
HP C
Run-Time Library Reference
Manual for OpenVMS Systems
Order Number: AA–RSMUB–TE

September 2003

This manual describes the functions and macros in the HP C Run-Time
Library for OpenVMS systems.

Revision/Update Information: This manual supersedes the HP C
Run-Time Library Reference Manual
for OpenVMS Systems, Order Number
AA–RSMUA–TE

Software Version: HP OpenVMS Alpha Version 7.3-2
OpenVMS VAX Version 7.3

Hewlett-Packard Company
Palo Alto, California



First Printing, February 1991
Revised, September 2003

© Copyright 2003 Hewlett-Packard Development Company, L.P.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark of X/Open Company Ltd. in the UK and other countries.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Proprietary computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

ZK5763

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.



Portions of the HP C Run-Time Library have been implemented using source copyrighted by the
University of California, Berkley and its contributors.

Copyright (c) 1981 Regents of the University of California.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by the University of California,
Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 Introduction

1.1 Using the HP C Run-Time Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.2 RTL Linking Options on Alpha Systems (Alpha only) . . . . . . . . . . . . . . . . . . . 1–3
1.2.1 Linking with the Shareable Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.2.2 Linking with the Object Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1.3 RTL Linking Options on VAX Systems (VAX only) . . . . . . . . . . . . . . . . . . . . . 1–6
1.3.1 Linking with the HP C RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
1.3.1.1 Linking with the HP C RTL Shareable Images . . . . . . . . . . . . . . . 1–7
1.3.1.2 Linking with or Providing Your Own Shareable Images . . . . . . . . 1–8
1.3.1.3 Linking with the HP C RTL Object Libraries . . . . . . . . . . . . . . . . 1–8
1.3.1.4 Linking with the HP C RTL Object Libraries /NOSYSSHR . . . . . . 1–9
1.3.2 Resolving Link-Time Conflicts with Multiple C RTLs . . . . . . . . . . . . . 1–9
1.3.2.1 Using VAXC$LCL.OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.3.2.2 Using VAXC$EMPTY.EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
1.3.2.3 Using DECC$EMPTY.EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12
1.3.3 Linking Examples for HP C or HP C++ Code Only . . . . . . . . . . . . . . . 1–12
1.3.4 Linking Examples for VAX C and HP C Code Combined . . . . . . . . . . . 1–13
1.3.5 Linking with the VAX C RTL /NOSYSSHR . . . . . . . . . . . . . . . . . . . . . 1–14
1.4 HP C RTL Function Prototypes and Syntax . . . . . . . . . . . . . . . . . . . . . . . . 1–14
1.4.1 Function Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–14
1.4.2 Syntax Conventions for Function Prototypes . . . . . . . . . . . . . . . . . . . . 1–15
1.4.3 UNIX Style File Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–15
1.4.4 Extended File Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–18
1.5 Feature-Test Macros for Header-File Control . . . . . . . . . . . . . . . . . . . . . . . 1–18
1.5.1 Standards Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–18
1.5.2 Selecting a Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
1.5.3 Interactions with the /STANDARD Qualifier . . . . . . . . . . . . . . . . . . . . 1–20
1.5.4 Multiple-Version-Support Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1.5.5 Compatibility Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1.5.6 Curses and Socket Compatibility Macros . . . . . . . . . . . . . . . . . . . . . . . 1–24
1.5.7 2-Gigabyte File Size Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–24
1.5.8 32-Bit UID and GID Macros (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . 1–25
1.6 Enabling C RTL Features Using Feature Logical Names . . . . . . . . . . . . . 1–25
1.7 32-Bit UIDs/GIDs and POSIX Style Identifiers . . . . . . . . . . . . . . . . . . . . . 1–40
1.8 Input and Output on OpenVMS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41
1.8.1 RMS Record and File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–43

v



1.8.2 Access to RMS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–44
1.8.2.1 Accessing RMS Files in Stream Mode . . . . . . . . . . . . . . . . . . . . . . 1–45
1.8.2.2 Accessing RMS Record Files in Record Mode . . . . . . . . . . . . . . . . . 1–45
1.8.2.2.1 Accessing Variable-Length or VFC Record Files in Record

Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–47
1.8.2.2.2 Accessing Fixed-Length Record Files in Record Mode . . . . . . . 1–48
1.8.2.3 Example—Difference Between Stream Mode and Record Mode . . . 1–48
1.9 Specific Portability Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–50
1.9.1 Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–52
1.9.2 Multithread Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–54
1.10 64-bit Pointer Support (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–54
1.10.1 Using the HP C Run-Time Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–55
1.10.2 Obtaining 64-Bit Pointers to Memory . . . . . . . . . . . . . . . . . . . . . . . . . 1–55
1.10.3 HP C Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–56
1.10.4 Functions Affected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–57
1.10.4.1 No Pointer-Size Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–57
1.10.4.2 Functions Accepting Both Pointer Sizes . . . . . . . . . . . . . . . . . . . . . 1–57
1.10.4.3 Functions with Two Implementations . . . . . . . . . . . . . . . . . . . . . . 1–58
1.10.4.4 Functions Restricted to 32-Bit Pointers . . . . . . . . . . . . . . . . . . . . . 1–61
1.10.5 Reading Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–62

2 Understanding Input and Output

2.1 Using RMS from RTL Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.2 UNIX I/O and Standard I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.3 Wide-Character Versus Byte I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.4 Conversion Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.4.1 Converting Input Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.4.2 Converting Output Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13
2.5 Terminal I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
2.6 Program Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–20

3 Character, String, and Argument-List Functions

3.1 Character-Classification Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
3.2 Character-Conversion Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
3.3 String and Argument-List Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
3.4 Program Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10

4 Error and Signal Handling

4.1 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
4.2 Signal Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
4.2.1 OpenVMS Versus UNIX Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
4.2.2 UNIX Signals and the HP C RTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6
4.2.3 Signal-Handling Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4.2.4 Signal Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4.2.5 Signal Handling and OpenVMS Exception Handling . . . . . . . . . . . . . . 4–9
4.3 Program Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13

vi



5 Subprocess Functions

5.1 Implementing Child Processes in HP C . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
5.2 The exec Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
5.2.1 exec Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4
5.2.2 exec Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
5.3 Synchronizing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
5.4 Interprocess Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
5.5 Program Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5

6 Curses Screen Management Functions and Macros

6.1 Using the BSD-Based Curses Package (Alpha only) . . . . . . . . . . . . . . . . . . . . 6–1
6.2 Curses Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
6.3 Curses Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4
6.3.1 Predefined Windows (stdscr and curscr) . . . . . . . . . . . . . . . . . . . . . . . . 6–5
6.3.2 User-Defined Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–5
6.4 Getting Started with Curses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7
6.5 Predefined Variables and Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–9
6.6 Cursor Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10
6.7 Program Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–11

7 Math Functions

7.1 Math Function Variants—float, long double . . . . . . . . . . . . . . . . . . . . . . . . 7–3
7.2 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
7.3 The <fp.h> Header File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
7.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5

8 Memory Allocation Functions

8.1 Program Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2

9 System Functions

10 Developing International Software

10.1 Internationalization Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1
10.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1
10.1.2 Unicode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1
10.2 Features of International Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2
10.3 Developing International Software Using HP C . . . . . . . . . . . . . . . . . . . . . 10–3
10.4 Locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–3
10.5 Using the setlocale Function to Set Up an International Environment . . . 10–4
10.6 Using Message Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5
10.7 Handling Different Character Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6
10.7.1 Charmap File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6
10.7.2 Converter Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6
10.7.3 Using Codeset Converter Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6
10.8 Handling Culture-Specific Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7
10.8.1 Extracting Cultural Information From a Locale . . . . . . . . . . . . . . . . . . 10–8
10.8.2 Date and Time Formatting Functions . . . . . . . . . . . . . . . . . . . . . . . . . 10–8
10.8.3 Monetary Formatting Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–8
10.8.4 Numeric Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–8

vii



10.9 Functions for Handling Wide Characters . . . . . . . . . . . . . . . . . . . . . . . . . . 10–9
10.9.1 Character Classification Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–9
10.9.2 Case Conversion Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–9
10.9.3 Functions for Input and Output of Wide Characters . . . . . . . . . . . . . . 10–10
10.9.4 Functions for Converting Multibyte and Wide Characters . . . . . . . . . . 10–10
10.9.5 Functions for Manipulating Wide-Character Strings and Arrays . . . . . 10–11
10.10 Collating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–11

11 Date/Time Functions

11.1 Date/Time Support Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1
11.2 Overview of Date/Time Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2
11.3 HP C RTL Date/Time Computations—UTC and Local Time . . . . . . . . . . . 11–3
11.4 Time-Zone Conversion Rule Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
11.5 Sample Date/Time Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–5

Reference Section

a64l (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–3
abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–5
abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–6
access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–7
acos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–9
acosh (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–10
[w]addch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–11
[w]addstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–12
alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–13
asctime, asctime_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–14
asin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–16
asinh (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–17
assert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–18
atan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–19
atan2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–20
atanh (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–21
atexit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–22
atof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–23
atoi, atol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–24
atoq, atoll (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–25
basename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–26
bcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–27
bcopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–28
box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–29
brk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–30
bsearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–31
btowc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–33
bzero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–34
cabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–35
calloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–36
catclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–37

viii



catgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–38
catopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–41
cbrt (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–44
ceil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–45
cfree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–46
chdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–47
chmod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–48
chown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–49
[w]clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–50
clearerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–51
clearok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–52
clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–53
clock_getres (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–54
clock_gettime (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–55
clock_settime (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–56
close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–58
closedir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–59
[w]clrattr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–61
[w]clrtobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–62
[w]clrtoeol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–63
confstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–64
copysign (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–66
cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–67
cosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–68
cot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–69
creat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–70
[no]crmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–76
ctermid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–77
ctime, ctime_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–78
cuserid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–80
DECC$CRTL_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–81
decc$feature_get_index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–82
decc$feature_get_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–84
decc$feature_get_value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–85
decc$feature_set_value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–86
decc$fix_time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–87
decc$from_vms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–88
decc$match_wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–90
decc$record_read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–91
decc$record_write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–92
decc$set_child_default_dir (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–93
decc$set_child_standard_streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–94
decc$set_reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–98
decc$to_vms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–100
decc$translate_vms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–102
decc$validate_wchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–104
decc$write_eof_to_mbx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–105

ix



[w]delch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–108
delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–109
[w]deleteln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–110
delwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–111
difftime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–112
dirname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–113
div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–115
dlclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–116
dlerror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–117
dlopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–118
dlsym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–119
drand48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–120
dup, dup2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–121
[no]echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–122
ecvt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–123
endgrent (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–125
endpwent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–126
endwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–127
erand48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–128
[w]erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–129
erf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–130
execl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–131
execle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–133
execlp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–134
execv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–135
execve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–136
execvp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–137
exit, _exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–138
exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–139
fabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–140
fchown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–141
fclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–142
fcntl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–143
fcvt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–146
fdopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–148
feof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–149
ferror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–150
fflush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–151
ffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–152
fgetc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–153
fgetname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–154
fgetpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–155
fgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–157
fgetwc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–159
fgetws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–160
fileno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–162
finite (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–163

x



floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–164
fmod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–165
fopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–166
fp_class (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–168
fpathconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–169
fprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–171
fputc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–173
fputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–174
fputwc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–175
fputws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–177
fread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–178
free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–179
freopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–180
frexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–181
fscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–183
fseek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–185
fseeko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–187
fsetpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–188
fstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–189
fsync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–192
ftell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–193
ftello . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–194
ftime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–195
ftruncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–196
ftw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–197
fwait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–199
fwide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–200
fwprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–201
fwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–203
fwscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–204
gcvt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–206
getc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–208
[w]getch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–209
getchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–210
getclock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–211
getcwd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–212
getdtablesize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–213
getegid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–214
getenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–215
geteuid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–217
getgid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–218
getgrent (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–219
getgrgid (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–220
getgrgid_r (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–221
getgrnam (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–223
getgrnam_r (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–224
getitimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–226

xi



getlogin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–228
getname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–229
getopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–230
getpagesize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–233
getpgid (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–234
getpgrp (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–235
getpid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–236
getppid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–237
getpwent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–238
getpwnam, getpwnam_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–240
getpwuid, getpwuid_r (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–243
gets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–246
getsid (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–247
[w]getstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–248
gettimeofday . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–249
getuid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–250
getw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–251
getwc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–252
getwchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–253
getyx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–254
glob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–255
globfree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–259
gmtime, gmtime_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–260
gsignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–262
hypot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–264
iconv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–265
iconv_close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–267
iconv_open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–268
[w]inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–270
index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–271
initscr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–272
initstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–273
[w]insch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–275
[w]insertln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–276
[w]insstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–277
isalnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–278
isalpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–279
isapipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–280
isascii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–281
isatty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–282
iscntrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–283
isdigit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–284
isgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–285
islower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–286
isnan (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–287
isprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–288
ispunct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–289

xii



isspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–290
isupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–291
iswalnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–292
iswalpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–293
iswcntrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–294
iswctype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–295
iswdigit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–297
iswgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–298
iswlower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–299
iswprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–300
iswpunct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–301
iswspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–302
iswupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–303
iswxdigit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–304
isxdigit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–305
j0, j1, jn (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–306
jrand48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–307
kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–308
l64a (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–309
labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–310
lcong48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–311
ldexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–312
ldiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–313
leaveok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–314
lgamma (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–315
link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–316
localeconv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–317
localtime, localtime_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–321
log, log2, log10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–323
log1p (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–324
logb (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–325
longjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–326
longname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–328
lrand48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–329
lseek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–330
lwait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–332
malloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–333
mblen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–335
mbrlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–336
mbrtowc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–337
mbstowcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–339
mbtowc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–340
mbsinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–341
mbsrtowcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–342
memccpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–344
memchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–345
memcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–346

xiii



memcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–347
memmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–348
memset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–349
mkdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–350
mkstemp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–353
mktemp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–354
mktime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–355
mmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–356
modf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–361
[w]move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–362
mprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–363
mrand48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–365
msync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–366
munmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–368
mv[w]addch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–369
mv[w]addstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–370
mvcur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–371
mv[w]delch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–372
mv[w]getch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–373
mv[w]getstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–374
mv[w]inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–375
mv[w]insch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–376
mv[w]insstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–377
mvwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–378
nanosleep (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–379
newwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–381
nextafter (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–382
nice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–383
nint (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–384
[no]nl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–385
nl_langinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–386
nrand48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–390
open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–391
opendir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–394
overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–396
overwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–397
pathconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–398
pause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–400
pclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–401
perror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–402
pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–403
popen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–407
pow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–409
pread (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–410
printf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–411
[w]printw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–412
putc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–413

xiv



putchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–414
putenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–415
puts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–417
putw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–418
putwc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–419
putwchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–420
pwrite (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–421
qabs, llabs (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–422
qdiv, lldiv (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–423
qsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–424
raise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–425
rand, rand_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–426
random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–427
[no]raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–428
read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–430
readdir, readdir_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–432
readv (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–434
realloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–436
[w]refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–437
remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–438
rename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–439
rewind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–441
rewinddir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–442
rindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–443
rint (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–444
rmdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–445
sbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–446
scalb (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–447
scanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–448
[w]scanw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–449
scroll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–450
scrollok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–451
seed48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–452
seekdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–453
[w]setattr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–454
setbuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–455
setenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–456
seteuid (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–458
setgid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–459
setgrent (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–460
setitimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–461
setjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–463
setlocale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–465
setpgid (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–469
setpgrp (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–471
setpwent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–472
setregid (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–473

xv



setreuid (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–474
setsid (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–475
setstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–476
setuid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–477
setvbuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–478
sigaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–480
sigaddset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–483
sigblock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–484
sigdelset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–485
sigemptyset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–486
sigfillset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–487
sighold (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–488
sigignore (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–489
sigismember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–490
siglongjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–491
sigmask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–492
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–493
sigpause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–494
sigpending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–495
sigprocmask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–496
sigrelse (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–498
sigsetjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–499
sigsetmask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–501
sigstack (VAX only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–502
sigsuspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–504
sigtimedwait (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–505
sigvec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–506
sigwait (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–507
sigwaitinfo (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–508
sin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–509
sinh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–510
sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–511
snprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–512
sprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–514
sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–516
srand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–517
srand48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–518
srandom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–519
sscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–520
ssignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–522
[w]standend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–523
[w]standout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–524
stat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–525
strcasecmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–528
strcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–529
strchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–531
strcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–533

xvi



strcoll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–534
strcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–535
strcspn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–536
strdup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–537
strerror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–538
strfmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–540
strftime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–544
strlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–550
strncasecmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–551
strncat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–552
strncmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–553
strncpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–555
strnlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–556
strpbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–557
strptime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–558
strrchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–563
strsep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–564
strspn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–565
strstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–566
strtod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–568
strtok, strtok_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–570
strtol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–573
strtoq, strtoll (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–575
strtoul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–577
strtouq, strtoull (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–578
strxfrm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–579
subwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–582
swab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–583
swprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–584
swscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–585
sysconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–586
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–592
tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–594
tanh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–595
telldir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–596
tempnam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–597
time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–599
times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–600
tmpfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–601
tmpnam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–602
toascii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–603
tolower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–604
_tolower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–605
touchwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–606
toupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–607
_toupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–608
towctrans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–609

xvii



towlower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–610
towupper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–611
trunc (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–612
truncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–613
ttyname, ttyname_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–614
tzset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–616
ualarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–620
umask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–621
uname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–622
ungetc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–623
ungetwc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–624
unordered (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–625
utime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–626
utimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–629
unsetenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–632
usleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–633
VAXC$CRTL_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–634
VAXC$ESTABLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–635
va_arg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–637
va_count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–638
va_end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–639
va_start, va_start_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–640
vfork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–642
vfprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–644
vfscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–645
vfwprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–647
vfwscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–649
vprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–650
vscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–651
vsnprintf (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–652
vsprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–653
vsscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–654
vswprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–655
vswscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–657
vwprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–658
vwscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–659
wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–660
wait3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–661
wait4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–664
waitpid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–667
wcrtomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–671
wcscat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–672
wcschr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–674
wcscmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–676
wcscoll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–677
wcscpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–678
wcscspn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–679

xviii



wcsftime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–681
wcslen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–687
wcsncat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–688
wcsncmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–690
wcsncpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–691
wcspbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–692
wcsrchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–693
wcsrtombs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–695
wcsspn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–697
wcsstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–699
wcstod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–700
wcstok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–702
wcstol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–705
wcstombs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–707
wcstoul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–708
wcswcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–711
wcswidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–713
wcsxfrm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–714
wctob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–717
wctomb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–718
wctrans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–719
wctype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–720
wcwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–723
wmemchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–724
wmemcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–725
wmemcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–726
wmemmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–727
wmemset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–728
wprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–729
wrapok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–731
write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–732
writev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–733
wscanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–735
y0, y1, yn (Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–736

A Version-Dependency Tables

A.1 Functions Available on all OpenVMS VAX and OpenVMS Alpha
Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1

A.2 Functions Available on OpenVMS Version 6.2 and Higher . . . . . . . . . . . . . A–3
A.3 Functions Available on OpenVMS Version 7.0 and Higher . . . . . . . . . . . . . A–4
A.4 Functions Available on OpenVMS Alpha Version 7.0 and Higher . . . . . . . A–5
A.5 Functions Available on OpenVMS Version 7.2 and Higher . . . . . . . . . . . . . A–6
A.6 Functions Available on OpenVMS Version 7.3 and Higher . . . . . . . . . . . . . A–6
A.7 Functions Available on OpenVMS Version 7.3-1 and Higher . . . . . . . . . . . A–6
A.8 Functions Available on OpenVMS Version 7.3-2 and Higher . . . . . . . . . . . A–7

xix



B Prototypes Duplicated to Nonstandard Headers

Index

Examples

1–1 Differences Between Stream Mode and Record Mode Access . . . . . . . . 1–48
2–1 Output of the Conversion Specifications . . . . . . . . . . . . . . . . . . . . . . . . 2–20
2–2 Using the Standard I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–22
2–3 Using Wide Character I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 2–23
2–4 I/O Using File Descriptors and Pointers . . . . . . . . . . . . . . . . . . . . . . . 2–24
3–1 Character-Classification Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
3–2 Converting Double Values to an ASCII String . . . . . . . . . . . . . . . . . . . 3–8
3–3 Changing Characters to and from Uppercase Letters . . . . . . . . . . . . . 3–8
3–4 Concatenating Two Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10
3–5 Four Arguments to the strcspn Function . . . . . . . . . . . . . . . . . . . . . . . 3–10
3–6 Using the <stdarg.h> Functions and Definitions . . . . . . . . . . . . . . . . . 3–11
4–1 Suspending and Resuming Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14
5–1 Creating the Child Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
5–2 Passing Arguments to the Child Process . . . . . . . . . . . . . . . . . . . . . . . 5–7
5–3 Checking the Status of Child Processes . . . . . . . . . . . . . . . . . . . . . . . . 5–8
5–4 Communicating Through a Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9
6–1 A Curses Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7
6–2 Manipulating Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–8
6–3 Refreshing the Terminal Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–9
6–4 Curses Predefined Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10
6–5 The Cursor Movement Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–11
6–6 stdscr and Occluding Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–11
7–1 Calculating and Verifying a Tangent Value . . . . . . . . . . . . . . . . . . . . . 7–5
8–1 Allocating and Deallocating Memory for Structures . . . . . . . . . . . . . . . 8–2
9–1 Accessing the User Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
9–2 Accessing Terminal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4
9–3 Manipulating the Default Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4
9–4 Printing the Date and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–5

Figures

1–1 Linking with the HP C RTL on OpenVMS Alpha Systems . . . . . . . . . 1–6
1–2 I/O Interface from C Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41
1–3 Mapping Standard I/O and UNIX I/O to RMS . . . . . . . . . . . . . . . . . . . 1–43
5–1 Communications Links Between Parent and Child Processes . . . . . . . 5–2
6–1 An Example of the stdscr Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–5
6–2 Displaying Windows and Subwindows . . . . . . . . . . . . . . . . . . . . . . . . . 6–6
6–3 Updating the Terminal Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7
6–4 An Example of the getch Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–13
REF–1 Reading and Writing to a Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–406

xx



Tables

1–1 Linking Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1–2 UNIX and OpenVMS File Specification Delimiters . . . . . . . . . . . . . . . 1–16
1–3 Valid and Invalid UNIX and OpenVMS File Specifications . . . . . . . . . 1–16
1–4 Feature Test Macros - Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
1–5 C RTL Feature Logical Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–26
1–6 Functions with Dual Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 1–58
1–7 Socket Routines with Dual Implementations . . . . . . . . . . . . . . . . . . . . 1–59
1–8 Functions Restricted to 32-Bit Pointers . . . . . . . . . . . . . . . . . . . . . . . . 1–61
1–9 Callbacks that Pass Only 32-Bit Pointers . . . . . . . . . . . . . . . . . . . . . . 1–61
2–1 I/O Functions and Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2–2 Optional Characters Between % (or %n$) and the Input Conversion

Specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2–3 Conversion Specifiers for Formatted Input . . . . . . . . . . . . . . . . . . . . . . 2–9
2–4 Optional Characters Between % (or %n$) and the Output Conversion

Specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2–5 Conversion Specifiers for Formatted Output . . . . . . . . . . . . . . . . . . . . 2–16
3–1 Character, String, and Argument-List Functions . . . . . . . . . . . . . . . . 3–1
3–2 Character-Classification Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
3–3 ASCII Characters and the Character-Classification Functions . . . . . . . 3–5
4–1 Error- and Signal-Handling Functions . . . . . . . . . . . . . . . . . . . . . . . . . 4–1
4–2 The Error Code Symbolic Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
4–3 HP C RTL Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6
4–4 HP C RTL Signals and Corresponding OpenVMS VAX Exceptions

(VAX only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4–5 HP C RTL Signals and Corresponding OpenVMS Alpha Exceptions

(Alpha only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12
5–1 Subprocess Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
6–1 Curses Functions and Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
6–2 Curses Predefined Variables and #define Constants . . . . . . . . . . . . . . . 6–9
7–1 Math Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1
8–1 Memory Allocation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1
9–1 System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1
10–1 Locale Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–3
11–1 Date/Time Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1
11–2 Time-zone Filename Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
REF–1 Interpretation of the mode Argument . . . . . . . . . . . . . . . . . . . . . . . . . REF–7
REF–2 File Protection Values and Their Meanings . . . . . . . . . . . . . . . . . . . . . REF–48
REF–3 RMS Valid Keywords and Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–71
REF–4 tm Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–321
REF–5 Optional Characters in strfmon Conversion Specifications . . . . . . . . . . REF–541
REF–6 strfmon Conversion Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–542
REF–7 Optional Elements of strftime Conversion Specifications . . . . . . . . . . . REF–545
REF–8 strftime Conversion Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–545
REF–9 strptime Conversion Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–559
REF–10 sysconf Argument and Return Values . . . . . . . . . . . . . . . . . . . . . . . . . REF–586
REF–11 Time-Zone Initialization Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–617

xxi



REF–12 The vfork and fork Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–642
REF–13 Optional Elements of wcsftime Conversion Specifications . . . . . . . . . . REF–682
REF–14 wcsftime Conversion Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REF–682
A–1 Functions Available on All OpenVMS Systems . . . . . . . . . . . . . . . . . . A–1
A–2 Functions Added in OpenVMS Version 6.2 . . . . . . . . . . . . . . . . . . . . . . A–3
A–3 Functions Added in OpenVMS Version 7.0 . . . . . . . . . . . . . . . . . . . . . . A–4
A–4 Functions Added in OpenVMS Alpha Version 7.0 . . . . . . . . . . . . . . . . A–5
A–5 Functions Added in OpenVMS Version 7.2 . . . . . . . . . . . . . . . . . . . . . . A–6
A–6 Functions Added in OpenVMS Version 7.3 . . . . . . . . . . . . . . . . . . . . . . A–6
A–7 Functions Added in OpenVMS Version 7.3-1 . . . . . . . . . . . . . . . . . . . . A–6
A–8 Functions Added in OpenVMS Version 7.3-2 . . . . . . . . . . . . . . . . . . . . A–7
B–1 Duplicated Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1

xxii



Preface

This manual describes the HP C Run-Time Library (RTL). It provides reference
information about the C RTL functions and macros that perform input/output
(I/O) operations, character and string manipulation, mathematical operations,
error detection, subprocess creation, system access, and screen management. It
also notes portability concerns between operating systems, where applicable.

The HP C RTL contains XPG4-compliant internationalization support, providing
functions to help you develop software that can run in different languages and
cultures.

You can send comments or suggestions regarding this manual or any HP C
documentation by sending electronic mail to the following Internet address:

c_docs@hp.com

Intended Audience
This manual is intended for experienced and novice programmers who need
reference information on the functions and macros found in the HP C RTL.

Document Structure
This manual has the following chapters, reference section, and appendixes:

• Chapter 1 provides an overview of the HP C RTL.

• Chapter 2 discusses the Standard I/O, Terminal I/O, and UNIX I/O functions.

• Chapter 3 describes the character, string, and argument-list functions.

• Chapter 4 describes the error-handling and signal-handling functions.

• Chapter 5 explains the functions used to create subprocesses.

• Chapter 6 describes the Curses Screen Management functions.

• Chapter 7 discusses the math functions.

• Chapter 8 explains the memory allocation functions.

• Chapter 9 describes the functions used to interact with the operating system.

• Chapter 10 gives an introduction to the facilities provided in the HP C
environment on OpenVMS systems for developing international software.

• Chapter 11 describes the date/time functions.

• The Reference Section describes all the functions in the HP C RTL.

• Appendix A contains version-dependency tables that list the HP C RTL
functions supported on different OpenVMS versions.

xxiii



• Appendix B lists the function prototypes that are duplicated in more than one
header file.

Associated Documents
The following documents may be useful when programming in HP C for
OpenVMS Systems:

• HP C User’s Guide for OpenVMS Systems—For C programmers who need
information on using HP C for OpenVMS Systems.

• HP C Language Reference Manual—Provides language reference information
for HP C on HP systems.

• VAX C to HP C Migration Guide—To help OpenVMS VAX application
programmers migrate from VAX C to HP C.

• HP C Installation Guide for OpenVMS VAX Systems—For OpenVMS system
programmers who install the HP C software on VAX systems.

• HP C Installation Guide for OpenVMS Alpha Systems—For OpenVMS system
programmers who install the HP C software on Alpha systems.

• OpenVMS Master Index—For programmers who need to work with the VAX
and Alpha machine architectures or the OpenVMS system services. This
index lists manuals that cover the individual topics concerning access to the
OpenVMS operating system.

• Compaq TCP/IP Services for OpenVMS Sockets API and System Services
Programming—For information on the socket routines used for writing
Internet application programs for the HP TCP/IP Services for OpenVMS
product or other implementations of the TCP/IP protocol.

• HP TCP/IP Services for OpenVMS Guide to IPv6—For information on HP
TCP/IP Services for OpenVMS IPv6 features, how to install and configure
IPv6 on your system, changes in the socket application programming interface
(API), and how to port your applications to run in an IPv6 environment.

• X/Open Portability Guide, Issue 3—Documents what is commonly know as
the XPG3 specification.

• X/Open CAE Specification System Interfaces and Headers, Issue 4—
Documents what is commonly know as the XPG4 specification.

• X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version
2—Documents what is commonly known as XPG4 V2.

• Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application Program Interface (API)—Amendment
2: Threads Extension [C Language]—Documents what is also known as
POSIX 1003.1c-1995.

• ISO/IEC 9945-2:1993 - Information Technology - Portable Operating System
Interface (POSIX) - Part 2: Shell and Utilities—Documents what is also
known as ISO POSIX-2.

• ISO/IEC 9945-1:1990 - Information Technology - Portable Operating System
Interface (POSIX) - Part 1: System Application Programming Interface (API)
(C Language)—Documents what is also known as ISO POSIX-1.

xxiv



• ANSI/ISO/IEC 9899:1999 - Programming Languages - C—The C99 standard,
published by ISO in December, 1999 and adopted as an ANSI standard in
April, 2000.

• ISO/IEC 9899:1990-1994 - Programming Languages - C, Amendment 1:
Integrity—Documents what is also known as ISO C, Amendment 1.

• ISO/IEC 9899:1990[1992] - Programming Languages - C—Documents what
is also known as ISO C. The normative part is the same as X3.159-1989,
American National Standard for Information Systems - Programming
Language C, also known as ANSI C.

For more information about HP OpenVMS products and services, access the HP
Web site at the following location:

http://www.hp.com/go/openvms

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
Web site address:

http://www.hp.com/go/openvms/doc/order

Conventions Used in this Document
Convention Meaning

Return The symbol Return represents a single stroke of the
Return key on a terminal.

Ctrl/X The symbol Ctrl/X, where letter X represents a terminal
control character, is generated by holding down the Ctrl
key while pressing the key of the specified terminal
character.

switch statement
int data type
fprintf function
<stdio.h> header file

Monospace type identifies language keywords and the
names of HP C functions and header files. Monospace
type is also used when referring to a specific variable
name used in an example.

arg1 Italic type indicates a placeholder, such as an argument
or parameter name, and the introduction of new terms.

$ RUN CPROG Return Interactive examples show user input in boldface type.

float x;

.

.

.
x = 5;

A vertical ellipsis indicates that not all of the text of a
program or program output is illustrated. Only relevant
material is shown in the example.

option, . . . A horizontal ellipsis indicates that additional parameters,
options, or values can be entered. A comma that precedes
the ellipsis indicates that successive items must be
separated by commas.

[output-source, . . . ] Square brackets, in function synopses and a few other
contexts, indicate that a syntactic element is optional.
Square brackets are not optional, however, when
used to delimit a directory name in an OpenVMS file
specification or when used to delimit the dimensions of a
multidimensional array in HP C source code.

xxv



Convention Meaning

sc-specifier ::=
auto
static
extern
register

In syntax definitions, items appearing on separate lines
are mutually exclusive alternatives.

[a | b] Brackets surrounding two or more items separated by a
vertical bar ( | ) indicate a choice; you must choose one of
the two syntactic elements.

� A delta symbol is used in some contexts to indicate a
single ASCII space character.

Platform Labels
A platform is a combination of operating system and hardware that provides
a distinct environment. This manual contains information applicable to the
OpenVMS operating system on both the VAX and Alpha architectures.

The information in this manual applies to both of these platforms, except when
specifically labeled, as follows:

Label Explanation

(Alpha only) Specific to an Alpha processor (Alpha architecture) running the
OpenVMS operating system.

(VAX only) Specific to a VAX processor running the OpenVMS operating
system.

New and Changed Features - OpenVMS Version 7.3-2
The following enhancements have been made to the C Run-Time Library for
OpenVMS Version 7.3-2. These enhancements provide improved UNIX portability
and the flexibility of additional user-controlled feature selections. New C RTL
functions are also included.

• POSIX style identifiers

• 64-bit pointer support for some socket routines

• Set default directory for child processes

• New feature logicals

• UNIX filename translation enhancements

• New/changed functions

POSIX Style Identifiers
POSIX style identifier support is added to the C RTL, providing additional UNIX
portability and standards compliance. POSIX style identifiers refer to the User
Identifier (UID), Group Identifier (GID), and Process Group. The scope includes
real and effective identifiers.

The support for POSIX style identifiers in the C RTL requires 32-bit user and
group ID support and also depends on features in the base version of OpenVMS.
POSIX style IDs are supported by OpenVMS Version 7.3-2 and higher.

xxvi



To use POSIX style identifiers, applications must be compiled for 32-bit UID/GID
(by defining the _ _USE_LONG_GID_T macro), and POSIX style IDs must be enabled
by defining the DECC$POSIX_STYLE_UID feature logical name to ENABLE.

To disable POSIX style IDs, define DECC$POSIX_STYLE_UID to DISABLE.

64-bit Pointer Support for Some Socket Routines
64-bit pointer support is added for the following TCP/IP socket routines:

freeaddrinfo recvmsg
getaddrinfo sendmsg

Previously, these routines had only a 32-bit interface.

Set Default Directory for Child Processes
You can now set the default (working) directory for a child process created by
vfork/exec*, using the new C RTL decc$set_child_default_dir function.

New Feature Logicals
The following new feature logicals provide additional standards conformance and
UNIX portability:

• DECC$UNIX_LEVEL provides a mechanism to specify a level of UNIX
compatibility that allows an application to control groups of C RTL feature
logicals provided for UNIX compatibility without having to set each of the
individual UNIX compatibility feature logicals.

• DECC$ENABLE_TO_VMS_LOGNAME_CACHE speeds the translation of
logical names in UNIX name translation.

• DECC$EFS_NO_DOTS_IN_DIRNAME suppresses the interpretation of
names of files containing periods ( . ) as directory names.

• DECC$ALLOW_REMOVE_OPEN_FILES controls the behavior of remove
on open files. Ordinarily, the operation fails. However, POSIX conformance
dictates that the operation succeed. This POSIX conformant behavior is
enabled by the new feature switch.

• DECC$POSIX_STYLE_UID controls whether 32-bit UIDs and GIDs are
interpreted as POSIX style identifiers or derived from the process UIC.

• DECC$NO_ROOTED_SEARCH_LISTS controls how the to_vms function
resolves search-list logicals.

• DECC$ALLOW_UNPRIVILEGED_NICE controls whether the nice function
exhibits its legacy behavior of not including a privilege check on the calling
process, or behaves according to the X/Open specfication by checking the
privilege.

• DECC$USE_JPI$_CREATOR determines the parent process ID in getppid
by calling $GETJPI using item JPI$_CREATOR instead of JPI$_OWNER.
This feature is only available on systems supporting POSIX style session
identifiers.

• DECC$WRITE_SHORT_RECORDS accommodates short-sized records, while
retaining the legacy method of writing records to a fixed-length file as the
default behavior.

• DECC$PIPE_BUFFER_QUOTA lets you specify a buffer quota to use for the
pipe function if the new optional fourth parameter of that function is omitted.

xxvii



• DECC$GLOB_UNIX_STYLE selects the UNIX mode of the glob function.

• The DECC$RENAME_ALLOW_DIR feature logical affects the behavior of the
rename function.

• The DECC$ACL_ACCESS_CHECK feature logical controls the behavior of
the access function so that it can check both UIC protection and OpenVMS
Access Control Lists (ACLs).

• The DECC$EXEC_FILEATTR_INHERITANCE feature logical is modified to
allow greater choice in setting process inheritance for file access modes.

UNIX File-Name Translation Enhancements
Various enhancements to improve performance, especially through faster UNIX
name translation, are included:

• A logical name cache is implemented to reduce the high cost of translating
logical names in UNIX name translation. This cache is used only when
the new DECC$ENABLE_TO_VMS_LOGNAME_CACHE feature logical is
enabled.

• A feature is added to the C RTL to suppress interpretation of file
specifications containing periods ( . ) as directory names. It is activated
by enabling the new DECC$EFS_NO_DOTS_IN_DIRNAME feature logical.

• Support is added for angle brackets in equivalence strings for logical names
used in UNIX name translation.

• The decc$translate_vms function is optimized for faster file-name
translation.

• The ftw function is enhanced to handle angle brackets as directory delimiters.

New/Changed Functions
The following new C RTL functions are provided with OpenVMS Version 7.3-2:

File Read/Write Functions
pread readv __writev64
pwrite _readv64

Print Functions
snprintf
vsnprintf

Signal Functions
sighold sigignore sigrelse
sigwait sigtimedwait sigwaitinfo

Time Functions
nanosleep clock_gettime
clock_getres clock_settime

Password Functions
getpwnam_r _getpwnam_r64 __getpwnam64 _getpwent64
getpwuid getpwuid_r __getpwuid64 _getpwuid_r64

Security/Impersonation Functions
endgrent getgrnam getsid setpgrp
getgrent getgrnam_r seteuid setregid
getgrgid getpgid setgrent setreuid
getgrgid_r getpgrp setpgid setsid

xxviii



Socket Function
poll

Miscellaneous Functions
a64l globfree rand_r decc$set_child_default_dir
glob l64a ttyname_r

The following modified C RTL functions are also provided:

endpwent setgid geteuid
getegid setpwent getgid
getpwent setuid getuid
ttyname

xxix





1
Introduction

The ISO/ANSI C standard defines a library of functions, as well as related
types and macros, to be provided with any implementation of ANSI C. The HP
C Language Reference Manual describes the ANSI-conformant library features
common to all HP C platforms. The HP C Run-Time Library Reference Manual
for OpenVMS Systems provides a more detailed description of these routines and
their use in the OpenVMS environment. It also documents additional header
files, functions, types, and macros that are available on the OpenVMS system.

All library functions are declared in a header file. To make the contents of a
header file available to your program, include the header file with an #include
preprocessor directive. For example:

#include <stdlib.h>

Each header file contains function prototypes for a set of related functions, and
defines any types and macros needed for their use.

To list the header files on OpenVMS Alpha systems, use the following commands:

$ LIBRARY/LIST ALPHA$LIBRARY:SYS$STARLET_C.TLB

$ LIBRARY/LIST ALPHA$LIBRARY:DECC$RTLDEF.TLB

$ DIR SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]*.H;

$ DIR ALPHA$LIBRARY:*.H;

The first command lists the text module form of the header files for the OpenVMS
system interfaces. The second lists the text module form of the header files
for the HP C language interface. The third lists *.H header files for the HP C
language interfaces. The fourth lists *.H header files for layered products and
other applications.

Note

The SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]
directory is only a reference area for your viewing. The compiler still
looks in the *.TLB files for #include file searches.

To list the header files on OpenVMS VAX systems, use one of the following
commands:

$ DIR ’F$TRNLMN("DECC$LIBRARY_INCLUDE")’*.H;
$ DIR DECC$LIBRARY_INCLUDE:*.H;

On OpenVMS VAX systems, the following command might also find additional or
duplicate header files:

$ DIR SYS$LIBRARY:*.H;

Introduction 1–1



However, duplicate files (such as <stdio.h>) found in SYS$LIBRARY probably
support the VAX C Version 3.2 environment and should not be used with HP C.

Function definitions themselves are not included in the header files, but are
contained in the HP C Run-Time Library (RTL) shipped with the OpenVMS
operating system. Before using the HP C RTL, you must be familiar with the
following topics:

• The linking process

• The macro substitution process

• The difference between function definitions and function calls

• The format of valid file specifications

• The OpenVMS-specific methods of input and output (I/O)

• The HP C for OpenVMS extensions and nonstandard features

A knowledge of all these topics is necessary to effectively use the HP C RTL. This
chapter shows the connections between these topics and the HP C RTL. Read this
chapter before any of the other chapters in this manual.

The primary purpose of the HP C RTL is to provide a means for C programs to
perform I/O operations; the C language itself has no facilities for reading and
writing information. In addition to I/O support, the HP C RTL also provides a
means to perform many other tasks.

Chapters 2 through 11 describe the various tasks supported by the HP C RTL.
The Reference Section alphabetically lists and describes all the functions and
macros available to perform these tasks.

1.1 Using the HP C Run-Time Library
When working with the HP C RTL, you must be aware of some implementation
specifics.

First, if you plan to use HP C RTL functions in your C programs, make sure that
a function named main or a function that uses the main_program option exists in
your program. For more information, see the HP C Language Reference Manual
or the HP C User’s Guide for OpenVMS Systems.

Second, the HP C RTL functions are executed at run time, but references to these
functions are resolved at link time. When you link your program, the OpenVMS
linker resolves all references to HP C RTL functions by searching any shareable
code libraries or object code libraries specified on the LINK command line.

You can use the HP C RTL as a shareable image or you can use the HP C RTL
object libraries.

When you use the HP C RTL as a shareable image, the code for the RTL resides
in an image file in SYS$SHARE and is shared by all HP C programs. After
execution, control returns to your program. This process has a number of
advantages:

• You reduce the size of a program’s executable image.

• The program’s image takes up less disk space.

• The program swaps in and out of memory faster due to decreased size.

1–2 Introduction



• With HP C and HP C++, you no longer need to define an options file when
linking your program against the shareable image. Linking against the RTL
shareable image is now much simpler than it was with VAX C. In fact, it is
the default method of linking to the HP C RTL.

When linking to the HP C RTL, you do not need to define any LNK$LIBRARY
logicals. In fact, you should deassign LNK$LIBRARY because linking with the
shareable image is more convenient than linking with the HP C RTL object
libraries.

See your OpenVMS, HP C, or HP C++ release notes for any supplemental
information about linking with the HP C RTL.

1.2 RTL Linking Options on Alpha Systems (Alpha only)

The following sections describe several ways of linking HP C and HP C++
programs with the HP C RTL on OpenVMS Alpha systems.

1.2.1 Linking with the Shareable Image
Most linking needs should be satisfied by using the HP C RTL shareable image
DECC$SHR.EXE in the ALPHA$LIBRARY directory.

The shareable images VAXCRTL.EXE and VAXCRTLG.EXE do not
exist on OpenVMS Alpha systems. The only C RTL shareable image is
ALPHA$LIBRARY:DECC$SHR.EXE, which the linker automatically finds
through IMAGELIB.OLB.

The fact that VAXCRTL*.EXE does not exist on Alpha systems has the following
ramifications:

• You must change any existing VAX C link procedures to eliminate any
references to the VAXCRTL*.EXE images. An explicit reference to
DECC$SHR.EXE is unnecessary because IMAGELIB.OLB is searched
automatically by the linker (see the OpenVMS Linker Utility Manual).

• Because DECC$SHR.EXE exports only prefixed universal symbols (ones
that begin with DECC$), to successfully link against it make sure you cause
prefixing to occur for all HP C RTL entry points that you use.

If you use only the HP C RTL functions defined in the ANSI C Standard, all
entry points will be prefixed.

If you use HP C RTL functions not defined in the ANSI C Standard, you must
compile in one of two ways to ensure prefixing:

– Compile with the /PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES
qualifier.

– Compile with the /STANDARD=VAXC or /STANDARD=COMMON
qualifier; you get /PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES as the
default.

To link against the shareable image, use the LINK command. For example:

$ LINK PROG1

The linker automatically searches IMAGELIB.OLB to find DECC$SHR.EXE, and
resolves all C RTL references.

Introduction 1–3



1.2.2 Linking with the Object Libraries
The HP C RTL object libraries are used solely for linking programs compiled
without /PREFIX=ALL.

On OpenVMS Alpha systems, the HP C RTL provides the following object
libraries in the ALPHA$LIBRARY directory:

• VAXCCURSE.OLB

• VAXCRTLD.OLB

• VAXCRTLT.OLB

• VAXCRTL.OLB

• VAXCRTLX.OLB

• VAXCRTLDX.OLB

• VAXCRTLTX.OLB

The object library VAXCCURSE.OLB, which provides access to the Curses
functions, contains unprefixed entry points that vector to the appropriate prefixed
entry points.

The object libraries VAXCRTL.OLB, VAXCRTLD.OLB, VAXCRTLT.OLB,
VAXCRTLX.OLB, VAXCRTLDX.OLB, and VAXCRTLTX.OLB also contain
unprefixed entry points that vector to the appropriate prefixed entry points,
depending on the floating-point type specified by the object library used:

• VAXCRTL.OLB contains all HP C RTL routine name entry points as well as
VAX G-floating double-precision, floating-point entry points.

• VAXCRTLD.OLB contains a limited support of VAX D-floating double-
precision, floating-point entry points.

• VAXCRTLT.OLB contains IEEE T-floating double-precision, floating-point
entry points.

• VAXCRTLX.OLB contains G_floating support and support for the
/L_DOUBLE_SIZE=128 compiler qualifier.

• VAXCRTLDX.OLB contains D_floating support and support for the
/L_DOUBLE_SIZE=128 compiler qualifier.

• VAXCRTLTX.OLB contains IEEE T_floating support and support for the
/L_DOUBLE_SIZE=128 compiler qualifier.

/L_DOUBLE_SIZE=128 is the default.

On the LINK command, specify only one of the VAXCRTL*.OLB libraries and, if
needed, the VAXCCURSE.OLB library.

In the default mode of the compiler (/STANDARD=RELAXED_ANSI89) and
also in strict ANSI C mode, all calls to ANSI C standard library routines
are automatically prefixed with DECC$. With the /[NO]PREFIX_LIBRARY_
ENTRIES qualifier, you can change this to prefix all HP C RTL names with
DECC$, or to not prefix any HP C RTL names. Other options are also available
for this qualifer. See the /[NO]PREFIX_LIBRARY_ENTRIES qualifier in this
chapter for more information.

1–4 Introduction



When linking with /NOSYSSHR, if calls to the HP C RTL routines are prefixed
with DECC$, then the modules in STARLET.OLB are the only ones you need
to link against. Since STARLET.OLB is automatically searched by the linker
(unless the link qualifier /NOSYSLIB is used), all prefixed RTL external names
are automatically resolved.

If any calls to the HP C RTL routines are not prefixed, then you need to
explicitly link against VAXCRTL.OLB, VAXCRTLD.OLB, VAXCRTLT.OLB
(or VAXCRTLX.OLB, VAXCRTLDX.OLB, or VAXCRTLDX.OLB), or
VAXCCURSE.OLB, depending on which floating-point types you need, or if you
want Curses functions. If you are linking with /NOSYSSHR, prefixed HP C RTL
entry points are resolved in STARLET.OLB. If you are linking with /SYSSHR (the
default), prefixed HP C RTL entry points are resolved in DECC$SHR.EXE.

1.2.3 Examples
The following examples show several different ways you might want to link with
the HP C RTL. See Figure 1–1 for a graphical summary of these examples.

1. Most of the time, you just want to link against the shareable image:

$ CC/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES PROG1
$ LINK PROG1

The linker automatically searches IMAGELIB.OLB to find DECC$SHR.EXE.

2. If you want to use just object libraries (to write privileged code or for ease
of distribution, for example), use the /NOSYSSHR qualifier of the LINK
command:

$ CC/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES PROG1
$ LINK/NOSYSSHR PROG1

Prefixed RTL symbol references in the user program are resolved in the HP C
RTL object library contained in STARLET.OLB.

Notes

• When linking HP C programs against the HP C RTL object
libraries using the /NOSYSSHR qualifier, applications that
previously linked without undefined globals may result in
undefined globals for the CMA$TIS symbols. To resolve these
undefined globals, add the following line to your link options file:

SYS$LIBRARY:STARLET.OLB/LIBRARY/INCLUDE=CMA$TIS

• If a program linked with the /NOSYSSHR qualifier makes a call
to a routine that resides in a dynamically activated image, and the
routine returns a value indicating an unsuccessful status, errno
is set to ENOSYS, and vaxc$errno is set to C$_NOSYSSHR.
The error message corresponding to C$_NOSYSSHR is "Linking
/NOSYSSHR disables dynamic image activation." An example of
this situation is a program linked with /NOSYSSHR that makes a
call to a socket routine.

Introduction 1–5



3. When compiling with prefixing disabled, in order to use object libraries that
provide alternate implementations of C RTL functions, you need to use the
VAXC*.OLB object libraries. In this case, compile and link as follows:

$ CC/NOPREFIX_LIBRARY_ENTRIES PROG1
$ LINK PROG1, MYLIB/LIBRARY, ALPHA$LIBRARY:VAXCRTLX.OLB/LIBRARY

Unprefixed HP C RTL symbol references in the user program are resolved in
MYLIB and in VAXCRTL.OLB.

Prefixed HP C RTL symbol references in VAXCRTLX.OLB are resolved in
DECC$SHR.EXE through IMAGELIB.OLB.

In this same example, to get IEEE T-floating double-precision floating-point
support, you might use the following compile and link commands:

$ CC/NOPREFIX_LIBRARY_ENTRIES/FLOAT=IEEE_FLOAT PROG1
$ LINK PROG1, MYLIB/LIBRARY, ALPHA$LIBRARY:VAXCRTLTX.OLB/LIBRARY

4. Combining examples 2 and 3, you might want to use just the object libraries
(for writing privileged code or for ease of distribution) and use an object
library that provides C RTL functions. In this case, compile and link as
follows:

$ CC/NOPREFIX_LIBRARY_ENTRIES PROG1
$ LINK/NOSYSSHR PROG1, MYLIB/LIBRARY, ALPHA$LIBRARY:VAXCRTLX.OLB/LIBRARY

Prefixed HP C RTL symbol references in VAXCRTL.OLB are resolved in
STARLET.OLB.

Figure 1–1 Linking with the HP C RTL on OpenVMS Alpha Systems

Example 4Example 3Example 2

STARLET.OLB

DECC$SHR.EXE

ProgProgProg

VAXCRTL*.OLBVAXCRTL*.OLB

Prog

DECC$SHR.EXE

STARLET.OLB

Example 1

(DECC$SHR.EXE)

/PREFIX=ALL/PREFIX=ALL
STARLET.OLB

(DECC$SHR.EXE)
IMAGELIB.OLB

/NOPREFIX /NOPREFIX
IMAGELIB.OLB STARLET.OLB

ZK−6045A−GE

1.3 RTL Linking Options on VAX Systems (VAX only)

Both the VAX C RTL and the HP C RTL can coexist on your OpenVMS VAX
system. The VAX C RTL supports existing VAX C applications. The HP C RTL
supports ANSI-compliant HP C and HP C++, as well as other components of the
OpenVMS environment. The HP C RTL also provides a mechanism for thread
safety and performance improvements.

1–6 Introduction



Applications developed with VAX C will continue to use the VAX C RTL. However,
you can relink VAX C applications to use the HP C RTL instead. This lets you
take advantage of the new features of the HP C RTL and solve potential
interoperability problems in complex applications that incorporate both the
VAX C RTL and the HP C RTL. Existing applications that are relinked to use
the HP C RTL should be carefully tested for possible problems resulting from
the differences in behavior between the VAX C RTL and the HP C RTL. See the
applicable HP C release notes and OpenVMS release notes for more information.

The following sections describe several ways of linking HP C programs with the
HP C RTL and VAX C RTL on OpenVMS VAX systems.

1.3.1 Linking with the HP C RTL
The HP C RTL provides a new set of files with different names from the VAX C
RTL files. If you want to link with the HP C RTL, you need to change your link
procedures to use the new file names. The following sections describe linking
with the HP C RTL files.

1.3.1.1 Linking with the HP C RTL Shareable Images
Most linking needs should be satisfied by using the HP C RTL shareable image
DECC$SHR.EXE in the SYS$LIBRARY directory. Use this linking method for
programs that are written entirely in HP C or HP C++ code; that is, with no
VAX C object modules.

Because DECC$SHR.EXE exports only prefixed universal symbols (ones that
begin with DECC$), to successfully link against it make sure you cause prefixing
to occur for all HP C RTL entry points.

If you use only the HP C RTL functions defined in the ANSI C Standard, all entry
points will be prefixed.

If you use HP C RTL functions not defined in the ANSI C Standard, you must
compile in one of two ways to ensure prefixing:

• Compile with the /PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES qualifier.

• Compile with the /STANDARD=VAXC or /STANDARD=COMMON qualifier;
you get /PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES as the default.

Then link against the shareable image using the LINK command. For example:

$ LINK PROG1

If you are using the VAX C compiler and you want to link with DECC$SHR.EXE,
you must link to one of the following files:

VAXC2DECC.EXE
VAXCG2DECC.EXE

You link with them as follows:

$ LINK PROG1,TT:/OPTIONS
SYS$LIBRARY:VAXC2DECC/SHARE

Ctrl/Z

Use the G-floating version, VAXCG2DECC.EXE, if you compiled with the
/G_FLOAT or /FLOAT=G_FLOAT qualifier.

Introduction 1–7



1.3.1.2 Linking with or Providing Your Own Shareable Images
Most linking needs for an application using a shareable image are handled by
a straightforward link command, regardless of whether the shared image uses
HP C, VAX C, or some other programming language.

For example, assume that SHARE1.EXE is a shareable image linked with
VAXCRTL.EXE. Also assume that your program, PROG1, is compiled with HP C
and, therefore, references prefixed names for C RTL functions. You can then use
the following commands:

$ LINK PROG1, SYS$INPUT:/OPTIONS
MYDISK:[TEXT]SHARE1.EXE/SHARE

If PROG1 does not use prefixed names, the link could result in link conflicts. If
this occurs, see Section 1.3.2.

1.3.1.3 Linking with the HP C RTL Object Libraries
The HP C RTL object libraries are used primarily for linking with the
/NOSYSSHR qualifier.

On OpenVMS VAX systems, the HP C RTL provides the following object libraries
in the SYS$LIBRARY directory:

• DECCCURSE.OLB

• DECCRTLG.OLB

• DECCRTL.OLB

As with VAX C, if you specify more than one object library on the LINK command,
you must do so in the order listed.

You use these object libraries in the same way that you would use the VAX C RTL
object libraries VAXCRTL.OLB, VAXCRTLG.OLB, and VAXCCURSE.OLB. For
example:

$ ! Link a D-float program
$ LINK PROG1, SYS$LIBRARY:DECCRTL.OLB/LIBRARY
$ !
$ ! Link a G-float program
$ LINK PROG2, SYS$LIBRARY:DECCRTLG.OLB/LIBRARY, -
_$ SYS$LIBRARY:DECCRTL.OLB/LIBRARY
$ !
$ ! Link a D-float, Curses program
$ LINK PROG1, SYS$LIBRARY:DECCCURSE.OLB/LIBRARY, -
_$ SYS$LIBRARY:DECCRTL.OLB/LIBRARY

Note

When linking to the HP C RTL object libraries, you do not need to define
any LNK$LIBRARY logicals. In fact, you must deassign LNK$LIBRARY
when linking with the .OLB libraries; otherwise, you might see "multiply
defined symbols" errors.

In general, you should deassign LNK$LIBRARY because pointing
this logical to the HP C RTL object libraries interferes with VAX C
development.

1–8 Introduction



1.3.1.4 Linking with the HP C RTL Object Libraries /NOSYSSHR
If you want to link your program with the HP C RTL object libraries using
the /NOSYSSHR qualifier, you must specify /INCLUDE=CMA$TIS for the
object library. For OpenVMS VAX Version 7.3 and higher, you must specify
/INCLUDE=(CMA$TIS,CMA$TIS_VEC). Otherwise, several symbols will be
undefined and the resulting image will not execute.

In order to add this qualifier, you cannot use the LNK$LIBRARY logicals to link
with the HP C RTL. You must use a linker options file or list the HP C RTL
object library on the command line. For example:

$ LINK/NOSYSSHR PROG1, SYS$LIBRARY:DECCRTL.OLB/LIBRARY/INCLUDE=CMA$TIS

$ LINK/NOSYSSHR PROG1, SYS$LIBRARY:DECCRTL.OLB -
_$ /LIBRARY/INCLUDE=(CMA$TIS,CMA$TIS_VEC) (OpenVMS V7.3 and higher)

Notes

• When linking HP C programs against the HP C RTL object libraries
using the /NOSYSSHR qualifier, applications that previously linked
without undefined globals may result in undefined globals for the
CMA$TIS symbols. To resolve these undefined globals, add the
following line to your link options file:

SYS$LIBRARY:STARLET.OLB/LIBRARY/INCLUDE=CMA$TIS

SYS$LIBRARY:STARLET.OLB/LIBRARY/INCLUDE=(CMA$TIS,CMA$TIS_VEC)
(OpenVMS V7.3 and higher)

• If a program linked with the /NOSYSSHR qualifier makes a call
to a routine that resides in a dynamically activated image, and the
routine returns a value indicating an unsuccessful status, errno is
set to ENOSYS, and vaxc$errno is set to C$_NOSYSSHR. The error
message corresponding to C$_NOSYSSHR is "Linking /NOSYSSHR
disables dynamic image activation." An example of this situation is
a program linked with /NOSYSSHR that makes a call to a socket
routine.

1.3.2 Resolving Link-Time Conflicts with Multiple C RTLs
This section describes the use of interoperability tools to resolve link-time
conflicts when using multiple C RTLs.

When migrating to the HP C RTL, multiple C RTLs will likely be needed to link
an application. One C RTL might be explicitly linked against. A second C RTL
might not be explicitly linked against, but brought into the link by means of a
shareable image. For example, when developing a Motif program using HP C, the
application must be linked against the HP C RTL and against the Motif images.
Motif currently brings the VAX C RTL into the link.

Problems encountered when linking with multiple C RTLs are a result of the
OpenVMS linker resolving symbol references in the image being linked by
searching the transitive closure of shareable images and libraries. That is, when
linking with a shareable image, the linker searches that shareable image and
all shareable images referenced in that shareable image. So when linking with
VAXCRTL.EXE and with an image linked with VAXCRTLG.EXE, the linker

Introduction 1–9



will find two instances of all the C RTL symbols (one in VAXCRTL and one in
VAXCRTLG), and report a conflict.

The object libraries do not conflict with routine names, but do conflict with the
global symbols. Because VAX C implements global symbols as global overlaid
psects, the linker attempts to connect all the instances of a C-generated psect
with the same name. For example, a reference to stdin in the user program
is connected with the psect of the same name in VAXCRTL.OLB. However, a
shareable image that was linked with VAXCRTL.OLB also has a psect of the
same name; this results in an error because the linker cannot connect those two
definitions of the psect stdin.

Three interoperability tools are provided with the HP C compiler and in a
separate HP C/C++ RTL Run-Time Components kit to resolve link-time conflicts:

• VAXC$LCL.OPT

• VAXC$EMPTY.EXE

• DECC$EMPTY.EXE

These tools work by hiding the conflicting symbols from one of the C RTLs being
linked. Which tool is required depends on what C RTLs are used by the main
application and the shareable image.

Table 1–1 shows typical C RTL conflicts and the interoperability tool required
to resolve it. In the table, VAXCRTL.EXE refers to either VAXCRTL.EXE or
VAXCRTLG.EXE.

Table 1–1 Linking Conflicts

Linker Message Type of Conflict Tool Needed

LINK-E-MULSHRPSC VAXCRTL.OLB/VAXCRTL.EXE VAXC$LCL.OPT

LINK-E-SHRPSCLNG VAXCRTL.OLB/DECCRTL.OLB VAXC$LCL.OPT

LINK-E-MULSHRPSC,
LINK-E-SHRPSCLNG

DECCRTL.OLB/VAXCRTL.EXE VAXC$LCL.OPT

None DECCRTL.OLB/DECC$SHR.EXE DECC$EMPTY

LINK-W-MULDEF VAXCRTL.EXE/VAXCRTLG.EXE VAXC$EMPTY

LINK-W-MULDEF VAXC2DECC.EXE/VAXCRTL.EXE VAXC$EMPTY

1.3.2.1 Using VAXC$LCL.OPT
VAXC$LCL.OPT is required when building any shareable image linked with the
VAX C RTL object library or HP C RTL object library.

If the shareable image is built without using VAXC$LCL.OPT, the C RTL global
symbols are visible in the shareable image and cause linker conflicts when users
of the image link against it. For example:

%LINK-E-MULSHRPSC, psect C$$TRNS_VALUES defined in
shareable image IMAGE1.EXE; is multiply defined in
shareable image SYS$LIBRARY:VAXCRTL.EXE;1

-LINK-E-NOIMGFIL, image file not created

In this example, the shareable image IMAGE1 uses VAXCRTL.OLB, and the
image being linked uses VAXCRTL.EXE. For a successful link, relink the
shareable image using VAXC$LCL.OPT:

1–10 Introduction



$ LINK/SHARE IMAGE1.OBJ, IMAGE1.OPT/OPTIONS, SYS$LIBRARY:VAXCRTL/LIBRARY, -
_$ SYS$LIBRARY:VAXC$LCL.OPT/OPTIONS

The following message also indicates a conflict involving the VAX C RTL object
library:

%LINK-E-SHRPSCLNG, Psect STDIN has length of 8
in module C$EXTERNDATA file SYS$LIBRARY:DECCRTL.OLB;2
which exceeds length of 4 in shareable image IMAGE1.EXE;

-LINK-E-NOIMGFIL, image file not created

In this example, the shareable image IMAGE1 uses VAXCRTL.OLB, and the
image being linked uses DECCRTL.OLB. For a successful link, relink the
shareable image using VAXC$LCL.OPT.

If the shareable image cannot be relinked (as in the case of a third-party
shareable image), then the interoperability tool can be applied to the main
image. If the main image is being linked against DECCRTL.OLB, then apply
VAXC$LCL.OPT to the link of the main image.

If the main image is being linked against VAXCRTL.EXE, the only solution is to
get the shareable image fixed, because applying any of the interoperability tools
to the link of the main image will result in an unsuccessful link.

1.3.2.2 Using VAXC$EMPTY.EXE
Use VAXC$EMPTY.EXE to link a main application with both VAXC2DECC.EXE
(or VAXCG2DECC.EXE) and a shareable image linked with VAXCRTL.EXE (or
VAXCRTLG.EXE). Using VAXC$EMPTY.EXE hides all the global symbols in the
VAXCRTL*.EXE shareable image to prevent conflicts with VAXC2DECC.EXE or
VAXCG2DECC.EXE.

Also use VAXC$EMPTY.EXE to link an application with both VAXCRTL.EXE and
a shareable image linked with VAXCRTLG.EXE (or vice versa).

When there is a conflict between C RTL shareable images, the linker produces
large numbers of messages similar to the following:

%LINK-W-MULDEF, symbol ACOS multiply defined
in module VAXCRTL file SYS$COMMON:[SYSLIB]VAXCRTL.EXE;18

In this example, the shareable image is linked with VAXCRTL.EXE, and the
main program is linked with VAXC2DECC.EXE.

The solution is to define the VAXCRTL logical to point to VAXC$EMPTY.EXE
before linking the main program:

$ DEFINE/USER VAXCRTL SYS$LIBRARY:VAXC$EMPTY.EXE
$ LINK/EXEC=MAIN_IMAGE MAIN_PROG,OBJ1,OBJ2,...,SYS$INPUT:/OPTIONS
IMAGE1/SHARE
VAXCRTL/SHARE

Ctrl/Z

Note the following about this solution:

• Your linker options file cannot reference SYS$LIBRARY:VAXCRTL; it must
reference only VAXCRTL.

• Do not link explicitly against VAXC$EMPTY.EXE or your application will
neither link nor run correctly.

• Do not leave the VAXCRTL pointing to VAXC$EMPTY.EXE or your
application will not run correctly.

Introduction 1–11



• The DEFINE/USER command is used to ensure that the logical definition is
removed after execution of the LINK command. Make sure that no commands
intervene between the DEFINE/USER command and the LINK command.

Follow the same process when linking against VAXCRTLG.EXE by defining the
VAXCRTLG logical to point to VAXC$EMPTY.EXE.

1.3.2.3 Using DECC$EMPTY.EXE
The DECC$EMPTY.EXE interoperability tool allows a program to use the HP C
object library even when the program links with a shareable image that was
linked with DECC$SHR.EXE.

If DECC$EMPTY.EXE is not used during the link, all HP C RTL references from
the main program will be resolved in DECC$SHR.EXE, not in the object library.
There is no linker message that indicates this fact.

For example, if IMAGE1 is linked against DECC$SHR, and the following link is
performed, then the main image will not contain any HP C RTL object modules.
All C RTL references from the main progam are resolved in DECC$SHR:

$ LINK/EXEC=MAIN_IMAGE MAIN_PROG,OBJ1,...,SYS$INPUT:/OPTIONS
IMAGE1/SHARE
SYS$LIBRARY:DECCRTL/LIBRARY

Ctrl/Z

By defining the DECC$SHR logical to point to DECC$EMPTY.EXE immediately
before the link, all references to C RTL symbols from the main program are
resolved in the HP C RTL object library. For example:

$ DEFINE/USER DECC$SHR SYS$LIBRARY:DECC$EMPTY.EXE
$ LINK/EXEC=MAIN_IMAGE MAIN_PROG,OBJ1,...,SYS$INPUT:/OPTIONS
IMAGE1/SHARE
SYS$LIBRARY:DECCRTL/LIBRARY

Note the following about this solution:

• Do not link explicitly against DECC$EMPTY.EXE or your application will
neither link correctly nor run correctly.

• Do not leave the DECC$SHR logical pointing to DECC$EMPTY.EXE or your
application will not run correctly.

• The DEFINE/USER command is used to ensure that the logical definition is
removed after execution of the LINK command. Make sure that no commands
intervene between the DEFINE/USER command and the LINK command.

1.3.3 Linking Examples for HP C or HP C++ Code Only
The following examples show the different ways you might want to link HP C
only or HP C++ only programs with the HP C RTL on OpenVMS VAX systems:

1. Most of the time, you just want to link against the shareable image:

$ CC/DECC/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES PROG1
$ LINK PROG1

The linker automatically searches IMAGELIB.OLB to find DECC$SHR.EXE.

2. If you want to use just object libraries (to write privileged code or for ease
of distribution, for example), use the /NOSYSSHR qualifier of the LINK
command:

1–12 Introduction



$ CC/DECC/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES PROG1
$ LINK/NOSYSSHR PROG1, SYS$LIBRARY:DECCRTL.OLB/LIBRARY/INCL=CMA$TIS

$ LINK/NOSYSSHR PROG1, SYS$LIBRARY:DECCRTL.OLB -
_$ /LIBRARY/INCL=(CMA$TIS,CMA$TIS_VEC) (OpenVMS V7.3 and higher)

Prefixed HP C RTL symbol references in the user program are resolved in
STARLET.OLB.

3. When compiling with prefixing disabled, in order to use object libraries that
provide alternate implementations of C RTL functions, you need to use the
DECC*.OLB object libraries. In this case, compile and link as follows:

$ CC/DECC/NOPREFIX_LIBRARY_ENTRIES PROG1
$ LINK PROG1, MYLIB/LIBRARY, -
_$ SYS$LIBRARY:DECCRTL.OLB/LIBRARY

Unprefixed HP C RTL symbol references in the user program are resolved in
MYLIB and DECCRTL.OLB. The unprefixed names reference prefixed names
resolved in DECC$SHR.EXE.

You can link with any valid combination of DECCRTL.OLB,
DECCRTLG.OLB, and DECCCURSE.OLB. In this same example, to get
G-floating double-precision, floating-point support, use the following compile
and LINK commands:

$ CC/DECC/NOPREFIX_LIBRARY_ENTRIES/FLOAT=G_FLOAT PROG1
$ LINK PROG1, MYLIB/LIBRARY, SYS$LIBRARY:DECCRTLG.OLB/LIBRARY, -
_$ SYS$LIBRARY:DECCRTL.OLB/LIBRARY

4. Combining examples 2 and 3, you might want to use just the object libraries
(for writing privileged code or for ease of distribution) and use an object
library that provides C RTL functions. In this case, compile and link as
follows:

$ CC/DECC/NOPREFIX_LIBRARY_ENTRIES PROG1
$ LINK/NOSYSSHR PROG1, MYLIB/LIBRARY, -
_$ SYS$LIBRARY:DECCRTL.OLB/LIBRARY

1.3.4 Linking Examples for VAX C and HP C Code Combined
You might have programs that combine VAX C and HP C (or HP C++) code. The
following examples show different ways to link such programs with the HP C
RTL on OpenVMS VAX systems. These examples correspond to the examples in
Section 1.3.3.

1. To link against the shareable image, specify the VAXC2DECC.EXE shareable
image:

$ CC/DECC PROG1
$ CC/VAXC PROG2
$ LINK PROG1, PROG2, TT:/OPTIONS
SYS$LIBRARY:VAXC2DECC.EXE/SHARE

Ctrl/Z

Prefixed C RTL calls from PROG1 are resolved in DECC$SHR. Unprefixed
C RTL calls from PROG2 are resolved in VAXC2DECC.EXE, which transfers
them to DECC$SHR.

2. If you want to use just object libraries (to write privileged code or for ease
of distribution, for example), use the /NOSYSSHR qualifier of the LINK
command:

Introduction 1–13



$ CC/DECC PROG1
$ CC/VAXC PROG2
$ LINK/NOSYSSHR PROG1, PROG2, SYS$LIBRARY:DECCRTL.OLB/LIBRARY/INCL=CMA$TIS

All C RTL calls from both PROG1 and PROG2 are resolved in
DECCRTL.OLB.

3. When compiling with prefixing disabled, in order to use object libraries that
provide alternate implementations of C RTL functions, you need to use the
DECC*.OLB object libraries. In this case, compile and link as follows:

$ CC/DECC/NOPREFIX_LIBRARY_ENTRIES PROG1
$ CC/VAXC PROG2
$ LINK PROG1, PROG2, MYLIB/LIBRARY, -
_$SYS$LIBRARY:DECCRTL.OLB/LIBRARY/INCL=CMA$TIS

Unprefixed HP C RTL symbol references in the user program are resolved in
MYLIB and DECCRTL.OLB.

4. Combining examples 2 and 3, you might want to use just the object libraries
(for writing privileged code or for ease of distribution) and use an object
library that provides C RTL functions. In this case, compile and link as
follows:

$ CC/DECC/NOPREFIX_LIBRARY_ENTRIES PROG1
$ CC/VAXC PROG2
$ LINK/NOSYSSHR PROG1, PROG2, MYLIB/LIBRARY, -
_$ SYS$LIBRARY:DECCRTL.OLB/LIBRARY /INCL=CMA$TIS

1.3.5 Linking with the VAX C RTL /NOSYSSHR
This section applies to programs running on OpenVMS VAX Version 6.0 or higher.

For programs that currently link with the VAX C RTL object libraries using
the /NOSYSSHR qualifier, you must specify /INCLUDE=CMA$TIS for the object
library. Otherwise, several symbols will be undefined and the resulting image will
not execute. In order to add this qualifier, you cannot use the LNK$LIBRARY
logicals to link with the VAX C RTL object libraries. You must use a linker
options file or list the VAX C RTL object libraries on the command line. For
example:

$ LINK/NOSYSSHR PROG1, SYS$LIBRARY:VAXCRTL.OLB/LIBRARY/INCLUDE=CMA$TIS

1.4 HP C RTL Function Prototypes and Syntax
After learning how to link object modules and include header files, you must
learn how to reference HP C functions in your program. The remaining chapters
in this manual provide detailed descriptions of the HP C RTL functions.

1.4.1 Function Prototypes
In all chapters, the syntax describing each function follows the standard
convention for defining a function. This syntax is called a function prototype
(or just prototype). The prototype is a compact representation of the order of a
function’s arguments (if any), the types of the arguments, and the type of the
value returned by a function. We recommend the use of prototypes.

If the return value of the function cannot be easily represented by a C data-type
keyword, look for a description of the return values in the explanatory text. The
prototype descriptions provide insight into the functionality of the function. These
descriptions may not describe how to call the function in your source code.

1–14 Introduction



For example, consider the prototype for the feof function:

#include <stdio.h>
int feof(FILE *file_ptr);

This syntax shows the following information:

• The feof prototype resides in the <stdio.h> header file. To use feof, you
must include this header file. (Declaring HP C RTL functions yourself is not
recommended.)

• The feof function returns a value of data type int.

• There is one argument, file_ptr, that is of type "pointer to FILE". FILE is
defined in the <stdio.h> header file.

To use feof in a program, include <stdio.h> anywhere before the function call to
feof, as in the following example:

#include <stdio.h> /* Include Standard I/O */

main()
{

FILE *infile; /* Define a file pointer */
.
.
. /* Call the function feof */

while ( ! feof(infile) ) /* Until EOF reached */
{ /* Perform file operations */

.

.

.
}

}

1.4.2 Syntax Conventions for Function Prototypes
Since some library functions take a varying number of parameters, syntax
descriptions for function prototypes adhere to the following conventions:

• Ellipses ( . . . ) are used to indicate a varying number of parameters.

• In cases where the type of a parameter may vary, its type is not shown in the
syntax.

Consider the printf syntax description:

#include <stdio.h>
int printf(const char *format_specification, . . . );

The syntax description for printf shows that you can specify one or more optional
parameters. The remaining information about printf parameters is in the
description of the function.

1.4.3 UNIX Style File Specifications
The HP C RTL functions and macros often manipulate files. One of the
major portability problems is the different file specifications used on various
systems. Since many C applications are ported to and from UNIX systems, it is
convenient for all compilers to be able to read and understand UNIX system file
specifications.

Introduction 1–15



The following file specification conversion functions are included in the HP C RTL
to assist in porting C programs from UNIX systems to OpenVMS systems:

decc$match_wild

decc$translate_vms

decc$fix_time

decc$to_vms

decc$from_vms

The advantage of including these file specification conversion functions in the
HP C RTL is that you do not have to rewrite C programs containing UNIX
system file specifications. HP C can translate most valid UNIX system file
specifications to OpenVMS file specifications.

Please note the differences between the UNIX system and OpenVMS file
specifications, as well as the method used by the RTL to access files. For
example, the RTL accepts a valid OpenVMS specification and most valid
UNIX file specifications, but the RTL cannot accept a combination of both.
Table 1–2 shows the differences between UNIX system and OpenVMS system file
specification delimiters.

Table 1–2 UNIX and OpenVMS File Specification Delimiters

Description
OpenVMS
System UNIX System

Node delimiter :: !/

Device delimiter : /

Directory path delimiter [ ] /

Subdirectory delimiter [ . ] /

File extension delimiter . .

File version delimiter ; Not applicable

For example, Table 1–3 shows the formats of two valid specifications and one
invalid specification.

Table 1–3 Valid and Invalid UNIX and OpenVMS File Specifications

System File Specification Valid/Invalid

OpenVMS BEATLE::DBA0:[MCCARTNEY]SONGS.LIS Valid

UNIX beatle!/usr1/mccartney/songs.lis Valid

— BEATLE::DBA0:[MCCARTNEY.C]
/songs.lis

Invalid

When HP C translates file specifications, it looks for both OpenVMS and UNIX
system file specifications. Consequently, there may be differences between how
HP C translates UNIX system file specifications and how UNIX systems translate
the same UNIX file specification.

1–16 Introduction



For example, if the two methods of file specification are combined, as in
Table 1–3, HP C RTL can interpret [MCCARTNEY.C]/songs.lis as either
[MCCARTNEY]songs.lis or [C]songs.lis. Therefore, when HP C encounters a
mixed file specification, an error occurs.

UNIX systems use the same delimiter for the device name, the directory names,
and the file name. Due to the ambiguity of UNIX file specifications, HP C
may not translate a valid UNIX system file specification according to your
expectations.

For instance, the OpenVMS system equivalent of /bin/today can be either
[BIN]TODAY or [BIN.TODAY]. HP C can make the correct interpretation only
from the files present. If a file specification conforms to UNIX system file name
syntax for a single file or directory, it is converted to the equivalent OpenVMS file
name if one of the following conditions is true:

• If the specification corresponds to an existing OpenVMS directory, it is
converted to that directory name. For example, /dev/dir/sub is converted to
DEV:[DIR.SUB] if DEV:[DIR.SUB] exists.

• If the specification corresponds to an existing OpenVMS file name, it is
converted to that file name. For example, /dev/dir/file is converted to
DEV:[DIR]FILE if DEV:[DIR]FILE exists.

• If the specification corresponds to a nonexistent OpenVMS file name, but the
given device and directory exist, it is converted to a file name. For example,
/dev/dir/file is converted to DEV:[DIR]FILE if DEV:[DIR] exists.

Note

Beginning with OpenVMS Version 7.3, you can instruct the HP C RTL
to interpret the leading part of a UNIX style file specification as either a
subdirectory name or a device name.

As with previous releases, the default translation of foo/bar (UNIX style
name) is FOO:BAR (OpenVMS style device name).

To request translation of foo/bar (UNIX style name) to [.FOO]BAR
(OpenVMS style subdirectory name), define the logical name
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION to any value.
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION is checked
only once per image activation, not on a file-by-file basis. Defining this
logical affects not only the decc$to_vms function, but all HP C RTL
functions that accept both UNIX style and OpenVMS style file names as
an argument.

In the UNIX system environment, you reference files with a numeric file
descriptor. Some file descriptors reference Standard I/O devices; some descriptors
reference actual files. If the file descriptor belongs to an unopened file, the HP C
RTL opens the file. HP C equates file descriptors with the following OpenVMS
logical names:

Introduction 1–17



File Descriptor OpenVMS Logical Meaning

0 SYS$INPUT Standard input

1 SYS$OUTPUT Standard output

2 SYS$ERROR Standard error

1.4.4 Extended File Specifications
The ODS-5 volume structure provides enhanced support for mixed UNIX and
OpenVMS style file names. It supports long file names, allows the use of a wider
range of characters within file names, and preserves case within file names. With
OpenVMS Alpha Version 7.3-1, the C RTL has greatly improved support of ODS-5
characters, with 250 of the 256 characters supported, as opposed to only 214
supported previously. Also, file names without file types can now be accessed.

To enable the new support, you must define one or more C RTL feature logical
names. These names include the following:

DECC$EFS_CHARSET
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION
DECC$FILENAME_UNIX_NO_VERSION
DECC$FILENAME_UNIX_REPORT
DECC$READDIR_DROPDOTNOTYPE
DECC$RENAME_NO_INHERIT

See Section 1.6 for more information on these and other feature logical names.

1.5 Feature-Test Macros for Header-File Control
Feature-test macros provide a means for writing portable programs. They ensure
that the HP C RTL symbolic names used by a program do not clash with the
symbolic names supplied by the implementation.

The HP C RTL header files are coded to support the use of a number of feature-
test macros. When an application defines a feature-test macro, the HP C RTL
header files supply the symbols and prototypes defined by that feature-test macro
and nothing else. If a program does not define such a macro, the HP C RTL
header files define symbols without restriction.

The feature-test macros supported by the HP C RTL fall into three broad
categories for controlling the visibility of symbols in header files according to the
following:

• Standards

• Multiple-version support

• Compatibility

1.5.1 Standards Macros
The HP C RTL implements parts of the following standards:

• X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version 2,
also known as XPG4 V2.

• X/Open CAE Specification, System Interfaces and Headers, Issue 4, also
known as XPG4.

1–18 Introduction



• Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application Program Interface (API)—Amendment
2: Threads Extension [C Language], also known as POSIX 1003.1c-1995 or
IEEE 1003.1c-1995.

• ISO/IEC 9945-2:1993 - Information Technology - Portable Operating System
Interface (POSIX) - Part 2: Shell and Utilities, also known as ISO POSIX-2.

• ISO/IEC 9945-1:1990 - Information Technology - Portable Operating System
Interface (POSIX) - Part 1: System Application Programming Interface (API)
(C Language), also known as ISO POSIX-1.

• ANSI/ISO/IEC 9899:1999 - The C99 standard, published by ISO in December,
1999 and adopted as an ANSI standard in April, 2000.

• ISO/IEC 9899:1990-1994 - Programming Languages - C, Amendment 1:
Integrity, also known as ISO C, Amendment 1.

• ISO/IEC 9899:1990 - Programming Languages - C, also known as ISO C. The
normative part is the same as X3.159-1989, American National Standard for
Information Systems - Programming Language C, also known as ANSI C.

1.5.2 Selecting a Standard
You can define a feature-test macro to select each standard. You can do this
either with a #define preprocessor directive in your C source before the inclusion
of any header file, or with the /DEFINE qualifier on the CC command line.

Table 1–4 lists and describes the HP C RTL feature-test macros that control
standards support.

Table 1–4 Feature Test Macros - Standards

Macro Name
Standard
Selected

Other
Standards
Implied Description

_XOPEN_SOURCE_EXTENDED XPG4 V2 XPG4,
ISO POSIX-2,
ISO POSIX-1,
ANSI C

Makes visible XPG4-extended features,
including traditional UNIX based
interfaces not previously adopted by
X/Open.

_XOPEN_SOURCE XPG4 ISO POSIX-2,
ISO POSIX-1,
ANSI C

Makes visible XPG4 standard symbols
and causes _POSIX_C_SOURCE to be
set to 2 if it is not already defined with
a value greater than 2.1 2

_POSIX_C_SOURCE= =199506 IEEE
1003.1c-1995

ISO POSIX-2,
ISO POSIX-1,
ANSI C

Header files defined by ANSI C make
visible those symbols required by IEEE
1003.1c-1995.

_POSIX_C_SOURCE= =2 ISO POSIX-2 ISO POSIX-1,
ANSI C

Header files defined by ANSI C make
visible those symbols required by ISO
POSIX-2 plus those required by ISO
POSIX-1.

1Where the ISO C Amendment 1 includes symbols not specified by XPG4, defining _ _STDC_VERSION_ _ = = 199409 and
_XOPEN_SOURCE (or _XOPEN_SOURCE_EXTENDED) selects both ISO C and XPG4 APIs. Conflicts that arise when
compiling with both XPG4 and ISO C Amendment 1 resolve in favor of ISO C Amendment 1.
2Where XPG4 extends the ISO C Amendment 1, defining _XOPEN_SOURCE or _XOPEN_SOURCE_EXTENDED selects
ISO C APIs as well as the XPG4 extensions available in the header file. This mode of compilation makes XPG4 extensions
visible.

(continued on next page)

Introduction 1–19



Table 1–4 (Cont.) Feature Test Macros - Standards

Macro Name
Standard
Selected

Other
Standards
Implied Description

_POSIX_C_SOURCE= =1 ISO POSIX-1 ANSI C Header files defined by ANSI C make
visible those symbols required by ISO
POSIX-1.

__STDC_VERSION__= =199409 ISO C amdt
1

ANSI C Makes ISO C Amendment 1 symbols
visible.

_ANSI_C_SOURCE ANSI C — Makes ANSI C standard symbols
visible.

Features not defined by one of the previously named standards are considered
HP C extensions and are selected by not defining any standards-related, feature-
test macros.

If you do not explicitly define feature test macros to control header file definitions,
you implicitly include all defined symbols as well as HP C extensions.

1.5.3 Interactions with the /STANDARD Qualifier
The /STANDARD qualifier selects the dialect of the C language supported.

With the exception of /STANDARD=ANSI89 and /STANDARD=ISOC94, the
selection of C dialect and the selection of HP C RTL APIs to use are independent
choices. All other values for /STANDARD cause the entire set of APIs to be
available, including extensions.

Specifying /STANDARD=ANSI89 restricts the default API set to the ANSI C
set. In this case, to select a broader set of APIs, you must also specify the
appropriate feature-test macro. To select the ANSI C dialect and all APIs,
including extensions, undefine _ _HIDE_FORBIDDEN_NAMES before including any
header file.

Compiling with /STANDARD=ISOC94 sets _ _STDC_VERSION_ _ to 199409.
Conflicts that arise when compiling with both XPG4 and ISO C Amendment 1
resolve in favor of ISO C Amendment 1. XPG4 extensions to ISO C Amendment 1
are selected by defining _XOPEN_SOURCE.

The following examples help clarify these rules:

• The fdopen function is an ISO POSIX-1 extension to <stdio.h>. Therefore,
<stdio.h> defines fdopen only if one or more of the following is true:

The program including it is not compiled in strict ANSI C mode
(/STANDARD=ANSI89).

_POSIX_C_SOURCE is defined as 1 or greater.

_XOPEN_SOURCE is defined.

_XOPEN_SOURCE_EXTENDED is defined.

• The popen function is an ISO POSIX-2 extension to <stdio.h>. Therefore,
<stdio.h> defines popen only if one or more of the following is true:

The program including it is not compiled in strict ANSI C mode
(/STANDARD=ANSI89).

_POSIX_C_SOURCE is defined as 2 or greater.

1–20 Introduction



_XOPEN_SOURCE is defined.

_XOPEN_SOURCE_EXTENDED is defined.

• The getw function is an X/Open extension to <stdio.h>. Therefore, <stdio.h>
defines getw only if one or more of the following is true:

The program is not compiled in strict ANSI C mode
(/STANDARD=ANSI89).

_XOPEN_SOURCE is defined.

_XOPEN_SOURCE_EXTENDED is defined.

• The X/Open Extended symbolic constants _SC_PAGESIZE, _SC_PAGE_SIZE,
_SC_ATEXIT_MAX, and _SC_IOV_MAX were added to <unistd.h> to
support the sysconf function. However, these constants are not defined by
_POSIX_C_SOURCE.

The <unistd.h> header file defines these constants only if a program does not
define _POSIX_C_SOURCE and does define _XOPEN_SOURCE_EXTENDED.

If _POSIX_C_SOURCE is defined, these constants are not visible in <unistd.h>.
Note that _POSIX_C_SOURCE is defined only for programs compiled in strict
ANSI C mode.

• The fgetname function is a HP C RTL extension to <stdio.h>. Therefore,
<stdio.h> defines fgetname only if the program is not compiled in strict
ANSI C mode (/STANDARD=ANSI89).

• The macro _PTHREAD_KEYS_MAX is defined by POSIX 1003.1c-1995. This
macro is made visible in <limits.h> when compiling for this standard with
_POSIX_C_SOURCE = = 199506 defined, or by default when compiling without
any standards-defining, feature-test macros.

• The macro WCHAR_MAX defined in <wchar.h> is required by ISO C
Amendment 1 but not by XPG4. Therefore:

Compiling for ISO C Amendment 1 makes this symbol visible, but
compiling for XPG4 compliance does not.

Compiling for both ISO C Amendment 1 and XPG4 makes this symbol
visible.

Similarly, the functions wcsftime and wcstok in <wchar.h> are defined
slightly differently by the ISO C Amendment 1 and XPG4:

Compiling for ISO C Amendment 1 makes the ISO C Amendment 1
prototypes visible.

Compiling for XPG4 compliance makes the XPG4 prototypes visible.

Compiling for both ISO C Amendment 1 and XPG4 selects the ISO C
prototypes because conflicts resulting from this mode of compilation
resolve in favor of ISO C.

Compiling without any standard selecting feature test macros makes
ISO C Amendment 1 features visible.

In this example, compiling with no standard-selecting feature-test macros
makes WCHAR_MAX and the ISO C Amendment 1 prototypes for wcsftime
and wcstok visible.

• The wcswidth and wcwidth functions are XPG4 extensions to ISO C
Amendment 1. Their prototypes are in <wchar.h>.

Introduction 1–21



These symbols are visible if:

Compiling for XPG4 compliance by defining _XOPEN_SOURCE or
_XOPEN_SOURCE_EXTENDED.

Compiling for DEC C Version 4.0 compatibility or on pre-OpenVMS
Version 7.0 systems.

Compiling with no standard-selecting feature-test macros.

Compiling for both ISO C Amendment 1 and XPG4 compilance because
these symbols are XPG4 extensions to ISO C Amendment 1.

Compiling for strict ISO C Amendment 1 does not make them visible.

1.5.4 Multiple-Version-Support Macro
By default, the header files enable APIs in the HP C RTL provided by the version
of the operating system on which the compilation occurs. This is accomplished by
the predefined setting of the _ _VMS_VER macro, as described in the HP C User’s
Guide for OpenVMS Systems. For example, compiling on OpenVMS Version 6.2
causes only HP C RTL APIs from Version 6.2 and earlier to be made available.

Another example of the use of the _ _VMS_VER macro is support for the 64-bit
versions of HP C RTL functions available with OpenVMS Alpha Version 7.0
and higher. In all header files, functions that provide 64-bit support are
conditionalized so that they are visible only if _ _VMS_VER indicates a version
of OpenVMS that is greater than or equal to 7.0.

To target an older version of the operating system, do the following:

1. Define a logical DECC$SHR to point to the old version of DECC$SHR. The
compiler uses a table from DECC$SHR to perform routine name prefixing.

2. Define _ _VMS_VER appropriately, either with the /DEFINE qualifier or with
a combination of the #undef and #define preprocessor directives. With
/DEFINE, you may need to disable the warning regarding redefinition of a
predefined macro.

Targeting a newer version of the operating system might not always be possible.
For some versions, you can expect that the new DECC$SHR.EXE will require
new features of the operating system that are not present. For such versions, the
defining if the logical DECC$SHR in Step 1 would cause the compilation to fail.

To override the value of _ _VMS_VER, define _ _VMS_VER_OVERRIDE on the compiler
command line. Defining _ _VMS_VER_OVERRIDE without a value sets _ _VMS_VER to
the maximum value.

1.5.5 Compatibility Modes
The following predefined macros are used to select header-file compatibility with
previous versions of DEC C) or the OpenVMS operating system:

• _DECC_V4_SOURCE

• _VMS_V6_SOURCE

There are two types of incompatibilities that can be controlled in the header files:

• To conform to standards, some changes are source-code incompatible but
binary compatible. To select DEC C Version 4.0 source compatibility, use the
_DECC_V4_SOURCE macro.

1–22 Introduction



• Other changes to conform to standards introduce a binary or run-time
incompatibility.

In general, programs that recompile get new behaviors. In these cases, use
the _VMS_V6_SOURCE feature test macro to retain previous behaviors.

However, for the exit, kill, and wait functions, the OpenVMS Version 7.0
changes to make these routines ISO POSIX-1 compliant were considered too
incompatible to become the default. Therefore, in these cases the default
behavior is the same as on pre-OpenVMS Version 7.0 systems. To access
the versions of these routines that comply with ISO POSIX-1, use the
_POSIX_EXIT feature test macro.

The following examples help clarify the use of these macros:

• To conform to the ISO POSIX-1 standard, typedefs for the following have
been added to <types.h>:

dev_t off_t
gid_t pid_t
ino_t size_t
mode_t ssize_t
nlink_t uid_t

Previous development environments using a version of DEC C earlier
than Version 5.2 may have compensated for the lack of these typedefs in
<types.h> by adding them to another module. If this is the case on your
system, then compiling with the <types.h> provided with DEC C Version 5.2
might cause compilation errors.

To maintain your current environment and include the DEC C Version
5.2 <types.h>, compile with _DECC_V4_SOURCE defined. This will omit
incompatible references from the DEC C Version 5.2 headers. In <types.h>,
for example, the previously listed typedefs will not be visible.

• As of OpenVMS Version 7.0, the HP C RTL getuid and geteuid functions are
defined to return an OpenVMS UIC (user identification code) that contains
both the group and member portions of the UIC. In previous versions of the
DEC C RTL, these functions returned only the member number from the UIC
code.

Note that the prototypes for getuid and geteuid in <unistd.h> (as
required by the ISO POSIX-1 standard) and in <unixlib.h> (for HP C
RTL compatibility) have not changed. By default, newly compiled programs
that call getuid and geteuid get the new definitions. That is, these functions
will return an OpenVMS UIC.

To let programs retain the pre-OpenVMS Version 7.0 behavior of getuid and
geteuid, compile with the _VMS_V6_SOURCE feature-test macro defined.

• As of OpenVMS Version 7.0, the HP C RTL exit function is defined with ISO
POSIX-1 semantics. As a result, the input status argument to exit takes
a number between 0 and 255. (Prior to this, exit could take an OpenVMS
condition code in its status parameter.)

By default, the behavior for exit on OpenVMS systems is the same as before
— exit accepts an OpenVMS condition code. To enable the ISO POSIX-1
compatible exit function, compile with the _POSIX_EXIT feature-test macro
defined.

Introduction 1–23



1.5.6 Curses and Socket Compatibility Macros
The following feature-test macros are used to control the Curses and Socket
subsets of the HP C RTL library:

• _BSD44_CURSES

This macro selects the Curses package from the 4.4BSD Berkeley Software
Distribution.

• _VMS_CURSES

This macro selects a Curses package based on the VAX C compiler. This is
the default Curses package.

• _SOCKADDR_LEN

This macro is used to select 4.4BSD-compatible and XPG4 V2-compatible
socket interfaces. These interfaces require support in your underlying TCP/IP
software. Contact your TCP/IP vendor to inquire if the version of TCP/IP
software you run supports 4.4BSD sockets.

Strict XPG4 V2 compliance requires the 4.4BSD-compatible socket interface.
Therefore, if _XOPEN_SOURCE_EXTENDED is defined on OpenVMS Version 7.0 or
higher, _SOCKADDR_LEN is defined to be 1.

The following examples help clarify the use of these macros:

• Symbolic constants like AE, AL, AS, AM, BC, which represent pointers
to termcap fields used by the BSD Curses package, are only visible in
<curses.h> if _BSD44_CURSES is defined.

• The <socket.h> header file defines a 4.4BSD sockaddr structure only
if _SOCKADDR_LEN or _XOPEN_SOURCE_EXTENDED is defined. Otherwise,
<socket.h> defines a pre-4.4BSD sockaddr structure. If _SOCKADDR_LEN
is defined and _XOPEN_SOURCE_EXTENDED is not defined,

The <socket.h> header file also defines an osockaddr structure, which
is a 4.3BSD sockaddr structure to be used for compatibility purposes.
Since XPG4 V2 does not define an osockaddr structure, it is not visible in
_XOPEN_SOURCE_EXTENDED mode.

1.5.7 2-Gigabyte File Size Macro
The C RTL provides support for compiling applications to use file sizes and offsets
that are two gigabytes ( GB ) and larger. This is accomplished by allowing file
offsets of 64-bit integers.

The fseeko and ftello functions, which have the same behavior as fseek and
ftell, accept or return values of type off_t, which allows for a 64-bit variant of
off_t to be used.

C RTL functions lseek, mmap, ftuncate, truncate, stat, fstat, and ftw can also
accommodate a 64-bit file offset.

The new 64-bit interfaces can be selected at compile time by defining the
_LARGEFILE feature macro.

1–24 Introduction



1.5.8 32-Bit UID and GID Macros (Alpha only)

The C RTL supports 32-bit User Identification (UID) and Group Identification
(GID). When an application is compiled to use 32-bit UID/GID, the UID and GID
are derived from the UIC as in previous versions of the operating system. Use
the following macros to control UID/GID size:

• _ _USE_LONG_GID_T

To compile an application for 32-bit UID/GID support, define the
_ _USE_LONG_GID_T macro to 1.

• _DECC_SHORT_GID_T

To compile an application for 16-bit UID/GID support, define the
_DECC_SHORT_GID_T macro to 1.

1.6 Enabling C RTL Features Using Feature Logical Names
The C RTL provides an extensive list of feature switches that can be set using
DECC$ logical names. These switches affect the behavior of a C application at
run time.

The feature switches introduce new behaviors and also preserve old behaviors
that have been deprecated.

You enable most features by setting a logical name to ENABLE and disable a
feature by setting the logical name to DISABLE:

$ DEFINE DECC$feature ENABLE

$ DEFINE DECC$feature DISABLE

Some feature logical names can be set to a numeric value. For example:

$ DEFINE DECC$PIPE_BUFFER_SIZE 32768

Notes

• Do not set C RTL feature logical names for the system. Set them
only for the applications that need them, because other applications
including OpenVMS components depend on the default behavior of
these logical names.

• Older feature logicals from earlier releases of the C Run-Time Library
were documented as supplying "any equivalence string" to enable a
feature. While this was true at one time, we now strongly recommend
that you use ENABLE for setting these feature logicals and DISABLE
for disabling them. Failure to do so may produce unexpected results.

The reason for this is twofold:

In previous versions of the C RTL, any equivalence string, even
DISABLE, may have enabled a feature logical.

In subsequent and current versions of the C RTL, the following
equivalence strings will disable a feature logical. Do not use them
to enable a feature logical.

DISABLE
0 (zero)
F

Introduction 1–25



FALSE
N
NO

Any other string not on this list will enable a feature logical. The
unintentionally misspelled string "DSABLE", for example, will
enable a feature logical.

Table 1–5 lists the C RTL feature logical names, grouped by the type of features
they control.

Table 1–5 C RTL Feature Logical Names

Feature Logical Name Default

Performance Optimizations

DECC$ENABLE_GETENV_CACHE DISABLE

DECC$LOCALE_CACHE_SIZE 0

DECC$TZ_CACHE_SIZE 2

Legacy Behaviors

DECC$ALLOW_UNPRIVILEGED_NICE DISABLE

DECC$NO_ROOTED_SEARCH_LISTS DISABLE

DECC$THREAD_DATA_AST_SAFE DISABLE

DECC$V62_RECORD_GENERATION DISABLE

DECC$WRITE_SHORT_RECORDS DISABLE

DECC$XPG4_STRPTIME DISABLE

File Attributes

DECC$DEFAULT_LRL 32767

DECC$DEFAULT_UDF_RECORD DISABLE

DECC$FIXED_LENGTH_SEEK_TO_EOF DISABLE

DECC$ACL_ACCESS_CHECK DISABLE

Mailboxes

DECC$MAILBOX_CTX_STM DISABLE

Changes for UNIX Conformance

DECC$SELECT_IGNORES_INVALID_FD DISABLE

DECC$STRTOL_ERANGE DISABLE

DECC$VALIDATE_SIGNAL_IN_KILL DISABLE

(continued on next page)

1–26 Introduction



Table 1–5 (Cont.) C RTL Feature Logical Names

Feature Logical Name Default

General UNIX Enhancements

DECC$UNIX_LEVEL DISABLE

DECC$ARGV_PARSE_STYLE DISABLE

DECC$PIPE_BUFFER_SIZE 512

DECC$PIPE_BUFFER_QUOTA 512

DECC$STDIO_CTX_EOL DISABLE

DECC$USE_RAB64 DISABLE

DECC$GLOB_UNIX_STYLE DISABLE

Enhancements for UNIX Style File Names

DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION DISABLE

DECC$EFS_CHARSET DISABLE

DECC$ENABLE_TO_VMS_LOGNAME_CACHE ENABLE

DECC$FILENAME_UNIX_NO_VERSION DISABLE

DECC$FILENAME_UNIX_REPORT DISABLE

DECC$READDIR_DROPDOTNOTYPE DISABLE

DECC$RENAME_NO_INHERIT DISABLE

DECC$RENAME_ALLOW_DIR DISABLE

Enhancements for UNIX Style File Attributes

DECC$EFS_FILE_TIMESTAMPS DISABLE

DECC$EXEC_FILEATTR_INHERITANCE DISABLE

DECC$FILE_OWNER_UNIX DISABLE

DECC$FILE_PERMISSION_UNIX DISABLE

DECC$FILE_SHARING DISABLE

UNIX Compliance Mode

DECC$DETACHED_CHILD_PROCESS DISABLE

DECC$FILENAME_UNIX_ONLY DISABLE

DECC$POSIX_STYLE_UID DISABLE

DECC$USE_JPI$_CREATOR DISABLE

New Behaviors for POSIX Conformance

DECC$ALLOW_REMOVE_OPEN_FILES DISABLE

DECC$POSIX_SEEK_STREAM_FILE DISABLE

DECC$UMASK RMS default

(continued on next page)

Introduction 1–27



Table 1–5 (Cont.) C RTL Feature Logical Names

Feature Logical Name Default

File-Name Handling

DECC$DISABLE_POSIX_ROOT ENABLE

DECC$EFS_CASE_PRESERVE DISABLE

DECC$EFS_CASE_SPECIAL DISABLE

DECC$EFS_NO_DOTS_IN_DIRNAME DISABLE

DECC$READDIR_KEEPDOTDIR DISABLE

DECC$UNIX_PATH_BEFORE_LOGNAME DISABLE

An alphabetic listing and description of the C RTL feature logical names follows.
Unless otherwise stated, the feature logicals are enabled with ENABLE and
disabled with DISABLE.

DECC$ACL_ACCESS_CHECK
The DECC$ACL_ACCESS_CHECK feature logical controls the behavior of the
access function.

With DECC$ACL_ACCESS_CHECK enabled, the access function checks both
UIC protection and OpenVMS Access Control Lists (ACLs).

With DECC$ACL_ACCESS_CHECK disabled, the access function checks only
UIC protection.

DECC$ALLOW_REMOVE_OPEN_FILES
The DECC$ALLOW_REMOVE_OPEN_FILES feature logical controls the
behavior of the remove function on open files. Ordinarily, the operation fails.
However, POSIX conformance dictates that the operation succeed.

With DECC$ALLOW_REMOVE_OPEN_FILES enabled, this POSIX conformant
behavior is achieved.

DECC$ALLOW_UNPRIVILEGED_NICE
With DECC$ALLOW_UNPRIVILEGED_NICE enabled, the nice function exhibits
its legacy behavior of not checking the privilege of the calling process (that is,
any user may lower the nice value to increase process priorities). Also, when
the caller sets a priority above MAX_PRIORITY, the nice value is set to the base
priority.

With DECC$ALLOW_UNPRIVILEGED_NICE disabled, the nice function
conforms to the X/Open standard of checking the privilege of the calling process
(only users with ALTPRI privilege can lower the nice value to increase process
priorities), and when the caller sets a priority above MAX_PRIORITY, the nice
value is set to MAX_PRIORITY.

DECC$ARGV_PARSE_STYLE
With DECC$ARGV_PARSE_STYLE enabled, case is preserved in command-line
arguments when the process has been set up for extended DCL parsing using
SET PROCESS/PARSE_STYLE=EXTENDED.

DECC$ARGV_PARSE_STYLE must be defined externally as a logical name or
set in a function called using the LIB$INITIALIZE mechanism because it is
evaluated before function main is called.

1–28 Introduction



DECC$DEFAULT_LRL
DECC$DEFAULT_LRL specifies the default value for the RMS attribute for
the longest record length. The default value 32767 is the largest record size
supported by RMS.

Default: 32767

Maximum: 32767

DECC$DEFAULT_UDF_RECORD
With DECC$DEFAULT_UDF_RECORD enabled, file access mode defaults to
RECORD instead of STREAM mode for all files except STREAMLF.

DECC$DETACHED_CHILD_PROCESS
With DECC$DETACHED_CHILD_PROCESS enabled, child processes created
using vfork and exec are created as detached processes instead of subprocesses.

This feature has only limited support. In some cases the console cannot be shared
between the parent process and the detached process, which can cause exec to
fail.

DECC$DISABLE_POSIX_ROOT
With DECC$DISABLE_POSIX_ROOT enabled, support for the POSIX root
directory defined by SYS$POSIX_ROOT is disabled.

With DECC$DISABLE_POSIX_ROOT disabled, the SYS$POSIX_ROOT logical
name is interpreted as the equivalent of the file path "/". If a UNIX path
starting with a slash ( / ) is given and the value after the leading slash cannot be
translated as a logical name, SYS$POSIX_ROOT is used as the parent directory
for the specified UNIX file path.

The C RTL supports a UNIX style root that behaves like a real directory. This
allows such actions as:

% cd /
% mkdir /dirname
% tar -xvf tarfile.tar /dirname
% ls /

Previously, the C RTL did not recognize "/" as a directory name. The normal
processing for a file path starting with "/" was to interpret the first element as a
logical name or device name. If this failed, there was special processing for the
name /dev/null and names starting with /bin and /tmp:

/dev/null NLA0:
/bin SYS$SYSTEM:
/tmp SYS$SCRATCH:

These behaviors are retained for compatibility purposes. In addition, support
has been added to the C RTL for the logical name SYS$POSIX_ROOT as an
equivalent to "/".

To enable this feature for use by the C RTL, define SYS$POSIX_ROOT as a
concealed logical name. For example:

$ DEFINE/TRANSLATION=(CONCEALED,TERMINAL) SYS$POSIX_ROOT "$1$DKA0:[SYS0.abc.]"

To disable this feature:

$ DEFINE DECC$DISABLE_POSIX_ROOT DISABLE

Introduction 1–29



Enabling SYS$POSIX_ROOT results in the following behavior:

• If the existing translation of a UNIX path starting with "/" fails and
SYS$POSIX_ROOT is defined, the name is interpreted as if it starts with
/sys$posix_root.

• When converting from an OpenVMS to a UNIX style file name, and the
OpenVMS name starts with "SYS$POSIX_ROOT:", then the "SYS$POSIX_
ROOT:" is removed. For example, SYS$POSIX_ROOT:[dirname] becomes
/dirname. If the resulting name could be interpreted as a logical name or
one of the special cases previously listed, the result is /./dirname instead of
/dirname.

DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION
With DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION enabled, the
conversion routine decc$to_vms will only treat the first element of a UNIX style
name as a logical name if there is a leading slash ( / ).

DECC$EFS_CASE_PRESERVE
With DECC$EFS_CASE_PRESERVE enabled, case is preserved for file names on
ODS-5 disks.

With DECC$EFS_CASE_PRESERVE disabled, UNIX style file names are always
reported in lowercase.

However, note that enabling DECC$EFS_CASE_SPECIAL overrides the setting
for DECC$EFS_CASE_PRESERVE.

DECC$EFS_CASE_SPECIAL
With DECC$EFS_CASE_SPECIAL enabled, case is preserved only for file names
containing lowercase. If an element of a file name contains all uppercase letters,
it is reported in all lowercase in UNIX style.

When enabled, DECC$EFS_CASE_SPECIAL overrides the value of DECC$EFS_
CASE_PRESERVE.

DECC$EFS_CHARSET
With DECC$EFS_CHARSET enabled, UNIX names can contain ODS-5 extended
characters. Support includes multiple dots and all ASCII characters in the range
0 to 255, except the following:

<NUL>
/
"
*
?

Unless DECC$FILENAME_UNIX_ONLY is enabled, some characters can be
interpreted as OpenVMS characters depending on context. They are:

:
[
<
^
;

1–30 Introduction



DECC$EFS_CHARSET might be necessary for existing applications that make
assumptions about file names based on the presence of certain characters,
because the following nonstandard and undocumented C RTL extensions do not
work when EFS extended character-set support is enabled:

• $HOME is interpreted as the user’s login directory

With DECC$EFS_CHARSET enabled, $HOME is treated literally and may be
in an OpenVMS or UNIX style file name.

• ~name is interpreted as the login directory for user name

With DECC$EFS_CHARSET enabled, ~name is treated literally and can be in
an OpenVMS or UNIX style file name.

• Wild card regular expressions in the form [a-z]

With DECC$EFS_CHARSET enabled, square brackets are acceptable in
OpenVMS and UNIX style file names. For instance, in a function such as
open, abc[a-z]ef.txt is interpreted as a UNIX style name equivalent to the
OpenVMS style name abc^[a-z^]ef.txt, and [a-z]bc is interpreted as an
OpenVMS style name equivalent to the UNIX style name /sys$disk/a-z/bc.

With DECC$EFS_CHARSET enabled, the following encoding for EFS extended
characters is supported when converting from an OpenVMS style file name to a
UNIX style file name:

• All ODS-2 compatible names

• All encoding for 8-bit characters, either as single byte or using two-digit
hexadecimal form ^ab. In a UNIX path these are always represented as a
single byte.

• Encoding for DEL (^7F)

• The following characters when preceded by a caret:

space ! , _ & ’ ( ) + @ { } ; # [ ] % ^ = $ - ~ .

• The following characters when not preceded by a caret:

$ - ~ .

• The implementation supports the conversion from OpenVMS to UNIX needed
for functions readdir, ftw, getname, fgetname, getcwd, and others.

DECC$EFS_FILE_TIMESTAMPS
With DECC$EFS_FILE_TIMESTAMPS enabled, stat and fstat report new
ODS-5 access time (st_atime), attribute revision time (st_ctime) and modification
time (st_mtime) for files on ODS-5 volumes that have the extended file times
enabled using SET VOLUME/VOLUME=ACCESS_DATES.

If DECC$EFS_FILE_TIMESTAMPS is disabled, or the volume is not ODS-5, or
the volume does not have support for these additional times enabled, st_ctime
continues to be the file creation time and st_atime the same as the st_mtime.

The utime and utimes functions support these ODS-5 times in the same way as
stat.

DECC$EFS_NO_DOTS_IN_DIRNAME
With support for extended characters in file names for ODS-5, a name such as
NAME.EXT can be interpreted as NAME.EXT.DIR. Determining if directory
[.name^.ext] exists adds overhead to UNIX name translation when support for
extended character support in UNIX file names is enabled.

Introduction 1–31



Enabling the DECC$EFS_NO_DOTS_IN_DIRNAME feature logical suppresses
the interpretation of a file name containing dots as a directory name. With this
logical enabled, NAME.EXT is assumed to be a file name; no check is made for
directory [.name^.ext].

DECC$ENABLE_GETENV_CACHE
The C RTL supplements the list of environment variables in the environ table
with all logical names and DCL symbols available to the process.

By default, whenever getenv is called for a name not in the environ table, an
attempt is made to resolve this as a logical name and, if this fails, as a DCL
symbol.

With DECC$ENABLE_GETENV_CACHE enabled, once a logical name or DCL
name has been successfully translated, its value is stored in a cache. When the
same name is requested in a future call to getenv, the value is returned from the
cache instead of reevaluating the logical name or DCL symbol.

DECC$ENABLE_TO_VMS_LOGNAME_CACHE
Use the DECC$ENABLE_TO_VMS_LOGNAME_CACHE to improve the
performance of UNIX name translation. The value is the life of each cache
entry in seconds. The equivalence string ENABLE is evaluated as 1 second.

Define DECC$ENABLE_TO_VMS_LOGNAME_CACHE to 1 to enable the cache
with a 1-second life for each entry.

Define DECC$ENABLE_TO_VMS_LOGNAME_CACHE to 2 to enable the cache
with a 2-second life for each entry.

Define DECC$ENABLE_TO_VMS_LOGNAME_CACHE to �1 to enable the cache
without a cache entry expiration.

DECC$EXEC_FILEATTR_INHERITANCE
The DECC$EXEC_FILEATTR_INHERITANCE feature logical affects child
processes that are C programs.

For versions of OpenVMS before Version 7.3-2, DECC$EXEC_FILEATTR_
INHERITANCE is either enabled or disabled:

• With DECC$EXEC_FILEATTR_INHERITANCE enabled, the current file
pointer and the file open mode is passed to the child process in exec calls.

• With this logical name disabled, the child process does not inherit append
mode or the file position.

For OpenVMS Version 7.3-2 and higher, DECC$EXEC_FILEATTR_
INHERITANCE can be defined to 1 or 2, or be disabled:

• With DECC$EXEC_FILEATTR_INHERITANCE defined to 1, a child process
inherits file positioning for all file access modes except append.

• With DECC$EXEC_FILEATTR_INHERITANCE defined to 2, a child process
inherits file positioning for all file access modes including append.

• With DECC$EXEC_FILEATTR_INHERITANCE disabled, a child process does
not inherit the file position for any access modes.

1–32 Introduction



DECC$FILENAME_UNIX_ONLY
With DECC$FILENAME_UNIX_ONLY enabled, file names are never interpreted
as OpenVMS style names. This prevents any interpretation of the following as
OpenVMS special characters:

: [ ^

DECC$FILENAME_UNIX_NO_VERSION
With DECC$FILENAME_UNIX_NO_VERSION enabled, OpenVMS version
numbers are not supported in UNIX style file names.

With DECC$FILENAME_UNIX_NO_VERSION disabled, in UNIX style names,
version numbers are reported preceded by a period ( . ).

DECC$FILENAME_UNIX_REPORT
With DECC$FILENAME_UNIX_REPORT enabled, all file names are reported in
UNIX style unless the caller specifically selects OpenVMS style. This applies to
getpwnam, getpwuid, argv[0], getname, fgetname, and tempnam.

With DECC$FILENAME_UNIX_REPORT disabled, unless specified in the
function call, file names are reported in OpenVMS style.

DECC$FILE_PERMISSION_UNIX
With DECC$FILE_PERMISSION_UNIX enabled, the file permissions for new
files and directories are set according to the file creation mode and umask.
This includes mode 0777. When an earlier version of the file exists, the file
permissions for the new file are inherited from the earlier version. This mode
sets DELETE permission for a new directory when WRITE permission is enabled.

With DECC$FILE_PERMISSION_UNIX disabled, modes 0 and 0777 indicate
using RMS default protection or protection from the previous version of the file.
Permissions for new directories also follow OpenVMS rules, including disabling
DELETE permissions.

DECC$FILE_SHARING
With DECC$FILE_SHARING enabled, all files are opened with full sharing
enabled (FAB$M_DEL | FAB$M_GET | FAB$M_PUT | FAB$M_UPD). This is
set as a logical OR with any sharing mode specified by the caller.

DECC$FIXED_LENGTH_SEEK_TO_EOF
With DECC$FIXED_LENGTH_SEEK_TO_EOF enabled, lseek, fseeko, and
fseek with the direction paremeter set to SEEK_END will position relative to the
last byte in the file for files with fixed-length records.

With DECC$FIXED_LENGTH_SEEK_TO_EOF disabled, lseek, fseek, and
fseeko when called with SEEK_EOF on files with fixed-length records, will
position relative to the end of the last record in the file.

DECC$GLOB_UNIX_STYLE
Enabling DECC$GLOB_UNIX_STYLE selects the UNIX mode of the glob
function.

DECC$LOCALE_CACHE_SIZE
DECC$LOCALE_CACHE_SIZE defines how much memory, in bytes, to allocate
for caching locale data. The default value is 0, which disables the locale cache.

Default: 0

Maximum: 2147483647

Introduction 1–33



DECC$MAILBOX_CTX_STM
By default, an open on a local mailbox that is not a pipe treats mailbox records as
having a record attribute of FAB$M_CR.

With DECC$MAILBOX_CTX_STM enabled, the record attribute FAB$M_CR is
not set.

DECC$NO_ROOTED_SEARCH_LISTS
When the decc$to_vms function evaluates a UNIX style path string, if it
determines the first element to be a logical name, then:

• For rooted logicals or devices, it appends ":[000000]" to the logical name.

For example, if log1 is a rooted logical ($DEFINE LOG1 [DIR_NAME.]) then
/log1/filename.ext translates to LOG1:[000000]FILENAME.EXT.

• For nonrooted logicals, it appends just a colon ( : ) to the logical name.

For example, if log2 is a nonrooted logical ($ DEFINE LOG2 [DIR_NAME]),
then /log2/filename.ext translates to LOG2:FILENAME.EXT.

• If the first element is a search-list logical, the translation proceeds by
evaluating the first element in the search list, and translating the path as
previously described.

The preceding three cases lead to predictable, expected results.

In the case where the first element is a search list that consists of a mixture of
rooted and nonrooted logicals, translating paths as described previously can lead
to different behavior from that of older versions of OpenVMS (before OpenVMS
Version 7.3-1):

• Before OpenVMS Version 7.3-1, regardless of the contents of the logical,
the decc$to_vms function appended only a colon ( : ). For search lists that
consisted of a mixture of rooted and nonrooted logicals, this resulted in
certain expected behaviors.

• For OpenVMS Version 7.3-1 and later, if the first element of the mixed search
list is a rooted logical, then decc$to_vms appends ":[000000]" to the logical
name, resulting in different behavior from that of OpenVMS releases prior to
Version 7.3-1.

DECC$NO_ROOTED_SEARCH_LISTS controls how the decc$to_vms function
resolves search-list logicals and provides a means to restore the OpenVMS
behavior prior to Version 7.3-1.

With DECC$NO_ROOTED_SEARCH_LISTS enabled:

• If a logical is detected in a file specification, and it is a search list, then a
colon ( : ) is appended when forming the OpenVMS file specification.

• If it is not a search list, the behavior is the same as with DECC$NO_
ROOTED_SEARCH_LISTS disabled.

Enabling this feature logical provides the pre-Version 7.3-1 behavior for search
list logicals.

With DECC$NO_ROOTED_SEARCH_LISTS disabled:

• If a logical is detected in a file specification, and it is a rooted logical (or
a search list whose first element is a rooted logical), then ":[000000]" is
appended when forming the OpenVMS file specification.

1–34 Introduction



• If it is a nonrooted logical (or a search list whose first element is a nonrooted
logical), then just a colon ( : ) is appended.

Disabling this feature logical provides the behavior for OpenVMS Version 7.3-1
and later.

DECC$PIPE_BUFFER_SIZE
The system default buffer size of 512 bytes for pipe write operations can limit
performance and generate extra line feeds when handling messages longer than
512 bytes.

DECC$PIPE_BUFFER_SIZE allows a larger buffer size to be used for pipe
functions such as pipe and popen. A value of 512 to 65535 bytes can be specified.

If DECC$PIPE_BUFFER_SIZE is not specified, the default buffer size 512 is
used.

Default: 512

Minimum: 512

Maximum: 65535

DECC$PIPE_BUFFER_QUOTA
OpenVMS Version 7.3-2 adds an optional fourth argument of type int to the pipe
function to specify the buffer quota of the pipe’s mailbox. In previous OpenVMS
versions, the buffer quota was equal to the buffer size.

DECC$PIPE_BUFFER_QUOTA lets you specify a buffer quota to use for the pipe
function if the optional fourth argument of that function is omitted.

If the optional pipe fourth argument is omitted and DECC$PIPE_BUFFER_
QUOTA is not defined, then the buffer quota defaults to the buffer size, as before.

Default: 512

Minimum: 512

Maximum: 2147483647

DECC$POSIX_SEEK_STREAM_FILE
With DECC$POSIX_SEEK_STREAM_FILE enabled, positioning beyond end-of-
file on STREAM files does not write to the file until the next write. If the write
is beyond the current end-of-file, this positions beyond the old end-of-file, and the
start position for the write is filled with zeros.

With DECC$POSIX_SEEK_STREAM_FILE disabled, positioning beyond end-of-
file will immediately write zeros to the file from the current end-of-file to the new
position.

DECC$POSIX_STYLE_UID
With DECC$POSIX_STYLE_UID enabled, 32-bit UIDs and GIDs are interpreted
as POSIX style identifiers.

With this logical name disabled, UIDs and GIDs are derived from the process
UIC.

This feature is only available on OpenVMS systems providing POSIX style UID
and GID support.

Introduction 1–35



DECC$READDIR_DROPDOTNOTYPE
With DECC$READDIR_DROPDOTNOTYPE enabled, readdir when reporting
files in UNIX style only reports the trailing period ( . ) for files with no file type
when the file name contains a period.

With this logical name disabled, all files without a file type are reported with a
trailing period.

DECC$READDIR_KEEPDOTDIR
The default behavior when reporting files in UNIX style from readdir is to report
directories without a file type.

With DECC$READDIR_KEEPDOTDIR enabled, directories are reported in UNIX
style with a file type of ".DIR".

DECC$RENAME_NO_INHERIT
DECC$RENAME_NO_INHERIT provides more UNIX compliant behavior in the
rename function. With DECC$RENAME_NO_INHERIT enabled, the following
behaviors are enforced:

• If the old argument points to the pathname of a file that is not a directory,
the new argument will not point to the pathname of a directory.

• The new argument cannot point to a directory that exists.

• If the old argument points to the pathname of a directory, the new argument
will not point to the pathname of a file that is not a directory.

• The new name for the file does not inherit anything from the old name. The
new name must be specified completely. For example:

Renaming "A.A" to "B" yields "B"

With this logical name disabled, you get the expected OpenVMS behavior. For
example:

Renaming "A.A" to "B" yields "B.A"

DECC$RENAME_ALLOW_DIR
Enabling DECC$RENAME_ALLOW_DIR restores the prior OpenVMS behavior of
the rename function by allowing conversion to a directory specification when the
second argument is an ambiguous file specification passed as a logical name. The
ambiguity is whether the logical name is a UNIX or OpenVMS file specification.
Consider the following example with DECC$RENAME_ALLOW_DIR enabled:

rename("file.ext", "logical_name") /* where logical_name = dev:[dir.subdir] */
/* and :[dir.subdir] exists */

This results in:

dev:[dir.subdir]file.ext

This example renames a file from one directory into another directory, which is
the same behavior as in legacy versions of OpenVMS (versions before 7.3-1). Also
in this example, if dev:[dir.subdir] does not exist, rename returns an error.

Disabling DECC$RENAME_ALLOW_DIR provides a more UNIX compliant
conversion of the "logical_name" argument of rename. Consider the following
example with DECC$RENAME_ALLOW_DIR disabled:

rename("file.ext", "logical_name") /* where logical_name = dev:[dir.subdir] */

1–36 Introduction



This results in:

dev:[dir]subdir.ext

This example renames the file using the subdir part of the "logical_name"
argument as the new file name because on UNIX systems, renaming a file to a
directory is not allowed. So rename internally converts the "logical_name" to a
file name, and dev:[dir]subdir is the most reasonable conversion it can perform.

This new feature switch has a side effect of causing rename to a directory to take
precedence over rename to a file. Consider this example:

rename ( "file1.ext", "dir2" ) /* dir2 is not a logical */

With DECC$RENAME_ALLOW_DIR disabled, this example results in dir2.ext,
regardless of whether or not subdirectory [.dir2] exists.

With DECC$RENAME_ALLOW_DIR enabled, this example results in dir2.ext
only if subdirectory [.dir2] does not exist. If subdirectory [.dir2] does exist,
the result is [.dir2]file1.ext.

Note

If DECC$RENAME_NO_INHERIT is enabled, UNIX compliant behavior
is expected, so DECC$RENAME_ALLOW_DIR is ignored, and renaming
a file to a directory is not allowed.

DECC$SELECT_IGNORES_INVALID_FD
With DECC$SELECT_IGNORES_INVALID_FD enabled, select fails with errno
set to EBADF when an invalid file descriptor is specified in one of the descriptor
sets.

With DECC$SELECT_IGNORES_INVALID_FD disabled, select ignores invalid
file descriptors.

DECC$STDIO_CTX_EOL
With DECC$STDIO_CTX_EOL enabled, writing to stdout and stderr for stream
access is deferred until a terminator is seen or the buffer is full.

With DECC$STDIO_CTX_EOL disabled, each fwrite generates a separate write,
which for mailbox and record files generates a separate record.

DECC$STRTOL_ERANGE
With DECC$STRTOL_ERANGE enabled, the strtol behavior for an ERANGE
error is corrected to consume all remaining digits in the string.

With DECC$STRTOL_ERANGE disabled, the legacy behavior of leaving the
pointer at the failing digit is preserved.

DECC$THREAD_DATA_AST_SAFE
The C RTL has a mode that allocates storage for thread-specific data allocated by
threads at non-AST level separate for data allocated for ASTs. In this mode, each
access to thread-specific data requires a call to LIB$AST_IN_PROG, which can
add significant overhead when accessing thread-specific data in the C RTL.

The alternate mode protects thread-specific data only if another function has it
locked. This protects data that is in use within the C RTL, but does not protect
the caller from an AST changing the data pointed to.

Introduction 1–37



This latter mode is now the C RTL default for the strtok, ecvt, and fcvt
functions.

You can select the legacy AST safe mode by enabling DECC$THREAD_DATA_
AST_SAFE.

DECC$TZ_CACHE_SIZE
DECC$TZ_CACHE_SIZE specifies the number of time zones that can be held in
memory.

Default: 2

Maximum: 2147483647

DECC$UMASK
DECC$UMASK specifies the default value for the permission mask umask. By
default, a parent C program sets the umask from the RMS default permissions for
the process. A child process inherits the parent’s value for umask.

To enter the value as an octal value, add the leading zero; otherwise, it is
translated as a decimal value. For example:

$ DEFINE DECC$UMASK 026

Maximum: 0777

DECC$UNIX_LEVEL
With the DECC$UNIX_LEVEL logical name, you can manage multiple C RTL
feature logical names at once. By setting a value for DECC$UNIX_LEVEL from
1 to 100, you determine the default value for groups of feature logical names. The
value you set has a cumulative effect: the higher the value, the more groups that
are affected. Setting a value of 20, for example, enables all the feature logicals
associated with a DECC$UNIX_LEVEL of 20, 10, and 1.

The principal logical names affecting UNIX like behavior are grouped as follows:

1 General corrections
10 Enhancements
20 UNIX style file names
30 UNIX style file attributes
90 Full UNIX behavior - No concessions to OpenVMS

Level 30 is appropriate for UNIX like programs such as BASH and GNV.

The DECC$UNIX_LEVEL values and associated groups of affected feature logical
names are:

General Corrections (DECC$UNIX_LEVEL 1)

DECC$FIXED_LENGTH_SEEK_TO_EOF 1
DECC$POSIX_SEEK_STREAM_FILE 1
DECC$SELECT_IGNORES_INVALID_FD 1
DECC$STRTOL_ERANGE 1
DECC$VALIDATE_SIGNAL_IN_KILL 1

General Enhancements (DECC$UNIX_LEVEL 10)

DECC$ARGV_PARSE_STYLE 1
DECC$EFS_CASE_PRESERVE 1
DECC$STDIO_CTX_EOL 1
DECC$PIPE_BUFFER_SIZE 4096
DECC$USE_RAB64 1

UNIX style file names (DECC$UNIX_LEVEL 20)

1–38 Introduction



DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION 1
DECC$EFS_CHARSET 1
DECC$FILENAME_UNIX_NO_VERSION 1
DECC$FILENAME_UNIX_REPORT 1
DECC$READDIR_DROPDOTNOTYPE 1
DECC$RENAME_NO_INHERIT 1
DECC$GLOB_UNIX_STYLE

UNIX like file attributes (DECC$UNIX_LEVEL 30)

DECC$EFS_FILE_TIMESTAMPS 1
DECC$EXEC_FILEATTR_INHERITANCE 1
DECC$FILE_OWNER_UNIX 1
DECC$FILE_PERMISSION_UNIX 1
DECC$FILE_SHARING 1

UNIX compliant behavior (DECC$UNIX_LEVEL 90)

DECC$FILENAME_UNIX_ONLY 1
DECC$POSIX_STYLE_UID 1
DECC$USE_JPI$_CREATOR 1
DECC$DETACHED_CHILD_PROCESS 1

Notes

• Defining a logical name for an individual feature logical supersedes
the default value established by DECC$UNIX_LEVEL for that
feature.

• Future revisions of the C RTL may add new feature logicals to a given
DECC$UNIX_LEVEL. For applications that specify that UNIX level,
the effect is to enable those new feature logicals by default.

DECC$UNIX_PATH_BEFORE_LOGNAME
With DECC$UNIX_PATH_BEFORE_LOGNAME enabled, when translating a
UNIX file name not starting with a leading slash (/), an attempt is made to match
this to a file or directory in the current directory. If this is not found and the
name is valid as a logical name in an OpenVMS file name, an attempt is made to
translate the logical name and, if found, is used as part of the resulting file name.

Enabling DECC$UNIX_PATH_BEFORE_LOGNAME overrides the setting for
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION.

DECC$USE_JPI$_CREATOR
When enabled, DECC$USE_JPI$_CREATOR determines the parent process ID
in getppid by calling $GETJPI using item JPI$_CREATOR instead of JPI$_
OWNER.

This feature is only available on systems supporting POSIX style session
identifiers.

DECC$USE_RAB64
With DECC$USE_RAB64 enabled, open functions allocate a RAB64 structure
instead of the traditional RAB structure.

This provides latent support for file buffers in 64-bit memory.

Introduction 1–39



DECC$VALIDATE_SIGNAL_IN_KILL
With DECC$VALIDATE_SIGNAL_IN_KILL enabled, a signal value that is in the
range 0 to _SIG_MAX but is not supported by the C RTL generates an error with
errno set to EINVAL, which makes the behavior the same as for raise.

With this logical name disabled, validation of signals is restricted to checking
that the signal value is in the range 0 to _SIG_MAX. If sys$sigprc fails, errno is
set based on sys$sigprc exit status.

DECC$V62_RECORD_GENERATION
OpenVMS Versions 6.2 and higher can output record files using different rules.

With DECC$V62_RECORD_GENERATION enabled, the output mechanism
follows the rules used for OpenVMS Version 6.2.

DECC$WRITE_SHORT_RECORDS
The DECC$WRITE_SHORT_RECORDS feature logical supports a previous
change to the fwrite function (to accommodate writing records with size less
than the maximum record size), while retaining the legacy way of writing records
to a fixed-length file as the default behavior:

With DECC$WRITE_SHORT_RECORDS enabled, short-sized records (records
with size less than the maximum record size) written at EOF are padded
with zeros to align records on record boundaries. This is the behavior seen in
OpenVMS Version 7.3-1 and some ACRTL ECOs of that time period.

With DECC$WRITE_SHORT_RECORDS disabled, the legacy behavior of writing
records with no padding is implemented. This is the recommended and default
behavior.

DECC$XPG4_STRPTIME
XPG5 support for strptime introduces pivoting year support so that years in the
range 0 to 68 are in the 21st century, and years in the range 69-99 are in the
20th century.

With DECC$XPG4_STRPTIME enabled, XPG5 support for the pivoting year is
disabled and all years in the range 0 to 99 are in the current century.

1.7 32-Bit UIDs/GIDs and POSIX Style Identifiers
Where supported in versions of the OpenVMS operating system, POSIX style
identifiers refers to the User Identifier (UID), Group Identifier (GID), and Process
Group. The scope includes real and effective identifiers.

The support for POSIX style identifiers in the HP C RTL requires 32-bit user and
group ID support and also depends on features in the base version of OpenVMS.
POSIX style IDs are supported by OpenVMS Version 7.3-2 and higher.

To use POSIX style identifiers on OpenVMS versions that support them requires
applications to be compiled for 32-bit UID/GID. On OpenVMS versions where
32-bit UID/GID is the default, the user or application must still enable POSIX
style IDs by defining the DECC$POSIX_STYLE_UID feature logical name:

$ DEFINE DECC$POSIX_STYLE_UID ENABLE

With POSIX style IDs enabled, at compile time you can selectively invoke the
traditional (UIC-based) definition for an individual function by explicitly calling
it by its decc$-prefixed entry point (as opposed to the decc$_ _long_gid_-prefixed
entry point, which provides the POSIX style behavior).

1–40 Introduction



To disable POSIX style IDs:

$ DEFINE DECC$POSIX_STYLE_UID DISABLE

OpenVMS Version 7.3-2 and higher supports POSIX style IDs as well as 32-bit
UID/GIDs. When an application is compiled to use 32-bit UID/GIDs, the UID and
GID are derived from the UIC as in previous versions of the operating system.
In some cases, such as with the getgroups function, more information may be
returned when the application supports 32-bit GIDs.

To compile an application for 32-bit UID/GID support, define the macro
_ _USE_LONG_GID_T. To compile an application for 16-bit UID/GID support,
define the macro _DECC_SHORT_GID_T.

1.8 Input and Output on OpenVMS Systems
After you learn how to link with the HP C RTL and call HP C functions and
macros, you can use the HP C RTL for its primary purpose: input/output (I/O).

Since every system has different methods of I/O, familiarize yourself with the
OpenVMS specific methods of file access. In this way, you will be equipped
to predict functional differences when porting your source program from one
operating system to another.

Figure 1–2 shows the I/O methods available with the HP C RTL. The OpenVMS
system services communicate directly with the OpenVMS operating system, so
they are closest to the operating system. The OpenVMS Record Management
Services (RMS) functions use the system services, which manipulate the operating
system. The HP C Standard I/O and UNIX I/O functions and macros use the
RMS functions. Since the HP C RTL Standard I/O and UNIX I/O functions and
macros must go through several layers of function calls before the system is
manipulated, they are furthest from the operating system.

Figure 1–2 I/O Interface from C Programs

P
r
o
g
r
a
m

Standard I/O

UNIX I/O

 R M S

System Services

ZK−0493−GE

The C programming language was developed on the UNIX operating system, and
the Standard I/O functions were designed to provide a convenient method of I/O
that would be powerful enough to be efficient for most applications, and also be
portable so that the functions could be used on any system running C language
compilers.

The HP C RTL adds functionality to this original specification. Since, as
implemented in the HP C RTL, the Standard I/O functions recognize line
terminators, the HP C RTL Standard I/O functions are particularly useful for
text manipulation. The HP C RTL also implements some of the Standard I/O
functions as preprocessor-defined macros.

Introduction 1–41



In a similar manner, the UNIX I/O functions originally were designed to provide
a more direct access to the UNIX operating systems. These functions were meant
to use a numeric file descriptor to represent a file. A UNIX system represents all
peripheral devices as files to provide a uniform method of access.

The HP C RTL adds functionality to the original specification. The UNIX I/O
functions, as implemented in HP C, are particularly useful for manipulating
binary data. The HP C RTL also implements some of the UNIX I/O functions as
preprocessor-defined macros.

The HP C RTL includes the Standard I/O functions that should exist on all C
compilers, and also the UNIX I/O functions to maintain compatibility with as
many other implementations of C as possible. However, both Standard I/O and
UNIX I/O use RMS to access files. To understand how the Standard I/O and
UNIX I/O functions manipulate RMS formatted files, learn the fundamentals
of RMS. See Section 1.8.1 for more information about Standard I/O and UNIX
I/O in relationship to RMS files. For an introduction to RMS, see the Guide to
OpenVMS File Applications.

Before deciding which method is appropriate for you, first ask this question: Are
you concerned with UNIX compatibility or with developing code that will run
solely under the OpenVMS operating system?

• If UNIX compatibility is important, you probably want to use the highest
levels of I/O—Standard I/O and UNIX I/O—because that level is largely
independent of the operating system. Also, the highest level is easier to learn
quickly, an important consideration if you are a new programmer.

• If UNIX compatibility is not important to you or if you require the
sophisticated file processing that the Standard I/O and UNIX I/O methods do
not provide, you might find RMS desirable.

If you are writing system-level software, you may need to access the OpenVMS
operating system directly through calls to system services. For example, you
may need to access a user-written device driver directly through the Queue I/O
Request System Service ($QIO). To do this, use the OpenVMS level of I/O; this
level is recommended if you are an experienced OpenVMS programmer. For
examples of programs that call OpenVMS system services, see the HP C User’s
Guide for OpenVMS Systems.

You may never use the RMS or the OpenVMS system services. The Standard I/O
and UNIX I/O functions are efficient enough for a large number of applications.
Figure 1–3 shows the dependency of the Standard I/O and the UNIX I/O functions
on RMS, and the various methods of I/O available to you.

1–42 Introduction



Figure 1–3 Mapping Standard I/O and UNIX I/O to RMS

H P  C  P R O G R A M

Standard I/O UNIX I/O

 R M S

System Services

ZK−0494−GE

1.8.1 RMS Record and File Formats
To understand the capabilities and the restrictions of the Standard I/O and UNIX
I/O functions and macros, you need to understand OpenVMS Record Management
Services (RMS).

RMS supports the following file organizations:

• Sequential

• Relative

• Indexed

Sequential files have consecutive records with no empty records in between;
relative files have fixed-length cells that may or may not contain a record; and
indexed files have records that contain data, carriage-control information, and
keys that permit various orders of access.

The HP C RTL functions can access only sequential files. If you wish to use the
other file organizations, you must use the RMS functions. For more information
about the RMS functions, see the HP C User’s Guide for OpenVMS Systems.

RMS is not concerned with the contents of records, but it is concerned about the
record format, which is the way a record physically appears on the recording
surface of the storage medium.

RMS supports the following record formats:

• Fixed-length

• Variable-length

• Variable with fixed-length control (VFC)

Introduction 1–43



• Stream

You can specify a fixed-length record format at the time of file creation. This
means that all records occupy the same amount of space in the file. You cannot
change the record format once you create the file.

