CN request lines stands for itself. In particular, cw
arranges for periods (.) and apostrophes {*) at the beginning of lines, and
backslashes {\} everywhere to be “hidden’ from treff(1). The transparent
mode can be turned off (see below), in which case normal treff{l) rules
apply;, in particular, lines that begin with . and * are passed through
untouched (except if they contain delimiters—see below). In either case,
ew hides the effect of the font changes generated by the .CW and .CN
requests; ow also defeats ail ligatures (/i, 4, etc.) in the CW font.

The only purpose of the .CD request is to allow the changing of various
options other than just at the beginning of a document.

The user can also define definmiters. The left and right delimiters perform
the same function as the .CW/.CN requests; they are meant, however, to
enclose CW ‘‘words” or “‘phrases’ in running text (see example under
BUGS below). Cw treats text between delimiters in the same manner as
text enclosed by .CW/.CN pairs, except that, for aesthetic reasons, spaces
and backspaces inside .CW/.CN pairs have the same width as other CW
characters, while spaces and backspaces between delimiters are half as wide,
so they have the same width as spaces in the prevailing text (but are mor
adjustable). Font changes due 1o delimiters are norf hidden.

Delimiters have no special meaning inside .CW /.CN pairs.
The options are:

—lxx The one- or two-character siring xr becomes the left delimiter; if xx
is omitted, the left delimiter becomes undefined, which it is initially.

—r1xx Same for the right delimiter. The left and right delimiters may (but
need not) be different.

—fa The CW font is mounted in font position »; acceptable values for »
are 1, 2, and 3 (default is 3, replacing the bold font}). This option is
only useful at the beginning of a document.

—t Turn transparent mode af.
+t Turn transparent mode on (this is the initial default).

July 15, 1985 Page 2

Cw (1) cw(l)

—d Print current option settings on file descriptor 2 in the form of
raff(1) comment kines. This option is meant for debugging.

Cw reads the standard input when no fifes are specified {or when — is
specified as the last argument), so it can be used as a filter. Typical usape
is:

ow files| troff ..,

Checkew checks that left and right delimiters, as well as the .CW /.CN pairs,
are properly balanced. It prints out all offending lines.

HINTS
Typical definitions of the .CW and .CN macros meant to be used with the
mm(1) macro package:

.de CW

DS

ns 9

.vs 10.5p

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ...
.de CN

ta 0.54 1i 1.5 2i 2.51 3i 3.5i 4i 4.5i 5i 5.5i 6i

R

-ps
.DE

At the very least, the .CW macro should invoke the teff(l1) no-fill (.nf)
mode.

When set in running text, the CW font is meant to be set in the same point
size as the rest of the text. In displayed matter, on the other hand, it can
often be profitably set one point smailier than the prevailing poinl size (the
‘displayed definitions of .CW and .CN above are one point smaller than the
tunning text on this page). The CW font is sized so that, when it is set in
9.point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and/or equations.
If this is the case, the order of preprocessing should be: cw, b, and egn.
Usually, the tables contained in such documents will not contain any CW
text, although it is entirely possible to have efements of the table set in the
CW font; of course, care must be taken that /(1) format information not
be modified by cw. Attempits to set equations in the CW font are not likely
to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces:
letting — represent a backspace, d——7 yieids . Because spaces (and,
therefore backspaces) are half as wide between delimiters as inside
.CW /.CN pairs {see above), two backspaces are required for each overstrike
between delimiters.

Page 3 July 15, 1985

cwi(l) cwil)

EXAMPLE
cw text | tbl | troff —mm

processes the text file "text", sends the output to t6/(1} and then sends the
outpul for final formatting to troff(1) and mm(1).

FILES

fust/lib/font/TICW CW foni-width table
SEE ALSO

eqn(1), mmi(l), thi(1}, troff (1}, mm{5), mv(5).
WARNINGS

If text preprocessed by c¢w is to make any sense, it must be sel on a
typeseiter equipped with the CW font or on a STARE facility; on the latter,
the CW font appears as bold, but with the proper CW spacing,

BUGS
Only a masochist would use periods {.), backslashes (\}, or double quotes
("} as delimiters, or as arguments to .CP and .PC,
Certain CW characters don’t concatenate gracefully with certain Times
Roman characters, e.g., a CW ampersand {&) foflowed by a Times Roman
commal,); in such cases, judicious use of #g#f{1) half- and quarter-spaces
0\l and \") is most salutary, e.g., one should use _& \", (rather than just
plain _& ,) to obtain &, (assuming that _ is used for both delimiters}.
Using ¢w with nroff is silly.
The output of ¢w is hard to read.
See aiso BUGS under roff(1).

July 15, 1985 Page 4

CXREF({1) CXREF (1)

NAME

cxref — generate C program cross-reference

SYNOPSIS

exref [options 1 files

DESCRIPTION

FILES

Cxref analyzes a collection of C files and attempts to build a cross-reference
tabie. Cxref utilizes a special version of cpp to include #define’d informa-
tion in its symboi table. It produces a listing on standard output of all sym-
bols {auto, static, and global) in each file separately, or with the —c option,
in combination. Each symbol contains an asterisk (») before the declaring
reference.

in addition to the — D, ~I and —U options (which are identical to their
interpretation by cc (1)), the following options are interpreted by cxref:
i Print a combined cross-reference of all input files.

— W num>
Width option which formats ouiput no wider than <num’>
(decimal) columns. This option will default to 80 if <<num> is not
specified or is less than 51.

—a file Direct output to named file,
-8 Operate silently; does not print input file names.
—t Format iisting for 80-column width.

fust/lib/xcpp special version of C-preprocessor.

SEE ALSO

ce(l).

DIAGNOSTICS

BUGS

Error messages are unusually cryptic, but usually mean that you can't com-
pile these files, anyway.

Cxref considers a formal argument in a #define macro definition to be a
declaration of that symbol. For example, a program that # includes ctype.h,
will contain many declarations of the variable c.

DATE(1) DATE(1)

NAME
date — print and set the date

SYNOPSIS
date [mmddhhmm(yy] 1 [+format]

DESCRIPFTION
If no argument is given, or if the argument begins with +, the cnrrent date and
time are printed. Otherwise, the current date is set. The first »on is the month
number; dd is the day number in the month; A% is the hour number (24 hour
system); the second mm is the minute number; yy is the last 2 digits of the year
number and is optional. (If a number of less than 70 is given for the year, the
year that results is 1970.) For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned. The system operates in GMT. Date takes care of the conversion to
and from local standard and daylight time.

If the argument beging with +, the ontput of date is under the control of the
user. The format for the output is similar to that of the first argument to
pringf (38). All output fields are of fixed size (zero padded if necessary). Each
field descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % %. All other characters are
copied 10 the ontput without change. The string is always terminated with a
new-line character.

Field Descriptors:

insert a new-line character

insert a tab character

month of year — 01 w12

day of month — 01 0 31

last 2 digits of year — 00 to 99

date as mm/dd/yy

hour — 00 10 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:5S

day of year — 001 10 366

day of weck — Sunday =0

abbreviated weekday — Sun to Sat

B —SmEzmUeag~s

Page 1 Sepiember 24, 1987

DATE(1) DATE(1)

k abbreviated month — Jan to Dec
r timein AM/PM notation

EXAMPLE
date "+DATE: %m/%d/%y%aTIME: %H:%M:%S’
generates as output:
DATE: 08/01/76
TIME: 14:45:05
DIAGNOSTICS
No permission if you are not the soper-user and yon try to change the
date;
bad conversion if the date set is syntactically incorrect;

bad format character if the field descriptor is not recognizable.
SEE ALSO
primf(3S).
WARNING
It is a bad practice to change the date while the system is nmning multi-user,

September 24, 1987 Page 2

DC(1) DC(1)

NAME
de — desk calculator

SYNOPSIS
de [file)

DESCRIPTION
De is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a
aumber of fractional digits 1o be maintained. The overall structure of de is
a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The fol-
fowing constructions are recognized:
number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0—9. It may be preceded by an
underscore (_) to input a negative number, Numbers may contain
decimal poinis.
+ —/*+%"
The top two values on the stack are added (+), subtracted (—),
multiplied (»), divided (/), remaindered (%), or exponentiated (7).
The two entrips are popped off the stack: the result is pushed on
the stack in their place. Any fractional part of an exponent is
ignored.

sX The top of the stack is popped and stered into a register named x,
where x may be any chacacter. If the s is capitalized, x is treated as
a stack and the value is pushed on it.

Lx The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the | is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. P interpreis the top of the stack as an ASCII string,
removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recussion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.
Alternately, control-d (EQF) will exit from de,

X treats the top element of the stack as a character string and exe-
cutes it as a string of de commands.
X replaces the number on the top of the stack with its scale factor.

{..| puts the bracketed ASCII string onto the top of the stack.

<X >x mx
The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

¥ replaces the top element on the stack by its square root. Any exist-
ing fractional part of the argument is taken into accoumt, but

-1-

DC(1)

- NN

H

EXAMPLE

DC(1)

ot'll];;:rwise the scale facter is ignored.
interprets the rest of the line as a UNIX System command.
All values on the stack are popped. '

The top value on the stack is popped and used as the number radix
for further input. I pushkes the input base on the top of the stack.

The top value on the stack is popped and used as the nember radix
for further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-
negative scale factor: the appropriate number of places are printed
on output, and maintained during multiplication, division, and
exponentiation. The interaction of scale factor, input base, and
output base will be reasonable if all are changed together,

The stack level is pushed onto the stack.
replaces the number on the top of the stack with its length.

A line of input is taken from the input source {(usually the termi-
nal)} and executed.

are used by bc for array operations.

de
242562+ p

adds the two numbers and prints the result (top value in the stack).

[1al + dsasplal0>ylsy
Osal
lyx

prints the first ten values of a!.

SEE ALSQ

be(1), which is a preprocessor for de providing infix notation and a C-like
syntax which implements functions and reasonable control structures for

programs.
DIAGNOSTICS
X is unimplemented where x is an octal number.
stack empty for not enough elements on the stack to do what was
asked.
Out of space when the free list is exhausted (too many digits).

Out of headers for too many numbers heing kept around.
Out of pushdown for too many items on the stack.
Nesting Depth for toc many levels of nested execution.

DD (1) DD (1)

NAME
dd — convert and copy a file

SYNOPSIS
dd [option=value] ...

DPESCRIPTION
Dd copies the specified imput file to the specified ocurput with possible
conversions. The standard input and output are used by default. The input
and output block size may be specified to take advantage of raw physical

I/0.
option values
if = file input file name; standard input is default
of = fife output file name:; standard cutput is default
ibs=n input block size # bytes (default 512}
obs=r output bleck size {default 512)
bs=n set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly
efficient since no in-core copy need be done
chs=u# conversion buffer size
skip=»n skip # input blocks before starting copy
seek = n seek n blocks from beginning of output file before copying;
dd creates the specified output file (see crear{2)), which
insures the length of the file will be zero for regular files;
seeking # blocks from the beginning of the output file will
fill the skipped area with zeros (nulls).
count=n copy only n input blocks
cony =ascii convert EBCDIC to ASCIL
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
neerror do not stop processing on an error
S¥nc pad every input block to ibs
. » «-» Several comma-separsted conversions
multi=in input file is muiti-volume
out output file is multi-volume

in,out both the input file and output file are multi-volume

Where sizes are specified, a number of bytes is expected. A number may
end with k, b, or w to specify muliiplication by 1024, 512, or 2, respec-
tively; a pair of numbers may be separated by x to indicate a product.

Chs is used only if ascii, ebedic, or ibm conversion is specified. In the
former case cbs characters are placed into the conversion buffer, converted
to ASCII, and trailing blanks trimmed and new-line added before sending
the line to the output. In the latter two cases ASCH characters are read into
the conversion buffer, converted to EBCDIC {or the IBM version of
EBCDIC), and blanks added to make up an output block of size cbs.

If multi-volume input{output) is specified, a prompt is given on end-of-file
to allow another volume to be mounted.

After completion, dd reports the number of whole and partial input and
output blocks.

-1-

DD (1} PD (1}

EXAMPLE
dd if=/dev/rmt/Om of=x ibs=800 cbs=30 conv=ascii,lcase

will read an EBCDIC tape blocked ten 80-byie EBCDIC card images per block
into the ASCII file "x".

Note the use of raw magtape. D4 is especially suited to [/O on the raw
physical devices because it allows reading and writing in arbitrary block
sizes,

SEE ALSO
cpll),

DIAGNOSTICS
Stp Blocks inlout) numbers of full and partial blocks read (written)
BUGS
The ASCII/ EBCDIC conversion tables are taken from the 256-character
standard in the CACM Nov, 1968. The ibm conversion, while less blessed

as a standard, corresponds better to certain IBM print train conventions.
There is no universal solution.

New-lines are inserted only on conversion to ASCII, padding is done only
on conversion to EBCDIC. These should be separate options.

DELTA (1) DELTA (1)

NAME

delta — make a delta (change) to an SCCS file

SYNOPSIS

delta [—eSID] [—s) [—n] [—glist] {—mlmrlist]] [—y{comment]]
[—p] files

DESCRIPTION

Page |

Delta is used to permanently introduce into the named SCCS file changes
that were made to the file retrieved by zer(1) (called the g-file, or gen-
erated file).

Delta makes a delta to each named SCCS file. If a directory is named, deita
behaves as though each file in the directory were specified as a named file,
except thal non-SCCS files {last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of — is
given, the standard input is read (see WARNINGS); each line of the stan-
dard input is taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard ouiput depending upon certain
keyletters specified and flags (see admin(1)) that may be present in the
$CCS file (see ~m and —y keyletters below),

Keyletter arguments apply independently 1o each named file,

—rS5iD Uniquely identifies which delta is to be made to the
$CCS file. The use of this keyletter is necessary only
if two or more cutstanding gers for editing (get —e)
on the same SCCS file were done by the same person
(login name}. The SID wvalue specified with the —r
keyletter can be either the $1D specified on the ger
command line or the SID to be made as reported by
the ze¢t command (see ger(1)). A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

- Suppresses the issue on the standard output of the
created delta’s SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing}.
—glist Specifies a fist (see ger(1) for the definition of fisit of

deltas which are to be igwored when the file is
accessed at the change level (SID) created by this
delta,

—m [mriist If the SCCS file has the v flag set (see admin(1)) then
a Modification Request (MR) number swist be sup-
plied as the reason for creating the new delta.

I[f —m is not used and the standard input is a termi-
nal, the prompt MRs? is issued on the standard out-
put before the standard input is read; if the standard
input is not a terminal, no prompt is issued. The
MRs? prompt always precedes the comments?
prompt (see —y keyletter).

August 8, 1983

DELTA({1) DELTA (1)

MRS in a list are separated by blanks and/or tab char-
acters. An unescaped new-line character terminates
the MR list.

Note that if the v flag has a value (see admin(1)), it
is taken to be the name of a program (or shell pro-
cedure) which will validate the correctness of the MR
numbers. If 2 non-zero exit status is returned from
MR number validation program, defta terminates (it is
assumed that the MR numbers were not ail valid}.

—ylcommend Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid comment,
If the comment includes spaces, you must enclose the
entire string in double quotes.

If -y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stan-
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

~-p Causes delta to print (on the standard output) the
sccs file differences before and after the delta is
applied in a 4iff (1) fermat.

EXAMPLE

% delta s.testl.c
comments? second version
1.2
1 inserted
0 deleted
12 unchanged

does a defra on file "testl.c".

FILES
All fifes of the form ’file are explained in the SCCS section of the Pro-
gramming Tvols Guide. The naming convention for these files is also
described there.

g-file Existed before the execution of defra;, removed after com-
pleticn of defta.

p-file Existed before the execution of defra; may exist after com-
pletion of delta.

q-file Created during the execution of delta; removed after com-
pletion of defra,

x-file Created during the execution of deita; renamed to SCCS file
after completion of delra.

z-file Created during the execution of defta, removed during the
execution of defta.

d-file Created during the execution ol delta;, removed after com-

pletion of defrg.

