
a
Ing

Iph
Driv

ers

1erlock * Leonard Szubow

C

Wr

ice ev

Digitized by the Internet Archive

in 2022 with funding from

Kahle/Austin Foundation

https://archive.org/details/writingopenvmsal0000sher

_ Se 7 aw

sai ane HHT

Writing OpenVMS alpha device driv

Writing OpenVMS Alpha Device

Drivers in C

Form 178 rev. 1-94

Digital Press Editorial Board

Samuel H. Fuller, Chairman

Richard W. Beane

Donald Z. Harbert

William R. Hawe

Richard J. Hollingsworth

William Laing

Richard F. Lary

Alan G. Nemeth

Pauline Nist

Robert M. Supnik

Writing OpenVMS Alpha Device
Drivers in C

Developer's Guide and Reference Manual

Margie Sherlock
Leonard S. Szubowicz

Digital Press
Boston Oxford Johannesburg Melbourne New Delhi Singapore

Copyright © 1996 Digital Equipment Corporation

All rights reserved.

Digital Press™ is an imprint of Butterworth-Heinemann, Publisher for Digital Equipment

Corporation.

4& A member of the Reed Elsevier group

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Butterworth-Heinemann prints its

books on acid-free paper whenever possible.

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descrip-
tions contained in this publication imply the granting of licenses to make, use, or sell equipment or
software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Views expressed in this book are those of the authors, not of the publisher. Neither Digital
Equipment Corporation nor its employees are responsible for any errors that may appear in this
book. The information in this book is subject to change without notice.

The following are trademarks of Digital Equipment Corporation: Alpha, AXP, Bookreader, DECnet,
DECwindows, Digital, OpenVMS, TMSCP, TURBOchannel, VAX, VAXBI, VAX DOCUMENT,
VAXcluster, VAX MACRO, VMS, OpenVMS Cluster, and

The following are third-party trademarks:
Futurebus/Plus is a registered trademark of Force Computers GMBH, Federal Republic of Germany.
Intel is a third-party trademark of Intel Corporation.

All trademarks found herein are property of their respective owners.
The document was prepared using VAX DOCUMENT Version 2.1

Library of Congress Cataloging-in-Publication Data

Sherlock, Margie, 1957-
Writing OpenVMS alpha device drivers in C: developers guide and reference manual / Margie

Sherlock, Leonard S. Szubowicz.

eeciny
Includes index.
ISBN 1-55558-133-1 (paper)
1. OpenVMS device drivers. I. Szubowicz, Leonard S., 1954—

II. Title.
QA76.9.D49S54 1996
005.7’1265--dc20 9547199

CIP

British Library Cataloguing-in-Publication Data
A catalogue record of this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:
Managers of Special Sales
Butterworth-Heinemann
313 Washington Street
Newton, MA 02158-1626

Tel: 617-928-2500
Fax: 617-928-2620

For information on all Digital Press publications available, contact our World Wide Web h
at http://www.bh.com/dp ra iti
Order number: EY-T133E-DP

10987654321

Printed in the United States of America

a a a on Th ee, ee sees beatae ctine LL et EN | ee kd ~ Vf
at 8] em yy whey SAMS

i) F CHICAGO PUBLIC LISRARY |
400 SOUTH STATE STREET

CHICAGO, iL 60605

Contents

PECIACO) 4 Bre Hay ie Pere epee tee LAR Dak 8 xxi

Part! Overview of OpenVMS Alpha Device Drivers

1 Introduction

lsd dP ypesiot OpenVMS: Alpha viriverses tm. os «5.6 se Sen & enlealle 6 o4 4
1.2 Writing Your Own OpenVMS Alpha Driver 4
1.3 Benefits of Writing OpenVMS Alpha Drivers inC............ 5

1.4 OpenVMS Features for Writing Drivers inC................ 5

2 How Drivers Interact with the Operating System

2a WL ASO LIN CPU CCC S Ly oto tae «oS dm Sophe: 8 SNRs «eng 7
ue A Tour of the /O Database sete. rer re er A PN 8
22.1 Components.of-tne-WO;Database a7...) 0 sR ee 9
2.2.1.1 priver lables: wea-were cee t ca Pea ht es cose s 9
ay i | Mata: DEMUCTINES! mrenerr ie peter etre ke Se ses tes acuues 10
7 a ie) MO; Reauestbacketecy wee ee ee te 11
iene SHaApsnot ortiie- VO) atabase S08, FI SY OP ae. 11
2.3 Synchronization of briver Activity ...-.. Ss. oa. ee we 8s 13
2.4 OVeErvidw Ore river noUlInes Fen. nt Sees et os mae woe 13
2.4.1 TiTiEFATIZARIOU OUNCE att pe ne See ene os: ogee ao oca 8 14
2.4.2 LL eROMEMICS rerern Aetrnt tee ce ee eas ne ee ese ahaa 15
2.4.3 Start-/O Code, Pati houtines™] Soee Poe A ae. se aes 1S
2.4.4 Other Driver Routes La racic he ties, omens ioe ee Ns oe: 16

25 Drivem@ ontext 3 oer oir aie eee int cme care aces Hees 17
2.6 Programmed-I/O and Direct-Memory-Access Transfers 18
2.6.4 PEOgrearinedY Ons wie Bile Mure Ae ets ous Bkik 6 hep os eG 18
2.6.2 Dy IOCiE WICTOLY ACCOSSLI Oa are dy aiairc tei sis occa slurs die 44 als 18

MY he rod air IOGEAR Ole geen teas io ea be ih'ie a. sar ginstd Lon he cieneis 4 19
2.8 er AinDlerOr a W/O) ROGUES Prt tints coc 6 5 ek He bod bee ao els 19

3 Synchronization of I/O Request Processing

3.1 Interrupt: Priority Levels 03.37 254) «coe bes a tee eee ee

Saka Interrupt Service Routines........5-2++-eeresesnsceas

3.1.2 IPL: Use. During I/O Processing ...520 ++o.02-5 Sees eee

S241 TREOxGPUSSASTDED)S 0.0 +2 ae) tase eo ee eee

8.442:2 IPL 4:1IPESAOPOSD) ote toca he Soe ee ee

SAS [Pl (PLS SYNCH) 28ers ees oe

3.1.2.4 IPE 6 ‘and‘IPl Storie il (Pork IPs) oo ee ee
S.le206 IPL 20 to IPG 23 (Device [Pbs) .2 sa tise ee
i126 IPL 3) (PLS POWER) 2s. cr.n cy ai es eee ee ee
Sesh TPL 1) (IPLS= MAILBOX), © cuca boise ae eee
3.13 Modifying IPLiin.. Driver: Codec gia cae eee ae a

Bal .on1 Raisine PL Cotta eesti: aw oe Gee et ote 2 eed eee
S.1,3:2 Lowermne IPL fi .osws wits oe ean ate ee ee ee

oie Spitilocks:2 ot. 10 2N%. is Se ee eee Pa ee

S21 Work <ocks 07 ier cn ele co So ari ea Ba cae te acer
S22 Device: Tiocks re ee teeta rca eee cede

oe) Enforcing the Order of Reads and Writes...................

Part Il Creating OpenVMS Alpha Device Drivers

4 Accessing Device Interface Registers

4.1 Overview of CSR Accessing Mechanisms

4.2 Mapping 1/O Device. Registers...5.75 aa. oo ene. « 2

4.2.1 Using tho lOC&SMAP_IO Routine<ddct eewlethe ... «ot
4.2.2 Using the CSR Mapping Routine < -nsceue eoeth. &~« . ~<a
4.3 Using Platform Independent I/O Access Routines
4.4 Using the Controller Register Access Mechanisms (CRAMs)
4.4.1 Allocating CRAMS 11. <5 qc\eees, Gibelt Ta pekiee penn
4:40..1 Preallocating CRAMs to a Unit or Controller..........
4.4.1.2 Calling IOC$ALLOCATE_CRAM to Obtain a CRAM...
4.4.2 Constructing a Mailbox Command Withina CRAM........
4.4.2.1 Register Data Byte Lane Alignment
4.4.3 Initiating a Mailbox Transaction «x. «.<t eautecl.welet.

vi

5 Allocating Map Registers

5.1 Allocating a Counted Resource Context Block
Allocating Counted Resource Items
Loading Map Registers

Deallocating a Number of Counted Resources
Deallocating a Counted Resource Context Block

6 Writing FDT Routines

6.1 DOI OVSLOMNSeRVICO i.) we 1 pair et ian Sea ET obra 2
Context of Driver FDT Processing
FDT Routine Overview
Upper-Level FDT Action Routines

System-Provided Upper-Level FDT Action Routines

FDT Completion Macros and Associated Routines

7 Writing a Start-I/O Routine

Fal Simple: Forksiand Kernels Processes. .5. 7 cgsscqcJouardes Bee te Sor
Contextiot Drivers start-VO Code 6b...) sg. earlobe eth abies: «
Sipe ork Start VOM ntertace | ven... ., dG kite verse deMl ies OP ay
Kernel Process:ptart-V/O Interface attn0: @aass anrulh: >
Mizing Fork.andsKornel. Processes... $4 on-base? ou Giana: «

8 Using the Simple Fork Start-I/O Mechanism

8.1
8.1.1
re Bd
831.5

8.1.4.
8.1.5
8.1.6
ra hed
8.2

Overview of Simple Fork Process Routines
Transferring Control to the Start-I/O Routine
ObtaininerComtrollerAccéssig, oi. eit yes ete
Obtaining and Converting the I/O Function Code and Its
1 GPs 35 (5 oc Rae RR CRE Te ORR TOP EE ive ae TON RCs, eon en er a ee
Preparing the Device Activation Bit Mask...............
Synchronizing Access to the Device Database
Checking for a Local Processor Power Failure............
INCU ALITIG ACES LIOVICO© tyagnern a Wiehats OG teensy <i Sie tena cas 3p dct

Waiting. toran Interruption Fimeout. 0 6. ein oo oe cs ni eo

eeYen'te We dal Vee e Wide 6) 6:4) 6) ie

Wiis Oe MeMwy ey oF .cp io) Oye Le S)SP 6 Gadel este) oe) 6) 6: 6

e; 0B) OIE) (6. (ele 6 (0, "S: Cees weceuelLe yee) 9) eo) eo 82-0) cio a 6 8

@) o 18; “eplows her of % lotic 2 6. 6s

Wis ieee Pee eh eo he 3) 6:3. 8

ep ueaete BOS 8a. cos Siege is. co page ak eet wen ie RE hae ds

PDT Routines for system Dir eet 0 io rey base lt hee kop hcrvnon eat. 5

FDT Routines for System Buffered /O
Checking Accessibility of the User’s Buffer
Allocate thes System Ditters a... adckshs aiaht, aise cuteunme asker tls.
Buttered=VOMostprocess ing i: aes hee oe oa, 0 = seabed

vii

8.3 Writing an Interrupt Service Routine-+-++++++-:

Sroal Servicing a Solicited Interrupt---+++++++--:

8.3.2 Servicing an Unsolicited Interrupt..........-..-.--+---:

8.4 Completing an I/O Request and Handling Timeouts

8.4.1 VO-Postprocessing’ Pac. 2 oo fi oor oe oe Oe ens

8.4.2 IOPORK 2 ee eet tee gee ke eT ee er

8.4.3 Completing’am VO Request. a. ss ee Bee oe ee

8.4.3.1 Releasing the Controller’... boo 4.2 tee eee ee

8.4.3.2 Saving Status, Count, and Device-Dependent Status....

8.4.3.3 Conipleting the UO. Request. 2. nic 2 se sie santo eee

So Timeout: Handling Routines). 225 vg 2.5 os oe ee

9 Using the Kernel Process Start-I/O Mechanism

9.1 Kernel Process: Data Structures... . o's « o 224 21g eee rs

3 KernelPProcessrRoutines:~) 9.64 oo Ae oe eee ee

9.3 Creatingia- Driver’ Kernel Process) S02 0.2 se ee ee ee,

9.4 Suspending’ a’ Kernel Process." ..0. «| =) ars tee eee eee
9.5 Terminating a Kernel Process Thread

9.6 Exchanging Data Between a Kernel Process and Its Creator... .

9.7 Synchronizing the Actions of a Kernel Process and Its

Initiator’ so .0e set ash Ae a Fee eee eae eee ere

10 Initializing a Device Driver

vill

10.1. Overview of the Driver Initialization Sequence
10.2 Device Driver Tables

10.3. Driver Prologue Table
10:4. : DriversDispatch Table >..age fe. ts oe Oe a ee eee
10.5 - »Function Decision Tables... 204.4. heme ak oe eee.
10.5.1 OpenVMS Alpha I/O Function Codes...................
1 Ose Defining Device-Specific Function Codes
10.5.3 Choosing Buffered I/O vs. Direct /O...................
10.6 Device Database Initialization/Reinitialization

Rig Os IS Te: TOA Ker tetera Te ey ee a ee, Ne eles ee OR A) Gee, le) ee ak) ee aes he ae ee

Part Ill Running OpenVMS Aipha Device Drivers

11. Compiling and Linking a Device Driver

Ee MU ORCI TIOUR STIL fo cae Ben es on aa ae Peefok e 4
11.2 ~Linking a Driver On Se Fe he ace Si mie: cas eee OE eial le Le! el. 4) O06) Cowie el! ele u'e, keer ch @ ve ¢. 8. SS

12 Loading a Device Driver

12.1. Using SYSMAN to Configure and Load Drivers..............

F AWA MOLOLO TA LE: 4 eee ete ae SEIT SP = ae AU se OP <a

EL WEIL EN ee te, SON ghee mee ee Oe re ee Sees
122.7 > Loading Sliced Executive Imaves. Ga. 4s Se ees eels
2.1 Controlling léxecuiivem mare SlCINg oo. ce sal cca eee ae at
12.3. Writing an IOGEN Configuration Building Module (ICBM).....
123.1 Quick Overview of ICBM Processing
i232 DCT yas PEUC ULES iret eters ear ant se Mir sen ag earn i snes Nae See
23.2.1 Autoconfigure Bus Mapping Table

12°3.2.2 ROB Melnitjalizatiow sOUrine sos san ene 2 Whe i nea a
123.2.3 FE BN Conneuration Routines 3 0.8 3.0) eos ev ee eel

12.3.3 Bondme anviC BM. 32.0 04005 Se Pee Se

12.3.4 Depa hari il Bs reese tales. Saher ae yh sh sear RP Gee ear WIRE ea

12235 Dear eure an DVM meet, oe, Gin 5 Abs SMe ah ct ah ae ee gee oa

12.3.6 Pe MOG EINIOUUINES 5) et ses Pie lilies Pins 7 es

TOGENSAC cp CT iy oe ev es ¢

IOGENSASSIGN. CONTROLLER (oe ee a ee le

LOGE N@AUROCONEIGURE£ 25 P85 02. oer tos Wa ees cuca

LOTS RSE: OAM ECA 2 Dee ee a ee eee ent men ee oy rae

LOGS BIN SG a eee ac OR i a tg tee Oh a hE AEE «coda ho Reet 3.

SYSSVOADUD RIVER 96 are aes. 42) ei areata, Smeets...
T2S:7 Finding Infoan the Bus ‘Array: 6.04 5: aetl- hacgke asl. .
T2:3:7-1 TURBOcHanne!) . sevanis lh Gee sete eee:
V23.7.2 PCL, OF oO: Bie ae meee sole his be 8
W013 | oy: Cn eR Un. ctd tes) pe deits Mb kc Oh nee tue eer ahE beg ce: EA ea er

121

123

27

129

131

135

136

138

139
140

141

141
141
142

142
143

144
145
146

148

149

150

152

154

155

156

162

162

162
163

13 Debugging a Device Driver

13.1. Using the Delta/XDelta Debugger--++-+:

13.2 Using the OpenVMS Alpha System-Code Debugger... .

Wee User-interface Options... 22... 2. ou ons ae ee eee

13.22 Building a System Image to Be Debugged.........

13:2.3 Setting Up the Target System for Connections

yee ee

a Gite? Bo 6 Nene

wa sl ae aie

ie Wah Fs en mr

13:23.1 Making Connections Between the Target Kernel and the

System-Code Debugger-...-.+«---

To-2oc Interactions between XDELTA and the Target
Kernel/System-Code Debugger..............-

13.2.4 Setting Up the Host System): «. 2 2.2. - o-aeeeee
1320 Starting the System-Code Debugger
13.2.6 Summary of OpenVMS Debugger Commands
tS 257 System-Code Debugger Network Information

13:3: ‘Troubleshooting Checklist...2-. - -9aeneeeee
13.4. “Troubleshooting Network Failures .,.......5 .+.4es-

Sdve gino #

“toe ee

~ ir ee ee

S @jsie = «0

> ae a <6

cok mee i a

13.4.1 Access to Symbols in OpenVMS Executive Images
13.4.1.1 Overview of How the OpenVMS Debugger Maintains

SVMDOINS terasae + sassirisa usiarceeisy Saeeeeoramiacie eee meat as od

Toe Overview of OpenVMS Executive Image Symbols
1S 471°3 Possible Problems You May Encounter
13.4.2 Sample System-Code Debugging Session

Part!V Bus Support Information

14 PCI Bus Support

14, PCL Address iSpaces.n'.. <4 dos o5c enw eee eee
14.1.1 PCI Configuration Space

14.1.2 PCL VOSS paces 5.2.) Seiad eat beet ee ene ae
14.1.3 PCI Memory Space

14:28 * PCR Devices, Interruntet.. sete ee ee

14.3. OpenVMS Alpha PCI Bus Support Data Structures
14.4 Direct Memory Access (DMA) on the PCI Bus
14.5 Probing a PCI Bus to Find Devices
14.6 Accessing Registers on PCI Buses:.......
14.6.1 Using IOC$READ_PCI_CONFIG and

IOC$WRITE_PCI_CONFIG Routines............
14.6.1..1 PCI Configuration Space Base Address Register

ORI i sciiieins nce eee cee See
14.6.2 Mapping a PCI Physical Address...............
14.7 Configuring a PCI Device and Loading A Device Driver

‘61s se C84 Sg aS 4k See ee oe ee

AOS oe we Ae 9! Wi Lerma cme Stee We eae

Det, ©

SSS we) we Bee 6 eet h ence

«ss « «fe @

ele ea a

- Ruse © &

Fi8 -e) Paw Rs

ate COLa ae ie

A a eK ye

Seater wie Se

Se eee

Cyr ea Tet err es

S18 aw! eos Oey

208
209

210
210
211

211

211
215

216

216

218
219
220

14.7.1
14.7.2
14.7.3

putocontgupingsa.POl. Device. »... sachs des Beemer

Configuring a PCI Device Manually....................
Example ee, Ge KUL Ol AL ey ee @. lel ea lela) i chi e as, Fenn e) le); ine. el awe) 6) 0) 6. a bie) 6) e, ie feats o

15 ISA Bus Support

16

15.1
15.2

15.2.1

15.2.2
15.2.3
15.3

15.4
15.5
15.6

15.7

OpenVMSASA Bus Configuration (oc ast) VARMATILE i...
RGcimg Aa Deviten, gone’. dat, wade dewaad’) A)...

Entering Interrupt Request Line (IRQ) Assignments.......

Configuring a Device with an ISA_CONFIG.DAT File
Configuring an ISA Device Manually...................

Using IOC$NODE_DATA and IOC$NODE_FUNCTION Routines
Pots SOAS Buses mn was, oo. s . deteley ginaae tl weve) TOC...
Determining an Available ISAIRQ

Troubleshooting 2-31, oa ow oko onde ped acicnee SO eracel) dda...
System Board Resources for AlphaStation 200 and 400 Series
DYSLEMIS@ 8. os 2a Ss Conan eecls) decir CAL) OTR .

sample ISAVCONEIG, DAT File >> tinal# eanwett. acre! BA.

EISA Bus Support

16.1
165151

161-2
16.1.3
16.1.4
16.1.5

16.1.6

16.2
16.3

16.4
16.5

16.5.1
16.5.2
16.6
16.6.1
16.7
1G 7a1

Le le ROSOUITCOG urate sea Seis cea RMS nO oe

1 Ar pat nt al ear ie a aa Ne SRO WE SOL AE et ee EAN Oe

BISArMOmory AGUreOsses os ooo Ses ceabtoa it fete. 5
Plea ONE CUPATIONMOICUIGY: oo Soe cca ees htc hay atau oS.
Resource Assignment on Digital Systems

Ip RaW eed UU LESS 59) 0) Cet Oe lila ak COE eer traits arate ee ee
EIS ee DMA, SUDDOrb 7s 83 555) SSR ee TE ee ee

HISAs/O- Address Map=) std ARE, Tay
Using IOC$NODE_DATA and IOC$NODE_FUNCTION Routines
for BISA buses teem hate itt anit ee isl aaenea AC wnpek Eo

TOCSNO© DR oo esa a sain ethe tara eee A rend
TOCSN© DRBHUINGLIOIN: errr. aay cos 6 ss esr diye eo aya toes yi 6s

Configuring an EISA Device Manually. 7... 3. ww ee
Example: Locating the CSR for an EISA Device

Configuring an ISA device in an EISA Slot
Example: Locating the CSR for an ISA Device in an EISA
SIGE. ee aot oh aber th lair niga bi ateial e IEE

220

220
223

228
228

229

230
234

237

239
240

241

242

247
248

248

249
249
249

250

250

251

251

252
253

255

255

258
259

260

xi

Part V Reference

17 Data Structures

Overview of I/O Database Data Structures Sele oe

ADP (Adapter Control Block) >. 20.2.2 va0 0s ean opens aes

BUSARRAY (Bus Array) e-itethe 8 Se. fo eee oe oe ee

CCB (Channel:Contro! Block)... . cunt sss ee eee ee eee es

CRAM (Controller Register Access Mailbox)-..

CRB (Channel Request: Block) so. 25s. ye eee ee coe ee

VEC (Interrupt: Transfer Vector Block) s: 2-2 oe oe ee 2 se
DDB (Device Data Block) oe. See ik a a le) ea we wl we ee en ee Ie ee! Veh oe

DDT (Driver:Dispatch Table) 22.45: . os eee 6 ee eee
DPT (Driver Prologas Table). Pi. 4. eee see eee eee

IDB (nterrupt Dispatch Block) ... 2.5. -.=s es os ee ee es ©

IRP (I/O Request Packet) Sates) oe. a) @ es (eo St We, Ee, OP a Ore, © er ere ee

IRPE: (/O Request Packet Extension).5..<.+.4 se. -«-
KPB (Kernel-Process Block).....#2....322 << oes se eee Ss

ORB (Object: Rights Block) 20. «25 2. 0e > Oe cee eee
UCB (Unit Control Block) © oS ee Bee ee eS Se er ee Cee le oe pen ee ee,

VLE. (Vector [List Extension)>. 2. 2 ee os oe ee ee eee

18 Device Driver Entry Points

xii

Channel Assign Routine .

Cloned UCB Routine ...

CSR Mapping Routine ..

Driver Channel Grant Fork Routine

Driver Resume from Interrupt Routine Entry

Driver Table Initialization Routine

FDT Upper-Level Action Routine

FDT Error-Handling Callback Routine

Interrupt Service Routine

CRS SD i Lee Cljetre) ae a ee woe ron Tele Ow erie e. ela le ow

Oe ee eh ee ee Ce 8 Ue eee, ee er ec ee) ce Wa ate

© C0 eb e ca pW 68) EO UO) ee ee eae what Wie ef nen) ie me ae

Te Cet Sa TA PO WK Ta es RR UR UN ae ee ee we ae “a

2.8 8 & Ye WS ae © ee SRP R ee ee Menten. eet ite = ve

C28 8 Be Age ee Mrs wae Ue wea) eRe 8 6

SE Sa a eel Ser Boe) a ee Oe Oe fe me le) ele ee Te Gee? ee Wy rae

CO © SW Le eee el Gh ey ee term el eee) eye

2 Ue Aw Ee 16, Sree ays eb yeh AL © (ee ee

Sek Fie VYy. cemieeln Veale at Ue. *

je 8S ete ey er ee

© QhSE eS & Se ieee ew sf

Sere ere Re Se) See mie ee 16) Ca Fey tell

8) er LES oe) Te re te Ck” GD ie) mS CGR ler el ont fetate

© S10 See ke Cs 6 LC Bat ECVE, TNS Man Sk eh en Pe ee oe oh hes

263
266

273

275

277

283

286
287

289

295

301

305
312

313

324

326

353

356

358

360

361

362

365

367

368

369

370

371

372

373

374

376

378

Mount Verification Routine

Register Dumping Routine

Wi 9? poh im oStO\e! je! ia e! (wl ipt aor et Aol nuevo: a) sitet eft whe! ieee 6

3) Ke! ior ot sey Lee Dal wha: Feiniernen @! Slalenviemeonse: (of 1s) en llener) eimal veka «6!

Start-I/O Routine (Simple Fork, Call Environment)...........

Start-I/O| Routine (Kernel Process)0.... 2TAATE SAU ..

Timeout Handling Code (Kernel Process)...................

Unit Delivery Routine O26) er er eye? ieil.c* (eh jetney sie” ol elt (ew ¢) (61 Lel\ee ce e'aieimeriel lem of efhelniel joie) e) ie!

Wait inatiahizationwRoutine « Seecekact ie on aide bball Pee.

19 System Routines

ACP_STD$ACCESS .. 4)‘ sine) ce se: fey eer (or J) |W) jel opie eg eh erceuse: Uo G0 6h eulemnen ie: eMiel eine) “6 6

764 Fecha BLD E007 OF SSIS TAH Cl hag a ea ee a th ea

ACP_STD$DEACCESS

ACP_STD$MODIFY. .

ACP_STD$MOUNT ..

ACP_STD$READBLK

ACP_STD$WRITEBLK

OL cele, (8) 0 Se ‘el ie, fe; ce jee sO), eh 14) leh ie euvepliey o) een tense ei yer ister « 6

ere: a. 0; vel [8 “er @ “oie! “Ot se ve 0 Ne) 6, \epiredher fe hbo vere ge: ue; ‘9'a's. erect ieee! 6° .¢

Chie “Oe! -e! <9: \e) fe) (00 (6: 5e :eyid. wey te ‘abMuurct vou ieyiie. Fel (eo Mewes? 0 “oP ¥elieumer ¢: ‘«

©) FW Reg ereiere) 1S ae jeyyere wien jets: ter eru'e) lene Were) eK ey eM ie: seh em eo 2

8 URS Oe Ole) te! oO le) Heine) 191 Wer tee! Kap lel ePuen ey (eieutere sr lee foley s: 6,

(810% wees 6B 58) 0S et 2 NS dR Rt Re eS

COM cs CO PDEEAL DNAS TE \ 2 15.0. Wena uba aac ceteied eae

COME STDS DEDLCERUAST 65 <2 caht. e stgegs Ae a:

COMeS TD Sm LRP AS EE 205) Kucheria about rk gy Ai” Aoktes

CIEE EDIE CEA BM eo eatin sates g a ac teat oneness 5

COMIS LOSE EULA LINO. iia lie csc © ere Mlb Rea Mewtn Siaioga's

COMES DE SLI LHS. tere ea ah i ra cee aa aca S

COM-STDSPOST, COM. STDSPOST INOCN Tine cet saeuine quarrg -

COIR ED as Cok LINAS Degrees oO, ii ne Car a Ee

COMPS LU SO LG. lies bn tes a 6 cea ae tn aces

| Soh Dict IR LY 7 A 9 I 8 aarp RUN THEN Pr ur

ERL_STD$DEVICEATTN, ERL_STD$DEVICERR,
ERL_STD$DEVICTMO Mi lene eke ev. \elte, 0: fee: (ele) tet "S\ (e ours! -e\ vee) en eeheieule) @ eee s) ce” o

1A GS Deol Gi Bhai Ori ig task Cl 8 teagan a eR PE

EXE$BUS_DELAY...

EXEOGDEDAY. - 0.0

Winiel (@: Ae: Xe) (6X6: 0; (Oey ‘sie (en (oe) fe o1e| (elle) si lal aise. Feile) le) (9) Jou ere) ce) 16)

ie) #14 G6 0 Oo © 16 <0) 0) 6 10 (0) @ fo\ 0 .¢: 9 [6 16) Jomo! 16: @) 56: (ol se. <0) .e), 19) <0)

Upc Deis al eg dt iB BT lal 0 as ene ea re Ne e

XS IP DR ALLOCAT HORE Delia bia aiistisea ute asus .g +

EXE$KP_END......

EXE$KP_FORK.....

EXE$KP_FORK_WAIT

Oe, 6b cP 56) ei Ke, (ap (0, Uda Were. NO. Ve) ie) fe) ©) ese: “ei \ellisl iG) ley cue: is) fo) el ee (6) ie .8

#1 S/O ey Jou lel ‘a\ lo, (erred Jel ie, velo Well eh le (0) e.eeiial (eal se ies) 000) 0) ey se, ©

ep otto) feleet jae seh es ey su Ne We) 18) 1¢ <e fel e We! ie, cer jac 76) eye Veit ie, ,e: @. “ee. \6: 8

380

381

383

386

388

390

392

396

398

400

401

403

404

406

408

409

410

411

412

413

415

417

419

423

426

427
430
431
433
434
437
439
441
443

xiii

XIV

EXE$KP_RESTART ... ot coe. KO: “ene Ae gta al et el Leeman arte els? Ke tre Rae a ere eae Care ane Se

EXE$KP_STALL_GENERAL566 (s00 fuses et cues ses

EXE$KP_START

EXE$KP_STARTIO ...

6 epee: Wh ater We? be ek we a ee car a ee ee ae

bow See le leme Ce Cs ee Fe oe Oe Lee ae eres ee

EXE$TIMEDWAIT_COMPLBETE-20eeeceeecurees

EXE$TIMEDWAIT_SETUP,
EXESTIMEDWAIT._SETUP_10US , 22.s0ce .aptss See ee -

EXE_STD$ABORTIO . . ee. p Mee Le lene. eB ee ea, Ol a Oe ee ee eae el et)

EXE _STD$ALLOCBUF, EXE_STD$ALLOCIRP.. so csto5.oc8

EXE STDSALTQUEPERD (oi 3 n.4 eas a ale Bidet i

EXE. STDSCARRIAG Eis © tc o4. 5-5: 4<n0 pct oe kee

EX oo) DSCHKZCXACCES «. i. « «<2 we, ege eg eine i ee

EXE STDSEINISHIO: 5 Sec avs «.-. 50.04 0c © ele aati nen ana

BXESTGLIONUING wiles 3 ay. sa aee no dy

EXE_STD$INSERT_IRP Sle je 16 ‘oo O20) Le) 6) #6, “Mle, (mii Abu ee at tees Oe eet oa eb ey

EXE_STD$INSIOQ, EXE_STD$INSIOQC

EXE STDSIORSN WALT. <x 0 55:5: tase ete a eee

EXE STDOSLOLDUSKVALID: [.-.< 4)5 stern esse tee

EXE_STD$MNTVERSIO

EXE_STD$MODIFY....

EXE_STD$MODIFYLOCK

EXE_STD$MOUNT_VER

EXE_STD$ONEPARM .

EXE_STD$PRIMITIVE_FORK

EXE_STD$PRIMITIVE_FORK_WAIT

EXE_STD$QIOACPPKT

EXE_STD$QIODRVPKT

EXE_STD$QUEUE_FORK

EXE_STD$QXQPPKT .

EXE_STD$READ.....

$ O08 60.08 Wie) Se ce. \e peliies Le) te) een eee sien eee Tm Te

60 Q) RO oe oe BELO). ene) ee Ue eld oe. aie ea oe ve Nias es ee ee ea ci ce

60-8 10) OW ee et Oe a eee ae ie ede a a ie” a» ei

0 Le ee eet, ee ce eu a) ee) ee Oh a ON Rh OW be ee te alee ae Se

tne 9) eel Oey er ie. eee) See, 0) Ree a ee) ee ieee ee ie)

eS LS, LO Te: Oe) A Oe re Cie i ining es abet ie ae an)

B40 Ry Ge 6. Sa. ee ieee © ee aia er

Pe ee Se WR Ree IS ee ee eee ee ee iia ae oe a

a ee ee ew 8 Beate eee Ol Oe ey Weleda 6 Mei & i

& G8 UV Rnginw O Gy Ree ins We Oe, She She eee S ewes. =

68 eee 8 SC 88 ke © Oe RIS | ae eel Sie ERETe 6 eee ee

CW ee |e ee ee 8) a eee ele 6 oe Ree ee es es a ee SS

oO ee ee ig te UN Reo! UNS R © Ree wel eee ee Ue! = ws

ee eR eR OO fe 8 AN Se RS Bae Sele Bele AEE &. ©

oO 18 Ore OOO Y! le? ai ty) lie et Keele: eS oS a. A SERS Ie «Sa:

e Ree) Sh etsy Ste: ee Ue fae ee

SR Oe OR TOS Le OUR 8 18-8 G0) Wie: et ee et he) Me CiSICIC SE fo G

eh eh ee ee La CE a a Re em BORE

eS ee) eral 6) ow wee Le’ 6) ie Tee See Le 0 TePts) Sel Te <4 ea wie) | Cee ae Saree ny ke Meee. ry

445

447

451

454

456

458

460

463

466

468

469

471

473

474

475

477

479

483

484

489

494

495

497

499

501

502

504

505

506

511

514

519

521

525

527

532

GG er OG: ON ere 4 a) Fo: [ei ieh an tome. ce Ye en coNe le! Jo 0) 6 “e! aura) @. &

Ge eh we) si ee: a Coma ar ee. tote, Toni we Net ca? “6-9 ke! a) eve

EXERSPDSOZEROPARMi Se sat of cc TARTS IO:

TOCSAGLOCACNT RES tx ty kag 3a cue aE OL.

LOCSALLOGZCRAB YO MSC THO ATS AAV OMaO PS OU. .

IOCSATEOCATE. CRAM & . <.57.5. MAMVNOERATRITE. OM. .

IOGSCANCELF CNT RESON. 220.74 SNe AT St...

TOCSCRAMICMD®, cater Cl. eis Pee ETS. OM...

FOCSCRAMEIO Sofas nish ne cca CAPO A UL

IOCSCRAM QUEUE... AMAR IQA, SLITS errs. ON...

IOCSCRAM: WAIT: 5 prey eee ott oh arate Be IU,

TOCSDEALLOCAONTERES gine Wtewee NSO Sead

TOC SDEALEOCE CRABS Ss Peer. Set tire eee ene ore

ISG DEAR OCACROERR ied cere cme tes are es, s

TOC S DEAL LOCATE CRA Ninn) med fitter ee ee es:

POC Sioa OC TIAN OR ee ee ar eee ce eee te eae:

FOCSKPEWFIRECH IOCSKP-WEIRLCH =)... c.o). crt... «

TOCSIA ADI MAR yr etn ete no tices, | re on eee

LG CSNODEAFUINCIION sc A558 5200 ee ee te
POCSR IAD IO: sbi he a genre 115 oP DIME EB GES ATLA M LK,
TOCSEINMAP IONS Cer eo Ree i SAR EG OT
TOWSIVRET RIO ba sh 5 62.0258 2 er OA RI ae
TOCISTDSALTREQCOM cease nee nee,
TOCSSTOSEROADCAGIU 50) Bas 5 Fo ae ene
TOCESTHSOANCHLIO Sa 508 282.57 63, InN ners adores.
TOCESTDSOCLONEE UCB etek sets Ar ha eek ene ee
IOCES TO SCOPVEU Cette eee. te a os shee
TOCLSTUSCREDIL UGCB® 37. =... liso soe ee ee ee
TOCTSTDSCVI, DEVNAM 2 fuck ce OS BOT...
TOC STDSCVILOGEHY. 22.5 pu ny. TI Pee
TOCLSTUSDELELEUCB 25. cus ct oe esos Pe
TOCESTOSDIAC BUF Ulis. atc a a es eee.
IGGESTOSEU shoe eet ee ee co Eee
IOCESRDSCRTLE VER nee erate tes MT
IOCLSTOSINITEUR WIND]. 024 4005s cM:

xvi

IOCESTDSINITIATE,, «ceo a oe cin A tS ee Os re

LOCLSTDSLINK UCB. 03.0 2 ook op Ae tee a ee ys

IOC2STDSMAPVBLE. « .. ce ences 5 « oeheelatens ae! exatatatae einen =.=

TOCESTDSMNTVER... cos 4.0 + crniecc an + Potente nite een annem =

IOC_STD$MOVFRUSER, IOC_STD$MOVFRUSER2

IOC_STD$MOVTOUSER, IOC_STD$MOVTOUSER2

IOC:STD$PARSDEVNAM «520.0 5s.< cP eatin ote iol eae

IOC STD$POSTEIRP. w..c 5 so oo» < sis stg ond oe el ee a

TOCLSTDSPTETOPEN © ochcu oc cos ile © a abet gemini ee ote

TOCLSTDSQNXTSEGIT 2 co.cc ho me we ae cle Ghee a

IOC_STD$PRIMITIVE_REQCHANH,

10C:STD$PRIMITIVE_REQCHANL tifa <br tee «=

IOC_STD$PRIMITIVE_WFIKPCH,

IOC: STDSPRIMITIVE_WFIRLCH53.10y sag 5 oe fecoerne. «

IOG2STDSRELGCHAN (.:.).:.....041,4 » - 2g See eee

1OC: STDSREQCOM 64: Winds 2 SA ee sees ee ae

IOCZSTDSSEARCHDEV 5.02 23 aac 4 0% ee ee

JOC. STDSSEARCHINT are.s0: o ree eae, See ee Sei 3

IOC. STDSSENSEDISK™... 2:55.53 .+5u. 6» Gees Wee

IOG:STDSSEVERZUCB ©. «>. oss noes +. ou 2a

IOC_STD$SIMREQCOM

IOC_STD$THREADCRB

MMG_STD$IOLOCK

MMG_STD$UNLOCK

MT_STD$CHECK_ACCESS

SCH_STD$IOLOCKR

SCH_STD$IOLOCKW

OW @. 6) eee) We ele a & 6 le yy Gee eee eee ier See ee

Cg) ee se 6 © & 8 Ce Oe @ 8 Sele me Miley ee See ee eee oe

C8 Wee. we ee eS ONS. 0 eee re. Sar el en ee re ee Je

eke Bete Ye V7 ee WN ig she SUVL « ee ON) Ge we ee Pe oS

Sy Pe We wie ee) ene ie) @)°S BP ee) eo eee ee te ee ae eee ee A Pee or)

8 Vee ee 2 8 68 8 ce Vee a a eas Soe eS oe) © fale eS

8 2 w 80 8 © 0 Re ie Se Rete eae Bele © ee w ee IK S: @

Se Pe RS WS. Ow, We Be Oo ee ils (Re eee. eee ee eee fe 0 ee © ae Ve

2 6 ee a Se ee, 28S Oe ee Ae ee ie ere ee eee Cee ee es

SGOT 0 (OR Oh ce TR, (a6 Te ae a a ee em, we see wer STEM ERT ohana

SS RE RR ae a Vel ey Oa Nel es fe, fe ee ie, 16 gee) Ob e) ee: wilet mee RN tere rt

C8) SOT 8 er ee WT a aoe Lee) 6) Pe awe te, (Ow Ae: ee) Cane Me 1a Gh eENCn nn Se emma ine

BR LOSS Sew OWT Ore) Te cere) teh ea eee 06) ee wera «ie lot br eaten CEES

ORE Me, ORE SF MEALS Kee, ORR RyRy Ae) iw ce fe) s tel tel eey Teme tcn eae an en

606

609

610

611

612

614

616

618

619

620

621

624

627

629

632

634

636

637

638

640

641

642

643

645

646

647

650

652

654

655

656

657

658

FORK WAT Dagan rie ate bees est loge ale atl t. . ,G 659
TOROR. ce cuicukutsct ca atuermran htt maeoner? .. o.! 660
REL(RESUME:- FROM INTERRUPD anethe she tt wien. Flys 661
SBE mig ond ono earn ates. ade gaint... «of 662
SOR TENT UYeR sc eda IL eee ep mutate... 4 663

Oy LOUK sis oo es preteen owns t yet ade aniert . 2 <2 664

SY OPEC NOG Kees brent ate tee ene mer tee) MIN Bh ek AE ANTS 665

WFIKPCH (Wait for Interrupt and Keep Channel) 666

WFIRLCH (Wait for Interrupt and Release Channel) 667

Part VI Appendixes

A OpenVMS Alpha System Address Maps

B Sample Driver Written in C

B.1 ERDRIVER Example 2.22, . cnsnees Deora Pate aT OS 685

B.2 ERDRIVER to ed Ree so. Sater olt ad aR Pe i! 720
B.3 ER DREVERC OM eit Fo eS SNE LE, eee Widen) be AMEN co 5 726

C Sample IOGEN Configuration Building Module (ICBM)

C.1 TE Area 1G it St Cyne mae rte Bites SE es son pad 731
C.2 ICBM Example Command Procedure................-.000% 750

Index

Examples

13-1 Invoking the System-Code Debugger 183

13-2 Connecting to the Target System HSER KEELES PS Redd cote 185

13-3 Target. System, Connection Displays. 44 2 ees... 186

13-4 Setting. at Dreaknowitws oe fu cine St ee Ee a eg ee a) o-nie 186

13-5 Maryclini en PlensOUL CEC OUG@e tan are tre. ci ek gute oe arse 188

13-6 Using the Set Mode Screen Command.................. 188

13-7 Using the SCROLL/UP DEBUG Command 190

13-8 | SUSE NAY Eagar SII IRS TAI Ieee oy Cla mrt 191

13-9 Using the Denug StepeCommand on. 5 = 6 <5 we cer nine os + 192

xvii

13-10

13-11

13-12

13-13

13-14

13-15

Figures

xviii

es,
BLD)
6-1

A-4
A-5

Using the Examine and Show Calls Commands

Canceling the Breakpoints---- ++ ee eeeeeeeeeee

Using the Step Command--.- esse eee e ee neeee

Using the Step/Return Command--++++++++5

Source Lines Error Méssage ...%..-. 002. 2- st se ete:

Using the Show Image Command-...--+++++5:

Leavers Of VO mite ee O4aenm oa looe area a eee ee

Overview of the I/O Database<. +. ae eee

Mapping the User Buffer for a Direct-I/O Function

Format of System Buffer for a Buffered-I/O Read
Buarvetionipset. 52,8) se ee cee as een Pee a ee ee

Kernel;Process Private Stacks: 42... acs

Layout of Function Decision Table (PDT). - 72... 22 .2-.=.4-

Traditional. and Sliced Loads geass as eee a)

Maintaining Symbols «<2 % 3.1 .9424.5 bee eee eee

PCI-Based Platform

PGIIN oda Numb E gs: 5.5 5. acco .0. ceil a uae ea

Example of PCI Memory Address Space Maped to Main
Mem or yusre ottoh os oa ew 500 4a wwe! © ole ma

Bus Array Entry for PCI Device During Bus Probing

PCP Configuration Space Byte Lanes’. <2 =. 2... weaneee es

Memory Format Base Address Register

I/O Format Base Address Register

PCI Bus System ADP List

PCI Bus Array Header

Generic bus array entry

PCI Bus Array Entry acciad toents ody ak aaleoee. - -

AlphaServer 1000 Address Map as Seen by a PCI or an EISA
Device 2 Yee ee ee) Sie we Be Ww leh ee Re We) Swe Meee Lewellen e Gm, SL ehlamie=al at le arse" © ie

AlphaServer 1000 Address Map as Seen by CPU..........
AlphaStation 600 Address Map as Seen by a PCI or an EISA
Device OG Ol OF OS. Oy 4) 0: (a) Bie: WS Se me eRD OMe ey teenie Oe tuie eee ot eel Si wy alisha oven By ee

AlphaServer 600 Platform Address Map as Seen by CPU ...
AlphaServer 20000 Address Map as Seen by a PCI or an
KISA Device SE OO ORR Sree, O2e ne) Bi © <4) Sh NT euihne, 6) Lee Se (he, ip ars Sale eM aie Cee

6b. Oe) en are. 8) er Tew te” im (o) fe (Sel ee kee ee em oat Ue! See a! ie

SN Oh ms ae ee i I en 2 ee, ie ie ei i i

CO ae a Se ML MEP Qn ed ne aM es

S20 oe See Re SS Oe ee wy ey te em eu Te ee et Pe ee

SRS oe Hele “ce age eg Te pe) NdeKS 2 eel el arene © we ws

113

140

180

208

209

213

216

217

218

218

222

224

224

225

672

673

674

675

676

AlphaServer 20000 Platform Address Map as Seen by
CPU 29 te 8 hips: ee a 0) 6) 9 ete) eae hee We Lemtenehie. enue 6hie femie: Sule “s\ha Ke sine beta, 6 (6: v0: 6

Device $y 9: Se (ese 6) a: 0) Fer ga ey toue sy ¢ re) el EE Fas Beers (Seyi vi ce) eo pete! ene: Let Yoke és, io <6 6; 3: 6)

C PU Se; RG N9) (88 le! 6) se: (Oe ue, Pe 6c Oho. 16) (el ef 10 ei so .0) ane. 0; Ph Ve Ve ke (6.0) cen) is 6) jamb) eo)) a 14 ne (@

AlphaServer 400, 200 Address Map as Seen by a PCI or an
BES ARIE VICO ere eae sere eet a See wl as bins ae avaed ease:

5B ARIE FIle, Salts 2 te yas A, Se

DEC 2000 Platform Address Map as Seen by CPU

DEC 2000 Address Map as Seen by an EISA Device

Systeni-Defined sie bem ee ee, OS a

System Macros That Change a Processor IPL

Static opi ocks. Oe ortens eres ar te ey ss eas

OpenVMS System Routines That Manage I/O Mailbox
EIDEFAHONS dias SER Shue SRS Se eRe ESS See eG ace k

Mailbox Command Indices Defined by cramdef.h..........

System-Provided Upper-Level FDT Action Routines

System Routines That Create and Manage Kernel

Processes, Wee ee fe 00, Bars He, SRREMe Re

PP relmiiteg ization WLacrosaoe: C v4.66 saw cle wai wesa wwe 6.4

SIGLCC pa) UalinleTaexcalIples As. chovwes a. aes tunculie sia aeaanenele

Function Codes Available for Function Parameter

Function Codes Available for Itemlist Parameter

BO AUIADIEH SA Py ANOS trans, at ete Bi serrate ances oS ores

IOC$NODE_DATA Function Codes for EISA Buses........

Contente of: Adapter Control. Blocks... G0 4%. eka aie

Conterite of DUG AILaVe al one aris gor Sao LR Ae eH

COnteule Ob DUSTAITAY # os Ge oat 1 < pie ee is ee Ha ee

Contents.or Channel Control Blocks. .4.c),.oua.6% 5 oes ws

Contents of Controller Register Access Mailbox...........

Contents of Channel! Request Block... 2. cae ic cae eae

677

678

679

680

681

682

683

24

30

34

48
50
65

99

109

111

114

129

157

159

232

253

267

273

275

276

278

283

xix

17-7

17-8

17-9

17-10

17-11

17=12

17-13

17-14

17-15

17-16

17-17

V=18

17=19

17-20

17-21

17=—22

t7—23

19-1

Contents of Interrupt Transfer Vector Block (VEC)

Contents‘of Device Data Blocks... chs «55 oxo se eee ee ae

Contents of Driver*Dispatth “Pablet. 2.5 FY e eae es os

Contents*of Driver Prologue: Table >... 5.4 %72.5-- sens ae

Conténts‘of Interrupt Dispatch’ Bloek .) s2 se wae > es eo

Contents of:1/0 Request Packet (RP) 2. one any ee oa

Contents of I/O Request Packet Extension (IRPE).........

Contents of Kernel Process Block (MPD? 2... ewe oe os

Contents of KPB Debug Area... 2... 2a. ase 5 « oo eee a

Contents’ of Object: Rights Block. « 2. 220s name ewer ss ae

UCB Extensions and Sizes Defined in $UCBDEF

Contents of Unit Contral Black #36. 4< en sees 2 oe ee

Contents of UCB Error Loo Kxtension...2. 52-4. ee eee

Contents of UCB Local Tape Extension

Contents of UCB Local Disk Extension

Contents of UCB Terminal Extension™.3f4cee8.....

Contents of the Vector List Extension

Kernel Process Stall Jacket Routines and Scheduling Stall
Routines ©) OO) 6 8) 6) 16 He OS. te Ee Se ee ee ee, ee! le) Se i anne ie alia oie

287

288

290

295

301

305

313

315

324

324

326

328

343

343

344

344

354

449

Preface

If you want to write an OpenVMS Alpha device driver in the C programming

language, the information you need is right here. This book identifies the
components of OpenVMS Alpha device drivers, explains their role in the
operating system, describes how to code drivers, and contains plenty of live
code examples.

The book contains six parts, each of which covers different aspects of OpenVMS
Alpha device driver development:

Part 1 describes the components of OpenVMS Alpha device drivers and
discusses how drivers interact with the operating system.

Part 2 describes what you need to know to code each part of an OpenVMS
Alpha device driver.

Part 3 describes how to compile, link, load, and debug an OpenVMS Alpha

device driver.

Part 4 describes bus-specific and processor-specific details that affect

OpenVMS Alpha device drivers.

Part 5 provides reference material about the routines and macros used in

OpenVMS Alpha device drivers.

Part 6 contains OpenVMS Alpha System address maps, a sample IOGEN

Configuration Building Module (ICBM), and a sample driver written in C.

Each part of the book begins with a page that summarizes its contents.

Assumptions

This book assumes that you are familiar with programming for the OpenVMS

operating system and that you understand some basic device driver concepts.

It is not an introductory programming book or a device driver writing tutorial.

Specifically, the book is designed for systems engineers who:

e Understand OpenVMS operating system and programming concepts.

e Are experienced with programming in C.

e Understand the hardware devices for which their drivers are being written.

Although this book is intended for system engineers who want to write device
drivers, anyone who wants to learn about OpenVMS Alpha device drivers will

also find the book useful.

Getting More Information

If you need additional information about OpenVMS Alpha internals, the Alpha

Architecture, or OpenVMS Alpha operating system concepts, refer to the
following books:

¢ OpenVMS Alpha Internals and Data Structures

Ruth E. Goldenberg and Saro Saravanan
(Available from Digital Press)

e Alpha AXP Architecture Reference Manual

Richard L. Sites and Richard T. Witek

(Available from Digital Press)

e Specific manuals in the OpenVMS Documentation Set

Send Us Your Comments

Xxii

We welcome your comments about this book. If you have suggestions for
improving a particular section or find any errors, please indicate the chapter,
section, and page number. We also welcome more general comments (and
compliments, too!).

Please address all correspondence to our email address:

vms_drivers@zko.dec.com

We look forward to hearing from you!

Conventions

This book uses the following conventions:

Every use of OpenVMS Alpha means the OpenVMS Alpha operating system.
The name of the OpenVMS AXP operating system has been changed to
OpenVMS Alpha. Any references to OpenVMS AXP or AXP in this book are
synonymous with OpenVMS Alpha or Alpha.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

Pri x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

Horizontal ellipsis points in examples indicate one of the
following possibilities:

e Additional optional arguments in a statement have
been omitted.

e The preceding item or items can be repeated one or
more times.

e Additional parameters, values, or other information can
be entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() ; In command format descriptions, parentheses indicate that,
if you choose more than one option, you must enclose the
choices in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a
directory name in an OpenVMS file specification or in
the syntax of a substring specification in an assignment
statement.)

{ } In command format descriptions, braces surround a required
choice of options; you must choose one of the options listed.

xxiii

XxiV

boldface text

italic text

UPPERCASE TEXT

monospace type

numbers

Boldface text represents the introduction of a new term or
the name of an argument, an attribute, or a reason (user
action that triggers a callback).

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text emphasizes important information and indicates
complete titles of manuals.

Uppercase text indicates a command, the name of a routine,
the name of a function code, the name of a file, or the
abbreviation for a system privilege.

Monospace type in text identifies C macros, data structure
member names, and header files. Information in this font
appears exactly as you would specify it in a C program.

A hyphen in code examples indicates that additional
arguments to the request are provided on the line that
follows.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Acknowledgments

Many people contributed information to this book, reviewed countless drafts,

and extensively supported our efforts. Their talents and expertise, interest

and enthusiasm made this book worth writing. We gratefully acknowledge and
sincerely thank the following:

The OpenVMS Alpha High-Level Language Device Driver engineering team
who designed and developed the device driver interfaces we describe and who

reviewed many sections of the book: Walter Arbo, Walter Blaschuk, Steve

Dipirro, David Eiche, Anne McElearney.

Managers who provided initial and ongoing support for the project:
Joan Winslow, Steve Noyes, Pat St. Laurent, Ken Munsell, Martin King,

Howard Hayakawa.

John Croll, for providing the ICBM information and examples, reading the

entire book, using it to write a driver, and for making hundreds of suggestions
that greatly improved the technical accuracy and completeness of this book.

Cathy Fariz, for providing valuable comments, contributing many code
examples, and whose enthusiasm and good humor often kept the book on track.

Reviewers who made numerous, important technical contributions and
provided code examples: Jim Janetos, Ruth Goldenberg, Forrest Kenny, Sue
Lewis, Fred Kleinsorge, Scott Apgar, Reuven Somberg, Mark Jilson, Greg

Rogers.

Denise Dumas, for revising and updating the EISA bus chapter.

Reviewers who read particular chapters: Burns Fisher, Nitin Karkhanis, Drew

Mason, Richard Bishop, Richard Sayde.

People who provided a tremendous amount of support and encouragement:
Ben Thomas, Richard Critz, Ralph Weber, Karen Noel, Steve Zalewski, Carolyn

Wurm, Mike Meagher, Jim Parker, Susan Rist.

Editing, production, and art support: Merle Roesler, Pat Walker, Natalie

Pitula, Brenda Vezina, Marge Shiel.

Liz McCarthy, from Digital Press, for all of her help with this project.

Special Thanks

We especially thank our families.

Terry Sherlock, for everything...

Leora and Sarah Szubowicz, for the support and joy
beyond fair measure...

Part |
Overview of OpenVMS Alpha Device

Drivers

Part I describes the components of OpenVMS Alpha device drivers and
discusses their role in the operating system. It includes the following chapters:

¢ Chapter 1 provides an introduction to OpenVMS Alpha devices drivers and
contains information you should read before you start writing your own
driver.

e Chapter 2 explains how device drivers interact with the operating
system to handle I/O requests, and it summarizes driver components and
activities.

¢ Chapter 3 discusses synchronization concepts most important to
device-driver writers.

cant. Signi

itis?
sowed Bac BGA ating bcd vase ie
Brave:

ra

bs civtr® ¢

‘eke jed= peticpifed
‘

hare Apemnepy cates LM.

of ug oor:

~h wile 4yVs V2 ana

| ec alewl Jl. ge 68 ee ep Grae

ony Sree pe") oes)

RES V7, gucite De wget 4a) alist it 2"

a4) orp ace ds

recente» (tee an “ares OT Tall a _

i ot

les aa

——

" ‘neat? @i POOL ee.

~ | = oo Tcv wy «€ eth wil Ges

©

—_Aie~

= a eo ¢ - sth we, el —- as oy aa 2 ' ales P | 5

1

Introduction

A device driver is a set of routines and tables that an operating system

uses to process an I/O request for a particular device such as a disk, tape, or
network controller. Each type of device has a separate device driver (or simply,
a driver), which is primarily responsible for communicating system and user
I/O requests to I/O hardware and ensuring that they are carried out correctly
within a resonable time.

A system utility loads a device driver into system virtual address space and
creates its associated data structures. Once loaded, a device driver controls I/O

operations on a peripheral device by performing the following functions:

Defining the peripheral device for the rest of the operating system

Preparing a device unit and its controller (or both) for operation at system
startup and during recovery from a power failure

Performing device-dependent I/O preprocessing

Translating programmed requests for I/O operations into device-specific
commands

Activating a device unit

Responding to hardware interrupts generated by a device unit

Responding to device timeout conditions

Responding to requests to cancel I/O on a device unit

Reporting device errors to an error-logging program

Returning status from a device unit to the process that requested the I/O
operation

Introduction
1.1 Types of OpenVMS Alpha Drivers

1.1 Types of OpenVMS Alpha Drivers

The OpenVMS Alpha operating system supports a variety of peripheral disk

and tape devices, as well as terminals, networks, and mailboxes (virtual

devices for interprocess communication).

These peripherals are supported by two types of OpenVMS Alpha driver

models: the traditional model, in which the entire model is contained in one

image, and the class/port model, in which the driver consists of more than

one image.

In the class/port model, the class driver performs functions common to a class

of device, such as an MSCP disk or a Small Computer System Interface (SCSI)

tape, for example. The port driver contains controller-specific subroutines

for the class driver. For any given device, a class driver is bound to a port

driver through the unit control block (UCB) or a port-specific data structure.
The functional division into class and port drivers simplifies maintenance and
integration of software when new devices and controllers are introduced.

The following types of devices use the class/port interface.

e MSCP devices

e SCSI devices

e Terminal devices

¢ Communication devices

1.2 Writing Your Own OpenVMS Alpha Driver

Digital supplies drivers for all devices supported by the OpenVMS Alpha

operating system and provides system service routines to access the special
device-dependent features available in many of these devices. User’s, however,

can write their own device drivers to attach non-Digital supplied devices to
OpenVMS Alpha systems.

Before you write a device driver, you should look at an existing driver that
supports a device similar to the one you plan to support, if one is available. If
you have access to the OpenVMS Alpha source listings kit, look at the drivers
in the listing directory. If you do not have access to this kit, look at the sample
driver in Appendix B.

If you are creating your own driver, you can design your own interfaces. The
interface between the drivers (for example, port and class) is totally up to the
driver designer. If you are writing a driver to work with an existing driver (for
example, a SCSI port driver to work with an existing SCSI class driver) you
must follow the rules for the existing driver.

Introduction
1.3 Benefits of Writing OpenVMS Alpha Drivers in C

1.3 Benefits of Writing OpenVMS Alpha Drivers in C

The main benefit of using C to write a device driver is that C is easier to write
than assembly-level code.

Coding device drivers in C also provides a certain level of portability. The
ability to write portable code is especially important in multiplatform and
“multi-operating system” development environments. By writing OpenVMS
Alpha device drivers in C, drivers are easier to modify for different platforms

running OpenVMS Alpha, and drivers are migrated more easily to OpenVMS
Alpha systems.

Finally, for RISC machines (like Alpha), code generated by a good optimizing

C compiler is usually much more efficient than code produced using the
MACRO-32 language for Alpha.

1.4 OpenVMS Features for Writing Drivers in C

The OpenVMS Alpha operating system provides many features that facilitate
developing device drivers in C. These include the following:

e Standard call interfaces to existing operating system routines

e New operating system routines

e Call interfaces for device driver table-building macros

e Numerous C macros

These interfaces are included in the SYS$LIBRARY:SYS$LIB_C.TLB library.
Specific details about accessing header files for system routines, macros, and

data structures are included throughout this book.

‘sari even)

Ui eetu ee Opi A Sa ii Queey to

11 “ype SAAD pew ecqUNeNiiness @
1? mal aw 9 Wit; a tl) pov ore F . Af a Taio o Yat. : 7

, nea rh 7 a :
' 5 al +s ae

wer ier» Mocha ae a Sas 2.
: i ti ie ae hy ——_—— brn Vaedrnte re “2 7 hear<rw ote « iv vo) giant

rl (J meditgy tei 4 Du 7_ei= paiva, w = _—s : jams

71578 | ills: fo oth: we) oe we ue us ae i « <a Se Faegitere “ _ r ;

AO a we hime den baccoeen 2 ered Bee, Pi me
~ “a . — a 7 : - *.

SV i Cee ee eee eres | aceninel :
> 4 a > [ike baie con oS Sey oie , Pier ie: i

Pe 7 to SS eae - oO 4 Geer, cad’ sore
all te (Goat Y if - onl. ¢ (ort AUN it ety — yi:

Ti. oe ae er ene. eas ee

SA wie ex Wathen ‘Tt. gre Bi snsbthampitastia

: [> ac elie pase
2s COD Abba 9 eee cow wi sei

é 7 ee i. -

= a ee
AIG as By Pie. i a as pa Ss : é = n

> ~All? Ae - > Saheo! eae nab fie lik Yo ie el ae ik <Biaees

‘

Tye! at tem. i 4 _ | Papas

Z
_— ne = a owe 7 ee wre pei

7 s peg | - 7 7

' 7. ——2 aur pia eee Mania
= _

-
7

:

“ls - =i z _ wt

i. @ ieubas uuandi — ry = -

ae ' Sw - ys ae i ae

oa 7 ~ 2

- ; _

e* —_ eae eis na

“ ar
aoe te *

2
How Drivers Interact with the Operating

System

This chapter presents an an overview of how device drivers interact with the

operating system to handle I/O requests, and it summarizes driver components
and activities. This chapter also provides references to other chapters that
contain more details about the topics introduced here.

2.1 Handling I/O Requests

User images initiate most OpenVMS I/O operations. The OpenVMS
executive initiates I/O operations for swapping, paging, file system, and
other miscellaneous functions.

User images and most OpenVMS components request an I/O operation through
the $QIO service, which provides a device-independent user interface to
drivers. If the device-independent parameters of a user’s I/O request are valid,
$QIO allocates and builds an I/O request packet (IRP).

The OpenVMS I/O system is composed of several layers, as shown in
Figure 2-1. Each layer provides a higher-level interface to the level about
it. At the highest level are the record management and data base systems that

manage named objects such as files, records, fields, and so on. At the lower

levels are the kernel routines that interface directly to physical devices.

A process (identified by a PCB) obtains a “channel” to a named device. The
process uses the $QIO service to issue an I/O request on a channel. The $QIO
service specifies a function code and up to 6 function specific parameters.
There are 64 function codes, but each function code can support a set of

function modifiers. For example, “no echo” and “data check” are function

modifiers on the “read” function.

How Drivers Interact with the Operating System

2.1 Handling I/O Requests

Figure 2-1 Layers of I/O

$QIO

Device Driver

ZK-7508A-GE

2.2 A Tour of the I/O Database

Because a driver and the operating system cooperate to process an I/O request,

they must have a common and current source of information about the request
and the components of the I/O subsystem involved in servicing the request.
This information source consists of a set of data structures in nonpaged pool
collectively known as the I/O database.

The I/O database serves the following main functions:

e It describes individual I/O hardware components, such as devices,
controllers, and adapters, as well as device drivers.

e It describes the configuration of and relationships between I/O hardware
components.

e It maintains the context of I/O operations.

How Drivers Interact with the Operating System
2.2 A Tour of the I/O Database

2.2.1 Components of the I/O Database

2.2.1.1

The I/O database consists of the following three parts:

e Driver tables that allow the system to load drivers, to validate device
functions, and to call driver routines at their entry points

¢ Data structures that describe I/O bus adapters, device types, device units,

device controllers, and logical paths from processes to devices

¢ I/O request packets that define individual requests for I/O activity

The following sections briefly describe these components, and Section 2.2.2
shows their relatationships to each other.

Driver Tables

Three driver tables are defined in every driver: driver prologue table, driver
dispatch table, and function decision table.

The driver prologue table (DPT) defines the identity and attributes or

characteristics of the driver to the system utility that loads the driver
into virtual memory and creates the associated data structures. With the
information provided in the DPT, the driver-loading procedure can load drivers
and perform the necessary I/O database initialization.

Section 10.3 describes how to create a DPT and further discusses its functions.

The driver dispatch table (DDT) lists the addresses of the entry points of

standard routines within the driver, and identifies the size of the diagnostic
and error message buffers for drivers that perform error logging. Section 10.4
contains additional information about DDTs. The structure and contents of the
DDT are described in Chapter 17.

The function decision table (FDT) lists the addresses of the appropriate

I/O preprocessing routine, called an upper-level FDT action routine, for

each of the 64 $QIO function codes. The FDT also identifies which functions
are “buffered” and which are “direct”. (For more information about buffered

and direct I/O, see Section 2.7.) A device driver contains device-dependent
FDT routines, and the operating system provides routines (described in

Section 6.4.1) that perform request preprocessing common to many I/O

functions.

When a user process calls the $QIO system service, the system service uses the

I/O function code specified in the request to select the appropriate upper-level

FDT action routine. To prepare for the actual I/O operation, FDT routines
perform such tasks as allocating buffers in system space, locking pages in
memory, and validating the device-dependent arguments (p1 to p6) of the

How Drivers Interact with the Operating System

2.2 A Tour of the I/O Database

$QIO request. For more information about FDT routines, see Chapter 6 and

Chapter 10.

2.2.1.2 Data Structures

10

I/O database data structures describe peripheral hardware and are used by

the operating system to synchronize access to devices. The operating system

creates these data structures either at system startup or when a driver is

loaded into the system.

This section quickly reviews many of the primary data structures used by
OpenVMS device drivers. Detailed descriptions of I/O database structures and

their fields appear in Chapter 17.

The system defines a unit control block (UCB) for each device unit attached

to the system. A UCB defines the characteristics and current state of an

individual device unit.

UCBs are the focal point of the I/O database. When a driver is suspended
or interrupted, the UCB keeps the context of the driver in a set of fields

collectively known as a fork block.

Note that other structures, such as the CRB, also inelude a fork block. The

discussion of fork blocks and fork processes in Section 2.5 explains the role of
fork blocks in driver processing.) In addition, the UCB contains the listhead
for the queue of pending I/O request packets (IRPs) for the unit.

A device data block (DDB) contains information common to all devices of the

same type that are connected to a particular controller. It records the generic
device name concatenated with the controller designator (for example, LPA,
DKB), and the name and location of the associated device driver. In addition,

the DDB contains a pointer to the first UCB for the device units attached to
the controller.

The operating system creates a channel request block (CRB) for each
controller. A CRB defines the current state of the controller and lists the
devices waiting for the controller’s data channel. It also contains a pointer to
the interrupt service routine (ISR).

The system also creates an interrupt dispatch block (IDB) for each
controller. An IDB lists the device units associated with a controller and
points to the UCB of the device unit that the controller is currently servicing.
In addition, an IDB points to device registers and the controller’s I/O adapter.

How Drivers Interact with the Operating System
2.2 A Tour of the I/O Database

An adapter control block (ADP) defines the characteristics and current state
of an I/O adapter such as the TURBOchannel interface on a DEC 3000. An
ADP contains the information necessary to allocate the adapter’s resources.
The operating system provides routines that drivers can call to interface with
the appropriate adapter.

The channel control block (CCB) describes the logical path between a
process and the UCB of a specific device unit. Each process owns a number

of CCBs. When a process issues the Assign I/O Channel ($ASSIGN) system
service, the system writes a description of the assigned device to the CCB.

Note that channel request blocks (CRBs) and channel control blocks (CCBs)

are two separate data structures. To distinguish the two, it may be helpful to
think of the channel request block as the “controller request” block because
it describes the hardware controller. In contrast, the channel control block is

used by a process and a device unit to manage the logical path (the channel
parameter to the $ASSIGN and $QIO system services) in performing I/O
operations.

Unlike the data structures mentioned earlier, a CCB is not located in shared
system address space, but in the process-private address space.

2.2.1.3 I/O Request Packets

The third part of the I/O database is a set of I/O request packets. When a

process requests I/O activity, the operating system constructs an I/O request
packet (IRP) that describes the I/O request in a standard form.

The IRP contains fields into which the system and driver I/O preprocessing
routines can write information: for instance, the device-dependent arguments
specified in the call to the $QIO system service. The packet also includes

buffer addresses, a pointer to the target device’s UCB, an I/O function code,
and pointers to the I/O database. After preprocessing, the IRP can be queued
to a list originating in the device’s UCB to await processing by the driver.

When the device unit is free and the IRP is next in line to be processed on
the unit, the system sends it to the device driver’s start-I/O routine. The
start-I/O routine uses the IRP as its source of detailed instructions about the
operation to be performed. (For more information about start-I/O routines, see

Section 2.4.3.)

2.2.2 Snapshot of the I/O Database

Figure 2-2 illustrates some of the relationships between system I/O routines,

the I/O database, and a device driver.

11

How Drivers Interact with the Operating System
2.2 A Tour of the I/O Database

Figure 2-2 Overview of the I/O Database

Process
Control
Block

(describes
requesting
process)

DDB
(for device

type)

UCB
(describes

device)

CRB
(synchronizes

controller)

CCB
(describes

logical path
to device)

IDB
(describes

controller)

Nonpaged
Pool

12

ADP
(describes

adapter)

Controller

Device
registers

DDT
(locates driver)

Driver

Controller Initialization

Routine

Driver

Start I/O Routine

Driver
Interrupt Service

Routine

Driver
Image

ZK-7450A-GE

How Drivers Interact with the Operating System
2.3 Synchronization of Driver Activity

2.3 Synchronization of Driver Activity

It is important to know that a device driver does not run sequentially from
beginning to end. Rather, the operating system uses driver tables and other
information maintained by itself and the driver to determine which driver
routines to activate and when they should be activated.

Device drivers and other kernel-mode code must maintain synchronization

with other priority operating system activities. The term synchronization
refers to the means by which such code accesses shared data in a consistent,

orderly, and predictable way. Because there may be more than one processor
active in an OpenVMS Alpha system, system-level code must synchronize its
actions with other code threads it may have preempted on the same (or local)

processor, as well as with those that are active (or to be activated) on other
processors in the system.

This section briefly describes OpenVMS synchronization concepts. For more
information about synchronization techniques, see Chapter 3.

The operating system uses hardware and software interrupt priority
levels (IPLs) to order system events on each local processor in an OpenVMS

Alpha system. OpenVMS Alpha hardware defines 32 interrupt priority levels
(IPLs). The higher numbered IPLs (16 to 31) are reserved for hardware
interrupts, such as those posted by devices. The operating system uses the

lower numbered IPLs (0 to 15). Code that executes at a higher IPL takes
precedence over code that executes at a lower IPL. A driver, in conjunction
with the operating system, ensures that it maintains system synchronization

by performing certain activities and by accessing certain data only at the
appropriate IPL.