The length of records in variable-length, VFC, and stream file formats can
vary up to a maximum size that must be specified when you create the file.
With variable-length record or VFC format files, the size of the record is held
in a header section at the beginning of the data record. With stream files,
RMS terminates the records when it encounters a specific character, such as a
carriage-control or line-feed character. Stream files are useful for storing text.

RMS allows you to specify carriage-control attributes for records in a file. Such
attributes include the implied carriage-return or the Fortran formatted records.
RMS interprets these carriage controls when the file is output to a terminal, a
line printer, or other device. The carriage-control information is not stored in the
data records.

By default, files inherit the RMS record format, maximum record size and
record attributes, from the previous version of the file, if one exists; to an
OpenVMS system programmer, the inherited attributes are known as FAB$B_
RFM, FAB$W_MRS and FAB$B_RAT. If no previous versions exist, the newly
created file defaults to stream format with line-feed record separator and implied
carriage-return attributes. (This manual refers to this type of file as a stream
file.) You can manipulate stream files using the Standard I/O and the UNIX I/O
functions of the HP C RTL. When using these files and fixed-record files with no
carriage control, there is no restriction on the ability to seek to any random byte
of the file using the fseek or the lseek functions. However, if the file has one of
the other RMS record formats, such as variable-length record format, then these
functions, due to RMS restrictions, can seek only to record boundaries. Use the
default VAX stream format unless you need to create or access files to be used
with other VAX languages or utilities.

1.8.2 Access to RMS Files
RMS sequential files can be opened in record mode or stream mode. By default,
STREAM_LF files are opened in stream mode; all other file types are opened in
record mode. When opening a file, you can override these defaults by specifying
the optional argument "ctx=rec" to force record mode, or "ctx=stm" to force stream
mode. RMS relative and indexed files are always opened in record mode. The
access mode determines the behavior of various I/O functions in the HP C RTL.

One of the file types defined by RMS is an RMS–11 stream format file,
corresponding to a value of FAB$C_STM for the record format. The definition
of this format is such that the RMS record operation SYS$GET removes leading
null bytes from each record. Because this file type is processed in record mode
by the HP C RTL, it is unsuitable as a file format for binary data unless it is
explicitly opened with "ctx=stm", in which case the raw bytes of data from the file
are returned.

Note

In OpenVMS Version 7.0 the default LRL value on stream files was
changed from 0 to 32767. This change caused significant performance
degradation on certain file operations such as sort.

1–44 Introduction



This is no longer a problem. The HP C RTL now lets you define the
logical DECC$DEFAULT_LRL to change the default record-length value
on stream files.

The HP C RTL first looks for this logical. If it is found and it translates to
a numeric value between 0 and 32767, that value is used for the default
LRL.

To restore the behavior prior to OpenVMS Version 7.0, enter the following
command:

$ DEFINE DECC$DEFAULT_LRL 0

1.8.2.1 Accessing RMS Files in Stream Mode
Stream access to RMS files is done with the block I/O facilities of RMS.
Stream input is performed from RMS files by passing each byte of the on-disk
representation of the file to your program. Stream output to RMS files is done
by passing each byte from your program to the file. The HP C RTL performs no
special processing on the data.

When opening a file in stream mode, the HP C RTL allocates a large internal
buffer area. Data is read from the file using a single read into the buffer area
and then passing the data to your program as needed. Data is written to the file
when the internal buffer is full or when the fflush function is called.

1.8.2.2 Accessing RMS Record Files in Record Mode
Record access to record files is done with the record I/O facilities of RMS. The
HP C RTL emulates a byte stream by translating carriage-control characters
during the process of reading and writing records. Random access is allowed
to all record files, but positioning (with fseek and lseek) must be on a record
boundary for VFC files, variable record files, or files with non-null carriage
control. Positioning a record file causes all buffered input to be discarded and
buffered output to be written to the file.

Record input from RMS record files is emulated by the HP C RTL in two steps:

1. The HP C RTL reads a logical record from the file.

If the record format is variable length with fixed control (RFM = VFC), and
the record attributes are not print carriage control (RAT is not PRN), then the
HP C RTL concatenates the fixed-control area to the beginning of the record.

2. The HP C RTL expands the record to simulate a stream of bytes by
translating the record’s carriage-control information (if any).

In RMS terms, the HP C RTL translates the record’s carriage-control information
using one of the following methods:

• If the record attribute is implied carriage control (RAT = CR), then the HP C
RTL appends a new-line character to the record.

This new-line character is considered an integral part of the record, which
means for example, that it can be obtained by the fgetc function and is
considered a line terminator by the fgets function. Since fgets reads the file
up to the new-line character, for RAT=CR files this function cannot retrieve a
string that crosses the record boundaries.

• If the record attributes are print carriage control (RAT = PRN), then the
HP C RTL expands and concatenates the prefix and postfix carriage controls
before and after the record.

Introduction 1–45



This translation is done according to rules specified by RMS, with one
exception: if the prefix character is x01 and the postfix character is x8D,
then nothing is attached to the beginning of the record and a single new-line
character is attached to the end of it. This is done because this prefix/postfix
combination is normally used to represent a line.

• If the record attributes are Fortran carriage control (RAT = FTN), then the
HP C RTL removes the initial control byte and attaches the appropriate
carriage-control characters before and after the data as defined by RMS, with
the exception of the space and default carriage-control characters. In these
cases, which are used to represent a line, the HP C RTL appends a single
new-line character to the data.

The mapping of Fortran carriage-control can be disabled by using "ctx=nocvt".

• If the record attributes are null (RAT = NONE) and the input is coming from
a terminal, then the HP C RTL appends the terminating character to the
record. If the terminator is a carriage return or Ctrl/Z, then HP C translates
the character to a new-line character (\n).

If the input is coming from a nonterminal file, then the HP C RTL passes
the record unchanged to your program with no additional prefix or postfix
characters.

As you read from the file, the HP C RTL delivers a stream of bytes resulting from
the translations. Information that is not read from an expanded record by one
function call is delivered on the next input function call.

The HP C RTL performs record output to RMS record files in two steps.

The first part of the record output emulation is the formation of a logical record.
As you write bytes to a record file, the emulator examines the information being
written for record boundaries. The handling of information in the byte stream
depends on the attributes of the destination file or device, as follows:

• For all files, if the number of output bytes is greater than the internal buffer
allocated by the HP C RTL, a record is output.

• For files with fixed record length (RFM = FIX) or for files opened with
"ctx=bin" or "ctx=xplct", a record is output only when the internal buffer
is filled or when the flush function is called.

• For files with STREAM_CR record format (RFM = STMCR), the HP C RTL
outputs a record when it encounters a carriage-return character (\r).

• For files with STREAM record format (RFM = STM) the HP C RTL outputs a
record when it encounters a new-line (\n), form feed (\f), or vertical tab (\v)
character.

• For all other file types, the HP C RTL outputs a record when it encounters a
new-line (\n) character.

The second part of record output emulation is to write the logical record formed
during the first step. The HP C RTL forms the output record as follows:

• If the record attribute is carriage control (R AT = CR), and if the logical
record ends with a new-line character (\n), the HP C RTL drops the new-line
character and writes the logical record with implied carriage control.

1–46 Introduction



• If the record attribute is print carriage control (RAT = PRN), then the HP C
RTL writes the record with print carriage control according to the rules
specified by RMS. If the logical record ends with a single new-line character
(\n), the HP C RTL maps the new-line character to an x01 prefix and x8D
postfix character. This is the reverse of the translation for record input files
with print carriage-control attributes.

• If the record attributes are Fortran carriage control (RAT = FTN), then the
HP C RTL removes any prefix and/or postfix carriage-control characters and
concatenates a single carriage-control byte to the beginning of the record as
defined by RMS, with one exception: If the output record ends in a new-line
character (\n), the HP C RTL will remove the new-line character and use the
space carriage-control byte. This is the reverse of the translation for record
input files with Fortran carriage-control attributes.

The mapping of Fortran carriage-control can be disabled by using "ctx=nocvt".

• If the logical record is to be written to a terminal device and the last character
of the record is a new-line character (\n) the HP C RTL replaces the new-line
character with a carriage-return (\r), and attaches a line-feed character (\n)
to the front of the record. The HP C RTL then writes out the record with no
carriage control.

• If the output file record format is variable length with fixed control (RFM =
VFC), and the record attributes do not include print carriage control (RAT is
not PRN), then the HP C RTL takes the beginning of the logical record to be
the fixed-control header, and reduces the number of bytes written out by the
length of the header. These bytes are then used to construct the fixed-control
header. If there are too few bytes in the logical record, an error is signaled.

1.8.2.2.1 Accessing Variable-Length or VFC Record Files in Record Mode
When you access a variable-length or VFC record file in record mode, many I/O
functions behave differently than they would if they were being used with stream
mode. This section describes these differences.

In general, the new-line character (\n) is the record separator for all record
modes. On output, when a new-line character is encountered, a record is
generated unless you specify an optional argument (such as "ctx=bin" or
"ctx=xplct") that affects the interpretation of new lines.

The read and decc$record_read functions always read at most one record. The
write and decc$record_write functions always generate at least one record.

decc$record_read and decc$record_write are equivalent, respectively, to read
and write, except that they work with file pointers rather than file descriptors.

Unlike the read function, which reads at most one record, the fread function
can span records. Rather than read number_items records (where number_items
is the third parameter to fread), fread tries to read the number of bytes equal
to number_items � size_of_item (where size_of_item is the second parameter to
fread). The value returned by fread is equal to the number of bytes read divided
by size_of_item.

However, the fwrite function always generates at least number_items records.

The fgets and gets functions read to either a new-line character or a record
boundary.

The fflush function always generates a record if there is unwritten data in the
buffer. The same is true of close, fclose, fseek, lseek, rewind, and fsetpos, all
of which perform implicit fflush functions.

Introduction 1–47



A record is also generated whenever an attempt is made to write more characters
than allowed by the maximum record size.

For more information on these functions, see the Reference Section.

1.8.2.2.2 Accessing Fixed-Length Record Files in Record Mode When
accessing a fixed-length record file in record mode, the I/O functions generally
behave as described in Section 1.8.2.2.1.

The write, fwrite, and decc$record_write functions will fail if given a record
size that is not an integral multiple of the maximum record size, unless the file
was opened with the "ctx=xplct" optional argument specified. All other output
functions will generate records at every nth byte, where n is the maximum record
size.

If a new record is forced by fflush, the data in the buffer is padded to the
maximum record size with null characters.

Note

This padding can cause problems for programs that seek to the end-of-
file. For example, if a program were to append data to a file, then seek
backwards in the file (causing an fflush to occur), and then seek to the
end-of-file again, a zero-filled "hole" will have been created between the
previous end-of-file and the new end-of-file if the previous end-of-file was
not on a record boundary.

1.8.2.3 Example—Difference Between Stream Mode and Record Mode
Example 1–1 demonstrates the difference between stream mode and record mode
access.

Example 1–1 Differences Between Stream Mode and Record Mode Access

/* CHAP_1_STREAM_RECORD.C */

/* This program demonstrates the difference between */
/* record mode and stream mode input/output. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void process_records(const char *fspec, FILE * fp);

main()
{

FILE *fp;

fp = fopen("example-fixed.dat", "w", "rfm=fix", "mrs=40", "rat=none");
if (fp == NULL) {

perror("example-fixed");
exit(EXIT_FAILURE);

}
printf("Record mode\n");
process_records("example-fixed.dat", fp);
fclose(fp);

(continued on next page)

1–48 Introduction



Example 1–1 (Cont.) Differences Between Stream Mode and Record Mode
Access

printf("\nStream mode\n");
fp = fopen("example-streamlf.dat", "w");
if (fp == NULL) {

perror("example-streamlf");
exit(EXIT_FAILURE);

}
process_records("example-streamlf.dat", fp);
fclose(fp);

}

void process_records(const char *fspec, FILE * fp)
{

int i,
sts;

char buffer[40];

/* Write records of all 1’s, all 2’s and all 3’s */
for (i = 0; i < 3; i++) {

memset(buffer, ’1’ + i, 40);
sts = fwrite(buffer, 40, 1, fp);
if (sts != 1) {

perror("fwrite");
exit(EXIT_FAILURE);

}
}

/* Rewind the file and write 10 characters of A’s, then 10 B’s, */
/* then 10 C’s. */
/* */
/* For stream mode, each fwrite call outputs 10 characters */
/* and advances the file position 10 characters */
/* characters. */
/* */
/* For record mode, each fwrite merges the 10 characters into */
/* the existing 40-character record, updates the record and */
/* advances the file position 40 characters to the next record. */
rewind(fp);
for (i = 0; i < 3; i++) {

memset(buffer, ’A’ + i, 10);
sts = fwrite(buffer, 10, 1, fp);
if (sts != 1) {

perror("fwrite2");
exit(EXIT_FAILURE);

}
}

/* Now reopen the file and output the records. */

fclose(fp);
fp = fopen(fspec, "r");
for (i = 0; i < 3; i++) {

sts = fread(buffer, 40, 1, fp);
if (sts != 1)

perror("fread");
printf("%.40s\n", buffer);

}

(continued on next page)

Introduction 1–49



Example 1–1 (Cont.) Differences Between Stream Mode and Record Mode
Access

return;
}

Running this program produces the following output:

Record Mode
AAAAAAAAAA111111111111111111111111111111
BBBBBBBBBB222222222222222222222222222222
CCCCCCCCCC333333333333333333333333333333

Stream mode
AAAAAAAAAABBBBBBBBBBCCCCCCCCCC1111111111
2222222222222222222222222222222222222222
3333333333333333333333333333333333333333

1.9 Specific Portability Concerns
One of the last tasks in preparing to use the HP C RTL, if you are going to
port your source programs across systems, is to be aware of specific differences
between the HP C RTL and the run-time libraries of other implementations of
the C language. This section describes some of the problems that you might
encounter when porting programs to and from an OpenVMS system. Although
portability is closely tied to the implementation of the HP C RTL, this section also
contains information on the portability of other HP C for OpenVMS constructs.

The HP C RTL provides ANSI C defined library functions as well as many
commonly available APIs and a few OpenVMS extensions. See Section 1.5
for specific standards, portions of which are implemented by the HP C RTL.
Attempts have been made to maintain complete portability in functionality
whenever possible. Many of the Standard I/O and UNIX I/O functions and
macros contained in the HP C RTL are functionally equivalent to those of other
implementations.

The RTL function and macro descriptions elaborate on issues presented in this
section and describe concerns not documented here.

The following list documents issues of concern if you wish to port C programs to
the OpenVMS environment:

• HP C for OpenVMS Systems does not implement the global symbols end,
edata, and etext.

• There are differences in how OpenVMS and UNIX systems lay out virtual
memory. In some UNIX systems, the address space between 0 and the break
address is accessible to your program. In OpenVMS systems, the first page of
memory is not accessible.

For example, if a program tries to reference location 0 on an OpenVMS
system, a hardware error (ACCVIO) is returned and the program terminates
abnormally. OpenVMS systems reserve the first page of address space to
catch incorrect pointer references, such as a reference to a location pointed to
by a null pointer. For this reason, some existing programs that run on some
UNIX systems may fail and you should modify them, as necessary. (Tru64
UNIX and OpenVMS, however, are compatible in this regard.)

1–50 Introduction



• Some C programmers code all external declarations in #include files. Then,
specific declarations that require initialization are redeclared in the relevant
module. This practice causes the HP C compiler to issue a warning message
about multiply declared variables in the same compilation. One way to avoid
this warning is to make the redeclared symbols extern variables in the
#include files.

• HP C does not support asm calls on OpenVMS VAX systems. They are
supported on OpenVMS Alpha systems. See the HP C User’s Guide for
OpenVMS Systems for more information on intrinsic functions.

• Some C programs call the counted string functions strcmpn and strcpyn.
These names are not used by HP C for OpenVMS Systems. Instead, you
can define macros that expand the strcmpn and strcpyn names into the
equivalent, ANSI-compliant names strncmp and strncpy.

• The HP C for OpenVMS compiler does not support the following initialization
form:

int foo 123;

Programs using this form of initialization must be changed.

• HP C for OpenVMS Systems predefines several compile-time macros such
as _ _vax, _ _alpha, _ _32BITS, _ _vms, _ _vaxc, _ _VMS_VER, _ _DECC_VER,
_ _D_FLOAT, _ _G_FLOAT, _ _IEEE_FLOAT, _ _X_FLOAT, and others. These
predefined macros are useful for programs that must be compatible on other
machines and operating systems. For more information, see the predefined
macro chapter of the HP C User’s Guide for OpenVMS Systems.

• The ANSI C language does not guarantee any memory order for the variables
in a declaration. For example:

int a, b, c;

• Depending on the type of external linkage requested, extern variables in a
program may be treated differently using HP C on OpenVMS systems than
they would on UNIX systems. See the HP C User’s Guide for OpenVMS
Systems for more information.

• The dollar sign ( $ ) is a legal character in HP C for OpenVMS identifiers, and
can be used as the first character.

• The ANSI C language does not define any order for evaluating expressions
in function parameter lists or for many kinds of expressions. The way in
which different C compilers evaluate an expression is only important when
the expression has side effects. Consider the following examples:

a[i] = i++;

x = func_y() + func_z();

f(p++, p++)

Neither HP C nor any other C compiler can guarantee that such expressions
evaluate in the same order on all C compilers.

• The size of a HP C variable of type int is 32 bits on OpenVMS systems. You
will have to modify programs that are written for other machines and that
assume a different size for a variable of type int. A variable of type long is
the same size (32 bits) as a variable of type int.

Introduction 1–51



• The C language defines structure alignment to be dependent on the machine
for which the compiler is designed. On OpenVMS VAX systems, HP C aligns
structure members on byte boundaries, unless #pragma member_alignment is
specified. On OpenVMS Alpha systems, HP C aligns structure members on
natural boundaries, unless #pragma nomember_alignment is specified. Other
implementations may align structure members differently.

• References to structure members in HP C cannot be vague. For more
information, see the HP C Language Reference Manual.

• Registers are allocated based upon how often a variable is used, but the
register keyword gives the compiler a strong hint that you want to place a
particular variable into a register. Whenever possible, the variable is placed
into a register. Any scalar variable with the storage class auto or register
can be allocated to a register as long as the variable’s address is not taken
with the ampersand operator ( & ) and it is not a member of a structure or
union.

1.9.1 Reentrancy
The HP C RTL supports an improved and enhanced reentrancy. The following
types of reentrancy are supported:

• AST reentrancy uses the _BBSSI built-in function to perform simple locking
around critical sections of RTL code, but it may also disable asynchronous
system traps (ASTs) in locked regions of code. This type of locking should be
used when AST code contains calls to HP C RTL I/O routines.

Failure to specify AST reentrancy might cause I/O routines to fail, setting
errno to EALREADY.

• MULTITHREAD reentrancy is designed to be used in threaded programs such
as those that use the DECthreads library. It performs DECthreads locking
and never disables ASTs. DECthreads must be available on your system to
use this form of reentrancy.

• TOLERANT reentrancy uses the _BBSSI built-in function to perform simple
locking around critical sections of RTL code, but ASTs are not disabled. This
type of locking should be used when ASTs are used and must be delivered
immediately.

• NONE gives optimal performance in the HP C RTL, but does absolutely
no locking around critical sections of RTL code. It should only be used in
a single-threaded environment when there is no chance that the thread of
execution will be interrupted by an AST that would call the HP C RTL.

The default reentrancy type is TOLERANT.

You can set the reentrancy type by compiling with the /REENTRANCY command-
line qualifier or by calling the decc$set_reentrancy function. This function must
be called exclusively from non-AST level.

When programming an application using multiple threads or ASTs, consider three
classes of functions:

• Functions with no internal data

• Functions with thread-local internal data

• Functions with processwide internal data

1–52 Introduction



Most functions have no internal data at all. For these functions, synchronization
is necessary only if the parameter is used by the application in multiple threads
or in both AST and non-AST contexts. For example, although the strcat function
is ordinarily safe, the following is an example of unsafe usage:

extern char buffer[100];
void routine1(char *data) {

strcat( buffer, data );
}

If routine1 executed concurrently in multiple threads, or if routine1 is
interrupted by an AST routine that calls it, the results of the strcat call are
unpredictable.

The second class of functions are those that have thread-local static data.
Typically, these are routines in the library that return a string where the
application is not permitted to free the storage for the string. These routines
are thread-safe but not AST-reentrant. This means they can safely be called
concurrently, and each thread will have its own copy of the data. They cannot be
called from AST routines if it is possible that the same routine was executing in
non-AST context. The routines in this class are:

asctime stat
ctermid strerror
ctime strtok
cuserid VAXC$ESTABLISH
gmtime the errno variable
localtime wcstok
perror

All the socket functions are also included in this list if the TCP/IP product in use
is thread-safe.

The third class of functions are those that affect processwide data. These
functions are neither thread-safe nor AST-reentrant. For example, sigsetmask
establishes the processwide signal mask. Consider a routine like the following:

void update_data
base()
{

int old_mask;

old_mask = sigsetmask( 1 << (SIGINT - 1));
/* Do work here that should not be aborted. */

sigsetmask( old_mask );
}

If update_database was called concurrently in multiple threads, thread 1 might
unblock SIGINT while thread 2 was still performing work that should not be
aborted.

The routines in this class are:

• All the signal routines

• All the exec routines

• The exit, _exit, nice, system, wait, getitimer, setitimer, and setlocale
routines.

Note

Generally speaking, UTC-based time functions can affect in-memory time-
zone information, which is processwide data. However, if the system time

Introduction 1–53



zone remains the same during the execution of the application (which is
the common case) and the cache of time-zone files is enabled (which is the
default), then the _r variant of the time functions asctime_r, ctime_r,
gmtime_r and localtime_r is both thread-safe and AST-reentrant.

If, however, the system time zone can change during the execution of
the application or the cache of time-zone files is not enabled, then both
variants of the UTC-based time functions belong to the third class of
functions, which are neither thread-safe nor AST-reentrant.

1.9.2 Multithread Restrictions
Mixing the multithread programming model and the OpenVMS AST
programming model in the same application is not recommended. The application
has no mechanism to control which thread gets interrupted by an AST. This can
result in a resource deadlock if the thread holds a resource that is also needed
by the AST routine. The following routines use mutexes. To avoid a potential
resource deadlock, do not call them from AST routines in a multithreaded
application.

• All the I/O routines

• All the socket routines

• All the signal routines

• vfork, exec, wait, system

• catgets

• set_new_handler (C++ only)

• getenv

• rand and srand

• exit and _exit

• clock

• nice

• times

• ctime, localtime, asctime, mktime

1.10 64-bit Pointer Support (Alpha only)

This section is for application developers who need to use 64-bit virtual memory
addressing on OpenVMS Alpha Version 7.0 or higher.

OpenVMS Alpha 64-bit virtual addressing support makes the 64-bit virtual
address space defined by the Alpha architecture available to both the OpenVMS
operating system and its users. It also allows per-process virtual addressing for
accessing dynamically mapped data beyond traditional 32-bit limits.

The HP C Run-Time Library on OpenVMS Alpha Version 7.0 systems and higher
includes the following features in support of 64-bit pointers:

• Guaranteed binary and source compatibility of existing programs

• No impact on applications that are not modified to exploit 64-bit support

1–54 Introduction



• Enhanced memory allocation routines that allocate 64-bit memory

• Widened function parameters to accommodate 64-bit pointers

• Dual implementations of functions that need to know the pointer size used by
the caller

• New information available to the DEC C Version 5.2 compiler or higher to
seamlessly call the correct implementation

• Ability to explicitly call either the 32-bit or 64-bit form of functions for
applications that mix pointer sizes

• A single shareable image for use by 32-bit and 64-bit applications

1.10.1 Using the HP C Run-Time Library
The HP C Run-Time library on OpenVMS Alpha Version 7.0 systems and higher
can generate and accept 64-bit pointers. Functions that require a second interface
to be used with 64-bit pointers reside in the same object libraries and shareable
images as their 32-bit counterparts. No new object libraries or shareable images
are introduced. Using 64-bit pointers does not require changes to your link
command or link options files.

The HP C 64-bit environment allows an application to use both 32-bit and
64-bit addresses. For more information about how to manipulate pointer sizes,
see the /POINTER_SIZE qualifier and #pragma pointer_size and #pragma
required_pointer_size preprocessor directives in the HP C User’s Guide for
OpenVMS Systems.

The /POINTER_SIZE qualifier requires you to specify a value of 32 or 64. This
value is used as the default pointer size within the compilation unit. You can
compile one set of modules using 32-bit pointers and another set using 64-bit
pointers. Care must be taken when these two separate groups of modules call
each other.

Use of the /POINTER_SIZE qualifier also influences the processing of HP C RTL
header files. For those functions that have a 32-bit and 64-bit implementation,
specifying /POINTER_SIZE enables function prototypes to access both functions,
regardless of the actual value supplied to the qualifier. In addition, the value
specified to the qualifier determines the default implementation to call during
that compilation unit.

The #pragma pointer_size and #pragma required_pointer_size preprocessor
directives can be used to change the pointer size in effect within a compilation
unit. You can default pointers to 32-bit pointers and then declare specific pointers
within the module as 64-bit pointers. You would also need to specifically call the
_malloc64 form of malloc to obtain memory from the 64-bit memory area.

1.10.2 Obtaining 64-Bit Pointers to Memory
The HP C RTL has many functions that return pointers to newly allocated
memory. In each of these functions, the application owns the memory pointed to
and is responsible for freeing that memory.

Functions that allocate memory are:

malloc
calloc
realloc
strdup

Introduction 1–55



Each of these functions have a 32-bit and a 64-bit implementation. When the
/POINTER_SIZE qualifier is used, the following functions can also be called:

_malloc32, _malloc64
_calloc32, _calloc64
_realloc32, _realloc64
_strdup32, _strdup64

When /POINTER_SIZE=32 is specified, all malloc calls default to _malloc32.

When /POINTER_SIZE=64 is specified, all malloc calls default to _malloc64.

Regardless of whether the application calls a 32-bit or 64-bit memory allocation
routine, there is still a single free function. This function accepts either pointer
size.

Be aware that the memory allocation functions are the only ones that return
pointers to 64-bit memory. All HP C RTL structure pointers returned to the
calling application (such as a FILE, WINDOW, or DIR) are always 32-bit pointers.
This allows both 32-bit and 64-bit callers to pass these structure pointers within
the application.

1.10.3 HP C Header Files
The header files distributed with Version 5.2 and higher of the C compiler support
64-bit pointers. Each function prototype whose signature contains a pointer is
constructed to indicate the size of the pointer accepted.

A 32-bit pointer can be passed as an argument to functions that accept either a
32-bit or 64-bit pointer for that argument.

A 64-bit pointer, however, cannot be passed as an argument to a function that
accepts a 32-bit pointer. Attempts to do this are diagnosed by the compiler with
a MAYLOSEDATA message. The diagnostic message IMPLICITFUNC means the
compiler can do no additional pointer-size validation for calls to that function.
If this function is an HP C RTL function, refer to the reference section of this
manual for the name of the header file that defines that function.

You might find the following pointer-size compiler diagnostics useful:

• %CC-IMPLICITFUNC

A function prototype was not found before using the specified function. The
compiler and run-time system rely on prototype definitions to detect incorrect
pointer-size usage. Failure to include the proper header files can lead to
incorrect results and/or pointer truncation.

• %CC-MAYLOSEDATA

A truncation is necessary to do this operation. The operation could be passing
a 64-bit pointer to a function that does not support a 64-bit pointer in the
given context. It could also be a function returning a 64-bit pointer to a
calling application that is trying to store that return value in a 32-bit pointer.

• %CC-MAYHIDELOSS

This message (when enabled) helps expose real MAYLOSEDATA messages
that are being suppressed because of a cast operation. To enable this warning,
compile with the qualifier /WARNINGS=ENABLE=MAYHIDELOSS.

1–56 Introduction



1.10.4 Functions Affected
The HP C RTL shipped with OpenVMS Alpha Version 7.0 accommodates
applications that use only 32-bit pointers, only 64-bit pointers, or combinations
of both. To use 64-bit memory, you must, at a minimum, recompile and relink
an application. The amount of source code change required depends on the
application itself, calls to other run-time libraries, and the combinations of
pointer sizes used.

With respect to 64-bit pointer support, the functions in the HP C RTL fall into
four categories:

• Functions not impacted by choice of pointer size

• Functions enhanced to accept either pointer size

• Functions having a 32-bit and 64-bit implementation

• Functions that accept only 32-bit pointers

From an application developer’s perspective, the first two types of functions are
the easiest to use in either a single- or mixed-pointer mode.

The third type requires no modifications when used in a single-pointer
compilation, but might require source code changes when used in a mixed-pointer
mode.

The fourth type requires careful attention whenever 64-bit pointers are used.

1.10.4.1 No Pointer-Size Impact
The choice of pointer size has no impact on a function if its prototype contains
no pointer-related parameters or return values. The mathematical functions are
good examples of this.

Even some functions in this category that do have pointers in their prototype are
not impacted by pointer size. For example, strerror has the prototype:

char * strerror (int error_number);

This function returns a pointer to a character string, but this string is allocated
by the HP C RTL. As a result, to support both 32-bit and 64-bit applications,
these types of pointers are guaranteed to fit in a 32-bit pointer.

1.10.4.2 Functions Accepting Both Pointer Sizes
The Alpha architecture supports 64-bit pointers. The OpenVMS Alpha calling
standard specifies that all arguments are actually passed as 64-bit values. Before
OpenVMS Alpha Version 7.0, all 32-bit addresses passed to procedures were sign-
extended into this 64-bit parameter. The called function declared the parameters
as 32-bit addresses, which caused the compiler to generate 32-bit instructions
(such as LDL) to manipulate these parameters.

Many functions in the HP C RTL are enhanced to receive the full 64-bit address.
For example, consider strlen:

size_t strlen (const char *string);

The only pointer in this function is the character-string pointer. If the caller
passes a 32-bit pointer, the function works with the sign-extended 64-bit address.
If the caller passes a 64-bit address, the function works directly with that address.

Introduction 1–57



The HP C RTL continues to have only a single entry point for functions in this
category. There are no source-code changes required to add any of the four
pointer-size options for functions of this type. The OpenVMS documentation
refers to these functions as 64-bit friendly.

1.10.4.3 Functions with Two Implementations
There are many reasons why a function might need one implementation for 32-bit
pointers and another for 64-bit pointers. Some of these reasons include:

• The pointer size of the return value is the same size as the pointer size of one
of the arguments. If the argument is 32 bits, the return value is 32 bits. If
the argument is 64 bits, the return value is 64 bits.

• One of the arguments is a pointer to an object whose size is pointer-size
sensitive. To know how many bytes are being pointed to, the function must
know if the code was compiled in 32-bit or 64-bit pointer-size mode.

• The function returns the address of dynamically allocated memory. The
memory is allocated in 32-bit space when compiled for 32-bit pointers, and is
allocated in 64-bit space when compiled for 64-bit pointers.

From the application developer’s point of view, there are three function prototypes
for each of these functions. The <string.h> header file contains many functions
whose return value is dependent upon the pointer size used as the first argument
to the function call. For example, consider the memset function. The header file
defines three entry points for this function:

void * memset (void *memory_pointer, int character, size_t size);
void *_memset32 (void *memory_pointer, int character, size_t size);
void *_memset64 (void *memory_pointer, int character, size_t size);

The first prototype is the function that your application would currently call if
using this function. The compiler changes a call to memset into a call to either
_memset32 when compiled with /POINTER_SIZE=32, or _memset64 when compiled
with /POINTER_SIZE=64.

You can override this default behavior by directly calling either the 32-bit or the
64-bit form of the function. This accommodates applications using mixed-pointer
sizes, regardless of the default pointer size specified with the /POINTER_SIZE
qualifier.

If the application is compiled without specifying the /POINTER_SIZE qualifier,
neither the 32-bit specific nor the 64-bit specific function prototypes are defined.
In this case, the compiler automatically calls the 32-bit interface for all interfaces
having dual implementations.

Table 1–6 shows the HP C RTL functions that have dual implementations to
support 64-bit pointer size. When compiling with the /POINTER_SIZE qualifier,
calls to the unmodified function names are changed to calls to the function
interface that matches the pointer size specified on the qualifier.

Table 1–6 Functions with Dual Implementations

basename bsearch calloc catgets
ctermid cuserid dirname fgetname

(continued on next page)

1–58 Introduction



Table 1–6 (Cont.) Functions with Dual Implementations

fgets fgetws gcvt getcwd
getname getpwent getpwnam getpwnam_r
getpwuid getpwuid_r gets index
longname malloc mbsrtowcs memccpy
memchr memcpy memmove memset
mktemp mmap qsort readv
realloc rindex strcat strchr
strcpy strdup strncat strncpy
strpbrk strptime strrchr strsep
strstr strtod strtok strtok_r
strtol strtoll strtoq strtoul
strtoull strtouq tmpnam wcscat
wcschr wcscpy wcsncat wcsncpy
wcspbrk wcsrchr wcsrtombs wcsstr
wcstok wcstol wcstoul wcswcs
wmemchr wmemcpy wmemmove wmemset
writev

Table 1–7 shows the TCP/IP socket routines that have dual implementations to
support 64-bit pointer size.

Table 1–7 Socket Routines with Dual Implementations

freeaddrinfo getaddrinfo
recvmsg sendmsg

Note

Consider the following functions that offer 64-bit pointer support in
OpenVMS 7.3-2:

getaddrinfo getpwnam
freeaddrinfo getpwuid
sendmsg getpwent
recvmsg

These functions previously offered 32-bit support only, even when
compiled with /POINTER_SIZE=LONG. In order to preserve the previous
behavior of 32-bit pointer support in those functions even when compiled
with /POINTER_SIZE=LONG, these seven functions do not follow the
normal convention for 32-bit and 64-bit support as documented in this
section.

The following variants of these functions, and the corresponding
structures they use, have been added to the C RTL to provide 64-bit
support:

Introduction 1–59



Function Structure
-------- ---------
__getaddrinfo32 __addrinfo32
__getaddrinfo64 __addrinfo64
__freeaddrinfo32 __addrinfo32
__freeaddrinfo64 __addrinfo64
__recvmsg32 __msghdr32
__recvmsg64 __msghdr64
__sendmsg32 __msghdr32
__sendmsg64 __msghdr64
__32_getpwnam __passwd32
__64_getpwnam __passwd64
__32_getpwuid __passwd32
__64_getpwuid __passwd64
__32_getpwent __passwd32
__64_getpwent __passwd64

When compiling the standard versions of these functions, the following
behavior occurs:

• With /POINTER_SIZE=32 specified, the compiler converts the call
to the 32-bit version of the function. For example, getaddrinfo is
converted to _ _getaddrinfo32.

• With /POINTER_SIZE=64 specified, the compiler converts the call
to the 64-bit version of the function. For example, getaddrinfo is
converted to _ _getaddrinfo64.

• When the /POINTER_SIZE qualifier is not specified, neither the
32-bit-specific nor the 64-bit-specific function prototypes are defined.

However, a similar conversion of the corresponding structures does not
occur for these functions. This behavior is necessary because these
structures existed before OpenVMS Version 7.3-2 as 32-bit versions only,
even when compiled with /POINTER_SIZE=LONG. Implicitly changing
the size of the structure could result in unexpected run-time errors.

When compiling programs that use the standard version of these functions
for 64-bit support, you must use the 64-bit-specific definition of the related
structure. With /POINTER_SIZE=64 specified, compiling a program with
the standard function name and standard structure definition will result
in compiler PTRMISMATCH warning messages.

For example, the following program uses the getaddrinfo and
freeaddrinfo routines, along with the standard definition of the addrinfo
structure. Compiling this program results in the warning messages
shown:

$ type test.c
#include <netdb.h>

int main ()
{

struct addrinfo *ai;

getaddrinfo ("althea", 0, 0, &ai);
freeaddrinfo (ai);
return 0;

}

$ cc /pointer_size=64 TEST.C

1–60 Introduction



getaddrinfo ("althea", 0, 0, &ai);
....^
%CC-W-PTRMISMATCH, In this statement, the referenced type of the pointer value
"&ai" is "long pointer to struct addrinfo", which is not compatible with "long
pointer to struct __addrinfo64".
at line number 7 in file TEST.C;1

freeaddrinfo (ai);
....^
%CC-W-PTRMISMATCH, In this statement, the referenced type of the pointer value
"ai" is "struct addrinfo", which is not compatible with "struct __addrinfo64".
at line number 8 in file TEST.C;1
$

When compiling for 64 bits, you need to use the 64-bit-specific version of
the related structure. In the previous example, the declaration of the ai
structure could be changed to the following:

struct __addrinfo64 *ai;

Or, to provide flexibility between 32-bit and 64-bit compilations, the ai
structure could be declared as follows:

#if __INITIAL_POINTER_SIZE == 64
struct __addrinfo64 *ai;

#else
struct __addrinfo32 *ai;

#endif

1.10.4.4 Functions Restricted to 32-Bit Pointers
A few functions in the HP C RTL do not support 64-bit pointers. If you try to
pass a 64-bit pointer to one of these functions, the compiler generates a %CC-
W-MAYLOSEDATA warning. Applications compiled with /POINTER_SIZE=64
might need to be modified to avoid passing 64-bit pointers to these functions.

Table 1–8 shows the functions restricted to using 32-bit pointers. The HP C RTL
offers no 64-bit support for these functions. You must ensure that only 32-bit
pointers are used with these functions.

Table 1–8 Functions Restricted to 32-Bit Pointers

atexit frexp ioctl setbuf
execv getopt modf setstate
execve iconv putenv setvbuf
execvp initstate

Table 1–9 shows functions that make callbacks to user-supplied functions as part
of processing that function call. The callback procedures are not passed 64-bit
pointers.

Table 1–9 Callbacks that Pass Only 32-Bit Pointers

decc$from_vms decc$to_vms
ftw tputs

Introduction 1–61



1.10.5 Reading Header Files
This section introduces the pointer-size manipulations used in the HP C RTL
header files. Use the following examples to become more proficient in reading
these header files and to help modify your own header files.

Examples

1. :
#if ____INITIAL_POINTER_SIZE !
# if (____VMS_VER < 70000000) || !defined ____ALPHA "
# error " Pointer size usage not permitted before OpenVMS Alpha V7.0"
# endif
# pragma ____pointer_size ____save #
# pragma ____pointer_size 32 $
#endif
:
:
#if ____INITIAL_POINTER_SIZE %
# pragma ____pointer_size 64
#endif
:
:
#if ____INITIAL_POINTER_SIZE &
# pragma ____pointer_size ____restore
#endif
:

All HP C compilers that support the /POINTER_SIZE qualifier predefine the
_ _INITIAL_POINTER_SIZE macro. The HP C RTL header files take advantage
of the ANSI rule that if a macro is not defined, it has an implicit value of 0.

The macro is defined as 32 or 64 when the /POINTER_SIZE qualifier is used.
It is defined as 0 if the qualifier is not used. The statement at ! can be
read as "if the user has specified either /POINTER_SIZE=32 or /POINTER_
SIZE=64 on the command line".

The C compiler is supported on many OpenVMS versions. The lines at "
generate an error message if the target of the compilation is one that does not
support 64-bit pointers.

A header file cannot assume anything about the actual pointer-size context in
effect at the time the header file is included. Furthermore, the HP C compiler
offers only the _ _INITIAL_POINTER_SIZE macro and a mechanism to change
the pointer size, but not a way to determine the current pointer size.

All header files that have a dependency on pointer sizes are responsible for
saving #, initializing $, altering %, and restoring & the pointer-size context.

1–62 Introduction



2. :
#ifndef ____CHAR_PTR32 !
# define ____CHAR_PTR32 1

typedef char * ____char_ptr32;
typedef const char * ____const_char_ptr32;

#endif
:
:
#if ____INITIAL_POINTER_SIZE
# pragma ____pointer_size 64
#endif
:
:
#ifndef ____CHAR_PTR64 "
# define ____CHAR_PTR64 1

typedef char * ____char_ptr64;
typedef const char * ____const_char_ptr64;

#endif
:

Some function prototypes need to refer to a 32-bit pointer when in a 64-bit
pointer-size context. Other function prototypes need to refer to a 64-bit
pointer when in a 32-bit pointer-size context.

HP C binds the pointer size used in a typedef at the time the typedef is
made. The typedef declaration of _ _char_ptr32 ! is made in a 32-bit
context. The typedef declaration of _ _char_ptr64 " is made in a 64-bit
context.

3. :
#if ____INITIAL_POINTER_SIZE
# if (____VMS_VER < 70000000) || !defined ____ALPHA
# error " Pointer size usage not permitted before OpenVMS Alpha V7.0"
# endif
# pragma ____pointer_size ____save
# pragma ____pointer_size 32
#endif
:
!
:
#if ____INITIAL_POINTER_SIZE "
# pragma ____pointer_size 64
#endif
:
#
:
int abs (int ____j); $
:
____char_ptr32 strerror (int ____errnum); %
:

Before declaring function prototypes that support 64-bit pointers, the pointer
context is changed " from 32-bit pointers to 64-bit pointers.

Functions restricted to 32-bit pointers are placed in the 32-bit pointer context
section ! of the header file. All other functions are placed in the 64-bit
context section # of the header file.

Functions that have no pointer-size impact ($ and %) are located in the
64-bit section. Functions that have no pointer-size impact except for a 32-bit
address return value % are also in the 64-bit section, and use the 32-bit
specific typedefs previously discussed.

Introduction 1–63



4. :
#if ____INITIAL_POINTER_SIZE
# pragma ____pointer_size 64
#endif
:
:
#if ____INITIAL_POINTER_SIZE == 32 !
# pragma ____pointer_size 32
#endif
:
char *strcat (char *____s1, ____const_char_ptr64 ____s2); "
:
#if ____INITIAL_POINTER_SIZE
# pragma ____pointer_size 32

:
char *_strcat32 (char *____s1, ____const_char_ptr64 ____s2); #
:

# pragma ____pointer_size 64
:
char *_strcat64 (char *____s1, const char *____s2); $
:

#endif
:

This example shows declarations of functions that have both a 32-bit and
64-bit implementation. These declarations are located in the 64-bit section of
the header file.

The normal interface to the function " is declared using the pointer size
specified on the /POINTER_SIZE qualifier. Because the header file is in 64-
bit pointer context and because of the statements at !, the declaration at "
is made using the same pointer-size context as the /POINTER_SIZE qualifier.

The 32-bit specific interface # and the 64-bit specific interface $ are declared
in 32-bit and 64-bit pointer-size context, respectively.

1–64 Introduction



2
Understanding Input and Output

There are three types of input and output (I/O) in the HP C Run-Time Library
(RTL): UNIX, Standard, and Terminal. Table 2–1 lists all the I/O functions and
macros found in the HP C RTL. For more detailed information on each function
and macro, see the Reference Section.

Table 2–1 I/O Functions and Macros

Function or Macro Description

UNIX I/O—Opening and Closing Files

close Closes the file associated with a file descriptor.

creat Creates a new file.

dup, dup2 Allocates a new descriptor that refers to a file specified by a
file descriptor returned by open, creat, or pipe.

open Opens a file and positions it at its beginning.

UNIX I/O—Reading from Files

read Reads bytes from a file and places them in a buffer.

UNIX I/O—Writing to Files

write Writes a specified number of bytes from a buffer to a file.

UNIX I/O—Maneuvering in Files

lseek Positions a stream file to an arbitrary byte position and returns
the new position as an int.

(continued on next page)

Understanding Input and Output 2–1



Table 2–1 (Cont.) I/O Functions and Macros

Function or Macro Description

UNIX I/O—Additional Standard I/O Functions and Macros

fstat, stat Accesses information about the file descriptor or the file
specification.

fsync Writes to disk any buffered information for the specified file.

getname Returns the file specification associated with a file descriptor.

isapipe Returns 1 if the file descriptor is associated with a pipe and 0
if it is not.

isatty Returns 1 if the specified file descriptor is associated with a
terminal and 0 if it is not.

lwait Waits for completion of pending asynchronous I/O.

ttyname Returns a pointer to the null-terminated name of the terminal
device associated with file descriptor 0, the default input
device.

Standard I/O—Opening and Closing Files

fclose Closes a function by flushing any buffers associated with the
file control block, and freeing the file control block and buffers
previously associated with the file pointer.

fdopen Associates a file pointer with a file descriptor returned by an
open, creat, dup, dup2, or pipe function.

fopen Opens a file by returning the address of a FILE structure.

freopen Substitutes the file, named by a file specification, for the open
file addressed by a file pointer.

Standard I/O—Reading from Files

fgetc, getc, fgetwc,
getw, getwc

Returns characters from a specified file.

fgets, fgetws Reads a line from a specified file and stores the string in an
argument.

fread Reads a specified number of items from a file.

fscanf, fwscanf,
vfscanf, vfwscanf

Performs formatted input from a specified file.

sscanf, swscanf,
vsscanf, vswscanf

Performs formatted input from a character string in memory.

ungetc, ungetwc Pushes back a character into the input stream and leaves the
stream positioned before the character.

(continued on next page)

2–2 Understanding Input and Output



Table 2–1 (Cont.) I/O Functions and Macros

Function or Macro Description

Standard I/O—Writing to Files

fprintf, fwprintf,
vfprintf, vfwprintf

Performs formatted output to a specified file.

fputc, putc, putw,
putwc, fputwc

Writes characters to a specified file.

fputs, fputws Writes a character string to a file without copying the string’s
null terminator.

fwrite Writes a specified number of items to a file.

sprintf, swprintf,
vsprintf, vswprintf

Performs formatted output to a string in memory.

Standard I/O—Maneuvering in Files

fflush Sends any buffered information for the specified file to RMS.

fgetpos Stores the current value of the file position indicator for the
stream.

fsetpos Sets the file position indicator for the stream according to the
value of the object pointed to.

fseek, fseeko Positions the file to the specified byte offset in the file.

ftell, ftello Returns the current byte offset to the specified stream file.

rewind Sets the file to its beginning.

Standard I/O—Additional Standard I/O Functions and Macros

access Checks a file to see whether a specified access mode is allowed.

clearerr Resets the error and end-of-file indications for a file.

feof Tests a file to see if the end-of-file has been reached.

ferror Returns a nonzero integer if an error has occurred while
reading or writing a file.

fgetname Returns the file specification associated with a file pointer.

fileno Returns an integer file descriptor that identifies the specified
file.

ftruncate Truncates a file at the specified position.

fwait Waits for completion of pending asynchcronous I/O.

fwide Sets the orientation a stream.

mktemp Creates a unique file name from a template.

remove, delete Deletes a file.

rename Gives a new name to an existing file.

setbuf, setvbuf Associates a buffer with an input or output file.

tmpfile Creates a temporary file that is opened for update.

tmpnam Creates a character string that can be used in place of the
file-name argument in other function calls.

(continued on next page)

Understanding Input and Output 2–3



Table 2–1 (Cont.) I/O Functions and Macros

Function or Macro Description

Terminal I/O—Reading from Files

getchar, getwchar Reads a single character from the standard input (stdin).

gets Reads a line from the standard input (stdin).

scanf, wscanf,
vscanf, vwscanf

Performs formatted input from the standard input.

Terminal I/O—Writing to Files

printf, wprintf,
vprintf, vwprintf

Performs formatted output to the standard output (stdout).

putchar, putwchar Writes a single character to the standard output and returns
the character.

puts Writes a character string to the standard output followed by a
new-line character.

2.1 Using RMS from RTL Routines
When you create a file using the HP C RTL I/O functions and macros, you can
supply values for many RMS file attributes, including:

• Allocation quantity

• Block size

• Default file extension

• Default file name

• File access context options

• File-processing options

• File-sharing options

• Multiblock count

• Multibuffer count

• Maximum record size

• Record attributes

• Record format

• Record-processing options

See the description of the creat function in the Reference Section for information
on these values.

Other functions that allow you to set these values include open, fopen, and
freopen.

For more information about RMS, see the HP C User’s Guide for OpenVMS
Systems.

2–4 Understanding Input and Output



2.2 UNIX I/O and Standard I/O
UNIX I/O functions are UNIX system services, now standardized by ISO POSIX-1
(the ISO Portable Operating System Interface).

UNIX I/O functions use file descriptors to access files. A file descriptor is an
integer that identifies the file. A file descriptor is declared in the following way,
where file_desc is the name of the file descriptor:

int file_desc;

UNIX I/O functions, such as creat, associate the file descriptor with a file.
Consider the following example:

file_desc1 = creat("INFILE.DAT", 0, "rat=cr", "rfm=var");

This statement creates the file, INFILE.DAT, with file access mode 0, carriage-
return control, variable-length records, and it associates the variable file_desc1
with the file. When the file is accessed for other operations, such as reading or
writing, the file descriptor is used to refer to the file. For example:

write(file_desc1, buffer, sizeof(buffer));

This statement writes the contents of the buffer to INFILE.DAT.

There may be circumstances when you should use UNIX I/O functions and macros
instead of the Standard I/O functions and macros. For a detailed discussion of
both forms of I/O and how they manipulate the RMS file formats, see Chapter 1.

Standard I/O functions are specified by the ANSI C Standard.

Standard I/O functions add buffering to the features of UNIX I/O and use file
pointers to access files. A file pointer is an object of type FILE *, which is a
typedef defined in the <stdio.h> header file as follows:

typedef struct _iobuf *FILE;

The _iobuf identifier is also defined in <stdio.h>.

To declare a file pointer, use the following:

FILE *file_ptr;

Use the Standard I/O fopen function to create or open an existing file. For
example:

#include <stdio.h>

main()
{

FILE *outfile;
outfile = fopen("DISKFILE.DAT", "w+");

.

.

.
}

Here, the file DISKFILE.DAT is opened for write-update access.

The HP C RTL provides the following functions for converting between file
descriptors and file pointers:

• fileno—returns the file descriptor associated with the specified file pointer.

• fdopen—associates a file pointer with a file descriptor returned by an open,
creat, dup, dup2, or pipe function.

Understanding Input and Output 2–5



2.3 Wide-Character Versus Byte I/O Functions
The wide-character I/O functions provide operations similar to most of the byte
I/O functions, except that the fundamental units internal to the wide-character
functions are wide characters.

However, the external representation (in files) is a sequence of multibyte
characters, not wide characters. For the wide-character formatted input and
output functions:

• The wide-character formatted input functions (such as fwscanf) always read
a sequence of multibyte characters from files, regardless of the specified
directive and, before any further processing, convert this sequence to a
sequence of wide characters.

• The wide-character formatted output functions (such as fwprintf) write wide
characters to output files by first converting wide-character argument types
to a sequence of multibyte characters, then calling the underlying operating
system output primitives.

Byte I/O functions cannot handle state-dependent encodings. Wide-character I/O
functions can. They accomplish this by associating each wide-character stream
with a conversion-state object of type mbstate_t.

The wide-character I/O functions are:

fgetwc fputwc fwscanf fwprintf ungetwc
fgetws fputws wscanf wprintf
getwc putwc vfwprintf
getwchar putwchar vwprintf

The byte I/O functions are:

fgetc fputc fscanf fprintf ungetc
fgets fputs scanf printf fread
getc putc vfprinf fwrite
gets puts vprintf
getchar putchar

The wide-character input functions read multibyte characters from the stream
and convert them to wide characters as if they were read by successive calls to
the fgetwc function. Each conversion occurs as if a call were made to the mbrtowc
function with the conversion state described by the stream’s own mbstate_t
object.

The wide-character output functions convert wide characters to multibyte
characters and write them to the stream as if they were written by successive
calls to the fputwc function. Each conversion occurs as if a call were made to the
wcrtomb function, with the conversion state described by the I/O stream’s own
mbstate_t object.

If a wide-character I/O function encounters an invalid multibyte character, the
function sets errno to the value EILSEQ.

2–6 Understanding Input and Output



2.4 Conversion Specifications
Several of the Standard I/O functions (including the Terminal I/O functions) use
conversion specifications to specify data formats for I/O. These functions are the
formatted-input and formatted-output functions. Consider the following example:

int x = 5.0;
FILE *outfile;

.

.

.
fprintf(outfile, "The answer is %d.\n", x);

The decimal value of the variable x replaces the conversion specification %d in the
string to be written to the file associated with the identifier outfile.

Each conversion specification begins with a percent sign ( % ) and ends with a
conversion specifier, which is a character that specifies the type of conversion to
be performed. Optional characters can appear between the percent sign and the
conversion specifier.

For the wide-character formatted I/O functions, the conversion specification is a
string of wide characters. For the byte I/O equivalent functions, it is a string of
bytes.

Sections 2.4.1 and 2.4.2 describe these optional characters and conversion
specifiers.

2.4.1 Converting Input Information
The format specification string for the input of information can include three
kinds of items:

• White-space characters (spaces, tabs, and new-line characters), which match
optional white-space characters in the input field.

• Ordinary characters (not %), which must match the next nonwhite-space
character in the input.

• Conversion specifications, which govern the conversion of the characters in
an input field and their assignment to an object indicated by a corresponding
input pointer.

Each input pointer is an address expression indicating an object whose
type matches that of a corresponding conversion specification. Conversion
specifications form part of the format string. The indicated object is the target
that receives the input value. There must be as many input pointers as there are
conversion specifications, and the addressed objects must match the types of the
conversion specifications.

A conversion specification consists of the following characters, in the order listed:

• A percent character ( % ) or the sequence %n$ (where n is an integer),

The sequence %n$ denotes that the conversion is applied to the nth input
pointer listed, where n is a decimal integer between [1, NL_ARGMAX]
(see the <limits.h> header file). For example, a conversion specification
beginning with %5$ means that the conversion will be applied to the fifth
input pointer listed after the format specification. The sequence %$ is invalid.

Understanding Input and Output 2–7



If the conversion specification does not begin with the sequence %n$, the
conversion specification is matched to its input pointer in left-to-right order.
You should only use one type of conversion specification (% or %n$) in a
format specification.

• One or more optional characters (see Table 2–2).

• A conversion specifier (see Table 2–3).

Table 2–2 shows the characters you can use between the percent sign ( % ) (or the
sequence %n$), and the conversion specifier. These characters are optional but, if
specified, must occur in the order shown in Table 2–2.

Table 2–2 Optional Characters Between % (or %n$) and the Input Conversion
Specifier

Character Meaning

* An assignment-suppressing character.

field width A nonzero decimal integer that specifies the maximum field width.

For the wide-character input functions, the field width is measured in
wide characters.

For the byte input functions, the field width is measured in bytes,
unless the directive is one of the following:

%lc, %ls, %C, %S, %[
In these cases, the field width is measured in multibyte character
units.

h, l, or L (or ll) Precede a conversion specifier of d, i, or n with an h if the
corresponding argument is a pointer to short int rather than a
pointer to int; with an l (lowercase ell) if it is a pointer to long int;
or, for OpenVMS Alpha systems only, with an L or ll (two lowercase
ells) if it is a pointer to __int64.

Precede a conversion specifier of o, u, or x with an h if the
corresponding argument is a pointer to unsigned short int rather
than a pointer to unsigned int; with an l if it is a pointer to
unsigned long int; or, for OpenVMS Alpha systems only, with an
L or ll if it is a pointer to unsigned __int64.

Precede a conversion specifier of c, s, or [ with an l (lowercase ell) if the
corresponding argument is a pointer to a wchar_t.

Finally, precede a conversion specifier of e, f, or g with an l (lowercase
ell) if the corresponding argument is a pointer to double rather than a
pointer to float, or with an L if it is a pointer to long double.

If an h, l, L, or ll appears with any other conversion specifier, then the
behavior is undefined.

Table 2–3 describes the conversion specifiers for formatted input.

2–8 Understanding Input and Output



Table 2–3 Conversion Specifiers for Formatted Input

Specifier Input Type1 Description

d Expects a decimal integer in the input whose format
is the same as expected for the subject sequence of
the strtol function with the value 10 for the base
argument. The corresponding argument must be a
pointer to int.

i Expects an integer whose type is determined by the
leading input characters. A leading 0 is equated to octal,
a leading 0X or 0x is equated to hexadecimal, and all
other forms are equated to decimal. The corresponding
argument must be a pointer to int.

o Expects an octal integer in the input (with or without
a leading 0). The corresponding argument must be a
pointer to int.

u Expects a decimal integer in the input whose format
is the same as expected for the subject sequence of
the strtoul function with the value 10 for the base
argument.

x Expects a hexadecimal integer in the input (with or
without a leading 0x). The corresponding argument
must be a pointer to unsigned int.

c Byte Expects a single byte in the input. The corresponding
argument must be a pointer to char.

If a field width precedes the c conversion specifier, then
the number of characters specified by the field width is
read. In this case, the corresponding argument must be
a pointer to an array of char.

If the optional character l (lowercase ell) precedes
this conversion specifier, then the specifier expects a
multibyte character in the input which is converted into
a wide-character code.

The corresponding argument must be a pointer to type
wchar_t. If a field width also precedes the c conversion
specifier, then the number of characters specified by
the field width is read. In this case, the corresponding
argument must be a pointer to an array of wchar_t.

Wide-character Expects a sequence of the number of characters specified
in the optional field width; this is 1 if not specified.

If no l (lowercase ell) precedes the c specifier, then the
corresponding argument must be a pointer to an array of
char.

If an l (lowercase ell) precedes the c specifier, then the
corresponding argument must be a pointer to an array of
wchar_t.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

(continued on next page)

Understanding Input and Output 2–9



Table 2–3 (Cont.) Conversion Specifiers for Formatted Input

Specifier Input Type1 Description

C Byte The specifier expects a multibyte character in the input,
which is converted into a wide-character code. The
corresponding argument must be a pointer to type
wchar_t.

If a field width also precedes the C conversion specifier,
then the number of characters specified by the field
width is read. In this case, the corresponding argument
must be a pointer to an array of wchar_t.

Wide-character Expects a sequence of the number of characters specified
in the optional field width; this is 1 if not specified. The
corresponding argument must be a pointer to an array of
wchar_t.

s Byte Expects a sequences of bytes in the input. The
corresponding argument must be a pointer to an
array of characters that is large enough to contain
the sequence and a terminating null character (\0) that
is automatically added. The input field is terminated by
a space, tab, or new-line character.

If the optional character l (ell) precedes this conversion
specifier, then the specifier expects a sequence of
multibyte characters in the input, which are converted
to wide-character codes. The corresponding argument
must be a pointer to an array of wide characters (type
wchar_t) that is large enough to contain the sequence
plus the terminating null wide-character code that is
automatically added. The input field is terminated by a
space, tab, or new-line character.

Wide-character Expects (conceptually) a sequence of nonwhite-space
characters in the input.

If no l (lowercase ell) precedes the s specifier, then the
corresponding argument must be a pointer to an array
of char large enough to contain the sequence plus the
terminating null byte that is automatically added.

If an l (lowercase ell) precedes the s specifier, then the
corresponding argument must be a pointer to an array of
wchar_t large enough to contain the sequence plus the
terminating null wide character that is automatically
added.

S Byte The specifier expects a sequence of multibyte characters
in the input, which are converted to wide-character
codes. The corresponding argument must be a pointer
to an array of wide characters (type wchar_t) that is
large enough to contain the sequence plus a terminating
null wide-character code that is added automatically.
The input field is terminated by a space, tab, or new-line
character.

Wide-character Expects a sequence of nonwhite-space characters in the
input. The corresponding argument must be a pointer
to an array of wchar_t large enough to contain the
sequence plus the terminating null wide character that
is automatically added.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

(continued on next page)

2–10 Understanding Input and Output



Table 2–3 (Cont.) Conversion Specifiers for Formatted Input

Specifier Input Type1 Description

e, f, g Expects a floating-point number in the input. The
corresponding argument must be a pointer to float.
The input format for floating-point numbers is:
[�]nnn[radix][ddd][{E | e}[�]nn]. The n’s and d’s are
decimal digits (as many as indicated by the field width
minus the signs and the letter E). The radix character is
defined in the current locale.

[ . . . ] Expects a nonempty sequence of characters that is not
delimited by a white-space character. The brackets
enclose a set of characters (the scanset) expected
in the input sequence. Any character in the input
sequence that does not match a character in the scanset
terminates the character sequence.

All characters between the brackets comprise the
scanset, unless the first character after the left bracket
is a circumflex (^). In this case, the scanset contains
all characters other than those that appear between
the circumflex and the right bracket. Any character
that does appear between the circumflex and the right
bracket will terminate the input character sequence.

If the conversion specifier begins with [ ] or [^], then the
right bracket character is in the scanset and the next
right bracket character is the matching right bracket
that ends the specification; otherwise, the first right
bracket character ends the specification.

Byte If an l (lowercase ell) does not precede the [ specifier,
then the characters in the scanset must be single-
byte characters only. In this case, the corresponding
argument must be a pointer to an array of char large
enough to accept the sequence and the terminating null
byte that is automatically added.

If an l (lowercase ell) does precede the [ specifier, then
the characters in the input sequence are considered
to be multibyte characters, which are then converted
to a wide-character sequence for further processing.
If character ranges are specified in the scanset, then
the processing is done according to the LC_COLLATE
category of the current program’s locale. In this case, the
corresponding argument must be a pointer to an array
of wchar_t large enough to accept the sequence and the
terminating null wide character that is automatically
added.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

(continued on next page)

Understanding Input and Output 2–11



Table 2–3 (Cont.) Conversion Specifiers for Formatted Input

Specifier Input Type1 Description

Wide-character If no l (lowercase ell) precedes the [ conversion specifier,
then processing is the same as described for the
byte-input type of the %l[ specifier, except that the
corresponding argument must be an array of char
large enough to accept the multibyte sequence plus the
terminating null byte that is automatically added.

If an l (lowercase ell) precedes the [ conversion specifier,
then processing is the same as in the preceding
paragraph except that the corresponding argument
must be an array of wchar_t large enough to accept the
wide-character sequence plus the terminating null wide
character that is automatically added.

p Requires an argument that is a pointer to void. The
input value is interpreted as a hexadecimal value.

n No input is consumed. The corresponding argument
is a pointer to an integer. The integer is assigned the
number of characters read from the input stream so far
by this call to the formatted input function. Execution of
a %n directive does not increment the assignment count
returned when the formatted input function completes
execution.

% Matches a single percent symbol. No conversion or
assignment takes place. The complete conversion
specification would be %%.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

Remarks

• You can change the delimiters of the input field with the bracket ([ ])
conversion specification. Otherwise, an input field is defined as a string
of nonwhite-space characters. It extends either to the next white-space
character or until the field width, if specified, is exhausted. The function
reads across line and record boundaries, since the new-line character is a
white-space character.

• A call to one of the input conversion functions resumes searching immediately
after the last character processed by a previous call.

• If the assignment-suppression character ( * ) appears in the format
specification, no assignment is made. The corresponding input field is
interpreted and then skipped.

• The arguments must be pointers or other address-valued expressions, since
HP C permits only calls by value. To read a number in decimal format and
assign its value to n, you must use the following form:

scanf("%d", &n)

You cannot use the following form:

scanf("%d", n)

• White space in a format specification matches optional white space in the
input field. Consider the following format specification:

field = %x

2–12 Understanding Input and Output



This format specification matches the following forms:

field = 5218
field=5218
field= 5218
field =5218

These forms do not match the following example:

fiel d=5218

2.4.2 Converting Output Information
The format specification string for the output of information can contain:

• Ordinary characters, which are copied to the output.

• Conversion specifications, each of which causes the conversion of a
corresponding output source to a character string in a particular format
Conversion specifications are matched to output sources in left-to-right order.

A conversion specification consists of the following, in the order listed:

• A percent character ( % ) or the sequence %n$.

The sequence %n$ denotes that the conversion is applied to the nth output
source listed, where n is a decimal integer between [1, NL_ARGMAX] (see the
<limits.h> header file). For example, a conversion specification beginning
with %5$ means that the conversion will be applied to the fifth output source
listed after the format specification.

If the conversion specification does not begin with the sequence %n$, the
conversion specification is matched to its output source in left-to-right order.
You should only use one type of conversion specification (% or %n$) in a
format specification.

• One or more optional characters (see Table 2–4).

• A conversion specifier (see Table 2–5) concludes the conversion specification.

For examples of conversion specifications, see the sample programs in Section 2.6.

Table 2–4 shows the characters you can use between the percent sign ( % ) (or the
sequence %n$) and the conversion specifier. These characters are optional, but if
specified, they must occur in the order shown in Table 2–4.

Understanding Input and Output 2–13



Table 2–4 Optional Characters Between % (or %n$) and the Output Conversion
Specifier

Character Meaning

flags You can use the following flag characters, alone or in any combined order,
to modify the conversion specification:

’ (single
quote)

Requests that a numeric conversion is formatted with
the thousands separator character. Only the numbers
to the left of the radix character are formatted with the
separator character. The character used as a separator
and the positioning of the separators are defined in the
program’s current locale.

– (hyphen) Left-justifies the converted output source in its field.

+ Requests that an explicit sign be present on a signed
conversion. If this flag is not specified, the result of a
signed conversion begins with a sign only when a negative
value is converted.

space Prefixes a space to the result of a signed conversion, if
the first character of the conversion is not a sign, or if the
conversion results in no characters. If you specify both the
space and the + flag, the space flag is ignored.

# Requests an alternate conversion format. Depending on
the conversion specified, different actions will occur.

For the o (octal) conversion, the precision is increased to
force the first digit to be a zero.

For the x (or X) conversion, a nonzero result is prefixed
with 0x (or 0X).

For e, E, f, g, and G conversions, the result contains a
decimal point even at the end of an integer value.

For g and G conversions, trailing zeros are not trimmed.

For other conversions, the effect of # is undefined.

0 Uses zeros rather than spaces to pad the field width for d,
i, o, u, x, X, e, E, f, g, and G conversions. If both the 0 and
the – flags are specified, then the 0 flag is ignored. For d,
i, o, u, x, and X conversions, if a precision is specified, the
0 flag is ignored. For other conversions, the behavior of
the 0 flag is undefined.

(continued on next page)

2–14 Understanding Input and Output



Table 2–4 (Cont.) Optional Characters Between % (or %n$) and the Output
Conversion Specifier

Character Meaning

field width The minimum field width can be designated by a decimal integer
constant, or by an output source. To specify an output source, use an
asterisk ( * ) or the sequence *n$, where n refers to the nth output source
listed after the format specification.

The minimum field width is considered after the conversion is done
according to all the other components of the format directive. This
component affects the padding of the conversion result as follows:

If the result of the conversion is wider than the minimum field, write it
out.

If the result of the conversion is narrower than the minimum width, pad
it to make up the field width. Pad with spaces by default. Pad with zeros
if the 0 flag is specified; this does not mean that the width is an octal
number. Padding is on the left by default, and on the right if a minus
sign is specified.

For the wide-character output functions, the field width is measured in
wide characters; for the byte output functions, it is measured in bytes.

. (period) Separates the field width from the precision.

precision The precision defines any of the following:

• Minimum number of digits to appear for d, i, o, u, x, and X
conversions

• Number of digits to appear after the decimal-point character for e,
E, and f conversions

• Maximum number of significant digits for g and G conversions

• Maximum number of characters to be written from a string in an s
or S conversion

If a precision appears with any other conversion specifier, the behavior is
undefined.

Precision can be designated by a decimal integer constant, or by an
output source. To specify an output source, use an asterisk ( * ) or the
sequence *n$, where n refers to the nth output source listed after the
format specification.

If only the period is specified, the precision is taken as 0.

(continued on next page)

Understanding Input and Output 2–15



Table 2–4 (Cont.) Optional Characters Between % (or %n$) and the Output
Conversion Specifier

Character Meaning

h, l, or L (or ll) An h specifies that a following d, i, o, u, x, or X conversion specifier
applies to a short int or unsigned short int argument; an h can also
specify that a following n conversion specifier applies to a pointer to a
short int argument.

An l (lowercase ell) specifies that a following d, i, o, u, x, or X conversion
specifier applies to a long int or unsigned long int argument; an
l can also specify that a following n conversion specifier applies to a
pointer to a long int argument.

On OpenVMS Alpha systems, an L or ll (two lowercase ells) specifies that
a following d, i, o, u, x, or X conversion specifier applies to an __int64
or unsigned __int64 argument. (Alpha only)

An L specifies that a following e, E, f, g, or G conversion specifier applies
to a long double argument.

An l specifies that a following c or s conversion specifier applies to a
wchar_t argument.

If an h, l, or L appears with any other conversion specifier, the behavior
is undefined.

On OpenVMS VAX and OpenVMS Alpha systems, HP C int values are
equivalent to long values.

Table 2–5 describes the conversion specifiers for formatted output.

Table 2–5 Conversion Specifiers for Formatted Output

Specifier Output Type1 Description

d, i Converts an int argument to signed decimal format.

o Converts an unsigned int argument to unsigned octal
format.

u Converts an unsigned int argument to unsigned decimal
format (giving a number in the range 0 to 4,294,967,295).

x, X Converts an unsigned int argument to unsigned
hexadecimal format (with or without a leading 0x). The
letters abcdef are used for x conversion, and the letters
ABCDEF are used for X conversion.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

(continued on next page)

2–16 Understanding Input and Output



Table 2–5 (Cont.) Conversion Specifiers for Formatted Output

Specifier Output Type1 Description

f Converts a float or double argument to the format
[–]mmm.nnnnnn. The number of n’s is equal to the precision
specification as follows:

• If no precision is specified, the default is 6.

• If the precision is 0 and the # flag is specified, the decimal
point appears but no n’s appear.

• If the precision is 0 and the # flag is not specified, the
decimal point also does not appear.

• If a decimal point appears, at least one digit appears
before it.

The value is rounded to the appropriate number of digits.

e, E Converts a float or double argument to the format
[–]m.nnnnnnE�xx. The number of n’s is specified by the
precision. If no precision is specified, the default is 6. If the
precision is explicitly 0 and the # flag is specified, the decimal
point appears but no n’s appear. If the precision is explicitly
0 and the # flag is not specified, the decimal point also does
not appear. An ’e’ is printed for e conversion; an ’E’ is printed
for E conversion. The exponent always contains at least two
digits. If the value is 0, the exponent is 0.

g, G Converts a float or double argument to format f or e (or
E if the G conversion specifier is used), with the precision
specifying the number of significant digits. If the precision
is 0, it is taken as 1. The format used depends on the value
of the argument: format e (or E) is used only if the exponent
resulting from such a conversion is less than –4, or is greater
than or equal to the precision; otherwise, format f is used.
Trailing zeros are suppressed in the fractional portion of the
result. A decimal point appears only if it is followed by a
digit.

c Byte Converts an int argument to an unsigned char, and writes
the resulting byte.

If the optional character l (lowercase ell) precedes this
conversion specifier, then the specifier converts a wchar_t
argument to an array of bytes representing the character, and
writes the resulting character. If the field width is specified
and the resulting character occupies fewer bytes than the field
width, then it will be padded to the given width with space
characters. If the precision is specified, then the behavior is
undefined.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

(continued on next page)

Understanding Input and Output 2–17



Table 2–5 (Cont.) Conversion Specifiers for Formatted Output

Specifier Output Type1 Description

Wide-character If an l (lowercase ell) does not precede the c specifier, then the
int argument is converted to a wide character as if by calling
btowc, and the resulting character is written.

If an l (lowercase ell) precedes the c specifier, then the
specifier converts a wchar_t argument to an array of
bytes representing the character, and writes the resulting
character. If the field width is specified and the resulting
character occupies fewer characters than the field width, it
will be padded to the given width with space characters. If
the precision is specified, the behavior is undefined.

C Byte Converts a wchar_t argument to an array of bytes
representing the character, and writes the resulting character.
If the field width is specified and the resulting character
occupies fewer bytes than the field width, then it will be
padded to the given width with space characters. If the
precision is specified, then the behavior is undefined.

Wide-character Converts a wchar_t argument to an array of bytes
representing the character, and writes the resulting character.
If the field width is specified and the resulting character
occupies fewer wide characters than the field width, then it
will be padded to the given width with space characters. If
the precision is specified, then the behavior is undefined.

s Byte Requires an argument that is a pointer to an array of
characters of type char. The argument is used to write
characters until a null character is encountered or until the
number of characters indicated by the precision specification
is exhausted. If the precision specification is 0 or omitted,
then all characters up to a null are output.

If the optional character l (lowercase ell) precedes this
conversion specifier, then the specifier converts an array of
wide-character codes to multibyte characters, and writes the
multibyte characters. Requires an argument that is a pointer
to an array of wide characters of type wchar_t. Characters
are written until a null wide character is encountered or until
the number of bytes indicated by the precision specification
is exhausted. If the precision specification is omitted or is
greater than the size of the array of converted bytes, then the
array of wide characters must be terminated by a null wide
character.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

(continued on next page)

2–18 Understanding Input and Output



Table 2–5 (Cont.) Conversion Specifiers for Formatted Output

Specifier Output Type1 Description

Wide-character If an l (lowercase ell) does not precede the s specifier, then
the specifier converts an array of multibyte characters, as
if by calling mbrtowc for each multibyte character, and
writes the resulting characters until a null wide character
is encountered or the number of wide characters indicated
by the precision specification is exhausted. If the precision
specification is omitted or is greater than the size of the array
of converted characters, then the converted array must be
terminated by a null wide character.

If an l precedes this conversion specifier, then the argument
is a pointer to an array of wchar_t. Characters from this
array are written until a null wide character is encountered
or the number of wide characters indicated by the precision
specification is exhausted. If the precision specification is
omitted or is greater than the size of the array, then the array
must be terminated by a null wide character.

S Byte Converts an array of wide-character codes to multibyte
characters, and writes the multibyte characters. Requires
an argument that is a pointer to an array of wide characters
of type wchar_t. Characters are written until a null wide
character is encountered or until the number of bytes
indicated by the precision specification is exhausted. If
the precision specification is omitted or is greater than the
size of the array of converted bytes, then the array of wide
characters must be terminated by a null wide character.

Wide-character The argument is a pointer to an array of wchar_t.
Characters from this array are written until a null wide
character is encountered or the number of wide characters
indicated by the precision specification is exhausted. If the
precision specification is omitted or is greater than the size of
the array, then the array must be terminated by a null wide
character.

p Requires an argument that is a pointer to void. The value of
the pointer is output as a hexadecimal number.

n Requires an argument that is a pointer to an integer. The
integer is assigned the number of characters written to the
output stream so far by this call to the formatted output
function. No argument is converted.

% Writes out the percent symbol. No conversion is performed.
The complete conversion specification would be %%.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

2.5 Terminal I/O
HP C defines three file pointers that allow you to perform I/O to and from
the logical devices usually associated with your terminal (for interactive jobs)
or a batch stream (for batch jobs). In the OpenVMS environment, the three
permanent process files SYS$INPUT, SYS$OUTPUT, and SYS$ERROR perform
the same functions for both interactive and batch jobs. Terminal I/O refers to
both terminal and batch stream I/O. The file pointers stdin, stdout, and stderr
are defined when you include the <stdio.h> header file using the #include
preprocessor directive.

Understanding Input and Output 2–19



The stdin file pointer is associated with the terminal to perform input. This
file is equivalent to SYS$INPUT. The stdout file pointer is associated with the
terminal to perform output. This file is equivalent to SYS$OUTPUT. The stderr
file pointer is associated with the terminal to report run-time errors. This file is
equivalent to SYS$ERROR.

There are three file descriptors that refer to the terminal. The file descriptor 0 is
equivalent to SYS$INPUT, 1 is equivalent to SYS$OUTPUT, and 2 is equivalent
to SYS$ERROR.

When performing I/O at the terminal, you can use Standard I/O functions and
macros (specifying the pointers stdin, stdout, or stderr as arguments), you can
use UNIX I/O functions (giving the corresponding file descriptor as an argument),
or you can use the Terminal I/O functions and macros. There is no functional
advantage to using one type of I/O over another; the Terminal I/O functions might
save keystrokes since there are no arguments.

2.6 Program Examples
This section gives some program examples that show how the I/O functions can
be used in applications.

Example 2–1 shows the printf function.

Example 2–1 Output of the Conversion Specifications

/* CHAP_2_OUT_CONV.C */

/* This program uses the printf function to print the */
/* various conversion specifications and their effect */
/* on the output. */

/* Include the proper header files in case printf has */
/* to return EOF. */

#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>

#define WIDE_STR_SIZE 20

main()
{

double val = 123345.5;
char c = ’C’;
int i = -1500000000;
char *s = "thomasina";
wchar_t wc;
wchar_t ws[WIDE_STR_SIZE];

/* Produce a wide character and a wide character string */

if (mbtowc(&wc, "W", 1) == -1) {
perror("mbtowc");
exit(EXIT_FAILURE);

}

if (mbstowcs(ws, "THOMASINA", WIDE_STR_SIZE) == -1) {
perror("mbstowcs");
exit(EXIT_FAILURE);

}

(continued on next page)

2–20 Understanding Input and Output



Example 2–1 (Cont.) Output of the Conversion Specifications

/* Print the specification code, a colon, two tabs, and the */
/* formatted output value delimited by the angle bracket */
/* characters (<>). */

printf("%%9.4f:\t\t<%9.4f>\n", val);
printf("%%9f:\t\t<%9f>\n", val);
printf("%%9.0f:\t\t<%9.0f>\n", val);
printf("%%-9.0f:\t\t<%-9.0f>\n\n", val);

printf("%%11.6e:\t\t<%11.6e>\n", val);
printf("%%11e:\t\t<%11e>\n", val);
printf("%%11.0e:\t\t<%11.0e>\n", val);
printf("%%-11.0e:\t\t<%-11.0e>\n\n", val);

printf("%%11g:\t\t<%11g>\n", val);
printf("%%9g:\t\t<%9g>\n\n", val);

printf("%%d:\t\t<%d>\n", c);
printf("%%c:\t\t<%c>\n", c);
printf("%%o:\t\t<%o>\n", c);
printf("%%x:\t\t<%x>\n\n", c);

printf("%%d:\t\t<%d>\n", i);
printf("%%u:\t\t<%u>\n", i);
printf("%%x:\t\t<%x>\n\n", i);

printf("%%s:\t\t<%s>\n", s);
printf("%%-9.6s:\t\t<%-9.6s>\n", s);
printf("%%-*.*s:\t\t<%-*.*s>\n", 9, 5, s);
printf("%%6.0s:\t\t<%6.0s>\n\n", s);
printf("%%C:\t\t<%C>\n", wc);
printf("%%S:\t\t<%S>\n", ws);
printf("%%-9.6S:\t\t<%-9.6S>\n", ws);
printf("%%-*.*S:\t\t<%-*.*S>\n", 9, 5, ws);
printf("%%6.0S:\t\t<%6.0S>\n\n", ws);

}

Running Example 2–1 produces the following output:

$ RUN EXAMPLE
%9.4f: <123345.5000>
%9f: <123345.500000>
%9.0f: < 123346>
%-9.0f: <123346 >

%11.6e: <1.233455e+05>
%11e: <1.233455e+05>
%11.0e: < 1e+05>
%-11.0e: <1e+05 >

%11g: < 123346>
%9g: < 123346>

%d: <67>
%c: <C>
%o: <103>
%x: <43>

%d: <-1500000000>
%u: <2794967296>
%x: <a697d100>

%s: <thomasina>
%-9.6s: <thomas >
%-*.*s: <thoma >
%6.0s: < >

Understanding Input and Output 2–21



%C: <W>
%S: <THOMASINA>
%-9.6S: <THOMAS >
%-*.*S: <THOMA >
%6.0S: < >
$

Example 2–2 shows the use of the fopen, ftell, sprintf, fputs, fseek, fgets,
and fclose functions.

Example 2–2 Using the Standard I/O Functions

/* CHAP_2_STDIO.C */

/* This program establishes a file pointer, writes lines from */
/* a buffer to the file, moves the file pointer to the second */
/* record, copies the record to the buffer, and then prints */
/* the buffer to the screen. */

#include <stdio.h>
#include <stdlib.h>

main()
{

char buffer[32];
int i,

pos;
FILE *fptr;

/* Set file pointer. */
fptr = fopen("data.dat", "w+");
if (fptr == NULL) {

perror("fopen");
exit(EXIT_FAILURE);

}

for (i = 1; i < 5; i++) {
if (i == 2) /* Get position of record 2. */

pos = ftell(fptr);
/* Print a line to the buffer. */
sprintf(buffer, "test data line %d\n", i);
/* Print buffer to the record. */
fputs(buffer, fptr);

}

/* Go to record number 2. */
if (fseek(fptr, pos, 0) < 0) {

perror("fseek"); /* Exit on fseek error. */
exit(EXIT_FAILURE);

}

/* Read record 2 in the buffer. */
if (fgets(buffer, 32, fptr) == NULL) {

perror("fgets"); /* Exit on fgets error. */
exit(EXIT_FAILURE);

}
/* Print the buffer. */
printf("Data in record 2 is: %s", buffer);
fclose(fptr); /* Close the file. */

}

Running Example 2–2 produces the following result:

$ RUN EXAMPLE
Data in record 2 is: test data line 2

2–22 Understanding Input and Output



The output to DATA.DAT from Example 2–2 is:

test data line 1
test data line 2
test data line 3
test data line 4

Example 2–3 Using Wide Character I/O Functions

/* CHAP_2_WC_IO.C */

/* This program establishes a file pointer, writes lines from */
/* a buffer to the file using wide-character codes, moves the */
/* file pointer to the second record, copies the record to the */
/* wide-character buffer, and then prints the buffer to the */
/* screen. */

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

main()
{

char flat_buffer[32];
wchar_t wide_buffer[32];
wchar_t format[32];
int i,

pos;
FILE *fptr;

/* Set file pointer. */
fptr = fopen("data.dat", "w+");
if (fptr == NULL) {

perror("fopen");
exit(EXIT_FAILURE);

}

for (i = 1; i < 5; i++) {
if (i == 2) /* Get position of record 2. */

pos = ftell(fptr);
/* Print a line to the buffer. */
sprintf(flat_buffer, "test data line %d\n", i);
if (mbstowcs(wide_buffer, flat_buffer, 32) == -1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Print buffer to the record. */
fputws(wide_buffer, fptr);

}

/* Go to record number 2. */
if (fseek(fptr, pos, 0) < 0) {

perror("fseek"); /* Exit on fseek error. */
exit(EXIT_FAILURE);

}

(continued on next page)

Understanding Input and Output 2–23



Example 2–3 (Cont.) Using Wide Character I/O Functions

/* Put record 2 in the buffer. */
if (fgetws(wide_buffer, 32, fptr) == NULL) {

perror("fgetws"); /* Exit on fgets error. */
exit(EXIT_FAILURE);

}
/* Print the buffer. */
printf("Data in record 2 is: %S", wide_buffer);
fclose(fptr); /* Close the file. */

}

Running Example 2–3 produces the following result:

$ RUN EXAMPLE
Data in record 2 is: test data line 2

The output to DATA.DAT from Example 2–3 is:

test data line 1
test data line 2
test data line 3
test data line 4

Example 2–4 shows the use of both a file pointer and a file descriptor to access a
single file.

Example 2–4 I/O Using File Descriptors and Pointers

/* CHAP_2_FILE_DIS_AND_POINTER.C */

/* The following example creates a file with variable-length */
/* records (rfm=var) and the carriage-return attribute (rat=cr).*/
/* */
/* The program uses creat to create and open the file, and */
/* fdopen to associate the file descriptor with a file pointer. */
/* After using the fdopen function, the file must be referenced */
/* using the Standard I/O functions. */

#include <unixio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ERROR 0
#define ERROR1 -1
#define BUFFSIZE 132

main()
{

char buffer[BUFFSIZE];
int fildes;
FILE *fp;

if ((fildes = creat("data.dat", 0, "rat=cr",
"rfm=var")) == ERROR1) {

perror("DATA.DAT: creat() failed\n");
exit(EXIT_FAILURE);

}

(continued on next page)

2–24 Understanding Input and Output



Example 2–4 (Cont.) I/O Using File Descriptors and Pointers

if ((fp = fdopen(fildes, "w")) == NULL) {
perror("DATA.DAT: fdopen() failed\n");
exit(EXIT_FAILURE);

}
while (fgets(buffer, BUFFSIZE, stdin) != NULL)

if (fwrite(buffer, strlen(buffer), 1, fp) == ERROR) {
perror("DATA.DAT: fwrite() failed\n");
exit(EXIT_FAILURE);

}

if (fclose(fp) == EOF) {
perror("DATA.DAT: fclose() failed\n");
exit(EXIT_FAILURE);

}
}

Understanding Input and Output 2–25





3
Character, String, and Argument-List Functions

Table 3–1 describes the character, string, and argument-list functions in the HP C
Run-Time Library (RTL). Although further discussion follows in this chapter, see
the Reference Section for more detailed information on each function.

Table 3–1 Character, String, and Argument-List Functions

Function Description

Character Classification

isalnum, iswalnum Returns a nonzero integer if its argument is one of the
alphanumeric characters in the current locale.

isalpha, iswalpha Returns a nonzero integer if its argument is one of the
alphabetic characters in the current locale.

isascii Returns a nonzero integer if its argument is any ASCII
character.

iscntrl, iswcntrl Returns a nonzero integer if its argument is a control character
in the current locale.

isdigit, iswdigit Returns a nonzero integer if its argument is a digit character
in the current locale.

isgraph, iswgraph Returns a nonzero integer if its argument is a graphic
character in the current locale.

islower, iswlower Returns a nonzero integer if its argument is a lowercase
character in the current locale.

isprint, iswprint Returns a nonzero integer if its argument is a printing
character in the current locale.

ispunct, iswpunct Returns a nonzero integer if its argument is a punctuation
character in the current locale.

isspace, iswspace Returns a nonzero integer if its argument is a white-space
character in the current locale.

isupper, iswupper Returns a nonzero integer if its argument is an uppercase
character in the current locale.

iswctype Returns a nonzero integer if its argument has the specified
property.

isxdigit, iswxdigit Returns a nonzero integer if its argument is a hexadecimal
digit (0 to 9, A to F, or a to f).

(continued on next page)

Character, String, and Argument-List Functions 3–1



Table 3–1 (Cont.) Character, String, and Argument-List Functions

Function Description

Character Conversion

btowc Converts a one-byte multibyte character to a wide character in
the initial shift state.

ecvt, fcvt, gcvt Converts an argument to a null-terminated string of ASCII
digits and return the address of the string.

index, rindex Searches for a character in a string.

mblen, mbrlen Determines the number of bytes in a multibyte character.

mbsinit Determines whether an mbstate_t object decribes an initial
conversion state.

mbstowcs Converts a sequence of multibyte characters into a sequence of
corresponding codes.

toascii Converts its argument, an 8-bit ASCII character, to a 7-bit
ASCII character.

tolower, _tolower,
towlower

Converts its argument, an uppercase character, to lowercase.

toupper, _toupper,
towupper

Converts its argument, a lowercase character, to uppercase.

towctrans Maps one wide character to another according to a specified
mapping descriptor.

wcstombs Converts a sequence of wide-character codes corresponding to
multibyte characters to a sequence of multibyte characters.

wctob Determines if a wide character corresponds to a single-byte
multibyte character and returns its multibyte character
representation.

wctomb Converts a wide character to its multibyte character
representation.

wctrans Returns the description of a mapping, corresponding to
specified property, that can be later used in a call to
towctrans.

wctype Converts a valid character class defined for the current locale
to an object of type wctype_t.

String Manipulation

atof Converts a given string to a double-precision number.

atoi, atol Converts a given string of ASCII characters to the appropriate
numeric values.

atoll, atoq (Alpha only) Converts a given string of ASCII characters to an __int64.

basename Returns the last component of a path name.

dirname Reports the parent directory name of a file path name.

strcat, strncat,
wcscat, wcsncat

Appends one string to the end of another string.

strchr, strrchr,
wcschr, wcsrchr

Returns the address of the first or last occurrence of a given
character in a null-terminated string.

(continued on next page)

3–2 Character, String, and Argument-List Functions



Table 3–1 (Cont.) Character, String, and Argument-List Functions

Function Description

String Manipulation

strcmp, strncmp,
strcoll, wcscmp,
wcsncmp, wcscoll

Compares two character strings and returns a negative, zero,
or positive integer indicating that the values of the individual
characters in the first string are less than, equal to, or greater
than the values in the second string.

strcpy, strncpy,
wcscpy, wcsncpy

Copies all or part of one string into another.

strxfrm, wcsxfrm Transforms a multibyte string to another string ready for
comparisons using the strcmp or wcscmp function.

strcspn, wcscspn Searches a string for a character that is in a specified set of
characters.

strlen, wcslen Returns the length of a string of characters. The returned
length does not include the terminating null character ( \0 ).

strpbrk, wcspbrk Searches a string for the occurrence of one of a specified set of
characters.

strspn, wcsspn Searches a string for the occurrence of a character that is not
in a specified set of characters.

strstr, wcswcs Searches a string for the first occurrence of a specified set of
characters.

strtod, wcstod Converts a given string to a double-precision number.

strtok, wcstok Locates text tokens in a given string.

strtol, wcstol Converts the initial portion of a string to a signed long integer.

strtoll, strtoq
(Alpha only)

Converts the initial portion of a string to signed __int64.

strtoul, wcstoul Converts the initial portion of a string to an unsigned long
integer.

strtoull, strtouq
(Alpha only)

Converts the initial portion of the string pointed to by the
pointer to the character string to an unsigned __int64.

String Handling—Accessing Binary Data

bcmp Compares byte strings.

bcopy Copies byte strings.

bzero Copies nulls into byte strings.

memchr, wmemchr Locates the first occurrence of the specified byte within the
initial length of the object to be searched.

memcmp, wmemcmp Compares two objects byte by byte.

memcpy, memmove,
wmemcpy, wmemmove

Copies a specified number of bytes from one object to another.

memset, wmemset Sets a specified number of bytes in a given object to a given
value.

(continued on next page)

Character, String, and Argument-List Functions 3–3



Table 3–1 (Cont.) Character, String, and Argument-List Functions

Function Description

Argument-List Handling—Accessing a Variable-Length Argument List

va_arg Returns the next item in the argument list.

va_count Returns the number of longwords (VAX only) or quadwords
(Alpha only) in the argument list.

va_end Finishes the va_start session.

va_start,
va_start_1

Initializes a variable to the beginning of the argument list.

vfprintf, vprintf,
vsprintf

Prints formatted output based on an argument list.

3.1 Character-Classification Functions
The character-classification functions take a single argument on which they
perform a logical operation. The argument can have any value; it does not have
to be an ASCII character. The isascii function determines if the argument is an
ASCII character (0 through 177 octal). The other functions determine whether
the argument is a particular type of ASCII character, such as a graphic character
or digit. The isw* functions test wide characters. Character-classification
information is in the LC_CTYPE category of the program’s current locale.

For all functions, a positive return value indicates TRUE. A return value of 0
indicates FALSE.

To briefly reference the character-classification functions in a subsequent table,
each function is assigned a number, as shown in Table 3–2.

Table 3–2 Character-Classification Functions

Function
Number Function

Function
Number Function

1 isalnum 7 islower
2 isalpha 8 isprint
3 isascii 9 ispunct
4 iscntrl 10 isspace
5 isdigit 11 isupper
6 isgraph 12 isxdigit

Table 3–3 lists the numbers of the functions (as assigned in Table 3–2) that
return the value TRUE for each of the given ASCII characters. The numeric code
represents the octal value of each of the ASCII characters.

3–4 Character, String, and Argument-List Functions



Table 3–3 ASCII Characters and the Character-Classification Functions

ASCII
Values

Function
Numbers

ASCII
Values

Function
Numbers

NUL 00 3,4 @ 100 3,6,8,9

SOH 01 3,4 A 101 1,2,3,6,8,11,12

STX 02 3,4 B 102 1,2,3,6,8,11,12

ETX 03 3,4 C 103 1,2,3,6,8,11,12

EOT 04 3,4 D 104 1,2,3,6,8,11,12

ENQ 05 3,4 E 105 1,2,3,6,8,11,12

ACK 06 3,4 F 106 1,2,3,6,8,11,12

BEL 07 3,4 G 107 1,2,3,6,8,11

BS 10 3,4 H 110 1,2,3,6,8,11

HT 11 3,4,10 I 111 1,2,3,6,8,11

LF 12 3,4,10 J 112 1,2,3,6,8,11

VT 13 3,4,10 K 113 1,2,3,6,8,11

FF 14 3,4,10 L 114 1,2,3,6,8,11

CR 15 3,4,10 M 115 1,2,3,6,8,11

SO 16 3,4 N 116 1,2,3,6,8,11

SI 17 3,4 O 117 1,2,3,6,8,11

DLE 20 3,4 P 120 1,2,3,6,8,11

DC1 21 3,4 Q 121 1,2,3,6,8,11

DC2 22 3,4 R 122 1,2,3,6,8,11

DC3 23 3,4 S 123 1,2,3,6,8,11

DC4 24 3,4 T 124 1,2,3,6,8,11

NAK 25 3,4 U 125 1,2,3,6,8,11

SYN 26 3,4 V 126 1,2,3,6,8,11

ETB 27 3,4 W 127 1,2,3,6,8,11

CAN 30 3,4 X 130 1,2,3,6,8,11

EM 31 3,4 Y 131 1,2,3,6,8,11

SUB 32 3,4 Z 132 1,2,3,6,8,11

ESC 33 3,4 [ 133 3,6,8,9

FS 34 3,4 \ 134 3,6,8,9

GS 35 3,4 ] 135 3,6,8,9

RS 36 3,4 ^ 136 3,6,8,9

US 37 3,4 – 137 3,6,8,9

SP 40 3,8,10 ` 140 3,6,8,9

! 41 3,6,8,9 a 141 1,2,3,6,7,8,12

(continued on next page)

Character, String, and Argument-List Functions 3–5



Table 3–3 (Cont.) ASCII Characters and the Character-Classification Functions

ASCII
Values

Function
Numbers

ASCII
Values

Function
Numbers

" 42 3,6,8,9 b 142 1,2,3,6,7,8,12

# 43 3,6,8,9 c 143 1,2,3,6,7,8,12

$ 44 3,6,8,9 d 144 1,2,3,6,7,8,12

% 45 3,6,8,9 e 145 1,2,3,6,7,8,12

& 46 3,6,8,9 f 146 1,2,3,6,7,8,12

’ 47 3,6,8,9 g 147 1,2,3,6,7,8

( 50 3,6,8,9 h 150 1,2,3,6,7,8

) 51 3,6,8,9 i 151 1,2,3,6,7,8

* 52 3,6,8,9 j 152 1,2,3,6,7,8

+ 53 3,6,8,9 k 153 1,2,3,6,7,8

’ 54 3,6,8,9 l 154 1,2,3,6,7,8

- 55 3,6,8,9 m 155 1,2,3,6,7,8

. 56 3,6,8,9 n 156 1,2,3,6,7,8

/ 57 3,6,8,9 o 157 1,2,3,6,7,8

0 60 1,3,5,6,8,12 p 160 1,2,3,6,7,8

1 61 1,3,5,6,8,12 q 161 1,2,3,6,7,8

2 62 1,3,5,6,8,12 r 162 1,2,3,6,7,8

3 63 1,3,5,6,8,12 s 163 1,2,3,6,7,8

4 64 1,3,5,6,8,12 t 164 1,2,3,6,7,8

5 65 1,3,5,6,8,12 u 165 1,2,3,6,7,8

6 66 1,3,5,6,8,12 v 166 1,2,3,6,7,8

7 67 1,3,5,6,8,12 w 167 1,2,3,6,7,8

8 70 1,3,5,6,8,12 x 170 1,2,3,5,6,8

9 71 1,3,5,6,8,12 y 171 1,2,3,5,6,8

: 72 3,6,8,9 z 172 1,2,3,5,6,8

; 73 3,6,8,9 { 173 3,6,8,9

< 74 3,6,8,9 | 174 3,6,8,9

= 75 3,6,8,9 } 175 3,6,8,9

> 76 3,6,8,9 ~ 176 3,6,8,9

? 77 3,6,8,9 DEL 177 3,4

3–6 Character, String, and Argument-List Functions



Example 3–1 shows how the character-classification functions are used.

Example 3–1 Character-Classification Functions

/* CHAP_3_CHARCLASS.C */

/* This example uses the isalpha, isdigit, and isspace */
/* functions to count the number of occurrences of letters, */
/* digits, and white-space characters entered through the */
/* standard input (stdin). */

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

char c;
int i = 0,

j = 0,
k = 0;

while ((c = getchar()) != EOF) {
if (isalpha(c))

i++;
if (isdigit(c))

j++;
if (isspace(c))

k++;
}

printf("Number of letters: %d\n", i);
printf("Number of digits: %d\n", j);
printf("Number of spaces: %d\n", k);

}

The sample input and output from Example 3–1 follows:

$ RUN EXAMPLE1
I saw 35 people riding bicycles on Main Street. Return

Ctrl/Z

Number of letters: 36
Number of digits: 2
Number of spaces: 8
$

3.2 Character-Conversion Functions
The character-conversion functions convert one type of character to another type.
These functions include:

ecvt _tolower
fcvt toupper
gcvt _toupper
mbtowc towctrans
mbrtowc wctrans
mbsrtowcs wcrtomb
toascii wcsrtombs
tolower

For more information on each of these functions, see the Reference Section.

Character, String, and Argument-List Functions 3–7



Example 3–2 shows how to use the ecvt function.

Example 3–2 Converting Double Values to an ASCII String

/* CHAP_3_CHARCONV.C */

/* This program uses the ecvt function to convert a double */
/* value to a string. The program then prints the string. */

#include <stdio.h>
#include <stdlib.h>
#include <unixlib.h>
#include <string.h>

main()
{

double val; /* Value to be converted */

int sign, /* Variables for sign */
point; /* and decimal place */

/* Array for the converted string */
static char string[20];

val = -3.1297830e-10;

printf("original value: %e\n", val);
if (sign)

printf("value is negative\n");
else

printf("value is positive\n");
printf("decimal point at %d\n", point);

}

The output from Example 3–2 is as follows:

$ RUN EXAMPLE2
original value: -3.129783e-10
converted string: 31298
value is negative
decimal point at -9
$

Example 3–3 shows how to use the toupper and tolower functions.

Example 3–3 Changing Characters to and from Uppercase Letters

/* CHAP_3_CONV_UPPERLOWER.C */

/* This program uses the functions toupper and tolower to */
/* convert uppercase to lowercase and lowercase to uppercase */
/* using input from the standard input (stdin). */

#include <ctype.h>
#include <stdio.h> /* To use EOF identifier */
#include <stdlib.h>

main()
{

char c,
ch;

(continued on next page)

3–8 Character, String, and Argument-List Functions



Example 3–3 (Cont.) Changing Characters to and from Uppercase Letters

while ((c = getchar()) != EOF) {
if (c >= ’A’ && c <= ’Z’)

ch = tolower(c);
else

ch = toupper(c);
putchar(ch);

}
}

Sample input and output from Example 3–3 are as follows:

$ RUN EXAMPLE3
LET’S GO TO THE welcome INN. Ctrl/Z

let’s go to the WELCOME inn.
$

3.3 String and Argument-List Functions
The HP C RTL contains a group of functions that manipulate strings. Some of
these functions concatenate strings; others search a string for specific characters
or perform some other comparison, such as determining the equality of two
strings.

The HP C RTL also contains a set of functions that allow you to copy buffers
containing binary data.

The set of functions defined and declared in the <varargs.h> and the <stdarg.h>
header files provide a method of accessing variable-length argument lists. The
<stdarg.h> functions are defined by the ANSI C Standard and are more portable
than those defined in <varargs.h>.

The RTL functions such as printf and execl, for example, use variable-length
argument lists. User-defined functions with variable-length argument lists that
do not use <varargs.h> or <stdarg.h> are not portable due to the different
argument-passing conventions of various machines.

The <stdarg.h> header file does not contain va_alist and va_dcl. The following
shows a syntax example when using <stdarg.h>:

function_name(int arg1, ...)
{

va_list ap;
...

When using <varargs.h>:

• The identifier va_alist is a parameter in the function definition.

• va_dcl declares the parameter va_alist, a declaration that is not terminated
with a semicolon ( ; ).

• The type va_list is used in the declaration of the variable used to traverse
the list. You must declare at least one variable of type va_list when using
<varargs.h>.

Character, String, and Argument-List Functions 3–9



These names and declarations have the following syntax:

function_name(int arg1, . . . )
{

va_list ap;

.

.

.

3.4 Program Examples
Example 3–4 shows how to use the strcat and strncat functions.

Example 3–4 Concatenating Two Strings

/* CHAP_3_CONCAT.C */

/* This example uses strcat and strncat to concatenate two */
/* strings. */

#include <stdio.h>
#include <string.h>

main()
{

static char string1[80] = "Concatenates ";
static char string2[] = "two strings ";
static char string3[] = "up to a maximum of characters.";
static char string4[] = "imum number of characters";

printf("strcat:\t%s\n", strcat(string1, string2));
printf("strncat ( 0):\t%s\n", strncat(string1, string3, 0));
printf("strncat (11):\t%s\n", strncat(string1, string3, 11));
printf("strncat (40):\t%s\n", strncat(string1, string4, 40));

}

Example 3–4 produces the following output:

$ RUN EXAMPLE1
strcat: Concatenates two strings
strncat ( 0): Concatenates two strings
strncat (11): Concatenates two strings up to a max
strncat (40): Concatenates two strings up to a maximum number of characters.
$

Example 3–5 shows how to use the strcspn function.

Example 3–5 Four Arguments to the strcspn Function

/* CHAP_3_STRCSPN.C */

/* This example shows how strcspn interprets four */
/* different kinds of arguments. */

#include <stdio.h>

main()
{

printf("strcspn with null charset: %d\n",
strcspn("abcdef", ""));

(continued on next page)

3–10 Character, String, and Argument-List Functions



Example 3–5 (Cont.) Four Arguments to the strcspn Function

printf("strcspn with null string: %d\n",
strcspn("", "abcdef"));

printf("strcspn(\"xabc\", \"abc\"): %d\n",
strcspn("xabc", "abc"));

printf("strcspn(\"abc\", \"def\"): %d\n",
strcspn("abc", "def"));

}

The sample output, to the file strcspn.out, in Example 3–5 is as follows:

$ RUN EXAMPLE2

strcspn with null charset: 6
strcspn with null string: 0
strcspn("xabc","abc"): 1
strcspn("abc","def"): 3

Example 3–6 shows how to use the <stdarg.h> functions and definitions.

Example 3–6 Using the <stdarg.h> Functions and Definitions

/* CHAP_3_STDARG.C */

/* This routine accepts a variable number of string arguments, */
/* preceded by a count of the number of such strings. It */
/* allocates enough space in which to concatenate all of the */
/* strings, concatenates them together, and returns the address */
/* of the new string. It returns NULL if there are no string */
/* arguments, or if they are all null strings. */

#include <stdarg.h> /* Include appropriate header files */
#include <stdlib.h> /* for the "example" call in main. */
#include <string.h>
#include <stdio.h>

/* NSTRINGS is the maximum number of string arguments accepted */
/* (arbitrary). */

#define NSTRINGS 10

char *concatenate(int n,...)
{

va_list ap; /* Declare the argument pointer. */

char *list[NSTRINGS],
*string;

int index = 0,
size = 0;

/* Check that the number of arguments is within range. */

if (n <= 0)
return NULL;

if (n > NSTRINGS)
n = NSTRINGS;

va_start(ap, n); /* Initialize the argument pointer. */

do {
/* Extract the next argument and save it. */

list[index] = va_arg(ap, char *);

(continued on next page)

Character, String, and Argument-List Functions 3–11



Example 3–6 (Cont.) Using the <stdarg.h> Functions and Definitions

size += strlen(list[index]);
} while (++index < n);

va_end(ap); /* Terminate use of ap. */

if (size == 0)
return NULL;

string = malloc(size + 1);
string[0] = ’\0’;

/* Append each argument to the end of the growing result */
/* string. */

for (index = 0; index < n; ++index)
strcat(string, list[index]);

return string;
}

/* An example of calling this routine is */

main() {
char *ret_string ;

ret_string = concatenate(7, "This ", "message ", "is ",
"built with ", "a", " variable arg",
" list.") ;

puts(ret_string) ;
}

The call to Example 3–6 produces the following output:

This message is built with a variable arg list.

3–12 Character, String, and Argument-List Functions



4
Error and Signal Handling

Table 4–1 lists and describes all the error- and signal-handling functions found
in the HP C Run-Time Library (RTL). For more detailed information on each
function, see the Reference Section.

Table 4–1 Error- and Signal-Handling Functions

Function Description

abort Raises the signal SIGABRT that terminates the execution of
the program.

assert Puts diagnostics into programs.

atexit Registers a function to be called at program termination.

exit, _exit Terminates the current program.

perror Writes a short error message to stderr describing the current
errno value.

strerror Maps the error code in errno to an error message string.

alarm Sends the signal SIGALARM to the invoking process after the
number of seconds indicated by its argument has elapsed.

gsignal Generates a specified software signal.

kill Sends a SIGKILL signal to the process specified by a
process ID.

longjmp Transfers control from a nested series of function invocations
back to a predefined point without returning normally.

pause Causes the process to wait until it receives a signal.

raise Generates a specified signal.

setjmp Establishes the context for a later transfer of control from
a nested series of function invocations, without returning
normally.

sigaction Specifies the action to take upon delivery of a signal.

sigaddset Adds the specified individual signal.

sigblock Causes the signals in its argument to be added to the current
set of signals being blocked from delivery.

sigdelset Deletes a specified individual signal.

sigemptyset Initializes the signal set to exclude all signals.

sigfillset Initializes the signal set to include all signals.

sighold Adds the specified signal to the calling process’s signal mask.

sigignore Sets the disposition of the specified signal to SIG_IGN.

(continued on next page)

Error and Signal Handling 4–1



Table 4–1 (Cont.) Error- and Signal-Handling Functions

Function Description

sigismember Tests whether a specified signal is a member of the signal set.

siglongjmp Nonlocal goto with signal handling.

sigmask Constructs the mask for a given signal number.

signal Catches or ignores a signal.

sigpause Blocks a specified set of signals and then waits for a signal
that was not blocked.

sigpending Examines pending signals.

sigprocmask Sets the current signal mask.

sigrelse Removes the specified signal from the calling process’s signal
mask.

sigsetjmp Sets the jump point for a nonlocal goto.

sigsetmask Establishes the signals that are blocked from delivery.

sigstack Defines an alternate stack on which to process signals.

sigsuspend Atomically changes the set of blocked signals and waits for a
signal.

sigtimedwait Suspends a calling thread and waits for queued signals to
arrive.

sigvec Permanently assigns a handler for a specific signal.

sigwait Suspends a calling thread and waits for queued signals to
arrive.

sigwaitinfo Suspends a calling thread and waits for queued signals to
arrive.

ssignal Allows you to specify the action to be taken when a particular
signal is raised.

VAXC$ESTABLISH Establishes an application exception handler in a way that is
compatible with HP C RTL exception handling.

4.1 Error Handling
When an error occurs during a call to any of the HP C RTL functions, the
function returns an unsuccessful status. Many RTL routines also set the external
variable errno to a value that indicates the reason for the failure. You should
always check the return value for an error situation.

The <errno.h> header file declares errno and symbolically defines the possible
error codes. By including the <errno.h> header file in your program, you can
check for specific error codes after a HP C RTL function call.

At program startup, the value of errno is 0. The value of errno can be set to a
nonzero value by many HP C RTL functions. It is not reset to 0 by any HP C
RTL function, so it is only valid to use errno after a HP C RTL function call has
been made and a failure status returned. Table 4–2 lists the symbolic values that
may be assigned to errno by the HP C RTL.

4–2 Error and Signal Handling



Table 4–2 The Error Code Symbolic Values

Symbolic Constant Description

E2BIG Argument list too long

EACCES Permission denied

EADDRINUSE Address already in use

EADDRNOTAVAIL Can’t assign requested address

EAFNOSUPPORT Address family not supported

EAGAIN No more processes

EALIGN Alignment error

EALREADY Operation already in progress

EBADF Bad file number

EBADCAT Bad message catalog format

EBADMSG Corrupted message detected

EBUSY Mount device busy

ECANCELED Operation canceled

ECHILD No children

ECONNABORTED Software caused connection abort

ECONNREFUSED Connection refused

ECONNRESET Connection reset by peer

EDEADLK Resource deadlock avoided

EDESTADDRREQ Destination address required

EDOM Math argument

EDQUOT Disk quota exceeded

EEXIST File exists

EFAIL Cannot start operation

EFAULT Bad address

EFBIG File too large

EFTYPE Inappropriate operation for file type

EHOSTDOWN Host is down

EHOSTUNREACH No route to host

EIDRM Identifier removed

EILSEQ Illegal byte sequence

EINPROGRESS Operation now in progress

EINPROG Asynchronous operation in progress

EINTR Interrupted system call

EINVAL Invalid argument

EIO I/O error

EISCONN Socket is already connected

EISDIR Is a directory

ELOOP Too many levels of symbolic links

(continued on next page)

Error and Signal Handling 4–3



Table 4–2 (Cont.) The Error Code Symbolic Values

Symbolic Constant Description

EMFILE Too many open files

EMLINK Too many links

EMSGSIZE Message too long

ENAMETOOLONG File name too long

ENETDOWN Network is down

ENETRESET Network dropped connection on reset

ENETUNREACH Network is unreachable

ENFILE File table overflow

ENOBUFS No buffer space available

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOLCK No locks available

ENOMEM Not enough core

ENOMSG No message of desired type

ENOPROTOOPT Protocol not available

ENOSPC No space left on device

ENOSYS Function not implemented

ENOTBLK Block device required

ENOTCONN Socket is not connected

ENOTDIR Not a directory

ENOTEMPTY Directory not empty

ENOTSOCK Socket operation on nonsocket

ENOTSUP Function not implemented

ENOTTY Not a typewriter

ENWAIT No waiting processes

ENXIO No such device or address

EOPNOTSUPP Operation not supported on socket

EPERM Not owner

EPFNOSUPPORT Protocol family not supported

EPIPE Broken pipe

EPROCLIM Too many processes

EPROTONOSUPPORT Protocol not supported

EPROTOTYPE Protocol wrong type for socket

ERANGE Result too large

EREMOTE Too many levels of remote in path

EROFS Read-only file system

ESHUTDOWN Can’t send after socket shutdown

(continued on next page)

4–4 Error and Signal Handling



Table 4–2 (Cont.) The Error Code Symbolic Values

Symbolic Constant Description

ESOCKTNOSUPPORT Socket type not supported

ESPIPE Illegal seek

ESRCH No such process

ESTALE Stale NFS file handle

ETIMEDOUT Connection timed out

ETOOMANYREFS Too many references: can’t splice

ETXTBSY Text file busy

EUSERS Too many users

EVMSERR OpenVMS specific nontranslatable error code

EWOULDBLOCK I/O operation would block channel

EXDEV Cross-device link

You can translate the error codes to a message, similar to that found in UNIX
systems, by using the perror or strerror function. If errno is set to EVMSERR,
perror cannot translate the error code and prints the following message, followed
by the OpenVMS error message associated with the value:

%s:nontranslatable vms error code: xxxxxx vms message:

In the message, %s is the string you supply to perror; xxxxxx is the OpenVMS
condition value.

If errno is set to EVMSERR, then the OpenVMS condition value is available in
the vaxc$errno variable declared in the <errno.h> header file. The vaxc$errno
variable is guaranteed to have a valid value only if errno is set to EVMSERR;
if errno is set to a value other than EVMSERR, the value of vaxc$errno is
undefined.

See the strerror function in the Reference Section for another way to translate
error codes.

4.2 Signal Handling
A signal is a form of software interrupt to the normal execution of a user process.
Signals occur as a result of a variety of events, including any of the following:

• Typing Ctrl/C at a terminal

• Certain programming errors

• A call to the gsignal or raise function

• A wake-up action

4.2.1 OpenVMS Versus UNIX Terminology
Both OpenVMS and UNIX systems provide signal-handling mechanisms that
behave differently but use similar terminology. With the HP C RTL, you
can program using either signal-handling mechanism. Before describing the
signal-handling routines, some terminology must be established.

The UNIX term for a software interrupt is signal. A routine called by the UNIX
system to process a signal is termed a signal handler.

Error and Signal Handling 4–5



A software interrupt on an OpenVMS system is referred to as a signal, condition,
or exception. A routine called by the OpenVMS system to process software
interrupts is termed a signal handler, condition handler, or exception handler.

To prevent confusion, the terms signal and signal handler in this manual refer to
UNIX interrupts and interrupt processing routines, while the terms exception and
exception handler refer to OpenVMS interrupts and interrupt processing routines.

4.2.2 UNIX Signals and the HP C RTL
Signals are represented by mnemonics defined in the <signal.h> header file.
Table 4–3 lists the supported signal mnemonics and the corresponding event that
causes each signal to be generated on the OpenVMS operating system.

Table 4–3 HP C RTL Signals

Name Description Generated by

SIGABRT1 Abort abort( )

SIGALRM Alarm clock Timer AST, alarm routine

SIGBUS Bus error Access violation or change mode user

SIGCHLD Child process stopped Child process terminated or stopped

SIGEMT EMT instruction Compatibility mode trap or opcode reserved
to customer

SIGFPE Floating-point
exception

Floating-point overflow/underflow

SIGHUP Hang up Data set hang up

SIGILL1 Illegal
instruction

Illegal instruction, reserved operand, or
reserved address mode

SIGINT4 Interrupt OpenVMS Ctrl/C interrupt

SIGIOT1 IOT instruction Opcode reserved to customer

SIGKILL2,3 Kill External signal only

SIGQUIT5 Quit Not implemented.

SIGPIPE Broken pipe Write to a pipe with no readers.

SIGSEGV Segment
violation

Length violation or change mode user

SIGSYS System call
error

Bad argument to system call

SIGTERM Software
terminate

External signal only

SIGTRAP1 Trace trap TBIT trace trap or breakpoint fault
instruction

SIGUSR1 User-defined signal Explicit program call to raise the signal

1Cannot be reset when caught.
2Cannot be caught or ignored.
3Cannot be blocked.
4Setting SIGINT can affect processing of Ctrl/Y interrupts. For example, in response to a caller’s
request to block or ignore SIGINT, the HP C RTL disables the Ctrl/Y interrupt.
5"Not implemented" for SIGQUIT means that there is no external event, including a Ctrl/Y interrupt,
that would trigger a SIGQUIT signal, thereby causing a signal handler established for SIGQUIT to
be invoked. This signal can be generated only through an appropriate HP C RTL function, such as
raise.

(continued on next page)

4–6 Error and Signal Handling



Table 4–3 (Cont.) HP C RTL Signals

Name Description Generated by

SIGUSR2 User-defined signal Explicit program call to raise the signal

SIGWINCH6 Window size changed Explicit program call to raise the signal

6Supported on OpenVMS Version 7.3 and higher.

By default, when a signal (except for SIGCHLD) occurs, the process is terminated.
However, you can choose to have the signal ignored by using one of the following
functions:

sigaction
signal
sigvec
ssignal

You can have the signal blocked by using one of the following functions:

sigblock
sigsetmask
sigprocmask
sigsuspend
sigpause

Table 4–3 indicates those signals that cannot be ignored or blocked.

You can also establish a signal handler to catch and process a signal by using one
of the following functions:

sigaction
signal
sigvec
ssignal

Unless noted in Table 4–3, each signal can be reset. A signal is reset if the signal
handler function calls signal or ssignal to re-establish itself to catch the signal.
Example 4–1 shows how to establish a signal handler and reset the signal.

The calling interface to a signal handler is:

void handler (int sigint);

Where sigint is the signal number of the raised signal that caused this handler to
be called.

A signal handler installed with sigvec remains installed until it is changed.

A signal handler installed with signal or signal remains installed until the
signal is generated.

A signal handler can be installed for more than one signal. Use the sigaction
routine with the SA_RESETHAND flag to control this.

Error and Signal Handling 4–7



4.2.3 Signal-Handling Concepts
A signal is said to be generated for (or sent to) a process when the event that
causes the signal first occurs. Examples of such events include detection of
hardware faults, timer expiration, and terminal activity, as well as the invocation
of kill. In some circumstances, the same event generates signals for multiple
processes.

Each process has an action to be taken in response to each signal defined by the
system. A signal is said to be delivered to a process when the appropriate action
for the process and signal is taken.

During the time between the generation of a signal and its delivery, the signal is
said to be pending. Ordinarily, this interval cannot be detected by an application.
However, a signal can be blocked from delivery to a process:

• If the action associated with a blocked signal is anything other than to ignore
the signal, and if that signal is generated for the process, the signal remains
pending until either it is unblocked or the action associated with it is set to
ignore the signal.

• If the action associated with a blocked signal is to ignore the signal and if
that signal is generated for the process, it is unspecified whether the signal is
discarded immediately upon generation or remains pending.

Each process has a signal mask that defines the set of signals currently blocked
from delivery to it. The signal mask for a process is initialized from that of
its parent. The sigaction, sigprocmask, and sigsuspend functions control the
manipulation of the signal mask.

The determination of which action is taken in response to a signal is made
at the time the signal is delivered, allowing for any changes since the time of
generation. This determination is independent of the means by which the signal
was originally generated. If a subsequent occurrence of a pending signal is
generated, it is implementation-dependent as to whether the signal is delivered
more than once. The HP C RTL delivers the signal only once. The order in which
multiple, simultaneously pending signals are delivered to a process is unspecified.

4.2.4 Signal Actions
This section applies to the sigaction, signal, sigvec, and ssignal functions.

There are three types of action that can be associated with a signal:

SIG_DFL
SIG_IGN
pointer to a function

Initially, all signals are set to SIG_DFL or SIG_IGN prior to entry of the main
routine (see the exec functions.) The actions prescribed by these values are:

SIG_DFL — signal-specific default action

• The default actions for the signals defined in this document are specified
under <signal.h>.

• If the default action is to stop the process, the execution of that process
is temporarily suspended. When a process stops, a SIGCHLD signal
is generated for its parent process, unless the parent process has set
the SA_NOCLDSTOP flag. While a process is stopped, any additional
signals that are sent to the process are not delivered until the process
is continued, except SIGKILL which always terminates the receiving

4–8 Error and Signal Handling



process. A process that is a member of an orphaned process group is
not allowed to stop in response to the SIGSTOP, SIGTTIN, or SIGTTOU
signals. In cases where delivery of one of these signals would stop such a
process, the signal is discarded.

• Setting a signal action to SIG_DFL for a signal that is pending and whose
default action is to ignore the signal (for example, SIGCHLD), causes the
pending signal to be discarded, whether or not it is blocked.

SIG_IGN — ignore signal

• Delivery of the signal has no effect on the process. The behavior of a
process is undefined after it ignores a SIGFPE, SIGILL, or SIGSEGV
signal that was not generated by kill or raise.

• The system does not allow the action for the SIGKILL or SIGSTOP
signals to be set to SIG_IGN.

• Setting a signal action to SIG_IGN for a signal that is pending causes the
pending signal to be discarded, whether or not it is blocked.

• If a process sets the action for the SIGCHLD signal to SIG_IGN, the
behavior is unspecified.

pointer to a function — catch signal

• On delivery of the signal, the receiving process executes the signal-
catching function at the specified address. After returning from the
signal-catching function, the receiving process resumes execution at the
point at which it was interrupted.

• Specify the signal-catching function as:

void func(int signo);

Here, func is the specified signal-catching function and signo is the signal
number of the signal being delivered.

• The behavior of a process is undefined after it returns normally from a
signal-catching function for a SIGFPE, SIGKILL, or SIGSEGV signal that
was not generated by kill or raise.

• The system does not allow a process to catch the signals SIGKILL and
SIGSTOP.

• If a process establishes a signal-catching function for the SIGCHLD signal
while it has a terminated child process for which it has not waited, it is
unspecified whether a SIGCHLD signal is generated to indicate that child
process.

4.2.5 Signal Handling and OpenVMS Exception Handling
This section discusses how HP C RTL signal handling is implemented with
and interacts with OpenVMS exception handling. Information in this section
allows you to write OpenVMS exception handlers that do not conflict with HP C
RTL signal handling. For information on OpenVMS exception handling, see the
OpenVMS Procedure Calling and Condition Handling Standard.

Error and Signal Handling 4–9



The HP C RTL implements signals with OpenVMS exceptions. When gsignal
or raise is called, the signal number is translated to a particular OpenVMS
exception, which is used in a call to LIB$SIGNAL. This mechanism is necessary
to catch an OpenVMS exception resulting from a user error and translate it into
a corresponding UNIX signal. For example, an ACCVIO resulting from a write to
a NULL pointer is translated to a SIGBUS or SIGSEGV signal.

Tables 4–4 and 4–5 list the HP C RTL signal names, the corresponding OpenVMS
VAX and OpenVMS Alpha exceptions, the event that generates the signal, and
the optional signal code for use with the gsignal and raise functions.

Table 4–4 HP C RTL Signals and Corresponding OpenVMS VAX Exceptions (VAX only)

Name OpenVMS Exception Generated By Code

SIGABRT SS$_OPCCUS The abort function –

SIGALRM SS$_ASTFLT The alarm function –

SIGBUS SS$_ACCVIO Access violation –

SIGBUS SS$_CMODUSER Change mode user –

SIGCHLD C$_SIGCHLD Child process stopped –

SIGEMT SS$_COMPAT Compatibility mode trap –

SIGFPE SS$_DECOVF Decimal overflow trap FPE_DECOVF_TRAP

SIGFPE SS$_FLTDIV Floating/decimal division by 0 FPE_FLTDIV_TRAP

SIGFPE SS$_FLTDIV_F Floating divide by 0 fault FPE_FLTDIV_FAULT

SIGFPE SS$_FLTOVF Floating overflow trap FPE_FLTOVF_TRAP

SIGFPE SS$_FLTOVF_F Floating overflow fault FPE_FLTOVF_FAULT

SIGFPE SS$_FLTUND Floating undeflow trap FPE_FLTUND_TRAP

SIGFPE SS$_FLTUND_F Floating undeflow fault FPE_FLTUND_FAULT

SIGFPE SS$_INTDIV Integer division by 0 FPE_INTDIV_TRAP

SIGFPE SS$_INTOVF Integer overflow FPE_INTOVF_TRAP

SIGFPE SS$_SUBRNG Subscript-range FPE_SUBRNG_TRAP

SIGHUP SS$_HANGUP Data set hangup –

SIGILL SS$_OPCDEC Reserved instruction ILL_PRIVIN_FAULT

SIGILL SS$_RADRMOD Reserved addressing ILL_RESAD_FAULT

SIGILL SS$_ROPRAND Reserved operand ILL_RESOP_FAULT

SIGINT SS$_CONTROLC OpenVMS Ctrl/C interrupt –

SIGIOT SS$_OPCCUS Customer-reserved opcode –

SIGKILL SS$_ABORT External signal only –

SIGQUIT SS$_CONTROLY The raise function –

SIGPIPE SS$_NOMBX No mailbox –

SIGSEGV SS$_ACCVIO Length violation –

SIGSEGV SS$_CMODUSER Change mode user –

(continued on next page)

4–10 Error and Signal Handling



Table 4–4 (Cont.) HP C RTL Signals and Corresponding OpenVMS VAX Exceptions (VAX only)

Name OpenVMS Exception Generated By Code

SIGSYS SS$_BADPARAM Bad argument to system call –

SIGTERM Not implemented – –

SIGTRAP SS$_TBIT TBIT trace trap –

SIGTRAP SS$_BREAK Breakpoint fault instruction –

SIGUSR1 C$_SIGUSR1 The raise function –

SIGUSR2 C$_SIGUSR2 The raise function –

SIGWINCH1 C$_SIGWINCH2 The raise function –

1Supported on OpenVMS Version 7.3 and higher.
2SS$_BADWINCNT when C$_SIGWINCH not defined (OpenVMS versions before 7.3).

To call a signal handler that you have established with signal or sigvec, the
HP C RTL intercepts the OpenVMS exceptions that correspond to signals by
having an OpenVMS exception handler in the main routine of the program. If
your program has a main function, then this exception handler is automatically
established. If you do not have a main function, or if your main function is written
in a language other than HP C, then you must invoke the VAXC$CRTL_INIT routine
to establish this handler.

The HP C RTL uses OpenVMS exceptions to implement the setjmp and longjmp
functions. When the longjmp function is called, a C$_LONGJMP OpenVMS
exception is signaled. To prevent the C$_LONGJMP exception from being
interfered with by user exception handlers, use the VAXC$ESTABLISH routine to
establish user OpenVMS exception handlers instead of calling LIB$ESTABLISH.
The C$_LONGJMP mnemonic is defined in the <errnodef.h> header file.

If you want to use OpenVMS exception handlers and UNIX signals in your C
program, your OpenVMS exception handler must be prepared to accept and
resignal the OpenVMS exceptions listed in Tables 4–4 (VAX only) and 4–5 (Alpha only),
as well as the C$_LONGJMP exception and any C$ facility exception that might
be introduced in future versions of the HP C RTL. This is because UNIX signals
are global in context, whereas OpenVMS exceptions are stack-frame based.

Consequently, an OpenVMS exception handler always receives the exception that
corresponds to the UNIX signal before the HP C RTL exception handler in the
main routine does. By resignaling the OpenVMS exception, you allow the HP C
RTL exception handler to receive the exception. You can intercept any of those
OpenVMS exceptions yourself, but in doing so you will disable the corresponding
UNIX signal.

Error and Signal Handling 4–11



Table 4–5 HP C RTL Signals and Corresponding OpenVMS Alpha Exceptions (Alpha only)

Name OpenVMS Exception Generated By Code

SIGABRT SS$_OPCCUS The abort function –

SIGALRM SS$_ASTFLT The alarm function –

SIGBUS SS$_ACCVIO Access violation –

SIGBUS SS$_CMODUSER Change mode user –

SIGCHLD C$_SIGCHLD Child process stopped –

SIGEMT SS$_COMPAT Compatibility mode trap –

SIGFP SS$_DECDIV Decimal divide trap FPE_DECDIV_TRAP

SIGFPE SS$_DECINV Decimal invalid operand trap FPE_DECINV_TRAP

SIGFPE SS$_DECOVF Decimal overflow trap FPE_DECOVF_TRAP

SIGFPE SS$_HPARITH Floating/decimal division by 0 FPE_FLTDIV_TRAP

SIGFPE SS$_HPARITH Floating overflow trap FPE_FLTOVF_TRAP

SIGFPE SS$_HPARITH Floating undeflow trap FPE_FLTUND_TRAP

SIGFPE SS$_HPARITH Integer overflow FPE_INTOVF_TRAP

SIGFPE SS$_HPARITH Invalid operand FPE_INVOPR_TRAP

SIGFPE SS$_HPARITH Inexact result FPE_INXRES_TRAP

SIGFPE SS$_INTDIV Integer div by zero FPE_INTDIV_TRAP

SIGFPE SS$_SUBRNG Subscript out of range FPE_SUBRNG_TRAP

SIGFPE SS$_SUBRNG1 Subscript1 out of range FPE_SUBRNG1_TRAP

SIGFPE SS$_SUBRNG2 Subscript2 out of range FPE_SUBRNG2_TRAP

SIGFPE SS$_SUBRNG3 Subscript3 out of range FPE_SUBRNG3_TRAP

SIGFPE SS$_SUBRNG4 Subscript4 out of range FPE_SUBRNG4_TRAP

SIGFPE SS$_SUBRNG5 Subscript5 out of range FPE_SUBRNG5_TRAP

SIGFPE SS$_SUBRNG6 Subscript6 out of range FPE_SUBRNG6_TRAP

SIGFPE SS$_SUBRNG7 Subscript7 out of range FPE_SUBRNG7_TRAP

SIGHUP SS$_HANGUP Data set hangup –

SIGILL SS$_OPCDEC Reserved instruction ILL_PRIVIN_FAULT

SIGILL SS$_ROPRAND Reserved operand ILL_RESOP_FAULT

SIGINT SS$_CONTROLC OpenVMS Ctrl/C interrupt –

SIGIOT SS$_OPCCUS Customer-reserved opcode –

SIGKILL SS$_ABORT External signal only –

SIGQUIT SS$_CONTROLY The raise function –

SIGPIPE SS$_NOMBX No mailbox –

SIGSEGV SS$_ACCVIO Length violation –

SIGSEGV SS$_CMODUSER Change mode user –

(continued on next page)

4–12 Error and Signal Handling



Table 4–5 (Cont.) HP C RTL Signals and Corresponding OpenVMS Alpha Exceptions (Alpha only)

Name OpenVMS Exception Generated By Code

SIGSYS SS$_BADPARAM Bad argument to system call –

SIGTERM Not implemented – –

SIGTRAP SS$_BREAK Breakpoint fault instruction –

SIGUSR1 C$_SIGUSR1 The raise function –

SIGUSR2 C$_SIGUSR2 The raise function –

SIGWINCH1 C$_SIGWINCH2 The raise function –

1Supported on OpenVMS Version 7.3 and higher.
2SS$_BADWINCNT when C$_SIGWINCH not defined (OpenVMS versions before 7.3).

OpenVMS Alpha Signal-Handling Notes (Alpha only)

• While all signals that exist on OpenVMS VAX systems also exist on
OpenVMS Alpha systems, the corresponding OpenVMS exceptions
and code is different in a number of cases because on Alpha processors
there are two new OpenVMS exceptions and several others that are
obsolete.

• All floating-point exceptions on OpenVMS Alpha systems are signaled
by the OpenVMS exception SS$_HPARITH (high-performance
arithmetic trap). The particular type of trap that occurred is
translated by the HP C RTL through use of the exception summary
longword, which is set when a high-performance arithmetic trap is
signaled.

• Since the SS$_COMPAT, SS$_TBIT, and SS$_RADMOD exceptions
are never reported on OpenVMS Alpha systems, they are not
recognized by the HP C RTL on OpenVMS Alpha systems. Since each
signal that corresponds to one of these exceptions also corresponds
to another OpenVMS exception as well, all the signals are shown in
Table 4–5.

4.3 Program Example
Example 4–1 shows how the signal, alarm, and pause functions operate. It
also shows how to establish a signal handler to catch a signal, which prevents
program termination.

Error and Signal Handling 4–13



Example 4–1 Suspending and Resuming Programs

/* CHAP_4_SUSPEND_RESUME.C */

/* This program shows how to alternately suspend and resume a */
/* program using the signal, alarm, and pause functions. */

#define SECONDS 5

#include <stdio.h>
#include <signal.h>

int number_of_alarms = 5; /* Set alarm counter. */

void alarm_action(int);

main()
{

signal(SIGALRM, alarm_action); /* Establish a signal handler. */
/* to catch the SIGALRM signal.*/

alarm(SECONDS); /* Set alarm clock for 5 seconds. */

pause(); /* Suspend the process until *
* the signal is received. */

}

void alarm_action(int x)
{

printf("\t<%d\007>", number_of_alarms); /* Print the value of */
/* the alarm counter. */

signal(SIGALRM, alarm_action); /* Reset the signal. */

alarm(SECONDS); /* Set the alarm clock. */

if (--number_of_alarms) /* Decrement alarm counter. */
pause();

}

Here is the sample output from Example 4–1:

$ RUN EXAMPLE
<5> <4> <3> <2> <1>

4–14 Error and Signal Handling



5
Subprocess Functions

The HP C Run-Time Library (RTL) provides functions that allow you to create
subprocesses from a HP C program. The creating process is called the parent and
the created subprocess is called the child.

To create a child process within the parent process, use the exec functions
(execl, execle, execv, execve, execlp, and execvp) and the vfork function.
Other functions are available to allow the parent and child to read and write
data across processes (pipe) and to allow for synchronization of the two processes
(wait). This chapter describes how to implement and use these functions.

The parent process can execute HP C programs in its children, either
synchronously or asynchronously. The number of children that can run
simultaneously is determined by the /PRCLM user authorization quota
established for each user on your system. Other quotas that may affect the use of
subprocesses are /ENQLM (Queue Entry Limit), /ASTLM (AST Waits Limit), and
/FILLM (Open File Limit).

This chapter discusses the subprocess functions. Table 5–1 lists and describes all
the subprocess functions found in the HP C RTL. For more detailed information
on each function, see the Reference Section.

Table 5–1 Subprocess Functions

Function Description

Implementation of Child Processes

system Passes a given string to the host environment to be
executed by a command processor.

vfork Creates an independent child process.

The exec Functions

execl, execle, execlp
execv, execve, execvp

Passes the name of the image to be activated in a child
process.

Synchronizing Process

wait, wait3, wait4,
waitpid,

Suspends the parent process until a value is returned
from a child.

Interprocess Communication

pipe Allows for communication between a parent and child.

Subprocess Functions 5–1



5.1 Implementing Child Processes in HP C
Child processes are created by HP C functions with the OpenVMS LIB$SPAWN
RTL routine. (See the VMS Run-Time Library Routines Volume for information
on LIB$SPAWN.) Using LIB$SPAWN allows you to create multiple levels of child
processes; the parent’s children can also spawn children, and so on, up to the
limits allowed by the user authorization quotas discussed in the introduction to
this chapter.

Child processes can only execute other HP C programs. Other native-mode
OpenVMS languages do not share the ability of HP C to communicate between
processes; if they do, they do not use the same mechanisms. The parent process
must be run under an HP supported command-language interpreter (CLI), such
as DCL. You cannot run the parent as a detached process or under control of a
user-supplied CLI.

Enabling the DECC$DETACHED_CHILD_PROCESS feature logical allows child
processes to be created as detached processes instead of subprocesses. This
feature has only limited support. In some cases, the console cannot be shared
between the parent process and the detached process, which can cause exec to
fail.

Parent and child processes communicate through a mailbox as shown in
Figure 5–1. This mailbox transfers the context in which the child will run. This
context mailbox passes information to the child that it inherits from the parent,
such as the names and file descriptors of all the files opened by the parent and
the current location within those files. The mailbox is deleted by the parent when
the child image exits.

Figure 5–1 Communications Links Between Parent and Child Processes

Parent
context

Mailbox Child
context

ZK−4002−GE

Note

The mailbox created by the vfork and exec functions is temporary. The
logical name of this mailbox is VAXC$EXECMBX and is reserved for use
by the HP C RTL.

The mailbox is created with a maximum message size and a buffer quota of 512
bytes each. You need the TMPMBX privilege to create a mailbox with these
RTL functions. Since TMPMBX is the privilege required by the DCL commands
PRINT and SUBMIT, most users on a system have this privilege. To see what
system privileges you have, enter a SHOW PROCESS/PRIVILEGES command.

You cannot change the characteristics of these mailboxes. For more information
on mailboxes, see the VMS I/O User’s Reference Volume.

5–2 Subprocess Functions



5.2 The exec Functions
There are six exec functions that you can call to execute an HP C image in the
child process. These functions expect that vfork has been called to set up a
return address. The exec functions will call vfork if the parent process did not.

When vfork is called by the parent, the exec function returns to the parent
process. When vfork was called by an exec function, the exec function returns
to itself, waits for the child to exit, and then exits the parent process. The exec
function does not return to the parent process unless the parent calls vfork to
save the return address.

In OpenVMS Version 7.2, the exec functions were enhanced to activate either
executable images or DCL command procedures. If no file extension is specified
in the file_name argument, the functions first search for the file with the .EXE
file extension and then for the file with the .COM file extension. If both the
executable image and the command procedure with the same name exist, you
must explicitly specify the .COM file extension to force activating the command
procedure.

For a DCL command procedure, the exec functions pass the first eight arg0, arg1,
..., arguments specified in the exec call to the command procedure as P1, P2, ...
parameters, preserving the case.

Unlike UNIX based systems, the exec functions in the HP C RTL cannot always
determine if the specified executable image or command procedure exists and can
be activated and executed. Therefore, the exec functions might appear to succeed
even though the specified file cannot be executed by the child process.

The status of the child process, returned to the parent process, indicates that the
error occurred. You can retrieve this error code by using one of the functions from
the wait family of functions.

Note

The vfork and exec functions in the HP C RTL on OpenVMS systems
work differently than on UNIX systems:

• On UNIX systems, vfork creates a child process, suspends the parent,
and starts the child running where the parent left off.

• On OpenVMS systems, vfork establishes context later used by an
exec function, but it is the exec function, not vfork, that starts a
process running the specified program.

For a progammer, the key differences are:

• On OpenVMS systems, code between the the call to vfork and the call
to an exec function runs in the parent process.

On UNIX systems, this code runs in the child process.