Aupust 8, 1985 Page 2

DELTA (1) DELTA(1)

Jusr/bin/bdiff Program to compute differences between the ‘‘gotten’ file
and the g-fife.

WARNINGS

Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in the SCCS file unless the SOH is escaped. This character has special
meaning to SCCS (see scesfite(5)) and will cause an error.

A get of many SCCS files, followed by a defta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get/delia sequences should be used.

If the standard input (=) is specified on the deffa command line, the —m
(if necessary) and —y Keyletters muss also be present. Omission of these
keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO

admin(1), bdiff (1), ede(l), get(1), help(1}, prs(1), rmdel(1), sccsfile(4).
SCCS in the Programming Tools Guide.

DIAGNOSTICS

Page 3

Use help (1} for explanations.

August 8, 1985

DEROFF (1) DEROFF (1)

NAME

deroff — remove nroff/troff, tbl, and eqn constructs

SYNOPSIS

devoll [=mx] [—w] { files]

DESCRIPTION

Deroff reads each of the files in sequence and removes all traff{1) requests,
macro calls, backslash constructs, egn{l) constructs {between .EQ and .EN
lines, and between delimiters), and 5/(1) descriptions, perhaps replacing
them with white space (blanks and blank lines), and writes the remainder
of the file on the standard output. Deroff follows chains of included files
(.s0 and .nx troff commands); if a file has already been included, a .so
naming that file is ignored and a .nx naming that file terminates execution.
If no input file is given, deroff reads the standard input.

The —m option may be followed by an m, s, or . The —mm option
causes the macros be interpreted so that only running text is output (i.e.,
no text from macto lines.) The —ml option forces the —mm option and
also causes deletion of lists associated with the mm macros.

If the —w option is given, the output is a word list, one ““word” per line,
with all other characters deleted. Otherwise, the output follows the origi-
nal, with the deletions mentioned above. In text, a “word™ is any string
that conrains at least two letters and is composed of letters, digits, amper-
sands (&), and apostrophes ('); in a macro call, however, a **word” is a
string that begins with at least two letters and contains a total of at least
three letiers. Delimiters are any characters other than letters, digits, apos-
trophes, and ampersands. Trailing apostrophes and ampersands are
removed {rom *“words.”

EXAMPLE

deroff textfile
removes all rraff, troff, and macro definitions from “texifile”.

SEE ALSO

BUGS

eqn{l), nroff(1), tbI(1), troff{1).

Deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most such errors result in too much rather than too little out-
put.

The —ml option does not handle nested lists correctly.

DIFF(1) : DIFF(1)

NAME
diff — differentiat file comparator

SYNOPSIS
diff { —efbh] filel file2

DESCRIPTION
Diff tells what lines must be changed in two files to bring them into agreement.
If filel (file2) is —, the standard input is used. If file! (file2) is a directory, then
a file in that directory with the name file2 (filel) is used. The normal output
contains lines of thess forms:
nl an3.nd

nln2 d n3
ni.n2 ¢cn3.nd

These lines resemble ed commands to convert file! into file2. The numbers
after the letters pertain to file2, In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert file2 into filel. Asin ed,
identical pairs, where nl = n2 or n3 = n4 , are abbreviated as a single number.
Following each of these lines come all the lines that are affected in the first file
flagged by «, then all the lines that are affected in the second file flagged by >,

‘The —b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The —e option produces a script of «, ¢, and 4 commands for the editor ed,
which will recreate file2 from filel . The —f option produces a similar script, not
useful with ed, in the opposilte order, In connection with —e, the following shell
program may help maintain multiple versions of a file. Only an ancestral file
($1) and & chain of version-to-version ed scripts ($2,%3,...) made by diff need be
on hand. A *‘lategt version®’ appears on the standard output.

(shift; cat $+; echo ‘1,8p")| ed - §$1

Except in rare circumstances, diff finds a smallest sufficient set of file differ-
ences.

Option —h does a fasi, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited length.
Options —e and —f are unavailable with —h,

EXAMPLE
diff e filel file2

Page 1 September 27, 1987

DIFF(1) DIFF(1)

where “’filel” and “*file2’* are two versions of the manual text for the cp com-
mand, produces:

3541d
27c
In the second form, one or more

18.25¢

existed; the mode of the source file
is used otherwise,

15¢

The mode and owner of

10¢
file .., directory

Tc
filel file2

L3c
JHCP1
SHNAME

Following this, ed script would transform *‘file]1”” into **file2**, line for line and
character for character.

FILES
fmp/d?7777
fusr/litydifth for —h
SEE ALSO
cmp(1), comm(1), ed(1).
DIAGNOSTICS
Exit status is 0 for no differances, 1 for some diffarences, 2 for trouble.

BUGS
Editing scripts produced under the —e or —f option are natve about creating lines
consisting of a single period .).

September 27, 1987 Page 2

DIFF(1) DIFF(1)

If an unrecognized option is specified, diff ignores it and performs the default
operation.
Diff may not work if files contain a very long kine, or if files are very long.

WARNINGS
Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines
are different, they will be flagged and output; although the output will
seem to indicate they are the same.

Page 3 September 27, 1987

DIFF3(1) DIFF3{1)

NAME

diff3 — 3-way differential file comparison
SYNOPSIS

diff3 [—ex3 | filel file? file3
DESCRIPTION

Diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

= —— all three files differ
==m=m=] filel is different
==2 file? is different
===m=3 fiied is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

Sinala Text is to be appended after kine number nf in fle f
where f = 1, 2, or 3.

J:nl, n2e Text is to be changed in the range line #! to line »n2, If
nl = n2, the range may be abbreviated to ni.

The original contents of the range follows immediately after a ¢ indication.
When the contents of two files are identical, the contents of the lower-
numbered file is suppressed.

Under the —e option, i3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, ie., the changes
that normally would be flagged ==== and ====3, Option —x (-3}
preduces # script to incorporate only changes flagged = === (====3).
The following command will apply the resulting script to fife /.

(cat script; echo ‘1,3p7) | ed — filel

EXAMPLE
If fite "f1" contains the following text:
This is a file.
This is the first of three files.
This is not the last file.

and file “f2" contains:
This is a file.
This is the second of three files.
This is not the last file.

and file *f3" contains:
This is a file,
This is the third of three files.
This is the last file,

then

diff3 1 2 13
will return

1:2,3¢

This is the first of three files.
This is not the last file,

-1-

DIFF3(1) DIFF3(1}

2:2,3c
This is the second of three files.
This is not the last file.

3:2,3¢
This is the third of three files.
This is the last file

FILES
/tmp/d3+
fusr/lib/diff 3prog
SEE ALSO
diff (1),

BUGS
Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes won't work.

DIFFDIR(1} (UniSoft) DIFFDIR(1)

NAME
diffdir - diff directories

SYNOPSIS
diffdir [-h] [—s] dirl dir2

DESCRIPTION
Diffdir compares the differences of two directories recursively by sorting the
contents of the directories by name and then runs a diff on text files which are
different. Object files which differ and files which appear in only one directory
are also listed.
The —h option causes diffdir to paginate its output, and to summarize binary
differences and files in only one place at the end of the diff. Bach individual
diff is run through an appropriate pr.
The —s option causes files which are the same to be reparted; normally they are
omitted.

EXAMPLE

diffdir dirl dir2

compares all the files in two directories and reports differences, by line number,
for similar files, Unique files are simply listed.

FILES
Jfbinfemp compare two files

SEB ALSO
diffi(1}.

BUGS
Program should pass flags throagh to diff.

AUTHOR
Bill Joy

Page 1 September 24, 1987

DIFFMK (1} DIFFMK (1}

NAME
diffmk — mark differences between files
SYNOPSIS
diffmk namel name2 name3
DESCRIPTION
Diffimk compares two versions of a file and creates a third file that includes
“‘change mark™ commands for aroff(1) or troff(1). Namel and namel are
the old and new versions of the file. Difimk generates name3, which con-
tains the lines of mame? plus inserted formatter **change mark™ (.m<)
requests. When name7 is formatted, changed or inseried text is shown by |
at the right margin of each line. The position of deleted text is shown by a
single »,
If the characters | and * are inappropriate, a copy of diffink can be edited to
change them (diffink is a shell procedure).
If anyone is so inclined, diffink can be used to produce listings of C (or
other) programs with changes marked.
EXAMPLE
diffmk old.c new.c tmp; nroff macs tmp | pr
produces a listing of two versions of a C program with changes marked.
First the two versions are compared and a new file, "tmp”, is created con-
taining the change mark commands. The temporary file is then passed to
rroff(1) using the file "macs" which contains;
.pl1
E 77
.af
£0
.ng ¥
The .# request might specify a different line length, depending on the
nature of the program being printed. The .eo and .nc requests are probably
needed only for C programs.
SEE ALSO
diff (1), nroff(1), troff(1).
BUGS

Aesthetic considerations may dictate manual adjustment of some ouiput.
File differences involving only formatting requesis may produce undesirable
output, i.e., replacing .sp by .sp 1 will produce a ‘‘change mark™ on the
preceding or following line of cutput.

DIRCMP (1} DIRCMP (1)

NAME

diremp — directory comparison
SYNOPSIS

diremp [—d 11 —s 1 [—wn] dirt dic2
DESCRIPTION

Diremp examines dirl and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to
each directory are generated for all the options. If no option is entered, a
list is output indicating whether the filenames common to both directories
have the same contents.

—d Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in 2if{1).

=5 Suppress messages about identical files.
-wn
Change the width of the output line to » characters. The default width
is 72.
EXAMPLE
diremp d1 d2
will show the differences between the directories d1 and d2.
SEE ALSO
emp(1), diff(1).

DIRNAME (1) . SEE BASENAME DIRNAME (1}

DIS{1)

NAME
dis — disassembler

SYNOPSIS
dis [—a] [—V] [-L] [—d sec] [—da sec} [—F function] f—t sec] [—1
siring] files

DESCRIPFTION
The dis command produces an assembly language listihg of each of its
object fife arguments. The listing includes assembly 4tai:ments and the
binary that produced those statements,

The following options are interpreted by the disagésemnbler and may be
specified in any order.

-0 Print numbers in octal. Defauit is hexadecimal.

-V Write the version number of thg disassembler to standard
errer,

-L Invoke a lookup of C source Jbels in the symbol table for
subsequent printing.

—d sec Disassemble the named sectjon as data, printing the offset of

the data from the beginning/of the section.

—da sec Disagsemble the named gection as data, printing the actual
address of the data.

—t sec Disassemble the named/section as text.

—1 string Disassemble the librafy file specified as string. For example,
one would issue the/command dis —1 x —1 z 1o disassemble
libx.a and libz.a. Al librarics are assumed to be in /lib.

If the —d, —da, or —t opliogs are specified, only those named sections
from each user supplied filenaine are disassembled. Otherwise, ail sections
containing text are disassembfed.

If the —F option is specifigd, only those named functions from each user
supplied filename are disasfembled.

On output, a number englosed in brackets at the beginning of a line, such
as 5], represents that thle C breakpointabie line number starts with the fol-
lowing instruction. An/expression such as < 40> in the operand field, fol-
lowing a relative displaicement for control transfer instructions, is the com-
puted address within/the section to which control will be transferred. A C
function name will gppear in the first column, followed by (}.

SEE ALSD
as(1), ecll), Idt
DIAGNOSTICS

The self-explahatory diagnostics indicate errors in the command line or
problems encduntered with the specified files.

DIS(1) DIS(1)

NAME
dis - disassembier
SYNOPSIS
;‘i:‘? (—d sec] [-da sec] [-F function] [-1 siring] -L1 [-0] [t sec] [-V]
DESCRIPTION
The dig command produces an assembly language listing of each of its object
Jfile arguments, The listing includes assembly statements and the binary that
produced those statements.

The following flag options are interpreted by the disassemnbler and may be
specified in any arder:

-0 Print numbers in octal. Default is hexadecimal.

-V Write the version number of the disazsembiler 10 standard error.

-L Invoke a lookup of C source labeils in the symbol table for subse-
quent printing.

—d sec Disassemble the named section as data, printing the offset of the
data from the beginming of the section.

—da sec Disassemble (he named section as data, printing the actual
address of the data.

—t sec Disassemble the named section as text,

~1 string Disassemble the library file specified as string, For example,
one would issue the command dis —J x -1 z to disassemble libx.a
and libz.a. All Yibraries are assumed to be in /lib.

If the —d, —da, or —t flag options are specified, only those named sections from
each user-supplied filename are disassembled. Otherwise, all sections contain-
ing text are disassembled.
If the —F flag option is specified, only those named functons from each
user-supplied filename are disassembled.
On output, a number enclosed in hrackets at the beginning of a line, such as 5],
means that dis has reached the point in the assembly code where a C language
line (numbered as stated) begins. If a breakpoint is placed there using sdb/adb,
the debugger used will stop on a C line. An expression such as <40 in the
operand field, following a relative displacement for control transfer instructions,
is the computed address within the section to which control will be transferred.
A C function name will appear in the first column, followed by ().

FILES
/hin/dis

SEE ALSO
as(1), ce(1), Ja(1), strings(1).

Page 1 May 1988

DIS(1) DIs(1)

DIAGNOSTICS
The self-explanatory diagnostics indicate ermors in the command line or prob-
lems encountered with the specified files.

NOTES
The 68020 version of dis will disassemble 68881 and 68851 instructions,
whether or not these are supported in the hardware. The 68000/68010 version
will not disassernble 68881 or 68851 instructions or 68020 instructions not sup-
ported by the 68010,

May 1988 Page 2

DISABLE({1) SEE ENABLE DISABLE (1)

DU(1) DU(1)

NAME

du — summarize disk usage
SYNOPSIS

dun { —ars] [names]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) direc-
tories within each directory and file specified by the names argument. The
defanlt system size for physical blocks is 512 bytes. The block count includes
the indirect blocks of the file, If rames is missing, . is used.
The optional argument —s causes only the grand total (for each of the specified
names) 10 be given. The optional argument —a causes an entry to be generated
for each file. Absence of either causes an entry to be generated for each direc-
tory only.
Du is normally silent about directories that cannot be read, files that cannot be
opened, etc. The —r option will cause du to generate messages in such
instances.

A file with two or more links is cnly counted once.
EXAMPLE
du dirl dir2
produces a count of the number of blocks in each of the directories. In order to
see how many blocks are in each file, the —a option must be nsed.

BUGS
If the —a option is not used, non-directories given as arguments are not listed.
¥ there are too many distinct linked files, du will count the excess files more
than once.
Files with holes in them will get an incorrect block count.

Page 1 September 24, 1987

DUMP(1) DUMP(1)

NAME -
dump ~ dump selected parts of an object file
SYNOQPSIS

dump [[-a] [-c] [-f] &gl B [H] o] [r) [-s] [t] [-z aame]]
[[~d number] [+d number] [-n name) [-p] [t index) [+t index] [-u] [-v]
[-z name.number)] [+z name]] files
DESCRIFITION
The dump command dumps selected parts of each of its object file arguments.
This command accepts both object flles and archives of object files. It
processes each file argument according o one or more of the following fiag
options:
-a Dump the archive header of each member of each archive file
argument.
Dump each file header.

Dump the global symbols in the symbol table of a version 6.0
archive.

Pump each optional header.
Dump section beaders.
Dump section contents.
Dump relocation information.
Dump line number information,
Dump symbol table entries.
rame Dump line number entries for the named function.
Dump the string table,
The following modifiers are used in conjunction with the flag options listed
above to modify their capabilities.
—i number Dump the section number or range of sections starting at aumber

and ending either at the last section number or number specified by
+d.

+d rwnber Dump sections in the range either beginning with first section or
beginaing with section specified by ~d.

-0 name Dump information pentaining only 1o the named entity. This
modifier applies to<h, -8, -r, -], and ~-t.

-p Suppress printing of the headers.

—tindex Dump only the indexed symbol table entry. When the —t is used in
conjunction with +t, it specifies a range of symbol table entries.