In a multiprocessing system, the driver extends the synchronization it achieves

by executing locally at a given IPL by acquiring ownership of the spinlock

associated with the operation it is performing. A spinlock is a semaphore
associated with a set of system structures, fields, or registers whose integrity

is critical to the performance of a specific operating system task. For more

information about IPLs, spinlocks, and other forms of synchronization, see

Chapter 3.

2.4 Overview of Driver Routines

As mentioned in the beginning of this chapter, device drivers contain tables
and routines that enable drivers to process I/O requests. This section briefly
describes many of the routines used by OpenVMS Alpha drivers. For more

details about each type of routine, see the appropriate chapter.

13

How Drivers Interact with the Operating System

2.4 Overview of Driver Routines

2.4.1

14

Initialization Routines

Initialization routines are invoked when loading your driver and configuring

the I/O database structures that are used by your driver. This section defines

the routines used in the driver initialization sequence. For an overview of

driver initialization and more details about using the routines, see Chapter 10.

The driver table initialization routine completes the initialization of the

DPT, DDT, and FDT structures. If a driver image contains a routine named
DRIVER$INIT_TABLES, this routine is called once by the driver loading
mechanism immediately after the driver image is loaded and before any
validity checks are performed on the DPT, DDT, and FDT.

A structure initialization routine is called once for each unit by the driver

loading mechanism after that UCB is created. At the point of this call, the
UCB has not yet been fully linked into the I/O database. This routine is

responsible for filling in driver specific fields in the I/O database structures
that are passed as parameters to this routine. Then the driver loading

mechanism completes the integration of this device specific structure into the

I/O database. Note that this routine must confine its actions to filling in these

I/O database structures and may not attempt to initialize the hardware device.
Initialization of the hardware device is the responsibility of the controller and

unit initialization routines which are called some time later.

Before you access device registers on Alpha systems, you must map the

device registers into the processor’s virtual address space. The platform
independent I/O bus mapping routine IOC$MAP_IO maps I/O bus physical
address space into an address region accessible by the processor. Once your
device is mapped, you can access it using the IOC$READ_IO and IOC$WRITE_
IO routines or the CRAM data structure and associated routines. For more

information about the mapping and access routines available for accessing
device registers, see Chapter 4.

The unit initialization routine and controller initialization routine
prepare a device or controller for operation when the driver-loading procedure
loads the driver into memory and when the system recovers from a power
failure. The amount and type of initialization needed by devices and controllers
vary according to the device type and the I/O bus to which the device or
controller is attached.

How Drivers Interact with the Operating System
2.4 Overview of Driver Routines

2.4.2 FDT Routines

FDT routines perform driver-specific I/O processing while still in the context of

the $QIO system service caller. Driver I/O function preprocessing on OpenVMS
Alpha systems often requires the cooperative efforts of upper-level FDT action
routines, FDT support routines, and FDT completion routines.

An upper-level FDT action routine is a routine listed in a driver’s function
decision table (FDT) as a result of the driver’s invocation of the ini_fdt_act

macro in the DRIVER$INIT_TABLES routine. FDT dispatching code in the

$QIO system service calls an upper-level FDT action routine, passing to it
the addresses of the I/O request packet (IRP), process control block (PCB),

unit control block (UCB), and channel control block (CCB). An upper-level
FDT action routine must return SS$_FDT_COMPL status to the $QIO system

service. (See Chapter 19 for a full description of the formal interface to an
upper-level FDT action routine.)

OpenVMS provides a set of upper-level FDT action routines, and drivers can

also define their own driver-specific upper-level FDT action routines.

FDT completion routines terminate FDT processing, forward an IRP to its
next destination, and return back to their callers.

FDT support routines are routines that are called during FDT processing,

but they are not upper-level FDT action routines. They have code paths

that call FDT completion routines, but they do not complete FDT processing
themselves. OpenVMS provides a set of FDT support routines, and drivers can

also include their own support routines. EXE_STD$READCHK is an example
of an FDT support routine.

A composite FDT routine is an upper-level action routine that is required
when a single I/O function code must be processed by more than one upper-
level FDT routine. OpenVMS Alpha dispatching only provides for a single

upper-level routine for each I/O function code. When this is not sufficient, the
general solution is to write a new upper-level FDT routine that sequentially

calls each of the required upper-level FDT routines (checking status on return

from each call).

2.4.3 Start-Il/O Code Path Routines .

The Start-I/O to request complete code path services I/O requests by interacting
with the device controller. This code path can use either the simple fork or
kernel process mechanisms. Because each mechanism uses a different set

of routines, the routines your start-I/O code path uses depends on which

mechanism you choose. For more information about selecting the start-I/O
mechanism most suitable for your driver, see Chapter 7.

15

How Drivers Interact with the Operating System

2.4 Overview of Driver Routines

Start-I/O routines performs such additional device-dependent tasks as

translating the I/O function code into a device-specific command, storing the

details of the user request in the device’s UCB in the I/O database and, if

necessary, obtaining access to controller and adapter resources. Whenever

the start-I/O routine must wait for these resources to become available, the

operating system suspends the routine, reactivating it when the resources

become free.

The start-I/O routine ultimately activates the device by suitably loading the

device’s registers. At this stage, the start-I/O routine invokes a system macro

that causes its execution to be suspended until the device completes the

I/O operation and posts an interrupt to the processor. The start-I/O routine
remains suspended until the driver’s interrupt service routine handles the
interrupt.

When a device posts an interrupt, its driver’s interrupt service routine

determines whether the interrupt is expected or unexpected, and takes
appropriate action. If the interrupt is expected, the interrupt service routine
reactivates the driver’s start-I/O routine at the point of suspension. The
general course of action of driver mainline code at this time is to perform
device-dependent I/O postprocessing and to transfer control to the operating
system for device-independent I/O postprocessing.

A description of a driver interrupt service routine appears in Section 8.3.

A timeout handling routine retries I/O operations and performs other error
handling when a device fails to complete a request in a reasonable period of

time. Once every second, the system timer checks all devices in the system
for device timeout. When it locates a device that has timed out, because it is

off line or some error has occurred, the system timer calls the driver’s timeout
handling routine.

2.4.4 Other Driver Routines

16

You can also include any of the following routines in a device driver:

Depending upon the reason for the timeout, the timeout handling routine may
call a system error-logging routine to allocate and fill an error message buffer
with information about the error. In turn, the error-logging routine can call
a register-dumping routine in the driver that also loads into the buffer the
contents of device registers at the time of the error.

The operating system calls a driver’s cancel-I/O routine when a user process
issues a Cancel I/O on Channel ($CANCEL) system service for the device. It
may also call the routine when the device’s reference count goes to zero, which
occurs when all users with assigned channels to the device have deassigned
them.

How Drivers interact with the Operating System
2.5 Driver Context

2.5 Driver Context

A driver may have several routines to which the operating system passes
control in certain situations. The context in which any one routine receives
control from the operating system may differ substantially from that in which
another receives control. It is essential that a driver routine not attempt to
exceed the limitations of the context in which it executes.

In general, context is characterized by the following factors:

¢ Actual parameters that are passed to the routine

e The current IPL of the executing processor

e The range of IPLs that the routine can change and the required IPL on

return from the routine.

e The currently owned spinlocks of the executing processor

e The data structures available to the routine

e The ability or inability to access process space

A complete description of the context of each driver routine appears in
Chapter 18. Here is a general overview:

e All device driver routines execute in kernel mode at an elevated IPL.

e Only driver FDT routines execute within process context and can access
process-private address space.

e The majority of driver routines execute in system (or interrupt) context:
that is, in the sequence of execution that follows a processor’s grant of

an interrupt request at a given IPL. Such code can refer only to system

address space. Moreover, it cannot incur exceptions, including page faults,
without causing a fatal bugcheck. Code executing in system context is
serviced on the kernel stack, and must synchronize its execution with other
priority code threads by using IPLs, spinlocks, and resource wait queues,
all of which are described in Chapter 3.

Most driver processing of an I/O request (before and after the device
acknowledges the servicing of the request by requesting an interrupt from

the processor) occurs at a fork IPL. This portion of driver code, which includes
most of the start-I/O routine, is commonly known as the driver’s fork process.

There are several instances in the processing of an I/O request when a

driver fork process must suspend execution to wait for a resource or a device

interrupt. To make the matter of saving and restoring fork process context as

efficient as possible, the operating system places a restriction on the context of

17

How Drivers Interact with the Operating System
2.5 Driver Context

a driver fork process, in addition to those that apply to any process in interrupt

context. Fork context consists of only the following:

e The fork routine parameters (FR3 and FR4)

e The fork routine address (FPC)

e A fork block (usually the unit control block), that can contain additional

fork process context

The operating system places the fork block of a suspended fork process in

either a processor-specific fork queue or a resource wait queue where it waits

to be resumed. When it resumes the fork process, the operating system calls

the fork routine with the FR3 value, FR4 value, and a pointer to the fork block

as parameters.

2.6 Programmed-l/O and Direct-Memory-Access Transfers

Devices contain registers that initiate, control, and monitor the progress of

data transfer, seek operation, or other requests for device activity. When it
completes a request, the device posts an interrupt to the processor. The size of
the transfer concluded by a device interrupt depends upon the capabilities of

the device.

2.6.1 Programmed I/O

Drivers for relatively slow devices, such as printers, terminals, and some disk

and tape drives, must transfer data te or from a hardware interface register
a byte or a word at a time. These drivers must keep a record of the location
of the data buffer in memory, as well as a running count of the amount of
data that has been transferred to or from the device. Thus, these devices

perform programmed I/O (PIO) in that the transfer is largely conducted by
the driver. The DE422 ISA ethernet interface is an example of a device that
uses programmed I/O. Drivers performing PIO transfers are generally not
concerned with the operation of I/O adapters.

2.6.2 Direct-Memory-Access I/O

18

Devices that perform direct-memory-access (DMA) transfers do not require
as much driver involvement in the transfer. Once the driver activates the
device, the device can transfer a large amount of data without requesting an
interrupt after each of the smaller amounts. The responsibilities of a driver for
a DMA device involve setting a hardware interface register with the starting
address of the buffer containing the data to be transferred, a byte offset into
the buffer, and the size of the transfer. By setting the appropriate bit or bits in
the hardware interface control and status register (CSR), the driver activates
the device. The device then automatically transfers the specified amount of

How Drivers Interact with the Operating System
2.6 Programmed-V/O and Direct-Memory-Access Transfers

data to or from the specified address. Any driver that does DMA must map the
DMA buffer.

2./ Buffered and Direct I/O

Another topic, related to the data transfer capabilities of a device, results
from the fact that the original buffer, as specified in the user $QIO request,

is in process space and is mapped by process page-table entries. Because the
driver cannot rely on process context existing at the time the device is ready to

service the I/O request, it must have some means of guaranteeing that it can
access both the data involved in the transfer and the page-table entries that
map the buffer.

The operating system provides the following two techniques that are employed

by device drivers:

Direct I/O, the technique used most commonly by drivers of DMA
devices, locks the user buffer in memory as well as the page-table entries
that map it. The function decision table (FDT) of such a driver calls a
system-supplied FDT routine that prepares the user buffer for direct I/O.

Buffered I/O is the strategy whereby the driver FDT dispatches to an

FDT routine in the driver that allocates a buffer from nonpaged pool. It is
this intermediate buffer that is involved in the transfer. The driver later
refers to the buffer using addresses in system space. Driver preprocessing

routines copy the data from the user buffer to the system buffer for a write
request; system I/O postprocessing (by means of a special kernel-mode

AST) delivers data from the system buffer to the user buffer for a read

request. Drivers most often use buffered I/O for PIO devices such as line
printers and card readers.

The trade-off between buffered I/O and direct I/O is the time required to move
the data to or from the user’s buffer as against the time required to lock the
buffer pages in memory.

2.8 Example of an I/O Request

This section briefly summarizes the processing of a sample I/O request.

1. A process requests an I/O operation.

A user process initiates an I/O request by issuing either a $QIO system

service call or an RMS call resulting in a call to the $QIO system service.

The user process specifies the target device, a read function code, and the

address of a buffer into which the data is to be read.

2. The operating system performs I/O preprocessing.

19

How Drivers Interact with the Operating System
2.8 Example of an I/O Request

20

10.

ole

The $QIO system service validates the request and locates data structures

in the I/O database that describe the device and its driver. The system

service also allocates and initializes an I/O request packet to contain a

description of the I/O request. The system service then calls a reading

routine in the driver.

The driver performs I/O preprocessing.

The driver FDT routine verifies that the user buffer resides in virtual

memory pages that can be modified by the requesting process, locks the

buffer pages in memory, and adds details of the I/O operation to the I/O
request packet. The read FDT routine then calls the operating system to
send the I/O request packet to the driver.

The system creates a driver’s fork process.

A system routine creates a fork process in which the device driver can
execute. The routine activates the driver’s fork process by transferring
control to the driver’s start-I/O routine.

The driver prepares to transfer data to the I/O adapter.

For DMA transfers, the driver’s fork process calls system routines that
enable the I/O adapter hardware to map I/O bus addresses into physical
addresses for the transfer.

The driver activates the device.

The fork process prepares the device to begin processing the request by
setting bits in device registers.

The driver waits for an interrupt.

A system routine saves the context of the driver’s fork process and
relinquishes the processor until an interrupt occurs.

The device issues an interrupt.

When the data transfer is complete, the device issues a hardware interrupt
that causes the system to dispatch to the driver’s interrupt service routine.

The driver services the interrupt.

The driver’s interrupt service routine handles the interrupt and reactivates
the driver, which reads device registers and possibly data structures to
obtain status information about the transfer.

The operating system inserts the driver in a fork queue.

The driver requests that it again be suspended, to be reactivated later at a
lower software interrupt priority level (IPL).

The fork dispatcher reactivates the driver’s fork process.

12.

13.

How Drivers Interact with the Operating System
2.8 Example of an /O Request

When processor priority permits, the system fork dispatcher reactivates the
driver as a fork process.

The driver completes the I/O operation.

The driver’s fork process completes device-dependent processing of the I/O
request and returns an I/O status to the operating system.

The operating system completes the I/O operation.

The system I/O postprocessing routines copy the I/O status into process

address space and return control to the user process.

Only four of these 13 steps describe the driver’s I/O preprocessing and fork
processing. The system I/O-support routines perform I/O processing common
to many I/O requests. Driver writing is further simplified by the use of system
routines that handle device-independent functions.

Note that this example simplifies the processing of an I/O operation by ignoring

such issues as

The association of a device with a process, which is to say, device

assignment

Simultaneous I/O requests for one device

System synchronization issues, such as IPLs and spinlocks

Driver competition for shared system and I/O adapter resources

Driver competition for a multiunit controller

Driver recovery from device errors or power failure

21

otags erties cra live toarmie trey ait —
Soop GM a2 le tame “Ta

ae

t) eutuvneeceleanee aed SPONSE SR AAS SEE
aC af & Ferd» [hestie 4 i Ww

OV euls te pet “ep tae acc tape
Aad (9 9 ciartesge welt aos ot oa ae
Sine tits one Savaligage arlags

2
hg

EMH Ons ars CAL cag _ ae e pe 2 oe
; FS2 Re Pe oF

#ast deme Foes pi a pe Cnn arena ie aad :
"iin site Tao reef wiht Omer aaeaeee a nj

iarigeee lg ony\ gmt gc atutet Seatac the seu; tetee
= yeatalagine

a: seed emt fn a Wa eines

IMM he esp idan nadtie owes a &
a ee , (ee ~.

a" oe Stevie aha - x
te furs Bie LT: ews: Seana - at

“sr nia 3 maj ONT Whe cote’ Sesyhe i a tei © 8
ee. "Ss tendies ree pee =

0 oO SM Few OY Ong ated aged eeyvoee,

q un

3
Synchronization of I/O Request Processing

Because a device driver executes as kernel-mode code and its execution is

triggered by device- and software-initiated interrupts, it can preempt core

system tasks and access critical system data. As a result, it must adhere to a
set of rules that governs the priority of system activities and controls the flow
of system events. These synchronization rules ensure that both the operating

system and the device driver access memory in an orderly and consistent
fashion.

This chapter discusses synchronization concepts most important to device-
driver writers. For more comprehensive information about synchronization

concepts and techniques, refer to the OpenVMS Alpha Internals and Data
Structures book.

3.1 Interrupt Priority Levels

The Alpha architecture defines 32 levels of hardware priority, called interrupt
priority levels (IPLs). These IPLs govern the sequence of system events that

occur on each processor in an Alpha system. The higher-numbered IPLs (16 to

31) are reserved for hardware interrupts, and the lower-numbered IPLs (1 to
15) are reserved for software interrupts. Most process-based software and all

user-mode code runs at IPL 0.

The hardware IPLs (16 to 31) are used for device interrupts (IPLs 20 to
23), interprocessor interrupts in a multiprocessing system, interval timer

interrupts, urgent conditions like power failure, and such serious errors as

a machine check. For specific hardware IPL information, see your system’s

hardware documentation.

The software IPLs (1 to 15) are defined by the operating system, as illustrated

in Table 3-1.

23

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

24

Table 3-1 System-Defined IPLs
Do ge SS ES ee — ee

0 — Execution of most process-based software

i. —- Reserved

2 IPL$_ASTDEL Servicing of AST-delivery interrupts

3 IPL$_RESCHED Servicing of scheduler interrupts

4 IPL$_IOPOST Servicing of I/O-postprocessing interrupts

5 — Reserved

6 IPL$_QUEUEAST Fork level processing for queuing ASTs

7 IPL$_TIMERFORK Entry level for software timer interrupt
servicing

8 IPL$_ SYNCH Synchronization of access-to-system
databases in a uniprocessor system’

11 IPL$ MAILBOX Fork level processing for access to mailboxes
IPL$_POOL Allocation of nonpaged pool

8-11 _ Fork level processing for executing driver
code

12 _ Recalculation of quorum; cancellation of
mount verification (IPC)

13 — Reserved

14 _ Entry level for XDelta debugger

15 — Reserved

1TPL$_TIMER, IPL$_SCHED, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$_IOLOCKS are all
synonyms for IPL$_SYNCH (see Table 3-3).

Because a higher IPL takes precedence over a lower IPL, a routine executing
at one IPL can block interrupts on a processor at that IPL and all lower
IPLs. This scheme allows the operating system to assign the higher IPLs to
system activities that must be dispatched quickly and with little chance of
interruption. In a general sense, each processor services interrupts according
to the following priorities:

¢ Power failure

e Processor errors

e Device interrupts

e Device driver fork processing

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

e I/O postprocessing

e¢ Process rescheduling

e AST delivery

The mechanism by which synchronized access to data is ensured is twofold.
First, the operating system associates a given IPL with the access of one or
more data structures or databases. Secondly, the operating system defines an
ordered set of semaphores, called spinlocks, that extend IPL synchronization

throughout a multiprocessing system. A processor must obtain one or more
of these spinlocks before executing any code thread that must make use of
the resources the spinlock protects. Spinlocks thus allow each processor in
a multiprocessing system to share common system data and block events
systemwide.

For example, consider a code thread running at IPL 4 that intends to access
the memory management database. To do so, it raises IPL to IPL$_MMG.

This action gives it the exclusive right to access the database from the
local processor, effectively preventing access by other code threads on the
same processor. After raising IPL, this code thread requests the memory

management (MMG) spinlock. Ownership of the MMG spinlock gives the

processor executing this thread the exclusive right to access the database
systemwide, and bars access from any other code thread running on any other
processor in the Alpha system.

Although discussions in this book treat IPL and spinlock synchronization as
conceptually separate tasks for a device driver, system synchronization macros
and routines make adjustment of IPL and disposition of spinlocks appear as a

single operation.

A full description of spinlocks appears in Section 3.2.

3.1.1 Interrupt Service Routines

The operating system associates certain IPLs with the execution of certain

tasks. Moreover, when a processor in a Alpha system grants an interrupt at a

given IPL, the grant actually triggers the execution of a specific piece of code,

called an interrupt service routine (ISR).

Device drivers themselves contain an interrupt service routine that handles

device interrupts at an appropriate device IPL (IPLs 20 to 23). In addition,
drivers rely heavily upon the system interrupt service routine known as the
fork dispatcher that runs at several IPLs, including driver fork IPLs 8 to 11.
When the local processor’s IPL drops to fork IPL, it is the fork dispatcher that
restores the context of the driver fork process and places it into execution.

25

Synchronization of I/O Request Processing

3.1 Interrupt Priority Levels

3.1.2 IPL Use During I/O Processing

3.1.2.1

26

The activities essential to the processing of an I/O request occur only at certain

IPLs. The operating system performs some of these tasks in system routines

and interrupt service routines; drivers perform others. This section describes

those IPLs and interrupt service routines that are most involved in processing

an I/O request or are of particular interest to device drivers.

IPL 2 (IPL$_ASTDEL)

The asynchronous system trap (AST) delivery interrupt service routine

(SCH$ASTDEL) is associated with IPL$_ASTDEL.

When an AST is specified for delivery to a process, the AST queuing routine
(SCH$QAST) queues the AST to the specified process’s process control block
(PCB).! The mode of the AST, the current mode of the processor, a currently
active AST, or a disabled AST recognition determine when the AST is delivered.

The AST delivery interrupt service routine gains control when the processor’s
IPL drops below IPL$_ASTDEL, and delivers all deliverable ASTs to the
currently scheduled process. Any code executing at IPL$_ASTDEL or higher

blocks the execution of this interrupt service routine.

To block the delivery of ASTs—specifically the kernel-mode AST that causes

process deletion—I/O preprocessing, from the time that the $QIO system
service allocates an IRP through the execution of the last FDT routine, occurs

at IPLs no lower than IPL$_ASTDEL.. Because the system allocation routine
records the address of the system memory allocated for the IRP in a local

variable, if an AST that deletes the process were to occur, the allocated memory
would be lost from the pool.

In addition, some I/O postprocessing occurs in a special kernel-mode AST
servicing routine that also executes at IPL$_ASTDEL. The special kernel-mode
AST, running in the context of a process whose I/O has been completed, writes
status information into an I/O status block, copies buffered input into process
space, and deallocates system buffers. The completion of these tasks depends
on the availability of process context.

Page faults may be taken by code that executes at IPL$ ASTDEL. However,
this is not the case with code executing at higher IPLs. Thus, programs that
are sensitive to the contents of pageable data structures run at IPL$ ASTDEL
to take page faults. For example, the allocation of paged pool is one such
program code thread; paged pool, as a result, is protected by a mutex.

Because the system AST queuing and delivery routines access the scheduler database,
they synchronize within a multiprocessing environment by obtaini
spinlock before modifying system data. : ya

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

3.1.2.2 IPL 4 (IPL$_lOPOST)
The IPL$_IOPOST interrupt service routine (IOC$IOPOST) performs device-

independent postprocessing of an I/O request. As appropriate to the I/O
request, it adjusts process quota use and deallocates system memory.

IOC$IOPOST also queues a special kernel-mode AST to the process’s PCB
that, once process context is restored, writes status and data into the process’s
address space.

After it has completed whatever device-dependent postprocessing is required,
a driver fork process requests I/O postprocessing by calling a system
routine (IOC_STD$REQCOM) that inserts an IRP in the systemwide I/O

postprocessing queue and requests a software interrupt at IPL$ IOPOST.

When IPL drops below IPL 4, the IPL$_IOPOST interrupt service routine
dequeues an IRP from the I/O postprocessing queue, performs all I/O-
completion tasks that can occur without reference to the device’s unit control
block (UCB) and, thus, at an IPL lower than fork IPL.

I/O postprocessing runs at an IPL higher than IPL$_RESCHED so that all
pending I/O-completion processing is finished before the scheduler looks for
a new process to schedule. The ability of a process to execute can depend
on the completion of the postprocessing of an I/O request. Additionally, I/O
postprocessing can queue ASTs to certain processes, thus changing their state

to computable and resulting in a priority boost. Because all I/O completions

are accomplished before rescheduling activities, the scheduler can select
from a potentially larger set of computable processes, using more up-to-date

information about these processes.

3.1.2.3 IPL 8 (IPL$_SYNCH)

IPL$ SYNCH is the level at which the databases that record and control

system functions are synchronized. Individual spinlocks, such as the JIB,

SCHED, MMG, and TIMER spinlocks, provide synchronized access to

individual databases in a multiprocessing environment.? When a system
subroutine or a driver needs to modify or read a dynamic portion of a system

database, the routine always executes at IPL$_SYNCH, holding an appropriate
system spinlock, to ensure that the database does not change because of some
interrupt service routine or process action.

3 IPL$ TIMER, IPL$ SCHED, IPL$_SCS, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and
IPL$ IOLOCKS8 are all synonyms for IPL$_SYNCH (see Table 3-3).

27

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

3.1.2.4 IPL 6 and IPL 8 to IPL 11 (Fork IPLs)

On each processor in an Alpha system—for IPL 6 and for each of the IPLs from

8 to 11—there exists a queue for fork blocks waiting to be processed. Each fork

block contains the context of a suspended fork process. The interrupt service

routine that executes at each of these IPLs (EXE$FORKDSPTH) is known as

the fork dispatcher. The fork dispatcher dequeues a fork block, obtains the

appropriate fork lock, restores the context of the fork process, and resumes its

execution at the routine address saved in the fork block (at FKB$L_FPC).

All driver routines, except most FDT routines, execute at fork IPL or higher.

Usually driver routines should not read or alter UCB fields without taking
steps to ensure synchronization. Because such UCB fields can be shared
among driver fork processes and system tasks executing on other processors in
a multiprocessing system, a processor must first secure the corresponding fork

lock to execute at that fork IPL.

A driver places a fork lock index in the ucb$b_flck field in its structure

initialization routine. (See Section 10.3.) The operating system determines

the appropriate fork IPL from the contents of the sp1$b_ip1 field in the
fork lock’s structure. (See Section 3.2 for a discussion of spinlocks.) Most

OpenVMS drivers use the SPL$C_IOLOCKS8 spinlock, which uses the IPL

8 fork IPL (IPL$_IOLOCKS8). (IPL 6 is also called IPL$_QUEUEAST for
historical reasons.)

3.1.2.5 IPL 20 to IPL 23 (Device IPLs)

Alpha peripheral devices request interrupts at IPLs 20 to 23 because device
interrupts usually need to preempt most user and system software functions.

When a device requests an interrupt at one of these IPLs and the processor is
executing at a lower IPL, the processor grants the interrupt, and then transfers

control to an interrupt service routine for the device located in its driver. If the
processor is executing at a higher or equal IPL, the interrupt remains pending.

The interrupt dispatcher routes interrupts from devices to the appropriate
device driver’s interrupt service routine. A driver specifies the address of its
interrupt service routine by using the dpt_store_isr macro in its structure
re-initialization routine. The interrupt dispatcher’s routing mechanism works
differently depending upon the Alpha processor and I/O subsystem in use.

Data in a device’s registers and in various fields of the UCB that record
device status is synchronized on the local processor at device IPL, at which its
driver’s interrupt service routine executes. This value is stored by the driver
in the ucb$b_dipl field of the UCB. It is the responsibility of the interrupt
service routine to secure the corresponding device lock. This action allows it

28

Synchronization of /O Request Processing
3.1 Interrupt Priority Levels

to synchronize with other code threads that access the same resources in a
multiprocessing system.

The driver's start-I/O routine is one such code thread and must similarly
synchronize. The start-I/O routine must secure the appropriate device lock

to achieve systemwide synchronization of the device database. The act of
acquiring the device lock automatically sets IPL to device IPL.

Because code executing at IPLs 20 to 23 blocks most other hardware interrupts

and all software interrupts on the local processor, driver code lowers its IPL as
soon as possible.

3.1.2.6 IPL 31 (IPL$_POWER)

The highest IPL, IPL$_POWER (IPL 31), locks out all other interrupts on the
local processor. Many system routines and drivers raise IPL to IPL$_POWER

to execute code sequences that cannot tolerate interruption. For example,

much of system initialization occurs at IPL$_POWER. In a multiprocessing

system, these routines often need to acquire additional synchronization, as
described in Section 3.2.

When a device driver needs to execute a series of instructions without
interruption, the driver raises IPL to IPL$¢_POWER. The driver should never

remain at IPL$_POWER for more than a few instructions. The most common
instance of a driver’s raising IPL to IPL$_POWER is to determine whether a
power failure has occurred on the local processor between the time that the
driver writes setup data into device registers and the time that the driver
starts the device by writing into the device’s control register.

3.1.2.7 IPL 11 (IPL$_MAILBOX)

IPL$_MAILBOX, which is the highest fork IPL, is the fork IPL used by the

Mailbox driver.

3.1.3 Modifying IPL in Driver Code

Kernel-mode code can modify the IPL of the local processor by either explicitly
setting the processor’s IPL to a specific value or by requesting a software
interrupt at a specific level. Driver code can change the IPL at which
it executes by invoking a system-supplied macro to request a change in

IPL. Because the device_lock, fork_lock, and sys_lock macros (and their

counterparts) raise (or lower) IPL in a uniprocessing environment, and achieve

full synchronization in a multiprocessing system, Digital recommends their use

instead of the setipl, dsbint, and enbint macros.

29

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

The lock, fork_lock, and device_lock macros ensure that the synchronization

needed for either the uniprocessor or multiprocessor environment is obtained

before the requested resource is accessed. When executed in a uniprocessor

environment, these macros only obtain the proper IPL synchronization.

When invoked in a multiprocessing environment, these macros both raise

IPL and obtain an appropriate spinlock, thus extending IPL synchronization

systemwide.

3.1.3.2 Lowering IPL

32

Driver code lowers its IPL to synchronize with code threads that access com-
mon data or perform common activities at the lower IPL. In a multiprocessing

environment, lowering IPL is often associated with the release of a spinlock.
In addition, lowering IPL may be necessary in order to obtain a spinlock
synchronized at the lower IPL.

One of the most fundamental coding rules under the operating system is that
a code thread cannot explicitly lower IPL below the level at which its execution
has been initiated. In relation to driver processing, this means that a driver
fork process cannot explicitly set IPL to be less than its fork IPL, nor can
a driver’s interrupt service routine explicitly set IPL to be less than device
IPL. This is because a processor interrupted a lower IPL code thread in mid-

execution to place the current code thread into execution. It is important to the
integrity of the data structures protected at this lower IPL that the previous
code thread be resumed before other code accesses the same structures. A
violation of the IPL rule would undermine the system interrupt dispatching
mechanism by not first returning control to the interrupted code thread.

Driver code uses the following methods to lower IPL:

e Issuing a device_unlock, fork_unlock, or sys_unlock macro (paired with

an earlier invocation of a device_lock, fork_ock, or sys_lock) or a enbint
macro (paired with an earlier invocation of an dsbint macro) to restore IPL
to a previously saved value.

e Invoking the iofork (or fork) macro to preserve its context in a fork block,
to insert the block in a fork queue, and to request a software interrupt at
the driver’s fork IPL.

° Returning out of an interrupt service routine to the system interrupt
dispatcher. The dispatcher dismisses the interrupt and lowers IPL.

Lowering IPL can cause many pending interrupts on the local processor
between the old and new IPLs to become deliverable.

Synchronization of I/O Request Processing
3.2 Spinlocks

3.2 Spinlocks

In a multiprocessing environment, as in a uniprocessing environment, you can

block activities on the local processor by raising IPL. Similarly, certain shared
databases must be accessed only at a given IPL. However, in a multiprocessing
environment, simply raising IPL on the local processor does not prevent

other processors in the system from reading or modifying a shared database.

Unless other steps are taken to notify the other processors that the database is
“owned,” such contention could potentially result in corrupted data and system
failures.

A spinlock is a semaphore associated with a set of system structures, fields,

or registers whose integrity is critical to the performance of a specific operating

system task. The scheduler and the memory management subsystem thus
have their own spinlocks, as does each fork processing level and each device

controller. Because a spinlock can be owned by only one processor in the
system at a time, other processors attempting to acquire the same spinlock are
prevented from reading from or writing into the database it protects. For more

information about the spinlock (SPL) data structure, see Chapter 17.

There are two categories of spinlock:

e The structure of a static spinlock is permanently assembled into the

system. As a result, its existence and definition are fixed from one

system to another. Static spinlocks are accessed as indexes into a vector
of longword addresses called the spinlock vector and pointed to by
SMP$AR_SPNLKVEC. The system spinlocks and fork locks listed in

Table 3-3 are static spinlocks.

¢ A dynamic spinlock is a spinlock that is created based on the I/O
configuration of a particular system. One such dynamic spinlock is the

device lock that is created when particular device is configured. This device
lock synchronizes access to the device’s registers and certain unit control
block (UCB) fields. The operating system creates a dynamic spinlock by
allocating space from nonpaged pool, rather than by assembling the lock

into the system as it does in the. creation of a static spinlock. Section 3.2.2

describes device locks.

Table 3-3 lists, in order of increasing logical rank, the static spinlocks. For
each system spinlock or fork lock, the table records its index into the spinlock
vector, its synchronization IPL, and a brief description of its function.

33

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

The lock, fork_lock, and device_lock macros ensure that the synchronization

needed for either the uniprocessor or multiprocessor environment is obtained

before the requested resource is accessed. When executed in a uniprocessor

environment, these macros only obtain the proper IPL synchronization.

When invoked in a multiprocessing environment, these macros both raise

IPL and obtain an appropriate spinlock, thus extending IPL synchronization

systemwide.

3.1.3.2 Lowering IPL

32

Driver code lowers its IPL to synchronize with code threads that access com-

mon data or perform common activities at the lower IPL. In a multiprocessing
environment, lowering IPL is often associated with the release of a spinlock.
In addition, lowering IPL may be necessary in order to obtain a spinlock
synchronized at the lower IPL.

One of the most fundamental coding rules under the operating system is that
a code thread cannot explicitly lower IPL below the level at which its execution
has been initiated. In relation to driver processing, this means that a driver
fork process cannot explicitly set IPL to be less than its fork IPL, nor can
a driver’s interrupt service routine explicitly set IPL to be less than device
IPL. This is because a processor interrupted a lower IPL code thread in mid-

execution to place the current code thread into execution. It is important to the
integrity of the data structures protected at this lower IPL that the previous
code thread be resumed before other code accesses the same structures. A
violation of the IPL rule would undermine the system interrupt dispatching
mechanism by not first returning control to the interrupted code thread.

Driver code uses the following methods to lower IPL:

e Issuing a device_unlock, fork_unlock, or sys_unlock macro (paired with
an earlier invocation of a device_lock, fork_ock, or sys_lock) or a enbint
macro (paired with an earlier invocation of an dsbint macro) to restore IPL
to a previously saved value.

¢ Invoking the iofork (or fork) macro to preserve its context in a fork block,
to insert the block in a fork queue, and to request a software interrupt at
the driver’s fork IPL.

° Returning out of an interrupt service routine to the system interrupt
dispatcher. The dispatcher dismisses the interrupt and lowers IPL.

Lowering IPL can cause many pending interrupts on the local processor
between the old and new IPLs to become deliverable.

Synchronization of /O Request Processing
3.2 Spinlocks

3.2 Spinlocks

In a multiprocessing environment, as in a uniprocessing environment, you can

block activities on the local processor by raising IPL. Similarly, certain shared
databases must be accessed only at a given IPL. However, in a multiprocessing
environment, simply raising IPL on the local processor does not prevent

other processors in the system from reading or modifying a shared database.
Unless other steps are taken to notify the other processors that the database is

“owned,” such contention could potentially result in corrupted data and system
failures.

A spinlock is a semaphore associated with a set of system structures, fields,

or registers whose integrity is critical to the performance of a specific operating

system task. The scheduler and the memory management subsystem thus
have their own spinlocks, as does each fork processing level and each device
controller. Because a spinlock can be owned by only one processor in the

system at a time, other processors attempting to acquire the same spinlock are

prevented from reading from or writing into the database it protects. For more
information about the spinlock (SPL) data structure, see Chapter 17.

There are two categories of spinlock:

e The structure of a static spinlock is permanently assembled into the

system. As a result, its existence and definition are fixed from one

system to another. Static spinlocks are accessed as indexes into a vector

of iongword addresses called the spinlock vector and pointed to by
SMP$AR_SPNLKVEC. The system spinlocks and fork locks listed in

Table 3-3 are static spinlocks.

¢ A dynamic spinlock is a spinlock that is created based on the I/O
configuration of a particular system. One such dynamic spinlock is the
device lock that is created when particular device is configured. This device

lock synchronizes access to the device’s registers and certain unit control
block (UCB) fields. The operating system creates a dynamic spinlock by
allocating space from nonpaged pool, rather than by assembling the lock
into the system as it does in the creation of a static spinlock. Section 3.2.2
describes device locks.

Table 3—3 lists, in order of increasing logical rank, the static spinlocks. For
each system spinlock or fork lock, the table records its index into the spinlock
vector, its synchronization IPL, and a brief description of its function.

33

Synchronization of /O Request Processing

3.2 Spiniocks

Table 3-3 Static Spinlocks

Lock Name Lock Index

QUEUEAST SPL$C_QUEUEAST

FILSYS SPL$C_FILSYS

IO_MISC SPL$C_IO_MISC

IOLOCK8 SPL$C_IOLOCK8
SCS SPL$C_SCS

TIMER SPL$C_TIMER

JIB SPL$C_JIB

MMG SPL$C_MMG

SCHED SPL$C_SCHED

IOLOCK9 SPL$C_IOLOCK9

Synchronization IPL

6 (IPL$_QUEUEAST)

8 (IPL$_FILSYS)!

8 (IPL$_IO_MISC)

8 (IPL$_IOLOCK8
IPL$ SCS) !

8 (IPL$_TIMER)!

8 (IPL$_JIB)?

8 (IPL$_MMG)!

8 (IPL$_SCHED)'

9 (IPL$_IOLOCK9)

Description

Fork lock for executing
a fork process at IPL 6

Lock on file system
structures

CRAM mailboxes
allocation and
deallocation

Fork lock for executing
a fork process at IPL 8

Lock for adding and
deleting timer queue
entries and searching
the timer queue®

Lock for manipulating
job nonpaged pool
quotas as reflected
by the fields JIB$L_
BYTCNT and JIB$L_
BYTLM in the job
information block

Lock on system
memory management,
PFN database,
swapper, modified page
writer, and creation
of per-CPU database
structures

Lock on process control
blocks, scheduler
database, and mutex
acquisition and release
structures

Fork lock for executing
a fork process at IPL 9

ee i es ree en ee ee ee AE ae es ee ee
1TPL$_TIMER, IPL$_SCHED, IPL$_SCS, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$ IOLOCKS are all
synonyms for IPL$ SYNCH.

3The HWCLK spinlock implicitly locks the timer queue element at the head of the timer queue by locking the
quadword representing its due time (EXE$GQ_1ST TIME).

34

(continued on next page)

Table 3-3 (Cont.) Static Spinlocks

Lock Name

IOLOCK10

IOLOCK11

MAILBOX

POOL

PERFMON

IN VALIDATE

HWCLK

MEGA

MCHECK
EMB

Lock Index

SPL$C_IOLOCK10

SPL$C_IOLOCK11

SPL$C_MAILBOX

SPL$C_POOL

SPL$C_PERFMON

SPL$C_INVALIDATE

SPL$C_HWCLK

SPL$C_MEGA

SPL$C_MCHECK
SPL$_EMB

Synchronization IPL

10 (IPL$_IOLOCK10)

11 (IPL$_IOLOCK11)

11 (IPL$_MAILBOX)

11 (IPL$_POOL)

15 (IPL$_PERFMON)

21 IPL$_INVALIDATE

Pit

31 (IPL$_MEGA)

31 (IPL$_MCHECK
IPL$_EMB)

Synchronization of I/O Request Processing
3.2 Spinlocks

Description

Fork lock for executing
a fork process at IPL
10

Fork lock for executing
a fork process at IPL
11

Lock for sending
messages to mailboxes

Lock on nonpaged pool
database

Lock for I/O
performance
monitoring

Lock for system space
translation buffer (TB)

invalidation

Lock on interval clock
database, including the
quadword containing
the due time of the
first timer queue
element and the
quadword containing
the system time

Lock for serializing
access to fork and wait
queue

Lock for synchronizing
certain machine
error handling and
for allocating and
releasing error-logging
buffers

Drivers rarely need to obtain system spinlocks or fork locks explicitly; the
system routines that initiate driver processing and access resources protected

by a spinlock generally obtain and release these locks as required. However, a
driver must obtain the appropriate device locks whenever it must access data

synchronized at device IPL; for instance, in its interrupt service routine.

The operating system provides a set of macros, listed in Table 3-2, that call
the system’s spinlock acquisition and releasing routines.

35

Synchronization of I/O Request Processing

3.2 Spinilocks

36

Three factors control the successful acquisition of a spinlock: IPL, rank, and

ownership.

IPL

The processor must be executing at an IPL equal to or below the spinlock’s

synchronization IPL (spl$b_ipl). In keeping with the rules discussed in

Section 3.1.3.2, a processor should not lower the IPL of its thread of execution

in the process of acquiring a spinlock. Thus, in acquiring a spinlock, a

processor may or may not raise its IPL, depending upon whether it is executing

already at the spinlock synchronization IPL. The operating system supplies

spinlock acquisition macros (device_lock, fork_lock, and sys_lock that, in
calling appropriate system routines, raise IPL automatically in the course of
obtaining the requested spinlock. Once it owns the spinlock, the processor can
raise its IPL above the IPL at which the spinlock was acquired, but it should

not lower it below that level.

Rank

A processor can own multiple spinlocks simultaneously, but must obtain these
spinlocks in increasing order of rank. (Table 3—3 lists the spinlocks in order
of rank.) In other words, a processor that owns one or more spinlocks should

not attempt to acquire a spinlock whose logical rank* is less than a spinlock
it already holds. It does not need to acquire all spinlocks of intervening rank.

This rule is meant to avoid potential deadlocks in the acquisition of system
spinlocks and fork locks, and does not pertain to device locks. The processor
may release spinlocks in any order, as long as any attempt to reacquire those
spinlocks acquires them in ascending order.

Note that the concept of rank is independent of IPL. At any given synchroniza-
tion IPL, there may be many spinlocks, each of which is ranked according to
its position in Table 3-3.

Ownership

The spinlock must not be owned by any other processor. If the spinlock is
currently owned by another processor, a requesting processor spin waits for
the lock to become available. That is, it executes in a loop, waiting for the
processor that owns the spinlock to release it.

It is legal for a processor to nest acquisitions of a given spinlock. In other
words, if a processor attempts to acquire a spinlock that it currently owns,
the acquisition will succeed. The operating system provides a mechanism
whereby such a processor can release a single acquisition or all acquisitions of
a spinlock.

* The physical rank of a spinlock is the inverse of its logical rank.

Synchronization of I/O Request Processing
3.2 Spinlocks

3.2.1 Fork Locks

In its simplest form, a fork lock is a static spinlock that synchronizes the right

of a fork process to execute at a specified IPL in a multiprocessing system.
Fork locks exist for each of the fork IPLs from IPL 8 to 11. A driver indicates
the fork lock under which it processes, and by implication its fork IPL, by
filling in ucb$b_flck in its initialization routine as described in Section 10.3).

Drivers rarely need to obtain a fork lock explicitly. The operating system places

the driver fork process into execution (originally by EXE_STD$INSIOQ and, by
implication, by IOC_LSTD$REQCOM) at fork IPL holding the appropriate fork

lock. In addition, the fork dispatcher obtains the fork lock associated with the
driver fork process before it restores its context and resumes its execution.

Note that, if a driver fork process is not placed into execution by one of these
means, it must itself expressly obtain the fork lock.

As an example, consider a driver fork process activated by a timer wakeup

associated with a timer queue element (TQE) previously queued by the driver.
The software timer fork routine runs at IPL 8 (IPL$_SYNCH) and obtains

certain spinlocks prior to dequeuing the TQE and placing it into execution, but
it does not obtain the driver’s fork lock. Thus, even though the driver’s fork
IPL may be IPL$_SYNCH, the driver will not be properly synchronized at fork

level unless it first obtains the appropriate fork lock.

3.2.2 Device Locks

A device lock represents a lock on an individual adapter or controller. A

processor executing a code thread that accesses a device’s registers or certain
fields in its unit control block (UCB) that reflect its status does so while holding
the corresponding device lock.

UCBs are protected by a device lock common to all units on the same adapter
or common to the entire system, depending upon the type of device. A device

lock is dynamically created by the driver loading service (}LOAD_DRIVER)
when it creates a channel request block (CRB). This service stores the address

of the device lock in the CRB (crb$1_dlck) and later copies it to the unit
control block (ucb$1_dlck) as a UCB is created for each unit on the controller.

The acquisition of device locks is exempt from the spinlock rank rule. As
long as the processor does not violate IPL synchronization, it may successfully
obtain an unowned device lock while holding any system spinlock and, likewise,
may successfully obtain unowned system spinlocks while holding a device lock.
However, a processor can acquire only one device lock at a given IPL.

37

Synchronization of I/O Request Processing

3.3 Enforcing the Order of Reads and Writes

3.3 Enforcing the Order of Reads and Writes

38

Many multiprocessing systems have been designed so that if one processor in

the multiprocessing system writes multiple pieces of data, these pieces become

visible to all other processors in the same order in which they were written.

For example, if CPU A writes a data buffer and then writes a flag, CPU B can

determine that the data buffer has changed by examining the value of the flag.

OpenVMS Alpha systems may reorder read and write operations to memory

to benefit overall memory subsystem performance. Processes that execute on
a single processor can rely on write operations from that processor becoming
visible in the order in which they are issued. However, multiprocessor
applications cannot rely on the order in which writes to memory become visible
throughout the system. In other words, write operations performed by CPU
A may become visible to CPU B in an order different from that in which they

were written.

Device driver threads that share data in multiprocessing environments or with
DMA I/O devices must be careful to insert an Alpha Memory Barrier (MB)

as appropriate, before and after data references. The MB guarantees that
all subsequent loads or stores will not access memory until after all previous
loads and stores have accessed memory, as observed by other processors. The
Memory Barrier (MB) is accessible to C programmers as a builtin function:

#include <builtins.h>

void _ MB(void);

For traditional, common device driver operations, you can rely on OpenVMS

system routines that initiate DMA device operations to memory or that acquire

spin locks that protect specific system databases in a multiprocessing system

to insert the required memory barriers. The following are some examples of
how OpenVMS Alpha provides memory barriers transparently when needed to
properly order memory operations involving device drivers:

e¢ When a driver is writing a buffer to a disk (involving a device that
performs a DMA read operation to memory), an MB must be issued before
the driver initiates the write transaction and the device must issue an MB
after receiving the start signal but before starting the DMA read.

e When a DMA I/O device has written data to memory (for instance, paging
in a page from disk), the DMA device must issue an MB before posting a
completion interrupt, and the OpenVMS I/O interrupt dispatcher issues an
MB to guarantee that the data is visible to the interrupted processor before
invoking the driver’s interrupt service routine.

Synchronization of I/O Request Processing
3.3 Enforcing the Order of Reads and Writes

All routines and macros that acquire spin locks, fork locks, and device locks
to synchronize access to a specific database in a multiprocessing system

issue an MB prior to obtaining the lock.

39

9 -

—<— : “=

Shanes
4 Bas =

= ==

4 ‘
a

4

= a =~

| > jo Chere, Hes ot =
a i) =» 7 —

i > ® 7 oy we 7) eh = anal

oe Ste =o ont des it”
i} —_

cada
a) -

ss —_

= é iy

jo

a) or) a.

q .
= _ » 2 O¢

Part Il
Creating OpenVMS Alpha Device Drivers

Part II explains how to access device interface registers, allocate map registers,

and how to code each part of a driver. It includes the following chapters:

Chapter 4 discusses device driver register access concepts and routines.

Chapter 5 explains the driver routines available for managing counted
resources.

Chapter 6 briefly reviews the $QIO system service and describes how to
use system-provided and driver-specific FDT routines.

Chapter 7 describes the general start-I/O code path concepts.

Chapter 8 explains how to use the simple fork mechanism in a start-I/O

code path.

Chapter 9 explains how to use the kernel process mechanism in a start-I/O
code path.

Chapter 10 describes driver initialization macros and routines.

“hiss <= as
o> sas ae ee . —— an

ave vine? Soi: a a qh ee) onits a1).

: ; a pe *"

abe ee ys emi pd woAt oie WW pega as = rate 3
; LAY iets i° @anl.v 7 aan av cage Benes af

(any yy. oe Wit Oy ee wp Feeeg arg Pecans =

ienrms qnaen t lope, Mute? 66rd ae i ee)
. arene

Qo a thre 2 : me ex: rRVIAG rngee viet BS

, tw i Leagan $8 wel se WLS ate edad
ative 0) dihg “te They Lane iw aber waarpet)

ae Otel j x gin ees rad cselgrs & reg) a _ =

: ie Bite shee a

=a er i ae re oe <i nw eat ~abere € x :

. a

<a
ie ite ~wn oot tlie th ary) eerie) Bt &

4
Accessing Device Interface Registers

A hardware control status register (CSR) is a memory location through
which software interfaces with a hardware component. Every hardware

component on an OpenVMS Alpha system, including the CPU and memory,

has its own set of interface registers.

Most device drivers need to access controller and device registers to perform
their functions. OpenVMS Alpha system architectures may define these
accesses in different ways. For example, some architectures use dedicated I/O

instructions to read and write the registers. Others use a memory-mapped
scheme in which the same load and store instructions used to operate on
physical memory are used to perform I/O access. Sometimes, these accesses
are distinguished from physical memory access by using a different portion of
the machine’s physical address space.

The portion of a processor’s physical address space through which it accesses
CSRs is known as its I/O space. OpenVMS Alpha systems provide two ways

of accessing CSRs:

e Direct access, or memory mapped access

e Hardware I/O mailbox access, or indirect access

Note

In register access discussions, the term control and status register
(CSR) is sometimes used instead of the generic term interface
register. In this book, these terms are equivalent.

43

Accessing Device Interface Registers
4.1 Overview of CSR Accessing Mechanisms

4.1 Overview of CSR Accessing Mechanisms

44

A challenge presented by the Alpha architecture is to create software

abstractions that hide the hardware mechanisms for accessing I/O space

access from the programmer. These software abstractions contribute to

driver portability and promote efficiency. Another difficulty is that the

Alpha architecture currently defines no byte or word length load and store

instructions. Because some I/O buses and adapters require byte or word

register access granularity for correct adapter operation, Alpha system

hardware designers invented the following mechanisms to provide byte and
word access granularity for I/O adapter register access:

e¢ Sparse space addressing, in which the device address space is expanded

by a factor of two to allow for inclusion of a byte mask in the write data.

e Swizzle space addressing, in which upper order bits in the processor’s
physical address map to an I/O bus address, while lower order bits are used
to implement I/O bus byte enable signals. This requires a large amount of

processor physical address space to represent the I/O bus address space.

e Hardware I/O mailboxes, which are 64-byte, naturally-aligned,
physically-contiguous data structures (defined by the Alpha architecture)
built in system memory and accessed by special I/O subsystem hardware.
A driver can deliver commands and write data through a hardware I/O
mailbox to the interface registers of a device residing on an I/O bus.

The OpenVMS Alpha operating system supports the following basic model for
accessing I/O device registers on any system:

¢ Map the device into the processor address space using CSR mapping
routines.

e Access the device using the platform independent access routines
IOC$READ_IO and IOC$WRITE_IO or the Controller Register Access
Mechanism (CRAM) data structure and associated routines.

The remaining sections in this chapter provide more information about the
mapping and access routines available for accessing device registers.

CS ee eee NOTE

Register mapping is not required on XMI devices on DEC 7000/10000
systems, and the IOC$READ_IO and IOC$WRITE_IO routines are not
supported. If you are porting an OpenVMS VAX XMI device driver to
an OpenVMS Alpha system, you must use the CRAM data structures
and routines.

Sa eeeee

Accessing Device Interface Registers
4.1 Overview of CSR Accessing Mechanisms

4.2 Mapping I/O Device Registers

Before you access device registers on OpenVMS Alpha systems, you must map
the registers into the processor’s virtual address space using the CSR mapping
routines described in this section.

Once your device is mapped, you can access it using the IOC$READ_IO and
IOC$WRITE_IO routines or the CRAM data structure and associated routines.

For more information about using the IOC$READ_IO and IOC$WRITE_IO

routines, see Section 4.3. For more information about using the CRAM data
structure and associated routines, see Section 4.4.

4.2.1 Using the IOC$MAP_IO Routine

The platform independent I/O bus mapping routine IOC$MAP_IO maps I/O
bus physical address space into an address region accessible by the processor.
The caller of this routine can express the mapping request in terms of the
bus address space without regard to address swizzling, dense space, or sparse
space. The IOC$UNMAP_IO routine is provided to unmap a previously
mapped space.

In the following example, the IOC$READ_PCI_CONFIG routine locates the

memory address to map. The IOC$MAP_IO then maps that address into
swizzle space, enabling byte and word accesses. IOC$MAP_IO yields an I/O
handle, which can then be used in calls to IOC$READ_IO and IOC$WRITE_

IO.

status = iocSread_pci_config (adp, /* ADP * /
crb->crb$l_node, /* Slot number * /

offsetof(PCI, pci$l_base_address_1),/* Offset into config space */
sizeof(uint32), /* Size to read */

&mem_base }); /* Base address in memory */

if bad({status) return status;

mem_base &= PCI$M_BASE_ADDRESS_BITS_31_4; /* constant = OxFFFFFFFO; AND out
the bottom byte! “si)

status = ioc$map_io(adp, /* ADP * /

crb->crb$l_node, /eSitots */

&mem_base, /* Base address in memory space */
sizeof({ ISP_REGISTERS), /* Size to map */
IOC$K_BUS_MEM BYTE GRAN, /* Map to swizzle space *~/

&iohandle); /* I/O handle * /

if bad(status) return status;

For more details about the IOC$MAP_IO routine interface, see Chapter 19.

45

Accessing Device Interface Registers
4.2 Mapping I/O Device Registers

4.2.2 Using the CSR Mapping Routine

46

Drivers must call the IOC$MAP_IO routine with specific spinlock restrictions;

in particular, the driver cannot be holding any spinlocks of higher rank

than the MMG spinlock and must be executing at IPL 8 or less. For more

information about IPLs and spinlocks, see Chapter 3.

Most drivers want to call IOC$MAP_IO immediately after they are loaded.

Traditionally, the correct place for a driver to call IOC$MAP_IO would be

its controller or unit initialization routine. However, because the controller

and unit initialization routines are called at IPL$_POWER, IOC$MAP_IO

cannot take out the MMG spinlock in this environment. A special routine,

known as the CSR_MAPPING routine, is called before the controller or unit

initialization routine. The CSR_MAPPING routine establishes an environment

where IOC$MAP_IO can be safely called.

Drivers specify a CSR_MAPPING routine by using the ini_ddt_csr_mapping

macro in the DRIVER$INIT_TABLES routine. The driver loading procedure
calls the CSR_MAPPING routine holding the IOLOCKS8 spinlock before it calls
the controller or unit initialization routines. In this context, the driver can

make all its needed calls to IOC$MAP_IO and other bus support routines with
similar calling requirements.

There are two important elements of the CSR mapping routine:

1. A device driver may request preallocated space for any number of I/O
handles (the output of IOC$MAP_IO).

2. A device driver may name a routine that will be called in an environment
suitable for calls to IOC$MAP_IO.

Drivers can specify the number of I/O handles they need to store by using the
ini_dpt_iohandles macro in the DRIVER$INIT_TABLES routine. The default

parameter value is zero. The maximum permitted value is 65,535.

When the IOHANDLES parameter is zero or one, the driver loader does NOT
allocate any additional space for I/O handles. For these two values, the driver
is expected to store the I/O handle it needs directly in the IDB$Q_CSR field.

When the IOHANDLES parameter is greater than one, an MCJ data structure
is allocated. The base address of the MCJ is stored in the low-order longword
of IDB$Q_CSR and the IDB$V_MCJ flag is set. MCJ$Q_ ENTRIES is the base
address in the MCJ of an array of quadword I/O handle slots. The number of
aCe in the array is exactly the number specified by the drivers dpt$iohandles
value.

Accessing Device Interface Registers
4.3 Using Platform Independent I/O Access Routines

4.3 Using Platform Independent I/O Access Routines

The IOC$READ_IO and IOC$WRITE_IO access routines provide an easy-to-
use, platform independent way to read and write I/O space.

The IOC$READ_IO and IOC$WRITE_IO routines require that the I/O space to
be accessed has been previously mapped by a call to the IOC$MAP_IO routine.
Both IOC$READ_IO and IOC$WRITE_IO require the IO handle returned from
the IOC$MAP IO routine.

IOC$READ_IO and IOC$WRITE_IO are supported on PCI, ISA, EISA,
TURBOchannel, and Futurebus+. These routines are not supported on XMI.

The following examples of the IOC$READ_IO and IOC$WRITE_IO routines
show the read and write of a byte-wide register. The io_handle was saved
from a previous call to the IOC$MAP_IO routine. After the read the register_
contents variable will contain the byte in the appropriate byte lane. In this
case, in byte 2, which is the lane into which data is shifted before the call to
write the data.

status = iocSread_io (ucb_ptr->ucb$r_ucb.ucb$ps_adp,/* ADP /
&io_handle, /* I/O handle * /

REG_OFFSET, /* Register Offset oo

i, /* Number of bytes eH
®ister_contents) ; /* Contents of register */

if bad (status) return status;

write_register = write_data << 2; /* Shift the write data */

status = ioc$write_io (ucb_ptr->ucb$r_ucb.ucb$ps_adp, /* ADP */

&io_handle, /* I/O handle iif
REG_OFFSET, /* Register Offset iy}
15 /* Number of bytes wy
&write_register); /* Register with write data */

if bad (status) return status;

For more details about the IOC$READ_IO and IOC$WRITE_IO routine
interfaces, see Chapter 19.

4.4 Using the Controller Register Access Mechanisms
(CRAMs)

A controller register access mechanism (CRAM) is a data structure used for
reading and writing I/O space. Table 4~1 lists the routines and macros that
create and operate the CRAM data structure. For more information about
each system routine, see Chapter 19. The subsequent sections in this chapter
describe driver mailbox operations in more detail.

47

Accessing Device Interface Registers ,

4.4 Using the Controller Register Access Mechanisms (CRAMs)

Table 4-1 OpenVMS System Routines That Manage I/O Mailbox Operations

Routine Description

IOC$ALLOCATE _ Allocates and initializes a CRAM

CRAM

IOC$CRAM_CMD Generates values for the command, mask, and remote J/O interconnect

address (RBADR) fields of a CRAM

IOC$CRAM_IO Issues the I/O space transaction defined by the CRAM

IOC$DEALLOCATE_ Deallocates a CRAM

CRAM

4.4.1 Allocating CRAMs

4.4.1.1

48

A driver can use the following basic CRAM allocation strategies:

e Allocate a CRAM for every register the driver ever needs to access.

e Allocate a CRAM and reuse it.

e A driver can preallocate CRAMs at driver loading or in a controller or unit
initialization routine, linking them to a list connected to a UCB, IDB, or

some driver-specific structure. This strategy is optimal for drivers that use

CRAMs in performance-sensitive code.

e A driver can reuse and rebuild CRAMs as needed. Although fewer CRAMs
suffice for the purposes of such a driver, this strategy is best suited for

access to registers that are not in a performance sensitive code path.

A driver should not reuse a CRAM until it has checked the return status from

IOC$CRAM_IO to be certain the register access is complete.

Preallocating CRAMs to a Unit or Controller

Device drivers often preallocate CRAMs to perform I/O operations on unit
or controller registers. A driver can preallocate CRAMs and store them in
a linked list associated with some data structure. It accomplishes this by
repeatedly calling IOC$ALLOCATE_CRAM and inserting the address of the
returned CRAM in the CRAM list. Alternatively, CRAMs can be automatically
preloaded by driver loading.

The driver loading procedure examines two fields in the DPT, DPT$W_
IDB_CRAMS and DPT$W_UCB_CRAMS to determine how many CRAMs to
preallocate. Although the default value of both fields is zero, you can initialize
them by specifying the ini_dpt_idb_crams and ini_dpt_ucb_crams macros in
the DRIVER$INIT_TABLES routine. IDB CRAMs are available for use by a
controller or unit initialization routine; UCB CRAMs are available for use by a
unit initialization routine.

Accessing Device Interface Registers
4.4 Using the Controller Register Access Mechanisms (CRAMs)

The driver loading procedure calls IOC$ALLOCATE_CRAM for each requested
CRAM and inserts it in either of two singly linked lists: UCB$PS_CRAM
as the list head for unit CRAMs, and IDB$PS_CRAM as the list head for
controller CRAMs.

4.4.1.2 Calling IOC$ALLOCATE_CRAM to Obtain a CRAM

To allocate a single CRAM, a driver calls IOC$ALLOCATE_CRAM, specifying

a location to receive the address of the allocated CRAM and, optionally, the
addresses of the IDB, UCB, or ADP.

IOC$ALLOCATE_CRAM allocates the CRAM and initializes it as follows:

cram$w_size Size of CRAM structure in bytes

cram$b_type Structure type (DYN$C_MISC)

cram$b_subtype Structure type (DYN$C_CRAM)

cram$q_rbadr Address of remote I/O interconnect location (from
IDB$Q_CSR)

cram$b_hose Remote I/O interconnect number (from ADP$B HOSE _

NUM)

cram$l_idb IDB address

cram $l_ucb UCB address

Usually, a driver can use ini_dpt_idb_crams and ini_dpt_ucb_crams macros

in the DRIVER$INIT_TABLES routine to allocate CRAMs and associate

them with a UCB or IDB; drivers that need to associate CRAMs with other

structures may allocate them from within a suitable fork thread.

IOC$ALLOCATE_CRAM cannot be called from above IPL$_SYNCH. Therefore,

controller and unit initialization routines (which are called by the driver-
loading procedure at IPL$_POWER) cannot allocate CRAMs. For CRAMS
needed in or managed by controller or unit initialization routines, Digital
recommends the DPTAB parameters as the means for CRAM allocation.

4.4.2 Constructing a Mailbox Command Within a CRAM

Once a driver has allocated CRAMs for its operations on device registers, it

initializes each CRAM for access to a device interface register.

To initialize a CRAM, a driver initializes a CRAM by calling IOC6CRAM_CMD,
specifying the cmd_index, byte_offset, adp_ptr, cram_ptr, and iohandle

arguments. These arguments supply values for the command, mask, and I/O

bus address fields of the CRAM that are specific to the bus being accessed.

49

Accessing Device Interface Registers
4.4 Using the Controller Register Access Mechanisms (CRAMs)

50

Use the cmd_index argument to indicate the size and type of the register

operation the mailbox describes. Although the cramdef.h system header

file defines the command indices listed in Table 4-2, the actual commands

supported under a given processor-—I/O subsystem configuration vary from

configuration to configuration. (Your specification of the adp argument allows

IOC$CRAM_CMD to find the location of the command table that corresponds

to a given I/O interconnect.) If you specify a command index that does not

correspond to a supported command on the current system, IOC$CRAM_CMD

returns the SS$_BADPARAM status.

Table 4-2 Mailbox Command Indices Defined by cramdef.h

Command Index Description

CRAMCMD$K_RDQUAD32 Quadword read in 32-bit space

CRAMCMD$K_RDLONG32 Longword read in 32-bit space

CRAMCMD$K_RDWORD32 Word read in 32-bit space

CRAMCMD$K_RDBYTE32 Byte read in 32-bit space

CRAMCMD$K_WTQUAD32 Quadword write in 32-bit space

CRAMCMD$K_WTLONG32 Longword write in 32-bit space

CRAMCMD$K_WTWORD32 Word write in 32-bit space

CRAMCMD$K_WTBYTE32 Byte write in 32-bit space

CRAMCMD$K_RDQUAD64 Quadword read in 64-bit space

CRAMCMD$K_RDLONG64 Longword read in 64-bit space

CRAMCMD$K_RDWORD64 Word read in 64-bit space

CRAMCMD$K_RDBYTE64 Byte read in 64-bit space

CRAMCMD$K_WTQUAD64 Quadword write in 64-bit space

CRAMCMD$K_WTLONG64 Longword write in 64-bit space

CRAMCMD$K_WTWORD64 Word write in 64-bit space

CRAMCMD$K_WTBYTE64 Byte write in 64-bit space

Use the byte_offset argument to specify the location of the device register that
is the object of the mailbox command. Include the cram argument to identify
the CRAM that contains the hardware I/O mailbox fields IOC$CRAM_ CMD is
to initialize. t
Before using the hardware I/O mailbox in a write transaction to a device
interface register, the driver must insert the data to be written to th i ; > e regist
into CRAM$Q_ WDATA. cies

Accessing Device Interface Registers
4.4 Using the Controller Register Access Mechanisms (CRAMs)

4.4.2.1 Register Data Byte Lane Alignment

The CRAM routines supplied by OpenVMS Alpha enforce a longword
oriented view of I/O adapter register space, which means that adapter register
space is viewed as if register bytes occupy a 32 bit data path, as follows:

24 23 16 15 0 offset

ZK-8680A-GE

To write a byte to register byte 2, specify IOC6CRAM_CMD parameters as
follows:

command_index = cramcmd$k_wtbyte32

byte_offset = 2

adp_address adp address

cram_address = cram address

The data to be written must be positioned in bits 23:16 of the write data field
(CRAM$Q_WDATA).

To read a byte from register byte 2, specify IOC$CRAM_CMD parameters as

above except use CRAMCMD$K_RDBYTE32 as the command_index.

The data from register byte 2 will be returned in bits 23:16 of the CRAM read
data field (CRAM$Q_RDATA).

The programmer must perform the proper byte lane alignment of data for
register writes. On register reads, the data is returned in its natural byte lane
without any shifting. Note that this way of looking at adapter register space
maps directly to the semantics of most I/O buses.

4.4.3 Initiating a Mailbox Transaction

A driver initiates access to a device register by using IOC$CRAM_IO.

51

“ir

ratzign?
WAR. ¢ | Barri Spe

ve teora’ ae

ys ; avi mee z a 2 o: * eat i fegy .
ott

OMT PA tet > wiv erate
a ;

Teens. of ~~ =
= ‘4s -_ - — — —_ ia

Eo _ = s
© _ et

¥ | et.
hd, ~s ~ he. ae

ae niet aaa
a ae ee nas ert * ——

nt ; “mie Ri es ay) & Ma (regay ig) Pee? ie Girish I ag : ry
2 P a ~=

P 9. ov "Se eee Sey ieee

ae PS “APN ; y

x 'et~ 06 « embbagge =
a end fm eS > ae,

biok & Shee pals, 38 Tas! hang me (e Avap ot 3

ie oy CNT ‘* ping hl Viiswn 2 ait

art Sage ne> wt a DYE : hoa
‘ 7 : P » 4 —_ fnew MASE Dele fe ak Oy ict ak borates wt eel as

~~ a ve
= J <a,

vei) Pacey o, (peton) 2) 28h f ym ae] ar cay ‘
nae! 204 pestort wT 0] teerehirey 2) ah ed! stage ae n pt

e ngs WSU bay Tait ei. weal w cee ela Z
. vfs ccateedadaaertl 7

oy _

ad ? 7 \ ieera the eo tpes ;

‘ ¢ Gio tas es teal

ad > Twas Ms

—_—— i vation a Susi

oo Vv we org

i.

2D
Allocating Map Registers

For Alpha I/O subsystems that provide map registers, OpenVMS Alpha

provides a set of a routines to manage the allocation of any resource that
shares the following attributes:

The resource consists of an ordered set of items.

The allocator can request one or more items. When requesting multiple
items, the requester expects to receive a contiguous set of items. Thus,

allocated items can be described by a starting number and a count.

Allocation and deallocation of the resource are common operations and,
thus, must be efficient and quick.

A single deallocation may allow zero or more stalled allocation requests to
proceed.

Two OpenVMS Alpha data structures record information about counted
resources.

A counted resource allocation block (CRAB), created by the OpenVMS
adapter initialization routine, that describes a specific counted resource.
The routine stores the address of the CRAB associated with a given
adapter in the adp$l_crab field.

The number of resource items managed by a given CRAB is included in one

of its fields. Resource items must be allocated in a numerically ordered, or
contiguous series. A CRAB contains an array of quadword descriptors that
record the location and length of a set of contiguous resource items that are
free. Another CRAB field contains a value that is applied as a rounding
factor to requests for resources to compute the actual number of items to

be granted.

A counted resource context block (CRCTX) that describes a specific
request for a counted resource. The driver and the counted resource
allocation routine exchange information in the CRCTX. A driver allocates
a CRCTX before calling the counted resource allocation routine to obtain a
certain number of items of the resource.

53

Allocating Map Registers

An OpenVMS Alpha device driver performs the following tasks when setting

up and completing a direct memory access (DMA) transfer:

1. Calls the IOC$ALLOC_CRCTX routine to obtain a CRCTX that describes a

request for map registers.

2. Loads the request count into the crctx$l_item_cnt field.

Calls IOC$ALLOC_CNT_RES to request the map registers.

4, Calls IOC$LOAD_ MAP to load the map registers granted in the allocation

request.

5. Prepares device registers for the transfer and activates the device.

6. Calls the IOC$DEALLOC_CNT_RES routine to free the registers for use

by other requesters.

7. Calls the IOC$DEALLOC_CRCTX routine to deallocate the CRCTX.

The following sections describe these steps.

5.1 Allocating a Counted Resource Context Block

54

A driver calls IOC$ALLOC_CRCTX to allocate and initialize a counted resource

context block (CRCTX). The CRCTX describes a specific request for a given
counted resource, such as a set of map registers. The driver subsequently uses
the CRCTX as input to IOC$ALLOC_CNT_RES to allocate a set of the items
managed as a counted resource.