• On OpenVMS systems, the child inherits open file descriptors and so
on, at the point where the exec function is called.

On UNIX systems, this occurs at the point where vfork is called.

Subprocess Functions 5–3



5.2.1 exec Processing
The exec functions use the LIB$SPAWN routine to create the subprocess and
activate the child image within the subprocess. This child process inherits the
parent’s environment, including all defined logical names and command-line
interpreter symbols.

By default, child processes also inherit the default (working) directory of their
parent process. However, you can use the decc$set_child_default_dir function
to set the default directory for a child process as it begins execution. For more
information about the decc$set_child_default_dir function, see the Reference
Section.

The exec functions use the logical name VAXC$EXECMBX to communicate
between parent and child; this logical name must not exist outside the context of
the parent image.

The exec functions pass the following information to the child:

• The parent’s umask value, which specifies whether any access is to be
disallowed when a new file is created. For more information about the
umask function, see the Reference Section.

• The file-name string associated with each file descriptor and the current
position within each file. The child opens the file and calls lseek to position
the file to the same location as the parent. If the file is a record file, the child
is positioned on a record boundary, regardless of the parent’s position within
the record. For more information about file descriptors, see Chapter 2. For
more information on the lseek function, see the Reference Section.

This information is sent to the child for all descriptors known to the parent
including all descriptors for open files, null descriptors, and duplicate
descriptors.

File pointers are not transferred to the child. For files opened by a file pointer
in the parent, only their corresponding file descriptors are passed to the child.
The fdopen function must be called to associate a file pointer with the file
descriptor if the child will access the file-by-file pointer. For more information
about the fdopen function, see the Reference Section.

The DECC$EXEC_FILEATTR_INHERITANCE feature logical can be used
to control whether or not a child process inherits file positioning, and if so,
for which access modes. For more information on DECC$EXEC_FILEATTR_
INHERITANCE, see Section 1.6.

• The signal database. Only SIG_IGN (ignore) actions are inherited. Actions
specified as routines are changed to SIG_DFL (default) because the parent’s
signal-handling routines are inaccessible to the child.

• The environment and argument vectors.

When everything is transmitted to the child, exec processing is complete. Control
in the parent process then returns to the address saved by vfork and the child’s
process ID is returned to the parent.

See Section 4.2.4 for a discussion of signal actions and the SIGCHLD signal.

5–4 Subprocess Functions



5.2.2 exec Error Conditions
The exec functions will fail if LIB$SPAWN cannot create the subprocess.
Conditions that can cause a failure include exceeding the subprocess quota
or finding the communications by the context mailbox between the parent and
child to be broken. Exceeding some quotas will not cause LIB$SPAWN to fail, but
will put LIB$SPAWN into a wait state that can cause the parent process to hang.
An example of such a quota is the Open File Limit quota.

You will need an Open File Limit quota of at least 20 files, with an average of
three times the number of concurrent processes that your program will run. If
you use more than one open pipe at a time, or perform I/O on several files at one
time, this quota may need to be even higher. See your system manager if this
quota needs to be increased.

When an exec function fails, a value of �1 is returned. After such a failure, the
parent is expected to call either the exit or _exit function. Both functions then
return to the parent’s vfork call, which returns the child’s process ID. In this
case, the child process ID returned by the exec function is less than zero. For
more information about the exit function, see the Reference Section.

5.3 Synchronizing Processes
A child process is terminated when the parent process terminates. Therefore, the
parent process must check the status of its child processes before exiting. This is
done using the HP C RTL function wait.

5.4 Interprocess Communication
A channel through which parent and child processes communicate is called a
pipe. Use the pipe function to create a pipe.

5.5 Program Examples
Example 5–1 shows the basic procedures for executing an image in a child
process. The child process in Example 5–1 prints a message 10 times.

Example 5–1 Creating the Child Process

/* chap_5_exec_image.c */

/* This example creates the child process. The only */
/* functionality given to the child is the ability to */
/* print a message 10 times. */

#include <climsgdef.h> /* CLI status values */
#include <stdio.h>
#include <perror.h>
#include <processes.h>
#include <stdlib.h>

static const char *child_name = "chap_5_exec_image_child.exe" ;

main()
{

int status,
cstatus;

(continued on next page)

Subprocess Functions 5–5



Example 5–1 (Cont.) Creating the Child Process

/* NOTE: */
/* Any local automatic variables, even those */
/* having the volatile attribute, may have */
/* indeterminant values if they are modified */
/* between the vfork() call and the matching */
/* exec() call. */

! if ((status = vfork()) != 0) {
/* This is either an error or */
/* the "second" vfork return, taking us "back" */
/* to parent mode. */

# if (status < 0)
printf("Parent - Child process failed\n");

else {
printf("Parent - Waiting for Child\n");

$ if ((status = wait(&cstatus)) == -1)
perror("Parent - Wait failed");

% else if (cstatus == CLI$_IMAGEFNF)
printf("Parent - Child does not exist\n");

else
printf("Parent - Child final status: %d\n", cstatus);

}
}

" else { /* The FIRST Vfork return is zero, do the exec */
printf("Parent - Starting Child\n");
if ((status = execl(child_name, 0)) == -1) {

perror("Parent - Execl failed");
exit(EXIT_FAILURE);

}
}

}

----------------------------------------------------------

/* CHAP_5_EXEC_IMAGE_CHILD.C */

/* This is the child program that writes a message */
/* through the parent to "stdout" */

#include <stdio.h>

main()
{

int i;

for (i = 0; i < 10; i++)
printf("Child - executing\n");

return (255) ; /* Set an unusual success stat */
}

Key to Example 5–1:

! The vfork function is called to set up the return address for the exec call.

The vfork function is normally used in the expression of an if statement.
This construct allows you to take advantage of the double return aspect of
vfork, since one return value is 0 and the other is nonzero.

" A 0 return value is returned the first time vfork is called and the parent
executes the else clause associated with the vfork call, which calls execl.

# A negative child process ID is returned when an exec function fails. The
return value is checked for these conditions.

5–6 Subprocess Functions



$ The wait function is used to synchronize the parent and child processes.

% Since the exec functions can indicate success up to this point even if the
image to be activated in the child does not exist, the parent checks the child’s
return status for the predefined status, CLI$_IMAGEFNF (file not found).

In Example 5–2, the parent passes arguments to the child process.

Example 5–2 Passing Arguments to the Child Process

/* CHAP_5_CHILDARG.C */

/* In this example, the arguments are placed in an array, gargv, */
/* but they can be passed to the child explicitly as a zero- */
/* terminated series of character strings. The child program in this */
/* example writes the arguments that have been passed it to stdout. */

#include <climsgdef.h>
#include <stdio.h>
#include <stdlib.h>
#include <perror.h>
#include <processes.h>

const char *child_name = "chap_5_childarg_child.exe" ;

main()
{

int status,
cstatus;

char *gargv[] =
{"Child", "ARGC1", "ARGC2", "Parent", 0};

if ((status = vfork()) != 0) {
if (status < -1)

printf("Parent - Child process failed\n");
else {

printf("Parent - waiting for Child\n");
if ((status = wait(&cstatus)) == -1)

perror("Parent - Wait failed");
else if (cstatus == CLI$_IMAGEFNF)

printf("Parent - Child does not exist\n");
else

printf("Parent - Child final status: %x\n",
cstatus);

}
}
else {

printf("Parent - Starting Child\n");
if ((status = execv(child_name, gargv)) == -1) {

perror("Parent - Exec failed");
exit(EXIT_FAILURE);

}
}

}

--------------------------------------------------------
/* CHAP_5_CHILDARG_CHILD.C */

/* This is a child program that echos its arguments */

#include <stdio.h>

(continued on next page)

Subprocess Functions 5–7



Example 5–2 (Cont.) Passing Arguments to the Child Process

main(argc, argv)
int argc;
char *argv[];

{
int i;

printf("Program name: %s\n", argv[0]);

for (i = 1; i < argc; i++)
printf("Argument %d: %s\n", i, argv[i]);

return(255) ;
}

Example 5–3 shows how to use the wait function to check the final status of
multiple children being run simultaneously.

Example 5–3 Checking the Status of Child Processes

/* CHAP_5_CHECK_STAT.C */

/* In this example 5 child processes are started. The wait() */
/* function is placed in a separate for loop so that it is */
/* called once for each child. If wait() were called within */
/* the first for loop, the parent would wait for one child to */
/* terminate before executing the next child. If there were */
/* only one wait request, any child still running when the */
/* parent exits would terminate prematurely. */

#include <climsgdef.h>
#include <stdio.h>
#include <stdlib.h>
#include <perror.h>
#include <processes.h>

const char *child_name = "chap_5_check_stat_child.exe" ;

main()
{

int status,
cstatus,
i;

for (i = 0; i < 5; i++) {
if ((status = vfork()) == 0) {

printf("Parent - Starting Child %d\n", i);
if ((status = execl(child_name, 0)) == -1) {

perror("Parent - Exec failed");
exit(EXIT_FAILURE);

}
}
else if (status < -1)

printf("Parent - Child process failed\n");
}

printf("Parent - Waiting for children\n");

(continued on next page)

5–8 Subprocess Functions



Example 5–3 (Cont.) Checking the Status of Child Processes

for (i = 0; i < 5; i++) {
if ((status = wait(&cstatus)) == -1)

perror("Parent - Wait failed");
else if (cstatus == CLI$_IMAGEFNF)

printf("Parent - Child does not exist\n");
else

printf("Parent - Child %X final status: %d\n",
status, cstatus);

}
}

Example 5–4 shows how to use the pipe and dup2 functions to communicate
between a parent and child process through specific file descriptors. The #define
preprocessor directive defines the preprocessor constants inpipe and outpipe as
the names of file descriptors 11 and 12.

Example 5–4 Communicating Through a Pipe

/* CHAP_5_PIPE.C */

/* In this example, the parent writes a string to the pipe for */
/* the child to read. The child then writes the string back */
/* to the pipe for the parent to read. The wait function is */
/* called before the parent reads the string that the child has */
/* passed back through the pipe. Otherwise, the reads and */
/* writes will not be synchronized. */

#include <perror.h>
#include <climsgdef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <processes.h>
#include <unixio.h>

#define inpipe 11
#define outpipe 12

const char *child_name = "chap_5_pipe_child.exe" ;

main()
{

int pipes[2];
int mode,

status,
cstatus,
len;

char *outbuf,
*inbuf;

if ((outbuf = malloc(512)) == 0) {
printf("Parent - Outbuf allocation failed\n");
exit(EXIT_FAILURE);

}

(continued on next page)

Subprocess Functions 5–9



Example 5–4 (Cont.) Communicating Through a Pipe

if ((inbuf = malloc(512)) == 0) {
printf("Parent - Inbuf allocation failed\n");
exit(EXIT_FAILURE);

}
if (pipe(pipes) == -1) {

printf("Parent - Pipe allocation failed\n");
exit(EXIT_FAILURE);

}

dup2(pipes[0], inpipe);
dup2(pipes[1], outpipe);
strcpy(outbuf, "This is a test of two-way pipes.\n");

status = vfork();

switch (status) {
case 0:

printf("Parent - Starting child\n");
if ((status = execl(child_name, 0)) == -1) {

printf("Parent - Exec failed");
exit(EXIT_FAILURE);

}
break;

case -1:
printf("Parent - Child process failed\n");
break;

default:
printf("Parent - Writing to child\n");

if (write(outpipe, outbuf, strlen(outbuf) + 1) == -1) {
perror("Parent - Write failed");
exit(EXIT_FAILURE);

}
else {

if ((status = wait(&cstatus)) == -1)
perror("Parent - Wait failed");

if (cstatus == CLI$_IMAGEFNF)
printf("Parent - Child does not exist\n");

else {
printf("Parent - Reading from child\n");
if ((len = read(inpipe, inbuf, 512)) <= 0) {

perror("Parent - Read failed");
exit(EXIT_FAILURE);

}
else {

printf("Parent: %s\n", inbuf);
printf("Parent - Child final status: %d\n",

cstatus);
}

}
}
break;

}
}

------------------------------------------------------------------
/* CHAP_5_PIPE_CHILD.C */

/* This is a child program which reads from a pipe and writes */
/* the received message back to its parent. */

(continued on next page)

5–10 Subprocess Functions



Example 5–4 (Cont.) Communicating Through a Pipe

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#define inpipe 11
#define outpipe 12

main()
{

char *buffer;
int len;

if ((buffer = malloc(512)) == 0) {
perror("Child - Buffer allocation failed\n");
exit(EXIT_FAILURE);

}

printf("Child - Reading from parent\n");
if ((len = read(inpipe, buffer, 512)) <= 0) {

perror("Child - Read failed");
exit(EXIT_FAILURE);

}
else {

printf("Child: %s\n", buffer);
printf("Child - Writing to parent\n");
if (write(outpipe, buffer, strlen(buffer) + 1) == -1) {

perror("Child - Write failed");
exit(EXIT_FAILURE);

}
}
exit(EXIT_SUCCESS);

}

Subprocess Functions 5–11





6
Curses Screen Management Functions and

Macros

This chapter describes the screen management routines available with HP C for
OpenVMS Systems.

On all OpenVMS systems, the OpenVMS Curses screen management package is
supported. This is the same package of routines used by the VAX C Run-Time
Library (RTL).

On OpenVMS Alpha systems, two screen management packages are supported:
OpenVMS Curses and a more UNIX compatible package based on the Berkeley
Standard Distribution (BSD) Curses software.1 See Section 6.1 for more
information.

Furthermore, beginning with OpenVMS Alpha Version 7.0, the HP C RTL
offers a Curses package based on the 4.4BSD Berkeley Software Distribution.
Documentation on the 4.4BSD Curses package can be found in Screen Updating
and Cursor Movement Optimization: A Library Package, by Kenneth C.R.C.
Arnold.

The functions and macros in the OpenVMS and BSD-based Curses packages are
nearly the same. Most differences between them are called out in this chapter.
Otherwise, this chapter makes no distinction between the two Curses packages,
and refers to "Curses" or the "Curses functions and macros."

6.1 Using the BSD-Based Curses Package (Alpha only)

The <curses.h> header file required to use the BSD-based Curses implementation
is provided with the HP C compiler on OpenVMS Alpha systems.

Existing programs are not affected by the BSD-based Curses functions because
the OpenVMS Curses functions are still available as the default Curses package.
(Note that is a change from previous versions of HP C, where BSD-based Curses
was the default.)

To get the the 4.4BSD Curses implementation, you must compile modules that
include <curses.h> with the following qualifier:

/DEFINE=_BSD44_CURSES

The BSD-based Curses functions do not provide the support required to call the
OpenVMS SMG$ routines with the pasteboard and keyboard allocated by the
Curses functions. Consequently, Curses programs that rely on calling SMG$
entry points, as well as Curses functions, must continue to use the OpenVMS
Curses implementation.

1 Copyright (c) 1981 Regents of the University of California.
All rights reserved.

Curses Screen Management Functions and Macros 6–1



The BSD-based Curses implementation is not interoperable with the old
implementation. Attempts to mix calls to the new functions and the old functions
will result in incorrect output displayed on the screen and could result in an
exception from an SMG$ routine.

6.2 Curses Overview
Curses, the HP C Screen Management Package, is composed of HP C RTL
functions and macros that create and modify defined sections of the terminal
screen and optimize cursor movement. Using the screen management package,
you can develop a user interface that is both visually attractive and user-
friendly. Curses is terminal-independent and provides simplified terminal screen
formatting and efficient cursor movement.

Most Curses functions and macros are listed in pairs where the first routine is a
macro and the second is a function beginning with the prefix ‘‘w,’’ for ‘‘window.’’
These prefixes are delimited by brackets ([ ]). For example, [w]addstr designates
the addstr macro and the waddstr function. The macros default to the window
stdscr; the functions accept a specified window as an argument.

To access the Curses functions and macros, include the <curses.h> header file.

The terminal-independent Screen Management Software, which is part of the
OpenVMS RTL, is used to implement Curses. For portability purposes, most
functions and macros are designed to perform in a manner similar to other C
implementations. However, the Curses routines depend on the OpenVMS system
and its Screen Management Software, so performance of some functions and
macros could differ slightly from those of other implementations.

Some functions and macros available on other systems are not available with the
HP C RTL Curses package.

Some functions, such as [w]clrattr, [w]insstr, mv[w]insstr, and [w]setattr
are specific to HP C for OpenVMS Systems and are not portable.

Table 6–1 lists all of the Curses functions and macros found in the HP C RTL.
For more detailed information on each function and macro, see the Reference
Section.

Table 6–1 Curses Functions and Macros

Function or Macro Description

[w]addch Adds a character to the window at the current position of the
cursor.

[w]addstr Adds a string to the window at the current position of the
cursor.

box Draws a box around the window.

[w]clear Erases the contents of the specified window and resets the
cursor to coordinates (0,0).

clearok Sets the clear flag for the window.

[w]clrattr Deactivates the video display attribute within the window.

[w]clrtobot Erases the contents of the window from the current position of
the cursor to the bottom of the window.

(continued on next page)

6–2 Curses Screen Management Functions and Macros



Table 6–1 (Cont.) Curses Functions and Macros

Function or Macro Description

[w]clrtoeol Erases the contents of the window from the current cursor
position to the end of the line on the specified window.

[no]crmode Sets and unsets the terminal from cbreak mode.

[w]delch Deletes the character on the specified window at the current
position of the cursor.

[w]deleteln Deletes the line at the current position of the cursor.

delwin Deletes the specified window from memory.

[no]echo Sets the terminal so that characters may or may not be echoed
on the terminal screen.

endwin Clears the terminal screen and frees any virtual memory
allocated to Curses data structures.

[w]erase Erases the window by painting it with blanks.

[w]getch Gets a character from the terminal screen and echoes it on the
specified window.

[w]getstr Gets a string from the terminal screen, stores it in a character
variable, and echoes it on the specified window.

getyx Puts the (y,x) coordinates of the current cursor position on the
window in the variables y and x.

[w]inch Returns the character at the current cursor position on the
specified window without making changes to the window.

initscr Initializes the terminal-type data and all screen functions.

[w]insch Inserts a character at the current cursor position in the
specified window.

[w]insertln Inserts a line above the line containing the current cursor
position.

[w]insstr Inserts a string at the current cursor position on the specified
window.

leaveok Leaves the cursor at the current coordinates after an update to
the window.

longname Assigns the full terminal name to a character name that must
be large enough to hold the character string.

[w]move Changes the current cursor position on the specified window.

mv[w]addch Moves the cursor and adds a character to the specified window.

mv[w]addstr Moves the cursor and adds a string to the specified window.

mvcur Moves the terminal’s cursor.

mv[w]delch Moves the cursor and deletes a character on the specified
window.

mv[w]getch Moves the cursor, gets a character from the terminal screen,
and echoes it on the specified window.

mv[w]getstr Moves the cursor, gets a string from the terminal screen, stores
it in a variable, and echoes it on the specified window.

mv[w]inch Moves the cursor and returns the character on the specified
window without making changes to the window.

(continued on next page)

Curses Screen Management Functions and Macros 6–3



Table 6–1 (Cont.) Curses Functions and Macros

Function or Macro Description

mv[w]insch Moves the cursor and inserts a character in the specified
window.

mv[w]insstr Moves the cursor and inserts a string in the specified window.

mvwin Moves the starting position of the window to the specified
coordinates.

newwin Creates a new window with lines and columns starting at the
coordinates on the terminal screen.

[no]nl Provided only for UNIX software compatibility and has no
functionality in the OpenVMS environment.

overlay Writes the contents of one window that will fit over the
contents of another window, beginning at the starting
coordinates of both windows.

overwrite Writes the contents of one window, insofar as it will fit, over
the contents of another window beginning at the starting
coordinates of both windows.

[w]printw Performs a printf on the window starting at the current
position of the cursor.

[no]raw Provided only for UNIX software compatibility and has no
functionality in the OpenVMS environment.

[w]refresh Repaints the specified window on the terminal screen.

[w]scanw Performs a scanf on the window.

scroll Moves all the lines on the window up one line.

scrollok Sets the scroll flag for the specified window.

[w]setattr Activates the video display attribute within the window.

[w]standend Deactivates the boldface attribute for the specified window.

[w]standout Activates the boldface attribute of the specified window.

subwin Creates a new subwindow with lines and columns starting at
the coordinates on the terminal screen.

touchwin Places the most recently edited version of the specified window
on the terminal screen.

wrapok OpenVMS Curses only. Allows the wrapping of a word from
the right border of the window to the beginning of the next
line.

6.3 Curses Terminology
This section explains some of the Curses terminology and shows you how Curses
looks on the terminal screen.

Consider a Curses application as being a series of overlapping windows. Window
overlapping is called occlusion. To distinguish the boundaries of these occluding
windows, you can outline the rectangular windows with specified characters, or
you can turn on the reverse video option (make the window a light background
with dark writing).

6–4 Curses Screen Management Functions and Macros



6.3.1 Predefined Windows (stdscr and curscr)
Initially, two windows the size of the terminal screen are predefined by Curses.
These windows are called stdscr and curscr. The stdscr window is defined for
your use. Many Curses macros default to this window. For example, if you draw
a box around stdscr, move the cursor to the left-corner area of the screen, write
a string to stdscr, and then display stdscr on the terminal screen, your display
will look like that in Figure 6–1.

Figure 6–1 An Example of the stdscr Window

Welcome to Curses_

ZK−5752−GE

The second predefined window, curscr, is designed for internal Curses work;
it is an image of what is currently displayed on the terminal screen. The only
HP C for OpenVMS Curses function that will accept this window as an argument
is clearok. Do not write to or read from curscr. Use stdscr and user-defined
windows for all your Curses applications.

6.3.2 User-Defined Windows
You can occlude stdscr with your own windows. The size and location of each
window is given in terms of the number of lines, the number of columns, and the
starting position.

The lines and columns of the terminal screen form a coordinate system, or grid,
on which the windows are formed. You specify the starting position of a window
with the (y,x) coordinates on the terminal screen where the upper left corner of
the window is located. The coordinates (0,0) on the terminal screen, for example,
are the upper left corner of the screen.

The entire area of the window must be within the terminal screen borders;
windows can be as small as a single character or as large as the entire terminal
screen. You can create as many windows as memory allows.

Curses Screen Management Functions and Macros 6–5



When writing to or deleting from windows, changes do not appear on the terminal
screen until the window is refreshed. When refreshing a window, you place the
updated window onto the terminal screen, which leaves the rest of the screen
unaltered.

All user-defined windows, by default, occlude stdscr. You can create two or more
windows that occlude each other as well as stdscr. When writing data to one
occluding window, the data is not written to the underlying window.

You can create overlapping windows (called subwindows). A declared window
must contain the entire area of its subwindow. When writing data to a
subwindow or to the portion of the window overlapped by the subwindow, both
windows contain the new data. For instance, if you write data to a subwindow
and then delete that subwindow, the data is still present on the underlying
window.

If you create a window that occludes stdscr and a subwindow of stdscr, your
terminal screen will look like Figure 6–2.

Figure 6–2 Displaying Windows and Subwindows

ZK−5754−GE

window subwindow_

If you delete both the user-defined window and the subwindow, and then update
the terminal screen with the new image, your terminal screen will look like
Figure 6–3.

6–6 Curses Screen Management Functions and Macros



Figure 6–3 Updating the Terminal Screen

subwindow_

ZK−5753−GE

The string written on the window is deleted, but the string written on the
subwindow remains on stdscr.

6.4 Getting Started with Curses
There are commands that you must use to initialize and restore the terminal
screen when using Curses Screen Management functions and macros. Also, there
are predefined variables and constants on which Curses depends. Example 6–1
shows how to set up a program using Curses.

Example 6–1 A Curses Program

! #include <curses.h>

" WINDOW *win1, *win2, *win3;

main()
{

# initscr();
.
.
.

endwin();
}

Key to Example 6–1:

! The preprocessor directive includes the <curses.h> header file, which defines
the data structures and variables used to implement Curses. The <curses.h>
header file includes the <stdio.h> header file, so it is not necessary to
duplicate this action by including <stdio.h> again in the program source

Curses Screen Management Functions and Macros 6–7



code. You must include <curses.h> to use any of the Curses functions or
macros.

" In the example, WINDOW is a data structure defined in <curses.h>. You
must declare each user-specified window in this manner. In Example 6–1, the
three defined windows are win1, win2, and win3.

# The initscr and endwin functions begin and end the window editing session.
The initscr function clears the terminal screen (for OpenVMS Curses only;
BSD-based Curses does not clear the screen), and allocates space for the
windows stdscr and curscr. The endwin function deletes all windows and
clears the terminal screen.

Most Curses users wish to define and modify windows. Example 6–2 shows you
how to define and write to a single window.

Example 6–2 Manipulating Windows

#include <curses.h>

WINDOW *win1, *win2, *win3;

main()
{

initscr();

! win1 = newwin(24, 80, 0, 0);
" mvwaddstr(win1, 2, 2, "HELLO");

.

.

.
endwin();

}

Key to Example 6–2:

! The newwin function defines a window 24 rows high and 80 columns wide with
a starting position at coordinates (0,0), the upper left corner of the terminal
screen. The program assigns these attributes to win1. The coordinates are
specified as follows: (lines,columns) or (y,x).

" The mvwaddstr macro performs the same task as a call to the separate macros
move and addstr. The mvwaddstr macro moves the cursor to the specified
coordinates and writes a string onto stdscr.

Note

Most Curses macros update stdscr by default. Curses functions that
update other windows have the same name as the macros but with the
added prefix ‘‘w’’. For example, the addstr macro adds a given string to
stdscr at the current cursor position. The waddstr function adds a given
string to a specified window at the current cursor position.

When updating a window, specify the cursor position relative to the origin of the
window, not the origin of the terminal screen. For example, if a window has a
starting position of (10,10) and you want to add a character to the window at its
starting position, specify the coordinates (0,0), not (10,10).

6–8 Curses Screen Management Functions and Macros



The string HELLO in Example 6–2 does not appear on the terminal screen until
you refresh the screen. You accomplish this by using the wrefresh function.
Example 6–3 shows how to display the contents of win1 on the terminal screen.

Example 6–3 Refreshing the Terminal Screen

#include <curses.h>

WINDOW *win1, *win2, *win3;

main()
{

initscr();

win1 = newwin(22, 60, 0, 0);
mvwaddstr(win1, 2, 2, "HELLO");
wrefresh(win1);

.

.

.
endwin();

}

The wrefresh function updates just the region of the specified window on the
terminal screen. When the program is executed, the string HELLO appears
on the terminal screen until the program executes the endwin function. The
wrefresh function only refreshes the part of the window on the terminal screen
that is not overlapped by another window. If win1 was overlapped by another
window and you want all of win1 to be displayed on the terminal screen, call the
touchwin function.

6.5 Predefined Variables and Constants
The <curses.h> header file defines variables and constants useful for
implementing Curses (see Table 6–2).

Table 6–2 Curses Predefined Variables and #define Constants

Name Type Description

curscr WINDOW * Window of current screen

stdscr WINDOW * Default window

LINES int Number of lines on the terminal screen

COLS int Number of columns on the terminal screen

ERR — Flag (0) for failed routines

OK — Flag (1) for successful routines

TRUE — Boolean true flag (1)

FALSE — Boolean false flag (0)

_BLINK — Parameter for setattr and clrattr
_BOLD — Parameter for setattr and clrattr

(continued on next page)

Curses Screen Management Functions and Macros 6–9



Table 6–2 (Cont.) Curses Predefined Variables and #define Constants

Name Type Description

_REVERSE — Parameter for setattr and clrattr
_UNDERLINE — Parameter for setattr and clrattr

For example, you can use the predefined macro ERR to test the success or failure
of a Curses function. Example 6–4 shows how to perform such a test.

Example 6–4 Curses Predefined Variables

#include <curses.h>

WINDOW *win1, *win2, *win3;

main()
{

initscr();
win1 = newwin(10, 10, 1, 5);

.

.

.
if (mvwin(win1, 1, 10) == ERR)

addstr("The MVWIN function failed.");
.
.
.

endwin();
}

In Example 6–4, if the mvwin function fails, the program adds a string to stdscr
that explains the outcome. The Curses mvwin function moves the starting position
of a window.

6.6 Cursor Movement
In the UNIX system environment, you can use Curses functions to move the
cursor across the terminal screen. With other implementations, you can either
allow Curses to move the cursor using the move function, or you can specify the
origin and the destination of the cursor to the mvcur function, which moves the
cursor in a more efficient manner.

In HP C for OpenVMS Systems, the two functions are functionally equivalent and
move the cursor with the same efficiency.

Example 6–5 shows how to use the move and mvcur functions.

6–10 Curses Screen Management Functions and Macros



Example 6–5 The Cursor Movement Functions

#include <curses.h>

main()
{

initscr();
.
.
.

! clear();
" move(10, 10);
# move(LINES/2, COLS/2);
$ mvcur(0, COLS-1, LINES-1, 0);

.

.

.
endwin();

}

Key to Example 6–5:

! The clear macro erases stdscr and positions the cursor at coordinates (0,0).

" The first occurrence of move moves the cursor to coordinates (10,10).

# The second occurrence of move uses the predefined variables LINES and
COLS to calculate the center of the screen (by calculating the value of half
the number of LINES and COLS on the screen).

$ The mvcur function forces absolute addressing. This function can address the
lower left corner of the screen by claiming that the cursor is presently in the
upper right corner. You can use this method if you are unsure of the current
position of the cursor, but move works just as well.

6.7 Program Example
The following program example shows the effects of many of the Curses macros
and functions. You can find explanations of the individual lines of code, if not
self-explanatory, in the comments to the right of the particular line. Detailed
discussions of the functions follow the source code listing.

Example 6–6 shows the definition and manipulation of one user-defined window
and stdscr.

Example 6–6 stdscr and Occluding Windows

/* CHAP_6_STDSCR_OCCLUDE.C */

/* This program defines one window: win1. win1 is */
/* located towards the center of the default window */
/* stdscr. When writing to an occluding window (win1) */
/* that is later erased, the writing is erased as well. */

#include <curses.h> /* Include header file. */

WINDOW *win1; /* Define windows. */

main()
{

char str[80]; /* Variable declaration.*/

(continued on next page)

Curses Screen Management Functions and Macros 6–11



Example 6–6 (Cont.) stdscr and Occluding Windows

initscr(); /* Set up Curses. */
noecho(); /* Turn off echo. */

/* Create window. */
win1 = newwin(10, 20, 10, 10);

box(stdscr, ’|’, ’-’); /* Draw a box around stdscr. */
box(win1, ’|’, ’-’); /* Draw a box around win1. */

refresh(); /* Display stdscr on screen. */

wrefresh(win1); /* Display win1 on screen. */

! getstr(str); /* Pause. Type a few words! */

mvaddstr(22, 1, str);
" getch();

/* Add string to win1. */

mvwaddstr(win1, 5, 5, "Hello");
wrefresh(win1); /* Add win1 to terminal scr. */

getch(); /* Pause. Press Return. */

delwin(win1); /* Delete win1. */

# touchwin(stdscr); /* Refresh all of stdscr. */

getch(); /* Pause. Press Return. */
endwin(); /* Ends session. */

}

Key to Example 6–6:

! The program waits for input. The echo was disabled using the noecho macro,
so the words that you type do not appear on stdscr. However, the macro
stores the words in the variable str for use elsewhere in the program.

" The getch macro causes the program to pause. When you are finished
viewing the screen, press Return so the program can resume. The getch
macro refreshes stdscr on the terminal screen without calling refresh. The
screen appears like Figure 6–4.

6–12 Curses Screen Management Functions and Macros



Figure 6–4 An Example of the getch Macro

ZK−5751−GE

The string entered from the keyboard

# The touchwin function refreshes the screen so that all of stdscr is visible and
the deleted occluding window no longer appears on the screen.

Curses Screen Management Functions and Macros 6–13





7
Math Functions

Table 7–1 lists and describes the math functions in the HP C Run-Time Library
(RTL). For more detailed information on each function, see the Reference
Section.

Table 7–1 Math Functions

Function Description

abs Returns the absolute value of an integer.

acos Returns the arc cosine of its radian argument, in the range
[0,�] radians.

acosd (Alpha only) Returns the arc cosine of its radian argument, in the range
[0,180] degrees.

acosh (Alpha only) Returns the hyperbolic arc cosine of its argument.

asin Returns the arc sine of its radian argument in the range
[����� ���] radians.

asind (Alpha only) Returns the arc sine of its radian argument, in the range
[���� ��] degrees.

asinh (Alpha only) Returns the hyperbolic arc sine of its argument.

atan Returns the arc tangent of its radian argument, in the range
[����� ���] radians.

atand (Alpha only) Returns the arc tangent of its radian argument, in the range
[���� ��] degrees.

atan2 Returns the arc tangent of y/x (its two radian arguments), in
the range [��� �] radians.

atand2 (Alpha only) Returns the arc tangent of y/x (its two radian arguments), in
the range [����� ���] degrees.

atanh (Alpha only) Returns the hyperbolic arc tangent of its radian argument.

cabs Returns the absolute value of a complex number as:
sqrt (�2 � �2�.

cbrt (Alpha only) Returns the rounded cube root of its argument.

ceil Returns the smallest integer greater than or equal to its
argument.

copysign (Alpha only) Returns its first argument with the same sign as its second.

cos Returns the cosine of its radian argument in radians.

cosd (Alpha only) Returns the cosine of its radian argument in degrees.

cosh Returns the hyperbolic cosine of its argument.

cot Returns the cotangent of its radian argument in radians.

(continued on next page)

Math Functions 7–1



Table 7–1 (Cont.) Math Functions

Function Description

cotd (Alpha only) Returns the cotangent of its radian argument in degrees.

drand48, erand48,
jrand48, lrand48,
mrand48, nrand48

Generates uniformly distributed pseudorandom number
sequences. Returns 48-bit, nonnegative, double-precision
floating-point values.

erf (Alpha only) Returns the error function of its argument.

erfc (Alpha only) Returns (1.0 � erf(x)).

exp Returns the base e raised to the power of the argument.

expm1 (Alpha only) Returns exp(x) � 1.

fabs Returns the absolute value of a floating-point value.

finite (Alpha only) Returns 1 if its argument is a finite number; 0 if not.

floor Returns the largest integer less than or equal to its argument.

fmod Computes the floating-point remainder of its first argument
divided by its second.

fp_class (Alpha only) Determines the class of IEEE floating-point values, returning a
constant from the <fp_class.h> header file.

isnan (Alpha only) Test for NaN. Returns 1 if its argument is a NaN; 0 if not.

j0, j1, jn (Alpha only) Computes Bessel functions of the first kind.

frexp Calculates the fractional and exponent parts of a floating-point
value.

hypot Returns the square root of the sum of the squares of two
arguments.

initstate Initializes random number generators.

labs Returns the absolute value of an integer as a long int.

lcong48 Initializes a 48-bit uniformly distributed pseudorandom
number sequence.

lgamma (Alpha only) Computes the logarithm of the gamma function.

llabs, qabs (Alpha only) Returns the absolute value of an __int64 integer.

ldexp Returns its first argument multiplied by 2 raised to the power
of its second argument.

ldiv, div Returns the quotient and remainder after the division of their
arguments.

lldiv, qdiv (Alpha only) Returns the quotient and remainder after the division of their
arguments.

log2 (Alpha only), log,
log10

Returns the logarithm of their arguments.

log1p (Alpha only) Computes ln(1+x) accurately.

logb (Alpha only) Returns the radix-independent exponent of its argument.

nextafter (Alpha only) Returns the next machine-representable number following x in
the direction of y.

nint (Alpha only) Returns the nearest integral value to the argument.

(continued on next page)

7–2 Math Functions



Table 7–1 (Cont.) Math Functions

Function Description

modf Returns the positive fractional part of its first argument
and assigns the integral part to the object whose address is
specified by the second argument.

pow Returns the first argument raised to the power of the second.

rand, srand Returns pseudorandom numbers in the range 0 to �31
� �.

random, srandom Generates pseudorandom numbers in a more random sequence.

rint (Alpha only) Rounds its argument to an integral value according to the
current IEEE rounding direction specified by the user.

scalb (Alpha only) Returns the exponent of a floating-point number.

seed48, srand48 Initializes a 48-bit random number generator.

setstate Restarts, and changes random number generators.

sin Returns the sine of its radian argument in radians.

sind (Alpha only) Returns the sine of its radian argument in degrees.

sinh Returns the hyperbolic sine of its argument.

sqrt Returns the square root of its argument.

tan Returns the tangent of its radian argument in radians.

tand (Alpha only) Returns the tangent of its radian argument in degrees.

tanh Returns the hyperbolic tangent of its argument.

trunc (Alpha only) Truncates its argument to an integral value.

unordered (Alpha only) Returns 1 if either or both of its arguments is a NaN; 0, if not.

y0, y1, yn (Alpha only) Computes Bessel functions of the second kind.

7.1 Math Function Variants—float, long double
Additional math routine variants are supported for HP C on OpenVMS Alpha
systems only. They are defined in <math.h> and are float and long double
variants of the routines listed in Table 7–1.

Float variants take float arguments and return float values. Their names have
an f suffix. For example:

float cosf (float x);
float tandf (float x);

Long double variants take long double arguments and return long double
values. Their names have an l suffix. For example:

long double cosl (long double x);
long double tandl (long double x);

All math routine variants are included in the Reference Section of this manual.

Note that for programs compiled without /L_DOUBLE=64 (that is, compiled
with the default /L_DOUBLE=128), the long double variants of these HP C RTL
math routines map to the X_FLOAT entry points documented in the HP Portable
Mathematics Library (HPML) manual.

Math Functions 7–3



7.2 Error Detection
To help you detect run-time errors, the <errno.h> header file defines the following
two symbolic values that are returned by many (but not all) of the mathematical
functions:

• EDOM indicates that an argument is inappropriate; the argument is not
within the function’s domain.

• ERANGE indicates that a result is out of range; the argument is too large or
too small to be represented by the machine.

When using the math functions, you can check the external variable errno for
either or both of these values and take the appropriate action if an error occurs.

The following program example checks the variable errno for the value EDOM,
which indicates that a negative number was specified as input to the function
sqrt:

#include <errno.h>
#include <math.h>
#include <stdio.h>

main()
{

double input, square_root;

printf("Enter a number: ");
scanf("%le", &input);
errno = 0;
square_root = sqrt(input);

if (errno == EDOM)
perror("Input was negative");

else
printf("Square root of %e = %e\n",

input, square_root);
}

If you did not check errno for this symbolic value, the sqrt function returns 0
when a negative number is entered. For more information about the <errno.h>
header file, see Chapter 4.

7.3 The <fp.h> Header File
The <fp.h> header file implements some of the features defined by the Numerical
C Extensions Group of the ANSI X3J11 committee. You might find this useful for
applications that make extensive use of floating-point functions.

Some of the double-precision functions listed in this chapter return the value
±HUGE_VAL (defined in either <math.h> or <fp.h>) if the result is out of range.
The float version of those functions return the value HUGE_VALF (defined only
in <fp.h>) for the same conditions. The long double version returns the value
HUGE_VALL (also defined in <fp.h>).

For programs compiled to enable IEEE infinity and NaN values, the values
HUGE_VAL, HUGE_VALF, and HUGE_VALL are expressions, not compile-time
constants. Initializations such as the following cause a compile-time error:

7–4 Math Functions



$ CREATE IEEE_INFINITY.C
#include <fp.h>

double my_huge_val = HUGE_VAL
^Z
$ CC /FLOAT=IEEE/IEEE=DENORM IEEE_INFINITY

double my_huge_val = HUGE_VAL;
.....................^
%CC-E-NEEDCONSTEXPR, In the initializer for my_huge_val, "decc$gt_dbl_infinity"
is not constant, but occurs in a context that requires a constant expression.
at line number 3 in file WORK1$:[RTL]IEEE_INFINITY.C;1
$

When using both <math.h> and <fp.h>, be aware that <math.h> defines a
function isnan and <fp.h> defines a macro by the same name. Whichever header
is included first in the application will resolve a reference to isnan.

7.4 Example
Example 7–1 shows how the tan, sin, and cos functions operate.

Example 7–1 Calculating and Verifying a Tangent Value

/* CHAP_7_MATH_EXAMPLE.C */

/* This example uses two functions --- mytan and main --- */
/* to calculate the tangent value of a number, and to check */
/* the calculation using the sin and cos functions. */

#include <math.h>
#include <stdio.h>

/* This function calculates the tangent using the sin and */
/* cos functions. */

double mytan(x)
double x;

{
double y,

y1,
y2;

y1 = sin(x);
y2 = cos(x);

if (y2 == 0)
y = 0;

else
y = y1 / y2;

return y;
}
main()
{

double x;

/* Print values: compare */
for (x = 0.0; x < 1.5; x += 0.1)

printf("tan of %4.1f = %6.2f\t%6.2f\n", x, mytan(x), tan(x));
}

Math Functions 7–5



Example 7–1 produces the following output:

$ RUN EXAMPLE
tan of 0.0 = 0.00 0.00
tan of 0.1 = 0.10 0.10
tan of 0.2 = 0.20 0.20
tan of 0.3 = 0.31 0.31
tan of 0.4 = 0.42 0.42
tan of 0.5 = 0.55 0.55
tan of 0.6 = 0.68 0.68
tan of 0.7 = 0.84 0.84
tan of 0.8 = 1.03 1.03
tan of 0.9 = 1.26 1.26
tan of 1.0 = 1.56 1.56
tan of 1.1 = 1.96 1.96
tan of 1.2 = 2.57 2.57
tan of 1.3 = 3.60 3.60
tan of 1.4 = 5.80 5.80
$

7–6 Math Functions



8
Memory Allocation Functions

Table 8–1 lists and describes all the memory allocation functions found in the
HP C Run-Time Library (RTL). For a more detailed description of each function,
see the Reference Section.

Table 8–1 Memory Allocation Functions

Function Description

brk, sbrk Determine the lowest virtual address that is not used with the
program.

calloc, malloc Allocate an area of memory.

cfree, free Make available for reallocation the area allocated by a previous
calloc, malloc, or realloc call.

realloc Changes the size of the area pointed to by the first argument
to the number of bytes given by the second argument.

strdup Finds and points to a duplicate string.

All HP C RTL functions requiring additional storage from the heap get
that storage using the HP C RTL memory allocation functions malloc,
calloc, realloc, free, and cfree. Memory allocated by these functions is
quadword-aligned.

The ANSI C standard does not include cfree. For this reason, it is preferable to
free memory using the functionally equivalent free function.

The brk and sbrk functions assume that memory can be allocated contiguously
from the top of your address space. However, the malloc function and RMS
may allocate space from this same address space. Do not use the brk and sbrk
functions in conjunction with RMS and HP C RTL routines that use malloc.

Previous versions of the VAX C RTL documentation indicated that the memory
allocation routines used the OpenVMS RTL functions LIB$GET_VM and
LIB$FREE_VM to acquire and return dynamic memory. This is no longer the
case; interaction between these routines and the HP C RTL memory allocation
routines is no longer problematic (although LIB$SHOW_VM can no longer be
used to track HP C RTL malloc and free usage).

The HP C RTL memory allocation functions calloc, malloc, realloc, and
free are based on the LIB$ routines LIB$VM_CALLOC, LIB$VM_MALLOC,
LIB$VM_REALLOC and LIB$VM_FREE, respectively.

The routines VAXC$CALLOC_OPT, VAXC$CFREE_OPT, VAXC$FREE_OPT,
VAXC$MALLOC_OPT, and VAXC$REALLOC_OPT are now obsolete and should not
be used in new development. However, versions of these routines that are
equivalent to the standard C memory allocation routines are provided for
backward compatibility.

Memory Allocation Functions 8–1



8.1 Program Example
Example 8–1 shows the use of the malloc, calloc, and free functions.

Example 8–1 Allocating and Deallocating Memory for Structures

/* CHAP_8_MEM_MANAGEMENT.C */

/* This example takes lines of input from the terminal until */
/* it encounters a Ctrl/Z, places the strings into an */
/* allocated buffer, copies the strings to memory allocated for */
/* structures, prints the lines back to the screen, and then */
/* deallocates all the memory used for the structures. */

#include <stdlib.h>
#include <stdio.h>
#define MAX_LINE_LENGTH 80

struct line_rec { /* Declare the structure. */
struct line_rec *next; /* Pointer to next line. */
char *data; /* A line from terminal. */

};

int main(void)
{

char *buffer;

/* Define pointers to */
/* structure (input lines). */

struct line_rec *first_line = NULL,
*next_line,
*last_line = NULL;

/* Buffer points to memory. */
buffer = malloc(MAX_LINE_LENGTH);

if (buffer == NULL) { /* If error ... */
perror("malloc");
exit(EXIT_FAILURE);

}

while (gets(buffer) != NULL) { /* While not Ctrl/Z ... */
/* Allocate for input line. */
next_line = calloc(1, sizeof (struct line_rec));

if (next_line == NULL) {
perror("calloc");
exit(EXIT_FAILURE);

}

/* Put line in data area. */
next_line->data = buffer;

if (last_line == NULL) /* Reset pointers. */
first_line = next_line;

else
last_line->next = next_line;

last_line = next_line;
/* Allocate space for the */
/* next input line. */
buffer = malloc(MAX_LINE_LENGTH);

(continued on next page)

8–2 Memory Allocation Functions



Example 8–1 (Cont.) Allocating and Deallocating Memory for Structures

if (buffer == NULL) {
perror("malloc");
exit(EXIT_FAILURE);

}
}
free(buffer); /* Last buffer always unused. */
next_line = first_line; /* Pointer to beginning. */

while (next_line != NULL) {
puts(next_line->data); /* Write line to screen. */
free(next_line->data); /* Deallocate a line. */
last_line = next_line;
next_line = next_line->next;
free(last_line);

}

exit(EXIT_SUCCESS);
}

The sample input and output for Example 8–1 are as follows:

$ RUN EXAMPLE
line one
line two

Ctrl/Z

EXIT
line one
line two
$

Memory Allocation Functions 8–3





9
System Functions

The C programming language is a good choice if you wish to write operating
systems. For example, much of the UNIX operating system is written in C. When
writing system programs, it is sometimes necessary to retrieve or modify the
environment in which the program is running. This chapter describes the HP C
Run-Time Library (RTL) functions that accomplish this and other system tasks.

Table 9–1 lists and describes all the system functions found in the HP C RTL.
For a more detailed description of each function, see the Reference Section.

Table 9–1 System Functions

Function Description

System Functions—Searching and Sorting Utilities

bsearch Performs a binary search on an array of sorted objects for a
specified object.

qsort Sorts an array of objects in place by implementing the quick-
sort algorithm.

System Functions—Retrieving Process Information

ctermid Returns a character string giving the equivalence string
of SYS$COMMAND, which is the name of the controlling
terminal.

cuserid Returns a pointer to a character string containing the name of
the user who initiated the current process.

getcwd Returns a pointer to the file specification for the current
working directory.

getegid, geteuid,
getgid, getuid

Return, in OpenVMS terms, group and member numbers from
the user-identification code (UIC).

getenv Searches the environment array for the current process and
returns the value associated with a specified environment.

getlogin Gets the login name of the user associated with the current
session.

getpid Returns the process ID of the current process.

getppid Returns the parent process ID of the calling process.

getpwnam Accesses user-name information in the user database.

getpwuid Accesses user-ID information in the user database.

(continued on next page)

System Functions 9–1



Table 9–1 (Cont.) System Functions

Function Description

System Functions—Changing Process Information

chdir Changes the default directory.

chmod Changes the file protection of a file.

chown Changes the owner user identification code (UIC) of a file.

mkdir Creates a directory.

nice Increases or decreases the process priority to the process base
priority by the amount of the argument.

putenv Sets an environmental variable.

setenv Inserts or resets the environment variable name in the current
environment list.

setgid, setuid Implemented for program portability and have no functionality.

sleep, usleep Suspend the execution of the current process for at least the
number of seconds indicated by its argument.

umask Creates a file protection mask that is used whenever a new file
is created. It returns the old mask value.

System Functions—Retrieving and Converting Date/Time Information

asctime Converts a broken-down time into a 26-character string.

clock Determines the CPU time, in microseconds, used since the
beginning of the program execution.

clock_getres Gets the resolution for the specified clock.

clock_gettime Returns the current time (in seconds and nanoseconds) for the
specified clock.

clock_settime Sets the specified clock.

ctime Converts a time, in seconds, to an ASCII string in the form
generated by the asctime function.

decc$fix_time Converts OpenVMS binary system times to UNIX binary
times.

difftime Computes the difference, in seconds, between the two times
specified by its arguments.

ftime Returns the elapsed time since 00:00:00, January 1, 1970, in
the structure timeb.

getclock Gets the current value of the systemwide clock.

getdate Converts a formatted string to a time/date structure.

getitimer Returns the value of interval timers.

gettimeofday Gets the date and time.

gmtime Converts time units to broken-down UTC time.

localtime Converts a time (expressed as the number of seconds elapsed
since 00:00:00, January 1, 1970) into hours, minutes, seconds,
and so on.

mktime Converts a local-time structure into time since the Epoch.

(continued on next page)

9–2 System Functions



Table 9–1 (Cont.) System Functions

Function Description

System Functions—Retrieving and Converting Date/Time Information

nanosleep High-resolution sleep (REALTIME). Suspends a process from
execution for the specified timer interval.

setitimer Sets the value of interval timers.

strftime, wcsftime Place characters into an array, as controlled by a specified
format string.

strptime Converts a character string into date and time values.

time Returns the time elapsed since 00:00:00, January 1, 1970, in
seconds.

times Returns the accumulated times of the current process and of
its terminated child processes.

tzset Sets and accesses time-zone conversion.

ualarm Sets or changes the timeout of interval timers.

wcsftime Uses date and time information stored in a tm structure to
create a wide-character output string.

System Function—Miscellaneous

VAXC$CRTL_INIT Initializes the run-time environment and establishes an exit
and condition handler, which makes it possible for HP C RTL
functions to be called from other languages.

Example 9–1 shows how the cuserid function is used.

Example 9–1 Accessing the User Name

/* CHAP_9_GET_USER.C */

/* Using cuserid, this program returns the user name. */

#include <stdio.h>

main()
{

static char string[L_cuserid];

cuserid(string);
printf("Initiating user: %s\n", string);

}

If a user named TOLLIVER runs the program, the following is displayed on
stdout:

$ RUN EXAMPLE1
Initiating user: TOLLIVER

Example 9–2 shows how the getenv function is used.

System Functions 9–3



Example 9–2 Accessing Terminal Information

/* CHAP_9_GETTERM.C */

/* Using getenv, this program returns the terminal. */

#include <stdio.h>
#include <stdlib.h>

main()
{

printf("Terminal type: %s\n", getenv("TERM"));
}

Running Example 9–2 on a VT100 terminal in 132-column mode displays the
following:

$ RUN EXAMPLE3
Terminal type: vt100-132

Example 9–3 shows how to use getenv to find the user’s default login directory
and how to use chdir to change to that directory.

Example 9–3 Manipulating the Default Directory

/* CHAP_9_CHANGE_DIR.C */

/* This program performs the equivalent of the DCL command */
/* SET DEFAULT SYS$LOGIN. However, once the program exits, the */
/* directory is reset to the directory from which the program */
/* was run. */

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

main()
{

char *dir;
int i;

dir = getenv("HOME");
if ((i = chdir(dir)) != 0) {

perror("Cannot set directory");
exit(0);

}

printf("Current directory: %s\n", dir);
}

Running Example 9–3 displays the following:

$ RUN EXAMPLE4
Current directory: dba0:[tolliver]
$

Example 9–4 shows how to use the time, localtime, and strftime functions to
print the correct date and time at the terminal.

9–4 System Functions



Example 9–4 Printing the Date and Time

/* CHAP_9_DATE_TIME.C */

/* The time function returns the time in seconds; the localtime */
/* function converts the time to hours, minutes, and so on; */
/* the strftime function uses these values to obtain a string */
/* in the desired format. */

#include <time.h>
#include <stdio.h>

#define MAX_STRING 80

main()
{

struct tm *time_structure;
time_t time_val;
char output_str[MAX_STRING];

time(&time_val);
time_structure = localtime(&time_val);

/* Print the date */

strftime(output_str, MAX_STRING,
"Today is %A, %B %d, %Y", time_structure);

printf("%s\n", output_str);

/* Print the time using a 12-hour clock format. */

strftime(output_str, MAX_STRING,
"The time is %I:%M %p", time_structure);

printf("%s\n", output_str);
}

Running Example 9–4 displays the following:

$ RUN EXAMPLE5
Today is Thursday, May 20, 1993
The time is 10:18 AM
$

System Functions 9–5





10
Developing International Software

This chapter describes typical features of international software and the features
provided with the HP C Run-Time Library (RTL) that enable you to design and
implement international software.

See the Reference Section for more detailed information on the functions
described in this chapter.

10.1 Internationalization Support
The HP C RTL has added capabilities to allow application developers to create
international software. The HP C RTL obtains information about a language and
a culture by reading this information from locale files.

10.1.1 Installation
If you are using these HP C RTL capabilities, you must install a separate kit to
provide these files to your system.

On OpenVMS VAX systems, the save set VMSI18N0nn is provided on the same
media as the OpenVMS operating system.

On OpenVMS Alpha systems the save set is provided on the Layered Product CD,
and is named VMSI18N0nn or ALPVMSI18N0n_07nn.

To install this save set, follow the standard OpenVMS installation procedures
using this save-set name as the name of the kit. There are several categories of
locales that you can select to install. You can select as many locales as you need
by answering the following prompts:

* Do you want European and US support? [YES]?
* Do you want Chinese GB18030 support (locale and Unicode converters) [YES]?
* Do you want Chinese support? [YES]?
* Do you want Japanese support? [YES]?
* Do you want Korean support? [YES]?
* Do you want Thai support? [YES]?
* Do you want the Unicode converters? [YES]?

This kit also has an Installation Verification Procedure that we recommend you
run to verify the correct installation of the kit.

10.1.2 Unicode Support
In OpenVMS Version 7.2, the HP C Run-Time Library added the Universal
Unicode locale, which is distributed with the OpenVMS system, not with the
VMSI18N0nn kit. The name of the Unicode locale is:

UTF8-20

Like those locales shipped with the VMSI18N0nn kit, the Unicode locale is
located at the standard location referred to by the SYS$I18N_LOCALE logical
name.

Developing International Software 10–1



The UTF8-20 Unicode is based on Unicode standard Version V2.0. The Unicode
locale uses UCS-4 as wide-character encoding and UTF-8 as multibyte character
encodings.

HP C RTL also includes converters that perform conversions between Unicode
and any other supported character sets. The expanded set of converters includes
converters for UCS-2, UCS-4, and UTF-8 Unicode encoding. The Unicode
converters can be used by the ICONV CONVERT utility and by the iconv family
of functions in the HP C Run-Time Library.

In OpenVMS Version 7.2, the HP C Run-Time Library added Unicode character
set converters for Microsoft Code Page 437.

10.2 Features of International Software
International software is software that can support multiple languages and
cultures. An international program should be able to:

• Display messages in the user’s own language. This includes screen displays,
error messages, and prompts.

• Handle culture-specific information such as:

Date and time formatting

The conventions for representing dates and times vary from one country
to another. For example, in the US the month is given first; in the UK
the day is specified first. Therefore, the date 12/5/1993 is interpreted as
December 5, 1993 in the US, and as May 12, 1993 in the UK.

Numeric formatting

The character that represents the decimal point (the radix character) and
the thousands separator character vary from one country to another. For
example, in the UK the period (.) is used to represent the radix character,
and the comma is used as a separator. However, in Germany, the comma
is used as the radix character and the period is the separator character.
Therefore, the number 2,345.67 in the UK is the same as 2.345,67 in
Germany.

Monetary formatting

Currency values are represented by different symbols and can be
formatted using a variety of separator characters, depending on the
currency.

• Handle different coded character sets (not just ASCII).

• Handle a mixture of single and multibyte characters.

• Provide multipass string comparisons.

String comparison functions such as strcmp compare strings by comparing the
codepoint values of the characters in the strings. However, some languages
require more complex comparisons to correctly sort strings.

To meet the previous requirements, an application should not make any
assumptions about the language, local customs, or the coded character set used.
All this localization data should be defined separately from the program, and only
bound to it at run time.

The rest of this chapter describes how you can create international software using
HP C.

10–2 Developing International Software



10.3 Developing International Software Using HP C
The HP C environment provides the following facilities to create international
software:

• A method for separating localization data from a program.

Localization data is held in a database known as a locale. This stores all the
language and culture information required by a program. See Section 10.4 for
details of the structure of locales.

A program specifies what locales to use by calling the setlocale function.
See Section 10.5 for more information.

• A method of separating message text from the program source.

This is achieved using message catalogs that store all the messages for an
application. The message catalog is linked to the application at run time.
This means that the messages can be translated into different languages and
then the required language version is selected at run time. See Section 10.6.

• HP C RTL functions that are sensitive to localization data.

The HP C RTL includes functions for:

Converting between different codesets. See Section 10.7.

Handling culture-specific information. See Section 10.8.

Multipass string collation. See Section 10.10.

• A special wide-character data type defined in the HP C RTL makes it easier
to handle codesets that have a mixture of single and multibyte characters. A
set of functions is also defined to support this wide-character data type. See
Section 10.9.

10.4 Locales
A locale consists of different categories, each of which determines one aspect of
the international environment. Table 10–1 lists the categories in a locale and
describes the information in each.

Table 10–1 Locale Categories

Category Description

LC_COLLATE Contains information about collating sequences.

LC_CTYPE Contains information about character classification.

LC_MESSAGES Defines the answers that are expected in response to yes/no
prompts.

LC_MONETARY Contains monetary formatting information.

LC_NUMERIC Contains information about formatting numbers.

LC_TIME Contains time and date information.

The locales provided reside in the directory defined by the SYS$I18N_LOCALE
logical name. The file-naming convention for locales is:

language_country_codeset.locale

Developing International Software 10–3



Where:

• language is the mnemonic for the language. For example, EN indicates an
English locale.

• country is the mnemonic for the country. For example, GB indicates a British
locale.

• codeset is the name of the ISO standard codeset for the locale. For example,
ISO8859-1 is the ISO 8859 codeset for the Western European languages. See
Section 10.7 for more information about the codesets supported.

10.5 Using the setlocale Function to Set Up an International
Environment

An application sets up its international environment at run time by calling the
setlocale function. The international environment is set up in one of two ways:

• The environment is defined by one locale. In this case, each of the locale
categories is defined by the same locale.

• Categories are defined separately. This lets you define a mixed environment
that uses different locales depending on the operation performed. For
example, if an English user has some Spanish files that are to be processed
by an application, the LC_COLLATE category could be defined by a Spanish
locale while the other categories are defined by an English locale. To do this
you would call setlocale once for each category.

The syntax for the setlocale function is:

char *setlocale(int category, const char *locale)

Where:

• category is either the name of a category, or LC_ALL. Specifying LC_ALL
means that all the categories are defined by the same locale. Specify a
category name to set up a mixed environment.

• locale is one of the following:

The name of the locale to use.

If you want users to specify the locale interactively, your application
could prompt the user for a locale name, and then pass the name as an
argument to the setlocale function. A locale name has the following
format:

language_country.codeset[@modifier]

For example, setlocale(LC_COLLATE, "en_US.ISO8859-1") selects the
locale en_US.ISO8859-1 for the LC_COLLATE category.

""

This causes the function to use logical names to determine the locale for
the category specified. See Specifying the Locale Using Logical Names for
details.

If an application does not call the setlocale function, the default locale is the C
locale. This allows such applications to call those functions that use information
in the current locale.

10–4 Developing International Software



Specifying the Locale Using Logical Names
If the setlocale function is called with "" as the locale argument, the function
checks for a number of logical names to determine the locale name for the
category specified.

There are a number of logical names that users can set up to define their
international environment:

• Logical name corresponding to a category

For example, the LC_NUMERIC logical name defines the locale associated
with the LC_NUMERIC category within the user’s environment.

• LC_ALL

• LANG

The LANG logical name defines the user’s language.

In addition to the logical names defined by a user, there are a number of
systemwide logical names, set up during system startup, that define the default
international environment for all users on a system:

• SYS$category

Where category is the name of a category. This specifies the system default
for that category.

• SYS$LC_ALL

• SYS$LANG

The setlocale function checks for user-defined logical names first, and if these
are not defined, it checks the system logical names.

10.6 Using Message Catalogs
An important requirement for international software is that it should be able to
communicate with the user in the user’s own language. The messaging system
enables program messages to be created separately from the program source, and
linked to the program at run time.

Messages are defined in a message text source file, and compiled into a message
catalog using the GENCAT command. The message catalog is accessed by a
program using the functions provided in the HP C RTL.

The functions provided to access the messages in a catalog are:

• The catopen function, which opens a specified catalog ready for use.

• The catgets function, which enables the program to read a specific message
from a catalog.

• The catclose function, which closes a specified catalog. Open message
catalogs are also closed by the exit function.

For information on generating message catalogs, see the GENCAT command
description in the OpenVMS system documentation.

Developing International Software 10–5



10.7 Handling Different Character Sets
The HP C RTL supports a number of state-independent codesets and codeset
encoding schemes that contain the ASCII encoded Portable Character Set. It does
not support state-dependent codesets. The codesets supported are:

• ISO8859-n

where n = 1,2,5,7,8 or 9. This covers codesets for North America, Europe
(West and East), Israel, and Turkey.

• eucJP, SJIS, DECKANJI, SDECKANJI: Codesets used in Japan.

• eucTW, DECHANYU, BIG5, DECHANZI: Chinese codesets used in China
(PRC), Hong-Kong, and Taiwan.

• DECKOREAN: Codeset used in Korea.

10.7.1 Charmap File
The characters in a codeset are defined in a charmap file. The charmap files
supplied by HP are located in the directory defined by the SYS$I18N_LOCALE
logical name. The file type for a charmap file is .CMAP.

10.7.2 Converter Functions
As well as supporting different coded character sets, the HP C RTL provides
the following converter functions that enable you to convert characters from one
codeset to another:

• iconv_open—Specifies the type of conversion. It allocates a conversion
descriptor required by the iconv function.

• iconv—Converts characters in a file to the equivalent characters in a different
codeset. The converted characters are stored in a separate file.

• iconv_close—Deallocates a conversion descriptor and the resources allocated
to the descriptor.

10.7.3 Using Codeset Converter Files
The file-naming convention for codeset converters is:

fromcode_tocode.iconv

Where fromcode is the name of the source codeset, and tocode is the name of the
codeset to which characters are converted.

You can add codeset converters to a given system by installing the converter files
in the directory pointed by the logical name SYS$I18N_ICONV.

Codeset converter files can be implemented either as table-based conversion files
or as algorithm-based converter files created as OpenVMS shareable images.

Creating a Table-Based Conversion File
The following summarizes the necessary steps to create a table-based codeset
converter file:

1. Create a text file that describes the mapping between any character from the
source codeset to the target codeset. For the format of this file, see the DCL
command ICONV COMPILE in the OpenVMS New Features Manual, which
processes such a file and creates a codeset converter table file.

10–6 Developing International Software



2. Copy the resulting file from the previous step to the directory pointed by the
logical SYS$I18N_ICONV, assuming you have the privilege to do so.

Creating an Algorithm-Based Conversion File
To create an algorithm-based codeset converter file implemented as a shareable
image, follow these steps:

1. Create C source files that implement the codeset converter. The API is
documented in the public header file <iconv.h> as follows:

• The universal entry point _u_iconv_open is called by the HP C RTL
routine iconv_open to initialize a conversion.

• _u_iconv_open returns to iconv_open a pointer to the structure
_ _iconv_extern_obj_t.

• Within this structure, the converter exports its own conversion entry point
and conversion close routine, which are called by the HP C RTL routines
iconv and iconv_close, respectively.

• The major and minor identifier fields are required by iconv_open to
test for a possible mismatch between the library and the converter.
The converter usually assigns the constants _ _ICONV_MAJOR and
_ _ICONV_MINOR, defined in the <iconv.h> header file.

• The field tcs_mb_cur_max is used only by the DCL command ICONV
CONVERT to optimize its buffer usage. This field reflects the maximum
number of bytes that comprise a single character in the target codeset,
including the shift sequence (if any).

2. Compile and link the modules that comprise the codeset converter as an
OpenVMS shareable image, making sure that the file name adheres to the
preceding conventions.

3. Copy the resulting file from the previous step to the directory pointed by the
logical SYS$I18N_ICONV, assuming you have the privilege to do so.

Some Final Notes
By default, SYS$I18N_ICONV is a search list where the first directory in the
list SYS$SYSROOT:[SYS$I18N.ICONV.USER] is meant for use as a site-specific
repository for iconv codeset converters.

The number of codesets and locales installed vary from system to system. Check
the SYS$I18N directory tree for the codesets, converters, and locales installed on
your system.

10.8 Handling Culture-Specific Information
Each locale contains the following cultural information:

• Date and time information

The LC_TIME category defines the conventions for writing date and time, the
names of the days of the week, and the names of months of the year.

• Numeric information

The LC_NUMERIC category defines the conventions for formatting
nonmonetary values.

• Monetary information

Developing International Software 10–7



The LC_MONETARY category defines currency symbols and the conventions
used to format monetary values.

• Yes and no responses

The LC_MESSAGES category defines the strings expected in response to
yes/no questions.

You can extract some of this cultural information using the nl_langinfo function
and the localeconv function. See Section 10.8.1.

10.8.1 Extracting Cultural Information From a Locale
The nl_langinfo function returns a pointer to a string that contains an item of
information obtained from the program’s current locale. The information you can
extract from the locale is:

• Date and time formats

• The names of the days of the week, and months of the year in the local
language

• The radix character

• The character used to separate groups of digits in nonmonetary values

• The currency symbol

• The name of the codeset for the locale

• The strings defined for responses to yes/no questions

The localeconv function returns a pointer to a data structure that contains
numeric formatting and monetary formatting data from the LC_NUMERIC and
LC_MONETARY categories.

10.8.2 Date and Time Formatting Functions
The functions that use the date and time information are:

• strftime—Takes date and time values stored in a data structure and formats
them into an output string. The format of the output string is controlled by a
format string.

• strptime—Converts a string (of type char) into date and time values. A
format string defines how the string is interpreted.

• wcsftime—Does the same as strftime except that it creates a wide-character
string.

10.8.3 Monetary Formatting Function
The strfmon function uses the monetary information in a locale to convert a
number of values into a string. The format of the string is controlled by a format
string.

10.8.4 Numeric Formatting
The information in LC_NUMERIC is used by various functions. For example,
strtod, wcstod, and the print and scan functions determine the radix character
from the LC_NUMERIC category.

10–8 Developing International Software



10.9 Functions for Handling Wide Characters
A character can be represented by single-byte or multibyte values depending
on the codeset. To make it easier to handle both single-byte and multibyte
characters in the same way, the HP C RTL defines a wide-character data type,
wchar_t. This data type can store characters that are represented by 1-, 2-, 3-, or
4-byte values.

The functions provided to support wide characters are:

• Character classification functions. See Section 10.9.1.

• Case conversion functions. See Section 10.9.2.

• Input and output functions. See Section 10.9.3.

• Multibyte to wide-character conversion functions. See Section 10.9.4.

• Wide-character to multibyte conversion functions. See Section 10.9.4.

• Wide-character string manipulation functions. See Section 10.9.5.

• Wide-character string collation and comparison functions. See Section 10.10.

10.9.1 Character Classification Functions
The LC_CTYPE category in a locale classifies the characters in the locale’s
codeset into different types (alphabetic, numeric, lowercase, uppercase, and so
on). There are two sets of functions, one for wide characters and one for single-
byte characters, that test whether a character is of a specific type. The is*
functions test single-byte characters, and the isw* functions test wide characters.

For example, the iswalnum function tests if a wide character is classed as either
alphabetic or numeric. It returns a nonzero value if the character is one of these
types. For more information about the classification functions, see Chapter 3 and
the Reference Section.

10.9.2 Case Conversion Functions
The LC_CTYPE category defines mapping between pairs of characters of the
locale. The most common character mapping is between uppercase and lowercase
characters. However, a locale can support more than just case mappings.

Two functions are provided to map one character to another according to the
information in the LC_CTYPE category of the locale:

• wctrans—Looks for the named mapping (predefined in the locale) between
characters.

• towctrans—Maps one character to another according to the named mapping
given to the wctrans function.

Two functions are provided for character case mapping:

• towlower—Maps an uppercase wide character to its lowercase equivalent.

• towupper—Maps a lowercase wide character to its uppercase equivalent.

For more information about these functions, see the Reference Section.

Developing International Software 10–9



10.9.3 Functions for Input and Output of Wide Characters
The set of input and output functions manages wide characters and wide-
character strings.

Read Functions
The functions for reading wide characters and wide-character strings are fgetwc,
fgetws, getwc, and getwchar.

There is also an ungetwc function that pushes a wide character back into the
input stream.

Write Functions
The functions for writing wide characters and wide-character strings are fputwc,
fputws, putwc, and putwchar.

Scan Functions
All the scan functions allow for a culture-specific radix character, as defined in
the LC_NUMERIC category of the current locale.

The %lc, %C, %ls, and %S conversion specifiers enable the scan functions
fwscanf, wscanf, swscanf, fscanf, scanf, and sscanf to read in wide characters.

Print Functions
All the print functions can format numeric values according to the data in the
LC_NUMERIC category of the current locale.

The %lc, %C and %ls, %S conversion specifiers used with print functions convert
wide characters to multibyte characters and print the resulting characters.

See Chapter 2 for details of all input and output functions.

10.9.4 Functions for Converting Multibyte and Wide Characters
Wide characters are used internally by an application to manage single-byte
or multibyte characters. However, text files are generally stored in multibyte
character format. To process these files, the multibyte characters need converting
to wide-character format. This can be achieved using the following functions:

• mbtowc, mbrtowc, btowc—Convert one multibyte character to a wide character.

• mbsrtowcs, mbstowcs—Convert a multibyte character string to a wide-
character string.

Similarly, the following functions convert wide characters into their multibyte
equivalent:

• wcrtomb, wctomb, wctob—Convert a single wide character to a multibyte
character.

• wcsrtombs, wcstombs—Convert a wide-character string to a multibyte
character string.

Associated with these conversion functions, the mblen and mbrlen functions are
used to determine the size of a multibyte character.

Several of the wide-character functions take an argument of type "pointer to
mbstate_t", where mbstate_t is an opaque datatype (like FILE or fpos_t)
intended to keep the conversion state for the state-dependent codesets.

10–10 Developing International Software



10.9.5 Functions for Manipulating Wide-Character Strings and Arrays
The HP C RTL contains a set of functions (the wcs* and wmem* functions) that
manipulate wide-character strings. For example, the wcscat function appends
a wide-character string to the end of another string in the same way that the
strcat function works on character strings of type char.

See Chapter 3 for details of the string manipulation functions.

10.10 Collating Functions
In an international environment, string comparison functions need to allow for
multipass collations. The collation requirements include:

• Ordering accented characters.

• Collating a character sequence as a single character. For example, ch in
Spanish should be collated after c but before d.

• Collating a single character as a two-character sequence.

• Ignoring some characters.

Collating information is stored in the LC_COLLATE category of a locale. The
HP C RTL includes the strcoll and wcscoll functions that use this collating
information to compare two strings.

Multipass collations by strcoll or wcscoll can be slower than using the strcmp
or wcscmp functions. If your program needs to do many string comparisons using
strcoll or wcscoll, it may be quicker to transform the strings once, using the
strxfrm or wcsxfrm function, and then use the strcmp or wcscmp function.

The term collation refers to the relative order of characters. The collation order
is locale-specific and might ignore some characters. For example, an American
dictionary ignores the hyphen in words and lists take-out between takeoff and
takeover.

Comparison, on the other hand, refers to the examination of characters for
sameness or difference. For example, takeout and take-out are different words,
although they may collate the same.

Suppose an application sorts a list of words so it can later perform a binary
search on the list to quickly retrieve a word. Using strcmp, take-in, take-out, and
take-up would be grouped in one part of the table. Using strcoll and a locale
that ignores hyphens, take-out would be grouped with takeoff and takeover, and
would be considered a duplicate of takeout. To avoid a binary search finding
takeout as a duplicate of take-out, an application would most likely use strcmp
rather than strcoll for forming a binary tree.

Developing International Software 10–11





11
Date/Time Functions

This chapter describes the date/time functions available with HP C for OpenVMS
Systems. For more detailed information on each function, see the Reference
Section.

Table 11–1 Date/Time Functions

Function Description

asctime Converts a broken-down time from localtime into a 26-character
string.

ctime Converts a time, in seconds, since 00:00:00, January 1, 1970 to an
ASCII string of the form generated by the asctime function.

ftime Returns the elapsed time since 00:00:00, January 1, 1970 in the
structure pointed to by its argument.

getclock Gets the current value of the systemwide clock.

gettimeofday Gets the date and time.

gmtime Converts time units to GMT (Greenwich Mean Time).

localtime Converts a time (expressed as the number of seconds elapsed since
00:00:00, January 1, 1970) into hours, minutes, seconds, and so on.

mktime Converts a local time structure to a calendar time value.

time Returns the time elapsed since 00:00:00, January 1, 1970, in seconds.

tzset Sets and accesses time-zone conversion.

Also, the time-related information returned by fstat and stat uses the new
date/time model described in Section 11.1.

11.1 Date/Time Support Models
Beginning with OpenVMS Version 7.0, the HP C RTL changed its date/time
support model from one based on local time to one based on Universal
Coordinated Time (UTC). This allows the HP C RTL to implement ANSI C/POSIX
functionality that previously could not be implemented. A UTC time-based model
also makes the HP C RTL compatible with the behavior of the Tru64 UNIX time
functions.

By default, newly compiled programs will generate entry points into UTC-based
date/time routines.

For compatibility with OpenVMS systems prior to Version 7.0, previously
compiled programs that relink on an OpenVMS Version 7.0 system will retain
local-time-based date/time support. Relinking alone will not access UTC support.

Compiling programs with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined will also enable local-time-based entry points. That is, the new
OpenVMS Version 7.0 date/time functions will not be enabled.

Date/Time Functions 11–1



Functions with both UTC-based and local-time-based entry points are:

ctime mktime
fstat stat
ftime strftime
gmtime time
localtime wcsftime

Note

Introducing a UTC-based, date/time model implies a certain loss of
performance because time-related functions supporting UTC must read
and interpret time-zone files instead of doing simple computations in
memory as was done for the date/time model based on local time.

To decrease this performance degradation, OpenVMS Version 7.1 and
higher can maintain the processwide cache of time-zone files. The size of
the cache (that is, the number of files in the memory) is determined by
the value of the DECC$TZ_CACHE_SIZE logical name. The default value
is 2.

Because the time-zone files are relatively small (about 3 blocks each),
consider defining DECC$TZ_CACHE_SIZE as the maximum number of
time zones used by the application. For example, the default cache size
fits an application that does not switch time zones during the run and
runs on a system where the TZ environment variable is defined with both
Standard and Summer time zone.

11.2 Overview of Date/Time Functions
In the UTC-based model, times are represented as seconds since the Epoch. The
Epoch is defined as the time 0 hours, 0 minutes, 0 seconds, January 1, 1970 UTC.
Seconds since the Epoch is a value interpreted as the number of seconds between
a specified time and the Epoch.

The functions time and ftime return the time as seconds since the Epoch.

The functions ctime, gmtime, and localtime take as their argument a time value
that represents the time in seconds from the Epoch.

The function mktime converts a broken-down time, expressed as local time, into a
time value in terms of seconds since the Epoch.

The values st_ctime, st_atime, and st_mtime returned in the stat structure by
the stat and fstat functions are also in terms of UTC.

Time support new to OpenVMS Version 7.0 includes the functions tzset,
gettimeofday, and getclock, and the external variables tzname, timezone, and
daylight.

The UTC-based time model enables the HP C RTL to:

• Implement the ANSI C gmtime function, which returns a structure in terms
of GMT time.

• Specify the ANSI tm_isdst field of the tm structure, which specifies whether
daylight savings time is in effect.

11–2 Date/Time Functions



• Provide time-related POSIX and X/Open extensions (such as the tzset
function (which lets you get time information from any time zone), and the
external variables tzname, timezone, and daylight.

• Correctly compute the local time for times in the past, something that the
time functions like localtime need to do.

• Enable localtime and gmtime, through the use of feature-test macros (see
Section 1.5), to return two additional fields: tm_zone (an abbreviation of the
time-zone name) and tm_gmtoff (the offset from UTC in seconds) in the tm
structure they return.

11.3 HP C RTL Date/Time Computations—UTC and Local Time
Universal Coordinated Time (UTC) is an international standard for measuring
time of day. Under the UTC time standard, zero hour occurs when the Greenwich
Meridian is at midnight. UTC has the advantage of always increasing, unlike
local time, which can go backwards/forwards depending on daylight saving time.

Also, UTC has two additional components:

• A measure of inaccuracy (optional)

• A time-differential factor, which is an offset applied to UTC to derive local
time.

The time-differential factor associates each local time zone with UTC; the
time differential factor is applied to UTC to derive local time. (Local times
can vary up to –12 hours West of the Greenwich Meridian and +13 hours East
of it).

For the HP C RTL time support to work correctly on OpenVMS Version 7.0 and
higher, the following must be in place:

• Your OpenVMS system must be correctly configured to use a valid
OpenVMS TDF. Make sure this is set correctly by checking the value of
the SYS$TIMEZONE_DIFFERENTIAL logical. This logical should contain
the time difference added to UTC to arrive at your local time.

• Your OpenVMS installation must correctly set the local time zone that
describes the location that you want to be your default local time zone. In
general, this is the local time zone in which your system is running.

For more information, see the section on setting up your system to compensate
for different time zones in your OpenVMS System Manager’s Manual: Essentials.

The HP C RTL uses local time-zone conversion rules to compute local time from
UTC, as follows:

1. The HP C RTL internally computes time in terms of UTC.

2. The HP C RTL then uses time-zone conversion rules to compute a time-
differential factor to apply to UTC to derive local time. See the tzset
function in the Reference Section of this manual for more information on the
time-zone conversion rules.

By default, the time-zone conversion rules used for computing local time
from UTC are specified in time-zone files defined by the SYS$LOCALTIME
and SYS$POSIXRULES system logicals. These logicals are set during an
OpenVMS installation to point to time-zone files that represent the system’s best
approximation to local wall-clock time:

Date/Time Functions 11–3



• SYS$LOCALTIME defines the time-zone file containing the default conversion
rules used by the HP C RTL to compute local time.

• SYS$POSIXRULES defines the time-zone file that specifies the default rules
to be applied to POSIX style time zones that do not specify when to change to
summer time and back.

SYS$POSIXRULES can be the same as SYS$LOCALTIME. See the tzset
function for more information.

11.4 Time-Zone Conversion Rule Files
The time-zone files pointed to by the SYS$LOCALTIME and SYS$POSIXRULES
logicals are part of a public-domain, time-zone support package installed on
OpenVMS Version 7.0 and higher systems.

This support package includes a series of source files that describe the time-
zone conversion rules for computing local time from UTC in worldwide time
zones. OpenVMS Version 7.0 and higher systems provide a time-zone compiler
called ZIC. The ZIC compiler compiles time-zone source files into binary files
that the HP C RTL reads to acquire time-zone conversion specifications. For
more information on the format of these source files, see the OpenVMS system
documentation for ZIC.

The time-zone files are organized as follows:

• The root time-zone directory is SYS$COMMON:[SYS$TIMEZONE.SYSTEM].
The system logical SYS$TZDIR is set during installation to point to this area.

• Time-zone source files are found in
SYS$COMMON:[SYS$TIMEZONE.SYSTEM.SOURCES].

• Binary time-zone files use SYS$COMMON:[SYS$TIMEZONE.SYSTEM] as
their root directory. Some binaries reside in this directory while others reside
in its subdirectories.

• Binaries residing in subdirectories are time-zone files that represent
specific time zones in a larger geographic area. For example,
SYS$COMMON:[SYS$TIMEZONE.SYSTEM] contains a subdirectory for
the United States and a subdirectory for Canada, because each of these
geographic locations contains several time zones. Each time zone in the US is
represented by a time-zone file in the Unites States subdirectory. Each time
zone in Canada is represented by a time-zone file in the Canada subdirectory.

Several of the time-zone files have names based on acronyms for the areas that
they represent. Table 11–2 lists these acronyms.

Table 11–2 Time-zone Filename Acronyms

Time-Zone
Acronym Description

CET Central European Time

EET Eastern European Time

Factory Specifies No Time Zone

GB-Eire Great Britain/Ireland

(continued on next page)

11–4 Date/Time Functions



Table 11–2 (Cont.) Time-zone Filename Acronyms

Time-Zone
Acronym Description

GMT Greenwich Mean Time

NZ New Zealand

NZ-CHAT New Zealand, Chatham Islands

MET Middle European Time

PRC Peoples Republic of China

ROC Republic of China

ROK Republic of Korea

SystemV Specific to System V operating system

UCT Universal Coordinated Time

US United States

UTC Universal Coordinated Time

Universal Universal Coordinated Time

W-SU Middle European Time

WET Western European Time

A mechanism is available for you to define and implement your own time-zone
rules. For more information, see the OpenVMS system documentation on the ZIC
compiler and the description of tzset in the reference section of this manual.

Also, the SYS$LOCALTIME and SYS$POSIXRULES system logicals can be
redefined to user-supplied time zones.

11.5 Sample Date/Time Scenario
The following example and explanation shows how to use the HP C RTL time
functions to print the current time:

#include <stdio.h>
#include <time.h>

main ()
{
time_t t;

t = time((time_t)0);
printf ("The current time is: %s\n",asctime (localtime (&t)));

}

This example:

1. Calls the time function to get the current time in seconds since the Epoch, in
terms of UTC.

2. Passes this value to the localtime function, which uses time-conversion
information as specified by tzset to determine which time-zone conversion
rules should be used to compute local time from UTC. By default, these rules
are specified in the file defined by SYS$LOCALTIME:

a. For a user in the Eastern United States interested in their local
time, SYS$LOCALTIME would be defined during installation to
SYS$COMMON:[SYS$ZONEINFO.US]EASTERN, the time-zone file
containing conversion rules for the Eastern U.S. time zone.

Date/Time Functions 11–5



b. If the local time falls during daylight savings time (DST),
SYS$COMMON:[SYS$ZONEINFO.US]EASTERN indicates that a
time differential factor of �4 hours needs to be applied to UTC to get local
time.

If the local time falls during Eastern standard time (EST),
SYS$COMMON:[SYS$ZONEINFO.US]EASTERN indicates that a
time differential factor of �5 hours needs to be applied to UTC to get local
time.

c. The HP C RTL applies �4 (DST) or �5 (EST) to UTC, and localtime
returns the local time in terms of a tm structure.

3. Pass this tm structure to the asctime function to print the local time in a
readable format.

11–6 Date/Time Functions



Reference Section

This section alphabetically describes the functions contained in the HP C
Run-Time Library (RTL).





a64l (Alpha only)

a64l (Alpha only)

Converts a character string to a long integer.

Format

#include <stdlib.h>

long a64l (const char *s);

Argument

s
Pointer to the character string that is to be converted to a long integer.

Description

The a64l and l64a functions are used to maintain numbers stored in base-64
ASCII characters as follows:

• a64l converts a character string to a long integer.

• l64a converts a long integer to a character string.

Each character used for storing a long integer represents a numeric value from 0
through 63. Up to six characters can be used to represent a long integer.

The characters are translated as follows:

• A period ( . ) represents 0.

• A slash ( / ) represents 1.

• The numbers 0 through 9 represent 2 through 11.

• Uppercase letters A through Z represent 12 through 37.

• Lowercase letters a through z represent 38 through 63.

The a64l function takes a pointer to a base-64 representation, in which the first
digit is the least significant, and returns a corresponding long value. If the string
pointed to by the s parameter exceeds six characters, a64l uses only the first six
characters.

If the first six characters of the string contain a null terminator, a64l uses only
characters preceding the null terminator.

The a64l function translates a character string from left to right with the least
significant number on the left, decoding each character as a 6-bit base-64 number.

If s is the NULL pointer or if the string pointed to by s was not generated by a
previous call to l64a, the behavior of a64l is unspecified.

See also l64a.

REF–3



a64l (Alpha only)

Return Values

n Upon successful completion, the long value
resulting from conversion of the input string.

0L Indicates that the string pointed to by s is an
empty string.

REF–4



abort

abort

Sends the signal SIGABRT that terminates execution of the program.

Format

#include <stdlib.h>

void abort (void);

REF–5



abs

abs

Returns the absolute value of an integer.

Format

#include <stdlib.h>

int abs (int x);

Argument

x
An integer.

Return Value

x The absolute value of the input argument. If the
argument is LONG_MIN, abs returns LONG_
MIN because –LONG_MIN cannot fit in an int
variable.

REF–6



access

access

Checks a file to see whether a specified access mode is allowed.

Note

The access function does not accept network files as arguments.

Format

#include <unistd.h>

int access (const char *file_spec, int mode);

Arguments

file_spec
A character string that gives an OpenVMS or UNIX style file specification. The
usual defaults and logical name translations are applied to the file specification.

mode
Interpreted as shown in Table REF–1.

Table REF–1 Interpretation of the mode Argument

Mode Argument Access Mode

F_OK Tests to see if the file exists
X_OK Execute
W_OK Write (implies delete access)
R_OK Read

Combinations of access modes are indicated by ORing the values. For example, to
check to see if a file has RWED access mode, invoke access as follows:

access (file_spec, R_OK | W_OK | X_OK);

Description

The access function checks a file to see whether a specified access mode is
allowed. If the DECC$ACL_ACCESS_CHECK feature logical is enabled, this
function checks OpenVMS Access Control Lists (ACLs) as well as the UIC
protection.

Return Values

0 Indicates that the access is allowed.
�1 Indicates that the access is not allowed.

REF–7



access

Example
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

main()
{

if (access("sys$login:login.com", F_OK)) {
perror("ACCESS - FAILED");
exit(2);

}
}

REF–8



acos

acos

Returns the arc cosine of its argument.

Format

#include <math.h>

double acos (double x);

float acosf (float x); (Alpha only)

long double acosl (long double x); (Alpha only)

double acosd (double x); (Alpha only)

float acosdf (float x); (Alpha only)

long double acosdl (long double x); (Alpha only)

Argument

x
A radian expressed as a real value in the domain [�1,1].

Description

The acos functions compute the principal value of the arc cosine of x in the range
[0,�] radians for x in the domain [�1,1].

The acosd functions compute the principal value of the arc cosine of x in the
range [0,180] degrees for x in the domain [�1,1].

For abs(x) > 1, the value of acos(x) is 0, and errno is set to EDOM.

REF–9



acosh (Alpha only)

acosh (Alpha only)

Returns the hyperbolic arc cosine of its argument.

Format

#include <math.h>

double acosh (double x);

float acoshf (float x);

long double acoshl (long double x);

Argument

x
A radian expressed as a real value in the domain [1, +Infinity].

Description

The acosh functions return the hyperbolic arc cosine of x for x in the domain [1,
+Infinity], where acosh(x) = ln(x + sqrt(x**2 � 1)).

The acosh function is the inverse function of cosh where acosh(cosh(x)) = | x | .

x < 1 is an invalid argument.

REF–10



[w]addch

[w]addch

Add a character to the window at the current position of the cursor.

Format

#include <curses.h>

int addch (char ch);

int waddch (WINDOW *win, char ch);

Arguments

win
A pointer to the window.

ch
The character to be added. A new-line character (\n) clears the line to the
end, and moves the cursor to the next line at the same x coordinate. A return
character (\r) moves the cursor to the beginning of the line on the window. A tab
character (\t) moves the cursor to the next tabstop within the window.

Description

When the waddch function is used on a subwindow, it writes the character onto
the underlying window as well.

The addch routine performs the same function as waddch, but on the stdscr
window.

The cursor is moved after the character is written to the screen.

Return Values

OK Indicates success.
ERR Indicates that writing the character would

cause the screen to scroll illegally. For more
information, see the scrollok function.

REF–11



[w]addstr

[w]addstr

Add the string pointed to by str to the window at the current position of the
cursor.

Format

#include <curses.h>

int addstr (char *str);

int waddstr (WINDOW *win, char *str);

Arguments

win
A pointer to the window.

str
A pointer to a character string.

Description

When the waddstr function is used on a subwindow, the string is written onto the
underlying window as well.

The addstr routine performs the same function as waddstr, but on the stdscr
window.

The cursor position changes as a result of calling this routine.

Return Values

OK Indicates success.
ERR Indicates that the function causes the screen

to scroll illegally, but it places as much of the
string onto the window as possible. For more
information, see the scrollok function.

REF–12



alarm

alarm

Sends the signal SIGALRM (defined in the <signal.h> header file) to the
invoking process after the number of seconds indicated by its argument has
elapsed.

Format

#include <unistd.h>

unsigned int alarm (unsigned int seconds); (ISO POSIX-1)

int alarm (unsigned int seconds); (Compatability)

Argument

seconds
Has a maximum limit of LONG_MAX seconds.

Description

Calling the alarm function with a 0 argument cancels any pending alarms.

Unless it is caught or ignored, the signal generated by alarm terminates the
process. Successive alarm calls reinitialize the alarm clock. Alarms are not
stacked.

Because the clock has a 1-second resolution, the signal may occur up to 1 second
early. If the SIGALRM signal is caught, resumption of execution may be held up
due to scheduling delays.

When the SIGALRM signal is generated, a call to SYS$WAKE is generated
whether or not the process is hibernating. The pending wake causes the current
pause( ) to return immediately (after completing any function that catches the
SIGALRM).

Return Value

n The number of seconds remaining from a
previous alarm request.

REF–13



asctime, asctime_r

asctime, asctime_r

Converts a broken-down time in a tm structure into a 26-character string in the
following form:

Sun Sep 16 01:03:52 1984\n\0

All fields have a constant width.

Format

#include <time.h>

char *asctime (const struct tm *timeptr);

char *asctime_r (const struct tm *timeptr, char *buffer); (ISO POSIX-1)

Arguments

timeptr
A pointer to a structure of type tm, which contains the broken-down time.

The tm structure is defined in the <time.h> header file, and also shown in
Table REF–4 in the description of localtime.

buffer
A pointer to a character array that is at least 26 bytes long. This array is used to
store the generated date-and-time string.

Description

The asctime and asctime_r functions convert the contents of tm into a
26-character string and returns a pointer to the string.

The difference between asctime_r and asctime is that the former puts the result
into a user-specified buffer. The latter puts the result into thread-specific static
memory allocated by the HP C RTL, which can be overwritten by subsequent
calls to ctime or asctime; you must make a copy if you want to save it.

On success, asctime returns a pointer to the string; asctime_r returns its second
argument. On failure, these functions return the NULL pointer.

See the localtime function for a list of the members in tm.

Note

Generally speaking, UTC-based time functions can affect in-memory time-
zone information, which is processwide data. However, if the system time
zone remains the same during the execution of the application (which is
the common case) and the cache of timezone files is enabled (which is the
default), then the _r variant of the time functions asctime_r, ctime_r,
gmtime_r and localtime_r, is both thread-safe and AST-reentrant.

If, however, the system time zone can change during the execution of
the application or the cache of timezone files is not enabled, then both
variants of the UTC-based time functions belong to the third class of
functions, which are neither thread-safe nor AST-reentrant.

REF–14



asctime, asctime_r

Return Values

x A pointer to the string, if successful.
NULL Indicates failure.

REF–15



asin

asin

Returns the arc sine of its argument.

Format

#include <math.h>

double asin (double x);

float asinf (float x); (Alpha only)

long double asinl (long double x); (Alpha only)

double asind (double x); (Alpha only)

float asindf (float x); (Alpha only)

long double asindl (long double x); (Alpha only)

Argument

x
A radian expressed as a real number in the domain [�1,1].

Description

The asin functions compute the principal value of the arc sine of x in the range
[����� ���] radians for x in the domain [�1,1].

The asind functions compute the principal value of the arc sine of x in the range
[�90,90] degrees for x in the domain [�1,1].

When abs(x) is greater than 1.0, the value of asin(x) is 0, and errno is set to
EDOM.

REF–16



asinh (Alpha only)

asinh (Alpha only)

Returns the hyperbolic arc sine of its argument.

Format

#include <math.h>

double asinh (double x);

float asinhf (float x);

long double asinhl (long double x);

Argument

x
A radian expressed as a real value in the domain [�Infinity, +Infinity].

Description

The asinh functions return the hyperbolic arc sine of x for x in the domain
[�Infinity, +Infinity], where asinh(x) = ln(x + sqrt(x**2 + 1)).

The asinh function is the inverse function of sinh where asinh(sinh(x)) = x.

REF–17



assert

assert

Used for implementing run-time diagnostics in programs.

Format

#include <assert.h>

void assert (int expression);

Argument

expression
An expression that has an int type.

Description

When assert is executed, if expression is false (that is, it evaluates to 0), assert
writes information about the particular call that failed (including the text of the
argument, the name of the source file, and the source line number; the latter
two are, respectively, the values of the preprocessing macros _ _FILE_ _ and
_ _LINE_ _) to the standard error file in an implementation-defined format. Then,
it calls the abort function.

The assert function writes a message in the following form:

Assertion failed: expression, file aaa, line nnn

If expression is true (that is, it evaluates to nonzero) or if the signal SIGABRT is
being ignored, assert returns no value.

Note

If a null character (’\0’) is part of the expression being asserted, then only
the text up to and including the null character is printed, since the null
character effectively terminates the string being output.

Compiling with the CC command qualifier /DEFINE=NDEBUG or with the
preprocessor directive #define NDEBUG ahead of the #include assert statement
causes the assert function to have no effect.

Example
#include <stdio.h>
#include <assert.h>

main()
{

printf("Only this and the assert\n");
assert(1 == 2); /* expression is FALSE */

/* abort should be called so the printf will not happen. */

printf("FAIL abort did not execute");
}

REF–18



atan

atan

Format

#include <math.h>

double atan (double x);

float atanf (float x); (Alpha only)

long double atanl (long double x); (Alpha only)

double atand (double x); (Alpha only)

float atandf (float x); (Alpha only)

long double atandl (long double x); (Alpha only)

Argument

x
A radian expressed as a real number.

Description

The atan functions compute the principal value of the arc tangent of x in the
range [����� ���] radians.

The atand functions compute the principal value of the arc tangent of x in the
range [�90,90] degrees.

REF–19



atan2

atan2

Format

#include <math.h>

double atan2 (double y, double x);

float atan2f (float y, float x); (Alpha only)

long double atan2l (long double y, long double x); (Alpha only)

double atand2 (double y, double x); (Alpha only)

float atand2f (float y, float x); (Alpha only)

long double atand2l (long double y, long double x); (Alpha only)

Arguments

y
A radian expressed as a real number.

x
A radian expressed as a real number.

Description

The atan2 functions compute the principal value of the arc tangent of y/x in the
range [��� �] radians. The sign of atan2 and atan2f is determined by the sign
of y. The value of atan2(y,x) is computed as follows, where f is the number of
fraction bits associated with the data type:

Value of Input Arguments Angle Returned

x = 0 or y/x > 2**(f+1) �/2 * (sign y)
x > 0 and y/x <= 2**(f+1) atan(y/x)
x < 0 and y/x <= 2**(f+1) � * (sign y) + atan(y/x)

The atand2 functions compute the principal value of the arc tangent of y/x in the
range [�180,180] degrees. The sign of atand2 and atand2f is determined by the
sign of y.

The following are invalid arguments for the atan2 and atand2 functions:

Function Exceptional Argument

atan2, atan2f, atan2l x = y = 0
atan2, atan2f, atan2l | x | = | y | = Infinity
atand2, atand2f, atand2l x = y = 0
atand2, atand2f, atand2l | x | = | y | = Infinity

REF–20



atanh (Alpha only)

atanh (Alpha only)

Returns the hyperbolic arc tangent of its argument.

Format

#include <math.h>

double atanh (double x);

float atanhf (float x);

long double atanhl (long double x);

Argument

x
A radian expressed as a real value in the domain [�1,1].

Description

The atanh functions return the hyperbolic arc tangent of x. The atanh function is
the inverse function of tanh where atanh(tanh(x)) = x.

| x | > 1 is an invalid argument.

REF–21



atexit

atexit

Registers a function that is called without arguments at program termination.

Format

#include <stdlib.h>

int atexit (void (*func) (void));

Argument

func
A pointer to the function to be registered.

Return Values

0 Indicates that the registration has succeeded.
nonzero Indicates failure.

Restriction

The longjmp function cannot be executed from within the handler, because the
destination address of the longjmp no longer exists.

Example
#include <stdlib.h>
#include <stdio.h>

static void hw(void);

main()
{

atexit(hw);
}

static void hw()
{

puts("Hello, world\n");
}

Running this example produces the following output:

Hello, world

REF–22



atof

atof

Converts an ASCII character string to a double-precision number.

Format

#include <stdlib.h>

double atof (const char *nptr);

Argument

nptr
A pointer to the character string to be converted to a double-precision number.
The string is interpreted by the same rules that are used to interpret floating
constants.

Description

The string to be converted has the following format:

[white-spaces][+ | -]digits[radix-character][digits][e | E[+ | -]integer]

Where radix-character is defined in the current locale.

The first unrecognized character ends the conversion.

This function is equivalent to strtod(nptr, (char**) NULL).

Return Values

x The converted value.
0 Indicates an underflow or the conversion could

not be performed. The function sets errno to
ERANGE or EINVAL, respectively.

�HUGE_VAL Overflow occurred; errno is set to ERANGE.

REF–23



atoi, atol

atoi, atol

Convert strings of ASCII characters to the appropriate numeric values.

Format

#include <stdlib.h>

int atoi (const char *nptr);

long int atol (const char *nptr);

Argument

nptr
A pointer to the character string to be converted to a numeric value.

Description

The atoi and atol functions convert the initial portion of a string to its decimal
int or long int value, respectively. The atoi and atol functions do not account
for overflows resulting from the conversion. The string to be converted has the
following format:

[white-spaces][+ | -]digits

The function call atol (str) is equivalent to strtol (str, (char**)NULL,
10), and the function call atoi (str) is equivalent to (int) strtol (str,
(char**)NULL, 10), except, in both cases, for the behavior on error.

Return Value

n The converted value.

REF–24



atoq, atoll (Alpha only)

atoq, atoll (Alpha only)

Convert strings of ASCII characters to the appropriate numeric values. atoll is
a synonym for atoq.

Format

#include <stdlib.h>

_ _int64 atoq (const char *nptr);

_ _int64 atoll (const char *nptr);

Argument

nptr
A pointer to the character string to be converted to a numeric value.

Description

The atoq (or atoll) function converts the initial portion of a string to its decimal
_ _int64 value. This function does not account for overflows resulting from the
conversion. The string to be converted has the following format:

[white-spaces][+ | -]digits

The function call atoq (str) is equivalent to strtoq (str, (char**)NULL, 10),
except for the behavior on error.

Return Value

n The converted value.

REF–25



basename

basename

Returns the last component of a pathname.

Format

#include <libgen.h>

char *basename (char *path);

Function Variants

The basename function has variants named _basename32 and _basename64 for
use with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Argument

path
A UNIX style pathname from which the base pathname is extracted.

Description

The basename function takes the UNIX style pathname pointed to by path and
returns a pointer to the pathname’s final component, deleting any trailing slash
( / ) characters.

If path consists entirely of the slash ( / ) character, the function returns a pointer
to the string "/".

If path is a NULL pointer or points to an empty string, the function returns a
pointer to the string ".".

The basename function can modify the string pointed to by path.

Return Values

x A pointer to the final component of path.
"/" If path consists entirely of the ’/’ character.
"." If path is a NULL pointer or points to an empty

string.

REF–26



bcmp

bcmp

Compares byte strings.

Format

#include <strings.h>

void bcmp (const void *string1, const void *string2, size_t length);

Arguments

string1, string2
The byte strings to be compared.

length
The length (in bytes) of the strings.

Description

The bcmp function compares the byte string in string1 against the byte string in
string2.

Unlike the string functions, there is no checking for null bytes. Zero-length
strings are always identical.

Note that bcmp is equivalent to memcmp, which is defined by the ANSI C Standard.
Therefore, using memcmp is recommended for portable programs.

Return Values

0 The strings are identical.
Nonzero The strings are not identical.

REF–27



bcopy

bcopy

Copies byte strings.

Format

#include <strings.h>

void bcopy (const void *source, void *destination, size_t length);

Arguments

source
Pointer to the source string.

destination
Pointer to the destination string.

length
The length (in bytes) of the string.

Description

The bcopy function operates on variable-length strings of bytes. It copies the
value of the length argument, in bytes, from the string in the source argument to
the string in the destination argument.

Unlike the string functions, there is no checking for null bytes. If the length
argument is 0 (zero), no bytes are copied.

Note that bcopy is equivalent to memcpy, which is defined by the ANSI C
Standard. Therefore, using memcpy is recommended for portable programs.

REF–28



box

box

Draws a box around the window using the character vert as the character for
drawing the vertical lines of the rectangle, and hor for drawing the horizontal
lines of the rectangle.

Format

#include <curses.h>

int box (WINDOW *win, char vert, char hor);

Arguments

win
The address of the window.

vert
The character for the vertical edges of the window.

hor
The character for the horizontal edges of the window.

Description

The box function copies boxes drawn on subwindows onto the underlying window.
Use caution when using functions such as overlay and overwrite with boxed
subwindows. Such functions copy the box onto the underlying window.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–29



brk

brk

Determines the lowest virtual address that is not used with the program.

Format

#include <stdlib.h>

void *brk (unsigned long int addr);

Argument

addr
The lowest address, which the function rounds up to the next multiple of the page
size. This rounded address is called the break address.

Description

An address that is greater than or equal to the break address and less than the
stack pointer is considered to be outside the program’s address space. Attempts
to reference it will cause access violations.

When a program is executed, the break address is set to the highest location
defined by the program and data storage areas. Consequently, brk is needed only
by programs that have growing data areas.

Return Values

n The new break address.
(void *)(�1) Indicates that the program is requesting too

much memory. errno and vaxc$errno are
updated.

Restriction

Unlike other C library implementations, the HP C RTL memory allocation
functions (such as malloc) do not rely on brk or sbrk to manage the program heap
space. Consequently, on OpenVMS systems, calling brk or sbrk can interfere with
memory allocation routines. The brk and sbrk functions are provided only for
compatibility purposes.

REF–30



bsearch

bsearch

Performs a binary search. It searches an array of sorted objects for a specified
object.

Format

#include <stdlib.h>

void *bsearch (const void *key, const void *base, size_t nmemb, size_t size, int (*compar)
(const void *, const void *));

Function Variants

The bsearch function has variants named _bsearch32 and _bsearch64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

key
A pointer to the object to be sought in the array. This pointer should be of type
pointer-to-object and cast to type pointer-to-void.

base
A pointer to the initial member of the array. This pointer should be of type
pointer-to-object and cast to type pointer-to-void.

nmemb
The number of objects in the array.

size
The size of an object, in bytes.

compar
A pointer to the comparison function.

Description

The array must first be sorted in increasing order according to the specified
comparison function pointed to by compar.

Two arguments are passed to the comparison function pointed to by compar. The
two arguments point to the objects being compared. Depending on whether the
first argument is less than, equal to, or greater than the second argument, the
comparison function must return an integer less than, equal to, or greater than 0.

It is not necessary for the comparison function (compar) to compare every byte
in the array. Therefore, the objects in the array can contain arbitrary data in
addition to the data being compared.

Since it is declared as type pointer-to-void, the value returned must be cast or
assigned into type pointer-to-object.

REF–31



bsearch

Return Values

x A pointer to the matching member of the array
or a null pointer if no match is found.

NULL Indicates that the key cannot be found in the
array.

Example

#include <stdio.h>
#include <stdlib.h>

#define SSIZE 30

extern int compare(); /* prototype for comparison function */

int array[SSIZE] = {30, 1, 29, 2, 28, 3, 27, 4, 26, 5,
24, 6, 23, 7, 22, 8, 21, 9, 20, 10,
19, 11, 18, 12, 17, 13, 16, 14, 15, 25};

/* This program takes an unsorted array, sorts it using qsort, */
/* and then calls bsearch for each element in the array, */
/* making sure that bsearch returns the correct element. */

main()
{

int i;
int failure = FALSE;
int *rkey;

qsort(array, SSIZE, sizeof (array[0]), &compare);

/* search for each element */
for (i = 0; i < SSIZE - 1; i++) {

/* search array element i */
rkey = bsearch((array + i), array, SSIZE,

sizeof(array[0]), &compare);
/* check for successful search */
if (&array[i] != rkey) {

printf("Not in array, array element %d\n", i);
failure = TRUE;
break;

}
}
if (!failure)

printf("All elements successfully found!\n");
}

/* Simple comparison routine. */
/* */
/* Returns: = 0 if a == b */
/* < 0 if a < b */
/* > 0 if a > b */

int compare(int *a, int *b)
{

return (*a - *b);
}

This example program outputs the following:

All elements successfully found!

REF–32



btowc

btowc

Converts a one-byte multibyte character to a wide character in the initial shift
state.

Format

#include <wchar.h>

wint_t btowc (int c);

Argument

c
The character to be converted to a wide-character representation.

Description

The btowc function determines whether (unsigned char)c is a valid one-byte
multibyte character in the initial shift state, and if so, returns a wide-character
representation of that character.

Return Values

x The wide-character representation of unsigned
char c.

WEOF Indicates an error. The c argument has the
value EOF or does not constitute a valid one-byte
multibyte character in the initial shift state.

REF–33



bzero

bzero

Copies null characters into byte strings.

Format

#include <strings.h>

void bzero (void *string, size_t length);

Arguments

string
Specifies the byte string into which you want to copy null characters.

length
Specifies the length (in bytes) of the string.

Description

The bzero function copies null characters (’\0’) into the byte string pointed to by
string for length bytes. If length is 0 (zero), then no bytes are copied.

REF–34



cabs

cabs

Returns the absolute value of a complex number.

Format

#include <math.h>

double cabs (cabs_t z);

float cabsf (cabsf_t z); (Alpha only)

long double cabsl (cabsl_t z); (Alpha only)

Argument

z
A structure of type cabs_t, cabsf_t, or cabsl_t. These types are defined in the
<math.h> header file as follows:

typedef struct {double x,y;} cabs_t;
typedef struct { float x, y; } cabsf_t; (Alpha only)
typedef struct { long double x, y; } cabsl_t; (Alpha only)

Description

The cabs functions return the absolute value of a complex number by computing
the Euclidean distance between its two points as the square root of their
respective squares:

sqrt(x2 + y2)

On overflow, the return value is undefined.

The cabs, cabsf, and cabsl functions are equivalent to the hypot, hypotf, and
hypotl functions, respectively.

REF–35



calloc

calloc

Allocates an area of zeroed memory. This function is AST-reentrant.

Format

#include <stdlib.h>

void *calloc (size_t number, size_t size);

Function Variants

The calloc function has variants named _calloc32 and _calloc64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

number
The number of items to be allocated.

size
The size of each item.

Description

The calloc function initializes the items to 0.

See also malloc and realloc.

Return Values

n The address of the first byte, which is aligned on
a quadword boundary.

NULL Indicates an inability to allocate the space.

REF–36



catclose

catclose

Closes a message catalog.

Format

#include <nl_types.h>

int catclose (nl_catd catd);

Argument

catd
A message catalog descriptor. This is returned by a successful call to catopen.

Description

The catclose function closes the message catalog referenced by catd and frees
the catalog file descriptor.

Return Values

0 Indicates that the catalog was successfully closed.
�1 Indicates that an error occurred. The function

sets errno to the following value:

• EBADF – The catalog descriptor is not valid.

REF–37



catgets

catgets

Retrieves a message from a message catalog.

Format

#include <nl_types.h>

char *catgets (nl_catd catd, int set_id, int msg_id, const char *s);

Function Variants

The catgets function has variants named _catgets32 and _catgets64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

catd
A message catalog descriptor. This is returned by a successful call to catopen.

set_id
An integer set identifier.

msg_id
An integer message identifier.

s
A pointer to a default message string that is returned by the function if the
message cannot be retrieved.

Description

The catgets function retrieves a message identified by set_id and msg_id, in the
message catalog catd. The message is stored in a message buffer in the nl_catd
structure, which is overwritten by subsequent calls to catgets. If a message string
needs to be preserved, it should be copied to another location by the program.

Return Values

x Pointer to the retrieved message.

REF–38



catgets

s Pointer to the default message string. Indicates
that the function is not able to retrieve the
requested message from the catalog. This
condition can arise if the requested pair (set_d,
msg_id) does not represent an existing message
from the open catalog, or it indicates that an
error occurred. If an error occurred, the function
sets errno to one of the following values:

• EBADF – The catalog descriptor is not valid.

• EVMSRR – An OpenVMS I/O read error;
the OpenVMS error code can be found in
vaxc$errno.

Example
#include <nl_types.h>
#include <locale.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <unixio.h>

/* This test makes use of all the message catalog routines. catopen() */
/* opens the catalog ready for reading, then each of the three */
/* messages in the catalog are extracted in turn using catgets() and */
/* printed out. catclose() closes the catalog after use. */
/* The catalog source file used to create the catalog is as follows: */
/* $ this is a message file
* $
* $quote "
* $ another comment line
* $set 1
* 1 "First set, first message"
* 2 "second message - This long message uses a backslash \
* for continuation."
* $set 2
* 1 "Second set, first message" */

char *default_msg = "this is the first message.";

main()
{
nl_catd catalog;
int msg1,

msg2,
retval;

char *cat = "sys$disk:[]catgets_example.cat"; /*Force local catalog*/

char *msgtxt;

char string[128];

/* Create the message test catalog */

system("gencat catgets_example.msgx catgets_example.cat") ;

if ((catalog = catopen(cat, 0)) == (nl_catd) - 1) {
perror("catopen");
exit(EXIT_FAILURE);

}

msgtxt = catgets(catalog, 1, 1, default_msg);
printf("%s\n", msgtxt);

REF–39



catgets

msgtxt = catgets(catalog, 1, 2, default_msg);
printf("%s\n", msgtxt);

msgtxt = catgets(catalog, 2, 1, default_msg);
printf("%s\n", msgtxt);

if ((retval = catclose(catalog)) == -1) {
perror("catclose");
exit(EXIT_FAILURE);

}

delete("catgets_example.cat;") ; /* Remove the test catalog */
}

Running the example program produces the following result:

First set, first message
second message - This long message uses a backslash for

continuation.
Second set, first message

REF–40



catopen

catopen

Opens a message catalog.

Format

#include <nl_types.h>

nl_catd catopen (const char *name, int oflag);

Arguments

name
The name of the message catalog to open.

oflag
An object of type int that determines whether the locale set for the
LC_MESSAGES category in the current program’s locale or the logical name
LANG is used to search for the catalog file.

Description

The catopen function opens the message catalog identified by name.

If name contains a colon ( : ), a square opening bracket ( [ ), or an angle bracket
( < ), or is defined as a logical name, then it is assumed that name is the complete
file specification of the catalog.

If it does not include these characters, catopen assumes that name is a logical
name pointing to an existing catalog file. If name is not a logical name, then
the logical name NLSPATH is used to define the file specification of the message
catalog. NLSPATH is defined in the user’s process. If the NLSPATH logical name
is not defined, or no message catalog can be opened in any of the components
specified by the NLSPATH, then the SYS$NLSPATH logical name is used to
search for a message catalog file.

Both NLSPATH and SYS$NLSPATH are comma-separated lists of templates.
The catopen function uses each template to construct a file specification. For
example, NLSPATH could be defined as:

DEFINE NLSPATH SYS$SYSROOT:[SYS$I18N.MSG]%N.CAT,SYS$COMMON:[SYSMSG]%N.CAT

In this example, catopen first searches the directory
SYS$SYSROOT:[SYS$I18N.MSG] for the named catalog. If the named catalog is
not found there, the directory SYS$COMMON:[SYSMSG] is searced. The catalog
name is constructed by substituting %N with the name passed to catopen,
and adding the .cat suffix. %N is known as a substitution field. The following
substitution fields are valid:

Field Meaning

%N Substitute the name passed to catopen

REF–41



catopen

Field Meaning

%L 1 Substitute the locale name.
The period ( . ) and at-sign ( @ ) characters in the locale name are
replaced by an underscore ( _ ) character.
For example, the "zh_CN.dechanzi@radical" locale name results in a
substitution of ZH_CN_DECHANZI_RADICAL.

%l 1 Substitute the language part of the locale name. For example, the
language part of the en_GB.ISO8859-1 locale name is en.

%t 1 Substitute the territory part of the locale name. For example, the
territory part of the en_GB.ISO8859-1 locale is GB.

%c 1 Substitute the codeset name from the locale name. For example, the
codeset name of the en_GB.ISO8859-1 locale name is ISO8859-1.

1This substitution assumes that the locale name is of the form language_territory.codeset@mode

If the oflag argument is set to NL_CAT_LOCALE, then the current locale as
defined for the LC_MESSAGES category is used to determine the substitution
for the %L, %l, %t, and %c substitution fields. If the oflag argument is set to 0,
then the value of the LANG environment variable is used as a locale name to
determine the substitution for these fields. Note that using NL_CAT_LOCALE
conforms to the XPG4 specification while a value of 0 (zero) exists for the purpose
of preserving XPG3 compatibility. Note also, that catopen uses the value of the
LANG environment variable without checking whether the program’s locale can
be set using this value. That is, catopen does not check whether this value can
serve as a valid locale argument in the setlocale call.

If the substitution value is not defined, an empty string is substituted.

A leading comma or two adjacent commas (,,) is equivalent to specifying %N. For
example,

DEFINE NLSPATH ",%N.CAT,SYS$COMMON:[SYSMSG.%L]%N.CAT"

In this example, catopen searches in the following locations in the order shown:

1. name (in the current directory)

2. name.cat (in the current directory)

3. SYS$COMMON:[SYSMSG.locale_name]name.cat

Return Values

x A message catalog file descriptor. Indicates the
call was successful. This descriptor is used in
calls to catgets and catclose.

REF–42



catopen

(nl_catd) �1 Indicates an error occurred. The function sets
errno to one of the following values:

• EACCES – Insufficient privilege or file
protection violation, or file currently locked
by another user.

• EMFILE – Process channel count exceeded.

• ENAMETOOLONG – The full file
specification for message catalog is too long

• ENOENT – Unable to find the requested
message catalog.

• ENOMEM – Insufficient memory available.

• ENOTDIR – Part of the name argument is
not a valid directory.

• EVMSERR – An error occurred that does not
match any errno value. Check the value of
vaxc$errno.

REF–43



cbrt (Alpha only)

cbrt (Alpha only)

Returns the rounded cube root of y.

Format

#include <math.h>

double cbrt (double y);

float cbrtf (float y);

long double cbrtl (long double y);

Argument

y
A real number.

REF–44



ceil

ceil

Returns the smallest integer that is greater than or equal to its argument.

Format

#include <math.h>

double ceil (double x);

float ceilf (float x); (Alpha only)

long double ceill (long double x); (Alpha only)

Argument

x
A real value.

Return Value

n The smallest integer greater than or equal to the
function argument.

REF–45



cfree

cfree

Makes available for reallocation the area allocated by a previous calloc, malloc,
or realloc call. This function is AST-reentrant.

Format

#include <stdlib.h>

void cfree (void *ptr);

Argument

ptr
The address returned by a previous call to malloc, calloc, or realloc.

Description

The contents of the deallocated area are unchanged.

In HP C for OpenVMS Systems, the free and cfree functions are equivalent.
Some other C implementations use free with malloc or realloc, and cfree with
calloc. However, since the ANSI C standard does not include cfree, using free
may be preferable.

See also free.

REF–46



chdir

chdir

Changes the default directory.

Format

#include <unistd.h>

int chdir (const char *dir_spec); (ISO POSIX-1)

int chdir (const char *dir_spec, . . . ); (HP C Extension)

Arguments

dir_spec
A null-terminated character string naming a directory in either an OpenVMS or
UNIX style specification.

. . .
This argument is an HP C extension available when not defining any of the
standards-related feature-test macros (see Section 1.5) and not compiling in strict
ANSI C mode (/STANDARD=ANSI89). The argument is an optional flag of type
int that is significant only when calling chdir from USER mode.

If the value of the flag is 1, the new directory is effective across images. If the
value is not 1, the original default directory is restored when the image exits.

Description

The chdir function changes the default directory. The change can be permanent
or temporary. Permanent means that the new directory remains as the default
directory after the image exits. Temporary means that on image exit, the default
is set to whatever it was before the execution of the image.

There are two ways of making the change permanent:

• Call chdir from USER mode with the second argument set to 1.

• Call chdir from SUPERVISOR or EXECUTIVE mode, regardless of the value
of the second argument.

Otherwise, the change is temporary.

Return Values

0 Indicates that the directory is successfully
changed to the given name.

�1 Indicates that the change attempt has failed.

REF–47



chmod

chmod

Changes the file protection of a file.

Format

#include <stat.h>

int chmod (const char *file_spec, mode_t mode);

Arguments

file_spec
The name of an OpenVMS or UNIX style file specification.

mode
A file protection. Modes are constructed by performing a bitwise OR on any of the
values shown in Table REF–2.

Table REF–2 File Protection Values and Their Meanings

Value Privilege

0400 OWNER:READ
0200 OWNER:WRITE
0100 OWNER:EXECUTE
0040 GROUP:READ
0020 GROUP:WRITE
0010 GROUP:EXECUTE
0004 WORLD:READ
0002 WORLD:WRITE
0001 WORLD:EXECUTE

When you supply a mode value of 0, the chmod function gives the file the user’s
default file protection.

The system is given the same privileges as the owner. A WRITE privilege also
implies a DELETE privilege.

Description

You must have a WRITE privilege for the file specified to change the mode.

Return Values

0 Indicates that the mode is successfully changed.
�1 Indicates that the change attempt has failed.

REF–48



chown

chown

Changes the owner user identification code (UIC) of the file.

Format

#include <unistd.h>

int chown (const char *file_spec, uid_t owner, gid_t group);

Arguments

file_spec
The address of an ASCII file name.

owner
An integer corresponding to the new owner UIC of the file.

group
An integer corresponding to the group UIC of the file.

Return Values

0 Indicates success.
�1 Indicates failure.

REF–49



[w]clear

[w]clear

Erase the contents of the specified window and reset the cursor to coordinates
(0,0). The clear function acts on the stdscr window.

Format

#include <curses.h>

int clear( );

int wclear (WINDOW *win);

Argument

win
A pointer to the window.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–50



clearerr

clearerr

Resets the error and end-of-file indicators for a file (so that ferror and feof will
not return a nonzero value).

Format

#include <stdio.h>

void clearerr (FILE *file_ptr);

Argument

file_ptr
A file pointer.

REF–51



clearok

clearok

Sets the clear flag for the window.

Format

#include <curses.h>

clearok (WINDOW *win, bool boolf);

Arguments

win
The entire size of the terminal screen. You can use the windows stdscr and
curscr with clearok.

boolf
A Boolean value of TRUE or FALSE. If the argument is TRUE, this forces a
clearscreen to be printed on the next call to refresh, or stops the screen from
being cleared if boolf is FALSE.

The type bool is defined in the <curses.h> header file as follows:

#define bool int

Description

Unlike the clear function, the clearok function does not alter the contents of
the window. If the win argument is curscr, the next call to refresh causes a
clearscreen, even if the window passed to refresh is not a window the size of the
entire terminal screen.

REF–52



clock

clock

Determines the CPU time (in 10-millisecond units) used since the beginning of
the process. The time reported is the sum of the user and system times of the
calling process and any terminated child processes for which the calling process
has executed wait or system.

Format

#include <time.h>

clock_t clock (void);

Description

The value returned by the clock function must be divided by the value of the
CLK_TCK, as defined in the standard header file <time.h>, to obtain the time in
seconds.

The type clock_t is defined in the <time.h> header file as follows:

typedef long int clock_t;

Only the accumulated times for child processes running a C main program or a
program that calls VAXC$CRTL_INIT or DECC$CRTL_INIT are included.

A typical usage of the clock function is to call it after a program does its initial
setup, and then again after the program executes the code to be timed. Then
subtract the two values to give elapsed CPU time.

Return Values

n The processor time used.
�1 Indicates that the processor time used is not

available.

REF–53



clock_getres (Alpha only)

clock_getres (Alpha only)

Gets the resolution for the specified clock.

Format

#include <time.h>

int clock_getres (clockid_t clock_id, struct timespec *res);

Arguments

clock_id
The clock type used to obtain the resolution. The CLOCK_REALTIME clock is
supported and represents the TIME-OF-DAY clock for the system.

res
A pointer to the timespec data structure that receives the value of the clock’s
resolution.

Description

The clock_getres function obtains the resolution value for the specified clock.
Clock resolutions are implementation-dependent and cannot be set by a process.

If the res argument is not NULL, the resolution of the specified clock is stored in
the location pointed to by res.

If res is NULL, the clock resolution is not stored.

If the time argument (tp) of clock_settime is not a multiple of res, then the value
is truncated to a multiple of res.

On success, the function returns 0.

On failure, the function returns �1 and sets errno to indicate the error.

See also clock_gettime, clock_settime, time, and ctime.

Return Values

0 Indicates success.
�1 Indicates failure; errno is set to the following

value:

• EINVAL – The clock_id argument does not
specify a known clock.

REF–54



clock_gettime (Alpha only)

clock_gettime (Alpha only)

Returns the current time (in seconds and nanoseconds) for the specified clock.

Format

#include <time.h>

int clock_gettime (clockid_t clock_id, struct timespec *tp);

Arguments

clock_id
The clock type used to obtain the time for the clock that is set. The CLOCK_
REALTIME clock is supported and represents the TIME-OF-DAY clock for the
system.

tp
A pointer to a timespec data structure.

Description

The clock_gettime function returns the current tp value for the specified clock,
clock_id.

On success, the function returns 0.

On failure, the function returns �1 and sets errno to indicate the error.

See also clock_getres, clock_settime, time, and ctime.

Return Values

0 Indicates success.
�1 Indicates failure; errno is set to the following

value:

• EINVAL – The clock_id argument does not
specify a known clock, or the tp argument
specifies a nanosecond value less than 0 or
greater than or equal to 1 billion.

REF–55



clock_settime (Alpha only)

clock_settime (Alpha only)

Sets the specified clock.

Format

#include <time.h>

int clock_settime (clockid_t clock_id, const struct timespec *tp);

Arguments

clock_id
The clock type used for the clock that is to be set. The CLOCK_REALTIME clock
is supported and represents the TIME-OF-DAY clock for the system.

tp
A pointer to a timespec data structure.

Description

The clock_settime function sets the specified clock, clock_id, to the value
specified by tp. Time values that are between two consecutive non-negative
integer multiples of the resolution of the specified clock are truncated down to the
smaller multiple of the resolution.

A clock can be systemwide (that is, visible to all processes) or per-process
(measuring time that is meaningful only within a process).

The CLOCK_REALTIME clock, defined in <time.h>, represents the realtime
clock for the system. For this clock, the values specified by clock_settime and
returned by clock_gettime represent the amount of time elapsed, in seconds and
nanoseconds, since the Epoch. The Epoch is defined as 00:00:00:00 January 1,
1970 Greenwich Mean Time (GMT).

You must have OPER, LOG_IO, and SYSPRV privileges to use the clock_settime
function.

On success, the function returns 0.

On failure, the function returns �1 and sets errno to indicate the error.

See also clock_getres, clock_gettime, time, and ctime.

Return Values

0 Indicates success.

REF–56



clock_settime (Alpha only)

�1 Indicates failure; errno is set to the following
value:

• EINVAL – The clock_id argument does not
specify a known clock, or the tp argument is
outside the range for the given clock_id or
specifies a nanosecond value less than 0 or
greater than or equal to 1 billion.

• EPERM – The requesting process does not
have the appropriate privilege to set the
specified clock.

REF–57



close

close

Closes the file associated with a file descriptor.

Format

#include <unistd.h>

int close (int file_desc);

Argument

file_desc
A file descriptor.

Description

The close function tries to write buffered data by using an implicit call to fflush.
If the write fails (because the disk is full or the user’s quota was exceeded, for
example), close continues executing. It closes the OpenVMS channel, deallocates
any buffers, and releases the memory associated with the file descriptor (or FILE
pointer). Any buffered data is lost, and the file descriptor (or FILE pointer) no
longer refers to the file.

If your program needs to recover from errors when flushing buffered data, it
should make an explicit call to fsync (or fflush) before calling close.

Return Values

0 Indicates that the file is properly closed.
�1 Indicates that the file descriptor is undefined

or an error occurred while the file was being
closed (for example, if the buffered data cannot
be written out).

Example

#include <unistd.h>

int fd;
.
.
.

fd = open ("student.dat", 1);
.
.
.

close(fd);

REF–58



closedir

closedir

Closes directories.

Format

#include <dirent.h>

int closedir (DIR *dir_pointer);

Argument

dir_pointer
Pointer to the dir structure of an open directory.

Description

The closedir function closes a directory stream and frees the structure
associated with the dir_pointer argument. Upon return, the value of dir_pointer
does not necessarily point to an accessible object of the type DIR.

The type DIR, which is defined in the <dirent.h> header file, represents a
directory stream that is an ordered sequence of all the directory entries in a
particular directory. Directory entries represent files. You can remove files from
or add files to a directory asynchronously to the operation of the readdir function.

Note

An open directory must always be closed with the closedir function to
ensure that the next attempt to open the directory is successful.

Example

The following example shows how to search a directory for the entry name, using
the opendir, readdir, and closedir functions:

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define FOUND 1
#define NOT_FOUND 0

static int dir_example(const char *name, unsigned int unix_style)
{

DIR *dir_pointer;
struct dirent *dp;

if ( unix_style )
dir_pointer = opendir(".");

else
dir_pointer = opendir(getenv("PATH"));

if ( !dir_pointer ) {
perror("opendir");
return NOT_FOUND;

}

REF–59



closedir

/* Note, that if opendir() was called with UNIX style file */
/* spec like ".", readdir() will return only a single */
/* version of each file in the directory. In this case the */
/* name returned in d_name member of the dirent structure */
/* will contain only file name and file extension fields, */
/* both lowercased like "foo.bar". */

/* If opendir() was called with OpenVMS style file spec, */
/* readdir() will return every version of each file in the */
/* directory. In this case the name returned in d_name */
/* member of the dirent structure will contain file name, */
/* file extension and file version fields. All in upper */
/* case, like "FOO.BAR;1". */

for ( dp = readdir(dir_pointer);
dp && strcmp(dp->d_name, name);
dp = readdir(dir_pointer) )

;

closedir(dir_pointer);

if ( dp != NULL )
return FOUND;

else
return NOT_FOUND;

}

int main(void)
{

char *filename = "foo.bar";
FILE *fp;

remove(filename);

if ( !(fp = fopen(filename, "w")) ) {
perror("fopen");
return (EXIT_FAILURE);

}

if ( dir_example( "FOO.BAR;1", 0 ) == FOUND )
puts("OpenVMS style: found");

else
puts("OpenVMS style: not found");

if ( dir_example( "foo.bar", 1 ) == FOUND )
puts("UNIX style: found");

else
puts("UNIX style: not found");

fclose(fp);
remove(filename);
return( EXIT_SUCCESS );

}

Return Values

0 Indicates success.
�1 Indicates an error and is further specified in the

global errno.

REF–60



[w]clrattr

[w]clrattr

Deactivate the video display attribute attr within the window. The clrattr
function acts on the stdscr window.

Format

#include <curses.h>

int clrattr (int attr);

int wclrattr (WINDOW *win, int attr);

Arguments

win
A pointer to the window.

attr
Video display attributes that can be blinking, boldface, reverse video, and
underlining; they are represented by the defined constants _BLINK, _BOLD,
_REVERSE, and _UNDERLINE. To clear multiple attributes, separate them with
a bitwise OR operator ( | ) as follows:

clrattr(_BLINK | _UNDERLINE);

Description

These functions are specific to HP C for OpenVMS Systems and are not portable.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–61



[w]clrtobot

[w]clrtobot

Erase the contents of the window from the current position of the cursor to the
bottom of the window. The clrtobot function acts on the stdscr window.

Format

#include <curses.h>

int clrtobot( );

int wclrtobot (WINDOW *win);

Argument

win
A pointer to the window.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–62



[w]clrtoeol

[w]clrtoeol

Erase the contents of the window from the current cursor position to the end
of the line on the specified window. The clrtoeol function acts on the stdscr
window.

Format

#include <curses.h>

int clrtoeol( );

int wclrtoeol (WINDOW *win);

Argument

win
A pointer to the window.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–63



confstr

confstr

Determines the current value of a specified system variable defined by a string
value.

Format

#include <unistd.h>

size_t confstr (int name, char *buf, size_t len);

Arguments

name
The system variable setting. Valid values for the name argument are the _CS_X
names defined in the <unistd.h> header file.

buf
Pointer to the buffer where the confstr function copies the name value.

len
The size of the buffer storing the name value.

Description

The confstr function allows an application to determine the current setting of
certain system parameters, limits, or options that are defined by a string value.
The function is mainly used by applications to find the system default value for
the PATH environment variable.

If the following conditions are true, then the confstr function copies that value
into a len-byte buffer pointed to by buf:

• The len argument is not 0 (zero).

• The name argument has a system-defined value.

• The buf argument is not a NULL pointer.

If the returned string is longer than len bytes, including the terminating null,
then the confstr function truncates the string to len � 1 bytes and adds a
terminating null to the result. The application can detect that the string was
truncated by comparing the value returned by the confstr function with the
value of the len argument.

The <limits.h> header file contains system-defined limits. The <unistd.h>
header file contains system-defined environmental variables.

Example

To find out how big a buffer is needed to store the string value of name, enter:

confstr(_CS_PATH, NULL, (size_t) 0)

The confstr function returns the size of the buffer necessary.

REF–64



confstr

Return Values

0 Indicates an error. When the specified name
value:

• Is invalid, errno is set to EINVAL.

• Does not have a system-defined value, errno
is not set.

n The size of the buffer needed to hold the value.

• When the value of the name argument is
system-defined, confstr returns the size of
the buffer needed to hold the entire value.
If this return value is greater than the len
value, the string returned as the buf value is
truncated.

• When the value of the len argument is set to
0 or the buf value is NULL, confstr returns
the size of the buffer needed to hold the
entire system-defined value. The string value
is not copied.

REF–65



copysign (Alpha only)

copysign (Alpha only)

Returns x with the same sign as y.

Format

#include <math.h>

double copysign (double x, double y);

float copysignf (float x, float y); (Alpha only)

long double copysignl (long double x, long double y); (Alpha only)

Arguments

x
A real value.

y
A real value.

Description

The copysign functions return x with the same sign as y. IEEE 754 requires
copysign(x,NaN), copysignf(x,NaN) and copysignl(x,NaN) to return +x or�x.

Return Value

x The value of x with the same sign as y.

REF–66



cos

cos

Returns the cosine of its radian argument.

Format

#include <math.h>

double cos (double x);

float cosf (float x); (Alpha only)

long double cosl (long double x); (Alpha only)

double cosd (double x); (Alpha only)

float cosdf (float x); (Alpha only)

long double cosdl (long double x); (Alpha only)

Argument

x
A radian expressed as a real value.

Description

The cos functions return the cosine of their argument, measured in radians.

The cosd functions return the cosine of their argument, measured in degrees.

| x | = Infinity is an invalid argument.

Return Values

x The cosine of the argument.
HUGE_VAL Indicates that the argument is too large; errno is

set to ERANGE.

REF–67



cosh

cosh

Returns the hyperbolic cosine of its radian argument.

Format

#include <math.h>

double cosh (double x);

float coshf (float x); (Alpha only)

long double coshl (long double x); (Alpha only)

Argument

x
A radian expressed as a real number.

Description

The cosh functions return the hyperbolic cosine of x and are defined as (e**x +
e**(�x))/2.

Return Values

x The hyperbolic cosine of the argument.
HUGE_VAL Indicates that the argument is too large; errno is

set to ERANGE.

REF–68



cot

cot

Returns the cotangent of its radian argument.

Format

#include <math.h>

double cot (double x);

float cotf (float x); (Alpha only)

long double cotl (long double x); (Alpha only)

double cotd (double x); (Alpha only)

float cotdf (float x); (Alpha only)

long double cotdl (long double x); (Alpha only)

Argument

x
A radian expressed as a real number.

Description

The cot functions return the cotangent of their argument, measured in radians.

The cotd functions return the cotangent of their argument, measured in degrees.

x = 0 is an invalid argument.

Return Values

x The cotangent of the argument.
HUGE_VAL Indicates that the argument is zero; errno is set

to ERANGE.

REF–69



creat

creat

Creates a new file.

Format

#include <fcntl.h>

int creat (const char *file_spec, mode_t mode); (ISO POSIX-1)

int creat (const char *file_spec, mode_t mode, . . . ); (HP C Extension)

Arguments

file_spec
A null-terminated string containing any valid file specification.

mode
An unsigned value that specifies the file-protection mode. The compiler performs
a bitwise AND operation on the mode and the complement of the current
protection mode.

You can construct modes by using the bitwise OR operator ( | ) to create mode
combinations. The modes are:

0400 OWNER:READ
0200 OWNER:WRITE
0100 OWNER:EXECUTE
0040 GROUP:READ
0020 GROUP:WRITE
0010 GROUP:EXECUTE
0004 WORLD:READ
0002 WORLD:WRITE
0001 WORLD:EXECUTE

The system is given the same privileges as the owner. A WRITE privilege implies
a DELETE privilege.

Note

To create files with OpenVMS RMS default protections using the UNIX
system-call functions umask, mkdir, creat, and open, call mkdir, creat,
and open with a file-protection mode argument of 0777 in a program that
never specifically calls umask. These default protections include correctly
establishing protections based on ACLs, previous versions of files, and so
on.

In programs that do vfork/exec calls, the new process image inherits
whether umask has ever been called or not from the calling process image.
The umask setting and whether the umask function has ever been called
are both inherited attributes.

REF–70



creat

. . .
An optional argument list of character strings of the following form:

"keyword = value", . . . ,"keyword = value"

Or in the case of "acc" or "err", this form:

"keyword"

Here, keyword is an RMS field in the file access block (FAB) or record access
block (RAB); value is valid for assignment to that field. Some fields permit you to
specify more than one value. In these cases, the values are separated by commas.

The RMS callback keywords "acc" and "err" are the only keywords that do not
take values. Instead, they are followed by a pointer to the callback routine to
be used, followed by a pointer to a user-specified value to be used as the first
argument of the callback routine. For example, to set up an access callback
routine called acc_callback whose first argument is a pointer to the integer
variable first_arg in a call to open, you can use the following statement:

open("file.dat", O_RDONLY, 0 ,"acc", acc_callback, &first_arg)

The second and third arguments to the callback routine must be pointers to a
FAB and RAB, respectively, and the routine must have a return type of int. If
the callback returns a value less than 0, the open, creat, or fopen fails. The
error callback can correct the error condition and return a status greater than or
equal to 0 to continue the creat call. Assuming the previous open statement, the
function prototype for acc_callback would be similar to the following statement:

#include <rms.h>

int acc_callback(int *first_arg, struct FAB *fab, struct RAB *rab);

FAB and RAB are defined in the <rms.h> header file, and the actual pointers
passed to the routine are pointers to the RAB and FAB being used to open the file
file.dat.

If an access callback routine is established, then it will be called in the open-type
routine immediately before the call to the RMS function sys$create or sys$open.
If an error callback routine is established and an error status is returned from
the sys$create or sys$open function, then the callback routine will be invoked
immediately after the status is checked and the error value is discovered.

Note

Any manipulation of the RAB or FAB in a callback function could lead to
serious problems in later calls to the HP C RTL I/O functions.

Table REF–3 describes the RMS keywords and values.

Table REF–3 RMS Valid Keywords and Values

Keyword Value Description

‘‘acc’’ callback Access callback routine.
‘‘alq = n’’ decimal Allocation quantity.

(continued on next page)

REF–71



creat

Table REF–3 (Cont.) RMS Valid Keywords and Values

Keyword Value Description

‘‘bls = n’’ decimal Block size.
‘‘ctx = bin’’ string No translation of ’\n’ to the terminal. Use

this for writing binary data to files.
‘‘ctx=cvt’’ string Negates a previous setting of ‘‘ctx=nocvt’’.