+t index ~ Dump the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table entry or

w &

A4 A Lhd bl

Page 1 May 1988

S

DUMP(1) DUMP(1)

at the entry specified by the —t flag opiion.

- Underline the name of the file for emphasis.

-y Dump information in symbolic representation rather than numeric
(e.g.. C_STATIC instead of 0X02). This modifier can be used
with all the above flag options except the —s and —o flag options of
dump.

~Z name ,nuwnber
Dump line number eniry or range of line numbers starting at
number for the nameq function,

+z number Dump line numbers starting at either function name or number
gpecified by -z, up to monber specified by +z.

Blanks separating a flag option and its modifier are optional. The comma

separating the name from the number modifying the —z flag option may be

repiaced by a blank,

The dump command attempts to format the information it dumps in 2 meaning-

fulway,punungMnmformaummchmer hex, octal, or decimal

Tepresentation, as appropriate.

FILES
fbin/dump

SEE ALSOD

as(l), dis(1), od(1), nm(1), strings(1), dumpfs(IM), restore(IM), a.out{4),
ar(4).

May 1988 Page 2

ECHO (1) ECRHO (1)

NAME
echo — echo arguments

SYNOPSIS
echo { arg 1 ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a new-line
on the standard output. It also understands C-like escape conventions;
beware of conflicts with the shell’s use of \:
kY

\b backspace

\e¢ print line without new-line

\f form-feed

\n new-line

\r carriage return

A\t tab

\v vertical tab

\\ backslash

\n the 8-bit character whose ASCII code is the I-, 2- or 3-digit octal
number #, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

EXAMPLE
echo curmudgeon

simply responds
curmudgeon
on the siandard output.

SEE ALSO
sh(1).

ED{1) ED(1)

NAME
ed, red — text editor

SYNOPSIS
ed [-] [—pstring] [—x] [file]

red [} [—pswring] [—x] [file]

DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed simulates an e
command {sec below) on the named file; that is to say, the file is read into ed’s
buffer so that it can be edited. The optional — suppresses the printing of charac-
ter counts by e, r, and w commands, of diagnostics from e and g commands,
and of the ! prompt after a !skell command, The —p option allows the user to
specify a prompt sging. If —x is present, an X command is simulated first to
handle an encrypted file. Ed operates on a copy of the file it is editing; changes
made 1o the copy have no effect on the file until a w (write} command is given,
The copy of the ext being edited resides in a temporary file calied the buffer.
There is only one buffer,

Red is a restricted version of ed. It will only allow editing of files in the current
directory. It prohibits exccuting shell commands via Ishell command.
Attemnpts to bypass these restrictions result in an error message (restricted
shell}.

Both ed and red support the fypec (4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal
in stty —tabs or sity tab3 mode (see suy(l), the specified tab stops will
antomatically be used when scanning file, For example, if the first line of a file
contained:
<15,10,15 572>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of
72 would be imposed. NOTE: while inputting text, tab characters when typed
are expanded to every eighth column as is the default,

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters 1o that command, These addresses specify one or more lines in the
buffer. Every command that requires addresses has default addresses, so that
the addresses can very cften be omitted.

In general, only one command may appear on a line, Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.

Page 1 September 24, 1987

ED(1) ED(1)

While ed is accepting text, it is said to be in inpur mode. In this mode, no com-
mands are recognized; all input is merely collected. Input mode is left by typ-
ing a period {.) atone at the beginning of a lifie,

Ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (e.g., 5) 1o specify
portions of 2 line that are 10 be substituted. A regular expression (RE) specifies
a set of character strings. A member of this set of strings is said to be matched
by the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character {(not one of those discussed in 1.2 below) is a one-
character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a . % [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([]; see 1.4 below).

b. ~ (caret or circumflex}, which is special at the beginning of an entire
RE (see 3.1 and 3.2 below), or when it immediately follows the left of a
pair of square brackets ([]) (see 1.4 below).

¢. $ (currency symbol), which is special at the end of an entire RE (sec
3.2 below).

d. The character used to bound (i.e., delimic) an entire RE, which is spe-
cial for that RE (for example, see how slash (/) is used in the g com-
mand, below.)

1.3 A period (.) is a one-character RE that matches any character except new-
line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches any one character in that string. If, how-
ever, the first character of the string is a circumflex (~), the one-character
RE miatches any character except new-line and the remaining characters in
the siring. The ~ has this special meaning only if it occurs first in the
string. The minus (—) may be used to indicate a range of consecutive
ASCI characters; for example, [0-9] is equivalent to [0123456789]. The
— loses this special meaning if it occurs first (after an initial ~, if any) or
last in the string. The right square bracket (]) does not terminate such a

September 24, 1987 Page 2

ED(1) ED(1)

string when it is the first character within it (after an initial ~, if any); e.g.,
[Ja—] matches cither a right square bracket (1) or one of the letiers a
through f inclusive. The four characters listed in 1.2.a above stand for
themselves within such a string of characters.

The following rules may be used to construct REs from one-characier REs;

2.1 A one-character RE is a RE that matches whatever the vae-character RE
matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches zero
or incre occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that
maiches a range of occurrences of the one-character RE. The values of m
and » must be non-negative integers less than 256; \{m\} matches exactly
m occurrences; \{m.\} matches ar least m occurrences; \{m.n\} matches
any number of occurrences between m and n inclusive, Whenever a
choice exists, the RE matches as many occwrences as possible.

24 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences W and V) is a RE that
matches whatever the unadomed RE maiches.

2.6 The expression \»n matches the same string of characters as was matched
by an expression enclosed between \(and V) earlier in the same RE, Here
n is a digit; the sub-expression specified is that beginning with the n-th
occumrence of \(counting from the left. For example, the expression
~\Y.+\\1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be consirained 10 match only an initial segment or

final segment of a line (or both).

3.1 A circumflex (~} at the beginning of an entirc RE constrains that RE to
match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constraing that RE to
match a final segment of a line.

The construction ~entire RE $ constrains the entire RE to match the entire line.

Page 3 Seplember 24, 1987

ED(1)

ED(1)

The null RE {¢.g., /) is equivalent to the last RE encountered. See also the last
paragraph before FILES below.

To understand addressing in ed it is necessaty 10 know that at any time there is
a current line, Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description
of each command. Addresses are constructed as follows:

1.

The character , addresses the current linc.

2. The character $ addresses the last line of the buffer.
3,
4, ‘x addresses the fine marked with the mark name character x, which must

A decimal number » addresses the #-th line of the buffer.

be a lowet-case letter. Lines are marked with the ¥ command described
below. If x was not used to mark a line, “x addresses line 0.

. A RE enclosed by slashes (/) addresses the first line found by searching

forward from the line following the current line toward the end of the
buffer and stopping at the first line containing & string matching the RE. If
necessary, the search wraps around to the beginning of the buffer and con-
tnues up to and including the cument line, so that the entire buffer is
searched. See also the last paragraph before FILES below.,

. A RE enclosed in question marks (?) addresses the first line found by

searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
maiching the RE, If necessary, the search wraps around to the end of the
buffer and continues up to and including the current ling, See also the last
paragraph before FILES below.

. An address followed by a plus sign (+) or 4 minus sign (—) followed by a

decimal number specifics that address plus (respectively mtinus) the indi-
cated number of lines. The plus sign may be omitted.

. If an address begins with + or —, the additon or subtraction is taken with

respect to the current line; ¢.g, —§ is understood to mean .—S,

. If an address ends with + or —, then 1 is added to or subtracted from the

address, respectively. As a consequence of this rule and of rule 8 immedi-
ately above, the address — refers to the line preceding the current line, (To
maintain compatibility with earlier versions of the editor, the character ~
in addresses is entirely equivalent to —) Morcover, trailing + and — char-
acters have a cumulative effect, so — refers to the current line less 2.

September 24, 1987 Page 4

ED(Y ED(1)

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses, Commands that require no
addresses regard the presence of an address as an error. Commands that accept
one or two addresses assume defauolt addresses when an insufficient number of
addresses is given; if more addresses are given than such a command requires,
the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may
also be separated by a semicolon (;). In the latter case, the current line (.} is set
to the first address, and only then is the second address calculated. This feature
can be used to determine the starting line for forward and backward searches
{see rules 5. and 6. above). The second address of any two-address sequence
must correspond 1o a line that follows, in the buffer, the line corresponding to
the first address.

In the following list of ed commands, the default addresses are shown in
parcntheses. The parentheses are not part of the address; they show that the
given addresses are the default,

It is generally illegal for more than one command to appear on 2 line. How-
ever, any command (except e, f, r, or w) may be suffixed by 1, n or p, in which
case the current line is either listed, numbered or printed, respectively, as dis-
cussed below under the /, # and p commands.

(.)a

<tex{s
The append command reads the given text and appends it after the
addressed line; , is Ieft at the last inserted line, or, if there werc none,
at the addressed line. Address 0 is legal for this command: it causes
the ““appended’” text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal
is 256 per line (including the new-line character),

(.)e

<text>

The change command deletes the addressed lines, then accepts input
text that replaces these lines; . is left at the last line input, or, if there
were none, at the first line that was not deleted.

{.,.)d The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line

Page 5 September 24, 1987

ED(1)

e file

E file

ffile

ED(1)

becomes the current line,

The edit command causes the entire contents of the buffer 1o be
deleted, and then the named file t0 be read in; . is set to the last line of
the buffer. If no file name is given, the currently-remembered file
name, if any, is used (see the f command). The number of characters
read is typed; file is remembered for possible use as a default file
name in subsequent e, r, and w commands. If file is replaced by !,
the rest of the line is taken 1o be a shell {(sk(1)) command whose out-
put is 1o be read. Such a shell command is #ot remembered as the
current file name. See also DIAGNOSTICS below.

The Edit command is like &, except that the editor does not check o
see if’ any changes have been made to the buffer since the last w com-
mand.

If file is given, the file-name¢ command changes the currently-
remembered file name to file; otherwise, it prints the currently-
remembered file name.

(1,%)g/RE/command Iist

In the global command, the first step is to mark every line that
maiches the given RE. Then, for every such line, the given command
list is executed with . initially set to that line. A single command or
the first of a list of commands appears on the same line as the global
command. All lines of a multi-line list except the last line must be
ended with a \; 4, i, and ¢ commands and associated input are permit-
ted. The . terminating input mode may be omitted if it would be the
last line of the command list. Anempty command list is equivalent o
the p command. The g, G, v, and V commands are rot permitted in
the command list. See also BUGS and the last paragraph before FILES
below.

(1,%)G/RE/

In the interactive G lobal command, the first step is to mark every line
that maiches the given RE. Then, for every such line, that line is
printed, . is changed to that line, and any one command (other than
cne of the a, ¢, i, g, G, v, and ¥ commands) may be input and is exe-
cuted. After the execution of that command, the next marked line i
printed, and 5o on; a new-line acts as a null command; an & causes
the re-execution of the most recent command executed within the
current invocation of G. Note that the commands input as part of the

September 24, 1987 Page 6

ED(1)
h
H
(i
<fexe>
{.stl)j
(Jkx
(.01
{(.,.)ma
(-y-)n

Page 7

ED(1)

execution of the G command may address and affect gny lines in the
buffer, The G command can be terminated by an interrupt signal
{ASCI DEL or BREAK). A command that causes an error terminates
thef G command.

The help command gives a short error message that explains the rea-
son for the most recent ? diagnostic.

The Help command canses ed to enter a mode in which error mes-
sages are printed for all subsequent ? diagnostics. It will also explain
the previous ? if there was one. The A command alternately tums
this mode on and off; it is initially off.

The i nsert command inserts the given text before the addressed line; .
is left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the @ command only in the place-
ment of the input text. Address O is not legal for this command. The
maximum number of characters that may be entered from a terminal
is 256 per line (including the new-line character).

The join command joins contiguous lines by removing the appropri-
ate new-line characters. If exactly onc address is given, this com-
mand does nothing,

The mark command marks the addressed line with name x, which
must be a lower-case letter, The address ‘x then addresses this line; .
is unchanged.

The list command prints the addressed lines in an unambiguous way:
a few non-printing characters (e.g., tab, backspace) are represented
by (hopefully) mnemonic overstrikes. All other non-printing charac-
ters are printed in octal, and long lines are folded. An ! command
may be appended to any other command other than e, f, , or w.

The move command repositions the addressed line(s) after the line
addressed by ag. Address 0 is legal for 4 and canses the addressed
line(s) o be moved to the beginning of the file. 1t is an error if
address a falls within the range of moved lines; . is left at the last line
moved.

The number command prinis the addressed lines, preceding each line
by its line number and a tab character; . is left at the last line printed.

September 24, 1987

ED(1)

(> p

($)r fite

ED(1)

The n command may be appended to any other command other than
e f.r,orw,

The print command prints the addressed lines; . is left at the lasi line
printed. The p command may be appended to any other command
other than ¢, f, r, or w. For example, dp deletes the current line and
prints the new current line.

The editor will prompt with a * for all subsequent commands, The P
command alternately tums this mode on and off; it is initially off,

The guit command causes ed 1o exit. No automatic write of a file is
done (but see DIAGNOSTICS below),

The editor exits without checking if changes have been made in the
buffer since the last w command.

The r ead command reads in the given file afier the addressed line. If
noe file name is given, the currently-remembered file name, if any, is
used (see e and f commands). The cumrently-remembered file name is
not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for » and canses the file to be read at
the beginning of the buffer. If the read is successful, the number of
characters read is typed; . is set to the last line read in. If file is
replaced by !, the rest of the line is taken to be a shell (sh(1)) com-
mand whose output is to be read. For example, "$r !1s” appends
current directory to the end of the file being edited. Such a shell com-
mand is not remembered as the current file name,

(.,.)s/REfreplacement] or
(..)5/REfreplacementfg or
(..)s/RE[replacement/n

The suvbstitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is
found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator g appears afier the
commang, If the global indicator does not appear, only the first
occurrence of the matched string is replaced. If a number n appears
after the command, only the nth occurrence of the matched swring on
each addressed line is replaced. It is an emor for the substitution to
fail on eli addressed lines. Any character other than space or new-
line may be used instead of / to delimit the RE and the replacement; .
is left at the last line on which a substitution occurred. See also the

September 24, 1987 Page 8

ED{1)

(.,-)tﬂ

ED(1)

last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the
string maiching the RE on the current line. The special meaning of &
in this context may be suppressed by preceding it by | As a more
general featre, the characters Vi, where » is a digit, are replaced by
the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and V). When nested parenthesized subexpres-
sions are present, » is determined by counting occurrences of \(start-
ing from the left. When the character % is the only character in the
replacement , the replacement used in the most recent substitute ¢com-
mand is used as the replacement in the current substitute command,
The % loses its special meaning when it is in a replacement siring of
moze than one character or is preceded by a \.

A line may be split by substituting a new-line character into it The
new-line in the replacement must be escaped by preceding it by \.
Such substitution cannot be done as part of a g or v command list,
This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0); . is left
at the last line of the copy.

The undo command nullifies the effect of the most recent command
that modified anything in the buffer, namely the most recent a, ¢, d,
gk jom,r, 5, ¢, v,G,or V command.

(1,8 W/RE/command list

This command is the same as the global command g except that the
command list is execnted with . initially set to every line that does not
match the RE,

(1,$)V/RE!

This command is the same as the interactive global command G
except that the lines that are marked during the first step are those that
do not match the RE.

(1,$)w file

Page 9

The write command writes the addressed lings into the named file. If
the file does not exist, it is created with mode 666 (readable and writ-
able by everyone), unless your umask setting {see sh(1)} dictates oth-
erwise, The currently-remembered file name is no¢ changed unless
Jile is the very first file name mentioned since ed was invoked. If no

September 24, 1987

ED(1) ED(1)

file name is given, the currently-remembered file name, if any, is used
(see ¢ and f commands); . is unchanged. If the command is success-
ful, the number of characters written is typed. If file is replaced by !,
the rest of the line is taken to be a shell (sA(1)) command whose stan-
dard input is the addressed lines. Such a shell command is not
remembered as the current file name,

X A key string is demanded from the standard input. Subsequent e, r,
and w commands will encrypt and decrypt the text with this key by
the algorithm of crypt (1). An explicitly empty key turns off encryp-
tion.