IOC$ALLOC_CRCTX requires as input the address of the CRAB that describes

the counted resource. For adapters that provide a counted resource, such as a
set of map registers, the adp$l_crab field contains this address.

The following example illustrates a call to IOC$ALLOC_CRCTX that returns
the address of the allocated CRCTX to UCBSL_CRCTX, a field in an extended
UCB:

status = loc$alloc_erctx (adp->adp$l_crab, ucb->ucb$l_crctx)

To avoid the overhead of allocating (and deallocating) a CRCTX for each DMA
transfer, drivers often obtain multiple CRCTXs in their controller or unit
initialization routines, linking them from a data structure such as the UCB so
that they will be available for later use.

Allocating Map Registers
5.2 Allocating Counted Resource Items

5.2 Allocating Counted Resource Items

A driver calls IOC$ALLOC_CNT_RES to allocate a requested number of items
from a counted resource. IOC$ALLOC_CNT_RES requires the addresses of
both the CRAB and the CRCTX as input parameters. The resource request is
described in the CRCTX structure; the counted resource itself is described in
the CRAB.

A driver typically initializes the following fields of the CRCTX before calling
IOC$ALLOC_CNT_RES.

Field Description

crctx$l_item_cnt Number of items to be allocated. When requesting map
registers, the value in this field should include two
extra map registers to be allocated and loaded as a
guard page to prevent runaway transfers. There may
be additional bus-specific requirements, as described in
the bus-specific chapters in this book.

crctx$l1_callback Procedure value of the callback routine to be called
when the deallocation of resource items allows a stalled

resource request to be granted.

A value of 0 in this field indicates that, on an allocation
failure, control should return to the caller immediately
without queuing the CRCTX to the CRAM’s wait
queue.

A caller can also specify the upper and lower bounds of the search for

allocatable resource items by supplying values for CRCTX$L_LOW_BOUND

and CRCTX$L_UP_BOUND.

IOC$ALLOC_CNT_RES always returns to its caller immediately, whether

the allocation request is granted immediately, is stalled, or is unsuccessful.
Whether the request is granted immediately or stalled and eventually granted,
IOC$ALLOC_CNT_RES returns the number of the first item granted in

CRCTX$L_ITEM_NUM and sets CRCTX$V_ITEM_VALID in CRCTX$L_

FLAGS.

If there are waiters for the counted resource, or if there are insufficient

resource items to satisfy the request, IOC$ALLOC_CNT_RES saves up to 3

quadwords of caller-supplied context in the CRCTX. IOC$ALLOC_CNT_RES
writes a —1 to crctx$l_item_nun, and inserts the CRCTX in the resource-wait

queue (headed by crab$1_waqfl). It then returns SS$_INSFMAPREG status to

its caller.

55

Allocating Map Registers
5.2 Allocating Counted Resource Items

56

Note

If a counted resource request does not specify a callback routine

(CRCTX$L_CALLBACK), IOC$ALLOC_CNT_RES does not insert

its CRCTX in the resource-wait queue. Rather, it returns SS$_

INSFMAPREG status to its caller.

A driver must not deallocate the CRCTX while the resource request it describes

is stalled by IOC$ALLOC_CNT_RES. (If the driver must cancel the allocation

request, it should call IOC$CANCEL_CNT_RES.)

When a counted resource deallocation occurs, the first CRCTX is removed

from the resource-wait queue and the allocation is attempted again. If

IOC$ALLOC_CNT_RES is now able to grant the requested number of resource

items, it calls the callback routine (CRCTX$L_CALLBACK), passing it the

following values:

Location Contents

STATUS SS$_ NORMAL

ADP$L_CRAB Address of CRAB

UCB$L_CRCTX Address of CRCTX that was specified by
IOC$ALLOC_CNT_RES

CRCTX->CRCTX$Q CONTEXT1 Contents of CONTEXT1 argument at the time
of the original allocation request (CRCTX$Q_
CONTEXT1)

CRCTX->CRCTX$Q_ CONTEXT2 Contents of CONTEXT2 argument at the time
of the original allocation request (CRCTX$Q_
CONTEXT2)

CRCTX->CRCTX$Q_ CONTEXTS Contents of CONTEXTS at the time of the original
allocation request (CRCTX$Q_ CONTEXTS)

The callback routine checks STATUS to determine whether it has been called
with SS$_NORMAL or SS$_CANCEL status (from IOC$CANCEL_CNT_RES),.
If the former, the routine typically proceeds to loads the map registers that
have been allocated.

The following example illustrates the call of IOC$ALLOC_CNT_RES in
SYS$PKQDRIVER.EXE. (This device driver is available in the OpenVMS
Alpha source listings kit.)

=

Th + © & & & ££ EF HF FH h-

Allocating Map Registers
5.2 Allocating Counted Resource Items

If the data transfer falls outside the direct DMA window
for the platform, use the map registers.

The CRCTX fields must be initialized before the map registers
can be allocated.

The number of resources to allocate is determined by manipulating
fields within the SCDRP and the SPDT.

use_map_registers == TRUE) {

erctx = (CRCTX *)&scdrp->scdrp$r_crctx_base;
erctx->crctx$w_size = CRCTX$K_LENGTH;
erctx->crcetx$b_type = DYN$C_MISC;
crctx->crcetx$b_subtype = DYNS$C_CRCTX;
crctx->crctx$l_crab = spdt->basespdt.spdt$ps_crab;
erctx->crcetx$b_flck = spdt->basespdt.spdt$is_flck;
erctx->crctx$l_flags = priority;
ercetx->crctx$l_aux_context = scdrp->scdrp$ps_kpb;
erctx->cretx$l_item_num ;
erctx->crctx$l_up_bound = 0;
erctx->crcetx$l_low_bound = 0;
erctx->crcetx$l_callback = pkq_buffer_map_restart;

erctx->crctx$l_saved_callback = 0;
erctx->cretx$l_item_cnt =

((((scdrp->scdrp$l_boff & spdt->basespdt.spdt$is_crctx_bwp_mask) +

scdrp->scdrp$l_bent + spdt->basespdt.spdt$is_crctx_bwp_mask) >>

spdt->basespdt.spdt$is_crctx_shift) +

spdt->basespdt.spdt$is_extmapreg);

/* Allocate the mapping resources. If the allocation fails and the
* request was high priority, convert it to normal priority and try
* the allocation again. If allocation fails again, stall the thread
* until the map restart routine notifies us that the resources have
* been allocated for us.
* /

if(ERROR(status = ioc$Salloc_cnt_res(spdt->basespdt.spdt$ps_crab, crctx, 0, 0, 0)))
if (crctx->crcetx$l_flags & CRCTX$M_HIGH_PRIO)} {

erctx->crctx$l_flags &= ~CRCTX$M_HIGH_PRIO;

status =' ioc$alloc_cnt_res(spdt->basespdt.spdt$ps_crab, crctx, 0, 0, 0);

}
if(ERROR(status)) {

kpb = scdrp->scdrp$ps_kpb; ;
kpb->kpb$ps_sch_stall_rtn = ioc$return;
kpb->kpb$ps_sch_restrt_rtn = 0;
exe$kp_stall_general(kpb);

57

Allocating Map Registers
5.2 Allocating Counted Resource Items

You can indicate that a counted resource request should take precedence over

any waiting request by setting the CRCTX$V_HIGH_PRIO bit in CRCTX$L_

FLAGS. A driver employs a high-priority counted resource request to preempt

normal I/O activity and service some exception condition from the device.
(For instance, during a multivolume backup, a tape driver might make a
high-priority request, when it encounters the end-of-tape (EOT) marker, to get
a subsequent tape loaded before normal I/O activity to the tape can resume.
A disk driver might issue a high-priority request to service a disk offline

condition.)

IOC$ALLOC_CNT_RES never stalls a high-priority counted resource request
or places its CRCTX in a resource-wait queue. Rather, it attempts to allocate
the requested number of resource items immediately. If unsuccessful,
IOC$ALLOC_CNT_RES returns SS$_INSFMAPREG status to its caller.

5.3 Loading Map Registers

58

A driver calls IOC$LOAD_MAP to load a set of adapter-specific map registers.
The driver must have previously allocated the map registers (including
two extra to serve as guard pages) in calls to IOC$ALLOC_CRCTX and
IOC$ALLOC_CNT_RES.

IOC$LOAD_MAP requires the following as input:

e¢ The address of the ADP of the adapter that provides the map registers

e The address of the CRCTX that describes the map register allocation

e The system virtual address of the page table entry (PTE) for the first page
to be used in the DMA transfer

e The byte offset into the first page of the transfer

IOC$LOAD_MAP returns to a specified location a port-specific address of a
DMA buffer. The following example illustrates a call to IOC$LOAD_MAP:

/* The mapping resources are in hand; load the map. */

scdrp->scdrp$l_port_boff = scdrp->scdrp$1l_boff;
scdrp->scdrp$l_port_svapte = scdrp->scdrp$l_svapte;
scdrp->scdrp$l_sva_spte = 0;
status = ioc$load_map(spdt->basespdt.spdt$l_adp,

GKCEX,;

scdrp->scdrp$l_svapte,
scdrp->scdrp$l_boff,
&scdrp->scdrp$l_sva_dma);

Allocating Map Registers
5.3 Loading Map Registers

Having loaded the map registers for a DMA transfer, a driver typically
performs some of the following steps to initiate the transfer:

e Loads the port-specific DMA address into a device DMA address register.

Some manipulation of the address value might be needed, depending upon
the hardware. (For instance, a DEC 3000 Alpha Model 500 driver must
clear the two low bits before writing to the register.)

¢ Computes the transfer length and loads a device transfer count register.
Typically a driver derives the transfer length from a field such as UCB$L_
BCNT.

e Sets to GO byte in the device CSR (possibly indicating the direction of the
transfer as well) by writing a mask to the CSR.

5.4 Deallocating a Number of Counted Resources

A driver calls IOC$DEALLOC_CNT_RES to deallocate a requested number of

items of a counted resource. IOC$DEALLOC_CNT_RES requires the addresses
of both the CRAB and CRCTX as input. After deallocating the items, if there
are any stalled requests, IOC$DEALLOC_CNT_RES queues a fork thread that
will attempt to allocate the resource to the stalled requests.

The following example illustrates a call to IOC6DEALLOC_CNT_RES:

erctx = (CRCTX *)&scdrp->scdrp$r_crcetx_base;
if(SUCCESS(status = ioc$dealloc_cnt_res(spdt->basespdt.spdt$ps_crab, crctx)))

{
scdrp->scdrp$is_item_cnt.
scdrp->scdrp$is_item_num
scdrp->scdrp$l_sva_dma = 0;
scdrp->scdrp$l_sva_spte = 0;

0;
0:

}

5.5 Deallocating a Counted Resource Context Block

A driver calls IOC$DEALLOC_CRCTX to deallocate a CRCTX.
IOC$DEALLOC_CRCTX requires only the address of the CRCTX as input.

A driver must not deallocate a CRCTX that describes a request that has been

stalled waiting for sufficient resource items to be made available (that is, a
CRCTX that is in a given CRAB wait queue). Prior to deallocating such a
CRCTX, a driver should call IOC$CANCEL_CNT_RES to cancel the resource

request.

The following example illustrates a call to IOC6DEALLOC_CRCTX:

STATUS = IOC$DEALLOC_CRCTX (UCB -> UCB$L_CRCTX); Deallocate the CRCTX

59

rs

ras oo rs rs ae oF | > > if sas -

aetatcer See Sas : mae

cag Ter. ihe pee
> iad tet cope

seg esta ithe ait oonteumraling -—

Gon! (it oe Ses +See Be is tds hy

fasta epee: Abctal reise’ ef caer} q

; Ts oat >) wonenk® lintel

praeies fit Wied oe o who . e - oan : 7 . > on ¢ ; > Mite

; —e ya Irs a es 7
Jah. ce a: blew trem! 2 pe spore eh moiq¢t

mts To chap we RF ey! 12 : IDA oa « Cale

es pee?! i Daique:
X

) Werth 4 ion & eons” ae SN
2 par > a]

> t oat ae t te ,#).? tire mt
nin gly brett Gi TV eS matlhs 4qii® beat

4 ay | _ oat 7
ws 1s he jute~ + het

meitet? Je: Li ey oe camatibets
aay “A WAL IAS le Sey Le Mie

, _™ yal =

def machin ee
ar

re ree
wc" @anl 0 AT be mde C wings pry

J4 er ie sea r yaa

4 aun gn A c= anny
on

~ . a, FEO afd wipes! Lett. 3 (aa ee
'¢é

6
Writing FDT Routines

A driver performs device-specific I/O function preprocessing to validate the
device dependent parameters specified in the original call to the $QIO system

service, to complete certain types of function processing such as set mode and
sense mode operations, and to prepare to service functions involving a device

transaction. A device driver can include custom FDT routines or use some of
the general-purpose routines that are part of the executive.

This chapter briefly reviews the $QIO system service and describes how to use
system-provided and driver-specific FDT routines.

6.1 $QIO System Service

The $QIO system service performs device-independent preprocessing and,
via FDT routines, device-dependent preprocessing. It then queues an I/O
request to the driver for the device associated with a channel. Any additional
processing is performed by the device driver’s start I/O routine.

The function prototype for the $QIO system service is as follows:

int sys$qio (unsigned int efn, unsigned short int chan, unsigned int func,
struct _iosb *iosb, void (*astadr) (__unknown_params) ,

Eeinto4eastprin, vord ply eei ne 64s p2 hee aint64) psy eeint64 547

Pann 64s pS) ent O46) Ee

¢ The efn parameter is the number of the event flag to be associated with
the I/O request. Since this parameter is passed by value, omitting it is the
same as specifying event flag 0.

e The chan parameter is the identifier of the I/O channel. This is the same
as the chan parameter returned by the $ASSIGN system service.

e The func parameter identifies what operation is to be performed by the
device driver. It is divided into two portions, the function code proper and
function modifiers. In this chapter, the term function code means just
the function code proper; the term func means the entire argument.

61

Writing FDT Routines
6.1 $QIO System Service

The iosb parameter is the address of the IOSB, a quadword to receive final

status of the I/O operation.

The astadr parameter is the address of an AST procedure to be executed

in the mode of the requestor when the I/O operation completes.

The astprm parameter is the parameter to be passed to the AST procedure.

There are six optional device- and function-specific parameters, pl through

p6, which are validated and processed by FDT routines.

The chan and func arguments must be specified. All others are optional and, if

not specified, default to a value of zero.

6.2 Context of Driver FDT Processing

The $QIO system service executes in the context of the process that issues
the I/O request, in kernel mode and at IPL$_ASTDEL. Process context allows
the $QIO system service and driver FDT routines to access process address
space. Because the $QIO system service expects FDT routines to preserve this
context, an FDT routine observes the following conventions:

An FDT routine must not call system services or OpenVMS RMS routines.

It must not lower IPL below IPL$ ASTDEL. If an FDT routine raises

IPL, it must obtain any appropriate spinlock, and it must lower IPL to
IPL$_ASTDEL before exiting, releasing any acquired spinlock.

It should not access device registers because the device might be active.

It should exercise caution when modifying the UCB. Routines usually
access the UCB while holding the associated fork lock at driver fork IPL

to synchronize modifications, and FDT routines do not execute with such
synchronization. Drivers containing FDT routines that access device

registers or carelessly modify the UCB risk unpredictable operation or a
system failure.

6.3 FDT Routine Overview

62

The primary purpose of FDT routines is to validate and process the device-
dependent $QIO parameters pl to p6. Regardless of the location of FDT
routines, they are logically device-dependent extensions of the $QIO system
service. Driver I/O function preprocessing on OpenVMS Alpha systems
typically requires the cooperative efforts of upper-level FDT action routines,
FDT support routines, and FDT completion routines. This section briefly
describes FDT upper-level, support, and completion routines. The section that
follow contain more details about how drivers use these routines.

Writing FDT Routines
6.3 FDT Routine Overview

An upper-level FDT action routine is listed in a driver’s function decision
table (FDT) when a driver uses the ini_fdt_act macro in its DRIVER$INIT_
TABLES routine. (see Chapter 10 for more information). FDT dispatching code

in the $QIO system service calls an upper-level FDT action routine, passing to
it the addresses of the I/O request packet (IRP), process control block (PCB),
unit control block (UCB), and channel control block (CCB). An upper-level

FDT action routine must return SS$_FDT_COMPL status to the $QIO system
service.

The $QIO system service uses the FDT to determine which upper-level FDT

action routine to call to initiate driver preprocessing of a specific I/O request.
Often a driver can use one of the system-provided upper-level FDT action
routines, as described in Section 6.4.1. This practice encourages the use of
well debugged routines and minimizes driver size. However, if the I/O function
requires preprocessing that is unique to the device the driver controls, the

driver includes an upper-level FDT action routine that services the function in
a device-dependent manner.

An upper-level FDT action routine sometimes calls an intermediate FDT
routine, known as an FDT support routine. An FDT support routine
performs some discrete action on behalf of an upper-level action routine, such

as determining whether a user buffer is accessible, locking a user buffer in
memory, and reformatting data into buffers in the system address space.

Often, an FDT support routine calls an FDT completion routine.

There is no uniform interface for calling FDT support routines. These routines

are listed and described in the Chapter 19. The $QIO system service never

calls an FDT support routine directly to process a given I/O function.

To conclude the preprocessing of an I/O function, a driver FDT routine (either
the upper-level FDT action routine or an FDT support routine) calls a system-

provided FDT completion routine. An FDT completion routine places the

status return to the $QIO system service in the FDT context (FDT_CONTEXT)

structure and returns SS$_FDT_COMPL status to its caller. Eventually, the
driver’s upper-level FDT action routine exits FDT processing by returning

control to the $QIO system service.

Note that FDT support routines and FDT completion routines return status to
their callers. Each FDT routine that participates in the processing of an I/O
function should examine the status value returned to it by any routine it calls
and should reflect this status to the routine that called it.

63

Writing FDT Routines
6.4 Upper-Level FDT Action Routines

6.4 Upper-Level FDT Action Routines

64

An OpenVMS Alpha device driver provides a single upper-level FDT action

routine for each I/O function code it processes. The $QIO system service

uses the low-order six bits of the I/O function code as an index into the FDT

upper-level action routine vector. As described in Chapter 10, any vector slots

corresponding to a driver-supported function contain the procedure value of

either a system-provided or driver-provided upper-level FDT action routine.

Those that correspond to unsupported functions contain the procedure value of

the system upper-level FDT action routine EXE$ILLIOFUNC.

The $QIO system service transfers control to an upper-level FDT action routine

using the following interface:

status = driver_FDT_routine(irp, pcb, ucb, ccb)

The parameters include the addresses of:

e The I/O request packet (IRP) for the current I/O request

e¢ The process control block (PCB) of the current process

e The unit control block (UCB) of the device assigned to the process-I/O

channel specified as a parameter to the $QIO request

e The channel control block (CCB) that describes the process-I/O channel

An upper-level FDT action routine must return SS$_FDT_COMPL status to its
caller, the FDT dispatching code in the $QIO system service.

An OpenVMS Alpha driver obtains the contents of the function-dependent
parameter from irp$l1_qio_pn, where n is a parameter number from 1 through

6.

Before exiting, the upper-level FDT action routine takes steps to complete FDT
processing. Typically, these steps include:

e Calling an FDT completion routine, which takes steps to complete the
processing of an I/O request or to deliver the I/O request to the driver. An
FDT completion routine typically provides the final $QIO completion status
in the FDT_CONTEXT structure and returns SS$_FDT_COMPL warning
status to its caller. SS$_FDT_COMPL status is a warning that FDT
processing has been completed and that the IRP is no longer accessible
to FDT processing. (For instance, the IRP may have been deallocated or
queued to the driver’s start-I/O routine, which accesses the IRP at fork
IPL.)

¢ Returning SS$_FDT_COMPL status to its caller, FDT dispatching code in
the $QIO system service.

Writing FDT Routines
6.4 Upper-Level FDT Action Routines

Section 6.4.2 describes the FDT completion routines provided by OpenVMS.

6.4.1 System-Provided Upper-Level FDT Action Routines

The system-provided upper-level FDT routines perform I/O request validation
that is common to many devices. Whenever possible, drivers should take

advantage of these routines. All of the system FDT routines listed in Table 6-1
transfer control to EXE_STD$QIODRVPKT, EXE_STD$FINISHIO, or EXE_
STD$ABORTIO to complete the I/O request. These FDT completion routines,
as described in Section 6.4.2, place final $QIO completion status in the FDT_

CONTEXT structure, and return SS$_FDT_COMPL status to the upper-level

FDT action routine. All upper-level FDT action routines return to the FDT
dispatching code in the $QIO system service.

For additional information about system-provided FDT routines, see the
specific routine descriptions in the Chapter 19.

Table 6—1 System-Provided Upper-Level FDT Action Routines

FDT Routine

ACP_STD$ACCESS

ACP_STD$ACCESSNET

ACP_STD$DEACCESS

ACP_STD$MODIFY

ACP_STD$MOUNT

ACP_STD$READBLK

ACP_STD$WRITEBLK

Function

Processes access and create ACP

functions

Processes a connects to network
function

Processes a deaccess ACP

function

Processes delete and modify ACP
functions

Processes a mount ACP function

Processes a read block ACP
function

Processes a write block ACP
function

Completion Routine Used

Calls EXE_STD$ABORTIO,
EXE_STD$QIODRVPKT, or
EXE_STD$FINISHIO

Calls EXE_STD$ABORTIO,
EXE_STD$QIODRVPKT, or
EXE_STD$FINISHIO

Calls EXE_STD$ABORTIO,
EXE_STD$QIODRVPKT, or
EXE_STD$FINISHIO

Calls EXE_STD$ABORTIO,
EXE_STD$QIODRVPKT, or
EXE_STD$FINISHIO

Calls EXE_STD$ABORTIO,
EXE_STD$QIODRVPKT, or
EXE_STD$FINISHIO

Calls EXE_STD$ABORTIO,
EXE_STD$QIODRVPKT, or
EXE_STD$FINISHIO

Calls EXE_STD$ABORTIO,
EXE_STD$QIODRVPKT, or
EXE_STD$FINISHIO

(continued on next page)

65

Writing FDT Routines
6.4 Upper-Level FDT Action Routines

Table 6-1 (Cont.) System-Provided Upper-Level FDT Action Routines

FDT Routine

EXE$ILLIOFUNC

EXE_STD$LCLDSKVALID

EXE_STD$MODIFY

EXE_STD$ONEPARM

EXE_STD$READ

EXE_STD$SENSEMODE

EXE_STD$SETCHAR'

EXE_STD$SETMODE!

Function Completion Routine Used

Processes I/O functions not
supported by the driver

Processes an IO$_PACKACK,
I10$ AVAILABLE, or IO$_
UNLOAD function on a local
disk

Processes a logical-read/write
or physical-read/write function
for a read and write direct /O
operation to a user-specified
buffer

Processes a nontransfer I/O

function code that has one
parameter associated with it

Processes a logical-read or
physical-read function for a
direct I/O operation

Processes the sense-device-mode
and sense-device-characteristics
functions by reading fields of the
UCB

Processes the set-device-mode

and set-device-characteristics
functions

Processes the set-device-mode
and set-device-characteristics
functions by creating a driver
fork process

Calls EXE_STD$ABORTIO

EXE_STD$FINISHIO or EXE_
STD$QIODRVPKT

Calls EXE_STD$ABORTIO if
an error occurs (for instance, if
the user I/O buffers cannot be
accessed or cannot be locked in
memory); otherwise, calls EXE_
STD$QIODRVPKT

Calls EXE_STD$QIODRVPKT

Calls EXE_STD$ABORTIO if
an error occurs (for instance,

if the user I/O buffers cannot
be accessed or locked in
memory); otherwise, calls EXE _
STD$QIODRVPKT

Calls EXE_STD$FINISHIO

Calls EXE_STD$FINISHIO

Calls EXE_STD$ABORTIO if
an error occurs; otherwise, calls
EXE_STD$QIODRVPKT

Tf setting device characteristics requires no device activity or requires no synchronization with fork
processing, the driver’s FDT entry can specify EXE_STD$SETCHAR; otherwise, it must specify EXE _
STD$SETMODE.

66

(continued on next page)

Writing FDT Routines
6.4 Upper-Level FDT Action Routines

Table 6—1 (Cont.) System-Provided Upper-Level FDT Action Routines

FDT Routine Function Completion Routine Used

EXE_STD$WRITE Processes a logical-write or Calls EXE_STD$ABORTIO if
physical-write function for a an error occurs (for instance,
direct I/O operation if the user I/O buffers cannot

be accessed or locked in
memory); otherwise, calls EXE_
STD$QIODRVPKT

EXE_STD$ZEROPARM Processes a nontransfer I/O Calls EXE_STD$QIODRVPKT
function code that has no
associated parameters

An FDT routine selects an I/O completion path based on the following factors:

¢ Whether it needs to call another FDT routine to perform additional

function-specific processing.

e Whether an error is found in the I/O request.

e Whether the operation is complete.

e Whether the I/O operation requires and is ready for device activity.

Any specific I/O function can be processed by only one upper-level FDT action

routine. Although an upper-level routine can call any number of subsequent

routines, it must eventually complete I/O processing by returning the SS$_
FDT_COMPL status (and final $QIO completion status in the FDT_CONTEXT

structure) to its caller, FDT dispatching code in the $QIO system service.

The system-provided upper-level FDT routines, as discussed in Table 6-1, all

call an FDT completion routine that queues an IRP, completes an I/O request,
or aborts an I/O request. These FDT completion routines insert the final $QIO
system service status in the FDT_CONTEXT structure and return SS$_FDT_

COMPL warning status to the upper-level FDT action routine. The upper-level

FDT action routine returns these status values to its caller, FDT dispatching

code in the $QIO system service.

6.4.2 FDT Exit Paths

An upper-level FDT action routine completes an I/O function by invoking one of
the completion macros listed in Section 6.4.3. When an FDT routine completes
an I/O request, use an FDT completion macro to invoke the FDT completion

routines. For example:

67

Writing FDT Routines
6.4 Upper-Level FDT Action Routines

status = call_qiodrvpkt (irp, (UCB *)ucb);

status = call_finishioc (irp, (UCB *)ucb, SS$_NORMAL) ;

status = call_abortio (irp, pcb, (UCB *)ucb, status);

Once a FDT completion routine is invoked, the IRP must not be accessed by

the caller. FDT completion routines and macros return the SS$_FDT_COMPL

warning status, which must be returned by all upper-level FDT routines. For

example:

return call_finishioc (irp, (UCB *)ucb, SS$_NORMAL) ;

6.4.3 FDT Completion Macros and Associated Routines

68

The FDT completion macros and associated routines are as follows:

call_abortio
Calls EXE_STD$ABORTIO to abort an I/O request.

An FDT routine that discovers a device-independent error should always use
this method of exiting. Inability to gain access to a data buffer or an error in
the specification of the I/O request are examples of device-independent errors.

call_altquepkt

Calls EXE_STD$ALTQUEPKT to call an alternate start-I/O routine in the

driver (specified in the driver dispatch table at offset DDT$PS_ALTSTART_
2) that synchronizes requests for activity on a device unit and initiates the
processing of I/O requests.

The FDT routine uses this exit method when it has successfully completed
all driver preprocessing and the request requires device activity. However,

in contrast to EXE_STD$QIODRVPKT, EXE_STD$ALTQUEPKT bypasses
the device unit’s pending-I/O queue and the device busy flag; thus, the driver
is activated regardless of whether the device unit is busy. A driver that can
handle two or more I/O requests simultaneously uses this exit method.

Be aware that programming a device driver to process simultaneous I/O
requests requires detailed knowledge of the internal design of the operating
system. A driver that uses the call_altquepkt macro must not only maintain
its internal queues but must also synchronize those queues with the unit’s
pending-I/O queue, which the operating system maintains. In addition, if a
driver processes more than one IRP at the same time, it must use separate
fork blocks. Such a driver completes the processing of I/O requests by using
the call_post macro calling the COM_STD$POST routine. This routine places
each IRP in the systemwide I/O postprocessing queue and returns control to
the driver. The driver can then fetch another IRP from an internal queue. For
more information about the COM_STD$POST routine, see Chapter 19.

Writing FDT Routines
6.4 Upper-Level FDT Action Routines

When the alternate start-I/O routine finishes, it returns control to EXE_

STD$ALTQUEPKT. EXE_STD$ALTQUEPKT then returns to the FDT routine

that called it. The FDT routine performs any necessary postprocessing,
returning the SS$_FDT_COMPL status to FDT dispatching code in the $QIO
system service.

cali_finishio

Moves the contents of RO and R1 to irp$1_iost1 and irp$l_iost2, respectively
and calls EXE_STD$FINISHIO to insert the IRP in the I/O postprocessing
queue. EXE_STD$FINISHIO returns SS$_FDT_COMPL status to the $QIO

system service and SS$_NORMAL status (in the FDT_CONTEXT structure) to
the caller of $QIO.

An FDT routine that discovers a device-dependent error should always return
status using CALL_FINISHIO or CALL_FINISHIOC.

call_finishioc

Calls the EXE_STD$FINISHIO routine to perform the same operations as the
call_finishio macro, except call_finishioc clears the second longword of

the final I/O status.

call_finishio_noiost

Calls EXE_STD$FINISHIO to perform the same operations as the

call_finishio macro, except call_finishio_noiost does not fill in the

I/O status fields of the IRP.

call_iorsnwait
Calls EXE_STD$IORSNWAIT. Reserved to Digital.

call_qioacppkt
Calls EXE_STD$QIOACPPKT. Reserved to Digital.

call_qiodrvpkt
Calls EXE_STD$QIODRVPKT to transfer control to a system routine (EXE_

STD$INSIOQ), that either delivers an IRP immediately to a driver’s start-I/O

routine or places the IRP in a pending-I/O queue waiting for driver servicing.

The FDT routine uses this FDT completion routine if all preprocessing is
complete, if no errors are found in the specification of an J/O request, and if
device activity, synchronized access to the device’s UCB, or synchronized access

to device registers is required to complete the I/O request. Common examples
of such a request are read and write functions.

69

Writing FDT Routines
6.4 Upper-Level FDT Action Routines

EXE_STD$INSIOQ transfers control to the device driver’s start-I/O routine

only if the device unit is currently idle. If the device unit is busy, EXE_

STD$INSIOQ inserts the IRP in a priority-ordered queue of IRPs waiting for

the unit.

Once an FDT routine transfers control to EXE_STD$QIODRVPKT, no driver

code that further processes the I/O request can refer to process virtual address

space. When a device driver’s start-I/O routine gains control, the process that

queued the I/O request might no longer be the mapped process. Therefore, the
driver must assume that all information regarding the I/O request is in the
UCB or the IRP and that all buffer addresses in the UCB are either system

addresses or page-frame numbers that can be interpreted in any process

context.

For direct I/O operations, FDT routines also must have locked all user buffer

pages in physical memory because paging cannot occur at driver fork level

or higher interrupt priority levels. The process virtual address space is not

guaranteed to be mapped again until the operating system delivers a special

kernel-mode asynchronous system trap (AST) to the requesting process as part
of I/O postprocessing.

6.5 FDT Routines for System Direct I/O

70

A driver executes mostly at elevated IPL with minimal context; it cannot

request system services. This make it difficult to implement complex functions
in drivers. An ancillary control process (ACP) is a separate thread of execution
running in process context that implements complex driver functions. A

driver’s FDT routine passes an I/O request either to an ACP or to a driver’s

start I/O routine, depending on the I/O function requested. A complex function

request such as opening a disk file or establishing a network logical link, for
example is typically handled by an ACP.

The operating system provides two standard FDT routines that are applicable
for direct I/O operations: EXE_STD$READ and EXE_STD$WRITE. When
called by the driver, these routines completely prepare a direct I/O read or
write request. Thus, a driver that uses these routines eliminates the need for
its own device-specific FDT routines.

EXE_STD$READ and EXE_STD$WRITE are described in Chapter 19.

Figure 6-1 describes the association of a user buffer with an IRP.

Writing FDT Routines
6.5 FDT Routines for System Direct //O

Figure 6-1 Mapping the User Buffer for a Direct-l/O Function

IRP Page Table in System Space Process Space

anaes Naa Tag og earn ae a
irp$|_boff < i boundry

J

; User
imp$l_bent Buffer

ZK-7550A-GE

6.6 FDT Routines for System Buffered I/O

Device drivers for buffered I/O operations generally contain their own
device-specific FDT routines.

An FDT routine for a buffered I/O data transfer operation should confirm
either read or write access to the user’s buffer and allocate a buffer in system
space. Sections 6.6.1 and 6.6.2 describe these tasks.

An FDT routine for a buffered I/O operation that does not invoive data transfer

accesses the function-dependent parameters of the $QIO request (p1 to p6)

from irp$l_qio_pn, where n is a parameter number from one to six. It

performs any necessary preprocessing and uses one of the exit methods listed

in Section 6.4.2.

6.6.1 Checking Accessibility of the User’s Buffer

First the FDT routine invokes the CALL_READCHK or CALL_WRITECHK

macros (which call EXE_STD$READCHK or EXE_STD$WRITECHK,

respectively) to confirm write or read access to the user’s buffer. Both of these
routines write the transfer byte count into irp$1_bcnt. EXE_STD$READCHK

also sets irp$v_func in irp$l_sts to indicate that it is a read function.

71

Writing FDT Routines
6.6 FDT Routines for System Buffered I/O

6.6.2 Allocating the System Buffer

Next, the FDT routine allocates a system buffer in the following manner:

iN It adds 12 bytes to the byte count passed in the p2 parameter of the

user’s I/O request (obtained from irp$1_gio_p2), thus accommodating the

standard size of a system buffer header. This is the total system buffer

size.

Define the system buffer header.

When you allocate the buffer, add the space you think you need and

overhead for the system buffer header, which is 12. Here’s the way you

code it:

typedef struct _sysbuf_hdr {

char *pkt_datap; /* Pointer to start of data in packet */
char *usr_bufp; /* User VA of user buffer */

short pkt_size; /* Size of the system buffer packet * /
short :16;

} SYSBUF_HDR;

It calls EXE_STD$DEBIT_BYTCNT_ALO to ensure that the job has
sufficient remaining byte count quota to allow its use of the requested
buffer. If the job has sufficient quota, EXE_STD$DEBIT_BYTCNT_ALO
allocates the requested buffer from nonpaged pool, writes the buffer’s size
and type into its third longword, and subtracts the system buffer size from
jJibSi_ bytent.

The operating system also supplies the following routines, which perform
the same type of work as EXE_STD$DEBIT_ BYTCNT ALO:

EXE_STD$DEBIT_BYTCNT_BYTLM_ALO
EXE_STD$DEBIT_BYTCNT(_NW)
EXE_STD$DEBIT_BYTCNT_BYTLM(_NW)
EXE_STD$ALLOCBUF

These routines are available in the exe_routines.h header file in
SYS$LIBRARY:SYS$LIB_C.TLB.

Once the buffer is allocated, the FDT routine takes the following steps:

al Connects the buffer with the IRP.

2. Loads the address of the system buffer into irp$1_svapte.

3. Loads the total size of the system buffer into irp$1_boff.

72

Writing FDT Routines
6.6 FDT Routines for System Buffered I/O

4. Stores the starting address of the system buffer data area in the system

buffer header and in the packet data pointer cell.

sys_bufp-> pkt_datap = (char*) sys_bufp + sizeof (sysbuf_hdr) ;

5. Stores the user’s buffer address in the second longword of the header.

sys_bufp-> usr_bufp = irp->irp$l_qio_pl ;

6. Copies data from the user buffer to the system buffer if the I/O request is a

write operation.

At this point, the buffers are ready for the transfer. Figure 6—2 illustrates the

format of the system buffer.

Figure 6-2 Format of System Buffer for a Buffered-I/O Read Function

inpp$l_svapte

irp$l_bent

System Space

Address of Data Area

User Buffer Address

[te [a
System Buffer

Header

inp$l_bent Process Space

ZK-7552A-GE

73

Writing FDT Routines
6.6 FDT Routines for System Buffered I/O

6.6.3 Buffered-I/O Postprocessing

When the transfer finishes, the driver returns control to the operating system

for completion of the I/O request. For example,

ioc_std$reqcom (SS$_NORMAL, 0, uch);

The driver provides the two longword values for the I/O status block. The low-
order 16 bits of the first longword must contain the final request status. The

use of the upper 16 bits of the first longword and the entire second longword
are driver-specific. Certain drivers use these fields to report a transfer byte

count, for example.

The driver must leave the buffer header intact; I/O postprocessing relies on the
header’s accuracy. When system I/O postprocessing gains control, it performs

three steps:

1. Calls EXE$CREDIT_BYTCNT to add the value in irp$l_boff to

jib$l_bytcnt, thus updating the user’s byte count quota.

2. If irp$l_svapte is nonzero, assumes a system buffer was allocated and

checks to see whether irp$v_func is set in irp$1_ sts.

3. If irp$v_func is clear, deallocates the system buffer used for the write

operation; if irp$v_func is set, the special kernel-mode AST copies the

data to the user’s buffer and then deallocates the buffer in addition to
performing other kernel-mode AST functions.

The special kernel-mode AST performs the following steps to complete a
buffered read operation:

1. Obtains the address of the system buffer from irp$l_svapte.

2. Obtains the number of bytes to write to the user’s buffer from irp$1_bcnt.

3. Obtains the address of the user’s buffer from the second longword of the
system buffer header.

Checks for write accessibility on all pages of the user’s buffer.

Copies the data from the system buffer to the process buffer.

Deallocates the system buffer. Note that the system uses the size listed in
the buffer’s header to deallocate the buffer.

74

7
Writing a Start-//O Routine

This chapter describes the general activities of a start-I/O routine for a typical

device and provides a general overview of the simple fork and kernel process

mechanisms. Your device driver start-I/O routine will need to use one of these
mechanisms.

A device driver’s start-I/O code path is the starting point for the system thread
of execution that carries an I/O request through to completion. The start-I/O
code path services I/O requests by interacting with the device controller. This
code path activates a device and then waits for a device interrupt or timeout.
The code path resumes after a device interrupt or timeout. It may activate
the device again and wait for the next interrupt until all the device activity
required by this I/O request has been completed. At that point the start-I/O
code path completes by sending the I/O request on to the I/O postprocessing
phase.

The processing performed by start-I/O code is device specific and usually

contains elements that perform the following functions to activate:

e Analyzing the I/O function

e Transferring the details of a request from the IRP into the UCB

e¢ Obtaining and initializing the controller

¢ Modifying device registers to activate the device

The start-I/O code of a DMA device driver performs additional tasks to prepare
the device for a DMA transfer prior to activating the device. These tasks
include the following:

° Obtaining I/O adapter resources such as map registers

¢ Computing the starting address of a data transfer

75

Writing a Start-I/O Routine
7.1 Simple Forks and Kernel Processes

7.1 Simple Forks and Kernel Processes

76

To create a start-I/O code path, you can use either a simple fork or a kernel

process mechanism. Which mechanism you choose depends on the complexity

of your driver and how much context you want preserved when you suspend

execution.

In the simple fork mechanism, the execution model is a chain of simple
routines. Three fork parameters are preserved across stalls. Any other
driver state must be maintained in nonpaged pool structures across stalls.

When you create a fork, you specify a routine that will execute at a future
time but your current thread of execution continues as well. If you wish to
suspend execution until that fork thread is invoked you must perform no more

additional processing except to return out of all the routines invoked by the

current thread back to its caller. Any local variables that the current thread
had will thus be deallocated and will not be available to the fork thread when
it resumes.

In the kernel process mechanism, the execution model is a single routine at
the top of a deep call tree. The execution can be stalled and resumed almost
anywhere within the call tree. The stack local storage, all nonscratch registers,
and current procedure context is preserved across all the stalls. A kernel
process is a simple fork thread with its own private kernel stack. Therefore,
when you stall a kernel process for an interrupt or to fork to lower IPL your
execution context is saved and later resumed using that same private kernel

stack. This is how your current procedure context including the program
counter and all your local variables are maintained.

The kernel process mechanism requires more system overhead than the simple
fork mechanism because the kernel process mechanism utilizes the simple

fork mechanism along with a Kernel Process Block (KPB) data structure in

nonpaged pool and a private kernel stack. The kernel process mechanism must
save and restore additional context when suspending and resuming execution.
However, it’s often much easier to write and maintain a complex driver by
using the kernel process mechanism rather than the simple fork mechanism.
For example the OpenVMS Alpha SCSI class and port drivers use the kernel
process mechanism. In contrast, the vastly simpler parallel printer port driver
uses the simple fork mechanism.

Writing a Start-I/O Routine
7.2 Context of Driver Start-l/O Code

7.2 Context of Driver Start-I/O Code

A start-I/O routine does not run in the context of a user process. Rather, it has
the following context:

System context Driver code can only refer to system virtual addresses.

Kernel mode Execution occurs in the most privileged access mode and
can, therefore, change IPL and obtain spinlocks.

High IPL The system routine that creates a driver fork process
obtains the driver’s fork lock, raising IPL to driver fork
level before activating the driver.

Kernel stack Execution occurs on the kernel stack.

IRP A pointer to the current I/O request packet.

UCB A pointer to the unit control block for the device that the
V/O request has been issued to.

The system I/O request packet-queuing routines invoke the driver start-I/O
routine after copying the following IRP fields into their corresponding slots in
the device’s UCB:

e irp$l_bent — ucb$l_bent

e irp$l_boff — ucb$l_boff

e irp$l_svapte — ucb$l_svapte

7.3 Simple Fork Start-I/O Interface

If a driver is using the simple fork mechanism, the driver’s start-I/O routine is
invoked in a fork thread using the following interface:

void driver_startio (IRP *irp, UCB *ucb)

e The irp parameter contains the address of the I/O request packet.

e The ucb parameter contains the address of the unit control block.

More than likely the fork thread created to start this I/O request will end
before all the operations required to carry out this I/O request are completed.
Subsequent fork threads will be queued, run, and end, until the I/O request is

completed. Each fork thread requires an individual routine.

For more details about how to code start-I/O routines using the simple fork

mechanism, see Chapter 8.

CF

Writing a Start-I/O Routine
7.4 Kernel Process Start-I/O Interface

7.4 Kernel Process Start-I/O Interface

If a driver is using the kernel process mechanism, the driver’s start-I/O routine

is invoked in the context of a kernel process using the following interface:

void driver_kpstartio (KPB *kpb)

e The kpb parameter contains the address of the kernel process block (KPB)

that was created for this I/O request. The IRP and UCB pointers for the
current I/O request are obtained from the KPB.

This kernel process will exist until the I/O request is completed and control
is returned back to the caller of the driver’s start-I/O routine. However, this

kernel process may suspend execution any number of times before it returns
and ends. The entire start-I/O code path is logically contained in the single
kernel process start I/O routine. Of course, this single start-I/O routine can

call out to other routines which in turn might suspend the kernel process or
call other routines.

For more details about how to code start-I/O routines using the kernel process

mechanism, see Chapter 9.

7.5 Mixing Fork and Kernel Processes

78

Ordinarily, a driver should use either the simple fork process or kernel process
suspension mechanism exclusively. Doing so greatly simplifies comprehension
of driver flow and maintenance of driver code.

It is possible for a driver to use the simple fork process mechanism for

one execution thread and the kernel process mechanism for a different
execution thread. Or, a single execution thread can use the simple fork process
mechanism for certain tasks and later use the kernel process mechanism for
others.

However, once a given driver thread has initiated a kernel process, the thread
cannot use the simple fork mechanism until the kernel process has been
terminated.

Warning

Attempting to perform a simple fork operation on a kernel process
private stack will produce unpredictable if not disastrous results.
a a ee eee

8
Using the Simple Fork Start-I/O

Mechanism

This chapter describes the routines to include if your driver is using the simple
fork mechanism for its start-I/O code path.

8.1 Overview of Simple Fork Process Routines

Some or all of the following routines may need to be included in the simple
fork start-I/O code path of your driver:

e Start-I/O entry routine

void driver_startio (IRP *irp, UCB *ucb);

This routine is required in all but the most trivial drivers.

e Channel grant routine

void driver_chn_grant (IRP *irp, IDB *idb, UCB *ucb);

This routine is required only if a device controller is shared by multiple
device units.

¢ Counted resource grant routine

void driver_res_grant (CRAB *crab, CRCTX *crctx,

; Inodactximint64ctx2), antéa ctx3:

int status);

This routine is required if you need to allocate adapter map registers or

other resources.

e Interrupt service routine

void driver_isr (IDB *idb);

This routine is usually required if the driver is handling a physical device

(in contrast to a virtual device).

79

Using the Simple Fork Start-/O Mechanism

8.1 Overview of Simple Fork Process Routines

e Resume from interrupt routine

void driver_resume_fi (IRP *irp, int64 fr4, UCB *uch);

This routine may be needed if the driver has an interrupt service routine.

e Interrupt timeout routine

void driver_timeout (IRP *irp, int64 fr4, UCB *uch);

This routine is required if the driver has an interrupt service routine.

e Fork routines

void driver_fork (IRP *irp, int64 fr4, UCB *uchb);

A driver may use an arbitrary number of fork routines on its start I/O code

path.

8.1.1 Transferring Control to the Start-l/O Routine

80

The start-I/O code path routine of a device driver using the simple fork
mechanism gains control from either of two system routines: EXE_

STD$QIODRVPKT or IOC_STD$REQCOM.

When FDT processing is complete for an I/O request, the FDT routine transfers

control to EXE_STD$QIODRVPKT, which, in turn, calls EXE_STD$INSIOQ.
If the designated device is idle, EXE_STD$INSIOQ calls IOC_STD$INITIATE
to create a driver fork process. The driver fork process then gains control in
the start-I/O routine of the appropriate driver. If the device is busy, EXE_
STD$INSIOQ queues the packet to the device unit’s pending-I/O queue.

After a device completes an I/O operation, the driver fork process exits by
transferring control to IOC_LSTD$REQCOM. IOC_STD$REQCOM inserts
the I/O request packet (IRP) for the finished transfer into the postprocessing

queue. It then dequeues the next IRP from the device unit’s pending-I/O queue
and calls IOC_LSTD$INITIATE to initiate the processing of this I/O request
in the driver’s fork process at the entry point of the driver’s start-I/O routine.
The driver’s start I/O routine is invoked at driver fork IPL with the driver fork
spinlock held using the following interface:

void driver_startio (IRP *irp, UCB *ucb)

¢ The irp parameter contains the address of the I/O request packet.

e The ucb parameter contains the address of the unit control block.

Using the Simple Fork Start-I/O Mechanism
8.1 Overview of Simple Fork Process Routines

8.1.2 Obtaining Controller Access

If the device is one of several attached to a controller, the start-I/O routine

uses the IOC_STD$PRIMITIVE_REQCHANH or IOC_STD$PRIMITIVE_
REQCHANL routines to dynamically assign the controller’s data channel

to the device unit. Controllers that control only one device do not require
arbitration for the controller’s data channel. For the convenience of the
interrupt service routine, such controllers are often permanently assigned to
their single unit in the unit initialization routine.

idb->idb$ps_owner = ucb;

The transfer being controlled by the start-I/O routine discussed here requires

no seek preceding the transfer. Therefore all requests for the controller are
done by using IOC_STD$PRIMITIVE_REQCHANL which queues them at the

end of the controller wait queue. Disk I/O is an example of a transfer that
requires a seek first. To permit seeks to be overlapped with transfers, you can
use the IOC_STD$PRIMITIVE_REQCHANH routine to insert seek requests

for a channel at the head of the channel wait queue.

If the channel is not available, IOC_STD$PRIMITIVE_REQCHANL returns

an error status. When the channel is eventually released and granted to this
requestor the channel grant routine is invoked.

/* Request the controller */

ucb->ucb$l_fpce = driver_chn_grant;

status = ioc_std$primitive_regqchanl (irp, ucb, &idb);

/* Return if controller was not granted. Routine driver_chn_grant will

* be eventually called when we get the controller.

Be /

if (! $VMS_STATUS_SUCCESS (status) }) return;

/* Controller was granted, continue processing */

IOC_STD$PRIMITIVE_REQCHANL also writes the address of the new

channel-owner’s UCB in the owner field of the IDB (idb$l_owner). The

driver’s interrupt service routine later reads this IDB field to determine which
device unit owns the controller’s data channel. A driver for a single-unit

controller must fill the idb$1_owner field in its controller or unit initialization

routines.

81

Using the Simple Fork Start-l/O Mechanism
8.1 Overview of Simple Fork Process Routines

8.1.3 Obtaining and Converting the I/O Function Code and Its Modifiers

The start-I/O routine extracts the I/O function code and function modifiers from

the field irp$1_func and translates them into device-specific function codes,

which it loads into the device’s CSR or other control registers. The start-I/O

routine creates and modifies a bit mask that is to be loaded into the CSR when

the driver starts the device. To accomplish this, the start-I/O routine converts

the function modifiers contained in irp$l_func into device-specific bit settings

in the general register.

8.1.4 Preparing the Device Activation Bit Mask

For a typical device, the start-I/O routine prepares the device-activation bit
mask by setting the interrupt-enable bit and the go bit in the general purpose
register that also contains the high-order bits of the bus address and the
device-function bits. At this point, the general register contains a complete
command for starting the transfer, also known as the control mask.

When the start-I/O routine copies the contents of the register into the device’s

CSR, the device starts the transfer. Before activating the device, however, the

start-I/O routine should perform the steps described in Sections 8.1.5 and 8.1.6.

8.1.5 Synchronizing Access to the Device Database

82

The start-I/O routine invokes the system macro device_lock to synchronize

its access to device registers with the interrupt service routine. This macro

invocation is doubly important, for it establishes the context wherein the driver

can later issue the wait-for-interrupt macro (wfikpch or wfirlch). The wait-

for-interrupt macros expect the driver’s fork IPL value as obtained conviently
by the device_lock macro. In addition, the wait-for-interrupt macros issue the
device_unlock macro to release ownership of the device lock and restore the
previous IPL.

int orig_ipl; /* Place to save original IPL */

/* Obtain device lock, saving original IPL */

device_lock (ucb->ucb$l_dlck, RAISE_IPL, &orig_ipl);

/* Touch device registers and activate the device */

/* Setup to wait for the interrupt */

wfikpch (rfi_routine, /* Driver resume-from-interrupt routine */
tmo_routine, /* Driver interrupt timeout routine */
iiaja}, (Oj, AbKElo\, /* Paramters for the above 2 routines */
TMO_SECONDS, /* Timeout value in seconds */
orig_ipl); /* Fork IPL to return to */

Using the Simple Fork Start-I/O Mechanism
8.1 Overview of Simple Fork Process Routines

return;

8.1.6 Checking for a Local Processor Power Failure

After synchronizing access to device registers, the start-I/O routine invokes the
setipl macro to raise IPL to IPL$_POWER to block all interrupts on the local
processor.

The start-I/O routine then examines the power failure bit in the UCB’s status
longword (ucb$v_power in ucb$l_sts) to determine whether a local power
failure has occurred since the start-I/O routine gained control. If the bit is not
set, the transfer can proceed.

If the bit is set, a power failure might have occurred between the time that the
start-I/O routine wrote the first device register and the time that the start-I/O

routine is ready to activate the device. Such a power failure could modify the
already-written device registers and cause unpredictable device behavior if the
device were to be started.

If the bit ucb$v_power is set, the start-I/O routine branches to an error handler

in the driver. The driver error handler must perform the following actions:

¢ Clear ucb$v_power

e Issue the device_unlock macro to release the device lock and restore IPL

to fork IPL

After performing these tasks, many drivers transfer control to the beginning of

the start-I/O routine, which restarts the processing of the I/O request.

8.1.7 Activating the Device

If no power failure has occurred, the start-I/O routine copies the contents of the

control mask into the device’s CSR. When the device notices the new contents
of the device register, it begins to transfer the requested data.

8.2 Waiting for an Interrupt or Timeout

Once the start-I/O routine activates the device, the driver fork process cannot

proceed until one of these events occurs:

e The device generates a hardware interrupt.

e The device does not generate a hardware interrupt within an expected time
limit, which is to say that a device timeout occurs.

83

Using the Simple Fork Start-/O Mechanism
8.2 Waiting for an Interrupt or Timeout

Still executing at IPL$_POWER, the driver’s start-I/O routine asks the

operating system to suspend the driver fork process by invoking one of the

following macros:

wfikpch Wait for an interrupt or timeout and keep the controller data

channel

wfirlch Wait for an interrupt or timeout and release the controller data

channel

Both macros invoke routines that release ownership of the device lock,
relinquish synchronization, and return IPL to the previous level when exiting.

Drivers generally keep the controller data channel while waiting for the

interrupt or timeout. Drivers of devices with dedicated controllers always
keep the channel because only one unit ever needs it. For devices that share
a controller, some operations, such as disk seeks, do not require the controller
once the operation has begun. In such cases, the driver can release the
controller’s data channel while waiting for an interrupt or timeout so that
other units on the controller can start their operations.

8.3 Writing an Interrupt Service Routine

84

When a device generates a hardware interrupt, it requests an interrupt at
the appropriate device interrupt priority level (IPL). Either the device or
its adapter requests a processor interrupt at that IPL. When the processor
executes at an IPL below that device IPL, interrupt dispatching begins.

The mechanism of interrupt dispatching has no direct bearing on the contents

of a driver’s interrupt service routine. Its implementation varies according to
the Alpha system and I/O subsystem in use.

For most device drivers, the driver prologue table (DPT) contains, in the
reinitialization section established by the dpt_store_isr macro, the address
of one or more interrupt service routines. Each interrupt service routine
corresponds to an interrupt vector on the I/O bus. You specify the interrupt
vector using the SYSMAN command IO CONNECT.

Most device interrupt service routines perform the following functions:

e¢ Locate the device’s unit control block (UCB)

¢ Determine whether the interrupt was solicited

e Reject or process unsolicited interrupts

° Activate the suspended driver to process solicited interrupts

The remaining sections of this chapter describe the handling of solicited and
unsolicited interrupts in further detail.

Using the Simple Fork Start-I/O Mechanism
8.3 Writing an Interrupt Service Routine

8.3.1 Servicing a Solicited Interrupt

When a driver’s fork process activates a device and expects to service a device
interrupt as a result, the fork process suspends its execution and waits for an
interrupt to occur. The suspended driver is represented only by the contents of
the fork block in the device’s UCB, which contain the following information:

The pointer to the IRP in ucb$q_fr3

An arbitrary second fork routine parameter in ucb$q_fr4

The address of the resume from interrupt routine in ucb$1_fpc

The address of the timeout handling routine in ucb$ps_toutrout

The interrupt service routine is called by the system interrupt dispatcher using
the following interface:

void driver_isr (IDB *idb);

A driver’s interrupt service routine performs the following tasks to process the :
interrupt and transfer control to the waiting driver:

1 Obtains the address of the device’s UCB from the IDB, as follows:

ucb = idb->idb$l_owner;

Issues the device_lock macro to obtain synchronized access to device

registers. However, there is no need to raise or save the original IPL

because we know we are at device IPL in the interrupt service routine.

device lock (ucb->ucb$1_dlck, NORAISE_IPL, NOSAVE_IPL) ;

Tests the interrupt-expected bit in the UCB status longword (ucb$v_int in

ucb$l_sts). If the bit is set, the driver is waiting for an interrupt from this
device. After performing this test, the interrupt service routine must clear
ucb$v_int to indicate that it has received the expected interrupt.

if (! ucb->ucb$v_int) { '/* Dismiss unexpected interrupt */
device_unlock (ucb->ucb$l_dlck, NOLOWER_IPL, SMP_RESTORE) ;

return;

}
ucb->ucb$v_int = 0; /* This interrupt being handled */

85

Using the Simple Fork Start-/O Mechanism
8.3 Writing an Interrupt Service Routine

86

Note

Because device timeout processing mostly occurs at fork IPL (see

Section 8.5), a driver’s interrupt service routine, executing at device

IPL, could interrupt the processing of a timeout on the same device
unit. For this reason, the driver’s interrupt service routine should

check the interrupt-expected bit (ucb$v_int) before handling the

interrupt. The operating system clears this bit before it calls the

driver’s timeout handler.

4. Obtains device-status or controller-status information from the device

registers, if necessary, and stores the status information in the UCB.

5. Issues the rfi macro to invoke the driver resume from interrupt routine

rfi (ucb->ucb$q_fr3, ucb->ucb$q_fr4, uch);

The restored driver should execute as briefly as possible in interrupt context.

As soon as possible, the driver should invoke the iofork macro to request
the creation of a fork process at the driver’s fork IPL in order to complete
the I/O operation. Forking lowers the IPL of driver execution below device
IPL, allowing the processor to service additional device interrupts. The
iofork macro calls the routine EXE_STD$PRIMITIVE_ FORK. EXE_

STD$PRIMITIVE_FORK inserts into the appropriate fork queue the UCB
fork block that describes the driver process. It then returns control to the

driver’s interrupt service routine. (See Section 8.4.2 for additional information
on driver forking.)

The interrupt service routine then performs the following steps:

1. Issues the device_unlock macro to release ownership of the device lock

device_unlock (ucb->ucb$1_dlck, NOLOWER_IPL, SMP_RESTORE) ;

2. Returns to the interrupt dispatcher

3. The interrupt dispatcher dismisses the interrupt

Using the Simple Fork Start-I/O Mechanism
8.3 Writing an Interrupt Service Routine

8.3.2 Servicing an Unsolicited Interrupt

A device requests an interrupt to indicate to a driver that the device has
changed status. If a driver’s fork process starts an I/O operation on a device,
the driver expects to receive an interrupt from the device when the I/O
operation completes or an error occurs.

Other changes in the device’s status occur when the device has not been
activated by a device driver. The device reports such a change by requesting
an unsolicited interrupt. For example, when a user types on a terminal, the

terminal requests an interrupt that is handled by the terminal driver. If the
terminal is not attached to a process, the terminal driver causes the login
procedure to be invoked for the user at the terminal.

As another example, an unsolicited interrupt occurs whenever a disk drive
goes off line, as could happen when an operator spins it down or pushes the
offline button. The disk driver services the interrupt by altering volume and

unit status bits in the disk device’s UCB.

Devices request unsolicited interrupts because some external event has
changed the status of the device. A device driver can handle these interrupts
in two ways:

e Ignore the interrupt as spurious

e Examine the device registers and take action according to their indications
of changed status, and then poll for any other changes in device status

As mentioned in Section 8.3.1, an interrupt service routine first obtains the

address of the device’s UCB from the IDB. It then issues the device_lock

macro to obtain synchronized access to device registers.

The routine determines whether an interrupt is solicited or not by examining
the interrupt-expected bit in the UCB status longword (ucb$v_int in

ucb$lJsts)s

If the driver decides to handle the unsolicited interrupt, it must observe certain

precautions. Certain methods of servicing unsolicited interrupts—for instance
sending a message to the operator or the job controller’s mailbox—must be

accomplished at an IPL lower than device IPL. Although the interrupt service
routine can legitimately fork to accommodate unsolicited interrupts, it should

exercise extreme caution in doing so.

If ucb$v_bsy is set in ucb$1_sts, the UCB fork block is currently in use by

the driver’s start-I/O routine. An attempt by the interrupt service routine to

concurrently use the fork block can destroy the fork context already stored
in that UCB. Moreover, if ucb$v_bsy is not set, the interrupt service routine

87

Using the Simple Fork Start-/O Mechanism
8.3 Writing an Interrupt Service Routine

cannot safely assume that the fork block is not in use, for it may be currently

employed to service a previous unsolicited interrupt.

To avoid confusion, code servicing an unsolicited interrupt must ensure that

the fork block it requires is not being used. Perhaps the safest method to

guarantee this is for the driver to define a separate fork block in a device-

specific UCB extension. The driver should also define a semaphore to control

access to this fork block and protect against multiple forking. Note that the

driver should access the semaphore using atomic builtins.

If, upon servicing an unsolicited interrupt, the driver’s interrupt service routine
examines the semaphore and discovers that a fork is already in progress, it

should not attempt to fork.

The system routine that creates the fork process (once these conditions are

satisfied) returns control to the interrupt service routine. The interrupt service

routine then releases the device lock, and returns to dismiss the interrupt.

8.4 Completing an I/O Request and Handling Timeouts

Once a driver has activated the device and invoked the wait-for-interrupt
macro, the driver remains suspended until the device requests an interrupt or
times out.

If the device requests an interrupt, the driver’s interrupt service routine

handles the interrupt and then reactivates the driver at the instruction

following the wait-for-interrupt macro. The reactivated driver performs
device-dependent I/O postprocessing.

If the device does not request an interrupt within the designated time interval,
the system transfers control to the driver’s timeout handling routine. The
address of the timeout handling routine is specified to the wait-for-interrupt
macros.

8.4.1 V/O Postprocessing

88

Once the driver interrupt service routine has processed an interrupt, it
transfers control to the driver resume from interrupt routine. At this point,
the driver is executing in interrupt context. If the driver were to continue
executing in interrupt context, it would lock out most other processing on the
processor including the handling of hardware interrupts.

To restore the driver to the context of a driver fork process, the driver invokes
the iofork macro. Once the fork process has been created and dispatched for
execution, it executes the driver code that completes the processing of the I/O
request.

Using the Simple Fork Start-I/O Mechanism
8.4 Completing an I/O Request and Handling Timeouts

8.4.2 IOFORK

The iofork macro is used to transition the interrupt service routine context to
that of a fork process by performing the following steps:

1; It disables software timeouts by clearing the timeout enable bit in the UCB
status longword (ucb$v_tim in ucb$1_sts).

It saves the address of the fork routine in the UCB fork block (ucb$1_fpc).

It saves the two fork parameters of the current driver context in the UCB
fork block (ucb$q_fr3 and ucb$q_fr4).

It obtains the fork lock index of the driver from the UCB (ucbSb_flck) and

uses it to determine in which fork queue it should place the fork block.

It inserts the address of the UCB fork block into the processor-specific fork
queue corresponding to the driver’s fork IPL.

Finally, if the fork block is the first entry in the fork queue, EXE_
STD$PRIMITIVE_FORK requests a software interrupt from the local

processor at the driver’s fork IPL.

The steps listed previously move the fork process context into the UCB’s fork
block. The driver’s fork process resumes processing when the system fork

dispatcher dequeues the UCB fork block from the fork queue, and reactivates
the driver at the driver’s fork IPL.

8.4.3 Completing an I/O Request

When the operating system reactivates a driver’s fork process by dequeuing

the fork block, the driver resumes processing of the I/O operation holding the

appropriate fork lock at fork IPL.

1;

2.

Releases map registers

Releases the controller (applies only to drivers of devices on multiunit

controllers)

Checks device register images saved in the UCB to determine the status of

the I/O operation

Saves in the I/O reuest packet (IRP) the status code, transfer count, and

device-dependent status that is to be returned to the user process in an I/O
status block (IOSB)

Returns control to the operating system

89

Using the Simple Fork Start-/O Mechanism

8.4 Completing an /O Request and Handling Timeouts

8.4.3.1 Releasing the Controller

To release the controller channel, the driver calls the IOC_LSTD$RELCHAN

routine. If another driver is waiting for the controller channel, IOC_

STD$RELCHAN queues that driver’s fork process which will invoke its

controller grant routine.

Drivers for devices with dedicated controllers need not release the controller’s

data channel. By means of code in the unit initialization routine, these drivers

set up the device’s UCB so that the device owns the controller permanently.

Drivers must be executing at driver’s fork IPL when they call IOC_

STD$RELCHAN.

8.4.3.2 Saving Status, Count, and Device-Dependent Status

To save the status code, transfer count, and device-dependent status, the driver

performs the following steps:

1. Loads a success status code (SS$_NORMAL), or whatever is appropriate,
into the low-order 16-bits of the first I/O status longword.

ime Losiede

iost1 = SS$_NORMAL;

2. Loads the number of bytes transferred into the high-order 16 bits of the
first I/O status longword, if the I/O operation performed by the device is a
transfer function.

INtuoOsit ls

iostl = iostl & (byte_count<<16);

3. Loads device-dependent status information, if any, into the second I/O
status longword.

int iost2;
iostl = dev_devpend;

8.4.3.3 Completing the I/O Request

90

Finally, the driver fork process completes the I/O request by calling routine
IOC_STD$REQCOM.

loc_std$reqcom (iost1l, iost2, ucb);

IOC_STD$REQCOM locates the address of the I/O request packet (IRP)
corresponding to the I/O operation in the device’s UCB (ucb$1_irp). It then
writes the two longwords of completion status contained into irp$l_iost1 and
irp$l_iost2. These two longwords will eventually be returned to the user
process in the I/O status block specified in the original $QIO system service.

Using the Simple Fork Start-I/O Mechanism
8.4 Completing an I/O Request and Handling Timeouts

IOC_STD$REQCOM then inserts the IRP in the local processor’s I/O-
postprocessing queue and requests a software interrupt at IPL$ IOPOST
from the current processor so the postprocessing begins when IPL drops below
IPL$_IOPOST.

If the error-logging bit is set in the device's UCB (ucb$v_erlogip in

ucb$l_sts), IOC_STD$REQCOM obtains the address of the error message

buffer from the UCB ucb$l_emb. It then writes the following information into

the error buffer:

e Final device status (UCB_DEVSTS)

e Final error count ucb$b_ertcnt

e Maximum error retry count for the driver

¢ Two longwords of completion status

To release the error message buffer, IOC_STD$REQCOM calls ERL$RELEASEMB.

If any IRPs are waiting for driver processing, IOC_STD$REQCOM dequeues

an IRP from the head of the queue of packets waiting for the device
unit (ucb$1_iogfl), and transfers control to IOC_STD$INITIATE. IOC_
STD$INITIATE initiates execution of this I/O request in the driver’s fork
process, by activating the driver’s start-I/O routine.

Otherwise, IOC_STD$REQCOM clears the unit-busy bit in the device’s UCB

status longword (ucb$v_bsy in ucb$l_sts) and transfers control to IOC_

STD$RELCHAN to release the controller channel in case the driver failed to

do so.

The remaining steps in processing the I/O request are performed by system I/O

postprocessing.

8.5 Timeout Handling Routines
The operating system transfers control to the driver’s timeout handling routine
if a device unit does not request an interrupt within the time limit specified in
the invocation of the wait-for-interrupt macro. Among its other activities, the
system software timer fork routine running at IPL$_SYNCH, scans UCBs once
every second to determine whether a device has timed out.

When the software timer interrupt service routine locates a device that has
timed out, the routine calls the driver’s timeout handling routine by performing

the following steps:

91

Using the Simple Fork Start-/O Mechanism

8.5 Timeout Handling Routines

92

1. It obtains both the fork lock and the device lock associated with the device

unit to synchronize access to its fork database and device database. It

raises IPL to device IPL as a result of obtaining the device lock.

2. It raises IPL on the local processor to IPL$¢_POWER to block local power

failure servicing.

3. It disables expected interrupts and timeouts on the device by clearing

bits in the status field of the device’s UCB (ucb$v_int and ucb$v_tim in

ucb$l_sts).

4. It sets the device-timeout bit in the UCB status field (ucb$v_timout in

ucb$l_sts).

It lowers IPL to hardware device interrupt IPL (ucb$b_dip1).

It transfers control to the driver’s timeout handling routine, which is

contained in ucb$ps_toutrout.

The driver’s timeout handling routine executes in the following context:

e Only system address space may be accessed.

e The processor is running in kernel mode.

e The processor is running on the kernel stack.

e The processor holds both fork lock and device lock.

e IPL is at hardware device interrupt level.

Certain timeout handling routines may find it useful to fork to execute low
priority code or to accomplish certain tasks, such as the restarting of an I/O
request. If a driver uses this method, its interrupt service routine should

check the interrupt-expected bit (ucb$v_int) before handling the interrupt.
The operating system clears this bit before it calls the driver’s timeout
handling routine. This allows the routine to determine whether device-timeout
processing is in progress at fork IPL.

During recovery from a power failure, the operating system forces a device
timeout by altering the timeout field (ucb$1_duetim) of a UCB if that device’s
UCB records that the unit is waiting for an interrupt or timeout (ucb$v_int
and ucb$v_tim set in ucb$1_sts). The timeout handling routine can perceive
that recovery from a power failure is occurring by examining the power bit
(ucb$v_power in ucb$1_sts) in the UCB.

A timeout handling routine usually performs one of three functions:

e It retries the I/O operation unless a retry count is exhausted.

Using the Simple Fork Start-Il/O Mechanism
8.5 Timeout Handling Routines

It aborts the I/O request, returning status (for instance, SS$_TIMEOUT).

It sends a message to an operator mailbox and waits for a subsequent
interrupt or timeout.

93

Geir ron Laban Jel ihe erg eel
Re Mb toh hs, dw OES

V1 Ot See catered Aue ¥

ns s —.”
3a Lay ue ue bireu a9 evr 4

~

+

i

=~

~ we ——
—, as

~Ss

es }

)
- _

~~ iz
— %

-¢

ney

2
Using the Kernel Process Start-I/O

Mechanism

The OpenVMS kernel process services enable a system context thread of
execution to run on its own private stack. This thread of execution is known

as a kernel process. Prior to suspending itself (to fork or to wait for an
interrupt or controller channel), a kernel process stores its execution state

(such as register contents) on its private stack (which may include the nested

stack frames of previous procedure calls within the kernel process). When it
is resumed, a kernel process has access to the data that has previously been
stored on its private stack.

The ability to save some execution state on a stack across a stall is the
primary motivation for kernel processes. It simplifies driver algorithms that

are naturally expressed as nested subroutine calls and that would otherwise
require complex state descriptions. Also, this ability is a prerequisite to
supporting device drivers written in a high level language.