This is the default.
‘‘ctx = nocvt’’ string No conversion of Fortran carriage-control

bytes.
‘‘ctx = rec’’ string Forces record mode access.
‘‘ctx = stm’’ string Forces stream mode access.
‘‘ctx=xplct’’ string Causes records to be written only when

explicitly specified by a call to fflush, close,
or fclose.

‘‘deq = n’’ decimal Default extension quantity.
‘‘dna = filespec’’ string Default file-name string.
‘‘err’’ callback Error callback routine.
‘‘fop = val, val , . . . ’’ File-processing options:

ctg
cbt
dfw

dlt
tef
cif
sup
scf
spl
tmd
tmp
nef
rck
wck
mxv
rwo
pos
rwc
sqo

Contiguous.
Contiguous-best-try.
Deferred write; only applicable to files
opened for shared access.
Delete file on close.
Truncate at end-of-file.
Create if nonexistent.
Supersede.
Submit as command file on close.
Spool to system printer on close.
Temporary delete.
Temporary (no file directory).
Not end-of-file.
Read check compare operation.
Write check compare operation.
Maximize version number.
Rewind file on open.
Current position.
Rewind file on close.
File can only be processed in a sequential
manner.

‘‘fsz = n’’ decimal Fixed header size.
‘‘gbc = n’’ decimal The requested number of global buffers for a

file.
‘‘mbc = n’’ decimal Multiblock count.
‘‘mbf = n’’ decimal Multibuffer count.
‘‘mrs = n’’ decimal Maximum record size.

(continued on next page)

REF–72



creat

Table REF–3 (Cont.) RMS Valid Keywords and Values

Keyword Value Description

‘‘pmt=usr-prmpt’’ string Prompts for terminal input. Any RMS input
from a terminal device will be preceded by
‘‘usr-prmpt’’ when this option and ‘‘rop=pmt’’
are specified.

‘‘rat = val, val . . . ’’ Record attributes:
cr
blk
ftn
none
prn

Carriage-return control.
Disallow records to span block boundaries.
Fortran print control.
Explicitly forces no carriage control.
Print file format.

‘‘rfm = val’’ Record format:
fix
stm
stmlf
stmcr

var
vfc
udf

Fixed-length record format.
RMS stream record format.
Stream format with line-feed terminator.
Stream format with carriage-return
terminator.
Variable-length record format.
Variable-length record with fixed control.
Undefined.

‘‘rop = val, val . . . ’’ Record-processing operations:
asy Asynchronous I/O.
cco Cancels Ctrl/O (used with Terminal I/O).
cvt Capitalizes characters on a read from the

terminal.
eof Positions the record stream to the end-of-file

for the connect operation only.
nlk Do not lock record.
pmt Enables use of the prompt specified by

‘‘pmt=usr-prmpt’’ on input from the terminal.
pta Eliminates any information in the type-

ahead buffer on a read from the terminal.
rea Locks record for a read operation for this

process, while allowing other accessors to
read the record.

rlk Locks record for write.
rne Suppresses echoing of input data on the

screen as it is entered on the keyboard.
rnf Indicates that Ctrl/U, Ctrl/R, and DELETE

are not to be considered control commands
on terminal input, but are to be passed to the
application program.

rrl Reads regardless of lock.
(continued on next page)

REF–73



creat

Table REF–3 (Cont.) RMS Valid Keywords and Values

Keyword Value Description

syncsts Returns a success status of RMS$_SYNCH
if the requested service completes its task
immediately.

tmo Timeout I/O.
tpt Allows put/write services using sequential

record access mode to occur at any point in
the file, truncating the file at that point.

ulk Prohibits RMS from automatically unlocking
records.

wat Wait until record is available, if currently
locked by another stream.

rah Read ahead.
wbh Write behind.

‘‘rtv=n’’ decimal The number of retrieval pointers that RMS
has to maintain in memory (0 to 127,255).

‘‘shr = val, val, . . . ’’ File sharing options:
del
get
mse
nil
put
upd
upi
nql

Allows users to delete.
Allows users to read.
Allows multistream connects.
Prohibits file sharing.
Allows users to write.
Allows users to update.
Allows one or more writers.
No query locking (file level).

‘‘tmo = n’’ decimal I/O timeout value.

In addition to these options, any option that takes a key value (such as ‘‘fop’’
or ‘‘rat’’) can be negated by prefixing the value with ‘‘no’’. For example, specify
‘‘fop=notmp’’ to clear the ‘‘tmp’’ bit in the ‘‘fop’’ field.

Notes

• While these options provide much flexibility and functionality, many
of them can also cause severe problems if not used correctly.

• You cannot share the default HP C for OpenVMS stream file I/O.
If you wish to share files, you must specify ‘‘ctx=rec’’ to force record
access mode. You must also specify the appropriate ‘‘shr’’ options
depending on the type of access you want.

• If you intend to share a file opened for append, you must specify
appropriate share and record-locking options, to allow other accessors
to read the record. The reason for doing this: the file is positioned at
the end-of-file by reading records in a loop until end-of-file is reached.

For more information on these options, see the OpenVMS Record Management
Services Reference Manual manual.

REF–74



creat

Description

The HP C RTL opens the new file for reading and writing, and returns the
corresponding file descriptor.

If the file exists:

• A version number one greater than any existing version is assigned to the
newly created file.

• By default, the new file inherits certain attributes from the existing version of
the file unless those attributes are specified in the creat call. The following
attributes are inherited:

Record format (FAB$B_RFM)

Maximum record size (FAB$W_MRS)

Carriage control (FAB$B_RAT)

File protection

If the file did not previously exist:

• It is given the file protection that results from performing a bitwise AND on
the mode argument and the complement of the current protection mask.

• It defaults to stream format with line-feed record separator and implied
carriage-return attributes.

See also open, close, read, write, and lseek in this section.

Return Values

n A file descriptor.
�1 Indicates errors, including protection violations,

undefined directories, and conflicting file
attributes.

REF–75



[no]crmode

[no]crmode

In the UNIX system environment, the crmode and nocrmode functions set and
unset the terminal from cbreak mode. In cbreak mode, a single input character
can be processed without pressing Return. This mode of single-character input is
only supported with the Curses input routine getch.

Format

#include <curses.h>

crmode( )

nocrmode( )

Example
/* Program to demonstrate the use of crmod() and curses */

#include <curses.h>

main()
{

WINDOW *win1;
char vert = ’.’,

hor = ’.’,
str[80];

/* Initialize standard screen, turn echo off. */
initscr();
noecho();

/* Define a user window. */
win1 = newwin(22, 78, 1, 1);

/* Turn on reverse video and draw a box on border. */
setattr(_REVERSE);
box(stdscr, vert, hor);
mvwaddstr(win1, 2, 2, "Test cbreak input");
refresh();
wrefresh(win1);

/* Set cbreak, do some input, and output it. */
crmode();
getch();
nocrmode(); /* Turn off cbreak. */
mvwaddstr(win1, 5, 5, str);
mvwaddstr(win1, 7, 7, "Type something to clear the screen");
wrefresh(win1);

/* Get another character, then delete the window. */
getch();
wclear(win1);
touchwin(stdscr);
endwin();

}

In this example, the first call to getch returns as soon as one character is entered,
because crmode was called before getch was called. The second time getch is
called, it waits until the Return key is pressed before processing the character
entered, because nocrmode was called before getch was called the second time.

REF–76



ctermid

ctermid

Returns a character string giving the equivalence string of SYS$COMMAND.
This is the name of the controlling terminal.

Format

#include <stdio.h>

char *ctermid (char *str);

Function Variants

The ctermid function has variants named _ctermid32 and _ctermid64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Argument

str
Must be a pointer to an array of characters. If this argument is NULL, the
file name is stored internally and might be overwritten by the next ctermid
call. Otherwise, the file name is stored beginning at the location indicated by
the argument. The argument must point to a storage area of length L_ctermid
(defined by the <stdio.h> header file).

Return Value

pointer Points to a character string.

REF–77



ctime, ctime_r

ctime, ctime_r

Converts a time in seconds, since 00:00:00 January 1, 1970, to an ASCII string in
the form generated by the asctime function.

Format

#include <time.h>

char *ctime (const time_t *bintim);

char *ctime_r (const time_t *bintim, char *buffer); (ISO POSIX-1)

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to this function that is
equivalent to the behavior before OpenVMS Version 7.0.

Arguments

bintim
A pointer to a variable that specifies the time value (in seconds) to be converted.

buffer
A pointer to a character array that is at least 26 bytes long. This array is used to
store the generated date-and-time string.

Description

The ctime and ctime_r functions convert the time pointed to by bintim into a
26-character string, and return a pointer to the string.

The difference between the ctime_r and ctime functions is that the former puts
its result into a user-specified buffer. The latter puts its result into thread-
specific static memory allocated by the HP C RTL, which can be overwritten by
subsequent calls to ctime or asctime; you must make a copy if you want to save
it.

On success, ctime returns a pointer to the string; ctime_r returns its second
argument. On failure, these functions return the NULL pointer.

The type time_t is defined in the <time.h> header file as follows:

typedef long int time_t

The ctime function behaves as if it called tzset.

Note

Generally speaking, UTC-based time functions can affect in-memory time-
zone information, which is processwide data. However, if the system time
zone remains the same during the execution of the application (which is
the common case) and the cache of timezone files is enabled (which is the
default), then the _r variant of the time functions asctime_r, ctime_r,
gmtime_r, and localtime_r, is both thread-safe and AST-reentrant.

If, however, the system time zone can change during the execution of
the application or the cache of timezone files is not enabled, then both

REF–78



ctime, ctime_r

variants of the UTC-based time functions belong to the third class of
functions, which are neither thread-safe nor AST-reentrant.

Return Values

x A pointer to the 26-character ASCII string, if
successful.

NULL Indicates failure.

REF–79



cuserid

cuserid

Returns a pointer to a character string containing the name of the user initiating
the current process.

Format

#include <unistd.h> (X/Open, POSIX-1)

#include <stdio.h> (X/Open)

char *cuserid (char *str);

Function Variants

The cuserid function has variants named _cuserid32 and _cuserid64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Argument

str
If this argument is NULL, the user name is stored internally. If the argument
is not NULL, it points to a storage area of length L_cuserid (defined by the
<stdio.h> header file), and the name is written into that storage. If the user
name is a null string, the function returns NULL.

Return Values

pointer Points to a string.
NULL If the user name is a null string.

REF–80



DECC$CRTL_INIT

DECC$CRTL_INIT

Allows you to call the HP C RTL from other languages or to use the HP C RTL
when your main function is not in C. It initializes the run-time environment and
establishes both an exit and condition handler. VAXC$CRTL_INIT is a synonym for
DECC$CRTL_INIT. Either name invokes the same routine.

Format

#include <signal.h>

void DECC$CRTL_INIT(void);

Description

The following example shows a Pascal program that calls the HP C RTL using
the DECC$CRTL_INIT function:

$ PASCAL EXAMPLE1
$ LINK EXAMPLE1
$ TY EXAMPLE1.PAS
PROGRAM TESTC(input, output);
PROCEDURE DECC$CRTL_INIT; extern;
BEGIN

DECC$CRTL_INIT;
END

A shareable image need only call this function if it contains an HP C function
for signal handling, environment variables, I/O, exit handling, a default file
protection mask, or if it is a child process that should inherit context.

Although many of the initialization activities are performed only once,
DECC$CRTL_INIT can safely be called multiple times. On OpenVMS VAX systems,
DECC$CRTL_INIT establishes the HP C RTL internal OpenVMS exception handler
in the frame of the routine that calls DECC$CRTL_INIT each time DECC$CRTL_INIT
is called.

At least one frame in the current call stack must have that handler established
for OpenVMS exceptions to get mapped to UNIX signals.

REF–81



decc$feature_get_index

decc$feature_get_index

Returns an index for accessing feature values.

Format

int decc$feature_get_index (char *name);

Argument

name
Pointer to a character string passed as a name in the list of supported features.

Description

The decc$feature_get_index function looks up the string passed as name in
the list of supported features. If the name is found, decc$feature_get_index
returns a (nonnegative) index that can be used to set or retrieve the values for
the feature. The comparison for name is case insensitive.

On error, �1 is returned and errno is set to indicate the error.

See also decc$feature_get_name, decc$feature_get_value, and
decc$feature_set_value.

Return Values

n A nonnegative index that can be used to set or
retrieve the specified values for the feature.

�1 Indicates an error; errno is set.

Example

The following sample module sets default values for an application. The module
can be compiled separately from the application and included in the image during
link:

static int set_feature_default(char *name, int value)
{

int index = decc$feature_get_index(name);

if (index == -1 ||
decc$feature_set_value(index, 0, value) == -1)

{
perror(name);
return -1;

}
return 0;

}

static void my_init( void)
{

set_feature_default("DECC$POSIX_SEEK_STREAM_FILE" , TRUE);
set_feature_default("DECC$ARGV_CASE_PARSE_STYLE" , TRUE);
set_feature_default("DECC$EFS_CASE_PRESERVE" , TRUE);
set_feature_default("DECC$FILE_SHARING" , TRUE);

}

REF–82



decc$feature_get_index

#pragma nostandard
globaldef { "LIB$INITIALIZ" } readonly _align (LONGWORD)

int spare[8] = {0};
globaldef { "LIB$INITIALIZE" } readonly _align (LONGWORD)

void (*x_my_init)() = my_init;
#pragma standard

REF–83



decc$feature_get_name

decc$feature_get_name

Returns a feature name.

Format

char *decc$feature_get_name (int index);

Argument

index
An integer value from 0 to the highest allocated feature.

Description

The decc$feature_get_name function returns a pointer to a null-terminated
string containing the name of the feature for the entry specified by index. The
index value can be 0 to the highest allocated feature. If there is no feature
corresponding to the index value, then the function returns a NULL pointer.

On error, NULL is returned and errno is set to indicate the error.

See also decc$feature_get_index, decc$feature_get_value, and
decc$feature_set_value.

Return Values

x Pointer to a null-terminated string containing
the name of the feature for the entry specified by
index.

NULL Indicates an error; errno is set.

Example

See decc$feature_get_index for an example of retrieving and setting C RTL
features.

REF–84



decc$feature_get_value

decc$feature_get_value

Returns a feature value depending on the mode argument.

Format

int decc$feature_get_value (int index, int mode);

Arguments

index
An integer value from 0 to the highest allocated feature.

mode
An integer indicating which feature value to return. The values for mode are:

0 Default value
1 Current value
2 Minimum value
3 Maximum value
4 Initialization state

Description

The decc$feature_get_value function retrieves a value for the feature specified
by index. The mode determines which value is returned.

The default value is what is used if not set by a logical name or overidden by a
call to decc$feature_set_value.

If mode = 4, then the initialization state is returned. Values for the initialization
state are:

0 not initialized
1 set by logical name
2 forced by decc$feature_set_value
�1—initialized to default value

On error, �1 is returned and errno is set to indicate the error.

See also decc$feature_get_index, decc$feature_get_name, and
decc$feature_set_value.

Return Values

n An integer corresponding to the specified index
and mode arguments.

�1 Indicates an error; errno is set.

Example

See decc$feature_get_index for an example of retrieving and setting C RTL
features.

REF–85



decc$feature_set_value

decc$feature_set_value

Sets the default value or the current value for the feature specified by index.

Format

int decc$feature_set_value (int index, int mode, int value);

Arguments

index
An integer value from 0 to the highest allocated feature.

mode
An integer indicating whether to set the default or current feature value. The
values for mode are:

0 default value
1 current value

value
The feature value to be set.

Description

The decc$feature_set_value function sets the default value or the current value
(as determined by the mode argument) for the feature specified by index.

If this function is successful, it returns the previous value.

On error, �1 is returned and errno is set to indicate the error.

See also decc$feature_get_index, decc$feature_get_name, and
decc$feature_get_value.

Return Values

n The previous feature value.
�1 Indicates an error; errno is set.

Example

See decc$feature_get_index for an example of retrieving and setting C RTL
features.

REF–86



decc$fix_time

decc$fix_time

Converts OpenVMS binary system times to UNIX binary times.

Format

#include <unixlib.h>

unsigned int decc$fix_time (void *vms_time);

Argument

vms_time
The address of a quadword containing an OpenVMS binary time:

unsigned int quadword[2];
unsigned int *vms_time = quadword;

Description

The decc$fix_time routine converts an OpenVMS binary system time (a 64-bit
quadword containing the number of 100-nanosecond ticks since 00:00 November
17, 1858) to a UNIX binary time (a longword containing the number of seconds
since 00:00 January 1, 1970). This routine is useful for converting binary times
returned by OpenVMS system services and RMS services to the format used by
some HP C RTL routines, such as ctime and localtime.

Return Values

x A longword containing the number of seconds
since 00:00 January 1, 1970.

(unsigned int)(�1) Indicates an error. Be aware, that a return value
of (unsigned int)(�1) can also represent a valid
date of Sun Feb 7 06:28:15 2106.

Example
#include <unixlib.h>
#include <stdio.h>
#include <starlet.h> /* OpenVMS specific SYS$ routines) */

main()
{
unsigned int current_vms_time[2]; /*quadword for OpenVMS time*/
unsigned int number_of_seconds; /* number of seconds */

/* first get the current system time */
sys$gettim(&current_vms_time[0]);

/* fix the time */
number_of_seconds = decc$fix_time(&current_vms_time[0]);

printf("Number of seconds since 00:00 January 1, 1970 = %d",
number_of_seconds);

}

This example shows how to use the decc$fix_time routine in HP C. It also
shows the use of the SYS$GETTIM system service.

REF–87



decc$from_vms

decc$from_vms

Converts OpenVMS file specifications to UNIX style file specifications.

Format

#include <unixlib.h>

int decc$from_vms (const char *vms_filespec, int action_routine, int wild_flag);

Arguments

vms_filespec
The address of a null-terminated string containing a name in OpenVMS file
specification format.

action_routine
The address of a routine that takes as its only argument a null-terminated string
containing the translation of the given OpenVMS file name to a valid UNIX style
file name.

If the action_routine returns a nonzero value (TRUE), file translation continues.
If it returns a zero value (FALSE), no further file translation takes place.

wild_flag
Either 0 or 1, passed by value. If a 0 is specified, wildcards found in vms_filespec
are not expanded. Otherwise, wildcards are expanded and each one is passed to
action_routine. Only expanded file names that correspond to existing UNIX style
files are included.

Description

The decc$from_vms routine converts the given OpenVMS file specification into
the equivalent UNIX style file specification. It allows you to specify OpenVMS
wildcards, which are translated into a list of corresponding existing files in UNIX
style file specification format.

Return Value

x The number of file names that result from the
specified OpenVMS file specification.

Example
/* This example must be run as a foreign command */
/* and be supplied with an OpenVMS file specification. */

#include <unixlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

int number_found; /* number of files found */
int print_name(); /* name printer */

printf("Translating: %s\n", argv[1]);
number_found = decc$from_vms(argv[1], print_name, 1);
printf("\n%d files found", number_found);

}

REF–88



decc$from_vms

/* print the name on each line */
print_name(char *name)
{

printf("\n%s", name);
/* will continue as long as success status is returned */
return (1);

}

This example shows how to use the decc$from_vms routine in HP C. It produces
a simple form of the ls command that lists existing files that match an OpenVMS
file specification supplied on the command line. The matching files are displayed
in UNIX style file specification format.

REF–89



decc$match_wild

decc$match_wild

Matches a string to a pattern.

Format

#include <unixlib.h>

int decc$match_wild (char *test_string, char *string_pattern);

Arguments

test_string
The address of a null-terminated string.

string_pattern
The address of a string containing the pattern to be matched. This pattern can
contain wildcards (such as asterisks ( * ), question marks ( ? ), and percent signs
( % ) as well as regular expressions (such as the range [a-z]).

Description

The decc$match_wild routine determines whether the specified test string is a
member of the set of strings specified by the pattern.

Return Values

1 (TRUE) The string matches the pattern.
0 (FALSE) The string does not match the pattern.

Example
/* Define as a foreign command and then provide */
/* two arguments: test_string, string_pattern. */

#include <unixlib.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

if (decc$match_wild(argv[1], argv[2]))
printf("\n%s matches %s", argv[1], argv[2]);

else
printf("\n%s does not match %s", argv[1], argv[2]);

}

REF–90



decc$record_read

decc$record_read

Reads a record from a file.

Format

#include <stdio.h>

int decc$record_read (FILE *fp, void *buffer, int nbytes);

Arguments

fp
A file pointer. The specified file pointer must refer to a file currently opened for
reading.

buffer
The address of contiguous storage in which the input data is placed.

nbytes
The maximum number of bytes involved in the read operation.

Description

The decc$record_read function is specific to OpenVMS systems and should not
be used when writing portable applications.

This function is equivalent to the read function, except that the first argument is
a file pointer, not a file descriptor.

Return Values

x The number of characters read.
�1 Indicates a read error, including physical input

errors, illegal buffer addresses, protection
violations, undefined file descriptors, and so
forth.

REF–91



decc$record_write

decc$record_write

Writes a record to a file.

Format

#include <stdio.h>

int decc$record_write (FILE *fp, void *buffer, int nbytes);

Arguments

fp
A file pointer. The specified file pointer must refer to a file currently opened for
writing or updating.

buffer
The address of contiguous storage from which the output data is taken.

nbytes
The maximum number of bytes involved in the write operation.

Description

The decc$record_write function is specific to OpenVMS systems and should not
be used when writing portable applications.

This function is equivalent to the write function, except that the first argument
is a file pointer, not a file descriptor.

Return Values

x The number of bytes written.
�1 Indicates errors, including undefined file

descriptors, illegal buffer addresses, and physical
I/O errors.

REF–92



decc$set_child_default_dir (Alpha only)

decc$set_child_default_dir (Alpha only)

Sets the default directory for a child process spawned by a function from the exec
family of functions.

Format

#include <unixlib.h>

int decc$set_child_default_dir (const char *default_dir);

Arguments

default_dir
The default directory specification for child processes, or NULL.

Description

By default, child processes created by one of the exec family of functions inherit
the default (working) directory of their parent process.

The decc$set_child_default_dir function lets you set the default directory for
a child process. After calling decc$set_child_default_dir, newly spawned child
processes have their default directory set to default_dir as they begin execution.
The default_dir argument must represent a valid directory specification, or
results of the call are unpredictable (subsequent calls to the child process might
fail without notification). Both OpenVMS and UNIX style file specifications are
supported for this function call.

You can reestablish the default behavior by specifying default_dir as NULL.
Subsequently, newly created child processes will inherit their parent’s working
directory.

Return Values

0 Successful completion. The new inherited default
directory was established.

�1 Indicates failure. No new default directory was
established for child processes. The function sets
errno to one of the following values:

• ENOMEM – Insufficient memory

• ENAMETOOLONG – default_dir is too
long to issue the required SET DEFAULT
command.

REF–93



decc$set_child_standard_streams

decc$set_child_standard_streams

For a child spawned by a function from the exec family of functions, associates
specified file descriptors with a child’s standard streams: stdin, stdout, and
stderr.

Format

#include <unixlib.h>

int decc$set_child_standard_streams (int fd1, int fd2, int fd3);

Arguments

fd1
The file associated with this file descriptor in the parent process is associated
with file descriptor number 0 (stdin) in the child process. If �1 is specified, the
file associated with the parent’s file descriptor number 0 is used (the default).

fd2
The file associated with this file descriptor in the parent process is associated
with file descriptor number 1 (stdout) in the child process. If �1 is specified, the
file associated with the parent’s file descriptor number 1 is used (the default).

fd3
The file associated with this file descriptor in the parent process is associated
with file descriptor number 2 (stderr) in the child process. If �1 is specified, the
file associated with the parent’s file descriptor number 2 is used (the default).

Description

The decc$set_child_standard_streams function allows mapping of specified file
descriptors to the child’s stdin/stdout/stderr streams, thereby compensating, to
a certain degree, the lack of a real fork function on OpenVMS systems.

On UNIX systems, the code between fork and exec is executed in the context of
the child process:

parent:
create pipes p1, p2 and p3
fork

child:
map stdin to p1 like dup2(stdin, p1);
map stdout to p2 like dup2(stdout, p2);
map stderr to p3 like dup2(stderr, p3);
exec (child reads from stdin and writes to stdout and stderr)
exit

parent:
communicates with the child using pipes

On OpenVMS systems, the same task could be achieved as follows:

parent:
create pipes p1, p2 and p3
decc$set_child_standard_streams(p1, p2, p3);
vfork
exec (child reads from stdin and writes to stdout and stderr)

parent:
communicates with the child using pipes

REF–94



decc$set_child_standard_streams

Once established through the call to decc$set_child_standard_streams, the
mapping of the child’s standard streams remains in effect until explicitly disabled
by one of the following calls:

decc$set_child_standard_streams(-1, -1, -1);

Or:

decc$set_child_standard_streams(0, 1, 2);

Usually, the child process inherits all its parent’s open file descriptors.
However, if file descriptor number n was specified in the call to
decc$set_child_standard_streams, it is not inherited by the child process
as file descriptor number n; instead, it becomes one of the child’s standard
streams.

Notes

• Standard streams can be redirected only to pipes.

• If the parent process redefines the DCL DEFINE command, this
redefinition is not in effect in a subprocess with user-defined channels.
The subprocess always sees the standard DCL DEFINE command.

• It is the responsibility of the parent process to consume all the
output written by the child process to stdout and stderr. Depending
on how the subprocess writes to stdout and stderr—in wait or
nowait mode—the subprocess might be placed in LEF state waiting
for the reader. For example, DCL writes to SYS$OUTPUT and
SYS$ERROR in a wait mode, so a child process executing a DCL
command procedure will wait until all the output is read by the
parent process.

Recommendation: Read the pipes associated with the child process’
stdout and stderr in a loop until an EOF message is received, or
declare write attention ASTs on these mailboxes.

• The amount of data written to SYS$OUTPUT depends on the
verification status of the process (SET VERIFY/NOVERIFY
command); the subprocess inherits the verification status of the
parent process. It is the caller’s responsibility to set the verification
status of the parent process to match the expected amount of data
written to SYS$OUTPUT by the subprocess.

• Some applications, like DTM, define SYS$ERROR as SYS$OUTPUT.
If stderr is not redefined by the caller, it is set in the subprocess
as the parent’s SYS$ERROR, which in this case translates to the
parent’s SYS$OUTPUT.

If the caller redefines stdout to a pipe and does not redefine stderr,
output sent to stderr goes to the pipe associated with stdout, and the
amount of data written to this mailbox may be more than expected.
Although redefinition of any subset of standard channels is supported,
it is always safe to explicitly redefine all of them (or at least stdout
and stderr) to avoid this situation.

REF–95



decc$set_child_standard_streams

• For a child process executing a DCL command procedure,
SYS$COMMAND is set to the pipe specified for the child’s stdin
so that the parent process can feed the child requesting data from
SYS$COMMAND through the pipe. For DCL command procedures, it
is impossible to pass data from the parent to the child by means of the
child’s SYS$INPUT because for a command procedure, DCL defines
SYS$INPUT as the command file itself.

Return Values

x The number of file descriptors set for the child.
This number does not include file descriptors
specified as �1 in the call.

�1 indicates that an invalid file descriptor was
specified; errno is set to EBADF.

Example

parent.c
========

#include <stdio.h>
#include <string.h>
#include <unistd.h>

int decc$set_child_standard_streams(int, int, int);

main()
{

int fdin[2], fdout[2], fderr[2];
char msg[] = "parent writing to child’s stdin";
char buf[80];
int nbytes;

pipe(fdin);
pipe(fdout);
pipe(fderr);

if ( vfork() == 0 ) {
decc$set_child_standard_streams(fdin[0], fdout[1], fderr[1]);

execl( "child", "child" );
}
else {

write(fdin[1], msg, sizeof(msg));
nbytes = read(fdout[0], buf, sizeof(buf));
buf[nbytes] = ’\0’;
puts(buf);
nbytes = read(fderr[0], buf, sizeof(buf));
buf[nbytes] = ’\0’;
puts(buf);

}
}

child.c
=======

#include <stdio.h>
#include <unistd.h>

REF–96



decc$set_child_standard_streams

main()
{

char msg[] = "child writing to stderr";
char buf[80];
int nbytes;

nbytes = read(0, buf, sizeof(buf));
write(1, buf, nbytes);
write(2, msg, sizeof(msg));

}

child.com
=========

$ read sys$command s
$ write sys$output s
$ write sys$error "child writing to stderr"

This example program returns the following for both child.c and child.com:

$ run parent
parent writing to child’s stdin
child writing to stderr

Note that in order to activate child.com, you must explicitly specify
execl("child.com", ...) in the parent.c program.

REF–97



decc$set_reentrancy

decc$set_reentrancy

Controls the type of reentrancy that reentrant HP C RTL routines will exhibit.

Format

#include <reentrancy.h>

int decc$set_reentrancy (int type);

Argument

type
The type of reentrancy desired. Use one of the following values:

• C$C_MULTITHREAD — Designed to be used in conjunction with the
DECthreads product. It performs DECthreads locking and never disables
ASTs. DECthreads must be available on your system to use this form of
reentrancy.

• C$C_AST — Uses the _BBSSI (VAX only) or _ _TESTBITSSI (Alpha only) built-in
function to perform simple locking around critical sections of RTL code, and it
may additionally disable asynchronous system traps (ASTs) in locked regions
of code. This type of locking should be used when AST code contains calls to
HP C RTL I/O routines, or when the user application disables ASTs.

• C$C_TOLERANT — Uses the _BBSSI (VAX only) or _ _TESTBITSSI (Alpha only)

built-in function to perform simple locking around critical sections of RTL
code, but ASTs are not disabled. This type of locking should be used when
ASTs are used and must be delivered immediately. TOLERANT is the default
reentrancy type.

• C$C_NONE — Gives optimal performance in the HP C RTL, but does
absolutely no locking around critical sections of RTL code. It should only
be used in a single-threaded environment when there is no chance that the
thread of execution will be interrupted by an AST that would call the HP C
RTL.

The reentrancy type can be raised but never lowered. The ordering of reentrancy
types from low to high is C$C_NONE, C$C_TOLERANT, C$C_AST and C$C_
MULTITHREAD. For example, once an application is set to multithread, a call
to set the reentrancy to AST is ignored. A call to decc$set_reentrancy that
attempts to lower the reentrancy type returns a value of �1.

Description

Use the decc$set_reentrancy function to change the type of reentrancy exhibited
by reentrant routines.

decc$set_reentrancy must be called exclusively at the non-AST level.

In an application using DECthreads, DECthreads automatically sets the
reentrancy to multithread.

REF–98



decc$set_reentrancy

Return Value

type The type of reentrancy used before this call.
�1 The reentrancy was set to a lower type.

REF–99



decc$to_vms

decc$to_vms

Converts UNIX style file specifications to OpenVMS file specifications.

Format

#include <unixlib.h>

int decc$to_vms (const char *unix_style_filespec, int (*action_routine)(char *unix_style_filespec, int
type_of_file), int allow_wild, int no_directory);

Arguments

unix_style_filespec
The address of a null-terminated string containing a name in UNIX style file
specification format.

action_routine
The address of a routine that accepts the following arguments:

• A pointer to a null-terminated string that contains the UNIX style file name
to be translated to a valid OpenVMS file name

• An integer that has one of the following values:

Value Translation

0 (DECC$K_FOREIGN) A file on a remote system that is not
running the OpenVMS or VAXELN
operating system.

1 (DECC$K_FILE) The translation is a file.
2 (DECC$K_DIRECTORY) The OpenVMS translation of the UNIX

style file name is a directory.

These values can be defined symbolically with the symbols DECC$K_
FOREIGN, DECC$K_FILE, and DECC$K_DIRECTORY. See the example for
more information.

If action_routine returns a nonzero value (TRUE), file translation continues. If it
returns a 0 value (FALSE), no further file translation takes place.

allow_wild
Either 0 or 1, passed by value. If a 0 is specified, wildcards found in unix_style_
filespec are not expanded. Otherwise, wildcards are expanded and each one is
passed to action_routine. Only expanded file names that correspond to existing
OpenVMS files are included.

no_directory
An integer that has one of the following values:

Value Translation

0 Directory is not allowed.
1 Prevent expansion of the string as a directory name.

REF–100



decc$to_vms

Value Translation

2 Forced to be a directory name.

Description

The decc$to_vms function converts the given UNIX style file specification into
the equivalent OpenVMS file specification (in all uppercase letters). It allows you
to specify UNIX style wildcards, which are translated into a list of corresponding
OpenVMS files.

See Section 1.6 for descriptions of the following feature logicals that can affect the
behavior of decc$to_vms:

DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION
DECC$NO_ROOTED_SEARCH_LISTS

Return Value

x The number of file names that result from the
specified UNIX style file specification.

Example
/* Translate "UNIX" wildcard file names to OpenVMS names.*/
/* Define as a foreign command and provide the name as */
/* an argument. */

#include <unixlib.h>
#include <stdio.h>
int print_name(char *, int);
int main(int argc, char *argv[])
{

int number_found; /* number of files found */

printf("Translating: %s\n", argv[1]);

number_found = decc$to_vms(argv[1], print_name, 1, 0);
printf("%d files found\n", number_found);

}

/* action routine that prints name and type on each line */

int print_name(char *name, int type)
{

if (type == DECC$K_DIRECTORY)
printf("directory: %s\n", name);

else if (type == DECC$K_FOREIGN)
printf("remote non-VMS: %s\n", name);

else
printf("file: %s\n", name);

/* Translation continues as long as success status is returned */
return (1);

}

This example shows how to use the decc$to_vms routine in HP C. It takes a
UNIX style file specification argument and displays, in OpenVMS file specification
format, the name of each existing file that matches it.

REF–101



decc$translate_vms

decc$translate_vms

Translates OpenVMS file specifications to UNIX style file specifications.

Format

#include <unixlib.h>

char *decc$translate_vms (const char *vms_filespec);

Argument

vms_filespec
The address of a null-terminated string containing a name in OpenVMS file
specification format.

Description

The decc$translate_vms function translates the given OpenVMS file specification
into the equivalent UNIX style file specification, whether or not the file exists.
The translated name string is stored in a thread-specific memory, which is
overwritten by each call to decc$translate_vms from the same thread.

This function differs from the decc$from_vms function, which does the conversion
for existing files only.

Return Values

x The address of a null-terminated string
containing a name in UNIX style file specification
format.

0 Indicates that the file name is null or
syntactically incorrect.

�1 Indicates that the file specification contains
an ellipsis (for example, [ . . . ]a.dat), but is
otherwise correct. You cannot translate the
OpenVMS ellipsis syntax into a valid UNIX style
file specification.

Example
/* Demonstrate translation of a "UNIX" name to OpenVMS */
/* form, define a foreign command, and pass the name as */
/* the argument. */

#include <unixlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

char *ptr; /* translation result */

ptr = decc$translate_vms( argv[1] );

if ((int) ptr == 0 || (int) ptr == -1)

REF–102



decc$translate_vms

printf( "could not translate %s\n", argv[1]);
else

printf( "%s is translated to %s\n", argv[1], ptr );
}

REF–103



decc$validate_wchar

decc$validate_wchar

Confirms that its argument is a valid wide character in the current program’s
locale.

Format

#include <unistd.h>

int decc$validate_wchar (wchar_t wc);

Argument

wc
Wide character to be validated.

Description

The decc$validate_wchar function provides a convenient way to verify whether
a specified argument of wchar_t type is a valid wide character in the current
program’s locale.

One reason to call decc$validate_wchar is that the isw* wide-character
classification functions and macros do not validate their argument before
dereferencing the classmask array describing character properties. Passing
an isw* function a value that exceeds the maximum wide-character value for the
current program’s locale can result in an attempt to access memory beyond the
allocated classmask array.

A standard way to validate a wide character is to call the wctomb function, but
this way is less convenient because it requires declaring a multibyte character
array of sufficient size and passing it to wctomb.

Return Values

1 Indicates that the specified wide character is a
valid wide character in the current program’s
locale.

0 Indicates that the specified wide character is not
a valid wide character in the current program’s
locale. errno is not set.

REF–104



decc$write_eof_to_mbx

decc$write_eof_to_mbx

Writes an end-of-file message to the mailbox.

Format

#include <unistd.h>

int decc$write_eof_to_mbx (int fd);

Argument

fd
File descriptor associated with the mailbox.

Description

The decc$write_eof_to_mbx function writes end-of-file message to the mailbox.

For a mailbox that is not a pipe, the write function called with an nbytes
argument value of 0 sends an end-of-file message to the mailbox. For a pipe,
however, the only way to write an end-of-file message to the mailbox is to close
the pipe.

If the child’s standard input is redirected to a pipe through a call to the
decc$set_child_standard_streams function, the parent process can call
decc$write_eof_to_mbx for this pipe to send an EOF message to the child.
It has the same effect as if the child read the data from a terminal, and Ctrl/Z
was pressed.

After a call to decc$write_eof_to_mbx, the pipe can be reused for communication
with another child, for example. This is the purpose of decc$write_eof_to_mbx:
to allow reuse of the pipe instead of having to close it just to send an end-of-file
message.

Return Values

0 Indicates success.
�1 Indicates failure; errno and vaxc$errno are

set according to the failure status returned by
SYS$QIOW.

Example
/* decc$write_eof_to_mbx_example.c */

#include <errno.h>
#include <stdio.h>
#include <string.h>

#include <fcntl.h>
#include <unistd.h>
#include <unixio.h>

#include <descrip.h>
#include <ssdef.h>
#include <starlet.h>

int decc$write_eof_to_mbx( int );

REF–105



decc$write_eof_to_mbx

main()
{
int status, nbytes, failed = 0;
int fd, fd2[2];
short int channel;
$DESCRIPTOR(mbxname_dsc, "TEST_MBX");
char c;

/* first try a mailbox created by SYS$CREMBX */

status = sys$crembx(0, &channel, 0, 0, 0, 0, &mbxname_dsc, 0, 0);
if ( status != SS$_NORMAL ) {

printf("sys$crembx failed: %s\n",strerror(EVMSERR, status));
failed = 1;

}

if ( (fd = open(mbxname_dsc.dsc$a_pointer, O_RDWR, 0)) == -1) {
perror("? open mailbox");
failed = 1;

}

if ( decc$write_eof_to_mbx(fd) == -1 ) {
perror("? decc$write_eof_to_mbx to mailbox");
failed = 1;

}

if ( (nbytes = read(fd, &c, 1)) != 0 || errno != 0 ) {
perror("? read mailbox");
printf("? nbytes = %d\n", nbytes);
failed = 1;

}

if ( close(fd) == -1 ) {
perror("? close mailbox");
failed = 1;

}

/* Now do the same thing with a pipe */

errno = 0; /* Clear errno for consistency */

if ( pipe(fd2) == -1 ) {
perror("? opening pipe");
failed = 1;

}

if ( decc$write_eof_to_mbx(fd2[1]) == -1 ) {
perror("? decc$write_eof_to_mbx to pipe");
failed = 1;

}

if ( (nbytes = read(fd2[0], &c, 1)) != 0 || errno != 0 ) {
perror("? read pipe");
printf("? nbytes = %d\n", nbytes);
failed = 1;

}

/* Close both file descriptors involved with the pipe */

if ( close(fd2[0]) == -1 ) {
perror("close(fd2[0])");
failed = 1;

}

if ( close(fd2[1]) == -1 ) {
perror("close(fd2[1])");
failed = 1;

}

REF–106



decc$write_eof_to_mbx

if ( failed )
puts("?Example program failed");

else
puts("Example ran to completion");

}

This example program produces the following result:

Example ran to completion

REF–107



[w]delch

[w]delch

Delete the character on the specified window at the current position of the cursor.
The delch function operates on the stdscr window.

Format

#include <curses.h>

int delch( );

int wdelch (WINDOW *win);

Argument

win
A pointer to the window.

Description

All of the characters to the right of the cursor on the same line are shifted to the
left, and a blank character is appended to the end of the line.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–108



delete

delete

Deletes a file.

Format

#include <unixio.h>

int delete (const char *file_spec);

Argument

file_spec
A pointer to the string that is an OpenVMS or UNIX style file specification. The
file specification can include a wildcard in its version number (but not in any
other part of the file spec). So, for example, files of the form filename.txt;* can be
deleted.

Description

If you specify a directory in the file name and it is a search list that contains an
error, HP C for OpenVMS Systems interprets it as a file error.

The remove and delete functions are functionally equivalent in the HP C RTL.

See also remove.

Note

The delete routine is not available to C++ programmers because it
conflicts with the C++ reserved word delete. C++ programmers should
use the ANSI/ISO C standard function remove instead.

Return Values

0 Indicates success.
nonzero value Indicates that the operation has failed.

REF–109



[w]deleteln

[w]deleteln

Delete the line at the current position of the cursor. The deleteln function acts
on the stdscr window.

Format

#include <curses.h>

int deleteln( );

int wdeleteln (WINDOW *win);

Argument

win
A pointer to the window.

Description

Every line below the deleted line moves up, and the bottom line becomes blank.
The current (y,x) coordinates of the cursor remain unchanged.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–110



delwin

delwin

Deletes the specified window from memory.

Format

#include <curses.h>

int delwin (WINDOW *win);

Argument

win
A pointer to the window.

Description

If the window being deleted contains a subwindow, the subwindow is invalidated.
Delete subwindows before deleting their parent. The delwin function refreshes
all windows covered by the deleted window.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–111



difftime

difftime

Computes the difference, in seconds, between the two times specified by the time1
and time2 arguments.

Format

#include <time.h>

double difftime (time_t time2, time_t time1);

Arguments

time2
A time value of type time_t.

time1
A time value of type time_t.

Description

The type time_t is defined in the <time.h> header file as follows:

typedef unsigned long int time_t

Return Value

n time2 � time1 in seconds expressed as a double.

REF–112



dirname

dirname

Reports the parent directory name of a file pathname.

Format

#include <libgen.h>

char *dirname (char *path);

Function Variants

The dirname function has variants named _dirname32 and _dirname64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Argument

path
The file pathname.

Description

The dirname function takes a pointer to a character string that contains a UNIX
pathname and returns a pointer to a string that is a pathname of the parent
directory of that file. Trailing slash ( / ) characters in the path are not counted as
part of the path.

This function returns a pointer to the string "." (dot), when the path argument:

• Does not contain a slash ( / ).

• Is a NULL pointer.

• Points to an empty string.

The dirname function can modify the string pointed to by the path argument.

The dirname and basename functions together yield a complete pathname.
The expression dirname(path) obtains the pathname of the directory where
basename(path) is found.

See also basename.

Return Values

x A pointer to a string that is the parent directory
of the path argument.

"." The path argument:

• Does not contain a slash ( / ).

• Is a NULL pointer.

• Points to an empty string.

REF–113



dirname

Example

Using the dirname function, the following example reads a pathname, changes
the current working directory to the parent directory, and opens a file.

char path [MAXPATHLEN], *pathcopy;
int fd;

fgets(path, MAXPATHLEN, stdin);
pathcopy = strdup(path);
chdir(dirname(pathcopy));
fd = open(basename(path), O_RDONLY);

REF–114



div

div

Returns the quotient and the remainder after the division of its arguments.

Format

#include <stdlib.h>

div_t div (int numer, int denom);

Arguments

numer
A numerator of type int.

denom
A denominator of type int.

Description

The type div_t is defined in the standard header file <stdlib.h> as follows:

typedef struct
{

int quot, rem;
} div_t;

REF–115



dlclose

dlclose

Deallocates the address space for a shared library.

Format

#include <dlfcn.h>

void dlclose (void *handle);

Argument

handle
Pointer to the shared library.

Description

The dlclose function deallocates the address space allocated by the HP C RTL
for the handle.

There is no way on OpenVMS systems to unload a shareable image dynamically
loaded by the LIB$FIND_IMAGE_SYMBOL routine, which is the routine called
by the dlsym function. In other words, there is no way on OpenVMS systems to
release the address space occupied by the shareable image brought into memory
by dlsym.

REF–116



dlerror

dlerror

Returns a string describing the last error that occurred from a call to dlopen,
dlclose, or dlsym.

Format

#include <dlfcn.h>

char *dlerror (void);

Return Value

x A string describing the last error that occurred
from a call to dlopen, dlclose, or dlsym.

REF–117



dlopen

dlopen

Provides an interface to the dynamic library loader to allow shareable images to
be loaded and called at run time.

Format

#include <dlfcn.h>

void *dlopen (char *pathname, int mode);

Arguments

pathname
The name of the shareable image. This name is saved for subsequent use by the
dlsym function.

mode
This argument is ignored on OpenVMS systems.

Description

The dlopen function provides an interface to the dynamic library loader to allow
shareable images to be loaded and called at run time.

This function does not load a shareable image but rather saves its pathname
argument for subsequent use by the dlsym function. dlsym is the function
that actually loads the shareable image through a call to LIB$FIND_IMAGE_
SYMBOL.

The pathname argument of the dlopen function must be the name of the
shareable image. This name is passed as-is by the dlsym function to the
LIB$FIND_IMAGE_SYMBOL routine as the filename argument. No image-
name argument is specified in the call to LIB$FIND_IMAGE_SYMBOL, so
default file specification of SYS$SHARE:.EXE is applied to the image name.

The dlopen function returns a handle that is used by a dlsym or dlclose call. If
an error occurs, a NULL pointer is returned.

Return Values

x A handle to be used by a dlsym or dlclose call.
NULL Indicates an error.

REF–118



dlsym

dlsym

Returns the address of the symbol name found in a shareable image.

Format

#include <dlfcn.h>

void *dlsym (void *handle, char *name);

Arguments

handle
Pointer to the shareable image.

name
Pointer to the symbol name.

Description

The dlsym function returns the address of the symbol name found in the
shareable image corresponding to handle. If the symbol is not found, a NULL
pointer is returned.

Return Values

x Address of the symbol name found.
NULL Indicates that the symbol was not found.

REF–119



drand48

drand48

Generates uniformly distributed pseudorandom-number sequences. Returns
48-bit, nonnegative, double-precision floating-point values.

Format

#include <stdlib.h>

double drand48 (void);

Description

The drand48 function generates pseudorandom numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

It returns nonnegative, double-precision, floating-point values uniformly
distributed over the range of y values such that 0.0 � y < 1.0.

Before you call drand48, use either srand48, seed48, or lcong48 to initialize the
random-number generator. You must initialize prior to invoking the drand48
function because it stores the last 48-bit Xi generated into an internal buffer.
(Although it is not recommended, constant default initializer values are supplied
automatically if the drand48, lrand48, or mrand48 functions are called without
first calling an initialization function.)

The drand48 function works by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+1 = (aXn+c)mod m n >= 0

The argument m equals �48, so 48-bit integer arithmetic is performed. Unless you
invoke lcong48, the multiplier value a and the addend value c are:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

The values returned by drand48 are computed by first generating the next
48-bit Xi in the sequence. Then the appropriate bits, according to the type of
returned data item, are copied from the high-order (most significant) bits of Xi
and transformed into the returned value.

See also srand48, seed48, lcong48, lrand48, and mrand48.

Return Value

n A nonnegative, double-precision, floating-point
value.

REF–120



dup, dup2

dup, dup2

Allocate a new descriptor that refers to a file specified by a file descriptor returned
by open, creat, or pipe.

Format

#include <unistd.h>

int dup (int file_desc1);

int dup2 (int file_desc1, int file_desc2);

Arguments

file_desc1
The file descriptor being duplicated.

file_desc2
The new file descriptor to be assigned to the file designated by file_desc1.

Description

The dup function causes a previously unallocated descriptor to refer to its
argument, while the dup2 function causes its second argument to refer to the
same file as its first argument.

The argument file_desc1 is invalid if it does not describe an open file; file_desc2 is
invalid if the new file descriptor cannot be allocated. If file_desc2 is connected to
an open file, that file is closed.

Return Values

n The new file descriptor.
�1 Indicates that an invalid argument was passed

to the function.

REF–121



[no]echo

[no]echo

Set the terminal so that characters may or may not be echoed on the terminal
screen. This mode of single-character input is only supported with Curses.

Format

#include <curses.h>

void echo (void);

void noecho (void);

Description

The noecho function may be helpful when accepting input from the terminal
screen with wgetch and wgetstr; it prevents the input characters from being
written onto the screen.

REF–122



ecvt

ecvt

Converts its argument to a null-terminated string of ASCII digits and returns the
address of the string. The string is stored in a thread-specific memory location
created by the HP C RTL.

Format

#include <stdlib.h>

char *ecvt (double value, int ndigits, int *decpt, int *sign);

Arguments

value
An object of type double that is converted to a null-terminated string of ASCII
digits.

ndigits
The number of ASCII digits to be used in the converted string.

decpt
The position of the decimal point relative to the first character in the returned
string. A negative int value means that the decimal point is decpt number of
spaces to the left of the returned digits (the spaces being filled with zeros). A 0
value means that the decimal point is immediately to the left of the first digit in
the returned string.

sign
An integer value that indicates whether the value argument is positive or
negative. If value is negative, the function places a nonzero value at the address
specified by sign. Otherwise, the function assigns 0 to the address specified by
sign.

Description

The ecvt function converts value to a null-terminated string of length ndigits,
and returns a pointer to it. The resulting low-order digit is rounded to the correct
digit for outputting ndigits digits in C E-format. The decpt argument is assigned
the position of the decimal point relative to the first character in the string.

Repeated calls to the ecvt function overwrite any existing string.

The ecvt, fcvt, and gcvt functions represent the following special values
specified in the IEEE Standard for floating-point arithmetic:

Value Representation

Quiet NaN NaNQ
Signalling NaN NaNS
+Infinity Infinity
�Infinity �Infinity

The sign associated with each of these values is stored into the sign argument. In
IEEE floating-point representation, a value of 0 (zero) can be positive or negative,
as set by the sign argument.

REF–123



ecvt

See also gcvt and fcvt.

Return Value

x The value of the converted string.

REF–124



endgrent (Alpha only)

endgrent (Alpha only)

Closes the group database when processing is complete.

Format

#include <grp.h>

void endgrent (void);

Description

The endgrent function closes the group database.

This function is always successful. No value is returned, and errno is not set.

REF–125



endpwent

endpwent

Closes the user database and any private stream used by getpwent.

Format

#include <pwd.h>

void endpwent (void);

Description

The endpwent function closes the user database and any private stream used by
getpwent.

No value is returned. If an I/O error occurred, the function sets errno to EIO.

See also getpwent, getpwuid, getpwnam, and setpwent.

REF–126



endwin

endwin

Clears the terminal screen and frees any virtual memory allocated to Curses data
structures.

Format

#include <curses.h>

void endwin (void);

Description

A program that calls Curses functions must call the endwin function before
exiting to restore the previous environment of the terminal screen.

REF–127



erand48

erand48

Generates uniformly distributed pseudorandom-number sequences. Returns
48-bit nonnegative, double-precision, floating-point values.

Format

#include <stdlib.h>

double erand48 (unsigned short int xsubi[3]);

Argument

xsubi
An array of three short ints, which form a 48-bit integer when concatentated
together.

Description

The erand48 function generates pseudorandom numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

It returns nonnegative, double-precision, floating-point values uniformly
distributed over the range of y values, such that, 0.0 � y < 1.0.

The erand48 function works by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+1 = (aXn+c)mod m n >= 0

The argument m equals �48, so 48-bit integer arithmetic is performed. Unless you
invoke the lcong48 function, the multiplier value a and the addend value c are:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

The erand48 function requires that the calling program pass an array as the
xsubi argument. For the first call, the array must be initialized to the value
of the pseudorandom-number sequence. Unlike the drand48 function, it is not
necessary to call an initialization function prior to the first call.

By using different arguments, the erand48 function allows separate modules of
a large program to generate several independent sequences of pseudorandom
numbers; for example, the sequence of numbers that one module generates does
not depend upon how many times the function is called by other modules.

Return Value

n A nonnegative, double-precision, floating-point
value.

REF–128



[w]erase

[w]erase

Erases the window by painting it with blanks. The erase function acts on the
stdscr window.

Format

#include <curses.h>

int erase( );

int werase (WINDOW *win);

Argument

win
A pointer to the window.

Description

Both the erase and werase functions leave the cursor at the current position on
the terminal screen after completion; they do not return the cursor to the home
coordinates of (0,0).

Return Values

OK Indicates success.
ERR Indicates an error.

REF–129



erf

erf

Returns the error function of its argument.

Format

#include <math.h>

double erf (double x);

float erff (float x); (Alpha only)

long double erfl (long double x); (Alpha only)

double erfc (double x); (Alpha only)

float erfcf (float x); (Alpha only)

long double erfcl (long double x); (Alpha only)

Argument

x
A radian expressed as a real number.

Description

The erf functions return the error function of x, where erf(x), erff(x), and
erfl(x) equal 2/sqrt(�) times the area under the curve e**(�t**2) between 0 and
x.

The erfc functions return (1.0 � erf(x)). The erfc function can result in an
underflow as x gets large.

Return Values

x The value of the error function (erf) or
complementary error function (erfc).

NaN x is NaN; errno is set to EDOM.
0 Underflow occurred; errno is set to ERANGE.

REF–130



execl

execl

Passes the name of an image to be activated in a child process. This function is
nonreentrant.

Format

#include <unistd.h>

int execl (const char *file_spec, const char *arg0, . . . , (char *)0); (ISO POSIX-1)

int execl (char *file_spec, . . . ); (Compatability)

Arguments

file_spec
The full file specification of a new image to be activated in the child process.

arg0, ...
A sequence of pointers to null-terminated character strings.

If the POSIX-1 format is used, at least one argument must be present and
must point to a string that is the same as the new process file name (or its last
component). (This pointer can also be the NULL pointer, but then execle would
accomplish nothing.) The last pointer must be the NULL pointer. This is also the
convention if the compatibility format is used.

Description

To understand how the exec functions operate, consider how the OpenVMS
system calls any HP C program, as shown in the following syntax:

int main (int argc, char *argv[ ], char *envp[ ]);

The identifier argc is the argument count; argv is an array of argument strings.
The first member of the array (argv[0]) contains the name of the image. The
arguments are placed in subsequent elements of the array. The last element of
the array is always the NULL pointer.

An exec function calls a child process in the same way that the run-time system
calls any other HP C program. The exec functions pass the name of the image to
be activated in the child; this value is placed in argv[0]. However, the functions
differ in the way they pass arguments and environment information to the child:

• Arguments can be passed in separate character strings (execl, execle, and
execlp) or in an array of character strings (execv, execve, and execvp).

• The environment can be explicitly passed in an array (execle and execve) or
taken from the parent’s environment (execl, execv, execlp, and execvp).

If vfork was called before invoking an exec function, then when the exec function
completes, control is returned to the parent process at the point of the vfork call.
If vfork was not called, the exec function waits until the child has completed
execution and then exits the parent process. See vfork and Chapter 5 for more
information.

REF–131



execl

Return Value

�1 Indicates failure.

REF–132



execle

execle

Passes the name of an image to be activated in a child process. This function is
nonreentrant.

Format

#include <unistd.h>

int execle (char *file_spec, char *arg0, . . . , (char *)0, char *envp[ ]); (ISO POSIX-1)

int execle (char *file_spec, . . . ); (Compatability)

Arguments

file_spec
The full file specification of a new image to be activated in the child process.

arg0, ...
A sequence of pointers to null-terminated character strings.

If the POSIX-1 format is used, at least one argument must be present and
must point to a string that is the same as the new process file name (or its last
component). (This pointer can also be the NULL pointer, but then execle would
accomplish nothing.) The last pointer must be the NULL pointer. This is also the
convention if the compatibility format is used.

envp
An array of strings that specifies the program’s environment. Each string in envp
has the following form:

name = value

The name can be one of the following names and the value is a null-terminated
string to be associated with the name:

• HOME—Your login directory

• TERM—The type of terminal being used

• PATH—The default device and directory

• USER—The name of the user who initiated the process

The last element in envp must be the NULL pointer.

When the operating system executes the program, it places a copy of the current
environment vector (envp) in the external variable environ.

Description

See execl for a description of how the exec functions operate.

Return Value

�1 Indicates failure.

REF–133



execlp

execlp

Passes the name of an image to be activated in a child process. This function is
nonreentrant.

Format

#include <unistd.h>

int execlp (const char *file_name, const char *arg0, . . . , (char *)0); (ISO POSIX-1)

int execlp (char *file_name, . . . ); (Compatability)

Arguments

file_name
The file name of a new image to be activated in the child process. The device
and directory specification for the file is obtained by searching the VAXC$PATH
environment name.

argn
A sequence of pointers to null-terminated character strings. By convention, at
least one argument must be present and must point to a string that is the same
as the new process file name (or its last component).

. . .
A sequence of pointers to strings. At least one pointer must exist to terminate
the list. This pointer must be the NULL pointer.

Description

See execl for a description of how the exec functions operate.

Return Value

�1 Indicates failure.

REF–134



execv

execv

Passes the name of an image to be activated in a child process. This function is
nonreentrant.

Format

#include <unistd.h>

int execv (char *file_spec, char *argv[ ]);

Arguments

file_spec
The full file specification of a new image to be activated in the child process.

argv
An array of pointers to null-terminated character strings. These strings
constitute the argument list available to the new process. By convention, argv[0]
must point to a string that is the same as the new process file name (or its last
component). argv is terminated by a NULL pointer.

Description

See execl for a description of how the exec functions operate.

Return Value

�1 Indicates failure.

REF–135



execve

execve

Passes the name of an image to be activated in a child process. This function is
nonreentrant.

Format

#include <unistd.h>

int execve (const char *file_spec, char *argv[ ], char *envp[ ]);

Arguments

file_spec
The full file specification of a new image to be activated in the child process.

argv
An array of pointers to null-terminated character strings. These strings
constitute the argument list available to the new process. By convention, argv[0]
must point to a string that is the same as the new process file name (or its last
component). argv is terminated by a NULL pointer.

envp
An array of strings that specifies the program’s environment. Each string in envp
has the following form:

name = value

The name can be one of the following names and the value is a null-terminated
string to be associated with the name:

• HOME—Your login directory

• TERM—The type of terminal being used

• PATH—The default device and directory

• USER—The name of the user who initiated the process

The last element in envp must be the NULL pointer.

When the operating system executes the program, it places a copy of the current
environment vector (envp) in the external variable environ.

Description

See execl for a description of how the exec functions operate.

Return Value

�1 Indicates failure.

REF–136



execvp

execvp

Passes the name of an image to be activated in a child process. This function is
nonreentrant.

Format

#include <unistd.h>

int execvp (const char *file_name, char *argv[ ]);

Arguments

file_name
The file name of a new image to be activated in the child process. The device and
directory specification for the file is obtained by searching the environment name
VAXC$PATH.

argv
An array of pointers to null-terminated character strings. These strings
constitute the argument list available to the new process. By convention, argv[0]
must point to a string that is the same as the new process file name (or its last
component). argv is terminated by a NULL pointer.

Description

See execl for a description of how the exec functions operate.

Return Value

�1 Indicates failure.

REF–137



exit, _exit

exit, _exit

Terminate execution of the program from which they are called. These functions
are nonreentrant.

Format

#include <stdlib.h>

void exit (int status);

#include <unistd.h>

void _exit (int status);

Argument

status
A status value of EXIT_SUCCESS (0), EXIT_FAILURE (1), or a number from 2
to 255:

• A status value of 0 or EXIT_SUCCESS is translated to the OpenVMS SS$_
NORMAL status code to return the OpenVMS success value.

• A status value of 1 or EXIT_FAILURE is translated to an error-level exit
status. The status value is passed to the parent process.

• Any other status value is left the same.

To use these status values as described, include <unistd.h> and compile with
the _POSIX_EXIT feature-test macro set (either with /DEFINE=_POSIX_EXIT or
with #define _POSIX_EXIT at the top of your file, before any file inclusions). This
behavior is available only on OpenVMS Version 7.0 and higher systems.

Description

If the process was invoked by DCL, the status is interpreted by DCL, and a
message is displayed.

If the process was a child process created using vfork or an exec function, then
the child process exits and control returns to the parent. The two functions are
identical; the _exit function is retained for reasons of compatibility with VAX C.

The exit and _exit functions make use of the $EXIT system service. If your
process is being invoked by the RUN command using any of the hibernation and
scheduled wakeup qualifiers, the process might not correctly return to hibernation
state when an exit or _exit call is made.

Note

EXIT_SUCCESS and EXIT_FAILURE are portable across any ANSI C
compiler to indicate success or failure. On OpenVMS systems, they are
mapped to OpenVMS condition codes with the severity set to success or
failure, respectively. Values in the range of 2 to 255 can be used by a child
process to communicate a small amount of data to the parent. The parent
retreives this data using the wait, wait3, wait4, or waitpid functions.

REF–138



exp

exp

Returns the base e raised to the power of the argument.

Format

#include <math.h>

double exp (double x);

float expf (float x); (Alpha only)

long double expl (long double x); (Alpha only)

double expm1 (double x); (Alpha only)

float expm1f (float x); (Alpha only)

long double expm1l (long double x); (Alpha only)

Argument

x
A real value.

Description

The exp functions compute the value of the exponential function, defined as e**x,
where e is the constant used as a base for natural logarithms.

The expm1 functions compute exp(x) � 1 accurately, even for tiny x.

If an overflow occurs, the exp functions return the largest possible floating-point
value and set errno to ERANGE. The constant HUGE_VAL is defined in the
<math.h> header file to be the largest possible floating-point value.

Return Values

x The exponential value of the argument.
HUGE_VAL Overflow occurred; errno is set to ERANGE.
0 Underflow occurred; errno is set to ERANGE.
NaN x is NaN; errno is set to EDOM.

REF–139



fabs

fabs

Returns the absolute value of its argument.

Format

#include <math.h>

double fabs (double x);

float fabsf (float x); (Alpha only)

long double fabsl (long double x); (Alpha only)

Argument

x
A real value.

Return Value

x The absolute value of the argument.

REF–140



fchown

fchown

Changes the owner and group of a file.

Format

#include <unistd.h>

int fchown (int fildes, uid_t owner, gid_t group);

Arguments

fildes
An open file descriptor.

owner
A user ID corresponding to the new owner of the file.

group
A group ID corresponding to the group of the file.

Description

The fchown function has the same effect as chown except that the file whose
owner and group are to be changed is specified by the file descriptor fildes.

Return Values

0 Indicates success.
�1 Indicates failure. The function sets errno to one

of the following values:
The fchown function will fail if:

• EBADF – The fildes argument is not an open
file descriptor.

• EPERM – The effective user ID does not
match the owner of the file, or the process
does not have appropriate privilege.

• EROFS – The file referred to by fildes resides
on a read-only file system.

The fchown function may fail if:

• EINVAL – The owner or group ID is not a
value supported by the implementation.

• EIO – A physical I/O error has occurred.

• EINTR – The fchown function was
interrupted by a signal that was caught.

REF–141



fclose

fclose

Closes a file by flushing any buffers associated with the file control block and
freeing the file control block and buffers previously associated with the file
pointer.

Format

#include <stdio.h>

int fclose (FILE *file_ptr);

Argument

file_ptr
A pointer to the file to be closed.

Description

When a program terminates normally, the fclose function is automatically called
for all open files.

The fclose function tries to write buffered data by using an implicit call to
fflush.

If the write fails (because the disk is full or the user’s quota is exceeded,
for example), fclose continues executing. It closes the OpenVMS channel,
deallocates any buffers, and releases the memory associated with the file
descriptor (or FILE pointer). Any buffered data is lost, and the file descriptor (or
FILE pointer) no longer refers to the file.

If your program needs to recover from errors when flushing buffered data, it
should make an explicit call to fsync (or fflush) before calling fclose.

Return Values

0 Indicates success.
EOF Indicates that the file control block is not

associated with an open file.

REF–142



fcntl

fcntl

Performs controlling operations on an open file.

Format

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int fcntl (int file_desc, int request [, int file_desc2]);

Arguments

file_desc
An open file descriptor obtained from a successful open, fcntl, or pipe function.

request
The operation to be performed.

file_desc2
A variable that depends on the value of the request argument.

Description

The fcntl function performs controlling operations on the open file specified by
the file_desc argument.

The values for the request argument are defined in the header file <fcntl.h>, and
include the following:

F_DUPFD Returns a new file descriptor that is the lowest numbered
available (that is, not already open) file descriptor greater
than or equal to the third argument (file_desc2) taken as an
integer of type int.
The new file descriptor refers to the same file as the original
file descriptor (file_desc). The FD_CLOEXEC flag associated
with the new file descriptor is cleared to keep the file open
across calls to one of the exec functions.
The following two calls are equivalent:

fid = dup(file_desc);

fid = fcntl(file_desc, F_DUPFD, 0);

Consider the following call:

fid = dup2(file_desc, file_desc2);

It is similar (but not equivalent) to:

close(file_desc2);
fid = fcntl(file_desc, F_DUPFD, file_desc2);

REF–143



fcntl

F_GETFD Gets the value of the close-on-exec flag associated with the
file descriptor file_desc. File descriptor flags are associated
with a single file descriptor and do not affect other file
descriptors that refer to the same file. The file_desc2
argument should not be specified.

F_SETFD Sets the close-on-exec flag associated with file_desc to the
value of the third argument, taken as type int.
If the third argument is 0, the file remains open across the
exec functions, which means that a child process spawned
by the exec function inherits this file descriptor from the
parent.
If the third argument is FD_CLOEXEC, the file is closed on
successful execution of the next exec function, which means
that the child process spawned by the exec function will
not inherit this file descriptor from the parent.

Return Values

n Upon successful completion, the value returned
depends on the value of the request argument as
follows:

• F_DUPFD – Returns a new file descriptor.

• F_GETFD – Returns FD_CLOEXEC or 0.

• F_SETFD – Returns a value other than �1.

REF–144



fcntl

�1 Indicates that an error occurred. The function
sets errno to one of the following values:

• EBADF – The file_desc argument is not a
valid open file descriptor and the file_desc2
argument is negative or greater than or equal
to the per-process limit.

• EFAULT – The file_desc2 argument is an
invalid address.

• EINVAL – The request argument is F_DUPFD
and the file_desc2 argument is negative or
greater than or equal to OPEN_MAX.
Either the OPEN_MAX value or the per-
process soft descriptor limit is checked.
An illegal value was provided for the request
argument.

• EMFILE – The request argument is F_DUPFD
and OPEN_MAX file descriptors are
currently open in the calling process, or
no file descriptors greater than or equal to
the file_desc2 argument are available.
Either the OPEN_MAX value or the per-
process soft descriptor limit is checked.

• ENOMEM – The system was unable to
allocate memory for the requested file
descriptor.

REF–145



fcvt

fcvt

Converts its argument to a null-terminated string of ASCII digits and returns the
address of the string. The string is stored in a thread-specific location created by
the HP C RTL.

Format

#include <stdlib.h>

char *fcvt (double value, int ndigits, int *decpt, int *sign);

Arguments

value
An object of type double that is converted to a null-terminated string of ASCII
digits.

ndigits
The number of ASCII digits after the decimal point to be used in the converted
string.

decpt
The position of the decimal point relative to the first character in the returned
string. The returned string does not contain the actual decimal point. A negative
int value means that the decimal point is decpt number of spaces to the left of
the returned digits (the spaces are filled with zeros). A 0 value means that the
decimal point is immediately to the left of the first digit in the returned string.

sign
An integer value that indicates whether the value argument is positive or
negative. If value is negative, the fcvt function places a nonzero value at the
address specified by sign. Otherwise, the functions assign 0 to the address
specified by sign.

Description

The fcvt function converts value to a null-terminated string and returns a
pointer to it. The resulting low-order digit is rounded to the correct digit for
outputting ndigits digits in C F-format. The decpt argument is assigned the
position of the decimal point relative to the first character in the string.

In C F-format, ndigits is the number of digits desired after the decimal point.
Very large numbers produce a very long string of digits before the decimal point,
and ndigit of digits after the decimal point. For large numbers, it is preferable to
use the gcvt or ecvt function so that E-format is used.

Repeated calls to the fcvt function overwrite any existing string.

The ecvt, fcvt, and gcvt functions represent the following special values
specified in the IEEE Standard for floating-point arithmetic:

Value Representation

Quiet NaN NaNQ

REF–146



fcvt

Value Representation

Signalling NaN NaNS
+Infinity Infinity
�Infinity �Infinity

The sign associated with each of these values is stored into the sign argument. In
IEEE floating-point representation, a value of 0 (zero) can be positive or negative,
as set by the sign argument.

See also gcvt and ecvt.

Return Value

x A pointer to the converted string.

REF–147



fdopen

fdopen

Associates a file pointer with a file descriptor returned by an open, creat, dup,
dup2, or pipe function.

Format

#include <stdio.h>

FILE *fdopen (int file_desc, char *a_mode);

Arguments

file_desc
The file descriptor returned by open, creat, dup, dup2, or pipe.

a_mode
The access mode indicator. See the fopen function for a description. Note that
the access mode specified must agree with the mode used to originally open the
file. This includes binary/text access mode ("b" mode on fdopen and the "ctx=bin"
option on creat or open).

Description

The fdopen function allows you to access a file, originally opened by one of
the UNIX I/O functions, with Standard I/O functions. Ordinarily, a file can be
accessed by either a file descriptor or by a file pointer, but not both, depending on
the way you open it. For more information, see Chapters 1 and 2.

Return Values

pointer Indicates that the operation has succeeded.
NULL Indicates that an error has occurred.

REF–148



feof

feof

Tests a file to see if the end-of-file has been reached.

Format

#include <stdio.h>

int feof (FILE *file_ptr);

Argument

file_ptr
A file pointer.

Return Values

nonzero integer Indicates that the end-of-file has been reached.
0 Indicates that the end-of-file has not been

reached.

REF–149



ferror

ferror

Returns a nonzero integer if an error occurred while reading or writing a file.

Format

#include <stdio.h>

int ferror (FILE *file_ptr);

Argument

file_ptr
A file pointer.

Description

A call to ferror continues to return a nonzero integer until the file is closed or
until clearerr is called.

Return Values

0 Indicates success.
nonzero integer Indicates that an error has occurred.

REF–150



fflush

fflush

Writes out any buffered information for the specified file.

Format

#include <stdio.h>

int fflush (FILE *file_ptr);

Argument

file_ptr
A file pointer. If this argument is a NULL pointer, all buffers associated with all
currently open files are flushed.

Description

The output files are normally buffered only if they are not directed to a terminal,
except for stderr, which is not buffered by default.

The fflush function flushes the HP C RTL buffers. However, RMS has its own
buffers. The fflush function does not guarantee that the file will be written to
disk. (See the description of fsync for a way to flush buffers to disk.)

If the file pointed to by file_ptr was opened in record mode and if there is
unwritten data in the buffer, then fflush always generates a record.

Return Values

0 Indicates that the operation is successful.
EOF Indicates that the buffered data cannot be

written to the file, or that the file control block is
not associated with an output file.

REF–151



ffs

ffs

Finds the index of the first bit set in a string.

Format

#include <strings.h>

int ffs (int iteger);

Argument

integer
The integer to be examined for the first bit set.

Description

The ffs function finds the first bit set (beginning with the least significant bit)
and returns the index of that bit. Bits are numbered starting at 1 (the least
significant bit).

Return Values

x The index of the first bit set.
0 If index is 0.

REF–152



fgetc

fgetc

Returns the next character from a specified file.

Format

#include <stdio.h>

int fgetc (FILE *file_ptr);

Argument

file_ptr
A pointer to the file to be accessed.

Description

See the getc macro.

Return Values

x The returned character.
EOF Indicates the end-of-file or an error.

REF–153



fgetname

fgetname

Returns the file specification associated with a file pointer.

Format

#include <stdio.h>

char *fgetname (FILE *file_ptr, char *buffer, . . . );

Function Variants

The fgetname function has variants named _fgetname32 and _fgetname64 for
use with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

file_ptr
A file pointer.

buffer
A pointer to a character string that is large enough to hold the file specification.

. . .
An optional additional argument that can be either 1 or 0. If you specify 1,
the fgetname function returns the file specification in OpenVMS format. If you
specify 0, fgetname returns the file specification in UNIX style format. If you
do not specify this argument, fgetname returns the file name according to your
current command language interpreter. For more information about UNIX style
file specifications, see Section 1.4.3.

Description

The fgetname function places the file specification at the address given in the
buffer. The buffer should be an array large enough to contain a fully qualified file
specification (the maximum length is 256 characters).

Return Values

n The address of the buffer.
0 Indicates an error.

Restriction

The fgetname function is specific to the HP C RTL and is not portable.

REF–154



fgetpos

fgetpos

Stores the current file position for a given file.

Format

#include <stdio.h>

int fgetpos (FILE *stream, fpos_t *pos);

Arguments

stream
A file pointer.

pos
A pointer to an implementation-defined structure. The fgetpos function fills this
structure with information that can be used on subsequent calls to fsetpos.

Description

The fgetpos function stores the current value of the file position indicator for the
stream pointed to by stream into the object pointed to by pos.

Return Values

0 Indicates successful completion.
�1 Indicates that there are errors.

Example
#include <stdio.h>
#include <stdlib.h>

main()
{

FILE *fp;
int stat,

i;
int character;
char ch,

c_ptr[130],
d_ptr[130];

fpos_t posit;

/* Open a file for writing. */

if ((fp = fopen("file.dat", "w+")) == NULL) {
perror("open");
exit(1);

}

/* Get the beginning position in the file. */

if (fgetpos(fp, &posit) != 0)
perror("fgetpos");

/* Write some data to the file. */

if (fprintf(fp, "this is a test\n") == 0) {
perror("fprintf");
exit(1);

}

REF–155



fgetpos

/* Set the file position back to the beginning. */

if (fsetpos(fp, &posit) != 0)
perror("fsetpos");

fgets(c_ptr, 130, fp);
puts(c_ptr); /* Should be "this is a test." */

/* Close the file. */

if (fclose(fp) != 0) {
perror("close");
exit(1);

}

}

REF–156



fgets

fgets

Reads a line from the specified file, up to one less than the specified maximum
number of characters or up to and including the new-line character, whichever
comes first. The function stores the string in str.

Format

#include <stdio.h>

char *fgets (char *str, int maxchar, FILE *file_ptr);

Function Variants

The fgets function has variants named _fgets32 and _fgets64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

str
A pointer to a character string that is large enough to hold the information
fetched from the file.

maxchar
The maximum number of characters to fetch.

file_ptr
A file pointer.

Description

The fgets function terminates the line with a null character (\0). Unlike gets,
fgets places the new-line character that terminates the input line into the user
buffer if more than maxchar characters have not already been fetched.

When the file pointed to by file_ptr is opened in record mode, fgets treats the
end of a record the same as a new-line character, so it reads up to and including
a new-line character or to the end of the record.

Return Values

x Pointer to str.
NULL Indicates the end-of-file or an error. The contents

of str are undefined if a read error occurs.

Example
#include <stdio.h>
#include <stdlib.h>
#include <unixio.h>

main()
{

FILE *fp;
char c_ptr[130];

/* Create a dummy data file */

REF–157



fgets

if ((fp = fopen("file.dat", "w+")) == NULL) {
perror("open");
exit(1);

}

fprintf(fp, "this is a test\n") ;
fclose(fp) ;

/* Open a file with some data -"this is a test" */

if ((fp = fopen("file.dat", "r+")) == NULL) {
perror("open error") ;
exit(1);

}

fgets(c_ptr, 130, fp);
puts(c_ptr); /* Display what fgets got. */
fclose(fp);

delete("file.dat") ;
}

REF–158



fgetwc

fgetwc

Reads the next character from a specified file, and converts it to a wide-character
code.

Format

#include <wchar.h>

wint_t fgetwc (FILE *file_ptr);

Argument

file_ptr
A pointer to the file to be accessed.

Description

Upon successful completion, the fgetwc function returns the wide-character code
read from the file pointed to by file_ptr and converted to type wint_t. If the file
is at end-of-file, the end-of-file indicator is set, and WEOF is returned. If an I/O
read error occurred, then the error indicator is set, and WEOF is returned.

Applications can use ferror or feof to distinguish between an error condition
and an end-of-file condition.

Return Values

x The wide-character code of the character read.
WEOF Indicates the end-of-file or an error. If a read

error occurs, the function sets errno to one of the
following:

• EALREADY – An operation is already in
progress on the same file.

• EBADF – The file descriptor is not valid.

• EILSEQ – Invalid character detected.

REF–159



fgetws

fgetws

Reads a line of wide characters from a specified file.

Format

#include <wchar.h>

wchar_t *fgetws (wchar_t *wstr, int maxchar, FILE *file_ptr);

Function Variants

The fgetws function has variants named _fgetws32 and _fgetws64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

wstr
A pointer to a wide-character string large enough to hold the information fetched
from the file.

maxchar
The maximum number of wide characters to fetch.

file_ptr
A file pointer.

Description

The fgetws function reads wide characters from the specified file and stores them
in the array pointed to by wstr. The function reads up to maxchar�1 characters
or until the new-line character is read, converted, and transferred to wstr, or
until an end-of-file condition is encountered. The function terminates the line
with a null wide character. fgetws places the new-line that terminates the input
line into the user buffer, unless maxchar characters have already been fetched.

Return Values

x Pointer to wstr.
NULL Indicates the end-of-file or an error. The contents

of wstr are undefined if a read error occurs. If a
read error occurs, the function sets errno. For a
list of possible errno values, see fgetwc.

Example
#include <stdlib.h>
#include <stdio.h>
#include <locale.h>
#include <wchar.h>

main()
{

wchar_t wstr[80],
*ret;

FILE *fp;

REF–160



fgetws

/* Create a dummy data file */

if ((fp = fopen("file.dat", "w+")) == NULL) {
perror("open");
exit(1);

}

fprintf(fp, "this is a test\n") ;
fclose(fp) ;

/* Open a test file containing : "this is a test" */

if ((fp = fopen("file.dat", "r")) == (FILE *) NULL) {
perror("File open error");
exit(EXIT_FAILURE);

}

ret = fgetws(wstr, 80, fp);
if (ret == (wchar_t *) NULL) {

perror("fgetws failure");
exit(EXIT_FAILURE);

}

fputws(wstr, stdout);
fclose(fp);
delete("file.dat");

}

REF–161



fileno

fileno

Returns the file descriptor associated with the specified file pointer.

Format

#include <stdio.h>

int fileno (FILE *file_ptr);

Argument

file_ptr
A file pointer.

Description

If you are using version 5.2 or lower of the C compiler, undefine the fileno
macro:

#if defined(fileno)
#undef fileno
#endif

Return Values

x Integer file descriptor.
�1 Indicates an error.

REF–162



finite (Alpha only)

finite (Alpha only)

Returns the integer value 1 (TRUE) when its argument is a finite number, or 0
(FALSE) if not.

Format

#include <math.h>

int finite (double x);

int finitef (float x);

int double finitel (long double x);

Argument

x
A real value.

Description

The finite functions return 1 when �Infinity < x < +Infinity. They return 0
when | x | = Infinity, or x is a NaN.

REF–163



floor

floor

Returns the largest integer less than or equal to the argument.

Format

#include <math.h>

double floor (double x);

float floorf (float x); (Alpha only)

long double floorl (long double x); (Alpha only)

Argument

x
A real value.

Return Value

n The largest integer less than or equal to the
argument.

REF–164



fmod

fmod

Computes the floating-point remainder.

Format

#include <math.h>

double fmod (double x, double y);

float fmodf (float x, float y); (Alpha only)

long double fmodl (long double x, long double y); (Alpha only)

Arguments

x
A real value.

y
A real value.

Description

The fmod functions return the floating-point remainder of the first argument
divided by the second. If the second argument is 0, the function returns 0.

Return Values

x The value f, which has the same sign as the
argument x, such that x �� i � y + f for some
integer i, where the magnitude of f is less than
the magnitude of y.

0 Indicates that y is 0.

REF–165



fopen

fopen

Opens a file by returning the address of a FILE structure.

Format

#include <stdio.h>

FILE *fopen (const char *file_spec, const char *a_mode); (ANSI C)

FILE *fopen (const char *file_spec, const char *a_mode, . . . ); (HP C Extension)

Arguments

file_spec
A character string containing a valid file specification.

a_mode
The access mode indicator. Use one of the following character strings: "r", "w",
"a", "r+", "w+", "rb", "r+b", "rb+", "wb", "w+b", "wb+", "ab", "a+b", "ab+", or
"a+".

These access modes have the following effects:

• "r" opens an existing file for reading.

• "w" creates a new file, if necessary, and opens the file for writing. If the file
exists, it creates a new file with the same name and a higher version number.

• "a" opens the file for append access. An existing file is positioned at the
end-of-file, and data is written there. If the file does not exist, the HP C RTL
creates it.

The update access modes allow a file to be opened for both reading and writing.
When used with existing files, "r+" and "a+" differ only in the initial positioning
within the file. The modes are:

• "r+" opens an existing file for read update access. It is opened for reading,
positioned first at the beginning-of-file, but writing is also allowed.

• "w+" opens a new file for write update access.

• "a+" opens a file for append update access. The file is first positioned at the
end-of-file (writing). If the file does not exist, the HP C RTL creates it.

• "b" means binary access mode. In this case, no conversion of carriage-control
information is attempted.

. . .
Optional file attribute arguments. The file attribute arguments are the same as
those used in the creat function. For more information, see the creat function.

Description

If a version of the file exists, a new file created with fopen inherits certain
attributes from the existing file unless those attributes are specified in the fopen
call. The following attributes are inherited:

Record format
Maximum record size
Carriage control

REF–166



fopen

File protection

If you specify a directory in the file name and it is a search list that contains an
error, HP C for OpenVMS Systems interprets it as a file open error.

The file control block can be freed with the fclose function, or by default on
normal program termination.

Return Values

x File pointer.
NULL Indicates an error. The constant NULL is defined

in the <stdio.h> header file to be the NULL
pointer value. The function returns NULL to
signal the following errors:

• File protection violations

• Attempts to open a nonexistent file for read
access

• Failure to open the specified file

REF–167



fp_class (Alpha only)

fp_class (Alpha only)

Determine the class of IEEE floating-point values.

Format

#include <math.h>

int fp_class (double x);

int fp_classf (float x);

int fp_classl (long double x);

Argument

x
An IEEE floating-point number.

Description

The fp_class functions determine the class of the specified IEEE floating-
point number, returning a constant from the <fp_class.h> header file. They
never cause an exception, even for signaling NaNs (Not-a-Number). These
functions implement the recommended class(x) function in the appendix of the
IEEE 754-1985 standard for binary floating-point arithmetic. The constants in
<fp_class.h> refer to the following classes of values:

FP_SNAN Signaling NaN (Not-a-Number)
FP_QNAN Quiet NaN
FP_POS_INF +Infinity
FP_NEG_INF �Infinity
FP_POS_NORM positive normalized
FP_NEG_NORM negative normalized
FP_POS_DENORM positive denormalized
FP_NEG_DENORM negative denormalized
FP_POS_ZERO +0.0 (positive zero)
FP_NEG_ZERO �0.0 (negative zero)

Return Value

x A constant from the <fp_class.h> header file.

REF–168



fpathconf

fpathconf

Retrieves file implementation characteristics.

Format

#include <unistd.h>

long int fpathconf (int filedes, int name);

Arguments

filedes
An open file descriptor.

name
The configuration attribute to query. If this attribute is not applicable to the file
specified by the filesdes argument, fpathconf returns an error.

Description

The fpathconf function allows an application to retrieve the characteristics of
operations supported by the file system underlying the file named by the filesdes
argument. Read, write, or execute permission of the named file is not required,
but you must be able to search all directories in the path leading to the file.

Symbolic values for the name argument are defined in the <unistd.h> header file
as follows:

_PC_LINK_MAX The maximum number of links to the file. If the filedes
argument refers to a directory, the value returned
applies to the directory itself.

_PC_MAX_CANON The maximum number of bytes in a canonical input line.
This is applicable only to terminal devices.

_PC_MAX_INPUT The number of types allowed in an input queue. This is
applicable only to terminal devices.

_PC_NAME_MAX Maximum number of bytes in a file name (not including
a terminating null). The byte range value is between 13
and 255. This is applicable only to a directory file. The
value returned applies to filenames within the directory.

_PC_PATH_MAX Maximum number of bytes in a pathname (not including
a terminating null). The value is never larger than
65,535. This is applicable only to a directory file. The
value returned is the maximum length of a relative
pathname when the specified directory is the working
directory.

_PC_PIPE_BUF Maximum number of bytes guaranteed to be written
atomically. This is applicable only to a FIFO. The
value returned applies to the referenced object. If the
path argument refers to a directory, the value returned
applies to any FIFO that exists or can be created within
the directory.

REF–169



fpathconf

_PC_CHOWN_
RESTRICTED

The value returned applies to any files (other than
directories) that exist or can be created within the
directory. This is applicable only to a directory file.

_PC_NO_TRUNC Returns 1 if supplying a component name longer than
allowed by NAME_MAX causes an error. Returns 0
(zero) if long component names are truncated. This is
applicable only to a directory file.

_PC_VDISABLE This is always 0 (zero); no disabling character is defined.
This is applicable only to a terminal device.

Return Values

x The resultant value for the configuration
attribute specified in the name argument.

�1 Indicates an error; errno is set to one of the
following values:

• EINVAL – The name argument specifies an
unknown or inapplicable characteristic.

• EBADF – the filedes argument is not a valid
file descriptor.

REF–170



fprintf

fprintf

Performs formatted output to a specified file.

Format

#include <stdio.h>

int fprintf (FILE *file_ptr, const char *format_spec, . . . );

Arguments

file_ptr
A pointer to the file to which the output is directed.

format_spec
A pointer to a character string that contains the format specification. For more
information on format specifications and conversion characters, see Chapter 2.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, the output sources can be omitted.
Otherwise, the function calls must have exactly as many output sources as there
are conversion specifications, and the conversion specifications must match the
types of the output sources.

Conversion specifications are matched to output sources in left-to-right order.
Any excess output sources are ignored.

Example

An example of a conversion specification follows:

#include <stdio.h>

main()
{

int temp = 4, temp2 = 17;

fprintf(stdout, "The answers are %d, and %d.", temp, temp2);
}

This example outputs the following to the stdout file:

The answers are 4, and 17.

For a complete description of the format specification and the output source, see
Chapter 2.

Return Values

x The number of bytes written, excluding the null
terminator.

REF–171



fprintf

Negative value Indicates an error. The function sets errno to
one of the following:

• EILSEQ – Invalid character detected.

• EINVAL – Insufficient arguments.

• ENOMEM – Not enough memory available
for conversion.

• ERANGE – Floating-point calculations
overflow.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This might indicate that
conversion to a numeric value failed because
of overflow.

The function can also set errno to the following
as a result of errors returned from the I/O
subsystem:

• EBADF – The file descriptor is not valid.

• EIO – I/O error.

• ENOSPC – No free space on the device
containing the file.

• ENXIO – Device does not exist.

• EPIPE – Broken pipe.

• ESPIPE – Illegal seek in a file opened for
append.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This indicates that an I/O error
occurred for which there is no equivalent C
error code.

REF–172



fputc

fputc

Writes a character to a specified file.

Format

#include <stdio.h>

int fputc (int character, FILE *file_ptr);

Arguments

character
An object of type int.

file_ptr
A file pointer.

Description

The fputc function writes a single character to a file and returns the character.

See also putc.

Return Values

x The character written to the file. Indicates
success.

EOF Indicates an output error.

REF–173



fputs

fputs

Writes a character string to a file without copying the string’s null terminator
(\0).

Format

#include <stdio.h>

int fputs (const char *str, FILE *file_ptr);

Arguments

str
A pointer to a character string.

file_ptr
A file pointer.

Description

Unlike puts, the fputs function does not append a new-line character to the
output string.

See also puts.

Return Values

Nonnegative value Indicates success.
EOF Indicates an error.

REF–174



fputwc

fputwc

Converts a wide character to its corresponding multibyte value, and writes the
result to a specified file.

Format

#include <wchar.h>

wint_t fputwc (wint_t wc, FILE *file_ptr);

Arguments

wc
An object of type wint_t.

file_ptr
A file pointer.

Description

The fputwc function writes a wide character to a file and returns the character.

See also putwc.

Return Values

x The character written to the file. Indicates
success.

REF–175



fputwc

WEOF Indicates an output error. The function sets
errno to the following:

• EILSEQ – Invalid wide-character code
detected.

The function can also set errno to the following
as a result of errors returned from the I/O
subsystem:

• EBADF – The file descriptor is not valid.

• EIO – I/O error.

• ENOSPC – No free space on the device
containing the file.

• ENXIO – Device does not exist.

• EPIPE – Broken pipe.

• ESPIPE – Illegal seek in a file opened for
append.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This indicates that an I/O error
occurred for which there is no equivalent C
error code.

REF–176



fputws

fputws

Writes a wide-character string to a file without copying the null-terminating
character.

Format

#include <wchar.h>

int fputws (const wchar_t *wstr, FILE *file_ptr);

Arguments

wstr
A pointer to a wide-character string.

file_ptr
A file pointer.

Description

The fputws function converts the specified wide-character string to a multibyte
character string and writes it to the specified file. The function does not append
a terminating null byte corresponding to the null wide-character to the output
string.

Return Values

Nonnegative value Indicates success.
�1 Indicates an error. The function sets errno. For

a list of the values, see fputwc.

REF–177



fread

fread

Reads a specified number of items from the file.

Format

#include <stdio.h>

size_t fread (void *ptr, size_t size_of_item, size_t number_items, FILE *file_ptr);

Arguments

ptr
A pointer to the location, within memory, where you place the information being
read. The type of the object pointed to is determined by the type of the item being
read.

size_of_item
The size of the items being read, in bytes.

number_items
The number of items to be read.

file_ptr
A pointer that indicates the file from which the items are to be read.

Description

The type size_t is defined in the header file <stdio.h> as follows:

typedef unsigned int size_t

The reading begins at the current location in the file. The items read are placed
in storage beginning at the location given by the first argument. You must also
specify the size of an item, in bytes.

If the file pointed to by file_ptr was opened in record mode, fread will read
size_of_item multiplied by number_items bytes from the file. That is, it does not
necessarily read number_items records.

Return Values

n The number of bytes read divided by size_of_
item.

0 Indicates the end-of-file or an error.

REF–178



free

free

Makes available for reallocation the area allocated by a previous calloc, malloc,
or realloc call.

Format

#include <stdlib.h>

void free (void *ptr);

Argument

ptr
The address returned by a previous call to malloc, calloc, or realloc. If ptr is a
NULL pointer, no action occurs.

Description

The ANSI C standard defines free as not returning a value; therefore, the
function prototype for free is declared with a return type of void. However, since
a free can fail, and since previous versions of the HP C RTL have declared free
to return an int, the implementation of free does return 0 on success and�1 on
failure.

REF–179



freopen

freopen

Substitutes the file named by a file specification for the open file addressed by a
file pointer. The latter file is closed.

Format

#include <stdio.h>

FILE *freopen (const char *file_spec, const char *a_mode, FILE *file_ptr, . . . );

Arguments

file_spec
A pointer to a string that contains a valid OpenVMS or UNIX style file
specification. After the function call, the given file pointer is associated with
this file.

a_mode
The access mode indicator. See the fopen function for a description.

file_ptr
A file pointer.

. . .
Optional file attribute arguments. The file attribute arguments are the same as
those used in the creat function.

Description

The freopen function is typically used to associate one of the predefined names
stdin, stdout, or stderr with a file. For more information about these predefined
names, see Chapter 2.

Return Values

file_ptr The file pointer, if freopen is successful.
NULL Indicates an error.

REF–180



frexp

frexp

Calculates the fractional and exponent parts of a floating-point value.

Format

#include <math.h>

double frexp (double value, int *eptr);

float frexp (float value, int *eptr); (Alpha only)

long double frexp (long double value, int *eptr); (Alpha only)

Arguments

value
A floating-point number of type double, float, or long double.

eptr
A pointer to an int where frexp places the exponent.

Description

The frexp functions break the floating-point number (value) into a normalized
fraction and an integral power of 2, as follows:

value = fraction * (2exp)

The fractional part is returned as the return value. The exponent is placed in the
integer variable pointed to by eptr.

Example
#include <math.h>

main ()
{

double val = 16.0, fraction;
int exp;

fraction = frexp(val, &exp);
printf("fraction = %f\n",fraction);
printf("exp = %d\n",exp);

}

In this example, frexp converts the value 16 to �� � �5. The example produces the
following output:

fraction = 0.500000
exp = 5

| value | = Infinity or NaN is an invalid argument.

REF–181



frexp

Return Values

x The fractional part of value.
0 Both parts of the result are 0.
NaN If value is NaN, NaN is returned, errno is set to

EDOM, and the value of *eptr is unspecified.
value If | value | = Infinity, value is returned, errno

is set to EDOM, and the value of *eptr is
unspecified.

REF–182



fscanf

fscanf

Performs formatted input from a specified file, interpreting it according to the
format specification.

Format

#include <stdio.h>

int fscanf (FILE *file_ptr, const char *format_spec, . . . );

Arguments

file_ptr
A pointer to the file that provides input text.

format_spec
A pointer to a character string that contains the format specification. For more
information on conversion characters, see Chapter 2.

. . .
Optional expressions whose results correspond to conversion specifications given
in the format specification.

If no conversion specifications are given, you can omit the input pointers.
Otherwise, the function calls must have exactly as many input pointers as there
are conversion specifications, and the conversion specifications must match the
types of the input pointers.

Conversion specifications are matched to input sources in left-to-right order.
Excess input pointers, if any, are ignored.

Description

An example of a conversion specification follows:

#include <stdio.h>

main ()
{

int temp, temp2;

fscanf(stdin, "%d %d", &temp, &temp2);
printf("The answers are %d, and %d.", temp, temp2);

}

Consider a file, designated by stdin, with the following contents:

4 17

The example conversion specification produces the following result:

The answers are 4, and 17.

For a complete description of the format specification and the input pointers, see
Chapter 2.

REF–183



fscanf

Return Values

x The number of successfully matched and
assigned input items.

EOF Indicates that the end-of-file was encountered or
a read error occurred. If a read error occurs, the
function sets errno to one of the following:

• EILSEQ – Invalid character detected.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This can indicate that conversion
to a numeric value failed due to overflow.

The function can also set errno to the following
as a result of errors returned from the I/O
subsystem:

• EBADF – The file descriptor is not valid.

• EIO – I/O error.

• ENXIO – Device does not exist.

• EPIPE – Broken pipe.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This indicates that an I/O error
occurred for which there is no equivalent C
error code.

REF–184



fseek

fseek

Positions the file to the specified byte offset in the file.

Format

#include <stdio.h>

int fseek (FILE *file_ptr, long int offset, int direction);

Arguments

file_ptr
A file pointer.

offset
The offset, specified in bytes.

direction
An integer indicating the position to which the offset is added to calculate the
new position. The new position is the beginning of the file if direction is SEEK_
SET, the current value of the file position indicator if direction is SEEK_CUR, or
end-of-file if direction is SEEK_END.

Description

The fseek function can position a fixed-length record-access file with no carriage
control or a stream-access file on any byte offset, but can position all other files
only on record boundaries.

The available Standard I/O functions position a variable-length or VFC record
file at its first byte, at the end-of-file, or on a record boundary. Therefore, the
arguments given to fseek must specify any of the following:

• The beginning or end of the file

• A 0 offset from the current position (an arbitrary record boundary)

• The position returned by a previous, valid ftell call

See the fgetpos and fsetpos functions for a portable way to seek to arbitrary
locations with these types of record files.

CAUTION

If, while accessing a stream file, you seek beyond the end-of-file and then
write to the file, the fseek function creates a hole by filling the skipped
bytes with zeros.

In general, for record files, fseek should only be directed to an absolute
position that was returned by a previous valid call to ftell, or to the
beginning or end of a file. If a call to fseek does not satisfy these
conditions, the results are unpredictable.

See also open, creat, dup, dup2, and lseek.

REF–185



fseek

Return Values

0 Indicates successful seeks.
�1 Indicates improper seeks.

REF–186



fseeko

fseeko

Positions the file to the specified byte offset in the file. Equivalent to fseek.

Format

#include <stdio.h>

int fseeko (FILE *file_ptr, off_t offset, int direction);

Arguments

file_ptr
A file pointer.

offset
The offset, specified in bytes. The off_t data type is either a 32-bit or 64-bit
integer. The 64-bit interface allows for file sizes greater than 2 GB, and can
be selected at compile time by defining the _LARGEFILE feature-test macro as
follows:

CC/DEFINE=_LARGEFILE

direction
An integer indicating the position to which the offset is added to calculate the
new position. The new position is the beginning of the file if direction is SEEK_
SET, the current value of the file position indicator if direction is SEEK_CUR, or
end-of-file if direction is SEEK_END.

Description

The fseeko function is identical to the fseek function, except that the offset
argument is of type off_t instead of long int.

REF–187



fsetpos

fsetpos

Sets the file position indicator for a given file.

Format

#include <stdio.h>

int fsetpos (FILE *stream, const fpos_t *pos);

Arguments

stream
A file pointer.

pos
A pointer to an implementation-defined structure. The fgetpos function fills this
structure with information that can be used on subsequent calls to fsetpos.

Description

Call the fgetpos function before using the fsetpos function.

Return Values

0 Indicates success.
�1 Indicates an error.

REF–188



fstat

fstat

Accesses information about the file specified by the file descriptor.

Format

#include <stat.h>

int fstat (int file_desc, struct stat *buffer);

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the fstat function that
is equivalent to the behavior before OpenVMS Version 7.0.

Arguments

file_desc
A file descriptor.

buffer
A pointer to a structure of type stat_t, which is defined in the <stat.h> header
file. The argument receives information about that particular file. The members
of the structure pointed to by buffer are:

Member Type Definition

st_dev dev_t Pointer to a physical device name
st_ino[3] ino_t Three words to receive the file ID
st_mode mode_t File ‘‘mode’’ (prot, dir, . . . )
st_nlink nlink_t For UNIX system compatibility only
st_uid uid_t Owner user ID
st_gid gid_t Group member: from st_uid
st_rdev dev_t UNIX system compatibility – always 0
st_size off_t File size, in bytes. For st_size to

report a correct value, you need to
flush both the C RTL and RMS buffers.

st_atime time_t File access time; always the same as
st_mtime

st_mtime time_t Last modification time
st_ctime time_t File creation time
st_fab_rfm char Record format
st_fab_rat char Record attributes
st_fab_fsz char Fixed header size
st_fab_mrs unsigned Record size

The types dev_t, ino_t, off_t, mode_t, nlink_t, uid_t, gid_t, and time_t, are
defined in the <stat.h> header file. However, when compiling for compatibility
(/DEFINE=_DECC_V4_SOURCE), only dev_t, ino_t, and off_t are defined.

REF–189



fstat

The off_t data type is either a 32-bit or 64-bit integer. The 64-bit interface
allows for file sizes greater than 2 GB, and can be selected at compile time by
defining the _LARGEFILE feature-test macro as follows:

CC/DEFINE=_LARGEFILE

As of OpenVMS Version 7.0, times are given in seconds since the Epoch (00:00:00
GMT, January 1, 1970).

The st_mode structure member is the status information mode and is defined in
the <stat.h> header file. The st_mode bits follow:

Bits Constant Definition

0170000 S_IFMT Type of file
0040000 S_IFDIR Directory
0020000 S_IFCHR Character special
0060000 S_IFBLK Block special
0100000 S_IFREG Regular
0030000 S_IFMPC Multiplexed char special
0070000 S_IFMPB Multiplexed block special
0004000 S_ISUID Set user ID on execution
0002000 S_ISGID Set group ID on execution
0001000 S_ISVTX Save swapped text even after use
0000400 S_IREAD Read permission, owner
0000200 S_IWRITE Write permission, owner
0000100 S_IEXEC Execute/search permission, owner

Description

The fstat function does not work on remote network files.

Be aware that for the stat_t structure member st_size to report a correct value,
you need to flush both the C RTL and RMS buffers.

Note (Alpha only)

On OpenVMS Alpha systems, the stat, fstat, utime, and utimes
functions have been enhanced to take advantage of the new file-system
support for POSIX compliant file timestamps.

This support is available only on ODS-5 devices on OpenVMS Alpha
systems beginning with a version of OpenVMS Alpha after Version 7.3.

Before this change, the stat and fstat functions were setting the values
of the st_ctime, st_mtime, and st_atime fields based on the following file
attributes:

st_ctime - ATR$C_CREDATE (file creation time)
st_mtime - ATR$C_REVDATE (file revision time)
st_atime - was always set to st_mtime because no support for file
access time was available

Also, for the file-modification time, utime and utimes were modifying
the ATR$C_REVDATE file attribute, and ignoring the file-access-time
argument.

REF–190



fstat

After the change, for a file on an ODS-5 device, the stat and fstat
functions set the values of the st_ctime, st_mtime, and st_atime fields
based on the following new file attributes:

st_ctime - ATR$C_ATTDATE (last attribute modification time)
st_mtime - ATR$C_MODDATE (last data modification time)
st_atime - ATR$C_ACCDATE (last access time)

If ATR$C_ACCDATE is zero, as on an ODS-2 device, the stat and fstat
functions set st_atime to st_mtime.

For the file-modification time, the utime and utimes functions modify
both the ATR$C_REVDATE and ATR$C_MODDATE file attributes. For
the file-access time, these functions modify the ATR$C_ACCDATE file
attribute. Setting the ATR$C_MODDATE and ATR$C_ACCDATE file
attributes on an ODS-2 device has no effect.

For compatibility, the old behavior of stat, fstat, utime, and utimes
remains the default, regardless of the kind of device.

The new behavior must be explicitly enabled at run time by defining
the DECC$EFS_FILE_TIMESTAMPS logical name to "ENABLE" before
invoking the application. Setting this logical does not affect the behavior
of stat, fstat, utime and utimes for files on an ODS-2 device.

Return Values

0 Indicates successful completion.
�1 Indicates an error other than a protection

violation.
�2 Indicates a protection violation.

REF–191



fsync

fsync

Flushes data all the way to the disk.

Format

#include <unistd.h>

int fsync (int fd);

Argument

fd
A file descriptor corresponding to an open file.

Description

The fsync function behaves much like the fflush function. The primary
difference between the two is that fsync flushes data all the way to the disk
while fflush flushes data only as far as the underlying RMS buffers. Also, with
fflush, you can flush all buffers at once; with fsync you cannot.

Return Values

0 Indicates successful completion.
�1 Indicates an error.

REF–192



ftell

ftell

Returns the current byte offset to the specified stream file.

Format

#include <stdio.h>

long int ftell (FILE *file_ptr);

Argument

file_ptr
A file pointer.

Description

The ftell function measures the byte offset from the beginning of the file.

For variable-length files, VFC files, or any file with carriage-control attributes, if
the file is opened in record mode, then ftell returns the starting position of the
current record, not the current byte offset.

When using record files, the ftell function ignores any characters that have
been pushed back using either ungetc or ungetwc. This behavior does not occur if
stream files are being used.

For a portable way to measure the exact offset for any type of file, see the fgetpos
function.

Return Values

n The current offset.
EOF Indicates an error.

REF–193



ftello

ftello

Returns the current byte offset to the specified stream file. This function is
equivalent to ftell.

Format

#include <stdio.h>

off_t ftello (FILE *file_ptr);

Argument

file_ptr
A file pointer.

Description

The ftello function is identical to the ftell function, except that the return
value is of type off_t instead of long int.

The off_t data type is either a 64-bit or 32-bit integer. The 64-bit interface
allows for file sizes greater than 2 GB, and can be selected at compile time by
defining the _LARGEFILE feature-test macro as follows:

CC/DEFINE=_LARGEFILE

REF–194



ftime

ftime

Returns the elapsed time since 00:00:00, January 1, 1970, in the structure pointed
at by timeptr.

Format

#include <timeb.h>

int ftime (struct timeb *timeptr);

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the ftime function that
is equivalent to the behavior before OpenVMS Version 7.0.

Argument

timeptr
A pointer to the structure timeb_t.

Description

The typedef timeb_t refers to the following structure defined in the <timeb.h>
header file:

typedef struct timeb
{

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

};

The member time gives the time in seconds.

The member millitm gives the fractional time in milliseconds.

After a call to ftime, the timezone and dstflag members of the timeb structure
have the values of the global variables timezone and dstflag, respectively. See
the description of the tzset function for timezone and dstflag global variables.

Return Values

0 Successful execution. The timeb_t structure is
filled in.

�1 Indicates an error. Failure might indicate that
the system’s time-differential factor (that is, the
difference between the system time and UTC
time) is not set correctly.
If the value of the SYS$TIMEZONE_
DIFFERENTIAL logical is wrong, the function
fails with errno set to EINVAL.

REF–195



ftruncate

ftruncate

Truncates a file to a specified length.

Format

#include <unistd.h>

int ftruncate (int filedes, off_t length);

Arguments

filedes
The descriptor of a file that must be open for writing.

length
The new length of the file, in bytes. The off_t data type is either a 32-bit or
64-bit integer. The 64-bit interface allows for file sizes greater than 2 GB, and
can be selected at compile time by defining the _LARGEFILE feature-test macro
as follows:

CC/DEFINE=_LARGEFILE

Description

The ftruncate function truncates a file at the specified position. For record files,
the position must be a record boundary. Also, the files must be local, regular files.

If the file was previously larger than length, extra data is lost. If the file was
previously shorter than length, bytes between the old and new lengths are read
as zeros.

Return Values

0 Indicates success.
�1 An error occurred; errno is set to indicate the

error.

REF–196



ftw

ftw

Walks a file tree.

Format

#include <ftw.h>

int ftw (const char *path, int(*function)(const char *, const struct stat *, int), int depth);

Arguments

path
The directory hierarchy to be searched.

function
The function to be invoked for each file in the directory hierarchy.

depth
The maximum number of directory streams or file descriptors, or both, available
for use by ftw. This argument should be in the range of 1 to OPEN_MAX.

Description

The ftw function recursively searches the directory hierarchy that descends from
the directory specified by the path argument.

For each file in the hierarchy, ftw calls the function specified by the function
argument, passes it a pointer to a null-terminated character string containing the
name of the file, a pointer to a stat structure containing information about the
file, and an integer.

The integer identifies the file type. Possible values, defined in <ftw.h> are:

FTW_F Regular file.
FTW_D Directory.
FTW_DNR Directory that cannot be read.
FTW_NS A file on which stat could not successfully be executed.

If the integer is FTW_DNR, then the files and subdirectories contained in that
directory are not processed.

If the integer is FTW_NS, then the stat structure contents are meaningless. For
example, a file in a directory for which you have read permission but not execute
(search) permission can cause the function argument to pass FTW_NS.

The ftw function finishes processing a directory before processing any of its files
or subdirectories.

The ftw function continues the search until:

• The directory hierarchy specified by the path argument is completed.

• An invocation of the function specified by the function argument returns a
nonzero value.

• An error (such as an I/O error) is detected within the ftw function.

Because the ftw function is recursive, it is possible for it to terminate with a
memory fault because of stack overflow when applied to very deep file structures.

REF–197



ftw

The ftw function uses the malloc function to allocate dynamic storage during
its operation. If ftw is forcibly terminated, as with a call to longjmp from the
function pointed to by the function argument, ftw has no chance to free that
storage. It remains allocated.

A safe way to handle interrupts is to store the fact that an interrupt has occurred,
and arrange to have the function specified by the function argument return a
nonzero value the next time it is called.

Note

The ftw function is reentrant; make sure that the function supplied as
argument function is also reentrant.

See also malloc, longjump, lstat, and stat.

Return Values

0 Indicates success.
x Indicates that the function specified by the

function argument stops its search, and returns
the value that was returned by the function.

�1 Indicates an error; errno is set to one of the
following values:

• EACCES – Search permission is denied for
any component of the path argument or read
permission is denied for the path argument.

• ENAMETOOLONG – The length of the path
string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while
[_POSIX_NO_TRUNC] is in effect.

• ENOENT – The path argument points to the
name of a file that does not exist or points to
an empty string.

• ENOMEM – There is insufficient memory for
this operation.

Also, if the function pointed to by the function
argument encounters an error, errno can be set
accordingly.

REF–198



fwait

fwait

Waits for I/O on a specific file to complete.

Format

#include <stdio.h>

int fwait (FILE *fp);

Argument

fp
A file pointer corresponding to an open file.

Description

The fwait function is used primarily to wait for completion of pending
asynchronous I/O.

Return Values

0 Indicates successful completion.
�1 Indicates an error.

REF–199



fwide

fwide

Determines and sets the orientation of a stream.

Format

#include <wchar.h>

int fwide (FILE *stream, int mode);

Arguments

stream
A file pointer.

mode
A value that specifies the desired orientation of the stream.

Description

The fwide function determines the orientation of the stream pointed to by stream
and sets the orientation of a nonoriented stream according to the mode argument
in the following way:

If the mode argument is: Then the fwide function:

greater than zero makes the stream wide-oriented.
less than zero makes the stream byte-oriented.
zero does not alter the orientation of the stream.

If the orientation of the stream has already been set, fwide does not alter it.
Because no error status is defined for fwide, the calling application should check
errno if fwide returns a 0.

Return Values

> 0 After the call, the stream is wide-oriented.
< 0 After the call, the stream is byte-oriented.
0 After the call, the stream has no orientation or

a stream argument is invalid; the function sets
errno.

REF–200



fwprintf

fwprintf

Writes output to the stream under control of the wide-character format string.

Format

#include <wchar.h>

int fwprintf (FILE *stream, const wchar_t *format, . . . );

Arguments

stream
A file pointer.

format
A pointer to a wide-character string containing the format specifications.
For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, the output sources can be omitted.
Otherwise, the function calls must have exactly as many output sources as there
are conversion specifications, and the conversion specifications must match the
types of the output sources.

Conversion specifications are matched to output sources in left-to-right order.
Any excess output sources are ignored.

Description

The fwprintf function writes output to the stream pointed to by stream under
control of the wide-character string pointed to by format, which specifies how
to convert subsequent arguments to output. If there are insufficient arguments
for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated, but are otherwise
ignored. The fwprintf function returns when it encounters the end of the format
string.

The format argument is composed of zero or more directives that include:

• Ordinary wide characters (not the percent sign ( % ))

• Conversion specifications

Return Values

n The number of wide characters written.

REF–201



fwprintf

Negative value Indicates an error. The function sets errno to
one of the following:

• EILSEQ – Invalid character detected.

• EINVAL – Insufficient arguments.

• ENOMEM – Not enough memory available
for conversion.

• ERANGE – Floating-point calculations
overflow.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This might indicate that
conversion to a numeric value failed because
of overflow.

The function can also set errno to the following
as a result of errors returned from the I/O
subsystem:

• EBADF – The file descriptor is not valid.

• EIO – I/O error.

• ENOSPC – No free space on the device
containing the file.

• ENXIO – Device does not exist.

• EPIPE – Broken pipe.

• ESPIPE – Illegal seek in a file opened for
append.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This indicates that an I/O error
occurred for which there is no equivalent C
error code.

Example

The following example shows how to print a date and time in the form "Sunday,
July 3, 10:02", followed by � to five decimal places:

#include <math.h>
#include <stdio.h>
#include <wchar.h>
/* . . . */
wchar_t *weekday, *month; /* pointers to wide-character strings */
int day, hours, min;
fwprintf(stdout, L"%ls, %ls %d, %.2d:%.2d\n",

weekday, month, day, hour, min);
fwprintf(stdout, L"pi = %.5f\n", 4 * atan(1.0));

REF–202



fwrite

fwrite

Writes a specified number of items to the file.

Format

#include <stdio.h>

size_t fwrite (const void *ptr, size_t size_of_item, size_t number_items, FILE *file_ptr);

Arguments

ptr
A pointer to the memory location from which information is being written. The
type of the object pointed to is determined by the type of the item being written.

size_of_item
The size, in bytes, of the items being written.

number_items
The number of items to be written.

file_ptr
A file pointer that indicates the file to which the items are being written.

Description

The type size_t is defined in the header file <stdio.h> as follows:

typedef unsigned int size_t

The writing begins at the current location in the file. The items are written from
storage beginning at the location given by the first argument. You must also
specify the size of an item, in bytes.

If the file pointed to by file_ptr is a record file, the fwrite function outputs at
least number_items records, each of length size_of_item.

Return Value

x The number of items written. The number of
records written depends upon the maximum
record size of the file.

REF–203



fwscanf

fwscanf

Reads input from the stream under control of the wide-character format string.

Format

#include <wchar.h>

int fwscanf (FILE *stream, const wchar_t *format, . . . );

Arguments

stream
A file pointer.

format
A pointer to a wide-character string containing the format specification. For more
information about format and conversion specifications and their corresponding
arguments, see Chapter 2.

. . .
Optional expressions whose results correspond to conversion specifications given
in the format specification. For more information about format and conversion
specifications and their corresponding arguments, see Chapter 2.

If no conversion specifications are given, you can omit the input pointers.
Otherwise, the function calls must have exactly as many input pointers as there
are conversion specifications, and the conversion specifications must match the
types of the input pointers.

Conversion specifications are matched to input sources in left-to-right order.
Excess input pointers, if any, are ignored.

Description

The fwscanf function reads input from the stream pointed to by stream under the
control of the wide-character string pointed to by format. If there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted
while arguments remain, the excess arguments are evaluated, but otherwise
ignored.

The format is composed of zero or more directives that include:

• One or more white-space wide characters.

• An ordinary wide character (neither a percent ( % )) nor a white-space wide
character).

• Conversion specifications.

Each conversion specification is introduced by the wide character %.

If the stream pointed to by the stream argument has no orientation, fwscanf
makes the stream wide-oriented.

REF–204



fwscanf

Return Values

n The number of input items assigned, sometimes
fewer than provided for, or even zero, in the
event of an early matching failure.

EOF Indicates an error; input failure occurs before
any conversion.

REF–205



gcvt

gcvt

Converts its argument to a null-terminated string of ASCII digits and returns the
address of the string.

Format

#include <stdlib.h>

char *gcvt (double value, int ndigit, char *buffer);

Function Variants

The gcvt function has variants named _gcvt32 and _gcvt64 for use with 32-bit
and 64-bit pointer sizes, respectively. See Section 1.10 for more information on
using pointer-size-specific functions.

Arguments

value
An object of type double that is converted to a null-terminated string of ASCII
digits.

ndigit
The number of ASCII digits to use in the converted string. If ndigit is less than
6, the value of 6 is used.

buffer
A storage location to hold the converted string.

Description

The gcvt function places the converted string in a buffer and returns the address
of the buffer. If possible, gcvt produces ndigit significant digits in F-format, or if
not possible, in E-format. Trailing zeros are suppressed.

The ecvt, fcvt, and gcvt functions represent the following special values
specified in the IEEE Standard for floating-point arithmetic:

Value Representation

Quiet NaN NaNQ
Signalling NaN NaNS
+Infinity Infinity
�Infinity �Infinity

The sign associated with each of these values is stored into the sign argument. In
IEEE floating-point representation, a value of 0 (zero) can be positive or negative,
as set by the sign argument.

See also fcvt and ecvt.

REF–206



gcvt

Return Value

x The address of the buffer.

REF–207



getc

getc

The getc macro returns the next character from a specified file.

Format

#include <stdio.h>

int getc (FILE *file_ptr);

Argument

file_ptr
A pointer to the file to be accessed.

Description

Since getc is a macro, a file pointer argument with side effects (for example,
getc (*f++)) might be evaluated incorrectly. In such a case, use the fgetc
function instead. See the fgetc function.

Return Values

n The returned character.
EOF Indicates the end-of-file or an error.

REF–208



[w]getch

[w]getch

Get a character from the terminal screen and echo it on the specified window.
The getch function echoes the character on the stdscr window.

Format

#include <curses.h>

char getch( );

char wgetch (WINDOW *win);

Argument

win
A pointer to the window.

Description

The getch and wgetch functions refresh the specified window before fetching a
character. For more information, see the scrollok function.

Return Values

x The returned character.
ERR Indicates that the function makes the screen

scroll illegally.

REF–209



getchar

getchar

Reads a single character from the standard input (stdin).

Format

#include <stdio.h>

int getchar (void);

Description

The getchar function is identical to fgetc(stdin).

Return Values

x The next character from stdin, converted to int.
EOF Indicates the end-of-file or an error.

REF–210



getclock

getclock

Gets the current value of the systemwide clock.

Format

#include <timers.h>

int getclock (int clktyp, struct timespec *tp);

Arguments

clktyp
The type of systemwide clock.

tp
Pointer to a timespec structure space where the current value of the systemwide
clock is stored.

Description

The getclock function sets the current value of the clock specified by clktyp into
the location pointed to by tp.

The clktyp argument is given as a symbolic constant name, as defined in the
<timers.h> header file. Only the TIMEOFDAY symbolic constant, which specifies
the normal time-of-day clock to access for systemwide time, is supported.

For the clock specified by TIMEOFDAY, the value returned by this function is
the elapsed time since the Epoch. The Epoch is referenced to 00:00:00 UTC
(Coordinated Universal Time) 1 Jan 1970.

The getclock function returns a timespec structure, which is defined in the
<timers.h> header file as follows:

struct timespec {

unsigned long tv_sec /* Elapsed time in seconds since the Epoch*/
long tv_nsec /* Elapsed time as a fraction of a second */

/* since the Epoch (in nanoseconds) */

};

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to one of the

following values:

• EINVAL – The clktyp argument does not
specify a known systemwide clock.
Or, the value of SYS$TIMEZONE_
DIFFERENTIAL logical is wrong.

• EIO – An error occurred when the
systemwide clock specified by the clktyp
argument was accessed.

REF–211



getcwd

getcwd

Returns a pointer to the file specification for the current working directory.

Format

#include <unistd.h>

char *getcwd (char *buffer, size_t size); (ISO POSIX-1)

char *getcwd (char *buffer, unsigned int size, . . . ); (HP C Extension)

Function Variants

The getcwd function has variants named _getcwd32 and _getcwd64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

buffer
Pointer to a character string large enough to hold the directory specification.

If buffer is a NULL pointer, getcwd obtains size bytes of space using malloc.
In this case, you can use the pointer returned by getcwd as the argument in a
subsequent call to free.

size
The length of the directory specification to be returned.

. . .
An optional argument that can be either 1 or 0. If you specify 1, the directory
specification is returned in OpenVMS format. If you specify 0, the directory
specification (pathname) is returned in UNIX style format. If you omit this
argument, getcwd returns the file name according to your current command-
language interpreter (CLI). For more information about UNIX style directory
specifications, see Section 1.4.3.

Return Values

x A pointer to the file specification.
NULL Indicates an error.

REF–212



getdtablesize

getdtablesize

Gets the total number of file descriptors that a process can have open
simultaneously.

Format

#include <unistd.h>

int getdtablesize (void);

Description

The getdtablesize function returns the total number of file descriptors that a
process can have open simultaneously. Each process is limited to a fixed number
of open file descriptors.

The number of file descriptors that a process can have open is the minumum of
the following:

• HP C RTL open file limit—65535 on OpenVMS Alpha; 2048 on OpenVMS
VAX.

• SYSGEN CHANNELCNT parameter—permanent I/O channel count.

• Process open file quota FILLM parameter—number of open files that can be
opened by a process at one time.

Return Values

x The number of file descriptors that a process can
have open simultaneously.

�1 Indicates an error.

REF–213



getegid

getegid

With POSIX IDs disabled, this function is equivalent to getgid and returns the
group number from the user identification code (UIC).

With POSIX IDs enabled, this function returns the effective group ID of the
calling process.

Format

#include <unistd.h>

gid_t getegid (void);

Description

The getegid function can be used with POSIX style identifiers (IDs) or with
UIC-based identifiers.

POSIX style IDs are supported on OpenVMS Version 7.3-2 and higher.

With POSIX style IDs disabled, the getegid and getgid functions are equivalent
and return the group number from the current UIC. For example, if the UIC is
[313,031], 313 is the group number.

With POSIX style IDs enabled, getegid returns the effective group ID of the
calling process, and getgid returns the real group ID of the calling process. The
real group ID is specified at login time. The effective group ID is more transient,
and determines additional access permission during execution of a set-group-ID
process. It is for such processes that the getgid function is most useful.

The getegid function is always successful; no return value is reserved to indicate
an error.

To enable/disable POSIX style IDs, see Section 1.7.

See also geteuid and getuid.

Return Value

x The effective group ID (POSIX IDs enabled), or
the group number from the UIC (POSIX IDs
disabled).

REF–214



getenv

getenv

Searches the environment array for the current process and returns the value
associated with a specified environment name.

Format

#include <stdlib.h>

char *getenv (const char *name);

Argument

name
One of the following values:

• HOME—Your login directory

• TERM—The type of terminal being used

• PATH—The default device and directory

• USER—The name of the user who initiated the process

• Logical name or command-language interpreter (CLI) symbolic name

• An environment variable set with setenv or putenv

The case of the specified name is important.

Description

In certain situations, the getenv function attempts to perform a logical name
translation on the user-specified argument:

1. If the argument to getenv does not match any of the environment strings
present in your environment array, getenv attempts to translate your
argument as a logical name by searching the logical name tables indicated by
the LNM$FILE_DEV logical, as is done for file processing.

getenv first does a case-sensitive lookup. If that fails, it does a case-
insensitive lookup. In most instances, logical names are defined in uppercase,
but getenv can also find logical names that include lowercase letters.

getenv does not perform iterative logical name translation.

2. If the logical name is a search list with multiple equivalence values, the
returned value points to the first equivalence value. For example:

$ DEFINE A B,C

ptr = getenv("A");

A returns a pointer to "B".

3. If no logical name exists, getenv attempts to translate the argument string as
a CLI symbol. If it succeeds, it returns the translated symbol text. If it fails,
the return value is NULL.

getenv does not perform iterative CLI translation.

REF–215



getenv

If your CLI is the DEC/Shell, the function does not attempt a logical name
translation since Shell environment symbols are implemented as DCL symbols.

Notes

• In OpenVMS Version 7.1, a cache of OpenVMS environment variables
(that is, logical names and DCL symbols) was added to the getenv
function to avoid the library making repeated calls to translate a
logical name or to obtain the value of a DCL symbol. By default,
the cache is disabled. If your application does not need to track
changes in OpenVMS environment variables that can occur during its
execution, the cache can be enabled by enabling the DECC$ENABLE_
GETENV_CACHE logical before invoking the application.

• Do not use the setenv, getenv, and putenv functions to manipulate
symbols and logicals. Instead use the OpenVMS library calls
lib$set_logical, lib$get_logical, lib$set_symbol, and
lib$get_symbol. The *env functions deliberately provide UNIX
behavior, and are not a substitute for these OpenVMS runtime library
calls.

OpenVMS DCL symbols, not logical names, are the closest analog
to environment variables on UNIX systems. While getenv is a
mechanism to retrieve either a logical name or a symbol, it maintains
an internal cache of values for use with setenv and subsequent
getenv calls. The setenv function does not write or create DCL
symbols or OpenVMS logical names.

This is consistent with UNIX behavior. On UNIX systems, setenv
does not change or create any symbols that will be visible in the shell
after the program exits.

Return Values

x Pointer to an array containing the translated
symbol. An equivalence name is returned at
index zero.

NULL Indicates that the translation failed.

REF–216



geteuid

geteuid

With POSIX IDs disabled, this function is equivalent to getuid and returns the
member number (in OpenVMS terms) from the user identification code (UIC).

With POSIX IDs enabled, this function returns the effective user ID.

Format

#include <unistd.h>

uid_t geteuid (void);

Description

The geteuid function can be used with POSIX style identifiers (IDs) or with
UIC-based identifiers.

POSIX style IDs are supported on OpenVMS Version 7.3-2 and higher.

With POSIX style IDs disabled (the default), the geteuid and getuid functions
are equivalent and return the member number from the current UIC as follows:

• For programs compiled with the _VMS_V6_SOURCE feature-test macro or
programs that do not include the <unistd.h> header file, the getuid and
geteuid functions return the member number of the OpenVMS UIC. For
example, if the UIC is [313,31], then the member number, 31, is returned.

• For programs compiled without the _VMS_V6_SOURCE feature-test macro
that do include the <unistd.h> header file, the full UIC is returned. For
example, if the UIC is [313, 31] then 20512799 (31 + 313 * 65536) is returned.

With POSIX style IDs enabled, geteuid returns the effective user ID of the
calling process, and getuid returns the real user ID of the calling process.

To enable/disable POSIX style IDs, see Section 1.7.

See also getegid and getgid.

Return Value

x The effective user ID (POSIX IDs enabled), or
the member number from the current UIC or the
full UIC (POSIX IDs disabled).

REF–217



getgid

getgid

With POSIX IDs disabled, this function is equivalent to getegid and returns the
group number from the user identification code (UIC).

With POSIX IDs enabled, this function returns the real group ID.

Format

#include <unistd.h>

gid_t getgid (void);

Description

The getgid function can be used with POSIX style identifiers or with UIC-based
identifiers.

POSIX style IDs are supported on OpenVMS Version 7.3-2 and higher.

With POSIX style IDs disabled (the default), the getegid and getgid functions
are equivalent and return the group number from the current UIC. For example,
if the UIC is [313,031], 313 is the group number.

With POSIX style IDs enabled, getegid returns the effective group ID of the
calling process, and getgid returns the real group ID of the calling process. The
real group ID is specified at login time. The effective group ID is more transient,
and determines additional access permission during execution of a set-group-ID
process. It is for such processes that the getgid function is most useful.

To enable/disable POSIX style IDs, see Section 1.7.

See also geteuid and getuid.

Return Value

x The real group ID (POSIX IDs enabled), or the
group number from the current UIC (POSIX IDs
disabled).

REF–218



getgrent (Alpha only)

getgrent (Alpha only)

Gets a group database entry.

Format

#include <grp.h>

struct group *getgrent (void);

Description

The getgrent function returns the next group in the sequential search, returning
a pointer to a structure containing the broken-out fields of an entry in the group
database.

When first called, getgrent returns a pointer to a group structure containing
the first entry in the group database. Thereafter, it returns a pointer to the next
group structure in the group database, so successive calls can be used to search
the entire database.

If an end-of-file or an error is encountered on reading, getgrent returns a NULL
pointer and sets errno.

Return Values

x Pointer to a group structure, if successful.
NULL Indicates that an error occurred. The function

sets errno to one of the following values:

• EACCES – The user process does not have
appropriate privileges enabled to access the
user authorization file.

• EINTR – A signal was caught during the
operation.

• EIO – Indicates that an I/O error occurred.

• EMFILE – OPEN_MAX file descriptors are
currently open in the calling process.

• ENFILE – The maximum allowable number
of files is currently open in the system.

REF–219



getgrgid (Alpha only)

getgrgid (Alpha only)

Gets a group database entry for a group ID.

Format

#include <types.h>

#include <grp.h>

struct group *getgrgid (gid_t gid);

Argument

gid
The group ID of the group for which the group database entry is to be retrieved.

Description

The getgrgid function searches the group database for an entry with a matching
gid and returns a pointer to the group structure containing the matching entry.

Return Values

x Pointer to a valid group structure containing a
matching entry.

NULL An error occurred.
Note: The return value points to a static
area that is overwritten by subsequent calls
to getgrent, getgrgid, or getgrnam.
On error, the function sets errno to one of the
following values:

• EACCES – The user process does not have
appropriate privileges enabled to access the
user authorization file.

• EIO – An I/O error has occurred.

• EINTR – A signal was caught during
getgrgid.

• EMFILE – OPEN_MAX file descriptors are
currently open in the calling process.

• ENFILE – The maximum allowable number
of files is currently open in the system.

Applications wishing to check for error situations
should set errno to 0 before calling getgrgid. If
errno is set on return, an error occurred.

REF–220



getgrgid_r (Alpha only)

getgrgid_r (Alpha only)

Gets a group database entry for a group ID.

Format

#include <types.h>

#include <grp.h>

int getgrgid_r (gid_t gid, struct group *grp, char *buffer, size_t bufsize, struct group **result);

Arguments

gid
The group ID of the group for which the group database entry is to be retrieved.

grp
Storage area to hold the retrieved group structure.

buffer
The working buffer that is able to hold the longest group entry in the database.

bufsize
The length, in characters, of buffer.

result
Upon successful return, result points to the retrieved group structure.

Upon unsuccessful return, result is set to NULL.

Description

The getgrgid_r function updates the group structure pointed to by grp and
stores a pointer to that structure at the location pointed to by result. The
structure contains an entry from the group database with a matching gid.
Storage referenced by the group structure is allocated from the memory provided
with the buffer argument, which is bufsize characters in size. The maximum size
needed for this buffer can be determined with the _SC_GETGR_R_SIZE_MAX
parameter of the sysconf function. On error or if the requested entry is not
found, a NULL pointer is returned at the location pointed to by result.

REF–221



getgrgid_r (Alpha only)

Return Values

0 Successful completion.
x On error, the function sets the return value to

one of the following:

• EACCES – The user process does not have
appropriate privileges enabled to access the
user authorization file.

• EIO – An I/O error has occurred.

• EINTR – A signal was caught during
getgrgid.

• EMFILE – OPEN_MAX file descriptors are
currently open in the calling process.

• ENFILE – The maximum allowable number
of files is currently open in the system.

• ERANGE – Insufficient storage was supplied
through the buffer and bufsize arguments
to contain the data to be referenced by the
resulting group structure.

REF–222



getgrnam (Alpha only)

getgrnam (Alpha only)

Gets a group database entry for a name.

Format

#include <types.h>

#include <grp.h>

struct group *getgrnam (const char *name);

Argument

name
The group name of the group for which the group database entry is to be
retrieved.

Description

The getgrnam function searches the group database for an entry with a matching
name, and returns a pointer to the group structure containing the matching
entry.

Return Values

x Pointer to a valid group structure containing a
matching entry.

NULL Indicates an error.
Note: The return value points to a static area
which is overwritten by subsequent calls to
getgrent, getgrgid, or getgrnam.
On error, the function sets the return value to
one of the following:

• EACCES – The user process does not have
appropriate privileges enabled to access the
user authorization file.

• EIO – An I/O error has occurred.

• EINTR – A signal was caught during
getgrnam.

• EMFILE – OPEN_MAX file descriptors are
currently open in the calling process.

• ENFILE – The maximum allowable number
of files is currently open in the system.

Applications wishing to check for error situations
should set errno to 0 before calling getgrnam. If
errno is set on return, an error occurred.

REF–223



getgrnam_r (Alpha only)

getgrnam_r (Alpha only)

Gets a group database entry for a name.

Format

#include <types.h>

#include <grp.h>

int getgrnam_r (const char *name, struct group *grp, char *buffer, size_t bufsize, struct group **result);

Arguments

name
The group name of the group for which the group database entry is to be
retrieved.

grp
Storage area to hold the retrieved group structure.

buffer
The working buffer that is able to hold the longest group entry in the database.

bufsize
The length, in characters, of buffer.

result
Upon successful return, result points to the retrieved group structure.

Upon unsuccessful return, result is set to NULL.

Description

The getgrnam_r function updates the group structure pointed to by grp and
stores a pointer to that structure at the location pointed to by result. The
structure contains an entry from the group database with a matching name.
Storage referenced by the group structure is allocated from the memory provided
with the buffer argument, which is bufsize characters in size. The maximum size
needed for this buffer can be determined with the _SC_GETGR_R_SIZE_MAX
parameter of the sysconf function. On error or if the requested entry is not
found, a NULL pointer is returned at the location pointed to by result.

REF–224



getgrnam_r (Alpha only)

Return Values

0 Successful completion.
x On error, the function sets the return value to

one of the following:

• EACCES – The user process does not have
appropriate privileges enabled to access the
user authorization file.

• EIO – An I/O error has occurred.

• EINTR – A signal was caught during
getgrnam.

• EMFILE – OPEN_MAX file descriptors are
currently open in the calling process.

• ENFILE – The maximum allowable number
of files is currently open in the system.

• ERANGE – Insufficient storage was supplied
through the buffer and bufsize arguments
to contain the data to be referenced by the
resulting group structure.

REF–225



getitimer

getitimer

Returns the value of interval timers.

Format

#include <time.h>

int getitimer (int which, struct itimerval *value);

Arguments

which
The type of interval timer. The HP C RTL supports only ITIMER_REAL.

value
Pointer to an itimerval structure whose members specify a timer interval and
the time left to the end of the interval.

Description

The getitimer function returns the current value for the timer specified by the
which argument in the structure pointed to by value.

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval;
struct timeval it_value;

};

The following table lists the values for the itimerval structure members:

itimerval Member Value Meaning

it_interval = 0 Disables a timer after its next expiration and
assumes it_value is nonzero.

it_interval = nonzero Specifies a value used in reloading it_value
when the timer expires.

it_value = 0 Disables a timer.
it_value = nonzero Indicates the time to the next timer expiration.

Time values smaller than the resolution of the system clock are rounded up to
this resolution.

The HP C RTL provides each process with one interval timer, defined in the
<time.h> header file as ITIMER_REAL. This timer decrements in real time and
delivers a SIGALRM signal when the timer expires.

REF–226



getitimer

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to EINVAL (The

value argument specified a time that was too
large to handle.)

REF–227



getlogin

getlogin

Gets the login name.

Format

#include <unistd.h>

char *getlogin (void);

Description

The getlogin function returns the login name of the user associated with the
current session.

Return Values

x A pointer to a null-terminated string in a static
buffer.

NULL Indicates an error. Login name is not set.

REF–228



getname

getname

Returns the file specification associated with a file descriptor.

Format

#include <unixio.h>

char *getname (int file_desc, char *buffer, . . . );

Function Variants

The getname function has variants named _getname32 and _getname64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

file_desc
A file descriptor.

buffer
A pointer to a character string that is large enough to hold the file specification.

. . .
An optional argument that can be either 1 or 0. If you specify 1, the getname
function returns the file specification in OpenVMS format. If you specify 0, the
getname function returns the file specification in UNIX style format. If you omit
this argument, the getname function returns the file name according to your
current command-language interpreter (CLI). For more information about UNIX
style file specifications, see Section 1.4.3.

Description

The getname function places the file specification into the area pointed to by
buffer and returns that address. The area pointed to by buffer should be an array
large enough to contain a fully qualified file specification (the maximum length is
256 characters).

Return Values

x The address passed in the buffer argument.
0 Indicates an error.

REF–229



getopt

getopt

A command-line parser that can be used by applications that follow UNIX
command-line conventions.

Format

#include <unistd.h> (X/Open, POSIX-1)

#include <stdio.h> (X/Open, POSIX-2)

int getopt (int argc, char * const argv[ ], const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

Arguments

argc
The argument count as passed to main.

argv
The argument array as passed to main.

optstring
A string of recognized option characters. If a character is followed by a colon, the
option takes an argument.

Description

The variable optind is the index of the next element of the argv vector to be
processed. It is initialized to 1 by the system, and it is updated by getopt when
it finishes with each element of argv. When an element of argv contains multiple
option characters, it is unspecified how getopt determines which options have
already been processed.

The getopt function returns the next option character (if one is found) from
argv that matches a character in optstring, if there is one that matches. If
the option takes an argument, getopt sets the variable optarg to point to the
option-argument as follows:

• If the option was the last character in the string pointed to by an element
of argv, then optarg contains the next element of argv, and optind is
incremented by 2. If the resulting value of optind is not less than argc,
getopt returns an error, indicating a missing option-argument.

• Otherwise, optarg points to the string following the option character in that
element of argv, and optind is incremented by 1.

If one of the following is true, getopt returns �1 without changing optind:

argv[optind] is a NULL pointer
*argv[optind] is not the character –
argv[optind] points to the string "–"

If argv[optind] points to the string "– –" getopt returns �1 after incrementing
optind.

REF–230



getopt

If getopt encounters an option character not contained in optstring, the question-
mark character ( ? ) is returned.

If getopt detects a missing argument, the colon character ( : ) is returned if the
first character of optstring is a colon; otherwise, a question-mark character is
returned.

In either of the previous two cases, getopt sets the variable optopt to the option
character that caused the error. If the application has not set the variable opterr
to 0 and the first character of optstring is not a colon, getopt also prints a
diagnostic message to stderr.

Return Values

x The next option character specified on the
command line.
A colon is returned if getopt detects a missing
argument and the first character of optstring is a
colon.
A question mark is returned if getopt encounters
an option character not in optstring or detects
a missing argument and the first character of
optstring is not a colon.