($)= The line number of the addressed line is typed; address Q is legal for
this command, . is unchanged by this command.

tshell command
The remainder of the line after the ! is sent to the UNIX system shell
(sh(1)) to be interpreted as a command. Within the text of that com.
mand, the unescaped character % is replaced with the remembered
file name; if a ! appears as the first character of the shell command, it
is replaced with the text of the previous shell command. Thus, ! will
repeat the last shell command. If any expansion is performed, the
expanded linc is echoed; . is unchanged.

(.41 J<new-line>
An address alone on a line causes the addressed line to be printed. A
new-line alone is equivalent to .+1p; it is uscful for stepping forward
through the buffer.

If an interrupt signal (ASCI DEL or BREAK) is sent, ed prints a ? and returns to
its command level.

Some size limitations: 512 characters per line, 256 characters per global com-
mand list, 64 characters per file name, and 128K characters in the buffer. The
limit on the number of lines depends on the amount of user memory: each line
takes 1 word,

When reading a file, ed discards ASCII NUL characters and all characters after
the last new-line. Files (e.g., a.out) that contain characters not in the ASCIT set
(bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the
last character before a new-line, that delimiter may be omitted, in which case
the addressed line is printed. The following pairs of commands are equivalent:

September 24, 1987 Page 10

ED(1) ED(1)

§s1/s2 s/s1/s2p

gist ghlp

7sl 2517
EXAMPLE

ed text

would invoke the editor with the file named "text”. For further examples, see
ED in the User Guide.

FILES
fmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.
DIAGNOSTICS
? for command errors.
2ile for an inaccessible file.
(use the Aelp and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed wams the user if an attempt is made to destroy ed’s buffer
via the ¢ or ¢ commands. It prints ? and allows one 10 confinue editing. A
second £ or ¢ command will take effect at this point or at any later time, pro-
vided no further changes have been made to the file. The ~ command-line
option inhibits this feature,

SEE ALSO
crypi(1), grep(1), sed(1), sh(1), suy(1), fspec(4), regexp(5).
ED in the User Guide.

CAVEATS AND BUGS
The !/ command and the ! escape from the e, r, and w commands cannot be
used if the the editor is invoked from a restricted shell (see sh(1)).
The sequence ‘m in a RE does not maich a new-line character.
The ! command mishandles DEL.
Files encrypted directly with the erypt (1) command with the null key cannot be
edited.
Characters are masked to 7 bits on input.

NOTE
The —x option and the editor command X are not implemented in the intema-
tional distribution.
If the editor input is coming from a command file (i.e., ed file < ed-cmd-file),
the editor will exit at the first failure of a command that is in the command file.

Page 11 September 24, 1987

EDIT(1)

SEE £X

EDIT{1)

EFL (1) EFL(1}

NAME
efl — Extended Fortran Language

SYNOPSIS
efl [options) [files)

DESCRIPTION
£#f compiles a program writien in the EFL language into clean Fortran on
the standard output. Ef? provides the C-like control constructs similar to
ratfor;
statement grouping with braces.
decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:
struct

integer flaps(3)
character(8) name
long real coords(2)
} table(100)

The language offers generic functions, assignment operators (+ =, &=,
etc.), and sequentially evaluated logical operators (&& and ||). There is a
uniform input/output syntax:

write(6,x,y:f(7,2), do i=1,10 { a(ij),z.bd])
EFL also provides some syntactic “*sugar’

free-form input:
multiple statements per line; automatic continuation: statement
label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:

>, >= & etc., become .GT,, .GE., .AND,, etc.
return expression to calier from function:

return (expression)

defines:
define name replacement

includes:
include file

£#! understands several option arguments: —w suppresses warning mes-
sages, —# suppresses comments in the generated program, and the default
option — C causes comments o be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it
had appeared in an option statement at the start of the program. Many
options are described in the reference manual. A set of defaults for a

Page 1 July 15, 1985

()

EFL({1) EFL (1)

particular target machine may be selected by one of the choices:
systemn =unix, system=gcos, or system=cray. The default setting of the
system option is the same as the machine the compiler is running on.
Other specific options determine the style of input/output, error handling,
continuation conventions, the number of characters packed per word, and
default formats.

£f1 is best used with f77(1).

EXAMPLE
el prog.for | 77 -0 prog
will process the program prog, for through ¢f! and then run the /77(1} com-
piler on the output from ¢/f, generating an executable file named "prog".

SEE ALSO
cc(l), £77(1), ratfor(1).
EFL in the Programming Cuide.

July 15, 1985 Page 2

EGREFP({1) SEE GREFP EGREP(1}

ENABLE(1) ENABLE(1)

NAME
enable, disable — enable/disable LP printers

SYNOPSIS
enable printers
disable [—c] [~r[reasonl] printers

DESCRIPTION
Enable activates the named printers, enabling them 1o print requesis taken
by fp{1). Use ipstaz(1) to find the status of printers.

Disable deactivates the named printers, disabling them from printing
requests taken by ip{(1}. By defanlt, any requests that are currently printing
on the designated printers will be reprinted in their entirety either on the
same printer or on another member of the same class. Use lpstar(1) to
find the status of printers. Options useful with disable are:

bl Cancel any requests that are currently printing on any of the
designated printers.

—rlreason] Associates a reason with the deactivation of the printers,
This reason applies to all printers mentioned up to the next
—r option. If the —r option is not present or the —r option
is given without a reason, then a default reason will be used.
Reason is reported by pstar(1).

FILES
fusr/spoolfIp/»

SEE ALSO
Ip(1), Ipstat(i}.

ENV (1) ENV (1)

NAME

env — set environment for command execution
SYNOPSIS

env [—] [name=value | ... [command args]
DESCRIPTION

Env obtains the current eavironment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of
the forin name= value are merged into the inherited environment before
the command is executed. The — flag causes the inherited environment to
be ignored compleiely, so that the command is executed with exactly the
environment specified by the arguments.

If no command is specified, the resulting environment is printed, one
name-value pair per line.
EXAMPLE
env XYZ=pdq sh
sets the environment name "XYZ" 10 the value pdg for the duration of the
new shell.

SEE ALSO
sh{1), exec(2), profile(4}, environ(5).

EQN (1)} EQN (1)

NAME

eqn, neqn, checkeq — format mathematical text for nroff or troff

SYNOPSIS

eqn [—dxy 1 [—pn]l [~sn)1 { =fn] [files]
neqn [—dxy] [—pn]l [—sn 1 [—fn] [files]
checkeq [files)

DESCRIFTION

Egn is a roff(1) preprocessor for typesetting mathematical text on a photo-
typesetier, while negn is used for the same purpose with argff on
typewriter-like terminals. Usage is almost always:

eqn files | troff
neqn files | nroff

or equivalent.

If no files are specified (or if ~ is specified as the last argument), these
programs read the standard input. A line beginning with .EQ marks the
start of an equation; the end of an equation is marked by a line beginning
with .EN. Neither of these lines is altered, so they may be defined in macro
packages to get centering, numbering, etc. It is also possible to designate
two characters as delimiters, subsequent text between delimiters is then
treated as egn input. Delimiters may be set to characters x and p with the
command-{ine argument —dxy or {more commonly) with delim xy between
.EQ and .EN. The left and right delimiters may be the same character; the
dollar sign is often used as such a delimiter. Delimiters are turned off by
delim off. All text that is neither between delimiters nor between .EQ and
.EN is passed through untouched.

The program checkeg reports missing or unbalanced delimiters and .EQ/.EN
pairs.

Tokens within egn are separated by spaces, tabs, new-lines, braces, double
quotes, tildes, and circumflexes. Braces {} are used for grouping; generally
speaking, anywhere a single character such as x could appear, a complicated
construction enclosed in braces may be used instead. Tilde (~) represents a
full space in the output, circumflex (*) half as much.

Subscripts and superscripts are produced with the keywords szubzand sup.
Thus x swb j makes X;, & sub k sup 2 produces a, while e is made
with e sup {x sup 2 + y sup 2}, Fractions are made with over: a over &

. a .
vields —; sqrt makes square roots: / over sqrt {ax sup 2+bx +c} results in

f
Vadi+bx+e

"
The keywords from and to introduce lower and upper limits: iimZx; is
—enTh

made with lim from {n —> inf} sum from 0 10 n x sub i. Left and right

brackets, braces, etc., of the right height are made with left and right:
2

left { x sup 2 + y sup 2 over alpha right]~ =~ | produces P+ =1.
@

Legal characters after left and right are braces, brackets, bars, ¢ and [for
ceiling and floor, and *" for nothing at all (useful for a right-side-only

-1.

EQN (1) EQN (1}

Vertical piles of things are made with pile, Ipile, eplle, and rpile:
a
pile {a above b above ¢} produces b. Piles may have arbitrary numbers of

[
elements; lpile left-justifies, pile and cplle center (but with different verti-
cal spacing), and rpile right justifies. Matrices are made with matrix:
x 1

marrix | Icol | x sub i above y sub 2} ccol | I above 2}] produces vy 2

In addition, there is reol for a right-justified column.

Dvacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and
under; x dor = f(t) bar is x=J (1), y dotdot bar =" n under is ¥ = n, and
xvec =" pdyadis ¥ = F.

Point sizes and fonts can be changed with size # or size £ a, roman, ftalic,
bold, and fent #. Point sizes and fonts can be changed globally in a docu-
ment by gslze # and gfont », or by the command-line arguments —s# and
—fn

Normally, subscripts and superscripts are reduced by 3 points from the pre-
vious size: this may be changed by the ¢command-line argument —p#.

Successive display arguments can be fined up. Place mark hefore the
desired lineup point in the first equation; place lineup at the place that is to
line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:
define thing % replacement %

defines a new token called rhing that will be replaced by replacement when-
ever it appears thereafter. The % may be any character that does not occur
in replacement.

Keywords such as sum (})), int (f), inf (=), and shorthands such as
= (2), != (#}, and —> (—) are recognized. Greek letters are spelled
out in the desired case, as in alpha {o), or GAMMA (['). Mathematical
words such as sim, cos, and log are made Roman automatically. Trof{(1)
four-character escapes such as \(dd ($) and \(bs (@) may be used any-
where. Strings enclosed in double quotes (*...*) are passed through
untouched; this permits keywords to be entered as text, and can be used to
communicate with roff{1) when all else fails. Full details are given in the
manual cited below.

EXAMPLE

eqn filel | troff

would process the file "file]” with the preprocessor before formatting it with
troff.

SEE ALSO

BUGS

ew(1), mm(1), mme(1)}, nroff(1), tbl(1), troff(l), egnchar(5), mm(5),
mv{5).
EQN in the Document Processing Guide.

To embolden digits, parentheses, etc., it is necessary to quote them, as in
bold *12.3"*.
See also BUGS under rraf(l).

EX(1) . EX(1)

NAME
ex, edit — text editor
SYNOPSIS
ex [-] [—v] {—tiag] [-r] {-R] [+command] [—-x] name ...
edit [ex optons]
DESCRIPTION
“Ex is the root of a family of editors: edit, ex and vi. Ex is a superset of edir,

with the most notable extension being a dlsplay editing facility. Display based
editing is the focus of wi.

If you have not used ed, or are a casual user.youwﬂlﬁndl.hatthe editor edif is
convenient for you. It avoids some of the complexities of ex used mosty by
systems programmers and persons very familiar with ed.

If you have a CRT terminal, you may wish to use a display based editor; in this
case see vi (1), which is a command which focuses on the display editing por-
tion of ex.

The following options are recognized:

— Suppresses all interactive-user feedback, as when processing editor scripts
in command files. 348.5p 38u

—v Equivalent to using vi rather than ex.

—ttag
Equivalent to an initial fag command, editing the file containing the rag
and positioning the editor at its definition.

—rfile
Used in recovering after an editor or system crash, retrieving the last saved
version of the named file. If no file is specified, a list of saved files will be
reported.

—R Readonly mode set, prevents accidentally overwriting the file,

+command
Indicates that the editor should begin by executing the specified command.
If command is omitted, then it defaults to $, positioning the editor at the
Iast line of the first file initially. Other uscful commands here are scanning
patterns of the form /par or line numbers, eg., +100 to start at line 100,

~x Encryption mode; a key is prompted for allowing creation or editing of an
encrypted file.

Page 1 September 24, 1987

EX(1)

name
Indicates files to be edited.
Ex States
Command
Insert
Visual
Ex command names and abbrevistions
abbrev ab next
append a number
args ar preserve
change ¢ print
copy co put
delete d quit
edit e read
file I Tecover
global g rewind
insert i set
join Jj shell
list I source
map map stop
mark ma substituie
move m unabbrev
Ex Command Addresses
n line n Ipat
. current pat
$ last X-n
+ next xy
- previous g
+n a forward “
% 1,5
Initializi ions
EXINIT

J.exre

EX(1)

Normal and initial state. Input prompted for by :. Your kill

character cancels partial command.

Entered by a i and c. Arbirary ext may be entered. Insert is
normally tenninated by line having only . on it, or abnor-
mally with an interrupt.

Entered by vi, terminates with Q or "\

September 24, 1987

n ando u
na gnmap unm
pre version ve
] visnal vi
pu write w
q xit x
re yank ya
rec window z
Tew escape '
se Ishift <
sh piinmext CR
s0 resubst &
st rshift >
) scroll ‘D
una

next with pat

previous with pat

n before x

x through y

marked with x

previous context

place set’s here in environment var,
$HOME/ exrc editor initiatization file
titor initialization file

Page 2

EX(1)

EX(1)

setx enable option
set nox disable option
set x=val give value val
set show changed options
set all show all opticns
set x? show value of option x
Most useful options
autoindent ai supply indent
antowrite aw write before changing files
ignorecase ic in scanning
lisp lisp () {} are sexp’s
list list print I for tab, $ at end
magic magic . [* special in patterns
number nu number lines
paragraphs para macro names which start ...
redraw redraw simulate smart terminal
scroll scroll command mode lines
sections sect MACTO RAMES ...
shiftwidth W for < >, and input ‘D
showmatch sm 10) and } as typed
showmode smd show ingsert mode in
slowopen slow stop updates during insert
window window visual mode lines
wrapscan WS around end of buffer?
wrapmargin wm automatic line splitting
Scanning pattern formation

" beginning of line

$ end of line

. any character

‘e beginning of word

> end of word

[str] any char in str

[Tstr] .. 1ot in st

[x-¥} ... between x and y

- any number of preceding

AUTHOR

Vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical

Page 3

September 24, 1987

EX(1) EX(1)

Engineering and Computer Science.
Documentation
The User Guide provides editing tutorials for ex, ed, and vi.
FILES
fuseflitYex3.9strings error messages
fust/libfex3.9recover recover command
fusr/lib/ex3.9preserve preserve command

fost/liby*/* describes capabilities of terminals
~Jexme editor startup command file, user-created in home
directory

fanp/EXnnnnn editor temporary

/tmp/Rxnnnnn named buffer temporary

fost/preserve preservation directory

Jusrfbinfctags standard editor tag file
EXAMPLE

ex text

would invoke the editor with the file named "text".
SEE ALSO

awk(1), ed(1), grep(1), sed(1), vi(1) curses(3X), term(4), terminfo(4).
BUGS

The undo command causes all marks to be lost on lines changed and then
restored if the marked lines were changed.

Undo never clears the buffer modified conditicn.

The z command prints a number of logical rather than physical lines, More
than a screen full of output may result if long lines are present.

File input/output errors don’t print 4 name if the command line " gption is
used.

There is no easy way 1o do a single scan ignoring case.
The editor does not wam if text is placed in named buffers and not used before
Null characters are discarded in input files, and cannot appear in resultant files.