9.1 Kernel Process Data Structures

Each kernel process has two data structures:

e A kernel process block (KPB) that describes the context and state of a

kernel process

e A kernel process (KP) stack that records the current state of execution

of the kernel process

Typically, an OpenVMS Alpha device driver calls a system routine to create
these data structures when it initiates a kernel process and calls another
routine to delete them when the kernel process has completed.

The KPB consists of the following areas:

e Base area

95

Using the Kernel Process Start-l/O Mechanism

9.1 Kernel Process Data Structures

96

The base area includes the standard OpenVMS data structure header

fields, describes the kernel process private stack, contains masks that

describe the KPB itself and its register saveset, stores the context of a

suspended KPB, and provides pointers to the other KPB areas. The KPB

base area ends with offset kpb$is_prm_length.

e Scheduling area

The scheduling area contains the procedure values of the routines that

execute to suspend a kernel process and to resume its execution. The

scheduling area can contain either a fork block or a timer queue entry. The

scheduling area ends with offset kpb$q_fré4.

¢ OpenVMS special parameters area

The OpenVMS special parameters area stores information required by
OpenVMS device drivers, such as pointers to I/O database structures, data

facilitating the selection and operation of driver macros, and driver-specific
data. The OpenVMS special parameters area ends with offset kpb$ps_dlck.

e Spinlock area

The spinlock area is unused at present and reserved to Digital. It ends
with offset kpbSps_spl_restrt_rtn.

e Debugging area

The debugging area stores information used in the debugging of a kernel
process. The KPB debugging area follows either the scheduling or spinlock
area.

e Parameter area

The parameter area is a variably-sized area that is specified by the kernel
process creator in the call to EXE$KP_ALLOCATE_KPB. The kernel
process creator and the kernel process use this area to exchange data.

The KPB can be used in one of two general types: the OpenVMS executive
software type (VEST) and the fully general type (FGT). OpenVMS software
always uses the VEST form of the KPB.

In a VEST KPB, the base, scheduling, OpenVMS special parameters, and
spinlock areas have a fixed position relative to the starting address of the
KPB. This allows you to access all fields in these areas as offsets from a single
register that points to the KPB’s starting address.

Entry into and exit from a kernel process always involves a stack switch.
During execution as a kernel process, a system context thread of execution,
such as a process fork, calls a set of OpenVMS provided routines that preserve
register context and switch stacks:

Using the Kernel Process Start-I/O Mechanism
9.1 Kernel Process Data Structures

e At initiation, a switch from the current kernel stack to that of the kernel

process

e Ata stall, a switch from the kernel process private stack to the one current
when the kernel process was entered

e At restart, a switch from the current kernel stack to that of the kernel

process

e At termination, a switch from the kernel process private stack to the one

current when the kernel process was most recently entered

As shown in Figure 9-1 kpbSis_stack_size, kpb$ps_stack_base, and

kpb$ps_stack_sp describe the kernel process stack. kpb$Sps_saved_sp contains

the stack pointer on the stack current when the kernel process was initiated
or restarted. That pointer is restored when the kernel process stalls or
terminates.

A kernel process private stack occupies one or more pages of system space
allocated for that purpose when the kernel process is created. The stack has a

no-access guard page at each end so that stack underflow and overflow can be

detected immediately.

Figure 9-1 shows the stack and the fields in the KPB related to it.

9.2 Kernel Process Routines

The kernel process routines that create a kernel process and its associated

structures and maintain the kernel process environment are divided into four

basic areas:

e Allocation/deallocation

e Start/stop

e Stall/restart

° Niiscollancous support

Table 9-1 summarizes these routines. The remaining sections in this chapter
describe how to use kernel process system routines to set up and use a driver

kernel process.

97

Using the Kernel Process Start-Il/O Mechanism
9.2 Kernel Process Routines

Figure 9-1 Kernel Process Private Stack

Previous Kemel Stack Kemel Process Stack

|
Growth of Ste

CIF ieee Sa aee in Use

kpb$is_stack_size

stack_size
(bytes)

kpb$ps_saved_sp

Stack in Use kpb$ps_stack_base

iste epee Stack in Use

ee ee ee

ZK-7605A-(

98

Using the Kernel Process Start-I/O Mechanism
9.2 Kernel Process Routines

Table 9-1 System Routines That Create and Manage Kernel Processes

System Routine Function

EXE_STD$KP_STARTIO Allocates and sets up a KPB and a kernel process private
stack, and starts up the execution of a kernel process used by
a device driver

EXE$KP_ALLOCATE_KPB Allocates a KPB and its kernel process private stack

EXE$KP_START Starts the execution of a kernel process

EXE$KP_ STALL GENERAL Stalls the execution of a kernel process

EXE$KP_FORK Stalls a kernel process in such a manner that it can be
resumed by the OpenVMS fork dispatcher

EXE$KP_ FORK WAIT Stalls a kernel process in such a manner that it can be
resumed by the software timer interrupt service routine’s
examination of the fork-and-wait queue

IOC$KP_REQCHAN Stalls a kernel process in such a manner that it can be
resumed by the granting of a device controller channel

IOC$KP_WFIKPCH Stalls a kernel process in such a manner that it can be
IOC$KP_WFIRLCH resumed by device interrupt processing

EXE$KP_RESTART Resumes the execution of a kernel process

EXE$KP_END Terminates the execution of a kernel process

EXE$KP_ DEALLOCATE _KPB Deallocates a KPB and its kernel process private stack

9.3 Creating a Driver Kernel Process

A driver that specifies EXE_STD$KP_STARTIO in its table initilization routine

creates a kernel process in which its own start-I/O routine runs. For example,
using the following macros in the driver$init_tables routine is sufficient

to set up a kernel process for most drivers and start execution of the driver’s
start-I/O routine as a kernel process thread:

ini _ddt_start (&driverddt, exe_stdkp_startio) ;
ini_ddt_kp_startio (&driver$ddt, driver_kpstartio) ;

EXE_STD$KP_STARTIO allocates and initializes a VEST KPB and allocates
a kernel process private stack, and then places the driver kernel process

into execution, at the address indicated by the second parameter to the

ini_ddt_kp_startio macro.

99

Using the Kernel Process Start-I/O Mechanism

9.3 Creating a Driver Kernel Process

100

EXE _STD$KP_STARTIO customizes the kernel process environment

specifically for driver kernel processes and performs the following tasks:

° Specifies to EXE$KP_ALLOCATE_KPB the size of the kernel process

private stack in bytes. EXE_STD$KP_STARTIO supplies the minimum

value of ddt$is_stack_bcnt or kpb$k_min_io_stack (currently 8 KB).

A driver contributes a value to ddt$is_stack_bcnt by using the table-

building macro ini_ddt_kp_stack_size.

e Specifies irp$ps_kpb to EXE$KP_ALLOCATE_KPPB as the target location

of the KPB address.

e Specifies to EXE$KP_ALLOCATE_KPB a VEST-type KPB with scheduling
and spinlock sections and indicates that the KPB should be deleted when
the kernel process is terminated.

¢ Calls EXE$KP_ALLOCATE_KPB.

e Inserts the address of the IRP in kpbSps_irp and the address of the UCB

in kpb$ps_ucb.

e Specifies to EXE$KP_START a mask indicating which registers must
be preserved across context switches between the private kernel process
private stack and the kernel stack. This mask allows any registers that
the kernel process uses, other than those the calling standard defines as
“scratch” to be saved across its suspension and resumption.

This mask is the logical-OR of the value of ddt$is_reg_mask and the
value of kpreg$k_min_io_reg_mask. A driver contributes a value to

ddt$is_reg_mask by specifying the ini_ddt_kp_reg_mask macro in the

driver’s table initilization routine. EXE_STD$KP_STARTIO excludes

any registers that are illegal in a kernel process register save mask
KPREG$K_ERR_REG_MASK.

e Specifies to EXE$KP_START the value of ddt$ps_kp_startio as the
procedure value of the routine to be placed into execution in the driver
kernel process. A driver contributes a value to ddt$ps_kp_startio by
specifying the ini_ddt_kp_startio macro in the driver’s table initilization
routine.

¢ The driver’s start I/O routine gains control as a result of the call from
EXE$KP_START and receives one parameter, the address of the KPB.
It obtains the addresses of the UCB and IRP from kpb$ps_ucb and
kpb$ps_irp, respectively:

Using the Kernel Process Start-I/O Mechanism
9.3 Creating a Driver Kernel Process

void driver_kpstartio (KPB *kpb) {
IDO ena WC Ue sp
char data[32];

irp = kpb->kpb$ps_irp;
ucb = kpb->kpb$ps_ucb;

loc$kp_wfikpch (kpb, TMO, newipl);

loc$kp_fork (kpb, uch);

ioc_std$reqcom (SS$ NORMAL, 0, ucb);

EXE_STD$KP_STARTIO stores the KPB address in irp$ps_kpb so that

the KPB address can always be found there at anytime at any depth of
subroutine call.

Note

The VEST KPB created by EXE$KP_ALLOCATE_KPB in response

to the call from EXE_STD$KP_STARTIO may not be sufficient for

a driver kernel process that must exchange a lot of data with its
creator. VEST KPBs do not include the debugging or parameter areas.
If a driver requires either of these areas in a VEST KPB, it should

not specify EXE_STD$KP_STARTIO in the ini_ddt_start macro.

Rather it must make explicit calls to EXE$KP_ALLOCATE_KPB and
EXE$KP_START, as well as initialize the kernel process environment
in a manner similar to that used by EXE_STD$KP_STARTIO.

See Section 9.6 for additional information about using the KPB
parameter area.

For the routines that manipulate kernel process structures, such as EXE$KP_

ALLOCATE_KPB and EXE$KP_START, a driver should check the status value

and take appropriate action.

9.4 Suspending a Kernel Process

Once executing as a kernel process, in order to stall, the thread must call a

routine that can switch stacks and then save the thread’s state in such a way
that it can restart when the stall ends. The kernel process can call any of the
supplied scheduling stall routines (EXE$KP_STALL_GENERAL, EXE$KP_
FORK, EXEKP_FORK_WAIT, IOCKP_REQCHAN, IOC$KP_WFIKPCH,
and IOC$KP_WFIRLCH) to safely suspend its execution. When the condition

implied in the stall request is met (for instance, a device interrupt or the

101

Using the Kernel Process Start-I/O Mechanism
9.4 Suspending a Kernel Process

grant of a controller channel), OpenVMS calls EXE$KP_RESTART to resume

execution of the kernel process.

9.5 Terminating a Kernel Process Thread

A driver kernel process initiated by EXE_STD$KP_STARTIO (in which the

start-I/O routine is the top-level thread) is terminated properly by simply

returning from the start I/O routine.

To ensure that the terminated KPB is released for future reuse, the flag
kpb$v_dealloc_at_end must be set in the kpb$is_flags field. If you

are allocating a KPB via some mechanism other than EXE STD$KP_

STARTIO, you should ensure that this flag is set. EXE_STD$KP_STARTIO

sets kpb$v_dealloc_at_end.

Note that the completion of the I/O request must be indicated by an explicit
call to the EXE_STD$REQCOM routine before returning and ending the kernel

process.

9.6 Exchanging Data Between a Kernel Process and Its

102

Creator

In the unlikely event that a driver kernel process requires more data than it

can obtain from the KPB address (its sole input parameter), its creator can
establish a parameter area in the-KPB.

A driver creates a KPB with a parameter area by specifying the param_size
parameter to a call to EXE$KP_ALLOCATE_KPB.

The following example shows a simple exchange of data residing in the KPB
parameter area between a kernel process and its creator:

/* Layout of our driver-specific KPB parameter area */

typedef struct _my_kpb_param {
int kpb_param1;
int kpb_param2:

} MY_KPB_PARAM;

KPB *kpb; /* Pointer to allocated KPB */
MY_KPB_PARAM *kpb_prm; /* Pointer to param area in KPB */

/* Allocate a KPB with a parameter area */

status = exe$kp_allocate_kpb (&kpb,

MY_KP_ STACK SIZE,

(KPSM_IO & KP$M_DEALLOC_AT_END) ,
sizeof (MY_KPB_ PARAM));

if (! $VMS_STATUS_SUCCESS(status)) return status;

Using the Kernel Process Start-I/O Mechanism
9.6 Exchanging Data Between a Kernel Process and Its Creator

/* Copy some values into the KPB parameter area */

kpb_prm = (MY_KPB_PARAM *) kpb->kpb$ps_prm_ptr;
kpb_prm->kpb_paraml = VALUE1;
kpb_prm->kpb_param2 = VALUE2;

/* Start the kernel process, executing the kp_routine */

status = exe$kp_start (kpb, kp_routine, KPREGSK_HLL_REG MASK) ;

if (! $VMS_STATUS_SUCCESS(status)) return status;

9.7 Synchronizing the Actions of a Kernel Process and Its
Initiator

Neither the initiator of the kernel process (that is, the caller of EXE$KP_

START or EXE$KP_RESTART) nor the kernel process itself can assume that

there is any relationship between them unless they mutually establish one.
The initiator and the kernel process must establish explicit synchronization

between themselves for operations that require it.

The kernel process cannot assume that its initiator is not running in parallel.
Neither can it depend on inheriting the synchronization capabilities of its
caller (for instance, its spinlocks and IPL). The initiator of the kernel process
thread cannot assume that the kernel process has already executed when

EXE$KP_START returns control.

103

rag IRE nary carnal? try
‘Wala. 7 aa’ “AES wise a tee" i

‘wie pana Ral emer
7

~ ee Poe RE ao ;
Wiitiea

“te ae oe a
als

. 2 ML Ss ee. el ee ast
Sy : a ee at omiee ies

; mr i legs

at! biiwessort omar ate anager att Shite ube oy

a q yA Tr’ 4 SARIS ip life iy cree di eg elit ca |
101d satSeer, Hi hah Hersteg toned will “0 ANAM AGAIN 30 THAT. ‘snore thal ti. viens sles 70 ov eet ead ghinqaenntae aged Nir suaigbusy * Serta sed ae Laas ta

h Ht oid? 40> Gorsheeaal orviancindlt avewied
. i Li leweg pale PLAST ee iia ij oe is pits

: AE a b Mee % one
nea: dpi er aS Ly satu fh me ng a

fa vWD Vis h nee eh sigh ‘a> ape af) li "rye A ey oy bane po ae

4 Sf Pate 1 i mie 8 htee o. a io
+ 7 ™~ ——

+g ‘ ; om gat = _
a 7 <p Soe peer ca typ iit ied ye? a a . Ph .

~
= ates ee onli Pe ; q ~ —e=—9. @ ejaie- .

™>

:

% o> is ,

_ =

= =) VF - qq

7

.
Mi => - - 2

10
Initializing a Device Driver

This chapter quickly summarizes the initialization sequence OpenVMS Alpha
drivers follow, defines the tables every device driver contains, and describes

driver initialization macros and routines.

10.1 Overview of the Driver Initialization Sequence

OpenVMS Alpha device drivers are initialized as follows:

1. Driver image is loaded.

2. Ifthe driver image contains the global entry point driverSinit_tables,
the following routine is called:

int driverSinit_tables (void);

Driver tables are checked and used to guide remaining steps.

New I/O database structures created.

Driver’s structure initialization routine is called:

e Initializes fields in newly created UCB, DDB, CRB, IDB.

VoOud IsSstrucminit, (CRB crb).. 4.7 URLUCB sucha

ucb->ucb$r_uch.ucb$b_flck = SPLSC_IOLOCK8;

e Specified by DPT, for example:

ini_dpt_struc_init (&driverdpt, lrstruc_init);

6. Structure re-initialization routine is called.

e Initializes fields in newly created UCB, DDB, CRB, IDB, when the

driver image is loaded. For example:

Vord el rostLucareinuce (CREE* Crypts. jp UR UCB auch) ert

dpt_store_isr (crb, lr$interrupt) ;

105

Initializing a Device Driver vey
10.1 Overview of the Driver Initialization Sequence

e Specified by DPT, for example:

ini_dpt_struc_reinit (&driverdpt, lrstruc_reinit);

7. I/O database structures are completed and linked in.

8. Driver CSR mapping routine is called.

¢ New driver routine for mapping device registers, which reside in an I/O

space, into system virtual address space.

int lr$csr_mapping (IDB *idb, DDB *ddb, CRB *crb);

e Environment appropriate for calling iocSmap_io routine.

int ioc$map_io (ADP *adp, int node,
uint64 *phys_offset, int num_bytes,
int attr, uint64 *iohandle} ;

e Specified by DDT, for example:

ini_ddt_csr_mapping (&driverddt, lrcsr_mapping) ;

9. Driver controller init routine is called.

int IrSctrl_init (IDB *idb, DDB *ddb, CRB *crb);

e May initialize device controller

e Also called during power recovery

¢ Specified by DDT, for example:

ini_ddt_ctrlinit (&driver$ddt, IrSctrl_init);

10. Driver unit init routine is called.

int lrSunit_init (IDB *idb, LR_UCB *ucb);

¢ May initialize device unit

¢ Makes unit ready to accept I/O requests

e Also called during power recovery

¢ Specified by DDT, for example:

ini_ddt_unitinit (&driverddt, lrunit_init);

The unit initialization routine and controller initialization routine
prepare a device or controller for operation when the driver-loading procedure
loads the driver into memory and when the system recovers from a power
failure. The amount and type of initialization needed by devices and controllers
vary according to the device type and the I/O bus to which the device or
controller is attached.

106

Initializing a Device Driver
10.2 Device Driver Tables

10.2 Device Driver Tables

Every device driver contains three tables that describe the device and driver:

¢ Driver prologue table (DPT)—Describes the device type, driver name,

and fields in the I/O database to be initialized during driver loading and
reloading.

¢ Driver dispatch table (DDT)—Lists some of the driver’s entry points to

which the operating system transfers control. The function decision table
lists other entry points.

¢ Function decision table (FDT)—Provides the names of action routines
for I/O functions the driver supports and indicates which of those functions
it supports by using an intermediate system buffer.

OpenVMS Alpha provides prototype tables in object form and uses run
time initialization routines to override the default table values provided

by the object module. The prototype tables are contained in the object
module IOC$DRIVER_TABLES.OBJ, which resides in the VMS$VOLATILE_

PRIVATE_INTERFACES.OLB object library in SYS$LIBRARY. This object
library is included by the driver link procedure.

To override default values in the prototype tables, the driver writer must code
a driver initialization routine (DRIVER$INIT_TABLES). This initialization

routine is called by the driver loader with no explicit input parameters, and
it returns an integer status code. Implicit input parameters are the prototype

DDT, DPT, and FDT tables whose global names are driver$ddt, driver$Sdpt,

and driver$fdt respectively.

Table initialization macros and functions for use in the DRIVER$INIT_

TABLES routine are available in the vms_drivers.h header file. Each macro

invokes the corresponding function, checks the status it returns and returns to
the driver loader if it encounters an error.

The following sections in this chapter describe the DPT, DDT, and FDT
tables and explain how a driver must finish setting up these tables in its own

DRIVER$INIT_TABLES routine.

10.3 Driver Prologue Table

The driver prologue table (DPT), along with parameters to the System
Management utility (SYSMAN) command that request driver loading,

describes the driver to the driver-loading procedure. The driver-loading

procedure performs the following tasks:

e Further initializes the DPT

107

Initializing a Device Driver
10.3 Driver Prologue Table

108

e Creates data structures for the new devices in the I/O database

¢ Calls the OpenVMS executive loader to compute the size of the driver and
load it into nonpaged system memory

e Links the new DPT into a list of all DPTs known to the system (IOC$GL_

DPTLIST).

Device drivers can pass data-structure initialization information to the

driver-loading procedure through values stored in the DPT. In addition, the
driver-loading procedure initializes some fields within the I/O database using
information from its own tables.

The macros listed in Table 10—1 should be used in the DRIVER$INIT_TABLES
routine to finish the initialization of the prototype Driver Prologue Table.
These macros invoke the appropriate initialization function and check the
status returned from the function. If an error is returned, the macro returns

control back to the driver loader with the error status.

The first parameter for all the DPT initialization macros is a pointer to the
driver’s DPT structure. Typically, this first parameter will be the address of
the prototype DPT.

The values shown in the last column of the table are the initial values that are
contained in the prototype DPT structure. These initial values can be changed
by using the corresponding macro.

Table 10-1 DPT Initialization Macros for C

Initializing a Device Driver
10.3 Driver Prologue Table

Macro name DPT Field

ini_dpt_adapt

ini_dpt_bt_order

ini_dpt_decode

ini_dpt_defunits

ini_dpt_deliver

ini_dpt_end?

ini_dpt_flags

ini_dpt_idb_crams

ini_dpt_iohandles

ini_dpt_maxunits

ini_dpt_name

ini_dpt_struc_init

ini_dpt_struc_reinit

ini_dpt_ucb_crams

ini_dpt_ucbsize

ini_dpt_unload

ini_dpt_vector

dpt$il_adapt

dpt$is_bt_order

dpt$l_decw_sname

dpt$iw_defunits

dpt$ps_deliver

dpt$il_flags

dpt$iw_idbcrams idb_
crams

dpt$il_loader_handle

dpt$iw_maxunits

dpt$t_name

dpt$ps_init_pd

dpt$ps_reinit_pd

dpt$iw_ucbcrams ucb_
crams

dpt$iw_ucbsize

dpt$ps_unload

dpt$ps_vector

Data type of second Prototype
parameter value

integer AT$ UBA

integer 0

integer 0

integer a

function pointer 0

integer DPT$M_
SMPMOD?

integer 0

integer

integer

string pointer -

function pointer ioc$return

function pointer ioc$return

integer 0

integer

function pointer

pointer to vector of 0
pointers

1The ini_dpt_end macro should be used immediately after all the other DPT initialization macros in the

DRIVER$INIT_TABLES routine.

2The integer value specified with the ini_dpt_flags macro is logically-ORed with the default value and
any previously specified values.

The following example shows the usage of the DPT initialization macros.

extern DPT driver$dpt;

ini_dpt_name
ini_dpt_ucbsize

ini_dpt_adapt
ini_dpt_end

/* Declare protype DPT */

(&driver$dpt, "XXDRIVER") ;
(&driver$dpt, sizeof (XX_UCB));

(&driver$dpt, ATS_NULL) ;
(&driver$dpt) ;

109

Initializing a Device Driver
10.4 Driver Dispatch Table

10.4 Driver Dispatch Table

110

The driver dispatch table (DDT) identifies those driver routines that the
operating system calls to process I/O requests. Every driver must have a DDT.

The macros listed in Table 10-2 should be used in the DRIVER$INIT_TABLES

routine to finish the initialization of the prototype Driver Dispatch Table.

The first parameter for all the DDT initialization macros is a pointer to the

driver’s DDT structure. Typically, this first parameter is the address of the

prototype DDT.

The values shown in the last column of the table are the initial values that are

contained in the prototype DDT structure.

The DDT initialization macros allow you to specify the names of the following
routines, if applicable:

¢ Start-I/O routine

¢ Controller initialization routine

¢ Cancel-I/O routine

e Register dumping routine

e Unit initialization routine

e Alternate start-I/O routine

e Mount verification routine

e Cloned UCB routine

e Start-I/O routine for a driver employing the kernel process services

Tabie 10-2 DDT Macros

Initializing a Device Driver
10.4 Driver Dispatch Table

Macro name DDT field
Data type of second
parameter

ini_ddt_altstart

ini_ddt_aux_routine

ini_ddt_aux_storage

ini_ddt_cancel

ini_ddt_cancel_selective

ini_ddt_channel_assign

ini_ddt_cloneducb

ini_ddt_ctrlinit

ini_ddt_diagbf

ini_ddt_erlgbf

ini_ddt_kp_reg_ mask

ini_ddt_kp_stack_size

ini_ddt_kp_startio

ini_ddt_mntv_for

ini_ddt_mntver

ini_ddt_regdmp

ini_ddt_start

ini_ddt_unitinit

ini_ddt_end?

ini_csr_mapping

ddt$ps_altstart_2

ddt$ps_aux_routine

ddt$ps_aux_storage

ddt$ps_cancel_2

ddt$ps_cancel_selective

ddt$ps_channel_assign_
2

ddt$ps_cloneducb_2

ddt$ps_ctrlinit_2

ddt$iw_diagbuf

ddt$iw_errorbuf

ddt$is_reg_mask

ddt$is_stack_bent

ddt$ps_kp_startio

ddt$ps_mntv_for

ddt$ps_mntver_2

ddt$ps_regdump_2

ddt$ps_start_2

ddt$ps_unitinit_2

ddt$ps_csr_mapping

function pointer

function pointer

address pointer

function pointer

function pointer

function pointer

function pointer

function pointer

integer

integer

integer

integer

function pointer

function pointer

function pointer

function pointer

function pointer

function pointer

Prototype
value

ioc$return_
success

ioc$return

ioc$return

ioc$return_
success

ioc$return_
unsupported

ioc$return_
unsupported

ioc$return_
success

ioc$return_
success

0

0

0

0

ioc$return

ioc$return

ioc_std$mntver

ioc$return_
success

ioc$return_
success

ioc$return_
success

ioc$return_
successs

Ae Ee Se ee ee es eee ee ee ee ee

1The ini_ddt_end macro should be used immediately after all the other DDT initialization macros in the

DRIVER$INIT_TABLES routine.
nn eet dd ttdUdIIdEIIIIIIISSSSSSSSSSSS SS

111

Initializing a Device Driver
10.5 Function Decision Table

10.5 Function Decision Table

112

The function decision table (FDT) is a structure within a driver that is used to

select the appropriate device-dependent preprocessing routine for each one of
the 64 possible I/O function codes. The FDT consists of two substructures:

e A quadword bitmap known as the buffered function mask

e A 64-element array of longwords known as the FDT action routine vector

Each bit in the buffered function mask represents an I/O function that
is serviced by the driver by means of an intermediate system buffer. (The

distinctions between buffered and direct I/O functions will be discussed in
Section 10.5.3.)

Each 32-bit slot of the FDT action routine vector corresponds to the

symbolic value of an I/O function defined by the iodef.h header file in the
SYS$STARLET_C.TLB text library. (Many of these function codes are listed

in Table 10-3.) Those vector slots that relate to functions serviced by a
driver contain the procedure value of an upper-level FDT action routine
that initiates driver-specific preprocessing of the function. Those slots

that represent functions the driver does not support contain the procedure
value of a system upper-level FDT action routine that processes illegal I/O
functions (EXE$ILLIOFUNC). When a $QIO is issued to a device driver,
specifying an I/O function code the driver does not support, EXE$ILLIOFUNC

executes, calling the FDT completion routine EXE_STD$ABORTIO. EXE_
STD$ABORTIO terminates the I/O request and passes SS$_ILLIOFUNC
status back to the $QIO caller.

Figure 10-1 depicts the layout of the FDT.

Initializing a Device Driver
10.5 Function Decision Table

Figure 10-1 Layout of Function Decision Table (FDT)

Buffered Function Mask

Procedure value of upper-level FDT action routine for ki
I/O function 0 or EXE$ILLIOFUNC

Procedure value of upper-level FDT action routine for
I/O function 1 or EXE$ILLIOFUNC > FDT action routine

vector

FDT action routine vector slots 2 through 62

Procedure value of upper-level FDT action routine for 5a :
I/O function 63 or EXE$ILLIOFUNC us

ZK-7606A-GE

The prototype FDT specifies the routine EXE$ILLIOFUNC as the upper-
level FDT action routine for all functions and specifies that no functions are
buffered.

The ini_fdt_act and ini_fdt_end macros should be used in the

DRIVER$INIT_TABLES routine to finish the initialization of the prototype
Function Decision Table. Each valid function code that can be processed
must be associated with an upper-level FDT action routine by use of the

ini_fdt_act macro.

inmerdceace (fade, stunc action, buttlag)

The parameters are:

fdt Pointer to the FDT structure. Usually the address of the prototype
FDT, driver$fdt

func I/O function code.

action ‘ _Upper-level FDT action routine that is to be called from the specified
function code.

bufflag Specifies whether the function is a buffer or direct. The bufflag
parameter has the value BUFFERED if the function is buffered, NOT_
BUFFERED or DIRECT otherwise.

An upper-level FDT action routine must either be an FDT completion routine
or must eventually transfer control to an FDT completion routine. An FDT
completion routine either queues an I/O request packet (IRP) to a driver,

inserts an IRP in the postprocessing queue, or aborts the I/O request. See
Chapter 6 for additional information on upper-level FDT action routines, FDT
support routines, and FDT completion routines.

113

Initializing a Device Driver
10.5 Function Decision Table

The ini_fdt_end macro should be used immediately after all the other

ini_fdt_act macros in the DRIVER$INIT_TABLES routine.

The following example shows the usage of the FDT initialization macros.

extern FDT driver$fdt; /* Declare protype FDT */

ini_fdt_act ($driver$fdt, IO$_READLBLK, my_read_fdt, DIRECT) ;

ini_fdt_act ($driver$fdt, IO$_ACCESS,

ini_fdt_end (&driver$fdt) ;

10.5.1 OpenVMS Alpha I/O Function Codes

Table 10-3 lists the physical, logical, and virtual I/O function codes defined by
the operating system. A complete list of function codes and values is contained
in the iodef .h header file in the SYS$STARLET_C.TLB text library.

Table 10-3 I/O Function Codes

Function

Physical I/O

I0$_UNLOAD

I0$_SEEK

IO$_PACKACK

I0$_SEARCH

10$_WRITECHECK

10$_WRITEPBLK

IO0$_READPBLK

IO0$_AVAILABLE

I10$_DSE

10$_SETCHAR

Description

Unload drive (required by all
disk drivers)

Seek cylinder

Pack acknowledgment (required
by all disk drivers)

Search for sector

Write check data

Write physical block

Read physical block

Set device available (required by
all disk drivers)

Data security erase (and rewind)

Set device characteristics

tUnsupported; subject to change without notice.

114

my_access_fdt, BUFFERED) ;

Equivalent Symbols

I0$ LOADMCODE?} (load
microcode), IO$_ START BUS+
(start LAVc bus)

IO0$_SPACEFILE}? (space files),
I0$_STARTMPROC? (start
microprocessor), IO$_STOP_
BUS? (stop LAVc bus)

I0$_STOP_MONITOR} (stop
LAVc channel monitor)

I0$_SPACERECORD+} (space
records), IO$_READRCT+ (read
replacement and caching table)

(continued on next page)

Table 10-3 (Cont.) W/O Function Codes

Initializing a Device Driver
10.5 Function Decision Table

Function Description Equivalent Symbols

Physical I/O

I0$_SENSECHAR Sense device characteristics ~-

10$ FORMAT Format 10$_CLEAN} (clean tape)

Logical I/O

10$_WRITELBLK

10$_READLBLK

I0$_REWINDOFF

I0$_SETMODE

IO0$_REWIND

I0$_SKIPFILE

I0$_SKIPRECORD

I0$_SENSEMODE

10$_WRITEOF

Virtual I/O

10$_WRITEVBLK

IO0$_READVBLK

I0$_ACCESS

I0$_CREATE

10$_DEACCESS

lO0$_DELETE

IO0$_MODIFY

Write logical block

Read logical block

Rewind and set offline

Set mode

Rewind tape

Skip files

Skip records

Sense mode

Write end of file

Write virtual block

Read virtual block

Access file

Create file

Deaccess file

Delete file

Modify file

I10$ READRCTL+ (read RCT
sector 0)

10$ PSXSETMODBE? (POSIX set
mode)

IO$_PSXSENSEMODE} (POSIX
sense mode)

IO0$_TTY_PORT_BUFIO+
(Terminal port driver FDT routine
for buffered I/O)

IO0$ PSXWRITEVBLK?# (POSIX
write virtual block)

I10$_ PSXREADVBLK?# (POSIX
read virtual block)

10$ NETCONTROL?# (X.25
network control function)

(continued on next page)

115

Initializing a Device Driver
10.5 Function Decision Table

Table 10-3 (Cont.) I/O Function Codes

Function Description Equivalent Symbols

Virtual /O

IO0$_READPROMPT Read terminal with prompt 10$_SETCLOCK (set clock), IO$_

"2 AUDIO (CD-ROM audio)

I10¢ ACPCONTROL Miscellaneous ACP control 10$ STARTDATA (start data)

IO0$_CONINTREAD Connect to interrupt read-only -

10$_ CONINTWRITE Connect to interrupt with write =

10.5.2 Defining Device-Specific Function Codes

You can also define device-specific function codes by equating the name of a

device-specific function with the name of an existing function that is irrelevant
to the device. The selected codes should, however, have a type (logical,

physical, or virtual) that is appropriate for the function they represent. Also,

user programs that issue $QIO requests specifying a device-specific code must

similarly redefine the existing function. For example, the C code that follows
defines three device-specific physical I/O function codes.

#define IO$ STARTCLOCK 10$_ERASETAPE /* Start interval clock */

#define I0$ STARTDATA 10S _SPACEFILE /* Start data acquisition */

10.5.3 Choosing Buffered I/O vs. Direct i/O

116

In selecting the functions that are to be buffered, consider the following:

e Direct I/O is intended only for devices whose I/O operations always

complete quickly. For example, although terminal I/O appears fast, users
can prevent the I/O operation from completing by using CtrI/S to halt the
operation indefinitely; therefore, terminal I/O operations are buffered I/O.

¢ Use of direct I/O requires that the process pages containing the buffer be
locked in memory. Locking pages in memory increases the overhead of
swapping the process that contains the pages.

e Use of buffered I/O requires that the data be moved from the system buffer
to the user buffer. Moving data requires additional time.

¢ Routines that manipulate data before delivering it to the user (for example,
an interrupt service routine for a terminal) cannot gain access to the data
if direct I/O is used. Therefore, transfers that require data manipulation
must be buffered I/O.

e The operating system handles the quotas differently for direct I/O and
buffered I/O.

Initializing a Device Driver
10.5 Function Decision Table

e¢ Generally, direct-memory-access (DMA) devices use direct I/O, while

programmed I/O devices use buffered I/O.

10.6 Device Database Initialization/Reinitialization

The initialization and reinitialization function addresses are stored in

dpt$ps_init_pd and dpt$ps_reinit_pd respectively. The function calls are:

func (crb,ddb,idb,orb,ucbh);

The parameters are:

crb Channel Request Block address

ddb Device Data Block address

idb Interrupt Data Block address

orb Owner Rights Block address

ucb Unit Control Block address

The dpt_store_isr and dpt_store_isr_vec macros are used to store the

procedure descriptor and entry point addresses of an interrupt service routine
in a VEC entry in a given Channel Request Block. The dpt_store_isr macro

fills in the first or only VEC entry in a CRB. The dpt_store_isr_vec macro
allows the index of the VEC entry to be supplied. The formats of the macros

are as follows:

dptastonesisreacro,, ish)

dpt_store_isr_vec(crb, vecno, isr);

crb Channel Request Block address.

vecno Index (0, 1, 2...) of VEC entry to be filled in.

isr Interrupt service routine address.

117

et" shia 2 gat. en
shiet Sued saitaray™ exe

Sais, ablityy wks ocmh ean — Spare ver terre vendunally gy
seed

é

a Orage
oats negating, atts uc

‘a ay Levveaty Sie @7ERD: Nba mole ms

Te «wim, Mian) MES pags Huey, eT rae

ys i pa, ; nena

hale sv. Al vaengeidl Lamenaglt me
- | * es es end

_ eealy Cea «tet eigntg heating ie

peers a

aber is

ot! wom mi hte: Ge eee By, obyeeucte PER cwig hn
POAT “sh IN): Suey Orcs isha. sag wos Samme
omer YEA welt eg egtt gif orga Ue
(hig, 364i 4t¢ 9.0) ye? ome apne a
WNDU) wii’, anki hee} pe lB loi 5

=
ys

bias. ee

a a —

SS
~

a -

uy Dall Sg jer) Ga

cabs ocunn

e ; a

= sn | nprr rs = aces ie evra

- as ')* Oe bv eee trom ” ar ye ae a aa
es Bas oo ow | fee >

rai. » Tens ves VeanNee 6) © Om Veseeies vente aan
aed SyptesG Tl

: paraainy, v9 ; o laottriigss dam quam afl

intial? : 7 : 7

) @&

>.

Part Ill
Running OpenVMS Alpha Device Drivers

Once you have written a device driver, you have to compile, link, and load it
into the operating system. If you run into problems, you'll have to debug it,
too!

Part III describes how to compile, link, load, and debug an OpenVMS Alpha
device driver. It includes the following chapters:

e Chapter 11 describes how to compile and link a user-written OpenVMS
Alpha driver.

e Chapter 12 explains how to load a user-written OpenVMS Alpha driver
into the operating system.

e Chapter 13 describes how to debug a user-written OpenVMS Alpha driver.

a ns i
———e So LLL iii sce aman ll a

eyowentl solved. arg BuVeegO Bt
!

~s
a

easy ul oie Pt 1 Hegine TT, 1s ry ae figy sac Sen » quiere evel £

* CaN i st ug! Yvov art lore “ja! ie dics manne

fay eles BVO ste yoda lites Baek Soll agama ae aS
“m/c els pelea? Gol? aang SF

a CRIT gD anti trt re. aH ite jie. Ee ‘ae, the

—s

avis aalyh= SAV) antler (ub i hattce von van
‘Sastela gible

_ 9 ofublonis xealighae ay i) se Sabon aah ti som i
a

=

17
Compiling and Linking a Device Driver

After your device driver is coded, it must be compiled into object modules and
then linked to create one executive image. Once a device driver has been

linked correctly, it is ready to be loaded into the operating system as described
in Chapter 12.

This chapter describes the commands and qualifiers you use to compile and
link an OpenVMS Alpha device driver.

11.1 Compiling a Driver

To compile an OpenVMS Alpha device driver, you must use the DEC C for
OpenVMS Alpha compiler. DEC C is available as an optional Digital software
development product.

This section contains a sample compile command, and it briefly describes the
DEC C compiler options typically used to compile a device driver module.
For additional information about these and other compiler qualifiers and
parameters, consult your DEC C documentation.

To see an example of a command procedure that includes a repre-

sentative command for use in compiling an OpenVMS Alpha device
driver, refer to Appendix B. This sample file is also available in

SYS$EXAMPLES:LRDRIVER.COM.

Use the following compile command line as the model for the command line to

compile an OpenVMS Alpha device driver.

§ CC/STANDARD=RELAXED_ANSI89 / INSTRUCTION=NOFLOATING_POINT-
/EXTERN=STRICT-

/POINTER_SIZE=32-

/DEBUG-
/LIS=LIS$xxDRIVER/MACHINE_CODE-

/OBJ=OBJ$xxDRIVER-
SRC$:xxDRIVER -
+SYSSLIBRARY : SYS$LIB_C.TLB/LIBRARY

121

Compiling and Linking a Device Driver
11.1 Compiling a Driver

122

/STANDARD=RELAXED_ANSI

The DEC C compiler conforms to the ANSI C standard, but it allows various

extensions required for compatibility with OpenVMS conventions. For example,

in this mode the compiler accepts the dollar sign character in identifier names.

This qualifier is required for compiling a driver module.

/JINSTRUCTION=NOFLOATING_POINT

Suppresses the generation of floating point instructions for integer operations.

Code running in system context cannot use the floating point registers. This

qualifier is required for compiling a driver module.

/EXTERN_MODEL=STRICT_REFDEF
Causes the compiler to treat external references and definitions in the manner
that is most compatible with the way that OpenVMS privileged global data
cells are defined. This qualifier is required for compiling a driver module.

/POINTER_SIZE=32
Enables pointer-size features and sets the default pointer size to 32-bits
long. This qualifier is required only if your driver includes support for 64-bit
virtual addressing. Because the example device driver supports 64-bit virtual

addresses for user buffers, it must be compiled with this qualifier.

/LIST=file_name

Specifies a compiler output listing file name. This qualifier is optional for
compiling device drivers.

/MACHINE_CODE

The compiler output listing includes the generated machine code. This qualifier
is optional for compiling device drivers.

/OBJECT=file_name

Specifies a compiler output object file name. This qualifier is optional for
compiling device drivers.

/DEBUG
The compiler includes information in the object module that enables you
to effectively use the System-Code Debugger on this module. This extra
information is placed into the debug symbol file when the /DSF qualifier is
specified when the driver image is linked. The /DEBUG qualifier does not
affect the efficiency of the generated code and is optional for compiling device
drivers.

Compiling and Linking a Device Driver
11.1 Compiling a Driver

+SYS$LIBRARY:SYS$LIB_C.TLB/LIBRARY
This command line element specifies a text library that is to be searched by
the compiler when processing #include directives. This text library contains
the header file modules that define various OpenVMS internal data structures
and system macros. This library is required for compiling most driver modules.

11.2 Linking a Driver

This section contains a sample of the LINK command for linking an OpenVMS

Alpha device driver, and it briefly describes LINK command qualifiers used to
link device drivers.

To see an example of a command procedure that includes a representative
command and options file for use in linking an OpenVMS Alpha
device driver, refer to Appendix B. This sample file is also available in
SYS$EXAMPLES:LRDRIVER.COM.

Use the following LINK command line as the model for the command line to
link an OpenVMS Alpha device driver.

$ LINK/ALPHA/NATIVE_ONLY/BPAGE=14-

/SECTION_BINDING/NOTRACEBACK -
/NODEMAND_ZERO/SHAREABLE=xxDRIVER -

/ SYSEXE=SELECTIVE/NOSYSSHR/DSF=xxDRIVER -
/MAP=xxDRIVER /FULL /CROSS_REFERENCE -
xxDRIVER_LNK/ OPTION

The qualifiers used in this command line are as follows:.

/ALPHA
Directs the linker to create an Alpha image. This is the default qualifier on
Alpha systems, and it is required for linking OpenVMS Alpha device drivers.

/NATIVE_ONLY
Indicates that there will be no calls to translated shareable images from this
image. This is the default qualifier on Alpha systems, and it is required for

linking OpenVMS Alpha device drivers.

/BPAGE=14
Specifies the page size the linker should use when it creates the image sections
that make up the image. The value 14 is usually specified for executive
images and indicates that the linker should lay out image sections on 16KB

boundaries. This qualifier is optional for linking device drivers.

The driver-loading procedure ignores the image section boundaries defined by
the linker if the image is being loaded as a sliced executive image.

123

Compiling and Linking a Device Driver
11.2 Linking a Driver

124

/SECTION_BINDING
Directs the linker to activate section binding for both code and data image

sections in the driver. Upon successful binding of code sections and data

sections, the linker sets bits EIHD$V_BIND_CODE and EIHD$V_BIND_DATA

in the image’s header. If either of these bits is not set, the driver-loading

procedure does not load the driver image as a sliced executive image, but

rather, performs a normal load of the image. This qualifier is optional for

linking device drivers.

/NOTRACEBACK
Directs the linker to omit traceback information from the image. This qualifier

is required for linking device drivers.

/NODEMAND_ZERO
Directs the linker to inhibit generation of demand-zero sections in a driver
executive image. This qualifier is required for linking device drivers.

/SHAREABLE=xxDRIVER
Directs the linker to create a shareable executive image named

xxDRIVER.EXE. This qualifier is required for linking device drivers.

ISYSEXE
Directs the linker to selectively search the system shareable image,
SYS$BASE_IMAGE.EXE, to resolve symbols in a link operation. When
the linker selectively searches SYS$BASE_IMAGE.EXE, it only includes
symbols from the SYS$BASE_IMAGE.EXE global symbol table that were
referenced by input files previously processed in the link operation. This
qualifier is required for linking device drivers.

/DSF

Directs the linker to create a file called a debug symbol file (DSF) for use by
the OpenVMS Alpha System-Code Debugger. Specify the character string you
want the linker to use as the name of for the debug symbol file. If you do not
include a file type in the character string, the linker appends the .DSF file type
to the file name. This qualifier is optional for linking device drivers.

/INOSSYSHR
Directs the linker not to search the system default shareable image library
(SYS$LIBRARY:IMAGELIB.OLB) to resolve symbolic references. Drivers may
not resolve symbols from shareable image libraries. This qualifier is required
for linking device drivers.

Compiling and Linking a Device Driver
11.2 Linking a Driver

/MAP=xxDRIVER

Directs the linker to create an image map file. You need a map file for the

driver image to assist in debugging. This qualifier is optional for linking device
drivers.

/FULL
Directs the linker to create a full image map. This qualifier is optional for
linking device drivers.

/CROSS_REFERENCE
Directs the linker to place the Symbols by Name section in the image map
with the Symbols Cross-reference section. This qualifier is optional for linking

device drivers.

xxDRIVER_LNK/OPTION
Identifies the input file specification (here, xxDRIVER_LNK) as a linker options

file.

In the linker options file, you must specify the object modules compiled for

your driver and other linker options required to build an executive image. This

qualifier is required for linking device drivers.

The options file used to link the example device driver is included in the
LRDRIVER.COM command procedure in Appendix B.

125

wate’ gab holy eid Pega 7? =
pare ———-

a Se

ee) a ah sees Glee osha esdiepeieeeeadiaeae
avin yore asl Lee he ort tc inc ea alla? f

el + = 4) 0S IS, COP andl Tae RIBE Be
© ee Muinwe 2 oS teehee te eae, flan dieieee does _

vy R-s ot wy @ dhe anv i the mtr a 7 teh iganiietiy seh hong Pn as aa oe Lire
. f wv sro gi -

a

ets see

Oe ibe cutie ae ee Ys)
vant! tonlseowg 6. Sie sent: @erbee coneuiiee-sortD slebare

pore
s : ee 2)

so 7 . eT} 4.”

e+

ld aioe tel NEw: hes nh wha; ~Seetabaracad =

THAR

; cinta hp nee

nA ¢ pas Sha Poin oh ai anes
ult von! noms «¥ atl ar vb

Ses) tx
ole ‘Papier @ seb ciseh sigue sith soit re rex —

a sae aoe Aes Sepiih ad teats) rma.
— | an es a} yy ee ae A 9 Tans

0 \eahag ai ‘act ob sets 3 Anas. ACK EEE. 2 pelt Filecseue (ye-S TAA: IMMHET ES ghoial mpabelt
ane ™ t Qie v + (PSs Meo Of aa @s prerweee & tee BONS
bis o % itey Oy nig “Cee «fier -_

j
AL

anne he Wer ie tne te lial = ther mpeiiial Mette | mein se >> mm stolen | ‘ a

6 . i =-

2 ea 7 ° aun (a

ae * 4 A

a Ma = <<

12
Loading a Device Driver

An OpenVMS Alpha device driver is created as an executive image, and it is

loaded as an integral part of the executive by the executive loader. You can
load a non-Digital-supplied device driver any time after the system is booted.

This chapter describes the following methods for loading OpenVMS Alpha
device drivers into the OpenVMS Alpha operating system:

e Using the System Management utility (SYSMAN).

e Writing your own IOGEN Configuration Building Module (ICBM).

In addition to these sections, Section 12.2 explains how to enhance system

performance by loading as “sliced” images drivers that have been linked with
section binding enabled.

12.1 Using SYSMAN to Configure and Load Drivers

You can use SYSMAN to connect devices, load OpenVMS Alpha device drivers,

and display configuration information useful for debugging device drivers.

To invoke SYSMAN, enter the following command:

$ MCR SYSMAN

The SYSMAN prompt SYSMAN> is displayed:

All SYSMAN commands that control and display the I/O configuration of an
OpenVMS Alpha system must be introduced with the prefix IO. For example,
to autoconfigure a system, enter the following commands:

$ MCR SYSMAN
SYSMAN> IO AUTOCONFIGURE

For adapters supported by Digital, there is never any need to connect a device
manually. Use the SYSMAN IO AUTOCONFIGURE command with the

appropriate /SELECT and /EXCLUDE lists to configure the system. If you
omit these qualifiers, the IO AUTOCONFIGURE command configures the
entire system.

127

Loading a Device Driver
12.1 Using SYSMAN to Configure and Load Drivers

128

For non-Digital-supplied adapters and new Digital adapters not yet supported
by the IO AUTOCONFIGURE command, you must perform a manual connect,
generally issuing an IO CONNECT command in the following format:

SYSMAN> IO CONNECT devname/ADAPTER=x/CSR=y/VECTOR=z/DRIVER=xxdriver-

/node=busspecificinfo

In such a command, specifying the device name and driver name is

straightforward (and described in Section 12.1). For more information
about how to determine the adapter, csr, vector, and node parameters for

devices attached to PCI, ISA, and EISA buses, see the appropriate bus support
chapter in this manual.

The following sections describe the SYSMAN commands you can use to load an
OpenVMS Alpha device driver.

AUTOCONFIGURE

AUTOCONFIGURE

Automatically identifies and configures all hardware devices attached to a
system. The AUTOCONFIGURE command connects devices and loads their
drivers.

You must have CMKRNL and SYSLCK privileges to use the AUTOCONFIGURE
command.

Format

10 AUTOCONFIGURE

Parameters

None.

Description

The AUTOCONFIGURE command identifies and configures all hardware

devices attached to a system. It connects devices and loads their drivers. You
must have CMKRNL and SYSLCK privileges to use the AUTOCONFIGURE

command.

Qualifiers

/SELECT=(device_namef{....])
Specifies the device type to be automatically configured. Use valid device

names or mnemonics that indicate the devices to be included in the
configuration. Wildcards must be explicitly specified.

The /SELECT and /EXCLUDE qualifiers are not mutually exclusive, as they

are on OpenVMS VAX. Both qualifiers can be specified on the command line.

Table 12-1 shows /SELECT qualifier examples.

Table 12-1 SELECT Qualifier Examples
Devices that are Devices that are not

Command configured configured

/SELECT=P* PKA,PKB,PIA None

(continued on next page)

129

AUTOCONFIGURE

130

Table 12-1 (Cont.) SELECT Qualifier Examples

Devices that are Devices that are not

Command configured configured

/SELECT=PK* PKA,PKB PIA

/SELECT=PKA* PKA PKB,PIA

/EXCLUDE=(device_namef{,...])

Specifies the device type that should not be automatically configured. Use valid
device names or mnemonics that indicate the devices to be excluded from the
configuration. Wildcards must be explicitly specified.

The /SELECT and /EXCLUDE qualifiers are not mutually exclusive, as

they are on OpenVMS VAX systems. Both qualifiers can be specified on the
command line.

/LOG

Controls whether the AUTOCONFIGURE command displays information
about loaded devices.

CONNECT

CONNECT

Connects a hardware device and loads its driver, if the driver is not already
loaded.

You must have CMKRNL and SYSLCK privileges to use the CONNECT
command.

Format

10 CONNECT device-name[:]

Parameters

device-name[:]

Specifies the name of the hardware device to be connected. It should be
specified in the format device-type, controller, and unit number (for example

LPAO where LP is a line printer on controller A at unit number 0). If the
/NOADAPTER qualifier is specified, the device is the software device to be
loaded.

?

Description

The CONNECT command connects a hardware device and loads its driver,
if the driver is not already loaded. You must have CMKRNL and SYSLCK

privileges to use the CONNECT command.

Qualifiers

/ADAPTER=tr_number
/NOADAPTER (default)
Specifies the nexus number of the adapter to which the specified device is

connected. It is a nonnegative 32-bit integer. /NOADAPTER indicates that

the device is not associated with any particular hardware. The /NOADAPTER
qualifier is compatible with the /DRIVER_NAMKE qualifier only.

/CSR=csr_address
The CSR address for the device being configured. This address must be
specified in hexadecimal. You must precede the CSR address with %X. The
CSR address is a quadword value that is loaded into IDB$Q_CSR without any
interpretation by SYSMAN. This address can be physical or virtual depending
on the specific device being connected:

e /CSR=%X3A0140120 for a physical address

131

CONNECT

132

© /CSR=%XFFFFFFFF807F8000 for a virtual address (the sign extension is

required for OpenVMS Alpha virtual addresses)

This qualifier is required if /ADAPTER=tr_number is specified.

/DRIVER_NAME=filespec

The name of the device driver to be loaded. If this qualifier is not specified,

the default is obtained in the same manner as the SYSGEN default name. For

example, if you want to load the Digital-supplied SYS$ELDRIVER.EXE,

the “SYS$” must be present. Without the “SYS$”, SYSMAN looks for

ELDRIVER.EXE in SYS$LOADABLE_IMAGES. This implementation

separates the user device driver namespace from Digital-supplied device

driver namespace.

/LOG=(ALL,CRB,DDB,DPT,IDB,SB,UCB)
/NOLOG (default)
Controls whether SYSMAN displays the addresses of the specified control
blocks. The default value for the /LOG qualifier is /LOG=ALL. If /LOG=UCB is
specified, a message similar to the following is displayed:

%SYSMAN-I-IOADDRESS, the UCB is located at address 805AB000

The default is /NOLOG.

/MAX_UNITS=maximum-number-of-units
Specifies the maximum number of units the driver can support. The default
is specified in the Driver Prologue Table (DPT) of the driver. If the number is
not specified in the DPT, the default is 8. This number must be greater than
or equal to the number of units specified by /NUM_UNITS. This qualifier is
optional.

/NUM_UNITS=number-of-units
Specifies the number of units to be created. The starting device number is the
number specified in the device name parameter. For example, the first device
in DKAO is 0. Subsequent devices are numbered sequentially. The default is 1.
This qualifier is optional.

/NUM_VEC=vector-count
Specifies the number of vectors for this device. The default vector count is 1.
The /NUM_VEC qualifier is optional. This qualifier should be used only when
using the /VECTOR_SPACING qualifier. When using the /NUM_VEC qualifier,
you must also use the (VECTOR qualifier to supply the base vector.

CONNECT

/SYS_ID=number-of-remote-system

Indicates the SCS system ID of the remote system to which the device is to be
connected. It is a 64-bit integer; you must specify the remote system number
in hexadecimal. The default is the local system. This qualifier is optional.

/VECTOR=(vector-address.,...)
The interrupt vectors for the device or lowest vector. This is a byte offset into
the SCB of the interrupt vector for directly vectored interrupts or a byte offset
into the ADP vector table for indirectly vectored interrupts. The values must
be longword aligned. To specify the vector address(es) in octal or hexadecimal,
precede the address(es) with %O or %X, respectively. This qualifier is required
when /ADAPTER=tr_number or /NUM_VEC=vector-count is specified. Up to

64 vectors can be listed.

/VECTOR_SPACING=number-of-bytes-between-vectors
Specifies the spacing between vectors. Specify the amount as a multiple of 16
bytes. The default is 16. You must specify both the base vector with /VECTOR
and the number of vectors with /NUM_VEC. This qualifier is optional.

133

CONNECT

Examples

1. SYSMAN> IO CONNECT DKAO: /DRIVER_NAME=SYS$DKDRIVER/CSR=%X80AD00-

/ADAPTER=4 /NUM_VEC=3 / VECTOR_SPACING=%X10 / VECTOR=%XA20 / LOG

%SYSMAN-I-IOADDRESS, the CRB is located at address 805AEC40

%SYSMAN-I-IOADDRESS, the DDB is located at address 805AA740

%SYSMAN-I-IOADDRESS, the DPT is located at address 80D2A000

%SYSMAN-I-IOADDRESS, the IDB is located at address 805AEE80

%SYSMAN-I-IOADDRESS, the SB is located at address 80417F80

%SYSMAN-I-IOADDRESS, the UCB is located at address 805B68C0

2. SYSMAN> IO CONNECT DKAO: /DRIVER_NAME=SYSSDKDRIVER/CSR=%X80AD00-

/ADAPTER=4/VECTOR= (%XA20, $XA30, $XA40) /LOG= (CRB, DPT, UCB)

%SYSMAN-I-IOADDRESS, the CRB is located at address 805AEC40

%SYSMAN-I-IOADDRESS, the DPT is located at address 80D2A000

%SYSMAN-I-IOADDRESS, the UCB is located at address 805B68C0

3. SYSMAN> IO CONNECT FTAO: /DRIVER=SYS$FTDRIVER/NOADAPTER/LOG= (ALL)

%SYSMAN-I-IOADDRESS, the CRB is located at address 805AEC40

%SYSMAN-I-IOADDRESS, the DDB is located at address 805AA740

%SYSMAN-I-IOADDRESS, the DPT is located at address 80D2A000

%SYSMAN-I-IOADDRESS, the IDB is located at address 805AEE80

%SYSMAN-I-IOADDRESS, the SB is located at address 80417F80

%SYSMAN-I-IOADDRESS, the UCB is located at address 805B68C0

4. SYSMAN> IO CONNECT FTA1: /DRIVER=SYS$FTDRIVER/NOADAPTER
SYSMAN>

134

SET PREFIX

SET PREFIX

Sets the prefix list which is used to manufacture the IOGEN Configuration
Building Module (ICBM) names.

Format

10 SET PREFIX=(icbm_prefix{....])

Parameters

icbm_prefix[,...]

Specifies ICBM prefixes. These prefixes are used by the AUTOCONFIGURE
command to build ICBM image names.

Description

The SET PREFIX command sets the prefix list which is used to manufacture
SYSMAN Configuration Building Module (ICBM) names.

Qualifiers

None.

Example

SYSMAN> IO SET PREFIX=(SYS$,PSI$, VME_)

135

SHOW DEVICE

SHOW DEVICE

Displays information on device drivers loaded into the system, the devices

connected to them, and their I/O databases. All addresses are in hexadecimal

and are virtual.

Format

10 SHOW DEVICE

Parameters

None.

Qualifiers

None.

Description

The SHOW DEVICE command displays information on the device drivers

loaded into the system, the devices connected to them, and their I/O databases.

The SHOW DEVICE command specifies that the following information be
displayed about the specified device driver:

Driver Name of the driver

Dev Name of each device connected to the driver

DDB Address of the device’s device data block

CRB Address of the device’s channel request block

IDB Address of the device’s interrupt dispatch block

Unit Number of each unit on the device

UCB Address of each unit’s unit control block

All addresses are in hexadecimal and are virtual.

SHOW DEVICE

Example

SYSMAN> IO SHOW DEVICE

The following is a sample display produced by the SYSMAN IO SHOW
DEVICE command:

__Driver Dev_DDB CRB IDB Unit_UCB
SYS$FTDRIVER

FTA 802CE930 802D1250 802D04c0
0 801¢3710

SYSSEUDRIVER
EUA 802D0D80 802D1330 802D0D10

0 801E35A0
SYS$DKDRIVER

DKI 802D0FBO 802D0F40 802D0E60
0 801E2520

SYS$PKADRIVER
PKI 802D1100 802D13A0 802D1090

0 801E1210
SYS$TTDRIVER
OPERATOR
NLDRIVER

137

SHOW PREFIX

SHOW PREFIX

Displays the current prefix list used in the manufacture of ICBM names.

Format

10 SHOW PREFIX

Parameters

None.

Description

The SHOW PREFIX command displays the current prefix list on the console.
This list is used by the AUTOCONFIGURE command to build ICBM names.

Qualifiers

None.

Example

SYSMAN> IO SHOW PREFIX

SSYSMAN-I-IOPREFIX, the current prefix list is: SYS$,PSI$,VME_

138

Loading a Device Driver
12.2 Loading Sliced Executive Images

12.2 Loading Sliced Executive Images

In traditional executive image loading, code and data are sparsely laid out

in system address space. The loader allocates the virtual address space for
executive images so that the image sections are loaded on the same boundaries
as the linker created them. The images are normally linked with the /BPAGE
qualifier equal to 14; this puts the image sections on 16 KB boundaries.

Alpha hardware can consider a set of pages as a single huge page, which can

be mapped by a single page-table entry (PTE) in the translation buffer. To use
this mechanism, the loader allocates a PTE for nonpaged code and another for
nonpaged data. Pages within this huge page, or granularity hint region,
must have the same protection. As a result, code and data cannot share a huge
page. The end result of this is a single translation buffer entry to map the
executive nonpaged code, and another to map the nonpaged data.

The loader then loads like nonpaged sections from each executive image into
the same region of virtual memory, ignoring the page size according to which

the image sections have been created. Paged, fixup and initialization sections
are loaded in the same manner as the traditional loader. If the parameter
SO_PAGING is set to turn off paging of the executive, all code and data, both
paged and nonpaged, is treated as nonpaged and loaded into the granularity

hint regions.

This method of loading is called “sliced” loading. Figure 12-1 illustrates a

traditional load and a sliced load.

139

Loading a Device Driver
12.2 Loading Sliced Executive Images

Figure 12-1 Traditional and Sliced Loads

Traditional Load

80000000

NPR exc img B

NPRW exc img B

Fixup exc img B

Legend:

NPR = nonpaged read
NPRW = nonpaged read/write
PR = paged read
PRW = paged read/write

Sliced Load
80000000

NPR exc img A

NPR exc img B

: 80400000

NPRW exc img A

NPRW exc img B

: * 80800000

ZK-8681A-GE

12.2.1 Controlling Executive Image Slicing

The system parameter LOAD_SYS_IMAGES is a bitmask and has several bits

140

defined:

SGN$V_LOAD SYS_IMAGES (bit 0)

SGN$V_EXEC_SLICING (bit 1)

SGN$V_RELEASE_PFNS (bit 2)

Enables loading alternate executive
images specified in VMS$SYSTEM_
IMAGES.DATA.

Enables the loading of the executive into
granularity hint regions.

Enables releasing unused portions of the
huge pages.

These bits are set by default. Use conversational bootstrap to disable executive
image slicing.

Loading a Device Driver
12.3 Writing an IOGEN Configuration Building Module (ICBM)

12.3 Writing an IOGEN Configuration Building Module (ICBM)

12.3.1

12.3.2

An IOGEN Configuration Building Module (ICBM) is a shareable image
used to configure I/O devices on a system. Digital ships several ICBMs, which
are used to configure the devices supported by the OpenVMS Alpha operating
system. (For example, SYS$SHARE:SYS$ICBM_07.EXE loads the devices
supported by the DEC 3000-300L system.)

The following sections explain ICBM processing and describe how to write an
ICBM to load your user-written driver.

Quick Overview of ICBM Processing

When a user enters the SYSMAN IO AUTOCONFIGURE command, the

Autoconfigure Utility (Autoconfigure) finds the ICBMs for specific platforms
and activates them. Autoconfigure first calls the ICBM’s initialization routine,
which returns to Autoconfigure a table that lists the adapters known to the
ICBM.

Autoconfigure then walks down the system ADP list. For each ADP, each
ICBM that indicated it can process that ADP is called. The ICBM routine
called scans the bus array structure pointed to by the ADP for devices it
recognizes. For each device recognized, the ICBM loads the associated device
driver and connects the appropriate number of units.

ICBM Structure

An ICBM consists of the following three major components:

e An autoconfiguration bus mappping table (ABM), which lists the
adapter types supported by the ICBM and the ICBM routine that processes

each type of adapter.

e An initialization routine that is responsible for passing the address of the
ABM to Autoconfigure.

e The routines that process each adapter, looking for devices and loading
drivers when recognized devices are found.

The shareable image SYS$SSHARE:IOGEN$SHARE.EXE provides services,
which are called by the ICBM configuration routines, to do the work of getting
a driver loaded and units connected. These services load drivers, implement
logging (SYSMAN IO AUTO/LOG), and process the IO AUTO /SELECT and
/EXCLUDE qualifiers.

The examples shown in this section are extracted from MMOV$ICBM, which is

the OpenVMS Alpha ICBM that loads the Multimedia Services video and audio

drivers.

141

Loading a Device Driver al
12.3 Writing an IOGEN Configuration Building Module (ICBM)

12.3.2.1

12.3.2.2

142

Autoconfigure Bus Mapping Table

The autoconfigure bus mapping table (ABM) consists of a series of longword

pairs, terminated by a pair of zeros. The first longword is the adatper bus type;
the second longword is the ICBM routine that configures devices on that bus.
For example, this ABM indicates to Autoconfigure that it can configure devices

on a PCI, TURBOchannel, and ISA buses:

static int mmov_abm[] =

ATS PCI, (int) mmovSconfigure_bus,
ATS_TC, (int) mmov$configure_bus,
ATS_ISA, (int) mmovS$configure_bus,

0,
ii

The routine mmov$configure_bus is the ICBM configuration routine that
locates devices and loads drivers for them.

A single ICBM can configure devices on multiple bus types, simply by including
them in the ABM table, and by providing the appropriate routines. In fact, the
same ICBM can be used to configure devices on different buses on different
systems. (More about this later).

ICBM Initialization Routine

Each ICBM must include an intitialization routine named IOGEN$ICBM_INIT,
which is called by Autoconfigure when the ICBM image is activated. This
routine returns the address of the ABM as shown in the following example:

int iogen$icbm_init(int *abm)

*abm = (int) mmov_abm;

return (int) &IOGENS ICBM OK;

}

IOGEN$ICBM_INIT returns the status code IOGEN$_ICBM_OK to indicate
to Autoconfigure that a valid, properly built ICBM has been loaded. (The
value IOGEN$_ICBM_OK has been exported by the IOGEN$SHARE shareable
image, which is why the &LOGEN$_ICBM_OK construct is used.) If this
routine returns anything else, Autoconfigure assumes that the ICBM is built
incorrectly, or that some error occurred while activating it, and the ICBM will
be ignored.

Loading a Device Driver
12.3 Writing an IOGEN Configuration Building Module (ICBM)

12.3.2.3 ICBM Configuration Routine

The ICBM configuration routines are called by Autoconfigure as it processes

the ADP tree built at the time the system buses were probed. For each ADP
in the tree, Autoconfigure scans the list of ABMs obtained from the activated
ICBMs. Each time Autoconfigure finds a bus type that matches the ADP

bus type, the associated configuration routine is called, using the following
prototype:

int mmovSconfigure_bus (int handle, ADP *adp)

where:

handle is a 32-bit quantity that provides context for Autoconfigure utility
routines.

adp is a pointer to the ADP being processed.

The configuration routine follows these steps:

1. Locates the bus array that describes the devices found during bus probing.
This pointed to by adp$ps_bus_array.

2. For each device, compares the device ID against the list of devices the
ICBM supports. The device ID is located in busarray$q_hw_id. The values

in this field vary according to bus type as follows:

TURBOchannel 8-byte option identification string located at the start of the
option ROM.

PCI 32-bit PCI ID field located at the first longword in PCI
configuration space.

ISA Value (up to 8 bytes) that is in the handle field as set up
by the console’s ISACFG command. (For more information
about the ISACFG command, see Chapter 15.)

3. For each match, constructs a device name. The controller letter comes from

the busarray$b_ctrlltr field. If this field is zero, then IOGEN$ASSIGN_
CONTROLLER is called to obtain the controller letter.

For more information about this step and those that follow, see the

CONNECT_THE_DRIVER routine in the Appendix C.

4. For the newly constructed device name, calls IOGEN$AC_SELECT to
check the device against the /SELECT and /EXCLUDE lists, which may

have been specified on the SYSMAN IO AUTOCONFIGURE command. If
this routine does not return SS$_NORMAL, exits.

5. Checks if the device has already been configured, by checking the
busarray$v_no_reconnect bit in the busarray$1_flags field. If the device

has already been configured, exits.

143

Loading a Device Driver die

12.3 Writing an IOGEN Configuration Building Module (ICBM)

6. Ifthe device is selected or not excluded, constructs an item list for the

SYS$LOAD_DRIVER service. If loading a driver and connecting a single

unit, the following qualifiers are required: adapter TR number, base CSR

physical address, interrupt vector offset, node number, and address to

receive pointer to the newly created CRB. All of these qualifiers, except the

address to receive the pointer to the newly created CRB correspond to the

qualifiers on the SYSMAN IO CONNECT command:

SYSMAN> IO CONNECT dev /ADAPTER=x/NODE=x/CSR=x/VECTOR=x/DRIVER=xx

The device and driver names are passed to SYS$LOAD_DRIVER as
parameters. The values for these items are generally obtained from various
fields in the bus array. For more information, see the description of the

SYS$LOAD_DRIVER routine in Section 12.3.6.

7. Ifthe driver load was successful, calls IOGEN$LOG to log the fact that a
new device was connected.

8. Finally, writes the CRB address back into the bus array, and sets the

busarray$v_no_reconnect bit in the busarray$l_flags field. These

tasks are performed by a kernel mode routine in the ICBM. This work is

performed in kernel mode because the ADP data structure is not writable
from the ICBM context. (See the WRITE_CRB_RECONNECT routine in
the example.)

12.3.3 Building an ICBM

144

To compile an ICBM source module, use the SYS$LIBRARY:SYS$LIB_C.TLB
system macro library.

An ICBM image must be linked against the SYS$SSHARE:IOGEN$SHARE.EXE
shareable image, and it must include the IOGEN$ICBM_CONTROL routine
from SYS$LIBRARY:STARLET.OLB. In addition, the /NOTRACEBACK and
/SHARE linker qualifiers must be specified.

The following commands will compile (using the DECC compiler) and link the
example ICBM:

sco /OBJECT/LIST/MACHINE/STANDARD=RELAXED_ANSI/ INSTRUCTION= (NO_FLOAT) =
MMOVSICBM.C

$ LINK/ALPHA/BPAGE=14 /NOTRACEBACK/SHARE=MMOVSICBM. EXE/MAP/FULL/CROSS -
SYSSINPUT.OPT/OPTIONS

MMOVSICBM. OBJ, -
SYS$LIBRARY : STARLET . OLB/ INCLUDE= (IOGENSICBM_CONTROL)
SYS$SHARE: IOGEN$SHARE/ SHARE

1

Loading a Device Driver
12.3 Writing an IOGEN Configuration Building Module (ICBM)

12.3.4 Loading an ICBM

To use an ICBM image, the following conventions must be followed:

1. The image must be placed in SYS$SHARE—this is where Autoconfigure
looks for it.

2. The ICBM image name must include the system type and can optionally
include the CPU type: MMOV$ICBM_xxyy.EXE, where xx is the low-byte

of the system type, and yy is the low-byte of the CPU type. These values
are defined in the header file HWRPBDEF.H, and can be obtained using
these lexical functions in DCL:

SYSTYPE
CPUTYPE

FSGETSYI ("SYSTYPE")
FSGETSYI ("CPUTYPE")

These values must be in hexadecimal, and there must be two digits. For

example, on a DEC 3000-300L processor, the example ICBM can be named

MMOV$ICBM_07.EXE
MMOVS$ICMB_0702.EXE

Note that the same ICBM image can be used on multiple systems, as
long as the image name is changed appropriately. The example ICBM,

for instance, supports TURBOchannel and PCI systems. On a DEC
3000-300L TURBOchannel system, the image is named MMOV$ICBM_
07.EXE; on an Alphastation 400/166 PCI system, the image is named

MMOV$ICBM_OD.EXE. Both of these are the identical image, simply
renamed as appropriate based on the system they are installed on.