�1 When all command-line options are parsed.

Example

The following example shows how you might process the arguments for a utility
that can take the mutually exclusive options a and b and the options f and o, both
of which require arguments:

#include <unistd.h>

int main (int argc, char *argv[ ])
{

int c;
int bflg, aflg, errflg;
char *ifile;
char *ofile;
extern char *optarg;
extern int optind, optopt;
.
.
.
while ((c = getopt(argc, argv, ":abf:o:)) != -1) {

switch (c) {
case ’a’:

if (bflg)
errflg++;

else
aflg++;

break;
case ’b’:

if (aflg)
errflg++;

else {
bflg++;
bproc();

}

REF–231



getopt

break;
case ’f’:

ifile = optarg;
break;

case ’o’:
ofile = optarg;
break;

case ’:’: /* -f or -o without operand */
fprintf (stderr,
"Option -%c requires an operand\n"’ optopt);
errflg++;
break;

case ’?’:
fprintf (stderr,

"Unrecognized option -%c\n"’ optopt);
errflg++;

}
}
if (errflg) {

fprintf (stderr, "usage: ...");
exit(2);

}
for ( ; optind < argc; optind++) {

if (access(argv[optind], R_OK)) {
.
.
.

}

This sample code accepts any of the following as equivalent:

cmd -ao arg path path
cmd -a -o arg path path
cmd -o arg -a path path
cmd -a -o arg -- path path
cmd -a -oarg path path
cmd -aoarg path path

REF–232



getpagesize

getpagesize

Gets the system page size.

Format

#include <unistd.h>

int getpagesize (void);

Description

The getpagesize function returns the number of bytes in a page. The system
page size is useful for specifying arguments to memory management system calls.

The page size is a system page size and is not necessarily the same as the
underlying hardware page size.

Return Value

x Always indicates success. Returns the number of
bytes in a page.

REF–233



getpgid (Alpha only)

getpgid (Alpha only)

Gets the process group ID for a process.

Format

#include <unistd.h>

pid_t getpgid (pid_t pid);

Argument

pid
The process ID for which the group ID is being requested.

Description

The getpgid function returns the process group ID of the process specified by
pid. If pid is 0, the getpgid function returns the process group ID of the calling
process.

Return Values

x The process group ID of the session leader of the
specified process.

(pid_t)�1 Indicates an error. The function sets errno to
one of the following values:

• EPERM – The process specified by pid is not
in the same session as the calling process,
and the implementation does not allow access
to the process group ID of that process from
the calling process.

• ESRCH – There is no process with a process
ID of pid.

• EINVAL – The value of pid is invalid.

REF–234



getpgrp (Alpha only)

getpgrp (Alpha only)

Gets the process group ID of the calling process.

Format

#include <unistd.h>

pid_t getpgrp (void);

Description

The getpgrp function returns the process group ID of the calling process.

The getpgrp function is always successful, and no return value is reserved to
indicate an error.

Return Values

x The process group ID of the calling process.

REF–235



getpid

getpid

Returns the process ID of the current process.

Format

#include <unistd.h>

pid_t getpid (void);

Return Value

x The process ID of the current process.

REF–236



getppid

getppid

Returns the parent process ID of the calling process.

Format

#include <unistd.h>

pid_t getppid (void);

Return Values

x The parent process ID.
0 Indicates that the calling process does not have a

parent process.

REF–237



getpwent

getpwent

Accesses user entry information in the user database, returning a pointer to a
passwd structure.

Format

#include <pwd.h>

struct passwd *getpwent (void);

Function Variants

The getpwent function has variants named _ _32_getpwent and _ _64_getpwent
for use with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for
more information on using pointer-size-specific functions.

Description

The getpwent function returns a pointer to a structure containing fields whose
values are derived from an entry in the user database. Entries in the database
are accessed sequentially by getpwent. When first called, getpwent returns a
pointer to a passwd structure containing the first entry in the user database.
Thereafter, it returns a pointer to a passwd structure containing the next entry
in the user database. Successive calls can be used to search the entire user
database.

The passwd structure is defined in the <pwd.h> header file as follows:

pw_name The name of the user.
pw_uid The ID of the user.
pw_gid The group ID of the principle group of the user.
pw_dir The home directory of the user.
pw_shell The initial program for the user.

If an end-of-file or an error is encountered on reading, getpwent returns a NULL
pointer.

Because getpwent accesses the user authorization file (SYSUAF) directly, the
process must have appropriate privileges enabled or the function will fail.

Notes

All information generated by the getpwent function is stored in a per-
thread static area and is overwritten on subsequent calls to the function.

Password file entries that are too long are ignored.

REF–238



getpwent

Return Values

x Pointer to a passwd structure, if successful.
NULL Indicates an end-of-file or error occurred. The

function sets errno to one of the following values:

• EIO – Indicates that an I/O error occurred or
the user does not have appropriate privileges
enabled to access the user authorization file
(SYSUAF).

• EMFILE – OPEN_MAX file descriptors are
currently open in the calling process.

• ENFILE – The maximum allowable number
of files is currently open in the system.

REF–239



getpwnam, getpwnam_r

getpwnam, getpwnam_r

The getpwnam function returns information about a user database entry for the
specified name.

The getpwnam_r function is a reentrant version of getpwnam.

Format

#include <pwd.h>

struct passwd *getpwnam (const char *name); (ISO POSIX-1)

struct passwd *getpwnam (const char *name, . . . ); (HP C Extension)

int getpwnam_r (const char *name, struct passwd *pwd, char *buffer, size_t bufsize, struct passwd
**result); (ISO POSIX-1), (Alpha only)

int getpwnam_r (const char *name, struct passwd *pwd, char *buffer, size_t bufsize, struct passwd
**result, . . . ); (HP C Extension), (Alpha only)

Function Variants

The getpwnam and getpwnam_r functions have variants named _ _32_getpwnam,
_getpwnam_r32 and _ _64_getpwnam, _getpwnam_r64 for use with 32-bit and
64-bit pointer sizes, respectively. See Section 1.10 for more information on using
pointer-size-specific functions.

Arguments

name
The name of the user for which the attributes are to be read.

pwd
The address of a passwd structure into which the function writes its results.

buffer
A working buffer for the result argument that is able to hold the largest entry
in the passwd structure. Storage referenced by the passwd structure is allocated
from the memory provided with the buffer argument, which is bufsize characters
in length.

bufsize
The length of the character array that buffer points to.

result
Upon successful return, is set to pwd. Upon unsuccessful return, the result is set
to NULL.

. . .
An optional argument that can be either 1 or 0. If you specify 1, the directory
specification is returned in OpenVMS format. If you specify 0, the directory
specification (pathname) is returned in UNIX style format. If you omit this
argument, the function returns the directory specification according to your
current command-language interpreter. For more information about UNIX style
directory specifications, see Section 1.4.3.

REF–240



getpwnam, getpwnam_r

Description

The getpwnam function searches the user database for an entry with the specified
name. The function returns the first user entry in the database with the pw_name
member of the passwd structure that matches the name argument.

The passwd structure is defined in the <pwd.h> header file as follows:

pw_name The user’s login name.
pw_uid The numerical user ID.
pw_gid The numerical group ID.
pw_dir The home directory of the user.
pw_shell The initial program for the user.

Note

All information generated by the getpwnam function is stored in a per-
thread static area and is overwritten on subsequent calls to the function.

The getpwnam_r function is the reentrant version of getpwnam. The getpwnam_r
function updates the passwd structure pointed to by pwd and stores a pointer
to that structure at the location pointed to by result. The structure will contain
an entry from the user database that matches the specified name. Storage
referenced by the structure is allocated from the memory provided with the buffer
argument, which is bufsize characters in length. The maximum size needed for
this buffer can be determined with the _SC_GETPW_R_SIZE_MAX parameter of
the sysconf function. On error or if the requested entry is not found, a NULL
pointer is returned at the location pointed to by result.

Applications wishing to check for error situations should set errno to 0 before
calling getpwnam. If getpwnam returns a NULL pointer and errno is nonzero, an
error occurred.

Return Values

x getpwnam returns a pointer to a valid passwd
structure, if a matching entry is found.

NULL getpwnam returns NULL if an error occurred or
a the specified entry was not found. errno is set
to indicate the error. The getpwnam function may
fail if:

• EIO – An I/O error has occurred.

• EINTR – A signal was caught during
getpwnam.

• EMFILE – OPEN_MAX file descriptors are
currently open in the calling process.

• ENFILE – The maximum allowable number
of files is currently open in the system.

REF–241



getpwnam, getpwnam_r

0 When successful, getpwnam_r returns 0 and
stores a pointer to the updated passwd structure
at the location pointed to by result.

0 When unsuccessful (on error or if the requested
entry is not found), getpwnam_r returns 0 and
stores a NULL pointer at the location pointed to
by result. The getpwnam_r function may fail if:

• ERANGE – Insufficient storage was supplied
through buffer and bufsize to contain the
data to be referenced by the resulting passwd
structure.

REF–242



getpwuid, getpwuid_r (Alpha only)

getpwuid, getpwuid_r (Alpha only)

The getpwuid function returns information about a user database entry for the
specified uid.

The getpwuid_r function is a reentrant version of getpwuid.

Format

#include <pwd.h>

struct passwd *getpwuid (uid_t uid); (ISO POSIX-1)

struct passwd *getpwuid (uid_t uid, . . . ); (HP C Extension)

int getpwuid_r (uid_t uid, struct passwd *pwd, char *buffer, size_t bufsize, struct passwd **result); (ISO

POSIX-1)

int getpwuid_r (uid_t uid, struct passwd *pwd, char *buffer, size_t bufsize, struct passwd **result, . . . );
(HP C Extension)

Function Variants

The getpwuid and getpwuid_r functions have variants named _ _32_getpwuid,
_getpwuid_r32 and _ _64_getpwuid, _getpwuid_r64 for use with 32-bit and 64-
bit pointer sizes, respectively. See Section 1.10 for more information on using
pointer-size-specific functions.

Arguments

uid
The user ID (UID) for which the attributes are to be read.

pwd
The location where the retrieved passwd structure is to be placed.

buffer
A working buffer for the result argument that is able to hold the entry in the
passwd structure. Storage referenced by the passwd structure is allocated from
the memory provided with the buffer argument, which is bufsize characters in
size.

bufsize
The length of the character array that buffer points to.

result
Upon successful return, result is set to pwd. Upon unsuccessful return, result is
set to NULL.

. . .
An optional argument that can be either 1 or 0. If you specify 1, the directory
specification is returned in OpenVMS format. If you specify 0, the directory
specification (pathname) is returned in UNIX style format. If you omit this
argument, the function returns the directory specification according to your
current command-language interpreter. For more information about UNIX style
directory specifications, see Section 1.4.3.

REF–243



getpwuid, getpwuid_r (Alpha only)

Description

The getpwuid function searches the user database for an entry with the specified
uid. The function returns the first user entry in the database with a pw_uid
member of the passwd structure that matches the uid argument.

The passwd structure is defined in the <pwd.h> header file as follows:

pw_name The user’s login name.
pw_uid The numerical user ID.
pw_gid The numerical group ID.
pw_dir The home directory of the user.
pw_shell The initial program for the user.

Note

All information generated by the getpwuid function is stored in a per-
thread static area and is overwritten on subsequent calls to the function.

The getpwuid_r function is the reentrant version of getpwuid. The getpwuid_r
function updates the passwd structure pointed to by pwd and stores a pointer
to that structure at the location pointed to by result. The structure will contain
an entry from the user database with a matching uid. Storage referenced by
the structure is allocated from the memory provided with the buffer argument,
which is bufsize characters in size. The maximum size needed for this buffer can
be determined with the _SC_GETPW_R_SIZE_MAX parameter of the sysconf
function. On error or if the requested entry is not found, a NULL pointer is
returned at the location pointed to by result.

Applications wishing to check for error situations should set errno to 0 before
calling getpwuid. If getpwuid returns a NULL pointer and errno is nonzero, an
error occurred.

Return Values

x getpwuid returns a pointer to a valid passwd
structure, if a matching entry is found.

NULL getpwuid returns NULL if an error occurred or
a matching entry was not found. errno is set to
indicate the error. The getpwuid function may
fail if:

• EIO – An I/O error has occurred.

• EINTR – A signal was caught during
getpwnam.

• EMFILE – OPEN_MAX file descriptors are
currently open in the calling process.

• ENFILE – The maximum allowable number
of files is currently open in the system.

REF–244



getpwuid, getpwuid_r (Alpha only)

0 When successful, getpwuid_r returns 0 and
stores a pointer to the updated passwd structure
at the location pointed to by result.

0 When unsuccessful (on error or if the requested
entry is not found), getpwuid_r returns 0 and
stores a NULL pointer at the location pointed to
by result. The getpwuid_r function may fail if:

• ERANGE – Insufficient storage was supplied
through buffer and bufsize to contain the
data to be referenced by the resulting passwd
structure.

REF–245



gets

gets

Reads a line from the standard input (stdin).

Format

#include <stdio.h>

char *gets (char *str);

Function Variants

The gets function has variants named _gets32 and _gets64 for use with 32-bit
and 64-bit pointer sizes, respectively. See Section 1.10 for more information on
using pointer-size-specific functions.

Argument

str
A pointer to a character string that is large enough to hold the information
fetched from stdin.

Description

The new-line character ( \n ) that ends the line is replaced by the function with
an ASCII null character ( \0 ).

When stdin is opened in record mode, gets treats the end of a record the same
as a new-line character and, therefore, reads up to and including a new-line
character or to the end of the record.

Return Values

x A pointer to the str argument.
NULL Indicates that an error has occurred or that the

end-of-file was encountered before a new-line
character was encountered. The contents of str
are undefined if a read error occurs.

REF–246



getsid (Alpha only)

getsid (Alpha only)

Gets the process group ID of the session leader.

Format

#include <unistd.h>

pid_t getsid (pid_t pid);

Argument

pid
The process ID of the process whose session leader process group ID is being
requested.

Description

The getsid function obtains the process group ID of the process that is the
session leader of the process specified by pid. If pid is (pid_t)0, it specifies the
calling process.

Return Values

x The process group ID of the session leader of the
specified process.

(pid_t)�1 Indicates an error. The function sets errno to
one of the following values:

• EPERM – The process specified by pid is not
in the same session as the calling process,
and the implementation does not allow access
to the process group ID of the session leader
of that process from the calling process.

• ESRCH – There is no process with a process
ID of pid.

REF–247



[w]getstr

[w]getstr

Get a string from the terminal screen, store it in the variable str, and echo it on
the specified window. The getstr function works on the stdscr window.

Format

#include <curses.h>

int getstr (char *str);

int wgetstr (WINDOW *win, char *str);

Arguments

win
A pointer to the window.

str
Must be large enough to hold the character string fetched from the window.

Description

The getstr and wgetstr functions refresh the specified window before fetching
a string. The new-line terminator is stripped from the fetched string. For more
information, see the scrollok function.

Return Values

OK Indicates success.
ERR Indicates that the function makes the screen

scroll illegally.

REF–248



gettimeofday

gettimeofday

Gets the date and time.

Format

#include <time.h>

int gettimeofday (struct timeval *tp, void *tzp);

Arguments

tp
Pointer to a timeval structure, defined in the <time.h> header file.

tzp
A NULL pointer. If this argument is not a NULL pointer, it is ignored.

Description

The gettimeofday function gets the current time (expressed as seconds and
microseconds) since 00::00 Coordinated Universal Time, January 1, 1970. The
current time is stored in the timeval structure pointed to by the tp argument.

The tzp argument is intended to hold time-zone information set by the kernel.
However, because the OpenVMS kernel does not set time-zone information, the
tzp argument should be NULL. If it is not NULL, it is ignored. This function is
supported for compatibility with BSD programs.

If the value of the SYS$TIMEZONE_DIFFERENTIAL logical is wrong, the
function fails with errno set to EINVAL.

Return Values

0 Indicates success.
�1 An error occurred. errno is set to indicate the

error.

REF–249



getuid

getuid

With POSIX IDs disabled, this function is equivalent to geteuid and returns the
member number (in OpenVMS terms) from the user identification code (UIC).

With POSIX IDs enabled, returns the real user ID.

Format

#include <unistd.h>

uid_t getuid (void);

Description

The getuid function can be used with POSIX style identifiers or with UIC-based
identifiers.

POSIX style IDs are supported on OpenVMS Version 7.3-2 and higher.

With POSIX style IDs disabled (the default), the geteuid and getuid functions
are equivalent and return the member number from the current UIC as follows:

• For programs compiled with the _VMS_V6_SOURCE feature-test macro or
programs that do not include the <unistd.h> header file, the getuid and
geteuid functions return the member number of the OpenVMS UIC. For
example, if the UIC is [313,31], then the member number, 31, is returned.

• For programs compiled without the _VMS_V6_SOURCE feature-test macro
that do include the <unistd.h> header file, the full UIC is returned. For
example, if the UIC is [313, 31] then 20512799 (31 + 313 * 65536) is returned.

With POSIX style IDs enabled, geteuid returns the effective user ID of the
calling process, and getuid returns the real user ID of the calling process.

To enable/disable POSIX style IDs, see Section 1.7.

See also getegid and getgid.

Return Value

x The real user ID (POSIX IDs enabled), or the
member number from the current UIC or the full
UIC (POSIX IDs disabled).

REF–250



getw

getw

Returns characters from a specified file.

Format

#include <stdio.h>

int getw (FILE *file_ptr);

Argument

file_ptr
A pointer to the file to be accessed.

Description

The getw function returns the next four characters from the specified input file as
an int.

Return Values

x The next four characters, in an int.
EOF Indicates that the end-of-file was encountered

during the retrieval of any of the four characters
and all four characters were lost. Since EOF is
an acceptable integer, use feof and ferror to
check the success of the function.

REF–251



getwc

getwc

Reads the next character from a specified file, and converts it to a wide-character
code.

Format

#include <wchar.h>

wint_t getwc (FILE *file_ptr);

Argument

file_ptr
A pointer to the file to be accessed.

Description

Since getwc is implemented as a macro, a file pointer argument with side effects
(for example getwc (*f++)) might be evaluated incorrectly. In such a case, use
the fgetwc function instead. See the fgetwc function.

Return Values

n The returned character.
WEOF Indicates the end-of-file or an error. If an error

occurs, the function sets errno. For a list of the
values set by this function, see fgetwc.

REF–252



getwchar

getwchar

Reads a single wide character from the standard input (stdin).

Format

#include <wchar.h>

wint_t getwchar (void);

Description

The getwchar function is identical to fgetwc(stdin).

Return Values

x The next character from stdin, converted to
wint_t.

WEOF Indicates the end-of-file or an error. If an error
occurs, the function sets errno. For a list of the
values set by this function, see fgetwc.

REF–253



getyx

getyx

Puts the (y,x) coordinates of the current cursor position on win in the variables y
and x.

Format

#include <curses.h>

getyx (WINDOW *win, int y, int x);

Arguments

win
Must be a pointer to the window.

y
Must be a valid lvalue.

x
Must be a valid lvalue.

REF–254



glob

glob

Returns a list of existing files for a user supplied pathname (with optional
wildcards).

Format

#include <glob.h>

int glob (const char *pattern, int flags, int (*errfunc)(const char *epath, int eerrno), glob_t *pglob);

Arguments

pattern
The pattern string to match with accessible files and pathnames. This pattern
can have wildcards.

flags
Controls the customizable behavior of the glob function.

errfunc
An optional function that, if specified, is called when the glob function detects an
error condition, or if not specified, is NULL.

epath
First argument of the optional errfunc function, epath is the pathname that failed
because a directory could not be opened or read.

eerrno
Second argument of the optional errfunc function, eerrno is the errno value from
a failure specified by the epath argument as set by the opendir, readdir, or stat
functions.

pglob
Pointer to a glob_t structure that returns the matching accessible existing
filenames. The structure is allocated by the caller. The array of structures
containing the located filenames that match the pattern argument are stored by
the glob function into the structure. The last entry is a NULL pointer.

The structure type glob_t is defined in the <glob.h> header file and includes at
least the following members:

size_t gl_pathc //Count of paths matched by pattern.
char ** gl_pathv //Pointer to a list of matched pathnames.
size_t gl_offs //Slots to reserve at the beginning of gl_pathv.

Description

The glob function constructs a list of accessible files that match the pattern
argument.

The glob function can operate in two modes: UNIX mode and OpenVMS mode.

You can select UNIX mode explicitly by enabling the feature logical
DECC$GLOB_UNIX_STYLE, which is disabled by default.

REF–255



glob

The glob function defaults to OpenVMS mode unless one of the following
conditions is met (in which case glob uses UNIX mode):

• The DECC$GLOB_UNIX_STYLE is enabled.

• The DECC$FILENAME_UNIX_ONLY feature logical is enabled.

• The glob function checks the specified pattern for pathname indications, such
as directory delimiters, and determines it to be a UNIX style pathname.

OpenVMS mode

This mode allows an OpenVMS programmer to give an OpenVMS style pattern
to the glob function and get expected OpenVMS style output. The OpenVMS
style pattern is what a user would expect from DCL commands or as input to the
SYS$PARSE and SYS$SEARCH system routines.

In this mode, you can use any of the expected OpenVMS wildcards (see the
OpenVMS documentation for additional information).

OpenVMS mode does not support the UNIX wildcard ?, or [ ] pattern matching.
OpenVMS users expect [ ] to be available as directory delimiters.

Some additional behavior differences between OpenVMS mode and UNIX mode:

• OpenVMS mode outputs full file specifications, not relative ones, as in UNIX
mode.

• The GLOB_MARK flag is ignored in OpenVMS mode because it is not
meaningful to append a slash ( / ) to a directory on OpenVMS.

For example:

Sample pattern input Sample output

[.SUBDIR1]A.TXT DEV:[DIR.SUBDIR1]A.TXT;1
[.SUB*]%.* DEV:[DIR.SUBDIR1]A.TXT;1

UNIX mode

You can enable this mode explicitly with:

$ DEFINE DECC$GLOB_UNIX_STYLE ENABLE

UNIX mode is also enabled if the DECC$FILENAME_UNIX_ONLY feature
logical is set, or if the glob function determines that the specified pattern looks
like a UNIX style pathname.

In UNIX mode, the glob function follows the X/Open specification where possible.

For example:

Sample pattern input Sample output

./a/b/c ./a/b/c

./?/b/* ./a/b/c
[a-c] c

Standard Description

The glob function matches all accessible pathnames against this pattern and
develops a list of all pathnames that match. To have access to a pathname, the
glob function requires search permission on every component of a pathname
except the last, and read permission on each directory of any filename component
of the pattern argument.

REF–256



glob

The glob function stores the number of matched pathnames and a pointer to a
list of pointers to pathnames in the pglob argument. The pathnames are sorted,
based on the setting of the LC_COLLATE category in the current locale. The
first pointer after the last pathname is NULL. If the pattern does not match any
pathnames, the returned number of matched pathnames is 0.

It is the caller’s responsibility to create the structure pointed to by the pglob
argument. The glob function allocates other space as needed. The globfree
function frees any space associated with the pglob argument as a result of a
previous call to the glob function.

The flags argument is used to control the behavior of the glob function. The flags
value is the bitwise inclusive OR ( | ) of any of the following constants, which are
defined in the <glob.h> header file:

GLOB_APPEND Appends pathnames located with this call to any
pathnames previously located.

GLOB_DOOFFS Uses the gl_offs structure to specify the number of NULL
pointers to add to the beginning of the gl_pathv component
of the pglob argument.

GLOB_ERR Causes the glob function to return when it encounters a
directory that it cannot open or read. If the GLOB_ERR
flag is not set, the glob function continues to find matches
if it encounters a directory that it cannot open or read.

GLOB_MARK Specifies that each pathname that is a directory should
have a slash ( / ) appended. GLOB_MARK is ignored in
OpenVMS mode because it is not meaningful to append a
slash to a directory on OpenVMS systems.

GLOB_NOCHECK If the pattern argument does not match any pathname,
then the glob function returns a list consisting only of the
pattern argument, and the number of matched pathnames
is 1.

GLOB_
NOESCAPE

If the GLOB_NOESCAPE flag is set, a backslash ( \ )
cannot be used to escape metacharacters.

The GLOB_APPEND flag can be used to append a new set of pathnames to those
found in a previous call to the glob function. The following rules apply when
two or more calls to the glob function are made with the same value of the pglob
argument, and without intervening calls to the globfree function:

• If the application sets the GLOB_DOOFFS flag in the first call to the glob
function, then it is also set in the second call, and the value of the gl_offs
field of the pglob argument is not modified between the calls.

• If the application did not set the GLOB_DOOFFS flag in the first call to the
glob function, then it is not set in the second call.

• After the second call, pglob->gl_pathv points to a list containing the
following:

Zero or more NULLs, as specified by the GLOB_DOOFFS flag and
pglob->gl_offs.

Pointers to the pathnames that were in the pglob->gl_pathv list before
the call, in the same order as after the first call to the glob function.

Pointers to the new pathnames generated by the second call, in the
specified order.

REF–257



glob

• The count returned in the pglob->gl_offs argument is the total number of
pathnames from the two calls.

• The application should not modify the pglob->gl_pathc or pglob->gl_pathv
fields between the two calls.

On successful completion, the glob function returns a value of 0 (zero).
The pglob->gl_pathc field returns the number of matched pathnames and
the pglob->gl_pathv field contains a pointer to a NULL-terminated list of
matched and sorted pathnames. If the number of matched pathnames in the
pglob->gl_pathc argument is 0 (zero), the pointer in the pglob->gl_pathv
argument is undefined.

If the glob function terminates because of an error, the function returns one
of the nonzero constants GLOB_ABORTED, GLOB_NOMATCH, or GLOB_
NOSPACE, defined in the <glob.h> header file. In this case, the pglob argument
values are still set as defined above.

If, during the search, a directory is encountered that cannot be opened or read
and the errfunc argument value is not NULL, the glob function calls errfunc with
the two arguments epath and eerno:

epath—The pathname that failed because a directory could not be opened or
read.
eerno—The errno value from a failure specified by the epath argument as set
by the opendir, readdir, or stat functions.

If errfunc is called and returns nonzero, or if the GLOB_ERR flag is set in flags,
the glob function stops the scan and returns GLOB_ABORTED after setting the
pglob argument to reflect the pathnames already scanned. If GLOB_ERR is not
set and either errfunc is NULL or errfunc returns zero, the error is ignored.

No errno values are returned.

See also globfree, fnmatch, readdir, and stat,

Return Values

0 Successful completion.
GLOB_ABORTED The scan was stopped because GLOB_ERROR

was set or errfunc returned a nonzero value.
GLOB_NOMATCH The pattern does not match any existing

pathname, and GLOB_NOCHECK was not
set in flags.

GLOB_NOSPACE An attempt to allocate memory failed.

REF–258



globfree

globfree

Frees any space associated with the pglob argument resulting from a previous
call to the glob function.

Format

#include <glob.h>

void globfree (glob_t *pglob);

Argument

pglob
Pointer to a previously allocated glob_t structure.

Description

The globfree function frees any space associated with the pglob argument
resulting from a previous call to the glob function. The globfree function
returns no value.

REF–259



gmtime, gmtime_r

gmtime, gmtime_r

Converts time units to the broken-down UTC time.

Format

#include <time.h>

struct tm *gmtime (const time_t *timer);

struct tm *gmtime_r (const time_t *timer, struct tm *result); (ISO POSIX-1)

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the gmtime_r function
that is equivalent to the behavior before OpenVMS Version 7.0.

Arguments

timer
Points to a variable that specifies a time value in seconds since the Epoch.

result
A pointer to a tm structure where the result is stored.

The tm structure is defined in the <time.h> header, and is also shown in
Table REF–4 in the description of localtime.

Description

The gmtime and gmtime_r functions convert the time (in seconds since the Epoch)
pointed to by timer into a broken-down time, expressed as Coordinated Universal
Time (UTC), and store it in a tm structure.

The difference between the gmtime_r and gmtime functions is that the former
puts the result into a user-specified tm structure where the result is stored. The
latter puts the result into thread-specific static memory allocated by the HP C
RTL, and which is overwritten by subsequent calls to gmtime; you must make a
copy if you want to save it.

On success, gmtime returns a pointer to the tm structure; gmtime_r returns its
second argument. On failure, these functions return the NULL pointer.

Note

Generally speaking, UTC-based time functions can affect in-memory time-
zone information, which is processwide data. However, if the system time
zone remains the same during the execution of the application (which is
the common case) and the cache of timezone files is enabled (which is the
default), then the _r variant of the time functions asctime_r, ctime_r,
gmtime_r and localtime_r, is both thread-safe and AST-reentrant.

If, however, the system time zone can change during the execution of
the application or the cache of timezone files is not enabled, then both
variants of the UTC-based time functions belong to the third class of
functions, which are neither thread-safe nor AST-reentrant.

REF–260



gmtime, gmtime_r

Return Values

x Pointer to a tm structure.
NULL Indicates an error; errno is set to the following

value:

• EINVAL – The timer argument is NULL.

REF–261



gsignal

gsignal

Generates a specified software signal, which invokes the action routine
established by a signal, ssignal, or sigvec function.

Format

#include <signal.h>

int gsignal (int sig [, int sigcode]);

Arguments

sig
The signal to be generated.

sigcode
An optional signal code. For example, signal SIGFPE—the arithmetic trap
signal—has 10 different codes, each representing a different type of arithmetic
trap.

The signal codes can be represented by mnemonics or numbers. The arithmetic
trap codes are represented by the numbers 1 to 10, but the SIGILL codes
are represented by the numbers 0 to 2. The code values are defined in the
<signal.h> header file. See Tables 4–4 and 4–5 for a list of signal mnemonics,
codes, and corresponding OpenVMS exceptions.

Description

Calling the gsignal function has one of the following results:

• If gsignal specifies a sig argument that is outside the range defined in the
<signal.h> header file, then gsignal returns 0 and sets errno to EINVAL.

• If signal, ssignal, or sigvec establishes SIG_DFL (default action) for
the signal, then gsignal does not return. The image is exited with the
OpenVMS error code corresponding to the signal.

• If signal, ssignal, or sigvec establishes SIG_IGN (ignore signal) as the
action for the signal, then gsignal returns its argument, sig.

• signal, ssignal, or sigvec must be used to establish an action routine for the
signal. That function is called and its return value is returned by gsignal.

See Chapter 4 for more information.

See also raise, signal, ssignal, and sigvec.

Return Values

0 Indicates a sig argument that is outside the
range defined in the <signal.h> header file;
errno is set to EINVAL.

sig Indicates that SIG_IGN (ignore signal) has been
established as the action for the signal.

REF–262



gsignal

x Indicates that signal, ssignal, or sigvec has
established an action function for the signal.
That function is called, and its return value is
returned by gsignal.

REF–263



hypot

hypot

Returns the length of the hypotenuse of a right triangle.

Format

#include <math.h>

double hypot (double x, double y);

float hypotf (float x, float y); (Alpha only)

long double hypotl (long double x, long double y); (Alpha only)

Arguments

x
A real value.

y
A real value.

Description

The hypot functions return the length of the hypotenuse of a right triangle, where
x and y represent the perpendicular sides of the triangle. The length is calculated
as:

sqrt(x2 + y2)

On overflow, the return value is undefined, and errno is set to ERANGE.

Return Values

x The length of the hypotenuse.
HUGE_VAL Overflow occurred; errno is set to ERANGE.
0 Underflow occurred; errno is set to ERANGE.
NaN x or y is NaN; errno is set to EDOM.

REF–264



iconv

iconv

Converts characters coded in one codeset to characters coded in another codeset.

Format

#include <iconv.h>

size_t iconv (iconv_t cd, const char **inbuf, size_t *inbytesleft, char **outbuf, size_t *outbytesleft);

Arguments

cd
A conversion descriptor. This is returned by a successful call to iconv_open.

inbuf
A pointer to a variable that points to the first character in the input buffer.

inbytesleft
Initially, this argument is a pointer to a variable that indicates the number of
bytes to the end of the input buffer (inbuf). When the conversion is completed,
the variable indicates the number of bytes in inbuf not converted.

outbuf
A pointer to a variable that points to the first available byte in the output buffer.
The output buffer contains the converted characters.

outbytesleft
Initially, this argument is a pointer to a variable that indicates the number of
bytes to the end of the output buffer (outbuf). When the conversion is completed,
the variable indicates the number of bytes left in outbuf.

Description

The iconv function converts characters in the buffer pointed to by inbuf to
characters in another code set. The resulting characters are stored in the buffer
pointed to by outbuf. The conversion type is specified by the conversion descriptor
cd. This descriptor is returned from a successful call to iconv_open.

If an invalid character is found in the input buffer, the conversion stops after
the last successful conversion. The variable pointed to by inbytesleft is updated
to reflect the number of bytes in the input buffer that are not converted. The
variable pointed to by outbytesleft is updated to reflect the number of bytes
remaining in the output buffer.

Return Values

x Number of nonidentical conversions performed.
Indicates successful conversion. In most cases, 0
is returned.

REF–265



iconv

(size_t) �1 Indicates an error condition. The function sets
errno to one of the following:

• EBADF – The cd argument is not a valid
conversion descriptor.

• EILSEQ – The conversion stops when an
invalid character detected.

• E2BIG – The conversion stops because of
insufficient space in the output buffer.

• EINVAL – The conversion stops because of
an incomplete character at the end of the
input buffer.

REF–266



iconv_close

iconv_close

Deallocates a specified conversion descriptor and the resources allocated to the
descriptor.

Format

#include <iconv.h>

int iconv_close (iconv_t cd);

Argument

cd
The conversion descriptor to be deallocated. A conversion descriptor is returned
by a successful call to iconv_open.

Return Values

0 Indicates that the conversion descriptor was
successfully deallocated.

�1 Indicates an error occurred. The function sets
errno to one of the following:

• EBADF – The cd argument is not a valid
conversion descriptor.

• EVMSERR – Nontranslatable OpenVMS
error occur. vaxc$errno contains the VMS
error code.

REF–267



iconv_open

iconv_open

Allocates a conversion descriptor for a specified codeset conversion.

Format

#include <iconv.h>

iconv_t iconv_open (const char *tocode, const char *fromcode);

Arguments

tocode
The name of the codeset to which characters are converted.

fromcode
The name of the source codeset. See Chapter 10 for information on obtaining a
list of currently available codesets or for details on adding new codesets.

Return Values

x A conversion descriptor. Indicates the call was
successful. This descriptor is used in subsequent
calls to iconv

(iconv_t) �1 Indicates an error occurred. The function sets
errno to one of the following:

• EMFILE – The process does not have enough
I/O channels to open a file.

• ENOMEM – Insufficient space is available.

• EINVAL – The conversion specified by
fromcode and tocode is not supported.

• EVMSERR – Nontranslatable OpenVMS
error occur. vaxc$errno contains the
OpenVMS error code. A value of SS$_
BADCHKSUM in vaxc$errno indicates
that a conversion table file was found, but
its contents is corrupted. A value of SS$_
IDMISMATCH in vaxc$errno indicates that
the conversion table file version does not
match the version of the C Run-Time Library.

Example
#include <stdio.h>
#include <iconv.h>
#include <errno.h>

int main()
{
/* Declare variables to be used */

REF–268



iconv_open

char fromcodeset[30];
char tocodeset[30];
int iconv_opened;
iconv_t iconv_struct; /* Iconv descriptor */

/* Initialize variables */

sprintf(fromcodeset, "DECHANYU");
sprintf(tocodeset, "EUCTW");
iconv_opened = FALSE;

/* Attempt to create a conversion descriptor for the */
/* codesets specified. If the return value from */
/* iconv_open is -1 then an error has occurred. */
/* Check the value of errno. */

if ((iconv_struct = iconv_open(tocodeset, fromcodeset))
== (iconv_t) - 1) {

/* Check the value of errno */

switch (errno) {
case EMFILE:
case ENFILE:

printf("Too many iconv conversion files open\n");
break;

case ENOMEM:
printf("Not enough memory\n");
break;

case EINVAL:
printf("Unsupported conversion\n");
break;

default:
printf("Unexpected error from iconv_open\n");
break;

}
}
else

/* Successfully allocated a conversion descriptor */

iconv_opened = TRUE;

/* Was a conversion descriptor allocated */

if (iconv_opened) {

/* Attempt to deallocate the conversion descriptor. */
/* If iconv_close returns -1 then an error has */
/* occurred. */

if (iconv_close(iconv_struct) == -1) {

/* An error occurred. Check the value of errno */

switch (errno) {
case EBADF:

printf("Conversion descriptor is invalid\n");
break;

default:
printf("Unexpected error from iconv_close\n");
break;

}
}

}
return (EXIT_FAILURE);

}

REF–269



[w]inch

[w]inch

Return the character at the current cursor position on the specified window
without making changes to the window. The inch function acts on the stdscr
window.

Format

#include <curses.h>

char inch( );

char winch (WINDOW *win);

Argument

win
A pointer to the window.

Return Values

x The returned character.
ERR Indicates an input error.

REF–270



index

index

Search for a character in a string.

Format

#include <strings.h>

char *index (const char *s, int c);

Function Variants

The index function has variants named _index32 and _index64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

s
The string to search.

c
The character to search for.

Description

The index function is identical to the strchr function, and is provided for
compatibility with some UNIX implementations.

REF–271



initscr

initscr

Initializes the terminal-type data and all screen functions. You must call initscr
before using any of the curses functions.

Format

#include <curses.h>

void initscr (void);

Description

The OpenVMS Curses version of the initscr function clears the screen before
doing the initialization. The BSD-based Curses version does not.

REF–272



initstate

initstate

Initializes random-number generators.

Format

#include <stdlib.h>

char *initstate (unsigned int seed, char *state, int size);

Arguments

seed
An initial seed value.

state
Pointer to an array of state information.

size
The size of the state information array.

Description

The initstate function initializes random-number generators. It lets you
initialize, for future use, a state array passed as an argument. The size, in bytes,
of the state array is used by the initstate function to decide how sophisticated a
random-number generator to use; the larger the state array, the more random the
numbers.

Values for the amount of state information are 8, 32, 64, 128, and 256 bytes.
Amounts less than 8 bytes generate an error, while other amounts are rounded
down to the nearest known value.

The seed argument specifies a starting point for the random-number sequence
and provides for restarting at the same point. The initstate function returns a
pointer to the previous state information array.

Once you initialize a state, the setstate function allows rapid switching between
states. The array defined by the state argument is used for further random-
number generation until the initstate function is called or the setstate
function is called again. The setstate function returns a pointer to the previous
state array.

After initialization, you can restart a state array at a different point in one of two
ways:

• Use the initstate function with the desired seed argument, state array, and
size of the array.

• Use the setstate function with the desired state, followed by the srandom
function with the desired seed. The advantage of using both functions is that
you do not have to save the state array size once you initialize it.

See also setstate, srandom, and random.

REF–273



initstate

Return Values

x A pointer to the previous state array information.
0 Indicates an error. Call made with less than 8

bytes of state information. Further specified in
the global errno.

REF–274



[w]insch

[w]insch

Insert a character at the current cursor position in the specified window. The
insch function acts on the stdscr window.

Format

#include <curses.h>

int insch (char ch);

int winsch (WINDOW *win, char ch);

Arguments

win
A pointer to the window.

ch
The character to be inserted.

Description

After the character is inserted, each character on the line shifts to the right, and
the last character in the line is deleted. For more information, see the scrollok
function.

Return Values

OK Indicates success.
ERR Indicates that the function makes the screen

scroll illegally.

REF–275



[w]insertln

[w]insertln

Insert a line above the line containing the current cursor position. The insertln
function acts on the stdscr window.

Format

#include <curses.h>

int insertln( );

int winsertln (WINDOW *win);

Argument

win
A pointer to the window.

Description

The current line and every line below it shifts down, and the bottom line
disappears. The inserted line is blank and the current (y,x) coordinates remain
the same. For more information, see the scrollok function.

Return Values

OK Indicates success.
ERR Indicates that the function makes the screen

scroll illegally.

REF–276



[w]insstr

[w]insstr

Insert a string at the current cursor position in the specified window. The insstr
function acts on the stdscr window.

Format

#include <curses.h>

int insstr (char *str);

int winsstr (WINDOW *win, char *str);

Arguments

win
A pointer to the window.

str
A pointer to the string to be inserted.

Description

Each character after the string shifts to the right, and the last character
disappears. These functions are specific to HP C for OpenVMS Systems and
are not portable.

Return Values

OK Indicates success.
ERR Indicates that the function makes the screen

scroll illegally. For more information, see the
scrollok function.

REF–277



isalnum

isalnum

Indicates if a character is classed either as alphabetic or as a digit in the
program’s current locale.

Format

#include <ctype.h>

int isalnum (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If alphanumeric.
0 If not alphanumeric.

REF–278



isalpha

isalpha

Indicates if a character is classed as an alphabetic character in the program’s
current locale.

Format

#include <ctype.h>

int isalpha (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If alphabetic.
0 If not alphabetic.

REF–279



isapipe

isapipe

Indicates if a specified file descriptor is associated with a pipe.

Format

#include <unixio.h>

int isapipe (int file_desc);

Argument

file_desc
A file descriptor.

Description

For more information about pipes, see Chapter 5.

Return Values

1 Indicates an association with a pipe.
0 Indicates no association with a pipe.
�1 Indicates an error (for example, if the file

descriptor is not associated with an open file).

REF–280



isascii

isascii

Indicates if a character is an ASCII character.

Format

#include <ctype.h>

int isascii (int character);

Argument

character
An object of type char.

Return Values

nonzero If ASCII.
0 If not ASCII.

REF–281



isatty

isatty

Indicates if a specified file descriptor is associated with a terminal.

Format

#include <unistd.h>

int isatty (int file_desc);

Argument

file_desc
A file descriptor.

Return Values

1 If the file descriptor is associated with a
terminal.

0 If the file descriptor is not associated with a
terminal.

�1 Indicates an error (for example, if the file
descriptor is not associated with an open file).

REF–282



iscntrl

iscntrl

Indicates if a character is classed as a control character in the program’s current
locale.

Format

#include <ctype.h>

int iscntrl (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If a control character.
0 If not a control character.

REF–283



isdigit

isdigit

Indicates if a character is classed as a digit in the program’s current locale.

Format

#include <ctype.h>

int isdigit (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If a decimal digit.
0 If not a decimal digit.

REF–284



isgraph

isgraph

Indicates if a character is classed as a graphic character in the program’s current
locale.

Format

#include <ctype.h>

int isgraph (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If a graphic character.
0 If not a graphic character.

REF–285



islower

islower

Indicates if a character is classed as a lowercase character in the program’s
current locale.

Format

#include <ctype.h>

int islower (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If a lowercase alphabetic character.
0 If not a lowercase alphabetic character.

REF–286



isnan (Alpha only)

isnan (Alpha only)

Tests for a NaN. Returns 1 if the argument is NaN; 0 if not.

Format

#include <math.h>

int isnan (double x);

int isnanf (float x);

int isnanl (long double x);

Argument

x
A real value.

Description

The isnan functions return the integer value 1 (TRUE) if x is NaN (the IEEE
floating point reserved not-a-number value); otherwise, they return the value 0
(FALSE).

REF–287



isprint

isprint

Indicates if a character is classed as a printing character in the program’s current
locale.

Format

#include <ctype.h>

int isprint (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If a printing character.
0 If not a printing character.

REF–288



ispunct

ispunct

Indicates if a character is classed as a punctuation character in the program’s
current locale.

Format

#include <ctype.h>

int ispunct (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If a punctuation character.
0 If not a punctuation character.

REF–289



isspace

isspace

Indicates if a character is classed as white space in the program’s current locale;
that is, if it is an ASCII space, tab (horizontal or vertical), carriage-return,
form-feed, or new-line character.

Format

#include <ctype.h>

int isspace (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If a white-space character.
0 If not a white-space character.

REF–290



isupper

isupper

Indicates if a character is classed as an uppercase character in the program’s
current locale.

Format

#include <ctype.h>

int isupper (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char or must equal the value of the macro EOF. If it has any other
value, the behavior is undefined.

Return Values

nonzero If an uppercase alphabetic character.
0 If not an uppercase alphabetic character.

REF–291



iswalnum

iswalnum

Indicates if a wide character is classed either as alphabetic or as a digit in the
program’s current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswalnum (wint_t wc);

Argument

wc
An object of type wint_t. The value of character must be representable as a
wchar_t in the current locale, or must equal the value of the macro WEOF. If it
has any other value, the behavior is undefined.

Return Values

nonzero If alphanumeric.
0 If not alphanumeric.

REF–292



iswalpha

iswalpha

Indicates if a wide character is classed as an alphabetic character in the
program’s current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswalpha (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If alphabetic.
0 If not alphabetic.

REF–293



iswcntrl

iswcntrl

Indicates if a wide character is classed as a control character in the program’s
current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswcntrl (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If a control character.
0 If not a control character.

REF–294



iswctype

iswctype

Indicates if a wide character has a specified property.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswctype (wint_t wc, wctype_t wc_prop);

Arguments

wc
An object of type wint_t. The value of wc must be representable as a valid
wide-character code in the current locale, or must equal the value of the macro
WEOF. If it has any other value, the behavior is undefined.

wc_prop
A valid property name in the current locale. This is set up by calling the wctype
function.

Description

The iswctype function tests whether wc has the character-class property wc_prop.
Set wc_prop by calling the wctype function.

See also wctype.

Return Values

nonzero If the character has the property wc_prop.
0 If the character does not have the property

wc_prop.

Example
#include <locale.h>
#include <wchar.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/* This test will set up the "upper" character class using */
/* wctype() and then verify whether the characters ’a’ and ’A’ */
/* are members of this class */

#include <stdlib.h>

main()
{

wchar_t w_char1,
w_char2;

wctype_t ret_val;

char *char1 = "a";
char *char2 = "A";

ret_val = wctype("upper");

REF–295



iswctype

/* Convert char1 to wide-character format - w_char1 */

if (mbtowc(&w_char1, char1, 1) == -1) {
perror("mbtowc");
exit(EXIT_FAILURE);

}

if (iswctype((wint_t) w_char1, ret_val))
printf("[%C] is a member of the character class upper\n",

w_char1);
else
printf("[%C] is not a member of the character class upper\n",

w_char1);

/* Convert char2 to wide-character format - w_char2 */

if (mbtowc(&w_char2, char2, 1) == -1) {
perror("mbtowc");
exit(EXIT_FAILURE);

}

if (iswctype((wint_t) w_char2, ret_val))
printf("[%C] is a member of the character class upper\n",

w_char2);
else
printf("[%C] is not a member of the character class upper\n",

w_char2);
}

Running the example program produces the following result:

[a] is not a member of the character class upper
[A] is a member of the character class upper

REF–296



iswdigit

iswdigit

Indicates if a wide character is classed as a digit in the program’s current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswdigit (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If a decimal digit.
0 If not a decimal digit.

REF–297



iswgraph

iswgraph

Indicates if a wide character is classed as a graphic character in the program’s
current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswgraph (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If a graphic character.
0 If not a graphic character.

REF–298



iswlower

iswlower

Indicates if a wide character is classed as a lowercase character in the program’s
current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswlower (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If a lowercase character.
0 If not a lowercase character.

REF–299



iswprint

iswprint

Indicates if a wide character is classed as a printing character in the program’s
current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswprint (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If a printing character.
0 If not a printing character.

REF–300



iswpunct

iswpunct

Indicates if a wide character is classed as a punctuation character in the
program’s current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswpunct (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If a punctuation character.
0 If not a punctuation character.

REF–301



iswspace

iswspace

Indicates if a wide character is classed as a space character in the program’s
current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswspace (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If a white-space character.
0 If not a white-space character.

REF–302



iswupper

iswupper

Indicates if a wide character is classed as an uppercase character in the program’s
current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswupper (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If an uppercase character.
0 If not an uppercase character.

REF–303



iswxdigit

iswxdigit

Indicates if a wide character is a hexadecimal digit (0 to 9, A to F, or a to f) in the
program’s current locale.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int iswxdigit (wint_t wc);

Argument

wc
An object of type wint_t. The value of wc must be representable as a wchar_t
in the current locale, or must equal the value of the macro WEOF. If it has any
other value, the behavior is undefined.

Return Values

nonzero If a hexadecimal digit.
0 If not a hexadecimal digit.

REF–304



isxdigit

isxdigit

Indicates if a character is a hexadecimal digit (0 to 9, A to F, or a to f) in the
program’s current locale.

Format

#include <ctype.h>

int isxdigit (int character);

Argument

character
An object of type int. The value of character must be representable as an
unsigned char in the current locale, or must equal the value of the macro EOF. If
it has any other value, the behavior is undefined.

Return Values

nonzero If a hexadecimal digit.
0 If not a hexadecimal digit.

REF–305



j0, j1, jn (Alpha only)

j0, j1, jn (Alpha only)

Compute Bessel functions of the first kind.

Format

#include <math.h>

double j0 (double x);

float j0f (float x);

long double j0l (long double x);

double j1 (double x);

float j1f (float x);

long double j1l (long double x);

double jn (int n, double x);

float jnf (int n, float x);

long double jnl (int n, long double x);

Arguments

x
A real value.

n
An integer.

Description

The j0 functions return the value of the Bessel function of the first kind of order
0.

The j1 functions return the value of the Bessel function of the first kind of order
1.

The jn functions return the value of the Bessel function of the first kind of order
n.

The j1 and jn functions can result in an underflow as x gets small. The largest
value of x for which this occurs is a function of n.

Return Values

x The relevant Bessel value of x of the first kind.
0 The value of the x argument is too large, or

underflow occurred; errno is set to ERANGE.
NaN x is NaN; errno is set to EDOM.

REF–306



jrand48

jrand48

Generate uniformly distributed pseudorandom-number sequences. Returns 48-bit
signed, long integers.

Format

#include <stdlib.h>

long int jrand48 (unsigned short int xsubi[3]);

Argument

xsubi
An array of three short ints that form a 48-bit integer when concatentated
together.

Description

The jrand48 function generates pseudorandom numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

The function returns signed long integers uniformly distributed over the range of
y values, such that ��31 � y < �31.

The function works by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+1 = (aXn+c)mod m n >= 0

The argument m equals �48, so 48-bit integer arithmetic is performed. Unless you
invoke the lcong48 function, the multiplier value a and the addend value c are:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

The jrand48 function requires that the calling program pass an array as the
xsubi argument, which for the first call must be initialized to the initial value
of the pseudorandom-number sequence. Unlike the drand48 function, it is not
necessary to call an initialization function prior to the first call.

By using different arguments, jrand48 allows separate modules of a large
program to generate several independent sequences of pseudorandom numbers.
For example, the sequence of numbers that one module generates does not depend
upon how many times the function is called by other modules.

Return Value

n Signed, long integers uniformly distributed over
the range ��31 � y < �31.

REF–307



kill

kill

Sends a signal to the process specified by a process ID.

Format

#include <signal.h>

int kill (int pid, int sig);

Arguments

pid
The process ID.

sig
The signal code.

Description

The kill function is restricted to C and C++ programs that include the main
function.

The kill function sends a signal to a process, as if the process had called raise.
If the signal is not trapped or ignored by the target program, the program exits.

OpenVMS VAX and Alpha implement different rules about what process you are
allowed to send signals to. A program always has privileges to send a signal to a
child started with vfork/exec. For other processes, the results are determined by
the OpenVMS security model for your system.

Because of an OpenVMS restriction, the kill function cannot deliver a signal to
a target process that runs an image installed with privileges.

Unless you have system privileges, the sending and receiving processes must
have the same user identification code (UIC).

On OpenVMS systems before Version 7.0, kill treats a signal value of 0 as if
SIGKILL were specified.

For OpenVMS Version 7.0 and higher systems, if you include <stdlib.h> and
compile with the _POSIX_EXIT feature-test macro set, then:

• If the signal value is 0, kill validates the process ID but does not send any
signals.

• If the process ID is not valid, kill returns �1 and sets errno to ESRCH.

Return Values

0 Indicates that kill was successfully queued.
�1 Indicates errors. The receiving process may have

a different UIC and you are not a system user, or
the receiving process does not exist.

REF–308



l64a (Alpha only)

l64a (Alpha only)

Converts a long integer to a character string.

Format

#include <stdlib.h>

char *l64a (long l);

Argument

l
A long integer that is to be converted to a character string.

Description

The a64l and l64a functions are used to maintain numbers stored in base-64
ASCII characters:

• a64l converts a character string to a long integer.

• l64a converts a long integer to a character string.

Each character used to store a long integer represents a numeric value from 0
through 63. Up to six characters can be used to represent a long integer.

The characters are translated as follows:

• A period ( . ) represents 0.

• A slash ( / ) represents 1.

• The numbers 0 through 9 represent 2 through 11.

• Uppercase letters A through Z represent 12 through 37.

• Lowercase letters a through z represent 38 through 63.

The l64a function takes a long integer and returns a pointer to a corresponding
base-64 notation of the least significant 32 bits.

The value returned by l64a is a pointer to a thread-specific buffer whose contents
are overwritten on subsequent calls from the same

See also a64l.

Return Value

x Upon successful completion, a pointer to the
corresponding base-64 ASCII character-string
notation. If the l parameter is 0, l64a returns a
pointer to an empty string.

REF–309



labs

labs

Returns the absolute value of an integer as a long int.

Format

#include <stdlib.h>

long int labs (long int j);

Argument

j
A value of type long int.

REF–310



lcong48

lcong48

Initializes a 48-bit uniformly distributed pseudorandom-number sequence.

Format

#include <stdlib.h>

void lcong48 (unsigned short int param[7]);

Argument

param
An array that in turn specifies the initial Xi, the multiplier value a, and the
addend value c.

Description

The lcong48 function generates pseudorandom numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

You can use lcong48 to initialize the random number generator before you call
any of the following functions:

drand48
lrand48
mrand48

The lcong48 function specifies the initial Xi value, the multiplier value a, and the
addend value c. The param array elements specify the following:

param[0-2] Xi
param[3-5] Multiplier a value
param[6] 16-bit addend c value

After lcong48 has been called, a subsequent call to either srand48 or seed48
restores the standard a and c as specified previously.

The lcong48 function does not return a value.

See also drand48, lrand48, mrand48, srand48, and seed48.

REF–311



ldexp

ldexp

Returns its first argument multiplied by 2 raised to the power of its second
argument; that is, �����.

Format

#include <math.h>

double ldexp (double x, int n);

float ldexp (float x, int n); (Alpha only)

long double ldexp (long double x, int n); (Alpha only)

Arguments

x
A base value of type double, float, or long double that is to be multiplied by ��.

n
The integer exponent value to which 2 is raised.

Return Values

����� The first argument multiplied by 2 raised to the
power of the second argument.

0 Underflow occurred; errno is set to ERANGE.
HUGE_VAL Overflow occurred; errno is set to ERANGE.
NaN x is NaN; errno is set to EDOM.

REF–312



ldiv

ldiv

Returns the quotient and the remainder after the division of its arguments.

Format

#include <stdlib.h>

ldiv_t ldiv (long int numer, long int denom);

Arguments

numer
A numerator of type long int.

denom
A denominator of type long int.

Description

The type ldiv_t is defined in the <stdlib.h> header file as follows:

typedef struct
{

long quot, rem;
} ldiv_t;

See also div.

REF–313



leaveok

leaveok

Signals Curses to leave the cursor at the current coordinates after an update to
the window.

Format

#include <curses.h>

leaveok (WINDOW *win, bool boolf);

Arguments

win
A pointer to the window.

boolf
A Boolean TRUE or FALSE value. If boolf is TRUE, the cursor remains in place
after the last update and the coordinate setting on win changes accordingly. If
boolf is FALSE, the cursor moves to the currently specified (y,x) coordinates of
win.

Description

The leaveok function defaults to moving the cursor to the current coordinates of
win. The bool type is defined in the <curses.h> header file as follows:

#define bool int

REF–314



lgamma (Alpha only)

lgamma (Alpha only)

Computes the logarithm of the gamma function.

Format

#include <math.h>

double lgamma (double x);

float lgammaf (float x);

long double lgammal (long double x);

Argument

x
A real number. x cannot be 0, a negative integer, or Infinity.

Description

The lgamma functions return the logarithm of the absolute value of gamma of x,
or ln( | G(x) | ), where G is the gamma function.

The sign of gamma of x is returned in the external integer variable signgam. The
x argument cannot be 0, a negative integer, or Infinity.

Return Values

x The logarithmic gamma of the x argument.
-HUGE_VAL The x argument is a negative integer; errno is

set to ERANGE.
NaN The x argument is NaN; errno is set to EDOM.
0 Underflow occurred; errno is set to ERANGE.
HUGE_VAL Overflow occurred; errno is set to ERANGE.

REF–315



link

link

Creates a new link (directory entry) for an existing file. This function is supported
only on volumes that have hard link counts enabled.

Format

#include <unistd.h>

link (const char *path1, const char *path2);

Arguments

path1
Pointer to a pathname naming an existing file.

path2
Pointer to a pathname naming the new directory entry to be created.

Description

The link function atomically creates a new link for the existing file, and the link
count of the file is incremented by one.

The link function can be used on directory files.

If link fails, no link is created and the link count of the file remains unchanged.

Return Values

0 Successful completion.
�1 Indicates an error. The function sets errno to

one of the following values:

• EEXIST – The link named by path2 exists.

• EFTYPE – Wildcards appear in either path1
or path2.

• EINVAL – One or both arguments specify a
syntactically invalid pathname.

• ENAMETOOLONG – The length of path1 or
path2 exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}.

• EXDEV – The link named by path2 and the
file named by path1 are on different devices.

REF–316



localeconv

localeconv

Sets the members of a structure of type struct lconv with values appropriate for
formatting numeric quantities according to the rules of the current locale.

Format

#include <locale.h>

struct lconv *localeconv (void);

Description

The localeconv function returns a pointer to the lconv structure defined in the
<locale.h> header file. This structure should not be modified by the program. It
is overwritten by calls to localeconv, or by calls to the setlocale function that
change the LC_NUMERIC, LC_MONETARY, or LC_ALL categories.

The members of the structure are:

Member Description

char *decimal_point The radix character.
char *thousands_sep The character used to separate groups of digits.
char *grouping The string that defines how digits are grouped in

nonmonetary values.
char *int_curr_symbol The international currency symbol.
char *currency_symbol The local currency symbol.
char *mon_decimal_point The radix character used to format monetary

values.
char *mon_thousands_sep The character used to separate groups of digits

in monetary values.
char *mon_grouping The string that defines how digits are grouped in

a monetary value.
char *positive_sign The string used to indicate a nonnegative

monetary value.
char *negative_sign The string used to indicate a negative monetary

value.
char int_frac_digits The number of digits displayed after the radix

character in a monetary value formatted with
the international currency symbol.

char frac_digits The number of digits displayed after the radix
character in a monetary value.

char p_cs_precedes For positive monetary values, this is set to 1
if the local or international currency symbol
precedes the number, and it is set to 0 if the
symbol succeeds the number.

REF–317



localeconv

Member Description

char p_sep_by_space For positive monetary values, this is set to 0 if
there is no space between the currency symbol
and the number. It is set to 1 if there is a space,
and it is set to 2 if there is a space between the
symbol and the sign string.

char n_cs_precedes For negative monetary values, this is set to 1
if the local or international currency symbol
precedes the number, and it is set to 0 if the
symbol succeeds the number.

char n_sep_by_space For negative monetary values, this is set to 0 if
there is no space between the currency symbol
and the number. It is set to 1 if there is a space,
and it is set to 2 if there is a space between the
symbol and the sign string.

char p_sign_posn An integer used to indicate where the
positive_sign string should be placed for a
nonnegative monetary quantity.

char n_sign_posn An integer used to indicate where the
negative_sign string should be placed for a
negative monetary quantity.

Members of the structure of type char* are pointers to strings, any of which
(except decimal_point) can point to "", indicating that the associated value is not
available in the current locale or is zero length. Members of the structure of type
char are positive numbers, any of which can be CHAR_MAX, indicating that the
associated value is not available in the current locale. CHAR_MAX is defined in
the <limits.h> header file.

Be aware that the value of the CHAR_MAX macro in the <limits.h> header
depends on whether the program is compiled with the /UNSIGNED_CHAR
qualifier:

• Use the CHAR_MAX macro as an indicator of a nonavailable value in the
current locale only if the program is compiled without /UNSIGNED_CHAR
(/NOUNSIGNED_CHAR is the default).

• If the program is compiled with /UNSIGNED_CHAR, use the SCHAR_MAX
macro instead of the CHAR_MAX macro.

In /NOUNSIGNED_CHAR mode, the values of CHAR_MAX and SCHAR_MAX
are the same; therefore, comparison with SCHAR_MAX gives correct results
regardless of the /[NO]UNSIGNED_CHAR mode used.

The members grouping and mon_grouping point to a string that defines the
size of each group of digits when formatting a number. Each group size is
separated by a semicolon (;). For example, if grouping points to the string 5;3
and the thousands_sep character is a comma (,), the number 123450000 would be
formatted as 1,234,50000.

The elements of grouping and mon_grouping are interpreted as follows:

REF–318



localeconv

Value Interpretation

CHAR_MAX No further grouping is performed.
0 The previous element is to be used repeatedly for the remainder

of the digits.
other The integer value is the number of digits that comprise the

current group. The next element is examined to determine the
size of the next group of digits before the current group.

The values of p_sign_posn and n_sign_posn are interpreted as follows:

Value Interpretation

0 Parentheses surround the number and currency symbol.
1 The sign string precedes the number and currency symbol.
2 The sign string succeeds the number and currency symbol.
3 The sign string immediately precedes the number and currency

symbol.
4 The sign string immediately succeeds the number and currency

symbol.

Return Value

x Pointer to the lconv structure.

Example
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
#include <locale.h>
#include <string.h>

/* The following test program will set up the British English */
/* locale, and then extract the International Currency symbol */
/* and the International Fractional Digits fields for this */
/* locale and print them. */

int main()
{

/* Declare variables */

char *return_val;
struct lconv *lconv_ptr;

/* Load a locale */

return_val = (char *) setlocale(LC_ALL, "en_GB.iso8859-1");

/* Did the locale load successfully? */

if (return_val == NULL) {

/* It failed to load the locale */
printf("ERROR : The locale is unknown");
exit(EXIT_FAILURE);

}

/* Get the lconv structure from the locale */

lconv_ptr = (struct lconv *) localeconv();

REF–319



localeconv

/* Compare the international currency symbol string with an */
/* empty string. If they are equal, then the international */
/* currency symbol is not defined in the locale. */

if (strcmp(lconv_ptr->int_curr_symbol, "")) {
printf("International Currency Symbol = %s\n",

lconv_ptr->int_curr_symbol);
}
else {

printf("International Currency Symbol =");
printf("[Not available in this locale]\n");

}

/* Compare International Fractional Digits with CHAR_MAX. */
/* If they are equal, then International Fractional Digits */
/* are not defined in this locale. */

if ((unsigned char) (lconv_ptr->int_frac_digits) != CHAR_MAX) {
printf("International Fractional Digits = %d\n",

lconv_ptr->int_frac_digits);
}
else {

printf("International Fractional Digits =");
printf("[Not available in this locale]\n");

}
}

Running the example program produces the following result:

International Currency Symbol = GBP
International Fractional Digits = 2

REF–320



localtime, localtime_r

localtime, localtime_r

Convert a time value to broken-down local time.

Format

#include <time.h>

struct tm *localtime (const time_t *timer);

struct tm *localtime_r (const time_t *timer, struct tm *result); (ISO POSIX-1)

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the localtime_r function
that is equivalent to the behavior before OpenVMS Version 7.0.

Arguments

timer
A pointer to a time in seconds since the Epoch. You can generate this time by
using the time function or you can supply a time.

result
A pointer to a tm structure where the result is stored. The tm structure is defined
in the <time.h> header file, and is also shown in Table REF–4.

Description

The localtime and localtime_r functions convert the time (in seconds since the
Epoch) pointed to by timer into a broken-down time, expressed as a local time,
and store it in a tm structure.

The difference between the localtime_r and localtime functions is that the
former stores the result into a user-specified tm structure. The latter stores the
result into thread-specific static memory allocated by the HP C RTL, and which is
overwritten by subsequent calls to localtime; you must make a copy if you want
to save it.

On success, localtime returns a pointer to the tm structure; localtime_r returns
its second argument. On failure, these functions return the NULL pointer.

The tm structure is defined in the <time.h> header file and described in
Table REF–4.

Table REF–4 tm Structure

int tm_sec; Seconds after the minute (0-60)
int tm_min; Minutes after the hour (0-59)
int tm_hour; Hours since midnight (0-23)
int tm_mday; Day of the month (1-31)
int tm_mon; Months since January (1-11)

(continued on next page)

REF–321



localtime, localtime_r

Table REF–4 (Cont.) tm Structure

int tm_year; Years since 1900
int tm_wday; Days since Sunday (0-6)
int tm_yday; Days since January 1 (0-365)
int tm_isdst; Daylight Savings Time flag

• tm_isdst = 0 for Standard Time

• tm_isdst = 1 for Daylight Time

long tm_gmtoff;1 Seconds east of Greenwich (negative values indicate
seconds west of Greenwich)

char *tm_zone;1 Time zone string, for example "GMT"

1This field is an extention to the ANSI C structure. It is present unless you compile your program
with /STANDARD=ANSI89 or with _DECC_V4_SOURCE defined.

The type time_t is defined in the <time.h> header file as follows:

typedef long int time_t

Note

Generally speaking, UTC-based time functions can affect in-memory time-
zone information, which is processwide data. However, if the system time
zone remains the same during the execution of the application (which is
the common case) and the cache of timezone files is enabled (which is the
default), then the _r variant of the time functions asctime_r, ctime_r,
gmtime_r and localtime_r, is both thread-safe and AST-reentrant.

If, however, the system time zone can change during the execution of
the application or the cache of timezone files is not enabled, then both
variants of the UTC-based time functions belong to the third class of
functions, which are neither thread-safe nor AST-reentrant.

Return Values

x Pointer to a tm structure.
NULL Indicates failure.

REF–322



log, log2, log10

log, log2, log10

Return the logarithm of their arguments.

Format

#include <math.h>

double log (double x);

float logf (float x); (Alpha only)

long double logl (long double x); (Alpha only)

double log2 (double x); (Alpha only)

float log2f (float x); (Alpha only)

long double log2l (long double x); (Alpha only)

double log10 (double x);

float log10f (float x); (Alpha only)

long double log10l (long double x); (Alpha only)

Argument

x
A real number.

Description

The log functions compute the natural (base e) logarithm of x.

The log2 functions compute the base 2 logarithm of x.

The log10 functions compute the common (base 10) logarithm of x.

Return Values

x The logarithm of the argument (in the
appropriate base).

�HUGE_VAL x is 0 (errno is set to ERANGE), or x is negative
(errno is set to EDOM).

NaN x is NaN; errno is set to EDOM.

REF–323



log1p (Alpha only)

log1p (Alpha only)

Computes ln(1+y) accurately.

Format

#include <math.h>

double log1p (double y);

float log1pf (float y);

long double log1pl (long double y);

Argument

y
A real number greater than �1.

Description

The log1p functions compute ln(1+y) accurately, even for tiny y.

Return Values

x The natural logarithm of (1+y).
�HUGE_VAL y is less than �1 (errno is set to EDOM), or y =

�1 (errno is set to ERANGE).
NaN y is NaN; errno is set to EDOM.

REF–324



logb (Alpha only)

logb (Alpha only)

Returns the radix-independent exponent of the argument.

Format

#include <math.h>

double logb (double x);

float logbf (float x);

long double logbl (long double x);

Argument

x
A nonzero, real number.

Description

The logb functions return the exponent of x, which is the integral part of
log2 | x | , as a signed floating-point value, for nonzero x.

Return Values

x The exponent of x.
�HUGE_VAL x = 0.0; errno is set to EDOM.
+Infinity x is +Infinity or �Infinity.
NaN y is NaN; errno is set to EDOM.

REF–325



longjmp

longjmp

Provides a way to transfer control from a nested series of function invocations
back to a predefined point without returning normally; that is, by not using a
series of return statements. The longjmp function restores the context of the
environment buffer.

Format

#include <setjmp.h>

void longjmp (jmp_buf env, int value);

Arguments

env
The environment buffer, which must be an array of integers long enough to hold
the register context of the calling function. The type jmp_buf is defined in the
<setjmp.h> header file. The contents of the general-purpose registers, including
the program counter (PC), are stored in the buffer.

value
Passed from longjmp to setjmp, and then becomes the subsequent return value of
the setjmp call. If value is passed as 0, it is converted to 1.

Description

When setjmp is first called, it returns the value 0. If longjmp is then called,
naming the same environment as the call to setjmp, control is returned to the
setjmp call as if it had returned normally a second time. The return value of
setjmp in this second return is the value you supply in the longjmp call. To
preserve the true value of setjmp, the function calling setjmp must not be called
again until the associated longjmp is called.

The setjmp function preserves the hardware general-purpose registers, and the
longjmp function restores them. After a longjmp, all variables have their values
as of the time of the longjmp except for local automatic variables not marked
volatile. These variables have indeterminate values.

The setjmp and longjmp functions rely on the OpenVMS condition-handling
facility to effect a nonlocal goto with a signal handler. The longjmp function
is implemented by generating a HP C RTL specified signal and allowing the
OpenVMS condition-handling facility to unwind back to the desired destination.
The HP C RTL must be in control of signal handling for any HP C image.

For HP C to be in control of signal handling, you must establish all exception
handlers through a call to the VAXC$ESTABLISH function (rather than
LIB$ESTABLISH). See Section 4.2.5 and the VAXC$ESTABLISH function for more
information.

Note

There are Alpha specific, nonstandard decc$setjmp and
decc$fast_longjmp functions. To use these nonstandard functions
instead of the standard ones, a program must be compiled with the
_ _FAST_SETJMP or _ _UNIX_SETJMP macros defined.

REF–326



longjmp

Unlike the standard longjmp function, the decc$fast_longjmp function
does not convert its second argument from 0 to 1. After a call to
decc$fast_longjmp, a corresponding setjmp function returns with the
exact value of the second argument specified in the decc$fast_longjmp
call.

Restrictions

You cannot invoke the longjmp function from an OpenVMS condition handler.
However, you may invoke longjmp from a signal handler that has been
established for any signal supported by the HP C RTL, subject to the following
nesting restrictions:

• The longjmp function will not work if invoked from nested signal handlers.
The result of the longjmp function, when invoked from a signal handler that
has been entered as a result of an exception generated in another signal
handler, is undefined.

• Do not invoke the setjmp function from a signal handler unless the associated
longjmp is to be issued before the handling of that signal is completed.

• Do not invoke the longjmp function from within an exit handler (established
with atexit or SYS$DCLEXH). Exit handlers are invoked after image
tear-down, so the destination address of the longjmp no longer exists.

• Invoking longjmp from within a signal handler to return to the main thread
of execution might leave your program in an inconsistent state. Possible
side effects include the inability to perform I/O or to receive any more UNIX
signals.

REF–327



longname

longname

Returns the full name of the terminal.

Format

#include <curses.h>

void longname (char *termbuf, char *name);

Function Variants

The longname function has variants named _longname32 and _longname64 for
use with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

termbuf
A string containing the name of the terminal.

name
A character-string buffer with a minimum length of 64 characters.

Description

The terminal name is in a readable format so that you can double-check to be
sure that Curses has correctly identified your terminal. The dummy argument
termbuf is required for UNIX software compatibility and serves no function in
the OpenVMS environment. If portability is a concern, you must write a set of
dummy routines to perform the functionality provided by the database termcap in
the UNIX system environment.

REF–328



lrand48

lrand48

Generates uniformly distributed pseudorandom-number sequences. Returns
48-bit signed long integers.

Format

#include <stdlib.h>

long int lrand48 (void);

Description

The lrand48 function generates pseudorandom numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

It returns nonnegative, long integers uniformly distributed over the range of y
values such that 0 � y < �31.

Before you call the lrand48 function use either srand48, seed48, or lcong48 to
initialize the random-number generator. You must initialize prior to invoking the
lrand48 function, because it stores the last 48-bit Xi generated into an internal
buffer. (Although it is not recommended, constant default initializer values are
supplied automatically if the drand48, lrand48, or mrand48 functions are called
without first calling an initialization function.)

The function works by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+1 = (aXn+c)mod m n >= 0

The argument m equals �48, so 48-bit integer arithmetic is performed. Unless you
invoke the lcong48 function, the multiplier value a and the addend value c are:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

The value returned by the lrand48 function is computed by first generating the
next 48-bit Xi in the sequence. Then the appropriate bits, according to the type of
data item to be returned, are copied from the high-order (most significant) bits of
Xi and transformed into the returned value.

See also drand48, lcong48, mrand48, seed48, and srand48.

Return Value

n Signed nonnegative long integers uniformly
distributed over the range 0 � y < �31.

REF–329



lseek

lseek

Positions a file to an arbitrary byte position and returns the new position.

Format

#include <unistd.h>

off_t lseek (int file_desc, off_t offset, int direction);

Arguments

file_desc
An integer returned by open, creat, dup, or dup2.

offset
The offset, specified in bytes. The off_t data type is either a 32-bit or a 64-bit
integer. The 64-bit interface allows for file sizes greater than 2 GB, and can
be selected at compile time by defining the _LARGEFILE feature-test macro as
follows:

CC/DEFINE=_LARGEFILE

direction
An integer indicating whether the offset is to be measured forward from the
beginning of the file (direction=SEEK_SET), forward from the current position
(direction=SEEK_CUR), or backward from the end of the file (direction=SEEK_
END).

Description

The lseek function can position a fixed-length record-access file with no carriage
control or a stream-access file on any byte offset, but can position all other files
only on record boundaries.

The available Standard I/O functions position a record file at its first byte, at
the end-of-file, or on a record boundary. Therefore, the arguments given to lseek
must specify either the beginning or end of the file, a 0 offset from the current
position (an arbitrary record boundary), or the position returned by a previous,
valid lseek call.

This function returns the new file position as an integer of type off_t which, like
the offset argument, is either a 64-bit integer if _LARGEFILE is defined, or a
32-bit integer if not.

For a portable way to position an arbitrary byte location with any type of file, see
the fgetpos and fsetpos functions.

Caution

If, while accessing a stream file, you seek beyond the end-of-file and then
write to the file, the lseek function creates a hole by filling the skipped
bytes with zeros.

In general, for record files, lseek should only be directed to an absolute
position that was returned by a previous valid call to lseek or to the

REF–330



lseek

beginning or end of a file. If a call to lseek does not satisfy these
conditions, the results are unpredictable.

See also open, creat, dup, dup2, and fseek.

Return Values

x The new file position.
�1 Indicates that the file descriptor is undefined, or

a seek was attempted before the beginning of the
file.

REF–331



lwait

lwait

Waits for I/O on a specific file to complete.

Format

#include <stdio.h>

int lwait (int fd);

Argument

fd
A file descriptor corresponding to an open file.

Description

The lwait function is used primarily to wait for completion of pending
asynchronous I/O.

Return Values

0 Indicates successful completion.
�1 Indicates an error.

REF–332



malloc

malloc

Allocates an area of memory. These functions are AST-reentrant.

Format

#include <stdlib.h>

void *malloc (size_t size);

Function Variants

The malloc function has variants named _malloc32 and _malloc64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Argument

size
The total number of bytes to be allocated.

Description

The malloc function allocates a contiguous area of memory whose size, in bytes,
is supplied as an argument. The space is not initialized.

Note

The malloc routines call the system routine LIB$VM_MALLOC. Because
LIB$VM_MALLOC is designed as a general-purpose routine to allocate
memory, it is called upon in a wide array of scenarios to allocate and
reallocate blocks efficiently. The most common usage is the management
of smaller blocks of memory, and the most important aspect of memory
allocation under these circumstances is efficiency.

LIB$VM_MALLOC makes use of its own free space to satisfy requests,
once the heap storage is consumed by splitting large blocks and merging
adjacent blocks. Memory can still become fragmented, leaving unused
blocks. Once heap storage is consumed, LIB$VM_MALLOC manages its
own free space and merged blocks to satisfy requests, but varying sizes of
memory allocations can cause blocks to be left unused.

Because LIB$VM_MALLOC cannot be made to satisfy all situations in
the best possible manner, perform your own memory management if you
have special memory usage needs. This assures the best use of memory
for your particular application.

The OpenVMS Programming Concepts Manual explains the several
memory allocation routines that are available. They are grouped into
three levels of hierarchy:

1. At the highest level are the RTL Heap Management Routines
LIB$GET_VM and LIB$FREE_VM, which provide a mechanism
for allocating and freeing blocks of memory of arbitrary size. Also
at this level are the routines based on the concept of zones, such as
LIB$CREATE_VM_ZONE, and so on.

REF–333



malloc

2. At the next level are the RTL Page Management routines LIB$GET_
VM_PAGE and LIB$FREE_VM_PAGE, which allocate a specified
number of contiguous pages.

3. At the lowest level are the Memory Management System Services,
such as $CRETVA and $EXPREG, that provide extensive control
over address space allocation. At this level, you must manage the
allocation precisely.

Return Values

x The address of the first byte, which is aligned on
a quadword boundary.

NULL Indicates that the function is unable to allocate
enough memory. errno is set to ENOMEM.

REF–334



mblen

mblen

Determines the number of bytes comprising a multibyte character.

Format

#include <stdlib.h>

int mblen (const char *s, size_t n);

Arguments

s
A pointer to the multibyte character.

n
The maximum number of bytes that comprise the multibyte character.

Description

If the character is n bytes or less, the mblen function returns the number of bytes
comprising the multibyte character pointed to by s. If the character is greater
than n bytes, the function returns �1 to indicate an error.

This function is affected by the LC_CTYPE category of the program’s current
locale.

Return Values

x The number of bytes that comprise the multibyte
character, if the next n or fewer bytes form a
valid character.

0 If s is NULL or a pointer to the NULL character.
�1 Indicates an error. The function sets errno to

EILSEQ – Invalid character detected.

REF–335



mbrlen

mbrlen

Determines the number of bytes comprising a multibyte character.

Format

#include <wchar.h>

size_t mbrlen (const char *s, size_t n, mbstate_t *ps);

Arguments

s
A pointer to a multibyte character.

n
The maximum number of bytes that comprise the multibyte character.

ps
A pointer to the mbstate_t object. If a NULL pointer is specified, the function
uses its internal mbstate_t object. mbstate_t is an opaque datatype intended to
keep the conversion state for the state-dependent codesets.

Description

The mbrlen function is equivalent to the call:

mbrtowc(NULL, s, n, ps != NULL ? ps : &internal)

Where internal is the mbstate_t object for the mbrlen function.

If the multibyte character pointed to by s is of n bytes or less, the function returns
the number of bytes comprising the character (including any shift sequences).

If either an encoding error occurs or the next n bytes contribute to an incomplete
but potentially valid multibyte character, the function returns �1 or �2,
respectively.

See also mbrtowc.

Return Values

x The number of bytes comprising the multibyte
character.

0 Indicates that s is a NULL pointer or a pointer
to a null byte.

�1 Indicates an encoding error, in which case the
next n or fewer bytes do not contribute to a
complete and valid multibyte character. errno is
set to EILSEQ; the conversion state is undefined.

�2 Indicates an incomplete but potentially valid
multibyte character (all n bytes have been
processed).

REF–336



mbrtowc

mbrtowc

Converts a multibyte character to its wide-character representation.

Format

#include <wchar.h>

size_t mbrtowc (wchar_t *pwc, const char *s, size_t n, mbstate_t *ps);

Arguments

pwc
A pointer to the resulting wide-character code.

s
A pointer to a multibyte character.

n
The maximum number of bytes that comprise the multibyte character.

ps
A pointer to the mbstate_t object. If a NULL pointer is specified, the function
uses its internal mbstate_t object. mbstate_t is an opaque datatype intended to
keep the conversion state for the state-dependent codesets.

Description

If s is a NULL pointer, mbrtowc is equivalent to the call:

mbrtowc(NULL, "", 1, ps)

In this case, the values of pwc and n are ignored.

If s is not a NULL pointer, mbrtowc inspects at most n bytes beginning with the
byte pointed to by s to determine the number of bytes needed to complete the
next multibyte character (including any shift sequences).

If the function determines that the next multibyte character is completed, it
determines the value of the corresponding wide character and then, if pwc is
not a NULL pointer, stores that value in the object pointed to by pwc. If the
corresponding wide character is the null wide character, the resulting state
described is the initial conversion state.

If mbrtowc is called as a counting function, which means that pwc is a NULL
pointer and s is neither a NULL pointer nor a pointer to a null byte, the value of
the internal mbstate_t object will remain unchanged.

Return Values

x The number of bytes comprising the multibyte
character.

REF–337



mbrtowc

0 The next n or fewer bytes complete the multibyte
character that corresponds to the null wide
character (which is the value stored if pwc is
not a NULL pointer). The wide-character code
corresponding to a null byte is zero.

�1 Indicates an encoding error. The next n or fewer
bytes do not contribute to a complete and valid
multibyte character. errno is set to EILSEQ. The
conversion state is undefined.

�2 Indicates an incomplete but potentially valid
multibyte character (all n bytes have been
processed).

REF–338



mbstowcs

mbstowcs

Converts a sequence of multibyte characters into a sequence of corresponding
wide-character codes.

Format

#include <stdlib.h>

size_t mbstowcs (wchar_t *pwcs, const char *s, size_t n);

Arguments

pwcs
A pointer to the array containing the resulting sequence of wide-character codes.

s
A pointer to the array of multibyte characters.

n
The maximum number of wide-character codes that can be stored in the array
pointed to by pwcs.

Description

The mbstowcs function converts a sequence of multibyte characters from the
array pointed to by s to a sequence of wide-character codes that are stored into
the array pointed to by pwcs, up to a maximum of n codes.

This function is affected by the LC_CTYPE category of the program’s current
locale. If copying takes place between objects that overlap, the behavior is
undefined.

Return Values

x The number of array elements modified or
required, not included any terminating zero
code. The array will not be zero-terminated if the
value returned is n. If pwcs is the NULL pointer,
mbstowcs returns the number of elements
required for the wide-character array.

(size_t) �1 Indicates that an error occurred. The function
sets errno to EILSEQ - Invalid character
detected.

REF–339



mbtowc

mbtowc

Converts a multibyte character to its wide-character equivalent.

Format

#include <stdlib.h>

int mbtowc (wchar_t *pwc, const char *s, size_t n);

Arguments

pwc
A pointer to the resulting wide-character code.

s
A pointer to the multibyte character.

n
The maximum number of bytes that comprise the next multibyte character.

Description

If the character is n or fewer bytes, the mbtowc function converts the multibyte
character pointed to by s to its wide-character equivalent. If the character is
invalid or greater than n bytes, the function returns �1 to indicate an error.

If pwc is a NULL pointer and s is not a null pointer, the function determines
the number of bytes that constitute the multibyte character pointed to by s
(regardless of the value of n).

This function is affected by the LC_CTYPE category of the program’s current
locale.

Return Values

x The number of bytes that comprise the valid
character pointed to by s.

0 If s is either a NULL pointer or a pointer to the
null byte.

�1 Indicates an error. The function sets errno to
EILSEQ – Invalid character detected.

REF–340



mbsinit

mbsinit

Determines whether an mbstate_t object decribes an initial conversion state.

Format

#include <wchar.h>

int mbsinit (const mbstate_t *ps);

Argument

ps
A pointer to the mbstate_t object. mbstate_t is an opaque datatype intended to
keep the conversion state for the state-dependent codesets.

Description

If ps is not a NULL pointer, the mbsinit function determines whether the
mbstate_t object pointed to by ps describes an initial conversion state. A zero
mbstate_t object always describes an initial conversion state.

Return Values

nonzero The ps argument is a NULL pointer, or the
mbstate_t object pointed to by ps describes an
initial conversion state.

0 The mbstate_t object pointed to by ps does not
describe an initial conversion state.

REF–341



mbsrtowcs

mbsrtowcs

Converts a sequence of multibyte characters to a sequence of corresponding
wide-character codes.

Format

#include <wchar.h>

size_t mbsrtowcs (wchar_t *dst, const char **src, size_t len, mbstate_t *ps);

Function Variants

The mbsrtowcs function has variants named _mbsrtowcs32 and _mbsrtowcs64 for
use with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

dst
A pointer to the destination array containing the resulting sequence of wide-
character codes.

src
An address of the pointer to an array containing a sequence of multibyte
characters to be converted.

len
The maximum number of wide character codes that can be stored in the array
pointed to by dst.

ps
A pointer to the mbstate_t object. If a NULL pointer is specified, the function
uses its internal mbstate_t object. mbstate_t is an opaque datatype intended to
keep the conversion state for the state-dependent codesets.

Description

The mbsrtowcs function converts a sequence of multibyte characters, beginning
in the conversion state described by the object pointed to by ps, from the array
indirectly pointed to by src, into a sequence of corresponding wide characters.

If dst is not a NULL pointer, the converted characters are stored into the array
pointed to by dst. Conversion continues up to and including a terminating null
character, which is also stored.

Conversion stops earlier for one of the following reasons:

• A sequence of bytes is encountered that does not form a valid multibyte
character.

• If dst is not a NULL pointer, when len codes have been stored into the array
pointed to by dst.

REF–342



mbsrtowcs

If dst is not a NULL pointer, the pointer object pointed to by src is assigned either
a NULL pointer (if the conversion stopped because of reaching a terminating null
wide character), or the address just beyond the last multibyte character converted
(if any). If conversion stopped because of reaching a terminating null wide
character, the resulting state described is the initial conversion state.

Return Values

n The number of multibyte characters successfully
converted, sequence, not including the
terminating null (if any).

�1 Indicates an error. A sequence of bytes that
do not form valid multibyte character was
encountered. errno is set to EILSEQ; the
conversion state is undefined.

REF–343



memccpy

memccpy

Copies characters sequentially between strings in memory areas.

Format

#include <string.h>

void *memccpy (void *dest, void *source, int c, size_t n);

Function Variants

The memccpy function has variants named _memccpy32 and _memccpy64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

dest
A pointer to the location of a destination string.

source
A pointer to the location of a source string.

c
A character that you want to search for.

n
The number of charcter you want to copy.

Description

The memccpy function operates on strings in memory areas. A memory area is a
group of contiguous characters bound by a count and not terminated by a null
character. The function does not check for overflow of the receiving memory area.
The memccpy function is defined in the <string.h> header file.

The memccpy function sequentially copies characters from the location pointed to
by source into the location pointed to by dest until one of the following occurs:

• The character specified by c (converted to an unsigned char) is copied.

• The number of characters specified by n is copied.

Return Values

x A pointer to the character following the character
specified by c in the string pointed to by dest.

NULL Indicates an error. The character c is not found
after scanning n characters in the string.

REF–344



memchr

memchr

Locates the first occurrence of the specified byte within the initial size bytes of a
given object.

Format

#include <string.h>

void *memchr (const void *s1, int c, size_t size);

Function Variants

The memchr function has variants named _memchr32 and _memchr64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

s1
A pointer to the object to be searched.

c
The byte value to be located.

size
The length of the object to be searched.

If size is zero, memchr returns NULL.

Description

Unlike strchr, the memchr function does not stop when it encounters a null
character.

Return Values

pointer A pointer to the first occurrence of the byte.
NULL Indicates that the specified byte does not occur in

the object.

REF–345



memcmp

memcmp

Compares two objects, byte by byte. The compare operation starts with the first
byte in each object.

Format

#include <string.h>

int memcmp (const void *s1, const void *s2, size_t size);

Arguments

s1
A pointer to the first object.

s2
A pointer to the second object.

size
The length of the objects to be compared.

If size is zero, the two objects are considered equal.

Description

The memcmp function uses native byte comparison. The sign of the value returned
is determined by the sign of the difference between the values of the first pair
of unlike bytes in the objects being compared. Unlike the strcmp function, the
memcmp function does not stop when a null character is encountered.

Return Value

x An integer less than, equal to, or greater than
0, depending on whether the lexical value of the
first object is less than, equal to, or greater than
that of the second object.

REF–346



memcpy

memcpy

Copies a specified number of bytes from one object to another.

Format

#include <string.h>

void *memcpy (void *dest, const void *source, size_t size);

Function Variants

The memcpy function has variants named _memcpy32 and _memcpy64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

dest
A pointer to the destination object.

source
A pointer to the source object.

size
The length of the object to be copied.

Description

The memcpy function copies size bytes from the object pointed to by source to
the object pointed to by dest; it does not check for the overflow of the receiving
memory area (dest). Unlike the strcpy function, the memcpy function does not
stop when a null character is encountered.

Return Value

x The value of dest.

REF–347



memmove

memmove

Copies a specified number of bytes from one object to another.

Format

#include <string.h>

void *memmove (void *dest, const void *source, size_t size);

Function Variants

The memmove function has variants named _memmove32 and _memmove64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

dest
A pointer to the destination object.

source
A pointer to the source object.

size
The length of the object to be copied.

Description

In HP C for OpenVMS Systems, memmove and memcpy perform the same function.
Programs that require portability should use memmove if the area pointed at by
dest could overlap the area pointed at by source.

Return Value

x The value of dest.

Example
#include <string.h>
#include <stdio.h>

main()
{

char pdest[14] = "hello there";
char *psource = "you are there";

memmove(pdest, psource, 7);
printf("%s\n", pdest);

}

This example produces the following output:

you are there

REF–348



memset

memset

Sets a specified number of bytes in a given object to a given value.

Format

#include <string.h>

void *memset (void *s, int value, size_t size);

Function Variants

The memset function has variants named _memset32 and _memset64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

s
An array pointer.

value
The value to be placed in s.

size
The number of bytes to be placed in s.

Description

The memset function copies value (converted to an unsigned char) into each of the
first size characters of the object pointed to by s.

This function returns s. It does not check for the overflow of the receiving
memory area pointed to by s.

Return Value

x The value of s.

REF–349



mkdir

mkdir

Creates a directory.

Format

#include <stat.h>

int mkdir (const char *dir_spec, mode_t mode); (ISO POSIX-1)

int mkdir (const char *dir_spec, mode_t mode, . . . ); (HP C Extension)

Arguments

dir_spec
A valid OpenVMS or UNIX style directory specification that may contain a device
name. For example:

DBA0:[BAY.WINDOWS] /* OpenVMS */
/dba0/bay/windows /* UNIX style */

This specification cannot contain a node name, file name, file extension, file
version, or a wildcard character. The same restriction applies to the UNIX style
directory specifications. For more information about the restrictions on UNIX
style specifications, see Chapter 1.

mode
A file protection. See the chmod function in this section for information about the
specific file protections.

The file protection of the new directory is derived from the mode argument, the
process’s file protection mask (see the umask function), and the parent-directory
default protections.

In a manner consistent with the OpenVMS behavior for creating directories,
mkdir never applies delete access to the directory. An application that needs to
set delete access should use an explicit call to chmod to set write permission.

See the Description section of this function for more information about how the
file protection is set for the newly created directory.

. . .
Represents the following optional arguments. These arguments have fixed
position in the argument list, and cannot be arbitrarily placed.

unsigned int uic
The user identification code (UIC) that identifies the owner of the created
directory. If this argument is 0, the HP C RTL gives the created directory the
UIC of the parent directory. If this argument is not specified, the HP C RTL
gives the created directory your UIC. This optional argument is specific to the
HP C RTL and is not portable.

unsigned short max_versions
The maximum number of file versions to be retained in the created directory.
The system automatically purges the directory keeping, at most, max_versions
number of every file.

If this argument is 0, the HP C RTL does not place a limit on the maximum
number of file versions.

REF–350



mkdir

If this argument is not specified, the HP C RTL gives the created directory
the default version limit of the parent directory.

This optional argument is specific to the HP C RTL and is not portable.

unsigned short r_v_number
The volume (device) on which to place the created directory if the device
is part of a volume set. If this argument is not specified, the HP C RTL
arbitrarily places the created directory within the volume set. This optional
argument is specific to the HP C RTL and is not portable.

Description

If dir_spec specifies a path that includes directories, which do not exist,
intermediate directories are also created. This differs from the behavior of
the UNIX system where these intermediate directories must exist and will not be
created.

If you do not specify any optional arguments, the HP C RTL gives the directory
your UIC and the default version limit of the parent directory, and arbitrarily
places the directory within the volume set. You cannot get the default behavior
for the uic or max_versions arguments if you specify any arguments after them.

Note

The way to create files with OpenVMS RMS default protections using
the UNIX system-call functions umask, mkdir, creat, and open is to
call mkdir, creat, and open with a file-protection mode argument of
0777 in a program that never specifically calls umask. These default
protections include correctly establishing protections based on ACLs,
previous versions of files, and so on.

In programs that do vfork/exec calls, the new process image inherits
whether umask has ever been called or not from the calling process image.
The umask setting and whether the umask function has ever been called
are both inherited attributes.

The file protection supplied by the mode argument is modified by the process’s
file protection mask in such a way that the file protection for the new directory
is set to the bitwise AND of the mode argument and the complement of the file
protection mask.

Default file protections are supplied to the new directory from the parent-
directory such that if a protection value bit in the new directory is zero, then
the value of this bit is inherited from the parent directory. However, bits in
the parent directory’s file protection that indicate delete access do not cause
corresponding bits to be set in the new directory’s file protection.

Return Values

0 Indicates success.
�1 Indicates failure.

REF–351



mkdir

Examples

1. umask (0002); /* turn world write access off */
mkdir ("sys$disk:[.parentdir.childdir]", 0222); /* turn write

access on */

Parent directory file protection: System:RWD, Owner:RWD, Group:R,
World:R

The file protection derived from the combination of the mode argument
and the file protection mask set by umask is (0222) & ~(0002), which is
0220. When the parent directory defaults are applied to this protection, the
protection for the new directory becomes:

File protection: System:RWD, Owner:RWD, Group:RWD, World:R

2. umask (0000);
mkdir ("sys$disk:[.parentdir.childdir]", 0444); /* turn read

access on */

Parent directory file protection: System:RWD, Owner:RWD,
Group:RWD, World:RWD

The file protection derived from the combination of the mode argument
and the file protection mask set by umask is (0444) & ~(0000), which is
0444. When the parent directory defaults are applied to this protection, the
protection for the new directory is:

File protection: System:RW, Owner:RW, Group:RW, World:RW

Note that delete access is not inherited.

REF–352



mkstemp

mkstemp

Constructs a unique file name.

Format

#include <stdlib.h>

int mkstemp (char *template);

Argument

template
A pointer to a string that is replaced with a unique file name. The string in the
template argument must be a file name with six trailing Xs.

Description

The mkstemp function replaces the six trailing Xs of the string pointed to by
template with a unique set of characters, and returns a file descriptor for the file
open for reading and writing.

The string pointed to by template should look like a file name with six trailing
X’s. The mkstemp function replaces each X with a character from the portable
file-name character set, making sure not to duplicate an existing file name.

If the string pointed to by template does not contain six trailing Xs, �1 is
returned.

Return Values

x An open file descriptor.
�1 Indicates an error. (The string pointed to by

template does not contain six trailing Xs.)

REF–353



mktemp

mktemp

Creates a unique file name from a template.

Format

#include <stdlib.h>

char *mktemp (char *template);

Function Variants

The mktemp function has variants named _mktemp32 and _mktemp64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Argument

template
A pointer to a buffer containing a user-defined template. You supply the template
in the form, namXXXXXX. The six trailing Xs are replaced by a unique series
of characters. You may supply the first three characters. Because the template
argument is overwritten, do not specify a string literal (const object).

Description

The use of mktemp is not recommended for new applications. See the tmpnam and
mkstemp functions for the preferable alternatives.

Return Value

x A pointer to the template, with the template
modified to contain the created file name. If this
value is a pointer to a null string, it indicates
that a unique file name cannot be created.

REF–354



mktime

mktime

Converts a local-time structure into time since the Epoch.

Format

#include <time.h>

time_t mktime (struct tm *timeptr);

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the mktime function that
is equivalent to the behavior before OpenVMS Version 7.0.

Argument

timeptr
A pointer to the local-time structure.

Description

The mktime function converts the local-time structure, pointed to by timeptr, to a
time in seconds since the Epoch in the same manner as the values returned by
the time function. If the local time cannot be encoded, then mktime returns the
value (time_t)(�1).

The time_t type is defined in the <time.h> header file as follows:

typedef unsigned long int time_t;

Local time-zone information is set as if mktime called tzset.

If the tm_isdst field in the local-time structure pointed to by timeptr is positive,
mktime initially presumes that Daylight Savings Time (DST) is in effect for the
specified time.

If tm_isdst is 0, mktime initially presumes that DST is not in effect.

If tm_isdst is negative, mktime attempts to determine whether or not DST is in
effect for the specified time.

Return Values

x The specified calendar time encoded as a value of
type time_t.

(time_t)(�1) If the local time cannot be encoded.
Be aware that a return value of (time_t)(�1) can
also represent the valid date: Sun Feb 7 06:28:15
2106.

REF–355



mmap

mmap

Maps file system object into virtual memory.

Format

#include <types.h>

#include <mman.h>

void mmap (void *addr, size_t len, int prot, int flags, int filedes, off_t off); (X/Open, POSIX-1)

void mmap (void *addr, size_t len, int prot, int flags, int filedes, off_t off ...); (HP C Extension)

Function Variants

The mmap function has variants named _mmap32 and _mmap64 for use with 32-bit
and 64-bit pointer sizes, respectively. See Section 1.10 for more information on
using pointer-size-specific functions.

Arguments

addr
The starting address of the new region (truncated to a page boundary).

len
The length, in bytes, of the new region (rounded up to a page boundary).

prot
Access permission, as defined in the <mman.h> header file. Specify either PROT_
NONE, PROT_READ, or PROT_WRITE.

flags
Attributes of the mapped region as the results of a bitwise-inclusive OR operation
on any combination of the following:

• MAP_FILE or MAP_ANONYMOUS

• MAP_VARIABLE or MAP_FIXED

• MAP_SHARED or MAP_PRIVATE

filedes
The file that you want to map to the new mapped file region returned by the open
function.

off
The offset, specified in bytes. The off_t data type is either a 64-bit or 32-bit
integer. The 64-bit interface allows for file sizes greater than 2 GB, and can
be selected at compile time by defining the _LARGEFILE feature-test macro as
follows:

CC/DEFINE=_LARGEFILE

. . .
An optional integer specifying additional flags for the SYS$CRMPSC system
service for MAP_SHARED. This optional argument (HP C Extension) of the mmap
function was introduced in OpenVMS Version 7.2.

REF–356



mmap

Description

The mmap function creates a new mapped file region, a new private region, or a
new shared memory region.

Your application must ensure correct synchronization when using mmap in
conjunction with any other file access method, such as read and write, and
standard input/output.

Before calling mmap, the calling application must also ensure that all bytes in the
range [off, off+len] are written to the file (using the fsync function, for example).
If this requirement is not met, mmap fails with errno set to ENXIO (No such
device or address).

The addr and len arguments specify the requested starting address and length,
in bytes, for the new region. The address is a multiple of the page size returned
by sysconf(_SC_PAGE_SIZE).

If the len argument is not a multiple of the page size returned by
sysconf(_SC_PAGE_SIZE), then the result of any reference to an address between
the end of the region and the end of the page containing the end of the region is
undefined.

The flags argument specifies attributes of the mapped region. Values for flags are
constructed by a bitwise-inclusive OR operation on the flags from the following
list of symbolic names defined in the <mman.h> header file:

MAP_FILE Create a mapped file region.
MAP_ANONYMOUS Create an unnamed memory region.
MAP_VARIABLE Place region at the computed address.
MAP_FIXED Place region at fixed address.
MAP_SHARED Share changes.
MAP_PRIVATE Changes are private.

The MAP_FILE and MAP_ANONYMOUS flags control whether the region you
want to map is a mapped file region or an anonymous shared memory region.
One of these flags must be selected.

If MAP_FILE is set in the flags argument:

• A new mapped file region is created, mapping the file associated with the
filedes argument.

• The off argument specifies the file byte offset where the mapping
starts. This offset must be a multiple of the page size returned by
sysconf(_SC_PAGE_SIZE).

• If the end of the mapped file region is beyond the end of the file, the result
of any reference to an address in the mapped file region corresponding to an
offset beyond the end of the file is unspecified.

If MAP_ANONYMOUS is set in the flags argument:

• A new memory region is created and initialized to all zeros.

• If the filedes argument is not �1, the mmap function fails.

REF–357



mmap

The new region is placed at the requested address if the requested address is not
null and it is possible to place the region at this address. When the requested
address is null or the region cannot be placed at the requested address, the
MAP_VARIABLE and MAP_FIXED flags control the placement of the region. One
of these flags must be selected.

If MAP_VARIABLE is set in the flags argument:

• If the requested address is null or if it is not possible for the system to
place the region at the requested address, the region is placed at an address
selected by the system.

If MAP_FIXED is set in the flags argument:

• If the requested address is not null, the mmap function succeeds even if the
requested address is already part of another region. (If the address is within
an existing region, the effect on the pages within that region and within the
area of the overlap produced by the two regions is the same as if they were
unmapped. In other words, whatever is mapped between addr and addr + len
is unmapped.)

• If the requested address is null and MAP_FIXED is specified, the results are
undefined.

The MAP_PRIVATE and MAP_SHARED flags control the visibility of
modifications to the mapped file or shared memory region. One of these flags
must be selected.

If MAP_SHARED is set in the flags argument:

• If the region is a mapped region, modifications to the region are visible to
other processes that mapped the same region using MAP_SHARED.

• If the region is a mapped file region, modifications to the region are written to
the file. (Note that the modifications are not immediately written to the file
because of buffer cache delay; that is, the write to the file does not occur until
there is a need to reuse the buffer cache. If the modifications must be written
to the file immediately, use the msync function to ensure that this is done.)

If MAP_PRIVATE is set in the flags argument:

• Modifications to the mapped region by the calling process are not visible to
other processes that mapped the same region using either MAP_PRIVATE or
MAP_SHARED.

• Modifications to the mapped region by the calling process are not written to
the file.

It is unspecified whether modifications by processes that mapped the region using
MAP_SHARED are visible to other processes that mapped the same region using
MAP_PRIVATE.

The prot argument specifies access permissions for the mapped region. Specify
one of the following:

PROT_NONE No access
PROT_READ Read-only
PROT_WRITE Read/Write access

REF–358



mmap

After the successful completion of the mmap function, you can close the filedes
argument without effect on the mapped region or on the contents of the
mapped file. Each mapped region creates a file reference, similar to an open
file descriptor, that prevents the file data from being deallocated.

Note

The following rules apply to OpenVMS specific file references:

• Because of the additional file reference, if filedes is not opened for file
sharing, mmap reopens it with file sharing enabled.

• The additional file reference that remains for mapped regions implies
that a later open, fopen, or create call to the file that is mapped must
specify file sharing.

Modifications made to the file using the write function are visible to mapped
regions, and modifications to a mapped region are visible with the read function.

Note

Beginning with OpenVMS Version 7.2, while processing a MAP_
SHARED request, the mmap function constructs the flags argument of
the SYS$CRMPSC service as a bitwise inclusive OR of those bits it sets
by itself to fulfill the MAP_SHARED request and those bits specified by
the caller in the optional argument.

By default, for MAP_SHARED the mmap function creates a temporary
group global section. The optional mmap argument provides the caller with
direct access to the features of the SYS$CRMPSC system service.

Using the optional argument, the caller can create, for example, a
system global section (SEC$M_SYSGBL bit) or permanent global section
(SEC$M_PERM bit). For example, to create a system permanent global
section, the caller can specify (SEC$M_SYSGBL | SEC$M_PERM) in the
optional argument.

The mmap function does not check or set any privileges. It is the
responsibility of the caller to set appropriate privileges, such as SYSGBL
privilege for SEC$M_SYSGBL, and PRMGBL for SEC$M_PERM, before
calling mmap with the optional argument.

See also read, write, open, fopen, creat, and sysconf.

Return Values

x The address where the mapping is placed.

REF–359



mmap

MAP_FAILED Indicates an error; errno is set to one of the
following values:

• EACCES – The file referred to by filedes is
not open for read access, or the file is not
open for write access and PROT_WRITE was
set for a MAP_SHARED mapping operation.

• EBADF – The filedes argument is not a valid
file descriptor.

• EINVAL –The flags or prot argument
is invalid, or the addr argument or off
argument is not a multiple of the page size
returned by sysconf(_SC_PAGE_SIZE). Or
MAP_ANONYMOUS was specified in flags
and filedes is not �1.

• ENODEV – The file descriptor filedes refers
to an object that cannot be mapped, such as
a terminal.

• ENOMEM – There is not enough address
space to map len bytes.

• ENXIO – The addresses specified by the
range [off, off + len] are invalid for filedes.

• EFAULT – The addr argument is an invalid
address.

REF–360



modf

modf

Decomposes a floating-point number.

Format

#include <math.h>

double modf (double x, double *iptr);

float modff (float x, float *iptr); (Alpha only)

long double modfl (long double x, long double *iptr); (Alpha only)

Arguments

x
An object of type double, float, or long double.

iptr
A pointer to an object of type double, float, or long double to match the type of
x.

Description

The modf functions decompose their first argument x into a positive fractional
part f and an integer part i, each of which has the same sign as x.

The functions return f and assign i to the object pointed to by the second
argument (iptr).

Return Values

x The fractional part of the argument x.
NaN x is NaN; errno is set to EDOM and *iptr is set

to NaN.
0 Underflow occurred; errno is set to ERANGE.

REF–361



[w]move

[w]move

Change the current cursor position on the specified window to the coordinates
(y,x). The move function acts on the stdscr window.

Format

#include <curses.h>

int move (int y, int x);

int wmove (WINDOW *win, int y, int x);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

Description

For more information, see the scrollok function in this section.

Return Values

OK Indicates success.
ERR Indicates that the function makes the screen

scroll illegally.

REF–362



mprotect

mprotect

Modifies access protections of memory mapping.

Format

#include <mman.h>

int mprotect (void *addr, size_t len, int prot);

Arguments

addr
The address of the region that you want to modify.

len
The length, in bytes, of the region that you want to modify.

prot
Access permission, as defined in the <mman.h> header file. Specify either PROT_
NONE, PROT_READ, or PROT_WRITE.

Description

The mprotect function modifies the access protection of a mapped file or shared
memory region.

The addr and len arguments specify the address and length, in bytes, of the
region that you want to modify. The len argument must be a multiple of the page
size as returned by sysconf(_SC_PAGE_SIZE). If len is not a multiple of the page
size as returned by sysconf(_SC_PAGE_SIZE), the length of the region is rounded
up to the next multiple of the page size.

The prot argument specifies access permissions for the mapped region. Specify
one of the following:

PROT_NONE No access
PROT_READ Read-only
PROT_WRITE Read/Write access

The mprotect function does not modify the access permission of any region that
lies outside of the specified region, except that the effect on addresses between
the end of the region, and the end of the page containing the end of the region, is
unspecified.

If the mprotect function fails under a condition other than that specified by
EINVAL, the access protection of some of the pages in the range [addr, addr +
len] can change. Suppose the error occurs on some page at an addr2; mprotect
can modify protections of all whole pages in the range [addr, addr2].

See also sysconf.

REF–363



mprotect

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to one of the

following values:

• EACCESS – The prot argument specifies
a protection that conflicts with the access
permission set for the underlying file.

• EINVAL – The prot argument is
invalid, or the addr argument is not a
multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).

• EFAULT – The range [addr, addr + len]
includes an invalid address.

REF–364



mrand48

mrand48

Generates uniformly distributed pseudorandom-number sequences. Returns
48-bit signed long integers.

Format

#include <stdlib.h>

long int mrand48 (void);

Description

The mrand48 function generates pseudorandom numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

It returns signed long integers uniformly distributed over the range of y values
such that ��31 � y < �31.

Before you call the mrand48 function, use either srand48, seed48, or lcong48 to
initialize the random-number generator. You must initialize the mrand48 function
prior to invoking it, because it stores the last 48-bit Xi generated into an internal
buffer. (Although it is not recommended, constant default initializer values are
supplied automatically if the drand48, lrand48, or mrand48 functions are called
without first calling an initialization function.)

The function works by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+1 = (aXn+c)mod m n >= 0

The argument m equals �48, so 48-bit integer arithmetic is performed. Unless you
invoke the lcong48 function, the multiplier value a and the addend value c are:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

The values returned by the mrand48 function is computed by first generating the
next 48-bit Xi in the sequence. Then the appropriate bits, according to the type
of returned data item, are copied from the high-order (most significant) bits of Xi
and transformed into the returned value.

See also drand48, lrand48, lcong48, seed48, and srand48.

Return Value

n Returns signed long integers uniformly
distributed over the range ��31 � y < �31.

REF–365



msync

msync

Synchronizes a mapped file.

Format

#include <mman.h>

int msync (void *addr, size_t len, int flags);

Arguments

addr
The address of the region that you want to synchronize.

len
The length, in bytes, of the region that you want to synchronize.

flags
One of the following symbolic constants defined in the <mman.h> header file:

MS_SYNC Synchronous cache flush
MS_ASYNC Asynchronous cache flush
MS_INVALIDATE Invalidate cashed pages

Description

The msync function controls the caching operations of a mapped file region. Use
msync to:

• Ensure that modified pages in the region transfer to the underlying storage
device of the file.

• Control the visibility of modifications with respect to file system operations.

The addr and len arguments specify the region to be synchronized.
The len argument must be a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE); otherwise, the length of the region is rounded up
to the next multiple of the page size.

If the flags argument is set to:

flags Argument Then the msync Function...

MS_SYNC Does not return until the system completes all I/O
operations.

MS_ASYNC Returns after the system schedules all I/O operations.
MS_INVALIDATE Invalidates all cached copies of the pages. The

operating system must obtain new copies of the pages
from the file system the next time the application
references them.

After a successful call to the msync function with the flags argument set to:

• MS_SYNC – All previous modifications to the mapped region are visible to
processes using the read argument. Previous modifications to the file using
the write function are lost.

REF–366



msync

• MS_INVALIDATE – All previous modifications to the file using the write
function are visible to the mapped region. Previous direct modifications to the
mapped region are lost.

See also read, write, and sysconf.

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to one of the

following values:

• EIO – An I/O error occurred while reading
from or writing to the file system.

• ENOMEM – The range specified by
[addr, addr + len] is invalid for a process’s
address space, or the range specifies one or
more unmapped pages.

• EINVAL – The addr argument is not a
multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).

• EFAULT – The range [addr, addr + len]
includes an invalid address.

REF–367



munmap

munmap

Unmaps a mapped region.

Format

#include <mman.h>

int munmap (void *addr, size_t len);

Arguments

addr
The address of the region that you want to unmap.

len
The length, in bytes, of that region the you want to unmap.

Description

The munmap function unmaps a mapped file or shared memory region.

The addr and len arguments specify the address and length, in bytes, respectively,
of the region to be unmapped.

The len argument must be a multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE); otherwise, the length of the region is rounded up
to the next multiple of the page size.

The result of using an address that lies in an unmapped region and not in any
subsequently mapped region is undefined.

See also sysconf.

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to one of the

following values:

• ENIVAL – The addr argument is not a
multiple of the page size as returned by
sysconf(_SC_PAGE_SIZE).

• EFAULT – The range [addr, addr + len]
includes an invalid address.

REF–368



mv[w]addch

mv[w]addch

Move the cursor to coordinates (y,x) and add a character to the specified window.

Format

#include <curses.h>

int mvaddch (int y, int x, char ch);

int mvwaddch (WINDOW *win, int y, int x, char ch);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

ch
If this argument is a new-line character (\n), the mvaddch and mvwaddch functions
clear the line to the end, and move the cursor to the next line at the same x
coordinate. A carriage return (\r) moves the cursor to the beginning of the
specified line. A tab (\t) moves the cursor to the next tabstop within the window.

Description

This routine performs the same function as mvwaddch, but on the stdscr window.

When mvwaddch is used on a subwindow, it writes the character onto the
underlying window as well.

Return Values

OK Indicates success.
ERR Indicates that writing the character would

cause the screen to scroll illegally. For more
information, see the scrollok function.

REF–369



mv[w]addstr

mv[w]addstr

Move the cursor to coordinates (y,x) and add the specified string, to which str
points, to the specified window.

Format

#include <curses.h>

int mvaddstr (int y, int x, char *str);

int mvwaddstr (WINDOW *win, int y, int x, char *str);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

str
A pointer to the character string.

Description

This routine performs the same function as mvwaddstr, but on the stdscr window.

When mvwaddstr is used on a subwindow, the string is written onto the
underlying window as well.

Return Values

OK Indicates success.
ERR Indicates that the function causes the screen

to scroll illegally, but it places as much of the
string onto the window as possible. For more
information, see the scrollok function.

REF–370



mvcur

mvcur

Moves the terminal’s cursor from (lasty,lastx) to (newy,newx).

Format

#include <curses.h>

int mvcur (int lasty, int lastx, int newy, int newx);

Arguments

lasty
The cursor position.

lastx
The cursor position.

newy
The resulting cursor position.

newx
The resulting cursor position.

Description

In HP C for OpenVMS Systems, mvcur and move perform the same function.

See also move.

Return Values

OK Indicates success.
ERR Indicates that moving the window placed part

or all of the window off the edge of the terminal
screen. The terminal screen remains unaltered.

REF–371



mv[w]delch

mv[w]delch

Move the cursor to coordinates (y,x) and delete the character on the specified
window. The mvdelch function acts on the stdscr window.

Format

#include <curses.h>

int mvdelch (int y, int x);

int mvwdelch (WINDOW *win, int y, int x);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

Description

Each of the following characters on the same line shifts to the left, and the last
character becomes blank.

Return Values

OK Indicates success.
ERR Indicates that deleting the character would

cause the screen to scroll illegally. For more
information, see the scrollok function.

REF–372



mv[w]getch

mv[w]getch

Move the cursor to coordinates (y,x), get a character from the terminal screen,
and echo it on the specified window. The mvgetch function acts on the stdscr
window.

Format

#include <curses.h>

int mvgetch (int y, int x);

int mvwgetch (WINDOW *win, int y, int x);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

Description

The mvgetch and mvwgetch functions refresh the specified window before fetching
the character.

Return Values

x The returned character.
ERR Indicates that the function causes the screen to

scroll illegally. For more information, see the
scrollok function in this section.

REF–373



mv[w]getstr

mv[w]getstr

Move the cursor to coordinates (y,x), get a string from the terminal screen, store
it in the variable str (which must be large enough to contain the string), and echo
it on the specified window. The mvgetstr function acts on the stdscr window.

Format

#include <curses.h>

int mvgetstr (int y, int x, char *str);

int mvwgetstr (WINDOW *win, int y, int x, char *str);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

str
The string that is displayed.

Description

The mvgetstr and mvwgetstr functions strip the new-line terminator (\n) from
the string.

Return Values

OK Indicates success.
ERR Indicates that the function causes the screen to

scroll illegally.

REF–374



mv[w]inch

mv[w]inch

Move the cursor to coordinates (y,x) and return the character on the specified
window without making changes to the window. The mvinch function acts on the
stdscr window.

Format

#include <curses.h>

int mvinch (int y, int x);

int mvwinch (WINDOW *win, int y, int x);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

Return Values

x The returned character.
ERR Indicates an input error.

REF–375



mv[w]insch

mv[w]insch

Move the cursor to coordinates (y,x) and insert the character ch into the specified
window. The mvinsch function acts on the stdscr window.

Format

#include <curses.h>

int mvinsch (int y, int x, char ch);

int mvwinsch (WINDOW *win, int y, int x, char ch);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

ch
The character to be inserted at the window’s coordinates.

Description

After the character is inserted, each character on the line shifts to the right, and
the last character on the line is deleted.

Return Values

OK Indicates success.
ERR Indicates that the function makes the screen

scroll illegally. For more information, see the
scrollok function in this section.

REF–376



mv[w]insstr

mv[w]insstr

Move the cursor to coordinates (y,x) and insert the specified string into the
specified window. The mvinsstr function acts on the stdscr window.

Format

#include <curses.h>

int mvinsstr (int y, int x, char *str);

int mvwinsstr (WINDOW *win, int y, int x, char *str);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

str
The string that is displayed.

Description

Each character after the string shifts to the right, and the last character
disappears. The mvinsstr and mvwinsstr functions are specific to HP C for
OpenVMS Systems and are not portable.

Return Values

OK Indicates success.
ERR Indicates that the function makes the screen

scroll illegally. For more information, see the
scrollok function.

REF–377



mvwin

mvwin

Moves the starting position of the window to the specified (y,x) coordinates.

Format

#include <curses.h>

mvwin (WINDOW *win, int y, int x);

Arguments

win
A pointer to the window.

y
A window coordinate.

x
A window coordinate.

Description

When moving subwindows, the mvwin function does not rewrite the contents of the
subwindow on the underlying window at the new position. If you write anything
to the subwindow after the move, the function also writes to the underlying
window.

Return Values

OK Indicates success.
ERR Indicates that moving the window put part or all

of the window off the edge of the terminal screen.
The terminal screen remains unaltered.

REF–378



nanosleep (Alpha only)

nanosleep (Alpha only)

High-resolution sleep (REALTIME). Suspends a process from execution for the
specified timer interval.

Format

#include <time.h>

int nanosleep (const struct timespec *rqtp, struct timespec *rmtp);

Arguments

rqtp
A pointer to the timespec data structure that defines the time interval during
which the calling process is suspended.

rmtp
A pointer to the timespec data structure that receives the amount of time
remaining in the previously requested interval, or zero if the full interval has
elapsed.

Description

The nanosleep function suspends a process until one of the following conditions
is met:

• The time interval specified by the rqtp argument has elapsed.

• A signal is delivered to the calling process and the action is to invoke a
signal-catching function or to terminate the process.

The suspension time may be longer than requested because the argument value
is rounded up to an integer multiple of the sleep resolution or because of the
scheduling of other activity by the system. Except when interrupted by a signal,
the suspension time is not less than the time specified by the rqtp argument (as
measured by the system clock, CLOCK_REALTIME).

The use of the nanosleep function has no effect on the action or blockage of any
signal.

If the requested time has elapsed, the call was successful and the nanosleep
function returns zero.

On failure, the nanosleep function returns �1 and sets errno to indicate the
failure. The function fails if it has been interrupted by a signal, or if the rqtp
argument specified a nanosecond value less than 0 or greater than or equal to 1
billion.

If the rmtp argument is non-NULL, the timespec structure it references is
updated to contain the amount of time remaining in the interval (the requested
time minus the time actually slept).

If the rmtp argument is NULL, the remaining time is not returned.

See also clock_getres, clock_gettime, clock_settime, and sleep.

REF–379



nanosleep (Alpha only)

Return Values

0 Indicates success. The requested time has
elapsed.

�1 Indicates failure. The function call was
unsuccessful or was interrupted by a signal;
errno is set to one of the following values:

• EINTR – The nanosleep function was
interrupted by a signal.

• EINVAL – The rqtp argument specified a
nanosecond value less than 0 or greater than
or equal to 1 billion.

REF–380



newwin

newwin

Creates a new window with numlines lines and numcols columns starting at the
coordinates (begin_y,begin_x) on the terminal screen.

Format

#include <curses.h>

WINDOW *newwin (int numlines, int numcols, int begin_y, int begin_x);

Arguments

numlines
If it is 0, the newwin function sets that dimension to LINES (begin_y). To get a
new window of dimensions LINES by COLS, use the following line:

newwin (0, 0, 0, 0)

numcols
If it is 0, the newwin function sets that dimension to COLS (begin_x). Therefore,
to get a new window of dimensions LINES by COLS, use the following line:

newwin (0, 0, 0, 0)

begin_y
A window coordinate.

begin_x
A window coordinate.

Return Values

x The address of the allocated window.
ERR Indicates an error.

REF–381



nextafter (Alpha only)

nextafter (Alpha only)

Returns the next machine-representable number following x in the direction of y.

Format

#include <math.h>

double nextafter (double x, double y);

float nextafterf (float x, float y);

long double nextafterl (long double x, long double y);

Arguments

x
A real number.

y
A real number.

Description

The nextafter functions return the next machine-representable floating-point
number following x in the direction of y. If y is less than x, nextafter returns the
largest representable floating-point number less than x.

Return Values

x The next representable floating-point value
following x in the direction of y.

HUGE_VAL Overflow; errno is set to ERANGE.
NaN x or y is NaN; errno is set to EDOM.

REF–382



nice

nice

Increases or decreases process priority relative to the process current priority by
the amount of the argument. This function is nonreentrant.

Format

#include <unistd.h>

int nice (int increment);

Argument

increment
As a positive argument, decreases priority; as a negative argument, increases
priority. Issuing nice(0) restores the base priority. The resulting priority cannot
be less than 1, or greater than the process’s base priority. If it is, the nice
function quietly does nothing.

Description

When a process calls the vfork function, the resulting child inherits the parent’s
priority.

With the DECC$ALLOW_UNPRIVILEGED_NICE feature logical enabled, the
nice function exhibits its legacy behavior of not checking the privilege of the
calling process (that is, any user may lower the nice value to increase process
priorities). Also, when the caller sets a priority above MAX_PRIORITY, the nice
value is set to the base priority.

With DECC$ALLOW_UNPRIVILEGED_NICE disabled, the nice function
conforms to the X/Open standard of checking the privilege of the calling process
(only users with ALTPRI privilege can lower the nice value to increase process
priorities), and when the caller sets a priority above MAX_PRIORITY, the nice
value is set to MAX_PRIORITY.

See also vfork.

Return Values

0 Indicates success.
�1 Indicates failure.

REF–383



nint (Alpha only)

nint (Alpha only)

Returns the nearest integral value to the argument.

Format

#include <math.h>

double nint (double x);

float nintf (float x,);

long double nintl (long double x);

Argument

x
A real number.

Description

The nint functions return the nearest integral value to x, except halfway cases
are rounded to the integral value larger in magnitude. This corresponds to the
Fortran generic intrinsic function nint.

Return Values

n The nearest integral value to x.
NaN x is NaN; errno is set to EDOM.

REF–384



[no]nl

[no]nl

The nl and nonl functions are provided only for UNIX software compatibility and
have no function in the OpenVMS environment.

Format

#include <curses.h>

void nl (void);

void nonl (void);

REF–385



nl_langinfo

nl_langinfo

Returns a pointer to a string that contains information obtained from the
program’s current locale.

Format

#include <langinfo.h>

char *nl_langinfo (nl_item item);

Argument

item
The name of a constant that specifies the information required. These constants
are defined in <langinfo.h>.

The following constants are valid:

Constant Category Description

D_T_FMT LC_TIME String for formatting date and time
D_FMT LC_TIME String for formatting date
T_FMT LC_TIME String for formatting time
T_FMT_AMPM LC_TIME Time format with AM/PM string
AM_STR LC_TIME String that represents AM in 12-hour

clock notation
PM_STR LC_TIME String that represents PM in 12-hour

clock notation
DAY_1 LC_TIME The name of the first day of the week
. . .

DAY_7 LC_TIME The name of the seventh day of the
week

ABDAY_1 LC_TIME The abbreviated name of the first day
of the week

. . .
ABDAY_7 LC_TIME The abbreviated name of the seventh

day of the week
MON_1 LC_TIME The name of the first month in the

year
. . .

MON_12 LC_TIME The name of the twelfth month in the
year

ABMON_1 LC_TIME The abbreviated name of the first
month in the year

. . .
ABMON_12 LC_TIME The abbreviated name of the twelfth

month in the year
ERA LC_TIME Era description strings

REF–386



nl_langinfo

Constant Category Description

ERA_D_FMT LC_TIME Era date format string
ERA_T_FMT LC_TIME Era time format
ERA_D_T_FMT LC_TIME Era date and time format
ALT_DIGITS LC_TIME Alternative symbols for digits
RADIXCHAR LC_NUMERIC The radix character
THOUSEP LC_NUMERIC The character used to separate

groups of digits in nonmonetary
values

YESEXP LC_MESSAGES The expression for affirmative
responses to yes/no questions

NOEXP LC_MESSAGES The expression for negative responses
to yes/no questions

CRNCYSTR LC_MONETARY The currency symbol. It is preceded
by one of the following:

• A minus (� ) if the symbol is to
appear before the value

• A plus ( + ) if the symbol is to
appear after the value

• A period ( . ) if the symbol replaces
the radix character

CODESET LC_CTYPE Codeset name

Description

If the current locale does not have language information defined, the function
returns information from the C locale. The program should not modify the string
returned by the function. This string might be overwritten by subsequent calls to
nl_langinfo.

If the setlocale function is called after a call to nl_langinfo, then the pointer
returned by the previous call to nl_langinfo will be unspecified. In this case, the
nl_langinfo function should be called again.

Return Value

x Pointer to the string containing the requested
information. If item is invalid, the function
returns an empty string.

Example
#include <stdio.h>
#include <locale.h>
#include <langinfo.h>

/* This test sets up the British English locale, and then */
/* inquires on the data and time format, first day of the week, */
/* and abbreviated first day of the week. */

#include <stdlib.h>
#include <string.h>

REF–387



nl_langinfo

int main()
{

char *return_val;
char *nl_ptr;

/* set the locale, with user supplied locale name */

return_val = setlocale(LC_ALL, "en_gb.iso8859-1");
if (return_val == NULL) {

printf("ERROR : The locale is unknown");
exit(1);

}
printf("+----------------------------------------+\n");

/* Get the date and time format from the locale. */

printf("D_T_FMT = ");

/* Compare the returned string from nl_langinfo with */
/* an empty string. */

if (!strcmp((nl_ptr = (char *) nl_langinfo(D_T_FMT)), "")) {

/* The string returned was empty this could mean that either */
/* 1) The locale does not contain a value for this item */
/* 2) The value for this item is an empty string */

printf("nl_langinfo returned an empty string\n");
}
else {

/* Display the date and time format */

printf("%s\n", nl_ptr);
}

/* Get the full name for the first day of the week from locale */
printf("DAY_1 = ");

/* Compare the returned string from nl_langinfo with */
/* an empty string. */

if (!strcmp((nl_ptr = (char *) nl_langinfo(DAY_1)), "")) {

/* The string returned was empty this could mean that either */
/* 1) The locale does not contain a value for the first */
/* day of the week */
/* 2) The value for the first day of the week is */
/* an empty string */

printf("nl_langinfo returned an empty string\n");
}

else {
/* Display the full name of the first day of the week */

printf("%s\n", nl_ptr);
}

/* Get the abbreviated name for the first day of the week
from locale */

printf("ABDAY_1 = ");

/* Compare the returned string from nl_langinfo with an empty */
/* string. */

if (!strcmp((nl_ptr = (char *) nl_langinfo(ABDAY_1)), "")) {

/* The string returned was empty this could mean that either */
/* 1) The locale does not contain a value for the first */
/* day of the week */
/* 2) The value for the first day of the week is an */
/* empty string */

REF–388



nl_langinfo

printf("nl_langinfo returned an empty string\n");
}

else {

/* Display the abbreviated name of the first day of the week */

printf("%s\n", nl_ptr);
}

}

Running the example program produces the following result:

+----------------------------------------+
D_T_FMT = %a %e %b %H:%M:%S %Y
DAY_1 = Sunday
ABDAY_1 = Sun

REF–389



nrand48

nrand48

Generates uniformly distributed pseudorandom-number sequences. Returns
48-bit signed long integers.

Format

#include <stdlib.h>

long int nrand48 (unsigned short int xsubi[3]);

Argument

xsubi
An array of three short ints that, when concatentated together, form a 48-bit
integer.

Description

The nrand48 function generates pseudorandom numbers using the linear
congruential algorithm and 48-bit integer arithmetic.

The nrand48 function returns nonnegative, long integers uniformly distributed
over the range of y values, such that 0 � y < �31.

The function works by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+1 = (aXn+c)mod m n >= 0

The argument m equals �48, so 48-bit integer arithmetic is performed. Unless you
invoke the lcong48 function, the multiplier value a and the addend value c are:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

The nrand48 function requires that the calling program pass an array as the
xsubi argument, which for the first call must be initialized to the initial value
of the pseudorandom-number sequence. Unlike the drand48 function, it is not
necessary to call an initialization function prior to the first call.

By using different arguments, the nrand48 function allows separate modules of
a large program to generate several independent sequences of pseudorandom
numbers. For example, the sequence of numbers that one module generates does
not depend upon how many times the functions are called by other modules.

Return Value

n Returns nonnegative, long integers over the
range 0 � y < �31.

REF–390



open

open

Opens a file for reading, writing, or editing. It positions the file at its beginning
(byte 0).

Format

#include <fcntl.h>

int open (const char *file_spec, int flags, mode_t mode); (ANSI C)

int open (const char *file_spec, int flags, . . . ); (HP C Extension)

Arguments

file_spec
A null-terminated character string containing a valid file specification. If you
specify a directory in the file_spec and it is a search list that contains an error,
HP C interprets it as a file open error.

flags
The following values are defined in the <file.h> header file:

O_RDONLY Open for reading only
O_WRONLY Open for writing only
O_RDWR Open for reading and writing
O_NDELAY Open for asynchronous input
O_APPEND Append on each write
O_CREAT Create a file if it does not exist
O_TRUNC Create a new version of this file
O_EXCL Error if attempting to create existing file

These flags are set using the bitwise OR operator ( | ) to separate specified flags.

Opening a file with O_APPEND causes each write on the file to be appended to the
end. (In contrast, with the VAX C RTL the behavior of files opened in append
mode was to start at EOF and, thereafter, write at the current file position.)

If O_TRUNC is specified and the file exists, open creates a new file by incrementing
the version number by 1, leaving the old version in existence.

If O_CREAT is set and the named file does not exist, the HP C RTL creates it
with any attributes specified in the fourth and subsequent arguments ( . . . ). If
O_EXCL is set with O_CREAT and the named file exists, the attempted open returns
an error.

mode
An unsigned value that specifies the file-protection mode. The compiler performs
a bitwise AND operation on the mode and the complement of the current
protection mode.

You can construct modes by using the bitwise OR operator ( | ) to separate
specified modes. The modes are:

0400 OWNER:READ

REF–391



open

0200 OWNER:WRITE
0100 OWNER:EXECUTE
0040 GROUP:READ
0020 GROUP:WRITE
0010 GROUP:EXECUTE
0004 WORLD:READ
0002 WORLD:WRITE
0001 WORLD:EXECUTE

The system is given the same access privileges as the owner. A WRITE privilege
also implies a DELETE privilege.

. . .
Optional file attribute arguments. The file attribute arguments are the same as
those used in the creat function. For more information, see the creat function.

Description

If a version of the file exists, a new file created with open inherits certain
attributes from the existing file unless those attributes are specified in the open
call. The following attributes are inherited: record format, maximum record size,
carriage control, and file protection.

Notes

• If you intend to do random writing to a file, the file must be opened
for update by specifying a flags value of O_RDWR.

• To create files with OpenVMS RMS default protections by using the
UNIX system-call functions umask, mkdir, creat, and open, call mkdir,
creat, and open with a file-protection mode argument of 0777 in a
program that never specifically calls umask. These default protections
include correctly establishing protections based on ACLs, previous
versions of files, and so on.

In programs that do vfork/exec calls, the new process image inherits
whether umask has ever been called or not from the calling process
image. The umask setting and whether the umask function has ever
been called are both inherited attributes.

See also creat, read, write, close, dup, dup2, and lseek.

Return Values

x A nonnegative file descriptor number.
�1 Indicates that the file does not exist, that it is

protected against reading or writing, or that it
cannot be opened for another reason.

REF–392



open

Example
#include <unixio.h>
#include <file.h>
#include <stdlib.h>

main()
{

int file,
stat;

int flags;

flags = O_RDWR; /* Open for read and write, */
/* with user default file protection, */
/* with max fixed record size of 2048, */
/* and a block size of 2048 bytes. */

file = open("file.dat", flags, 0, "rfm=fix", "mrs=2048", "bls=2048");
if (file == -1)

perror("OPEN error"), exit(1);

close(file);
}

REF–393



opendir

opendir

Opens a specified directory.

Format

#include <dirent.h>

DIR *opendir (const char *dir_name);

Argument

dir_name
The name of the directory to be opened.

Description

The opendir function opens the directory specifed by dir_name and associates a
directory stream with it. The directory stream is positioned at the first entry. The
type DIR, defined in the <dirent.h> header file, represents a directory stream. A
directory stream is an ordered sequence of all the directory entries in a particular
directory.

The opendir function also returns a pointer to identify the directory stream in
subsequent operations. The NULL pointer is returned when the directory named
by dir_name cannot be accessed, or when not enough memory is available to hold
the entire stream.

Note

An open directory must always be closed with the closedir function to
ensure that the next attempt to open that directory is successful. The
opendir function should be used with readdir, closedir, and rewinddir
to examine the contents of the directory.

Example

See the program example in the description of closedir.

Return Values

x A pointer to an object of type DIR.

REF–394



opendir

NULL Indicates an error; errno is set to one of the
following values:

• EACCES – Search permission is denied
for any component of dir_name or read
permission is denied for dir_name.

• ENAMETOOLONG – The length of the
dir_name string exceeds PATH_MAX, or
a pathname component is longer than
NAME_MAX.

• ENOENT – The dir_name argument points
to the name of a file that does not exist, or is
an empty string.

REF–395



overlay

overlay

Nondestructively superimposes win1 on win2. The function writes the contents
of win1 that will fit onto win2 beginning at the starting coordinates of both
windows. Blanks on win1 leave the contents of the corresponding space on win2
unaltered. The overlay function copies as much of a window’s box as possible.

Format

#include <curses.h>

int overlay (WINDOW *win1, WINDOW *win2);

Arguments

win1
A pointer to the window.

win2
A pointer to the window.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–396



overwrite

overwrite

Destructively writes the contents of win1 on win2.

Format

#include <curses.h>

int overwrite (WINDOW *win1, WINDOW *win2);

Arguments

win1
A pointer to the window.

win2
A pointer to the window.

Description

The overwrite function writes the contents of win1 that will fit onto win2
beginning at the starting coordinates of both windows. Blanks on win1 are
written on win2 as blanks. This function copies as much of a window’s box as
possible.

Return Values

OK Indicates success.
ERR Indicates failure.

REF–397



pathconf

pathconf

Retrieves file implementation characteristics.

Format

#include <unistd.h>

long int pathconf (const char *path, int name);

Arguments

path
The pathname of a file or directory.

name
The configuration attribute to query. If this attribute is not applicable to the file
specified by the path argument, the pathconf function returns an error.

Description

The pathconf function allows an application to determine the characteristics of
operations supported by the file system underlying the file named by path. Read,
write, or execute permission of the named file is not required, but you must be
able to search all directories in the path leading to the file.

Symbolic values for the name argument are defined in the <unistd.h> header
file, as follows:

_PC_LINK_MAX The maximum number of links to the file. If the path
argument refers to a directory, the value returned
applies to the directory itself.

_PC_MAX_CANON The maximum number of bytes in a canonical input
line. This is applicable only to terminal devices.

_PC_MAX_INPUT The number of types allowed in an input queue. This
is applicable only to terminal devices.

_PC_NAME_MAX Maximum number of bytes in a file name (not including
a terminating null). The byte range value is between
13 and 255. This is applicable only to a directory file.
The value returned applies to file names within the
directory.

_PC_PATH_MAX Maximum number of bytes in a pathname (not
including a terminating null). The value is never larger
than 65,535. This is applicable only to a directory file.
The value returned is the maximum length of a relative
pathname when the specified directory is the working
directory.

_PC_PIPE_BUF Maximum number of bytes guaranteed to be written
atomically. This is applicable only to a FIFO. The
value returned applies to the referenced object. If the
path argument refers to a directory, the value returned
applies to any FIFO that exists or can be created
within the directory.

REF–398



pathconf

_PC_CHOWN_
RESTRICTED

This is applicable only to a directory file. The value
returned applies to any files (other than directories)
that exist or can be created within the directory.

_PC_NO_TRUNC Returns 1 if supplying a component name longer than
allowed by NAME_MAX causes an error. Returns 0
(zero) if long component names are truncated. This is
applicable only to a directory file.

_PC_VDISABLE This is always 0 (zero); no disabling character is
defined. This is applicable only to a terminal device.

Return Values

x Resultant value of the configuration attribute
specified in name.