September 24, 1987 Page4

EXPR(1) EXPR(1}

NAME
expr — evaluate arguments as an expression

SYNOPSIS
EXPr arguments

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result ig
writtent on the standard output. Terms of the expression must be separated
by blanks, Characiers special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings con-
taining blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2°s complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence,
with equal precedence operators grouped within {} symbols.
expr\| expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr\& expr
returns the first expr if neither expr is null or 0, otherwise returns 0.

expr| = \> \>=\<,\<=!w] expr
returns the result of an integer compatison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr| +, = } expr
addition or subtraction of integer-valued arguments.

expr(\e, /,% } expr
multiplication, division, or remainder of the integer-valued arguments.
expr i expr
The matching operator : compares the first argument with the second
argement which must be a regular expression; regular expression syn-
tax is the same as that of ed(1), except that all patterns are
“‘anchored” (i.e., begin with *) and, therefore, * is not a special char-
acter, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the
V(...\) pattern symbols can be used to return a portion of the first
argument.

EXAMPLE
a=‘expr $a + 1*

adds | 10 the shell variable a.

‘For $a equal to either "/usr/abe/file” or just "file"*
expr $a : "ALA) A Sa

returns the last segment of a path name (j.e., "file"}. Watch out for / alone
as an argument; expr will take it as the division operator (see BUGS below).

A better representation of above exampie
expr //%a : ()

the addition of the // characters eliminates any ambiguity about the divi-
sion operator and simplifies the whole expression.

-1-

EXPR (1) EXPR (1)

expr SVAR : "¢’
returns the number of characters in SVAR.

SEE ALSOQ
ed(1}, sh{l).
EXIT CODE
As a side effect of expression evaluation, expr returns the following exit
values:
0 if the expression is neither null nor 0
1 if the expression /s null or ¢
2 for invalid expressions.
DIAGNOSTICS
syntax error for operator/operand errors
non-numeric argument if arithmetic is aitempted on such a string

BUGS
After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an =,
the command:

expr $a = =
looks like:

as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X%a = X=

EXTERR (1) UniSoft EXTERR (1)

NAME
exierr - turn on/off the extended errors in the specified device

SYNOPSIS
exterr /dev/devicename [yn]

DESCRIPTION
Exterr turns on {or off) the reporting of extended errors on the specified
device.

If reporting of errors is turned "off” with the argument n, only fatal errors
are reported.

The default condition is "yes", in which case soft as well as hard errors are
reported on the specified device. The devicename must be the "raw" one to
access the joctl,

EXAMPLE
exterr /dev/xxxx n

turns to off the reporting of extended errors for device /dev/xxxx.

F7T7(1)

NAME

F77(1)

f77 — Fortran 77 compiler

SYNOPSIS

f77 [options] files

DESCRIPTION

F77 is the Fortran 77 compiler; it accepts several types of file arguments:

Arguments whose names end with .f are taken to be Fortran 77 source pro-
prams; they are compiled and cach object program is left in the current

f.

directory in a file whose name is that of the source, with .0 substituted for

Arguments whose names end with .r or .e are taken to be RATFOR or EFL
source programs, respectively; these are first transformed by the appropri-
ate preprocessor, then compiled by (77, producing .o files.

In the same way, arguments whose names end with .c or .s are wken 10 be
C or assembly source programs and are compiled or assembled, producing

L0 files.

The following optons have the same meaning as in ce (1) (see Id (1) for link
editor options):

_c
-p
-0
-S

—ooutput
—f

Suppress link editing and produce .o files for each source file.
Prepare object files for profiling (see prof (1))

Invoke an object code optimizer,

Compile the named programs and leave the assembler language
output in comresponding files whose names are suffixed with .s.
(No .o files are created.)

Name the final output file cwtput, instead of a.out.

In systems without floating-point hardware, use a version of 77
that handles floating-point constants and links the object program
with the floating-point interpreter.

Generate additional information needed for the use of sdb (1)

The following options are peculiar to f77 2

—onetrip

-1

Papge 1

Compile DO loops that are performed at least once if reached.
(Fortran 77 DO loops are not performed at all if the upper limit is
smaller than the lower limit.)

Same as —onetrip.

September 24, 1987

F77(1)

—66

—1{24s]

F77(1)

Suppress extensions which enhance Fortran 66 compatibility.
Generate code for run-time subscript range-checking,

Change the default size of integer variables (only valid on
machines where the *“‘normal’ integer size is not equal to the
size of a single precision real). —I2 causes all integers to be 2-
byte guantities, —I4 (default) canses all integers to be 4-byte
quantities, and —Is changes the default size of subscript expres-
sions (only) from the size of an integer to 2 bytes.

Do not "fold" cases, F77 is normally a no-case language (i.e. a
is equal to A). The —U option causes f77 to treat upper and
lower cases separately,

Make the default type of a variable undefined , rather than using
the defanlt Fortran rules.

Suppress all warning messages. If the option is —w66, only For-
tran 66 compatibility warnings are suppressed.

Apply EFL and RATFOR preprocessor to relevant files and put
the result in files whose names have their suffix changed to .of.
(No .o files are created.)

Apply the M4 preprocessor to each EFL or RATFOR source file
before wansforming with the ratfor (1) or ff (1) processors.

The remaining characters in the argument are used as an EFL flag
argument whenever processing a .e file.

The remaining characters in the argument are nsed as a RATFOR
flag argument whenever processing a .r file,

Other arguments are taken to be link editor option arguments, 77 -compilable
cbject programs (typically produced by an earlier run), or libraries of f77-
compilable rontines. These programs, together with the results of any compila-
tions specified, are linked (in the order given) to produce an executable program

with the default name a.out.

FILES
file.[fresc] input file
file.o object file
a.out linked output
Jffont[pid].? temporary
Jusrlib/fTTcomp compiler
fosr/lib/libF77.a intrinsic function library
fusr/lib/libl77.a Fortran 1/O library

September 24, 1987 Page 2

F1i(1) Fi7(1)

AlibAlibc.a C library; see Section 3 of this Manual.
SEE ALSO
FORTRAN-77 in the Programming Guide.
asa(l), cc(1), efi(d), fspli(1), 1d(1), ma(1), prof(1), ratfor(1), sdb(1).
DIAGNOSTICS
The diagnostics produced by 77 itself are self-explanatory. Occasional mes-
sages may be produced by the link editor fd (1).

Page 3 September 24, 1987

.

FACTOR(1) FACTOR (1)

NAME

factor — factor a number
SYNOPSIS

factor [number |
DESCRIPTION

When factor is invoked without an argument, it waits for a number }2 be
typed in. If you type in a positive number less than 2 ¢ (about 7.2x10'°) it
will factor the number and print its prime factors, each one is printed the
proper number of times. Then it waits for another number. It exits if it
encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and
then exits.
Maximum time to factor is proportional to /n and occurs when » is plr'me

or the square of a prime. It takes 30 seconds to factor a prime near 107" on
a 63000,

DIAGNOSTICS
“Quch™ for input out of range or for garbage input.

FALSE(1) SEE TRUE FALSE(1)

FGREP (1} SEE GREP FGREF (1)

~

FILE(1) FILE(1)

NAME

file — determine file type

SYNOPSIS

file [—e][—fffile] [—m mile) arg ...

DESCRIPTION

Fite performs a series of tests on each argument in an attempt to classify it.
If an argument appears to be ASCII, file examines the first 512 bytes and
tries to guess its language. If an argument is an executable a.out, file will
print the version stamp, provided it is greater than O (see id{1))}.

If the —f option is given, the next argument is taken io be a file containing
the names of the files to be examined.

File uses the file /ete/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indi-
cates its type. Commentary at the beginning of /etc/magic explains its for-
mat.

The —m option instructs fife to use an alternate magic file.

The —c flag causes file to check the magic file for format errors. This vali-
dation is not normally carried out for reasons of efficiency. No file typing is
donte under —e.

EXAMPLE

file textfile programftle directory

reports the file names and directory name, and whether the files are English
text, aroffinput, a C program, or whatever.

SEE ALSO

1d(1).

FIND(1) FIND{1)

NAME
find — find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
Find recursively descends the direciory hierarchy for each path name in the
path-name-list (i.c., one or more path names) seeking files that match a boolean
expression written in the primaries given below. In the descriptions, the argu-
ment a is used as a decimal integer where +2 means more than #, —» means
less than # and a means exactly ».

—name file True if file masches the current file name. Normal shell argu-
ment syntax may be used if escaped (watch out for [, ? and «).

—perm onum True if the file permission flags exactly match the octal number
onum (see chmod(1)). H onum is prefixed by a minus sign,
more flag bits (017777, see stat (2)) become significant and the
flags are compared:

{flags & omum) == omum
~typec
True if the type of the file is ¢, where ¢ is b, ¢, d, p, or f for block special file,
character special file, directory, fifo (ak.a named pipe), or plain file respec-
tively.
~links r
True if the file has n links.
—user uname
True if the file belongs to the user uname. If uname is numeric and does not
appear as a login name in the /etc/passwd file, it is taken as a user ID,
—group gname
True if the file belongs to the group gname. If gname is numeric and does not
appear in the /ete/group file, it is taken as a group ID.
-gize n(c)
True if the file is » blocks long (512 bytes per block). If n is followed by a c,
the: size is in characters.
—atime n
True if the file has been accessed in n days. The access time of directories in

Page 1 September 24, 1987

FIND(1) FIND(1)

path-name-list is changed by find itself.

—mtime n

True if the file has been modified in » days.

—ctime 1

True if the filc has been changed in 1 days.

—exec cmd ’

True if the executed cmd retans a zero value as exit status. The end of cmd
must be punctuated by an escaped semicolon. A command argument {} is
replaced by the current path name,

—ok cmd

Like —exec except that the generated command line is printed with a question

mark first, and is executed only if the user responds by typing y.

—print

Always true; canses the current path name to be printed.

—cpio device

Always true; write the cizrent file on device in cpio (4) format (5120-byte

records).

—newer file

True if the current file has been modified more recently than the argument file.

—depth

Always true; causes descent of the directory hierarchy to be done so that all

entries in a directory are acted on before the directory itself. This can be useful

when find is used with cpio (1) to wansfer files that are contained in directories

without write permission.

{ expression)

True if the parenthesized expression is true (parentheses are special to the shell

and must be escaped).

The primaries may be combined using the following operators (in order of

decreasing precedence):

1) The negation of a primary (! is the unary nof operator).

2) Concatenation of primaries {the and operation is implied by the juxtaposi-
tion of two primaries).

3} Alternation of primaries (—o is the or operator).

September 24, 1987 Page2

FIND(1) FIND(1)

EXAMPLE
find / -perm 755 -execls "{}" *;"

will find all files, starting with the root directory, on which the permission levels
have been set to 755 {(see chmod (1)).

With —exec and a command such as Is, it is ofien necessary to escape the "{}"
that stores the current pathname under investigation by putting it in double
quotes. It is always necessary to escape the semicolon at the end of an —exec
sequence.

Note again that it is also necessary to escape parentheses " \(" and " \) " used
for grouping primaries, by means of a backslash.

find / \{ name a.0ut —0 —name "*.0"\} —atime +7 —exec rm {}\;
removes all files named "a.out” or "+.0" that have not been accessed for a week.

FILES
fetc/passwd, fetc/group
SEE ALSO
chmod(1), cpio(1), sh(L), test(1), stat(2), cpio(4), f5(4).

Page 3 September 24, 1987

FREQ(1) UniSoft FREQ(1)

NAME

freq — report on character frequencies in a file
SYNOPSIS

freq [file ...]
DESCRIPTION

Freq counts occurrences of characters in the list of files specified on the
command line. If no files are specified, the standard input is read.

EXAMPLE
freq filea

will list a count of each characier that appears in "filea".

FSPLIT (1) FSPLIT(1)

NAME
fsplit — split £77, ratfor, or efl files

SYNOPSIS
fsplit options files

DESCRIPTION
Fsplit splits the named file(s) into separate files, with one procedure per
file. A procedure includes dlockdata, function, main, program, and subroutine
program segments, Procedure X is put in file X .f, X .r, or X.e depending
on the language option chosen, with the following exceptions: main is put
in the file MAIN.lefrl and unnamed blockdate segments in the files
blockdataN, lefr]l where N is a unique integer value for each file.

The following options pertain:

—f {(default) Input files are f77.
—r Input files are ratfor.

—e Input files are £f1.

—s Strip f77 input lines to 72 or fewer characters with irailing blanks
removed.
SEE ALSO
esplit(1), ef1(1), £77{1), ratfor(1), split(1).

FTP(IN) FTP(IN)

NAME
ftp — file transfer program
SYNOPSIS
ftp (—v] [} [] [-n] [-g] [host]
DESCRIPTION
Fip is the user interface 10 the ARPANET standard File Transfer Protocol. The
program allows a user to transfer files to and from a remote network site.
The client host with which fip is to communicate may be specified on the com-
mand Jine. If this is done, fip will immediately atempt to establish a connection
to an FTP server on that host; otherwise, fip will enter its command interpreter
and await instructions from the user. When fip is awaiting commands from the
user the prompt ftp> is provided the user. The following commands are recog-
nized by fip:
! Invoke a shell om the local machine.
append local-file [remotefile |
Append a local file (o a file on the remote machine, If remote-file is left
unspecified, the local file name is used in naming the remote file. File
transfer uses the current settings for type, format, mode , and structure.
ascii
Set the file wansfer fype to network ASCIL. This is the default type.
bell Amange that a bell be sounded after each file ransfer command is com-
pleted.
binary
Set the file transfer type 1o support binary image transfer.
bye Terminate the FTP session with the remote server and exit fip.

od remote-direciory
Change the working directory on the remote machine to remote-directory.
close
Terminate the FTP session with the remote server, and return to the com-
mand interpreter.
delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified it is used

Page 1 September 27, 1987

FTP(IN) FTP(iN)

to set the debugging level. When debugging is on, fip prints each com-
mand sent to the remote machine, preceded by the string -->,

dir { remote-directory | [local-file |
Print a listing of the directory contents in the directory, remote-directory,
and, optionally, placing the output in local-file. If no directory is specified,
the current working directory on the remote machine is used. If no local
file is specified, output comes to the terminal.

form format
Set the file transfer form to format. The default format is file.

get remwote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file
name is not specified, it is given the same name it has on the remote
machine. The current settings for type, form, mode , and structure are used
while wansferring the file.

hash
Toggle hash-sign (*“#’") printing for each data block transferred. The size
of a data block is 1024 bytes.

glob
Toggle file name globbing. With file name globbing enabled, each local
file or pathname is processed for cskh(1) metacharacters. These characters
include “*N1"{)”. Remote files specified in multiple item commands,
e.g. mput, are globbed by the remote server, With globbing disabled ali
files and pathnames are treated literaily.

help [command]
Print an informative message about the meaning of command. If no argu-
ment is given, fip prints a list of the known commands.

led [directory)
Change the working directory on the local machine, If no directory is
specified, the user’s home directory is used.

I8 [remote-directory 1 [local-file]
Print an abbreviated listing of the contents of a directory on the remote
machine, If remote-directory is left unspecified, the current working diree-
tory is used. If no local file is specified, the output is sent to the terminal.

mdelete remote-files
Delete the specified files on the remote machine. If globbing is enabled,

September 27, 1987 Page 2

FTP(IN) FIP(IN)

the specification of remote files will first be expanded using Is.

mdir remote-files local-file
Obtain a directory listing of multiple files on the remote machine and place
the result in local-file.

mget remote-files
Retrieve the specified files from the remote machine and place them in the
current local directory. If globbing is enabled, the specification of remote
files will first be expanding using /.

mkdir directory-name
Make a directory on the remote machineg,

mis remote-files local-file
Obtain an abbreviated listing of multiple files on the remote machine and
place the result in local-file.

mode [mode-name]
Set the file transfer mode 10 mode-name. The default mode is stream
mode.

mput local-files
Transfer muliiple local files from the current local directory to the cumrent
working directory on the remote machine.

open host [port]
Establish a connection to the specified host FTP server. An optional port
number may be supplied, in which case, fip will attempt to contact an FTP
server at that port. If the anio-login option is on {default), fip will also
attempt to antomatically log the user in to the FTP server {scc below).

prompt
Toggle interactive prompting. Interactive prompting occurs during multi-
ple file ransfers 1o allow the user to selectively retrieve or store files. If
prompting is tumed off {(default), any mget or mput will transfer all files,

put local-file [remote-file |
Store a local file on the remote machine. If remote-file is left unspecified,
the local file name is used in naming the remote file, File transfer uses the
current seitings for type, format, mode , and structure.

pwd
Print the name of the current working directory on the remote machine.