3. Because Autoconfigure executes as a privileged image, any shareable image

Autoconfigure activates must be installed as a known image, including any
ICBMs. Also, if Autoconfigure is to execute as part of the system startup

process, the ICBM image must be installed prior to the Autoconfigure
step in startup. To accomplish this, the recommended method is to place
commands similar to the following in SYS$MANAGER:SYCONFIG.COM:

$ IF (.NOT. FSFILE_ATTRIBUTES ("SYSSSHARE:MMOVS$ICBM_07.EXE", "KNOWN"))

$ THEN
$ INSTALL :== $INSTALL/COMMAND
$ INSTALL ADD SYS$SHARE: MMOVSICBM_07.EXE
$ ENDIF

This sequence is recommended because AUTOGEN executes SYCONFIG.COM
before Autoconfigure during system startup.

145

Loading a Device Driver 7
12.3 Writing an IOGEN Configuration Building Module (ICBM)

4, Finally, Autoconfigure must explicitly be told to look for the ICBM image.

This is accomplished using SYSMAN’s prefix list. The prefix is the part of

the image name that identifies the product (e.g., MMOV$ in the example

we've been using). Digital recommends that you register the prefix in order

to avoid conflicts with Digital and other vendors’ products.

To display the prefix list, enter the following command:

SYSMAN> IO SHOW PREFIX

This will display the current set of prefixes, or an empty string. The empty
string equates to the prefix "SYS$", specifying the ICBMs shipped with

OpenVMS.

To set the prefix list, enter the following command:

SYSMAN> IO SET PREFIX="SYS$,MMOV$"

The SYS$ prefix must be included; otherwise the system ICBMs will not be
executed, and the system will have no I/O devices. The prefix list is stored
in the file SYS$MANAGER:IOGEN$PREFIX.DAT. IOGEN will create this
file if it does not exist when you set a prefix list.

12.3.5 Debugging an ICBM

146

Debugging ICBMs is difficult. For one thing, they execute in Executive
mode, so the only debugger you can use is DELTA, which requires
that you have machine code listings and linker maps. Access to the
OpenVMS Listings CD is a requirement, because you will need access to
[IOGEN.LIS]JAUTOCONFIGURE.LIS—this module contains the routines that
call your ICBM, and most of the routines that provide services to your ICBM.

One way to debug your ICBM is to create a small main program that calls
IOGEN$AUTOCONFIGURE directly. This gives you a way to invoke the
debugger. Here’s an example, called AUTO.C:

#include <descrip.h>

int iogen$autoconfigure(int, void *, int, int, int, int);

main ()

{
int status;

static $DESCRIPTOR(prefixes, "MMOV$");

status = iogen$autoconfigure(0,&prefixes,0,0,0,0);
}

Loading a Device Driver
12.3 Writing an IOGEN Configuration Building Module (ICBM)

Compile and link this program /DEBUG, and link it against the
SYS$SHARE:IOGEN$SHARE shareable image. Define this logical name to
specify the DELTA debugger:

DEFINE LIB$DEBUG DELTA

When this image is invoked, the DELTA debugger gains control. Using this

debugger, the listings of AUTO, your ICBM, and Autoconfigure, you can debug
your ICBM.

Tips for Debugging ICBMs

E: You cannot set breakpoints or examine variables in your ICBM image
until Autoconfigure has activated it. The simplest way to get started is to

locate the call to your ICBM’s IOGEN$ICBM_INIT routine in the routine
activate_icbms in AUTOCONFIGURE.LIS. Set a breakpoint on this call,

and execute to there. Then step into the routine, and Delta will display
the routine’s address. From there, using your ICBM’s linker map, you can
figure out other addresses inside your ICBM.

As long as you are using the example main program shown above, your
ICBM will be loaded at the same address every time. So, you do not have
to go through the exercise of determining where your ICBM is loaded each
time you run the image.

After you have debugged the IOGEN$ICBM_INIT routine, you can set
a breakpoint at the point where your ICBM’s configuration routine is
called, in routine process_adp in AUTOCONFIGURE.LIS. Autoconfigure

calls process_adp for every ADP in the system. This routine compares
the adp$1_adp_type field against your ICBM’s ABM, and when there’s a

match, it calls the corresponding routine in your ICBM. When you hit this

breakpoint, your ICBM configuration routine is about to be called, and you
can single-step into this routine.

It can be difficult to figure out what the C compiler is doing. You can run
the System Dump Analyzer on the system while you are debugging your
ICBM, and you can use SDA to locate system data structure addresses.
This is sometimes easier than trying to find which register the compiler is

using for these addresses.

Keep your configuration routine as simple as possible. The more processing

this routine does, and the more branching, the more difficult it is to follow

the machine code, especially while single-stepping.

147

Loading a Device Driver
12.3 Writing an IOGEN Configuration Building Module (ICBM)

12.3.6 ICBM IOGEN routines

This section describes the IOGEN routines used in ICBMs.

148

ICBM IOGEN Routines
IOGEN$AC_SELECT

lIOGENSAC_SELECT

Processes the /SELECT and /EXCLUDE lists for the IO AUTOCONFIGURE
command.

Prototype

int iogen$ac_select (int handle, void * device)

Parameters

Name Access __ Description

handle Input 32-bit Autoconfiguration context. This value was

passed into the ICBM configuration routine.

device Input Pointer to a device name character string
descriptor. This descriptor contains the device

name to be checked against the /SELECT and

/EXCLUDE qualifiers.

Return Values

SS$_ NORMAL device may be included

IOGEN$_ EXCLUDE device is to be excluded

Context

Executive mode. Called by an ICBM configuration routine to determine if the

device should be configured.

Description

This routine checks the device name described by the device parameter against
the list of devices specified by the /SELECT and /EXCLUDE qualifiers on

the SYSMAN IO AUTOCONFIGURE command. If the select list is empty,
all devices are implicitly included. If this list is not empty, all devices are

implicitly excluded. After determining if a device is selected, either implicitly
or explicitly, a check is made to see if it is explicitly excluded.

149

ICBM IOGEN Routines

IOGENSASSIGN_CONTROLLER

I

IOGEN$ASSIGN_CONTROLLER

Assigns a device controller letter.

Prototype

int iogen$assign_controller (int handle, char * device, BUSARRAYENTRY * ba)

Parameters

Name Access ___ Description

handle Input 32-bit Autoconfiguration context. This value was

passed into the ICBM configuration routine.

device Input Pointer to the first to characters of the device

name.

ba Input Pointer to the bus array entry for the device
being configured. The controller letter assigned
is returned in the busarray$b_ctrlltr field of

the bus array entry.

Return Values

SS$_NORMAL Controller letter successfully assigned.

SS$_NOPRIV Process does not have CMKRNL privilege.

SS$_ABORT No more controller letters—the device cannot
be configured.

SS$_ACCVIO Ran out of workspace.

Context

Executive Mode. Called by an ICBM configuration routine to determine a
controller letter.

Description

A device name is made up of three fields: ddxyy, where dd is the device name,
x is the controller letter and yy is the unit number. Controller letters are
assigned by Autoconfigure, starting with “A”, based on the order in which
devices are found. Certain letters are excluded from use. This routine provides
a consistent way of assigning controller letters across the system.

150

ICBM IOGEN Routines
IOGENSASSIGN_ CONTROLLER

The configuration routine should check the low byte of the busarray$l_ctrlltr

field prior to calling this routine. If this value is non-zero, this value should
be used as the controller letter. If this value is zero, then IOGEN$ASSIGN_

CONTROLLER should be called to assign a controller letter. Note that the
busarray$1_ctrlltr field is reserved to this routine and that only the low byte

should be used by its callers.

151

ICBM IOGEN Routines
IOGENSAUTOCONFIGURE

I

IOGENSAUTOCONFIGURE

Configures I/O devices found on the system.

Prototype

int iogen$autoconfigure (int flags, void * prefix, void * select, void * exclude, int *

bus_list, log_callback(), exclude_callback())

Parameters

Name Access __ Description

flags Input Controls optional autoconfigure behaviors
follows:
IOGEN$M_AC_LAN—Select all NI/FDDI
devices.
IOGEN$M_LOG—Log each device to SYS$OUTPU
as it is configured.
IOGEN$M_LOG_ALL—Log additional
Autoconfigure progress/error messages.
IOGEN$M_SCA-Select all SCA ports and
related devices.

prefix Input Pointer to a descriptor containing the prefix list
(obtained from IOGEN$GET_PREFTX).

select Input Pointer to a descriptor containing the select list
(from the /SELECT qualifier)

exclude Input Pointer to a descriptor containing the exclude
list (from the /EXCLUDE qualifier)

bus_list Input Pointer to an array of int containing a list of bus
types to configure. This list is a zero-terminated
list of longwords. Each longword represents
the adapter type of a bus to be included in
the configuration scan. Adapter bus types are

specified using the AT$_ symbols defined in the
dedef.h header file, in SYS$STARTLET C.TLB.

152

Name Access

log_callback Input

exclude_callback Input

Return Values

SS$_ NORMAL

SS$_ACCVIO

SS$_NOPRIV

Context

ICBM IOGEN Routines
IOGENSAUTOCONFIGURE

Description

Address of a routine to process log messages. If

this routine is not specified, messages are logged
to SYS$OUTPUT. Otherwise, this routine is
called and passed a pointer to a string descriptor
for the message to be logged.

Address of a routine to read the permanent

exclusion list if the default routine will fail.

Successfully autoconfigured the system.

Ran out of workspace.

Process does not have CMKRNL privilege
any status returned by SYS$EXPREG system
service.

Called in user mode. Generally called to process the SYSMAN IO

AUTOCONFIGURE command.

Description

This routine automatically configures the system.

153

ICBM IOGEN Routines
IOGEN$SGET_PREFIX

nce

IOGEN$GET_PREFIX

Read the prefix file SYS$MANAGER:IOGEN$PREFIX. DAT.

Prototype

int iogen$get_prefix (void * prefix)

Parameters
dh patie ae ee Re arene see Se ee
Name Access __ Description
Fe ed ee ce

prefix Input Address of a descriptor into which the prefix is

returned.

Return Values

SS$_ NORMAL Successfully retrieved the prefix list.

SS$_IVBUFLEN The descriptor is too short to hold the prefix
list.

Context

User mode. Generally called by the SYSMAN IO SET PREFIX and IO SHOW
PREFIX commands.

Description

This routine retrieves the prefix list from the file SYSSMANAGER:
IOGEN$PREFIX.DAT. The prefix list is set by the SYSMAN IO SET PREFIX
command.

By default, there is no prefix list (this routine returns a null string, which

equates to a prefix list of "SYS$". When adding new prefixes, be sure to
include the string "SYS$" in the list, otherwise, no devices will be configured
except those configured by the ICBM identified by the new prefix.

154

ICBM IOGEN Routines

IOGEN$LOG

IOGEN$LOG

Displays Autoconfiguration logging messages.

Prototype

int iogen$log (int handle, int status, void * device, void * driver, int noisy)

Parameters

Name

handle

status

device

driver

noisy

Return Values

SS$_NORMAL

Context

Access

Input

Input

Input

Input

Input

Description

32-bit Autoconfiguration context. This value was
passed into the ICBM configuration routine.

The 32-bit status to be logged (usually a

completion status from SYS$LOAD_DRIVER).

Pointer to a descriptor containing the device
name.

Pointer to a descriptor containing the driver

name.

Flag identifying a “noisy” message. Suppressed
unless the LOG_ALL flag is set in the call to the
IOGEN$AUTOCONFIGURE command.

Successful completion.

Executive mode. Called by an ICBM configuration routine to log success or

failure configuring a device.

Description

This routine is called by an ICBM configuration routine to log the status
of configuring the device. This routine will format and print a message,
depending on whether the /LOG qualifier was specified on the SYSMAN IO
AUTOCONFIGURE command.

155

ICBM IOGEN Routines

SYS$LOAD_DRIVER

ES

SYS$LOAD_DRIVER

Load a device driver and configure I/O database for a device

Prototype

int sys$load_driver (int function, void * device, void * driver, int * itmist, int * iosb,

NULL, NULL, NULL)

Parameters

Name Access ___ Description

function Input One of the function codes listed in Table 12-2.

device Input Pointer to a descriptor containing the device
name.

driver Input Pointer to a descriptor containing the
driver name. The default file specification

SYS$LOADABLE_IMAGES:.EXE is applied to
the driver name before loading it.

itmlst Input Pointer to an itemlist that qualifies the caller’s
request. This is a standard OpenVMS item list,
and it is terminated by a longword of zero. See
Table 12-3 for a list of available function codes.

iosb Input Pointer to an I/O status block which receives
final request status.

efn Input Event flag.

Return Values

SS$_NORMAL

SS$_BADPARAM

SS$_IVBUFLEN

SS$_ACCVIO

SS$_INSFMEN

SS$_NOCMKRNL

156

Request completed successfully.

One or more parameters are incorrect.

A buffer associated with an item list descriptor
is not a valid length.

A parameter was not available for the required
access.

Failure allocating non-paged pool.

Process does not have CMKRNL privilege.

ICBM IOGEN Routines
SYS$LOAD_DRIVER

SS$_NOCMEXE Process does not have CMEXEC privilege.

SS$_NOSYSLCK Process does not have SYSLCK privilege.

SS$_NOSUCHDEV Explicit controller/unit requested for non-
existent device.

SS$_UNSUPORTED The requested function is unsupported.

SS$_DRVEXISTS The specified driver already exists.

SS$_DEVEXISTS The specified device already exists.

SS$_DRV_NOUNLOAD Driver is not unloadable.

SS$_ILLIOFUNC Invalid function code.

SS$_UNSUPPORTED Function not supported.

Context

Executive mode. Generally called by an ICBM configuration routine.

Description

This service is called to load a device driver and configure the I/O database for
the new device. SYS$LOAD_DRIVER is called by an ICBM to load a device

driver, and to create the I/O database structures for each new device unit.

SYS$LOAD_DRIVER requires information that the ICBM must locate in
various structures in the I/O database created by system bus probing,
notably the ADP and the Bus Array. Section 12.3.7 describes how to find
this information for the buses supported on Digital platforms.

Table 12-2 Function Codes Available for Function Parameter

IOGEN$_LOAD Analog to the SYSMAN IO LOAD command. Loads
only the specified driver, ignoring the device and itmlst
parameters. It applies the default SYS$LOADABLE_
IMAGES:.EXE file specification.

IOGEN$_ Analog to the SYSMAN IO RELOAD command.

RELOAD Reloadable drivers are not supported in OpenVMS Alpha,
and this function returns the SS$_UNSUPPORTED error.

(continued on next page)

157

ICBM IOGEN Routines

SYS$LOAD_DRIVER

Table 12-2 (Cont.) Function Codes Available for Function Parameter

IOGEN$_ Analog to the SYSMAN IO CONNECT command. Creates

CONNECT all parts of the I/O database needed to allow the specified
unit to operate, and connects the unit to the appropriate

interrupt dispatching mechanism. The IOGEN$_LOAD,
IOGEN$_INIT_CTRL, IOGEN$_INIT_UNIT functions
are performed implicitly by the IOGEN$_CONNECT
function. The device parameter is required. In many
cases, an itmlst must be specified (see below). If the driver
parameter is not specified, the name is defaulted by using
the first two characters of the device name to locate the
driver (for example, for device xxcu, the driver name is
SYS$xxDRIVER).

IOGEN$_INIT_ Causes the driver controller initialization routine to be
CTRL called for the specified device. IPL is raised to 8 before

calling the routine.

IOGEN$_INIT_ Causes the driver unit initialization routine to be called
UNIT for the specified device. IPL is raised to 8 before calling

the routine.

IOGEN$_ Causes the unit delivery routine for the specified device to
DELIVER be called. The unit number passed to the delivery routine

is specified in the itmlst parameter. IPL is raised to 8
before calling the delivery routine.

158

ICBM IOGEN Routines

SYS$LOAD_DRIVER

A single descriptor for an itemlist looks like this:

31

item code

buffer address

return length address

1655 0

buffer length

ZK-8682A-GE

Table 12-3 Function Codes Available for Itemlist Parameter

IOGEN$_
ADAPTER

IOGEN$_
NOADAPTER

IOGEN$_CSR

IOGEN$_
VECTOR

Indicates to which nexus the specified device should be
connected. A non-negative, 32-bit integer, and must match
the adp$w_tr field of some ADP in the system. If the DDB

for the specified device does not yet exist, either this item

or the IOGEN$_NOADAPTER must be specified.

Indicates that the specified device is not associated with

any particular bardware bus. This is usually the case for
drivers that indicate the NULL adapter in their prologue

tables.

Specifies the CSR address for the device being configured.

This value is stored in the icbSq_csr field. If the CRB

for the device does not yet exist, and a non-null adapter is

specified, this item is required.

Specifies the base interrupt vector for the device being

configured. For directly vectored devices, this value is
the byte offset into the SCB of the interrupt slot. For

indirectly vectored devices, this value is the byte offset

into the vector table pointed to by the associated ADP. If

the CRB for the device does not yet exist, and a non-null

adapter is specified, this item is required.

(continued on next page)

159

ICBM IOGEN Routines

SYS$LOAD_DRIVER

Table 12-3 (Cont.) Function Codes Available for Itemlist Parameter

IOGEN$_
NUMVEC

IOGEN$_
MAXUNITS

IOGEN$_SYSID

IOGEN$_UNIT

IOGEN$_
NUMUNITS

160

Specifies the number of consecutive interrupt vectors

required by the specified device. The default value is 1. If

a value greater than 1 is specified, the CRB is allocated

such that it includes an intd field for each vector. These

additional intd fields are connected to the SCB slots or
the ADP vector table slots, as appropriate, following the
base slot specified with IOGEN$_VECTOR.

Specifies the maximum number of units that can be
associated with the specified controller. If this item is not
specified, the value is taken from the driver’s prologue
table. This value determines the size of the ucblst field
in the IDB. Note that the ucblst is not filled in; it is

allocated and zeroed.

Specifies which remote system is the controller for the
specified device. This value is a 64-bit integer that is the
station address of the controller. This value is used to
locate the appropriate system block. If this item is not

specified, the specified device is assumed locally connected.

Specifies the unit number to be passed to the driver’s unit
delivery routine. Any unit number specified in the device
parameter is ignored; instead, unit numbers are specified
with this item code. This item must be specified if the
function IOGEN$_DELIVER is invoked.

Specifies the number of units to be created on a single
call to SYS$LOAD_DRIVER. The unit number specified in
the device parameter is used for the first unit. Additional
units are created with monotonically increasing unit

numbers. This value is minimized with the value derived
for IOGEN$_MAXUNITS. If this item is not specified,
one unit is created. SYS$LOAD_DRIVER returns the
number of units created in the buffer pointed to by this
item descriptor.

(continued on next page)

Table 12-3 (Cont.)

IOGEN$_
DELIVER_DATA

IOGEN$_DDB

IOGEN$_CRB

IOGEN$_IDB

IOGEN$_UCB

IOGEN$_SB

ICBM IOGEN Routines
SYS$LOAD_DRIVER

Function Codes Available for Itemlist Parameter

Specifies a 64-bit buffer that is passed as scratch space
to the device driver’s unit delivery routine. The actual
data passed to the driver is allocated from non-paged
pool and initialized from the buffer pointed to by this
item descriptor. When the driver’s unit delivery routine
completes, the non-paged pool scratch area is copied back
to the caller’s buffer. If this item is omitted, the scratch

area passed to the driver is initialized to zero.

Specifies a buffer which receives the address of the DDB

for the specified device. If no DDB exists, zero is returned.

Specifies a buffer which receives the address of the CRB
for the specified device. If no CRB exists, zero is returned.

Specifies a buffer which receives the address of the IDB
for the specified device. If no IDB exists, zero is returned.

Specifies a buffer which receives the address of the UCB
for the specified device. If no UCB exists, zero is returned.

Specifies a buffer which receives the address of the system
block for the specified device. If no system block exists,
zero is returned.

161

Loading a Device Driver
SYS$LOAD_DRIVER

12.3.7

12.3.7.1

12.3.7.2

162

Finding Info in the Bus Array

When OpenVMS boots, system-specific routines probe all the I/O buses to locate

hardware devices. A list of ADPs is created which describes this hardware.

(See section 16.2.4.4 for one example.)

This section describes where the specific information needed by an ICBM is

located for each bus. This information includes the following:

device ID Used by an ICBM to identify devices.

adapter Required by the IOGEN$_ADAPTER item.

CSR Required by the IOGEN$_CSR item.

interrupt Required by the IOGEN$_VECTOR item.
vector

node Required by the IOGEN$_NODE item.

For each bus, all of these except the device ID and the interrupt vector appear
in the same place:

adapter adp$l_tr

CSR busarray$q_csr

node busarray$l_node_number

The device ID always appears in BUSARRAY$Q _HW_ID. However, the format
of the device ID is different for each bus type. The interrupt vectors also
appear in different places for each bus type.

TURBOchannel

The device ID is the first 8 bytes of the TURBOchannel device option ROM.
This field generally contains the option name. In the example ICBM, this field
contains the ASCII string “AV300-AA”.

The interrupt vector is located in busarray$l_autoconfig.

PCI

The device ID is a 32-bit value formed by combining the two 16-bit Vendor ID
and Device ID values. These values are located in the first two fields (at offsets
0 and 2) of PCI configuration space for the device. The Vendor ID is in the high
16-bits; the device ID is in the low 16-bits.

The interrupt vector is located in busarray$l_bus_specific_l.

12.3.7.3

Loading a Device Driver
SYS$LOAD_DRIVER

ISA

The device ID is the first 8-bytes of the value specified as the handle parameter
in the system console’s isacfg command. (See the hardware reference guide for

your platform for details about the isacfg console command.) The system bus
probing routine copies this value into BUSARRAY$Q_HS_ID.

The interrupt vector is located in busarray$l_bus_specific_l. The value
located in this field must be multiplied by 4 before being passed to the
IOGEN$_VECTOR item. The value in BUSARRAY$L_BUS_SPECIFIC_L is the
same as the IRQ parameter specified in the ISACFG console command for the

device.

Note that ISA devices can be loaded using the ISA_CONFIG.DAT mechanism,

described in Chapter 15.

163

4 wiry

> 7 uvrtter NAS @ Ot Bus 4Se0

misuint nll Vapetant, be hadiln o> ender eplp here Diehl allt
Win peop carry ot é\ iii lie in me

cull Gre wee @hIee ne Cie) Seat as CS inde to ae 7
ney Vi ete aa wy ett aes. gon r

atieveuiy 2 eearps c Fier a nat aise
afi a} HPes | >was 4 “et > <i benpgi ¢ Ta oad ee} ty uled aldy

oc) Ti SO. ae sat SORRY
od 1) AAO wire De haery Shed a oon aa

we
aiarneibdes Tha TOC 78) eGo eal ae aie ARI teat ail.

lS Ie
—_—— Te. meheyhayt vy

13
Debugging a Device Driver

The OpenVMS Delta and XDelta Debuggers (DELTA/KDELTA) and the

OpenVMS Alpha System-Code Debugger (system-code debugger) are
tools you can use to debug device drivers. This chapter briefly describes
DELTA/XDELTA, and it explains how to use the system-code debugger.

13.1 Using the Delta/XDelta Debugger

The OpenVMS Delta/XDelta Debugger (DELTA/XDELTA) is a primitive

debugger. It is used to debug code that cannot be debugged with the symbolic
debugger, that is, any code that executes at interrupt priority levels (IPLs)
above IPLO or any code that executes in supervisor, executive, or kernel mode.

Examples include user-written device drivers and the OpenVMS operating
system.

Almost all the commands available on DELTA are also available on XDELTA.
Furthermore, both DELTA and XDELTA use the same expressions. However,

they are different in two ways: you use them to debug different kinds of code,
and you invoke and exit from them in different ways.

You can use DELTA to debug programs that execute at IPLO in any processor

mode (user, supervisor, executive, and kernel). You can also debug user-mode

programs with DELTA, but the OpenVMS Debugger is more suitable. To run
DELTA in.a processor mode other than user mode, your process must have

the privilege that allows DELTA to change to that mode—change-mode-to-
executive (CMEXEC) or change-mode-to-kernel (CMKRNL) privilege. You
cannot use DELTA to debug code that executes at an elevated IPL.

You can use XDELTA to debug programs that execute in any processor mode

and at any IPL. To use XDELTA, you must have system privileges, and you

must include XDELTA when you boot the system.

165

Debugging a Device Driver
13.1 Using the Delta/XDelta Debugger

You can use DELTA/KDELTA commands to perform the following debugging

tasks:

° Open, display, and change the value of a particular location

e Set, clear, and display breakpoints

e Set display modes in byte, word, longword, or ASCII

e Display instructions

e Execute the program in a single step with the option to step over a

subroutine

e Set base registers

e List the names and locations of all loaded modules of the executive

¢ Map an address to an executive module

For more information about using DELTA/XDELTA, see the OpenVMS Delta

/XDelta Debugger Manual.

13.2 Using the OpenVMS Alpha System-Code Debugger

166

The OpenVMS Alpha System-Code Debugger (system-code debugger) can be
used to debug nonpageable system code and device drivers running at any
interupt priority level (IPL). You can use the system-code debugger to perform
the following tasks:

e Control the system software’s execution—stop at points of interest, resume
execution, intercept fatal exceptions, and so on

e Trace the execution path of the system software

¢ Monitor exception conditions

e Examine and modify the values of variables

e In some cases, test the effect of modifications without having to edit the
source code, recompile, and relink

The system-code debugger is a symbolic debugger. You can specify variable
names, routine names, and so on, precisely as they appear in your source code.
The system-code debugger can also display the source code where the software
is executing, and allow you to step by source line.

The system-code debugger recognizes the syntax, data typing, operators,
expressions, scoping rules, and other constructs of a given language. If your
code or driver is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

To use the system-code debugger, you must do the following:

Build a system image or device driver to be debugged.

Set up the target kernel on a standalone system.

The target kernel is the part of the system-code debugger that resides on
the system that is being debugged. It is integrated with XDELTA and is
part of the SYSTEM_DEBUG execlet.

Set up the host system, which is integrated with the OpenVMS Debugger.

The following sections cover these tasks in more detail, describe the available
user-interface options, summarize applicable OpenVMS Debugger commands,
and provide a sample system-code debugger session.

13.2.1 User-interface Options

The system-code debugger has the following user-interface options:

A DECwindows Motif interface for workstations

When using this interface, you interact with the system-code debugger by
using a mouse and pointer to choose items from menus, click on buttons,
select names in windows, and so on.

Note that you can also use OpenVMS Debugger commands with the
DECwindows Motif interface.

A character cell interface for terminals and workstations

When using this interface, you interact with the system-code debugger by
entering commands at a prompt. The sections in this chapter describe how
to use the system-code debugger with the character cell interface.

For more information about using the OpenVMS DECwindows Motif interface
and OpenVMS Debugger commands with the system-code debugger, see the

OpenVMS Debugger Manual.

13.2.2 Building a System Image to Be Debugged

if Compile the sources you want to debug, and be sure to use the /DEBUG

and /NOOPT qualifers.

Note

Debugging optimized code is much more difficult and is not
recommended unless you know the Alpha architecture well. The
instructions are reordered so much that single-stepping by source line
will look like you are randomly jumping all over the code. Also note

167

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

that you cannot access all variables. The system-code debugger reports

that they are optimized away.

2. Link your image using the the /DSF (debug symbol file) qualifier. Do not

use the /DEBUG qualifier, which is for debugging user programs. The

/DSF qualifier takes an optional filename argument similar to the /EXE

qualifier. For more information, see the OpenVMS Linker Utility Manual.

If you specify a name in the /EXE qualifier you will need one for the /DSF

qualifier. For example you would use the following command:

$ LINK/EXE=EXE$: MY_EXECLET/DSF=EXE$:MY_EXECLET OPTIONS_FILE/OPT

The .DSF and .EXE file names should be the same. Only the extensions

will be different, that is .DSF and .EXE.

The contents of the .EXE file should be exactly the same as if you had
linked without the /DSF qualifier. The .DSF file will be a small image

containing the image header and all the debug symbol tables for that
image. It is not an executable file, so you should not try to run it or load it.

Put the .EXE file on your target system.

Put the .DSF file on your host system, because when you use the system-
code debugger to debug code in your image, it will try to look for a .DSF file
first and then look for a .EXE file. The .DSF file is better because it has
symbols in it. Section 13.2.4 describes how to tell the system-code debugger
where to find your .DSF and .EXE files.

13.2.3 Setting Up the Target System for Connections

168

The target kernel is controlled by flags and devices specified when the system
is booted, XDELTA commands, a configuration file, and several sysgen

parameters. The following sections contain more information about these
items.

Boot Command

The form of the boot command varies depending on the type of OpenVMS
Alpha system you are using. However, all boot commands have the concept
of boot flag and boot devices as well as a way to save the default boot flags
and devices. This section uses syntax from a DEC 3000 Model 400 Alpha
Workstation in examples.

To use the system-code debugger, you must specify an Ethernet device with
the boot command on the target system. This device will be used by the target
system to communicate with the host debugger. It is currently a restriction
that this device must not be used for anything else (either for booting or

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

network software such as DECnet, TCP/IP products, and LAT products).

Thus, you must also specify a different device to boot from. For example, the

following command will boot a DEC 3000 Model 400 from the dkb100 disk, and
the system-code debugger will use the esa0 ethernet device.

>>> boot dkb100,esa0

To find out the Ethernet devices available on your system, enter the following
command:

>>> Show Device

In addition to devices, you can also specify flags on the boot command line.
Boot flags are specified as a hex number; each bit of the number represents
a true or false value for a flag. The following flag values are relevant to the
system-code debugger:

¢ 8000

This new boot flag enables operation of the target kernel. If this boot flag
is not set, not only will it be impossible to use the system-code debugger

to debug the system, but the additional XDELTA commands related to the
target kernel will generate an XDELTA error message. If this flag is set,
SYSTEM_DEBUG is loaded, and the system-code debugger is enabled.

¢ 0004

This boot flag’s function has not changed. It controls whether the system
calls INI$BRK at the beginning and end of EXEC_INIT. Notice that if the

system-code debugger is the default debugger, the first breakpoint is not as
early as it is for XDELTA. It is delayed until immediately after the PFN
database is set up.

¢ 0002

This boot flag, which has always controlled whether XDELTA is loaded,

behaves slightly differently when the system-code debugger boot flag is also

set.

If the system-code debugger boot flag is clear, this flag works as it always
has. If the system-code debugger boot flag is set, this flag determines
whether XDELTA or the system-code debugger is the default debugger.
If the XDELTA flag is set, XDELTA will be the default debugger. In this
state, the initial system breakpoints and any calls to INI$BRK trigger
XDELTA, and you must enter an XDELTA command to start using the

system-code debugger. If this fiag is clear, the initial breakpoints and calls
to INI$BRK go to the system-code debugger. You cannot use XDELTA if

the XDELTA flag is clear.

169

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

170

Boot Command Example The following command boots a DEC 3000 Model

400 from the dka0 disk, enables the system-code debugger, defaults to using

XDELTA, and takes the initial system boot breakpoints:

>>> boot dka0,esa0 -fl 0, 8006

You can set these devices and flags to be the default values so that you will not

have to specify them each time you boot the system. On a DEC 3000 Model

400, use the following commands:

>>> set BOOTDEF_DEV dka0, esa0

>>> set BOOT_OSFLAGS 0, 8006

System-Code Debugger Configuration File

The system-code debugger target system reads a configuration file in

SYS$SYSTEM named DBGTK$CONFIG.SYS. The first line of this file contains

a default password, which must be specified by the host debug system to
connect to the target. Other lines in this file are reserved by Digital. Note that
you must create this file because Digital does not supply it. If this file does not
exist, you cannot run the system-code debugger.

XDELTA Commands

When the system is booted with the 8000 boot flag, the following two additional
XDELTA commands are enabled:

e n,\xxxx;R ContRol System-Code Debugger connection

This command can be used to do the following:

— Change the password which the system-code debugger must present

— Disconnect the current session from the system-code debugger

— Give control to the remote debugger by simulating a call to INI$SBRK

— Any combination of these

Optional string argument xxxx specifies the password that the system-code
debugger must present for its connection to be accepted. If this argument
is left out, the required password is unchanged. The initial password is
taken from the first line of the SYS$SSYSTEM:DBGTK$CONFIG.SYS file.

The optional integer argument n controls the behavior of the ;R command
as follows:

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

Value of N Action

+1 Gives control to the system-code debugger by simulating a call to
INI$BRK

+2 Returns to XDELTA after changing the password. 2;R without a
password is a no-op

0 Performs the default action

-1 Changes the password, breaks any existing connection to the
System Debugger and then simulates a call to INI$BRK (which will
wait for a new connection to be established and then give control to
the system-code debugger)

-2 Returns to XDELTA after changing the password and breaking an
existing connection

Currently, the default action is the same action as +1.

If the system-code debugger is already connected, the ;R command
transfers control to the system-code debugger, and optionally changes
the password that must be presented the next time a system-code debugger
tries to make a connection. This new password does not last across a boot

of the target system.

n;K Change inibrK behavior

If optional argument n is 1, future calls to INI$BRK will result in a

breakpoint being taken by the system-code debugger. If the argument is
0, or no argument is specified, future calls to INI$BRK will result in a

breakpoint being taken by XDELTA.

Sysgen Parameters

DBGTK_SCRATCH

This new parameter specifies how many pages of memory are allocated
for the system-code debugger. This memory is allocated only if system-

code debugging is enabled with the 8000 boot flag (described earlier in
this section). Usually, the default value of 1 is adequate; however, if the
system-code debugger displays an error message, increase this value.

SCSNODE

Identifies the target kernel node name for the system-code debugger. See

Section 13.2.3.1 for more information.

171

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

13.2.3.1

13.2.3.2

172

Making Connections Between the Target Kernel and the System-Code

Debugger

It is always the system-code debugger that initiates a connection to the

target kernel. When the system-code debugger initiates this connection,

the target kernel accepts or rejects the connection based on whether the

remote debugger presents it with a node name and password that matches

the password in the target system (either the default password from the

SYS$SYSTEM:DBGTK$CONFIG.SYS file, or a different password specified via

XDELTA). The system-code debugger gets the node name from the SCSNODE

Sysgen parameter.

The target kernel can accept a connection from the system-code debugger
anytime the system is running below IPL 22, or if XDELTA is in control (at IPL

31) However, the target kernel actually waits at IPL 31 for a connection from
the system-code debugger in two cases: When it has no existing connection

to a system-code debugger and (1) It receives a breakpoint caused by a call to
INI$BRK (including either of the initial breakpoints), or (2) when you enter a

1;R or -1;R command from XDELTA.

Interactions between XDELTA and the Target Kernel/System-Code Debugger

XDELTA and the target kernel are integrated into the same system. Normally,

you choose to use one or the other. However, XDELTA and the target kernel
can be used together. This section explains how they interoperate.

The 0002 boot flag controls which debugger (XDELTA or the target kernel)
gets control first. If it is not set, the target kernel gets control first, and it

is not possible to use XDELTA without rebooting. If it is set, XDELTA gets
control first, but you can use XDELTA commands to switch to the system-code
debugger and to switch INI$BRK behavior such that the system-code debugger
gets control when INI$BRK is called.

Breakpoints always stick to the debugger that set them. For example, if you set
a breakpoint at location “A” with XDELTA, and then you enter the command
1;K (switch INI$BRK to the system-code debugger) and ;R (start using the
system-code debugger). Then, from the system-code debugger, you set a
breakpoint at location “B”. If the system executes the breakpoint at A, XDELTA
will report a breakpoint, and the remote debugger will see nothing (though you
could switch the system-code debugger by issuing the XDELTA ;R command).
If the system executes the breakpoint at B, the system-code debugger will get
control and report a breakpoint (you cannot switch to XDELTA).

Notice that if you examine location A with the system-code debugger, or
location B with XDELTA, you will see a BPT instruction, not the instruction
that was originally there. This is because neither debugger has any
information about the breakpoints set by the other debugger.

13.2.4

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

One useful way to use both debuggers together is when you have a system
that exhibits a failure only after hours or days of heavy use. In this case, you
can boot the system with the system-code debugger enabled (8000), but with
XDELTA the default (0002) and with initial breakpoints enabled (0004). When
you reach the initial breakpoint, set an XDELTA breakpoint at a location that
will only be reached when the error occurs. Then proceed. When the error
breakpoint is reached, possibly days later, then you can set up a remote system
to debug it and enter the ;R command to XDELTA to switch control to the
system-code debugger.

Here is another technique for use when you do not know where to put an error
breakpoint as previously mentioned. Boot the system with only the 8000 flag.
When you see that the error has happened, halt the system and initiate an IPL
14 interrupt, as you would to start XDELTA. The target kernel will get control
and wait for a connection for the system-code debugger.

Setting Up the Host System

To set up the host system, you need access to all system images and drivers
that are loaded (or can be loaded) on the target system. You should have access
to a source listings kit or a copy of the following directories:

SYS$LOADABLE_IMAGES:
SYS$LIBRARY:
SYS$MESSAGE:

You need all the .EXE files in those directories. The .DSF files are available

with the OpenVMS Alpha source listings kit.

Optionally, you need access to the source files for the images to be debugged.
The system-code debugger will look for the source files in the directory where

they were compiled. If your build machine and host machine are different,
you must use the SET SOURCE command to point the system-code debugger
to location of the source code files. For an example of the SET SOURCE

command, see Section 13.4.2.

To make the connection, you must set up the logical DBGHK$IMAGE_PATH,
which must be set up as a search list to the area where the system images are
kept. For example, if the copies are in the following directories,

DEVICE: [SYS$LDR]

DEVICE: [SYSLIB]
DEVICE: [SYS$MSG]

you would define DBGHK$IMAGE_PATH as follows:

173

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

§ define dbghk$image_path DEVICE: [SYS$LDR] , DEVICE: [SYSLIB] , DEVICE: [SYS$MSG]

This works well for debugging using all the images normally loaded on a given

system. However, you might be using the debugger to test new code in an

execlet or a new driver and might want to debug that new code. Because that

image is most likely in your default directory, you must define the logical as

follows:

$ define dbghk$image_path [],DEVICE: [SYS$LDR] , DEVICE: [SYSLIB] , DEVICE: [SYS$MSG]

If the system-code debugger cannot find one of the images through this
search path, a warning message is displayed. The system-code debugger will
continue initialization as long as it finds at least one image. If the system-code
debugger cannot find the SYS$BASE_IMAGE file, which is the OpenVMS
Alpha operating system’s main image file, an error message is displayed and
the debugger exits.

Check the directory for the image files and compare it to what is loaded on the

target system.

13.2.5 Starting the System-Code Debugger

To start the system-code debugger on the host side, enter the following
command:

$ DEBUG/KEEP

The system-code debugger displays the DBG> prompt. With the DBGHK$IMAGE_
PATH logical defined, you can invoke the CONNECT command and optional
qualifiers /PASSWORD and /IMAGE_PATH.

To use the CONNECT command and optional qualifiers (PASSWORD and
/IMAGE_PATH) to connect to the node with name <node-name> enter the
following command:

DBG> CONNECT %NODE_NAME node-name /PASSWORD="password"

If a password has been set up on the target system, you must use the
/PASSWORD qualifier. If a password is not specified, a zero length string is
passed to the target system as the password.

The /IMAGE_PATH qualifier is also optional. If you do not use this qualifier,
the system-code debugger uses the DBGHK$IMAGE_PATH logical as the
default. The /IMAGE_PATH qualifier is a quick way to change the logical.
However, when you use it, you cannot specify a search list. You can use only
a logical or a device and directory, although the new logical could be a search
list.

174

13.2.6

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

Usually, the system-code debugger gets the file name from the object file. This
is put there by the compiler when the source is compiled with the /DEBUG

qualifier. The SET SOURCE command can take a list of paths as a parameter.
It treats them as a search list.

Summary of OpenVMS Debugger Commands

The following OpenVMS Debugger commands can also be used with the
system-code debugger:

DISPLAY
EXPAND

SET MARGINS
SET SEARCH
SET WINDOW
CANCEL DISPLAY
CANCEL WINDOW
SHOW DISPLAY
SHOW MARGINS
SHOW SEARCH
SHOW SELECT
SHOW WINDOW

The following commands are useful for writing OpenVMS Debugger command

programs and for adding new commands at run time:

DECLARE
DO
EXITLOOP

The following commands are useful for miscellaneous operations:

ATTACH
CTRL_C
CiRUCY

175

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

EDIT
SPAWN
SET ABORT_KEY
SET ATSIGN
SET EDITOR
SET KEY
SET LOG
SET MODE
SET OUTPUT
SET PROMPT
SET RADIX
SET TERMINAL
CANCEL MODE
CANCEL RADIX
SHOW ABORT_KEY
SHOW ATSIGN
SHOW EDITOR
SHOW KEY
SHOW LOG
SHOW MODE
SHOW OUTPUT
SHOW RADIX
SHOW TERMINAL

The following commands manipulate symbols and source code for the debugged
code. For example, you can use these commands to define new symbols, change
the current scope (to a different image, module or routine), tell the debugger
where the source code resides, and set the current language. The SHOW

IMAGE command behaves like the XDELTA ;L command. The DEFINE
command behaves in a similar way to the XDELTA ;X command.

DEFINE
DELETE
EVALUATE
SYMBOLIZE
SET DEFINE
SET IMAGE
SET LANGUAGE
SET SCOPE
SET MAX SOURCE_FILES
SET SOURCE
SET TYPE
CANCEL IMAGE
CANCEL MODULE

176

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

CANCEL SCOPE
CANCEL SOURCE
CANCEL TYPE
SHOW DEFINE
SHOW IMAGE
SHOW LANGUAGE
SHOW SCOPE
SHOW MAX SOURCE_FILES
SHOW SOURCE
SHOW SYMBOL
SHOW TYPE

The following commands make the user program (or the system-code debugger)
execute code. The GO command is the same as the XDELTA ;P and ;G

commands (GO takes an optional PC value). The STEP command is the same
as the XDELTA S and O commands for single stepping. These commands are
implemented in both the main and kernel sections of the debugger.

SHOW STEP

The following commands set, cancel, show and temporarily deactivate and
activate breakpoints. These commands are the same as the XDELTA ;B
command. However, unlike, XDELTA there is no limit on the number of

breakpoints.

SET BREAK
CANCEL BREAK
SHOW BREAK
CANCEL ALL
ACTIVATE BREAK
DEACTIVATE BREAK

The following commands access the user programs’ (or in this case the

system-code debugger) memory and registers. The DEPOSIT and EXAMINE
Uae}

commands implement the following set of XDELTA commands: /, !, [, ",’.

DEPOSIT
EXAMINE
SHOW STACK
SHOW CALLS

177

Debugging a Device Driver
13.2 Using the OpenVMS Alpha System-Code Debugger

13.2.7 System-Code Debugger Network Information

The system-code debugger and the target kernel on the target system use a

private Ethernet protocol to communicate. For the two systems to see each

other, they have to be on the same Ethernet segment.

The network portion of the target system finds the first Ethernet device and
communicates through it. The network portion of the host system also finds
the first Ethernet device and communicates through it. However, if for some

reason, the system-code debugger picks the wrong device, you can override this
by defining the logical DBGHK$ADAPTOR to the template device name for the

appropriate adaptor.

13.3 Troubleshooting Checklist

If you have trouble starting a connection, perform the following tasks to correct
the problem:

Check SCSNODE on the target system.

It must match the name you are using in the host CONNECT command.

Make sure that both the Ethernet and boot device are on the boot

command.

Make sure that the host system is using the correct Ethernet device, and
that the host and target systems are connected to the same Ethernet
segment.

Check the version of the operating system and make sure that both the
host and target systems are running the same version of the OpenVMS
Alpha operation gsystem.

13.4 Troubleshooting Network Failures

There are three possible network errors:

178

NETRERTRY

Displayed if the system-code debugger connection is lost.

SENDRETRY

Indicates a message send failure.

NETFAIL

Caused by the two previous messages.

Debugging a Device Driver
13.4 Troubleshooting Network Failures

The netfail error message has a status code that can be one of the following
values:

Value Status

2 AG Internal network error, submit an SPR with the code.

8,10,14,16,18,20,26,28,34,38 Network protocol error, submit an SPR with the code.

22,24 Too many errors on the network device most likely due to
congestion. Reduce the network traffic or switch to another
network backbone.

30 Target system scratch memory not available. Check DBGTK_
SCRATCH. If increasing this value does not help, submit an
SPR.

32 Ran out of target system scratch memory. Increase value of
DBGTK_SCRATCH.

All others There should not be any other network error codes printed. If
one occurs that does not match the above, submit an SPR.

13.4.1 Access to Symbols in OpenVMS Executive Images

Accessing OpenVMS executive images’ symbols is not always straightforward
with the system-code debugger. Only a subset of the symbols may be accessible
at one time and in some cases, the symbol value the debugger currently
has may be stale. To understand these problems and their solutions, you

must understand how the debugger maintains its symbol tables and what
symbols exist in the OpenVMS executive images. The following sections briefly
summarize these topics.

13.4.1.1 Overview of How the OpenVMS Debugger Maintains Symbols

The debugger can access symbols from any image in the OpenVMS loaded

system image list by either reading in the .DSF or .EXE file for that particular
image. The .EXE file only contains information about symbols that are part

of the symbol vector for that image. The current image symbols for any set
module are defined. (You can tell if you have the .DSF or .EXE by doing a
SHOW MODULE. If there are no modules you have the .EXE.) This includes

any symbols in the SYS$BASE_IMAGE.EXE symbol vector for which the code
or data resides in the current image. However, a user cannot access a symbol
that is part of the SYS$BASE_IMAGE.EXE symbol vector that resides in

another image.

179

Debugging a Device Driver
13.4 Troubleshooting Network Failures

180

In general, at any one point in time, the debugger can only access the symbols

from one image. (A later section describes how to get around this limitation).

It does this to reduce the time it takes to search for a symbol in a table. To

load the symbols for a particular image, use the SET IMAGE command. When

you set an image, the debugger loads all the symbols from the new image and

makes that image the current image. The symbols from the previous image

are in memory but the debugger will not look through it to translate symbols.

To remove symbols from memory for an image, use the CANCEL IMAGE
command (which does not work on the main image, SYS$BASE_IMAGE).

There is a set of modules for each image the debugger accesses. The symbol
tables in the image that are part of these modules are not loaded with the
SET IMAGE command. Instead they can be loaded with the SET MODULE
module-name or SET MODULE/ALL commands. As they are loaded, a new
symbol table is created in memory under the symbol table for the image. The
following figure shows what this looks like:

Figure 13-1 Maintaining Symbols

Symbol Table Symbol Table
for Image N-1 for Image N

Module Module
2 ‘. M

So, when the debugger needs to translate a value into a symbol or a symbol
into a value, it first looks at the current image to find the information. If it
does not find it there, then it looks into the appropriate module. It determines
which module is appropriate by looking at the module range symbols which are
part of the image symbol table.

Current Image

Symbol Table
for Image 1

ZK-7460A-GE

To see what symbols are currently loaded, use the DEBUG SHOW SYMBOL
command. This command has a few options to get more than just the symbol
name and value. See the OpenVMS Debugger Manual for more details.

Debugging a Device Driver
13.4 Troubleshooting Network Failures

13.4.1.2 Overview of OpenVMS Executive Image Symbols

Depending on whether the debugger has access to the .DSF or .EXE file,
different kinds of symbols could be loaded. Most users will have the .EXE file
for the OpenVMS executive images and a .DSF file for their private images—
that is, the images they are debugging.

The OpenVMS executive consists of two base images, SYS$BASE_IMAGE.EXE
and SYS$PUBLIC_VECTORS.EXE, and a number of separately loadable
executive images.

The two base images contain symbol vectors. For SYS$BASE_IMAGE.EXE
the symbol vector is used to define symbols accessible by all the separately

loadable images. This allows these images to communicate with each other
through cross-image routine calls and memory references. For SYS$PUBLIC_
VECTORS.EXE, the symbol vector is used to define the OpenVMS system
services. Because these symbol vectors are in the .EXE and the .DSF files, the
debugger can load these symbols no matter which one the user has.

All images in the OpenVMS executive also contain global and local symbols.

However, none of these symbols ever get into the .EXE file for the image.
These symbols are put in the specific modules section of the .DSF file if that
module was compiled /DEBUG and the image was linked /DSF.

13.4.1.3 Possible Problems You May Encounter

e Access to All Executive Image Symbols

When the current image is not SYS$BASE_IMAGE, but one of the

separately loaded images, the debugger does not have access to any of
the symbols in the SYS$BASE_IMAGE symbol vector. This means the user
cannot access (set break points, etc.) any of the cross-image routines or

data cells. The only symbols the user has access to are the ones defined by
the current image.

If the debugger only has access to the .EXE file, this means no symbols at
all for images with no symbol vectors. For .DSF files, the current image

symbols for any set module are defined. (You can tell if you have the
.DSF or .EXE by using the SHOW MODULE command—if there are no

modules you have the .EXE). This includes any symbols in the SYS$BASE_

IMAGE.EXE symbol vector for which the code or data resides in the

current image. However, the user cannot access a symbol that is part of

the SYS$BASE_IMAGE.EXE symbol vector that resides in another image.

For example, if you are in one image and you want to set a break point in

a cross-image routine from another image, you do not have access to the

symbol. Of course, if you know which image it is defined in, you can just do

a SET IMAGE, SET MODULE/ALL and then a SET BREAK.

181

Debugging a Device Driver
13.4 Troubleshooting Network Failures

182

There is a debugger workaround for this problem. The debugger and the

system-code debugger let you use the SET MODULE command on an

image by prefixing the image name with SHARE$ (SHARESYSBASE_

IMAGE for example). This treats that image as a module which is part of

the current image. In the previous figure, think of it as another module

in the module list for an image. Note, however, that only the symbols for

the symbol vector are loaded. None of the symbols for the modules of the

SHARE$xxx image are loaded. Therefore, this command is only useful for

base images.

So in other words, by doing SET MODULE SHARESYSBASE_IMAGE,

the debugger gives you access to all cross-image symbols for the VMS

Executive.

Stale Data From the Symbol Vector

When an OpenVMS Executive Based Image is loaded, the values in the
symbol vectors are only correct for information that resides in that based
image. For all symbols that are defined in the separately loaded images, it
contains a pointer to a placeholder location. For routine symbols this is a
routine that just returns an image not loaded failure code. A symbol vector
entry is fixed to contain the real symbol address when the image in which
the data resides is loaded.

Therefore, if the user does a SET IMAGE to a base image before all the

symbol entries are corrected, it will get the placeholder value for those
symbols. Then once the image containing the real data is loaded, the
debugger will still have the placeholder value. This means the user is
looking at stale data. One solution to this is to make sure to do a CANCEL
IMAGE and SET IMAGE on the based image in order to get the most up to
date symbol vector loaded into memory.

The CANCEL IMAGE/SET IMAGE combination does not currently work
for SYS$BASE_IMAGE because it is the main image and DEBUG does
not allow you to CANCEL the main image. Therefore, if you connect to
the target system early in the boot process, you will have stale data as
part of the SYS$BASE_IMAGE symbol table. However, the SET MODULE
SHARE$xxx command always re-loads the information from the symbol
vector. So to get around this problem you could SET IMAGE to an image
other than SYS$BASE_IMAGE and then do use CANCEL MODULE
SHARESYSBASE_IMAGE and SET MODULE SHARESYSBASE
IMAGE to do the same thing. The only other solution is to always connect
to the target system once all images are loaded which define the real
data for values in the symbol vectors. You could also enter the following
commands, and you would get the latest values from in the symbol vector.

Debugging a Device Driver
13.4 Troubleshooting Network Failures

SET IMAGE EXEC_INIT
SET MODULE/ALL

SET MODULE SHARESSYS$BASE_IMAGE

e¢ Problems with SYS$BASE_IMAGE.DSF

For those that have access to the SYS$BASE_IMAGE.DSF file, there

may be another complication with accessing symbols from the symbol
vector. The problem is that the module SYSTEM_ROUTINES contains the
placeholder values for each symbol in the symbol vector. So, if SYSTEM_
ROUTINES is the currently set module (which is the case if you are sitting
at the INI$BRK break point) then the debugger will have the placeholder

value of the symbol as well as the value in the symbol vector. You can see
what values are loaded with the SHOW SYMBOL/ADDRESS command.
The symbol vector version should be marked with (global), the local one is

not.

To set a break point at the correct code address for a routine when in this
state, use the SHOW SYMBOL/ADDRESS command on the routine symbol
name. If the global and local values for the code address are the same,
then the image with the routine has not been loaded yet. If not, set a
break point at the code address for the global symbol.

13.4.2 Sample System-Code Debugging Session

This section provides a sample session that shows the use of some DEBUG
commands as they apply to the system-code debugger. The examples in this
session show how to work with C code that has been linked into the SYSTEM_

DEBUG execlet. It is called as an initialization routine for SYSTEM DEBUG.

To reproduce this sample session, you need access to the SYSTEM_
DEBUG.DSF matching the SYSTEM_DEBUG.EXE file on your target
system and to the source file C'TEST_ROUTINES.C, which is available in
SYS$EXAMPLES. The target system is booted with the command bootflags 0,
8004 DKAO, ESAQ, so it stops at an initial breakpoint.

The example begins by invoking the system-code debugger’s character cell

interface.

183

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-1 Invoking the System-Code Debugger

§ define dbg$decwSdisplay " " ! Don’t use Motif version
$ debug/keep

OpenVMS Alpha Alpha DEBUG Version T2.0-001

DBG>

Use the CONNECT command to connect to the target system. In this example,
a password is not set up, and the example uses the logical DBGHK$IMAGE_
PATH for the image path; those qualifiers are not being used. You may need to

use them.

When you have connected to the target system, the DEBUG prompt is

displayed. Enter the SHOW IMAGE command to see what has been loaded.
Because you are reaching a breakpoint early in the boot process, there are

very few images. See Example 13-2. Notice that SYS$BASE_IMAGE has an
asterisk next to it. This is the currently set image and all symbols currently
loaded in the debugger come from that image.

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-2 Connecting to the Target System

DBG> connect %node_name TSTSYS

%DEBUG-I-EXPMEMPOOL, expanding debugger memory pool
DBG> sho image

image name set base address end address

ERRORLOG no 00000000 0000E000
NPROO 8005C000 8005EE00
NPRW1 80830200 80830800

EXEC_INIT no 8234C000 82366000
*SYSSBASE_IMAGE yes 00000000 00028000

NPROO 80002000 8000CA00
NPRW1 80804000 8081EA00

SYSS$CNBTDRIVER no 00000000 0000C000
NPROO 8000E000 8000F400
NPRW1 8081EA00 8081EE00

SYS$CPU_ROUTINES_0402 no 00000000 00016000

NPROO 80060000 80068E00
NPRW1 80830800 80833200

SYSSOPDRIVER no 00000000 00030000

NPROO 80010000 80013C00
NPRW1 8081EE00 8081F800

SYS$PUBLIC_VECTORS no 00000000 00008000
NPROO 80000000 80001600
NPRW1 80800000 80804000

SYSTEM_DEBUG no 00000000 00034000
NPROO 80014000 80034C00
NPRW1 8081F800 80827C00

SYSTEM_PRIMITIVES no 00000000 0002A000

NPROO 80036000 80050200
NPRW1 80827C00 8082E400

SYSTEM_SYNCHRONIZATION no 00000000 00016000
NPROO 80052000 8005BA00
NPRW1 8082E400 80830200

total images: 10 . bytes allocated: 517064

Example 13-3 shows the console display during the connect sequence. Note
that for security reasons, the name of the host system, the user’s name, and

process ID are displayed.

185

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-3 Target System Connection Display

DBGTK: Initialization succeeded. Remote system debugging is now possible.

DBGTK: Waiting at breakpoint for connection from remote host.

DBGTK: Connection attempt from host HSTSYS user GUEST process 45800572

DBGTK: Connection attempt succeeded

Example 13-4 Setting a Breakpoint

DBG> set image system_debug
DBG> show module
module name symbols size

C_TEST_ROUTINES no TE Sy)

FATAL _EXC no 3116

SERVER_NET no 2632

TARGET_KERNEL no 18296

total C modules: 5. bytes allocated: 549256.
DBG> set module c_test_routines

DBG> show module

module name symbols size

C_TEST_ROUTINES yes PS

FATAL_EXC no 3116
SERVER_NET no 2632

TARGET KERNEL no 18296

total C modules: 5. bytes allocated: 553848.
DBG> set language c

DBG> show symbol test_c_code*

routine C_TEST_ROUTINES\test_c_code3

routine C_TEST_ROUTINES\test_c_code2

routine C_TEST_ROUTINES\test_c_code
DBG> set break test_c_code

DBG> sho break

breakpoint at routine C_TEST_ROUTINES\test_c_code

To set a breakpoint at the first routine in the C_TEST ROUTINES module of
the SYSTEM_DEBUG.EXE execlet, do the following:

1. Load the symbols for the SYSTEM_DEBUG image with the DEBUG SET
IMAGE command.

Use the SET MODULE command to get the symbols for the module.

Set the language to be C and set a breakpoint at the routine test_c_code.

186

Debugging a Device Driver
13.4 Troubleshooting Network Failures

The language must be set because C is case sensitive and test_c_code needs
to be specified in lower case. The language is normally set to the language
of the main image, in this example SYS$BASE_IMAGE.EXE. Currently

that is not C.

Now that the breakpoint is set, you can proceed and activate the breakpoint.
When that occurs, the debugger tries to open the source code for that location
in the same place as where the module was compiled. Because that is not the
same place as on your system, you need to tell the debugger where to find the
source code. This is done with the DEBUG SET SOURCE command, which
takes a search list as a parameter so you can make it point to many places.

187

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-5 Finding the Source Code

DBG> go
break at routine C_TEST _ROUTINES\test_c_code

%DEBUG-W-UNAOPNSRC, unable to open source file DSKD$: [DELTA.SRC]C_TEST_ROUTINES.

(os

-RMS-F-DEV, error in device name or inappropriate device type for operation

80: Source line not available
DBG> set source sysSexamples:

Now that the debugger has access to the source, you can put the debugger into
screen mode to see exactly where you are and the code surrounding it.

Example 13-6 Using the Set Mode Screen Command

DBG> Set Mode Screen; Set Step Nosource

=3oRG; Module CUTEST ROUTINES “Setol | -SOUnCG =o =
63; if (xdt$fregsav[9] > 0)

64; *pVar = (*pVar + xdt$fregsav[17]) %xdt$fregsav([9];
65: else

66: *pVar = (*pVar + xdt$fregsav[17]);

67: xdt$fregsav[7] = test_c_code3(10);

68: xdt$fregsav[3] = test;
69: return xdt$fregsav [23];
HOS 3

71: void test_c_code(void)

Wa

WSs TNE. Tepe
74; int64 x64,y64;

WS

-> 76: x = xdt$fregsav([0];
TT: y = xdt$fregsav[1];
78: x64 = xdt$fregsav[2];

We y64 = xdt$fregsav[3];
80: xdt$fregsav[14] = test_c_code2 (x64t+y64, x+y, x64+x, &y64) ;
Sil s return;

SOO

= “OUT OU EDUER™ sais< sa > cenit bitin s Bash en eRe nna ate a ee eel eee

= PROMPT -error-program-prompt+<--e«<<<~<-.se<eoecee sue wea eae ee ee ee

(continued on next page)

188

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-6 (Cont.) Using the Set Mode Screen Command

DBG>

Now, you want to set another breakpoint inside the test_c_code3 routine. You

use the SCROLL/UP DEBUG command (8 on the keypad) to move to that
routine and see that line 56 would be a good place to set the breakpoint.
It is at a recursive call. Then you proceed to that breakpoint with the GO

command.

189

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-7 Using the SCROLL/UP DEBUG Command

SeRCicnoau le CUTEST ROUTINES -scroll-sourgets—< 935 —— eee

44: Source line not available

45: Source line not available

46: Source line not available

47: #pragma noinline(test_c_code, test_c_code2, test_c_code3)

48: extern volatile int64 xdt$fregsav[34]; /* Lie and say these are integer

ADs use iregsav because the debugger will r

50: be using those!*/

lhe

52: int test_c_code3 (int subrtnCount)

Sat

ban subrtnCount = subrtnCount - 1;
553 if (subrtnCount != 0)

56: subrtnCount = test_c_code3 (subrtnCount) ;

57: return subrtnCount;

583 }
59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)

60: {

61: xdt$fregsav[5] = in64;

62: xdt$fregsav[6] = in32;

63: if (xdt$fregsav[9] > 0)

64: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav [9];
65: else

= OUT) SOUL DU ea a eee

= PROMPT -error=program-prompt---------------------~----_----____

DBG> Scroll/Up

DBG> set break %Line 56
DBG> go
DBG>

When you reach that breakpoint, the source code display is updated to show
where you currently are, which is indicated by an arrow. A message also
appears in the OUT display indicating you reach the breakpoint at that line.

190

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-8 Break Point Display

- SRC: module C_TEST_ROUTINES -------------------------------+-------------------
46: Source line not available

47: #pragma noinline(test_c_code, test_c_code2, test_c_code3)

48: extern volatile int64 xdt$fregsav[34]; /* Lie and say these are integer
49): use iregsav because the debugger will r
50: be using those!*/
Bile:

52: int test_c_code3(int subrtnCount)

53a)

54: subrtnCount = subrtnCount - 1;

Sie if (subrtnCount != 0)

-> 56: subrtnCount = test_c_code3(subrtnCount) ;

Sy: return subrtnCount;

bee i

59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
60: {

61: xdt$fregsav[5] = in64;
62: xdt$fregsav[6] = in32;
63: if (xdt$fregsav[9] > 0)
64: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
65 else

66: *pVar = (*pVar + xdt$fregsav[17]);
67: xdt$fregsav[7] = test_c_code3 (10);

SOUL: OUR PUES acme Sia Ss SS PSB S PRT TR TESTE TASC TRESS SS
break at C_TEST_ROUTINES\test_c_code3\%LINE 56

Se Se te a CE LOD EOT Onl OOM nn a ee ee ee aie

DBG> Scroll/Up
DBG> set break %Line 56

DBG> go

DBG>

Now you try the DEBUG STEP command. The default behavior for STEP is

STEP/OVER unlike XDELTA and DELTA which is STEP/INTO. So normally

you would expect to step to line 57 in the code. However, because you have

a breakpoint inside test_c_code3 that is called at line 56, you will reach that

event first.

191

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-9 Using the Debug Step Command

- SRC: module C_TEST_ROUTINES -scroll-source

46: Source line not available

47: #pragma noinline(test_c_code, test_c_code2, test_c_code3)

48: extern volatile int64 xdt$fregsav(34]; /* Lie and say these are integer

49: use iregsav because the debugger will r

BO: be using those!*/

Sills

52: int test_c_code3(int subrtnCount)

Lyske af

54: subrtnCount = subrtnCount - 1;

55): if (subrtnCount != 0)
-> 56: subrtnCount = test_c_code3 (subrtnCount) ;

Swit return subrtnCount;

Dos
59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)

60: {
61: xdt$fregsav[5] = iné64;
62: xdt$fregsav[6] = in32;
63: if (xdt$fregsav[9] > 0)
64: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav [9];
65: else

66: *pVar = (*pVar + xdt$fregsav[17]);
67: xdt$fregsav[7] = test_c_code3 (10);

se CLUE S OU
break at C_TEST_ROUTINES\test_c_code3\%LINE 56

break at C_TEST_ROUTINES\test_c_code3\%LINE 56

- PROMPT -error-program-prompt

DBG>

DBG>

DBG>

DBG>

DBG>

192

Scroll/Up

set break %Line 56

go

step

Now, you try a couple of other commands, EXAMINE and SHOW CALLS. The
EXAMINE command allows you to look at all the C variables. Note that the
C_TEST_ROUTINES module is compiled with the /NOOPTIMIZE switch which
allows access to all variables. The SHOW CALLS command shows you the call
sequence from the beginning of the stack. In this case, you started out in the

Debugging a Device Driver
13.4 Troubleshooting Network Failures

image EXEC_INIT. (The debugger prefixes all images other than the main
image with SHARE$ so it shows up as SHARE$EXEC_INIT.)

193

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-10 Using the Examine and Show Calls Commands

=/SRC: module C TEST ROUTINES -serol }-soupce==<ee9 = 948 e ae ee

46: Source line not available
47: #pragma noinline(test_c_code, test_c_code2, test_c_code3)

48: extern volatile int64 xdt$fregsav[34]; /* Lie and say these are integer

49: use iregsav because the debugger will r
50: be using those!*/

pyle

52: int test_c_code3{int subrtnCount)

Scie
54; subrtnCount = subrtnCount - 1;

5S if (subrtnCount != 0)

-> 56: subrtnCount = test_c_code3(subrtnCount) ;

Sis return subrtnCount;

58: }

59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)

60: {
61: xdt$fregsav[5] = in64;

62: xdt$fregsav[6] = in32;
63: if (xdt$fregsav[9] > 0)

64: *pVar = (*pVar + xdt$fregsav[17])txdt$fregsav [9];
65: else

66: *pVar = (*pVar + xdt$fregsav[17]);
67; xdt$fregsav[7] = test_c_code3 (10);

= OUT =0UCpUL=s<s-e<se bse se - ose sSecasSeenacs Sea sae ee eon eee
break at C_TEST_ROUTINES\test_c_code3\%LINE 56

break at C_TEST_ROUTINES\test_c_code3\%LINE 56

C_TEST_ROUTINES\test_c_code3\subrtnCount: 8

module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 56 0000002C 8002A7CC
*C_TEST_ROUTINES test_c_code3 56 0000003C 8002A7DC
*C_TEST_ROUTINES test_c_code2 67 OOOOO00AC 8002A8A4
*C_TEST_ROUTINES test_c_code 80 00000084 8002A960

00000000 8234A244

00000000 8234A0C0
SHARESEXEC_INIT 00000000 82379BC4

- PROMPT -error-program-prompt-----------------------~------<.----~----- is
DBG> Scroll/Up
DBG> set break %Line 56
DBG> go

DBG> step

DBG> examine subrtnCount
DBG> show calls
DBG>

194

Debugging a Device Driver
13.4 Troubleshooting Network Failures

If you want to proceed because you are done debugging this code, first cancel

all the breakpoints and then enter the GO command. Notice however, that you
do not keep running but get a message that you have stepped to line 57. This
happens because the STEP command used earlier never completed. It was
interrupted by the breakpoint on line 56.

Note that the debugger remembers all step events and only removes them once

they have completed.

195

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-11 Canceling the Breakpoints

= SRG ‘module: CUTE Sty ROUT INESs=serol l= s0urtes= === <- e

47: #pragma noinline(test_c_code, test_c_code2, test_c_code3) ;

48: extern volatile int64 xdt$fregsav[34]; /* Lie and say these are integer

49; use iregsav because the debugger will r

50: be using those!*/

5:

52: int test_c_code3(int subrtnCount)

sie 4

54: subrtnCount = subrtnCount - 1;

55: if (subrtnCount != 0)

56: subrtnCount = test_c_code3(subrtnCount) ;
=> 57: return subrtnCount;

58: }

59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)

60; {
61: xdt$fregsav[5] = in64;
62: xdt$fregsav[6] = in32;

63: if (xdt$fregsav[9] > 0)

64: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav [9];
65r else

66: *pVar = (*pVar + xdt$fregsav[17]);
67: xdt$fregsav[7] = test_c_code3 (10);
68: xdt$fregsav[3] = test;

- OUT -output---

break at C_TEST_ROUTINES\test_c_code3\%LINE 56

break at C_TEST_ROUTINES\test_c_code3\%LINE 56

C_TEST_ROUTINES\test_c_code3\subrtnCount: 8

module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 56 0000002C 8002A7CC
*C_TEST_ROUTINES test_c_code3 56 0000003C 8002A7DC
*C_TEST_ROUTINES test_c_code2 67 OOOOO00AC 8002A8A4
*C_TEST_ROUTINES test_c_code 80 00000084 8002A960

00000000 8234A244

00000000 8234A0Cc0
SHARESEXEC_INIT 00000000 82379BC4

stepped to C_TEST_ROUTINES\test_c_code3\$LINE 57

- PROMPT -error-program-prompt-------------------------------------~--- 2
DBG> go

DBG> step

DBG> examine subrtnCount
DBG> show calls

DBG> cancel break/all
DBG> go

DBG>

196

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Next, enter a STEP command at a return statement. Returns are branches

on OpenVMS Alpha; however the debugger treats them as special cases. For
branches the default is STEP/OVER; however for return instructions the
default is STEP/INTO. You move up a level and are now at an event point at
line 56.

The reason you are at line 56 and not line 57 is that you have returned from

the subroutine; however you have not stored the result in subrtnCount yet.