�1 Indicates an error; errno is set to one of the
following values:

• EACCES – Search permission is denied for a
component of the path prefix.

• EINVAL – The name argument specifies an
unknown or inapplicable characteristic.

• EFAULT – The path argument is an invalid
address.

• ENAMETOOLONG – The length of the path
string exceeds PATH_MAX or a pathname
component is longer than NAME_MAX.

• ENOENT – The named file does not exist or
the path argument points to an empty string.

• ENOTDI – A component of the path prefix is
not a directory.

REF–399



pause

pause

Suspends the calling process until delivery of a signal whose action is either to
execute a signal-catching function or to terminate the process.

Format

#include <unistd.h>

int pause (void);

Description

The pause function suspends the calling process until delivery of a signal whose
action is either to execute a signal-catching function or to terminate the process.

If the action is to terminate the process, pause does not return.

If the action is to execute a signal-catching function, pause returns after the
signal-catching function returns.

Return Value

Since the pause function suspends process
execution indefinitely unless interrupted by a
signal, there is no successful completion return
value.

�1 In cases where pause returns, the return value is
�1, and errno is set to EINTR.

REF–400



pclose

pclose

Closes a pipe to a process.

Format

#include <stdio.h>

int pclose (FILE *stream);

Arguments

stream
A pointer to a FILE structure for an open pipe returned by a previous call to the
popen function.

Description

The pclose function closes a pipe between the calling program and a shell
command to be executed. Use pclose to close any stream you have opened
with popen. The pclose function waits for the associated process to end, and
then returns the exit status of the command. See the description of waitpid for
information on interpreting the exit status.

Beginning with OpenVMS Version 7.3-1, when compiled with the _VMS_WAIT
macro defined, the pclose function returns the OpenVMS completion code of the
child process.

See also popen.

Return Values

x Exit status of child.
�1 Indicates an error. The stream argument is not

associated with a popen function. errno is set to
the following:

• ECHILD – cannot obtain the status of the
child process.

REF–401



perror

perror

Writes a short error message to stderr describing the current value of errno.

Format

#include <stdio.h>

void perror (const char *str);

Argument

str
Usually the name of the program that caused the error.

Description

The perror function uses the error number in the external variable errno to
retrieve the appropriate locale-dependent error message. The function writes out
the message as follows: str (a user-supplied prefix to the error message), followed
by a colon and a space, followed by the message itself, followed by a new-line
character.

See the description of errno in Chapter 4 for a list of possible errors.

See also strerror.

Example
#include <stdio.h>
#include <stdlib.h>

main(argc, argv)
int argc;
char *argv[];

{
FILE *fp;

fp = fopen(argv[1], "r"); /* Open an input file. */
if (fp == NULL) {

/* If the fopen call failed, perror prints out a */
/* diagnostic: */
/* */
/* "open: <error message>" */
/* This error message provides a diagnostic explaining */
/* the cause of the failure. */

perror("open");
exit(EXIT_FAILURE);

}
else

fclose(fd) ;
}

REF–402



pipe

pipe

Creates a temporary mailbox that can be used to read and write data between a
parent and child process. The channels through which the processes communicate
are called a pipe.

Format

#include <unistd.h>

int pipe (int array_fdscptr[2]); (ISO POSIX-1)

int pipe (int array_fdscptr[2], . . . ); (HP C Extension)

Arguments

array_fdscptr
An array of file descriptors. A pipe is implemented as an array of file descriptors
associated with a mailbox. These mailbox descriptors are special in that these are
the only file descriptors which, when passed to the isapipe function, will return
1.

The file descriptors are allocated in the following way:

• The first available file descriptor is assigned to writing, and the next available
file descriptor is assigned to reading.

• The file descriptors are then placed in the array in reverse order; element
0 contains the file descriptor for reading, and element 1 contains the file
descriptor for writing.

. . .
Represents three optional, positional arguments, flag, bufsize, and bufquota:

flag
An optional argument used as a bitmask.

If either the O_NDELAY or O_NONBLOCK bit is set, the I/O operations to the
mailbox through array_fdscptr file descriptors terminate immediately, rather than
waiting for another process.

If, for example, the O_NDELAY bit is set and the child issues a read request
to the mailbox before the parent has put any data into it, the read terminates
immediately with 0 status. If neither the O_NDELAY nor O_NONBLOCK bit is
set, the child will be waiting on the read until the parent writes any data into the
mailbox. This is the default behavior if no flag argument is specified.

The values of O_NDELAY and O_NONBLOCK are defined in the <fcntl.h>
header file. Any other bits in the flag argument are ignored. You must specify
this argument if the second optional, positional argument bufsize is specified. If
the flag argument is needed only to allow specification of the bufsize argument,
specify flag as 0.

bufsize
Optional argument of type int that specifies the size of the mailbox, in bytes.
Specify a value from 512 to 65535.

If you specify 0 or omit this argument, the operating system creates a mailbox
with a default size of 512 bytes.

REF–403



pipe

If you specify a value less than 0 or larger than 65535, the results are
unpredictable.

If you do specify this argument, be sure to precede it with a flag argument.

The DECC$PIPE_BUFFER_SIZE feature logical can also be used to specify the
size of the mailbox. If bufsize is supplied, it takes precedence over the value of
DECC$PIPE_BUFFER_SIZE. Otherwise, the value of DECC$PIPE_BUFFER_
SIZE is used.

If neither bufsize nor DECC$PIPE_BUFFER_SIZE is specified, the default buffer
size of 512 is used.

bufquota
Optional argument of type int that specifies the buffer quota of the pipe’s
mailbox. Specify a value from 512 to 2147483647.

OpenVMS Version 7.3-2 added this argument. In previous OpenVMS versions,
the buffer quota was equal to the buffer size.

The DECC$PIPE_BUFFER_QUOTA feature logical can also be used to specify the
buffer quota. If the optional bufquota argument of the pipe function is supplied,
it takes precedence over the value of DECC$PIPE_BUFFER_QUOTA. Otherwise,
the value of DECC$PIPE_BUFFER_QUOTA is used.

If neither bufquota nor DECC$PIPE_BUFFER_QUOTA is specified, then the
buffer quota defaults to the buffer size.

Description

The mailbox used for the pipe is a temporary mailbox. The mailbox is not deleted
until all processes that have open channels to that mailbox close those channels.
The last process that closes a pipe writes a message to the mailbox, indicating the
end-of-file.

The mailbox is created by using the $CREMBX system service, specifying the
following characteristics:

• A maximum message length of 512 characters

• A buffer quota of 512 characters

• A protection mask granting all privileges to USER and GROUP and no
privileges to SYSTEM or WORLD

The buffer quota of 512 characters implies that you cannot write more than
512 characters to the mailbox before all or part of the mailbox is read. Since
a mailbox record is slightly larger than the data part of the message that it
contains, not all of the 512 characters can be used for message data. You can
increase the size of the buffer by specifying an alternative size using the optional,
third argument to the pipe function. A pipe under the OpenVMS system is a
stream-oriented file with no carriage-control attributes. It is fully buffered by
default in the HP C RTL. A mailbox used as a pipe is different than a mailbox
created by the application. A mailbox created by the application defaults to a
record-oriented file with carriage return, carriage control. Additionally, writing a
zero-length record to a mailbox writes an EOF, as does each close of the mailbox.
For a pipe, only the last close of a pipe writes an EOF.

REF–404



pipe

The pipe is created by the parent process before vfork and an exec function
are called. By calling pipe first, the child inherits the open file descriptors for
the pipe. You can then use the getname function to return the name of the
mailbox associated with the pipe, if this information is desired. The mailbox
name returned by getname has the format _MBAnnnn:, where nnnn is a unique
number.

Both the parent and the child need to know in advance which file descriptors
will be allocated for the pipe. This information cannot be retrieved at run time.
Therefore, it is important to understand how file descriptors are used in any
HP C for OpenVMS program. For more information about file descriptors, see
Chapter 2.

File descriptors 0, 1, and 2 are open in a HP C for OpenVMS program for stdin
(SYS$INPUT), stdout (SYS$OUTPUT), and stderr (SYS$ERROR), respectively.
Therefore, if no other files are open when pipe is called, pipe assigns file
descriptor 3 for writing and file descriptor 4 for reading. In the array returned by
pipe, 4 is placed in element 0 and 3 is placed in element 1.

If other files have been opened, pipe assigns the first available file descriptor for
writing and the next available file descriptor for reading. In this case, the pipe
does not necessarily use adjacent file descriptors. For example, assume that two
files have been opened and assigned to file descriptors 3 and 4 and the first file is
then closed. If pipe is called at this point, file descriptor 3 is assigned for writing
and file descriptor 5 is assigned for reading. Element 0 of the array will contain 5
and element 1 will contain 3.

In large applications that do large amounts of I/O, it gets more difficult to predict
which file descriptors are going to be assigned to a pipe; and, unless the child
knows which file descriptors are being used, it will not be able to read and write
successfully from and to the pipe.

One way to be sure that the correct file descriptors are being used is to use the
following procedure:

1. Choose two descriptor numbers that will be known to both the parent and the
child. The numbers should be high enough to account for any I/O that might
be done before the pipe is created.

2. Call pipe in the parent at some point before calling an exec function.

3. In the parent, use dup2 to assign the file descriptors returned by pipe to the
file descriptors you chose. This now reserves those file descriptors for the
pipe; any subsequent I/O will not interfere with the pipe.

You can read and write through the pipe using the UNIX I/O functions read and
write, specifying the appropriate file descriptors. As an alternative, you can issue
fdopen calls to associate file pointers with these file descriptors so that you can
use the Standard I/O functions (fread and fwrite).

Two separate file descriptors are used for reading from and writing to the pipe,
but only one mailbox is used so some I/O synchronization is required. For
example, assume that the parent writes a message to the pipe. If the parent is
the first process to read from the pipe, then it will read its own message back as
shown in Figure REF–1.

REF–405



pipe

Figure REF–1 Reading and Writing to a Pipe

ZK−4003−GE

Parent

read

write
Mailbox

read

write

Child

0

1

0

1

Return Values

0 Indicates success.
�1 Indicates an error.

REF–406



popen

popen

Initiates a pipe to a process.

Format

#include <stdio.h>

FILE *popen (const char *command, const char *type);

Arguments

command
A pointer to a null-terminated string containing a shell command line.

type
A pointer to a null-terminated string containing an I/O mode. Because open
files are shared, you can use a type r command as an input filter and a type
w command as an output filter. Specify one of the following values for the type
argument:

• r—the calling program can read from the standard output of the command by
reading from the returned file stream.

• w—the calling program can write to the standard input of the command by
writing to the returned file stream.

Description

The popen function creates a pipe between the calling program and a shell
command awaiting execution. It returns a pointer to a FILE structure for the
stream.

The popen function uses the value of the DECC$PIPE_BUFFER_SIZE feature
logical to set the buffer size of the mailbox it creates for the pipe. You can specify
a DECC$PIPE_BUFFER_SIZE value of 512 to 65024 bytes. If DECC$PIPE_
BUFFER_SIZE is not specified, the default buffer size of 512 is used.

Note

When you use the popen function to invoke an output filter, beware of
possible deadlock caused by output data remaining in the program buffer.
You can avoid this by either using the setvbuf function to ensure that
the output stream is unbuffered, or the fflush function to ensure that all
buffered data is flushed before calling the pclose function.

See also fflush, pclose, and setvbuf.

REF–407



popen

Return Values

x A pointer to the FILE structure for the opened
stream.

NULL Indicates an error. Unable to create files or
processes.

REF–408



pow

pow

Returns the first argument raised to the power of the second argument.

Format

#include <math.h>

double pow (double x, double y);

float powf (float x, float y); (Alpha only)

long double powl (long double x, long double y); (Alpha only)

Arguments

x
A floating-point base to be raised to an exponent y.

y
The exponent to which the base x is to be raised.

Description

The pow functions raise a floating-point base x to a floating-point exponent y. The
value of pow(x,y) is computed as e**(y ln(x)) for positive x.

If x is 0 and y is negative, �HUGE_VAL is returned, and errno is set to EDOM.

Return Values

x The result of the first argument raised to the
power of the second.

1.0 The base is 0 and the exponent is 0.
HUGE_VAL The result overflowed; errno is set to ERANGE.
�HUGE_VAL The base is 0 and the exponent is negative; errno

is set to EDOM.

Example
#include <stdio.h>
#include <math.h>
#include <errno.h>

main()
{

double x;

errno = 0;

x = pow(-3.0, 2.0);
printf("%d, %f\n", errno, x);

}

This example program outputs the following:

0, 9.000000

REF–409



pread (Alpha only)

pread (Alpha only)

Reads bytes from a given position within a file without changing the file pointer.

Format

#include <unistd.h>

ssize_t pread (int file_desc, void *buffer, size_t nbytes, off_t offset);

Arguments

file_desc
A file descriptor that refers to a file currently opened for reading.

buffer
The address of contiguous storage in which the input data is placed.

nbytes
The maximum number of bytes involved in the read operation.

offset
The offset for the desired position inside the file.

Description

The pread function performs the same action as read, except that it reads from
a given position in the file without changing the file pointer. The first three
arguments to pread are the same as for read, with the addition of a fourth
argument offset for the desired position inside the file. An attempt to perform a
pread on a file that is incapable of seeking results in an error.

Return Values

n The number of bytes read.
�1 Upon failure, the file pointer remains unchanged

and pread sets errno to one of the following
values:

• EINVAL – The offset argument is invalid.
The value is negative.

• EOVERFLOW – The file is a regular file, and
an attempt was made to read or write at or
beyond the offset maximum associated with
the file.

• ENXIO – A request was outside the
capabilities of the device.

• ESPIPE – fildes is associated with a pipe or
FIFO.

REF–410



printf

printf

Performs formatted output from the standard output (stdout). See Chapter 2 for
information on format specifiers.

Format

#include <stdio.h>

int printf (const char *format_spec, . . . );

Arguments

format_spec
Characters to be written literally to the output or converted as specified in
the . . . arguments.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, you may omit the output sources.
Otherwise, the function call must have exactly as many output sources as there
are conversion specifications, and the conversion specifications must match the
types of the output sources.

Conversion specifications are matched to output sources in left-to-right order.
Excess output pointers, if any, are ignored.

Return Values

x The number of bytes written.
Negative value Indicates that an output error occurred. The

function sets errno. For a list of errno values set
by this function, see fprintf.

REF–411



[w]printw

[w]printw

Perform a printf in the specified window, starting at the current position of the
cursor. The printw function acts on the stdscr window.

Format

#include <curses.h>

printw (char *format_spec, . . . );

int wprintw (WINDOW *win, char *format_spec, . . . );

Arguments

win
A pointer to the window.

format_spec
A pointer to the format specification string.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, you may omit the output sources.
Otherwise, the function call must have exactly as many output sources as there
are conversion specifications, and the conversion specifications must match the
types of the output sources.

Conversion specifications are matched to output sources in left-to-right order.
Excess output pointers, if any, are ignored.

Description

The formatting specification (format_spec) and the other arguments are identical
to those used with the printf function.

The printw and wprintw functions format and then print the resultant string
to the window using the addstr function. For more information, see the printf
and scrollok functions in this section. See Chapter 2 for information on format
specifiers.

Return Values

OK Indicates success.
ERR Indicates that the function makes the window

scroll illegally.

REF–412



putc

putc

The putc macro writes a single character to a specified file.

Format

#include <stdio.h>

int putc (int character, FILE *file_ptr);

Arguments

character
An object of type int.

file_ptr
A file pointer.

Description

Since putc is a macro, a file pointer argument with side effects (for example,
putc (ch, *f++)) might be evaluated incorrectly. In such a case, use the fputc
function instead.

See also fputc.

Return Values

x The character written to the file. Indicates
success.

EOF Indicates output errors.

REF–413



putchar

putchar

Writes a single character to the standard output (stdout) and returns the
character.

Format

#include <stdio.h>

int putchar (int character);

Argument

character
An object of type int.

Description

The putchar function is identical to fputc (character, stdout).

Return Values

character Indicates success.
EOF Indicates output errors.

REF–414



putenv

putenv

Sets an environmental variable.

Format

#include <stdlib.h>

int putenv (const char *string);

Argument

string
A pointer to a name=value string.

Description

The putenv function sets the value of an environment variable by altering an
existing variable or by creating a new one. The string argument points to a string
of the form name=value, where name is the environment variable and value is the
new value for it.

The string pointed to by string becomes part of the environment, so altering the
string changes the environment. When a new string-defining name is passed to
putenv, the space used by string is no longer used.

Notes

• The putenv function manipulates the environment pointed to by the
environ external variable, and can be used with getenv. However,
the third argument to the main function (the environment pointer), is
not changed.

The putenv function uses the malloc function to enlarge the
environment.

A potential error is to call putenv with an automatic variable as the
argument, then exit the calling function while string is still part of
the environment.

• Do not use the setenv, getenv, and putenv functions to manipulate
symbols and logicals. Instead, use the OpenVMS library calls
lib$set_logical, lib$get_logical, lib$set_symbol, and
lib$get_symbol. The *env functions deliberately provide UNIX
behavior, and are not a substitute for these OpenVMS runtime library
calls.

OpenVMS DCL symbols, not logical names, are the closest analog
to environment variables on UNIX systems. While getenv is a
mechanism to retrieve either a logical name or a symbol, it maintains
an internal cache of values for use with setenv and subsequent
getenv calls. The setenv function does not write or create DCL
symbols or OpenVMS logical names.

This is consistent with UNIX behavior. On UNIX systems, setenv
does not change or create any symbols that will be visible in the shell
after the program exits.

REF–415



putenv

Return Values

0 Indicates success.
�1 Indicates an error. errno is set to ENOMEM—

Not enough memory available to expand the
environment list.

Restriction

The putenv function cannot take a 64-bit address. See Section 1.10.

REF–416



puts

puts

Writes a character string to the standard output (stdout) followed by a new-line
character.

Format

#include <stdio.h>

int puts (const char *str);

Argument

str
A pointer to a character string.

Description

The puts function does not copy the terminating null character to the output
stream.

Return Values

Nonnegative value Indicates success.
EOF Indicates output errors.

REF–417



putw

putw

Writes characters to a specified file.

Format

#include <stdio.h>

int putw (int integer, FILE *file_ptr);

Arguments

integer
An object of type int or long.

file_ptr
A file pointer.

Description

The putw function writes four characters to the output file as an int. No
conversion is performed.

Return Values

integer Indicates success.
EOF Indicates output errors.

REF–418



putwc

putwc

Converts a wide character to its corresponding multibyte value, and writes the
result to a specified file.

Format

#include <wchar.h>

wint_t putwc (wint_t wc, FILE *file_ptr);

Arguments

wc
An object of type wint_t.

file_ptr
A file pointer.

Description

Since putwc might be implemented as a macro, a file pointer argument with side
effects (for example putwc (wc, *f++)) might be evaluated incorrectly. In such a
case, use the fputwc function instead.

See also fputwc.

Return Values

x The character written to the file. Indicates
success.

WEOF Indicates an output error. The function sets
errno. For a list of the errno values set by this
function, see fputwc.

REF–419



putwchar

putwchar

Writes a wide character to the standard output (stdout) and returns the
character.

Format

#include <wchar.h>

wint_t putwchar (wint_t wc);

Arguments

wc
An object of type wint_t.

Description

The putwchar function is identical to fputwc(wc, stdout).

Return Values

x The character written to the file. Indicates
success.

WEOF Indicates an output error. The function sets
errno. For a list of the errno values set by this
function, see fputwc.

REF–420



pwrite (Alpha only)

pwrite (Alpha only)

Writes into a given position within a file without changing the file pointer.

Format

#include <unistd.h>

ssize_t pwrite (int file_desc, const void *buffer, size_t nbytes, off_t offset);

Arguments

file_desc
A file descriptor that refers to a file currently opened for writing or updating.

buffer
The address of contiguous storage from which the output data is taken.

nbytes
The maximum number of bytes involved in the write operation.

offset
The offset for the desired position inside the file.

Description

The pwrite function performs the same action as write, except that it writes
into a given position in the file without changing the file pointer. The first three
arguments to pwrite are the same as for write, with the addition of a fourth
argument offset for the desired position inside the file.

Return Values

n The number of bytes written.
�1 Upon failure, the file pointer remains unchanged

and pwrite sets errno to one of the following
values:

• EINVAL – The offset argument is invalid.
The value is negative.

• ESPIPE – fildes is associated with a pipe or
FIFO.

REF–421



qabs, llabs (Alpha only)

qabs, llabs (Alpha only)

Returns the absolute value of an integer as an _ _int64. llabs is a synonym for
qabs.

Format

#include <stdlib.h>

_ _int64 qabs (_ _int64 j);

_ _int64 llabs (_ _int64 j);

Argument

j
A value of type _ _int64.

REF–422



qdiv, lldiv (Alpha only)

qdiv, lldiv (Alpha only)

Returns the quotient and the remainder after the division of its arguments.
lldiv is a synonym for qdiv.

Format

#include <stdlib.h>

qdiv_t qdiv (_ _int64 numer, _ _int64 denom);

lldiv_t lldiv (_ _int64 numer, _ _int64 denom);

Arguments

numer
A numerator of type _ _int64.

denom
A denominator of type _ _int64.

Description

The types qdiv_t and lldiv_t are defined in the <stdlib.h> header file as
follows:

typedef struct
{
__int64 quot, rem;
} qdiv_t, lldiv_t;

REF–423



qsort

qsort

Sorts an array of objects in place. It implements the quick-sort algorithm.

Format

#include <stdlib.h>

void qsort (void *base, size_t nmemb, size_t size, int (*compar) (const void *, const void *));

Function Variants

The qsort function has variants named _qsort32 and _qsort64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

base
A pointer to the first member of the array. The pointer should be of type
pointer-to-element and cast to type pointer-to-character.

nmemb
The number of objects in the array.

size
The size of an object, in bytes.

compar
A pointer to the comparison function.

Description

Two arguments are passed to the comparison function pointed to by compar. The
two arguments point to the objects being compared. Depending on whether the
first argument is less than, equal to, or greater than the second argument, the
comparison function returns an integer less then, equal to, or greater than 0.

The comparison function compar need not compare every byte, so arbitrary data
might be contained in the objects in addition to the values being compared.

The order in the output of two objects that compare as equal is unpredictable.

REF–424



raise

raise

Generates a specified software signal. Generating a signal causes the action
routine established by the signal, ssignal, or sigvec function to be invoked.

Format

#include <signal.h>

int raise (int sig); (ANSI C)

int raise (int sig[, int sigcode]); (HP C Extension)

Arguments

sig
The signal to be generated.

sigcode
An optional signal code, available only when not compiling in strict ANSI C mode.
For example, signal SIGFPE—the arithmetic trap signal—has 10 different codes,
each representing a different type of arithmetic trap.

The signal codes can be represented by mnemonics or numbers. The arithmetic
trap codes are represented by the numbers 1 to 10; the SIGILL codes are
represented by the numbers 0 to 2. The code values are defined in the <signal.h>
header file. See Tables 4–4 and 4–5 for a list of signal mnemonics, codes, and
corresponding OpenVMS exceptions.

Description

Calling the raise function has one of the following results:

• If raise specifies a sig argument that is outside the range defined in the
<signal.h> header file, then the raise function returns 0, and the errno
variable is set to EINVAL.

• If signal, ssignal, or sigvec establishes SIG_DFL (default action) for
the signal, then the functions do not return. The image is exited with the
OpenVMS error code corresponding to the signal.

• If signal, ssignal, or sigvec establishes SIG_IGN (ignore signal) as the
action for the signal, then raise returns its argument, sig.

• signal, ssignal, or sigvec must establish an action function for the signal.
That function is called and its return value is returned by raise.

See Chapter 4 for more information on signal processing.

See also gsignal, signal, ssignal, and sigvec.

Return Values

0 If successful.
nonzero If unsuccessful.

REF–425



rand, rand_r

rand, rand_r

Returns pseudorandom numbers in the range 0 to 231 � 1.

Format

#include <math.h>

int rand (void);

int rand_r (unsigned int seed); (Alpha only)

Argument

seed
An initial seed value.

Description

The rand function computes a sequence of pseudorandom integers in the range 0
to {RAND_MAX} with a period of at least 232.

The rand_r function computes a sequence of pseudorandom integers in the range
0 to {RAND_MAX}. The value of the {RAND_MAX} macro will be at least 32767.

If rand_r is called with the same initial value for the object pointed to by seed
and that object is not modified between successive returns and calls to rand_r,
the same sequence is generated.

See also srand.

For other random-number algorithms, see random and all the *48 functions.

Return Value

n A pseudorandom number.

REF–426



random

random

Generates pseudorandom numbers in a more random sequence.

Format

#include <stdlib.h>

long int random (void);

Description

The random function is a random-number generator that has virtually the same
calling sequence and initialization properties as the rand function, but produces
sequences that are more random. The low 12 bits generated by rand go through
a cyclic pattern. All bits generated by random are usable. For example, random( )
&1 produces a random binary value.

The random function uses a nonlinear, additive-feedback, random-number
generator employing a default state-array size of 31 integers to return successive
pseudorandom numbers in the range from 0 to �31��. The period of this random-
number generator is approximately 16*(�31 � �). The size of the state array
determines the period of the random-number generator. Increasing the state
array size increases the period.

With a full 256 bytes of state information, the period of the random-number
generator is greater than �69, and is sufficient for most purposes.

Like the rand function, the random function produces by default a sequence of
numbers that you can duplicate by calling the srandom function with a value of
1 as the seed. The srandom function, unlike the srand function, does not return
the old seed because the amount of state information used is more than a single
word.

See also rand, srand, srandom, setstate, and initstate.

Return Value

n A random number.

REF–427



[no]raw

[no]raw

Raw mode only works with the Curses input routines [w]getch and [w]getstr.
Raw mode is not supported with the HP C RTL emulation of UNIX I/O, Terminal
I/O, or Standard I/O.

Format

#include <curses.h>

raw( )

noraw( )

Description

Raw mode reads are satisfied on one of two conditions: after a minimum
number (5) of characters are input at the terminal or after waiting a fixed
time (10 seconds) from receipt of any characters from the terminal.

Example

/* Example of standard and raw input in Curses package. */

#include <curses.h>

main()
{

WINDOW *win1;
char vert = ’.’,

hor = ’.’,
str[80];

/* Initialize standard screen, turn echo off. */

initscr();
noecho();

/* Define a user window. */

win1 = newwin(22, 78, 1, 1);
leaveok(win1, TRUE);
leaveok(stdscr, TRUE);

box(stdscr, vert, hor);

/* Reset the video, refresh(redraw) both windows. */

mvwaddstr(win1, 2, 2, "Test line terminated input");
wrefresh(win1);

/* Do some input and output it. */
nocrmode();
wgetstr(win1, str);

mvwaddstr(win1, 5, 5, str);
mvwaddstr(win1, 7, 7, "Type something to clear screen");
wrefresh(win1);

/* Get another character then delete the window. */

wgetch(win1);
wclear(win1);

mvwaddstr(win1, 2, 2, "Test raw input");
wrefresh(win1);

REF–428



[no]raw

/* Do some raw input 5 chars or timeout - and output it. */
raw();
getstr(str);
noraw();
mvwaddstr(win1, 5, 5, str);
mvwaddstr(win1, 7, 7, "Raw input completed");
wrefresh(win1);

endwin();
}

REF–429



read

read

Reads bytes from a file and places them in a buffer.

Format

#include <unistd.h>

ssize_t read (int file_desc, void *buffer, size_t nbytes); (ISO POSIX-1)

int read (int file_desc, void *buffer, int nbytes); (Compatability)

Arguments

file_desc
A file descriptor. The specified file descriptor must refer to a file currently opened
for reading.

buffer
The address of contiguous storage in which the input data is placed.

nbytes
The maximum number of bytes involved in the read operation.

Description

The read function returns the number of bytes read. The return value does not
necessarily equal nbytes. For example, if the input is from a terminal, at most
one line of characters is read.

Note

The read function does not span record boundaries in a record file and,
therefore, reads at most one record. A separate read must be done for
each record.

Return Values

n The number of bytes read.
�1 Indicates a read error, including physical input

errors, illegal buffer addresses, protection
violations, undefined file descriptors, and so
forth.

Example
#include <file.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

REF–430



read

main()
{

int fd,
i;

char buf[10];
FILE *fp ; /* Temporary STDIO file */

/* Create a dummy data file */

if ((fp = fopen("test.txt", "w+")) == NULL) {
perror("open");
exit(1);

}
fputs("XYZ\n",fp) ;
fclose(fp) ;

/* And now practice "read" */

if ((fd = open("test.txt", O_RDWR, 0, "shr=upd")) <= 0) {
perror("open");
exit(0);

}

/* Read 2 characters into buf. */

if ((i = read(fd, buf, 2)) < 0) {
perror("read");
exit(0);

}

/* Print out what was read. */

if (i > 0)
printf("buf=’%c%c’\n", buf[0], buf[1]);

close(fd);
}

REF–431



readdir, readdir_r

readdir, readdir_r

Finds entries in a directory.

Format

#include <dirent.h>

struct dirent *readdir (DIR *dir_pointer);

int readdir_r (DIR *dir_pointer, struct dirent *entry, struct dirent **result);

Arguments

dir_pointer
A pointer to the dir structure of an open directory.

entry
A pointer to a dirent structure that will be initialized with the directory entry at
the current position of the specified stream.

result
Upon successful completion, the location where a pointer to entry is stored.

Description

The readdir function returns a pointer to a structure representing the directory
entry at the current position in the directory stream specified by dir_pointer, and
positions the directory stream at the next entry. It returns a NULL pointer upon
reaching the end of the directory stream. The dirent structure defined in the
<dirent.h> header file describes a directory entry.

The type DIR defined in the <dirent.h> header file represents a directory stream.
A directory stream is an ordered sequence of all the directory entries in a
particular directory. Directory entries represent files. You can remove files from
or add files to a directory asynchronously to the operation of the readdir function.

The pointer returned by the readdir function points to data that you can
overwrite by another call to readdir on the same directory stream. This data is
not overwritten by another call to readdir on a different directory stream.

If a file is removed from or added to the directory after the most recent call to the
opendir or rewinddir function, a subsequent call to the readdir function might
not return an entry for that file.

When it reaches the end of the directory, or when it detects an invalid seekdir
operation, the readdir function returns the null value.

An attempt to seek to an invalid location causes the readdir function to return
the null value the next time it is called. A previous telldir function call returns
the position.

The readdir_r function is a reentrant version of readdir. In addition to dir_
pointer, you must specify a pointer to a dirent structure in which the current
directory entry of the specified stream is returned.

If the operation is successful, readdir_r returns 0 and stores one of the two
following pointers in result:

• Pointer to entry if the entry was found

REF–432



readdir, readdir_r

• NULL pointer if the end of the directory stream was reached

If an error occurred, an error value is returned that indicates the cause of the
error.

The storage pointed to by entry must be large enough for a dirent with an array
of char d_name member containing at least NAME_MAX + 1 elements.

Example

See the description of closedir for an example.

Return Values

x On successful completion of readdir, a pointer to
an object of type struct dirent.

0 Successful completion of readdir_r.
x On error, an error value (readdir_r only).
NULL An error occurred or end of the directory stream

(readdir_r only). If an error occurred, errno is
set to a value indicating the cause.

REF–433



readv (Alpha only)

readv (Alpha only)

Reads from a file.

Format

#include <sys/uio.h>

ssize_t readv (int file_desc, const struct iovec *iov, int iovcnt);

ssize_t _readv64 (int file_desc, struct _ _iovec64 *iov, int iovcnt);

Function Variants

The readv function has variants named _readv32 and _readv64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

file_desc
A file descriptor. A file descriptor that must refer to a file currently opened for
reading.

iov
Array of iovec structures into which the input data is placed.

iovcnt
The number of buffers specified by the members of the iov array.

Description

The readv function is equivalent to read, but places the input data into the iovcnt
buffers specified by the members of the iov array: iov[0], iov[1], ..., iov[iovcnt-1].
The iovcnt argument is valid if it is greater than 0 and less than or equal to
IOV_MAX.

Each iovec entry specifies the base address and length of an area in memory
where data should be placed. The readv function always fills an area completely
before proceeding to the next.

Upon successful completion, readv marks for update the st_atime field of the file.

If the Synchronized Input and Output option is supported:

If the O_DSYNC and O_RSYNC bits have been set, read I/O
operations on the file descriptor will complete as defined by
synchronized I/O data integrity completion.

If the O_SYNC and O_RSYNC bits have been set, read I/O
operations on the file descriptor will complete as defined by
synchronized I/O file integrity completion.

If the Shared Memory Objects option is supported:

If file_desc refers to a shared memory object, the result of the read
function is unspecified.

For regular files, no data transfer occurs past the offset maximum established in
the open file description associated with file_desc.

REF–434



readv (Alpha only)

Return Values

n The number of bytes read.
�1 Indicates a read error. The function sets errno to

one of the following values:

• EAGAIN – The O_NONBLOCK flag is set for
the file descriptor, and the process would be
delayed.

• EBADF – The file_desc argument is not a
valid file descriptor open for reading.

• EBADMSG – The file is a STREAM file
that is set to control-normal mode, and the
message waiting to be read includes a control
part.

• EINTER – The read operation was
terminated because of the receipt of a signal,
and no data was transferred.

• EINVAL – The STREAM or multiplexer
referenced by file_desc is linked (directly or
indirectly) downstream from a multiplexer.
OR
The sum of the iov_len values in the iov
array overflowed an ssize_t.

• EIO – A physical I/O error has occurred.
OR
The process is a member of a background
process attempting to read from its
controlling terminal, the process is ignoring
or blocking the SIGTTIN signal, or the
process group is orphaned.

• EISDIR – The file_desc argument refers to a
directory, and the implementation does not
allow the directory to be read using read,
pread or readv. Use the readdir function
instead.

• EOVERFLOW – The file is a regular file,
nbyte is greater than 0, and the starting
position is before the end-of-file and is
greater than or equal to the offset maximum
established in the open file description
associated with file_desc.

The readv function may fail if:

• EINVAL – The iovcnt argument was less
than or equal to 0, or greater than IOV_
MAX.

REF–435



realloc

realloc

Changes the size of the area pointed to by the first argument to the number of
bytes given by the second argument. These functions are AST-reentrant.

Format

#include <stdlib.h>

void *realloc (void *ptr, size_t size);

Function Variants

The realloc function has variants named _realloc32 and _realloc64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

ptr
Points to an allocated area, or can be NULL.

size
The new size of the allocated area.

Description

If ptr is the NULL pointer, the behavior of the realloc function is identical to the
malloc function.

The contents of the area are unchanged up to the lesser of the old and new
sizes. The ANSI C Standard states that, "If the new size is larger than the old
size, the value of the newly allocated portion of memory is indeterminate." For
compatibility with old implementations, HP C initializes the newly allocated
memory to 0.

For efficiency, the previous actual allocation could have been larger than the
requested size. If it was allocated with malloc, the value of the portion of
memory between the previous requested allocation and the actual allocation is
indeterminate. If it was allocated with calloc, that same memory was initialized
to 0. If your application relies on realloc initializing memory to 0, then use
calloc instead of malloc to perform the initial allocation.

See also free, cfree, calloc, and malloc.

Return Values

x The address of the area, quadword-aligned.
The address is returned because the area may
have to be moved to a new address to reallocate
enough space. If the area was moved, the space
previously occupied is freed.

NULL Indicates that space cannot be reallocated (for
example, if there is not enough room).

REF–436



[w]refresh

[w]refresh

Repaint the specified window on the terminal screen. The refresh function acts
on the stdscr window.

Format

#include <curses.h>

int refresh( );

int wrefresh (WINDOW *win);

Argument

win
A pointer to the window.

Description

The result of this process is that the portion of the window not occluded by
subwindows or other windows appears on the terminal screen. To see the entire
occluded window on the terminal screen, call the touchwin function instead of the
refresh or wrefresh function.

See also touchwin.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–437



remove

remove

Deletes a file.

Format

#include <stdio.h>

int remove (const char *file_spec);

Argument

file_spec
A pointer to the string that is an OpenVMS or a UNIX style file specification. The
file specification can include a wildcard in its version number. So, for example,
files of the form filename.txt;* can be deleted.

Description

If you specify a directory in the file name and it is a search list that contains an
error, HP C for OpenVMS Systems interprets it as a file error.

Note

The DECC$ALLOW_REMOVE_OPEN_FILES feature logical controls the
behavior of the remove function on open files. Ordinarily, the operation
fails. However, POSIX conformance dictates that the operation succeed.

With DECC$ALLOW_REMOVE_OPEN_FILES enabled, this POSIX
conformant behavior is achieved.

The remove and delete functions are functionally equivalent in the HP C RTL.

See also delete.

Return Values

0 Indicates success.
nonzero value Indicates failure.

REF–438



rename

rename

Gives a new name to an existing file.

Format

#include <stdio.h>

int rename (const char *old_file_spec, const char *new_file_spec);

Arguments

old_file_spec
A pointer to a string that is the existing name of the file to be renamed.

new_file_spec
A pointer to a string that is to be the new name of the file.

Description

If you try to rename a file that is currently open, the behavior is undefined. You
cannot rename a file from one physical device to another. Both the old and new
file specifications must reside on the same device.

If the new_file_spec does not contain a file extension, the file extension of old_
file_spec is used. To rename a file to have no file extension, new_file_spec must
contain a period ( . ) For example, the following renames SYS$DISK:[ ]FILE.DAT
to SYS$DISK:[ ]FILE1.DAT:

rename("file.dat", "file1");

However, the following renames SYS$DISK:[ ]FILE.DAT to SYS$DISK:[ ]FILE1:

rename("file.dat", "file1.");

Note

Because the rename function does special processing of the file extension,
the caller must be careful when specifying the name of the renamed
file in a call to a C Run-Time Library function that accepts a file-name
argument. For example, after the following call to the rename function,
the new file should be opened as fopen("bar.dat",...):

rename("foo.dat", "bar");

The rename function is affected by the setting of the DECC$RENAME_NO_
INHERIT and DECC$RENAME_ALLOW_DIR feature logicals as follows:

• DECC$RENAME_NO_INHERIT provides more UNIX compliant behavior in
rename, and affects whether or not the new name for the file inherits anything
(like file type) from the old name or must be specified completely.

• DECC$RENAME_ALLOW_DIR lets you choose between the previous
OpenVMS behavior of allowing the renaming of a file from one directory to
another, or the more UNIX compliant behavior of not allowing the renaming
of a file to a directory.

REF–439



rename

See the DECC$RENAME_NO_INHERIT and DECC$RENAME_ALLOW_DIR
descriptions in Section 1.6 for more information.

Return Values

0 Indicates success.
�1 Indicates failure. The function sets errno to one

of the following values:

• EISDIR – The new argument points to a
directory, and the old argument points to a
file that is not a directory.

• EEXIST – The new argument points to a
directory that already exists.

• ENOTDIR – The old argument names a
directory, and new argument names a non-
directory file.

REF–440



rewind

rewind

Sets the file to its beginning.

Format

#include <stdio.h>

void rewind (FILE *file_ptr); (ISO POSIX-1)

int rewind (FILE *file_ptr); (HP C Extension)

Argument

file_ptr
A file pointer.

Description

The rewind function is equivalent to fseek (file_ptr, 0, SEEK_SET). You can
use the rewind function with either record or stream files.

A successful call to rewind clears the error indicator for the file.

The ANSI C standard defines rewind as not returning a value; therefore, the
function prototype for rewind is declared with a return type of void. However,
since a rewind can fail, and since previous versions of the HP C RTL have
declared rewind to return an int, the code for rewind does return 0 on success
and �1 on failure.

See also fseek.

REF–441



rewinddir

rewinddir

Resets the position of the specified directory stream to the beginning of a
directory.

Format

#include <dirent.h>

void rewinddir (DIR *dir_pointer);

Argument

dir_pointer
A pointer to the dir structure of an open directory.

Description

The rewinddir function resets the position of the specified directory stream to
the beginning of the directory. It also causes the directory stream to refer to
the current state of the corresonding directory, the same as using the opendir
function. If the dir_pointer argument does not refer to a directory stream, the
effect is undefined.

The type DIR, defined in the <dirent.h> header file, represents a directory
stream. A directory stream is an ordered sequence of all the directory entries in
a particular directory. Directory entries represent files.

See also opendir.

REF–442



rindex

rindex

Searches for a character in a string.

Format

#include <strings.h>

char *rindex (const char *s, int c);

Function Variants

The rindex function has variants named _rindex32 and _rindex64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

s
The string to search.

c
The character to search for.

Description

The rindex function is identical to the strchr function, and is provided for
compatibility with some UNIX implementations.

REF–443



rint (Alpha only)

rint (Alpha only)

Rounds its argument to an integral value according to the current IEEE rounding
direction specified by the user.

Format

#include <math.h>

double rint (double x);

float rintf (float x,);

long double rintl (long double x);

Argument

x
A real number.

Description

The rint functions return the nearest integral value to x in the direction of the
current IEEE rounding mode specified on the /ROUNDING_MODE command-line
qualifier.

If the current rounding mode rounds toward negative Infinity, then rint is
identical to floor. If the current rounding mode rounds toward positive Infinity,
then rint is identical to ceil.

If | x | = Infinity, rint returns x.

Return Values

n The nearest integral value to x in the direction of
the current IEEE rounding mode.

NaN x is NaN; errno is set to EDOM.

REF–444



rmdir

rmdir

Removes a directory file.

Format

#include <unistd.h>

int rmdir (const char *path);

Argument

path
A directory pathname.

Description

The rmdir function removes a directory file whose name is specified in the path
argument. The directory is removed only if it is empty.

Restriction

When using OpenVMS format names, the path argument must be in the form
directory.dir.

Return Values

0 Indicates success.
�1 An error occurred; errno is set to indicate the

error.

REF–445



sbrk

sbrk

Determines the lowest virtual address that is not used with the program.

Format

#include <unistd.h>

void *sbrk (long int incr);

Argument

incr
The number of bytes to add to the current break address.

Description

The sbrk function adds the number of bytes specified by its argument to the
current break address and returns the old break address.

When a program is executed, the break address is set to the highest location
defined by the program and data storage areas. Consequently, sbrk is needed
only by programs that have growing data areas.

sbrk(0) returns the current break address.

Return Values

x The old break address.
(void *)(�1) Indicates that the program is requesting too

much memory.

Restriction

Unlike other C library implementations, the HP C RTL memory allocation
functions (such as malloc) do not rely on brk or sbrk to manage the program heap
space. Consequently, on OpenVMS systems, calling brk or sbrk can interfere with
memory allocation routines. The brk and sbrk functions are provided only for
compatibility purposes.

REF–446



scalb (Alpha only)

scalb (Alpha only)

Returns the exponent of a floating-point number.

Format

#include <math.h>

double scalb (double x, double n);

float scalbf (float x, float n);

long double scalbl (long double x, long double n);

Arguments

x
A nonzero floating-point number.

n
An integer.

Description

The scalb functions return x*(2**n) for integer n.

Return Values

x On successful completion, x*(2**n) is returned.
�HUGE_VAL On overflow, scalb returns �HUGE_VAL

(according to the sign of x) and sets errno to
ERANGE.

0 Underflow occurred; errno is set to ERANGE.
x x is �Infinity.
NaN x or n is NaN; errno is set to EDOM.

REF–447



scanf

scanf

Performs formatted input from the standard input (stdin), interpreting it
according to the format specification. See Chapter 2 for information on format
specifiers.

Format

#include <stdio.h>

int scanf (const char *format_spec, . . . );

Arguments

format_spec
Pointer to a string containing the format specification. The format specification
consists of characters to be taken literally from the input or converted and placed
in memory at the specified input sources. For a list of conversion characters, see
Chapter 2.

. . .
Optional expressions that are pointers to objects whose resultant types correspond
to conversion specifications given in the format specification.

If no conversion specifications are given, you can omit these input pointers.
Otherwise, the function call must have at least as many input pointers as there
are conversion specifications, and the conversion specifications must match the
types of the input pointers.

Conversion specifications are matched to input sources in left-to-right order.
Excess input pointers, if any, are ignored.

Return Values

x The number of successfully matched and
assigned input items.

EOF Indicates that a read error occurred prior to any
successful conversions.The function sets errno.
For a list of errno values set by this function, see
fscanf.

REF–448



[w]scanw

[w]scanw

Perform a scanf on the window. The scanw function acts on the stdscr window.

Format

#include <curses.h>

int scanw (char *format_spec, . . . );

int wscanw (WINDOW *win, char *format_spec, . . . );

Arguments

win
A pointer to the window.

format_spec
A pointer to the format specification string.

. . .
Optional expressions that are pointers to objects whose resultant types correspond
to conversion specifications given in the format specification. If no conversion
specifications are given, you may omit these input pointers.

Otherwise, the function call must have at least as many input pointers as there
are conversion specifications, and the conversion specifications must match the
types of the input pointers.

Conversion specifications are matched to input sources in left-to-right order.
Excess input pointers, if any, are ignored.

Description

The formatting specification (format_spec) and the other arguments are identical
to those used with the scanf function.

The scanw and wscanw functions accept, format, and return a line of text from the
terminal screen. For more information, see the scrollok and scanf functions.

Return Values

OK Indicates success.
ERR Indicates that the function makes the screen

scroll illegally or that the scan was unsuccessful.

REF–449



scroll

scroll

Moves all the lines on the window up one line. The top line scrolls off the window
and the bottom line becomes blank.

Format

#include <curses.h>

int scroll (WINDOW *win);

Argument

win
A pointer to the window.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–450



scrollok

scrollok

Sets the scroll flag for the specified window.

Format

#include <curses.h>

scrollok (WINDOW *win, bool boolf);

Arguments

win
A pointer to the window.

boolf
A Boolean TRUE or FALSE value. If boolf is FALSE, scrolling is not allowed.
This is the default setting. The bool type is defined in the <curses.h> header file
as follows:

#define bool int

REF–451



seed48

seed48

Initializes a 48-bit random-number generator.

Format

#include <stdlib.h>

unsigned short *seed48 (unsigned short seed_16v[3]);

Argument

seed_16v
An array of three unsigned short ints that form a 48-bit seed value.

Description

The seed48 function initializes the random-number generator. You can use
this function in your program before calling the drand48, lrand48, or mrand48
functions. (Although it is not recommended practice, constant default initializer
values are supplied automatically if you call drand48, lrand48, or mrand48
without calling an initialization function).

The seed48 function works by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+1 = (aXn+c)mod m n > 0

The argument m equals �48, so 48-bit integer arithmetic is performed. Unless you
invoke the lcong48 function, the multiplier value a and the addend value c are:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

The initializer function seed48:

• Sets the value of Xi to the 48-bit value specified in the array pointed to by
seed_16v.

• Returns a pointer to a 48-bit internal buffer that contains the previous value
of Xi, used only by seed48.

The returned pointer allows you to restart the pseudorandom sequence at a given
point. Use the pointer to copy the previous Xi value into a temporary array. To
resume where the original sequence left off, you can call seed48 with a pointer to
this array.

See also drand48, lrand48, and mrand48.

Return Value

x A pointer to a 48-bit internal buffer.

REF–452



seekdir

seekdir

Sets the position of a directory stream.

Format

#include <dirent.h>

void seekdir (DIR *dir_pointer, long int location);

Arguments

dir_pointer
A pointer to the dir structure of an open directory.

location
The number of an entry relative to the start of the directory.

Description

The seekdir function sets the position of the next readdir operation on the
directory stream specified by dir_pointer to the position specified by location. The
value of location should be returned from an earlier call to telldir.

If the value of location was not returned by a call to the telldir function, or if
there was an intervening call to the rewinddir function on this directory stream,
the effect is unspecified.

The type DIR, defined in the <dirent.h> header file, represents a directory
stream. A directory stream is an ordered sequence of all the directory entries
in a particular directory. Directory entries represent files. You can remove files
from or add files to a directory asynchronously to the operation of the readdir
function.

See readdir, rewinddir, and telldir.

REF–453



[w]setattr

[w]setattr

Activate the video display attribute attr within the window. The setattr function
acts on the stdscr window.

Format

#include <curses.h>

int setattr (int attr);

int wsetattr (WINDOW *win, int attr);

Arguments

win
A pointer to the window.

attr
One of a set of video display attributes, which are blinking, boldface, reverse
video, and underlining, and are represented by the defined constants _BLINK,
_BOLD, _REVERSE, and _UNDERLINE, respectively. You can set multiple
attributes by separating them with a bitwise OR operator ( | ) as follows:

setattr(_BLINK | _UNDERLINE);

Description

The setattr and wsetattr functions are specific to HP C for OpenVMS Systems
and are not portable.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–454



setbuf

setbuf

Associates a new buffer with an input or output file and potentially modifies the
buffering behavior.

Format

#include <stdio.h>

void setbuf (FILE *file_ptr, char *buffer);

Arguments

file_ptr
A file pointer.

buffer
A pointer to a character array or a NULL pointer.

Description

You can use the setbuf function after the specified file is opened but before any
I/O operations are performed.

If buffer is a NULL pointer, then the call is equivalent to a call to setvbuf
with the same file_ptr, a NULL buffer pointer, a buffering type of _IONBF (no
buffering), and a buffer size of 0.

If buffer is not a NULL pointer, then the call is equivalent to a call to setvbuf
with the same file_ptr, the same buffer pointer, a buffering type of _IOFBF, and
a buffer size given by the value BUFSIZ (defined in <stdio.h>). Therefore, use
BUFSIZ to allocate the buffer argument used in the call to setbuf. For example:

#include <stdio.h>
.
.
.

char my_buf[BUFSIZ];
.
.
.

setbuf(stdout, my_buf);
.
.
.

User programs must not depend on the contents of buffer once I/O has been
performed on the stream. The HP C RTL might or might not use buffer for any
given I/O operation.

The setbuf function originally allowed programmers to substitute larger buffers
in place of the system default buffers in obsolete versions of UNIX. The large
default buffer sizes in modern implementations of C make the use of this function
unnecessary most of the time. The setbuf function is retained in the ANSI C
standard for compatibility with old programs. New programs should use setvbuf
instead, because it allows the programmer to bind the buffer size at run time
instead of compile time, and it returns a result value that can be tested.

REF–455



setenv

setenv

Inserts or resets the environment variable specified by name in the current
environment list.

Format

#include <stdlib.h>

int setenv (const char *name, const char *value, int overwrite);

Arguments

name
A variable name in the environment variable list.

value
The value for the environment variable.

overwrite
A value of 0 or 1 indicating whether to reset the environment variable, if it exists.

Description

The setenv function inserts or resets the environment variable name in the
current environment list. If the variable name does not exist in the list, it
is inserted with the value argument. If the variable does exist, the overwrite
argument is tested. When the overwrite argument value is:

• 0 then the variable is not reset.

• 1 then the variable is reset to value.

Note

Do not use the setenv, getenv, and putenv functions to manipulate
symbols and logicals. Instead, use the OpenVMS library calls
lib$set_logical, lib$get_logical, lib$set_symbol, and
lib$get_symbol. The *env functions deliberately provide UNIX behavior,
and are not a substitute for these OpenVMS runtime library calls.

OpenVMS DCL symbols, not logical names, are the closest analog to
environment variables on UNIX systems. While getenv is a mechanism
to retrieve either a logical name or a symbol, it maintains an internal
cache of values for use with setenv and subsequent getenv calls. The
setenv function does not write or create DCL symbols or OpenVMS logical
names.

This is consistent with UNIX behavior. On UNIX systems, setenv does
not change or create any symbols that will be visible in the shell after the
program exits.

REF–456



setenv

Return Values

0 Indicates success.
�1 Indicates an error. errno is set to ENOMEM—

Not enough memory available to expand the
environment list.

REF–457



seteuid (Alpha only)

seteuid (Alpha only)

Sets the process’s effective user ID.

Format

#include <unistd.h>

int seteuid (uid_t euid);

Argument

euid
The value to which you want the effective user ID set.

Description

If the process has the IMPERSONATE privilege, the seteuid function sets the
process’s effective user ID.

An unprivileged process can set the effective user ID only if the euid argument is
equal to either the real, effective, or saved user ID of the process.

Return Values

0 Successful completion.
�1 Indicates an error. The function sets errno to

one of the following values:

• EINVAL – The value of the euid argument is
invalid and not supported.

• EPERM – The process does not have the
IMPERSONATE privilege, and euid does
not match the real user ID or the saved
set-user-ID.

REF–458



setgid

setgid

With POSIX IDs disabled, setgid is implemented for program portability and
serves no function. It returns 0 (to indicate success).

With POSIX IDs enabled, setgid sets the group IDs.

Format

#include <types.h>

#include <unistd.h>

int setgid (_ _gid_t gid); (_DECC_V4_SOURCE)

int setgid (gid_t gid); (not _DECC_V4_SOURCE)

Argument

gid
The value to which you want the group IDs set.

Description

The setgid function can be used with POSIX style identifiers enabled or disabled.

POSIX style IDs are supported on OpenVMS Version 7.3-2 and higher.

With POSIX IDs disabled, the setgid function is implemented for program
portability and serves no function. It returns 0 (to indicate success).

With POSIX style IDs enabled:

• If the process has the IMPERSONATE privilege, the setgid function sets the
real group ID, effective group ID, and the saved set-group-ID to gid.

• If the process does not have appropriate privileges but gid is equal to the
real group ID or to the saved set-group-ID, then the setgid function sets the
effective group ID to gid. The real group ID and saved set-group-ID remain
unchanged.

• Any supplementary group IDs of the calling process remain unchanged.

To enable/disable POSIX style IDs, see Section 1.7.

Return Values

0 Successful completion.
�1 Indicates an error. The function sets errno to

one of the following values:

• EINVAL – The value of the gid argument
is invalid and not supported by the
implementation.

• EPERM – The process does not have
appropriate privileges and gid does not match
the real group ID or the saved set-group-ID.

REF–459



setgrent (Alpha only)

setgrent (Alpha only)

Rewinds the group database.

Format

#include <grp.h>

void setgrent (void);

Description

The setgrent function effectively rewinds the group database to allow repeated
searches.

This function is always successful. No value is returned, and errno is not set.

REF–460



setitimer

setitimer

Sets the value of interval timers.

Format

#include <time.h>

int setitimer (int which, struct itimerval *value, struct itimerval *ovalue);

Arguments

which
The type of interval timer. The HP C RTL only supports ITIMER_REAL.

value
A pointer to an itimerval structure whose members specify a timer interval and
the time left to the end of the interval.

ovalue
A pointer to an itimerval structure whose members specify a current timer
interval and the time left to the end of the interval.

Description

The setitimer function sets the timer specified by which to the value specified by
value, returning the previous value of the timer if ovalue is nonzero.

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval;
struct timeval it_value;

};

The value of the itimerval structure members are: as follows

itimerval Member Value Meaning

it_interval = 0 Disables a timer after its next expiration
(assumes it_value is nonzero).

it_interval = nonzero Specifies a value used in reloading it_value
when the timer expires.

it_value = 0 Disables a timer.
it_value = nonzero Indicates the time to the next timer expiration.

Time values smaller than the resolution of the system clock are rounded up to
this resolution.

The getitimer function provides one interval timer, defined in the <time.h>
header file as ITIMER_REAL. This timer decrements in real time. When the
timer expires, it delivers a SIGALARM signal.

REF–461



setitimer

Note

The interaction between setitimer and any of alarm, sleep, or usleep is
unspecified.

Return Values

0 Indicates success.
�1 An error occurred; errno is set to indicate the

error.

REF–462



setjmp

setjmp

Provides a way to transfer control from a nested series of function invocations
back to a predefined point without returning normally. It does not use a series of
return statements. The setjmp function saves the context of the calling function
in an environment buffer.

Format

#include <setjmp.h>

int setjmp (jmp_buf env);

Argument

env
The environment buffer, which must be an array of integers long enough to hold
the register context of the calling function. The type jmp_buf is defined in the
<setjmp.h> header file. The contents of the general-purpose registers, including
the program counter (PC), are stored in the buffer.

Description

When setjmp is first called, it returns the value 0. If longjmp is then called,
naming the same environment as the call to setjmp, control is returned to the
setjmp call as if it had returned normally a second time. The return value of
setjmp in this second return is the value supplied by you in the longjmp call. To
preserve the true value of setjmp, the function calling setjmp must not be called
again until the associated longjmp is called.

The setjmp function preserves the hardware general-purpose registers, and the
longjmp function restores them. After a longjmp, all variables have their values
as of the time of the longjmp except for local automatic variables not marked
volatile. These variables have indeterminate values.

The setjmp and longjmp functions rely on the OpenVMS condition-handling
facility to effect a nonlocal goto with a signal handler. The longjmp function
is implemented by generating a HP C RTL specified signal that allows the
OpenVMS condition-handling facility to unwind back to the desired destination.

The HP C RTL must be in control of signal handling for any HP C image.
For HP C to be in control of signal handling, you must establish all exception
handlers through a call to the VAXC$ESTABLISH function. See Section 4.2.5 and
the VAXC$ESTABLISH function for more information.

Note

There are Alpha specific, nonstandard decc$setjmp and
decc$fast_longjmp functions. To use these nonstandard functions instead
of the standard ones, a program must be compiled with _ _FAST_SETJMP or
_ _UNIX_SETJMP macros defined.

Unlike the standard longjmp function, the decc$fast_longjmp function
does not convert its second argument from 0 to 1. After a call to
decc$fast_longjmp, a corresponding setjmp function returns with the

REF–463



setjmp

exact value of the second argument specified in the decc$fast_longjmp
call.

Restrictions

You cannot invoke the longjmp function from an OpenVMS condition handler.
However, you may invoke longjmp from a signal handler that has been
established for any signal supported by the HP C RTL, subject to the following
nesting restrictions:

• The longjmp function will not work if you invoke it from nested signal
handlers. The result of the longjmp function, when invoked from a signal
handler that has been entered as a result of an exception generated in
another signal handler, is undefined.

• Do not invoke the setjmp function from a signal handler unless the associated
longjmp is to be issued before the handling of that signal is completed.

• Do not invoke the longjmp function from within an exit handler (established
with atexit or SYS$DCLEXH). Exit handlers are invoked after image
tear-down, so the destination address of the longjmp no longer exists.

• Invoking longjmp from within a signal handler to return to the main thread
of execution might leave your program in an inconsistent state. Possible
side effects include the inability to perform I/O or to receive any more UNIX
signals. Use siglongjmp instead.

Return Values

See the Description section.

REF–464



setlocale

setlocale

Selects the appropriate portion of the program’s locale as specified by the category
and locale arguments. You can use this function to change or query one category
or the program’s entire current locale.

Format

#include <locale.h>

char *setlocale (int category, const char *locale);

Arguments

category
The name of the category. Specify LC_ALL to change or query the entire locale.
Other valid category names are:

• LC_COLLATE

• LC_CTYPE

• LC_MESSAGES

• LC_MONETARY

• LC_NUMERIC

• LC_TIME

locale
Pointer to a string that specifies the locale.

Description

The setlocale function sets or queries the appropriate portion of the program’s
locale as specified by the category and locale arguments. Specifying LC_ALL for
the category argument names the entire locale; specifying the other values name
only a portion of the program’s locale.

The locale argument points to a character string that identifies the locale to be
used. This argument can be one of the following:

• Name of the public locale

Specifies the public locale in the following format:

language_country.codeset[@modifier]

The function searches for the public locale binary file in the location defined
by the logical name SYS$I18N_LOCALE. The file type defaults to .LOCALE.
The period ( . ) and at-sign ( @ ) characters in the name are replaced by an
underscore ( _ ).

For example, if the specified name is "zh_CN.dechanzi@radical", the
function searches for the SYS$I18N_LOCALE:ZH_CN_DECHANZI_
RADICAL.LOCALE binary locale file.

• A file specification

REF–465



setlocale

Specifies the binary locale file. It can be any valid file specification. If either
the device or directory is omitted, the function first applies the current caller’s
device and directory as defaults for any missing component. If the file is not
found, the function applies the device and directory defined by the SYS$I18N_
LOCALE logical name as defaults. The file type defaults to .LOCALE.

No wildcards are allowed. The binary locale file cannot reside on a remote
node.

• "C"

Specifies the C locale. If a program does not call setlocale, the C locale is
the default.

• "POSIX"

This is the same as the C locale.

• ""

Specifies that the locale is initialized from the setting of the international
environment logical names. The function checks the following logical names
in the order shown until it finds a logical that is defined:

1. LC_ALL

2. Logical names corresponding to the category. For example, if LC_
NUMERIC is specified as the category, then the first logical name that
setlocale checks is LC_NUMERIC.

3. LANG

4. SYS$LC_ALL

5. The system default for the category, which is defined by the SYS$LC_*
logical names. For example, the default for the LC_NUMERIC category is
defined by the SYS$LC_NUMERIC logical name.

6. SYS$LANG

If none of the logical names is defined, the C locale is used as the default.
The SYS$LC_* logical names are set up at the system startup time.

Like the locale argument, the equivalence name of the international
environment logical name can be either the name of the public locale or
the file specification. The setlocale function treats this equivalence name as
if it were specified as the locale argument.

• NULL

Causes setlocale to query the current locale. The function returns a pointer
to a string describing the portion of the program’s locale associated with
category. Specifying the LC_ALL category returns the string describing the
entire locale. The locale is not changed.

• The string returned from the previous call to setlocale

Causes the function to restore the portion of the program’s locale associated
with category. If the string contains the description of the entire locale, the
part of the string corresponding to category is used. If the string describes
the portion of the program’s locale for a single category, this locale is used.
For example, this means that you can use the string returned from the call
setlocale with the LC_COLLATE category to set the same locale for the
LC_MESSAGES category.

REF–466



setlocale

If the specified locale is available, then setlocale returns a pointer to the
string that describes the portion of the program’s locale associated with
category. For the LC_ALL category, the returned string describes the entire
program’s locale. If an error occurs, a NULL pointer is returned and the
program’s locale is not changed.

Subsequent calls to setlocale overwrite the returned string. If that part
of the locale needs to be restored, the program should save the string. The
calling program should make no assumptions about the format or length of
the returned string.

Return Values

x Pointer to a string describing the locale.
NULL Indicates an error occurred; errno is set.

Example
#include <errno.h>
#include <stdio.h>
#include <locale.h>

/* This program calls setlocale() three times. The second call */
/* is for a nonexistent locale. The third call is for an */
/* existing file that is not a locale file. */

main()
{

char *ret_str;

errno = 0;
printf("setlocale (LC_ALL, \"POSIX\")");
ret_str = (char *) setlocale(LC_ALL, "POSIX");

if (ret_str == NULL)
perror("setlocale error");

else
printf(" call was successful\n");

errno = 0;
printf("\n\nsetlocale (LC_ALL, \"junk.junk_codeset\")");
ret_str = (char *) setlocale(LC_ALL, "junk.junk_codeset");

if (ret_str == NULL)
perror(" returned error");

else
printf(" call was successful\n");

errno = 0;
printf("\n\nsetlocale (LC_ALL, \"sys$login:login.com\")");
ret_str = (char *) setlocale(LC_ALL, "sys$login:login.com");

if (ret_str == NULL)
perror(" returned error");

else
printf(" call was successful\n");

}

Running the example program produces the following result:

REF–467



setlocale

setlocale (LC_ALL, "POSIX") call was successful

setlocale (LC_ALL, "junk.junk_codeset")
returned error: no such file or directory

setlocale (LC_ALL, "sys$login:login.com")
returned error: nontranslatable vms error code: 0x35C07C
%c-f-localebad, not a locale file

REF–468



setpgid (Alpha only)

setpgid (Alpha only)

Sets the process group ID for job control.

Format

#include <unistd.h>

int setpgid (pid_t pid, pid_t pgid);

Arguments

pid
The process ID for which the process group ID is to be set.

pgid
The value to which the process group ID is set.

Description

The setpgid function is used either to join an existing process group or create a
new process group within the session of the calling process. The process group ID
of a session leader will not change.

Upon successful completion, the process group ID of the process with a process
ID of pid is set to pgid. As a special case, if pid is 0, the process ID of the calling
process is used. Also, if pgid is 0, the process group ID of the indicated process is
used.

Return Values

0 Successful completion.

REF–469



setpgid (Alpha only)

�1 Indicates an error. The function sets errno to
one of the following values:

• EACCES – The value of the pid argument
matches the process ID of a child process
of the calling process and the child process
has successfully executed one of the exec
functions.

• EINVAL – The value of the pgid argument
is less than 0, or is not a value supported by
the implementation.

• EPERM – The process indicated by the pid
argument is a session leader. The value of
the pid argument matches the process ID
of a child process of the calling process, and
the child process is not in the same session
as the calling process. The value of the pgid
argument is valid but does not match the
process ID of the process indicated by the
pid argument, and there is no process with a
process group ID that matches the value of
the pgid argument in the same session as the
calling process.

• ESRCH – The value of the pid argument
does not match the process ID of the calling
process or of a child process of the calling
process.

REF–470



setpgrp (Alpha only)

setpgrp (Alpha only)

Sets the process group ID.

Format

#include <unistd.h>

pid_t setpgrp (void);

Description

If the calling process is not already a session leader, setpgrp sets the process
group ID of the calling process to the process ID of the calling process. If setpgrp
creates a new session, then the new session has no controlling terminal.

The setpgrp function has no effect when the calling process is a session leader.

Return Value

x The process group ID of the calling process.

REF–471



setpwent

setpwent

Rewinds the user database.

Format

#include <pwd.h>

void setpwent (void);

Description

The setpwent function effectively rewinds the user database to allow repeated
searches.

No value is returned, but errno is set to EIO if an I/O error occurred.

See also getpwent.

REF–472



setregid (Alpha only)

setregid (Alpha only)

Sets the real and effective group IDs.

Format

#include <unistd.h>

int setregid (gid_t rgid, gid_t egid);

Arguments

rgid
The value to which you want the real group ID set.

egid
The value to which you want the effective group ID set.

Description

The setregid function is used to set the real and effective group IDs of the
calling process. If rgid is �1, the real group ID is not changed; if egid is �1, the
effective group ID is not changed. The real and effective group IDs can be set to
different values in the same call.

Only a process with the IMPERSONATE privilege can set the real group ID and
the effective group ID to any valid value.

A nonprivileged process can set either the real group ID to the saved set-group-ID
from an exec function, or the effective group ID to the saved set-group-ID or the
real group ID.

Any supplementary group IDs of the calling process remain unchanged.

If a set-group-ID process sets its effective group ID to its real group ID, it can
still set its effective group ID back to the saved set-group-ID.

Return Values

0 Successful completion.
�1 Indicates an error. Neither of the group IDs is

changed, and errno is set to one of the following
values:

• EINVAL – The value of the rgid or egid
argument is invalid or out-of-range.

• EPERM – The process does not have the
IMPERSONATE privilege, and a change
other than changing the real group ID to the
saved set-group-ID, or changing the effective
group ID to the real group ID or the saved
group ID, was requested.

REF–473



setreuid (Alpha only)

setreuid (Alpha only)

Sets the user IDs.

Format

#include <unistd.h>

int setreuid (uid_t ruid, uid_t euid);

Arguments

ruid
The value to which you want the real user ID set.

euid
The value to which you want the effective user ID set.

Description

The setreuid function sets the real and effective user IDs of the current process
to the values specified by the ruid and euid arguments. If ruid or euid is�1, the
corresponding effective or real user ID of the current process is left unchanged.

A process with the IMPERSONATE privilege can set either ID to any value. An
unprivileged process can set the effective user ID only if the euid argument is
equal to either the real, effective, or saved user ID of the process.

It is unspecified whether a process without the IMPERSONATE privilege is
permitted to change the real user ID to match the current real, effective, or saved
user ID of the process.

Return Values

0 Successful completion.
�1 Indicates an error. The function sets errno to

one of the following values:

• EINVAL – The value of the ruid or euid
argument is invalid or out of range.

• EPERM – The current process does not have
the IMPERSONATE privilege, and either an
attempt was made to change the effective
user ID to a value other than the real user
ID or the saved set-user-ID, or an an attempt
was made to change the real user ID to a
value not permitted by the implementation.

REF–474



setsid (Alpha only)

setsid (Alpha only)

Creates a session and sets the process group ID.

Format

#include <unistd.h>

pid_t setsid (void);

Description

The setsid function creates a new session if the calling process is not a process
group leader. Upon return, the calling process is the session leader of this new
session and the process group leader of a new process group, and it has no
controlling terminal. The process group ID of the calling process is set equal to
the process ID of the calling process. The calling process is the only process in
the new process group and the only process in the new session.

Return Values

x The process group ID of the calling process.
(pid_t)�1 Indicates an error. The function sets errno to the

following value:

• EPERM – The calling process is already a
process group leader, or the process group ID
of a process other than the calling process
matches the process ID of the calling process.

REF–475



setstate

setstate

Restarts and changes random-number generators.

Format

char *setstate (char *state;)

Argument

state
Points to the array of state information.

Description

The setstate function handles restarting and changing random-number
generators.

Once you initialize a state, the setstate function allows rapid switching between
state arrays. The array defined by state is used for further random-number
generation until the initstate function is called or the setstate function is
called again. The setstate function returns a pointer to the previous state array.

After initialization, you can restart a state array at a different point in one of two
ways:

• Use the initstate function, with the desired seed, state array, and size of the
array.

• Use the setstate function, with the desired state, followed by the srandom
function with the desired seed. The advantage of using both functions is that
you do not have to save the state array size once you initialize it.

See also initstate, srandom, and random.

Return Values

x A pointer to the previous state array information.
0 Indicates an error. The state information is

damaged, and errno is set to the following value:

• EINVAL—The state argument is invalid.

REF–476



setuid

setuid

With POSIX IDs disabled, implemented for program portability and serves no
function. It returns 0 (to indicate success).

With POSIX IDs enabled, sets the user IDs.

Format

#include <types.h>

#include <unistd.h>

int setuid (_ _uid_t uid); (_DECC_V4_SOURCE)

uid_t setuid (uid_t uid); (not _DECC_V4_SOURCE)

Argument

uid
The value to which you want the user IDs set.

Description

The setuid function can be used with POSIX style identifiers enabled or disabled.

POSIX style IDs are supported on OpenVMS Version 7.3-2 and higher.

With POSIX IDs disabled (the default), the setuid function is implemented for
program portability and serves no function. It returns 0 (to indicate success).

With POSIX style IDs enabled:

• If the process has the IMPERSONATE privilege, the setuid function sets the
real user ID, effective user ID, and the saved set-user-ID to uid.

• If the process does not have appropriate privileges but uid is equal to the real
user ID or to the saved set-user-ID, then the setuid function sets the effective
user ID to uid. The real user ID and saved set-user-ID remain unchanged.

To enable/disable POSIX style IDs, see Section 1.7.

Return Values

0 Successful completion.
�1 Indicates an error. The function sets errno to

one of the following values:

• EINVAL – The value of the uid argument
is invalid and not supported by the
implementation.

• EPERM – The process does not have
appropriate privileges and uid does not
match the real user ID or the saved set-user-
ID.

REF–477



setvbuf

setvbuf

Associates a buffer with an input or output file and potentially modifies the
buffering behavior.

Format

#include <stdio.h>

int setvbuf (FILE *file_ptr, char *buffer, int type, size_t size);

Arguments

file_ptr
A pointer to a file.

buffer
A pointer to a character array, or a NULL pointer.

type
The buffering type. Use one of the following values defined in <stdio.h>:
_IONBF, _IOFBF, or _IOLBF.

size
The number of bytes to be used in buffer by the HP C RTL for buffering this file.
The buffer size must be a minimum of 8192 bytes and a maximum of 32767 bytes.

Description

You can use the setvbuf function after the file is opened but before any I/O
operations are performed.

The ANSI C standard defines the following types of file buffering. In unbuffered
I/O, each I/O operation is performed immediately. Output characters or lines are
written to the output device before control is returned to the program. Input
characters or lines are sent directly to the program without read-ahead by the
HP C RTL.

In line-buffered I/O, characters are buffered in an area of memory until a new-
line character is seen, at which point the appropriate RMS routine is called to
transmit the entire buffer. Line buffering is more efficient than unbuffered I/O
since it reduces the system overhead, but it delays the availability of the data to
the user or disk on output.

In fully buffered I/O, characters are buffered in an area of memory until the
buffer is full, regardless of the presence of break characters. Full buffering is
more efficient than line buffering or unbuffered I/O, but it delays the availability
of output data even longer than line buffering.

Use the values _IONBF, _IOLBF, and _IOFBF defined in <stdio.h> for the type
argument to specify unbuffered, line-buffered, and fully buffered I/O, respectively.

If _IONBF is specified for type, I/O will be unbuffered and the buffer and size
arguments are ignored.

If _IOLBF or _IOFBF is specified for type, the HP C RTL will use line-buffered
I/O if file_ptr specifies a terminal device; otherwise, it will use fully buffered I/O.

REF–478



setvbuf

The HP C RTL automatically allocates a buffer to use for each I/O stream, so
there are several buffer allocation possibilities:

• If buffer is not a NULL pointer and size is not smaller than the automatically
allocated buffer, then setvbuf uses buffer as the file buffer.

• If buffer is a NULL pointer or size is smaller than the automatically allocated
buffer, the automatically allocated buffer is used as the buffer area.

• If buffer is a NULL pointer and size is larger than the automatically allocated
buffer, then setvbuf allocates a new buffer equal to the specified size and
uses that as the file buffer.

User programs must not depend on the contents of buffer once I/O has been
performed on the stream. The HP C RTL might or might not use buffer for any
given I/O operation.

Generally, it is unnecessary to use setvbuf or setbuf to control the buffer size
used by the HP C RTL. The automatically allocated buffer sizes are chosen
for efficiency based on the kind of I/O operations performed and the device
characteristics (such as terminal, disk, or socket).

The setvbuf and setbuf functions are useful to introduce buffering for improved
performance when writing a large amount of text to the stdout stream. This
stream is unbuffered by default when bound to a terminal device (the normal
case), and therefore incurs a large number of OpenVMS buffered I/O operations
unless HP C RTL buffering is introduced by a call to setvbuf or setbuf.

The setvbuf function is used only to control the buffering used by the HP C RTL,
not the buffering used by the underlying RMS I/O operations. You can modify
RMS default buffering behavior by specifying various values for the ctx, fop, rat,
gbc, mbc, mbf, rfm, and rop RMS keywords when the file is opened by the creat,
freopen or open functions.

Return Values

0 Indicates success.
nonzero value Indicates that an invalid input value was

specifed for type or file_ptr, or because file_ptr is
being used by another thread (see Section 1.9.1).

REF–479



sigaction

sigaction

Specifies the action to take upon delivery of a signal.

Format

#include <signal.h>

int sigaction (int sig, const struct sigaction *action, struct sigaction *o_action);

Arguments

sig
The signal for which the action is to be taken.

action
A pointer to a sigaction structure that describes the action to take when you
receive the signal specified by the sig argument.

o_action
A pointer to a sigaction structure. When the sigaction function returns from
a call, the action previously attached to the specified signal is stored in this
structure.

Description

When a process requests the sigaction function, the process can both examine
and specify what action to perform when the specified signal is delivered. The
arguments determine the behavior of the sigaction function as follows:

• Specifying the sig argument identifies the affected signal. Use any one of the
signal values defined in the <signal.h> header file, except SIGKILL.

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags, then
a SIGCHLD signal is generated for the calling process whenever any of its
child processes stop. If sig is SIGCHLD and the SA_NOCLDSTOP flag is set
in sa_flags, then SIGCHLD signal is not generated in this way.

• Specifying the action argument, if not null, points to a sigaction structure
that defines what action to perform when the signal is received. If the action
argument is null, signal handling remains unchanged, so you can use the call
to inquire about the current handling of the signal.

• Specifying the o_action argument, if not null, points to a sigaction structure
that contains the action previously attached to the specified signal.

The sigaction structure consists of the following members:

void (*sa_handler)(int);
sigset_t sa_mask;
int sa_flags;

The sigaction structure members are defined as follows:

REF–480



sigaction

sa_handler This member can contain the following values:

• SIG_DFL – Specifies the default action taken when the
signal is delivered.

• SIG_IGN – Specifies that the signal has no effect on the
receiving process.

• Function pointer – Requests to catch the signal. The signal
causes the function call.

sa_mask This member can request that individual signals, in addition
to those in the process signal mask, are blocked from delivery
while the signal handler function specified by the sa_handler
member is executing.

sa_flags This member can set the flags to enable further control over the
actions taken when a signal is delivered.

The sa_flags member of the sigaction structure has the following values:

SA_ONSTACK Setting this bit causes the system to run the signal
catching function on the signal stack specified by the
sigstack function. If this bit is not set, the function
runs on the stack of the process where the signal is
delivered.

SA_RESETHAND Setting this bit resets the signal to SIG_DFL. Be
aware that you cannot automatically reset SIGILL
and SIGTRAP.

SA_NODEFER Setting this bit does not automatically block the signal
as it is caught.

SA_NOCLDSTOP If this bit is set and the sig argument is equal to
SIGCHLD and a child process of the calling process
stops, then a SIGCHLD signal is sent to the calling
process only if SA_NOCLDSTOP is not set for
SIGCHLD.

When a signal is caught by a signal-catching function installed by sigaction,
a new signal mask is calculated and installed for the duration of the signal-
catching function (or until a call to either sigprocmask or sigsuspend is made.
This mask is formed by taking the union of the current signal mask and the
value of the sa_mask for the signal being delivered unless SA_NODEFER or SA_
RESETHAND is set, and then including the signal being delivered. If and when
the user’s signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another
action is explicitly requested (by another call to sigaction), until the SA_
RESETHAND flag causes resetting of the handler, or until one of the exec
functions is called.

If the previous action for a specified signal had been established by signal, the
values of the fields returned in the structure pointed to by the o_action argument
of sigaction are unspecified, and in particular o_action->sa_handler is not
necessarily the same value passed to signal. However, if a pointer to the same
structure or a copy thereof is passed to a subsequent call to sigaction by means
of the action argument of sigaction), the signal is handled as if the original call
to signal were repeated.

If sigaction fails, no new signal handler is installed.

REF–481



sigaction

It is unspecified whether an attempt to set the action for a signal that cannot be
caught or ignored to SIG_DFL is ignored or causes an error to be returned with
errno set to EINVAL.

See Section 4.2 for more information on signal handling.

Note

The sigvec and signal functions are provided for compatibility to old
UNIX systems; their function is a subset of that available with the
sigaction function.

See also sigstack, sigvec, signal, wait, read, and write.

Return Values

0 Indicates success.
�1 Indicates an error; A new signal handler is not

installed. errno is set to one of the following
values:

• EFAULT – The action or o_action argument
points to a location outside of the allocated
address space of the process.

• EINVAL – The sig argument is not a valid
signal number. Or an attempt was made to
ignore or supply a handler for the SIGKILL,
SIGSTOP, and SIGCONT signals.

REF–482



sigaddset

sigaddset

Adds the specified individual signal.

Format

#include <signal.h>

int sigaddset (sigset_t *set, int sig_number);

Arguments

set
The signal set.

sig_number
The individual signal.

Description

The sigaddset function manipulates sets of signals. This function operates on
data objects that you can address by the application, not on any set of signals
known to the system. For example, this function does not operate on the set
blocked from delivery to a process or the set pending for a process.

The sigaddset function adds the individual signal specified by sig_number from
the signal set specified by set.

Example

The following example shows how to generate and use a signal mask that blocks
only the SIGINT signal from delivery:

#include <signal.h>
int return_value;
sigset_t newset;
. . .

sigemptyset(&newset);
sigaddset(&newset, SIGINT);
return_value = sigprocmask (SIG_SETMASK, &newset, NULL);

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to the following

value:

• EINVAL – The value of sig_number is not a
valid signal number.

REF–483



sigblock

sigblock

Adds the signals in mask to the current set of signals being blocked from delivery.

Format

#include <signal.h>

int sigblock (int mask);

Argument

mask
The signals to be blocked.

Description

Signal i is blocked if the i � 1 bit in mask is a 1. For example, to add the
protection-violation signal to the set of blocked signals, use the following line:

sigblock(1 << (SIGBUS - 1));

You can express signals in mnemonics (such as SIGBUS for a protection violation)
or numbers as defined in the <signal.h> header file, and you can express
combinations of signals by using the bitwise OR operator ( | ).

Return Value

x Indicates the previous set of masked signals.

REF–484



sigdelset

sigdelset

Deletes a specified individual signal.

Format

#include <signal.h>

int sigdelset (sigset_t *set, int sig_number;)

Arguments

set
The signal set.

sig_number
The individual signal.

Description

The sigdelset function deletes the individual signal specified by sig_number
from the signal set specified by set.

This function operates on data objects that you can address by the application,
not on any set of signals known to the system. For example, this function does
not operate on the set blocked from delivery to a process or the set pending for a
process.

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to the following

value:

• EINVAL – The value of sig_number is not a
valid signal number.

REF–485



sigemptyset

sigemptyset

Initializes the signal set to exclude all signals.

Format

#include <signal.h>

int sigemptyset (sigset_t *set);

Argument

set
The signal set.

Description

The sigemptyset function initializes the signal set pointed to by set such that you
exclude all signals. A call to sigemptyset or sigfillset must be made at least
once for each object of type sigset_t prior to any other use of that object.

This function operates on data objects that you can address by the application,
not on any set of signals known to the system. For example, this function does
not operate on the set blocked from delivery to a process or the set pending for a
process.

See also sigfillset.

Example

The following example shows how to generate and use a signal mask that blocks
only the SIGINT signal from delivery:

#include <signal.h>
int return_value;
sigset_t newset;
. . .

sigemptyset(&newset);
sigaddset(&newset, SIGINT);
return_value = sigprocmask (SIG_SETMASK, &newset, NULL);

Return Values

0 Indicates success.
�1 Indicates an error; the global errno is set to

indicate the error.

REF–486



sigfillset

sigfillset

Initializes the signal set to include all signals.

Format

#include <signal.h>

int sigfillset (sigset_t *set);

Argument

set
The signal set.

Description

The sigfillset function initializes the signal set pointed to by set such that you
include all signals. A call to sigemptyset or sigfillset must be made at least
once for each object of type sigset_t prior to any other use of that object.

This function operates on data objects that you can address by the application,
not on any set of signals known to the system. For example, this function does
not operate on the set blocked from delivery to a process or the set pending for a
process.

See also sigemptyset.

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to the following

value:

• EINVAL – The value of the sig_number
argument is not a valid signal number.

REF–487



sighold (Alpha only)

sighold (Alpha only)

Adds the specified signal to the calling process’s signal mask.

Format

#include <signal.h>

int sighold (int signal);

Argument

signal
The specified signal. The signal argument can be assigned any of the signals
defined in the <signal.h> header file, except SIGKILL and SIGSTOP.

Description

The sighold, sigrelse, and sigignore functions provide simplified signal
management:

• The sighold function adds signal to the calling process’s signal mask.

• The sigrelse function removes signal from the calling process’s signal mask.

• The sigignore function sets the disposition of signal to SIG_IGN.

The sighold function, in conjunction with sigrelse and sigpause, can be used
to establish critical regions of code that require the delivery of a signal to be
temporarily deferred.

Upon success, the sighold function returns a value of 0. Otherwise, a value of
�1 is returned, and errno is set to indicate the error.

Note

These interfaces are provided for compatibility only. New programs
should use sigaction and sigprocmask to control the disposition of
signals.

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to the following

value:

• EINVAL – The value of the signal argument
is either an invalid signal number or
SIGKILL.

REF–488



sigignore (Alpha only)

sigignore (Alpha only)

Sets the disposition of the specified signal to SIG_IGN.

Format

#include <signal.h>

int sigignore (int signal);

Argument

signal
The specified signal. The signal argument can be assigned any of the signals
defined in the <signal.h> header file, except SIGKILL and SIGSTOP.

Description

The sighold, sigrelse, and sigignore functions provide simplified signal
management:

• The sighold function adds signal to the calling process’s signal mask.

• The sigrelse function removes signal from the calling process’s signal mask.

• The sigignore function sets the disposition of signal to SIG_IGN.

The sighold function, in conjunction with sigrelse and sigpause, can be used
to establish critical regions of code that require the delivery of a signal to be
temporarily deferred.

Upon success, the sigignore function returns a value of 0. Otherwise, a value of
�1 is returned, and errno is set to indicate the error.

Note

These interfaces are provided for compatibility only. New programs
should use sigaction and sigprocmask to control the disposition of
signals.

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to the following

value:

• EINVAL – The value of the signal argument
is either an invalid signal number or
SIGKILL, or an attempt is made to catch
a signal that cannot be caught or to ignore a
signal that cannot be ignored.

REF–489



sigismember

sigismember

Tests whether a specified signal is a member of the signal set.

Format

#include <signal.h>

int sigismember (const sigset_t *set, int sig_number);

Arguments

set
The signal set.

sig_number
The individual signal.

Description

The sigismember function tests whether sig_number is a member of the signal set
pointed to by set.

This function operates on data objects that you can address by the application,
not on any set of signals known to the system. For example, this function does
not operate on the set blocked from delivery to a process or the set pending for a
process.

Return Values

1 Indicates success. The specified signal is a
member of the specified set.

0 Indicates an error. The specified signal is not a
member of the specified set.

REF–490



siglongjmp

siglongjmp

Nonlocal goto with signal handling.

Format

#include <setjmp.h>

void siglongjmp (sigjmp_buf env, int value);

Arguments

env
An address for a sigjmp_buf structure.

value
A nonzero value.

Description

The siglongjmp function restores the environment saved by the most recent call
to sigsetjmp in the same process with the corresponding sigjmp_buf argument.

All accessible objects have values when siglongjmp is called, with one exception:
values of objects of automatic storage duration that changed between the
sigsetjmp call and siglongjmp call are indeterminate.

Because it bypasses the usual function call and return mechanisms, siglongjmp
executes correctly during interrupts, signals, and any of their associated
functions. However, if you invoke siglongjmp from a nested signal handler
(for example, from a function invoked as a result of a signal raised during the
handling of another signal), the behavior is undefined.

The siglongjmp function restores the saved signal mask only if you initialize the
env argument by a call to sigsetjmp with a nonzero savemask argument.

After siglongjmp is completed, program execution continues as if the
corresponding call of sigsetjmp just returned the value specified by value.
The siglongjmp function cannot cause sigsetjmp to return 0 (zero); if value is 0,
sigsetjmp returns 1

See also sigsetjmp.

REF–491



sigmask

sigmask

Constructs the mask for a given signal number.

Format

#include <signal.h>

int sigmask (signum);

Argument

signum
The signal number for which the mask is to be constructed.

Description

The sigmask function is used to contruct the mask for a given signum. This mask
can be used with the sigblock function.

Return Value

x The mask constructed for signum

REF–492



signal

signal

Allows you to specify the way in which the signal sig is to be handled: use the
default handling for the signal, ignore the signal, or call the signal handler at the
address specified.

Format

#include <signal.h>

void (*signal (int sig, void (*func) (int))) (int);

Arguments

sig
The number or mnemonic associated with a signal. This argument is usually one
of the mnemonics defined in the <signal.h> header file.

func
Either the action to take when the signal is raised, or the address of a function
needed to handle the signal.

Description

If func is the constant SIG_DFL, the action for the given signal is reset to the
default action, which is to terminate the receiving process. If the argument is
SIG_IGN, the signal is ignored. Not all signals can be ignored.

If func is neither SIG_DFL nor SIG_IGN, it specifies the address of a signal-
handling function. When the signal is raised, the addressed function is called
with sig as its argument. When the addressed function returns, the interrupted
process continues at the point of interruption. (This is called catching a
signal. Signals are reset to SIG_DFL after they are caught, except as shown
in Chapter 4.)

You must call the signal function each time you want to catch a signal.

See Section 4.2 for more information on signal handling.

To cause an OpenVMS exception or a signal to generate a UNIX style signal,
OpenVMS condition handlers must return SS$_RESIGNAL upon receiving
any exception that they do not want to handle. Returning SS$_CONTINUE
prevents the correct generation of a UNIX style signal. See Chapter 4 for a list of
OpenVMS exceptions that correspond to UNIX signals.

Return Values

x The address of the function previously
established to handle the signal.

SIG_ERR Indicates that the sig argument is out of range.

REF–493



sigpause

sigpause

Assigns mask to the current set of masked signals and then waits for a signal.

Format

#include <signal.h>

int sigpause (int mask);

Argument

mask
The signals to be blocked.

Description

See the sigblock function for information about the mask argument.

When control returns to sigpause, the function restores the previous set of
masked signals, sets errno to EINTR, and returns �1 to indicate an interrupt.
The value EINTR is defined in the <errno.h> header file.

Return Value

�1 Indicates an interrupt. errno is set to EINTR.

REF–494



sigpending

sigpending

Examines pending signals.

Format

#include <signal.h>

int sigpending (sigset_t *set);

Argument

set
A pointer to a sigset_t structure.

Description

The sigpending function stores the set of signals that are blocked from delivery
and pending to the calling process in the location pointed to by the set argument.

Call either the sigemptyset or the sigfillset function at least once for each
object of type sigset_t prior to any other use of that object. If you do not
initialize an object in this way and supply an argument to the sigpending
function, the result is undefined.

See also sigemptyset and sigfillset in this section.

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to the following

value:

• SIGSEGV – Bad mask argument.

REF–495



sigprocmask

sigprocmask

Sets the current signal mask.

Format

#include <signal.h>

int sigprocmask (int how, const sigset_t *set, sigset_t *o_set);

Arguments

how
An integer value that indicates how to change the set of masked signals. Use one
of the following values:

SIG_BLOCK The resulting set is the union of the current set and the
signal set pointed to by the set argument.

SIG_UNBLOCK The resulting set is the intersection of the current set
and the complement of the signal set pointed to by the set
argument.

SIG_SETMASK The resulting set is the signal set pointed to by the set
argument.

set
The signal set. If the value of the set argument is:

• Not NULL – It points to a set of signals used to change the currently blocked
set.

• NULL – The value of the how argument is not significant, and the process
signal mask is unchanged, so you can use the call to inquire about currently
blocked signals.

o_set
A non-NULL pointer to the location where the signal mask in effect at the time
of the call is stored.

Description

The sigprocmask function is used to examine or change the signal mask of the
calling process.

Typically, use the sigprocmask SIG_BLOCK value to block signals during a
critical section of code, then use the sigprocmask SIG_SETMASK value to restore
the mask to the previous value returned by the sigprocmask SIG_BLOCK value.

If there are any unblocked signals pending after the call to the sigprocmask
function, at least one of those signals is delivered before the sigprocmask function
returns.

You cannot block SIGKILL or SIGSTOP signals with the sigprocmask function. If
a program attempts to block one of these signals, the sigprocmask function gives
no indication of the error.

REF–496



sigprocmask

Example

The following example shows how to set the signal mask to block only the SIGINT
signal from delivery:

#include <signal.h>

int return_value;
sigset_t newset;
. . .
sigemptyset(&newset);
sigaddset(&newset, SIGINT);
return_value = sigprocmask (SIG_SETMASK, &newset, NULL);

Return Values

0 Indicates success.
�1 Indicates an error. The signal mask of the

process is unchanged. errno is set to one of the
following values:

• EINVAL – The value of the how argument is
not equal to one of the defined values.

• EFAULT – The set or o_set argument points
to a location outside the allocated address
space of the process.

REF–497



sigrelse (Alpha only)

sigrelse (Alpha only)

Removes the specified signal from the calling process’s signal mask.

Format

#include <signal.h>

int sigrelse (int signal);

Argument

signal
The specified signal. The signal argument can be assigned any of the signals
defined in the <signal.h> header file, except SIGKILL and SIGSTOP.

Description

The sighold, sigrelse, and sigignore functions provide simplified signal
management:

• The sighold function adds signal to the calling process’s signal mask.

• The sigrelse function removes signal from the calling process’s signal mask.

• The sigignore function sets the disposition of signal to SIG_IGN.

The sighold function, in conjunction with sigrelse and sigpause, can be used
to establish critical regions of code that require the delivery of a signal to be
temporarily deferred.

Upon success, the sigrelse function returns a value of 0. Otherwise, a value of
�1 is returned, and errno is set to indicate the error.

Note

These interfaces are provided for compatibility only. New programs
should use sigaction and sigprocmask to control the disposition of
signals.

Return Values

0 Indicates success.
�1 Indicates an error; errno is set to the following

value:

• EINVAL – The value of the signal argument
is either an invalid signal number or
SIGKILL.

REF–498



sigsetjmp

sigsetjmp

Sets a jump point for a nonlocal goto.

Format

#include <setjmp.h>

init sigsetjmp (sigjmp_buf env, int savemask);

Arguments

env
An address for a sigjmp_buf structure.

savemask
An integer value that specifies whether you need to save the current signal mask.

Description

The sigsetjmp function saves its calling environment in its env argument for
later use by the siglongjmp function.

If the value of savemask is not 0 (zero), sigsetjmp also saves the process’s current
signal mask as part of the calling environment.

See also siglongjmp.

Restrictions

You cannot invoke the longjmp function from an OpenVMS condition handler.
However, you may invoke longjmp from a signal handler that has been
established for any signal supported by the HP C RTL, subject to the following
nesting restrictions:

• The longjmp function will not work if you invoke it from nested signal
handlers. The result of the longjmp function, when invoked from a signal
handler that has been entered as a result of an exception generated in
another signal handler, is undefined.

• Do not invoke the sigsetjmp function from a signal handler unless the
associated longjmp is to be issued before the handling of that signal is
completed.

• Do not invoke the longjmp function from within an exit handler (established
with atexit or SYS$DCLEXH). Exit handlers are invoked after image
tear-down, so the destination address of the longjmp no longer exists.

• Invoking longjmp from within a signal handler to return to the main thread
of execution might leave your program in an inconsistent state. Possible
side effects include the inability to perform I/O or to receive any more UNIX
signals. Use siglongjmp instead.

REF–499



sigsetjmp

Return Values

0 Indicates success.
nonzero The return is a call to the siglongjmp function.

REF–500



sigsetmask

sigsetmask

Establishes those signals that are blocked from delivery.

Format

#include <signal.h>

int sigsetmask (int mask);

Argument

mask
The signals to be blocked.

Description

See the sigblock function for information about the mask argument.

Return Value

x The previous set of masked signals.

REF–501



sigstack (VAX only)

sigstack (VAX only)

Defines an alternate stack on which to process signals. This allows the processing
of signals in a separate environment from that of the current process. This
function is nonreentrant.

Format

#include <signal.h>

int sigstack (struct sigstack *ss, struct sigstack *oss);

Arguments

ss
If ss is not NULL, it specifies the address of a structure that holds a pointer to
a designated section of memory to be used as a signal stack on which to deliver
signals.

oss
If oss is not NULL, it specifies the address of a structure in which the old value
of the stack address is returned.

Description

The sigstack structure is defined in the <signal.h> standard header file:

struct sigstack
{

char *ss_sp;
int ss_onstack;

};

If the sigvec function specifies that the signal handler is to execute on the signal
stack, the system checks to see if the process is currently executing on that stack.
If the process is not executing on the signal stack, the system arranges a switch
to the signal stack for the duration of the signal handler’s execution. If the oss
argument is not NULL, the current state of the signal stack is returned.

Signal stacks must be allocated an adequate amount of storage; they do not
expand like the run-time stack. For example, if your signal handler calls printf
or any similarly complex HP C RTL routine, at least 12,000 bytes of storage
should be allocated for the signal stack. If the stack overflows, an error occurs.

ss_sp must point to at least four bytes before the end of the allocated memory
area (see the example). This is architecture-dependent and possibly not portable
to other machine architectures or operating systems.

Return Values

0 Indicates success.
�1 Indicates failure.

REF–502



sigstack (VAX only)

Example
#define ss_size 15000
static char mystack[ss_size];
struct sigstack ss = {&mystack + sizeof(mystack) - sizeof(void *), 1};

REF–503



sigsuspend

sigsuspend

Atomically changes the set of blocked signals and waits for a signal.

Format

#include <signal.h>

int sigsuspend (const sigset_t *signal_mask);

Argument

signal_mask
A pointer to a set of signals.

Description

The sigsuspend function replaces the signal mask of the process with the set of
signals pointed to by the signal_mask argument. Then it suspends execution of
the process until delivery of a signal whose action is either to execute a signal
catching function or to terminate the process. You cannot block the SIGKILL or
SIGSTOP signals with the sigsuspend function. If a program attempts to block
either of these signals, sigsuspend gives no indication of the error.

If delivery of a signal causes the process to terminate, sigsuspend does not
return. If delivery of a signal causes a signal catching function to execute,
sigsuspend returns after the signal catching function returns, with the signal
mask restored to the set that existed prior to the call to sigsuspend.

The sigsuspend function sets the signal mask and waits for an unblocked signal
as one atomic operation. This means that signals cannot occur between the
operations of setting the mask and waiting for a signal. If a program invokes
sigprocmask SIG_SETMASK and sigsuspend separately, a signal that occurs
between these functions is often not noticed by sigsuspend.

In normal usage, a signal is blocked by using the sigprocmask function at the
beginning of a critical section. The process then determines whether there is
work for it to do. If there is no work, the process waits for work by calling
sigsuspend with the mask previously returned by sigprocmask.

If a signal is caught by the calling process and control is returned from the signal
handler, the calling process resumes execution after sigsuspend, which always
returns a value of �1 and sets errno to EINTR.

See also sigpause and sigprocmask.

REF–504



sigtimedwait (Alpha only)

sigtimedwait (Alpha only)

Suspends a calling thread and waits for queued signals to arrive.

Format

#include <signal.h>

int sigtimedwait (const sigset_t set, siginfo_t *info, const struct timespec *timeout);

Arguments

set
The set of signals to wait for.

info
Pointer to a siginfo structure that is receiving data describing the signal,
including any application-defined data specified when the signal was posted.

timeout
A timeout for the wait. If timeout is NULL, the argument is ignored.

Description

The sigtimedwait function behaves the same as the sigwaitinfo function except
that if none of the signals specified by set are pending, sigtimedwait waits for
the time interval specified in the timespec structure referenced by timeout. If the
timespec structure pointed to by timeout is zero-valued and if none of the signals
specified by set are pending, then sigtimedwait returns immediately with an
error.

See also sigwait and sigwaitinfo.

See Section 4.2 for more information on signal handling.

Return Values

x Upon successful completion, the signal number
selected is returned.

�1 Indicates that an error occurred; errno is set to
one of the following values:

• EINVAL – The timeout argument specified a
tv_nsec value less than 0 or greater than or
equal to 1 billion.

• EINTR – The wait was interrupted by an
unblocked, caught signal.

• EAGAIN – No signal specified by set was
generated within the specified timeout
period.

REF–505



sigvec

sigvec

Permanently assigns a handler for a specific signal.

Format

#include <signal.h>

int sigvec (int sigint, struct sigvec *sv, struct sigvec *osv);

Arguments

sigint
The signal identifier.

sv
Pointer to a sigvec structure (see the Description section).

osv
If osv is not NULL, the previous handling information for the signal is returned.

Description

If sv is not NULL, it specifies the address of a structure containing a pointer to
a handler routine and mask to be used when delivering the specified signal, and
a flag indicating whether the signal is to be processed on an alternative stack. If
sv–>onstack has a value of 1, the system delivers the signal to the process on a
signal stack specified with sigstack.

The sigvec function establishes a handler that remains established until
explicitly removed or until the image terminates.

The sigvec structure is defined in the <signal.h> header file:

struct sigvec
{

int (*handler)();
int mask;
int onstack;

};

See Section 4.2 for more information on signal handling.

Return Values

0 Indicates that the call succeeded.
�1 Indicates that an error occurred.

REF–506



sigwait (Alpha only)

sigwait (Alpha only)

Suspends a calling thread and waits for queued signals to arrive.

Format

#include <signal.h>

int sigwait (const sigset_t set, int *sig);

Arguments

set
The set of signals to wait for.

sig
Returns the signal number of the selected signal.

Description

The sigwait function suspends the calling thread until at least one of the signals
in the set argument is in the caller’s set of pending signals. When this happens,
one of those signals is automatically selected and removed from the set of pending
signals. The signal number identifying that signal is then returned in the location
referenced by sig.

The effect is unspecified if any signals in the set argument are not blocked when
the sigwait function is called.

The set argument is created using the set manipulation functions sigemptyset,
sigfillset, sigaddset, and sigdelset.

If, while the sigwait function is waiting, a signal occurs that is eligible for
delivery (that is, not blocked by the signal mask), that signal is handled
asynchronously and the wait is interrupted.

See also sigtimedwait and sigwaitinfo.

See Section 4.2 for more information on signal handling.

Return Values

0 Upon successful completion, sigwait stores
the signal number of the received signal at the
location referenced by sig and returns 0.

nonzero Indicates that an error occurred; errno is set to
the following value:

• EINVAL – The set argument contains an
invalid or unsupported signal number.

REF–507



sigwaitinfo (Alpha only)

sigwaitinfo (Alpha only)

Suspends a calling thread and waits for queued signals to arrive.

Format

#include <signal.h>

int sigwaitinfo (const sigset_t set, siginfo_t *info);

Arguments

set
The set of signals to wait for.

info
Pointer to a siginfo structure that is receiving data describing the signal,
including any application-defined data specified when the signal was posted.

Description

The sigwaitinfo function behaves the same as the sigwait function if the info
argument is NULL.

If the info argument is non-NULL, the sigwaitinfo function behaves the same
as sigwait, except that the selected signal number is stored in the si_signo
member of the siginfo structure, and the cause of the signal is stored in the
si_code member. If any value is queued to the selected signal, the first such
queued value is dequeued and the value is stored in the si_value member of info.
The system resource used to queue the signal is released and made available to
queue other signals. If no value is queued, the content of the si_value member
is undefined. If no further signals are queued for the selected signal, the pending
indication for that signal is reset.

See also sigtimedwait and sigwait.

See Section 4.2 for more information on signal handling.

Return Values

x Upon successful completion, the signal number
selected is returned.

�1 Indicates that an error occurred; errno is set to
one of the following values:

• EINVAL – The set argument contains an
invalid or unsupported signal number.

• EINTR – The wait was interrupted by an
unblocked, caught signal.

REF–508



sin

sin

Returns the sine of its radian argument.

Format

#include <math.h>

double sin (double x);

float sinf (float x); (Alpha only)

long double sinl (long double x); (Alpha only)

double sind (double x); (Alpha only)

float sindf (float x); (Alpha only)

long double sindl (long double x); (Alpha only)

Argument

x
A radian expressed as a floating-point number.

Description

The sin functions compute the sine of x measured in radians.

The sind functions compute the sine of x measured in degrees.

Return Values

x The sine of the argument.
NaN x = �Infinity or NaN; errno is set to EDOM.
0 Undeflow occurred; errno is set to ERANGE.

REF–509



sinh

sinh

Returns the hyperbolic sine of its argument.

Format

#include <math.h>

double sinh (double x);

float sinhf (float x); (Alpha only)

long double sinhl (long double x); (Alpha only)

Argument

x
A real number.

Return Values

n The hyperbolic sine of the argument.
HUGE_VAL Overflow occurred; errno is set to ERANGE.
0 Underflow occurred; errno is set to ERANGE.
NaN x is NaN; errno is set to EDOM.

REF–510



sleep

sleep

Suspends the execution of the current process for at least the number of seconds
indicated by its argument.

Format

#include <unistd.h>

unsigned int sleep (unsigned seconds); (_DECC_V4_SOURCE)

int sleep (unsigned seconds); (not _DECC_V4_SOURCE)

Argument

seconds
The number of seconds.

Description

The sleep function sleeps for the specified number of seconds, or until a signal is
received, or until the process executes a call to SYS$WAKE.

If a SIGALRM signal is generated, but blocked or ignored, the sleep function
returns. For all other signals, a blocked or ignored signal does not cause sleep to
return.

Return Values

x The number of seconds that the process awoke
early.

0 If the process slept the full number of seconds
specified by seconds.

REF–511



snprintf

snprintf

Performs formatted output to a string in memory.

Format

#include <stdio.h>

int snprintf (char *str, size_t n, const char *format_spec, . . . );

Arguments

str
The address of the string that will receive the formatted output.

n
The size of the buffer referred to by str.

format_spec
A pointer to a character string that contains the format specification. For more
information about format specifications and conversion characters, see Chapter 2.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, you may omit the output sources.
Otherwise, the function calls must have at least as many output sources as there
are conversion specifications, and the conversion specifications must match the
types of the output sources.

Conversion specifications are matched to output sources in left-to-right order.
Excess output pointers, if any, are ignored.

Description

The snprintf function is identical to the sprintf function with the addition of
the n argument, which specifies the size of the buffer referred to by str.

On successful completion, snprintf returns the number of bytes (excluding the
terminating null byte) that would be written to str if n is sufficiently large.

If n is 0, nothing is written, the number of bytes (excluding the terminating null)
that would be written if n were sufficiently large are returned, and str might be a
NULL pointer. Otherwise, output bytes beyond the n � 1st are discarded instead
of being written to the array, and a null byte is written at the end of the bytes
actually written into the array.

If an output error is encountered, a negative value is returned.

For a complete description of the format specification and the output source, see
Chapter 2.

REF–512



snprintf

Return Values

x The number of bytes (excluding the terminating
null byte) that would be written to str if n is
sufficiently large.

Negative value Indicates an output error occurred. The function
sets errno. For a list of errno values set by this
function, see fprintf.

REF–513



sprintf

sprintf

Performs formatted output to a string in memory.

Format

#include <stdio.h>

int sprintf (char *str, const char *format_spec, . . . );

Arguments

str
The address of the string that will receive the formatted output. It is assumed
that this string is large enough to hold the output.

format_spec
A pointer to a character string that contains the format specification. For more
information about format specifications and conversion characters, see Chapter 2.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, you may omit the output sources.
Otherwise, the function calls must have at least as many output sources as there
are conversion specifications, and the conversion specifications must match the
types of the output sources.

Conversion specifications are matched to output sources in left-to-right order.
Excess output pointers, if any, are ignored.

Description

The sprintf function places output followed by the null character (\0) in
consecutive bytes starting at *str. The user must ensure that enough space is
available.

Consider the following example of a conversion specification:

#include <stdio.h>

main()
{

int temp = 4, temp2 = 17;
char s[80];

sprintf(s, "The answers are %d, and %d.", temp, temp2);
}

In this example, character string s has the following contents:

The answers are 4, and 17.

For a complete description of the format specification and the output source, see
Chapter 2.

REF–514



sprintf

Return Values

x The number of characters placed in the output
string, not including the final null character.

Negative value Indicates an output error occurred. The function
sets errno. For a list of errno values set by this
function, see fprintf.

REF–515



sqrt

sqrt

Returns the square root of its argument.

Format

#include <math.h>

double sqrt (double x);

float sqrtf (float x); (Alpha only)

long double sqrtl (long double x); (Alpha only)

Argument

x
A real number.

Return Values

val The square root of x, if x is nonnegative.
0 x is negative; errno is set to EDOM.
NaN x is NaN; errno is set to EDOM.

REF–516



srand

srand

Initializes the pseudorandom-number generator rand.

Format

#include <math.h>

void srand (unsigned int seed);

Argument

seed
An unsigned integer.

Description

The srand function uses the argument as a seed for a new sequence of
pseudorandom numbers to be returned by subsequent calls to rand.

If srand is then called with the same seed value, the sequence of pseudorandom
numbers is repeated.

If rand is called before any calls to srand, the same sequence of pseudorandom
numbers is generated as when srand is first called with a seed value of 1.

REF–517



srand48

srand48

Initializes a 48-bit random-number generator.

Format

#include <stdlib.h>

void srand48 (long int seed_val);

Argument

seed_val
The initialization value to begin randomization. Changing this value changes the
randomization pattern.

Description

The srand48 function initializes the random-number generator. You can use
this function in your program before calling the drand48, lrand48, or mrand48
functions. (Although it is not recommended practice, constant default initializer
values are automatically supplied if you call drand48, lrand48, or mrand48
without calling an initialization function).

The function works by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula:

Xn+1 = (aXn+c)mod m n >= 0

The argument m equals �48, so 48-bit integer arithmetic is performed. Unless you
invoke the lcong48 function, the multiplier value a and the addend value c are:

a = 5DEECE66D16 = 2736731631558
c = B16 = 138

The initializer function srand48 sets the high-order 32 bits of Xi to the low-order
32 bits contained in its argument. The low-order 16 bits of Xi are set to the
arbitrary value 330E16.

See also drand48, lrand48, and mrand48.

REF–518



srandom

srandom

Initializes the pseudorandom-number generator random.

Format

int srandom (unsigned seed);

Argument

seed
An initial seed value.

Description

The srandom function uses the argument as a seed for a new sequence of
pseudorandom numbers to be returned by subsequent calls to random. This
function has virtually the same calling sequence and initialization properties as
the srand function, but produce sequences that are more random.

The srandom function initializes the current state with the initial seed value. The
srandom function, unlike the srand function, does not return the old seed because
the amount of state information used is more than a single word.

See also rand, srand, random, setstate, and initstate.

Return Values

0 Indicates success. Initializes the state seed.
�1 Indicates an error, further specified in the global

errno.

REF–519



sscanf

sscanf

Reads input from a character string in memory, interpreting it according to the
format specification.

Format

#include <stdio.h>

int sscanf (const char *str, const char *format_spec, . . . );

Arguments

str
The address of the character string that provides the input text to sscanf.

format_spec
A pointer to a character string that contains the format specification. For more
information about format specifications and conversion characters, see Chapter 2.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, you can omit the input pointers.
Otherwise, the function calls must have at least as many input pointers as there
are conversion specifications, and the conversion specifications must match the
types of the input pointers.

Conversion specifications are matched to input sources in left-to-right order.
Excess input pointers, if any, are ignored.

Description

The following is an example of a conversion specification:

main ()
{

char str[] = "4 17";
int temp,

temp2;

sscanf(str, "%d %d", &temp, &temp2);
printf("The answers are %d and %d.", temp, temp2);

}

This example produces the following output:

$ RUN EXAMPLE
The answers are 4 and 17.

For a complete description of the format specification and the input pointers, see
Chapter 2.

REF–520



sscanf

Return Values

x The number of successfully matched and
assigned input items.

EOF Indicates that a read error occurred before any
conversion. The function sets errno. For a list of
the values set by this function, see fscanf.

REF–521



ssignal

ssignal

Allows you to specify the action to take when a particular signal is raised.

Format

#include <signal.h>

void (*ssignal (int sig, void (*func) (int, . . . ))) (int, . . . );

Arguments

sig
A number or mnemonic associated with a signal. The symbolic constants for
signal values are defined in the <signal.h> header file (see Chapter 4).

func
The action to take when the signal is raised, or the address of a function that is
executed when the signal is raised.

Description

The ssignal function is equivalent to the signal function except for the return
value on error conditions.

Since the signal function is defined by the ANSI C standard and the ssignal
function is not, use signal for greater portability.

See Section 4.2 for more information on signal handling.

Return Values

x The address of the function previously
established as the action for the signal. The
address may be the value SIG_DFL ( 0 ) or
SIG_IGN ( 1 ).

0 Indicates errors. For this reason, there is no way
to know whether a return status of 0 indicates
failure, or whether it indicates that a previous
action was SIG_DFL ( 0 ).

REF–522



[w]standend

[w]standend

Deactivate the boldface attribute for the specified window. The standend function
operates on the stdscr window.

Format

#include <curses.h>

int standend (void);

int wstandend (WINDOW *win);

Argument

win
A pointer to the window.

Description

The standend and wstandend functions are equivalent to clrattr and wclrattr
called with the attribute _BOLD.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–523



[w]standout

[w]standout

Activate the boldface attribute of the specified window. The standout function
acts on the stdscr window.

Format

#include <curses.h>

int standout (void);

int wstandout (WINDOW *win);

Argument

win
A pointer to the window.

Description

The standout and wstandout functions are equivalent to setattr and wsetattr
called with the attribute _BOLD.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–524



stat

stat

Accesses information about the specified file.

Format

#include <stat.h>

int stat (const char *file_spec, struct stat *buffer); (ISO POSIX-1)

int stat (const char *file_spec, struct stat *buffer, . . . ); (HP C Extension)

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the stat function that is
equivalent to the behavior before OpenVMS Version 7.0.

Arguments

file_spec
A valid OpenVMS or UNIX style file specification (no wildcards). Read, write,
or execute permission of the named file is not required, but you must be able to
reach all directories listed in the file specification leading to the file. For more
information about UNIX style file specifications, see Chapter 1.

buffer
A pointer to a structure of type stat_t that is defined in the <stat.h> header file.

The argument receives information about the particular file. The members of the
structure pointed to by buffer are described as follows:

Member Type Definition

st_dev dev_t Pointer to the physical device name
st_ino[3] ino_t Three words to receive the file ID
st_mode mode_t File ‘‘mode’’ (prot, dir, . . . )
st_nlink nlink_t For UNIX system compatibility only
st_uid uid_t Owner user ID
st_gid gid_t Group member: from st_uid
st_rdev dev_t UNIX system compatibility – always 0
st_size off_t File size, in bytes. For st_size to

report a correct value, you need to
flush both the C RTL and RMS buffers.

st_atime time_t File access time; always the same as
st_mtime

st_mtime time_t Last modification time
st_ctime time_t File creation time
st_fab_rfm char Record format
st_fab_rat char Record attributes
st_fab_fsz char Fixed header size

REF–525



stat

Member Type Definition

st_fab_mrs unsigned Record size

The types dev_t, ino_t, off_t, mode_t, nlink_t, uid_t, gid_t, and time_t, are
defined in the <stat.h> header file. However, when compiling for compatibility
(/DEFINE=_DECC_V4_SOURCE), only dev_t, ino_t, and off_t are defined.

The off_t data type is either a 32-bit or 64-bit integer. The 64-bit interface
allows for file sizes greater than 2 GB, and can be selected at compile time by
defining the _LARGEFILE feature-test macro as follows:

CC/DEFINE=_LARGEFILE

As of OpenVMS Version 7.0, times are given in seconds since the Epoch (00:00:00
GMT, January 1, 1970).

The st_mode structure member is the status information mode defined in the
<stat.h> header file. The st_mode bits are described as follows:

Bits Constant Definition

0170000 S_IFMT Type of file
0040000 S_IFDIR Directory
0020000 S_IFCHR Character special
0060000 S_IFBLK Block special
0100000 S_IFREG Regular
0030000 S_IFMPC Multiplexed char special
0070000 S_IFMPB Multiplexed block special
0004000 S_ISUID Set user ID on execution
0002000 S_ISGID Set group ID on execution
0001000 S_ISVTX Save swapped text even after use
0000400 S_IREAD Read permission, owner
0000200 S_IWRITE Write permission, owner
0000100 S_IEXEC Execute/search permission, owner

. . .
An optional default file-name string.

This is the only optional RMS keyword that can be specified for the stat function.
See the description of the creat function for the full list of optional RMS
keywords and their values.

Description

The stat function does not work on remote network files.

If the file is a record file, the st_size field includes carriage-control information.
Consequently, the st_size value will not correspond to the number of characters
that can be read from the file.

Also be aware that for st_size to report a correct value, you need to flush both
the C RTL and RMS buffers.

REF–526



stat

The physical device name string referred to by the st_dev member of the stat
structure is overwritten by the next stat call.

Note (Alpha only)

On OpenVMS Alpha systems, the stat, fstat, utime, and utimes
functions have been enhanced to take advantage of the new file-system
support for POSIX compliant file timestamps.

This support is available only on ODS-5 devices on OpenVMS Alpha
systems beginning with a version of OpenVMS Alpha after Version 7.3.

Before this change, the stat and fstat functions were setting the values
of the st_ctime, st_mtime, and st_atime fields based on the following file
attributes:

st_ctime - ATR$C_CREDATE (file creation time)
st_mtime - ATR$C_REVDATE (file revision time)
st_atime - was always set to st_mtime because no support for file
access time was available

Also, for the file-modification time, utime and utimes were modifying
the ATR$C_REVDATE file attribute, and ignoring the file-access-time
argument.

After the change, for a file on an ODS-5 device, the stat and fstat
functions set the values of the st_ctime, st_mtime, and st_atime fields
based on the following new file attributes:

st_ctime - ATR$C_ATTDATE (last attribute modification time)
st_mtime - ATR$C_MODDATE (last data modification time)
st_atime - ATR$C_ACCDATE (last access time)

If ATR$C_ACCDATE is zero, as on an ODS-2 device, the stat and fstat
functions set st_atime to st_mtime.

For the file-modification time, the utime and utimes functions modify
both the ATR$C_REVDATE and ATR$C_MODDATE file attributes. For
the file-access time, these functions modify the ATR$C_ACCDATE file
attribute. Setting the ATR$C_MODDATE and ATR$C_ACCDATE file
attributes on an ODS-2 device has no effect.

For compatibility, the old behavior of stat, fstat, utime, and utimes
remains the default, regardless of the kind of device.

The new behavior must be explicitly enabled by defining the DECC$EFS_
FILE_TIMESTAMPS logical name to "ENABLE" before invoking the
application. Setting this logical does not affect the behavior of stat,
fstat, utime, and utimes for files on an ODS-2 device.

Return Values

0 Indicates success.
�1 Indicates an error other than a privilege

violation; errno is set to indicate the error.
�2 Indicates a privilege violation.

REF–527



strcasecmp

strcasecmp

Does a case-insensitive comparison of two 7-bit ASCII strings.

Format

#include <strings.h>

int strcasecmp (const char *s1, const char *s2);

Arguments

s1
The first of two strings to compare.

s2
The second of two strings to compare.

Description

The strcasecmp function is case-insensitive. The returned lexicographic
difference reflects a conversion to lowercase.

The strcasecmp function works for 7-bit ASCII compares only. Do not use this
function for internationalized applications.

Return Value

n An integer value greater than, equal to, or less
than 0 (zero), depending on whether the s1 string
is greater than, equal to, or less than the s2
string.

REF–528



strcat

strcat

Concatenates str_2, including the terminating null character, to the end of str_1.

Format

#include <string.h>

char *strcat (char *str_1, const char *str_2);

Function Variants

The strcat function has variants named _strcat32 and _strcat64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

str_1, str_2
Pointers to null-terminated character strings.

Description

See strncat.

Return Value

x The address of the first argument, str_1, which
is assumed to be large enough to hold the
concatenated result.

Example
#include <string.h>
#include <stdio.h>

/* This program concatenates two strings using the strcat */
/* function, and then manually compares the result of strcat */
/* to the expected result. */

#define S1LENGTH 10
#define S2LENGTH 8

main()
{

static char s1buf[S1LENGTH + S2LENGTH] = "abcmnexyz";
static char s2buf[] = " orthis";
static char test1[] = "abcmnexyz orthis";

int i;
char *status;

/* Take static buffer s1buf, concatenate static buffer */
/* s2buf to it, and compare the answer in s1buf with the */
/* static answer in test1. */

status = strcat(s1buf, s2buf);
for (i = 0; i <= S1LENGTH + S2LENGTH - 2; i++) {

/* Check for correct returned string. */

REF–529



strcat

if (test1[i] != s1buf[i])
printf("error in strcat");

}
}

REF–530



strchr

strchr

Returns the address of the first occurrence of a given character in a null-
terminated string. The terminating null character is considered to be part of
the string.

Format

#include <string.h>

char *strchr (const char *str, int character);

Function Variants

The strchr function has variants named _strchr32 and _strchr64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

str
A pointer to a null-terminated character string.

character
An object of type int.

Description

See strrchr.

Return Values

x The address of the first occurrence of the
specified character.

NULL Indicates that the character does not occur in the
string.

Example
#include <stdio.h>
#include <string.h>

main()
{

static char s1buf[] = "abcdefghijkl lkjihgfedcba";

int i;

char *status;

/* This program checks the strchr function by incrementally */
/* going through a string that ascends to the middle and then */
/* descends towards the end. */

for (i = 0; s1buf[i] != ’\0’ && s1buf[i] != ’ ’; i++) {
status = strchr(s1buf, s1buf[i]);

/* Check for pointer to leftmost character - test 1. */

REF–531



strchr

if (status != &s1buf[i])
printf("error in strchr");

}
}

REF–532



strcmp

strcmp

Compares two ASCII character strings and returns a negative, 0, or positive
integer, indicating that the ASCII values of the individual characters in the first
string are less than, equal to, or greater than the values in the second string.

Format

#include <string.h>

int strcmp (const char *str_1, const char *str_2);

Arguments

str_1, str_2
Pointers to character strings.

Description

The strings are compared until a null character is encountered or until the
strings differ.

Return Values

< 0 Indicates that str_1 is less than str_2.
= 0 Indicates that str_1 equals str_2.
> 0 Indicates that str_1 is greater than str_2.

REF–533



strcoll

strcoll

Compares two strings and returns an integer that indicates if the strings
differ and how they differ. The function uses the collating information in the
LC_COLLATE category of the current locale to determine how the comparison is
performed.

Format

#include <string.h>

int strcoll (const char *s1, const char *s2);

Arguments

s1, s2
Pointers to character strings.

Description

The strcoll function, unlike strcmp, compares two strings in a locale-dependent
manner. Because no value is reserved for error indication, the application must
check for one by setting errno to 0 before the function call and testing it after the
call.

See also strxfrm.

Return Values

< 0 Indicates that s1 is less than s2.
= 0 Indicates that the strings are equal.
> 0 Indicates that s1 is greater than s2.

REF–534



strcpy

strcpy

Copies all of source, including the terminating null character, into dest.

Format

#include <string.h>

char *strcpy (char *dest, const char *source);

Function Variants

The strcpy function has variants named _strcpy32 and _strcpy64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

dest
Pointer to the destination character string.

source
Pointer to the source character string.

Description

The strcpy function copies source into dest, and stops after copying source’s null
character.

The behavior of this function is undefined if the area pointed to by dest overlaps
the area pointed to by source.

Return Value

x The address of dest.

REF–535



strcspn

strcspn

Returns the length of the prefix of a string that consists entirely of characters not
in a specified set of characters.

Format

#include <string.h>

size_t strcspn (const char *str, const char *charset);

Arguments

str
A pointer to a character string. If this character string is a null string, 0 is
returned.

charset
A pointer to a character string containing the set of characters.

Description

The strcspn function scans the characters in the string, stops when it encounters
a character found in charset, and returns the length of the string’s initial segment
formed by characters not found in charset.

If none of the characters match in the character strings pointed to by str and
charset, strcspn returns the length of string.

Return Value

x The length of the segment.

REF–536



strdup

strdup

Finds and points to a duplicate string.

Format

#include <string.h>

char *strdup (const char *s1);

Function Variants

The strdup function has variants named _strdup32 and _strdup64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Argument

s1
The first of two strings to compare.

Description

The strdup function returns a pointer to a string that is an exact duplicate of the
string pointed to by s1. The malloc function is used to allocate space for the new
string. The strdup function is provided for compatibility with existing systems.

Return Values

x A pointer to the resulting string.
NULL Indicates an error.

REF–537



strerror

strerror

Maps the error number in error_code to a locale-dependent error message string.

Format

#include <string.h>

char *strerror (int error_code); (ANSI C)

char *strerror (int error_code[, int vms_error_code]); (HP C Extension)

Arguments

error_code
An error code.

vms_error_code
An OpenVMS error code.

Description

The strerror function uses the error number in error_code to retrieve the
appropriate locale-dependent error message. The contents of the error message
strings are determined by the LC_MESSAGES category of the program’s current
locale.

When a program is not compiled with any standards-related feature-test macros
(see Section 1.5.1), strerror has a second argument (vms_error_code), which is
used in the following way:

• If error_code is EVMSERR and there is a second argument, then that second
argument is used as the vaxc$errno value.

• If error_code is EVMSERR and there is no second argument, look at
vaxc$errno to get the OpenVMS error condition.

See the Example section.

Use of the second argument is not included in the ANSI C definition of strerror
and is, therefore, not portable.

Because no return value is reserved to indicate an error, applications should set
the value of errno to 0, call strerror, and then test the value of errno; a nonzero
value indicates an error condition.

Return Value

x A pointer to a buffer containing the appropriate
error message. Do not modify this buffer in
your programs. Moreover, calls to the strerror
function may overwrite this buffer with a new
message.

REF–538



strerror

Example
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <ssdef.h>

main()
{

puts(strerror(EVMSERR));
errno = EVMSERR;
vaxc$errno = SS$_LINKEXIT;
puts(strerror(errno));
puts(strerror(EVMSERR, SS$_ABORT));
exit(1);

}

Running this example produces the following output:

nontranslatable vms error code: <none>
network partner exited
abort

REF–539



strfmon

strfmon

Converts a number of monetary values into a string. The conversion is controlled
by a format string.

Format

#include <monetary.h>

ssize_t strfmon (char *s, size_t maxsize, const char *format, . . . );

Arguments

s
A pointer to the resultant string.

maxsize
The maximum number of bytes to be stored in the resultant string.

format
A pointer to a string that controls the format of the output string.

. . .
The monetary values of type double that are to be formatted for the output
string. There should be as many values as there are conversion specifications in
the format string pointed to by format. The function fails if there are insufficient
values. Excess arguments are ignored.

Description

The strfmon function creates a string pointed to by s, using the monetary values
supplied. A maximum of maxsize bytes is copied to s.

The format string pointed to by format consists of ordinary characters and
conversion specifications. All ordinary characters are copied unchanged to the
output string. A conversion specification defines how one of the monetary values
supplied is formatted in the output string.

A conversion specification consists of a percent character (%), followed by
a number of optional characters (see Table REF–5), and concluding with a
conversion specifier (see Table REF–6).

If any of the optional characters listed in Table REF–5 is included in a conversion
specification, they must appear in the order shown.

REF–540



strfmon

Table REF–5 Optional Characters in strfmon Conversion Specifications

Character Meaning

=character Use character as the numeric fill character if a left
precision is specified. The default numeric fill character
is the space character. The fill character must be
representable as a single byte in order to work with
precision and width count. This conversion specifier is
ignored unless a left precision is specified, and it does not
affect width filling, which always uses the space character.

^ Do not use separator characters to format the number.
By default, the digits are grouped according to the
mon_grouping field in the LC_MONETARY category of
the current locale.

+ Add the string specified by the positive_sign or
negative_sign fields in the current locale. If p_sign_
posn or n_sign_posn is set to 0, then parentheses are
used by default to indicate negative values. Otherwise,
sign strings are used to indicate the sign of the value.
You cannot use a + and a ( in the same conversion
specification.

( Enclose negative values within parentheses. The default
is taken from the p_sign_posn and n_sign_posn fields in
the current locale. If p_sign_posn or n_sign_posn is set
to 0, then parentheses are used by default to indicate
negative values. Otherwise, sign strings are used to
indicate the sign of the value. You cannot use a + and ( in
the same conversion specification.

! Suppress the currency symbol. By default, the currency
symbol is included.

– Left-justify the value within the field. By default, values
are right-justified.

field width A decimal integer that specifies the minimum field width
in which to align the result of the conversion. The default
field width is the smallest field that can contain the result.

#left_precision A # followed by a decimal integer specifies the number of
digits to the left of the radix character. Extra positions
are filled by the fill character. By default the precision is
the smallest required for the argument. If grouping is not
suppressed with the ^ conversion specifier, and if grouping
is defined for the current locale, grouping separators are
inserted before any fill characters are added. Grouping
separators are not applied to fill characters even if the fill
character is defined as a digit.

(continued on next page)

REF–541



strfmon

Table REF–5 (Cont.) Optional Characters in strfmon Conversion Specifications

Character Meaning

.right_precision A period (.) followed by a decimal integer specifies the
number of digits to the right of the radix character. Extra
positions are filled with zeros. The amount is rounded to
this number of decimal places. If the right precision is
zero, the radix character is not included in the output. By
default the right precision is defined by the frac_digits or
int_frac_digits field of the current locale.

Table REF–6 strfmon Conversion Specifiers

Specifier Meaning

i Use the international currency symbol defined by the
int_currency_symbol field in the current locale, unless the currency
symbol has been suppressed.

n Use the local currency symbol defined by the currency_symbol
field in the current locale, unless the currency symbol has been
suppressed.

% Output a % character. The conversion specification must be %%;
none of the optional characters is valid with this specifier.

Return Values

x The number of bytes written to the string pointed
to by s, not including the null-terminating
character.

�1 Indicates an error. The function sets errno to
one of the following values:

• EINVAL – A conversion specification is
syntactically incorrect.

• E2BIG – Processing the complete format
string would produce more than maxsize
bytes.

Example
#include <stdlib.h>
#include <stdio.h>
#include <locale.h>
#include <monetary.h>
#include <errno.h>

#define MAX_BUF_SIZE 124

main()
{
size_t ret;
char buffer[MAX_BUF_SIZE];
double amount = 102593421;

/* Display a monetary amount using the en_US.ISO8859-1 */
/* locale and a range of different display formats. */

REF–542



strfmon

if (setlocale(LC_ALL, "en_US.ISO8859-1") == (char *) NULL) {
perror("setlocale");
exit(EXIT_FAILURE);

}
ret = strfmon(buffer, MAX_BUF_SIZE, "International: %i\n", amount);
printf(buffer);

ret = strfmon(buffer, MAX_BUF_SIZE, "National: %n\n", amount);
printf(buffer);

ret = strfmon(buffer, MAX_BUF_SIZE, "National: %=*#10n\n", amount);
printf(buffer);

ret = strfmon(buffer, MAX_BUF_SIZE, "National: %(n\n", -1 * amount);
printf(buffer);

ret = strfmon(buffer, MAX_BUF_SIZE, "National: %^!n\n", amount);
printf(buffer);

}

Running the example program produces the following result:

International: USD 102,593,421.00
National: $102,593,421.00
National: $**102,593,421.00
National: ($102,593,421.00)
National: 102593421.00

REF–543



strftime

strftime

Uses date and time information stored in a tm structure to create an output
string. The format of the output string is controlled by a format string.

Format

#include <time.h>

size_t strftime (char *s, size_t maxsize, const char *format, const struct tm *timeptr);

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the strftime function
that is equivalent to the behavior before OpenVMS Version 7.0.

Arguments

s
A pointer to the resultant string.

maxsize
The maximum number of bytes to be stored in the resultant string, including the
null terminator.

format
A pointer to a string that controls the format of the output string.

timeptr
A pointer to the local time (tm) structure. The tm structure is defined in the
<time.h> header file.

Description

The strftime function uses data in the structure pointed to by timeptr to create
the string pointed to by s. A maximum of maxsize bytes is copied to s.

The format string consists of zero or more conversion specifications and ordinary
characters. All ordinary characters (including the terminating null character) are
copied unchanged into the output string. A conversion specification defines how
data in the tm structure is formatted in the output string.

A conversion specification consists of a percent (%) character followed by
one or more optional characters (see Table REF–7), and concluding with a
conversion specifier (see Table REF–8). If any of the optional characters listed in
Table REF–7 are specified, they must appear in the order shown in the table.

The strftime function behaves as if it called tzset.

REF–544



strftime

Table REF–7 Optional Elements of strftime Conversion Specifications

Element Meaning

– Optional with the field width to specify that the field is left-justified
and padded with spaces. This cannot be used with the 0 element.

0 Optional with the field width to specify that the field is right-
justified and padded with zeros. This cannot be used with the –
element.

field width A decimal integer that specifies the maximum field width
.precision A decimal integer that specifies the precision of data in a field.

For the d, H, I, j, m, M, o, S, U, w, W, y, and Y conversion
specifiers, the precision specifier is the minimum number of digits
to appear in the field. If the conversion specification has fewer
digits than that specified by the precision, leading zeros are added.
For the a, A, b, B, c, D, E, h, n, N, p, r, t, T, x, X, Z, and
% conversion specifiers, the precision specifier is the maximum
number of characters to appear in the field. If the conversion
specification has more characters than that specified by the the
precision, characters are truncated on the right.
The default precision for the d, H, I, m, M, o, S, U, w, W, y and Y
conversion specifiers is 2; the default precision for the j conversion
specifier is 3.

Note that the list of conversion specifications in Table REF–7 are extensions to
the XPG4 specification.

Table REF–8 lists the conversion specifiers. The strftime function uses fields
in the LC_TIME category of the program’s current locale to provide a value. For
example, if %B is specified, the function accesses the mon field in LC_TIME to find
the full month name for the month specified in the tm structure. The result of
using invalid conversion specifiers is undefined.

Table REF–8 strftime Conversion Specifiers

Specifier Replaced by

a The locale’s abbreviated weekday name
A The locale’s full weekday name
b The locale’s abbreviated month name
B The locale’s full month name
c The locale’s appropriate date and time representation
C The century number (the year divided by 100 and truncated to

an integer) as a decimal number (00 – 99)
d The day of the month as a decimal number (01 – 31)
D Same as %m/%d/%y
e The day of the month as a decimal number (1 – 31) in a 2-digit

field with the leading space character fill
Ec The locale’s alternative date and time representation

(continued on next page)

REF–545



strftime

Table REF–8 (Cont.) strftime Conversion Specifiers

Specifier Replaced by

EC The name of the base year (period) in the locale’s alternative
representation

Ex The locale’s alternative date representation
EX The locale’s alternative time representation
Ey The offset from the base year (%EC) in the locale’s alternative

representation
EY The locale’s full alternative year representation
h Same as %b
H The hour (24-hour clock) as a decimal number (00 – 23)
I The hour (12-hour clock) as a decimal number (01 – 12)
j The day of the year as a decimal number (001 – 366)
m The month as a decimal number (01 – 12)
M The minute as a decimal number (00 – 59)
n The new-line character
Od The day of the month using the locale’s alternative numeric

symbols
Oe The date of the month using the locale’s alternative numeric

symbols
OH The hour (24-hour clock) using the locale’s alternative numeric

symbols
OI The hour (12-hour clock) using the locale’s alternative numeric

symbols
Om The month using the locale’s alternative numeric symbols
OM The minutes using the locale’s alternative numeric symbols
OS The seconds using the locale’s alternative numeric symbols
Ou The weekday as a number in the locale’s alternative

representation (Monday=1)
OU The week number of the year (Sunday as the first day of the

week) using the locale’s alternative numeric symbols
OV The week number of the year (Monday as the first day of

the week) as a decimal number (01 – 53) using the locale’s
alternative numeric symbols. If the week containing January 1
has four or more days in the new year, it is considered as week
1. Otherwise, it is considered as week 53 of the previous year,
and the next week is week 1.

Ow The weekday as a number (Sunday=0) using the locale’s
alternative numeric symbols

OW The week number of the year (Monday as the first day of the
week) using the locale’s alternative numeric symbols

Oy The year without the century using the locale’s alternative
numeric symbols

(continued on next page)

REF–546



strftime

Table REF–8 (Cont.) strftime Conversion Specifiers

Specifier Replaced by

p The locale’s equivalent of the AM/PM designations associated
with a 12-hour clock

r The time in AM/PM notation
R The time in 24-hour notation (%H:%M)
S The second as a decimal number (00 – 61)
t The tab character
T The time (%H:%M:%S)
u The weekday as a decimal number between 1 and 7 (Monday=1)
U The week number of the year (the first Sunday as the first day

of week 1) as a decimal number (00 – 53)
V The week number of the year (Monday as the first day of the

week) as a decimal number (00 – 53). If the week containing
January 1 has four or more days in the new year, it is
considered as week 1. Otherwise, it is considered as week
53 of the previous year, and the next week is week 1.

w The weekday as a decimal number (0 [Sunday] – 6)
W The week number of the year (the first Monday as the first day

of week 1) as a decimal number (00 – 53)
x The locale’s appropriate date representation
X The locale’s appropriate time representation
y The year without century as a decimal number (00 – 99)
Y The year with century as a decimal number
Z Time-zone name or abbreviation. If time-zone information is not

available, no character is output.
% Literal % character.

Return Values

x The number of characters placed into the array
pointed to by s, not including the terminating
null character.