Page 3 September 27, 1987

FTP(IN)} FTP(1IN)

quit
A synonym for bye.

quote argl arp2 ...
The arguments specified are sent, verbatim, to the remote FTP server. A
single FTP reply code is expected in refurmn,

recy remote-file [local-file
A synonym for get.

remotehelp [command-name |
Request help from the remote FTP server. If a command-name is specified
it is supplied to the server as well.

rengme [from] [o)
Rename the file from on the remote machine, to the file to.

rmdir directory-name
Delete a directory on the remote machine,

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By defanlt, fip will attempt to use a
PORT command when establishing a connection for each data transfer. If
the PORT command fails, fip will use the default data port. When the use
of PORT commands is disabled, no attempt will be made to uvse PORT
commands for each data transfer. This is useful for certain FIP imple-
mentations which do ignore PORT commands but, incorrectly, indicate
they’ve been accepted.

status
Show the current status of fip.

struct { struct-name]
Set the file transfer structure to struct-name . By default stream structure is
used.

tenex
Set the file transfer type to that needed to talk to TENEX machines.

trace
Toggle packet tracing.

September 27, 1987 Page 4

FTP{1N) FTP(IN)

— type [type-name]
{ Set the file transfer fype to type-name. If no type is specified, the current
— type is printed. The default type is network ASCIL.

user user-name [password] [account |
Identify yourself to the remote FTP server. If the password is not specified
and the server requires it, fip will prompt the user for it (after disabling
local echo). If an account field is mot specified, and the FTP server
requires it, the user will be prompted for it. Unless fip is invoked with
auto-login disabled, this process is done automatically on initial connection
to the FTP server.

verbose
Toggle verbose mode. In verbose mode, all responses from the FTP server
are displayed to the user. In addition, if verbose is on, when a file transfer
completes, statistics regarding the efficiency of the transfer are reported.
By default, verbose is on.

? [command |
A synonym for help.

— Command arguments which have embedded spaces may be quoted with quote
(") marks.

e FILE NAMING CONVENTIONS
Files specified as arguments to ftip commands are processed according to the
following rules,

1) I the file name — is specified, the stdin (for reading) or stdout (for writ-
ing} is used.

2) If the first character of the file name is [, the remainder of the argument is
interpreted as a shell command. Frp then forks a shell, using popen(38)
with the argument supplied, and reads (writes) from the stdout (stdin). If
the shell command includes spaces, the argument must be quoted; e.g. "l 1s
-It". A particularly useful example of this mechanism is: "dir . Imore”.

3} Failing the above checks, if *‘globbing’’ is enabled, local file names are
expanded according to the rules used in the ¢sh(1); c.f. the glob command.

FILE TRANSFER PARAMETERS
The FIP specification specifies many parameters which may affect a file
transfer. The rype may be one of ascii, image (binary), ebedic, and local byte
e - size (for PDP-10’s and PDP-20"s mosily). Fip supports the ascii and image

Page 5 September 27, 1987

FTP(IN) FTP(IN)

types of file transfer.

Frp supports only the default values for the remaining file transfer parameters:
mode , form, and struct.

OPTIONS
Options may be specified at the command line, or to the command interpreter,
The —v option toggles verbose mode. In verbose mode, all responses from the
remote fip server are displayed, as well as statistics on data transfer efficiency,
By default, verbose is on.
The —n opdon restrains fip from attempting auto-login upon initial connection.
If anto-login is enabled, fip will check the .netrc file in the user’s home direc-
tory for an entry describing an account on the remote machine, If no entry
exists, fip will use the login name on the local machine as the user identity on
the remote machine, and prompt for a password and, optionally, an account
with which to login.
The —i option turns off interactive prompting during mutiple file transfers,
The —d option enables debugging.
The --g option disables file name globbing.

BUGS
Correct execution of many depends upon proper behavior by the remote server.

Many FTP server implementations do not support some operations such as print
working directory. When verbose mode (—v) is tumned off, fip does not echo
responses from the remote server. This includes the response to the pwd
request. Beware of this.

Aborting a file transfer does not work right; if one attempts this the local fip will
likety have to be killed by hand.

September 27, 1987 Page 6§

~

GET{(1) GET (1)

NAME

get — get a version of an SCCS file

SYNOPSIS

get [=r1SID] [—ccutoff] [-ilist] [-xlistl [—wstring] [—aseq-no.}l
[-%] [—e]l [-1[p}] [—p} [—m] [~n] [—s] [-b] [~g] [—t] file

DESCRIPTION

Page |

Ger generates an ASCI text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with —. The
arguments may be specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, ger behaves as though
each file in the directory were specified as a named file, except that non-
sCCs files (last component of the path name does not begin with 8.} and
unreadable files are silently ignored. If a name of — is given, the standard
input is read; each line of the standard input is taken to be the name of an
SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-fife whose
name is derived from the SCCS file name by simply removing the leading
s.; (see alsp FILES, below).

Each of the keyletter arguments is explained below as though only one
scCs file is 1o be processed, but the effects of any keyletter argument
applies independently to each named file.

~rSiD The SCCS IDentification string (SID) of the version {delta) of
an SCCS file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an SCCS$ file is retrieved (as well
as the SID of the version to be eventually created by delra (1) if
the —e keyletter is also used), as a function of the SID
specified.

—cateff Cuteff date-time, in the form: YYIMMIDDIHH[MMISSI] No
changes (deltas) to the SCCS file which were created after the
specified curoff date-time are included in the generaied ASCII
text file. Units omiited from the date-time default to their
maximum possible values; that is, —e7502 is equivalent to
—¢750228235959. Any number of non-numeric characters may
separate the various 2-digit pieces of the cwroff date-time. This
feature allows one to specify a curoff date in the form:
Yoo TT/2/2 9:22:25". Note that this implies that one may use
the %E% and %U% identification keywords (see below) for
nested gets within, say the input to a send (2N) command:

“lget "—e%E% %U%" s.file

—e Indicates that the get is for the purpose of editing or making a
change (delta) to the SCCS file via a subsequent use of defra (1).
The —e keyletter used in a get for a particular version (S1D) of
the SCCS file prevents further gess for editing on the same SID
until deltz is executed or the j (joint edit) flag is set in the SCCS
fle (see admin{1}). Concurrent use of get —e for different
SIDs is always allowed.

July 12, 1985

GET (1)}

— i tisy

—x fist

July 12, 1985

GET(1)

If the g-fife generated by mer with an —e Keyleiter is accidentally
ruined in the process of editing it, it may be regenerated by re-
executing the ger command with the —k keyletter in place of
the —e keyletter, '

SCCS file protection specified via the ceiling, floor, and author-
ized user list stored in the SCCS file (see admin(l)) are
enforced when the —e keyletier is used.

Used with the -—e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
keyletier is ignored if the b flag is not present in the file (see
admin (1)) or if the retrieved defia is not a leaf defta. (A leafl
delia is one that has no successors on the SCCS file tree.)

Note: A branch defte may always be created from a non-leaf
defra.

A list of deltas to be included (forced to be applied) in the crea-
tion of the generated file. The /st has the following syntax:

< list> ::= <range> | <list> , <range>

<range> .= 5ID | SID — SID

51D, the SCCS Identification of a delta, may be in any form
shown in the ‘‘SID Specified’’ column of Table 1. Partial SIDs
are interpreted as shown in the “‘SID Retrieved” column aof
Table 1.

A list of deltas to be excluded (forced not to be applied} in the
creation of the genetrated file. See the —i keyletter for the liss
format.

Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The —k keyleiter is
implied by the —e keyletter,

Causes a delta summary to be written into an /~file. If —Ip is
used, then an !-fife is not created, the delta summary is written
on the standard output instead. See F/LES for the format of the
I-file.

Causes the text retrieved from the SCCS file to be written on
the standard output. No g-file is created. All output which nor-
mally goes to the standard ouiput goes to file descriptor 2
instead, unless the —s keyletter is used, in which case it disap-
pears.

Suppresses all ouiput normally writien on the standard output.
However, fatal error messages {which always go to file descrip-
tor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be pre-
ceded by the SID of the delta that inserted the text line in the
SCCS file. The format is; SID, followed by a herizontal tab, fol-
lowed by the text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.

Page 2

GET (1)

=t

— WS

— a4 sey-ho.

GET(1)

When both the —m and —n keyletters are used, the format is:
%M% value, followed by a horizonual tab, followed by the —m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an {-fife, or to verify the existence of
a particular SID.

Used to access the most recently created (‘‘top™) delta in a
given release (e.g., —rl), or release and level (e.g., ~rl.2).

Substitute swring for all occurrences of %W% when gedng the
file.

The delta sequence number of the SCCS file delia {version) to
be retrieved (see scesfife(5)). This Keyletter is used by the
comb (1) command; it is not a generally useful keylefter, and
users should not use it. If both the ~r and —a keyletters are
specified, the —a keyletter is used. Care should be taken when
using the —a keyletter in conjunction with the —e keyletter, as
the SID of the delta to be created may not be what one expects.
The —r keyletter can be used with the —a and —e keyletters to
control the naming of the SID of the delta to be created.

For each file processed, xet responds {on the standard cutput} with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after

the 5ID accessed and before the number of lines generated.

If there is

more than one named file or if a directory or standard input is named, each

file name

is printed (preceded by a new-line) before it is processed. If the

—i Kkeyletter is used included deltas are listed following the notation
“Included’’; if the —x keyletter is used, excluded delias are listed following
the notation “Excluded”.

TABLE 1. Determination of SCCS Identification String

SID* —b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
nonet no R defaults to mRk mR.mL mR.(mL +1)
none yes R defaults to mR mR.mL mR.mL.(mB+1).1
I no K > mK mR.mL R.I*™
R no R = mR mR.mL mR.(mL +1)

R yes R > mR mR.mL mR.mL.(mB+1),1

R yes R = mR mR.mL mR.mL.{mB +1}.1
R < mR and

R - R does mof exist hR.mL** hR.mL.{mB+1}.1
Trunk succ.#

R - in release > R R.mL R.mL.{mB+1}.1
and R exists

R.L no No trunk succ. BRI RAL+T)

R.L yes No trunk succ. R.L R.L.imB~+1).1
Trunk succ.

R.L - in release = R R.L R.L.(mB+1).1

Page 3 July 12, 1985

GET (1) GET (1)

R.LB no No branch succ. RLBEmS R.LEB{mS+1)
RLB yes No branch suce. RLBmS R.L(mB+1).1
RLEB3 no No branch succ. R.ILEB3S RLB S+
R.L.B.S yes No branch sucg. R.L.B.S R.L.{mB+1).1
R.L.BS - Branch succ. R.L.B.S RL{mB+1).1

* “R™, L7, “B™, and ‘8" are the ‘“‘release’’, *‘level”, ‘*branch’, and

“‘sequence’” components of the SID, respectively; *‘m”" means “‘max-
imum®. Thus, for example, **R.mL" means ‘‘the maximum level
number within release R’ “R.L.(mB+1).1" means ‘*‘the first
sequence number on the #ew branch (i.e., maximum branch number
plus one} of level L within release R**. Note that if the SID specified
is of the form “R.L"*, “R.L.B"", or ““R.L.B.5", each of the specified
COMPORNEnts must exist.

** “*hR* is the highest existing release that is lower than the specified,

nonexistent, release R.

This is used to force creation of the first delta in a new release.

Successor.

The —b keyletter is effective omly if the b flag (see admin(1}) is

present in the file, An entry of — means *‘irrelevant®’.

% This case applies if the d (default SID) flag is net present in the fle. If
the d flag is present in the file, then the SID obtained from the d fag
is interpreted as if it had been specified on the command line. Thus,
one of the other cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the SCCS file
by replacing identificarion keywords with their value wherever they occur.
The following keywords may be used in the text stored in an SCCS file:

Keyword Value

%M% Module name: either the value of the m flag in the Rle (see
admin (1)), or if absent, the name of the SCCS file with the lead-
ing s. removed.

%1% SCCS identification (SID) (%R %.%L%.%B%.%5%) of the retrieved

-4 3
-

text.
%RY% Release.
%L% Level.
%B% Branch.

%S% Sequence.

%D% Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%T% Current time (HH:MM:S§),

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%lU% Time newest applied delta was created (HH:MM:55).

%Y Module type: value of the t flag in the SCCS file (see wdmin(1)).

%F% 5CCS file name.

%% Fuily qualified SCCS file name.

YQ% The value of the q flag in the file (see admin(1)).

%C% Current line number. This keyword is intended for identifying
messages output by the program such as “‘this should not have

July 12, 1985 Page 4

Y

GET{(1) GET (1)

happened’ type errors. It is #or intended to be used on every
line to provide sequence numbers,
%Z% The 4-character string @ (#) recognizable by whar(1),
%“W% A shorthand notation for constructing what(1) strings for UNIX
system program files. %W% = %Z%%M% < horizontal-tab> %1%
%A% Another shorthand notation for constructing whar{1) strings for
non-UNIX systemn program files.
%A% = %Z%%Y% BM% %I%%Z%

EXAMPLE

FILES

Page 5

get -¢ s.filel

generates from the SCCS format file, “s.filel”, the text file, "filel®, for edit-
ing.

Several auxiliary fles may be created by ger, These files are known generi-
cally as the g-file, I-file, p-file, and z-file. The letier before the hyphen is
called the tag. An auxiliary file name is formed from the SCCS file name:
the fast component of all SCCS file names must be of the form s.modisde-
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s.xyZ.¢, the auxiliary file names would be
xyz.c, l.xyz.c, p.Xxyz.c, and z.X¥z.c, respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the —p keyletter is used). A g-fife is created in all cases,
whether or not any lines of text were generated by the ge/. It is owned by
the real user. If the —k keyletter is used or implied its mode is 644; other-
wise its mode is 444, Only the real user need have write permission in the
current directory.

The i-file contains a table showing which delitas were applied in generating
the retrieved text. The /-file is created in the current directory if the —1
keyleiter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the /-fife have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or was not applied and
ignored,
» if the delta was not applied and was not ignored.

¢. A code indicating a “‘special’’ reason why the delta was or was not

applied:
i I Included.
. G Excluded.
“C*: Cut off {by a —c keyletter).
d. Blank.
e. SCCS identification {S1D}.
f. Tab character.
g. Date and time {in the form YY/MM/DD HH:MM:55) of creation.
h. Blank.

July 12, 1985

GET (1)} GET(1)

i. Login name of person who created defa,

The comments and MR data follow on subsequenti lines, indented one
horizontal tab character. A blank ling terminates each entry.

The p-file is used to pass information resulting from a ger with an —e
keyletter along to delre. Its contents are also used to prevent a subsequent
execution of ger with an —e keyletter for the same SID until deltr is exe-
cuted or the joint edit flag, j, (see admin (1)) is set in the SCCS file. The p-
file is created in the directory containing the 5CCS fite and the effective user
must have write permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is: the gotten SID, fol-
lowed by a blank, followed by the SID that the new delta will have when it
is made, followed by a blank, followed by the login name of the real user,
foliowed by a blank, followed by the date-time the ger was executed, fol-
lowed by a blank and the —i keyletter argument if it was present, followed
by a blank and the —x keyletter argument if it was present, followed by a
new-line. There can be an arbitrary number of lines in the p-file at any
time; no two lines can have the same new defta SID,

The z-file serves as a fock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process 1D of the command (i.e., ged) that
created it. The z-fife is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-filz is created mode 444,

SEE ALSO

admin(1), delta(1), help(1}, prs(1}, what(1), sccsfile(4).
SCCS in the Programming Tools Guide.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

if the effective user has write permission {either explicitly or implicitly) in
the directory containing the SCCS files, but the real user does not, then
only one file may be named when the —e keyletter is used.