197

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-12 Using the Step Command

= SRC: onda “PEST EROUTINES “=scroll=s0Uir ee ee

46: Source line not available

47: #pragma noinline(test_c_code, test_c_code2, test_c_code3)

48: extern volatile int64 xdt$fregsav[34]; /* Lie and say these are integer

49; use iregsav because the debugger will r
50: be using those!*/

pyllle

52: int test_c_code3(int subrtnCount)

Sst
54: subrtncount = subrtnCount - 1;

55: if “(subrincounts!=90))
=>) 56% subrtnCount = test_c_code3(subrtnCount) ;

SIs return subrtnCount;

58: }

59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)

60: {

61: xdt$fregsav[5] = in64;
62: xdt$fregsav[6] = in32;

63: if (xdt$fregsav[9] > 0)

64: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav [9];
65: else

66: *pVar = (*pVar + xdt$fregsav[17]);
Gi xdt$fregsav[7] = test_c_code3 (10);

= OUT =QUDpUU + =< Sno sen sees ses SSR t ee eee area See eee ae
break at C_TEST_ROUTINES\test_c_code3\%LINE 56

break at C_TEST_ROUTINES\test_c_code3\%LINE 56

C_TEST_ROUTINES\test_c_code3\subrtnCount: 8

module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 56 0000002C 8002A7CC
*C_TEST_ROUTINES test_c_code3 56 0000003C 8002A7DC
*C_TEST_ROUTINES test_c_code2 67 OOOOOOAC 8002A8A4
*C_TEST_ROUTINES test_c_code 80 00000084 8002A960

00000000 8234A244
00000000 8234A0Cc0

SHARESEXEC_INIT 00000000 82379BC4
stepped to C_TEST_ROUTINES\test_c_code3\%LINE 57
stepped to C_TEST_ROUTINES\test_c_code3\%LINE 56

- PROMPT -error-program-prompt---2- ie
DBG> step

DBG> examine subrtnCount
DBG> show calls

DBG> cancel break/all
DBG> go

DBG> step

DBG>

198

Debugging a Device Driver
13.4 Troubleshooting Network Failures

The STEP/RETURN command, a different type of step command, single steps
assembly code until it finds a return instruction. This command is useful if you
want to see the return value for the routine, which is done here by examining
the RO register.

For more information about using other STEP command qualifiers, see the

OpenVMS Debugger Manual. For other useful STEP qualifiers, see the
DEBUG documentation for more details.

199

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-13 Using the Step/Return Command

1 SRGsunodu le) CAPESTAROUTINES "ee Voll Bourse ern OMe see ee eee

47: #pragma noinline(test_c_code, test_c_code2, test_c_code3) ;

48: extern volatile int64 xdt$fregsav[34]; /* Lie and say these are integer

49; use iregsav because the debugger will r

50: be using those!*/

Ble

52: int test_c_code3 (int subrtnCount)

Sse. a

By subrtnCount = subrtnCount - 1;

BH: if (subrtnCount != 0)

56: subrtnCount = test_c_code3(subrtnCount) ;

=> Oui return subrtnCount;

Bee

59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
Oe 4

6 xdt$fregsav[5] = in64;
62: xdt$fregsav[6] = in32;
63: if (xdt$fregsav[9] > 0)
64: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav [9];

65: else

66: *pVar = (*pVar + xdt$fregsav[17]);
67: xdt$fregsav[7] = test_c_code3 (10);
68: xdt$fregsav[3] = test;

- QUT -output--~------~--------

break at C_TEST_ROUTINES\test_c_code3\%LINE 56

C_TEST_ROUTINES\test_c_code3\subrtnCount: 8

module name routine name line rel PC abs PC

*C_TEST_ROUTINES test_c_code3 56 0000002C 8002A7CC

*C_TEST_ROUTINES test_c_code3 56 0000003C 8002A7DC

*C_TEST_ROUTINES test_c_code2 67 OOOOO0AC 8002A8A4
*C_TEST_ROUTINES test_c_code 80 00000084 8002A960

00000000 8234A244
00000000 8234A0C0

SHARESEXEC_INIT 00000000 82379BC4
stepped to C_TEST_ROUTINES\test_c_code3\%LINE 57

stepped to C_TEST_ROUTINES\test_c_code3\%LINE 56
stepped on return from C_TEST_ROUTINES\test_c_code3\S%LINE 56+16 to C_TEST_ROUTI
C_TEST_ROUTINES\test_c_code3\%R0: 0

~- PROMPT -error-program-prompt--------------------------+--------...-+--.--...--.

DBG> show calls
DBG> cancel break/all
DBG> go

DBG> step

DBG> step/return

DBG> examine r0
DBG>

(continued on next page)

200

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-13 (Cont.) Using the Step/Return Command

After you finish the system-code debugging session, enter the GO command

to leave this module. You will encounter another INI$BRK breakpoint at the
end of EXEC_INIT. An error message indicating there are no source lines for
address 80002010 is displayed, because debug information on this image or
module is not available. The debugger leaves the source code for C_TEST_
ROUTINES on the screen; however, it is not valid.

Also notice that there is no message in the OUT display for this event. That is
because INI$BRKs are special breakpoints that are handled as SS$_DEBUG
signals. They are a method for the system code to break into the debugger and
there is no real breakpoint in the code.

Example 13-14 Source Lines Error Message

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------

%DEBUG-W-SCRNOSRCLIN, no source line for address 80002010 for display in SRC
45: Source line not available
46: Source line not available
47: #pragma noinline(test_c_code, test_c_code2, test_c_code3)
48: extern volatile int64 xdt$fregsav[34]; /* Lie and say these are integer
49: use iregsav because the debugger will r
50: be using those! */

5

52: ink test_c_code3(int subrtnCount)

Brn 4

54; subrtnCount = subrtnCount - 1;

55): if (subrtnCount != 0)
56: subrtnCount = test_c_code3(subrtnCount) ;

=> Ole return subrtnCount;

Selig
59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)

60: {
61: xdt$fregsav[5] = in64;
62r xdt$fregsav[6] = in32;
63: if (xdt$fregsav[9] > 0)

64: *pvar = (*pVar + xdt$fregsav[17])%xdt$fregsav [9];

65 else

break at C_TEST_ROUTINES\test_c_code3\%LINE 56

C_TEST_ROUTINES\test_c_code3\subrtnCount : 8

(continued on next page)

201

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-14 (Cont.) Source Lines Error Message

module name routine name line rel PC abs PC

*C_TEST_ROUTINES test_c_code3 56 0000002C 8002A7CC

*C_TEST_ROUTINES test_c_code3 6 0000003C 8002A7DC

*C_TEST_ROUTINES test_c_code2 67 OOO0000AC 8002A8A4

*C_TEST_ROUTINES test_c_code 80 00000084 8002A960
00000000 8234A244

00000000 8234A0C0

SHARESEXEC_INIT 00000000 82379BC4

stepped to C_TEST_ROUTINES\test_c_code3\%LINE 57

stepped to C_TEST_ROUTINES\test_c_code3\%LINE 56

stepped on return from C_TEST_ROUTINES\test_c_code3\%LINE 56+16 to C_TEST_ROUTI

C_TEST_ROUTINES\test_c_code3\%R0: 0

= NOME —eieie@ne=jercOle pete lin ONO SS SS SE SS I SSS

DBG> cancel break/all

DBG> go

DBG> step

DBG> step/return

DBG> examine r0

DBG> go

DBG>

If you enter GO, the target system boots completely, because there are no more

breakpoints in the boot path. The debugger will wait for another event to
occur.

If you enter the SHOW IMAGE command, more images are displayed.

202

Debugging a Device Driver
13.4 Troubleshooting Network Failures

Example 13-15 Using the Show Image Command

=PORCmMOCUIGE CeLES TOROUTTINE Sm =SCTO lhl = OUT Ce aaa ee

*DEBUG-W-SCRNOSRCLIN, no source line for address 80002010 for display in SRC
45: Source line not available
46: Source line not available

47: #pragma noinline(test_c_code, test_c_code2,test_c_code3)

48: extern volatile int64 xdt$fregsav[34]; /* Lie and say these are integer
49; use iregsav because the debugger will r
50: be using those! */
51:

52: int test_c_code3(int subrtnCount)
BSG af

54: subrtnCount = subrtnCount - 1;
S16 if (subrtnCount != 0)

56: subrtnCount = test_c_code3(subrtnCount) ;
=> return subrtnCount;

58: }

59: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)

60: {
61: xdt$fregsav[5] = in64;
62: xdt$fregsav[6] = in32;
63: if (xdt$fregsav[9] > 0)

64: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
65: else

NPRWO 80852C00 80853000
PRO1 824AA000 824ADE00

PRW2 824AE000 824AE600
* SYSTEM DEBUG yes 00000000 00034000

NPROO 80028000 80048C00

NPRW1 80823200 8082B600

SYSTEM PRIMITIVES no 00000000 0002A000

NPROO 8004A000 80064200

NPRW1 8082B600 80831E00

SYSTEM_SYNCHRONIZATION no 00000000 00016000

NPROO ; 80066000 8006FA00

NPRW1 80831E00 80833C00

total images: 43 bytes allocated: 713656
- PROMPT -error-program-prompt------------ Fe a ie ie eg ae

DBG> go

DBG> step

DBG> step/return

DBG> examine r0
DBG> go

DBG> show image
DBG>

203

|

| n
} ™ c™

) ry ie ow

peat is

|
|

hoa —

|
| a =)

@ _ 7

—
ee

tl A
_ ex? <= bei aks Geese ote
| Sshie” ASD Ghee
| . WMA ® +6) aero ‘7-7

@ pwd "Oa 14
| tau Vos! 5037
| RaceTN oe ame)

+o oe te 20s,
Sa Ghs AS
agen neAOhie
Rita. Weft aeons
. < oR ear &

DeiesOile turd

PartlV
Bus Support Information

Part IV describes bus-specific and processor-specific details that affect the
composition and operation of OpenVMS Alpha device drivers. It includes the
following chapters:

¢ Chapter 14 discusses Peripheral Component Interconnect (PCI) bus
concepts and implementations on Alpha platforms.

e Chapter 15 describes ISA device configuration on OpenVMS Alpha systems

that support ISA as an J/O bus.

¢ Chapter 16 describes Extended Industry Standard Architecture (EISA) bus
concepts and implementations on OpenVMS Alpha platforms.

ty © gle wright, UAV idly wr # — i om? O28 wal hy A ee

VineW —=—* +S
i —— a

No novsumneat nl how Yo oul

s THe a i) ~fctegp Eewend ‘vgae ¢

ge) wet 2 ratynd feb acteté FOV eee” ms is

ow! (iL teases ett! awenencls leader’ eeeeryud af :
» oclitly atet\ 2 popttetgaplige bap

cn! Pag of ABS
eed (ASI cpa aticay. enh a beibordr (a? PRIA

ore ae. «Aah Set peeet? um mowmelyen bas ¢
a _ et i wo

14
PCI Bus Support

This chapter discusses Peripheral Component Interconnect (PCI) bus concepts
and implementations on Alpha platforms.

PCI bus characteristics include the following:

e 32-bit address space with optional 64-bit addressing capability

e 32-bit data path with optional 64-bit data path

e Separate address spaces (see Section 14.1.)

e Synchronous bus operation at frequencies up to 33 MHz

33 MHz operation yields 132 MB/second peak performance: 33 * 10*6
cycles/second * 4 bytes/cycle = 132 MB/second.

A PCI bus is designed to accomodate multiple levels of buses. The PCI bus

closest to the CPU is accessed through a host-to-PCI bridge, which is called

the host PCI. Remote PCI buses are accessed through PCI-to-PCI bridge
chips, which are connected to PCI buses closer to the processor. Figure 14-1

illustrates a generic PCI-based platform configuration.

207

PCI Bus Support

Figure 14-1 PCI-Based Platform

Host PC]
Host

PCI Bridge

PCI/PCI Bndge

Remote PC]

ZK-8598A-GE

14.1 PCl Address Spaces

208

The PCI Specification (as described by the PCI Special Interest Group) defines
three separate 32-bit address spaces: configuration, I/O, and memory.

¢ PCI configuration space is intended for use primarily during booting and
configuration, although it is required to be accessible at all times.

e PCI I/O space is generally used for registers and control functions that
require byte and word length access. It is similar to EISA I/O space.

e PCI memory space is intended for devices with memory buffers that require

memory address space, such as frame buffers. It is also intended for device
registers. However, 64-bit addressing and 64-bit data transfers are also
defined for PCI memory space.

Digital platforms use a combination of different physical address regions and
CSR control bits to permit access to all three spaces. On the hardware level,

address spaces can be accessed by using different PCI transaction types. For

example, for a read to memory space, the hardware generates a Mem_Read
cycle. For a read to VO space, the hardware generates an IO_Read cycle. And
for a read to configuration space, the hardware generates a Config_Read cycle.

14.1.1

PCI Bus Support
14.1 PCl Address Spaces

The following subsections contain more details about these PCI address spaces.
For more information about the location and size of PCI physical address
spaces, see the appropriate system map in Appendix A.

PCI Configuration Space

Every PCI device has its own section of configuration space address space.
Within this configuration space the device must implement a predefined header

(called the configuraton space header) that is accessible at offset 0 in
the device configuration space. The configuration space header contains the
following information:

Vendor identification number
Device identification number

Device class and type

Base address registers

To determine which PCI devices are present in the system, PCI bus probing
routines attempt to read the vendor and device identification numbers from the
configuration space header of each potential PCI slot on the host-to-PCI bus.

The PCI specification defines a mechanism for accessing the configuration
space of all possible PCI devices, whether the devices are on the host PCI or

on a remote PCI. This mechanism encodes the following information to form a

unique configuration space address:

Bus number (0-255, where bus 0 is always the host PCI CPU)

Device number (0-31)
Function number (0-7)

The device number is analogous to a backplane slot number, although it is
really decoded by hardware into a chip select signal for a single PCI device.
Therefore, a PCI bus can be treated as a “slot-based” bus, which means that a

device can be found from the bus number and the device slot number.

To match the PCI specification’s definition of a configuration space address,

OpenVMS Alpha defines a PCI node number as shown in Figure 14-2.

Figure 14-2 PCI Node Number

31 16 15 si 7/ 3 2 0)

OC
ZK-7455A-GE

209

PCI Bus Support
14.1 PCI Address Spaces

14.1.2

14.1.3

210

Although 5 bits are required for the device number, electrical loading

considerations usually limit the number of PCI devices on a bus to less

than 32 devices.

The PCI specification defines up to 6 base address registers in the configuration

space header. The base address registers are used to locate the device in the

proper PCI address space (memory or I/O). Bus mapping software reads a

base address register to determine how much and what kind of address space

a device requires and then assigns the base address of the device by writing

a PCI physical address to the base address register. On Alpha systems, the

console assigns PCI address spaces.

A device may implement up to 6 base address registers. This allows a device

to use up to 6 separate address ranges for device registers or memory buffers.

Generally a device will only require one or two base address registers.

The predefined configuration space header and the base address registers
enable system independent software to locate all PCI devices in the system
address space, and to assign address space to devices in a conflict-free

configuration.

PCI I/O Space

Access to PCI I/O space is through a swizzle space address encoding with a
5-bit address shift. Only a small portion of the GB PCI I/O space is addressible
by the CPU (due to the 5-bit address swizzle). Some platforms allow access to
128 MB of PCI I/O space, while others may allow access to only the lowest 64
KB of PCI I/O space. Lack of addressibility of the entire PCI I/O address space
is not seen as a problem because PCI devices are encouraged to implement

device registers in PCI memory space, and INTEL processors can only access
64 KB of PCI I/O space.

PCl Memory Space

PCI memory space is accessible in both dense space and swizzle space. There

are separate platform physical address regions for swizzle space and dense
space. The access characteristics of each space are different. Swizzle space (5
bit address shift) is intended for byte, word, long, and quad access granularity.
The size of the transfer and which bytes will be transfered are encoded in
bits 6:3 of the CPU address. Software must align the data in the correct byte
lanes. This means that bytes will always appear in their natural byte lanes,
based upon byte address. To maintain ordering of data transfers, software
must issue memory barriers after each device access. Note that the platform
independent access routines IOC$READ_IO or IOC$WRITE_IO contain the
necessary instructions. Device control registers that are implemented in PCI
memory space should be assigned to swizzle space using the console.

PCI Bus Support
14.1 PCl Address Spaces

The minimum access granularity of dense space is a longword. In dense space,
the Alpha CPU address maps directly to the PCI address—there is no address
bit shifting as in swizzle space. Platforms are permitted to implement read
prefetching and write merging in dense space. Device control registers should
not be placed in dense space. Dense space is intended for frame buffers and
other on-chip buffers with memory-like behavior.

14.2 PCI Device Interrupts

The PCI Specification does not define an interrupt mechanism for I/O device

interrupts. Some systems implement interrupts using PC style interrupt
controller chips, such as the 8259. Other systems implement custom interrupt
handling logic.

In general, a distinction is made between motherboard PCI devices, which

are built into the system and always present, and option slot devices. A

motherboard device generally interrupts through a unique input on the system
interrupt controller.

For PCI option slots, the PCI Specification defines 4 interrupt signals per slot,

called INTA, INTB, INTC, and INTD. There are few rules about how systems

are supposed to present option slot interrupts to the system interrupt logic.
Some systems combine the INTx signals from each slot and present a single
slot interrupt to the system interrupt logic. Other systems present each INTx
signal as a unique interrupt to the system interrupt logic.

14.3 OpenVMS Alpha PCI Bus Support Data Structures

A PCI bus is represented by an Adapter Control Block (ADP) and an associated
bus array. The bus array has an entry for each PCI device attached to the bus.
The ADP address and PCI node number allow software to find the bus array
entry associated with a PCI device.

For more information about the ADP data structure, see Chapter 17.

14.4 Direct Memory Access (DMA) on the PCI Bus

Direct Memory Access (DMA) refers to PCI devices reading or writing system
memory. The PCI bus places no restrictions on DMA. From the point of view of
a PCI device, system memory can be viewed as another device on the PCI with

an assigned address space. A PCI device performs DMA operations by issuing

reads or writes to the address space assigned to system memory.

However, Alpha platform implementations place some restrictions on how

a PCI device must perform DMA. There are a number of reasons for these

restrictions, mostly related to EISA and ISA compatibility.

211

PCI Bus Support
14.4 Direct Memory Access (DMA) on the PCi Bus

212

Current Alpha platforms define at least two PCI DMA windows, which can be

thought of as the PCI memory address space assigned to system memory.

You can check the platform address map for each platform to see how the DMA

windows are set up on that machine. All platforms with a PCI bus will have

at least one scatter/gather PCI DMA window. For maximum driver portability,

you should code your driver to use the scatter/gather map for DMA. In

OpenVMS Alpha, scatter/gather support (also known as map register support)

is accomplished through the use of the generic counted resource management

routines IOC$ALLOC_CRCTX, IOC$ALLOC_CNT_RES, and IOC$LOAD_MAP.

For detailed information about these routines, see Chapter 19.

PCI bus implementations on Alpha platforms define two ways for PCI devices

to access main memory: scatter/gather memory access and physical memory

access. In scatter/gather memory access, the PCI address generated by

a PCI device is translated to a main memory address by a scatter/gather
table. In physical memory access the PCI address generated by a PCI

device is translated to a main memory address by the addition of a constant.
Scatter/gather memory access is called scatter/gather DMA. Physical memory
access is called physical (or direct) DMA.

Each memory access technique has advantages and disadvantages. Scatter
/gather DMA allows access to all system memory, but it is more complex to
program. Physical DMA is easier to program, but it may limit the amount of
main memory that can be addressed.

Alpha PCI platforms implement scatter/gather DMA and physical DMA
through DMA address windows on the PCI bus. A PCI DMA address
window is an address range on the PCI bus through which PCI devices (and
EISA/ISA devices behind the PCI/EISA bridge or PCI/ISA bridge) access main
memory. The Alpha platforms that support PCI buses (AlphaServer 2000,
AlphaServer 2100, AlphaServer 1000, AlphaServer 400, AlphaServer 8200,
AlphaServer 8400, AlphaStation 200, AlphaStation 250) provide a minimum
of two DMA address windows on the PCI bus. A DMA address window can
be a physical DMA window, where a PCI bus address is a linear function of a
system memory address, or a scatter/gather DMA window, where a PCI bus
address undergoes a page table translation before becoming a main memory
address.

Figure 14—3 shows a typical platform, in which a maximum of 2 GB of the PCI
memory address space maps to main memory. A PCI address in the range 1GB
to 2 GB, the direct DMA window, is combined with a base register to produce a
main memory address between 0 and 1GB.

PCI Bus Support
14.4 Direct Memory Access (DMA) on the PCI Bus

Figure 14-3 Example of PCI Memory Address Space Maped to Main Memory

PCI Memory Main Memory
Address Scatter-Gather Address

(0) 0

Scatter—
Gather

1GB
1GB

DMA
Window

2GB

ZK-8597A-GE

Alpha platforms that support PCI buses have both a physica! DMA window
and a scatter/gather DMA window. In OpenVMS Alpha Version 6.2, the scatter

/gather DMA window is based at PCI address 0 and extends to a maximum
address of 3FFFFFFF (the actual size of the scatter/gather DMA window is a
function of the amount of physical memory in the system). In OpenVMS Alpha
Version 6.2, the physical DMA window is typically based at a PCI address
above the scatter/gather DMA window.

The IOC$NODE_DATA routine includes two function codes that allow drivers

to find the base of the physical DMA window in a platform independent
manner. The format of the IOC$NODE_DATA routine is as follows:

int iocSnode_data (CRB *crb, int function_code, void *user_buffer)

213

PCI Bus Support
14.4 Direct Memory Access (DMA) on the PCI Bus

214

Inputs:

crb Address of CRB. IOC$NODE_DATA uses the crb$l1_node

and the vecS$ps_adp fields to find the data structures
associated with the I/O bus to which this device is

connected.

function_code From iocdef .h in SYS$LIB_C.TLB. Specifies information

to be returned by IOC$NODE_DATA.

user_buffer Address of caller’s buffer. On success, the requested
information is returned in the caller’s buffer.

Outputs:

SS$_NORMAL Normal successful completion. Requested information is
returned in the caller’s buffer.

SS$_ ILLIOFUN Unrecognized function code.

SS$_BADPARAM Bad parameter. Usually this means that crb$l_node
contains an invalid slot number. Check that the driver

has been loaded with the /node qualifier.

When called with function code IOC$K_DIRECT_DMA_ BASE, the

IOC$NODE_DATA routine returns the base address of the physical DMA

window. The base address is returned as a 64-bit value in anticipation of

future 64-bit I/O buses. For this reason, the caller of the IOCSNODE_DATA

routine should make sure the user_buffer argument points to a quadword cell
when using the IOC$K_DIRECT_DMA BASE function code.

When called with function code IOC$K_DIRECT_DMA SIZE, the IOC$NODE_
DATA routine returns the size of the physical DMA window, expressed in

megabytes. The size of the direct DMA window is returned as a 32-bit value.

Using the physical DMA window for device DMA is straightforward. Once you
have found the base of the physical DMA window using the IOC$NODE_DATA

routine, you must adjust the DMA address that you assign to the device by

adding the physical DMA window base to the main memory DMA buffer
address. For example, on a typical system the physical DMA window is based
at the PCI address 40000000 and extends to 7FFFFFFF. PCI addresses in the
range from 40000000 to 7FFFFFFF are passed to main memory addresses 0
to 3FFFFFFF. This means that if you have a DMA buffer at main memory
address 0, the PCI device would access this buffer at PCI address 40000000.
The correspondence of main memory address and PCI DMA addresses is
derived by the following formula:

PCI DMA address = (main memory buffer address) + (base of physical DMA window)

PCI Bus Support
14.4 Direct Memory Access (DMA) on the PCI Bus

Note that the size of the physical DMA window limits the amount of physical
memory that can be addressed by a PCI, EISA, or ISA device. In the physical
DMA window, it is not possible for an I/O device to address more than 1 GB

of physical memory. For this reason, on large memory systems you may want
to code your driver to perform DMA in the scatter/gather window. To perform
scatter/gather DMA, use the counted resource management routines described
in the Chapter 5.

14.5 Probing a PCI Bus to Find Devices

The PCI bus support module contains a PCI bus probe routine that steps
through the device number of each potential PCI device on the host PCI and
on any remote PCIs. For each PCI slot on the host PCI, the PCI probe routine
attempts to read the vendor ID and device ID from the configuration space
header of the device. If a device responds with a valid Vendor ID, the following
information is recorded in the bus array entry for the PCI device:

Bus Array Entry Fields Description

busarray$q_hw_id Device ID in bits 31:16. Vendor ID in bits
15:0.

busarray$q_csr Virtual address of base of PCI config space
for this device.

busarray$1_node_number PCI node number. Device number in bits
7:3. Function number in bits 2:0. Bus
number in bits 15:8.

busarray$l_int_vec Interrupt SCB entry or system IRQ for this
busarray$l_sys_irq device.
busarray$l_bus_specific_l

Figure 14—4 shows a bus array entry for a PCI device found during bus

probing. |

215

PCI Bus Support
14.5 Probing a PCI Bus to Find Devices

Figure 14-4 Bus Array Entry for PCI Device During Bus Probing

63 32 31 6)

config space virtual address

PCI node number

ZK-7459A-GE

0x0

Ox8

0x10

0x18

0x20

0x28

14.6 Accessing Registers on PCI Buses

To access registers on a PCI device, you must do the following:

1. Determine the PCI physical address assigned to the device. (See
Section 14.6.1.)

2. Map the PCI physical address into the processor’s virtual address space
using the IOC$MAP_IO routine. (See Section 14.6.2.)

3. Access the device using either the platform independent access routines
IOC$READ_IO or IOC$WRITE_IO or using the CRAM data structure and
associated routines IOC$CRAM_CMD and IOC$CRAM_IO.

14.6.1 Using IOCSREAD_PCI_CONFIG and IOCSWRITE_PCI_CONFIG
Routines

As described in Section 14.1.1, a PCI device may implement up to 6 base
address registers in its configuration space header. On Alpha platforms, the

console assigns PCI address space to each PCI device by writing a PCI physical
address into a base address register.

OpenVMS Alpha provides two routines for accessing PCI configuration space.
The formats of the IOC$READ_PCI_CONFIG and IOC$WRITE_PCI_CONFIG
routines are as follows:

int ioc$read_pci_config (ADP *pci_adp, int pci_node, int offset, int length, int *data

int ioc$write_pci_config (ADP *pci_adp, int pci_node, int offset, int length, int data

216

PCI Bus Support
14.6 Accessing Registers on PCI Buses

Inputs:

pci_adp Address of PCI ADP. Available to driver from IDB$PS_ADP.

pci_node PCI node number. Function number in bits 2:0, device
number in bits 7:3, bus number in bits 15:8. Available to
driver from CRB$L_NODE. (driver must be loaded with
/NODE qualifier).

offset Byte offset in configuration space of field to be read or
written.

length Length of data field (expressed in bytes) to be read or
written. Must be 1 (byte), 2 (word), 3 (tribyte), or 4
(longword).

data For reads, a pointer to a longword cell to be written with the
data read from configuration space. For writes, a longword
containing the data to be written to configuration space.

Outputs:

SS$_NORMAL Success. For reads, data is returned in the
caller’s buffer. For writes, data is written to PCI
configuration space.

SS$_BADPARAM Failure. Could not find configuration space
address for the specified PCI node number.

These routines acquire the MCHECK spinlock (raising IPL to 31) to ensure

that they are single threaded. This is necessary because configuration space
access involves manipulation of hardware registers in the host PCI interface.

You must use these routines to access configuration space. Do not be tempted
to use the configuration space base virtual address from the bus array.

These routines do not perform byte lane alignment of the data. For reads, data
is returned in its natural byte lane. For writes, data must be positioned in its
natural byte lane. In this context, natural byte lane means:

Figure 14-5 PCI Configuration Space Byte Lanes

31 24 23 16 15 bed 0

ZK-7458A-GE

For example, if you read a field of length 2 bytes from offset 2 in the

configuration space header, the data will be returned in bits 31:16.

217

PCI Bus Support
14.6 Accessing Registers on PCI Buses

14.6.1.1

218

You should use IOC$READ_PCI_CONFIG to read the PCI physical address

from the base address register(s) in your device’s configuration space. The

device specification should indicate which base address registers are used by

your device and should give you their offsets in the configuration space header

for the device.

The following example shows a call to the IOC$READ_PCI_CONFIG routine
that reads the Vendor ID from PCI configuration space:

int vendor_id;

int status;

status = ioc$read_pci_config (pci_adp,
crb->crb$l1_node,

0, /* vendor id offset wey

2 /* vendor id is 2 bytes */
&vendor_id);

The vendor ID will be returned in bits 15:0 of the vendor_id longword (the
Vendor ID is a 2 byte field starting at configuration space offset 0).

PCI Configuration Space Base Address Register Format

A PCI configuration space base address register can specify a PCI memory

space address or a PCI I/O space address. The two forms of a base address
register are as shown in Figure 14-6 and Figure 14~—7.

Figure 14-6 Memory Format Base Address Register

A Sa 6

[besos TT T Te]
ZK-7457A-GE

Figure 14-7 W/O Format Base Address Register

31 ZL @

[__ Baswhaess ‘da
Bit 1 Reserved.
Bit 0 Set to one to indictate I/O format Base Address register.

ZK-7456A-GE

14.6.2

PCI Bus Support
14.6 Accessing Registers on PCI Buses

The specification for your device should state which base address registers are
implemented and which PCI address spaces (memory or I/O) they describe.
In general, if your device requires an address region in PCI I/O space, there
will be a base address register that contains the starting address of the PCI
I/O space assigned to your device. You can read this base address register
using the IOC$READ_PCI_CONFIG routine. However, before you call the
IOC$MAP_IO routine to map the PCI physical I/O address, you should clear
bit 0 in the data returned from the read of an I/O format base address register

before passing the address to the IOC$MAP_IO routine. For a PCI I/O address,
you should specify the IOC$K_BUS_IO_BYTE_GRAN attribute in the call to
IOC$MAP_IO.

Likewise, if your device requires an address region in PCI memory space, there
will be a base address register that contains the starting address of the PCI
memory space assigned to your device. You can read the base address register

using the IOC$READ_PCI_CONFIG routine. You should clear bits 3:0 of the

data returned from the read of a memory format base address register before
passing the PCI physical address as an argument to the IOC$MAP_IO routine.

For a PCI memory address, you can specify either the IOC$K_BUS_MEM_
BYTE_GRAN attribute (to map device registers) or the IOC$K_BUS_MEM__

DENSE attribute (for on-board device memory buffers). You should check the
return status on calls to IOC$MAP_IO, because not all attributes are supported

on all platforms.

If a call using one of the attributes fails, try the other attribute. If you cannot
map the device, there is a problem and you should file a QAR.

If your device requires multiple address regions in PCI memory or I/O space,
you should call IOC$READ_PCI_CONFIG and IOC$MAP_IO to map each
region.

Mapping a PCI Physical Address

Once you have obtained the PCI physical address of a device, you must map
the address into the processor’s virtual address space.

The correspondence between PCI physical address and platform physical
address varies according to whether you want the address to be mapped into
PCI I/O space, PCI swizzled memory space, or PCI dense memory space.
The platform physical address regions corresponding to each of the PCI
address spaces differ from platform to platform. To abstract these differences,
OpenVMS Alpha provides a platform independent I/O bus mapping routine

called IOC$MAP_IO. IOC$MAP_IO allows a programmer to express a mapping

request in terms of the device and desired access characteristics, without
regard to the underlying platform address map and addressing techniques. For
more information about using the IOC$MAP_IO routine, see Chapter 19.

219

PCi Bus Support
14.6 Accessing Registers on PCI Buses

The IOC$MAP_IO routine must be called at IPL 8 or lower because is may

acquire the MMG spinlock; and the caller cannot be holding any spinlocks of

higher rank than MMG.

In the following example, a call to the IOC$MAP_IO routine maps 64 KB of

PCI I/O space in a region offering byte granularity starting at PCI I/O address

0.

int status;
uint64 iohandle;
uint64 pci_physical_address = 0;

status = ioc$map_io (pci_adp,
crb->crb$1_node,

&pci_physical_address,
16*4096,
IOCS$K_BUS_IO_BYTE GRAN,

&iohandle) ;

14.7 Configuring a PCI Device and Loading A Device Driver

14.7.1

14.7.2

220

You can configure a PCI device and load a device driver manually using the
System Management (SYSMAN) utility IO CONNECT command or by writing
an IOGEN Configuration Building Module (ICBM) that is invoked by the
SYSMAN IO AUTOCONFIGURE command. The following sections describe
both methods.

Autoconfiguring a PCI Device

If you write an IOGEN Configuration Building Module (ICBM) to autoconfigure

your device, the ICBM will be called when the upper level autoconfiguration
routines find a PCI ADP. An ICBM performs the same steps described in this
section and makes an explicit call to SYS$LOAD_DRIVER to configure your
device. See Chapter 12 for more information about how to write an ICBM.

Configuring a PCI Device Manually

To configure a PCI device manually and load its driver, you can use the
SYSMAN IO CONNECT command.

Manually configuring a PCI device using the SYSMAN IO CONNECT
command is similar to configuring devices on other I/O buses. The differences
are in specifying the /CSR qualifier and the (VECTOR qualifier.

To configure your device, use the following command to invoke the SYSMAN
utility:

$ MCR SYSMAN

ar PCI Bus Support
14.7 Configuring a PCI Device and Loading A Device Driver

At the SYSMAN> prompt, enter the IO CONNECT command as follows:

$ SYSMAN> IO CONNECT devname

/driver = drivername

/vector = %x system_IRQ

/node = PCI_slot_number

/adapter = adapter_number

/csr = %x PCI_slot_base_virtual_address

devname

Specifies the OpenVMS device name of your device. This should be specified
as a standard OpenVMS device name~a 2 letter device code, a controller letter,
and a unit number.

adapter
This qualifier specifies the ADP that represents the bus to which your device is
connected.

csr

Required by the driver loading program. The value specified in the /CSR
qualifier is copied to the idb$q_csk field by the driver loading program. On

some buses, this qualifier is used to tell the driver the physical address at
which the device is located. However, for PCI, the physical address information
is stored in the Configuration Space header of the device, as explained earlier.
Therefore, this qualifier is not useful for PCI and should be specified as
/CSR=9.

PCI device drivers are expected to call IOC$MAP_IO for address space
mapping.

node
Identifies the PCI device to the PCI bus support routines. The value specified
in the /NODE qualifier is copied to the crb$1_node by the driver loading

program. Use the Node value from the IO SHOW BUS display that is
associated with your device.

vector

Used by the driver loading program to connect your driver interrupt service
routine to a hardware interrupt vector.

To find the interrupt vector for your device, you must run SDA on a running

system. The ADP list and bus arrays are set up as shown in the following

diagram. You must find the bus array entry for your PCI device. The bus
array entry contains the interrupt vector offset that should be used as the

value for the /VECTOR qualifier.

221

PCi Bus Support
14.7 Configuring a PCI Device and Loading A Device Driver

The ADP list on a platform with a PCI bus is as shown in Figure 14-8. Note

that there may be intervening ADPs between the System ADP and the PCI

ADP.

Note

There may be more than one PCI ADP. To determine the PCI bus to

which your device is connected, you must use the SDA CLUE CONFIG

command.

Figure 14-8 PCI Bus System ADP List

System ADP

ioc$gl_adplist

PCI ADP

adp$l_link

adp$l_tr

adp$ps_bus_array

ZK-7454A-GE

System global cell IOCSGL_ADPLIST points to a list of ADPs. An ADP is
an OpenVMS Alpha data structure that represents an adapter. The PCI
interface is an example of an adapter. The system ADP is always the first
ADP in the list. Each ADP has a bus array, which is pointed to by ADP cell
ADPSPS_BUS_ARRAY. A bus array consists of a header and a number of entries
There is an entry in the bus array for each device connected to the bus. .

222

14.7.3

PCi Bus Support
14.7 Configuring a PCI Device and Loading A Device Driver

The structure definition of the ADP is available in [SYSLIB]SYS$LIB_C.TLB.
You can use the Librarian utility to extract an ADP definition. For example:

LIBR /ALPHA /EXTRACT=ADPDEF /OUT=ADPDEF.H SYSS$LIB_C.TLB

The structure definition of the bus array is also available in [SYSLIB]JSYS$LIB _

C.TLB. For example:

LIBR /ALPHA /EXTRACT=BUSARRAYDEF /OUT=BUSARRAYDEF.H SYSS$LIB_C.TLB

Example

This example explains how to traverse the ADP list to find the interrupt vector
offset for your PCI device.

Invoke SDA and use the CLUE CONFIG command to find the TR number
number associated with the display information of your device.

Enter the following information:

$ ANALYZE/SYS

SDA> READ SYS$LOADABLE_IMAGES: SYSDEF
SDA> FORMAT @IOC$GL_ADPLIST

SDA displays all of the fields of the system ADP.

Find the address in the adp$1l_link field.

Format that address as follows:

SDA> FORMAT ADDR_FROM_ADPS$L_LINK

SDA displays all of the fields of the next ADP in the ADP list. Search
the adp$l1_link pointers until you find the ADP with a TR number that
matches the TR number in the adp$1l_tr field. This matching TR number

is the PCI ADP. Note that the PCI ADP will usually be the second ADP in

the list.

When ‘you have found the PCI ADP, get the address from the

adpSps_bus_array field.

Note that the SDA FORMAT command does not work on the

bus array structure. The key points to remember about the bus
array is that the header is three quadwords and each entry is

BUSARRAYENTRY$K_ LENGTH bytes. As of OpenVMS Alpha Version

7.0, BUSARRAYENTRY$K_LENGTH is seven quadwords. On releases

prior to Version 7.0, BUSARRAYENTRY$K_LENGTH is six quadwords.

Figure 14-9 shows the bus array header.

223

PCI Bus Support
14.7 Configuring a PCI Device and Loading A Device Driver

Figure 14-9 PCI Bus Array Header

63 32 31 node number fe)

parent ADP Ox0

ZK-8659A-GE

The bus array entries start after the bus array header. Figure 14-16 shows
a generic bus array entry.

Figure 14-10 Generic bus array entry

63 32 31 1@)

ZK-8660A-GE

224

PCI Bus Support
14.7 Configuring a PCI Device and Loading A Device Driver

A PCI bus array entry is shown in Figure 14-11.

Figure 14-11 PCI Bus Array Entry

63 32 31 16 15 0

ZK-7453A-GE

0x10

0x18

Ox20

0x28

e When you have used SDA to find the PCI ADP and bus array, you should
examine the bus array until you find the device ID and vendor ID of your

device from PCI space. This information is the bus array entry for your

device.

Note that the interrupt vector offset is in the bus_specific_1 field of the
bus array entry for your device. This is the value that you should use for
the /VECTOR qualifier in the SYSMAN IO CONNECT command.

Once you have entered the interrupt vector value, it will not change when
you reboot the system. However, if you move your device to a different slot

or if you move your device to a different machine, you will have to find the

new interrupt vector.

225

'catue evs iud

unrG 2 all &onlsere hence

~

=“

= ~~ y a

= ee ~ ay ——— a>

7 a

& a ae

? oe 4
— 7 ——— oe

a eo a.
ae a —_ Sap ae?

=~} - = G28

La ,

ub "a @ CL) 1 spl ee

om T2704 io “Se A

coe te fine ==> 2! af ott ee
fy aik As wer ve say. os) a oe aso=t om

Doar," MEMEO) LL AD eee e othe .

| Pa 2ere up 4 7 la ye adel ast ~ — _

Ns a-pt “_ [ye ee am :

>

ae er OP alipeaeen 4

15
ISA Bus Support

Alpha platforms with Peripheral Component Interconnect (PCI) and Industry

Standard Architecture (ISA) I/O bus support use industry standard bus
components to implement the ISA bus interface. For this reason, the Alpha
platforms provide the same set of bus resources for ISA options that are

available on a PC. These bus resources are IRQ lines, DMA channels, I/O

ports, and ISA memory buffers.

To allocate the bus resources to the various ISA devices that require them,
some resource management is required. On ISA machines, the console
provides an ISACFG command that allows a user to enter ISA configuration

data into the system NVRAM. ISA bus support and bus configuration routines
then extract the ISA configuration data from the console NVRAM. The
console NVRAM ISA configuration data is referred to as the console ISA
configuration table.

The console ISA configuration table contains resource usage information for
each of the ISA devices in the system. An additional mechanism interprets
the table entries and loads the correct drivers for the devices that are present.
The OpenVMS SYS$MANAGER:ISA_CONFIG.DAT file stores driver

and device name information. A user can edit this file to enter ISA bus
configuration information as well as driver and device names. OpenVMS ISA

bus configuration routines use the console ISA configuration table as a source
of ISA bus resource usage and use the ISA_CONFIG.DAT file as a source of
driver loading information, which includes driver and device names.

This chapter describes ISA device configuration on machines that support ISA
as an I/O bus, and it contains procedures for configuring an ISA device. It also
provides an example SYS$MANAGER:ISA_CONFIG.DAT file.

Note

For information about configuring ISA cards on an EISA bus, see

Chapter 16.

227

ISA Bus Support
15.1 OpenVMS ISA Bus Configuration

15.1 OpenVMS ISA Bus Configuration

The basic strategy for ISA bus configuration in OpenVMS is to configure the

devices found in the console ISA configuration table, and then configure the

devices found in the ISA_CONFIG.DAT file.

During booting, the I/O bus mapping routine INIS$IOMAP probes the console

ISA configuration table and copies bus configuration information from

the console ISA configuration table to the ISA ADP/Busarray. During

autoconfiguration, IOGEN$ISA_CONFIG walks the ADP/Busarray and

configures the devices found in the Busarray. IOGEN$ISA_CONFIG then

opens file ISA_CONFIG.DAT and configures the devices found in the file.

15.2 Adding a Device

228

A machine fresh from the factory contains a console ISA configuration table
with entries for all of the built-in devices (keyboard, mouse, com1, com2, Ipt1,

and floppy) and entries for any factory installed ISA options. Each console
ISA configuration table entry lists the bus resources consumed by that device,
as well as a 16 byte HANDLE (an ASCII character string), that is used to
identify the device. OpenVMS will configure all factory installed and built-in

devices using data from the console ISA configuration table. OpenVMS uses
the HANDLE field of each console ISA configuration table entry to associate a
device and a driver.

To configure an add-in ISA option device, you must first enter the IRQ used by

the device in the censole ISA configuration table as described in Section 15.2.1.

i ee eee ae

This step is done prior to booting the operating system, so that the

console knows that a particular IRQ is in use by an ISA device. This
will prevent the console from assigning this IRQ to a PCI device. If
you do not perform this step, the system might become unresponsive
(“hang”) because two devices are trying to use the same IRQ.

After you boot the operating system, you can load a driver for an ISA device in
one of two ways:

e Using ISA_CONFIG.DAT file

e Manually by using the System Management (SYSMAN) utility

See Section 15.2.2 and Section 15.2.3 for more information about both of these
methods.

ISA Bus Support
15.2 Adding a Device

15.2.1. Entering Interrupt Request Line (IRQ) Assignments

As mentioned in Section 15.2, before you add optional devices to an ISA bus,
you must enter the IRQ used by the device in the console ISA configuration

table using the ISACFG command as described in this section. For additional
information about the ISACFG command, see the AlphaStation 400 Series

User Information manual. The SRM console on your Alpha system assigns
interrupt vectors to the PCI devices plugged into the PCI option slots. The

console automatically assigns an available interrupt request line (IRQ) to
each PCI device based on the configuration information stored by the console
configuration utility with the system.

To avoid a conflict where an IRQ that you want to use for an ISA device is
already reserved for a PCI device, use the console configuration utility to
reserve the IRQ for the ISA device. As noted in Section 15.2, these conflicts
might cause the system to become unresponsive because two devices are trying
to use the same IRQ.

The commands you enter at the console prompt (>>>) are similar to the
following:

>>> isacfg -mk -etyp 1 -enadev 1 -dev 0 -slot x -irq0d y

>>> init

Note the following conventions:

e xis the ISA option slot into which you insert the card.

For more information about ISA option slots, see the NODE=x description

in Section 15.2.2.

e y is the IRQ that you are reserving for your device.

Note the following as well:

¢ To verify that your command correctly reserved the IRQ, enter the following

command:

>>> isacfg -all

The system will display the entire data structure of ISA configuration
information stored in the console, including the IRQ you just reserved.

e Ifyou made an error, you can enter the following command to cancel the

assignment:

>>> isacfg -rm -dev 0 -slot x

229

ISA Bus Support
15.2 Adding a Device

If you are using your system as a Universal Platform booting the UNIX

operating system, you may have already made an entry using the console

configuration utility. You do not need to enter the information again. (If

you do, the system will display a message informing you that the slot is

already reserved for an existing ISA device.)

If you want to override the existing information enter the following

command:

>>> isacfg -mod -slot x -dev 0 -etyp 1 -enadev 1 -irq0 y

Note the following conventions:

e x is the ISA option slot into which you insert the card.

e y is the IRQ assigned to the device.

Note that this specific command does not affect other configuration
information values stored for the device; the command modifies only the
IRQ information.

15.2.2 Configuring a Device with an ISA_CONFIG.DAT File

230

If you are using the ISA_CONFIG.DAT file to configure your device,

you must first copy SYS$MANAGER:ISA_CONFIG.TEMPLATE to
SYS$SPECIFIC:[SYSMGR]JISA_CONFIG.DAT.

Then edit the ISA_CONFIG.DAT file to specify the device name, driver name,

and other ISA bus resource usage (such as DMA channels, I/O ports, and

memory buffers) for your device. (This is analogous to editing config.sys on

a PC.) You must enter the IRQ for your device in ISA_CONFIG.DAT, even

though you already entered the IRQ in the console ISA configuration table (as
described in Section 15.2.1).

The main advantage of using ISA_CONFIG.DAT for add-in ISA option
configurations is that the device is automatically configured. There is no
need to write an ICBM or to use the SYSMAN IO CONNECT command, even
for devices that OpenVMS does not support.

The ISA_CONFIG.TEMPLATE file is shipped in the system manager’s
directory with examples of configuration entries for many ISA cards. The
file is shipped with all entries commented out. An example entry from the
SYS$MANAGER:ISA_CONFIG.TEMPLATE file is as follows:

ISA Bus Support
15.2 Adding a Device

; Example 1: To indicate that the DE202 Card is plugged into slot 1,
: using IRQ 5, I/O ports 300-30F, and memory buffer DOOOO-DFFFF, enter
‘ the following into this SYS$SPECIFIC: [SYSMGR] ISA_CONFIG. DAT.

[ERAO]@
NAME=ER@ ; device name

DRIVER=SYSSERDRIVER@® ; driver name
NODE=1 ; plugged into ISA Option slot 1

PORT= (300:10)@ ; 16 bytes starting at 300
MEM= (D0000:10000)@ ; 64 Kbytes starting at D0000
USER_PARAM = thinwire@ ; optional user parameter. Available to

; driver via IOCSNODE_DATA call using function
code of IOCSK_ISA_USER_PARAM=18.

IRQ=5@ ; device is using irg 5

@ The opening bracket indicates that the following lines contain ISA
configuration information. This is basically an entry delimiter. The
text between the brackets is not used for anything.

@ The NAME=xx field allows specification of a standard two letter OpenVMS
device name. This two-letter string, along with a controller letter and
a unit number, is passed to the driver loading service as a standard

OpenVMS device name. The two-letter device string is also copied directly
to the busarray$q_hw_id field in the ISA bus array entry specified by the
node field.

© The DRIVER=drivername specifies the driver that should be loaded for
this device. This name is limited to 16 ASCII characters, not including the
implicit .EXE.

© The NODE=x field is used by OpenVMS to keep track of where ISA
configuration information is stored in the operating system data structures.
Note that any correspondence with the actual location of the device in

a physical bus slot is not needed. However, if you are configuring more
than one ISA device in the ISA_CONFIG.DAT file, you must use unique
node numbers to avoid confusing the OpenVMS ISA bus configuration
code. It might be helpful to label the ISA option slots 1, 2, 3, 4, etc. with a
permanent felt-tip marker starting with the slot on the bottom (assuming
the system is an upright model). Then use these slot numbers for the
NODE=x portion of the ISA_CONFIG.DAT entries. When you enter the
IRQ for your device at the console with the ISACFG command, the slot
number that you specify must match the node number specified in the
entry for the device in the ISA_CONFIG.DAT file.

@ The IRQ=x field tells OpenVMS ISA configuration code which IRQ is being
used by the device. OpenVMS ISA configuration code derives the interrupt

vector that will be used by the driver interrupt service routine from the

ISA IRQ.

231

ISA Bus Support
15.2 Adding a Device

232

Even though you specified the IRQ at the console with the ISACFG

command, you also must specify the same IRQ here.

On AlphaStation 200 and 400 Series systems, the built-in devices use many

of the available ISA IRQ lines as shown in Table 15-1.

Table 15-1 Available ISA IRQ Lines
nnn nee EEE

Device
ET

coe COMM Ter Os: BOM) (Heo Co IND etc

Be Se Se SS Cl CO ND) ac

TIMER (built-in)

KBD (built-in)

Dual 8259 cascade

COM2 (built-in)

COM1 (built-in)

Available for PCI or ISA option slot

FLOPPY (built-in)

LPT1 (built-in)

Interval timer (not used on these systems)

SOUND (built in device on AlphaStation 200 only), available for PCI or
ISA option slot on AlphaStation 400

Available for PCI or ISA option slot

PCI NCR810 SCSI (built-in)

MOUSE (built-in)

DMA buffer chaining (not available outside PCV/ISA bridge)

Available for PCI or ISA option slot

Available for PCI or ISA option slot

Note that only IRQs 5, 9, 10, 14, and 15 are available for add-in devices
on AlphaStation 400 Series systems. Only IRQs 5, 10, 14, and 15 are

available on AlphaStation 200 Series systems because the built-in sound
card uses IRQ 9. These are the only IRQ lines available for all of the PCI
and ISA option slots.

You must be careful not to specify an IRQ that is in use by another device
because there is currently no IRQ sharing in OpenVMS. Only one driver
interrupt service routine can be connected to an IRQ. If you mistakenly
overload an IRQ, only one driver (the one that is loaded last) will ever get
interrupts from that IRQ. .

ISA Bus Support
15.2 Adding a Device

@ The PORT=(x:y) field allows specification of the I/O port usage of the
option. Up to 9 I/O port ranges can be listed:

PORT= (aati byccsdyie. } where aa and cc are the ISA I/O port base
é ; addresses for the device, and b,d indicate

; ; the number of bytes to be reserved.
; ; Up to 9 separate I/O port ranges can be

; ; specified.

If a driver needs to know which I/O ports its device is using, the driver can

call the IOC6NODE_DATA routine to get the I/O port information. See

Section 15.3 for more information about the IOC$NODE_DATA routine.

@ The MEMs=(x:y) field allows specification of the ISA memory buffers used
by the ISA device. Up to 4 memory buffers can be specified:

; MEM=(ee:f,gg:h,...) ; where ee and gg indicate the base ISA memory
: ; address for the device’s on-card buffer, and

: ; £,h indicate the size of the buffer in bytes.

; ; Up to 4 different memory buffer address
. ; ranges can be specified.

© The USER_PARAM- field is an optional user parameter that allows the
user to create a string (72 bytes maximum) that is then available to the

driver by way of the IOC$NODE_DATA routine. This technique is limited
to applications that use the ISA_CONFIG.DAT file.

This particular example did not specifiy a DMA channel, because this
ISA card does not use DMA channels. To specify a DMA channel, use the

following:

DMA= (Qh kine) where j and k are values (0-7) that
; specify which channel(s) of the DMA
; controller this device is using to
; relay information.

You may specify up to 4 DMA channels for your device. Note that you can

specify a DMA channel only on ISA buses, not on ISA devices on EISA

buses.

After you have edited the ISA_CONFIG.DAT file, reboot the machine. Your

device should be automatically configured, and the driver should be loaded.

233

ISA Bus Support
15.2 Adding a Device

15.2.3 Configuring an ISA Device Manually

234

To configure your ISA device manually , you can also use the System

Management (SYSMAN) utility instead of using ISA_CONFIG.DAT file.

The following example shows how to configure your device using the SYSMAN

IO CONNECT command:

To configure your device, use the following command to invoke the SYSMAN

utility:

$ MCR SYSMAN

At the SYSMAN> prompt, enter the IO CONNECT command as follows:

SYSMAN> IO CONNECT devname /ADAPTER=x /DRIVER=drivername -

/NODE=ISA_slot_number /CSR=%x ISA_slot_base_virtual_address /VECTOR=irg*4

The parameters to the IO CONNECT command are as follows:

devname

Specifies the OpenVMS device name of your device. This should be specified
as a standard OpenVMS device name—a 2 letter device code, a controller letter,

and a unit number.

/ADAPTER=x
Specifies the OpenVMS software adapter number of the ISA bus. In order
to use the /ADAPTER argument with IO CONNECT command, you must
indentify the TR number of the ISA ADP. To find this information, display the
I/O adapters known to OpenVMS by entering the following command:

$ ANALYZE/SYSTEM
SDA> CLUE CONFIG

The CLUE CONFIG command displays system configuration and adapter
configuration information. The TR number is located under the TR heading in
the adapter configuration section. For example, the following display shows the
output of the CLUE CONFIG command for an AlphaStation 400 Series system
running OpenVMS V6.2:

SDA> CLUE CONFIG

ISA Bus Support
15.2 Adding a Device

Adapter Configuration:

TR Adapter (Address) Hose Bus Node Device Name HW-ID/SW
Name

1 KAODO2 (80D589C0) 0 BUSLESS SYS

2eeeCr (80D58BC0) 0 (PCT

PKA: 6 NCR53C810 00011000
Ii SATURN 04848086

EWA: 12 TULIP 00021011
GOA: 13 PCI1280 30320E11

By IES (80D5AC40) Oo) any

4 XBUS
0 EISA_SYSTEM_BOAR 00000016

(80D5B140) 0 XBUS
0 MOUS 53554F4D
(RED 0044424B

TTA: 2 COM2 324D4F43
TTB: 3 NS16450 00016450
LRA: APPT 3154504Cc
DVA: 5 AHA1742A_FLOPPY 504F4C46

In this display, you can see that the ISA bus adapter is TR number 3. Because
you are plugging a device in to the ISA bus, specify /ADAPTER=3 in the

SYSMAN IO CONNECT command. This will cause your driver data structures
to be associated with the ISA bus data structures.

/DRIVER=drivername
The DRIVER=drivername qualifier specifies the file name of the driver that is

to be loaded.

/NODE=slot
The /NODE=slot qualifier identifies the OpenVMS ISA bus array entry that
will be used to store configuration information about your ISA device. Note
that this need not have any correspondence with the physical ISA slot cutouts
on the back of the machine. It is necessary, however, that you do not configure

more than one device into the same slot. It is also necessary that the slot
argument match the slot number that you specified when you entered the

console ISACFG command to reserve the IRQ. As mentioned earlier, it is

suggested that you label the ISA bus slots and use those slot numbers in the
console ISACFG command, in the ISA_CONFIG.DAT file Gf you decide to

configure your device using this file), and in the /NODE=slot qualifier in the

SYSMAN IO CONNECT command (if you decide to configure your device this

way).

235

ISA Bus Support
15.2 Adding a Device

236

/CSR=baseaddress

The driver loading service that is called by the SYSMAN IO CONNECT

command requires the /CSR=baseaddress input qualifier. The driver loading

service copies the base address from the /CSR=baseaddress qualifier to the

idb$q_csr field in the IDB. The Base CSR can be taken from the ISA ADP’s

adp$q_csr field, as shown in the following example:

SDA> READ SYSSLOADABLE_IMAGES: SYSDEF.STB

%SDA-I-READSYM, 6611 symbols read from SYSSCOMMON: [SYS$LDR] SYSDEF.STB;1

SDA> FORMAT 80D5AC40

80D5AC40 ADP$Q_CSR 828C8000
80D5AC44 FFFFFFFF
80D5AC48 ADPSW_SIZE 0140
80D5AC4A ADP$B_TYPE 01

Note that adp$q_csr is a 64 bit field: FFFFFFFF.828C80000. The base
address of ISA I/O space is a useful value for ISA device drivers and should be

the value specified in the /CSR=baseaddress argument.

Note that if you code your driver using the IOC$MAP_IO routine to map

your device register space, you may not need the baseaddress from the
/CSR=baseaddress qualifier. However, you still must supply something for
the /CSR=baseaddress qualifier, because it is required by the driver loading

service. If you are using IOC$MAP_IO and you are not depending on any base
address value being passed to you by the driver loading service, you should say
/CSR=0 for this argument.

IVECTOR=irq*4
The /VECTOR=irq*4 qualifier specifies to the driver loading service the
software interrupt vector in use by your device. Your driver interrupt service
routine is connected to the software interrupt vector and will be invoked when
your device generates a hardware interrupt. The irq value in this qualifier
must be the same as the IRQ value that you specified when you entered the
console ISACFG command to reserve the ISA irq.

ISA Bus Support
15.3 Using IOCSNODE_DATA and IOC$NODE_FUNCTION Routines for ISA Buses

15.3 Using IOC$NODE_DATA and IOC$NODE_FUNCTION
Routines for ISA Buses

This section describes how to use the IOC$NODE_DATA and IOC$NODE_

FUNCTION routines for a device driver using an ISA bus.

The bus support routine IOC$NODE_DATA is called by a driver to get bus

slot/platform-specific information. The uses and capabilities of this routine
vary from bus to bus. The bus support routine IOC$NODE_FUNCTION is
called to perform bus slot-specific actions on behalf of a driver, such as enabling
interrupts for a bus slot.

This section contains the prototypes for the IOC$NODE_DATA and
IOC$NODE_FUNCTION routines. For more information about these routines,

see Chapter 19.

The formats of the IOC$NODE_DATA and IOC$NODE_FUNCTION routines
are:

int iocSnode_data (CRB ‘*crb, int function_code, void *user_buffer)

int ioc$Snode_ function (CRB *crb, int function_code)

Both of these routines use the crb$l_node field from the CRB to find the ADP
and ISA bus array entry for the device. The supported function codes for

IOC$NODE_DATA on the ISA bus are as follows:

IOC$K_EISA_IRQ Return IRQ used by device

IOC$K_EISA DMA CHAN Return DMA channel used by device

IOC$K_EISA_MEM_CONFIG Return memory buffer(s) used by device

IOC$K_EISA IO PORT Return I/O port(s) used by device

On the ISA bus, IOC$NODE_DATA uses the crb$1_node field from the CRB
to find the ADP and the ISA bus array entry for the device. The ISA bus
array entry contains a pointer to a data structure called an ISA_CFG_DATA

(defined by isacfgdef .h in SYS$LIB_C.TLB) to find the requested information.
The contents of the ISA_CFG_DATA are derived from two places. If you are
configuring your device using the ISA_CONFIG.DAT file, the information
returned by IOC$NODE_DATA is derived from the entry that you made in
ISA_CONFIG.DAT for your device. If you are configuring your device using the
SYSMAN IO CONNECT command, there should not be an entry in the ISA_

CONFIG.DAT file. In this case the information returned by IOC6NODE_DATA

is derived from the entry for your device in the console ISA configuration table,

which you created when you used the console ISACFG command to reserve the
IRQ for your device.

237

ISA Bus Support
15.3 Using IOC$NODE_DATA and IOC$NODE_FUNCTION Routines for ISA Buses

When calling IOC$NODE_DATA, you must supply a user buffer large enough

to contain the information. The data size returned for each of the previously

mentioned function codes is as follows:

IOC$K_EISA IRQ The IRQ used by the device is returned as a 32

bit int.

IOC$K_EISA_DMA_CHAN The DMA channel number assigned to the
device is returned as a 32 bit int. If more
than one DMA channel is specified in ISA_
CONFIG.DAT, then each one is returned as
an int (an array of ints should be declared to
receive the information).

IOC$K_EISA_MEM_CONFIG The memory buffer used by the device is
returned in an array of two consecutive 32
bit ints. The first array element contains the
ISA bus base memory buffer address, and the
second array element contains the memory
buffer size (in bytes). If more than one memory
buffer is specified in ISA_CONFIG.DAT, each
one is returned in an array of ints. You should
declare an array of ints that is big enough to
contain all of the memory buffer information
used by your device.

IOC$K_EISA_IO_ PORT The I/O port information used by the device is

returned as 32 bit integers. The low 16 bits
of the 32 bit integer contain the base I/O port,
and the upper 16 bits contain the number of
consecutive I/O ports from the base I/O port.
If more than one I/O port is specified in ISA_
CONFIG.DAT, each one is returned as a 32 bit
int. You should declare an array of ints large
enough to contain all of the I/O port information
used by your device.

The supported function codes for IOC$NODE_FUNCTION on the ISA bus as
follows:

IOC$K_ENABLE_INTR Enables hardware device interrupt in the ISA
interrupt control logic

IOC$K_ DISABLE _INTR Disables hardware device interrupt in the ISA
interrupt control logic

IOC$NODE_FUNCTION also uses the crb$1_node field from the CRB to find
the ADP and ISA bus array entry for the device. IOCSNODE_ FUNCTION
then finds the IRQ used by the device and either enables (if called with the
IOC$K_ENABLE_INTR function code) or disables (if called with the IOC$K
DISABLE_INTR function code) the IRQ line used by the device. -

238

ISA Bus Support
15.4 Determining an Available ISA IRQ

15.4 Determining an Available ISA IRQ

To determine which IRQs are available for use by an ISA device, you must

check a few things. The console utility will have IRQs reserved for system

board devices, for ISA Option slot devices that have been entered by the user,
and for any PCI Options that have been installed.

The file SYS$MANAGER:ISA_CONFIG.DAT may contain resource information
for ISA option devices that the console does not know about.

In an AlphaStation 200 Series, the only available IRQs for ISA and PCI Option
devices are 5, 10, 14, 15. In the AlphaStation 400 Series, the Audio option is
not present, so the available IRQ list is 5, 9, 10, 14, 15. Note that thare are

more option slots available than there are IRQs.

To determine if any of these IRQs are already consumed by devices previously
installed in the system (either at the factory or by the user), you can follow
this procedure:

1. Issue the console command ISACFG -ALL. This will output a list of all the
ISA devices (and their resources) that the console knows about, including
system board devices and any option slot devices that the user has entered.

Search the output from this command to see if any of the IRQs from the
available list are consumed by previously installed devices.

2. PCI Option slot devices report their interrupts through ISA IRQs also.

The console is responsible for assigning these IRQs. It does so in a linear
fashion, starting with the lowest numbered IRQ that is not specified as

reserved in the console ISA configuration table. Each consecutive PCI slot
is assigned the lowest available IRQ until all PCI options are assigned or

we run out of IRQs. If there are no ISA Option slot device entries in the
console ISA configuration table, the PCI Options would be assigned IRQs
in order from the available list. If there is an entry for an ISA option slot
device, in the table, specifying IRQ 9, then any PCI Option slot devices
would be assigned IRQs from the list 5,10,14,15. (Audio is a good example

of this.)

Use the console SHOW CONFIG command to list all the PCI devices.
Note that the Intel SIO Bridge does not require an interrupt, and that the

NCR 53C810 SCSI chip is hardwired to IRQ 11. Any other PCI devices

that show up will consume IRQs from the available list in the manner

previously described.

239

ISA Bus Support
15.4 Determining an Available ISA IRQ

3. Boot the system and look through the file SYS$MANAGER:ISA_

CONFIG.DAT for valid entries (not commented out). They will be

specifying an IRQ. (Note that there should already be an entry reserving

this IRQ in the console ISA configuration table if proper procedure is

followed). If you find an IRQ listed that is not already specified in the

console data, make an entry using the console ISACFG command as

described earlier in this chapter.

Any remaining IRQs are available for use by a new ISA Option card.
Please note that you must reserve the IRQ using the console to ensure that
an IRQ is reserved for your device.

15.5 Troubleshooting

240

This section contains information that might help you to solve some common
problems that you might encounter while configuring your ISA device. If you

have trouble adding a new device to the system, you can check a few things.
More than likely, the device you are trying to add is conflicting with an existing

device’s ISA Resource assignments. For possible resource conflicts, check
the output from the console’s ISACFG -ALL command and compare with the
contents of your SYS$MANAGER:ISA_CONFIG.DAT file.

Possible types of conflicts and suggested solutions include the following:

ISA IRQ conflicts

As mentioned in Section 15.4, on AlphaStation 200 and 400 Series systems
there are more option slots than there are IRQs.

ISA I/O port, DMA channel, and memory buffer conflicts

Choose a new resource for your board, or adjust the existing boards resource so
that the needed one is available.

Slot numbering conflicts
ISA does not have slot numbers. OpenVMS requires some way to keep track
of devices in the ISA bus and uses slot number as a convenient method. If
there are slot number conflicts in the ISA_CONFIG.DAT file, the OpenVMS
code will overwrite the first driver’s resource information with the last driver’s
information and fail to load the first driver.

You must also ensure that there are no slot number conflicts between the
console data and the ISA_CONFIG.DAT data.

Valid ISA slot numbers for the AlphaStation Series 200/400 are 1, 2)3;and 4,

ISA Bus Support
15.5 Troubleshooting

If you made changes to your SYS$MANAGER:ISA_CONFIG.DAT file and

can no longer boot, you should boot conversationally using the following
command. (Remember to re-enable autoconfiguration after the problem has
been resolved.)

>>> boot -flags 0,1 <boot_device>

SYSBOOT> SET NOAUTOCONFIGURATION 1
SYSBOOT> CONTINUE

This will boot OpenVMS without configuring any of your I/O devices. You can
then edit the SYS$MANAGER:ISA_CONFIG.DAT file to correct any problems.

If you made changes to the console data and are prevented from booting, use
the console ISACFG command to remove the changes that you made.

15.6 System Board Resources for AlphaStation 200 and 400
Series Systems

System board resources for AlphaStation 200 and 400 Series systems are as
follows:

COM1: IRQ=4, I/O port=3F8:8

COM2: IRQ=3, I/O port=2F8:8

EET: IRQ=7, I/O Port=378:8

FDC: IRQ=6, I/O port=3F0:8, DMA chan=2

Mouse: IRQ=C, I/O port=60,64

Keyboard: IRQ=1, I/O port=60,64

TOY Clock: I/O port=70,71

PCI NCR810 IRQ=B, I/O port=26,27
SCSI:

Sound: (This is a system board device on AlphaStation 200 Series only)

IRQ=9,
VO Ports=388:4,530:8,
DMA chan=(0,1)

Timer IRQ=0
/Counter:

241

ISA Bus Support
15.6 System Board Resources for AlphaStation 200 and 400 Series Systems

INTEL
SIO PCI ; ‘
/ISA Bridge IRQ=2 (Cascade IRQ for the dual 8259 on the bridge chip)

interrupt IRQ=D (used for DMA Buffer Chaining, unconnnected on these

logic: systems)
IRQ=8 (used for interval timer, unconnected on these systems)

DMA=4 (used by the DMA controller as the cascade line)

15.7 Sample ISA_CONFIG.DAT File

This section contains a sample ISA_CONFIG.DAT file that is similar to the file

you can edit.

Te SpA COR Ns iig lan GunomeD eaves

This file informs the OpenVMS AXP operating system which

devices are connected to the ISA bus.

Note: Do NOT make changes in this file.
To add option devices to this file you must first copy

this template file (SYSSMANAGER: ISA_CONFIG.TEMPLATE)

to SYSSSYSROOT: [SYSMGR] ISA_CONFIG.DAT. Then edit the file

SYSSSYSROOT: [SYSMGR] ISA_CONFIG.DAT to add devices.

Contents of this file:

o Description of configuration command sets

o Example configuration command sets for supported ISA option cards

o System board resources for AlphaStation 200 and 400 series systems

Conventions used in this file:

o Characters following a semi-colon (;) are comments.

o All numbers must be specified in hexadecimal.

o You must separate records in the file by using square brackets
around each ISA device that is specified (for example, [xyzn]).

o Spaces are ignored.

o Note the following about keywords:

- Keywords can be in any order, *except* in the following
instance: the NAME keyword must precede the NODE keyword or

‘

‘

‘

!

.
’

.
t

,

.
t

.
i?

,

,

.
1

,

,

.
ij

,

!

,

.
rf

.
,

,

!

'

!

’

'

.
‘

’

(1

t

,

'

,

,

.
,

t

242

ISA Bus Support
15.7 Sample ISA_CONFIG.DAT File

the SYSMAN IO SHOW BUS command will not include the ISA
devices in the display.

- Each keyword must be on its own line.

- All keywords required for a device must be included before
the next record [xyzn] begins.

Description of Configuration Command Sets:

Specify the following information for each ISA device. Note
that the NAME, DRIVER, NODE, and IRQ fields are required.

Note that fields that are

the device does not use a

NAME=xx

DRIVER=driver_name

TRQ=i

NODE=n

DMA= (j,k,

PORTS (dasbace diners)

MEM=(ee:f,gg:h,...)

not used must be omitted. For example, if
DMA channel you must omit the DMA parameter.

; where xx is the 2-letter device code,

(for example: ER for the DE202)

; The name of the driver stored in

SYSSLOADABLE_IMAGES.

For example: SYSSERDRIVER for the DE202, and

SYSSIRDRIVER for the Proteon Token Ring card.

where i is a value (0-F) that specifies which

ISA IRQ the device uses to report interrupts.

where n is the ISA option slot number
the device is plugged into.

where j and k are values (0-7) that

specify which channel(s) of the DMA
controller this device is using to
relay information.

Note the comma between indicators and the
parenthesis that indicates a list
of parameters.

Up to 4 DMA channels can be specified.

where aa and cc are the ISA I/O port base
addresses for the device, and b,d indicate
the number of bytes to be reserved.

Up to 9 separate I/O port ranges can be

specified.

where ee and gg indicate the base ISA memory

address for the device’s on-card buffer, and

f,h indicate the size of the buffer in bytes.
Up to 4 different memory buffer address

243

ISA Bus Support
15.7 Sample ISA_CONFIG.DAT File

244

FLAGS = n

USER_PARAM = text

; ranges can be specified.