0 Indicates an error occurred. The contents of the
array are indeterminate.

Example
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <locale.h>
#include <errno.h>

#define NUM_OF_DATES 7
#define BUF_SIZE 256

/* This program formats a number of different dates, once */
/* using the C locale and then using the fr_FR.ISO8859-1 */
/* locale. Date and time formatting is done using strftime(). */

REF–547



strftime

main()
{

int count,
i;

char buffer[BUF_SIZE];
struct tm *tm_ptr;
time_t time_list[NUM_OF_DATES] =
{500, 68200000, 694223999, 694224000,
704900000, 705000000, 705900000};

/* Display dates using the C locale */
printf("\nUsing the C locale:\n\n");

setlocale(LC_ALL, "C");

for (i = 0; i < NUM_OF_DATES; i++) {
/* Convert to a tm structure */
tm_ptr = localtime(&time_list[i]);

/* Format the date and time */
count = strftime(buffer, BUF_SIZE,

"Date: %A %d %B %Y%nTime: %T%n%n", tm_ptr);
if (count == 0) {

perror("strftime");
exit(EXIT_FAILURE);

}

/* Print the result */
printf(buffer);

}

/* Display dates using the fr_FR.ISO8859-1 locale */
printf("\nUsing the fr_FR.ISO8859-1 locale:\n\n");

setlocale(LC_ALL, "fr_FR.ISO8859-1");

for (i = 0; i < NUM_OF_DATES; i++) {
/* Convert to a tm structure */
tm_ptr = localtime(&time_list[i]);

/* Format the date and time */
count = strftime(buffer, BUF_SIZE,

"Date: %A %d %B %Y%nTime: %T%n%n", tm_ptr);
if (count == 0) {

perror("strftime");
exit(EXIT_FAILURE);

}

/* Print the result */
printf(buffer);

}
}

Running the example program produces the following result:

Using the C locale:

Date: Thursday 01 January 1970
Time: 00:08:20

Date: Tuesday 29 February 1972
Time: 08:26:40

Date: Tuesday 31 December 1991
Time: 23:59:59

Date: Wednesday 01 January 1992
Time: 00:00:00

Date: Sunday 03 May 1992
Time: 13:33:20

REF–548



strftime

Date: Monday 04 May 1992
Time: 17:20:00

Date: Friday 15 May 1992
Time: 03:20:00

Using the fr_FR.ISO8859-1 locale:

Date: jeudi 01 janvier 1970
Time: 00:08:20

Date: mardi 29 février 1972
Time: 08:26:40

Date: mardi 31 décembre 1991
Time: 23:59:59

Date: mercredi 01 janvier 1992
Time: 00:00:00

Date: dimanche 03 mai 1992
Time: 13:33:20

Date: lundi 04 mai 1992
Time: 17:20:00

Date: vendredi 15 mai 1992
Time: 03:20:00

REF–549



strlen

strlen

Returns the length of a string of ASCII characters. The returned length does not
include the terminating null character (\0).

Format

#include <string.h>

size_t strlen (const char *str);

Argument

str
A pointer to the character string.

Return Value

x The length of the string.

REF–550



strncasecmp

strncasecmp

Does a case-insensitive comparison between two 7-bit ASCII strings.

Format

#include <strings.h>

int strncasecmp (const char *s1, const char *s2, size_t n);

Arguments

s1
The first of two strings to compare.

s2
The second of two strings to compare.

n
The maximum number of bytes in a string to compare.

Description

The strncasecmp function is case-insensitive. The returned lexicographic
difference reflects a conversion to lowercase. The strncasecmp function is
similar to the strcasecmp function, but also compares size. If the size specified
by n is read before a NULL, the comparison stops.

The strcasecmp function works for 7-bit ASCII compares only. Do not use this
function for internationalized applications.

Return Value

n An integer value greater than, equal to, or less
than 0 (zero), depending on whether s1 is greater
than, equal to, or less than s2.

REF–551



strncat

strncat

Appends not more than maxchar characters from str_2 to the end of str_1.

Format

#include <string.h>

char *strncat (char *str_1, const char *str_2, size_t maxchar);

Function Variants

The strncat function has variants named _strncat32 and _strncat64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

str_1, str_2
Pointers to null-terminated character strings.

maxchar
The number of characters to concatenate from str_2, unless strncat first
encounters a null terminator in str_2. If maxchar is 0, no characters are copied
from str_2.

Description

A null character is always appended to the result of the strncat function. If
strncat reaches the specified maximum, it sets the next byte in str_1 to the null
character.

Return Value

x The address of the first argument, str_1, which
is assumed to be large enough to hold the
concatenated result.

REF–552



strncmp

strncmp

Compares not more than maxchar characters of two ASCII character strings and
returns a negative, 0, or positive integer, indicating that the ASCII values of the
individual characters in the first string are less than, equal to, or greater than
the values in the second string.

Format

#include <string.h>

int strncmp (const char *str_1, const char *str_2, size_t maxchar);

Arguments

str_1, str_2
Pointers to character strings.

maxchar
The maximum number of characters (beginning with the first) to search in both
str_1 and str_2. If maxchar is 0, no comparison is performed and 0 is returned
(the strings are considered equal).

Description

The strncmp function compares no more than maxchar characters from the string
pointed to by str_1 to the string pointed to by str_2. The strings are compared
until a null character is encountered, the strings differ, or maxchar is reached.
Characters that follow a difference or a null character are not compared.

Return Values

< 0 Indicates that str_1 is less than str_2.
= 0 Indicates that str_1 equals str_2.
> 0 Indicates that str_1 is greater than str_2.

Examples

1. #include <string.h>
#include <stdio.h>

main()
{

printf( "%d\n", strncmp("abcde", "abc", 3));
}

When linked and executed, this example returns 0, because the first 3
characters of the 2 strings are equal:

$ run tmp
0

REF–553



strncmp

2. #include <string.h>
#include <stdio.h>

main()
{

printf( "%d\n", strncmp("abcde", "abc", 4));
}

When linked and executed, this example returns a value greater than 0
because the first 4 characters of the 2 strings are not equal (The "d" in the
first string is not equal to the null character in the second):

$ run tmp
100

REF–554



strncpy

strncpy

Copies not more than maxchar characters from source into dest.

Format

#include <string.h>

char *strncpy (char *dest, const char *source, size_t maxchar);

Function Variants

The strncpy function has variants named _strncpy32 and _strncpy64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

dest
Pointer to the destination character string.

source
Pointer to the source character string.

maxchar
The maximum number of characters to copy from source to dest up to but not
including the null terminator of source.

Description

The strncpy function copies no more than maxchar characters from source to
dest, up to but not including the null terminator of source. If source contains less
than maxchar characters, dest is padded with null characters. If source contains
greater than or equal to maxchar characters, as many characters as possible are
copied to dest. Be aware that the dest argument might not be terminated by a
null character after a call to strncpy.

Return Value

x The address of dest.

REF–555



strnlen

strnlen

Returns the number of bytes in a string.

Format

#include <string.h>

size_t strnlen (const char *s, size_t n);

Arguments

s
Pointer to the string.

n
The maximum number of characters to examine.

Description

The strnlen function returns the number of bytes in the string pointed to by
s. The string length value does not include the terminating null character. The
strnlen function counts bytes until the first null byte or until n bytes have been
examined.

Return Value

n The length of the string.

REF–556



strpbrk

strpbrk

Searches a string for the occurrence of one of a specified set of characters.

Format

#include <string.h>

char *strpbrk (const char *str, const char *charset);

Function Variants

The strpbrk function has variants named _strpbrk32 and _strpbrk64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

str
A pointer to a character string. If this character string is a null string, 0 is
returned.

charset
A pointer to a character string containing the set of characters for which the
function will search.

Description

The strpbrk function scans the characters in the string, stops when it encounters
a character found in charset, and returns the address of the first character in the
string that appears in the character set.

Return Values

x The address of the first character in the string
that is in the set.

NULL Indicates that no character is in the set.

REF–557



strptime

strptime

Converts a character string into date and time values that are stored in a tm
structure. Conversion is controlled by a format string.

Format

#include <time.h>

char *strptime (const char *buf, const char *format, struct tm *timeptr);

Function Variants

The strptime function has variants named _strptime32 and _strptime64 for
use with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

buf
A pointer to the character string to convert.

format
A pointer to the string that defines how the input string is converted.

timeptr
A pointer to the local time structure. The tm structure is defined in the <time.h>
header file.

Description

The strptime function converts the string pointed to by buf into values that are
stored in the structure pointed to by timeptr. The string pointed to by format
defines how the conversion is performed.

The strptime function modifies only those fields in the tm structure that have
corresponding conversion specifications in the format. In particular, strptime
never sets the tm_isdst member of the tm structure.

The format string consists of zero or more directives. A directive is composed of
one of the following:

• One or more white-space characters (as defined by the isspace function).
This directive causes the function to read input up to the first character that
is not a white-space character.

• Any character other than the percent character (%) or a white-space
character. This directive causes the function to read the next character.
The character read must be the same as the character that comprises the
directive. If the character is different, the function fails.

• A conversion specification. A conversion specification defines how characters
in the input string are interpreted as values that are then stored in the
tm structure. A conversion specification consists of a percent (%) character
followed by a conversion specifier. Table REF–9 lists the valid conversion
specifications.

REF–558



strptime

The strptime function uses fields in the LC_TIME category of the program’s
current locale to provide a value.

Note

To be compliant with X/Open CAE Specification System Interfaces and
Headers Issue 5 (commonly known as XPG5), the strptime function
processes the "%y" directive differently than in previous versions of the
HP C RTL.

With Version 6.4 and higher of the C compiler, for a two-digit year within
the century if no century is specified, "%y" directive values range from:

• 69 to 99 refer to years in the twentieth century (1969 to 1999
inclusive)

• 00 to 68 refer to years in the twenty-first century (2000 to 2068
inclusive)

In previous (XPG4-compliant) versions of the HP C RTL, strptime
interpreted a two-digit year with no century specified as a year within the
twentieth century.

The XPG5-compliant strptime is now the default version in the HP C
RTL.

To obtain the old, XPG4-compliant strptime function behavior, specify
one of the following:

• Define the DECC$XPG4_STRPTIME logical name as follows:

$ DEFINE DECC$XPG4_STRPTIME ENABLE

or:

• Call the XPG4 strptime directly as the function decc$strptime_xpg4.

To return to using the XPG5 strptime version, DEASSIGN the
DECC$XPG4_STRPTIME logical name:

$ DEASSIGN DECC$XPG4_STRPTIME

Table REF–9 strptime Conversion Specifications

Specification Replaced by

%a The weekday name. This is either the abbreviated or the full
name.

%A Same as %a.
%b The month name. This is either the abbreviated or the full name.
%B Same as %b.
%c The date and time using the locale’s date format.
%Ec The locale’s alternative date and time representation.

(continued on next page)

REF–559



strptime

Table REF–9 (Cont.) strptime Conversion Specifications

Specification Replaced by

%C The century number (the year divided by 100 and truncated to
an integer) as a decimal number (00 – 99). Leading zeros are
permitted.

%EC The name of the base year (period) in the locale’s alternative
representation.

%d The day of the month as a decimal number (01 – 31). Leading
zeros are permitted.

%Od The day of the month using the locale’s alternative numeric
symbols.

%D Same as %m/%d/%y.
%e Same as %d.
%Oe The date of the month using the locale’s alternative numeric

symbols.
%h Same as %b.
%H The hour (24-hour clock) as a decimal number (00 – 23). Leading

zeros are permitted.
%OH The hour (24-hour clock) using the locale’s alternative numeric

symbols.
%I The hour (12-hour clock) as a decimal number (01 – 12). Leading

zeros are permitted.
%OI The hour (12-hour clock) using the locale’s alternative numeric

symbols.
%j The day of the year as a decimal number (001 – 366).
%m The month as a decimal number (01 – 12). Leading zeros are

permitted.
%Om The month using the locale’s alternative numeric symbols.
%M The minute as a decimal number (00 – 59). Leading zeros are

permitted.
%OM The minutes using the locale’s alternative numeric symbols.
%n Any white-space character.
%p The locale’s equivalent of the AM/PM designations associated with

a 12-hour clock.
%r The time in AM/PM notation (%I:%M:%S %p).
%R The time in 24-hour notation (%H:%M).
%S The second as a decimal number (00 – 61). Leading zeros are

permitted.
%OS The seconds using the locale’s alternative numeric symbols.
%t Any white-space character.
%T The time (%H:%M:%S).

(continued on next page)

REF–560



strptime

Table REF–9 (Cont.) strptime Conversion Specifications

Specification Replaced by

%U The week number of the year (the first Sunday as the first day
of week 1) as a decimal number (00 – 53). Leading zeros are
permitted.

%OU The week number of the year (Sunday as the first day of the week)
using the locale’s alternative numeric symbols.

%w The weekday as a decimal number (0 [Sunday] – 6). Leading zeros
are permitted.

%Ow The weekday as a number (Sunday=0) using the locale’s alternative
numeric symbols.

%W The week number of the year (the first Monday as the first day
of week 1) as a decimal number (00 – 53). Leading zeros are
permitted.

%OW The week number of the year (Monday as the first day of the week)
using the locale’s alternative numeric symbols.

%x The locale’s appropriate date representation.
%Ex The locale’s alternative date representation.
%EX The locale’s alternative time representation.
%X The locale’s appropriate time representation.
%y The year without century as a decimal number (00 – 99).
%Ey The offset from the base year (%EC) in the locale’s alternative

representation.
%Oy The year without the century using the locale’s alternative numeric

symbols.
%Y The year with century as a decimal number.
%EY The locale’s full alternative year representation.
%% Literal % character.

Return Values

x A pointer to the character following the last
character parsed.

NULL Indicates that an error occurred. The contents of
the tm structure are undefined.

Example
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <locale.h>
#include <errno.h>

#define NUM_OF_DATES 7
#define BUF_SIZE 256

REF–561



strptime

/* This program takes a number of date and time strings and */
/* converts them into tm structs using strptime(). These tm */
/* structs are then passed to strftime() which will reverse the */
/* process. The resulting strings are then compared with the */
/* originals and if a difference is found then an error is */
/* displayed. */

main()
{
int count,

i;
char buffer[BUF_SIZE];
char *ret_val;
struct tm time_struct;
char dates[NUM_OF_DATES][BUF_SIZE] =
{

"Thursday 01 January 1970 00:08:20",
"Tuesday 29 February 1972 08:26:40",
"Tuesday 31 December 1991 23:59:59",
"Wednesday 01 January 1992 00:00:00",
"Sunday 03 May 1992 13:33:20",
"Monday 04 May 1992 17:20:00",
"Friday 15 May 1992 03:20:00"};

for (i = 0; i < NUM_OF_DATES; i++) {
/* Convert to a tm structure */

ret_val = strptime(dates[i], "%A %d %B %Y %T", &time_struct);

/* Check the return value */
if (ret_val == (char *) NULL) {

perror("strptime");
exit(EXIT_FAILURE);

}

/* Convert the time structure back to a formatted string */
count = strftime(buffer, BUF_SIZE, "%A %d %B %Y %T",&time_struct);

/* Check the return value */
if (count == 0) {

perror("strftime");
exit(EXIT_FAILURE);

}

/* Check the result */
if (strcmp(buffer, dates[i]) != 0) {
printf("Error: Converted string differs from the original\n");
}
else {

printf("Successfully converted <%s>\n", dates[i]);
}

}
}

Running the example program produces the following result:

Successfully converted <Thursday 01 January 1970 00:08:20>
Successfully converted <Tuesday 29 February 1972 08:26:40>
Successfully converted <Tuesday 31 December 1991 23:59:59>
Successfully converted <Wednesday 01 January 1992 00:00:00>
Successfully converted <Sunday 03 May 1992 13:33:20>
Successfully converted <Monday 04 May 1992 17:20:00>
Successfully converted <Friday 15 May 1992 03:20:00>

REF–562



strrchr

strrchr

Returns the address of the last occurrence of a given character in a null-
terminated string. The terminating null character is considered to be part of
the string.

Format

#include <string.h>

char *strrchr (const char *str, int character);

Function Variants

The strrchr function has variants named _strrchr32 and _strrchr64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

str
A pointer to a null-terminated character string.

character
An object of type int.

Description

See strchr.

Return Values

x The address of the last occurrence of the specified
character.

NULL Indicates that the character does not occur in the
string.

REF–563



strsep

strsep

Separates strings.

Format

#include <string.h>

char *strsep (char **stringp, char *delim);

Function Variants

The strsep function has variants named _strsep32 and _strsep64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

stringp
A pointer to a pointer to a character string.

delim
A pointer to a string containing characters to be used as delimiters.

Description

The strsep function locates in stringp, the first occurrence of any character in
delim (or the terminating ’\0’ character) and replaces it with a ’\0’. The location
of the next character after the delimiter character (or NULL, if the end of the
string is reached) is stored in the stringp argument. The original value of the
stringp argument is returned.

You can detect an "empty" field; one caused by two adjacent delimiter characters,
by comparing the location referenced by the pointer returned in the stringp
argument to ’\0’.

The stringp argument is initially NULL, strsep returns NULL.

Return Values

x The address of the string pointed to by stringp.
NULL Indicates that stringp is NULL.

Example

The following example uses strsep to parse a string, containing token delimited
by white space, into an argument vector:

char **ap, **argv[10], *inputstring;

for (ap = argv; (*ap = strsep(&inputstring, " \t")) != NULL;)
if (**ap != ’\0’)

++ap;

REF–564



strspn

strspn

Returns the length of the prefix of a string that consists entirely of characters
from a set of characters.

Format

#include <string.h>

size_t strspn (const char *str, const char *charset);

Arguments

str
A pointer to a character string. If this string is a null string, 0 is returned.

charset
A pointer to a character string containing the characters for which the function
will search.

Description

The strspn function scans the characters in the string, stops when it encounters
a character not found in charset, and returns the length of the string’s initial
segment formed by characters found in charset.

Return Value

x The length of the segment.

REF–565



strstr

strstr

Locates the first occurrence in the string pointed to by s1 of the sequence of
characters in the string pointed to by s2.

Format

#include <string.h>

char *strstr (const char *s1, const char *s2);

Function Variants

The strstr function has variants named _strstr32 and _strstr64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

s1, s2
Pointers to character strings.

Return Values

Pointer A pointer to the located string.
NULL Indicates that the string was not found.

Example
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

main()
{

static char lookin[]="that this is a test was at the end";

putchar(’\n’);
printf("String: %s\n", &lookin[0] );
putchar(’\n’);
printf("Addr: %s\n", &lookin[0] );
printf("this: %s\n", strstr( &lookin[0] ,"this") );
printf("that: %s\n", strstr( &lookin[0] , "that" ) );
printf("NULL: %s\n", strstr( &lookin[0], "" ) );
printf("was: %s\n", strstr( &lookin[0], "was" ) );
printf("at: %s\n", strstr( &lookin[0], "at" ) );
printf("the end: %s\n", strstr( &lookin[0], "the end") );
putchar(’\n’);

exit(0);
}

This example produces the following results:

REF–566



strstr

$ RUN STRSTR_EXAMPLE
String: that this is a test was at the end
Addr: that this is a test was at the end
this: this is a test was at the end
that: that this is a test was at the end
NULL: that this is a test was at the end
was: was at the end
at: at this is a test was at the end
the end: the end
$

REF–567



strtod

strtod

Converts a given string to a double-precision number.

Format

#include <stdlib.h>

double strtod (const char *nptr, char **endptr);

Function Variants

The strtod function has variants named _strtod32 and _strtod64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

nptr
A pointer to the character string to be converted to a double-precision number.

endptr
The address of an object where the function can store the address of the first
unrecognized character that terminates the scan. If endptr is a NULL pointer,
the address of the first unrecognized character is not retained.

Description

The strtod function recognizes an optional sequence of white-space characters
(as defined by isspace), then an optional plus or minus sign, then a sequence
of digits optionally containing a radix character, then an optional letter (e or E)
followed by an optionally signed integer. The first unrecognized character ends
the conversion.

The string is interpreted by the same rules used to interpret floating constants.

The radix character is defined the program’s current locale (category
LC_NUMERIC).

This function returns the converted value. For strtod, overflows are accounted
for in the following manner:

• If the correct value causes an overflow, HUGE_VAL (with a plus or minus sign
according to the sign of the value) is returned and errno is set to ERANGE.

• If the correct value causes an underflow, 0 is returned and errno is set to
ERANGE.

If the string starts with an unrecognized character, then the conversion is not
performed, *endptr is set to nptr, a 0 value is returned, and errno is set to
EINVAL.)

REF–568



strtod

Return Values

x The converted string.
0 Indicates the conversion could not be performed.

errno is set to one of the following:

• EINVAL - No conversion could be performed.

• ERANGE - The value would cause an
underflow.

• ENOMEM - Not enough memory available
for internal conversion buffer.

�HUGE_VAL Overflow occurred; errno is set to ERANGE.

REF–569



strtok, strtok_r

strtok, strtok_r

Split strings into tokens.

Format

#include <string.h>

char *strtok (char *s1, const char *s2);

char *strtok_r (char *s, const char *sep, char **lasts);

Function Variants

The strtok function has variants named _strtok32 and _strtok64 for use with
32-bit and 64-bit pointer sizes, respectively. Likewise, the strtok_r function
has variants named _strtok_r32 and _strtok_r64. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

s1
On the first call, a pointer to a string containing zero or more text tokens. On all
subsequent calls for that string, a NULL pointer.

s2
A pointer to a separator string consisting of one or more characters. The
separator string may differ from call to call.

s
A null-terminated string that is a sequence of zero or more text tokens separated
by spans of one or more characters from the separator string sep.

sep
A null-terminated string of separator characters. This separator string can be
different from call to call.

lasts
A pointer that points to a user-provided pointer to stored information needed for
strtok_r to continue scanning the same string.

Description

The strtok function locates text tokens in a given string. The text tokens are
delimited by one or more characters from a separator string that you specify. The
function keeps track of its position in the string between calls and, as successive
calls are made, the function works through the string, identifying the text token
following the one identified by the previous call.

A token in s1 starts at the first character that is not a character in the separator
string s2 and ends either at the end of the string or at (but not including) a
separator character.

The first call to the strtok function returns a pointer to the first character in the
first token and writes a null character into s1 immediately following the returned
token. Each subsequent call (with the value of the first argument remaining
NULL) returns a pointer to a subsequent token in the string originally pointed

REF–570



strtok, strtok_r

to by s1. When no tokens remain in the string, the strtok function returns a
NULL pointer. (This can occur on the first call to strtok if the string is empty or
contains only separator characters.)

Since strtok inserts null characters into s1 to delimit tokens, s1 cannot be a
const object.

The strtok_r function is the reentrant version of strtok. The function strtok_r
considers the null-terminated string s as a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string sep. The
lasts argument points to a user-provided pointer to stored information needed for
strtok_r to continue scanning the same string.

In the first call to strtok_r, s points to a null-terminated string, sep points to a
null-terminated string of separator characters, and the value pointed to by lasts
is ignored. The strtok_r function returns a pointer to the first character of the
first token, writes a null character into s immediately following the returned
token, and updates the pointer to which lasts points.

In subsequent calls, s is a NULL pointer and lasts is unchanged from the previous
call so that subsequent calls move through the string s, returning successive
tokens until no tokens remain. The separator string sep can be different from call
to call. When no token remains in s, a NULL pointer is returned.

Return Values

x A pointer to the first character of the parsed
token in the string.

NULL Indicates that there are no tokens remaining in
the string.

Examples

1. #include <stdio.h>
#include <string.h>

main()
{

static char str[] = "...ab..cd,,ef.hi";

printf("|%s|\n", strtok(str, "."));
printf("|%s|\n", strtok(NULL, ","));
printf("|%s|\n", strtok(NULL, ",."));
printf("|%s|\n", strtok(NULL, ",."));

}

Running this example program produces the following results:

$ RUN STRTOK_EXAMPLE1
|ab|
|.cd|
|ef|
|hi|
$

REF–571



strtok, strtok_r

2. #include <stdio.h>
#include <string.h>

main()
{

char *ptr,
string[30];

/* The first character not in the string "-" is "A". The */
/* token ends at "C. */

strcpy(string, "ABC");
ptr = strtok(string, "-");
printf("|%s|\n", ptr);

/* Returns NULL because no characters not in separator */
/* string "-" were found (i.e. only separator characters */
/* were found) */

strcpy(string, "-");
ptr = strtok(string, "-");
if (ptr == NULL)

printf("ptr is NULL\n");

}

Running this example program produces the following results:

$ RUN STRTOK_EXAMPLE2
|abc|
ptr is NULL
$

REF–572



strtol

strtol

Converts strings of ASCII characters to the appropriate numeric values.

Format

#include <stdlib.h>

long int strtol (const char *nptr, char **endptr, int base);

Function Variants

The strtol function has variants named _strtol32 and _strtol64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

nptr
A pointer to the character string to be converted to a long.

endptr
The address of an object where the function can store a pointer to the first
unrecognized character encountered in the conversion process (that is, the
character that follows the last character in the string being converted). If endptr
is a NULL pointer, the address of the first unrecognized character is not retained.

base
The value, 2 through 36, to use as the base for the conversion.

Description

The strtol function recognizes strings in various formats, depending on the value
of the base. This function ignores any leading white-space characters (as defined
by isspace in <ctype.h>) in the given string. It recognizes an optional plus or
minus sign, then a sequence of digits or letters that may represent an integer
constant according to the value of the base. The first unrecognized character ends
the conversion.

Leading zeros after the optional sign are ignored, and 0x or 0X is ignored if the
base is 16.

If base is 0, the sequence of characters is interpreted by the same rules used to
interpret an integer constant: after the optional sign, a leading 0 indicates octal
conversion, a leading 0x or 0X indicates hexadecimal conversion, and any other
combination of leading characters indicates decimal conversion.

Truncation from long to int can take place after assignment or by an explicit
cast (arithmetic exceptions not withstanding). The function call atol (str) is
equivalent to strtol (str, (char**)NULL, 10).

REF–573



strtol

Return Values

x The converted value.
LONG_MAX or LONG_MIN Indicates that the converted value would cause

an overflow.
0 Indicates that the string starts with an

unrecognized character or that the value for
base is invalid. If the string starts with an
unrecognized character, *endptr is set to nptr.

REF–574



strtoq, strtoll (Alpha only)

strtoq, strtoll (Alpha only)

Convert strings of ASCII characters to the appropriate numeric values. strtoll
is a synonym for strtoq.

Format

#include <stdlib.h>

_ _int64 strtoq (const char *nptr, char **endptr, int base);

_ _int64 strtoll (const char *nptr, char **endptr, int base);

Function Variants

These functions have variants named _strtoq32, _strtoll32 and
_strtoq64, _strtoll64 for use with 32-bit and 64-bit pointer sizes, respectively.
See Section 1.10 for more information on using pointer-size-specific functions.

Arguments

nptr
A pointer to the character string to be converted to an _ _int64.

endptr
The address of an object where the function can store a pointer to the first
unrecognized character encountered in the conversion process (that is, the
character that follows the last character in the string being converted). If endptr
is a NULL pointer, the address of the first unrecognized character is not retained.

base
The value, 2 through 36, to use as the base for the conversion.

Description

The strtoq and strtoll functions recognize strings in various formats,
depending on the value of the base. Any leading white-space characters (as
defined by isspace in <ctype.h>) in the given string are ignored. The functions
recognize an optional plus or minus sign, then a sequence of digits or letters that
may represent an integer constant according to the value of the base. The first
unrecognized character ends the conversion.

Leading zeros after the optional sign are ignored, and 0x or 0X is ignored if the
base is 16.

If base is 0, the sequence of characters is interpreted by the same rules used to
interpret an integer constant: after the optional sign, a leading 0 indicates octal
conversion, a leading 0x or 0X indicates hexadecimal conversion, and any other
combination of leading characters indicates decimal conversion.

The function call atoq (str) is equivalent to strtoq (str, (char**)NULL, 10).

REF–575



strtoq, strtoll (Alpha only)

Return Values

x The converted value.
_ _INT64_MAX or
_ _INT64_MIN

Indicates that the converted value would cause
an overflow.

0 Indicates that the string starts with an
unrecognized character or that the value for
base is invalid. If the string starts with an
unrecognized character, *endptr is set to nptr.

REF–576



strtoul

strtoul

Converts the initial portion of the string pointed to by nptr to an unsigned long
integer.

Format

#include <stdlib.h>

unsigned long int strtoul (const char *nptr, char **endptr, int base);

Function Variants

The strtoul function has variants named _strtoul32 and _strtoul64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

nptr
A pointer to the character string to be converted to an unsigned long.

endptr
The address of an object where the function can store a pointer to a pointer to the
first unrecognized character encountered in the conversion process (that is, the
character that follows the last character in the string being converted). If endptr
is a NULL pointer, the address of the first unrecognized character is not retained.

base
The value, 2 through 36, to use as the base for the conversion. Leading zeros
after the optional sign are ignored, and 0x or 0X is ignored if the base is 16.

If the base is 0, the sequence of characters is interpreted by the same rules used
to interpret an integer constant: after the optional sign, a leading 0 indicates
octal conversion, a leading 0x or 0X indicates hexadecimal conversion, and any
other combination of leading characters indicates decimal conversion.

Return Values

x The converted value.
0 Indicates that the string starts with an

unrecognized character or that the value for
base is invalid. If the string starts with an
unrecognized character, *endptr is set to nptr.

ULONG_MAX Indicates that the converted value would cause
an overflow.

REF–577



strtouq, strtoull (Alpha only)

strtouq, strtoull (Alpha only)

Convert the initial portion of the string pointed to by nptr to an unsigned
_ _int64 integer. strtoull is a synonym for strtouq.

Format

#include <stdlib.h>

unsigned _ _int64 strtouq (const char *nptr, char **endptr, int base);

unsigned _ _int64 strtoull (const char *nptr, char **endptr, int base);

Function Variants

These functions have variants named _strtouq32, _strtoull32 and
_strtouq64, _strtoull64 for use with 32-bit and 64-bit pointer sizes, respectively.
See Section 1.10 for more information on using pointer-size-specific functions.

Arguments

nptr
A pointer to the character string to be converted to an unsigned _ _int64.

endptr
The address of an object where the function can store a pointer to a pointer to the
first unrecognized character encountered in the conversion process (that is, the
character that follows the last character in the string being converted). If endptr
is a NULL pointer, the address of the first unrecognized character is not retained.

base
The value, 2 through 36, to use as the base for the conversion. Leading zeros
after the optional sign are ignored, and 0x or 0X is ignored if the base is 16.

If the base is 0, the sequence of characters is interpreted by the same rules used
to interpret an integer constant: after the optional sign, a leading 0 indicates
octal conversion, a leading 0x or 0X indicates hexadecimal conversion, and any
other combination of leading characters indicates decimal conversion.

Return Values

x The converted value.
0 Indicates that the string starts with an

unrecognized character or that the value for
base is invalid. If the string starts with an
unrecognized character, *endptr is set to nptr.

_ _UINT64_MAX Indicates that the converted value would cause
an overflow.

REF–578



strxfrm

strxfrm

Changes a string such that the changed string can be passed to the strcmp
function, and produce the same result as passing the unchanged string to the
strcoll function.

Format

#include <string.h>

size_t strxfrm (char *s1, const char *s2, size_t maxchar);

Arguments

s1, s2
Pointers to character strings.

maxchar
The maximum number of bytes (including the null terminator) to be stored in s1.

Description

The strxfrm function transforms the string pointed to by s2, and stores the
resulting string in the array pointed to by s1. No more than maxchar bytes,
including the null terminator, are placed into the array pointed to by s1.

If the value of maxchar is less than the required size to store the transformed
string (including the terminating null), the contents of the array pointed to by s1
is indeterminate. In such a case, the function returns the size of the transformed
string.

If maxchar is 0, then s1 is allowed to be a NULL pointer, and the function returns
the required size of the s1 array before making the transformation.

The string comparison functions, strcoll and strcmp, can produce different
results given the same two strings to compare. The reason for this is that strcmp
does a straightforward comparison of the code point values of the characters in
the strings, whereas strcoll uses the locale information to do the comparison.
Depending on the locale, the strcoll comparison can be a multipass operation,
which is slower than strcmp.

The purpose of the strxfrm function is to transform strings in such a way that if
you pass two transformed strings to the strcmp function, the result is the same
as passing the two original strings to the strcoll function. The strxfrm function
is useful in applications that need to do a large number of comparisons on the
same strings using strcoll. In this case, it might be more efficient (depending on
the locale) to transform the strings once using strxfrm, and then do comparisons
using strcmp.

REF–579



strxfrm

Return Value

x Length of the resulting string pointed to by s1,
not including the terminating null character.
No return value is reserved for error indication.
However, the function can set errno to EINVAL
– The string pointed to by s2 contains characters
outside the domain of the collating sequence.

Example
/* This program verifies that two transformed strings when */
/* passed through strxfrm and then compared, provide the same */
/* result as if passed through strcoll without any */
/* transformation.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <locale.h>

#define BUFF_SIZE 256

main()
{

char string1[BUFF_SIZE];
char string2[BUFF_SIZE];
int errno;
int coll_result;
int strcmp_result;
size_t strxfrm_result1;
size_t strxfrm_result2;

/* setlocale to French locale */

if (setlocale(LC_ALL, "fr_FR.ISO8859-1") == NULL) {
perror("setlocale");
exit(EXIT_FAILURE);

}

/* collate string 1 and string 2 and store the result */

errno = 0;
coll_result = strcoll("<a‘>bcd", "abcz");
if (errno) {

perror("strcoll");
exit(EXIT_FAILURE);

}

else {
/* Transform the strings (using strxfrm) into string1 */
/* and string2 */

strxfrm_result1 = strxfrm(string1, "<a‘>bcd", BUFF_SIZE);

if (strxfrm_result1 == ((size_t) - 1)) {
perror("strxfrm");
exit(EXIT_FAILURE);

}

else if (strxfrm_result1 > BUFF_SIZE) {
perror("\n** String is too long **\n");
exit(EXIT_FAILURE);

}

REF–580



strxfrm

else {
strxfrm_result2 = strxfrm(string2, "abcz", BUFF_SIZE);
if (strxfrm_result2 == ((size_t) - 1)) {

perror("strxfrm");
exit(EXIT_FAILURE);

}

else if (strxfrm_result2 > BUFF_SIZE) {
perror("\n** String is too long **\n");
exit(EXIT_FAILURE);

}

/* Compare the two transformed strings and verify */
/* that the result is the same as the result from */
/* strcoll on the original strings */
else {

strcmp_result = strcmp(string1, string2);
if (strcmp_result == 0 && (coll_result == 0)) {

printf("\nReturn value from strcoll() and "
"return value from strcmp() are both zero.");

printf("\nThe program was successful\n\n");
}

else if ((strcmp_result < 0) && (coll_result < 0)) {
printf("\nReturn value from strcoll() and "

"return value from strcmp() are less than zero.");
printf("\nThe program successful\n\n");

}

else if ((strcmp_result > 0) && (coll_result > 0)) {
printf("\nReturn value from strcoll() and return "
" value from strcmp() are greater than zero.");
printf("\nThe program was successful\n\n");

}

else {
printf("** Error **\n");
printf("\nReturn values are not of the same type");
}

}
}

}
}

Running the example program produces the following result:

Return value from strcoll() and return value
from strcmp() are less than zero.

The program was successful

REF–581



subwin

subwin

Creates a new subwindow with numlines lines and numcols columns starting at
the coordinates (begin_y,begin_x) on the terminal screen.

Format

#include <curses.h>

WINDOW *subwin (WINDOW *win, int numlines, int numcols, int begin_y, int begin_x);

Arguments

win
A pointer to the parent window.

numlines
The number of lines in the subwindow. If numlines is 0, then the function sets
that dimension to LINES � begin_y. To get a subwindow of dimensions LINES
by COLS, use the following format:

subwin (win, 0, 0, 0, 0)

numcols
The number of columns in the subwindow. If numcols is 0, then the function sets
that dimension to COLS � begin_x. To get a subwindow of dimensions LINES by
COLS, use the following format:

subwin (win, 0, 0, 0, 0)

begin_y
A window coordinate at which the subwindow is to be created.

begin_x
A window coordinate at which the subwindow is to be created.

Description

When creating the subwindow, begin_y and begin_x are relative to the entire
terminal screen. If either numlines or numcols is 0, then the subwin function sets
that dimension to (LINES � begin_y) or (COLS � begin_x), respectively.

The window pointed to by win must be large enough to contain the entire area of
the subwindow. Any changes made to either window within the coordinates of the
subwindow appear on both windows.

Return Values

window pointer A pointer to an instance of the structure window
corresponding to the newly created subwindow.

ERR Indicates an error.

REF–582



swab

swab

Swaps bytes.

Format

#include <unistd.h>

void swab (const void *src, void *dest, ssize_t nbytes);

Arguments

src
A pointer to the location of the string to copy.

dest
A pointer to where you want the results copied.

nbytes
The number of bytes to copy. Make this argument an even value. When it is an
odd value, the swab function uses nbytes �1 instead.

Description

The swab function copies the number of bytes specified by nbytes from the location
pointed to by src to the array pointed to by dest. The function then exchanges
adjacent bytes. If a copy takes place between objects that overlap, the result is
undefined.

REF–583



swprintf

swprintf

Writes output to an array of wide characters under control of the wide-character
format string.

Format

#include <wchar.h>

int swprintf (wchar_t *s, size_t n, const wchar_t *format, . . . );

Arguments

s
A pointer to the resulting wide-character sequence.

n
The maximum number of wide characters that can be written to an array pointed
to by s, including a terminating null wide character.

format
A pointer to a wide-character string containing the format specifications.
For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, the output sources can be omitted.
Otherwise, the function calls must have exactly as many output sources as there
are conversion specifications, and the conversion specifications must match the
types of the output sources.

Conversion specifications are matched to output sources in left-to-right order.
Excess output pointers, if any, are ignored.

Description

The swprintf function is equivalent to the fwprintf function, except that the
first argument specifies an array of wide characters instead of a stream.

No more than n wide characters are written, including a terminating null wide
character, which is always added (unless n is 0).

See also fwprintf.

Return Values

x The number of wide characters written, not
counting the terminating null wide character.

Negative value Indicates an error. Either n or more wide
characters were requested to be written, or a
conversion error occurred, in which case errno is
set to EILSEQ.

REF–584



swscanf

swscanf

Reads input from a wide-character string under control of the wide-character
format string.

Format

#include <wchar.h>

int swscanf (const wchar_t *s, const wchar_t *format, . . . );

Arguments

s
A pointer to a wide-character string from which the input is to be obtained.

format
A pointer to a wide-character string containing the format specifications.
For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

. . .
Optional expressions whose results correspond to conversion specifications given
in the format specification.

If no conversion specifications are given, you can omit the input pointers.
Otherwise, the function calls must have exactly as many input pointers as there
are conversion specifications, and the conversion specifications must match the
types of the input pointers.

Conversion specifications are matched to input sources in left-to-right order.
Excess input pointers, if any, are ignored.

Description

The swscanf function is equivalent to the fwscanf function, except that the first
argument specifies a wide-character string rather than a stream. Reaching the
end of the wide-character string is the same as encountering EOF for the fwscanf
function.

See also fwscanf.

Return Values

x The number of input items assigned, sometimes
fewer than provided for, or even 0 in the event of
an early matching failure.

EOF Indicates and error. An input failure occurred
before any conversion.

REF–585



sysconf

sysconf

Gets configurable system variables.

Format

#include <unistd.h>

long int sysconf (int name);

Argument

name
Specifies the system variable to be queried.

Description

The sysconf function provides a method for determining the current value of a
configurable system limit or whether optional features are supported.

You supply a symbolic constant in the name argument, and sysconf returns a
value for the corresponding system variable:

• The symbolic constants defined in the <unistd.h> header file.

• The system variables are defined in the <limits.h> and <unistd.h> header
files.

Table REF–10 lists the system variables returned by the sysconf function, and
the symbolic constants that you can supply as the name value.

Table REF–10 sysconf Argument and Return Values

System Variable Returned
Symbolic Constant for
name Meaning

ISO POSIX-1

ARG_MAX _SC_ARG_MAX The maximum length, in bytes, of the
arguments for one of the exec functions,
including environment data.

CHILD_MAX _SC_CHILD_MAX The maximum number of simultaneous
processes for each real user ID.

CLK_TCK _SC_CLK_TCK The number of clock ticks per second.
The value of CLK_TCK can be variable.
Do not assume that CLK_TCK is a
compile-time constant.

NGROUPS_MAX _SC_NGROUPS_MAX The maximum number of simultaneous
supplementary group IDs for each
process.

OPEN_MAX _SC_OPEN_MAX The maximum number of files that one
process can have open at one time.

(continued on next page)

REF–586



sysconf

Table REF–10 (Cont.) sysconf Argument and Return Values

System Variable Returned
Symbolic Constant for
name Meaning

ISO POSIX-1

STREAM_MAX _SC_STREAM_MAX The number of streams that one process
can have open at one time.

TZNAME_MAX _SC_TZNAME_MAX The maximum number of bytes
supported for the name of a time zone
(not the length of the TZ environmental
variable).

_POSIX_JOB_CONTROL _SC_JOB_CONTROL This variable has a value of 1 if the
system supports job control; otherwise,
�1 is returned.

_POSIX_SAVED_IDS _SC_SAVED_IDS This variable has a value of 1 if each
process has a saved set user ID and a
saved set group ID; otherwise, �1 is
returned.

_POSIX_VERSION _SC_VERSION The date of approval of the most current
version of the POSIX-1 standard that the
system supports. The date is a 6-digit
number, with the first 4 digits signifying
the year and the last 2 digits the month.
If_POSIX_VERSION is not defined, �1 is
returned.
Different versions of the POSIX-1
standard are periodically approved by
the IEEE Standards Board, and the
date of approval is used to distinguish
between different versions.

ISO POSIX-2

BC_BASE_MAX _SC_BC_BASE_MAX The maximum value allowed for the
obase variable with the bc command.

BC_DIM_MAX _SC_BC_DIM_MAX The maximum number of elements
permitted in an array by the bc
command.

BC_SCALE_MAX _SC_BC_SCALE_
MAX

The maximum value allowed for the
scale variable with the bc command.

BC_STRING_MAX _SC_BC_STRING_
MAX

The maximum length of string constants
accepted by the bc command.

COLL_WEIGHTS_MAX _SC_COLL_
WEIGHTS_MAX

The maximum number of weights
that can be assigned to an entry in
the LC_COLLATE locale-dependent
information in a locale definition file.

(continued on next page)

REF–587



sysconf

Table REF–10 (Cont.) sysconf Argument and Return Values

System Variable Returned
Symbolic Constant for
name Meaning

ISO POSIX-2

EXPR_NEST_MAX _SC_EXPR_NEST_
MAX

The maximum number of expressions
that you can nest within parentheses by
the expr command.

LINE_MAX _SC_LINE_MAX The maximum length, in bytes, of a
command input line (either standard
input or another file) when the utility is
described as processing text files. The
length includes room for the trailing
new-line character.

RE_DUP_MAX _SC_RE_DUP_MAX The maximum number of repeated
occurrences of a regular expression
permitted when using the interval
notation arguments, such as the m
and n arguments with the ed command.

_POSIX2_CHAR_TERM _SC_2_CHAR_TERM This variable has a value of 1 if the
system supports at least one terminal
type; otherwise, �1 is returned.

_POSIX2_C_BIND _SC_2_C_BIND This variable has a value of 1 if the
system supports the C language binding
option; otherwise, �1 is returned.

_POSIX2_C_DEV _SC_2_C_DEV This variable has a value of 1 if the
system supports the optional C Language
Development Utilities from the ISO
POSIX-2 standard; otherwise, �1 is
returned.

_POSIX2_C_VERSION _SC_2_C_VERSION Integer value indicating the version of
the ISO POSIX-2 standard (C language
binding). It changes with each new
version of the ISO POSIX-2 standard.

_POSIX2_VERSION _SC_2_VERSION Integer value indicating the version of
the ISO POSIX-2 standard (Commands).
It changes with each new version of the
ISO POSIX-2 standard.

_POSIX2_FORT_DEV _SC_2_FORT_DEV The variable has a value of 1 if
the system supports the Fortran
Development Utilities Option from the
ISO POSIX-2 standard; otherwise, �1 is
returned.

_POSIX2_FORT_RUN _SC_2_FORT_RUN The variable has a value of 1 if the
system supports the Fortran Runtime
Utilities Option from the ISO POSIX-2
standard; otherwise, �1 is returned.

(continued on next page)

REF–588



sysconf

Table REF–10 (Cont.) sysconf Argument and Return Values

System Variable Returned
Symbolic Constant for
name Meaning

ISO POSIX-2

_POSIX2_LOCALEDEF _SC_2_LOCALEDEF The variable has a value of 1 if the
system supports the creation of new
locales with the localedef command;
otherwise, �1 is returned.

_POSIX2_SW_DEV _SC_2_SW_DEV The variable has a value of 1 if
the system supports the Software
Development Utilities Option from the
ISO POSIX-2 standard; otherwise, �1 is
returned.

_POSIX2_UPE _SC_2_UPE The variable has a value of 1 if the
system supports the User Portability
Utilities Option; otherwise, �1 is
returned.

POSIX 1003.1c-1995

_POSIX_THREADS _SC_THREADS This variable has a value of 1 if the
system supports POSIX threads;
otherwise, �1 is returned.

_POSIX_THREAD_ATTR_
STACKSIZE

_SC_THREAD_
ATTR_STACKSIZE

This variable has a value of 1 if the
system supports the POSIX threads
stack size attribute; otherwise, �1 is
returned.

_POSIX_THREAD_
PRIORITY_SCHEDULING

_SC_THREAD_
PRIORITY_
SCHEDULING

The 1003.1c implementation supports
the realtime scheduling functions.

_POSIX_THREAD_SAFE_
FUNCTIONS

_SC_THREAD_
SAFE_FUNCTIONS

TRUE if the implementation supports
the thread-safe ANSI C functions in
POSIX 1003.1c.

PTHREAD_
DESTRUCTOR_
ITERATIONS

_SC_THREAD_
DESTRUCTOR_
ITERATIONS

When a thread terminates, DECthreads
iterates through all non-NULL thread-
specific data values in the thread, and
calls a registered destructor routine
(if any) for each. It is possible for a
destructor routine to create new values
for one or more thread-specific data keys.
In that case, DECthreads goes through
the entire process again.
_SC_THREAD_DESTRUCTOR_
ITERATIONS is the maximum number
of times the implementation loops before
it terminates the thread even if there are
still non-NULL values.

(continued on next page)

REF–589



sysconf

Table REF–10 (Cont.) sysconf Argument and Return Values

System Variable Returned
Symbolic Constant for
name Meaning

POSIX 1003.1c-1995

PTHREAD_KEYS_MAX _SC_THREAD_
KEYS_MAX

The maximum number of thread-specific
data keys that an application can create.

PTHREAD_STACK_MIN _SC_THREAD_
STACK_MIN

The minimum allowed size of a stack for
a new thread. Any lower value specified
for the "stacksize" thread attribute is
rounded up.

UINT_MAX _SC_THREAD_
THREADS_MAX

The maximum number of threads an
application is allowed to create. Since
DECthreads does not enforce any fixed
limit, this value is �1.

X/Open

_XOPEN_VERSION _SC_XOPEN_
VERSION

An integer indicating the most current
version of the X/Open standard that the
system supports.

PASS_MAX _SC_PASS_MAX Maximum number of significant bytes in
a password (not including terminating
null).

XOPEN_CRYPT _SC_XOPEN_CRYPT This variable has a value of 1 if the
system supports the X/Open Encryption
Feature Group; otherwise, �1 is
returned.

XOPEN_ENH_I18N _SC_XOPEN_ENH_
I18N

This variable has a value of 1 if the
system supports the X/Open enhanced
Internationalization Feature Group;
otherwise, �1 is returned.

XOPEN_SHM _SC_XOPEN_SHM This variable has a value of 1 if the
system supports the X/Open Shared
Memory Feature Group; otherwise, �1 is
returned.

X/Open Extended

ATEXIT_MAX _SC_ATEXIT_MAX The maximum number of functions that
you can register with atexit per process.

PAGESIZE _SC_PAGESIZE Size, in bytes, of a page.
PAGE_SIZE _SC_PAGE_SIZE Same as PAGESIZE. If either PAGESIZE

or PAGE_SIZE is defined, the other is
defined with the same value.

(continued on next page)

REF–590



sysconf

Table REF–10 (Cont.) sysconf Argument and Return Values

System Variable Returned
Symbolic Constant for
name Meaning

X/Open Extended

IOV_MAX _SC_IOV_MAX Maximum number of iovec structures
that one process has available for use
with readv or writev.

XOPEN_UNIX _SC_XOPEN_UNIX This variable has a value of 1 if the
system supports the X/Open CAE
Specification, August 1994, System
Interfaces and Headers, Issue 4,
Version 2, (ISBN: 1-85912-037-7, C435);
otherwise, �1 is returned.

Return Values

x The current variable value on the system. The
value does not change during the lifetime of the
calling process.

�1 Indicates an error.
If the value of the name argument is invalid,
errno is set to indicate the error.
If the value of the name argument is undefined,
errno is unchanged.

REF–591



system

system

Passes a given string to the host environment to be executed by a command
processor. This function is nonreentrant.

Format

#include <stdlib.h>

int system (const char *string);

Argument

string
A pointer to the string to be executed. If string is NULL, a nonzero value is
returned. The string is a DCL command, not the name of an image. To execute
an image, use one of the exec routines.

Description

The system function spawns a subprocess and executes the command specified
by string in that subprocess. The system function waits for the subprocess
to complete before returning the subprocess status as the return value of the
function.

The subprocess is spawned within the system call by a call to vfork. Because
of this, a call to system should not be made after a call to vfork and before the
corresponding call to an exec function.

For OpenVMS Version 7.0 and higher systems, if you include <stdlib.h> and
compile with the _POSIX_EXIT feature-test macro set, then the system function
returns the status as if it called waitpid to wait for the child. Therefore, use the
WIFEXITED and WEXITSTATUS macros to retrieve the exit status in the range
of 0 to 255.

You set the _POSIX_EXIT feature-test macro by using /DEFINE=_POSIX_EXIT
or #define _POSIX_EXIT at the top of your file, before any file inclusions.

Return Value

nonzero value If string is NULL, a value of 1 is returned,
indicating that the system function is supported.
If string is not NULL, the value is the subprocess
OpenVMS return status.

Example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h> /* write, close */
#include <fcntl.h> /* Creat */

main()
{

int status,
fd;

/* Creat a file we are sure is there */

REF–592



system

fd = creat("system.test", 0);
write(fd, "this is an example of using system", 34);
close(fd);

if (system(NULL)) {
status = system("DIR/NOHEAD/NOTRAIL/SIZE SYSTEM.TEST");
printf("system status = %d\n", status);

}
else

printf("system() not supported.\n");
}

Running this example program produces the following result:

DISK3$:[JONES.CRTL.2059.SRC]SYSTEM.TEST;1
1

system status = 1

REF–593



tan

tan

Returns a double value that is the tangent of its radian argument.

Format

#include <math.h>

double tan (double x);

float tanf (float x); (Alpha only)

long double tanl (long double x); (Alpha only)

double tand (double x); (Alpha only)

float tandf (float x); (Alpha only)

long double tandl (long double x); (Alpha only)

Argument

x
A radian expressed as a real number.

Description

The tan functions compute the tangent of x, measured in radians.

The tand functions compute the tangent of x, measured in degrees.

Return Values

x The tangent of the argument.
HUGE_VAL x is a singular point ( . . . �����, ����, �/2 . . . ).
NaN x is NaN; errno is set to EDOM.
0 x is �Infinity; errno is set to EDOM.
�HUGE_VAL Overflow occurred; errno is set to ERANGE.
0 Underflow occurred; errno is set to ERANGE.

REF–594



tanh

tanh

Returns the hyperbolic tangent of its argument.

Format

#include <math.h>

double tanh (double x);

float tanhf (float x); (Alpha only)

long double tanhl (long double x); (Alpha only)

Argument

x
A real number.

Description

The tanh functions return the hyperbolic tangent their argument, calculated as
(e**x � e**(�x))/(e**x + e**(�x)).

Return Values

n The hyperbolic tangent of the argument.
HUGE_VAL The argument is too large; errno is set to

ERANGE.
NaN x is NaN; errno is set to EDOM.
0 Underflow occurred; errno is set to ERANGE.

REF–595



telldir

telldir

Returns the current location associated with a specified directory stream.
Performs operations on directories.

Format

#include <dirent.h>

long int telldir (DIR *dir_pointer);

Argument

dir_pointer
A pointer to the DIR structure of an open directory.

Description

The telldir function returns the current location associated with the specified
directory stream.

Return Values

x The current location.
�1 Indicates an error and is further specified in the

global errno.

REF–596



tempnam

tempnam

Constructs the name for a temporary file.

Format

#include <stdio.h>

char *tempnam (const char *directory, const char *prefix, . . . ;)

Arguments

directory
A pointer to the pathname of the directory where you want to create a file.

prefix
A pointer to an initial character sequence of the file name. The prefix argument
can be null, or it can point to a string of up to five characters used as the first
characters of the temporary file name.

. . .
An optional argument that can be either 1 or 0. If you specify 1, tempnam returns
the file specification in OpenVMS format. If you specify 0, tempnam returns the
file specification in UNIX style format. For more information about UNIX style
directory specifications, see Section 1.4.3.

Description

The tempnam function generates file names for temporary files. It allows you to
control the choice of a directory.

If the directory argument is null or points to a string that is not a pathname for
an appropriate directory, the pathname defined as P_tmpdir in the <stdio.h>
header file is used.

You can bypass the selection of a pathname by providing the TMPDIR environment
variable in the user environment. The value of the TMPDIR variable is a pathname
for the desired temporary file directory.

Use the prefix argument to specify a prefix of up to five characters for the
temporary file name.

The tempnam function returns a pointer to the generated pathname, suitable for
use in a subsequent call to the free function.

See also free.

Note

In contrast to tmpnam, tempnam does not have to generate a different file
name on each call. tempnam generates a new file name only if the file with
the specified name exists. If you need a unique file name on each call, use
tmpnam instead of tempnam.

REF–597



tempnam

Return Values

x A pointer to the generated pathname, suitable
for use in a subsequent call to the free function.

NULL An error occurred; errno is set to indicate the
error.

REF–598



time

time

Returns the time (expressed as Universal Coordinated Time) elapsed since
00:00:00, January 1, 1970, in seconds.

Format

#include <time.h>

time_t time (time_t *time_location);

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the time function that is
equivalent to the behavior before OpenVMS Version 7.0.

Argument

time_location
Either NULL or a pointer to the place where the returned time is also stored.
The time_t type is defined in the <time.h> header file as follows:

typedef unsigned long int time_t;

Return Values

x The time elapsed past the Epoch.
(time_t)(�1) Indicates an error. If the value of

SYS$TIMEZONE_DIFFERENTIAL logical is
wrong, the function will fail with errno set to
EINVAL.

REF–599



times

times

Passes back the accumulated times of the current process and its terminated
child processes.

Format

#include <times.h>

clock_t times (struct tms *buffer); (OpenVMS V7.0 and higher)

void times (tbuffer_t *buffer); (pre OpenVMS V7.0)

Argument

buffer
A pointer to the terminal buffer.

Description

For both process and children times, the structure breaks down the time by user
and system time. Since the OpenVMS system does not differentiate between
system and user time, all system times are returned as 0. Accumulated CPU
times are returned in 10-millisecond units.

Only the accumulated times for child processes running a C main program or a
program that calls VAXC$CRTL_INIT or DECC$CRTL_INIT are included.

On OpenVMS Version 7.0 and higher systems, the times function returns the
elapsed real time in clock ticks since an arbitrary reference time in the past (for
example, system startup time). This reference time does not change from one
times function call to another. The return value can overflow the possible range
of type clock_t values. When times fails, it returns a value of �1. The HP C
RTL uses system-boot time as its reference time.

Return Values

x The elapsed real time in clock ticks since system-
boot time.

(clock_t)(�1) Indicates an error.

REF–600



tmpfile

tmpfile

Creates a temporary file that is opened for update.

Format

#include <stdio.h>

FILE *tmpfile (void);

Description

The file exists only for the duration of the process, or until the file is closed and is
preserved across calls to vfork.

Return Values

x The address of a file pointer (defined in the
<stdio.h> header file).

NULL Indicates an error.

REF–601



tmpnam

tmpnam

Generates file names that can be safely used for a temporary file.

Format

#include <stdio.h>

char *tmpnam (char *name);

Function Variants

The tmpnam function has variants named _tmpnam32 and _tmpnam64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Argument

name
A character string containing a name to use in place of file-name arguments in
functions or macros. Successive calls to tmpnam with a null argument cause the
function to overwrite the current name.

Return Value

x If the name argument is the NULL pointer
value NULL, tmpnam returns the address of an
internal storage area. If name is not NULL, then
it is considered the address of an area of length
L_tmpnam (defined in the <stdio.h> header file).
In this case, tmpnam returns the name argument
as the result.

REF–602



toascii

toascii

Converts its argument, an 8-bit ASCII character, to a 7-bit ASCII character.

Format

#include <ctype.h>

int toascii (char character);

Argument

character
An object of type char.

Return Value

x A 7-bit ASCII character.

REF–603



tolower

tolower

Converts a character to lowercase.

Format

#include <ctype.h>

int tolower (int character);

Argument

character
An object of type int representable as an unsigned char or the value of EOF. For
any other value, the behavior is undefined.

Description

If the argument represents an uppercase letter, and there is a corresponding
lowercase letter, as defined by character type information in the program locale
category LC_CTYPE, the corresponding lowercase letter is returned.

If the argument is not an uppercase character, it is returned unchanged.

Return Value

x The lowercase letter corresponding to the
argument. Or, the unchanged argument, if it
is not an uppercase character.

REF–604



_tolower

_tolower

Converts an uppercase character to lowercase.

Format

#include <ctype.h>

int _tolower (int character);

Argument

character
This argument must be an uppercase letter.

Description

The _tolower macro is equivalent to the tolower function except that its
argument must be an uppercase letter (not lowercase, not EOF).

The _tolower macro should not be used with arguments that contain side-effect
operations. For instance, the following example will not return the expected
result:

d = _tolower (c++);

Return Value

x The lowercase letter corresponding to the
argument.

REF–605



touchwin

touchwin

Places the most recently edited version of the specified window on the terminal
screen.

Format

#include <curses.h>

int touchwin (WINDOW *win);

Argument

win
A pointer to the window.

Description

The touchwin function is normally used only to refresh overlapping windows.

Return Values

OK Indicates success.
ERR Indicates an error.

REF–606



toupper

toupper

Converts a character to uppercase.

Format

#include <ctype.h>

int toupper (int character);

Argument

character
An object of type int representable as an unsigned char or the value of EOF. For
any other value, the behavior is undefined.

Description

If the argument represents a lowercase letter, and there is a corresponding
uppercase letter, as defined by character type information in the program locale
category LC_CTYPE, the corresponding uppercase letter is returned.

If the argument is not a lowercase character, it is returned unchanged.

Return Value

x The uppercase letter corresponding to the
argument. Or, the unchanged argument, if
the argument is not a lowercase character.

REF–607



_toupper

_toupper

Converts a lowercase character to uppercase.

Format

#include <ctype.h>

int _toupper (int character);

Argument

character
This argument must be an uppercase letter.

Description

The _toupper macro is equivalent to the toupper function except that its
argument must be a lowercase letter (not uppercase, not EOF).

The _toupper macro should not be used with arguments that contain side-effect
operations. For instance, the following example will not return the expected
result:

d = _toupper (c++);

Return Value

x The uppercase letter corresponding to the
argument.

REF–608



towctrans

towctrans

Maps one wide character to another according to a specified mapping descriptor.

Format

#include <wctype.h>

wint_t towctrans (wint_t wc, wctrans_t desc);

Arguments

wc
The wide character that you want to map.

desc
Description of the mapping obtained through a call to the wctrans function.

Description

The towctrans function maps the wide character specified in wc, using the
mapping described by desc.

The current setting of the LC_CTYPE category must be the same as during the call
to the wctrans function that returned the value of desc.

Return Value

x The mapped value of the wc wide character, if
this character exists in the mapping described by
desc. Otherwise, the value of wc is returned.

REF–609



towlower

towlower

Converts the argument, a wide-character code, to lowercase. If the argument is
not an uppercase character, it is returned unchanged.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int towlower (wint_t wc);

Argument

wc
An object of type wint_t representable as a valid wide character in the current
locale, or the value of WEOF. For any other value, the behavior is undefined.

Description

If the argument is an uppercase wide character, the corresponding lowercase wide
character (as defined in the LC_CTYPE category of the locale) is returned, if it
exists. If it does not exist, the function returns the input argument unchanged.

REF–610



towupper

towupper

Converts the argument, a wide character, to uppercase. If the argument is not a
lowercase character, it is returned unchanged.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

int towupper (wint_t wc);

Argument

wc
An object of type wint_t representable as a valid wide character in the current
locale, or the value of WEOF. For any other value, the behavior is undefined.

Description

If the argument is a lowercase wide character, the corresponding uppercase wide
character (as defined in the LC_CTYPE category of the locale) is returned, if it
exists. If it does not exist, the function returns the input argument unchanged.

REF–611



trunc (Alpha only)

trunc (Alpha only)

Truncates the argument to an integral value.

Format

#include <math.h>

double trunc (double x);

float truncf (float x,);

long double truncl (long double x);

Argument

x
A floating-point number.

Return Value

n The truncated, integral value of the argument.

REF–612



truncate

truncate

Changes file length to a specified length, in bytes.

Format

#include <unistd.h>

int truncate (const char *path, off_t length);

Arguments

path
The name of a file that is to be truncated. This argument must point to a
pathname that names a regular file for which the calling process has write
permission.

length
The new length of the file, in bytes. The off_t type of length is either a 64-bit
or 32-bit integer. The 64-bit interface allows for file sizes greater than 2 GB, and
can be selected at compile time by defining the _LARGEFILE feature-test macro
as follows:

CC/DEFINE=_LARGEFILE

Description

The truncate function changes the length of a file to the size, in bytes, specified
by the length argument.

If the new length is less than the previous length, the function removes all
data beyond length bytes from the specified file. All file data between the new
End-of-File and the previous End-of-File is discarded.

For stream files, if the new length is greater than the previous length, new
file data between the previous End-of-File and the new End-of-File is added,
consisting of all zeros. (For record files, it is not possible to extend the file in this
manner.)

Return Values

0 Indicates success.
�1 An error occurred; errno is set to indicate the

error.

REF–613



ttyname, ttyname_r

ttyname, ttyname_r

Find the pathname of a terminal.

Format

#include <unixio.h> (Compatability)

char *ttyname (void); (Compatability)

#include <unistd.h> (OpenVMS V7.3-2 and higher)

char *ttyname (int filedes); (OpenVMS V7.3-2 and higher)

int ttyname_r (int filedes, char name, size_t namesize); (OpenVMS V7.3-2 and higher), (Alpha only )

Arguments

filedes
An open file descriptor.

name
Pointer to a buffer in which the terminal name is stored.

namesize
The length of the buffer pointed to by the name argument.

Description

The implementation of the ttyname function that takes no argument is provided
only for backward compatibility. This legacy implementation returns a pointer to
the null-terminated name of the terminal device associated with file descriptor 0,
the default input device (stdin). A value of 0 is returned if SYS$INPUT is not a
TTY device.

The ttyname_r function and the implementation of ttyname that takes a filedes
argument are UNIX standard compliant and are available with only OpenVMS
Version 7.3-2 and higher.

The standard compliant ttyname function returns a pointer to a string containing
a null-terminated pathname of the terminal associated with file descriptor filedes.
The return value might point to static data whose content is overwritten by each
call. The ttyname interface need not be reentrant.

The ttyname_r function returns a pointer to store the null-terminated pathname
of the terminal associated with the file descriptor filedes in the character array
referenced by name. The array is namesize characters long and should have space
for the name and the terminating null character. The maximum length of the
terminal name is TTY_NAME_MAX.

If successful, ttyname returns a pointer to a string. Otherwise, a NULL pointer is
returned and errno is set to indicate the error.

If successful, ttyname_r stores the terminal name as a null-terminated string
in the buffer pointed to by name and returns 0. Otherwise, an error number is
returned to indicate the error.

REF–614



ttyname, ttyname_r

Return Values

x Upon successful completion, ttyname returns a
pointer to a null-terminated string.

NULL Upon failure, ttyname returns a NULL pointer
and sets errno to indicate the failure:

• EBADF – The fildes argument is not a valid
file descriptor.

• ENOTTY – The fildes argument does not
refer to a terminal device.

0 Upon successful completion, ttyname_r returns
0.

n Upon failure, ttyname_r sets errno to indicate
the failure, and returns the same errno code:

• EBADF – The fildes argument is not a valid
file descriptor.

• ENOTTY – The fildes argument does not
refer to a TTY device.

• ERANGE – The value of namesize is smaller
than the length of the string to be returned
including the terminating null character.

0 For the legacy ttyname, indicates that
SYS$INPUT is not a TTY device.

REF–615



tzset

tzset

Sets and accesses time-zone conversion.

Format

#include <time.h>

void tzset (void);

extern char *tzname[ ];

extern long int timezone;

extern int daylight;

Description

The tzset function initializes time-conversion information used by the ctime,
localtime, mktime, strftime, and wcsftime functions.

The tzset function sets the following external variables:

• tzname is set as follows, where "std" is a 3-byte name for the standard time
zone, and "dst" is a 3-byte name for the Daylight Savings Time zone:

tzname[0] = "std"
tzname[1] = "dst"

• daylight is set to 0 if Daylight Savings Time should never be applied to the
time zone. Otherwise, daylight is set to 1.

• timezone is set to the difference between UTC and local standard time.

The environment variable TZ specifies how tzset initializes time conversion
information:

• If TZ is absent from the environment, the implementation-dependent time-
zone information is used, as follows:

The best available approximation to local wall-clock time is used, as
defined by the SYS$LOCALTIME system logical, which points to a tzfile
format file that describes default time-zone rules.
This system logical is set during the installation of OpenVMS Version
7.0 or higher to define a time-zone file based off the root directory
SYS$COMMON:[SYS$ZONEINFO.SYSTEM].1

• If TZ appears in the environment but its value is a null string, Coordinated
Universal Time (UTC) is used (without leap-second correction).

1 The HP C RTL uses a public-domain, time-zone handling package that puts time-zone
conversion rules in easily accessible and modifiable files. These files reside in the
SYS$COMMON:[SYS$ZONEINFO.SYSTEM.SOURCES] directory.
The time-zone compiler zic converts these files to a special format described by
the <tzfile.h> header file. The converted files are created with a root directory of
SYS$COMMON:[SYS$ZONEINFO.SYSTEM], which is pointed to by the SYS$TZDIR
system logical. This format is readable by the C library functions that handle time-zone
information. For example, in the eastern United Stated, SYS$LOCALTIME is defined to
be SYS$COMMON:[SYS$ZONEINFO.SYSTEM.US]EASTERN.

REF–616



tzset

• If TZ appears in the environment and its value is not a null string, the value
has one of three formats, as described in Table REF–11.

Table REF–11 Time-Zone Initialization Rules

TZ Format Meaning

: UTC is used.
:pathname The characters following the colon specify the pathname

of a tzfile format file from which to read the time-
conversion information. A pathname beginning with a
slash ( / ) represents an absolute pathname; otherwise,
the pathname is relative to the system time-conversion
information directory specified by SYS$TZDIR, which by
default is SYS$COMMON:[SYS$ZONEINFO.SYSTEM].

stdoffset[dst[offset]
[,rule]]

The value is first used as the pathname of a file (as
described for the :pathname format) from which to read
the time-conversion information.
If that file cannot be read, the value is then interpreted as
a direct specification of the time-conversion information, as
follows:
std and dst—Three or more characters that are the
designation for the time zone:

• std—Standard time zone. Required.

• dst—Daylight Savings Time zone. Optional. If dst is
omitted, Daylight Savings Time does not apply.

Uppercase and lowercase letters are explicitly allowed. Any
characters are allowed, except the following:

• digits

• leading colon ( : )

• comma ( , )

• minus (� )

• plus ( + )

• ASCII null character

offset—The value added to the local time to arrive at UTC.
The offset has the following format:

hh[:mm[:ss]]

In this format:

• hh (hours) is a one-or two-digit value of 0–24.

• mm (minutes) is a value of 0–59. (optional)

• ss (seconds) is a value of 0–59. (optional)

(continued on next page)

REF–617



tzset

Table REF–11 (Cont.) Time-Zone Initialization Rules

TZ Format Meaning

The offset following std is required. If no offset follows
dst, summer time is assumed, one hour ahead of standard
time. You can use one or more digits; the value is always
interpreted as a decimal number.
If the time zone is preceded by a minus sign (� ), the time
zone is East of Greenwich; otherwise, it is West, which can
also be indicated by a preceding plus sign ( + ).
rule—Indicates when to change to and return from summer
time. The rule has the form:

start[/time], end[/time]
where:

• start is the date when the change from standard time to
summer time occurs.

• end is the date for returning from summer time to
standard time.

If start and end are omitted, the default is the US Daylight
Savings Time start and end dates. The format for start and
end must be one of the following:

• Jn—The Julian day n (1 < n < 365). Leap days are
not counted. That is, in all years, including leap years,
February 28 is day 59 and March 1 is day 60. You
cannot explicitly refer to February 29.

• n—The zero based Julian day (0 < n < 365). Leap days
are counted, making it possible to refer to February 29.

• Mm.n.d—The nth d day of month m, where:

0 < n < 5
0 < d < 6
1 < m < 12

When n is 5, it refers to the last d day of month m.
Sunday is day 0.

(continued on next page)

REF–618



tzset

Table REF–11 (Cont.) Time-Zone Initialization Rules

TZ Format Meaning

time—The time when, in current time, the change to or
return from summer time occurs. The time argument has
the same format as offset, except that you cannot use a
leading minus (� ) or plus ( + ) sign. If time is not specified,
the default is 02:00:00.
If no rule is present in the TZ specification, the rules used
are those specified by the tzfile format file defined by
the SYS$POSIXRULES system logical in the system time-
conversion information directory, with the standard and
summer time offsets from UTC replaced by those specified
by the offset values in TZ.
If TZ does not specify a tzfile format file and cannot be
interpreted as a direct specification, UTC is used.

Note

The UTC-based time functions, introduced in OpenVMS Version 7.0, had
degraded performance compared with the non-UTC-based time functions.

OpenVMS Version 7.1 added a cache for time-zone files to improve
performance. The size of the cache is determined by the logical name
DECC$TZ_CACHE_SIZE. To accommodate most countries changing the
time twice per year, the default cache size is large enough to hold two
time-zone files.

See also ctime, localtime, mktime, strftime, and wcsftime.

Sample TZ Specification
EST5EDT4,M4.1.0,M10.5.0

This sample TZ specification describes the rule defined in 1987 for the
Eastern time zone in the US:

• EST (Eastern Standard Time) is the designation for standard time, which
is 5 hours behind UTC.

• EDT (Eastern Daylight Time) is the designation for summer time, which
is 4 hours behind UTC. EDT starts on the first Sunday in April and ends
on the last Sunday in October.

Because time was not specified in either case, the changes occur at the default
time, which is 2:00 A.M. The start and end dates did not need to be specified,
because they are the defaults.

REF–619



ualarm

ualarm

Sets or changes the timeout of interval timers.

Format

#include <unistd.h>

useconds_t ualarm (useconds_t mseconds, useconds_t interval);

Arguments

mseconds
Specifies a number of real-time microseconds.

interval
Specifies the interval for repeating the timer.

Description

The ualarm function causes the SIGALRM signal to be generated for the calling
process after the number of real-time microseconds specified by useconds has
elapsed. When the interval argument is nonzero, repeated timeout notification
occurs with a period in microseconds specified by interval. If the notification
signal SIGALRM is not caught or is ignored, the calling process is terminated.

If you call a combination of ualarm and setitimer functions, and the AST status
is disabled, the return value is invalid.

If you call a combination of ualarm and setitimer functions, and the AST status
is enabled, the return value is valid.

This is because you cannot invoke an AST handler to clear the previous value of
the timer when ASTs are disabled or invoked from a handler that was invoked at
AST level.

Note

Interactions between ualarm and either alarm, or sleep are unspecified.

See also setitimer.

Return Values

n The number of microseconds remaining from the
previous ualarm or setitimer call.

0 No timeouts are pending or ualarm not previously
called.

�1 Indicates an error.

REF–620



umask

umask

Creates a file protection mask that is used when a new file is created, and returns
the previous mask value.

Format

#include <stat.h>

mode_t umask (mode_t mode_complement);

Argument

mode_complement
Shows which bits to turn off when a new file is created. See the description of
chmod to determine what the bits represent.

Description

Initially, the file protection mask is set from the current process’s default
file protection. This is done when the C main program starts up or when
DECC$CRTL_INIT (or VAXC$CRTL_INIT) is called. You can change this for all files
created by your program by calling umask or you can use chmod to change the file
protection on individual files. The file protection of a file created by open or creat
is the bitwise AND of the open and creat mode argument with the complement
of the value passed to umask on the previous call.

Note

The way to create files with OpenVMS RMS default protections using
the UNIX system-call functions umask, mkdir, creat, and open is to
call mkdir, creat, and open with a file-protection mode argument of
0777 in a program that never specifically calls umask. These default
protections include correctly establishing protections based on ACLs,
previous versions of files, and so on.

In programs that do vfork/exec calls, the new process image inherits
whether umask has ever been called or not from the calling process image.
The umask setting and whether the umask function has ever been called
are both inherited attributes.

Return Value

x The old mask value.

REF–621



uname

uname

Gets system identification information.

Format

#include <utsname.h>

int uname (struct utsname *name);

Argument

name
The current system identifier.

Description

The uname function stores null-terminated strings of information identifying the
current system into the structure referenced by the name argument.

The utsname structure is defined in the <utsname.h> header file and contains the
following members:

sysname Name of the operating system implementation
nodename Network name of this machine
release Release level of the operating system
version Version level of the operating system
machine Machine hardware platform

Return Values

0 Indicates success.
�1 Indicates an error; errno or vaxc$errno is set as

appropriate.

REF–622



ungetc

ungetc

Pushes a character back into the input stream and leaves the stream positioned
before the character.

Format

#include <stdio.h>

int ungetc (int character, FILE *file_ptr);

Arguments

character
A value of type int.

file_ptr
A file pointer.

Description

When using the ungetc function, the character is pushed back onto the file
indicated by file_ptr.

One push-back is guaranteed, even if there has been no previous activity on
the file. The fseek function erases all memory of pushed-back characters. The
pushed-back character is not written to the underlying file. If the character to be
pushed back is EOF, the operation fails, the input stream is left unchanged, and
EOF is returned.

See also fseek and getc.

Return Values

x The push-back character.
EOF Indicates it cannot push the character back.

REF–623



ungetwc

ungetwc

Pushes a wide character back into the input stream.

Format

#include <wchar.h>

wint_t ungetwc (wint_t wc, FILE *file_ptr);

Arguments

wc
A value of type wint_t.

file_ptr
A file pointer.

Description

When using the ungetwc function, the wide character is pushed back onto the file
indicated by file_ptr.

One push-back is guaranteed, even if there has been no previous activity on the
file. If a file positioning function (such as fseek) is called before the pushed back
character is read, the bytes representing the pushed back character are lost.

If the character to be pushed back is WEOF, the operation fails, the input stream
is left unchanged, and WEOF is returned.

See also getwc.

Return Values

x The push-back character.
WEOF Indicates that the function cannot push the

character back. errno is set to one of the
following:

• EBADF – The file descriptor is not valid.

• EALREADY – Operation is already in
progress on the same file.

• EILSEQ – Invalid wide-character code
detected.

REF–624



unordered (Alpha only)

unordered (Alpha only)

Returns the value 1 (TRUE) if either or both of the arguments is a NaN.
Otherwise, it returns the value 0 (FALSE).

Format

#include <math.h>

double unordered (double x, double y);

float unorderedf (float x, float y);

long double unorderedl (long double x, long double y);

Arguments

x
A real number.

y
A real number.

Return Values

1 Either or both of the arguments is a NaN.
0 Neither argument is a NaN.

REF–625



utime

utime

Sets file access and modification times.

Format

#include <types.h>

int utime (const char *path, const struct utimbuf *times);

Arguments

path
A pointer to a file.

times
A NULL pointer or a pointer to a utimbuf structure.

Description

The utime function sets the access and modification times of the file named by
the path argument.

If times is a NULL pointer, the access and modification times of the file are set
to the current time. To use utime in this way, the effective user ID of the process
must match the owner of the file, or the process must have write permission to
the file or have appropriate privileges.

If times is not a NULL pointer, it is interpreted as a pointer to a utimbuf
structure, and the access and modification times are set to the values in the
specified structure. Only a process with an effective user ID equal to the user ID
of the file or a process with appropriate privileges can use utime this way.

The utimbuf structure is defined by the <utime.h> header. The times in the
utimbuf structure are measured in seconds since the Epoch.

Upon successful completion, utime marks the time of the last file status change,
st_ctime, to be updated. See the <stat.h> header file.

Note (Alpha only)

On OpenVMS Alpha systems, the stat, fstat, utime, and utimes
functions have been enhanced to take advantage of the new file-system
support for POSIX compliant file timestamps.

This support is available only on ODS-5 devices on OpenVMS Alpha
systems beginning with a version of OpenVMS Alpha after Version 7.3.

Before this change, stat and fstat set the values of the st_ctime,
st_mtime, and st_atime fields based on the following file attributes:

st_ctime – ATR$C_CREDATE (file creation time)
st_mtime – ATR$C_REVDATE (file revision time)
st_atime – was always set to st_mtime because no support for file
access time was available

Also, for the file-modification time, utime and utimes were modifying
the ATR$C_REVDATE file attribute, and ignoring the file-access-time
argument.

REF–626



utime

After the change, for a file on an ODS-5 device, the stat and fstat
functions set the values of the st_ctime, st_mtime, and st_atime fields
based on the following new file attributes:

st_ctime – ATR$C_ATTDATE (last attribute modification time)
st_mtime – ATR$C_MODDATE (last data modification time)
st_atime – ATR$C_ACCDATE (last access time)

If ATR$C_ACCDATE is 0, as on an ODS-2 device, the stat and fstat
functions set st_atime to st_mtime.

For the file-modification time, the utime and utimes functions modify
both the ATR$C_REVDATE and ATR$C_MODDATE file attributes. For
the file-access time, these functions modify the ATR$C_ACCDATE file
attribute. Setting the ATR$C_MODDATE and ATR$C_ACCDATE file
attributes on an ODS-2 device has no effect.

For compatibility, the old behavior of stat, fstat, utime, and utimes
remains the default, regardless of the kind of device.

The new behavior must be explicitly enabled by defining the DECC$EFS_
FILE_TIMESTAMPS logical name to "ENABLE" before invoking the
application. Setting this logical does not affect the behavior of stat,
fstat, utime, and utimes for files on an ODS-2 device.

Return Values

0 Successful execution.

REF–627



utime

�1 Indicates an error. The function sets errno to
one of the following values:
The utime function will fail if:

• EACCES – Search permission is denied
by a component of the path prefix; or the
times argument is a NULL pointer and the
effective user ID of the process does not
match the owner of the file and write access
is denied.

• ELOOP – Too many symbolic links were
encountered in resolving path.

• ENAMETOOLONG – The length of the path
argument exceeds {PATH_MAX}, a pathname
component is longer than {NAME_MAX},
or a pathname resolution of a symbolic
link produced an intermediate result whose
length exceeds {PATH_MAX}.

• ENOENT – path does not name an existing
file, or path is an empty string.

• ENOTDIR – A component of the path prefix
is not a directory.

• EPERM – times is not a NULL pointer and
the calling process’s effective user ID has
write-access to the file but does not match
the owner of the file, and the calling process
does not have the appropriate privileges.

• EROFS – The file system containing the file
is read-only.

REF–628



utimes

utimes

Sets file access and modification times.

Format

#include <time.h>

int utimes (const char *path, const struct timeval times[2]);

Arguments

path
A pointer to a file.

times
an array of timeval structures. The first array member represents the date and
time of last access, and the second member represents the date and time of last
modification. The times in the timeval structure are measured in seconds and
microseconds since the Epoch, although rounding toward the nearest second may
occur.

Description

The utimes function sets the access and modification times of the file pointed to
by the path argument to the value of the times argument. The utimes function
allows time specifications accurate to the microsecond.

If the times argument is a NULL pointer, the access and modification times of the
file are set to the current time. The effective user ID of the process must be the
same as the owner of the file, or must have write access to the file or appropriate
privileges to use this call in this manner.

Upon completion, utimes marks the time of the last file status change, st_ctime,
for update.

Note (Alpha only)

On OpenVMS Alpha systems, the stat, fstat, utime, and utimes
functions have been enhanced to take advantage of the new file-system
support for POSIX compliant file timestamps.

This support is available only on ODS-5 devices on OpenVMS Alpha
systems beginning with a version of OpenVMS Alpha after Version 7.3.

Before this change, the stat and fstat functions were setting the values
of the st_ctime, st_mtime, and st_atime fields based on the following file
attributes:

st_ctime – ATR$C_CREDATE (file creation time)
st_mtime – ATR$C_REVDATE (file revision time)
st_atime – was always set to st_mtime because no support for file
access time was available

Also, for the file-modification time, utime and utimes were modifying
the ATR$C_REVDATE file attribute, and ignoring the file-access-time
argument.

REF–629



utimes

After the change, for a file on an ODS-5 device, the stat and fstat
functions set the values of the st_ctime, st_mtime, and st_atime fields
based on the following new file attributes:

st_ctime – ATR$C_ATTDATE (last attribute modification time)
st_mtime – ATR$C_MODDATE (last data modification time)
st_atime – ATR$C_ACCDATE (last access time)

If ATR$C_ACCDATE is 0, as on an ODS-2 device, the stat and fstat
functions set st_atime to st_mtime.

For the file-modification time, the utime and utimes functions modify
both the ATR$C_REVDATE and ATR$C_MODDATE file attributes. For
the file-access time, these functions modify the ATR$C_ACCDATE file
attribute. Setting the ATR$C_MODDATE and ATR$C_ACCDATE file
attributes on an ODS-2 device has no effect.

For compatibility, the old behavior of stat, fstat, utime, and utimes
remains the default, regardless of the kind of device.

The new behavior must be explicitly enabled by defining the DECC$EFS_
FILE_TIMESTAMPS logical name to "ENABLE" before invoking the
application. Setting this logical does not affect the behavior of stat,
fstat, utime, and utimes for files on an ODS-2 device.

Return Values

0 Successful execution.

REF–630



utimes

�1 Indicates an error. The file times do not change
and the function sets errno to one of the
following values:
The utimes function will fail if:

• EACCES – Search permission is denied
by a component of the path prefix; or the
times argument is a NULL pointer and the
effective user ID of the process does not
match the owner of the file and write access
is denied.

• ELOOP – Too many symbolic links were
encountered in resolving path.

• ENAMETOOLONG – The length of the path
argument exceeds {PATH_MAX}, a pathname
component is longer than {NAME_MAX},
or a pathname resolution of a symbolic
link produced an intermediate result whose
length exceeds {PATH_MAX}.

• ENOENT – A component of path does not
name an existing file, or path is an empty
string.

• ENOTDIR – A component of the path prefix
is not a directory.

• EPERM –The times argument is not a NULL
pointer and the calling process’s effective
user ID has write-access to the file but does
not match the owner of the file and the
calling process does not have the appropriate
privileges.

• EROFS – The file system containing the file
is read-only.

REF–631



unsetenv

unsetenv

Deletes all instances of the environment variable name from the environment list.

Format

#include <stdlib.h>

void unsetenv (const char *name);

Argument

name
The environment variable to delete from the environment list.

Description

The unsetenv function deletes all instances of the variable name pointed to by
the name argument from the environment list.

REF–632



usleep

usleep

Suspends execution for an interval.

Format

#include <unistd.h>

int usleep (unsigned int mseconds);

Argument

mseconds
The number of microseconds to suspend execution for.

Description

The usleep function suspends the current process from execution for the number
of microseconds specified by the mseconds argument. This argument must be less
than 1,000,000. However, if its value is 0, then the call has no effect.

There is one real-time interval timer for each process. The usleep function does
not interfere with a previous setting of this timer. If the process set this timer
before calling usleep and if the time specified by mseconds equals or exceeds the
interval timer’s prior setting, then the process is awakened shortly before the
timer was set to expire.

Return Values

0 Indicates success.
�1 Indicates an error occurred; errno is set to

EINVAL.

REF–633



VAXC$CRTL_INIT

VAXC$CRTL_INIT

Allows you to call the HP C RTL from other languages or to use the HP C RTL
when your main function is not in C. It initializes the run-time environment and
establishes both an exit and condition handler. VAXC$CRTL_INIT is a synonym for
DECC$CRTL_INIT. Either name invokes the same routine.

Format

#include <signal.h>

void VAXC$CRTL_INIT( );

Description

The following example shows a Pascal program that calls the HP C RTL using
the VAXC$CRTL_INIT function:

On OpenVMS VAX systems:

$ PASCAL EXAMPLE
$ LINK EXAMPLE,SYS$LIBRARY:DECCRTL/LIB
$ TY EXAMPLE.PAS
PROGRAM TESTC(input, output);
PROCEDURE VAXC$CRTL_INIT; extern;
BEGIN

VAXC$CRTL_INIT;
END
$

On OpenVMS Alpha systems:

$ PASCAL EXAMPLE
$ LINK EXAMPLE,SYS$LIBRARY:VAXCRTL/LIB
$ TY EXAMPLE.PAS
PROGRAM TESTC(input, output);
PROCEDURE VAXC$CRTL_INIT; extern;
BEGIN

VAXC$CRTL_INIT;
END
$

A shareable image need only call this function if it contains an HP C function
for signal handling, environment variables, I/O, exit handling, a default file
protection mask, or if it is a child process that should inherit context.

Although many of the initialization activities are performed only once,
DECC$CRTL_INIT can safely be called multiple times. On OpenVMS VAX systems,
DECC$CRTL_INIT establishes the HP C RTL internal OpenVMS exception handler
in the frame of the routine that calls DECC$CRTL_INIT each time DECC$CRTL_INIT
is called.

At least one frame in the current call stack must have that handler established
for OpenVMS exceptions to get mapped to UNIX signals.

REF–634



VAXC$ESTABLISH

VAXC$ESTABLISH

Used for establishing an OpenVMS exception handler for a particular routine.
This function establishes a special HP C RTL exception handler in the routine
that called it. This special handler catches all RTL-related exceptions that occur
in later routines, and passes on all other exceptions to your handler.

Format

#include <signal.h>

void VAXC$ESTABLISH (unsigned int (*exception_handler)(void *sigarr, void *mecharr));

Arguments

exception_handler
The name of the function that you want to establish as an OpenVMS exception
handler. You pass a pointer to this function as the parameter to VAXC$ESTABLISH.

sigarr
A pointer to the signal array.

mecharr
A pointer to the mechanism array.

Description

VAXC$ESTABLISH must be used in place of LIB$ESTABLISH when programs use the
HP C RTL routines setjmp or longjmp. See setjmp and longjmp, or sigsetjmp
and siglongjmp.

You can only invoke the VAXC$ESTABLISH function from an HP C for OpenVMS
function, because it relies on the allocation of data space on the run-time stack by
the HP C compiler. Calling the OpenVMS system library routine LIB$ESTABLISH
directly from an HP C function results in undefined behavior from the setjmp
and longjmp functions.

To cause an OpenVMS exception to generate a UNIX style signal, user exception
handlers must return SS$_RESIGNAL upon receiving any exception that they do
not want to handle. Returning SS$_NORMAL prevents the generation of a UNIX
style signal. UNIX signals are generated as if by an exception handler in the
stack frame of the main C program. Not all OpenVMS exceptions correspond
to UNIX signals. See Chapter 4 for more information on the interaction of
OpenVMS exceptions and UNIX style signals.

Calling VAXC$ESTABLISH with an argument of NULL cancels an existing handler
in that routine.

Notes

• On OpenVMS Alpha systems, VAXC$ESTABLISH is implemented as a
compiler built-in function, not as an HP C RTL function. (Alpha only)

REF–635



VAXC$ESTABLISH

• On OpenVMS VAX systems, programs compiled with /NAMES=AS_IS
should link against SYS$LIBRARY:DECCRTL.OLB to resolve the
name VAXC$ESTABLISH, whether or not the program is compiled with
the /PREFIX_LIBRARY_ENTRIES switch. This is a restriction in the
implementation. (VAX only)

REF–636



va_arg

va_arg

Returns the next item in the argument list.

Format

#include <stdarg.h> (ANSI C)

#include <varargs.h> (HP C Extension)

type va_arg (va_list ap, type);

Arguments

ap
A variable list containing the next argument to be obtained.

type
A data type that is used to determine the size of the next item in the list. An
argument list can contain items of varying sizes, but the calling routine must
determine what type of argument is expected since it cannot be determined at
run time.

Description

The va_arg function interprets the object at the address specified by the list
incrementor according to type. If there is no corresponding argument, the
behavior is undefined.

When using va_arg to write portable applications, include the <stdarg.h>
header file (defined by the ANSI C standard), not the <varargs.h> header file,
and use va_arg only in conjunction with other functions and macros defined in
<stdarg.h>.

For an example of argument-list processing using the <stdarg.h> functions and
definitions, see Example 3–6.

REF–637



va_count

va_count

Returns the number of longwords (VAX only) or quadwords (Alpha only) in the argument
list.

Format

#include <stdarg.h> (ANSI C)

#include <varargs.h> (HP C Extension)

void va_count (int count);

Argument

count
An integer variable name in which the number of longwords (VAX only) or
quadwords (Alpha only) is returned.

Description

The va_count macro places the number of longwords (VAX only) or quadwords
(Alpha only) in the argument list into count. The value returned in count is the
number of longwords (VAX only) or quadwords (Alpha only) in the function argument
block not counting the count field itself.

If the argument list contains items whose storage requirements are a longword
(VAX only) or quadword (Alpha only) of memory or less, the number in the count
argument is also the number of arguments. However, if the argument list
contains items that are longer than a longword (VAX only) or a quadword (Alpha only),
count must be interpreted to obtain the number of arguments. Because a double
is 8 bytes, it occupies two argument-list positions on OpenVMS VAX systems, and
one argument-list position on OpenVMS Alpha systems.

The va_count macro is specific to HP C for OpenVMS Systems and is not
portable.

REF–638



va_end

va_end

Finishes the <varargs.h> or <stdarg.h> session.

Format

#include <stdarg.h> (ANSI C)

#include <varargs.h> (HP C Extension)

void va_end (va_list ap);

Argument

ap
The object used to traverse the argument list length. You must declare and use
the argument ap as shown in this format section.

Description

You can execute multiple traversals of the argument list, each delimited by
va_start . . . va_end. The va_end function sets ap equal to NULL.

When using this function to write portable applications, include the <stdarg.h>
header file (defined by the ANSI C standard), not the <varargs.h> header file,
and use va_end only in conjunction with other routines defined in <stdarg.h>.

For an example of argument-list processing using the <stdarg.h> functions and
definitions, see Example 3–6.

REF–639



va_start, va_start_1

va_start, va_start_1

Used for initializing a variable to the beginning of the argument list.

Format

#include <varargs.h> (HP C Extension)

void va_start (va_list ap);

void va_start_1 (va_list ap, int offset);

Arguments

ap
An object pointer. You must declare and use the argument ap as shown in the
format section.

offset
The number of bytes by which ap is to be incremented so that it points to a
subsequent argument within the list (that is, not to the start of the argument
list). Using a nonzero offset can initialize ap to the address of the first of the
optional arguments that follow a number of fixed arguments.

Description

The va_start macro initializes the variable ap to the beginning of the argument
list.

The va_start_1 macro initializes ap to the address of an argument that is
preceded by a known number of defined arguments. The printf function is
an example of a HP C RTL function that contains a variable-length argument
list offset from the beginning of the entire argument list. The variable-length
argument list is offset by the address of the formatting string.

When determining the value of the offset argument used in va_start_1, the
implications of the OpenVMS calling standard must be considered.

On OpenVMS VAX, most argument items are a longword. For example,
OpenVMS VAX arguments of types char and short use a full longword of
memory when they are present in argument lists. However, OpenVMS VAX
arguments of type float use two longwords because they are converted to type
double.

On OpenVMS Alpha, each argument item is a quadword.

Note

When accessing argument lists, especially those passed to a subroutine
(written in C) by a program written in another programming language,
consider the implications of the OpenVMS calling standard. For more
information about the OpenVMS calling standard, see the HP C User’s
Guide for OpenVMS Systems or the OpenVMS Calling Standard.

The preceding version of va_start and va_start_1 is specific to the HP C RTL,
and is not portable.

REF–640



va_start, va_start_1

The following syntax describes the va_start macro in the <stdarg.h> header file,
as defined in the ANSI C standard:

Format

#include <stdarg.h> (ANSI C)

void va_start (va_list ap, parmN);

Arguments

ap
An object pointer. You must declare and use the argument ap as shown in the
format section.

parmN
The name of the last of the known fixed arguments.

Description

The pointer ap is initialized to point to the first of the optional arguments that
follow parmN in the argument list.

Always use this version of va_start in conjunction with functions that are
declared and defined with function prototypes. Also use this version of va_start
to write portable programs.

For an example of argument-list processing using the <stdarg.h> functions and
definitions, see Example 3–6.

REF–641



vfork

vfork

Creates an independent child process. This function is nonreentrant.

Format

#include <unistd.h>

int vfork (void); (_DECC_V4_SOURCE)

pid_t vfork (void); (not _DECC_V4_SOURCE)

Description

The vfork function provided by HP C for OpenVMS Systems differs from the
fork function provided by other C implementations. Table REF–12 shows the two
major differences.

Table REF–12 The vfork and fork Functions

The vfork Function The fork Function

Used with the exec functions. Can be used without an exec function for
asynchronous processing.

Creates an independent child
process that shares some of
the parent’s characteristics.

Creates an exact duplicate of the parent
process that branches at the point where
vfork is called, as if the parent and the child
are the same process at different stages of
execution.

The vfork function provides the setup necessary for a subsequent call to an exec
function. Although no process is created by vfork, it performs the following steps:

• It saves the return address (the address of the vfork call) to be used later as
the return address for the call to an exec function.

• It saves the current context.

• It returns the integer 0 the first time it is called (before the call to an exec
function is made). After the corresponding exec function call is made, the
exec function returns control to the parent process, at the point of the vfork
call, and it returns the process ID of the child as the return value. Unless the
exec function fails, control appears to return twice from vfork even though
one call was made to vfork and one call was made to the exec function.

The behavior of the vfork function is similar to the behavior of the setjmp
function. Both vfork and setjmp establish a return address for later use, both
return the integer 0 when they are first called to set up this address, and both
pass back the second return value as though it were returned by them rather
than by their corresponding exec or longjmp function calls.

However, unlike setjmp, with vfork, all local automatic variables, even those
with volatile-qualified type, can have indeterminate values if they are modified
between the call to vfork and the corresponding call to an exec routine.

REF–642



vfork

Return Values

0 Indicates successful creation of the context.
nonzero Indicates the process ID (PID) of the child

process.
�1 Indicates an error – failure to create the child

process.

REF–643



vfprintf

vfprintf

Prints formatted output based on an argument list.

Format

#include <stdio.h>

int vfprintf (FILE *file_ptr, const char *format, va_list ap);

Arguments

file_ptr
A pointer to the file to which the output is directed.

format
A pointer to a string containing the format specification. For more information
about format and conversion specifications and their corresponding arguments,
see Chapter 2.

ap
A list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

See also vprintf and vsprintf.

Return Values

x The number of bytes written.
Negative value Indicates an output error. The function sets

errno. For a list of possible errno values set, see
fprintf.

REF–644



vfscanf

vfscanf

Reads formatted input based on an argument list.

Format

#include <stdio.h>

int vfscanf (FILE *file_ptr, const char *format, va_list ap);

Arguments

file_ptr
A pointer to the file that provides input text.

format
A pointer to a string containing the format specification.

ap
A list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vfscanf function is the same as the fscanf function except that instead of
being called with a variable number of arguments, it is called with an argument
list that has been initialized by va_start (and possibly subsequent va_arg calls).

If no conversion specifications are given, you can omit the input pointers.
Otherwise, the function calls must have exactly as many input pointers as there
are conversion specifications, and the conversion specifications must match the
types of the input pointers.

Conversion specifications are matched to input sources in left-to-right order.
Excess input pointers, if any, are ignored.

For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

This function returns the number of successfully matched and assigned input
items.

See also vscanf and vsscanf.

Return Values

n The number of successfully matched and
assigned input items.

REF–645



vfscanf

EOF Indicates that the end-of-file was encountered or
a read error occurred. If a read error occurs, the
function sets errno to one of the following:

• EILSEQ – Invalid character detected.

• EINVAL – Insufficient arguments.

• ENOMEM – Not enough memory available
for conversion.

• ERANGE – Floating-point calculations
overflow.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This can indicate that conversion
to a numeric value failed due to overflow.

The function can also set errno to the following
as a result of errors returned from the I/O
subsystem:

• EBADF – The file descriptor is not valid.

• EIO – I/O error.

• ENXIO – Device does not exist.

• EPIPE – Broken pipe.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This indicates that an I/O error
occurred for which there is no equivalent C
error code.

REF–646



vfwprintf

vfwprintf

Writes output to the stream under control of the wide-character format string.

Format

#include <wchar.h>

int vfwprintf (FILE *stream, const wchar_t *format, va_list ap);

Arguments

stream
A file pointer.

format
A pointer to a wide-character string containing the format specifications.
For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

ap
A variable list of the items needed for output.

Description

The vfwprintf function is equivalent to the fwprintf function, with the variable
argument list replaced by the ap argument. Initialize ap with the va_start
macro (and possibly with subsequent va_arg calls) from <stdarg.h>.

If the stream pointed to by stream has no orientation, vfwprintf makes the
stream wide-oriented.

See also fwprintf.

Return Values

n The number of wide characters written.

REF–647



vfwprintf

Negative value Indicates an error. The function sets errno to
one of the following:

• EILSEQ – Invalid character detected.

• EINVAL – Insufficient arguments.

• ENOMEM – Not enough memory available
for conversion.

• ERANGE – Floating-point calculations
overflow.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This might indicate that
conversion to a numeric value failed because
of overflow.

The function can also set errno to the following
as a result of errors returned from the I/O
subsystem:

• EBADF – The file descriptor is not valid.

• EIO – I/O error.

• ENOSPC – No free space on the device
containing the file.

• ENXIO – Device does not exist.

• EPIPE – Broken pipe.

• ESPIPE – Illegal seek in a file opened for
append.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This indicates that an I/O error
occurred for which there is no equivalent C
error code.

Examples

The following example shows the use of the vfwprintf function in a general
error reporting routine:

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

void error(char *function_name, wchar_t *format, . . . );
{

va_list args;

va_start(args, format);
/* print out name of function causing error */
fwprintf(stderr, L"ERROR in %s: ", function_name);
/* print out remainder of message */
vfwprintf(stderr, format, args);
va_end(args);

}

REF–648



vfwscanf

vfwscanf

Reads input from the stream under control of a wide-character format string.

Format

#include <wchar.h>

int vfwscanf (FILE *stream, const wchar_t *format, va_list ap);

Arguments

stream
A file pointer.

format
A pointer to a wide-character string containing the format specifications.

ap
A list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vfwscanf function is equivalent to the fwscanf function, except that
instead of being called with a variable number of arguments, it is called with
an argument list (ap) that has been initialized by va_start (and possibly with
subsequent va_arg calls).

If the stream pointed to by stream has no orientation, vfwscanf makes the stream
wide-oriented.

For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

Return Values

n The number of successfully matched and
assigned wide-character input items.

EOF Indicates that a read error occurred before any
conversion. The function sets errno. For a list of
the values set by this function, see vfscanf.

REF–649



vprintf

vprintf

Prints formatted output based on an argument list.

This function is the same as the printf function except that instead of being
called with a variable number of arguments, it is called with an argument list
that has been initialized by the va_start macro (and possibly with subsequent
va_arg calls) from <stdarg.h>.

Format

#include <stdio.h>

int vprintf (const char *format, va_list ap);

Arguments

format
A pointer to the string containing the format specification. For more information
about format and conversion specifications and their corresponding arguments,
see Chapter 2.

ap
A variable list of the items needed for output.

Description

See the vfprintf and vsprintf functions.

Return Values

x The number of bytes written.
Negative value Indicates an output error. The function sets

errno. For a list of possible errno values set, see
fprintf.

REF–650



vscanf

vscanf

Reads formatted input based on an argument list.

Format

#include <stdio.h>

int vscanf (const char *format, va_list ap);

Arguments

format
A pointer to the string containing the format specification.

ap
A list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vscanf function is the same as the scanf function except that instead of
being called with a variable number of arguments, it is called with an argument
list (ap) that has been initialized by the va_start macro (and possibly with
subsequent va_arg calls).

For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

See also scanf, vfscanf, and vsscanf.

Return Values

n The number of successfully matched and
assigned input items.

EOF Indicates that a read error occurred before any
conversion. The function sets errno. For a list of
the values set by this function, see vfscanf.

REF–651



vsnprintf (Alpha only)

vsnprintf (Alpha only)

Prints formatted output based on an argument list.

Format

#include <stdio.h>

int vsnprintf (char *str, size_t n, const char *format, va_list ap);

Arguments

str
A pointer to a string that will receive the formatted output.

format
A pointer to a character string that contains the format specification. For more
information about format and conversion specifications and their corresponding
arguments, see Chapter 2.

ap
A list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vsnprintf function is the same as the snprintf function, but instead of
being called with a variable number of arguments, it is called with an argument
list that has been initialized by va_start (and possibly with subsequent va_arg
calls).

This function does not invoke the va_end macro. Because the function invokes
the va_arg macro, the value of ap after the return is unspecified.

Applications using vsnprintf should call va_end(ap) afterwards to clean up.

Return Values

x The number of bytes (excluding the terminating
null byte) that would be written to str if n is
sufficiently large.

Negative value Indicates an output error occurred. The function
sets errno. For a list of possible errno values
set, see fprintf.

REF–652



vsprintf

vsprintf

Prints formatted output based on an argument list.

This function is the same as the sprintf function except that instead of being
called with a variable number of arguments, it is called with an argument list
that has been initialized by va_start (and possibly with subsequent va_arg calls).

Format

#include <stdio.h>

int vsprintf (char *str, const char *format, va_list ap);

Arguments

str
A pointer to a string that will receive the formatted output. This string is
assumed to be large enough to hold the output.

format
A pointer to a character string that contains the format specification. For more
information about format and conversion specifications and their corresponding
arguments, see Chapter 2.

ap
A list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Return Value

x The number of bytes written.
Negative value Indicates an output error occurred. The function

sets errno. For a list of possible errno values
set, see fprintf.

REF–653



vsscanf

vsscanf

Reads formatted input based on an argument list.

Format

#include <stdio.h>

int vsscanf (char *str, const char *format, va_list ap);

Arguments

str
The address of the character string that provides the input text to sscanf.

format
A pointer to a character string that contains the format specification.

ap
A list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vsscanf function is the same as the sscanf function except that instead of
being called with a variable number of arguments, it is called with an argument
list that has been initialized by va_start (and possibly with subsequent va_arg
calls).

The vsscanf function is also equivalent to the vfscanf function, except that the
first argument specifies a wide-character string rather than a stream. Reaching
the end of the wide-character string is the same as encountering EOF for the
vfscanf function.

For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

See also vsscanf and sscanf.

Return Values

n The number of successfully matched and
assigned input items.

EOF Indicates that a read error occurred before any
conversion. The function sets errno. For a list of
the values set by this function, see vfscanf.

REF–654



vswprintf

vswprintf

Writes output to the stream under control of the wide-character format string.

Format

#include <wchar.h>

int vswprintf (wchar_t *s, size_t n, const wchar_t *format, va_list ap);

Arguments

s
A pointer to a multibyte character sequence.

n
The maximum number of bytes that comprise the multibyte character.

format
A pointer to a wide-character string containing the format specifications.
For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

ap
A variable list of the items needed for output.

Description

The vswprintf function is equivalent to the swprintf function, with the variable
argument list replaced by the ap argument. Initialize ap with the va_start
macro, and possibly with subsequent va_arg calls.

See also swprintf.

Return Values

n The number of wide characters written.

REF–655



vswprintf

Negative value Indicates an error. The function sets errno to
one of the following:

• EILSEQ – Invalid character detected.

• EINVAL – Insufficient arguments.

• ENOMEM – Not enough memory available
for conversion.

• ERANGE – Floating-point calculations
overflow.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This might indicate that
conversion to a numeric value failed because
of overflow.

The function can also set errno to the following
as a result of errors returned from the I/O
subsystem:

• EBADF – The file descriptor is not valid.

• EIO – I/O error.

• ENOSPC – No free space on the device
containing the file.

• ENXIO – Device does not exist.

• EPIPE – Broken pipe.

• ESPIPE – Illegal seek in a file opened for
append.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This indicates that an I/O error
occurred for which there is no equivalent C
error code.

REF–656



vswscanf

vswscanf

Reads input from the stream under control of the wide-character format string.

Format

#include <wchar.h>

int vswscanf (wchar_t *s, const wchar_t *format, va_list ap);

Arguments

s
A pointer to a wide-character string from which the input is to be obtained.

format
A pointer to a wide-character string containing the format specifications.

ap
A list of expressions whose results correspond to conversion specifications given
in the format specification.

Description

The vswscanf function is equivalent to the swscanf function, except that
instead of being called with a variable number of arguments, it is called with
an argument list (ap) that has been initialized by va_start (and possibly with
subsequent va_arg calls).

The vswscanf function is also equivalent to the vfwscanf function, except that the
first argument specifies a wide-character string rather than a stream. Reaching
the end of the wide-character string is the same as encountering EOF for the
vfwscanf function.

For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

See also vfwscanf and swscanf.

Return Values

n The number of wide characters read.
EOF Indicates that a read error occurred before any

conversion. The function sets errno. For a list of
the values set by this function, see vfscanf.

REF–657



vwprintf

vwprintf

Writes output to an array of wide characters under control of the wide-character
format string.

Format

#include <wchar.h>

int vwprintf (const wchar_t *format, va_list ap);

Arguments

format
A pointer to a wide-character string containing the format specifications.
For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

ap
The variable list of items needed for output.

Description

The vwprintf function is equivalent to the wprintf function, with the variable
argument list replaced by the ap argument. Initialize ap with the va_start
macro, and possibly with subsequent va_arg calls. The vwprintf function does
not invoke the va_end macro.

See also wprintf.

Return Values

x The number of wide characters written, not
counting the terminating null wide character.

Negative value Indicates an error. Either n or more wide
characters were requested to be written, or a
conversion error occurred, in which case errno is
set to EILSEQ.

REF–658



vwscanf

vwscanf

Reads input from an array of wide characters under control of a wide-character
format string.

Format

#include <wchar.h>

int vwscanf (const wchar_t *format, va_list ap);

Arguments

format
A pointer to a wide-character string containing the format specifications.

ap
A list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vwscanf function is equivalent to the wscanf function, except that instead of
being called with a variable number of arguments, it is called with an argument
list (ap) that has been initialized by va_start (and possibly with subsequent
va_arg calls).

For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

See also wscanf.

Return Values

n The number of wide characters read.
EOF Indicates that a read error occurred before any

conversion. The function sets errno. For a list of
the values set by this function, see vfscanf.

REF–659



wait

wait

Checks the status of the child process before exiting. A child process is
terminated when the parent process terminates.

Format

#include <wait.h>

pid_t wait (int *status);

Argument

status
The address of a location to receive the final status of the terminated child. The
child can set the status with the exit function and the parent can retrieve this
value by specifying status.

Description

The wait function suspends the parent process until the final status of a
terminated child is returned from the child.

On OpenVMS Version 7.0 and higher systems, the wait function is equivalent
to waitpid( 0, status, 0 ) if you include <wait.h> and compile with the
_POSIX_EXIT feature-test macro set (either with /DEFINE=_POSIX_EXIT or with
#define _POSIX_EXIT at the top of your file, before any file inclusions).

Return Values

x The process ID (PID) of the terminated child. If
more than one child process was created, wait
will return the PID of the terminated child that
was most recently created. Subsequent calls will
return the PID of the next most recently created,
but terminated, child.

�1 No child process was spawned.

REF–660



wait3

wait3

Waits for a child process to stop or terminate.

Format

#include <wait.h>

pid_t wait3 (int *status_location, int options, struct rusage *resource_usage);

Arguments

status_location
A pointer to a location that contains the termination status of the child process as
defined in the <wait.h> header file.

Beginning with OpenVMS Version 7.2, when compiled with the _VMS_WAIT
macro defined, the wait3 function puts the OpenVMS completion code of the child
process at the address specified in the status_location argument.

options
Flags that modify the behavior of the function. These flags are defined in the
Description section.

resource_usage
The location of a structure that contains the resource utilization information for
terminated child processes.

Description

The wait3 function suspends the calling process until the request is completed,
and redefines it so that only the calling thread is suspended.

The options argument modifies the behavior of the function. You can combine the
flags for the options argument by specifying their bitwise inclusive OR. The flags
are:

WNOWAIT Specifies that the process whose status is returned in
status_location is kept in a waitable state. You can wait
for the process again with the same results.

WNOHANG Prevents the suspension of the calling process. If there
are child processes that stopped or terminated, one is
chosen and the waitpid function returns its process ID,
as when you do not specify the WNOHANG flag. If there are
no terminated processes (that is, if waitpid suspends
the calling process without the WNOHANG flag), 0 (zero)
is returned. Because you can never wait for process 0,
there is no confusion arising from this return.

WUNTRACED Specifies that the call return additional information
when the child processes of the current process
stop because the child process received a SIGTTIN,
SIGTTOU, SIGSTOP, or SIGTSTOP signal.

If the wait3 function returns because the status of a child process is available, the
process ID of the child process is returned. Information is stored in the location
pointed to by status_location, if this pointer is not null.

REF–661



wait3

The value stored in the location pointed to by status_location is 0 (zero) only if the
status is returned from a terminated child process that did one of the following:

• Returned 0 from the main function.

• Passed 0 as the status argument to the _exit or exit function.

Regardless of the status_location value, you can define this information using
the macros defined in the <wait.h> header file, which evaluate to integral
expressions. In the following macro descriptions, the status_value argument is
equal to the integer value pointed to by the status_location argument:

WIFEXITED(status_value) Evaluates to a nonzero value if status was
returned for a child process that terminated
normally.

WEXITSTATUS(status_value) If the value of WIFEXITED(status_value) is
nonzero, this macro evaluates to the low-order 8
bits of the status argument that the child process
passed to the _exit or exit function, or to the
value the child process returned from the main
function.

WIFSIGNALED(status_value) Evaluates to a nonzero value if status was
returned for a child process that terminated due
to the receipt of a signal that was not caught.

WTERMSIG(status_value) If the value of WIFSIGNALED(status_value) is
nonzero, this macro evaluates to the number of
the signal that caused the termination of the
child process.

WIFSTOPPED(status_value) Evaluates to a nonzero value if status was
returned for a child process that is currently
stopped.

WSTOPSIG(status_value) If the value of WIFSTOPPED(status_value) is
nonzero, this macro evaluates to the number
of the signal that caused the child process to
stop.

WIFCONTINUED(status_value) Evaluates to a nonzero value if status was
returned for a child process that has continued.

If the information stored at the location pointed to by status_location was stored
there by a call to wait3 that specified the WUNTRACED flag, one of the following
macros evaluates to a nonzero value:

• WIFEXITED(*status_value)

• WIFSIGNALED(*status_value)

• WIFSTOPPED(*status_value)

• WIFCONTINUED(*status_value)

If the information stored in the location pointed to by status_location resulted
from a call to wait3 without the WUNTRACED flag specified, one of the following
macros evaluates to a nonzero value:

• WIFEXITED(*status_value)

• WIFSIGNALED(*status_value)

REF–662



wait3

The wait3 function provides compatibility with BSD systems. The resource_usage
argument points to a location that contains resource usage information for the
child processes as defined in the <resource.h> header file.

If a parent process terminates without waiting for all of its child processes to
terminate, the remaining child processes is assigned a parent process ID equal to
the process ID of the init process.

See also exit, -exit, and init.

Return Values

0 Indicates success. There are no stopped or exited
child processes, the WNOHANG option is specified.

x The process_id of the child process. The status of
a child process is available.

�1 Indicates an error; errno is set to one of the
following values:

• ECHILD – There are no child processes to
wait for.

• EINTR – Terminated by receipt of a signal
caught by the calling process.

• EFAULT – The status_location or resource_
usage argument points to a location outside
of the address space of the process.

• EINVAL— The value of the options argument
is not valid.

REF–663



wait4

wait4

Waits for a child process to stop or terminate.

Format

#include <wait.h>

pid_t wait4 (pid_t process_id, union wait *status_location, int options, struct rusage *resource_usage);

Arguments

status_location
A pointer to a location that contains the termination status of the child process as
defined in the <wait.h> header file.

Beginning with OpenVMS Version 7.2, when compiled with the _VMS_WAIT
macro defined, the wait4 function puts the OpenVMS completion code of the child
process at the address specified in the status_location argument.

process_id
The child process or set of child processes.

options
Flags that modify the behavior of the function. These flags are defined in the
Description section.

resource_usage
The location of a structure that contains the resource utilization information for
terminated child processes.

Description

The wait4 function suspends the calling process until the request is completed.

The process_id argument allows the calling process to gather status from a
specific set of child processes, according to the following rules:

If the process_id is Then status is requested

Equal to �1 For any child process. In this respect, the waitpid
function is equivalent to the wait function.

Greater than 0 For a single child process and specifies the process ID.

The wait4 function only returns the status of a child process from this set.

The options argument to the wait4 function modifies the behavior of the function.
You can combine the flags for the options argument by specifying their bitwise-
inclusive OR. The flags are:

WNOWAIT Specifies that the process whose status is returned in
status_location is kept in a waitable state. You can wait
for the process again with the same results.

REF–664



wait4

WNOHANG Prevents the suspension of the calling process. If there
are child processes that stopped or terminated, one is
chosen and the waitpid function returns its process ID,
as when you do not specify the WNOHANG flag. If there are
no terminated processes (that is, if waitpid suspends the
calling process without the WNOHANG flag), 0 is returned.
Because you can never wait for process 0, there is no
confusion arising from this return.

WUNTRACED Specifies that the call return additional information
when the child processes of the current process
stop because the child process received a SIGTTIN,
SIGTTOU, SIGSTOP, or SIGTSTOP signal.

If the wait4 function returns because the status of a child process is available, the
process ID of the child process is returned. Information is stored in the location
pointed to by status_location, if this pointer is not null.

The value stored in the location pointed to by status_location is 0 only if the
status is returned from a terminated child process that did one of the following:

• Returned 0 from the main function.

• Passed 0 as the status argument to the _exit or exit function.

Regardless of the status_location value, you can define this information using
the macros defined in the <wait.h> header file, which evaluate to integral
expressions. In the following macro descriptions, status_value is equal to the
integer value pointed to by status_location:

WIFEXITED(status_value) Evaluates to a nonzero value if status was
returned for a child process that terminated
normally.

WEXITSTATUS(status_value) If the value of WIFEXITED(status_value) is
nonzero, this macro evaluates to the low-order 8
bits of the status argument that the child process
passed to the _exit or exit function, or to the
value the child process returned from the main
function.

WIFSIGNALED(status_value) Evaluates to a nonzero value if status was
returned for a child process that terminated due
to the receipt of a signal that was not caught.

WTERMSIG(status_value) If the value of WIFSIGNALED(status_value) is
nonzero, this macro evaluates to the number of
the signal that caused the termination of the
child process.

WIFSTOPPED(status_value) Evaluates to a nonzero value if status was
returned for a child process that is currently
stopped.

WSTOPSIG(status_value) If the value of WIFSTOPPED(status_value) is
nonzero, this macro evaluates to the number
of the signal that caused the child process to
stop.

REF–665



wait4

WIFCONTINUED(status_value) Evaluates to a nonzero value if status was
returned for a child process that has continued.

If the information stored at the location pointed to by status_location was stored
there by a call to wait4 that specified the WUNTRACED flag, one of the following
macros evaluates to a nonzero value:

• WIFEXITED(*status_value)

• WIFSIGNALED(*status_value)

• WIFSTOPPED(*status_value)

• WIFCONTINUED(*status_value)

If the information stored in the location pointed to by status_location resulted
from a call to wait4 without the WUNTRACED flag specified, one of the following
macros evaluates to a nonzero value:

• WIFEXITED(*status_value)

• WIFSIGNALED(*status_value)

The wait4 function is similar to the wait3 function. However, the wait4 function
waits for a specific child as indicated by the process_id argument. The resource_
usage argument points to a location that contains resource usage information for
the child processes as defined in the <resource.h> header file.

See also exit and _exit.

Return Values

0 Indicates success. There are no stopped or exited
child processes, the WNOHANG option is specified.

x The process_id of the child process. The status of
a child process is available.

�1 Indicates an error; errno is set to one of the
following values:

• ECHILD – There are no child processes to
wait for.

• EINTR – Terminated by receipt of a signal
caught by the calling process.

• EFAULT – The status_location or resource_
usage argument points to a location outside
of the address space of the process.

• EINVAL— The value of the options argument
is not valid.

REF–666



waitpid

waitpid

Waits for a child process to stop or terminate.

Format

#include <wait.h>

pid_t waitpid (pid_t process_id, int *status_location, int options);

Arguments

process_id
The child process or set of child processes.

status_location
A pointer to a location that contains the termination status of the child process as
defined in the <wait.h> header file.

Beginning with OpenVMS Version 7.2, when compiled with the _VMS_WAIT
macro defined, the waitpid function puts the OpenVMS completion code of the
child process at the address specified in the status_location argument.

options
Flags that modify the behavior of the function. These flags are defined in the
Description section.

Description

The waitpid function suspends the calling process until the request is completed.
It is redefined so that only the calling thread is suspended.

If the process_id argument is �1 and the options argument is 0, the waitpid
function behaves the same as the wait function. If these arguments have other
values, the waitpid function is changed as specified by those values.

The process_id argument allows the calling process to gather status from a
specific set of child processes, according to the following rules:

If the process_id is Then status is requested

Equal to �1 For any child process. In this respect, the waitpid
function is equivalent to the wait function.

Greater than 0 For a single child process and specifies the process ID.

The waitpid function only returns the status of a child process from this set.

The options argument to the waitpid function modifies the behavior of the
function. You can combine the flags for the options argument by specifying their
bitwise-inclusive OR. The flags are:

WCONTINUED Specifies that the following is reported to the calling
process: the status of any continued child process
specified by the process_id argument whose status is
unreported since it continued.

REF–667



waitpid

WNOWAIT Specifies that the process whose status is returned in
status_location is kept in a waitable state. You can wait
for the process again with the same results.

WNOHANG Prevents the calling process from being suspended. If
there are child processes that stopped or terminated,
one is chosen and waitpid returns its PID, as when
you do not specify the WNOHANG flag. If there are no
terminated processes (that is, if waitpid suspends the
calling process without the WNOHANG flag), 0 (zero) is
returned. Because you can never wait for process 0,
there is no confusion arising from this return.

WUNTRACED Specifies that the call return additional information
when the child processes of the current process
stop because the child process received a SIGTTIN,
SIGTTOU, SIGSTOP, or SIGTSTOP signal.

If the waitpid function returns because the status of a child process is available,
the process ID of the child process is returned. Information is stored in the
location pointed to by status_location, if this pointer is not null. The value stored
in the location pointed to by status_location is 0 only if the status is returned
from a terminated child process that did one of the following:

• Returned 0 from the main function.

• Passed 0 as the status argument to the _exit or exit function.

Regardless of the value of status_location, you can define this information using
the macros defined in the <wait.h> header file, which evaluate to integral
expressions. In the following function descriptions, status_value is equal to the
integer value pointed to by status_location:

WIFEXITED(status_value) Evaluates to a nonzero value if status was
returned for a child process that terminated
normally.

WEXITSTATUS(status_value) If the value of WIFEXITED(status_value) is
nonzero, this macro evaluates to the low-order 8
bits of the status argument that the child process
passed to the _exit or exit function, or to the
value the child process returned from the main
function.

WIFSIGNALED(status_value) Evaluates to a nonzero value if status returned
for a child process that terminated due to the
receipt of a signal not caught.

WTERMSIG(status_value) If the value of WIFSIGNALED(status_value) is
nonzero, this macro evaluates to the number of
the signal that caused the termination of the
child process.

WIFSTOPPED(status_value) Evaluates to a nonzero value if status was
returned for a child process that is currently
stopped.

REF–668



waitpid

WSTOPSIG(status_value) If the value of WIFSTOPPED(status_value) is
nonzero, this macro evaluates to the number
of the signal that caused the child process to
stop.

WIFCONTINUED(status_value) Evaluates to a nonzero value if status returned
for a child process that continued.

If the information stored at the location pointed to by status_location is stored
there by a call to waitpid that specified the WUNTRACED flag, one of the following
macros evaluates to a nonzero value:

• WIFEXITED(*status_value)

• WIFSIGNALED(*status_value)

• WIFSTOPPED(*status_value)

• WIFCONTINUED(*status_value)

If the information stored in the buffer pointed to by status_location resulted from
a call to waitpid without the WUNTRACED flag specified, one of the following macros
evaluates to a nonzero value:

• WIFEXITED(*status_value)

• WIFSIGNALED(*status_value)

If a parent process terminates without waiting for all of its child processes to
terminate, the remaining child processes is assigned a parent process ID equal to
the process ID of the init process.

See also exit, _exit, and wait.

Return Values

0 Indicates success. If the WNOHANG option was
specified, and there are no stopped or exited child
processes, the waitpid function also returns a
value of 0.

REF–669



waitpid

�1 Indicates an error; errno is set to one of the
following values:

• ECHILD—The calling process has no existing
unwaited-for child processes. The process or
process group ID specified by the process_id
argument does not exist or is not a child
process of the calling process.

• EINTR—The function was terminated by
receipt of a signal.
If the waitpid function returns because the
status of a child process is available, the
process ID of the child is returned to the
calling process. If they return because a
signal was caught by the calling process, �1
is returned.

• EFAULT— The status_location argument
points to a location outside of the address
space of the process.

• EINVAL— The value of the options argument
is not valid.

REF–670



wcrtomb

wcrtomb

Converts the wide character to its multibyte character representation.

Format

#include <wchar.h>

size_t wcrtomb (char *s, wchar_t wc, mbstate_t *ps);

Arguments

s
A pointer to the resulting multibyte character.

wc
A wide character.

ps
A pointer to the mbstate_t object. If a NULL pointer is specified, the function
uses its internal mbstate_t object. mbstate_t is an opaque datatype intended to
keep the conversion state for the state-dependent codesets.

Description

If s is a NULL pointer, the wcrtomb function is equivalent to the call:

wcrtomb (buf, L’\0’, ps)

where buf is an internal buffer.

If s is not a NULL pointer, the wcrtomb function determines the number of
bytes needed to represent the multibyte character that corresponds to the wide
character specified by wc (including any shift sequences), and stores the resulting
bytes in the array whose first element is pointed to by s. At most MB_CUR_MAX
bytes are stored.

If wc is a null wide character, a null byte is stored preceded by any shift sequence
needed to restore the initial shift state. The resulting state described is the initial
conversion state.

Return Values

n The number of bytes stored in the resulting
array, including any shift sequences to represent
the multibyte character.

�1 Indicates an encoding error. The wc argument is
not a valid wide character. The global errno is
set to EILSEQ; the conversion state is undefined.

REF–671



wcscat

wcscat

Concatenates two wide-character strings.

Format

#include <wchar.h>

wchar_t *wcscat (wchar_t *wstr_1, const wchar_t *wstr_2);

Function Variants

The wcscat function has variants named _wcscat32 and _wcscat64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

wstr_1, wstr_2
Pointers to null-terminated wide-character strings.

Description

The wcscat function appends the wide-character string wstr_2, including the
terminating null character, to the end of wstr_1.

See also wcsncat.

Return Value

x The first argument, wstr_1, which is assumed to
be large enough to hold the concatenated result.

Example
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>
#include <string.h>

/* This program concatenates two wide-character strings using */
/* the wcscat function, and then manually compares the result */
/* to the expected result */

#define S1LENGTH 10
#define S2LENGTH 8

main()
{

int i;
wchar_t s1buf[S1LENGTH + S2LENGTH];
wchar_t s2buf[S2LENGTH];
wchar_t test1[S1LENGTH + S2LENGTH];

/* Initialize the three wide-character strings */

if (mbstowcs(s1buf, "abcmnexyz", S1LENGTH) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

REF–672



wcscat

if (mbstowcs(s2buf, " orthis", S2LENGTH) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

if (mbstowcs(test1, "abcmnexyz orthis", S1LENGTH + S2LENGTH)

== (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Concatenate s1buf with s2buf, placing the result into */
/* s1buf. Then compare s1buf with the expected result */
/* in test1. */

wcscat(s1buf, s2buf);

for (i = 0; i < S1LENGTH + S2LENGTH - 2; i++) {
/* Check that each character is correct */
if (test1[i] != s1buf[i]) {

printf("Error in wcscat\n");
exit(EXIT_FAILURE);

}
}

printf("Concatenated string: <%S>\n", s1buf);
}

Running the example produces the following result:

Concatenated string: <abcmnexyz orthis>

REF–673



wcschr

wcschr

Scans for a wide character in a specifed wide-character string.

Format

#include <wchar.h>

wchar_t *wcschr (const wchar_t *wstr, wchar_t wc);

Function Variants

The wcschr function has variants named _wcschr32 and _wcschr64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

wstr
A pointer to a null-terminated wide-character string.

wc
A character of type wchar_t.

Description

The wcschr function returns the address of the first occurrence of a specified
wide character in a null-terminated wide-character string. The terminating null
character is considered to be part of the string.

See also wcsrchr.

Return Values

x The address of the first occurrence of the
specified wide character.

NULL Indicates that the wide character does not occur
in the string.

Example
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>
#include <string.h>

#define BUFF_SIZE 50

main()
{

int i;
wchar_t s1buf[BUFF_SIZE];
wchar_t *status;

/* Initialize the buffer */

if (mbstowcs(s1buf, "abcdefghijkl lkjihgfedcba", BUFF_SIZE)

== (size_t)-1) {

REF–674



wcschr

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* This program checks the wcschr function by incrementally */
/* going through a string that ascends to the middle and */
/* then descends towards the end. */

for (i = 0; (s1buf[i] != ’\0’) && (s1buf[i] != ’ ’); i++) {
status = wcschr(s1buf, s1buf[i]);
/* Check for pointer to leftmost character - test 1. */
if (status != &s1buf[i]) {

printf("Error in wcschr\n");
exit(EXIT_FAILURE);

}
}

printf("Program completed successfully\n");
}

When this example program is run, it produces the following result:

Program completed successfully

REF–675



wcscmp

wcscmp

Compares two wide-character strings. It returns an integer that indicates if the
strings are different, and how they differ.

Format

#include <wchar.h>

int wcscmp (const wchar_t *wstr_1, const wchar_t *wstr_2);

Arguments

wstr_1, wstr_2
Pointers to null-terminated wide-character strings.

Description

The wcscmp function compares the wide characters in wstr_1 with those in wstr_2.
If the characters differ, the function returns:

• An integer less than 0, if the codepoint of the first differing character in
wstr_1 is less than the codepoint of the corresponding character in wstr_2

• An integer greater than 0, if the codepoint of the first differing character in
wstr_1 is greater than the codepoint of the corresponding character in wstr_2

If the wide-characters strings are identical, the function returns 0.

Unlike the wcscoll function, the wcscmp function compares the string based on
the binary value of each wide character.

See also wcsncmp.

Return Values

< 0 Indicates that wstr_1 is less than wstr_2.
= 0 Indicates that wstr_1 equals wstr_2.
> 0 Indicates that wstr_1 is greater than wstr_2.

REF–676



wcscoll

wcscoll

Compares two wide-character strings and returns an integer that indicates if the
strings differ, and how they differ. The function uses the collating information in
the LC_COLLATE category of the current locale to determine how the comparison
is performed.

Format

#include <wchar.h>

int wcscoll (const wchar_t *ws1, const wchar_t *ws2);

Arguments

ws1, ws2
Pointers to wide-character strings.

Description

The wcscoll function, unlike wcscmp, compares two strings in a locale-dependent
manner. Because no value is reserved for error indication, the application must
check for one by setting errno to 0 before the function call and testing it after the
call.

See also wcsxfrm.

Return Values

< 0 Indicates that ws1 is less than ws2.
0 Indicates that the strings are equal.
> 0 Indicates that ws1 is greater than ws2.

REF–677



wcscpy

wcscpy

Copies the wide-character string source, including the terminating null character,
into dest.

Format

#include <wchar.h>

wchar_t *wcscpy (wchar_t *dest, const wchar_t *source);

Function Variants

The wcscpy function has variants named _wcscpy32 and _wcscpy64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

dest
Pointer to the null-terminated wide-character destination string.

source
Pointer to the null-terminated wide-character source string.

Description

The wcscpy function copies source into dest, and stops after copying source’s null
character. If copying takes place between two ovelapping strings, the behavior is
undefined.

See also wcsncpy.

Return Value

x The address of source.

REF–678



wcscspn

wcscspn

Compares the characters in a wide-character string against a set of wide
characters. The function returns the length of the initial substring that is
comprised entirely of characters that are not in the set of wide characters.

Format

#include <wchar.h>

size_t wcscspn (const wchar_t *wstr1, const wchar_t *wstr2);

Arguments

wstr1
A pointer to a null-terminated wide-character string. If this is a null string, 0 is
returned.

wstr2
A pointer to a null-terminated wide-character string that contains the set of wide
characters for which the function will search.

Description

The wcscspn function scans the wide characters in the string pointed to by wstr1
until it encounters a character found in wstr2. The function returns the length of
the initial segment of wstr1 that is formed by characters not found in wstr2.

Return Value

x The length of the segment.

Example
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>
#include <string.h>

/* This test sets up 2 strings, buffer and w_string, and */
/* then uses wcscspn() to calculate the maximum segment */
/* of w_string, which consists entirely of characters */
/* NOT from buffer. */

#define BUFF_SIZE 20
#define STRING_SIZE 50

main()
{

wchar_t buffer[BUFF_SIZE];
wchar_t w_string[STRING_SIZE];
size_t result;

/* Initialize the buffer */

if (mbstowcs(buffer, "abcdefg", BUFF_SIZE) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Initialize the string */

REF–679



wcscspn

if (mbstowcs(w_string, "jklmabcjklabcdehjklmno", STRING_SIZE)

== (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Using wcscspn - work out the largest string in w_string */
/* which consists entirely of characters NOT from buffer */

result = wcscspn(w_string, buffer);
printf("Longest segment NOT found in w_string is: %d", result);

}

Running the example program produces the following result:

Longest segment NOT found in w_string is: 4

REF–680



wcsftime

wcsftime

Uses date and time information stored in a tm structure to create a wide-character
output string. The format of the output string is controlled by a format string.

Format

#include <wchar.h>

size_t wcsftime (wchar_t *wcs, size_t maxsize, const char *format, const struct tm *timeptr); (XPG4)

size_t wcsftime (wchar_t *wcs, size_t maxsize, const wchar_t *format, const struct tm *timeptr); (ISO C)

Function Variants

Compiling with the _DECC_V4_SOURCE and _VMS_V6_SOURCE feature-test
macros defined enables a local-time-based entry point to the wcsftime function
that is equivalent to the behavior before OpenVMS Version 7.0.

Arguments

wcs
A pointer to the resultant wide-character string.

maxsize
The maximum number of wide characters to be stored in the resultant string.

format
A pointer to the string that controls the format of the output string. For the
XPG4 interface, this argument is a pointer to a constant character string. For the
ISO C interface, it is a pointer to a constant wide-character string.

timeptr
A pointer to the local time structure. The tm structure is defined in the <time.h>
header file.

Description

The wcsftime function uses data in the structure pointed to by timeptr to
create the wide-character string pointed to by wcs. A maximum of maxsize wide
characters is copied to wcs.

The format string consists of zero or more conversion specifications and ordinary
characters. All ordinary characters (including the terminating null character) are
copied unchanged into the output string. A conversion specification defines how
data in the tm structure is formatted in the output string.

A conversion specification consists of a percent (%) character followed by one or
more optional characters (see Table REF–13), and ending with a conversion
specifier (see Table REF–14). If any of the optional characters listed in
Table REF–13 are specified, they must appear in the order shown in the table.

REF–681



wcsftime

Table REF–13 Optional Elements of wcsftime Conversion Specifications

Element Meaning

– Optional with the field width to specify that the field is left-justified
and padded with spaces. This cannot be used with the 0 element.

0 Optional with the field width to specify that the field is right-
justified and padded with zeros. This cannot be used with the –
element.

field width A decimal integer that specifies the maximum field width
.precision A decimal integer that specifies the precision of data in a field.

For the d, H, I, j, m, M, o, S, U, w, W, y, and Y conversion
specifiers, the precision specifier is the minimum number of digits
to appear in the field. If the conversion specification has fewer
digits than that specified by the precision, leading zeros are added.
For the a, A, b, B, c, D, E, h, n, N, p, r, t, T, x, X, Z, and
% conversion specifiers, the precision specifier is the maximum
number of wide characters to appear in the field. If the conversion
specification has more characters than that specified by the the
precision, characters are truncated on the right.
The default precision for the d, H, I, m, M, o, S, U, w, W, y,
and Y conversion specifiers is 2, and the default precision for the j
conversion specifier is 3.

Note that the list of optional elements of conversion specifications from
Table REF–13 are HP extensions to the XPG4 specification.

Table REF–14 lists the conversion specifiers. The wcsftime function uses fields
in the LC_TIME category of the program’s current locale to provide a value. For
example, if %B is specified, the function accesses the mon field in LC_TIME to find
the full month name for the month specified in the tm structure. The result of
using invalid conversion specifiers is undefined.

Table REF–14 wcsftime Conversion Specifiers

Specifier Replaced by

a The locale’s abbreviated weekday name.
A The locale’s full weekday name.
b The locale’s abbreviated month name.
B The locale’s full month name.
c The locale’s appropriate date and time representation.
C The century number (the year divided by 100 and truncated to an

integer) as a decimal number (00 – 99).
d The day of the month as a decimal number (01 – 31).
D Same as %m/%d/%y.
e The day of the month as a decimal number (1 – 31) in a 2-digit

field with the leading space character fill.
Ec The locale’s alternative date and time representation.

(continued on next page)

REF–682



wcsftime

Table REF–14 (Cont.) wcsftime Conversion Specifiers

Specifier Replaced by

EC The name of the base year (period) in the locale’s alternative
representation.

Ex The locale’s alternative date representation.
Ey The offset from the base year (%EC) in the locale’s alternative

representation.
EY The locale’s full alternative year representation.
h Same as %b.
H The hour (24-hour clock) as a decimal number (00 – 23).
I The hour (12-hour clock) as a decimal number (01 – 12).
j The day of the year as a decimal number (001 – 366).
m The month as a decimal number (01 – 12).
M The minute as a decimal number (00 – 59).
n The new-line character.
Od The day of the month using the locale’s alternative numeric

symbols.
Oe The date of the month using the locale’s alternative numeric

symbols.
OH The hour (24-hour clock) using the locale’s alternative numeric

symbols.
OI The hour (12-hour clock) using the locale’s alternative numeric

symbols.
Om The month using the locale’s alternative numeric symbols.
OM The minutes using the locale’s alternative numeric symbols.
OS The seconds using the locale’s alternative numeric symbols.
Ou The weekday as a number in the locale’s alternative representation

(Monday=1).
OU The week number of the year (Sunday as the first day of the week)

using the locale’s alternative numeric symbols.
OV The week number of the year (Monday as the first day of the

week) as a decimal number (01 –53) using the locale’s alterntative
numeric symbols. If the week containing January 1 has four or
more days in the new year, it is considered as week 1. Otherwise,
it is considered as week 53 of the previous year, and the next week
is week 1.

Ow The weekday as a number (Sunday=0) using the locale’s alternative
numeric symbols.

OW The week number of the year (Monday as the first day of the week)
using the locale’s alternative numeric symbols.

Oy The year without the century using the locale’s alternative numeric
symbols.