July 12, 1985 Page 6

GETOPT{1) GETOPT({1)

NAME

getopt — parse command options
SYNOPSIS

set =~ ‘getopt opstring $+°
DESCRIPTION

Getopt is used to break up options in command lines for easy parsing by
shell procedures and to check for legal options. Opsstring is a string of
recognized option letters (see geropt{3C)); if a letter is followed by a colon,
the option is expected to have an argument which may or may not be
separated from it by white space. The special option — — is used to delimit
the end of the options. If it is wsed explicitly, geropt will recognize it; oth-
erwise, gefopt will generate it; in either case, gefopr will place it at the end
of the options. The shell’s positional parameters (§1 $2 ...) are reset so
that each option is preceded by a — and is in its own positional parameter;
each option argument is also parsed into its own positional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the options a or b, as well as the option o,
which requires an argument:

set —— ‘getopt abo: $*

if (3?7 t=101

then
echo SUSAGE
exit 2

fi

for i in $+«

do
case $i in
—a| —b) FLAG=8§i; shift;;
—0o) OARG=32; shift 2;;
——} shift;, break;;
esac

done

This code will accept any of the following as equivalent:

emd —aoarg file file
cmd —a —o arg file file
cmd —oarg —a file file

emd —a —oarg —— file file
SEE ALSO
sh(l), getopt(3C).
DIAGNOSTICS

Getopt prints an error message on the standard error when it encounters an
option letter not included in opistring.

GRAPH(1G) GRAPH{1G)

NAME

graph — draw a graph

SYNOPSIS

graph loptions]

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by
straight lines. The graph is encoded on the standard output for display by
the ipiot(1G) filters.

If the coordinates of a point are fallowed by a non-numeric string, that
string is printed as a label beginning on the point. Labels may be sur-
rounded with quotes ", in which case they may be empty or contain blanks
and numbers; labels never contain new-lines.

The following options are recognized, each as a separate argumend:

—-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second
optional argument is the starting point for automatic abscissas
(defzult 0 or lower limit given by —x).

—b Break (disconnect} the graph after each label in the input.

- Character string given by next argument is default label for each
point.

-2 Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full
grid (defaulD).

-1 Next argument is labet for graph.

-m Next argument is mode (style) of connecting lines: 0 discon-

nected, 1 connected (default). Some devices give distinguish-
able line styles for other small integers (e.g., the Tektronix
4014; 2=dotted, 3=dash-dot, 4=short-dash, 5=1long-dash).

-5 Save screen, don’t erase before plotting.

~x [1] If 1 is present, x axis is logarithmic. Next 1 {or 2) arguments
are lower {(and upper) x limits. Third argument, if present, is
grid spacing on x axis. Normally these guantities are deter-
mined automatically.

—y [1] Similarly for y.

—h Next argument is fraction of space for height.

-w Similarly for width,

-r Next argument is fraction of space to move right before plotting.
- Similarly to move up before plotting.

b | Transpose horizontal and vertical axes. {(Option —x now applies

to the vertical axis.)
A legend indicating grid range is produced with a grid unless the —s option
is present. If a specified lower limit exceeds the upper limit, the axis is
reversed.

SEE ALSO

BUGS

tplot{(1G).

Graph stores all points internally and drops those for which there isn't
room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

-1-

GREP(1) GREP{1)

NAME

grep, egrep, fgrep — secarch a file for a pattern

SYNOPSIS

grep [options] expression [files |
egrep [options 1 [expression] [files]
fgrep [options | [strings) [files |

DESCRIPTION

Commands of the grep family search the input files (standard input default)
for lines matching a pattern. Normally, each line found is copied to the
standard output. Grep patterns are limited regular expressions in the siyle
of ed(1); it uses a compact non-deterministic algorithm. £grep patterns are
full regular expressions; it uses a fast deterministic algorithm that some-
times needs exponential space. Fgrep patterns are fixed strings; it is fasi
and compact. The following options are recognized:

—v All lines but those matching are printed,

—x (Exact) only lines matched in their entirety are printed (fzrep only).

—c Only a count of matching lines is printed.

—i Ignore uwpper/lowercase distinction during comparisons.

—1 Only the names of Ales with matching lines are listed (once),
seperated by new-lines.

—n Each line is preceded by its relative line number in the file.

—b Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk block numbers by context.

—s8 The error messages produced for nonexistent or unreadable files are
suppressed (grep only).

—e expression
Same as a simple expressior argument, but useful when the expression
beging with a ~ {does not work with grep).

~f file
The regular expression {egrep) or swrings list (fzrep) is taken from the
file.

In all cases, the file name is output if there is more than one input file.
Care should be taken when using the characters §, *, [, °, [, (,), and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotes *

Fgrep searches for lines that contain one of the siings separated by new-
lines.

Egrep accepts regular expressions as in ed(1), except for \(and \), with the
addition of*

1. A regular expression followed by + maiches one or more occurrences
of the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by | or by a new-line match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses ()} for grouping.

The order of precedence of operators is [1, then »? +, then concatenation,
then| and new-line.

GREP(1) GREP (1}

EXAMPLE
grep -v -c ‘regular’ grep.1

reports a count of the number of lines that do not contain the word regular
in the file "grep.1”.

SEE AL30
ed(1), sed(1), sh(1).

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if mawhes were found),

BUGS
Ideally there should be only one grep, but we do not know a single algo-
rithm that spans a wide enough range of space-time tradeoffs.
Lines are limited to BUFSIZ characters; longer lines are truncated, (BUFSIZ
is defined in /usr/include/stdio.h.)
Egrep does not recognize ranges, such as [a—z], in character classes.
If there is a line with embedded nulis, grep will only match up to the first
null; if it matches, it will print the entire line.

GREEK (1) GREEK (1)

NAME

greek — select terminal filter

SYNOPSIS

greek [—Tterminall

DESCRIPTION

Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE® Teletypewriter
Model 37 terminal {which is the aroff default terminal) for certain other
terminals. Special characters are simulated by overstriking, if necessary and
possible. If rhe argument is omitted, greek attempts to use the environ.
ment variable STERM (see environ(3)). The following rerminals are recog-
nized currently;

300 DAS] 300,

300-12 DASI 300 in 2-pitch.

300s DAS1 300s.

300s-12 DASI 300s in 12-pitch.

450 DASL 450.

450-12 DASI 450 in 12-pitch.

1620 Diablo 1620 (alias DAS1 450).

1620-12 Diablo 1620 (alias DAS]1 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014,

hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014,

EXAMPLE

FILES

nroff filename | greek -T4014
reinterprets the extended character set on a Tektronix 4014 terminal.

fusr/bin/ 300
fusr/bin/300s
fusr/bin/4014
fusr/bin/450
Jusr/bin/hp

SEE ALSO

Page |

30001}, 4014(1), 450(1), eqn(1), mm(1), nroff (1}, 1plo1{1G), enviren(5),
greek(5), term(5).

July 29, 1985

HASHCHECK(1} SEE SPELL HASHCHECK (1}

HASHMAKE (1} SEE SPELL HASHMAKE (1)

P

——

HEX (1) UniSoft HEX(1)

NAME
hex — translates object files
SYNOPSIS)
hex [—f] [=1] [—n#] [—r] [=st] [—s2] [—ns8] [+saddr] ifilc
DESCRIPTION

Hex translates object files into ASCIl formats suitable for Motorola S-record
downloading. The following options determine locations:

f The file specified is to be shipped as is without treating it as an
object file.

; Output "Loading at" message.

n# Number of characters to output per record. # is a decimal number.

r QOutput a carriage return at the end of each S-record (instead of a
newline).

sf Output a lsading s0 record.

s2 82 records only (no sl records are produced).

ns8 Do not output a trailing 58 (s9) record.
saddr Starting ioad address (in hex).

ifile File to be downloaded. The file’s starting address is used if saddr is
not present.
EXAMPLE
hex objfile
where “objfile” is the object file to be downloaded.

AUTHOR
Jeff Schriebman

HELP(1} HELF{1}

NAME
help — ask for help in using SCCS
SYNOPSIS
help [args]
DESCRIPTION
Help finds information to explain a message from an SCCS command or
explain the use of an SCCS command. Zero or more arguments may be
supplied. If no arguments are given, hefp will prompt for one.
The arguments may be either message numbers {(which normally appear in
parentheses following messages) or command names, of one of the follow-
ing types:
type 1 Begins with non-numerics, ends in numerics. The non-
numeric prefix is uswvally an abbreviation for the program or
set of routines which produced the message (e.g., ged, for
message 6 from the ger command).
type 2 Does not contain numerics {as a command, such as get)
type 3 Is all numeric (e.g., 26)

The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, try **help stuck™.

EXAMPLE
help he?
prints the message for error number "he2",
FILES
fusr/lib/help directory containing files of message text,

/usr/lib/help/helploc file containing locations of help fles not in
/fasr/lib/help. This file is created by the user for
user-defined help messages.

DIAGNOSTICS
Use help(1) for explanations.

Page | July 12, 1985

HEAD (1) UniSoft HEAD(1}

NAME

head — give first few lines
SYNOPSIS

head [—count] [file ..]
DESCRIPTION

This filter gives the first count lines of each of the specified files, or of the
standard input. If counr is omitted it defaults to 10.

EXAMPLE
head -6 filea fileb hilec
will print out the first six lines of the three specified files. The filename will

appear before each new set of head lines listed, if more than one file has
been specified.

SEE ALSO
tail(1}.

HOSTID (1IN} UniSoft HOSTID (IN)

NAME

hostid — set or print identifier of current host system
SYNOPSIS

hostid [identifier]
DESCRIPTION

The hostid command prints the identifier of the current host in hexade-
cimal. This numeric value is expected to be unique across all hosts and is
normally set to the host’s Internet address. The super-user can set the hos-
tid by giving a hexadecimal argument; this is usually done in the startup
script /etc/ sysinitre.

SEE ALSO
gethostid (2N}

Page 1 July 16, 1985

HOSTNAME (IN) UniSoft HOSTNAME (1N}

NAME

hostname — set or print name of current host system
SYNOPSIS

hestaame [nameofhost]
DESCRIPTION

The hostngme command prinis the name of the current host, as given
before the ““login’’ prompt. The super-user can set the hostname by giving
an argument; this is usually done in the startup script /etc/sysinitre.

SEE ALSQO
gethostname (2N)

Page 1 July 16, 1983

HYPHEN (1} HYPHEN (1}

NAME

hyphen - find hyphenated words
SYNOPSIS

hyphen [files]
DESCRIPTION

Hyphen finds all the hyphenated words ending lines in files and prints them
on the standard output. If no arguments are given, the standard input is
used; thus, yphen may be used as a filter.

EXAMPLE

If the file "text.hyphen" contains the following text;
This is an ex-
ample of the command hy-
phen, a com-
mand which finds all hyphen-
ated words in files and prints them on stan-
dard out-
put.

then

hyphen text.hyphen

will return
ex-ample
hy-phen
com-mand
hyphen-ated
stan-dard
out-put

SEE ALSO
mm(1), nroff(1)}.

BUGS
Hyphen cannot cope with hyphenated #alic (i.e., underlined) words; it will
often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spuri-
ous extra output,

ID(1) ID(1)

NAME
id — print user and group IDs and names
SYNOPSIS
id
DESCRIPTION
Id writes a message on the standard output giving the user and group IDs and

the corresponding names of the invoking process. If the effective and real IDs
do not match, both are printed.

EXAMPLE
id

will remarn
uid=100 (guest) gid=100 (users)

where ““100* and *‘guest’” are the user’s ID number and name and ‘*100"* and
“‘users”’ are the user’s group ID number and group name. These values are set
up in the administrative file /etc/passwd.

SEE ALSO
logname(1), getuid(2).

Page 1 September 27, 1987

IPCRM (1)

NAME

IPCRM (1)

iperm — remove a message queue, semaphore set or shared memory id

SYNOPSIS

iperm [options |

DESCRIPTION

Iperm will remove one or more specified message, semaphore or shared
memory identifiers. The identifiers are specified by the following options:

—q msqgid

—m shmid

—5 semid

—Q msgkey

—M shmkey

—S semkey

removes the message queue identifier msgid from the sysiem
and destroys the message queue and data structure associated
with it.

removes the shared memory identifier shmid from the systemn.
The shared memory segment and data structure associated
with it are destroyed after the last detach.

remmoves the semaphore identifier semid from the system and
destroys the set of semaphores and data structure associated
with it.

removes the message queue identifier, created with key
msgkey, from the system and destroys the message queue and
data structure associated with it.

removes the shared memory identifier, created with key
shmkey, from the system. The shared memory segment and
data structure associated with it are destroyed after the last
detach.

removes the semaphore identifier, created with key semkey,
from the system and destroys the set of semaphores and data
structure associated with it.

The details of the removes are described in msget/(2), shmetl(2), and
semecti(2). The identifiers and keys may be found by using ipes(1).

SEE ALSO

ipes(1), msgetl(2), msgget{2), msgop(2), semctl(2), semget{2), semop(2),
shmctt(2), shmget(2), shmop(2).

IPCS (1) IFCS (1}

NAME
ipes — repotrt inter-process communication facilities status

SYNOPSIS
ipes [options]

DESCRIPTION
Ipcs prints certain information about active inter-process communication
facilities. Without oprions, information is printed in short format for mes-
sage queues, shared memory, and semaphores that are currently active in
the system. Otherwise, the information that is displayed is controlled by
the following options:

—q Print information about active message queuss,
—m Print information about active shared memory segments.
—s Print information about active semaphores.

If any of the options —q, —m, or —s are specified, information about only
those indicated will be printed. If none of these three are specified, infor-
mation about all three will be printed.

—b Print biggest allowable size information. (Maximum number of bytes
in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores.) See
below for meaning of columns in a listing.

—c¢ Print creator’s login name and group name. See below.

—o Print information on outstanding usage. (Number of messages on
queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory seg-
ments.)

—p Print process number information. (Process ID of last process to send
a message and process 1D of last process to receive a message on mes-
sage queues and process ID of crealing process and process 1D of last
process to attach or detach on shared memory segments) See below.

—t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last msgsnd
and last msgrcy on message queues, last shmat and last shmdt on
shared memory, last semop (2) on semaphores.) See below.

—a Use all print options. (This is a shorthand notation for —b, —¢, —o,

—p, and —t.)
—C corefile

Use the file corefife in place of /dev/kmem.
— N namelist

The argument will be taken as the name of an alternate nramelist
(funix is the default).

The column headings and the meaning of the columns in an ipes listing are
given below: the letters in parentheses indicate the oprions that cause the
corresponding heading to appear; all means that the heading always
appears. Note that these options only determine what information is pro-
vided for each facility; they do nor determine which facilities will be listed.

T (all) Type of the Facility:
g message queue,;
m shared memory segment;
s semaphore.

IFCS{(1)

ID
KEY

MODE

OWNER
GROUP

CREATOR
CGROUP

CBYTES

QNUM

QBYTES

LSPID

LRPID

STIME

(all)
(all)

(all)

(all)
(all)

(a,c)
{a,0)

(a,0)
(a,0)
(a,b)
{(a,p)
wp

(a,t)

IPCs(1)

The identifier for the facility entry.

The key used as an argument to msgget, Semgel, ot
shmget to create the facility entry. {Note: The key of a
shared memory segment is changed to IPC_PRIVATE
when the segment has been removed until all processes
attached to the segment detach it.)