- Currently, bits 1 & 2 are the only flags in

- use. Bit 1 indicates that the device being

; configured is a SCSI adapter. Therefore, if
the adapter is a SCSI device, set this bit

to 1. This will allow IOGENSSCSI_CONFIG (which
; probes for devices on the SCSI bus) to locate

; the devices.

- Bit 2 indicates that the device should be
: loaded with novector specified (No interrupt

is required for the device. Set bit 2 if
; you want your device loaded with the NOVECTOR

; parameter

; This parameter is dedicated solely for
; driver writer use. A pointer to a copy of
; text is passed back in the user_buffer
; parameter from a call to IOCSNODE_DATA
; using a function code of IOC$K_ISA_USER_PARAM

(note that the text is limited to 72 chars)

KHEKKKKKKKKKK KK KKK KKK KEK EKER IMPORTANT KEKE KKK KEE KEKE KK KEKE KEE KKK KEK KKK EKEE

o For all of the following examples, be sure to verify that the
switches and jumpers on the card being inserted are set to
match the specified parameters BEFORE you remove the comment
characters (;) from this file.

o Be sure that there are no conflicting resource assignments between
devices (including the built-in devices on the system board and the
PCI option slot device IRQ assignments.)

o Be sure to copy SYSSMANAGER: ISA_CONFIG.TEMPLATE to

SYS$SYSROOT: [SYSMGR] ISA_CONFIG.DAT before making changes.

A list of resources assigned to system boards follows the examples.

FORK RRR RRR OR ROK OR ORR RRR RR RR RK RE EK RRR EEK EK

Example Configuration Command Sets for Supported ISA Option Cards

Following are examples of configuration command sets necessary to
automatically configure option cards that are not shipped with
the system.

Example 1: To indicate that the DE202 Card is plugged into slot 1,

ISA Bus Support
15.7 Sample ISA_CONFIG.DAT File

using IRQ 5, I/O ports 300-30F, and memory buffer DOQ00-DFFFF, enter
the following into this file:

[ERAO]
; NAME=ER

; DRIVER=SYSSERDRIVER

NODE=1 ; plugged into ISA Option slot 1
eLRO=5

; PORT=(300: f£) ; 15 bytes starting at 300

; MEM=(D0000:10000) ; 64Kbytes starting at DO000

: USER_PARAM = thinwire ; optional user parameter is passed directly

* back to driver

Example 2: To configure the DigiBoard PC/8 card, remove the comment
characters (;) from the following. (Be sure to verify that the
switches are set to match the indicated resources, or change the
resource lists to match the switches.) Note that the Master Status
register address is expected to be listed first by SYSSYSDRIVER.

[TTAO]
; NAME=TT

; DRIVER=SYS$YSDRIVER

ROS

NODE=2 ; plugged into ISA Option slot 2
; PORT=(390:8,398:8, 3a0:8, 3a8:8, 3b0:8, 3b8:8, 3c0:8, 3c8:8, 3d0:8)

Note that this configures only a single port on the card. The
remaining 7 ports each need to be connected manually using the
following command:

$ MCR SYSMAN IO CONNECT/NOADAP/DRIVER=SYSSYSDRIVER TTAx:

; where x is the unit number

Example 3: To configure the Proteon Token Ring card using

IRQ A, DMA channel 7, I/O Ports A20-A3F, STP media and

speed of 16 Mbits remove the comment characters from the

following commands.

[IRAQ]
NAME=IR
NODE=4
DRIVER=SYS$IRDRIVER

IRQ=A
DMA=7
PORT= (A20: 20)
USER_PARAM="STP,16"

System Board Resources for AlphaStation 200 and 400 Series Systems

245

ISA Bus Support
15.7 Sample ISA_CONFIG.DAT File

246

COM1:
IRQ=4, I/O port=3F8:8

COM2:
IRQ=3, I/O port=2F8:8

LPT:
IRQ=7, I/O Port=378:8

FDC:

IRQ=6, I/O port=3F0:8, DMA chan=2

Mouse:

TRO=C, 1/0 port=60,64

Keyboard:
IRQ=1, I/O port=60, 64

TOY, Cllock:
ite On pOre— Ori

PCI NCR810 SCSI:
IRQ=B, I/O port=26,27

Sound: (This is a system board device on AlphaStation 200 Series only)
IRQ=9, I/O Ports=388:4,530:8, DMA chan=(0,1)

Timer/Counter:

IRQ=0

INTEL SIO PCI/ISA Bridge interrupt logic:

IRQ=2 (Cascade IRQ for the dual 8259 on the bridge chip)

(used for DMA Buffer Chaining, unconnnected on these systems)
IRQ=8 (used for interval timer, unconnected on these systems)

(used by the DMA controller as the cascade line)

16
EISA Bus Support

The EISA bus, which is an extension of the ISA bus, is designed to allow ISA
customers to protect their hardware investment. EISA increases the data
path to 32 bits, adds software readable product IDs (essential to automatic
configuration), contains slot-specific I/O addressing, and provides active-low

level sensitive interrupts (potentially allowing true sharing of IRQ levels). It
accepts 8 and 16 bit ISA cards and 32 bit EISA cards.

EISA offers higher bandwidth than ISA, due to the increased data path
width, and is thus suited to faster processors. The EISA bus functionality is a
superset of the ISA bus; cards that work on the ISA bus also work on the EISA
bus.

On Digital systems, the EISA bus is used as an I/O bus, normally accessed

through a PCI-to-EISA bridge, rather than as a system bus. This is
transparent to the device driver.

This chapter describes Extended Industry Standard Architecture (EISA) bus
concepts and implementations on OpenVMS Alpha platforms.

16.1 EISA Bus Resources

The EISA bus defines a limited set of resources shared across the system.
Each device or adapter is designed to use some subset of the available EISA

resources:

e Interrupt Request Levels (IRQs)

¢ DMA Channels |

e I/O Port Addresses

e EISA Memory space addresses

247

EISA Bus Support
16.1 EISA Bus Resources

16.1.1

16.1.2

248

An EISA bus supports a maximum of 15 device or adapter slots, but the

number actually available on a given hardware platform is a function of the

individual platform design. A device or adapter can typically operate correctly

using a subset of each of the resource types. Because EISA resources are

limited and EISA device vendors are many, the configuration of EISA-based

systems can be a complicated task. Resources must be assigned in a conflict-

free manner, allowing all devices to work properly. The assignment of these

resources to devices is done by the EISA Configuration Utility (ECU), which

saves the system configuration information and resource assignment in a

database that is later available to the operating system. The following sections
briefly describe each of these resources and provide a description of the ECU.

IRQs

The EISA specification defines 16 IRQ levels: 0 to 15. These wires are routed

to an interrupt controller, which performs priority resolution and notification
of the CPU. Note that some system platforms reserve certain IRQ levels

for integrated devices. EISA cards typically have a software programmable
register that is set to inform the hardware which IRQ line to use. ISA cards
are not programmable; they have jumpers on the card which must be set to tell

the hardware which IRQ line to use. An IRQ level is assigned to a card by the
EISA Configuration Utility, which is described in Section 16.1.5.

EISA IRQ lines can be programmed in two modes; edge-triggered (active
high) or level-sensitive (active low for sharing IRQs). Digital systems use
level-sensitive settings.

Because Digital systems use the EISA bus as an I/O bus rather than as a

system bus, the EISA interrupt mechanism becomes a subset of the overall

system interrupt mechanism. The EISA IRQ (that is, the line that the card is
programmed to drive) is not always the same as the “system IRQ”, or “vector”.
Section 16.6 describes system and EISA IRQs.

OpenVMS Alpha versions through Version 7.0 allow one EISA IRQ per device.

DMA Channel

For cards that do not have Bus Master capability (that is, they are not
complex enough to take control of the EISA bus), EISA provides seven DMA
channels. The driver must set up the registers (base address, count, etc.)
corresponding to the assigned DMA channel. For more information about
DMA, see Section 16.3 . The ECU is responsible for assigning the DMA
channels to cards that require them.

16.1.3

16.1.4

16.1.5

EISA Bus Support
16.1 EISA Bus Resources

/O Port Addresses

The EISA bus defines 64 KB of I/O port space. The first 4 KB is reserved for

system board and ISA devices. The remaining I/O port space (4 to 64 KB) is
KISA slot-specific address space with a 4 KB range reserved for each EISA

slot. To avoid two cards responding to the same I/O address and to provide
increased configuration flexibility, ISA cards provide a jumper that selects the
range of I/O addresses in the low 4 KB to which the card responds.

The ECU is responsible for assigning I/O Port starting addresses to ISA cards
without overlapping. For more information about the available ISA I/O ports,
refer to the system address maps in Appendix A. EISA cards generally do not
need an I/O port because they understand slot-based addressing.

EISA Memory Addresses

The EISA bus defines 46 KB of memory space. On some personal computers,

the EISA bus is the system bus, which means that system memory and EISA
devices share the 46 KB memory space. On Digital systems, EISA memory

space is accessible through Alpha I/O address space, and the EISA bus is
used as an I/O bus. Digital systems make EISA memory space available to
access on-board memory, such as frame buffers, on EISA cards requiring such
functionality.

EISA Configuration Utility

The ECU is a standalone program that runs without the operating system. It
assigns resources to all cards on the EISA bus in a conflict-free manner. The
ECU reads configuration files (.CFG files) to obtain resource requirements for
the EISA devices in the system, including system board devices and prompts
for user input to obtain resource requirements for the ISA devices in the

system.

The EISA protocol incorporates a software readable product ID at a predefined

offset in slot-specific EISA I/O port address space. The ID is stored as 4 bytes
of compressed information, and decompressed into a 3-character manufacturers

code followed by a 4-character card-specific identifier. The ECU determines
which devices are present and uses their IDs to locate configuration files, which
contain initialization information and resource requirements. It determines the

requirements of all the options and finds a conflict-free assignment of system
resources if possible. It writes all the configuration data to NVRAM, where it

is available to system firmware for use during system initialization. The EISA
specification provides details on the contents of configuration files.

The OpenVMS Alpha operating system makes ECU data available to device
drivers using the IOC$NODE_DATA routine. A device driver calls this routine
to determine which resources are assigned to its device.

249

EISA Bus Support
16.1 EISA Bus Resources

16.1.6

Note that the ECU need only be run when the system configuration changes,

that is, when boards are added, deleted, or moved in the EISA slots.

Resource Assignment on Digital Systems

Each Digital system supporting an EISA bus ships with an ECU configuration

file that defines the EISA slots used by integrated devices (if any), the

resources used by the integrated devices, and the slots available for additional

cards.

16.2 EISA Interrupts

250

An EISA device driver uses the IOC$NODE_DATA routine to determine which
IRQ has been selected for the device by the ECU. The driver then programs the
device to use that IRQ, if necessary, and enables interrupts at both the system

level (using the IOC$NODE_FUNCTION routine) and at the device level. For
more information about the IOC$NODE_DATA and IOC$NODE_FUNCTION
routines, see Section 16.5.

On OpenVMS Alpha, the device interrupt flow proceeds as follows:

1. The EISA device requires an interrupt, and asserts its programmed EISA
IRQ line.

2. A platform-specific interrupt control mechanism notifies the CPU of the
request.

3. PALcode is invoked. It determines that the interrupt is an EISA I/O
interrupt, acknowledges the interrupt, receives a vector identifying the
device, and uses that vector to locate the appropriate SCB vector. PALcode
dispatches to the operating system through the SCB vector.

4. For an EISA bus, the SCB vector normally locates an operating system
routine that dispatches to the device driver interrupt service routine (that
is, EISA interrupts are indirectly vectored).

5. The device driver interrupt service routine services the interrupt and
returns to the operating system.

6. The operating system issues an End Of Interrupt (EOI) command, which
reenables interrupts of equal and lower priority. Note that if software does
not perform the KOI, all future interrupts of equal or lower priority remain
disabled.

EISA Bus Support
16.3 EISA DMA Support

16.3 EISA DMA Support

KISA systems provide seven independently programmable DMA channels for

use by EISA/ISA cards that do not have Bus Master capability, and that cannot
drive the necessary signals to perform DMA on their own. Each channel can
be programmed for 8, 16, or 32 bit DMA device size, and ISA compatible, “type
a’, “type b”, or burst dma “type c” modes. An EISA bus controller chip handles
the data size translation. The DMA addressing circuitry supports full 32 bit

addresses for DMA devices. Each channel includes a 16 bit Current register,
an 8 bit Low Page register and an 8 bit High Page register, for the total 32
bits. The channels can be programmed for one of four different transfer modes:
single, block, demand, and cascade. The DMA controller also offers buffer

chaining, auto-initialization, and support for a ring buffer in memory. Buffer
chaining is not supported in OpenVMS Alpha.

Note that while the DMA controller provides per-channel programmable
features, such as transfer mode, a number of the DMA controller registers in

which such features are programmed are shared among the channels. For

instance, DMA channels 0 to 3 share a single write-only MODE register, and

DMA channels 4 to 7 also share a single write-only MODE register. Access
to such a register must be synchronized among the device drivers performing
DMA.

Documentation that describes the 82357 DMA controller is available from

INTEL.

16.4 EISA I/O Address Map

EISA defines a 16 bit I/O address composed of a four bit slot number in bits
<15:12> and 12 bits, or 4 KB, of I/O space per EISA slot. However, as a side

effect of keeping the EISA bus backwards compatible with the ISA bus, certain

ranges of I/O space can be used only by ISA cards.

ISA uses a 10 bit I/O address, so an ISA device can only access addresses in
the range 000 to 3FF. However, ISA reserves addresses 000 to OFF for the ISA

system board (slot 0). Therefore, normal ISA devices respond only to addresses
in the range 100 to 3FF, that is, addresses in which bits <9:8> are non-zero.

The EISA specification therefore requires that EISA devices only respond to

addresses in which bits <9:8> are zero, eliminating the possibility of interfering

with ISA devices. The following list shows the useable I/O address range for

an EISA device, where slot_number is a 4-bit value from 1 to F.

e Slot_number + 000 to slot_number + OFF

e Slot_number + 400 to slot_number + 4FF

251

EISA Bus Support
16.4 EISA I/O Address Map

e Slot number + 800 to slot_number + 8FF

e Slot number + C00 to slot_number + CFF

ISA I/O address space is accessed as Slot 0, addresses 100 to 3FF. Since ISA

devices decode only 10 I/O address bits, be careful of duplication. All of the

following addresses map to the same range (0100 to 03FF) if only the low 10

bits are considered. Again, slot_number is any 4-bit value from 1 to F.

e 0500 to O7FF

e 0900 to OBFF

e 0D00 to OFFF

e Slot_number + 100 to slot_number + 3FF

e Slot_number + 500 to slot_number + 7FF

e¢ Slot_number + 900 to slot_number + BFF

e Slot_number + D00 to slot_number + FFF

16.5 Using IOC$NODE_DATA and IOC$NODE_FUNCTION

252

Routines for EISA Buses

The IOC$6NODE_FUNCTION routine provides a platform-independent way to

enable or disable EISA interrupts at the system level. The IOC$NODE_DATA
routine returns information on the resources assigned to the device by the
ECU. A device driver’s controller or unit initialization routine normally would
use IOC$NODE_DATA to determine which IRQ has been selected for the

device by the ECU. The driver then programs the device to use that IRQ, if

necessary, and enables interrupts at both the system level (using IOC$NODE_
FUNCTION) and at the device level.

For device drivers written in C, function codes for IOCSNODE_FUNCTION
and IOC$¢NODE_DATA are defined in iocdef.h, and function prototypes
are in ioc_routines.h, both in SYS$LIB_C.TLB. The following sections
briefly describe IOC$NODE_DATA and IOC$NODE_FUNCTION. For more
information about these routines, see Chapter 19.

EISA Bus Support
-5 Using IOC$NODE_DATA and IOC$NODE_FUNCTION Routines for EISA Buses

16.5.1 IOCSNODE_DATA

The IOC$NODE_DATA routine returns platform-specific data necessary for

drivers. For an KISA device, it is used to obtain the resources assigned to the
device by the ECU. The resources relevant to EISA devices are IRQ, DMA
Channel number, EISA IO Port address, and EISA Memory address.

On OpenVMS Alpha versions through Version 7.0, the EISA device can be
configured with one IRQ, a maximum of 4 DMA Channels, a maximum of 20

I/O Ports, and a maximum of 9 memory addresses. For devices configured
with more than one of a given resource, IOC$NODE_DATA returns all values.

It does not verify that the size of the driver-specified buffer is large enough;
IOC$NODE_DATA assumes that it has been called with a buffer large enough
to hold whatever resources it locates.

The format of IOC$NODE_DATA is:

int ioc$Snode_data (CRB *crb, int function_code, void *user_buffer)

The parameters to IOC$NODE_DATA are:

crb Address of CRB. IOC$NODE_DATA obtains the EISA slot
number from the CRB. For a manually connected driver,
the slot number is the value specified in the “/NODE=x”
qualifier.

function_code Function to be performed. IOC$NODE_DATA accepts four
function codes relevant to EISA devices; IOC$K_EISA_IRQ,
I0C$K_EISA DMA CHAN, IOC$K_EISA_ IO _PORT, and
IOC$K_EISA MEM. See Table 16-1 for more details about

the function codes.

user_buffer Address of a driver-supplied buffer to contain the returned
data. IOC$NODE_DATA assumes that the buffer is large
enough for all the returned data.

Table 16-1, IOC$NODE_DATA Function Codes for EISA Buses

IOC$K_EISA IRQ Return IRQ used by device. IOC$K_EISA_
IRQ requires a longword buffer. It returns the
single IRQ assigned to the device in bits <15:0>
and indicates whether the ECU specified edge-
triggered or level-sensitive interrupts in bit 16
(O=edge, 1=level).

(continued on next page)

253

EISA Bus Support
16.5 Using IOC$NODE_DATA and IOC$NODE_FUNCTION Routines for EISA Buses

Table 16-1 (Cont.) IOC$NODE_DATA Function Codes for EISA Buses
asaralactee i jSali, aie i Ree AE EEE RE PILLS SMOKERS TBE ois PER Bates Ses

IOC$K_EISA_DMA_CHAN Return DMA channel used by device. IOC$K_

a _ EISA_DMA_CHAN requires a longword buffer
per DMA channel. For each DMA channel
assigned to the device, it returns:

¢ Channel number - bits <15:0>

e Device transfer size - bits <18:19>

8 bit : 00

16, bit 2201
32. pit iL

e Transfer timing information - bits <21:20>

ISA compatible timing : 00
KISA type A: 01
EISA type B : 10
EISA type C : 11 (burst mode)

IOC$K_EISA MEM CONFIG Return memory buffer(s) used by device.
IOC$K_EISA_MEM requires a quadword buffer
per Memory address. It returns the assigned
starting address of EISA memory in the first
longword, and the size in bytes in the second
longword. These addresses are used to access
on-board RAM.

The returned starting address is an EISA bus
physical address. To use this address, it must
be converted to a platform-specific address
using the IOC$MAP_IO routine, specifying the
function code IOC$K_BUS_IO BYTE GRAN or
IOC$K_BUS_DENSE_SPACE. IOC$MAP_IO
returns an iohandle, which is used later as
input to the IOC$READ_IO and IOC$WRITE_
IO routines.

(continued on next page)

254

; EISA Bus Support
16.5 Using IOCSNODE_DATA and IOC$NODE_FUNCTION Routines for EISA Buses

Table 16—1 (Cont.) IOC$NODE_DATA Function Codes for EISA Buses

IOC$K_EISA_IO_PORT Return I/O port(s) used by device. IOC$K_
EISA_IO_PORT requires a longword buffer per
VO Port. It returns the starting address of the
assigned I/O port in bits <15:0> and the number
of consecutive bytes assigned in bits <31:16>.

The returned starting address is an EISA
bus physical address. To use this address, it
must be converted to a platform-specific sparse
space address using the IOC$MAP_IO routine,
specifying the function code IOC$K_BUS_
IO_BYTE_GRAN. IOC$MAP_IO returns an
iohandle, which is used later as input to the
IOC$READ_IO and IOC$WRITE_IO routines.

16.5.2 |OCS$NODE_FUNCTION

The IOC$NODE_FUNCTION routine provides a platform-independent way
to enable or disable EISA interrupts at the system level. The formats of the
IOC$NODE_FUNCTION routine is:

int ioc$Snode_function (CRB ‘*crb, int function_code)

It accepts two parameters, the CRB address and the function code. Legal
function codes are IOC$K_ENABLE_INTR and IOC$K_DISABLE_INTR;
others return the error status SS$_ILLIOFUNC.

IOC$NODE_FUNCTION obtains the EISA slot number from the crb$1_node

field in the CRB. It verifies that the slot is valid, obtains the device’s IRQ,
and relies on its platform-specific knowledge to enable or disable the IRQ in a
manner appropriate for the system interrupt mechanism.

16.6 Configuring an EISA Device Manually

The OpenVMS Alpha operating system can only autoconfigure devices that
it recognizes. For OpenVMS Alpha versions through Version 7.0, customer-
written drivers need to be connected manually using the SYSMAN IO
CONNECT command. Note that EISA resources are not specified on the IO
CONNECT command. EISA resource information can only be specified by
means of the ECU, which should be run before loading the driver.

To configure your device, use the following command to invoke the SYSMAN

utility:

$ MCR SYSMAN

255

EISA Bus Support
16.6 Configuring an EISA Device Manually

256

At the SYSMAN> prompt, enter the IO CONNECT command as follows:

$ SYSMAN> IO CONNECT devname
/driver = drivername

/vector = %x system_IRQ

/node = EISA_slot_number

/adapter = adapter_number
/esr = %x EISA_slot_base_virtual_address

devname

Specifies the OpenVMS device name of your device. This should be specified

as a standard OpenVMS device name-a 2 letter device code, a controller letter,

and a unit number.

vector
For most Alpha systems:

/vector=(EISA IRQ * 4)

For AlphaServer 2100, 2100A, and 8200/8400 systems:

/vector=({EISA IRO + 7) * 4)

Because Digital systems use the EISA bus as an I/O bus rather than as a
system bus, the EISA interrupt mechanism is a subset of the overall system
interrupt mechanism. The actual interrupt vector might differ from the limited
range available to an EISA device. This is reflected in the two different
formulas used by current Alpha systems, shown above.

KISA interrupts are indirectly dispatched because End-Of-Interrupt processing
must be performed by the operating system to dismiss the interrupt. The

device’s SCB vector, therefore, locates an operating system dispatch routine
rather than the device’s interrupt service routine (ISR).

The vector parameter is a platform-specific offset based on the EISA IRQ. It
is used by the operating system to locate the device driver’s ISR in a table
pointed to by ADP$L_VECTOR.

node

/node = EISA_slot_number

EISA_slot_number is a value from 1 to 15 (slot 0 is reserved for the system
board). The console command SHOW CONFIG displays populated EISA slots
and the EISA software ID of devices in the slots.

EISA Bus Support
16.6 Configuring an EISA Device Manually

The DEC 2000 differs from other systems in that its node parameter must be
a hexadecimal value containing the EISA IRQ in the high word and the EISA
slot number in the low word.

adapter

/adapter= adapter_TR_number

Identifies the bus on which the device resides. The SDA command CLUE

CONFIG displays the TR for the EISA bus.

CSR

/csr= %x EISA_slot_base_virtual_address

EISA reserves slot 0 for the system board; slots 1 to 15 are available for

devices. Each EISA slot has a reserved 4 KB I/O address space. The CSR is

the virtual address of the slot’s I/O address space. It is the base address used
by the CRAM routines to access device registers. The CSR parameter is also
stored in the idb$q_csr field.

During system initialization, the operating system maps a contiguous virtual

address range sufficient for the maximum number of EISA slots. This is a
sparse space mapping, so the actual amount of virtual address space per slot is

a function of the I/O address swizzle factor for the system.

To compute the CSR assigned to a particular slot if the system swizzle is
unknown, do the following:

1. Use the SDA command CLUE CONFIG to locate the EISA ADP structure.

2. Examine eisa adp + adp$ps_bus_array to locate the EISA busarray

structure.

3. Skip past the busarray header.

Multiply the size of a busarray entry by the slot number to locate the

busarray entry for your slot.

5. Examine busarray$q_csr.

To obtain the swizzle factor, use the IOC6NODE_DATA routine with the

function code IOC$K_IO_ADDRESS_SWIZZLE. Existing systems use a swizzle

factor of 5, except for the DEC 2000 which uses a swizzle factor of 7. However,

future systems could use other values.

257

EISA Bus Support
16.6 Configuring an EISA Device Manually

16.6.1

To compute the CSR assigned to a particular slot if the system swizzle is

known, do the following:

1. Use the SDA command CLUE CONFIG to locate the EISA ADP structure.

2. Examine eisa adp + adp$q_csr to obtain the base address for EISA slot 0.

3. Multiply the slot number of interest by 4 KB.

4. Left-shift the resulting value by the swizzle factor.

5. Add to the value in the adp$q_csr.

Section 16.6.1 demonstrates both methods to obtain the CSR for EISA slot 3,

on a system with a swizzle factor of 5. Note that all values are hexadecimal.

Example: Locating the CSR for an EISA Device

$ ana/sys
SDA> read sys$loadable_images: iodef
SDA> clue config
Adapter Configuration:

TR Adapter Name (Address) Hose Bus Node Device Name HW-Id/SW

1 (81133480) 0 CBUS

0 KA0902_ CPU 00000017

5 KA0902_MEM 00000018

8 KA0902 IIO 00000019
2 PCI (81133880) 0 PCI

2 MERCURY 04828086
GYA: 7 ‘TGA 00041011

3 EISA (81133F00) Q EISA

0 012AA310

PAA: 2 KFESA 002EA310
PAB: 3 KFESA 002EA310

4 XBUS (81134440) 0 XBUS

! First demonstrate the computation when the swizzle is known

SDA> ex 81133f00 + adp$q_csr ! EISA ADP is 81133F00

81133F00: FFFFFFFF 87AE0000 ! EISA ADP CSR is 87AE0000, slot 0 base VA

SDA> ev 1000 * 3 ! Multiply 4 KB by 3 (for slot 3)
Hex = 00003000

SDA> ev 3000 @ 5 ! Left shift by 5 (5 is swizzle factor)
Hex = 00060000

SDA> ev 87ae0000 + 60000 ! Add slot 3 offset to base. CSR =
Hex = 87B40000 87B40000

! Now demonstrate walking the busarray

258

EISA Bus Support
16.6 Configuring an EISA Device Manually

SDA> ex 81133£00 ! Locate the EISA ADP
81133F00: FFFFFFFF 87AE0000

SDA> ex @(.+adp$ps_bus_array) ! Locate the EISA busarray
81134100: 00000000 81133F00

SDA> ex .t+tbusarrayheader$k_length ! Skip the busarray header
81134118: 00000000 012AA310

SDA> ex .+(3*busarrayentry$k_length) ! Locate slot 3 in busarray
811341A8: 00000000 002EA310

SDA> ex .tbusarray$q_csr
811341B0: FFFFFFFF 87B40000 ! CSR matches computed value

16.7 Configuring an ISA device in an EISA Slot

Because ISA devices do not have a software-readable ID, they cannot be
detected by operating system software or by console firmware. Therefore, no
information is displayed for EISA slots populated by ISA devices.

To create an ECU entry for an ISA device, a configuration file for the device
must exist either on the ECU diskette or on another FAT-format diskette.

The ECU provided by Digital contains a generic ISA configuration file,
ISA0000.CFG, that can serve as an example. This configuration file can be
copied to another diskette and edited using a personal computer. The EISA

specification provides details on configuration file syntax and format.

To create the ECU entry for an ISA device in an EISA slot:

1. Run the ECU from the console prompt.

2. From the ECU main menu, choose Step 2 (Add or remove board).

3. Select a slot for the ISA card and press enter.

4 Insert the diskette containing the configuration file for the ISA device and

press’ enter.

Press F10 to exit to the main menu.

Choose Step 3 (View or edit details).

SA

7. Examine the information for the slot and adjust as needed. To change a
resource, position the cursor to that resource and press F6.

8. Press F10 to exit to the main menu.

Select Step 5 and exit, saving the changes.

After creating the ECU entry, adjust any necessary jumpers on the card to

reflect the assigned IRQ, DMA channels, etc. Insert the card in the chosen slot.

259

EISA Bus Support
16.7 Configuring an ISA device in an EISA Slot

16.7.1

To connect an ISA device in an EISA slot, execute the ECU as described in the

previous procedure. Make a note of the slot number, because this information

will be required for the /NODE input to SYSMAN. Compute the system_IRQ

as described for EISA devices. Use the TR of the EISA bus for the /ADAPTER

parameter.

All ISA devices use the same CSR. By convention, ISA I/O address space

is accessed as EISA slot 0 (ISA devices ignore the 4-bit slot portion of the
EISA I/O space address). Therefore, the CSR for all ISA devices is the base
virtual address of EISA slot 0, the base of EISA I/O space. To obtain this
value, use the SDA command CLUE CONFIG to locate the EISA ADP data
structure. Format the EISA ADP and use the value in the adp$q_csr as the

CSR parameter for all ISA cards.

Example: Locating the CSR for an ISA Device in an EISA Slot
$ ana/sys

SDA> read sys$loadable_images: iodef

SDA> clue config
Adapter Configuration:

TR Adapter Name (Address) Hose Bus Node Device Name HW-Id/SW

il (81133480) 0 CBUS

0 KA0902 CPU 00000017

5 KA0902_MEM 00000018
8 KA0902_IIO 00000019

BCA (81133880) PCI

2 MERCURY 04828086
GYA: 7 “TGA 00041011

3 EISA (81133F00) EISA

0 012AA310
PAA: 2 KFESA 002EA310
PAB: 3 KFESA 002EA310

4 XBUS (81134440) XBUS

SDA> ex 81133f00 + adp$q_csr
FFFFFFFF 87AE0000 81133F00:

260

! The EISA ADP CSR is the base for slot 0
! All ISA devices use CSR 87AE0000

Part V
Reference

Part V provides details about the data structures, entry point routines, system
routines, and C macros used to create OpenVMS Alpha device drivers.

pe. Big Salta er)

> tae gy ihe loin er tae BN

> anti a > <s G OU og Cemeetin’ at The
— note os & pe nanny a ae ay. ee

~ pul gate 60'S, Wee dn oy lod
NM at} —_ Cp) the tia a Ge Bi ee PAT
Fan Sesisaralna dem -_ ae is Sa

<<a Oi ase ae wmee’
as asnsjeleS ; a 0 ¢e®py=s ces the obo i mh A cal A _

| bos: Toone, Oe aaa ae |
a : a _ ao tits 10 geet

a nr ia (2 . OCW te ee &

ss 1 dane ipl ie onlin en omy
mae file nee hahapartious thr Satnecine oh) of! tevde ateb

wesaly gr bryel staid Rei F erg) peibele y ey
eve ve suistiO =e “Sie Ceved in

Ae
ro

i =e

: =

17
Data Structures

This chapter describes data structures referenced by driver code. While the

list is not comprehensive, this chapter covers many of the data structures and
fields that are most important to device-driver writers. Section 17.1 lists and
briefly defines each type of structure included in this chapter. The sections
that follow provide a more detailed description and lists their fields in the
order in which they appear in the structures.

Header files for all of the data structures described in this chapter are
available in SYS$LIBRARY:SYS$LIB_C.TLB. For example, the following files

are for the IRP, PCB, and UCB data structures:

#include <irpdef.h>
#include <pcbdef.h>
#include <ucbdef.h>

All data structures discussed in this chapter, with the exception of the channel

control block (CCB), exist in nonpaged system memory.

17.1 Overview of I/O Database Data Structures

Components of the I/O database include the following:

e Structures that describe individual hardware components, such as devices,

controllers, and adapters. This category includes the following structures:

Associated
Structure Description Structures

Unit control block (UCB) Records the current status of | Object rights
an I/O device unit attached to block (ORB),
the OpenVMS system Controller register

access mailbox
(CRAM), Fork
block (FKB)

263

Data Structures
17.1 Overview of /O Database Data Structures

264

Structure Description

Associated
Structures

Device data block (DDB)

Channel request block (CRB)

Interrupt dispatch block
(IDB)

Adapter control block (ADP)

Describes the common
characteristics of devices
of the same type connected to
a particular controller

Describes the current state of

an I/O controller

Provides information that
supplements that contained
in the CRB, enabling the
system to correctly dispatch
and service interrupts from
a device unit attached to a
controller

Describes the processor-
memory interconnect
(PMI), a tightly coupled
V/O interconnect, or a

multichannel I/O widget

Interrupt transfer
vector block
(VEC), Fork block

(FKB)

Vector list
extension (VLE),
Controller register
access mailbox
(CRAM)

Adapter bus array
(BUSARRAY)

Driver tables that allow the system to load drivers, validate device
functions, and call driver routines at their entry points. In this category
are the following:

Structure Description
Associated
Structures

Driver prologue table (DPT) Contains information that
allows the driver-loading
procedure to load the driver
into memory and initialize
the I/O database according
to the number and type of
devices supported by the
driver

Data Structures
17.1 Overview of I/O Database Data Structures

Structure
Associated

Description Structures

Driver dispatch table (DDT)

Function decision table (FDT)

Contains procedure values —
representing all external
driver entry points (with the
exception of the interrupt
service routine) and the
address of the driver’s
function decision table (FDT)

Identifies those I/O functions —
supported by a device and
associates valid function
codes with the addresses of
Y/O preprocessing routines
(also known as FDT routines)

Structures that describe the context of a request for I/O activity. In this

category are the following:

Structure

Channel control block (CCB)

V/O request packet (IRP)

Associated

Description Structures

Describes the software I/O —
channel that links a process
to the target device of an I/O
operation

V/O request packet
extension (IRPE)

Describes a pending or in-
progress I/O request

Miscellaneous structures, such as the following:

Structure

Associated

Description Structures

Kernel process block (KPB)

Counted resource allocation

block (CRAB)

Describes the scheduling Fork block (FKB)
and suspension mechanisms
associated with a kernel
process and records its
suspended context

Counted resource

context block
(CRCTX)

Records the number and
type of a counted shared
resource, such as a set of
map registers, available to
drivers

265

Data Structures
17.1 Overview of /O Database Data Structures

Associated

Structure Description Structures

Controller register access Describes a read or write _

mailbox (CRAM) transaction to device
interface register space

17.2 ADP (Adapter Control Block)

An adapter control block (ADP) represents a hardware block that connects one
interconnect to another. OpenVMS Alpha I/O configuration code creates an
ADP for the processor-memory interconnect (PMI), each tightly coupled I/O
interconnect, and each multichannel I/O widget.

The system ADP represents the PMI. Any other ADP represents either a
tightly coupled I/O interconnect or a multichannel I/O widget.

e An ADP for a tightly coupled I/O interconnect contains information related
to hardware mailbox support, system topology, adapter interrupts, and

related items. It also contains information about the I/O adapter that

connects the interconnect to the PMI or to a parent tightly coupled I/O
interconnect. The adjective parent in this context describes the tightly
coupled I/O interconnect that is closer to the PMI.

e Although information relating to an I/O widget is normally maintained
only in a widget-specific data structure defined and used by the widget’s
driver, information that is common to all loosely coupled I/O interconnects
that connect to a multichannel I/O widget is maintained in an ADP.

Table 17-1 defines the fields that appear in an ADP. Bus-specific extensions
start at offset adp$l_xbia_csr in the ADP.

An ADP can have up to four auxiliary data structures:

e An adapter bus array (BUSARRAY), pointed to by adp$ps_bus_array

e An adapter command table (CMDTABLE), pointed to by adp$ps_command_tbl

e Acounted resource allocation block (CRAB), pointed to by adp$l_crab

e An indirect interrupt vector dispatch table, pointed to by adp$1_vector

ioc$gl_adplist is the listhead for the list of all ADPs in the system. The first
ADP in the ADP list is the system ADP. Offset adp$1_link in each ADP points
to the next ADP in this list. The last ADP in the list contains a zero in this
field. The SYSMAN command IO SHOW ADAPTER traverses this list and
displays its contents.

266

Data Structures
17.2 ADP (Adapter Control Block)

The hierarchy of tightly coupled I/O interconnects in a system is represented

by the interconnection between the ADPs in the ADP list. In conjunction with
the auxiliary BUSARRAY structure of each ADP, this information represents a
system’s configuration.

At the root of the hierarchical ADP list is the system ADP. Offset
adp$ps_child_adp in the system ADP points to an ADP for a tightly coupled
I/O interconnect at the next level in the hierarchy — one that connects to the
PMI directly: that is, without other intervening interconnects.

Table 17-1 Contents of Adapter Control Block

Field Use

adp$q_csr Address of adapter control and status register (CSR),
which marks the base of adapter register space on the
remote tightly coupled I/O interconnect. This may be
either a virtual or physical address, depending upon
the adapter.

The OpenVMS adapter initialization routine writes
this field. The IOC$CRAM CMD routine uses the CSR

address in calculations that set up driver transactions
to and from remote adapter I/O space by means of
hardware I/O mailboxes.

For single-channel adapters, the contents of
adp$q_csr and idb$q_csr are often the same. For
multichannel adapters, adp$q_csr contains the base
address of the common adapter register space, and
individual IDBs point to the specific adapter registers
associated with individual channels.

adp$w_size Size of ADP in bytes. Depending upon the type of /O
adapter being described, the ADP size is variable and
subject to the length of the bus-specific ADP extension.
The OpenVMS adapter initialization routine writes
this field when the routine creates the ADP.

adp$b_type Type of data structure. The OpenVMS adapter
initialization routine writes the symbolic constant
DYN$C_ADP into this field when the routine creates
the ADP.

adp$b_number Number of this type of adapter. This field is currently
unused in OpenVMS Alpha systems.

(continued on next page)

267

Data Structures
17.2 ADP (Adapter Control Block)

Table 17-1 (Cont.) Contents of Adapter Control Block

Field Use

adp$l_link Pointer to the next ADP in the ADP list (headed by
ioc$gl_adplist). The last ADP in the list contains a
zero in this field.

adp$l_tr Nexus number of adapter. The OpenVMS adapter
initialization routine assigns a nexus number to each
node it encounters as it probes an I/O interconnect.

When processing an SYSMAN IO CONNECT command
which specifies the /ADAPTER qualifier the driver-
loading procedure compares the specified nexus
number with this field of each ADP in the system
to locate the adapter to which the device serviced by
the driver is attached.

adp$l_adptype Type of ADP. The OpenVMS adapter initialization
routine writes a symbolic constant (defined by the
$DCDEF macro in SYS$LIBRARY:STARLET_C.TLB)
into this field when the routine creates an ADP.

(continued on next page)

268

Data Structures
17.2 ADP (Adapter Control Block)

Table 17-1 (Cont.) Contents of Adapter Control Block

Field Use

adp$l_vector

adp$l_erb

adp$ps_mbpr

adp$q_queue_time

Address of indirect interrupt vector dispatch table.
For adapters that service indirect interrupts,
the OpenVMS adapter initialization routine sets
adp$v_indirect_vector in adp$l_adapter_flags,
and allocates sufficient nonpaged dynamic memory
for this table. Each entry in this table consists of a
longword pointer to the VEC substructure of a CRB
of a device for which the system dispatches interrupts
through this ADP.

ADPs that service indirectly-vectored device interrupts
include a VEC substructure at adp$1_intd (as
described in Section 17.6) that contains the code
address (vec$ps_isr_code), procedure descriptor
address (vecSps_isr_pd), and parameter field
(vec$l_idb, which contains the address of the ADP)
of the adapter’s indirect interrupt service routine.
The SCB entries assigned to devices that interrupt
indirectly contain the code address of the common
interrupt dispatcher and, as the parameter, the address
of adp$l_intd. The common interrupt dispatcher
issues a standard call to the ADP’s indirect interrupt
service routine, which determines the interrupt vector
of the interrupting device, using it as an index into
the indirect interrupt vector dispatch table. The ADP’s
indirect interrupt service routine thereby locates the
appropriate device driver’s interrupt service routine
and calls it, passing it the address of the IDB as the
only parameter.

Address of controller request block (CRB) associated
with the ADP. In the case of an ADP that describes a
multichannel I/O widget, this field represents the head
of a singly-linked list of CRBs linked together by the
field crb$ps_crb_link.

Virtual address of mailbox pointer register (MBPR).
The OpenVMS adapter initialization routine initializes
this field.

Timeout value for mailbox queuing operation. The
OpenVMS adapter initialization routine initializes this
field with the number of nanoseconds it takes to write
the physical address of a hardware I/O mailbox to the
MBPR without a timeout occurring.

(continued on next page)

269

Data Structures
17.2 ADP (Adapter Control Block)

Table 17-1 (Cont.) Contents of Adapter Control Block

Field Use
eee EEE ree

adp$q_wait_time

adp$ps_parent_adp

adp$ps_peer_adp

adp$ps_child_adp

adp$l_probe_cmd

adp$ps_bus_array

270

Timeout value for the completion of a hardware
I/O mailbox transaction. The OpenVMS adapter
initialization routine initializes this field with the
number of nanoseconds a thread should wait, before
timing out, for the hardware I/O mailbox DON bit to
be set.

Address of the ADP in the preceding level of the
system’s ADP hierarchy that is related to this ADP and
its peers. In the system ADP, this field contains a zero.

See the discussion at the beginning of Section 17.2,
for an example of parent, child, and peer ADP
relationships.

Address of the next ADP in the list of ADPs that are
children of a common parent ADP in the preceding
level of the system’s ADP hierarchy, and headed by
field adp$ps_child_adp in that parent ADP. This
field contains a zero if the ADP has no peers.

See the discussion at the beginning of Section 17.2,
for an example of parent, child, and peer ADP
relationships.

Listhead of the ADPs that are related to this ADP in
the succeeding level of the ADP hierarchy, or zero if
the ADP has no children. At this lower level, the child
ADPs of a common parent ADP are linked together by
the contents of their adpSps_peer_adp fields.

See the discussion at the beginning of Section 17.2,
for an example of parent, child, and peer ADP
relationships.

Index into the adapter command table that EXE$TEST_
CSR uses to determine which command to use when
probing the interconnect described by this ADP.

Address of BUSARRAY describing the nodes on
the tightly coupled interconnect or the ports of a
multichannel I/O widget or controller associated with
this ADP.

(continued on next page)

Data Structures
17.2 ADP (Adapter Control Block)

Table 17—1 (Cont.) Contents of Adapter Control Block

Field Use

adp$ps_command_tbl

adp$ps_spinlock

adp$w_prim_node_num

adp$w_sec_node_num

adp$b_hose_num

adp$l_crab

adp$l_adapter_flags

Address of the adapter command table specific to the
I/O interconnect described by this ADP. The OpenVMS
adapter initialization routine constructs this table.

IOC$CRAM_CMD refers to this field to locate the
table when it calculates the COMMAND, MASK, and
RBADR fields of a hardware I/O mailbox involved in a
transaction to a device interface register.

Address of device lock synchronizing access to the CSRs
of the devices associated with this ADP. The OpenVMS
adapter initialization routine allocates this device lock
and places its address in this field, idb$ps_spl, and
crbSps_dlck.

Node number of the I/O adapter (or widget) on the local
interconnect (for instance, the node number of the DEC
7000 Alpha Model 600 system bus [PMI] to XMI bus
adapter on the PMI).

Node number of the I/O adapter on the remote
interconnect (for instance, the node number of the
DEC 7000 Alpha Model 600 system bus [PMI] to XMI
bus adapter on the XMI).

Hose number associated with the I/O adapter.
OpenVMS adapter initialization routine writes this
field.

Address of CRAB used to manage map registers, if the
Alpha system provides map registers for this adapter.

The following bit is defined within adp$l1_adapter_flags:

Adapter services
indirectly vectored
interrupts for its
associated devices.

adp$v_indirect_vector

Adapter is online.

Adapter is boot
adapter.

adp$v_online

adp$v_boot_adp

(continued on next page)

271

Data Structures
17.2 ADP (Adapter Control Block)

272

Table 17-1 (Cont.) Contents of Adapter Control Block

Field Use
nnn nS EEESSEEEEEO

adp$l_vportsts

adp$ps_node_function

adp$l_avector

adp$q_scratch_buf_pa

adp$ps_scratch_buf_va

adp$l_scratch_buf_len

adp$l_lsdump

adp$ps_probe_csr

adp$ps_probe_csr_cleanup

adp$ps_load_map_reg

adp$ps_shutdown

adp$ps_config_table

adp$ps_map_reg_base

adp$ps_adp_specific

adp$ps_disable_interrupts

adp$ps_startup

adp$ps_init

CI-VAX port status bits. The following bits are defined

within adp$l_vportsts:

Cl-adapter microcode
is stopped.

ClI-port restart only—
no adapter restart.

adp$v_shutdown

adp$v_portonly

ci/scsi—-adapter-wide
structures allocated.

adp$v_struct_allocated

Procedure value of the node-specific function routine
that services driver calls to IOC$NODE_ FUNCTION.

Address of first SCB vector for adapter.

Physical address of adapter scratch buffer.

Virtual address of a physically contiguous scratch
buffer used in an adapter-specific manner.

Size of adapter scratch buffer.

Address of physical contiguous memory for the adapter
memory dump.

Procedure value of adapter-specific routine that checks
for the existence of devices on an J/O interconnect.
EXE$PROBE_ CSR issues a standard call to this
routine.

Procedure value of adapter probe CSR cleanup routine.
The adapter-specific probe CSR routine calls the
cleanup routine when an error occurs during its
attempts to probe an I/O interconnect.

Procedure value of adapter load map register routine.

Procedure value of adapter shutdown routine.

Pointer to autoconfiguration table.

Base virtual address of adapter map registers.

Address of adapter auxiliary data structure.

Address of adapter-specific interrupt disabling routine.

Address of adapter-specific startup routine.

Address of adapter-specific initialization routine.

(continued on next page)

17.2.1

Data Structures

17.2 ADP (Adapter Control Block)

Table 17—1 (Cont.) Contents of Adapter Control Block

Field Use

adp$q_hardware_type Saved hardware device type information. The
interpretation of this information is adapter-specific.

adp$q_hardware_rev Saved hardware device revision information. The
interpretation of this information is adapter-specific.

adp$l_intd Interrupt transfer vector. For adapters that service
indirect interrupts (adp$v_indirect_vector in
adp$1_adapter_flags is set), this 4-longword field
(described in Section 17.6) provides information used
by OpenVMS Alpha to service a device interrupt, such
as the location of the ADP and its indirect interrupt
service routine.

See the description of the adp$l_vector field for
additional information on how the adapter services
indirect interrupts.

BUSARRAY (Bus Array)

The bus array data structure (BUSARRAY) contains information about the

nodes on a tightly coupled I/O interconnect or the ports of a multichannel I/O

widget. The BUSARRAY consists of a fixed portion and an array of entries.
The fixed portion records the interconnect type, the number of nodes on
the interconnect, and a pointer to the ADP with which the BUSARRAY is

associated. Each array entry records the node number, the node’s hardware
ID, and a pointer to either an ADP or a CRB.

Table 17-2 describes the fields of the BUSARRAY structure; Table 17-3

describes the contents of each entry in the bus array.

Table 17-2 Contents of Bus Array

Field Use

busarray$ps_parent_adp Address of ADP for the tightly coupled I/O
interconnect or multichannel I/O widget the
BUSARRAY describes.

busarray$w_size Size of busarray in bytes. The adapter initialization
routine writes this field when it creates the
BUSARRAY.

(continued on next page)

273

Data Structures
17.2 ADP (Adapter Control Block)

Table 17-2 (Cont.) Contents of Bus Array

Field Use

busarray$b_type Type of data structure. The adapter initialization
routine writes the symbolic constant DYN$C_MISC
in this field when it creates the BUSARRAY.

busarray$b_subtype Structure subtype. The adapter initialization
routine writes dyn$c_busarray in this field when
it creates the BUSARRAY.

busarray$l_bus_type Type of tightly coupled I/O interconnect or
multichannel I/O widget the BUSARRAY describes.
The adapter initialization routine writes this field
when it creates the BUSARRAY. The following
constants represent the interconnects supported on
OpenVMS Alpha systems:

BUS$_FBUS Futurebus

BUS$_XMI XMI

BUS$_LBUS DEC 4000 Alpha LBUS

BUS$_TURBO TURBOchannel

BUS$_CBUS DEC 4000 Alphasystem bus

BUS$_LSB DEC 7000 Alpha Model 600
system bus

BUS$_SCSI SCSI

BUS$_NI Ethernet

BUS$_CI CI

BUS$_KA0402_ DEC 3000 Alpha Model 500
CORE_IO core I/O bus

BUS$_KDM70 KDM70

BUS$_GENXMI Generic XMI

BUS$_BUSLESS_ No bus
SYSTEM

busarray$l_bus_node_cnt Number of entries in the bus array located at
busarray$q_entry_list. The OpenVMS adapter
initialization routine writes this field when it
creates the BUSARRAY.

busarray$q_entry_list Bus array consisting of busarray$l_bus_ node cnt
entries. ; *raitis i =: eee

274

Data Structures
17.2 ADP (Adapter Control Block)

Table 17-3 Contents of Bus Array

Field Use

busarray$q_hw_id Hardware ID.

busarray$q_csr Base address of the node’s CSR. The adapter
initialization routine writes this field.

busarray$l_node_number Node number. The adapter initialization routine
writes this field.

busarray$l_flags Bus array flags. The only bit that is currently
defined, busarray$v_no_reconnect, when set,
indicates that a node has been configured properly.
A bus-specific routine in an IOGEN configuration
building module (ICBM) sets this bit.

busarray$ps_crb Pointer to node’s CRB. This field must be zero if
busarray$Sps_adp is filled in.

busarray$ps_adp Pointer to the child ADP of the parent ADP
(identified by busarraySps_parent_adp) with
which this node is associated. If there is no such

child ADP, this field must be zero.

busarray$l_autoconfig Reserved for the Autoconfiguration facility.

busarray$l_ctrlltr A bus-specific routine in an IOGEN configuration
building modules writes this field by calling
IOGEN$ASSIGN_CONTROLLER.

17.3 CCB (Channel Control Block)

When a process assigns an I/O channel to a device unit with the $ASSIGN

system service, EXE$ASSIGN locates a free block among the channel control
blocks (CCBs) preallocated to the process. EXE$ASSIGN then writes into the
CCB a description of the device attached to the CCB’s channel.

The channel control block is the only data structure described in this chapter
that exists in the control (P1) region of a process address space. It is described

in Table 17-4.

275

Data Structures
17.3 CCB (Channel Control Block)

Table 17-4 Contents of Channel Control Block
a ————.

Field Use
nn TSS

ccb$]l_ucb

cecb$l_wind

ccb$l_sts

ccb$b_amod

ccb$l_ioc

276

Address of UCB of assigned device unit. EXE$ASSIGN
writes a value into this field. EXE$QIO reads this field
to determine that the I/O request specifies a process
I/O channel assigned to a device and to obtain the
device’s UCB address.

Address of window control block (WCB) for file-
structured device assignment. This field is written
by an ancillary control process (ACP) or the extended
QIO processor (XQP) and read by EXE$QIO.

A file-structured device’s XQP or ACP creates a WCB
when a process accesses a file on a device assigned to a
process I/O channel. The WCB maps the virtual block
numbers of the file to a series of physical locations on
the device.

Channel status. The following bits are defined within
ccbSlests:

ccb$v_amb Mailbox associated
with channel.

ccb$v_imgtmp Temporary image.

ecb$v_rdchkdon Read protection check
completed.

ecb$v_wrtchkdon Write protection check
completed.

ecb$v_logchkdon Logical I/O access

check done.

ecb$v_phychkdon Physical I/O access
check done.

Access mode plus 1 of the channel. EXE$ASSIGN
writes the access mode value into this field.

Number of outstanding I/O requests on channel.
EXE$QIO increases this field when it begins to process
an V/O request that specifies the channel. During
I/O postprocessing, the special kernel-mode AST
routine decrements this field. Some FDT routines
and EXE$DASSGN read this field.

(continued on next page)

Data Structures
17.3 CCB (Channel Control Block)

Table 17—4 (Cont.) Contents of Channel Control Block

Field Use

ecb$l_dirp Address of I/O request packet (IRP) for requested
deaccess. A number of outstanding I/O requests can
be pending on the same process I/O channel at one
time. If the process that owns the channel issues an
V/O request to deaccess the device, EXE$QIO holds
the deaccess request until all other outstanding I/O
requests are processed.

cecb$1_chan Associated channel number.

17.4 CRAM (Controller Register Access Mailbox)

The controller register access mailbox (CRAM) contains information that
describes a specific hardware I/O mailbox transaction. To facilitate mailbox
operations within the operating system, the CRAM contains information
required by the operating system as well as the hardware I/O mailbox itself.
For example, mailbox operations require the physical address of the hardware
mailbox itself as well as the virtual address of the corresponding mailbox

pointer register (MBPR). Additionally, the timeout values for both the queuing
and waiting portions of a mailbox operation are kept in the CRAM.

CRAMs are allocated from pages obtained from the memory management free
list. Once the pages have been allocated from the free list, they are managed
privately by the CRAM allocation and deallocation code. Each page of CRAMs
begins with a structure known as a controller register access mailbox header
CRAMH; the set of pages is maintained as a linked list starting at IOC$GQ_

CRAMH_HDR.

The controller register access mailbox is described in Table 17-5.

277

Data Structures
17.4 CRAM (Controller Register Access Mailbox)

Table 17-5 Contents of Controller Register Access Mailbox

Field Use

cram$]_flink Forward link to next CRAM in list (headed by

idb$ps_cram or ucb$ps_cram). The driver-loading
procedure initializes this field when the driver
preallocates CRAMs by specifying the idb_crams
or ucb_crams argument to the DPTAB macro. The
contents of this field are unpredictable and must be
managed by the driver when it spontaneously allocates
CRAMs.

cram$]_blink Backward link to next CRAM in list (headed by
idb$ps_cram or UCBSPS_CRAM). The driver-loading
procedure initializes this field when the driver
preallocates CRAMs by specifying the idb_crams
or ucb_crams parameter to the DPTAB macro. The
contents of this field are unpredictable and must be
managed by the driver when it spontaneously allocates
CRAMs.

cram$w_size Size of CRAM in bytes. IOC$ALLOCATE_CRAM
writes the symbolic constant CRAM$K_LENGTH in
this field when it initializes the CRAM.

cram$b_type Structure type. IOC$6ALLOCATE_CRAM initializes
this field to dyn$c_misc.

cram$b_subtype Structure subtype. IOC$ALLOCATE_CRAM initializes
this field to dyn$c_cram.

cram$l_mbpr Virtual address of mailbox pointer register (MBPR).
When IOC$ALLOCATE_CRAM is called by the driver-
loading procedure, or when it is called independently
with the idb parameter, it initializes this field from
the contents of adp$ps_mbpr. Otherwise, it places a
zero in this field.

cram$q_hw_mbx Physical address of hardware mailbox. IOC$ALLOCATE_
CRAM initializes this field.

(continued on next page)

278

Data Structures
17.4 CRAM (Controller Register Access Mailbox)

Table 17-5 (Cont.) Contents of Controller Register Access Mailbox

Field Use

cram$q_queue_time MBPR queue timeout interval in nanoseconds. If
IOC$CRAM_QUEUE or IOC$CRAM_CMD cannot
queue the hardware I/O mailbox defined in this CRAM
to the MBPR in this amount of time, it returns SS$_
INTERLOCK status to its caller.

When IOC$ALLOCATE_CRAM is called by the driver-
loading procedure, or when it is called independently
with the idb parameter, it initializes this field from the
contents of adp$q_queue_time. Otherwise, it places a
zero in this field.

cram$q_wait_time Mailbox transaction wait timeout interval in
nanoseconds. If IOC$CRAM_IO or IOC$CRAM WAIT
does not see the done or error bit set in the hardware

mailbox in this interval, it returns SS$_TIMEOUT
status to its caller.

When IOC$ALLOCATE_CRAM is called by the driver-
loading procedure, or when it is called independently
with the idb parameter, it initializes this field from the
contents of adp$q_wait_time. Otherwise, it places a
zero in this field.

cram$]l_driver Spare longword for driver use.

cram$l_idb Pointer to IDB. IOC$ALLOCATE_CRAM initializes
this field when called from the driver-loading
procedure, and when called with a nonzero idb
parameter. Otherwise, it places a zero in this field.

cram$l_ucb Pointer to UCB. IOC$ALLOCATE_CRAM initializes
this field when called from the driver-loading procedure
(if the ucb_cram argument is supplied to the
DPTAB macro), and when called with a nonzero uch
parameter. Otherwise, it places a zero in this field.

(continued on next page)

279

Data Structures
17.4 CRAM (Controller Register Access Mailbox)

Table 17-5 (Cont.) Contents of Controller Register Access Mailbox
a gs ee a a a a Se
Field Use
a a

cram$l]_cram_flags The following bits are defined within cram$1_cram_flag

cram$v_cram_in_use CRAM is valid. IOC$6CRAM_
QUEUE and IOC$CRAM_
IO set this bit when they
have successfully posted
the hardware I/O mailbox
portion of the CRAM to the
MBPR. IOC$CRAM_IO and
IOC$CRAM_WAIT clear
this bit when the mailbox
transaction is completed
(either successfully or
unsuccessfully) within the
mailbox transaction timeout
interval (CRAM$Q_WAIT_
TIME).

cram$v_der Disable error reporting.

cram$l_command Command to the remote I/O interconnect command
specifying a read or write transaction. The local
I/O adapter delivers this command to the remote
interconnect to which the target widget is connected.
The command may also include fields such as address
only, address width, and data width.

This field, aligned on a 64-byte boundary, indicates
the beginning of the hardware I/O mailbox structure
in this CRAM. The characters "MBZ" (must be zero)
indicate that the field must contain a zero when it is
supplied in a CRAM operation.

Given a command index, IOC$CRAM_CMD initializes
this field in a manner specific to the I/O interconnect
that is to be the target of an operation using this
CRAM.

(continued on next page)

280

Data Structures
17.4 CRAM (Controller Register Access Mailbox)

Table 17-5 (Cont.) Contents of Controller Register Access Mailbox

Field Use

cram$b_byte_mask Byte mask that indicates which bytes within the
remote bus address cram$q_rbadr are to be written
for mailbox write operations.

IOC$CRAM_CMD, on behalf of a device driver, writes
the size of the target location (byte, word, longword,
or quadword) in this field. Given a byte offset to
an address in remote I/O space, IOC$CRAM_CMD
initializes this field in a manner specific to the masking
mode of the I/O interconnect that is to be the target of
an operation using this CRAM.

cram$b_hose I/O bus number, or hose. This field specifies the
remote I/O interconnect to be accessed by the mailbox
transaction described by this CRAM.

When IOC$ALLOCATE_CRAM is called by the driver-
loading procedure, or when it is called independently
with the idb parameter, it initializes this field from the
contents of adp$b_hose_num. Otherwise, it places a
zero in this field.

cram$q_rbadr Remote bus address. A device driver calls IOC$CRAM_
CMD to write a value in this field that represents the
physical address of the device interface register to
be accessed. IOC$¢CRAM_ CMD calculates this value
from idb$q_csr (or adp$q_csr if idb$q_csr is not
available) and the byte_offset input argument.

cram$q_wdata Data to be written. If CRAM$L_COMMAND indicates
a write transaction to the remote interconnect, the
driver initializes this field with the data to be written
to the target device interface register. If CRAM$L_
COMMAND indicates a read transaction, this field is
not used.

cram$q_rdata Returned read data. If CRAM$L_COMMAND indicates
a read transaction to the remote interconnect, the
remote adapter returns the requested data in this field.
If CRAM$L_COMMAND indicates a write transaction,
the contents of this field are unpredictable.

(continued on next page)

281

Data Structures ;
17.4 CRAM (Controller Register Access Mailbox)

Table 17-5 (Cont.) Contents of Controller Register Access Mailbox

Field Use
aah eal a ay eee mee rer SE ew

cram$w_mbx_flags The following bits are defined within cram$w_mbx_flags

cram$v_mbx_done Mailbox operation completed.
IOC$CRAM_WAIT and
IOC$CRAM_IO check
this bit to determine the
completion of a hardware
V/O mailbox transaction.
For both read and write
commands, this bit, when
set, indicates that the
cram$v_mbx_error,
cram$w_error_bits, and
cram$q_rdata fields are
valid. The mailbox structure
may then be safely modified
by software (reused). Note
that the setting of the DON
bit does not guarantee that
a remote I/O space write has
actually completed at the
bridge.

cram$y_mbx_error Error in operation.

IOC$CRAM_ WAIT and
IOC$CRAM_IO check
this bit to determine
whether an error occurred
during a hardware I/O
mailbox transaction. If
set on a read command,
indicates that an error
was encountered and that
the cram$w_error_bits
field contains additional
information. This bit
is valid only when
cram$v_mbx_done is set.

cram$w_error_ bits Device-specific error bits that indicate the completion
status of a mailbox transaction described by this
CRAM.
a

282

Data Structures
17.5 CRB (Channel Request Block)

17.5 CRB (Channel Request Block)

The activity of each controller in a configuration is described in a channel
request block (CRB). This data structure contains pointers to the wait queue of
driver fork processes waiting to gain access to a device through the controller.
It also contains one interrupt transfer vector (VEC) for each of the controller’s
interrupt vectors.

The channel request block is described in Table 17-6.

Table 17-6 Contents of Channel Request Block

Field

crb$1_faqfi

crb$l_fqb!

cerb$w_size

crb$b_type

erb$b_fick

crb$l_fpe

Use

Fork queue forward link. The link points to the next
entry in the fork queue.

Controiler initialization routines write this field when
they must drop IPL to utilize certain executive
routines, such as those that allocate CRAMs or
nonpaged memory, that must be called at a lower IPL.
The CRB timeout mechanism also uses the CRB fork
block to lower IPL prior to calling the CRB timeout
routine.

Fork queue backward link. The link points to the
previous entry in the fork queue.

Size of CRB in bytes. The driver-loading procedure
writes this field when it creates the CRB.

Type of data structure. The driver-ioading procedure
writes the symbolic constant DYN$C_CRB into this
field when it creates the CRB.

Fork lock at which the controller’s fork operations
are synchronized. If it must use the CRB fork
block, a driver either uses a DPT_STORE macro to
initialize this field or explicitly sets its value within the
controller initialization routine.

Procedure value of routine at which execution resumes
when the fork dispatcher dequeues the fork block.
EXE$PRIMITIVE FORK writes this field when called
to suspend driver execution.

(continued on next page)

283

Data Structures
17.5 CRB (Channel Request Block)

Table 17-6 (Cont.) Contents of Channel Request Block
no —————

Field Use

erb$q_fr3 Value of R3 at the time that the executing code

requests the operating system to create a fork block.
EXE$PRIMITIVE_FORK writes this field when called
to suspend driver execution.

erb$q_fr4 Value of R4 at the time that the executing code re-
quests OpenVMS to create a fork block. EXE$PRIMITIVE
FORK writes this field when called to suspend driver
execution.

crb$b_tt_type Controller type.

erb$l_refc Unit control block (UCB) reference count. The driver-
loading procedure increases the value in this field each
time it creates a UCB for a device attached to the
controller.

crb$b_mask Mask that describes controller status.

The following fields are defined in crb$b_mask:

erb$v_bsy Busy bit. IOC$PRIMITIVE_
REQCHANYy reads the busy
bit to deterrnine whether the
controller is free and sets
this bit when it allocates the
controller data channel to
a driver. IOC$RELCHAN
clears the busy bit if no
driver is waiting to acquire
the channel.

erb$v_uninit Indication, when set, that
the OpenVMS driver
loading procedure has
yet to call the driver’s
controller initialization
routine. The driver loading
procedure reads this bit to
determine whether to call
the controller initialization
routine and clears it when
the initialization routine
completes.

(continued on next page)

284

Data Structures

17.5 CRB (Channel Request Block)

Table 17-6 (Cont.) Contents of Channel Request Block

Field Use

crb$ps_busarray

crb$q_auxstruc

erb$q_lan_struc

crb$q_ssb_struc

crb$]_timelink

crb$l_node

crb$l_duetime

erb$l_toutrout

Address of BUSARRAY that describes the devices
residing on loosely coupled I/O interconnects (for
instance, a SCSI port).

Address of auxiliary data structure used by device
driver to store special controller information. A device
driver requiring such a structure generally allocates
a block of nonpaged dynamic memory in its controller
initialization routine and places a pointer to it in this
field.

Address of auxiliary data structure used by local area
network drivers.

Address of auxiliary data structure used by system
communications services drivers.

Forward link in queue of CRBs waiting for periodic
wakeups. This field points to the crb$l1_timelink
field of the next CRB in the list. The crb$1_timelink
field of the last CRB in the list contains zero. The
listhead for this queue is IOC$¢GL_CRBTMOUT. Use of
this field is reserved to Digital.

Bus-slot number of the controller node. The OpenVMS
Alpha driver-loading procedure initializes this field,
which is used by IOC$NODE_FUNCTION to enable or
disable functionality for the node.

Time in seconds, relative to EXE$GL_ABSTIM, at
which next periodic wakeup associated with the CRB is
to be delivered. Compute this value by raising IPL to
IPL$_POWER, adding the required number of seconds
to the contents of EXE$GL_ABSTIM, and storing the
result in this field. Use ef this field is reserved to
Digital.

Procedure value of routine to be called at fork IPL
(holding a corresponding fork lock if necessary) when
a periodic wakeup associated with CRB becomes due.
The routine must compute and reset the value in
crb$1_duetime if another periodic wakeup request is
desired. Use of this field is reserved to Digital.

(continued on next page)

285

Data Structures
17.5 CRB (Channel Request Block)

Table 17-6 (Cont.) Contents of Channel Request Block

Field Use
de

crb$ps_dlck Address of controller’s device lock. The driver-loading

procedure initializes this field and propagates it to each

UCB it creates for the device units associated with the

controller.

crb$ps_crb_link Pointer to next CRB on ADP.

crb$ps_ctrlr_shutdown Procedure value of driver controller shutdown routine.

crb$l_intd Interrupt transfer vector. This 4-longword field
(described in Section 17.6) contains information used
by the operating system to service a device interrupt,
such as the location of the device’s interrupt service
routine and its associated interrupt dispatch block
(IDB).

crb$l_intd2 Second interrupt transfer vector for devices with
multiple interrupt vectors.

17.6 VEC (Interrupt Transfer Vector Block)

286

An interrupt transfer vector block (VEC) exists in OpenVMS only as a

substructure of a CRB or an ADP. A VEC stores information that allows
OpenVMS to correctly dispatch and service the interrupts of devices that

share a common controller or adapter. The VEC substructures of ADPs are of
interest only to OpenVMS-supplied device drivers.

By default, the driver-loading procedure creates a single VEC within a given
CRB. (Adapter initialization code generates the VECs associated with an
ADP.) You can control the number of VECs created by specifying a value in the
/NUMVEC qualifier of an SYSMAN IO CONNECT command.

The OpenVMS driver-loading procedure initializes the contents of each VEC’s
IDB and ADP pointers and connects the VEC to the appropriate vector offsets
within the system control block (SCB). A device driver must initialize the
vec$ps_isr_code and vec$ps_isr_pd fields in each VEC by invoking the
dpt_store_isr macro.

Although the OpenVMS interrupt dispatching mechanism passes the address
of the device’s IDB to a driver’s interrupt service routine as its sole parameter,
other driver routines must determine the location of the IDB by directly
accessing vec$l1_idb in a VEC substructure. The data structure definition
macro $CRBDEF supplies symbolic offsets so that a driver can easily locate
the first two VECs. For additional VECs, the driver must employ the following
formula, where n represents the vector number:

Data Structures
17.6 VEC (Interrupt Transfer Vector Block)

erb$l_intd+((n-1)*vec$k_length)

The following table lists the symbolic location of the first three VECs for a
given controller:

Vector Number Symbolic Offset to VEC

ih crb$l_intd

2 erb$l_intd2

3 erb$l_intd+<2*vec$k_length>

Table 17—7 describes the contents of the VEC substructure.

Table 17-7 Contents of Interrupt Transfer Vector Block (VEC)

Field Use

vec$ps_isr_code Address of the code entry point of a driver interrupt
service routine (ISR). The driver specifies an ISR by
using the DPT _STORE_ISR macro, which initializes

this field.

vec$ps_isr_pd Address of the procedure descriptor of a driver ISR.
The driver specifies an ISR by using the DPT_STORE_
ISR macro, which initializes this field.

vec$l_idb Address of IDB for controller. The driver-loading
procedure creates an IDB for each CRB and loads the
address of the IDB in this field. Device drivers use the
IDB address to obtain the addresses of IDB CRAMs.

When a driver’s interrupt service routine gains control,
it receives this value as its only parameter.

vec$ps_adp Address of ADP. The SYSMAN command IO
CONNECT must specify the nexus number of the
adapter used by a controller. The driver-loading
procedure writes the address of the ADP for the
specified adapter into the vec$ps_adp field.

17.7 DDB (Device Data Block)
The device data block (DDB) is a block that identifies the generic
device/controller name and driver name for a set of devices attached to a single

controller. The driver-loading procedure creates a DDB for each controller

during autoconfiguration at system startup and dynamically creates additional

DDBs for new controllers as they are added to the system using the SYSMAN

command CONNECT. The procedure initializes all fields in the DDB. All the

287

Data Structures
17.7 DDB (Device Data Block)

288

DDBs associated with a given system block (SB) are linked in a singly linked

list off that SB. The field ddb$1_sb points to the parent SB of any given DDB.

The device data block is described in Table 17-8.

Table 17-8 Contents of Device Data Block

Field Use

ddb$l_link

ddb$l_ucb

ddb$w_size

ddb$b_type

ddb$l_ddt

ddb$l_acpd

Address of next DDB. A zero indicates that this is the last

DDB in the DDB chain.

Address of UCB for first unit attached to controller.

Size of DDB in bytes. The driver-loading procedure writes
the symbolic constant DDB$K_LENGTH in this field when it
creates the DDB.