(continued on next page)

REF–683



wcsftime

Table REF–14 (Cont.) wcsftime Conversion Specifiers

Specifier Replaced by

p The locale’s equivalent of the AM/PM designations associated with
a 12-hour clock.

r The time in AM/PM notation.
R The time in 24-hour notation (%H:%M).
S The second as a decimal number (00 – 61).
t The tab character.
T The time (%H:%M:%S).
u The weekday as a decimal number between 1 and 7 (Monday=1).
U The week number of the year (the first Sunday as the first day of

week 1) as a decimal number (00 – 53).
V The week number of the year (Monday as the first day of the week)

as a decimal number (00 – 53). If the week containing January 1
has four or more days in the new year, it is considered as week 1.
Otherwise, it is considered as week 53 of the previous year, and the
next week is week 1.

w The weekday as a decimal number (0 [Sunday] – 6).
W The week number of the year (the first Monday as the first day of

week 1) as a decimal number (00 – 53).
x The locale’s appropriate date representation
X The locale’s appropriate time representation
y The year without century as a decimal number (00 – 99).
Y The year with century as a decimal number.
Z Time-zone name or abbreviation. If time-zone information is not

available, no character is output.
% Literal % character.

Return Values

x The number of wide characters placed into
the array pointed to by wcs, not including the
terminating null character.

0 Indicates an error occurred. The contents of the
array are indeterminate.

Example
/* Exercise the wcsftime formating routine. */
/* NOTE: the format string is an "L" (or wide character) */
/* string indicating that this call is NOT in */
/* the XPG4 format, but rather in ISO C format. */

#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <wchar.h>
#include <locale.h>
#include <errno.h>

REF–684



wcsftime

#define NUM_OF_DATES 7
#define BUF_SIZE 256

/* This program formats a number of different dates, once using the */
/* C locale and then using the fr_FR.ISO8859-1 locale. Date and time */
/* formatting is done using wcsftime(). */

main()

{
int count,

i;
wchar_t buffer[BUF_SIZE];
struct tm *tm_ptr;
time_t time_list[NUM_OF_DATES] =
{500, 68200000, 694223999,
694224000, 704900000, 705000000,
705900000};

/* Display dates using the C locale */
printf("\nUsing the C locale:\n\n");

setlocale(LC_ALL, "C");

for (i = 0; i < NUM_OF_DATES; i++) {
/* Convert to a tm structure */
tm_ptr = localtime(&time_list[i]);

/* Format the date and time */
count = wcsftime(buffer, BUF_SIZE, L"Date: %A %d %B %Y%nTime: %T%n%n",

tm_ptr);
if (count == 0) {

perror("wcsftime");
exit(EXIT_FAILURE);

}

/* Print the result */
printf("%S", buffer);

}

/* Display dates using the fr_FR.ISO8859-1 locale */
printf("\nUsing the fr_FR.ISO8859-1 locale:\n\n");

setlocale(LC_ALL, "fr_FR.ISO8859-1");

for (i = 0; i < NUM_OF_DATES; i++) {
/* Convert to a tm structure */
tm_ptr = localtime(&time_list[i]);

/* Format the date and time */
count = wcsftime(buffer, BUF_SIZE, L"Date: %A %d %B %Y%nTime: %T%n%n",

tm_ptr);
if (count == 0) {

perror("wcsftime");
exit(EXIT_FAILURE);

}

/* Print the result */
printf("%S", buffer);

}
}

Running the example program produces the following result:

Using the C locale:

Date: Thursday 01 January 1970
Time: 00:08:20

Date: Tuesday 29 February 1972
Time: 08:26:40

REF–685



wcsftime

Date: Tuesday 31 December 1991
Time: 23:59:59

Date: Wednesday 01 January 1992
Time: 00:00:00

Date: Sunday 03 May 1992
Time: 13:33:20

Date: Monday 04 May 1992
Time: 17:20:00

Date: Friday 15 May 1992
Time: 03:20:00

Using the fr_FR.ISO8859-1 locale:

Date: jeudi 01 janvier 1970
Time: 00:08:20

Date: mardi 29 février 1972
Time: 08:26:40

Date: mardi 31 décembre 1991
Time: 23:59:59

Date: mercredi 01 janvier 1992
Time: 00:00:00

Date: dimanche 03 mai 1992
Time: 13:33:20

Date: lundi 04 mai 1992
Time: 17:20:00

Date: vendredi 15 mai 1992
Time: 03:20:00

REF–686



wcslen

wcslen

Returns the number of wide characters in a wide-character string. The returned
length does not include the terminating null character.

Format

#include <wchar.h>

size_t wcslen (const wchar_t *wstr);

Argument

wstr
A pointer to a null-terminated wide-character string.

Return Value

x The length of the wide-character string,
excluding the terminating null wide character.

REF–687



wcsncat

wcsncat

Concatenates a counted number of wide-characters from one string to another.

Format

#include <wchar.h>

wchar_t *wcsncat (wchar_t *wstr_1, const wchar_t *wstr_2, size_t maxchar);

Function Variants

The wcsncat function has variants named _wcsncat32 and _wcsncat64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

wstr_1, wstr_2
Pointers to null-terminated wide-character strings.

maxchar
The maximum number of wide characters from wstr_2 that are copied to wstr_1.
If maxchar is 0, no characters are copied from wstr_2.

Description

The wcsncat function appends wide characters from the wide-character string
wstr_2 to the end of wstr_1, up to a maximum of maxchar characters. A
terminating null wide character is always appended to the result of the wcsncat
function. Therefore, the maximum number of wide characters that can end up in
wstr_1 is wcslen(wstr_1) + maxchar + 1).

See also wcscat.

Return Value

x The first argument, wstr_1, which is assumed to
be large enough to hold the concatenated result.

Example
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>
#include <string.h>

/* This program concatenates two wide-character strings using */
/* the wcsncat function, and then manually compares the result */
/* to the expected result */

#define S1LENGTH 10
#define S2LENGTH 8
#define SIZE 3

REF–688



wcsncat

main()
{

int i;
wchar_t s1buf[S1LENGTH + S2LENGTH];
wchar_t s2buf[S2LENGTH];
wchar_t test1[S1LENGTH + S2LENGTH];

/* Initialize the three wide-character strings */

if (mbstowcs(s1buf, "abcmnexyz", S1LENGTH) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

if (mbstowcs(s2buf, " orthis", S2LENGTH) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

if (mbstowcs(test1, "abcmnexyz orthis", S1LENGTH + SIZE)

== (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Concatenate s1buf with SIZE characters from s2buf, placing the */
/* result into s1buf. Then compare s1buf with the expected result */
/* in test1. */

wcsncat(s1buf, s2buf, SIZE);

for (i = 0; i <= S1LENGTH + SIZE - 2; i++) {
/* Check that each character is correct */
if (test1[i] != s1buf[i]) {

printf("Error in wcsncat\n");
exit(EXIT_FAILURE);

}

}

printf("Concatenated string: <%S>\n", s1buf);
}

Running the example produces the following result:

Concatenated string: <abcmnexyz or>

REF–689



wcsncmp

wcsncmp

Compares not more than maxchar characters of two wide-character strings. It
returns an integer that indicates if the strings are different, and how they differ.

Format

#include <wchar.h>

int wcsncmp (const wchar_t *wstr_1, const wchar_t *wstr_2, size_t maxchar);

Arguments

wstr_1, wstr_2
Pointers to null-terminated wide-character strings.

maxchar
The maximum number of characters to search in both wstr_1 and wstr_2. If
maxchar is 0, no comparison is performed and 0 is returned (the strings are
considered equal).

Description

The strings are compared until a null character is encountered, the strings differ,
or maxchar is reached. If characters differ, wcsncmp returns:

• An integer less than 0 if the codepoint of the first differing character in wstr_1
is less than the codepoint of the corresponding character in wstr_2

• An integer greater than 0 if the codepoint of the first differing character in
wstr_1 is greater than the codepoint of the corresponding character in wstr_2

If no differences are found after comparing maxchar characters, the function
returns 0.

See also wcscmp.

Return Values

< 0 Indicates that wstr_1 is less than wstr_2.
0 Indicates that wstr_1 equals wstr_2.
> 0 Indicates that wstr_1 is greater than wstr_2.

REF–690



wcsncpy

wcsncpy

Copies wide characters from source into dest. The function copies up to a
maximum of maxchar characters.

Format

#include <wchar.h>

wchar_t *wcsncpy (wchar_t *dest, const wchar_t *source, size_t maxchar);

Function Variants

The wcsncpy function has variants named _wcsncpy32 and _wcsncpy64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

dest
Pointer to the null-terminated wide-character destination string.

source
Pointer to the null-terminated wide-character source string.

maxchar
The maximum number of wide characters to copy from source to dest.

Description

The wcsncpy function copies no more than maxchar characters from source to
dest. If source contains less than maxchar characters, null characters are added
to dest until maxchar characters have been written to dest.

If source contains maxchar or more characters, as many characters as possible
are copied to dest. The null terminator of source is not copied to dest.

See also wcscpy.

Return Value

x The address of dest.

REF–691



wcspbrk

wcspbrk

Searches a wide-character string for the first occurrence of one of a specified set
of wide characters.

Format

#include <wchar.h>

wchar_t *wcspbrk (const wchar_t *wstr, const wchar_t *charset);

Function Variants

The wcspbrk function has variants named _wcspbrk32 and _wcspbrk64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

wstr
A pointer to a wide-character string. If this is a null string, NULL is returned.

charset
A pointer to a wide-character string containing the set of wide characters for
which the function will search.

Description

The wcspbrk function scans the wide characters in the string, stops when it
encounters a wide character found in charset, and returns the address of the first
character in the string that appears in the character set.

Return Values

x The address of the first wide character in the
string that is in the set.

NULL Indicates that none of the characters are in
charset.

REF–692



wcsrchr

wcsrchr

Scans for the last occurrence of a wide character in a given string.

Format

#include <wchar.h>

wchar_t *wcsrchr (const wchar_t *wstr, wchar_t wc);

Function Variants

The wcsrchr function has variants named _wcsrchr32 and _wcsrchr64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

wstr
A pointer to a null-terminated wide-character string.

wc
A character of type wchar_t.

Description

The wcsrchr function returns the address of the last occurrence of a given wide
character in a null-terminated wide-character string. The terminating null
character is considered to be part of the string.

See also wcschr.

Return Values

x The address of the last occurrence of the specified
wide character.

NULL Indicates that the wide character does not occur
in the string.

Example
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>
#include <string.h>

#define BUFF_SIZE 50
#define STRING_SIZE 6

main()
{

int i;
wchar_t s1buf[BUFF_SIZE],

w_string[STRING_SIZE];
wchar_t *status;
wchar_t *pbuf = s1buf;

/* Initialize the buffer */

if (mbstowcs(s1buf, "hijklabcdefg ytuhijklfedcba", BUFF_SIZE)

REF–693



wcsrchr

== (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Initialize the string to be searched for */

if (mbstowcs(w_string, "hijkl", STRING_SIZE) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* This program checks the wcsrchr function by searching for */
/* the last occurrence of a string in the buffer s1buf and */
/* prints out the contents of s1buff from the location of
/* the string found. */

status = wcsrchr(s1buf, w_string[0]);
/* Check for pointer to start of rightmost character string. */

if (status == pbuf) {
printf("Error in wcsrchr\n");
exit(EXIT_FAILURE);

}

printf("Program completed successfully\n");
printf("String found : [%S]\n", status);

}

Running the example produces the following result:

Program completed successfully
String found : [hijklfedcba]

REF–694



wcsrtombs

wcsrtombs

Converts a sequence of wide characters into a sequence of corresponding
multibyte characters.

Format

#include <wchar.h>

size_t wcsrtombs (char *dst, const wchar_t **src, size_t len, mbstate_t *ps);

Function Variants

The wcsrtombs function has variants named _wcsrtombs32 and _wcsrtombs64 for
use with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

dst
A pointer to the destination array for converted multibyte character sequence.

src
An address of the pointer to an array containing the sequence of wide characters
to be converted.

len
The maximum number of bytes that can be stored in the array pointed to by dst.

ps
A pointer to the mbstate_t object. If a NULL pointer is specified, the function
uses its internal mbstate_t object. mbstate_t is an opaque datatype intended to
keep the conversion state for the state-dependent codesets.

Description

The wcsrtombs function converts a sequence of wide characters from the array
indirectly pointed to by src into a sequence of corresponding multibyte characters,
beginning in the conversion state described by the object pointed to by ps.

If dst is a not a NULL pointer, the converted characters are then stored into the
array pointed to by dst. Conversion continues up to and including a terminating
null wide character, which is also stored.

Conversion stops earlier in two cases:

• When a code is reached that does not correspond to a valid multibyte
character

• If dst is not a NULL pointer, when the next multibyte character would exceed
the limit of len total bytes to be stored into the array pointed to by dst

Each conversion takes place as if by a call to the wcrtomb function.

If dst is not a NULL pointer, the pointer object pointed to by src is assigned either
a NULL pointer (if the conversion stopped because it reached a terminating null
wide character) or the address just beyond the last wide character converted (if
any). If conversion stopped because it reached a terminating null wide character,
the resulting state described is the initial conversion state.

REF–695



wcsrtombs

If the wcsrtombs function is called as a counting function, which means that
dst is a NULL pointer, the value of the internal mbstate_t object will remain
unchanged.

See also wcrtomb.

Return Values

x The number of bytes stored in the resulting
array, not including the terminating null (if any).

�1 Indicates an encoding error—a character that
does not correspond to a valid multibyte
character was encountered; errno is set to
EILSEQ; the conversion state is undefined.

REF–696



wcsspn

wcsspn

Compares the characters in a wide-character string against a set of wide
characters. The function returns the length of the first substring comprised
entirely of characters in the set of wide characters.

Format

#include <wchar.h>

size_t wcsspn (const wchar_t *wstr1, const wchar_t *wstr2);

Arguments

wstr1
A pointer to a null-terminated wide-character string. If this string is a null
string, 0 is returned.

wstr2
A pointer to a null-terminated wide-character string that contains the set of wide
characters for which the function will search.

Description

The wcsspn function scans the wide characters in the wide-character string
pointed to by wstr1 until it encounters a character not found in wstr2. The
function returns the length of the first segment of wstr1 formed by characters
found in wstr2.

Return Value

x The length of the segment.

Example
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>
#include <string.h>

/* This test sets up 2 strings, buffer and w_string. It */
/* then uses wcsspn() to calculate the maximum segment */
/* of w_string that consists entirely of characters */
/* from buffer. */

#define BUFF_SIZE 20
#define STRING_SIZE 50

main()
{

wchar_t buffer[BUFF_SIZE];
wchar_t w_string[STRING_SIZE];
size_t result;

/* Initialize the buffer */

if (mbstowcs(buffer, "abcdefg", BUFF_SIZE) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

REF–697



wcsspn

/* Initialize the string */

if (mbstowcs(w_string, "abcedjklmabcjklabcdehjkl", STRING_SIZE)

== (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Using wcsspn - work out the largest string in w_string */
/* that consists entirely of characters from buffer */

result = wcsspn(w_string, buffer);
printf("Longest segment found in w_string is: %d", result);

}

Running the example program produces the following result:

Longest segment found in w_string is: 5

REF–698



wcsstr

wcsstr

Locates the first occurrence in the string pointed to by s1 of the sequence of wide
characters in the string pointed to by s2.

Format

#include <wchar.h>

wchar_t *wcsstr (const wchar_t *s1, const wchar_t *s2);

Function Variants

The wcsstr function has variants named _wcsstr32 and _wcsstr64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

s1, s2
Pointers to null-terminated, wide-character strings.

Description

If s2 points to a wide-character string of 0 length, the wcsstr function returns s1.

Return Values

x A pointer to the located string.
NULL Indicates an error; the string was not found.

REF–699



wcstod

wcstod

Converts a given wide-character string to a double-precision number.

Format

#include <wchar.h>

double wcstod (const wchar_t *nptr, wchar_t **endptr);

Arguments

nptr
A pointer to the wide-character string to be converted to a double-precision
number.

endptr
The address of an object where the function can store the address of the first
unrecognized wide character that terminates the scan. If endptr is a NULL
pointer, the address of the first unrecognized wide character is not retained.

Description

The wcstod function recognizes an optional sequence of white-space characters
(as defined by iswspace), then an optional plus or minus sign, then a sequence
of digits optionally containing a radix character, then an optional letter (e or E)
followed by an optionally signed integer. The first unrecognized character ends
the conversion.

The string is interpreted by the same rules used to interpret floating constants.

The radix character is defined in the program’s current locale (category
LC_NUMERIC).

This function returns the converted value. For wcstod, overflows are accounted
for in the following manner:

• If the correct value causes an overflow, HUGE_VAL (with a plus or minus sign
according to the sign of the value) is returned and errno is set to ERANGE.

• If the correct value causes an underflow, 0 is returned and errno is set to
ERANGE.

If the string starts with an unrecognized wide character, *endptr is set to nptr
and a 0 value is returned.

Return Values

x The converted string.

REF–700



wcstod

0 Indicates the conversion could not be performed.
The function sets errno to one of:

• EINVAL – No conversion could be performed.

• ERANGE – The value would cause an
underflow.

• ENOMEM – Not enough memory available
for internal conversion buffer.

�HUGE_VAL Overflow occurred; errno is set to ERANGE.

REF–701



wcstok

wcstok

Locates text tokens in a given wide-character string.

Format

#include <wchar.h>

wchar_t *wcstok (wchar_t *ws1, const wchar_t *ws2); (XPG4)

wchar_t *wcstok (wchar_t *ws1, const wchar_t *ws2, wchar_t **ptr); (ISO C)

Function Variants

The wcstok function has variants named _wcstok32 and _wcstok64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

ws1
A pointer to a wide-character string containing zero or more text tokens.

ws2
A pointer to a separator string consisting of one or more wide characters. The
separator string can differ from call to call.

ptr
ISO C Standard only. Used only when ws1 is NULL, ptr is a caller-provided
wchar_t pointer into which wcstok stores information necessary for it to continue
scanning the same wide-character string.

Description

A sequence of calls to wcstok breaks the wide-character string pointed to by ws1
into a sequence of tokens, each of which is delimited by a wide character from the
wide-character string pointed to by ws2.

The wcstok function keeps track of its position in the wide-character string
between calls and, as successive calls are made, the function works through the
wide-character string, identifying the text token following the one identified by
the previous call.

Tokens in ws1 are delimited by null characters that wcstok inserts into ws1.
Therefore, ws1 cannot be a const object.

The following sections describe differences between the XPG4 Standard and
ISO C Standard interface to wcstok.

XPG4 Standard Behavior
The first call to the wcstok function searches the wide-character string for the
first character that is not found in the separator string pointed to by ws2. The
first call returns a pointer to the first wide character in the first token and writes
a null wide character into ws1 immediately following the returned token.

REF–702



wcstok

Subsequent calls to wcstok search for a wide character that is in the separator
string pointed to by ws2. Each subsequent call (with the value of the first
argument remaining NULL) returns a pointer to the next token in the string
originally pointed to by ws1. When no tokens remain in the string, wcstok
returns a NULL pointer.

ISO C Standard Behavior
For the first call in the sequence, ws1 points to a wide-character string. In
subsequent calls for the same string, ws1 is NULL. When ws1 is NULL, the
value pointed to by ptr matches that stored by the previous call for the same
wide-character string. Otherwise, the value pointed to by ptr is ignored.

The first call in the sequence searches the wide-character string pointed to by
ws1 for the first wide character that is not contained in the current separator
wide-character string pointed to by ws2. If no such wide character is found, then
there are no tokens in the wide-character string pointed to by ws1, and wcstok
returns a NULL pointer.

The wcstok function then searches from there for a wide character that is
contained in the current separator wide-character string. If no such wide
character is found, the current token extends to the end of the wide-character
string pointed to by ws1, and subsequent searches in the same wide-character
string for a token return a NULL pointer. If such a wide character is found, it is
overwritten by a null wide character, which terminates the current token.

In all cases, wcstok stores sufficient information in the pointer pointed to by ptr
so that subsequent calls with a NULL pointer for ws1 and the unmodified pointer
value for ptr start searching just past the element overwritten by a null wide
character (if any).

Return Values

x A pointer to the first character of a token.
NULL Indicates that no token was found.

Examples

1. /* XPG4 version of wcstok call */

#include <wchar.h>
#include <string.h>
#include <stdio.h>

main()
{

wchar_t str[] = L"...ab..cd,,ef.hi";

printf("|%S|\n", wcstok(str, L"."));
printf("|%S|\n", wcstok(NULL, L","));
printf("|%S|\n", wcstok(NULL, L",."));
printf("|%S|\n", wcstok(NULL, L",."));

}

REF–703



wcstok

2. /* ISO C version of wcstok call */

#include <wchar.h>
#include <string.h>
#include <stdio.h>

main()
{

wchar_t str[] = L"...ab..cd,,ef.hi";
wchar_t *savptr = NULL;

printf("|%S|\n", wcstok(str, L".", &savptr));
printf("|%S|\n", wcstok(NULL, L",", &savptr));
printf("|%S|\n", wcstok(NULL, L",.", &savptr));
printf("|%S|\n", wcstok(NULL, L",.", &savptr));

}

Running this example produces the following results:

$ $ RUN WCSTOK_EXAMPLE
|ab|
|.cd|
|ef|
|hi|
$

REF–704



wcstol

wcstol

Converts a wide-character string in a specified base to a long integer value.

Format

#include <wchar.h>

long int wcstol (const wchar_t *nptr, wchar_t **endptr, int base);

Function Variants

The wcstol function has variants named _wcstol32 and _wcstol64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

nptr
A pointer to the wide-character string to be converted to a long integer.

endptr
The address of an object where the function can store a pointer to the first
unrecognized character encountered in the conversion process (the character that
follows the last character processed in the string being converted). If endptr is a
NULL pointer, the address of the first unrecognized character is not retained.

base
The value, 2 through 36, to use as the base for the conversion.

If base is 16, leading zeros after the optional sign are ignored, and 0x or 0X is
ignored.

If base is 0, the sequence of characters is interpreted by the same rules used to
interpret an integer constant. After the optional sign:

• A leading 0 indicates octal conversion.

• A leading 0x or 0X indicates hexadecimal conversion.

• Any other combination of leading characters indicates decimal conversion.

Description

The wcstol function recognizes strings in various formats, depending on the value
of the base. This function ignores any leading white-space characters (as defined
by the iswspace function) in the given string. It recognizes an optional plus or
minus sign, then a sequence of digits or letters that can represent an integer
constant according to the value of the base. The first unrecognized character ends
the conversion.

REF–705



wcstol

Return Values

x The converted value.
0 Indicates that the string starts with an

unrecognized wide character or that the value
for base is invalid. If the string starts with an
unrecognized wide character, *endptr is set to
nptr. The function sets errno to EINVAL.

LONG_MAX or LONG_MIN Indicates that the converted value would cause
a positive or negative overflow, respectively. The
function sets errno to ERANGE.

REF–706



wcstombs

wcstombs

Converts a sequence of wide-character codes to a sequence of multibyte
characters.

Format

#include <stdlib.h>

size_t wcstombs (char *s, const wchar_t *pwcs, size_t n);

Arguments

s
A pointer to the array containing the resulting multibyte characters.

pwcs
A pointer to the array containing the sequence of wide-character codes.

n
The maximum number of bytes to be stored in the array pointed to by s.

Description

The wcstombs function converts a sequence of codes corresponding to multibyte
characters from the array pointed to by pwcs to a sequence of multibyte
characters that are stored into the array pointed to by s, up to a maximum
of n bytes. The value returned is equal to the number of characters converted or
a �1 if an error occurred.

This function is affected by the LC_CTYPE category of the program’s current
locale.

If s is NULL, this function call is a counting operation and n is ignored.

See also wctomb.

Return Values

x The number of bytes stored in s, not including
the null terminating byte. If s is NULL,
wcstombs returns the number of bytes required
for the multibyte character array.

(size_t) �1 Indicates an error occurred. The function sets
errno to EILSEQ – invalid character sequence,
or a wide-character code does not correspond to a
valid character.

REF–707



wcstoul

wcstoul

Converts the initial portion of the wide-character string pointed to by nptr to an
unsigned long integer.

Format

#include <wchar.h>

unsigned long int wcstoul (const wchar_t *nptr, wchar_t **endptr, int base);

Function Variants

The wcstoul function has variants named _wcstoul32 and _wcstoul64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

nptr
A pointer to the wide-character string to be converted to an unsigned long.

endptr
The address of an object where the function can store the address of the first
unrecognized character encountered in the conversion process (the character that
follows the last character in the string being converted). If endptr is a NULL
pointer, the address of the first unrecognized character is not retained.

base
The value, 2 through 36, to use as the base for the conversion.

If base is 16, leading zeros after the optional sign are ignored, and 0x or 0X is
ignored.

If base is 0, the sequence of characters is interpreted by the same rules used to
interpret an integer constant: after the optional sign, a leading 0 indicates octal
conversion, a leading 0x or 0X indicates hexadecimal conversion, and any other
combination of leading characters indicates decimal conversion.

Description

The wcstoul function recognizes strings in various formats, depending on the
value of the base. It ignores any leading white-space characters (as defined by
the iswspace function) in the string. It recognizes an optional plus or minus
sign, then a sequence of digits or letters that may represent an integer constant
according to the value of the base. The first unrecognized wide character ends the
conversion.

REF–708



wcstoul

Return Values

x The converted value.
0 Indicates that the string starts with an

unrecognized wide character or that the value
for base is invalid. If the string starts with an
unrecognized wide character, *endptr is set to
nptr. The function sets errno to EINVAL.

ULONG_MAX Indicates that the converted value would
cause an overflow. The function sets errno to
ERANGE.

Example
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>
#include <errno.h>
#include <limits.h>

/* This test calls wcstoul() to convert a string to an */
/* unsigned long integer. wcstoul outputs the resulting */
/* integer and any characters that could not be converted. */

#define MAX_STRING 128

main()
{

int base = 10,
errno;

char *input_string = "1234.56";
wchar_t string_array[MAX_STRING],

*ptr;
size_t size;
unsigned long int val;
printf("base = [%d]\n", base);
printf("String to convert = %s\n", input_string);
if ((size = mbstowcs(string_array, input_string, MAX_STRING)) ==

(size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}
printf("wchar_t string is = [%S]\n", string_array);

errno = 0;
val = wcstoul(string_array, &ptr, base);
if (errno == 0) {

printf("returned unsigned long int from wcstoul = [%u]\n", val);
printf("wide char terminating scan(ptr) = [%S]\n\n", ptr);

}
if (errno == ERANGE) {

perror("error value is :");
printf("ULONG_MAX = [%u]\n", ULONG_MAX);
printf("wcstoul failed, val = [%d]\n\n", val);

}

}

REF–709



wcstoul

Running the example program produces the following result:

base = [10]
String to convert = 1234.56
wchar_t string is = [1234.56]
returned unsigned long int from wcstoul = [1234]
wide char terminating scan(ptr) = [.56]

REF–710



wcswcs

wcswcs

Locates the first occurrence in the string pointed to by wstr1 of the sequence of
wide characters in the string pointed to by wstr2.

Format

#include <wchar.h>

wchar_t *wcswcs (const wchar_t *wstr1, const wchar_t *wstr2);

Function Variants

The wcswcs function has variants named _wcswcs32 and _wcswcs64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

wstr1, wstr2
Pointers to null-terminated wide-character strings.

Return Values

Pointer A pointer to the located wide-character string.
NULL Indicates that the wide-character string was not

found.

Example
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>

/* This test uses wcswcs() to find the occurrence of each */
/* subwide-character string, string1 and string2, within */
/* the main wide-character string, lookin. */

#define BUF_SIZE 50

main()
{
static char lookin[] = "that this is a test was at the end";

char string1[] = "this",
string2[] = "the end";

wchar_t buffer[BUF_SIZE],
input_buffer[BUF_SIZE];

/* Convert lookin to wide-character format. */
/* Buffer and print it out. */

if (mbstowcs(buffer, lookin, BUF_SIZE) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

printf("Buffer to look in: %S\n", buffer);

/* Convert string1 to wide-character format and use */
/* wcswcs() to locate it within buffer */

REF–711



wcswcs

if (mbstowcs(input_buffer, string1, BUF_SIZE) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

printf("this: %S\n", wcswcs(buffer, input_buffer));

/* Convert string2 to wide-character format and use */
/* wcswcs() to locate it within buffer */

if (mbstowcs(input_buffer, string2, BUF_SIZE) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}
printf("the end: %S\n", wcswcs(buffer, input_buffer));

exit(1);
}

Running this example produces the following results:

Buffer to look in: that this is a test was at the end
this: this is a test was at the end
the end: the end

REF–712



wcswidth

wcswidth

Determines the number of printing positions on a display device that are required
for a wide-character string.

Format

#include <wchar.h>

int wcswidth (const wchar_t *pwcs, size_t n);

Arguments

pwcs
A pointer to a wide-character string.

n
The maximum number of characters in the string.

Description

The wcswidth function returns the number of printing positions required to
display the first n characters of the string pointed to by pwcs. If there are less
than n wide characters in the string, the function returns the number of positions
required for the whole string.

Return Values

x The number of printing positions required.
0 If pwcs is a null character.
�1 Indicates that one (or more) of the wide

characters in the string pointed to by pwcs is
not a printable character.

REF–713



wcsxfrm

wcsxfrm

Changes a wide-character string such that the changed string can be passed to
the wcscmp function and produce the same result as passing the unchanged string
to the wcscoll function.

Format

#include <wchar.h>

size_t wcsxfrm (wchar_t *ws1, const wchar_t *ws2, size_t maxchar);

Arguments

ws1, ws2
Pointers to wide-character strings.

maxchar
The maximum number of wide characters, including the null wide-character
terminator, allowed to be stored in s1.

Description

The wcsxfrm function transforms the string pointed to by ws2 and stores the
resulting string in the array pointed to by ws1. No more than maxchar wide
characters, including the null wide terminator, are placed into the array pointed
to by ws1.

If the value of maxchar is less than the required size to store the transformed
string (including the terminating null), the contents of the array pointed to
by ws1 is indeterminate. In such a case, the function returns the size of the
transformed string.

If maxchar is 0, then, ws1 is allowed to be a NULL pointer, and the function
returns the required size of the ws1 array before making the transformation.

The wide-character string comparison functions, wcscoll and wcscmp, can produce
different results given the same two wide-character strings to compare. This is
because wcscmp does a straightforward comparison of the code point values of the
characters in the strings, whereas wcscoll uses the locale information to do the
comparison. Depending on the locale, the wcscoll comparison can be a multipass
operation, which is slower than wcscmp.

The wcsxfrm function transforms wide-character strings in such a way that if you
pass two transformed strings to the wcscmp function, the result is the same as
passing the two original strings to the wcscoll function. The wcsxfrm function
is useful in applications that need to do a large number of comparisons on the
same wide-character strings using wcscoll. In this case, it may be more efficient
(depending on the locale) to transform the strings once using wcsxfrm and then
use the wcscmp function to do comparisons.

REF–714



wcsxfrm

Return Values

x Length of the resulting string pointed to by ws1,
not including the terminating null character.

(size_t) �1 Indicates that an error occurred. The function
sets errno to EINVAL – The string pointed to by
ws2 contains characters outside the domain of
the collating sequence.

Example
#include <wchar.h>
#include <stdio.h>
#include <stdlib.h>
#include <locale.h>

/* This program verifies that two transformed strings, */
/* when passed through wcsxfrm and then compared, provide */
/* the same result as if passed through wcscoll without */
/* any transformation. */

#define BUFF_SIZE 20

main()
{

wchar_t w_string1[BUFF_SIZE];
wchar_t w_string2[BUFF_SIZE];
wchar_t w_string3[BUFF_SIZE];
wchar_t w_string4[BUFF_SIZE];
int errno;
int coll_result;
int wcscmp_result;
size_t wcsxfrm_result1;
size_t wcsxfrm_result2;

/* setlocale to French locale */

if (setlocale(LC_ALL, "fr_FR.ISO8859-1") == NULL) {
perror("setlocale");
exit(EXIT_FAILURE);

}

/* Convert each of the strings into wide-character format. */

if (mbstowcs(w_string1, "<a‘>bcd", BUFF_SIZE) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

if (mbstowcs(w_string2, "abcz", BUFF_SIZE) == (size_t)-1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Collate string 1 and string 2 and store the result. */

errno = 0;
coll_result = wcscoll(w_string1, w_string2);
if (errno) {

perror("wcscoll");
exit(EXIT_FAILURE);

}
else {

REF–715



wcsxfrm

/* Transform the strings (using wcsxfrm) into */
/* w_string3 and w_string4. */

wcsxfrm_result1 = wcsxfrm(w_string3, w_string1, BUFF_SIZE);

if (wcsxfrm_result1 == ((size_t) - 1))
perror("wcsxfrm");

else if (wcsxfrm_result1 > BUFF_SIZE) {
perror("\n** String is too long **\n");
exit(EXIT_FAILURE);

}
else {

wcsxfrm_result2 = wcsxfrm(w_string4, w_string2, BUFF_SIZE);
if (wcsxfrm_result2 == ((size_t) - 1)) {

perror("wcsxfrm");
exit(EXIT_FAILURE);

}
else if (wcsxfrm_result2 > BUFF_SIZE) {

perror("\n** String is too long **\n");
exit(EXIT_FAILURE);

}

/* Compare the two transformed strings and verify that */
/* the result is the same as the result from wcscoll on */
/* the original strings. */

else {
wcscmp_result = wcscmp(w_string3, w_string4);
if (wcscmp_result == 0 && (coll_result == 0)) {

printf("\nReturn value from wcscoll() and return value"
" from wcscmp() are both zero.");

printf("\nThe program was successful\n\n");
}
else if ((wcscmp_result < 0) && (coll_result < 0)) {

printf("\nReturn value from wcscoll() and return value"
" from wcscmp() are less than zero.");

printf("\nThe program was successful\n\n");
}
else if ((wcscmp_result > 0) && (coll_result > 0)) {

printf("\nReturn value from wcscoll() and return value"
" from wcscmp() are greater than zero.");

printf("\nThe program was successful\n\n");
}
else {

printf("** Error **\n");
printf("\nReturn values are not of the same type");

}
}

}
}

}

Running the example program produces the following result:

Return value from wcscoll() and return value
from wcscmp() are less than zero.

The program was successful

REF–716



wctob

wctob

Determines if a wide character corresponds to a single-byte multibyte character
and returns its multibyte character representation.

Format

#include <stdio.h>

#include <wchar.h>

int wctob (wint_t c);

Argument

c
The wide character to be converted to a single-byte multibyte character.

Description

The wctob function determines whether the specified wide character corresponds
to a single-byte multibyte character when in the initial shift state and, if so,
returns its multibyte character representation.

Return Values

x The single-byte representation of the wide
character specified.

EOF Indicates an error. The wide character specified
does not correspond to a single-byte multibyte
character.

REF–717



wctomb

wctomb

Converts a wide character to its multibyte character representation.

Format

#include <stdlib.h>

int wctomb (char *s, wchar_t wchar);

Arguments

s
A pointer to the resulting multibyte character.

wchar
The code for the wide character.

Description

The wctomb function converts the wide character specified by wchar to its
multibyte character representation. If s is NULL, then 0 is returned. Otherwise,
the number of bytes comprising the multibyte character is returned. At most,
MB_CUR_MAX bytes are stored in the array object pointed to by s.

This function is affected by the LC_CTYPE category of the program’s current
locale.

Return Values

x The number of bytes comprising the multibyte
character corresponding to wchar.

0 If s is NULL.
�1 If wchar is not a valid character.

REF–718



wctrans

wctrans

Returns the description of a mapping, corresponding to specified property, that
can later be used in a call to towctrans.

Format

#include <wctype.h>

wctrans_t wctrans (const char *property);

Argument

property
The name of the mapping. The following property names are defined for all
locales:

• "toupper"

• "tolower"

Additional property names may also be defined in the LC_CTYPE category of the
current locale.

Description

The wctrans function constructs a value with type wctrans_t that describes a
mapping between wide characters identified by the property argument.

See also towctrans.

Return Values

nonzero According to the LC_CTYPE category of the
current program locale, the string specified as
a property argument is the name of an existing
character mapping. The value returned can be
used in a call to the towctrans function.

0 Indicates an error. The property argument does
not identify a character mapping in the current
program’s locale.

REF–719



wctype

wctype

Used for defining a character class. The value returned by this function is used
in calls to the iswctype function.

Format

#include <wctype.h> (ISO C)

#include <wchar.h> (XPG4)

wctype_t wctype (const char *char_class);

Argument

char_class
A pointer to a valid character class name.

Description

The wctype function converts a valid character class defined for the current locale
to an object of type wctype_t. The following character class names are defined for
all locales:

alnum cntrl lower space
alpha digit print upper
blank graph punct xdigit

Additional character class names may also be defined in the LC_CTYPE category
of the current locale.

See also iswctype.

Return Values

x An object of type wctype_t that can be used in
calls to the iswctype function.

0 If the character class name is not valid for the
current locale.

Example
#include <locale.h>
#include <wchar.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>

/* This test will set up a number of character class using wctype() */
/* and then verify whether calls to iswctype() using these classes */
/* produce the same results as calls to the is**** routines. */

main()
{

wchar_t w_char;
wctype_t ret_val;

char *character = "A";

/* Convert character to wide character format - w_char */

REF–720



wctype

if (mbtowc(&w_char, character, 1) == -1) {
perror("mbtowc");
exit(EXIT_FAILURE);

}

/* Check if results from iswalnum() matches check on */
/* alnum character class */

if ((iswalnum((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("alnum"))))
printf("[%C] is a member of the character class alnum\n", w_char);

else
printf("[%C] is not a member of the character class alnum\n", w_char);

/* Check if results from iswalpha() matches check on */
/* alpha character class */

if ((iswalpha((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("alpha"))))

printf("[%C] is a member of the character class alpha\n", w_char);
else
printf("[%C] is not a member of the character class alpha\n", w_char);

/* Check if results from iswcntrl() matches check on */
/* cntrl character class */

if ((iswcntrl((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("cntrl"))))
printf("[%C] is a member of the character class cntrl\n", w_char);

else
printf("[%C] is not a member of the character class cntrl\n", w_char);

/* Check if results from iswdigit() matches check on */
/* digit character class */

if ((iswdigit((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("digit"))))
printf("[%C] is a member of the character class digit\n", w_char);

else
printf("[%C] is not a member of the character class digit\n", w_char);

/* Check if results from iswgraph() matches check on */
/* graph character class */

if ((iswgraph((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("graph"))))
printf("[%C] is a member of the character class graph\n", w_char);

else
printf("[%C] is not a member of the character class graph\n", w_char);

/* Check if results from iswlower() matches check on */
/* lower character class */

if ((iswlower((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("lower"))))
printf("[%C] is a member of the character class lower\n", w_char);

else
printf("[%C] is not a member of the character class lower\n", w_char);

/* Check if results from iswprint() matches check on */
/* print character class */

if ((iswprint((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("print"))))
printf("[%C] is a member of the character class print\n", w_char);

else
printf("[%C] is not a member of the character class print\n", w_char);

/* Check if results from iswpunct() matches check on */
/* punct character class */

REF–721



wctype

if ((iswpunct((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("punct"))))
printf("[%C] is a member of the character class punct\n", w_char);

else
printf("[%C] is not a member of the character class punct\n", w_char);

/* Check if results from iswspace() matches check on */
/* space character class */

if ((iswspace((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("space"))))
printf("[%C] is a member of the character class space\n", w_char);

else
printf("[%C] is not a member of the character class space\n", w_char);

/* Check if results from iswupper() matches check on */
/* upper character class */

if ((iswupper((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("upper"))))
printf("[%C] is a member of the character class upper\n", w_char);

else
printf("[%C] is not a member of the character class upper\n", w_char);

/* Check if results from iswxdigit() matches check on */
/* xdigit character class */

if ((iswxdigit((wint_t) w_char)) &&
(iswctype((wint_t) w_char, wctype("xdigit"))))
printf("[%C] is a member of the character class xdigit\n", w_char);

else
printf("[%C] is not a member of the character class xdigit\n", w_char);

}

Running this example produces the following result:

[A] is a member of the character class alnum
[A] is a member of the character class alpha
[A] is not a member of the character class cntrl
[A] is not a member of the character class digit
[A] is a member of the character class graph
[A] is not a member of the character class lower
[A] is a member of the character class print
[A] is not a member of the character class punct
[A] is not a member of the character class space
[A] is a member of the character class upper
[A] is a member of the character class xdigit

REF–722



wcwidth

wcwidth

Determines the number of printing positions on a display device required for the
specified wide character.

Format

#include <wchar.h>

int wcwidth (wchar_t wc);

Argument

wc
A wide character.

Description

The wcwidth function determines the number of column positions needed for the
specified wide character wc. The value of wc must be a valid wide character in
the current locale.

Return Values

x The number of printing positions required for wc.
0 If wc is a null character.
�1 Indicates that wc does not represent a valid

printing wide character.

REF–723



wmemchr

wmemchr

Locates the first occurrence of a specified wide character in an array of wide
characters.

Format

#include <wchar.h>

wchar_t wmemchr (const wchar_t *s, wchar_t c, size_t n);

Function Variants

The wmemchr function has variants named _wmemchr32 and _wmemchr64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

s
A pointer to an array of wide characters to be searched.

c
The wide character value to search for.

n
The maximum number of wide characters in the array to be searched.

Description

The wmemchr function locates the first occurrence of the specified wide character
in the initial n wide characters of the array pointed to by s.

Return Values

x A pointer to the first occurrence of the wide
character in the array.

NULL The specified wide character does not occur in
the array.

REF–724



wmemcmp

wmemcmp

Compares two arrays of wide characters.

Format

#include <wchar.h>

int wmemcmp (const wchar_t *s1, const wchar_t *s2, size_t n);

Arguments

s1, s2
Pointers to wide-character arrays.

n
The maximum number of wide characters to be compared.

Description

The wmemcmp function compares the first n wide characters of the array pointed
to by s1 with the first n wide characters of the array pointed to by s2. The wide
characters are compared not according to locale-dependent collation rules, but as
integral objects of type wchar_t.

Return Values

0 Arrays are equal.
Positive value The first array is greater than the second.
Negative value The first array is less than the second.

REF–725



wmemcpy

wmemcpy

Copies a specified number of wide characters from one wide-character array to
another.

Format

#include <wchar.h>

wchar_t wmemcpy (wchar_t *dest, const wchar_t *source, size_t n);

Function Variants

The wmemcpy function has variants named _wmemcpy32 and _wmemcpy64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

dest
A pointer to the destination array.

source
A pointer to the source array.

n
The number of wide characters to be copied.

Description

The wmemcpy function copies n wide characters from the array pointed to by source
to the array pointed to by dest.

Return Value

x The value of dest.

REF–726



wmemmove

wmemmove

Copies a specified number of wide characters from one wide-character array to
another.

Format

#include <wchar.h>

wchar_t wmemmove (wchar_t *dest, const wchar_t *source, size_t n);

Function Variants

The wmemmove function has variants named _wmemmove32 and _wmemmove64 for
use with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

dest
A pointer to the destination array.

source
A pointer to the source array.

n
The number of wide characters to be moved.

Description

The wmemmove function copies n wide characters from the location pointed to by
source to the location pointed to by dest.

The wmemmove and wmemcpy routines perform the same function, except that
wmemmove ensures that the original contents of the source array are copied to the
destination array even if the two arrays overlap. Where such overlap is possible,
programs that require portability should use wmemmove, not wmemcopy.

Return Value

x The value of dest.

REF–727



wmemset

wmemset

Sets a specified value to a specified number of wide characters in an array of wide
characters.

Format

#include <wchar.h>

wchar_t wmemset (wchar_t *s, wchar_t c, size_t n);

Function Variants

The wmemset function has variants named _wmemset32 and _wmemset64 for use
with 32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more
information on using pointer-size-specific functions.

Arguments

s
A pointer to the array of wide characters.

c
The value to be placed in the first n wide characters of the array.

n
The number of wide characters to be set to the specified value c.

Description

The wmemset function copies the value of c into each of the first n wide characters
of the array pointed to by s.

Return Value

x The value of s.

REF–728



wprintf

wprintf

Performs formatted output from the standard output (stdout). See Chapter 2 for
information on format specifiers.

Format

#include <wchar.h>

int wprintf (const wchar_t *format, . . . );

Arguments

format
A pointer to a wide-character string containing the format specifications.
For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

. . .
Optional expressions whose resultant types correspond to conversion
specifications given in the format specification.

If no conversion specifications are given, the output sources can be omitted.
Otherwise, the function calls must have exactly as many output sources as there
are conversion specifications, and the conversion specifications must match the
types of the output sources.

Conversion specifications are matched to output sources in left-to-right order.
Excess output pointers, if any, are ignored.

Description

The wprintf function is equivalent to the fwprintf function with the stdout
argument interposed before the wprintf arguments.

Return Values

n The number of wide characters written.

REF–729



wprintf

Negative value Indicates an error. The function sets errno to
one of the following:

• EILSEQ – Invalid character detected.

• EINVAL – Insufficient arguments.

• ENOMEM – Not enough memory available
for conversion.

• ERANGE – Floating-point calculations
overflow.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This might indicate that
conversion to a numeric value failed because
of overflow.

The function can also set errno to the following
as a result of errors returned from the I/O
subsystem:

• EBADF – The file descriptor is not valid.

• EIO – I/O error.

• ENOSPC – No free space on the device
containing the file.

• ENXIO – Device does not exist.

• EPIPE – Broken pipe.

• ESPIPE – Illegal seek in a file opened for
append.

• EVMSERR – Nontranslatable OpenVMS
error. vaxc$errno contains the OpenVMS
error code. This indicates that an I/O error
occurred for which there is no equivalent C
error code.

REF–730



wrapok

wrapok

In the UNIX system environment, allows the wrapping of a word from the right
border of the window to the beginning of the next line. This routine is provided
only for UNIX software compatibility and serves no function in the OpenVMS
environment.

Format

#include <curses.h>

wrapok (WINDOW *win, bool boolf);

Arguments

win
A pointer to the window.

boolf
A Boolean TRUE or FALSE value. If boolf is FALSE, scrolling is not allowed.
This is the default setting. The bool type is defined in the <curses.h> header file
as follows:

#define bool int

REF–731



write

write

Writes a specified number of bytes from a buffer to a file.

Format

#include <unistd.h>

ssize_t write (int file_desc, void *buffer, size_t nbytes); (ISO POSIX-1)

int write (int file_desc, void *buffer, int nbytes); (Compatability)

Arguments

file_desc
A file descriptor that refers to a file currently opened for writing or updating.

buffer
The address of contiguous storage from which the output data is taken.

nbytes
The maximum number of bytes involved in the write operation.

Description

If the write is to an RMS record file and the buffer contains embedded new-line
characters, more than one record may be written to the file. Even if there are no
embedded new-line characters, if nbytes is greater than the maximum record size
for the file, more than one record will be written to the file. The write function
always generates at least one record.

If the write is to a mailbox and the third argument, nbytes, specifies a length
of 0, an end-of-file message is written to the mailbox. This occurs for mailboxes
created by the application using SYS$CREMBX, but not for mailboxes created to
implement POSIX pipes. For more information, see Chapter 5.

Return Values

x The number of bytes written.
�1 Indicates errors, including undefined file

descriptors, illegal buffer addresses, and physical
I/O errors.

REF–732



writev

writev

Writes to a file.

Format

#include <uio.h>

ssize_t writev (int file_desc, const struct iovec *iov, int iovcnt);

ssize_t _ _writev64 (int file_desc, const struct _ _iovec64 *iov, int iovcnt); (Alpha only)

Function Variants

The writev function has variants named _writev32 and _ _writev64 for use with
32-bit and 64-bit pointer sizes, respectively. See Section 1.10 for more information
on using pointer-size-specific functions.

Arguments

file_desc
A file descriptor that refers to a file currently opened for writing or updating.

iov
Array of iovec structures from which the output data is gathered.

iovcnt
The number of buffers specified by the members of the iov array.

Description

The writev function is equivalent to write but gathers the output data from
the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], ...,
iov[iovcnt�1]. The iovcnt argument is valid if greater than 0 and less than or
equal to {IOV_MAX}, defined in <limits.h>.

Each iovec entry specifies the base address and length of an area in memory
from which data should be written. The writev function writes a complete area
before proceeding to the next.

If filedes refers to a regular file and all of the iov_len members in the array
pointed to by iov are 0, writev returns 0 and has no other effect.

For other file types, the behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails
and no data is transferred.

Upon successful completion, writev returns the number of bytes actually written.
Otherwise, it returns a value of �1, the file pointer remains unchanged, and
errno is set to indicate an error.

REF–733



writev

Return Values

x The number of bytes written.
�1 Indicates an error. The file times do not change,

and the function sets errno to one of the
following values:

• EBADF – The file_desc argument is not a
valid file descriptor open for writing.

• EINTR – The write operation was terminated
due to the receipt of a signal, and no data
was transferred.

• EINVAL – The sum of the iov_len values in
the iov array would overflow an ssize_t, or
the iovcnt argument was less than or equal
to 0, or greater than {IOV_MAX}.

• EIO – A physical I/O error has occurred.

• ENOSPC – There was no free space
remaining on the device containing the
file.

• EPIPE – An attempt is made to write to a
pipe or FIFO that is not open for reading by
any process, or that only has one end open.
A SIGPIPE signal will also be sent to the
thread.

REF–734



wscanf

wscanf

Reads input from the standard input (stdin) under control of the wide-character
format string.

Format

#include <wchar.h>

int wscanf (const wchar_t *format, . . . );

Arguments

format
A pointer to a wide-character string containing the format specifications.
For more information about format and conversion specifications and their
corresponding arguments, see Chapter 2.

. . .
Optional expressions whose results correspond to conversion specifications given
in the format specification.

If no conversion specifications are given, you can omit the input pointers.
Otherwise, the function calls must have exactly as many input pointers as there
are conversion specifications, and the conversion specifications must match the
types of the input pointers.

Conversion specifications are matched to input sources in left-to-right order.
Excess input pointers, if any, are ignored.

Description

The wscanf function is equivalent to the fwscanf function with the stdin
arguments interposed before the wscanf arguments.

Return Values

n The number of input items assigned. The
number can be less than provided for, even
zero, in the event of an early matching failure.

EOF Indicates an error. An input failure occurred
before any conversion.

REF–735



y0, y1, yn (Alpha only)

y0, y1, yn (Alpha only)

Compute Bessel functions of the second kind.

Format

#include <math.h>

double y0 (double x);

float y0f (float x);

long double y0l (long double x);

double y1 (double x);

float y1f (float x);

long double y1l (long double x);

double yn (int n, double x);

float ynf (int n, float x);

long double ynl (int n, long double x);

Arguments

x
A positive, real value.

n
An integer.

Description

The y0 functions return the value of the Bessel function of the second kind of
order 0.

The y1 functions return the value of the Bessel function of the second kind of
order 1.

The yn functions return the value of the Bessel function of the second kind of
order n.

Return Values

x The relevant Bessel value of x of the second kind.
�HUGE_VAL The x argument is 0.0; errno is set to ERANGE.
NaN The x argument is negative or NaN; errno is set

to EDOM.
0 Underflow occurred; errno is set to ERANGE.
HUGE_VAL Overflow occurred; errno is set to ERANGE.

REF–736



A
Version-Dependency Tables

New functions are added to the HP C Run-Time Library with each version
of HP C. These functions are implemented and shipped with the OpenVMS
operating system, while the documentation and header files containing their
prototypes are shipped with versions of the HP C compiler.

You might have a newer version of HP C that has header files and documentation
for functions that are not supported on your older OpenVMS system. For
example, if your target operating system platform is OpenVMS Version 7.2,
you cannot use HP C RTL functions introduced on OpenVMS Version 7.3, even
though they are documented in this manual.

This appendix contains several tables that list what HP C RTL functions are
supported on recent OpenVMS versions. This is helpful for determining the
functions to avoid using on your target OpenVMS platforms.

Also, for HP C and C++ Version 5.6 and higher, a C RTL backport object
library is included with the compiler distribution kit. The backport
object library allows developers on older versions of OpenVMS to use the
latest C run-time library functions. For more information, see the file
SYS$LIBRARY:DECC$CRTL.README on your system.

A.1 Functions Available on all OpenVMS VAX and OpenVMS Alpha
Versions

Table A–1 lists functions available on all OpenVMS VAX and OpenVMS Alpha
versions.

Table A–1 Functions Available on All OpenVMS Systems

abort abs access acos

alarm asctime asin assert

atan2 atan atexit atof

atoi atoll (Alpha) atol atoq (Alpha)

box brk bsearch cabs

calloc ceil cfree chdir

chmod chown clearerr clock

close cosh cos creat

ctermid ctime cuserid decc$crtl_init

decc$fix_time decc$from_vms decc$match_wild decc$record_read

decc$record_write decc$set_reentrancy decc$to_vms decc$translate_vms

(continued on next page)

Version-Dependency Tables A–1



Table A–1 (Cont.) Functions Available on All OpenVMS Systems

delete delwin difftime div

dup2 dup ecvt endwin

execle execlp execl execve

execvp execv exit _exit

exp fabs fclose fcvt

fdopen feof ferror fflush

fgetc fgetname fgetpos fgets

fileno floor fmod fopen

fprintf fputc fputs fread

free freopen frexp fscanf

fseek fsetpos fstat fsync

ftell ftime fwait fwrite

gcvt getchar getcwd getc

getegid getenv geteuid getgid

getname getpid getppid gets

getuid getw gmtime gsignal

hypot initscr isalnum isalpha

isapipe isascii isatty iscntrl

isdigit isgraph islower isprint

ispunct isspace isupper isxdigit

kill labs ldexp ldiv

llabs (Alpha) lldiv (Alpha) localeconv localtime

log10 log longjmp longname

lseek lwait malloc mblen

mbstowcs mbtowc memchr memcmp

memcpy memmove memset mkdir

mktemp mktime modf mvwin

mv[w]addstr newwin nice open

overlay overwrite pause perror

pipe pow printf putchar

putc puts putw qabs (Alpha)

qdiv (Alpha) qsort raise rand

read realloc remove rename

rewind sbrk scanf scroll

setbuf setgid setjmp setlocale

setuid setvbuf sigblock signal

sigpause sigstack (VAX) sigvec sinh

sin sleep sprintf sqrt

srand sscanf ssignal stat

(continued on next page)

A–2 Version-Dependency Tables



Table A–1 (Cont.) Functions Available on All OpenVMS Systems

strcat strchr strcmp strcoll

strcpy strcspn strerror strftime

strlen strncat strncmp strncpy

strpbrk strrchr strspn strstr

strtod strtok strtoll (Alpha) strtol

strtoq (Alpha) strtoull (Alpha) strtoul strtouq (Alpha)

strxfrm subwin system tanh

tan times time tmpfile

tmpnam toascii tolower _tolower

touchwin toupper _toupper ttyname

umask ungetc vaxc$calloc_opt vaxc$cfree_opt

vaxc$crtl_init vaxc$establish vaxc$free_opt vaxc$malloc_opt

vaxc$realloc_opt va_arg va_count va_end

va_start va_start_1 vfork vfprintf

vprintf vsprintf wait wcstombs

wctomb write [w]addch [w]addstr

[w]clear [w]clrattr [w]clrtobot [w]clrtoeol

[w]delch [w]deleteln [w]erase [w]getch

[w]getstr [w]inch [w]insch [w]insertln

[w]insstr [w]move [w]printw [w]refresh

[w]scanw [w]setattr [w]standend [w]standout

A.2 Functions Available on OpenVMS Version 6.2 and Higher
Table A–2 lists functions available on OpenVMS VAX and OpenVMS Alpha
Version 6.2 and higher.

Table A–2 Functions Added in OpenVMS Version 6.2

catclose catgets catopen fgetwc

fgetws fputwc fputws getopt

getwc getwchar iconv iconv_close

iconv_open iswalnum iswalpha iswcntrl

iswctype iswdigit iswgraph iswlower

iswprint iswpunct iswspace iswupper

iswxdigit nl_langinfo putwc putwchar

strnlen strptime towlower towupper

ungetwc wcscat wcschr wcscmp

wcscoll wcscpy wcscspn wcsftime

wcslen wcsncat wcsncmp wcsncpy

(continued on next page)

Version-Dependency Tables A–3



Table A–2 (Cont.) Functions Added in OpenVMS Version 6.2

wcspbrk wcsrchr wcsspn wcstol

wcstoul wcswcs wcswidth wcsxfrm

wcstod wctype wcwidth wcstok

A.3 Functions Available on OpenVMS Version 7.0 and Higher
Table A–3 lists functions available on OpenVMS VAX and OpenVMS Alpha
Version 7.0 and higher.

Table A–3 Functions Added in OpenVMS Version 7.0

basename bcmp bcopy btowc

bzero closedir confstr dirname

drand48 erand48 ffs fpathconf

ftruncate ftw fwide fwprintf

fwscanf getclock getdtablesize getitimer

getlogin getpagesize getpwnam getpwuid

gettimeofday index initstate jrand48

lcong48 lrand48 mbrlen mbrtowc

mbsinit mbsrtowcs memccpy mkstemp

mmap mprotect mrand48 msync

munmap nrand48 opendir pathconf

pclose popen putenv random

readdir rewinddir rindex rmdir

seed48 seekdir setenv setitimer

setstate sigaction sigaddset sigdelset

sigemptyset sigfillset sigismember siglongjmp

sigpending sigprocmask sigsetjmp sigsuspend

srand48 srandom strcasecmp strdup

strfmon strncasecmp strsep swab

swprintf swscanf sysconf telldir

tempnam towctrans truncate tzset

ualarm uname unlink unsetenv

usleep vfwprintf vswprintf vwprintf

wait3 wait4 waitpid wcrtomb

wcsrtombs wcsstr wctob wctrans

wmemchr wmemcmp wmemcpy wmemmove

wmemset wprintf wscanf

A–4 Version-Dependency Tables



A.4 Functions Available on OpenVMS Alpha Version 7.0 and Higher
Table A–4 lists functions available on OpenVMS Alpha Version 7.0 and higher.

Table A–4 Functions Added in OpenVMS Alpha Version 7.0

_basename32 _basename64 _bsearch32 _bsearch64

_calloc32 _calloc64 _catgets32 _catgets64

_ctermid32 _ctermid64 _cuserid32 _cuserid64

_dirname32 _dirname64 _fgetname32 _fgetname64

_fgets32 _fgets64 _fgetws32 _fgetws64

_gcvt32 _gcvt64 _getcwd32 _getcwd64

_getname32 _getname64 _gets32 _gets64

_index32 _index64 _longname32 _longname64

_malloc32 _malloc64 _mbsrtowcs32 _mbsrtowcs64

_memccpy32 _memccpy64 _memchr32 _memchr64

_memcpy32 _memcpy64 _memmove32 _memmove64

_memset32 _memset64 _mktemp32 _mktemp64

_mmap32 _mmap64 _qsort32 _qsort64

_realloc32 _realloc64 _rindex32 _rindex64

_strcat32 _strcat64 _strchr32 _strchr64

_strcpy32 _strcpy64 _strdup32 _strdup64

_strncat32 _strncat64 _strncpy32 _strncpy64

_strpbrk32 _strpbrk64 _strptime32 _strptime64

_strrchr32 _strrchr64 _strsep32 _strsep64

_strstr32 _strstr64 _strtod32 _strtod64

_strtok32 _strtok64 _strtol32 _strtol64

_strtoll32 _strtoll64 _strtoq32 _strtoq64

_strtoul32 _strtoul64 _strtoull32 _strtoull64

_strtouq32 _strtouq64 _tmpnam32 _tmpnam64

_wcscat32 _wcscat64 _wcschr32 _wcschr64

_wcscpy32 _wcscpy64 _wcsncat32 _wcsncat64

_wcsncpy32 _wcsncpy64 _wcspbrk32 _wcspbrk64

_wcsrchr32 _wcsrchr64 _wcsrtombs32 _wcsrtombs64

_wcsstr32 _wcsstr64 _wcstok32 _wcstok64

_wcstol32 _wcstol64 _wcstoul32 _wcstoul64

_wcswcs32 _wcswcs64 _wmemchr32 _wmemchr64

_wmemcpy32 _wmemcpy64 _wmemmove32 _wmemmove64

_wmemset32 _wmemset64

Version-Dependency Tables A–5



A.5 Functions Available on OpenVMS Version 7.2 and Higher
Table A–5 lists functions available on OpenVMS VAX and OpenVMS Alpha
Version 7.2 and higher.

Table A–5 Functions Added in OpenVMS Version 7.2

asctime_r dlerror

ctime_r dlopen

decc$set_child_standard_streams dlsym

decc$validate_wchar fcntl

decc$write_eof_to_mbx gmtime_r

dlclose localtime_r

A.6 Functions Available on OpenVMS Version 7.3 and Higher
Table A–6 lists functions available on OpenVMS VAX and OpenVMS Alpha
Version 7.3 and higher.

Table A–6 Functions Added in OpenVMS Version 7.3

fchown

link

utime

utimes

writev

A.7 Functions Available on OpenVMS Version 7.3-1 and Higher
Table A–7 lists functions available on OpenVMS Alpha Version 7.3-1 and higher.

Table A–7 Functions Added in OpenVMS Version 7.3-1

access ftello

chmod ftw

chown readdir_r

decc$feature_get_index stat

decc$feature_get_name vfscanf

decc$feature_get_value vfwscanf

decc$feature_set_value vscanf

fseeko vwscanf

fstat vsscanf

vswscanf

A–6 Version-Dependency Tables



A.8 Functions Available on OpenVMS Version 7.3-2 and Higher
Table A–8 lists functions available on OpenVMS Alpha Version 7.3-2 and higher.

Table A–8 Functions Added in OpenVMS Version 7.3-2

a64l clock_getres clock_gettime clock_settime

endgrent getgrent getgrgid getgrgid_r

getgrnam getgrnam_r getpgid getpgrp

_getpwnam64 getpwnam_r _getpwnam_r64 _getpwent64

getpwuid _getpwuid64 getpwuid_r _getpwuid_r64

getsid l64a nanosleep poll

pread pwrite rand_r readv

_readv64 seteuid setgrent setpgid

setpgrp setregid setreuid setsid

sighold sigignore sigrelse sigtimedwait

sigwait sigwaitinfo snprintf ttyname_r

vsnprintf _ _writev64 decc$set_child_
default_dir

Version-Dependency Tables A–7





B
Prototypes Duplicated to Nonstandard Headers

The various standards dictate which header file must define each of the standard
functions. This is the included header file documented with each function
prototype in the Reference Section of this manual.

However, many of the functions defined by the standards already existed on
several operating systems and were defined in different header files. This is
especially true on OpenVMS systems with the header files <processes.h>,
<unixio.h>, and <unixlib.h>.

So, to provide upward compatibility for these functions, their prototypes are
duplicated in both the expected header file as well as the header file defined by
the standards.

Table B–1 lists these functions.

Table B–1 Duplicated Prototypes

Function Duplicated in Standard says

access <unixio.h> <unistd.h>

alarm <signal.h> <unistd.h>

bcmp <string.h> <strings.h>

bcopy <string.h> <strings.h>

bzero <string.h> <strings.h>

chdir <unixio.h> <unistd.h>

chmod <unixio.h> <stat.h>

chown <unixio.h> <unistd.h>

close <unixio.h> <unistd.h>

creat <unixio.h> <fcntl.h>

ctermid <stdio.h> <unistd.h>

cuserid <stdio.h> <unistd.h>

dirname <string.h> <libgen.h>

dup <unixio.h> <unistd.h>

dup2 <unixio.h> <unistd.h>

ecvt <unixlib.h> <stdlib.h>

execl <processes.h> <unistd.h>

execle <processes.h> <unistd.h>

execlp <processes.h> <unistd.h>

(continued on next page)

Prototypes Duplicated to Nonstandard Headers B–1



Table B–1 (Cont.) Duplicated Prototypes

Function Duplicated in Standard says

execv <processes.h> <unistd.h>

execve <processes.h> <unistd.h>

execvp <processes.h> <unistd.h>

_exit <stdlib.h> <unistd.h>

fcvt <unixlib.h> <stdlib.h>

ffs <string.h> <strings.h>

fsync <stdio.h> <unistd.h>

ftime <time.h> <timeb.h>

gcvt <unixlib.h> <stdlib.h>

getcwd <unixlib.h> <unistd.h>

getegid <unixlib.h> <unistd.h>

getenv <unixlib.h> <stdlib.h>

geteuid <unixlib.h> <unistd.h>

getgid <unixlib.h> <unistd.h>

getopt <stdio.h> <unistd.h>

getpid <unixlib.h> <unistd.h>

getppid <unixlib.h> <unistd.h>

getuid <unixlib.h> <unistd.h>

index <string.h> <strings.h>

isatty <unixio.h> <unistd.h>

lseek <unixio.h> <unistd.h>

mkdir <unixlib.h> <stat.h>

mktemp <unixio.h> <stdlib.h>

nice <stdlib.h> <unistd.h>

open <unixio.h> <fcntl.h>

pause <signal.h> <unistd.h>

pipe <processes.h> <unistd.h>

read <unixio.h> <unistd.h>

rindex <string.h> <strings.h>

sbrk <stdlib.h> <unistd.h>

setgid <unixlib.h> <unistd.h>

setuid <unixlib.h> <unistd.h>

sleep <signal.h> <unistd.h>

strcasecmp <string.h> <strings.h>

strncasecmp <string.h> <strings.h>

system <processes.h> <stdlib.h>

times <time.h> <times.h>

umask <stdlib.h> <stat.h>

(continued on next page)

B–2 Prototypes Duplicated to Nonstandard Headers



Table B–1 (Cont.) Duplicated Prototypes

Function Duplicated in Standard says

vfork <processes.h> <unistd.h>

wait <processes.h> <wait.h>

write <unixio.h> <unistd.h>

Prototypes Duplicated to Nonstandard Headers B–3





Index

64-bit pointer support, 1–54
for socket routines, xxvii

32-bit UIDs, GIDs, 1–40
2-gigabyte files, 1–24

A
a64l function, REF–3
abort function, 4–1, REF–5
abs function, REF–6
access function, REF–7
ACCVIO

hardware error, 1–50
sigbus signal, 4–10
sigsegv signal, 4–11

acos function, REF–9
acosh function, REF–10
addch function, REF–11
addstr function, REF–12
alarm function, 4–1, 4–10, REF–13

program example, 4–13
Allocate memory

calloc function, REF–36
malloc function, REF–333
realloc function, REF–436

_ANSI_C_SOURCE macro, 1–19
Argument list functions, 3–9 to 3–12
Arguments

variable-length lists, 3–9
ASCII

table of values, 3–4
asctime function, REF–14
asctime_r function, REF–14
asin function, REF–16
asinh function, REF–17
asm calls, 1–51
assert function, REF–18
AST reentrancy, 1–52, REF–98
atan function, REF–19
atan2 function, REF–20
atanh function, REF–21
atexit function, REF–22
atof function, REF–23
atoi function, REF–24
atol function, REF–24

atoll function, REF–25
atoq function, REF–25

B
Backport object library, A–1
basename function, REF–26
bcmp function, REF–27
bcopy function, REF–28
box function, REF–29
brk function, 8–1, REF–30
_BSD44_CURSES macro, 1–24
bsearch function, REF–31
btowc function, 10–10, REF–33
bzero function, REF–34

C
C language

I/O background, 1–41
C RTL

See Run-Time Library (RTL)
new features, xxvi
POSIX Root, 1–29

C$_LONGJMP exception, 4–11
cabs function, REF–35
calloc function, 8–1, REF–36, REF–46
Carriage control

Fortran, 1–46
translation

by HP C, 1–45 to 1–47
Case conversion functions, 10–9
catclose function, 10–5, REF–37
Categories

locale, 10–3
Category

LC_ALL, 10–4
LC_COLLATE, 10–3
LC_CTYPE, 10–3
LC_MESSAGES, 10–3
LC_MONETARY, 10–3
LC_NUMERIC, 10–3
LC_TIME, 10–3

catgets function, 10–5, REF–38
catopen function, 10–5, REF–41

Index–1



cbrt function, REF–44
ceil function, REF–45
cfree function, 8–1, REF–46
Changed functions, xxix
Character definition files

location of, 10–6
Character set conversion functions

iconv, REF–265
iconv_close, REF–267
iconv_open, REF–268

Character sets
converting between, 10–6
supported by HP C RTL, 10–6

Character-classification functions, 3–4 to 3–7,
10–9

isalnum, REF–278
isalpha, REF–279
isascii, REF–281
iscntrl, REF–283
isdigit, REF–284
isgraph, REF–285
islower, REF–286
isprint, REF–288
ispunct, REF–289
isspace, REF–290
isupper, REF–291
iswalnum, REF–292
iswalpha, REF–293
iswcntrl, REF–294
iswctype, REF–295
iswdigit, REF–297
iswgraph, REF–298
iswlower, REF–299
iswprint, REF–300
iswpunct, REF–301
iswspace, REF–302
iswupper, REF–303
iswxdigit, REF–304
isxdigit, REF–305
program example, 3–7
wctype, REF–720

Character-conversion functions, 3–7 to 3–9
ecvt, REF–123
fcvt, REF–146
gcvt, REF–206
toascii, REF–603
tolower, REF–604
_tolower, REF–605
toupper, REF–607
_toupper, REF–608
towlower, REF–610
towupper, REF–611
wcswidth, REF–713
wcwidth, REF–723

Charmap file
location, 10–6

chdir function, REF–47
Child process, xxvii

creating with vfork, REF–642
executing image

with exec functions, 5–3
implementation of, 5–2
introduction to, 5–1
program examples, 5–5
sharing data with pipe, 5–5, REF–403
synchronization with wait, 5–5

chmod function, REF–48
chown function, REF–49
clear function, REF–50, REF–52
clearerr function, REF–51
clearok function, REF–52
clock function, REF–53
clock_getres function, REF–54
clock_gettime function, REF–55
clock_settime function, REF–56
close function, REF–58
closedir function, REF–59
clrattr function, REF–61
clrattr macro, 6–2
clrtobot function, REF–62
clrtoeol function, REF–63
Codeset converter functions, 10–6
Codesets, 10–6
confstr function, REF–64
Conversion specifications

for I/O functions, 2–7 to 2–19
input

table of conversion specifiers, 2–8
table of optional characters, 2–8

output
table of characters, 2–16

Converter functions
filenaming conventions for, 10–6

copysign function, REF–66
cos function, REF–67
cosh function, REF–68
cot function, REF–69
creat function, REF–70, REF–121, REF–143,

REF–148
crmode function, REF–76
ctermid function, REF–77
ctime function, REF–14, REF–78

using with tzset function, REF–616
ctime_r function, REF–78
Cultural information

stored in locale, 10–7
curscr window, 6–5
Curses, 6–1 to 6–13

cursor movement, 6–10
getting started, 6–7 to 6–9
introduction to, 6–1
program example, 6–11
terminology, 6–4 to 6–7

curscr, 6–5

Index–2



Curses
terminology (cont’d)

stdscr, 6–5
windows, 6–5

using predefined variables and constants, 6–9
Curses functions

box, REF–29
clearok, REF–52
delwin, REF–111
endwin, REF–127
getyx, REF–254
initscr, REF–272
leaveok, REF–314
longname, REF–328
mvcur, REF–371
mvwin, REF–378
mv[w]addch, REF–369
mv[w]addstr, REF–370
mv[w]delch, REF–372
mv[w]getch, REF–373
mv[w]getstr, REF–374
mv[w]inch, REF–375
mv[w]insch, REF–376
mv[w]insstr, REF–377
newwin, REF–381
[no]crmode, REF–76
[no]echo, REF–122
[no]nl, REF–385
[no]raw, REF–428
overlay, REF–396
overwrite, REF–397
scroll, REF–450
scrollok, REF–451
subwin, REF–582
touchwin, REF–606
wrapok, REF–731
[w]addch, REF–11
[w]addstr, REF–12
[w]clear, REF–50
[w]clrattr, REF–61
[w]clrtobot, REF–62
[w]clrtoeol, REF–63
[w]delch, REF–108
[w]deleteln, REF–110
[w]erase, REF–129
[w]getch, REF–209
[w]getstr, REF–248
[w]inch, REF–270
[w]insch, REF–275
[w]insertln, REF–276
[w]insstr, REF–277
[w]move, REF–362
[w]printw, REF–412
[w]refresh, REF–437
[w]scanw, REF–449
[w]setattr, REF–454
[w]standend, REF–523
[w]standout, REF–524

<curses.h> header file, 6–2
cuserid function, REF–80

D
Date and time functions, 10–8
Date/time

introduction to, 11–1
Date/time functions, 11–1 to 11–6
DECC$ACL_ACCESS_CHECK feature logical,

1–28
DECC$ALLOW_REMOVE_OPEN_FILES feature

logical, 1–28
DECC$ALLOW_UNPRIVILEGED_NICE feature

logical, 1–28
DECC$ARGV_PARSE_STYLE feature logical,

1–28
DECC$CRTL_INIT function, REF–81, REF–621
DECC$DEFAULT_LRL feature logical, 1–29
DECC$DEFAULT_UDF_RECORD feature logical,

1–29
DECC$DETACHED_CHILD_PROCESS feature

logical, 1–29
DECC$DISABLE_POSIX_ROOT feature logical,

1–29
DECC$DISABLE_TO_VMS_LOGNAME_

TRANSLATION feature logical, 1–30
DECC$EFS_CASE_PRESERVE feature logical,

1–30
DECC$EFS_CASE_SPECIAL feature logical,

1–30
DECC$EFS_CHARSET feature logical, 1–30
DECC$EFS_FILE_TIMESTAMPS feature logical,

1–31
DECC$EFS_NO_DOTS_IN_DIRNAME feature

logical, 1–31
DECC$ENABLE_GETENV_CACHE feature

logical, 1–32
DECC$ENABLE_TO_VMS_LOGNAME_CACHE

feature logical, 1–32
DECC$EXEC_FILEATTR_INHERITANCE feature

logical, 1–32
decc$feature_get_index feature-setting

routine, REF–82
decc$feature_get_name feature-setting routine,

REF–84
decc$feature_get_value feature-setting

routine, REF–85
decc$feature_set_value feature-setting

routine, REF–86
DECC$FILENAME_UNIX_NO_VERSION feature

logical, 1–33
DECC$FILENAME_UNIX_ONLY feature logical,

1–33
DECC$FILENAME_UNIX_REPORT feature

logical, 1–33

Index–3



DECC$FILE_PERMISSION_UNIX feature logical,
1–33

DECC$FILE_SHARING feature logical, 1–33
DECC$FIXED_LENGTH_SEEK_TO_EOF feature

logical, 1–33
decc$fix_time file specification conversion

routine, 1–16, REF–87
decc$from_vms file specification conversion

routine, 1–16, REF–88
DECC$GLOB_UNIX_STYLE feature logical, 1–33
DECC$LOCALE_CACHE_SIZE feature logical,

1–33
DECC$MAILBOX_CTX_STM feature logical, 1–34
decc$match_wild file specification conversion

routine, 1–16, REF–90
DECC$NO_ROOTED_SEARCH_LISTS feature

logical, 1–34
DECC$PIPE_BUFFER_QUOTA feature logical,

1–35
DECC$PIPE_BUFFER_SIZE feature logical, 1–35
DECC$POSIX_SEEK_STREAM_FILE feature

logical, 1–35
DECC$POSIX_STYLE_UID feature logical, 1–35
DECC$READDIR_DROPDOTNOTYPE feature

logical, 1–36
DECC$READDIR_KEEPDOTDIR feature logical,

1–36
decc$record_read function, REF–91
decc$record_write function, REF–92
DECC$RENAME_ALLOW_DIR feature logical,

1–36
DECC$RENAME_NO_INHERIT feature logical,

1–36
DECC$SELECT_IGNORES_INVALID_FD feature

logical, 1–37
decc$set_child_default_dir function,

REF–93
decc$set_child_standard_streams function,

REF–94
decc$set_reentrancy function, 1–52, REF–98
DECC$SHR.EXE, 1–3
DECC$STDIO_CTX_EOL feature logical, 1–37
DECC$STRTOL_ERANGE feature logical, 1–37
DECC$THREAD_DATA_AST_SAFE feature

logical, 1–37
decc$to_vms file specification conversion routine,

1–16, REF–100
decc$translate_vms file specification conversion

routine, 1–16, REF–102
DECC$TZ_CACHE_SIZE feature logical, 1–38
DECC$UMASK feature logical, 1–38
DECC$UNIX_LEVEL feature logical, 1–38
DECC$UNIX_PATH_BEFORE_LOGNAME feature

logical, 1–39
DECC$USE_JPI$_CREATOR feature logical,

1–39

DECC$USE_RAB64 feature logical, 1–39
DECC$V62_RECORD_GENERATION feature

logical, 1–40
DECC$VALIDATE_SIGNAL_IN_KILL feature

logical, 1–40
decc$validate_wchar function, REF–104
decc$write_eof_to_mbx function, REF–105
DECC$WRITE_SHORT_RECORDS feature logical,

1–40
DECC$XPG4_STRPTIME feature logical, 1–40
_DECC_SHORT_GID_T macro, 1–25
_DECC_V4_SOURCE macro, 1–22
DEC/SHELL

See UNIX file specifications
delch function, REF–108
delete function, REF–109, REF–438
deleteln function, REF–110
delwin function, REF–111
difftime function, REF–112
dirname function, REF–113
div function, REF–115
dlcose function, REF–116
dlerror function, REF–117
dlopen function, REF–118
dlsym function, REF–119
drand48 function, REF–120

using with lcong48 function, REF–311
using with seed48 function, REF–452
using with srand48 function, REF–518

dup function, REF–121, REF–148
dup2 function, REF–121, REF–148, REF–405

E
echo function, REF–122
ecvt function, 3–7, REF–123
edata global symbol, 1–50
EFS, 1–18
end global symbol, 1–50
endgrent function, REF–125
endpwent function, REF–126
endwin function, REF–127
erand48 function, REF–128
erase function, REF–129
erf function, REF–130
ERR predefined macro, 6–10
errno variable, 4–2, 4–5, 7–4
<errno.h> header file, 4–2, 4–5
<errnodef.h> header file, 4–11
Error-handling functions, 4–2

abort, 4–1, 4–6, 4–10, REF–5
error codes, 4–2
exit, 4–1, 5–5, REF–138
_exit, 4–1, 5–5, REF–138
perror, 4–1, REF–402
strerror, 4–1, REF–538

Index–4



etext global symbol, 1–50
exec function, REF–404
exec functions

processing, 5–4
exec functions, 5–3

error conditions, 5–5
execl function, REF–131
execle function, REF–133
execlp function, REF–134
execv function, REF–135
execve function, REF–136
execvp function, REF–137
_exit function, 5–5
exit function, 5–5, REF–138
_exit function, REF–138
exit, _exit function

using with wait3 function, REF–662
using with wait4 function, REF–665
using with waitpid function, REF–668

exp function, REF–139
Extended File Specifications, 1–18

F
fabs function, REF–140
fchown function, REF–141
fclose function, REF–142, REF–167
fcntl function, REF–143
fcvt function, 3–7, REF–146
fdopen function, REF–148, REF–405
Feature logical names, 1–25
Feature logicals, xxvii
Feature switches, 1–25
Feature-setting routines

decc$feature_get_index, REF–82
decc$feature_get_name, REF–84
decc$feature_get_value, REF–85
decc$feature_set_value, REF–86

Feature-test macros, 1–18
feof function, REF–149
ferror function, REF–150
fflush function, REF–151

using with popen function, REF–407
ffs function, REF–152
fgetc function, REF–153
fgetname function, REF–154
fgetpos function, REF–155
fgets function, REF–157
fgetwc function, REF–159
fgetws function, REF–160
File

header, 1–1
FILE, 2–5
File descriptor, 2–5, 2–20

HP C defaults
for OpenVMS logical names, 1–18

File pointer, 2–5, 2–20
File protection, REF–48, REF–621
File specification conversion routines

decc$fix_time, REF–87
decc$from_vms, REF–88
decc$match_wild, REF–90
decc$to_vms, REF–100
decc$translate_vms, REF–102

fileno function, REF–162
finite function, REF–163
Fixed-length record files

accessing in record mode, 1–48
Floating-point support, 1–4
floor function, REF–164
fmod function, REF–165
fopen function, REF–166
fork function, REF–642
Format

specification string for input functions, 2–7
specification string for output functions, 2–13

fpathconf function, REF–169
fprintf function, REF–171
fputc function, REF–173
fputs function, REF–174
fputwc function, REF–175
fputws function, REF–177
fp_class function, REF–168
fp_classf function, REF–168
fp_classl function, REF–168
fread function, REF–178
free function, 8–1, REF–46, REF–179, REF–212

using with tempnam function, REF–598
freopen function, REF–180
frexp function, REF–181
fscanf function, REF–183
fseek function, 1–44, REF–185, REF–623,

REF–624
fseeko function, REF–187
fsetpos function, REF–188
fstat function, REF–189
fsync function, REF–192
ftell function, REF–193
ftello function, REF–194
ftime function, REF–195
ftruncate function, REF–196
ftw function, REF–197
Function prototype, 1–14
Functions

argument list-handling, 3–9
case conversion, 10–9
character classification, 10–9
character-classification, 3–4
character-conversion, 3–7, 3–8
Curses, 6–1 to 6–4
Date/time, 11–1 to 11–6
error-handling, 4–2 to 4–5
signal-handling, 4–5 to 4–13
Standard I/O, 2–1, 2–5

Index–5



Functions (cont’d)
string-handling, 3–9
Terminal I/O, 2–19
Time, 11–1 to 11–6
UNIX I/O, 2–5

fwait function, REF–199
fwide function, REF–200
fwprintf function, REF–201
fwrite function, REF–203
fwscanf function, REF–204

G
gcvt function, 3–7, REF–206
GENCAT command, 10–5
getc function, REF–208
getch function, REF–209
getchar function, REF–210
getclock function, REF–211
getcwd function, REF–212
getdtablesize function, REF–213
getegid function, REF–214
getenv function, REF–215

using with putenv function, REF–415
geteuid function, REF–217
getgid function, REF–218
getgrent function, REF–219
getgrgid function, REF–220
getgrgid_r function, REF–221
getgrnam function, REF–223
getgrnam_r function, REF–224
getitimer function, REF–226
getlogin function, REF–228
getname function, REF–229, REF–404
getopt function, REF–230
getpagesize function, REF–233
getpgid function, REF–234
getpgrp function, REF–235
getpid function, REF–236
getppid function, REF–237
getpwent function, REF–238
getpwnam function, REF–240
getpwnam_r function, REF–240
getpwuid function, REF–243
getpwuid_r function, REF–243
gets function, REF–157, REF–246
getsid function, REF–247
getstr function, REF–248
gettimeofday function, REF–249
getuid function, REF–250
getw function, REF–251
getwc function, REF–252
getwchar function, REF–253
getyx function, REF–254
GIDs, 1–40
glob function, REF–255

globfree function, REF–259
gmtime function, REF–260
gmtime_r function, REF–260
Group database functions

endgrent, REF–125
getgrent, REF–219
getgrgid, REF–220
getgrgid_r, REF–221
getgrnam, REF–223
getgrnam_r, REF–224
setgrent, REF–460

Group Identifier, 1–40
gsignal function, 4–5, 4–10, REF–262

H
Header files, 1–1, 1–15

displaying on Alpha systems, 1–1
displaying on VAX systems, 1–1

hypot function, REF–264

I
iconv function, 10–6, REF–265
iconv_close function, 10–6, REF–267
iconv_open function, 10–6, REF–268
IMAGELIB.OLB, 1–3
inch function, REF–270
index function, REF–271
initscr function, REF–272
initstate function, REF–273

using with setstate function, REF–476
Input and output (I/O), 1–41 to 1–47

conversion specifications, 2–7 to 2–19
format specification string, 2–7, 2–13
OpenVMS system services, 1–41
record access

in HP C, 1–45
Record Management Services (RMS), 1–41
Standard, 1–41
stream access

in HP C, 1–45
UNIX, 1–41
Wide-character, 2–6

insch function, REF–275
insertln function, REF–276
insstr function, REF–277
insstr macro, 6–2
International software

description of, 10–2
Internationalization support, 10–1
Interprocess communication, 5–1
isalnum function, REF–278
isalpha function, REF–279
isapipe function, REF–280
isascii function, REF–281

Index–6



isatty function, REF–282
iscntrl function, REF–283
isdigit function, REF–284
isgraph function, REF–285
islower function, REF–286
isnan function, REF–287
isprint function, REF–288
ispunct function, REF–289
isspace function, REF–290
isupper function, REF–291
iswalnum function, REF–292
iswalpha function, REF–293
iswcntrl function, REF–294
iswctype function, REF–295
iswdigit function, REF–297
iswgraph function, REF–298
iswlower function, REF–299
iswprint function, REF–300
iswpunct function, REF–301
iswspace function, REF–302
iswupper function, REF–303
iswxdigit function, REF–304
isxdigit function, REF–305
itimerval structure, REF–226, REF–461

J
j0 function, REF–306
j1 function, REF–306
jn function, REF–306
jrand48 function, REF–307

K
kill function, REF–308

L
l64a function, REF–309
labs function, REF–310
LANG logical name, 10–5
Large files, 1–24
_LARGEFILE macro, 1–24
lcong48 function, REF–311

using with drand48 function, REF–120
using with lrand48 function, REF–329
using with mrand48 function, REF–365

LC_ALL category, 10–4
LC_ALL logical name, 10–5
LC_CTYPE category, 10–9
LC_NUMERIC logical name, 10–5
ldexp function, REF–312
ldiv function, REF–313
leaveok function, REF–314
lgamma function, REF–315
LIB$ESTABLISH function, 4–11, REF–635

LIB$SIGNAL, 4–10
Libraries

HP C RTL object-module linking order, 1–8
Library

main function, 1–2
link function, REF–316
Linker

search libraries, 1–2
Linking

with RTL object libraries, 1–4
Linking with the C RTL, 1–3 to 1–14
List-handling functions

va_arg, REF–637
va_count macro, REF–638
va_end, REF–639
va_start, REF–640
va_start_1, REF–640

llabs function, REF–422
lldiv function, REF–423
LNK$LIBRARY logical name, 1–3, 1–8
Locale

categories, 10–3
description of, 10–3
extracting information from, 10–8

Locale support functions
localeconv, REF–317
nl_langinfo, REF–386
setlocale, REF–465

localeconv function, 10–8, REF–317
localtime function, REF–321

using with tzset function, REF–616
localtime_r function, REF–321
log function, REF–323
log10 function, REF–323
log1p function, REF–324
logb function, REF–325
Logical name

for default locale, 10–5
for default locale categories, 10–5
for international environment, 10–5
for locale directory, 10–3
for system default locale, 10–5
LANG, 10–5
LC_ALL, 10–5
LC_NUMERIC, 10–5
SYS$I18N_LOCALE, 10–3
SYS$LANG, 10–5
SYS$LC_ALL, 10–5

Logical names
feature, 1–25

longjmp function, 4–11, REF–326, REF–635,
REF–642

longjmp member
using with ftw function, REF–198

longname function, REF–328
lrand48 function, REF–329

using with lcong48 function, REF–311
using with seed48 function, REF–452

Index–7



lrand48 function (cont’d)
using with srand48 function, REF–518

lseek function, 1–44, REF–330
lstat function

using with ftw function, REF–197
lwait function, REF–332

M
Macros

feature-test, 1–18
main function

using with wait3 function, REF–662
using with wait4 function, REF–665
using with waitpid function, REF–668

Main function, 1–2, 4–11
main_program option, 1–2

malloc function, 8–1, REF–46, REF–333
using with ftw function, REF–198
using with putenv function, REF–415

Math functions, 7–1 to 7–6
abs, REF–6
acos, REF–9
acosh, REF–10
asin, REF–16
asinh, REF–17
atan, REF–19
atan2, REF–20
atanh, REF–21
cabs, REF–35
cbrt, REF–44
ceil, REF–45
copysign, REF–66
cos, REF–67
cosh, REF–68
cot, REF–69
div, REF–115
erf, REF–130
errno values, 7–1
exp, REF–139
fabs, REF–140
finite, REF–163
floor, REF–164
fp_class, REF–168
fp_classf, REF–168
fp_classl, REF–168
frexp, REF–181
hypot, REF–264
isnan, REF–287
j0, REF–306
j1, REF–306
jn, REF–306
labs, REF–310
ldexp, REF–312
ldiv, REF–313
lgamma, REF–315
llabs, REF–422
lldiv, REF–423

Math functions (cont’d)
log, REF–323
log10, REF–323
log1p, REF–324
logb, REF–325
modf, REF–361
nextafter, REF–382
nint, REF–384
pow, REF–409
qabs, REF–422
qdiv, REF–423
rand, REF–426
rint, REF–444
scalb, REF–447
sin, REF–509
sinh, REF–510
sqrt, REF–516
srand, REF–517
tan, REF–594
tanh, REF–595
trunc, REF–612
unordered, REF–625
y0, REF–736
y1, REF–736
yn, REF–736

mblen function, REF–335
mbrlen function, REF–336
mbrtowc function, 3–7, 10–10, REF–337
mbsinit function, REF–341
mbsrtowcs function, 3–7, 10–10, REF–342
mbstate_t, 10–10, REF–336, REF–337,

REF–341, REF–342, REF–671, REF–695
mbstowcs function, 10–10, REF–339
mbtowc function, 3–7, 10–10, REF–340
memccpy function, REF–344
memchr function, REF–345
memcmp function, REF–346
memcpy function, REF–347
memmove function, REF–348
Memory allocation

introduction to, 8–1
program examples, 8–2

Memory allocation functions
brk, REF–30
calloc, REF–36
cfree, REF–46
free, REF–179
malloc, REF–333
realloc, REF–436
sbrk, REF–446

Memory reallocation, REF–179
memset function, REF–349
Message catalog, 10–3

creating, 10–5
Messaging functions

catclose, REF–37
catgets, REF–38
catopen, REF–41

Index–8



mkdir function, REF–350
mkstemp function, REF–353
mktemp function, REF–354
mktime function, REF–355

using with tzset function, REF–616
mmap function, REF–356
modf function, REF–361
Modules

HP C RTL object linking order, 1–8
Monetary formatting function

strfmon, REF–540
Monetary function, 10–8
move function, REF–362
mprotect function, REF–363
mrand48 function, REF–365

using with lcong48 function, REF–311
using with seed48 function, REF–452
using with srand48 function, REF–518

msync function, REF–366
Multibyte character

conversion to wide character, 10–10
Multibyte character support

btowc, REF–33
mblen, REF–335
mbrlen, REF–336
mbrtowc, REF–337
mbsinit, REF–341
mbtowc, REF–340
wcrtomb, REF–671
wctob, REF–717
wctomb, REF–718

Multibyte string support
mbsrtowcs, REF–342
mbstowcs, REF–339
wcsrtombs, REF–695
wcstombs, REF–707

MULTITHREAD reentrancy, 1–52, REF–98
Multithread Restrictions, 1–54
munmap function, REF–368
mvaddch function, REF–369
mvaddstr function, REF–370
mvcur function, REF–371
mvdelch function, REF–372
mvgetch function, REF–373
mvgetstr function, REF–374
mvinch function, REF–375
mvinsch function, REF–376
mvinsstr function, REF–377
mvinsstr macro, 6–2
mvwaddch function, REF–369
mvwaddstr function, REF–370
mvwdelch function, REF–372
mvwgetch function, REF–373
mvwgetstr function, REF–374
mvwin function, REF–378
mvwinch function, REF–375

mvwinsch function, REF–376
mvwinsstr function, REF–377
mvwinsstr macro, 6–2

N
nanosleep function, REF–379
New features, xxvi

64-bit pointer support for socket routines, xxvii
feature logicals, xxvii
performance enhancements, xxviii
POSIX style identifiers, xxvi
set default directory for child process, xxvii

New functions, xxviii
newwin function, REF–381
nextafter function, REF–382
nice function, REF–383
nint function, REF–384
nl function, REF–385
nl_langinfo function, 10–8, REF–386
nocrmode function, REF–76
noecho function, REF–122
NONE reentrancy, REF–98
nonl function, REF–385
noraw function, REF–428
nrand48 function, REF–390

O
Object libraries

RTL, 1–4
Object library

backport, A–1
DECC$CRTL, A–1
VAXCRTL.OLB, 1–4
VAXCRTLD.OLB, 1–4
VAXCRTLDX.OLB, 1–4
VAXCRTLT.OLB, 1–4
VAXCRTLTX.OLB, 1–4
VAXCRTLX.OLB, 1–4

Object module
HP C RTL linking order, 1–8

Occlusion, 6–4
ODS-5 volumes, 1–18
open function, REF–121, REF–143, REF–148,

REF–391
opendir function, REF–394

using with readdir function, REF–432
using with rewinddir function, REF–442

OpenVMS system services
in HP C programs, 1–41

OpenVMS versions, A–1
Operating system version dependency, A–1
overlay function, REF–29, REF–396
overwrite function, REF–29, REF–397

Index–9



P
passwd structure, REF–238, REF–241, REF–244
pathconf function, REF–398
pause function, REF–400
pclose function, REF–401

using with popen function, REF–407
Performance enhancements, xxviii
perror function, 4–5, REF–402
pipe function, REF–121, REF–143, REF–148,

REF–403
Pointers

64-bit support, 1–54
popen function, REF–407
Portability concerns, 1–42

arguments to mkdir, REF–350
_exit function, REF–138
gsignal function, REF–262
longname function, REF–328
memory deallocation, REF–46
mvcur function, 6–10
mv[w]insstr functions, REF–377
[no]nl functions, REF–385
radix conversion specifiers, 2–11
raise function, REF–425
specific

list of, 1–50 to 1–52
ssignal function, REF–522
ttyname function, REF–614
ttyname_r function, REF–614
UNIX file specifications, 1–15

ambiguity of, 1–16
variable-length argument lists, 3–9
va_start_1 macro, REF–640
vfork versus fork function, REF–642
[w]clrattr functions, REF–61
[w]insstr functions, REF–277
[w]setattr functions, REF–454

POSIX Root Support, 1–29
POSIX style identifiers, xxvi, 1–40
_POSIX_C_SOURCE macro, 1–19
_POSIX_EXIT macro, 1–23
pow function, REF–409
pread function, REF–410
Predefined macro

ERR, 6–10
Predefined variables and constants, 6–9
printf function, REF–411
printw function, REF–412
Process permanent files, 2–19
putc function, REF–413
putchar function, REF–414
putenv function, REF–415
puts function, REF–417
putw function, REF–418

putwc function, REF–419
putwchar function, REF–420
pwrite function, REF–421

Q
qabs function, REF–422
qdiv function, REF–423
qsort function, REF–424
Quotas

affecting RTL, 5–1, 5–2, 5–5

R
raise function, 4–5, 4–10, REF–308, REF–425
rand function, REF–426
random function, REF–427
raw function, REF–428
read function, REF–430
readdir function, REF–432

using with closedir function, REF–59
readdir_r function, REF–432
Reader’s comments, xxiii
readv function, REF–434
realloc function, 8–1, REF–436
Record

access by HP C, 1–45
I/O

HP C handling of, 1–46
Record files

accessing in record mode, 1–45
accessing in stream mode, 1–45

Record Management Services (RMS)
accessing files, 1–44
file organization, 1–43
in HP C programs, 1–41
overview of, 1–43 to 1–47
record access

in HP C, 1–45
record formats, 1–43
stream access

in HP C, 1–45
Reentrancy, 1–52, REF–98

AST, 1–52, REF–98
MULTITHREAD, 1–52, REF–98
NONE, REF–98
Restrictions, 1–54
TOLERANT, 1–52, REF–98

Reentrancy function
decc$set_reentrancy, 1–52, REF–98

/REENTRANCY qualifier, 1–52
refresh function, REF–52, REF–437
remove function, REF–109, REF–438
rename function, REF–439
rewind function, REF–441
rewinddir function

using with readdir function, REF–432

Index–10



rindex function, REF–443
rint function, REF–444
rmdir function, REF–445
RMS

file attributes, 2–4
Run-Time Library (RTL)

as shared images, 1–2
Curses functions and macros, 6–1
Date/time functions, 11–1
header files, 1–15
I/O, 1–41 to 1–47

HP C handling of, 1–44 to 1–47
interpreting syntax, 1–14
introduction to, 1–1 to 1–64
linking against RTL object libraries, 1–4, 1–8
linking against RTL shareable image, 1–3
linking options explained, 1–3 to 1–14
portability concerns, 1–42
preprocessor directives, 1–15
specific portability concerns, 1–50 to 1–52
stream I/O, 1–45

S
sbrk function, 8–1, REF–446
scalb function, REF–447
scanf function, REF–448
scanw function, REF–449
Screen management

Curses
See Curses

scroll function, REF–450
scrollok function, REF–451
Security/impersonation functions

getegid, REF–214
geteuid, REF–217
getgid, REF–218
getpgid, REF–234
getpgrp, REF–235
getsid, REF–247
getuid, REF–250
seteuid, REF–458
setgid, REF–459
setpgid, REF–469
setpgrp, REF–471
setregid, REF–473
setreuid, REF–474
setsid, REF–475
setuid, REF–477

seed48 function, REF–452
using with drand48 function, REF–120
using with lcong48 function, REF–311
using with lrand48 function, REF–329
using with mrand48 function, REF–365

seekdir function, REF–453

Set default directory for child process, xxvii
setattr function, REF–454
setattr macro, 6–2
setbuf function, REF–455
setenv function, REF–456
seteuid function, REF–458
setgid function, REF–459
setgrent function, REF–460
setitimer function, REF–461

using with ualarm function, REF–620
setjmp function, 4–11, REF–326, REF–463,

REF–635, REF–642
setlocale function, 10–4, REF–465
setpgid function, REF–469
setpgrp function, REF–471
setpwent function, REF–472
setregid function, REF–473
setreuid function, REF–474
setsid function, REF–475
setstate function, REF–476

using with initstate function, REF–273
setuid function, REF–477
setvbuf function, REF–478

using with popen function, REF–407
Shareable image, 1–3
Shared image

HP C RTL, 1–2
sigaction function, REF–480
sigaction structure, REF–480
sigaddset function, REF–483
sigblock function, 4–7, REF–484, REF–494
sigdelset function, REF–485
sigemptyset function, REF–486
sigfillset function, REF–487
sighold function, REF–488
sigignore function, REF–489
sigismember function, REF–490
siglongjmp function, REF–491
sigmask function, REF–492
signal function, 4–7, 4–11, REF–262, REF–425,

REF–493, REF–522
Signal handler

calling interface, 4–7
Signal-handling functions, 4–5

alarm, REF–13
gsignal, REF–262
kill, REF–308
longjmp, REF–326
OpenVMS exceptions, 4–10
pause, REF–400
program examples, 4–13
raise, REF–425
setjmp, REF–463
sigaction, REF–480
sigaddset, REF–483
sigblock, REF–484
sigdelset, REF–485
sigemptyset, REF–486

Index–11



Signal-handling functions (cont’d)
sigfillset, REF–487
sighold, REF–488
sigignore, REF–489
sigismember, REF–490
siglongjmp, REF–491
sigmask, REF–492
signal, REF–493
sigpause, REF–494
sigpending, REF–495
sigprocmask, REF–496
sigrelse, REF–498
sigsetjmp, REF–499
sigsetmask, REF–501
sigstack, REF–502
sigsuspend, REF–504
sigtimedwait, REF–505
sigvec, REF–506
sigwait, REF–507
sigwaitinfo, REF–508
sleep, REF–511
ssignal, REF–522
UNIX signals, 4–6
VAXC$ESTABLISH, REF–635

<signal.h> header file, 4–6
Signals, 4–5
sigpause function, REF–494
sigpending function, REF–495
sigprocmask function, REF–496
sigrelse function, REF–498
sigsetjmp function, REF–499
sigsetmask function, 4–7, REF–501
sigstack function, REF–502
sigsuspend function, REF–504
sigtimedwait function, REF–505
sigvec function, 4–7, 4–11, REF–262, REF–425,

REF–506
sigwait function, REF–507
sigwaitinfo function, REF–508
sin function, REF–509
sinh function, REF–510
sleep function, REF–511
snprintf function, REF–512
_SOCKADDR_LEN macro, 1–24
socket routines

64-bit pointer support, xxvii
Specification delimiters

OpenVMS and UNIX, 1–16
sprintf function, REF–514
sqrt function, REF–516
srand function, REF–517
srand48 function, REF–518

using with drand48 function, REF–120
using with lcong48 function, REF–311
using with lrand48 function, REF–329
using with mrand48 function, REF–365

srandom function, REF–519
using with random function, REF–427

sscanf function, REF–520
ssignal function, 4–7, REF–262, REF–425,

REF–522
Standard header file, 1–1
Standard I/O, 1–41

file pointers, 2–5
introduction to, 2–1
program example, 2–22

wide character, 2–23
Standard I/O functions

clearerr, REF–51
delete, REF–109, REF–438
dlclose, REF–116
dlerror, REF–117
dlopen, REF–118
dlsym, REF–119
fclose, REF–142
fdopen, REF–148
feof, REF–149
ferror, REF–150
fflush, REF–151
fgetc, REF–153
fgetname, REF–154
fgets, REF–157
fgetwc, REF–159
fgetws, REF–160
fopen, REF–166
fprintf, REF–171
fputc, REF–173
fputs, REF–174
fputwc, REF–175
fputws, REF–177
fread, REF–178
freopen, REF–180
fscanf, REF–183
fseek, REF–185
fseeko, REF–187
ftell, REF–193
ftello, REF–194
fwrite, REF–203
getc, REF–208
getw, REF–251
getwc, REF–252
mktemp, REF–354
putc, REF–413
putw, REF–418
putwc, REF–419
rewind, REF–441
setbuf, REF–455
setvbuf, REF–478
snprintf, REF–512
sprintf, REF–514
sscanf, REF–520
tmpfile, REF–601
tmpnam, REF–602
ungetc, REF–623

Index–12



Standard I/O functions (cont’d)
ungetwc, REF–624

Standards
listed, 1–18

standend function, REF–523
standout function, REF–524
stat function, REF–525
stat structure

using with ftw function, REF–197
__STDC_VERSION__ macro, 1–19
stderr, 2–20, REF–151, REF–180, REF–402,

REF–405
stdin, 2–20, REF–180, REF–405, REF–448
<stdio.h> header file, 2–20
stdout, 2–20, REF–180, REF–405, REF–411,

REF–414, REF–417, REF–420
stdscr window, 6–5
strcasecmp function, REF–528
strcat function, REF–529
strchr function, REF–345, REF–531
strcmp function, REF–346, REF–533
strcmpn function, 1–51
strcoll function, 10–11, REF–534
strcpy function, REF–347, REF–535
strcpyn function, 1–51
strcspn function, REF–536
strdup function, REF–537
Stream

access by HP C, 1–45
files, 2–1

strerror function, 4–5, REF–538
strfmon function, 10–8, REF–540
strftime function, 10–8, REF–544

using with tzset function, REF–616
String comparison functions

multipass collation, 10–11
wcscoll, REF–677

String-handling functions, 3–9 to 3–10
atof, REF–23
atoi, REF–24
atol, REF–24
atoll, REF–25
atoq, REF–25
basename, REF–26
bcmp, REF–27
bcopy, REF–28
bzero, REF–34
dirname, REF–113
ffs, REF–152
index, REF–271
memchr, REF–345
memcmp, REF–346
memcpy, REF–347
memmove, REF–348
memset, REF–349
program examples, 3–10
rindex, REF–443
strcasecmp, REF–528

String-handling functions (cont’d)
strcat, REF–529
strchr, REF–531
strcmp, REF–533
strcoll, REF–534
strcpy, REF–535
strcspn, REF–536
strdup, REF–537
strlen, REF–550
strncasecmp, REF–551
strncat, REF–552
strncmp, REF–553
strncpy, REF–555
strnlen, REF–556
strpbrk, REF–557
strrchr, REF–563
strsep, REF–564
strspn, REF–565
strtok, REF–570
strtok_r, REF–570
strtol, REF–573
strtoll, REF–575
strtoq, REF–575
strtoul, REF–577
strtoull, REF–578
strtouq, REF–578
strxfrm, REF–579
swab, REF–583
wcscat, REF–672
wcschr, REF–674
wcscmp, REF–676
wcscoll, REF–677
wcscpy, REF–678
wcscspn, REF–679
wcslen, REF–687
wcsncat, REF–688
wcsncmp, REF–690
wcsncpy, REF–691
wcspbrk, REF–692
wcsrchr, REF–693
wcsspn, REF–697
wcstok, REF–702
wcstol, REF–705
wcstoul, REF–708
wcswcs, REF–711
wcsxfrm, REF–714

strlen function, REF–550
strncasecmp function, REF–551
strncat function, REF–552
strncmp function, REF–553
strncpy function, REF–555
strnlen function, REF–556
strpbrk function, REF–557
strptime function, 10–8, REF–558
strrchr function, REF–563
strsep function, REF–564

Index–13



strspn function, REF–565
strstr function, REF–566
strtod function, 10–8, REF–23, REF–568
strtok function, REF–570
strtok_r function, REF–570
strtol function, REF–24, REF–25, REF–573
strtoll function, REF–575
strtoq function, REF–575
strtoul function, REF–577
strtoull function, REF–578
strtouq function, REF–578
strxfrm function, 10–11, REF–579
Subprocess, 5–1 to 5–11

executing image
with exec functions, 5–3

implementation of, 5–2
introduction to, 5–1
program examples, 5–5 to 5–11
sharing data with pipe, 5–5, REF–403
synchronization with wait, 5–5

Subprocess functions
decc$set_child_default_dir, REF–93
decc$set_child_standard_streams,

REF–94
decc$validate_wchar, REF–104
decc$write_eof_to_mbx, REF–105
execl, REF–131
execle, REF–133
execlp, REF–134
execv, REF–135
execve, REF–136
execvp, REF–137
pipe, REF–403
vfork, REF–642
wait, REF–660

subwin function, REF–582
swab function, REF–583
swprintf function, REF–584
swscanf function, REF–585
Synchronizing processes, 5–5
Syntax

of HP C RTL functions, 1–14
SYS$ERROR, 2–20
SYS$I18N_LOCALE logical name, 10–3
SYS$INPUT, 2–20
SYS$LANG logical name, 10–5
SYS$LC_ALL logical name, 10–5
SYS$OUTPUT, 2–20
SYS$POSIX_ROOT, 1–29
SYS$WAKE, REF–13
sysconf function, REF–586
system function, REF–592
System functions, 9–1 to 9–5

asctime, REF–14
asctime_r, REF–14
assert, REF–18
atexit, REF–22
bsearch, REF–31

System functions (cont’d)
chdir, REF–47
chmod, REF–48
chown, REF–49
clock, REF–53
ctermid, REF–77
ctime, REF–78
ctime_r, REF–78
cuserid, REF–80
difftime, REF–112
fchown, REF–141
fmod, REF–165
ftime, REF–195
getcwd, REF–212
getenv, REF–215
getpid, REF–236
getppid, REF–237
gmtime, REF–260
gmtime_r, REF–260
introduction to, 9–3
localtime, REF–321
localtime_r, REF–321
memset, REF–349
mkdir, REF–350
nice, REF–383
program examples, 9–3
qsort, REF–424
remove, REF–109, REF–438
rename, REF–439
setbuf, REF–455
setvbuf, REF–478
strtod, REF–568
strtok, REF–570
strtok_r, REF–570
system, REF–592
time, REF–599
times, REF–600
umask, REF–621
utime, REF–626
utimes, REF–629
vfprintf, REF–644
vfscanf, REF–645
vprintf, REF–650
vscanf, REF–651
vsnprintf, REF–652
vsprintf, REF–653
vsscanf, REF–654
wcstod, REF–700
wcstok, REF–702
writev, REF–733

T
tan function, REF–594
tanh function, REF–595
telldir function, REF–596

Index–14



tempnam function, REF–597
Terminal I/O

program examples, 2–20 to 2–25
Terminal I/O functions

getchar, REF–210
gets, REF–246
getwchar, REF–253
printf, REF–411
putchar, REF–414
puts, REF–417
putwchar, REF–420
scanf, REF–448

Time
introduction to, 11–1

time function, REF–599
Time functions, 11–1 to 11–6
Time-related functions

asctime, REF–14
asctime_r, REF–14
clock, REF–53
clock_getres, REF–54
clock_gettime, REF–55
clock_settime, REF–56
ctime, REF–78
ctime_r, REF–78
decc$fix_time, REF–87
difftime, REF–112
ftime, REF–195
getclock, REF–211
getitimer, REF–226
gettimeofday, REF–249
gmtime, REF–260
gmtime_r, REF–260
localtime_r, REF–321
mktime, REF–355
nanosleep, REF–379
setitimer, REF–461
strftime, REF–544
strptime, REF–558
time, REF–599
times, REF–600
tzset, REF–616
ualarm, REF–620
usleep, REF–633
utime, REF–626
utimes, REF–629
wcsftime, REF–681

Time-zone cache, REF–619
times function, REF–600
timespec structure, REF–211
tmpfile function, REF–601
tmpnam function, REF–602
toascii function, 3–7, REF–603
TOLERANT reentrancy, 1–52, REF–98
_tolower macro, 3–7

_tolower function, REF–605
tolower function, 3–7, REF–604
touchwin function, REF–606
_toupper macro, 3–7
_toupper function, REF–608
toupper function, 3–7, REF–607
towctrans function, 3–7, 10–9, REF–609
towlower function, 10–9, REF–610
towupper function, 10–9, REF–611
trunc function, REF–612
truncate function, REF–613
ttyname function, REF–614
ttyname_r function, REF–614
tzset function, REF–616

U
ualarm function, REF–620
UIDs, 1–40
umask function, REF–621
umask value, 5–4
uname function, REF–622
ungetc function, REF–623
ungetwc function, REF–624
UNIX

file specification conversion functions, 1–16
file specifications, 1–15 to 1–18

alternate translation, 1–17
compared to OpenVMS, 1–16

Run-Time Library, 1–15
use with HP C RTL, 1–15 to 1–18

UNIX I/O, 1–41
file descriptors, 2–5
functions

program example, 2–24
UNIX I/O functions

close, REF–58
creat, REF–70
dup, REF–121
dup2, REF–121
fcntl, REF–143
fileno, REF–162
fstat, REF–189
getname, REF–229
getopt, REF–230
isapipe, REF–280
isatty, REF–282
lseek, REF–330
open, REF–391
pread, REF–410
pwrite, REF–421
read, REF–430
readv, REF–434
stat, REF–525
ttyname, REF–614
ttyname_r, REF–614
write, REF–732

Index–15



UNIX style root, 1–29
unordered function, REF–625
unsetenv function, REF–632
User database functions

endpwent, REF–126
getpwuid, REF–243
getpwuid_r, REF–243
setpwent, REF–472

User Identifier, 1–40
__USE_LONG_GID_T macro, 1–25
usleep function, REF–633
utime function, REF–626
utimes function, REF–629

V
<varargs.h> header file, 3–9
Variable-length argument lists, 3–9
Variable-length record files

accessing in record mode, 1–47
VAXC$CRTL_INIT function, 4–11, REF–621,

REF–634
vaxc$errno external variable, 4–5
VAXC$ESTABLISH function, 4–11, REF–326,

REF–463, REF–635
VAXC$EXECMBX logical name, 5–4
va_arg function, REF–637
va_count macro, REF–638
va_end function, REF–639
va_start macro, REF–640
va_start_1 macro, REF–640
Version-dependency of HP C RTL routines, A–1
vfork function, REF–404, REF–642
vfprintf function, REF–644
vfscanf function, REF–645
vfwprintf function, REF–647
vfwscanf function, REF–649
_VMS_CURSES macro, 1–24
_VMS_V6_SOURCE macro, 1–23
__VMS_VER macro, 1–22
__VMS_VER_OVERRIDE macro, 1–22
vprintf function, REF–650
vscanf function, REF–651
vsnprintf function, REF–652
vsprintf function, REF–653
vsscanf function, REF–654
vswprintf function, REF–655
vswscanf function, REF–657
vwprintf function, REF–658
vwscanf function, REF–659

W
waddch function, REF–11
waddstr function, REF–12
wait function, REF–660

using with waitpid function, REF–667

wait3 function, REF–661
wait4 function, REF–664
waitpid function, REF–667
wclear function, REF–50
wclrattr function, 6–2, REF–61
wclrtobot function, REF–62
wclrtoeol function, REF–63
wcrtomb function, 3–7, 10–10, REF–671
wcscat function, REF–672
wcschr function, REF–674
wcscmp function, REF–676
wcscoll function, 10–11, REF–677
wcscpy function, REF–678
wcscspn function, REF–679
wcsftime function, 10–8, REF–681
wcslen function, REF–687
wcsncat function, REF–688
wcsncmp function, REF–690
wcsncpy function, REF–691
wcspbrk function, REF–692
wcsrchr function, REF–693
wcsrtombs function, 3–7, 10–10, REF–695
wcsspn function, REF–697
wcsstr function, REF–699
wcstod function, 10–8, REF–700
wcstok function, REF–702
wcstol function, REF–705
wcstombs function, 10–10, REF–707
wcstoul function, REF–708
wcswcs function, REF–711
wcswidth function, REF–713
wcsxfrm function, 10–11, REF–714
wctob function, 10–10, REF–717
wctomb function, 10–10, REF–718
wctrans function, 3–7, 10–9, REF–719
wctype function, REF–720
wcwidth function, REF–723
wdelch function, REF–108
wdeleteln function, REF–110
werase function, REF–129
wgetch function, REF–122, REF–209
wgetstr function, REF–122, REF–248
Wide character

collating functions, 10–11
conversion to multibyte, 10–10
data type, 10–9
functions, 10–9
I/O functions, 10–10

Wide character I/O
program example, 2–23

Wide-character functions
btowc, REF–33
fgetwc, REF–159
fgetws, REF–160
fputwc, REF–175
fputws, REF–177
fwide, REF–200
fwprintf, REF–201

Index–16



Wide-character functions (cont’d)
fwscanf, REF–204
getwc, REF–252
getwchar, REF–253
iswalnum, REF–292
iswalpha, REF–293
iswcntrl, REF–294
iswctype, REF–295
iswdigit, REF–297
iswgraph, REF–298
iswlower, REF–299
iswprint, REF–300
iswpunct, REF–301
iswspace, REF–302
iswupper, REF–303
iswxdigit, REF–304
mbrlen, REF–336
mbrtowc, REF–337
mbsinit, REF–341
mbsrtowcs, REF–342
putwc, REF–419
putwchar, REF–420
swprintf, REF–584
swscanf, REF–585
towctrans, REF–609
towlower, REF–610
towupper, REF–611
ungetwc, REF–624
vfwprintf, REF–647
vfwscanf, REF–649
vswprintf, REF–655
vswscanf, REF–657
vwprintf, REF–658
vwscanf, REF–659
wcrtomb, REF–671
wcscat, REF–672
wcschr, REF–674
wcscmp, REF–676
wcscoll, REF–677
wcscpy, REF–678
wcscspn, REF–679
wcsftime, REF–681
wcslen, REF–687
wcsncat, REF–688
wcsncmp, REF–690
wcsncpy, REF–691
wcspbrk, REF–692
wcsrchr, REF–693
wcsrtombs, REF–695
wcsspn, REF–697
wcsstr, REF–699
wcstod, REF–700
wcstok, REF–702
wcstol, REF–705
wcstoul, REF–708
wcswcs, REF–711
wcswidth, REF–713
wcsxfrm, REF–714

Wide-character functions (cont’d)
wctob, REF–717
wctrans, REF–719
wctype, REF–720
wcwidth, REF–723
wmemchr, REF–724
wmemcmp, REF–725
wmemcpy, REF–726
wmemmove, REF–727
wmemset, REF–728
wprintf, REF–729
wscanf, REF–735

Wide-character I/O, 2–6
winch function, REF–270
winsch function, REF–275
winsertln function, REF–276
winsstr function, 6–2, REF–277
wmemchr function, REF–724
wmemcmp function, REF–725
wmemcpy function, REF–726
wmemmove function, REF–727
wmemset function, REF–728
wmove function, REF–362
wprintf function, REF–729
wprintw function, REF–412
wrapok function, REF–731
wrefresh function, REF–437
write function, REF–732
writev function, REF–733
wscanf function, REF–735
wscanw function, REF–449
wsetattr function, 6–2, REF–454
wstandend function, REF–523
wstandout function, REF–524

X
_XOPEN_SOURCE macro, 1–19
_XOPEN_SOURCE_EXTENDED macro, 1–19

Y
y0 function, REF–736
y1 function, REF–736
yn function, REF–736

Index–17




	Preface
	1 Introduction
	1.1 Using the HP C Run-Time Library
	1.2 RTL Linking Options on Alpha Systems (Alpha only)
	1.2.1 Linking with the Shareable Image
	1.2.2 Linking with the Object Libraries
	1.2.3 Examples

	1.3 RTL Linking Options on VAX Systems (VAX only)
	1.3.1 Linking with the HP C RTL
	1.3.2 Resolving Link-Time Conflicts with Multiple C RTLs
	1.3.3 Linking Examples for HP C or HP C++ Code Only
	1.3.4 Linking Examples for VAX C and HP C Code Combined
	1.3.5 Linking with the VAX C RTL /NOSYSSHR

	1.4 HP C RTL Function Prototypes and Syntax
	1.4.1 Function Prototypes
	1.4.2 Syntax Conventions for Function Prototypes
	1.4.3 UNIX Style File Specifications
	1.4.4 Extended File Specifications

	1.5 Feature-Test Macros for Header-File Control
	1.5.1 Standards Macros
	1.5.2 Selecting a Standard
	1.5.3 Interactions with the /STANDARD Qualifier
	1.5.4 Multiple-Version-Support Macro
	1.5.5 Compatibility Modes
	1.5.6 Curses and Socket Compatibility Macros
	1.5.7 2-Gigabyte File Size Macro
	1.5.8 32-Bit UID and GID Macros (Alpha only)

	1.6 Enabling C RTL Features Using Feature Logical Names
	1.7 32-Bit UIDs/GIDs and POSIX Style Identifiers
	1.8 Input and Output on OpenVMS Systems
	1.8.1 RMS Record and File Formats
	1.8.2 Access to RMS Files

	1.9 Specific Portability Concerns
	1.9.1 Reentrancy
	1.9.2 Multithread Restrictions

	1.10 64-bit Pointer Support (Alpha only)
	1.10.1 Using the HP C Run-Time Library
	1.10.2 Obtaining 64-Bit Pointers to Memory
	1.10.3 HP C Header Files
	1.10.4 Functions Affected
	1.10.5 Reading Header Files


	2 Understanding Input and Output
	2.1 Using RMS from RTL Routines
	2.2 UNIX I/O and Standard I/O
	2.3 Wide-Character Versus Byte I/O Functions
	2.4 Conversion Specifications
	2.4.1 Converting Input Information
	2.4.2 Converting Output Information

	2.5 Terminal I/O
	2.6 Program Examples

	3 Character, String, and Argument-List Functions
	3.1 Character-Classification Functions
	3.2 Character-Conversion Functions
	3.3 String and Argument-List Functions
	3.4 Program Examples

	4 Error and Signal Handling
	4.1 Error Handling
	4.2 Signal Handling
	4.2.1 OpenVMS Versus UNIX Terminology
	4.2.2 UNIX Signals and the HP C RTL
	4.2.3 Signal-Handling Concepts
	4.2.4 Signal Actions
	4.2.5 Signal Handling and OpenVMS Exception Handling

	4.3 Program Example

	5 Subprocess Functions
	5.1 Implementing Child Processes in HP C
	5.2 The exec Functions
	5.2.1 exec Processing
	5.2.2 exec Error Conditions

	5.3 Synchronizing Processes
	5.4 Interprocess Communication
	5.5 Program Examples

	6 Curses Screen Management Functions and Macros
	6.1 Using the BSD-Based Curses Package (Alpha only)
	6.2 Curses Overview
	6.3 Curses Terminology
	6.3.1 Predefined Windows (stdscr and curscr)
	6.3.2 User-Defined Windows

	6.4 Getting Started with Curses
	6.5 Predefined Variables and Constants
	6.6 Cursor Movement
	6.7 Program Example

	7 Math Functions
	7.1 Math Function Variants—float, long double
	7.2 Error Detection
	7.3 The <fp.h> Header File
	7.4 Example

	8 Memory Allocation Functions
	8.1 Program Example

	9 System Functions
	10 Developing International Software
	10.1 Internationalization Support
	10.1.1 Installation
	10.1.2 Unicode Support

	10.2 Features of International Software
	10.3 Developing International Software Using HP C
	10.4 Locales
	10.5 Using the setlocale Function to Set Up an International Environment
	10.6 Using Message Catalogs
	10.7 Handling Different Character Sets
	10.7.1 Charmap File
	10.7.2 Converter Functions
	10.7.3 Using Codeset Converter Files

	10.8 Handling Culture-Specific Information
	10.8.1 Extracting Cultural Information From a Locale
	10.8.2 Date and Time Formatting Functions
	10.8.3 Monetary Formatting Function
	10.8.4 Numeric Formatting

	10.9 Functions for Handling Wide Characters
	10.9.1 Character Classification Functions
	10.9.2 Case Conversion Functions
	10.9.3 Functions for Input and Output of Wide Characters
	10.9.4 Functions for Converting Multibyte and Wide Characters
	10.9.5 Functions for Manipulating Wide-Character Strings and Arrays

	10.10 Collating Functions

	11 Date/Time Functions
	11.1 Date/Time Support Models
	11.2 Overview of Date/Time Functions
	11.3 HP C RTL Date/Time Computations—UTC and Local Time
	11.4 Time-Zone Conversion Rule Files
	11.5 Sample Date/Time Scenario

	Reference Section
	a64l (Alpha only)
	abort
	abs
	access
	acos
	acosh (Alpha only)
	[w]addch
	[w]addstr
	alarm
	asctime, asctime_r
	asin
	asinh (Alpha only)
	assert
	atan
	atan2
	atanh (Alpha only)
	atexit
	atof
	atoi, atol
	atoq, atoll (Alpha only)
	basename
	bcmp
	bcopy
	box
	brk
	bsearch
	btowc
	bzero
	cabs
	calloc
	catclose
	catgets
	catopen
	cbrt (Alpha only)
	ceil
	cfree
	chdir
	chmod
	chown
	[w]clear
	clearerr
	clearok
	clock
	clock_getres (Alpha only)
	clock_gettime (Alpha only)
	clock_settime (Alpha only)
	close
	closedir
	[w]clrattr
	[w]clrtobot
	[w]clrtoeol
	confstr
	copysign (Alpha only)
	cos
	cosh
	cot
	creat
	[no]crmode
	ctermid
	ctime, ctime_r
	cuserid
	DECC$CRTL_INIT
	decc$feature_get_index
	decc$feature_get_name
	decc$feature_get_value
	decc$feature_set_value
	decc$fix_time
	decc$from_vms
	decc$match_wild
	decc$record_read
	decc$record_write
	decc$set_child_default_dir (Alpha only)
	decc$set_child_standard_streams
	decc$set_reentrancy
	decc$to_vms
	decc$translate_vms
	decc$validate_wchar
	decc$write_eof_to_mbx
	[w]delch
	delete
	[w]deleteln
	delwin
	difftime
	dirname
	div
	dlclose
	dlerror
	dlopen
	dlsym
	drand48
	dup, dup2
	[no]echo
	ecvt
	endgrent (Alpha only)
	endpwent
	endwin
	erand48
	[w]erase
	erf
	execl
	execle
	execlp
	execv
	execve
	execvp
	exit, _exit
	exp
	fabs
	fchown
	fclose
	fcntl
	fcvt
	fdopen
	feof
	ferror
	fflush
	ffs
	fgetc
	fgetname
	fgetpos
	fgets
	fgetwc
	fgetws
	fileno
	finite (Alpha only)
	floor
	fmod
	fopen
	fp_class (Alpha only)
	fpathconf
	fprintf
	fputc
	fputs
	fputwc
	fputws
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fseeko
	fsetpos
	fstat
	fsync
	ftell
	ftello
	ftime
	ftruncate
	ftw
	fwait
	fwide
	fwprintf
	fwrite
	fwscanf
	gcvt
	getc
	[w]getch
	getchar
	getclock
	getcwd
	getdtablesize
	getegid
	getenv
	geteuid
	getgid
	getgrent (Alpha only)
	getgrgid (Alpha only)
	getgrgid_r (Alpha only)
	getgrnam (Alpha only)
	getgrnam_r (Alpha only)
	getitimer
	getlogin
	getname
	getopt
	getpagesize
	getpgid (Alpha only)
	getpgrp (Alpha only)
	getpid
	getppid
	getpwent
	getpwnam, getpwnam_r
	getpwuid, getpwuid_r (Alpha only)
	gets
	getsid (Alpha only)
	[w]getstr
	gettimeofday
	getuid
	getw
	getwc
	getwchar
	getyx
	glob
	globfree
	gmtime, gmtime_r
	gsignal
	hypot
	iconv
	iconv_close
	iconv_open
	[w]inch
	index
	initscr
	initstate
	[w]insch
	[w]insertln
	[w]insstr
	isalnum
	isalpha
	isapipe
	isascii
	isatty
	iscntrl
	isdigit
	isgraph
	islower
	isnan (Alpha only)
	isprint
	ispunct
	isspace
	isupper
	iswalnum
	iswalpha
	iswcntrl
	iswctype
	iswdigit
	iswgraph
	iswlower
	iswprint
	iswpunct
	iswspace
	iswupper
	iswxdigit
	isxdigit
	j0, j1, jn (Alpha only)
	jrand48
	kill
	l64a (Alpha only)
	labs
	lcong48
	ldexp
	ldiv
	leaveok
	lgamma (Alpha only)
	link
	localeconv
	localtime, localtime_r
	log, log2, log10
	log1p (Alpha only)
	logb (Alpha only)
	longjmp
	longname
	lrand48
	lseek
	lwait
	malloc
	mblen
	mbrlen
	mbrtowc
	mbstowcs
	mbtowc
	mbsinit
	mbsrtowcs
	memccpy
	memchr
	memcmp
	memcpy
	memmove
	memset
	mkdir
	mkstemp
	mktemp
	mktime
	mmap
	modf
	[w]move
	mprotect
	mrand48
	msync
	munmap
	mv[w]addch
	mv[w]addstr
	mvcur
	mv[w]delch
	mv[w]getch
	mv[w]getstr
	mv[w]inch
	mv[w]insch
	mv[w]insstr
	mvwin
	nanosleep (Alpha only)
	newwin
	nextafter (Alpha only)
	nice
	nint (Alpha only)
	[no]nl
	nl_langinfo
	nrand48
	open
	opendir
	overlay
	overwrite
	pathconf
	pause
	pclose
	perror
	pipe
	popen
	pow
	pread (Alpha only)
	printf
	[w]printw
	putc
	putchar
	putenv
	puts
	putw
	putwc
	putwchar
	pwrite (Alpha only)
	qabs, llabs (Alpha only)
	qdiv, lldiv (Alpha only)
	qsort
	raise
	rand, rand_r
	random
	[no]raw
	read
	readdir, readdir_r
	readv (Alpha only)
	realloc
	[w]refresh
	remove
	rename
	rewind
	rewinddir
	rindex
	rint (Alpha only)
	rmdir
	sbrk
	scalb (Alpha only)
	scanf
	[w]scanw
	scroll
	scrollok
	seed48
	seekdir
	[w]setattr
	setbuf
	setenv
	seteuid (Alpha only)
	setgid
	setgrent (Alpha only)
	setitimer
	setjmp
	setlocale
	setpgid (Alpha only)
	setpgrp (Alpha only)
	setpwent
	setregid (Alpha only)
	setreuid (Alpha only)
	setsid (Alpha only)
	setstate
	setuid
	setvbuf
	sigaction
	sigaddset
	sigblock
	sigdelset
	sigemptyset
	sigfillset
	sighold (Alpha only)
	sigignore (Alpha only)
	sigismember
	siglongjmp
	sigmask
	signal
	sigpause
	sigpending
	sigprocmask
	sigrelse (Alpha only)
	sigsetjmp
	sigsetmask
	sigstack (VAX only)
	sigsuspend
	sigtimedwait (Alpha only)
	sigvec
	sigwait (Alpha only)
	sigwaitinfo (Alpha only)
	sin
	sinh
	sleep
	snprintf
	sprintf
	sqrt
	srand
	srand48
	srandom
	sscanf
	ssignal
	[w]standend
	[w]standout
	stat
	strcasecmp
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strfmon
	strftime
	strlen
	strncasecmp
	strncat
	strncmp
	strncpy
	strnlen
	strpbrk
	strptime
	strrchr
	strsep
	strspn
	strstr
	strtod
	strtok, strtok_r
	strtol
	strtoq, strtoll (Alpha only)
	strtoul
	strtouq, strtoull (Alpha only)
	strxfrm
	subwin
	swab
	swprintf
	swscanf
	sysconf
	system
	tan
	tanh
	telldir
	tempnam
	time
	times
	tmpfile
	tmpnam
	toascii
	tolower
	_tolower
	touchwin
	toupper
	_toupper
	towctrans
	towlower
	towupper
	trunc (Alpha only)
	truncate
	ttyname, ttyname_r
	tzset
	ualarm
	umask
	uname
	ungetc
	ungetwc
	unordered (Alpha only)
	utime
	utimes
	unsetenv
	usleep
	VAXC$CRTL_INIT
	VAXC$ESTABLISH
	va_arg
	va_count
	va_end
	va_start, va_start_1
	vfork
	vfprintf
	vfscanf
	vfwprintf
	vfwscanf
	vprintf
	vscanf
	vsnprintf (Alpha only)
	vsprintf
	vsscanf
	vswprintf
	vswscanf
	vwprintf
	vwscanf
	wait
	wait3
	wait4
	waitpid
	wcrtomb
	wcscat
	wcschr
	wcscmp
	wcscoll
	wcscpy
	wcscspn
	wcsftime
	wcslen
	wcsncat
	wcsncmp
	wcsncpy
	wcspbrk
	wcsrchr
	wcsrtombs
	wcsspn
	wcsstr
	wcstod
	wcstok
	wcstol
	wcstombs
	wcstoul
	wcswcs
	wcswidth
	wcsxfrm
	wctob
	wctomb
	wctrans
	wctype
	wcwidth
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmemset
	wprintf
	wrapok
	write
	writev
	wscanf
	y0, y1, yn (Alpha only)

	A Version-Dependency Tables
	A.1 Functions Available on all OpenVMS VAX and OpenVMS Alpha Versions
	A.2 Functions Available on OpenVMS Version 6.2 and Higher
	A.3 Functions Available on OpenVMS Version 7.0 and Higher
	A.4 Functions Available on OpenVMS Alpha Version 7.0 and Higher
	A.5 Functions Available on OpenVMS Version 7.2 and Higher
	A.6 Functions Available on OpenVMS Version 7.3 and Higher
	A.7 Functions Available on OpenVMS Version 7.3-1 and Higher
	A.8 Functions Available on OpenVMS Version 7.3-2 and Higher

	B Prototypes Duplicated to Nonstandard Headers
	Index
	Examples
	Example 1–1 Differences Between Stream Mode and Record Mode Access
	Example 2–1 Output of the Conversion Specifications
	Example 2–2 Using the Standard I/O Functions
	Example 2–3 Using Wide Character I/O Functions
	Example 2–4 I/O Using File Descriptors and Pointers
	Example 3–1 Character-Classification Functions
	Example 3–2 Converting Double Values to an ASCII String
	Example 3–3 Changing Characters to and from Uppercase Letters
	Example 3–4 Concatenating Two Strings
	Example 3–5 Four Arguments to the strcspn Function
	Example 3–6 Using the <stdarg.h> Functions and Definitions
	Example 4–1 Suspending and Resuming Programs
	Example 5–1 Creating the Child Process
	Example 5–2 Passing Arguments to the Child Process
	Example 5–3 Checking the Status of Child Processes
	Example 5–4 Communicating Through a Pipe
	Example 6–1 A Curses Program
	Example 6–2 Manipulating Windows
	Example 6–3 Refreshing the Terminal Screen
	Example 6–4 Curses Predefined Variables
	Example 6–5 The Cursor Movement Functions
	Example 6–6 stdscr and Occluding Windows
	Example 7–1 Calculating and Verifying a Tangent Value
	Example 8–1 Allocating and Deallocating Memory for Structures
	Example 9–1 Accessing the User Name
	Example 9–2 Accessing Terminal Information
	Example 9–3 Manipulating the Default Directory
	Example 9–4 Printing the Date and Time

	Figures
	Figure 1–1 Linking with the HP C RTL on OpenVMS Alpha Systems
	Figure 1–2 I/O Interface from C Programs
	Figure 1–3 Mapping Standard I/O and UNIX I/O to RMS
	Figure 5–1 Communications Links Between Parent and Child Processes
	Figure 6–1 An Example of the stdscr Window
	Figure 6–2 Displaying Windows and Subwindows
	Figure 6–3 Updating the Terminal Screen
	Figure 6–4 An Example of the getch Macro
	Figure REF–1 Reading and Writing to a Pipe

	Tables
	Table 1–1 Linking Conflicts
	Table 1–2 UNIX and OpenVMS File Specification Delimiters
	Table 1–3 Valid and Invalid UNIX and OpenVMS File Specifications
	Table 1–4 Feature Test Macros - Standards
	Table 1–5 C RTL Feature Logical Names
	Table 1–6 Functions with Dual Implementations
	Table 1–7 Socket Routines with Dual Implementations
	Table 1–8 Functions Restricted to 32-Bit Pointers
	Table 1–9 Callbacks that Pass Only 32-Bit Pointers
	Table 2–1 I/O Functions and Macros
	Table 2–2 Optional Characters Between % (or %n$) and the Input Conversion Specifier
	Table 2–3 Conversion Specifiers for Formatted Input
	Table 2–4 Optional Characters Between % (or %n$) and the Output Conversion Specifier
	Table 2–5 Conversion Specifiers for Formatted Output
	Table 3–1 Character, String, and Argument-List Functions
	Table 3–2 Character-Classification Functions
	Table 3–3 ASCII Characters and the Character-Classification Functions
	Table 4–1 Error- and Signal-Handling Functions
	Table 4–2 The Error Code Symbolic Values
	Table 4–3 HP C RTL Signals
	Table 4–4 HP C RTL Signals and Corresponding OpenVMS VAX Exceptions (VAX only)
	Table 4–5 HP C RTL Signals and Corresponding OpenVMS Alpha Exceptions (Alpha only)
	Table 5–1 Subprocess Functions
	Table 6–1 Curses Functions and Macros
	Table 6–2 Curses Predefined Variables and #define Constants
	Table 7–1 Math Functions
	Table 8–1 Memory Allocation Functions
	Table 9–1 System Functions
	Table 10–1 Locale Categories
	Table 11–1 Date/Time Functions
	Table 11–2 Time-zone Filename Acronyms
	Table REF–1 Interpretation of the mode Argument
	Table REF–2 File Protection Values and Their Meanings
	Table REF–3 RMS Valid Keywords and Values
	Table REF–4 tm Structure
	Table REF–5 Optional Characters in strfmon Conversion Specifications
	Table REF–6 strfmon Conversion Specifiers
	Table REF–7 Optional Elements of strftime Conversion Specifications
	Table REF–8 strftime Conversion Specifiers
	Table REF–9 strptime Conversion Specifications
	Table REF–10 sysconf Argument and Return Values
	Table REF–11 Time-Zone Initialization Rules
	Table REF–12 The vfork and fork Functions
	Table REF–13 Optional Elements of wcsftime Conversion Specifications
	Table REF–14 wcsftime Conversion Specifiers
	Table A–1 Functions Available on All OpenVMS Systems
	Table A–2 Functions Added in OpenVMS Version 6.2
	Table A–3 Functions Added in OpenVMS Version 7.0
	Table A–4 Functions Added in OpenVMS Alpha Version 7.0
	Table A–5 Functions Added in OpenVMS Version 7.2
	Table A–6 Functions Added in OpenVMS Version 7.3
	Table A–7 Functions Added in OpenVMS Version 7.3-1
	Table A–8 Functions Added in OpenVMS Version 7.3-2
	Table B–1 Duplicated Prototypes