The facility access modes and flags. The mode consists
of 11 characters that are interpreted as follows:

The first two characters are:

R if & process is wailing on a msgrev,

8§ if a process is waiting on a msgsnd,

D if the associated shared memory segment has
been removed. It will disappear when the last
process attached to the segment detaches it

C if the associated shared memory segment is to be
cleared when the first attach is executed;

— if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of
three bits each. The first set refers to the owner’s per-
missions; the next to permissions of others in the user-
group of the facility entry, and the last to all others.
Within each set, the first character indicates permission
to read, the second character indicates permission to
write or alter the facility entry, and the last character is
currenily unused.

The permissions are indicated as follows:

r if read permission is granted,

w if write permission is granted;

a if alter permission is granted;

— if the indicated permission is not granted.
The login name of the owner of the facility entry.
The group name of the group of the owner of the facility
entry.
The login name of the creator of the facility entry.
The group name of the group of the creator of the facil-
ity entry.
The number of bytes in messages currently outstznding
on the associated message queue.

The number of messages currently outstanding on the
assoctated message queue.

The maximum number of bytes allowed in messages
outstanding on the associated message queue.

The process ID of the last process to send a message to
the associated queue.

The process 1D of the last process to receive a message
from the associated queue.

The time the last message was seni to the associated
queue,

.2.

IPCS(1}

FILES

RTIME
CTIME
NATTCH

SEGSZ
CPI1D

LPID

ATIME
DTIME
NSEMS

OTIME

funix
/dev/kmem
fetc/passwd
fetc/group

SEE ALSO
msgop(2), semop(2), shmop(2).

BUGS

(a,)
(a,1)
(a,0)

(a,b)
(a,p)

(a.p)
(a,v)
{a,1)
{a,b)

(a,t)

IPCS (1}

The time the last message was received from the associ-
ated gueue.

The time when the associated entry was created or
changed.

The number of processes attached to the associated
shared memory segment.

The size of the associated shared memory segment.

The process 1D of the creator of the shared memory
entry.

The process ID of the last process to attach or detach the
shared memory segment.

The time the last attach was completed to the associated
shared memory segment.

The time the last detach was completed on the associ-
ated shared memory segment.

The number of semaphores in the set associated with
the semaphore entry.

The time the last semaphore operation was completed on
the set associated with the semaphore entry.

system namelist
memory

USEr names
group names

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

JOIN(1) JOIN(1)

NAME

join — relational database operator
SYNOPSIS

join [options] filel file2
DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the
lines of filel and file2. If filel is —, the standard input is used.

Filel and file2 must be sorted in increasing ASCH collating sequence on the
fields on which they are t0 be joined, normally the first in each line.

There is one line in the cuntput for each pair of lines in file! and file? that have
identical join fields. The ountput line normally consists of the common field,
then the rest of the line from file!, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case, mul-
tiple separators count as one field separator, and leading separators are ignored.
Thus, to preserve tabs and multiple occurrences of spaces in a file, you must
select tabs as the alternate delimiter using the —t option where c is the tab char-
acter (see the —t option below). The default output ficld separator is a blank,

Some of the below options usc the argument ». This argument should be a 1 or
a 2 refeming to cither filel or file2, respectively. The following options are
recognized;

—an In addition to the normal output, produce a line for each unpairable line
in file n, where nis 1 or 2.

—es Replace empty output ficlds by string 5.

=fn m Join on the m th field of file n, If # is missing, use the m th field in each
file. Fields are numbered starting with 1.

—o list Each output line comprises the fields specified in Xst, each element of
which has the form n. m, where n is a file number and m is a field
number, The commeon field is not printed unless specifically requested.

-tz Use character ¢ as a separator (tab character). Every appearance of ¢
in a line is significant. The character ¢ is used as the field separator for
both input and ontput.

EXAMPLE
If “‘file]l’’ containg: Austen -
Bailey -

Page 1 September 27, 1987

JOIN(1) JOIN(1)

Clark -
Dawson -
Smith -
and “*file2"’ contains:
Austen Jack Anchor Brewery

Clark Maryann Shoeshop

Daniels Steve Computer Software
-Dawson Sylvia Toot Sweets

Smith Sally Talcum Powdery

then
join—j11 —j21 —02.22.1 1.22.3 2.4 filel file2
will generate
Jack Austen - Anchor Brewery
Maryann Clark - Shoeshop

Sylvia Dawsen - Toot Sweets
Sally Smith - Talcum Powdery

join —j1 4 —j2 3 —0 1.1 2.1 1.6 —t: fetc/passwd fetc/group

joins the password file and the group file, matching on the numeric group 1D,
and outputting the login name, the group rame, and the login directory. It is
assumed that the files have been sorted in ASCII collating sequence on the
group ID fields,

SEE ALSO
awk(1), comm(1), sort(1} unig(1).

BUGS
With default ficld separation, the collating sequence is that of sorr —b; with —t,
the sequence is that of a plain sort.
The conventions of join, sort, comm, unig and awk (1) are wildly incongruous.

Filenames that are numeric may cause conflict when the -o option is used right
before listing filenames.

September 27, 1987 Page 2

KILL (1) KILL (1)

NAME

kill — terminate a process
SYNOPSIS

kill [—signo] PID ...
DESCRIFTION

Kill sends signal 15 {terminate) to the specified processes. This will nor-
mally kill processes that do not catch or ignore the signal. The process
number of each asynchronous process started with & is reported by the
Shell {unless more than one process is started in a pipeline, in which case
the number of the last process in the pipeline is reported). Process
numbers can also be found by using ps(1).

The details of the kill are described in kif(2). For example, if process
number 0 is specified, ail processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-
user.

If a signal number preceded by — is given as first argument, that signal is

sent instead of terminate (see signaf(2)). In particular "kill —9 ..." is a
sure kill.
EXAMPLE
kill 24068
Sends signal 15 to the process with the ID number 24068,
SEE ALSO

ps(1}, sh{1), kill(2), signai(2}.

LAST(1) UniSoft LAST(1)

NAME

last — indicate last logins of users and teletypes
SYNOPSIS

last [name ...] [ty ... 1]
DESCRIPTION

Lasr will look back in the wtmp file which records all logins and logous for
information about a user, a teletype {terminall or any group of users and
teletypes. Arguments specify names of users or teletypes of interest.
Names of teletypes may be given fuily or abbreviated. For example last &
is the same as last tty0’ . If multiple arguments are given, the information
which applies to any of the arguments is printed. For example last root
console would list all of "root’s” sessions as well as all sessions on the con-
sole terminal.

Last reports the sessions of the specified users and teletypes, most recent
first, indicating start times, duration, and teletype for each. If the session is
still continuing or was cut short by a rebool, lasf so indicates.

EXAMFLE

FILES

last reboot
will give an indication of mean time between reboots of the system.

Lasr with no argumenits prints a record of all logins and logouts, in reverse
order. Since last can generate a greal deal of output, piping it through the
more program for screen viewing is advised.

H lasr is interrupted with a "break"”, it indicates how far the search has pro-
gressed in wimp, If interrupied with a quit signal (generated by a control-
\), lasr exits and dumps core.

Control-d {EOF) signal does nothing. Therefore exit gracefully from last
with a "break” or "shift/delete” signal.

fetc/witmp login data base

AUTHOR

Howard Katseff

LAV(1) UniSeft LAV{1)

NAME

lav — print load average statistics
SYNOPSIS

lay
DESCRIPTION

Lav prints the average number of jobs in the run queue over the last 1, 3,
and 15 minutes.

Page | July 26, 1985

Lb(1) LD(1)

NAME
1d - link editor for common object files

SYNOPSIS
M [—eepsym] [l [-Lx] {~m] (—ooutfile] [-1] [-5] [~] [-usymaame] [-x]
(-z] [-F1 [-Ldir] [-M] [-N] [-V] [<VStum) filenames

DESCRIPTION

The 1d command combines several object files into one, performs relocation,
:esolveeemnalsymboh.mdsuppomsymbdmblehfomgmnfonymbdm
debugging. In the simplest case, the names of several object programs me
given, and 1d combines them, producing an object module that can either he
executed or used as input for a subsequent Id run. The output of Id is left in
s.out. This file is executable if no errors occurred during the load. If any input
file, filename, is not an object file, ki assumes it is either a text file containing
link editor directives or an archive Library,
If any argument is a library, it is searched exactly once at the point it is encoun-
tered in the argument list. Only those routines defining an unresolved external
reference are loaded, The library (archive) symbol table (see ar(4)) is searched
sequentially with as many passes as are necessary to resolve external references
that can be satisfied by library members. Thus, the ordering of library members
is unimportant.

The following flag options are recognized by 1d:

—ee
Set the default entry point address for the cutput file &0 be that of the sym-
bol epsym.

~fl
Set the default fill pattern for holes within an output section as well as ini-
tialized bss sections. The argument il is a two-byte constant,

—lx Search a library libx.s, where x is up to seven characters. A library is
searched when its name is encountered, so the placement of a -1 is
significant. The default library location is /lib,

-m Produce a map or listing of the input/output sections on the standard out-
put.

—ooutfile B
Produce an output object file by the name outfile. The name of the default
object file is a.ont, _

-r Remin relocation entries in the output object file. Relocation entries must
be saved if the output file is to become an input file in a subsequent Id run,
The link editor does not complain about unresolved references.

—s Strip line number entries and symbel table info ion from the output
object flle, . .

Page 1 May 1938

LD(1) LD(1}
—t Tumn off the waming about multiply-defined symbols that are not the same
size. .

—usymname
Enter symname as an undefined symbol in the symbol table. This is useful
for loading entirely from a library, since initially the symbol table is empty
and an wnresolved reference is needed to force the loading of the first rou-
tine.

~x Do not preserve local (non-global) symbols in the cutput symbol table;
enter external and static symbols only. This option saves some space in the
ouiput file,

-z Load the text segment at an offset from zero so that null pointer references
generate a segmentation violation.

-F Create a demand-paged executable.

~Ldir
Change the algorithm of searching for lihx.a to ook in dir before looking
in /lib and /usy/lib. This flag option is effective only if it precedes the -1
flag option on the command line,

—M Output 2 message for each multipfy-defined external definition, However,
if the objects being loaded included debugging information, extraneous
cutput is produced (see the —g option in ec(1).

=N Put the data section immediately following the text in the output file. Note
that the —N option must be used either with /usy/lib/unshared.]d or with a
user-supplied 1d file,

—V Output a message giving information about the version of 1d being used.

~VSnum
Use mwon as a decimal version stamp identifying the a.out file that is pro-
duced. The version stamp is stored in the optional header.

The following information about section alignment and MMU requirements

should be considered at system installation,

The default section alignment action for id on M68000 systems is to align the

code (.text) and data {(.data and ,bss combined) separately on 512-byte boun-

daries, Since MMU requirements vary from system to system, this alignment is
not always desirable. This version of Id provides a mechanism to allow the
specification of different section alignments for each system, aliowing you w0
align each section separately on n-byte boundaries, where 7 is a multiple of

512, The defanlt section alignment action for 1d on this system i§ to align the

code (.text) at byte 0 and the data (.data and .bss combined) at the 4 megabyte

boundary (byte 10487576),

When all input files have been processed (and if no override is provided), 1d

will search the list of library directories (as with the —1 flag option) for a file

named default.ld. If this file is found, it is processed as an Id instruction file (or

May 1988 Page2

LD(1) LD(1)

ifile). The defaultld fils should specify the required alignment zs outlined
below. If it does not exist, the default alignment action will be taken.

The default.ld file should appear as follows, with <alignment> replaced by the
alignment requirement in bytes:

SECTIONS {
text : {}
GROUP ALIGN (<alignmems>) : {
.data : {}
.bas : {}

}
}

Note: This system requires a data rounding that is an even multiple of 1
megabyte (1 megabyte is the segment size).
For example, a default.lé file of the following form would provide the same
alignment as the default (512.byte boundary):
SECTIONS {
.text : {}
GROUP ALIGN(512) : {
.data : {}
.bas : {}
-1
}

To get alignment on 2K-byte boundaries, the following default.ld file should be

SECTIONS |
text : {1}
GROUP ALIGN{2048) : {
.data 1 {}
.bss : [}

}
}

Note that this system requires a data rounding that is an even multiple of 1

megabyte (I megabyte is the segment size).

For more information about the format of Id instruction files or the meming of

the commands, see *‘Id — Link Editor’’ in the UniPlus+ Programming Guide,
FILES

/hinAd

flib/*

fusr/lib/*

a.out default cutput file

Page3 May 1988

LIx1) LD(1)

SEE ALSO
as(1), ce(1), a.oni(4), ar(4).

WARNINGS
Through its flag options and input directives, the common link editor gives you
great flexibility; however, if you use the input directives, you must assume
some added responsibilities. Inpmdirecuvushouldinsuremefollomgpm-
perties for programs:

- C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, you must not place
any object at virtual addregs zemo in the data space.

— When you call the link editor through cec(l), 2 startup routine is finked
with your program. This routine calls exit() (see exit(2)) after execution
of the main program, If you call the link editor directly, you muost insure
that the program always calls exit(), rather than falling through the end
of the entry routine.

May 1988 Page4

LD{1)

FILES

SEE ALSO

WARNINGS

Page 3

LD(1)

GROUP ALIGN(2048) : {
.data : {)

}

For more information about the format offld instruction files or the mean-
ing of the commands, see LD in the Proglumming Guide.

7lib
fusr/lib
a.oul defaulf output file

as(1}, cc(l), a.out(4}, ar(4).

Through its options and/input directives, the common link editor gives
users great flexibility, powever, those who use the input directives musi
assume some added rg¥ponsibilities. Input directives should insure the fol-

— C defines a Zéro pointer as null, A pointer to which zero has been

with the user’s program. This routine calls exit () (see
)} after execution of the main program. If the user calls the link
itor directly, then the user must insure that the program always
alls exit{) rather than falling through the end of the entry routine.

July 12, 1985

LD() (Virtual) LD(1)

NAME
Id — link editor for common object files

SYNOPSIS
ld[~eepsym] [—fill] [—Ix] [—m] [—ooutfile] [—r] [—s] [—usymname |
[-z]l[—F][-Ldir] [-N]1[-V¥]1[—VSoum] filenames

DESCRIPTION

The ld command combines several object files inte one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are given,
and /d combines them, producing an object module that can either be executed or
used as input for a subsequent /4 run. The output of /d is left in g.0ut. This file
is executable if no errors occur during the load. If any input file, filename, is not
an object file, Id assumes it is either a text file containing link editor directives or
an archive library.

If any argument is a library, it is searched exactly once at the point it is encoun-
tered in the argument list. Only those routines defining an unresolved external
reference are loaded. The library (archive) symbol table (see ar(4)) is searched
sequentially with as many passes as are necessary to resolve extemnal references
that can be satisfied by library members. Thus, the oxdering of library members
is unimportant.

The fellowing options are recognized by Id.

—eepsym
Set the default entry point address for the output file to be that of the
symbol epsym.

—1fhll Set the default fill pattern for **holes’’ within an output section as well as
initialized bss sections. The argument fi#f is a two-byte constant.

—Ilxr Search a library libx.a, where x is up to seven characters. A library is
searched when is name is encountered, so the placement of a —1 is
significant. By default, libraries are located in /lib.

—m Produce a map or listing of the inputioutput sections on the standard out-
put.

—ooutfile
Produce an output object file by the name owtfile. The name of the
default object file is a.out.

-r Retain relocation entries in the output object fite. Relocation entries must
be saved if the output file is to become an input file in a subsequent /d
run. The link editor does not complain about unresolved references.

~8 Strip line number entries and symbol table information from the output
object file.
—Usymname

Enter symname as an undefined symbol in the symbol table. This is use-
ful for loading entirely from a library, since initially the symbol table is
empty and an unresolved reference is needed to' force the loading of the
first routine.

-z Load the text segment at an offset from zero so that null pointer refer-
ences generate a segmentation violation.

-F Create a demand-paged executable.

—Ldir Change the algorithm of searching for libx.a to look in dir before looking
in /lib and fust/lib. This option is effective only if it precedes th