Type of data structure. The driver-loading procedure writes
the constant DYN$C_DDB into this field when the procedure
creates the DDB.

Address of driver dispatch table (DDT). OpenVMS can
transfer control to a device driver only through procedure
values and entry points listed in the DDT, CRB, and UCB
fork block. The driver-loading procedure initializes this field.

Name of default ACP (or XQP) for controller. ACPs that
control access to file-structured devices (or the XQP) use the
high-order byte of this field, ddbSb_acpclass, to indicate
the class of the file-structured device. If the ACP_MULTIPLE
system parameter is set, the initialization procedure creates a
unique ACP for each class of file-structured device.

Drivers initialize ddb$b_acpclass by invoking a DPT_
STORE macro. Values for ddbSb_acpclass are as follows:

ddb$k_pack Standard disk pack

ddb$k_cart Cartridge disk pack

ddb$k_slow Floppy disk

ddb$k_tape Magnetic tape that simulates file-
structured device

(continued on next page)

Data Structures
17.7 DDB (Device Data Block)

Table 17-8 (Cont.) Contents of Device Data Block

Field Use

ddb$t_name Name of device. The first byte of this field contains the
number of characters in the device name. The remainder of
the field contains a string of up to 15 characters representing
the device name in the format ddc, where

dd = device code (up to 9 alphabetic characters)

C= controller designation (alphabetic)

ddb$ps_dpt Address of DPT of driver that supports this device.

ddb$ps_drvlink Address of next DDB in singly linked list, headed by
dpt$ps_ddb_list, of DDBs serviced by a particular driver.

ddb$l_sb Address of system block.

ddb$l_conlink Address of next DDB in the connection subchain.

ddb$1_allocls Allocation class of device.

ddb$l_2p_ucb Address of the first UCB on the secondary path.

17.8 DDT (Driver Dispatch Table)

Each device driver contains a driver dispatch table (DDT). The DDT lists
procedure values for driver entry points that system routines call.

A device driver creates a DDT by invoking the VAX MACRO DDTAB macro.
Table 17-9 describes the fields in the driver dispatch table.

289

Data Structures
17.8 DDT (Driver Dispatch Table)

Table 17-9 Contents of Driver Dispatch Table
nn nnn EEE

Field Use
fis bate ew I BS ES ee ee

ddt$ps_start_2 Procedure value of the driver’s start-I/O routine. The

DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
start argument to the macro. All drivers must specify
a start-I/O routine.

When a device unit is idle and an I/O request is
pending for that unit, IOC$INITIATE transfers control
to the routine entry point represented by the procedure
value in this field.

A driver that employs kernel process services typically
specifies its start-I/O routine in the kp_startio
argument to the DDTAB macro, and the system routine
EXE$KP_STARTIO in the start argument. This allows
OpenVMS to set up the kernel process environment
prior to transferring control to the driver’s start-I/O
routine.

ddt$ps_start_jsb Procedure value of the driver Start /O routine when
DDTAB JSB_START is used. The ddt$ps_start field
contains a pointer to the IOC$START_C2J routine.

ddt$iw_size Size of DDT in bytes. The DDTAB macro writes the
symbolic constant DDT$K_LENGTH in this field when
creating the DDT.

ddt$w_diagbuf Size of diagnostic buffer, as specified in the diagbf
argument to the DDTAB macro. The value is the size
in bytes of a diagnostic buffer for the device.

When EXE$QIO preprocesses an I/O request, it
allocates a system buffer of the size recorded in this
field (if it contains a nonzero value) if the process
requesting the I/O has DIAGNOSE privilege and
specifies a diagnostic buffer in the I/O request.
IOC$DIAGBUFILL fills the buffer after the I/O
operation completes.

(continued on next page)

290

Data Structures
17.8 DDT (Driver Dispatch Table)

Table 17-9 (Cont.) Contents of Driver Dispatch Table

Field Use

ddt$w_errorbuf

ddt$w_fdtsize

ddt$ps_ctrlinit_2

ddt$ps_unitinit_2

ddt$ps_cloneducb_2

ddt$ps_fdt_2

ddt$ps_cancel_2

Size of error message buffer, as specified in the erlgbf
argument to the DDTAB macro. The value is the size
in bytes of an error message buffer for the device.

If error logging is enabled and an error occurs during
an I/O operation, the driver calls ERL$DEVICERR or
ERL$DEVICTMO to allocate and write error-logging
data into the error message buffer. IOC$INITIATE and
IOC$REQCOM write values into the buffer if an error
has occurred.

Unused on OpenVMS Alpha systems.

Procedure value of controller initialization routine. The
DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
ctrlinit argument to the macro.

Procedure value of the device’s unit initialization
routine. The DDTAB macro inserts a procedure value
in this field when the driver specifies the routine’s
address in the unitinit argument to the macro.

Procedure value of cloned UCB routine. The DDTAB
macro inserts a procedure value in this field when the
driver specifies the routine’s address in the cloneducb
argument to the macro.

Address of the driver’s FDT. Every driver must specify
this address in the functb argument to the DDTAB
macro.

EXE$QIO refers to the FDT to validate I/O function
codes, decide which functions are buffered, and call
FDT routines associated with function codes.

Procedure value of the driver’s cancel-I/O routine. The
DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
cancel argument to the macro.

Some devices require special cleanup processing when
a process or a system routine cancels an I/O request
before the I/O operation completes or when the last
channel is deassigned. The $DASSGN, $DALLOC, and
$CANCEL system services cancel I/O requests.

(continued on next page)

291

Data Structures
17.8 DDT (Driver Dispatch Table)

Table 17-9 (Cont.) Contents of Driver Dispatch Table

Field Use
0 ee ————————_——————————

ddt$ps_regdump_2 Procedure value of the driver’s register dumping

routine. The DDTAB macro inserts a procedure value

in this field when the driver specifies the routine’s
address in the regdmp argument to the macro.

IOC$DIAGBUFILL, ERL$DEVICERR, and ERL$DEVIC'1
call this routine to write device register contents into a
diagnostic buffer or error message buffer.

ddt$ps_altstart_2 Procedure value of the driver’s alternate start-Il/O

routine. The DDTAB macro inserts a procedure value
in this field when the driver specifies the routine’s
address in the altstart argument to the macro.

EXE$ALTQUEPKT transfers control to the alternate
start-I/O routine specified in this field.

ddt$ps_altstart_jsb Procedure value of the driver Alternate Start I/O
routine when DDTAB JSB_ALTSTART is used. The
ddt$ps_altstart field contains a pointer to the
IOC$ALTSTART C2J routine.

ddt$ps_mntver_2 Procedure value of the system routine (IOC$MNTVER)
called at the beginning and end of mount verification
operation. The default value of the mntver argument
to the DPTAB macro is the procedure value of this
routine. Use of the mntver argument to specify
any routine other than IOC$MNTVER is reserved to
Digital.

ddt$1_mntv_sssc Procedure value of the routine that is called when
mount verification is performed for a shadow-set state
change. The DDTAB macro inserts a procedure value
in this field when the driver specifies the routine’s
address in the mntv_ssse argument to the macro.

Use of this field is reserved to Digital.

ddt$l_mntv_for Procedure value of the routine that is called when
mount verification is performed for a foreign device.
The DDTAB macro inserts a procedure value in this
field when the driver specifies the routine’s address in
the mntv_for argument to the macro.

Use of this field is reserved to Digital.

(continued on next page)

292

Data Structures
17.8 DDT (Driver Dispatch Table)

Table 17-9 (Cont.) Contents of Driver Dispatch Table

Field Use

ddt$l1_mntv_sqd Procedure value of the routine that is called when

mount verification is performed for a sequential device.
The DDTAB macro inserts a procedure value in this
field when the driver specifies the routine’s address in
the mntv_sqd argument to the macro.

Use of this field is reserved to Digital.

ddt$l_aux_storage Address of auxiliary storage area, as specified in the
aux_storage argument to the DDTAB macro.

Use of this field is reserved to Digital.

ddt$l_aux_routine Procedure value of auxiliary routine in the mailbox

driver that is called by SYS$ASSIGN. The OpenVMS
VAX mailbox driver uses this routine to complete
the processing of reader-wait and writer-wait set
mode requests. (Auxiliary routines have yet to be
implemented in OpenVMS Alpha systems.) The
DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
aux_routine argument to the macro.

Use of this field is reserved to Digital.

ddt$ps_channel_assign_2 Procedure value of routine, called by SYS$ASSIGN,
to complete channel assignment in a device-specific
manner. (Channel-assignment routines have yet to
be implemented in OpenVMS Alpha systems.) The
DDTAB macro inserts a procedure value in this field
when the driver specifies the routine’s address in the
channel_assign argument to the macro.

Use of this field is reserved to Digital.

ddt$ps_cancel_selective_2 Procedure value of the routine that cancels a list of
I/O requests from the specified channel, including
both waiting and active requests. The OpenVMS
VAX terminal driver and mailbox driver provide this
capability which is not yet implemented in OpenVMS
Alpha systems. The DDTAB macro inserts a procedure
value in this field when the driver specifies the
routine’s address in the cancel_selective argument to
the macro.

Use of this field is reserved to Digital.

(continued on next page)

293

Data Structures
17.8 DDT (Driver Dispatch Table)

Table 17-9 (Cont.) Contents of Driver Dispatch Table

Field Use
ee

ddt$is_stack_bent Size in bytes of the kernel process stack, as indicated

by the kp_stack_size macro in the DRIVER$INIT_

TABLES routine. EXE$KP_STARTIO uses this value,

or kpb$k_min_io_stack (currently 8 KB), whichever

is larger, to determine the size of the stack created for
the driver’s start I/O kernel process thread.

ddt$is_reg_ mask Kernel process register save mask, as indicated by the
ini_ddt_kp_reg_mask macro in the DRIVER$INIT_

TABLES routine.

Each time a kernel process is stalled and restarted,
any registers that the thread uses other than registers
that the calling standard defines as scratch must be
saved.

EXE$KP_STARTIO establishes this set of registers by
merging the mask specified in this field with a register
save mask (represented by the symbolic constant
KPREG$K_MIN_IO_REG_MASK) that includes R2
through R5, R12 through R15, R26, R27, and R29.
It then specifies the resulting mask in its call to
EXE$KP_START. It is this latter mask that EXE$KP_
START stores in the kpb$is_reg_mask field for the
lifetime of the kernel process.

Note that RO, R1, R16 through R25, R28, R30, and
R31 are never preserved and are illegal in a register
save mask. OpenVMS represents the set of these
registers by the symbolic constant KPREG$K_ERR_
REG_MASK. If any of these registers are indicated by
the contents of ddtis_reg_mask, EXEKP START
removes them from the mask it stores in the KPB.

ddt$ps_kp_startio Procedure value of the start-I/O routine of a driver
that employs the kernel process services. The DDTAB
macro inserts a procedure value in this field when the
driver specifies the routine’s address in the kp_startio
argument to the macro.

Such a driver typically specifies the system routine
EXE$KP_STARTIO in the ini_ddt_kp_startio
macro in the DRIVER$INIT_TABLES routine.
EXE$KP_STARTIO calls the start-I/O routine specified
in this field after setting up the kernel process
environment.

SE Ee ee ee eee ee

294

Data Structures
17.9 DPT (Driver Prologue Table)

17.9 DPT (Driver Prologue Table)

When loading a device driver and its database into virtual memory, the driver-

loading procedure finds the basic description of the driver and its device in a

driver prologue table (DPT). The DPT provides the length, name, adapter type,
and loading and reloading specifications for the driver.

A device driver creates a DPT by invoking the DPTAB macro. Table 17-10
describes the driver prologue table.

Table 17-10 Contents of Driver Prologue Table

Field

dpt$l_flink

dpt$l_blink

dpt$w_size

dpt$b_type

dpt$iw_step

dpt$iw_stepver

dpt$w_defunits

Use

Forward link to next DPT. The driver-loading procedure
writes this field. The procedure links all DPTs in the system
in a doubly linked list.

Backward link to previous DPT. The driver-loading
procedure writes this field.

Size of DPT in bytes. The DPTAB macro writes the value
DPT$K_BASE_LEN + NAM$C_MAXRSS in this field when
it creates the DPT.

Type of data structure. The DPTAB macro always writes
the symbolic constant DYN$C_DPT into this field.

OpenVMS Alpha driver step number. You must indicate
that a given driver conforms to the coding practices for a
Step 2 driver by supplying step=2 in the DPTAB macro
invocation. Consequently, the DPTAB macro writes the
symbol constant DPT$K_STEP_2 in this field.

Integer signifying the version of Step 2 interface used by
this driver. An increment of this value represents a change
in the interface between Step 2 drivers and the driver
loading procedure that does not require changes in driver
source code (for example, a change in the DPT produced by
a change in the DPTAB macro). The DPTAB macro writes
the symbolic constant DPT$K_STEP2_V2 in this field.

Number of UCBs that the OpenVMS autoconfiguration
facility will automatically create. Drivers specify this
number with the defunits argument to the DPTAB macro.
If the driver also gives a value to dpt$ps_deliver, this
field is also the number of times that the autoconfiguration
facility calls the unit delivery routine. The DPTAB macro
writes the value 1 in this field by default.

(continued on next page)

295

Data Structures
17.9 DPT (Driver Prologue Table)

296

Table 17-10 (Cont.) Contents of Driver Prologue Table

Field Use

dpt$w_maxunits

dpt$w_ucbsize

dpt$iw_idb_crams

dpt$iw_ucb_crams

Maximum number of units on controller that this driver
supports. Specify this value in the ini_dpt_maxunits
macro in the DRIVER$INIT_TABLES routine. If no value is
specified, the default is eight units.

Size in bytes of the unit control block for a device that uses
this driver. Every driver must specify a value for this field
in the ini_dpt_ucbsize macro in the DRIVER$INIT_
TABLES routine. OpenVMS supplies the symbolic constants
described in Table 17-17 to represent UCB size. Drivers
that employ their own extended UCBs use one of these
constants as a base for calculating the size of their extended
UCBs.

The driver-loading procedure allocates blocks of nonpaged
system memory of the specified size when creating UCBs for
devices associated with the driver.

Number of CRAMS to be allocated and associated with the
IDB. The driver-loading procedure allocates the number of
CRAMs specified in the ini_dpt_idb_crams macro in the
DRIVER$INIT_TABLES routine and inserts them in the
linked list headed by idbSps_cram.

Number of CRAMS to be allocated and associated with the
IDB. The driver-loading procedure allocates the number of
CRAMs specified in the 1ni_dpt_ucb_crams macro in the
DRIVER$INIT_TABLES routine and inserts them in the
linked list headed by ucb$ps_cram.

(continued on next page)

Data Structures
17.9 DPT (Driver Prologue Table)

Table 17-10 (Cont.) Contents of Driver Prologue Table

Field Use

dpt$l_flags Driver-loading flags. The driver can specify any of a set
of flags as the value of the flags argument to the DPTAB
macro. The driver-loading procedure modifies its loading
and reloading algorithm based on the settings of these flags.

The following bits are defined within the dpt$l1_flags:

dpt$v_subentrl

dpt$v_svp

dpt$v_nounload

dpt$v_scs

dpt$v_dushadow

dpt$v_scsci

dpt$v_bvpsubs

dpt$v_ucode

dpt$v_smpmod

dpt$v_decw_decode

Device is a subcontroller.

Device requires permanent
system page to be allocated during
driver loading.

Driver cannot be reloaded.

SCS code must be loaded with
this driver. .

Driver is the shadowing disk class
driver.

Common SCS/CI subroutines
must be loaded with this driver.
This bit is ignored on OpenVMS
Alpha systems.

Common BVP subroutines must
be loaded with this driver. This
bit is ignored on OpenVMS Alpha
systems.

Driver has an associated
microcode image. This bit is
ignored on OpenVMS Alpha
systems.

Driver has been designed to run
in an OpenVMS environment.

Driver is a DECwindows (class

input) driver.

(continued on next page)

297

Data Structures
17.9 DPT (Driver Prologue Table)

298

Table 17-10 (Cont.) Contents of Driver Prologue Table

Field Use
ih a SSS

dpt$v_tpalloc Select the tape allocation class
parameter.

dpt$v_snapshot Driver is certified for system
snapshot.

dpt$il_adptype

dpt$il_refe

dpt$ps_init_pd

dpt$v_no_idb_dispatch Tells the driver-loading procedure
not to create a list of UCB
addresses at the end of the
IDB (at idb$l_ucblst),
regardless of the value of the
ini_dpt_maxunits macro in
the DRIVER$INIT_TABLES
routine which is the maximum
units specified in the SYSMAN
command IO CONNECT.

dpt$v_scsi_port Driver is a SCSI port driver.

Type of adapter used by the devices using this driver. The
DRIVER$INIT_TABLES routine uses the contents of the

ini_dpt_adapt macro to construct a symbolic constant of
the form AT$_adapter, the value of which it inserts in this
field.

Number of DDBs that refer to the driver. The driver-loading
procedure increments the value in this field each time the
procedure creates another DDB that points to the driver’s
DDT.

Procedure value of the driver initialization routine. Every
driver must specify a list of values to be written into data
structure fields at the time that the driver-loading procedure
creates the structures and loads the driver. The driver
invokes the DPT_STORE macro once for each value to be
written; the macro automatically generates an initialization
routine containing code that performs the requested writes,
and places its procedure value in this field. The driver-
loading procedure calls this initialization routine prior
to calling the driver’s controller and unit initialization
routines.

(continued on next page)

Data Structures
17.9 DPT (Driver Prologue Table)

Table 17-10 (Cont.) Contents of Driver Prologue Table

Field Use

dpt$ps_reinit_pd

dpt$ps_deliver_2

dpt$ps_unload

dpt$ps_ddt

dpt$ps_ddb_list

dpt$is_btorder

Procedure value of the driver reinitialization routine. Every
driver must specify a list of data structure fields and values
to be written into these fields at the time that the driver-
loading procedure creates the driver’s data structures and
loads the driver, or the driver is reloaded. The driver
invokes the DPT_STORE macro once for each value to be
written; the macro automatically generates a reinitialization
routine containing code that performs the requested writes,
and places its procedure value in this field. The driver-
loading procedure calls the reinitialization routine at driver
reloading prior to calling the driver’s controller and unit
initialization routines. Note that driver reloading is not yet
supported on OpenVMS Alpha systems.

Procedure value of the unit delivery routine that the
OpenVMS autoconfiguration facility calls once for each
of the number of UCBs specified in dpt$w_defunits. The
ini_dpt_defunits macro in the DRIVER$INIT_TABLES
routine inserts a procedure value in this field when the
driver specifies the routine’s address in the deliver
argument to the macro.

Procedure value of the driver routine to be called when
driver is reloaded. The DPTAB macro inserts a procedure
value in this field when the driver specifies the routine’s
address in the unload parameter to the macro.

The driver-loading procedure calls the driver unloading
routine before reinitializing all device units associated with
the driver.

Note that driver reloading is not yet supported on OpenVMS
Alpha systems.

Address of DDT.

Header of singly-linked list of DDBs serviced by this driver.
This field contains the address of the first DDB in the list.
The DDB$PS_DRVLINK field in each DDB points to the next
DDB in the list.

Ordering number for calls to the runtime drivers for boot
devices.

(continued on next page)

299

Data Structures
17.9 DPT (Driver Prologue Table)

Table 17-10 (Cont.) Contents of Driver Prologue Table

Field

dpt$l_vector

dpt$t_name

dpt$l_ecolevel

dpt$q_linktime

dpt$iq_image name

300

Use

Address of a driver-specific vector table. A terminal class or

port driver stores the address of its class or port entry vector

table in this field. For example, a terminal port driver uses

this cell as a pointer to a table of addresses within the
driver containing the procedure values of routines in the
port driver that are called by the terminal class driver.

Name of the device driver.

For each driver, the OpenVMS Alpha driver-loading
procedure constructs a 16-byte counted ASCII character
string that identifies a driver and stores it in this field. The
first byte records the length of the name string; the name
string can be up to 15 characters.

If you specify the /DRIVER_NAME qualifier in the SYSMAN
command IO LOAD or IO CONNECT, the driver-loading
procedure generates the name by extracting the filename
from the full driver image specification. Otherwise, it
creates the driver name from the device name (ddcu),
appending the string "DRIVER" to the 1 to 9-character
device code (dd).

The driver-loading procedure compares the name of a driver
to be loaded with the values in this field in all DPTs already
loaded into system memory to ensure that it loads only one
copy of a driver at a time.

ECO level of driver, taken from its image header. If for any
reason this information is unavailable, the value of this field
is left as zero.

Time and date at which driver was linked, taken from its
image header.

Character string descriptor representing the full file
specification of the driver image that has been loaded. To
assist the driver loading procedure, this field is initialized as
a string descriptor for the entire space available to hold the
driver image file specification. The driver loading procedure
writes the appropriate descriptor into this field and the
driver image file specification in dpt$t_image_name.

(continued on next page)

17.10

Data Structures
17.9 DPT (Driver Prologue Table)

Table 17-10 (Cont.) Contents of Driver Prologue Table

Field Use

dpt$il_loader_handle Loader handle for driver image. This field is 16-bytes long
and reserved for storing a loadable image handle returned
by the loadable executive image loading procedures. When
the unloading of loadable executive images is implemented,
the handle will be an required input to the unloading
mechanism.

dpt$l_ucode Address of associated microcode image, if dpt$v_ucode is
set in dpt$l_flags. Use of this field is reserved to Digital.

dpt$l1_decw_sname Offset to a counted ASCII string that allows the SET
TERMINAL/SWITCH DCL command to locate an alternate
or extension DECwindows class input (decoder) driver.

dpt$q_lmf_1 First of eight quadwords reserved to Digital for the use of
the OpenVMS license management facility. (The others are
DPT$Q LMF_2, DPT$Q LMF 3, DPT$Q LMF _4, DPT$Q_
LMF_5, DPTQ_LMF_6, DPTQ_LMF_7, and DPT$Q_
LMF _8.)

dpt$t_image_name Full file specification of the driver image. This field is
NAM$C_MAXRSS long. The driver loading procedure
inserts the file specification in dpt$t_image_name, and the
character string representing it in dpt$iq_image_name,
when it loads the driver image.

IDB (Interrupt Dispatch Block)

The interrupt dispatch block (IDB) records controller characteristics. The
driver-loading procedure creates and initializes this block when the procedure
creates a CRB. The IDB supplies the physical address of the device control

and status register (CSR) to the system routines that calculate the values that
initialize I/O mailboxes, thus allowing device drivers to access device interface

registers.

Table 17-11 describes the interrupt dispatch block.

301

Data Structures
17.10 IDB (Interrupt Dispatch Block)

302

Table 17-11 Contents of Interrupt Dispatch Block
ee eee ee — ee

Field Use
De ee ————E—e———e————————————E—e——

idb$q_csr

idb$w_size

idb$b_type

idb$w_units

idb$b_tt_enable

Physical address of the device control and status
register (CSR). IOC$CRAM_CMD uses the CSR
address in calculations that set up driver transactions
to and from I/O space by means of hardware I/O
mailboxes.

When provided with the address of a device’s CSR (for
instance, in the SYSMAN command IO CONNECT),
the driver-loading procedure writes the specified
value into this field. The driver-loading procedure
does not test the value before writing this field.

For remote DSA devices and local pseudo-devices that
require SCS (dpt$il_adptype equals at$_null
and dpt$v_scs set in dpt$l_flags), the driver-
loading procedure writes a specified SYSID into this
field.

Size of IDB in bytes. The driver-loading procedure
determines the size of the IDB by calculating the
size of the isb$1_ucblst field and adding it to the
symbolic constant IDB$K_BASE_ LENGTH. It writes
this sum to idbSw_size when it creates the IDB.

Type of data structure. The driver-loading procedure
writes the symbolic constant DYN$C_IDB into this
field when it creates the IDB.

Maximum number of units connected to the
controller. The maximum number of units is
specified in the ini_dpt_defunits macro in
the DRIVER$INIT_TABLES routine and stored in
DPT$W_MAXUNITS. (The default is 8.) This value
can be overridden at driver-loading time by the
/MAX_UNITS qualifier to the SYSMAN command IO
CONNECT.

The driver-loading procedure uses this value to
determine the size of the idb$l1_ucblst field.

Reserved for use by terminal port drivers.

(continued on next page)

Data Structures
17.10 IDB (interrupt Dispatch Block)

Table 17-11 (Cont.) Contents of Interrupt Dispatch Block

Field

idb$ps_owner

idb$ps_cram

idb$ps_spl

idb$l_adp

idb$]_flags

Use

Address of UCB of device that owns controller
data channel. IOC$PRIMITIVE_REQCHANH and
IOC$PRIMITIVE_REQCHANL write a UCB address
into this field when the routine allocates a controller
data channel to a driver. IOC$RELCHAN confirms
that the proper driver fork process is releasing a
channel by comparing the driver’s UCB with the
UCB stored in the idb$ps_owner field. If the UCB
addresses are the same, IOC$RELCHAN allocates
the channel to a waiting driver by writing a new UCB
address into the field. If no driver fork processes are
waiting for the channel, IOC$RELCHAN clears the
field.

If the controller is a single-unit controller, the unit or
controller initialization routine should write the UCB
address of the single device into this field.

Header of singly linked list of CRAMs allocated to the
device controller. This field contains the address of
the first CRAM in the list. The field cram$l1_flink
in each CRAM points to the next CRAM in the list.

Address of device lock. The driver-loading procedure
copies the value of CRB$PS_DLCK to this field.

Address of the ADP associated with the device
controller. The SYSMAN command IO CONNECT
must specify the nexus number of the I/O adapter
used by a device. The driver-loading procedure writes
the address of the ADP for the specified /O adapter
into the idb$l_adp field.

The following bits are defined within idb$1_flags:

idb$v_cram_alloc The driver-loading
procedure has allocated the
number of CRAMs specified
by dpt$Siw_idb_crams
and has placed them in
the linked list headed by
idbSps_cram.

idb$v_vle idb$l_vector points to a
vector list extension (VLE)

(continued on next page)

303

Data Structures
17.10 IDB (Interrupt Dispatch Block)

304

Table 17-11 (Cont.) Contents of Interrupt Dispatch Block

Field Use
nnn UES EEE

idb$l_device_specific

idb$l_vector

idb$l_ucblst

Longword field available to drivers for device-specific
purposes.

Offset of interrupt vector for this device controller, or,
if idb$v_vle in idb$l_vector is set, the address of
a vector list extension (VLE).

For device controllers utilizing a single interrupt
vector, the driver-loading procedure writes a value
into this field using either the autoconfiguration
database or the value specified in the /VECTOR
qualifier to the SYSMAN command IO CONNECT.
This value is a byte offset to device controller’s vector
location either in the SCB or the ADP vector table.

For device controllers utilizing multiple interrupt
vectors, the driver-loading procedure writes the
address of a vector list extension (VLE) in this
field. The field vle$1_vector_list in the VLE
contains an array of unsigned longwords, each of
which contains a byte offset to a vector location either
in the SCB or the ADP vector table.

Drivers for devices that utilize programmable
interrupt vectors (that is, devices that define their
interrupt vector addresses through device registers)
must use this field (and, possibly, the contents of
vle$l_vector_list) to load those registers during
unit initialization and reinitialization after a power
failure.

List of UCB addresses. The size of this field is
the maximum number of units supported by the
controller, as defined in the DPT. The maximum
specified in the DPT can be overridden at driver load
time by the /MAX_UNITS qualifier to the SYSMAN
command IO CONNECT.

The driver-loading procedure writes a UCB address
at the end of the list located at this symbolic offset in
the IDB every time it creates a new UCB associated
with the controller.

SS ee eee

Data Structures
17.11 IRP (VO Request Packet)

17.11 IRP (/O Request Packet)

When a user process queues a valid I/O request by issuing a $QIO or $QIOW
system service, the service creates an I/O request packet (IRP). The IRP

contains a description of the request and receives the status of the I/O
processing as it proceeds.

The I/O request packet is described in Table 17-12. Note that the the standard
IRP is followed by fields required by system multiprocessing code and the

OpenVMS class drivers. Under no circumstances should a driver not supplied
by Digital use these fields.

Table 17-12 Contents of I/O Request Packet (IRP)

Field

irp$l_ioqfl

irp$l_ioqbl

irp$w_size

irp$b_type

irp$b_rmod

irp$l_pid

Use

V/O queue forward link. EXE$INSERTIRP reads and writes
this field when the routine inserts IRPs into a pending-Il/O
queue. IOC$REQCOM reads and writes this field when the
routine dequeues IRPs from a pending-I/O queue in order to
send an IRP to a device driver.

I/O queue backward link. EXE$INSERTIRP and
IOC$REQCOM read and write these fields.

Size of IRP. EXE$QIO writes the symbolic constant IRP$K_

LENGTH into this field when the routine allocates and fills
an IRP.

Type of data structure. EXE$QIO writes the symbolic
constant DYN$C_IRP into this field when the routine

allocates and fills an IRP.

Information used by I/O postprocessing. This field contains
the same bit fields as the acb$b_rmod field of an AST
control block. For instance, the two bits defined at ACB$V_
MODE indicate the access mode of the process at time of the
I/O request. EXE$QIO obtains the processor access mode
from the PS and writes the value into this field.

Process identification of the process that issued the I/O
request. EXE$QIO obtains the process identification from
the PCB and writes the value into this field.

(continued on next page)

305

Data Structures
17.11 IRP (/O Request Packet)

Table 17-12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

irp$l_ast Procedure value of AST routine, if specified by the process

in the I/O request. (This field is otherwise clear.) If the
process specifies an AST routine address in the $QIO call,
EXE$QIO writes the address in this field.

During I/O postprocessing, the special kernel-mode AST
routine queues a mode-of-caller AST to the requesting
process if this field contains the address of an AST routine.

irp$l_astprm Parameter sent as an argument to the AST routine specified
by the user in the I/O request. If the process specifies an
AST routine and a parameter to that AST routine in the
$QIO call, EXE$QIO writes the parameter in this field.

During I/O postprocessing, the special kernel-mode AST
routine queues a mode-of-caller AST if the irp$1_ast field
contains an address, and passes the value in irp$]_astprm
to the AST routine as an argument.

irp$l_oboff Original byte offset into the first page of a direct-l/O
transfer. For segmented I/O transfers, I/O postprocessing
must recalculate the value of irp$l_boff before
transferring each segment to account for the difference
between the large OpenVMS Alpha memory page size and
the 512-byte OpenVMS disk block size.

FDT routines store the original byte offset in irp$l_oboff
(as well as in irp$l_boff) so that that I/O postprocessing
can use irp$l_oboff in conjunction with irp$l_obcnt
and IRP$L_SVAPTE to unlock the buffer pages locked for
the entire transfer.

irp$l_wind Address of window control block (WCB) that describes the
file being accessed in the I/O request. EXE$QIO writes this
field if the I/O request refers to a file-structured device. An
ACP or XQP reads this field.

When a process gains access to a file on a file-structured
device or creates a logical link between a file and a process
I/O channel, the device ACP or XQP creates a WCB that
describes the virtual-to-logical mapping of the file data on
the disk. EXE$QIO stores the address of this WCB in the
irp$l_wind field.

irp$l_ucb Address of UCB for the device assigned to the I/O channel
ee to the process. EXE$QIO copies this value from
the :

(continued on next page)

306

Data Structures
17.11 IRP (/O Request Packet)

Table 17-12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

irp$b_efn

irp$b_pri

irp$b_cln_index

irp$b_shd_flags

irp$l_iosb

irp$l_chan

irp$l_extend

Event flag number and group specified in I/O request.
If the I/O request call does not specify an event flag
number, EXE$QIO uses event flag 0 by default. EXE$QIO
writes this field. The I/O postprocessing routine calls
SCH$POSTEF to set this event flag when the I/O operation
is complete.

Base priority of the process that issued the I/O request.
EXE$QIO obtains a value for this field from the process
control block (PCB). EXE$INSERTIRP reads this field to
insert an IRP into a priority-ordered pending-I/O queue.

Shadow clone membership index. Use of this field is
reserved to Digital.

Shadow clone flags. Use of this field is reserved to Digital.

Virtual address of the process’s I/O status block (IOSB) that
receives final status of the I/O request at I/O completion.
EXE$QIO writes a value into this field if the I/O request call
specifies an IOSB address. (This field is otherwise clear.)
The I/O postprocessing special kernel-mode AST routine
writes two longwords of I/O status into the IOSB after the
I/O operation is complete.

When an FDT routine aborts an I/O request by calling
EXE$ABORTIO, EXE$ABORTIO fills the irp$1_iosb field
with zeros so that I/O postprocessing does not write status
into the IOSB.

Index number of process I/O channel for request. EXE$QIO
writes this field.

Address of first IRPE, if any, linked to this IRP. FDT
routines write an extension address to this field when
a device requires more context than the IRP can
accommodate. This field is read by IOC$IOPOST.
irp$v_extend in irp$l_sts is set if this extension
address is used.

(continued on next page)

307

Data Structures
17.11 IRP (VO Request Packet)

Table 17-12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

irp$l_sts Status of I/O request. EXE$QIO initializes this field to 0.

EXE$QIO, FDT routines, driver fork processes, or driver
kernel processes modify this field according to the current
status of the I/O request. I/O postprocessing reads this field
to determine what sort of postprocessing is necessary (for
example, deallocate system buffers and adjust quota usage).

Bits in the irp$1_sts field describe the type of /O
function, as follows:

irp$v_bufio

irp$v_func

irp$v_pagio

irp$v_complx

irp$v_virtual

irp$v_chained

irp$v_swapio

irp$v_diagbuf

irp$v_physio

irp$v_termio

irp$v_mbxio

irp$v_extend

irp$v_filacp

irp$v_mvirp

irp$v_srvio

irp$v_key

308

Buffered-I/O function

Read function

Paging-I/O function

Complex-buffered-l/O function

Virtual-I/O function

Chained-buffered-I/O function

Swapping-I/O function

Diagnostic buffer is present

Physical-I/O function

Terminal I/O (for priority
increment calculation)

Mailbox-I/O function

An extended IRP is linked to this
IRP

File ACP I/O

Mount-verification I/O function

Server-type I/O

Encrypted function (encryption
key address at irp$l1_keydesc)

(continued on next page)

Data Structures
17.11 IRP (/O Request Packet)

Table 17-12 (Cont.) Contents of I/O Request Packet (IRP)

Field

irp$l_sts2

irp$l_svapte

irp$l_bent

Use

Second longword of I/O request status. EXE$QIO initializes
this field to 0. EXE$QIO, FDT routines, and driver fork
processes modify this field according to the current status of
the I/O request.

Bits in the irp$1_sts2 field describe the type of I/O
function, as follows:

irp$v_start_past_hwm __//O starts past file highwater
mark.

irp$v_end_past_hwm I/O ends past file highwater mark.

irp$v_erase Erase I/O function.

irp$v_part_hwm Partial file highwater mark
update.

irp$v_Ickio Locked I/O request, as used by
DECnet direct I/O.

irp$v_shdio Shadowing IRP.

irp$v_cacheio I/O using VBN cache buffers.

For a direct-I/O transfer, virtual address of the first page-
table entry (PTE) of the I/O-transfer buffer, written here
by the FDT routine locking process pages; for a buffered-
I/O transfer, address of a buffer in system address space,
written here by the FDT routine allocating buffer.

IOC$INITIATE copies this field into ucb$1_svapte before
transferring control to a device driver start-I/O routine.

I/O postprocessing uses this field to deallocate the system
buffer for a buffered-I/O transfer or to unlock pages locked
for a direct-I/O transfer.

Byte count of the I/O transfer. FDT routines calculate the
count value and write the field. IOC$INITIATE copies
the contents of this field into ucb$l_bcnt before calling a
device driver’s start-I/O routine.

For a buffered-I/O-read function, I/O postprocessing uses
irp$l_bcnt to determine how many bytes of data to write
to the user’s buffer.

(continued on next page)

309

Data Structures
17.11 IRP (VO Request Packet)

310

Table 17-12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use
a

irp$l_boff Byte offset into the first (or current) page of a direct-

V/O transfer. FDT routines calculate this offset and
write its value into this field and into irp$l_oboff.
For a segmented direct-I/O transfer, I/O postprocessing
recalculates the value of irp$1_boff before transferring
each segment to account for difference between the large
OpenVMS Alpha memory page size and the 512-byte disk
block size.

For buffered-I/O transfers, FDT routines must write the
number of bytes to be charged to the process in this field
because these bytes are being used for a system buffer.

IOC$INITIATE copies this field into ucb$1_boff before
calling a device driver start-I/O routine.

I/O postprocessing uses irp$l1_boff in conjunction with
irp$l_bcnt and irp$l1_svapte to unlock pages locked for
non-segmented direct I/O transfers. For buffered /O, /O
postprocessing adds the value of irp$l1_boff to the process
byte count quota.

irp$ps_kpb Address of kernel process block (KPB). EXE$KP_
ALLOCATE_KPB, when called by EXE$KP_STARTIO,
returns the address of the KPB it has allocated to this field.

irp$l_iost1 First I/O status longword. IOC6REQCOM and EXE$FINISHIO(
write the contents of RO into this field. The I/O postprocess-
ing routine copies the contents of this field into the user’s
IOSB.

EXE$ZEROPARM copies a 0 and EXE$ONEPARM copies
pl into this field. This field, also known as irp$l_media,
is a good place to put a $QIO request parameter. Note that,
when error logging is enabled, the contents of irp$1_media
is copied into an EMB as the "disk size".

irp$l_iost2 Second I/O status longword. IOC$REQCOM, EXE$FINISHIO,
and EXE$FINISHIO(C) write the contents of R1 into this
field. The I/O postprocessing routine copies the contents of
this field into the user’s IOSB.

The low byte of this field is also known as IRP$B_CARCON.
IRP$B_CARCON contains carriage control instructions to
the driver. EXE$READ and EXE$WRITE copy the contents
of p4 of the user’s I/O request into this field.

(continued on next page)

Data Structures
17.11 IRP (VO Request Packet)

Table 17-12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use

irp$l_abent

irp$l_obent

irp$l_segvbn

irp$l_func

irp$l_diagbuf

irp$l_seqnum

Accumulated bytes transferred in virtual I/O transfer.
IOC$IOPOST reads and writes this field after a partial
virtual transfer.

Original transfer byte count in a virtual I/O transfer.
IOC$IOPOST reads this field to determine whether a
virtual transfer is complete, or whether another I/O request
is necessary to transfer the remaining bytes.

Virtual block number of the current segment of a virtual
V/O transfer. IOC$IOPOST writes this field after a partial
virtual transfer.

V/O function code that identifies the function to be performed
for the I/O request. The I/O request call specifies an I/O
function code; EXE$QIO and driver FDT routines map
the code value to its most basic level (virtual — logical >
physical) and copy the reduced value into this field.

Based on this function code, EXE$QIO calls FDT action
routines to preprocess an I/O request. Six bits of the
function code describe the basic function. The remaining
10 bits modify the function. The upper 16 bits of this
longword are reserved to Digital.

Address of a diagnostic buffer in system address space. If
the I/O request call specifies a diagnostic buffer and if a
diagnostic buffer length is specified in the DDT, and if the
process has diagnostic privilege, EXE$QIO copies the buffer
address into this field.

EXE$QIO allocates a diagnostic buffer in system address
space to be filled by IOC$DIAGBUFILL during I/O
processing. During I/O postprocessing, the special kernel-
mode AST routine copies diagnostic data from the system
buffer into the process diagnostic buffer.

I/O transaction sequence number. If an error is logged
for the request, this field contains the universal error log
sequence number.

(continued on next page)

311

Data Structures
17.11 IRP (/O Request Packet)

17.12

312

Table 17-12 (Cont.) Contents of I/O Request Packet (IRP)

Field Use
ee oe

irp$l_arb Address of access rights block (ARB). This block is located in

the PCB and contains the process privilege mask and UIC,

which are set up as follows:

arb$q_priv Quadword containing process
privilege mask

spare$l Unused longword

arb$]_uic Longword containing process UIC

irp$l_keydesc Address of encryption key.

irp$l_qio_pn Function-specific $QIO system service arguments (pl
through p6). EXE$QIO copies these arguments to the
appropriate IRP fields.

IRPE (I/O Request Packet Extension)

I/O request packet extensions (IRPEs) hold additional I/O request information

for devices that require more context than the standard IRP can accommodate.
IRP extensions are also used when more than one buffer (region) must be

locked into memory for a direct-I/O operation, or when a transfer requires
a buffer that is larger than 64 KB. An IRPE provides space for two buffer
regions, each with a 32-bit byte count.

FDT routines allocate IRPEs by calling EXE$ALLOCIRP. Driver routines link

the IRPE to the IRP, store the IRPE’s address in IRP$L_EXTEND, and set the
bit field irp$v_extend in irp$l_sts to show that an IRPE exists for the IRP.

The FDT routine initializes the contents of the IRPE. Any fields within the
extension not described in Table 17-18 can store driver-dependent information.

If the IRPE specifies additional buffer regions, the FDT routine must

explicitly call those buffer locking routines that call back to a driver-
specified error routine if the locking procedure fails (EXE$READLOCK_
ERR, EXE$WRITELOCK ERR, and EXE$MODIFYLOCK_ERR). If an error
occurs during the locking procedure, the driver must unlock all previously
locked regions using MMG_STD$UNLOCK and deallocate the IRPE before
returning to the buffer locking routine.

IOC$IOPOST automatically unlocks the pages in region 1 (if defined) and
region 2 (if defined) for all the IRPEs linked to the IRP undergoing completion
processing. IOC$IOPOST also deallocates all the IRPEs.

17.13

Data Structures
17.12 IRPE (I/O Request Packet Extension)

The I/O request packet extension is described in Table 17-13.

Table 17-13 Contents of I/O Request Packet Extension (IRPE)

Field Use

irpe$w_size

irpe$b_type

irpe$l_extend

irpe$l_sts

irpe$]_sts2

irpe$l_svaptel

irpe$l_bent1

irpe$l_boffl

irpe$l_svapte2

irpe$l_bent2

irpe$]_boff2

Size of IRPE. EXE$ALLOCIRP writes the constant
IRP$K_LENGTH to this field.

Type of data structure. EXE$ALLOCIRP writes the
constant DYN$C_IRP to this field.

Address of next IRPE, if any, for this IRP.

IRPE status field. If bit irpeSv_extend is set, it
indicates that another IRPE is linked to this one.

Second longword of IRPE status field. No bits are
currently defined.

System virtual address of the page-table entry (PTE)
that maps the start of region 1. FDT routines write
this field. If the region is not defined, this field is
zero.

Size in bytes of region 1. FDT routines write this
field.

Byte offset of region 1. FDT routines write this field.

System virtual address of the PTE that maps the
start of region 2. Set by FDT routines. This field
contains a value of zero if region 2 is not defined.

Size in bytes of region 2. FDT routines write this
field.

Byte offset of region 2. This field is set by FDT
routines.

KPB (Kernel Process Block)

The kernel process block (KPB) contains the saved registers, state, and stack

pointer for a kernel process.

The KPB consists of the following areas:

e Base area.

The base area includes the standard OpenVMS data structure header

fields, describes the kernel process stack, contains masks that describe the
KPB itself and its register saveset, stores the context of a suspended KPB,

and provides pointers to the other KPB areas. The KPB base area ends
with offset kpb$is_prm_length.

313

Data Structures
17.13 KPB (Kernel Process Block)

314

Scheduling area

The scheduling area contains the procedure values of the routines that

execute to suspend a kernel process and to resume its execution. The

scheduling area can contain either a fork block or a timer queue entry. The

scheduling area ends with offset kpb$q_fr4.

Operating system special parameters area

The operating system special parameters area stores information required

by OpenVMS device drivers, such as pointers to I/O database structures,

data facilitating the selection and operation of driver macros, and driver-

specific data. The OpenVMS special parameters area ends with offset

kpbSps_dlck.

Spin lock area

The spin lock area is unused at present and reserved to Digital. It ends
with offset kpb$ps_spl_restrt_rtn.

Debugging area

The debugging area stores information used in the debugging of a kernel
process. The KPB debugging area is contiguous with either the scheduling
or spin lock KPB areas.

Parameter area

The parameter area is a variably sized area that is specified by the kernel
process creator in the call to EXE$KP_ALLOCATE_KPB. The kernel
process creator and the kernel process use this area to exchange data.

The length of each of these areas is rounded to an integral number of
quadwords.

The KPB can be used in one of two general types: the OpenVMS executive
software type (VEST) and the fully general type (FGT). Typically, OpenVMS
software employs the VEST form of the KPB.

In a VEST KPB, the base, scheduling, OpenVMS special parameters, and
spin lock areas have a fixed position relative to the starting address of the
KPB. This allows you to access all fields in these areas as offsets from a single
register which points to the KPB’s starting address. By reducing the number
of indirect reference operations, accessing VEST KPBs in this manner provides
better performance than indirectly accessing the fields in the dynamic portions
of a FGT KPB.

Data Structures
17.13 KPB (Kernel Process Block)

You create a VEST KPB by the ini_ddt_kp_startio in the DRIVER$INIT_

TABLES routine, or by explicitly invoking KP_ALLOCATE_KPB or calling
EXE$KP_ALLOCATE_KPB. Typically VEST KPBs do not include the
debugging or parameter areas. If you require either of these areas in a
VEST KPB, you must use the KPB allocation macro or routine. When present,

the debugging and parameter areas are variable in size and can be located only
indirectly through the pointers provided in the base KPB.

In an FGT KPB, only the base KPB and scheduling areas have a fixed position
relative to the starting address of the KPB. You can reference fields in either

of these areas as offsets from a KPB base pointer register. Because the
other KPB areas are variably sized, you can reference them only through the
pointers provided in the base KPB.

You create an FGT KPB by explicitly invoking KP_ALLOCATE_KPB or calling
EXE$KP_ALLOCATE_KPB. An FGT KPB never includes the OpenVMS special

parameters area.

The base, scheduling, OpenVMS special parameters, and spin lock area are
described in Table 17-14. Table 17-15 describes the debugging area.

Table 17-14 Contents of Kernel Process Block (KPB)

Field Use

kpb$ps_flink Forward link. A driver that creates multiple kernel
processes can use this field and kpb$ps_blink to
link together the corresponding KPBs. Doing so
facilitates debugging, wherein a determined crash
analysis can locate each KPB and associated kernel
process stack.

kpb$ps_blink Backward link.

kpb$iw_size Size of KPB in bytes. For VEST KPBs, EXE$KP_
ALLOCATE _KPB writes a value in this field that
accounts for the presence of the base KPB, scheduling
area, and spin lock area and is rounded up to a
quadword multiple.

kpb$ib_type Type of data structure. EXE$KP_ALLOCATE_KPB
writes the symbolic constant DYN$C_MISC in this
field when it creates the KPB.

(continued on next page)

315

Data Structures
17.13 KPB (Kernel Process Block)

Table 17-14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

kpb$ib_subtype Type of data structure. EXE$KP_ALLOCATE_KPB
writes the symbolic constant DYN$C_KPB in this
field when it creates the KPB.

kpb$is_stack_size Size of kernel process stack in bytes, excluding
the two guard pages. EXE$KP_ALLOCATE_KPB
computes the size of the kernel process stack by
rounding the value of the stack_size argument up to
an integral number of CPU-specific pages, converting
the result to bytes, and storing it in this field.

Note that EXE$KP_STARTIO, prior to calling
EXE$KP_ALLOCATE_KPB, determines the size
of the stack as the maximum of the value of
ddt$is_stack_bcnt or the symbolic constant
KPB$K_MIN_IO_STACK (currently 8 KB), rounded
up to a multiple of CPU-specific pages.

kpb$is_flags The following bits are defined within kpb$Sis_flags.

kpb$v_valid KPB is valid. EXE$KP_
START sets this bit;
EXE$KP_END clears it.

kpb$v_active KPB is in active use.
EXE$KP_ START sets
this bit; EXE$KP_END
clears it. EXE$KP_STALL_
GENERAL clears this
bit when suspending a
kernel process; EXE$KP_
RESTART sets it when
resuming the kernel
process.

kpb$v_vest KPB is a VEST KPB.
EXE$KP_ALLOCATE KPB
sets this bit in VEST KPBs.

kpb$v_deleting KPB is being deleted.
EXE$KP_DEALLOCATE_
KPB sets this bit.

(continued on next page)

316

Data Structures
17.13 KPB (Kernel Process Block)

Table 17-14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

kpb$ps_saved_sp

KPB$IS_REG_MASK

kpb$ps_stack_base

kpbh$v_sched Scheduling area is present.
EXE$KP_ALLOCATE_KPB
sets this bit in VEST KPBs.

kpb$v_splock Spin lock area is present.
EXE$KP_ALLOCATE_KPB
sets this bit in VEST KPBs.

kpb$v_debug Debug area is present.

kpb$v_param Parameter area is present.

kpb$v_dealloc_at_end KP_END should call KP_
DEALLOCATE_KPB.
EXE$KP_ALLOCATE_KPB
sets this bit in VEST KPBs.

Previous stack pointer. When a kernel process has
been started or resumed, this field contains the
value of the SP register when the executing thread
is preempted (but after the values indicated by
the ini_ddt_kp__reg_mask macro have been
pushed onto the stack). EXE$KP_STALL_GENERAL
restores this value to the SP register when the kernel
process is suspended.

Kernel process register save mask. When a kernel
process has been suspended, this field contains a
mask of the registers that must be restored when the
kernel process is resumed.

EXE$KP_STARTIO constructs this mask by
merging the driver-specified register save mask
(ddt$is_reg_mask) with the KPB minimal I/O
register mask (kpreg$k_min_io_reg_mask).

System virtual address of the start of the no-access
guard page at the base of the kernel process stack.
The kernel process stack grows negatively from this
address. EXE$KP_ALLOCATE_KPB writes this field
when it allocates the stack.

(continued on next page)

317

Data Structures
17.13 KPB (Kernel Process Block)

Table 17-14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use
nnn

kpb$ps_stack_sp

kpb$ps_sch_ptr

kpb$ps_spl_ptr

kpb$ps_dbg_ptr

kpb$ps_prm_ptr

318

Current kernel process SP at the time of suspension.
EXE$KP_STALL_GENERAL saves the current value
of the SP register to this field when the kernel
process is suspended, and restores to the SP register
the value in kpb$ps_saved_sp. When the kernel
process is started, EXE$KP_START initializes this
field with the contents of kpb$ps_stack_base.
When a kernel process is resumed, EXE$KP_
RESTART restores the value in this field to the
SP register.

Address of the KPB scheduling area. EXE$KP_
ALLOCATE_KPB writes this field when creating
the KPB. The scheduling area is contiguous with
the base KPB for both VEST KPBs and FGT KPBs,
and starts at offset kpb$ps_sch_stall_rtn. If you
reference fields in the scheduling area as offsets from
the address in this field, you must use the prefix
kpbschs¢ in place of kpb$ in the symbolic offsets.

Address of the KPB spin lock area. EXE$KP_
ALLOCATE _KPB writes this field when creating
the KPB. The spin lock area is contiguous with the
base KPB and KPB scheduling area for VEST KPBs,
and starts at offset kpb$ps_spl_stall_rtn. You
must use the address in this field to locate the spin
lock area for FGT KPBs, using the prefix code_
example>(kpbspl$) in place of code_example>(kpb$)
in the symbolic offsets to the spin lock area’s fields.

Address of the KPB debugging area. EXE$KP_
ALLOCATE_KPB writes this field when creating the
KPB. See Table 17-15 for a a description of the KPB
debugging area. VEST KPBs do not typically include
the debugging area.

Address of the KPB parameter area. EXE$KP_
ALLOCATE_KPB writes this field when creating
the KPB. VEST KPBs do not typically include the
parameter area.

(continued on next page)

Data Structures
17.13 KPB (Kernel Process Block)

Table 17-14 (Cont.) Contents of Kernel Process Block (KPB)

Field

kpb$is_prm_length

kpb$ps_sch_stall_rtn

Use

Length of the KPB parameter area, as indicated
in the param_length parameter to EXE$KP_
ALLOCATE_KPB. EXE$KP_ALLOCATE_KPB
rounds this value up to an integral number of
quadwords and writes it to this field. VEST KPBs do
not typically include the parameter area.

Procedure value of the routine that has been
requested to suspend the kernel process described by
this KPB. A kernel process scheduling stall routine
preserves kernel process context not represented on
the kernel process stack. It also takes steps that
allow the stalled kernel process thread to be resumed
at some later time (for instance, by inserting a fork
block on a fork queue or by making a timer queue
entry).

A driver can implicitly specify and invoke a
scheduling stall routine by calling one of the following
system routines: EXEKP_FORK, EXEKP_FORK_
WAIT, IOC$KP_REQCHAN, IOC$KP_WFIKPCH, or
IOC$KP_WFIRLCH. (The macros KP_STALL_FORK,
KP_STALL_FORK_WAIT, KP_STALL_IOFORK, KP_
STALL_REQCHAN, KP_STALL_WFIKPCH, and
KP_STALL_WFIRLCH may be used to call these
routines.) All of these routines call EXE$KP_ STALL_

GENERAL, which, in turn, issues a standard call to
the appropriate scheduling stall routine.

A driver can explicitly specify and invoke a
scheduling stall routine by calling EXE$KP_STALL_
GENERAL (or invoking the KP_STALL_GENERAL

macro).

(continued on next page)

319

Data Structures
17.13 KPB (Kernel Process Block)

Table 17-14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

kpb$ps_sch_restrt_rtn

kpb$ps_fkblk

kpb$ps_tqfi

kpb$ps_tqbl

kpb$iw_tqe_size

kpb$ib_fkb_type

320

Procedure value of the routine to be invoked by
EXE$KP_ RESTART when a stalled kernel process is

to be resumed.

If the kernel process thread was suspended by
EXEKP_FORK, EXEKP_FORK_WAIT, IOC$KP_
REQCHAN, IOC$KP_WFIKPCH, or IOC$KP_
WFIRLCH, this field contains a zero.

A driver can explicitly specify and invoke a
scheduling restart routine by calling EXE$KF_
STALL_GENERAL (or invoking the KP_STALL_
GENERAL macro).

Fork block address. Kernel process scheduling stall
routines use this field to locate the fork block in
which the kernel process thread’s context is to be
stored until it is resumed.

Timer-queue forward link for embedded timer queue
entry (TQE). Alternatively, as kpbSps_fqfl, fork-
queue forward link for embedded fork block.

Timer-queue backward link. Alternatively, as
kpbSps_faqbl, fork-queue backward link.

Size of embedded TQE in bytes. Alternatively, as
kpb$iw_fkb_size, size of embedded fork block in
bytes.

Before using this section of the KPB as a TQE or fork
block, you must write the symbolic constant DYN$C_
TQE or DYN$C_FRK, as appropriate, in this field.

Type of data structure. Before using this section
of the KPB as a TQE or fork block, you must write
the symbolic constant TQE$K_LENGTH or FKB$K_
LENGTH, as appropriate, in this field.

(continued on next page)

Data Structures
17.13 KPB (Kernel Process Block)

Table 17-14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

kpb$ib_rqtype

kpb$ps_fpc

kpb$q_fr3

kpb$q_fr4

kpb$iq_time

kpb$ps_ucb

kpb$ps_irp

Type of TQE. Before using this section of the KPB as
an embedded TQE, you must indicate the TQE type
in this field.

Alternatively, as kpb$ib_flck, this field contains
the index of the fork lock that synchronizes access to
the embedded fork block. Before using this section of
the KPB as an embedded fork block, you must write
in this field the symbolic constant (as defined by
$SPLCODDEF macro in SYS$LIBRARY:SYS$LIB _
C.TLB) for the appropriate spin lock index.

Procedure value of routine at which execution
resumes when the TQE becomes due or when
the OpenVMS fork dispatcher dequeues the fork
block. (In the latter case, EXEKP_FORK, EXEKP_
IOFORK, and EXE$KP_FORK_WAIT write this field
when called to suspend driver execution.)

Value to be restored to R3 when the TQE becomes
due or when the OpenVMS fork dispatcher dequeues
the fork block. (In the latter case, EXE$KP_ FORK,
EXE$KP_IOFORK, and EXE$KP_FORK_WAIT write
this field when called to suspend driver execution.)

Value to be restored to R4 when the TQE becomes
due or when the OpenVMS fork dispatcher dequeues
the fork block. (In the latter case, EXE$KP_FORK,
EXE$KP_IOFORK, and EXE$KP_FORK_WAIT write
this field when called to suspend driver execution.)

Quadword system time at which a particular timer
event is to occur.

UCB address. EXE$KP_STARTIO initializes this
field, which exists only in VEST KPBs. Note that this
field is also known as kpbSps_1kb and contains the
LKB address when used in lock manager operations.

IRP address. EXE$KP_STARTIO initializes this field,
which exists only in VEST KPBs.

(continued on next page)

321

Data Structures
17.13 KPB (Kernel Process Block)

Table 17-14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

kpb$is_timeout_time Timeout for wait-for-interrupt operation. IOC$KP_
WFIKPCH and IOC$KP_WFIRLCH initialize this
field, which is used by the corresponding scheduling
stall routine when calling the appropriate basic
OpenVMS suspension routine. Note that this field
exists only in VEST KPBs.

kpb$is_restore_ipl IPL to be restored, and at which execution is to
resume, when IOC$KP_WFIKPCH or IOC$KP_
WFIRLCH returns to the initiator of the kernel
process (that is, the caller of EXE$KP_START
or EXE$KP_RESTART). IOC$KP_WFIKPCH and
IOC$KP_WFIRLCH initialize this field, which is used
by the corresponding scheduling stall routine when
calling the appropriate basic OpenVMS suspension
routine. Note that this field exists only in VEST
KPBs.

kpb$is_channel_data Channel data passed to the request-channel
scheduling stall routine (by IOC$KP_REQCHAN)
and to the wait-for-interrupt scheduling stall routine
(by IOC$KP_WFIKPCH or IOC$KP_WFIRLCH) to
determine which basic OpenVMS suspension routine
to call. Note that only VEST KPBs contain this field.

OpenVMS defines the following symbolic constants
for this field:

KPB$K_KEEP Keep channel as part
of wait-for-interrupt
operation (that is, call
IOC$PRIMITIVE_
WFIKPCH).

KPB$K RELEASE Release channel as part
of wait-for-interrupt
operation (that is, call
IOC$PRIMITIVE_
WFIRLCH).

(continued on next page)

322

Data Structures
17.13 KPB (Kernel Process Block)

Table 17-14 (Cont.) Contents of Kernel Process Block (KPB)

Field Use

kpb$ps_scsi_ptr1

kpb$ps_scsi_ptr2

kpb$ps_scsi_scdrp

kpb$is_timeout

kpb$is_newipl

kpb$ps_dick

kpb$ps_spl_stall_rtn

kpb$ps_spl_restrt_rtn

KPB$K_LOW Insert fork block of UCB
requesting controller
channel at the tail of the
channel-wait queue.

KPB$K_HIGH Insert fork block of UCB
requesting controller
channel at the head of
the channel-wait queue.

Generic parameter passing field written and read
by SCSI port and class drivers. Note that this field
exists only in VEST KPBs.

Another generic parameter passing field written and
read by SCSI port and class drivers. Note that this
field exists only in VEST KPBs.

Address of SCDRP used in SCSI transfers. Note that
this field exists only in VEST KPBs.

Timeout time. Note that this field exists only in
VEST KPBs.

Location in which the SCSI port drivers save the
current IPL when invoking the DEVICELOCK macro
to synchronize access to a device’s database, and
from which they restore IPL when invoking the
DEVICEUNLOCK macro. Note that this field exists
only in VEST KPBs.

Address of controller’s device lock which synchronizes
access to device registers and those fields in the
UCB accessed at device IPL. SCSI port drivers
initialize this field from spdt$1_dlck and supply
it as the lockaddr argument when invoking the
DEVICELOCK and DEVICEUNLOCK macros. Note
that this field exists only in VEST KPBs.

Reserved.

Reserved.

323

Data Structures
17.13 KPB (Kernel Process Block)

17.14

324

Table 17-15 Contents of KPB Debug Area

Field Use
a ee eg ee fe a ea ee ee

kpbdbg$is_start_time Time at which the kernel process was started or last

restarted.

kpbdbg$is_start_count Number of times the kernel process has been started.

kpbdbg$is_restart_count Number of times the kernel process has been restarted.

kpbdbg$is_vec_index PC vector index. Indicates which longword in the PC
vector index is next to be written

kpbdbg$is_pe_vec Last eight PCs which started, restarted, or suspended
the kernel process.

ORB (Object Rights Block)

The object rights block (ORB) is a data structure that describes the rights a
process must have to access the object with which the ORB is associated.

The ORB is usually allocated when the device is connected by means of a
SYSMAN IO CONNECT command. The driver loading procedure also sets the
address of the ORB in ucb$1_orb at that time.

The object rights block is described in Table 17-16.

Table 17-16 Contents of Object Rights Block

Field Use

orb$l_owner UIC of the object’s owner.

orb$l_acl_mutex Mutex for the object’s access control list (ACL), used to
control access to the ACL for reading and writing. The
driver-loading procedure initializes this field with —1.

orb$w_size Size of ORB in bytes. The driver-loading procedure
writes the symbolic constant ORB$K_LENGTH into
this field when it creates an ORB.

orb$b_type Type of data structure. The driver-loading procedure
writes the symbolic constant DYN$C_ORB into this
field when it creates an ORB.

(continued on next page)

Data Structures
17.14 ORB (Object Rights Block)

Table 17-16 (Cont.) Contents of Object Rights Block

Field

orb$b_flags

orb$w_refcount

orb$q_mode_prot

orb$l_sys_prot

orb$l_own_prot

orb$]_grp_prot

orb$l_wor_prot

orb$1_aclfl.

orb$1_aclbl

Use

Flags needed for interpreting portions of the ORB that
can have alternate meanings. The following fields are
defined within orbSb_flags:

orb$v_prot_16 The driver-loading procedure
sets this bit to 1, signifying
UIC-based protection for this
object

orb$v_acl_queue This flag represents the
existence of an ACL queue.
The driver-loading procedure
does not set this bit.

orb$v_mode_vector Use vector mode protection,
not byte mode.

orb$v_noacl This object cannot have an
ACL.

orb$v_class_prot Security classification is
valid.

Reference count.

Mode protection vector. The low longword of this
quadword is known as orb$1_mode.

System protection field. The low word of this field
is known as Orb$w_prot and contains the standard
SOGW protection.

Owner protection field.

Group protection field.

World protection field.

ACL queue forward link. If orb$v_acl_queue is 0,
this field should contain 0. This field is also known as
orb$l_acl_count and is cleared by the driver-loading
procedure.

ACL queue backward link. If orb$v_acl_queue is 0,
this field should contain 0. This field is also known as
orb$l_acl_desc and is cleared by the driver-loading
procedure.

325

Data Structures
17.15 UCB (Unit Control Block)

17.15 UCB (Unit Control Block)

The unit control block (UCB) is a variable-length block that describes a single

device unit. Each device unit on the system has its own UCB. The UCB

describes or provides pointers to the device type, controller, driver, device

status, and current I/O activity.

During autoconfiguration, the driver-loading procedure creates one UCB
for each device unit in the system. A privileged system user can request

the driver-loading procedure to create UCBs for additional devices with the
SYSMAN command IO CONNECT. The procedure creates UCBs of the length
specified in the DPT. The driver uses UCB storage located beyond the standard
UCB fields for device-specific data and Step 1 driver storage.

The driver-loading procedure initializes some static UCB fields when it creates
the block. OpenVMS and device drivers can read and modify all nonstatic
fields of the UCB. The UCB fields that are present for all devices are described
in Table 17-18. The length of the basic UCB is defined by the symbol UCB$K_
LENGTH.

UCBs are variable in length depending on the type of device and whether the
driver performs error logging for the device. OpenVMS defines a number of
UCB extensions in the data structure definition macro $UCBDEF and defines a
terminal device extension in $TTYUCBDEF. Table 17-17 lists those extensions

that are most often used by device drivers, indicating where each is described
in this chapter. Note that use of the dual-path extension is reserved to Digital;
its contents should remain zero.

Table 17-17 UCB Extensions and Sizes Defined in $UCBDEF

Extension Used by Size Table

Base UCB All devices ucb$k_size 17-18

Error log extension All disk and tape devices ucb$k_erl_length 17-19

Dual-path extension Reserved to Digital ucb$k_2p_length _—

ease extension All tape devices ucb$k_lcl_tape_length value

Local disk extension All disk devices ucb$k_lcl_disk_length value

(continued on next page)

326

Data Structures
17.15 UCB (Unit Control Block)

Table 17-17 (Cont.) UCB Extensions and Sizes Defined in $UCBDEF

Extension Used by Size Table

\ 17-21)

Terminal extension! Terminal class and port ucb$k_tt_length E22
drivers

1The terminai UCB extension is defined by the data structure definition macro, $TTYUCBDEF.

To use an extended UCB, a device driver must specify its length in the ucbsize

argument to the DPTAB macro. For instance:

DPTAB

ucbsize=ucb3k_lcl_tape_length, -

Each UCB extension used in a disk or tape driver builds upon the base UCB

structure and any extension $UCBDEF defined earlier in the structure.
(Note that UCB extensions shown in bold boxes are reserved to Digital.) For
instance, if you specify a UCB size of ucb$k_lcl_tape_length, the size of the
resulting UCB can accommodate the base UCB, the error log extension, the

dual-path extension, and the local tape extension.

Table 17-18 describes the contents of the unit control block.

327

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 Contents of Unit Control Block

Field Use
en ee

ucb$1_faqfl Fork queue forward link. The link points to the next

entry in the fork queue. EXE$PRIMITIVE_FORK
and OpenVMS resource management routines write
this field. The queue contains addresses of UCBs that
contain driver fork process context of drivers waiting to
continue I/O processing.

ucb$1_fqbl Fork queue backward link. The link points to the
previous entry in the fork queue. EXE$PRIMITIVE_
FORK and OpenVMS resource management routines
write this field.

ucb$w_size Size of UCB. The DPT of every driver must specify
a value for this field. The driver-loading procedure
uses the value to allocate space for a UCB and stores
the value in each UCB created. Extra space beyond
the standard bytes in a UCB (ucb$k_length) is for
device-specific data.

ucb$b_type Type of data structure. The driver-loading procedure
writes the constant DYN$C_UCB into this field when
the procedure creates the UCB.

ucb$b_fick Index of the fork lock that synchronizes access to
this UCB at fork level. The DPT of every driver
must specify a value for this field. The driver-loading
procedure writes the value in the UCB when the
procedure creates the UCB. All devices that are
attached to a single I/O adapter and actively compete
for shared adapter resources and/or a controller data
channel must specify the same value for this field.

When the operating system creates a driver fork
process to service an I/O request for a device, the
fork process gains control at the IPL associated
with the fork lock, holding the fork lock itself in a
multiprocessing environment. When the driver creates
a fork process after an interrupt, OpenVMS inserts the
fork block into a processor-specific fork queue based on
this fork IPL. A fork dispatcher, executing at fork IPL,
obtains the fork lock (if necessary), dequeues the fork
block, and restores control to the suspended driver fork
process.

(continued on next page)

328

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block

Field Use

ucb$l_fpc

ucb$q_fr3

ucb$q_fr4

ucb$w_bufquo

ucb$w_iniquo

ucb$l_orb.

ucb$l_lockid

Procedure value of the driver fork routine. When an
OpenVMS routine saves driver fork context in order
to suspend driver execution, the routine stores the
procedure value of the driver entry point at which
execution will resume in this field. A system routine
that reactivates a suspended driver transfers control to
the saved PC address.

System routines that suspend driver processing
include EXE$PRIMITIVE_FORK, IOC$PRIMITIVE_
REQCHANL, IOC$PRIMITIVE_REQCHANH,
IOC$PRIMITIVE_WFIKPCH, IOC$PRIMITIVE_
WFIRLCH, EXE$KP_STALL_GENERAL, EXE$KP_
FORK, EXEKP_FORK_WAIT, IOCKP_REQCHAN,
IOC$KP_WFIKPCH, and IOC$KP_WFIRLCH.
Routines that reactivate suspended driver routines
include IOC$RELCHAN, the OpenVMS fork
dispatcher, and driver interrupt service routines.

When a driver interrupt service routine determines
that a device is expecting an interrupt, the routine
restores control to the saved PC address in the device’s
UCB.

Value of R3 at the time that a system routine suspends
a driver fork process. The value of R3 is restored just
before a suspended driver regains control.

Value of R4 at the time that a system routine suspends
a driver fork process. The value of R4 is restored just
before a suspended driver regains control.

Buffered-I/O quota if the UCB represents a mailbox.

Initial buffered-I/O quota if the UCB represents a
mailbox.

Address of ORB associated with the UCB. The driver-
loading procedure places the address in this field.

Lock management lock ID of device allocation lock. A
lock management lock is used for device allocation so
that device allocation functions properly for cluster-
accessible devices in an Open VMScluster (dev$v_clu
set within ucb$]1_devchar2).

(continued on next page)

329

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block
eS

Field Use
EE

ucb$ps_cram

ucb$l_crb

ucb$l_dlck

ucb$l_ddb

ucb$l_pid

ucb$1_link

ucb$l_veb

330

Header of singly linked list of CRAMs allocated to the
device unit. This field contains the address of the first
CRAM in the list. The field cram$1_flink in each
CRAM points to the next CRAM in the list.

Address of primary CRB associated with the device.
The driver-loading procedure writes this field. Driver
fork processes read this field to gain access to device
registers. system routines use ucD$1_crb to locate
interrupt-dispatching code and the addresses of driver
unit and controller initialization routines.

Address of device lock that—in a multiprocessing
environment—synchronizes access to device registers
and those fields in the UCB accessed at device IPL.
The driver-loading routine copies the address of the
device lock in the CRB (crbSps_dlck) to this field as
it creates a UCB for each device on a controller.

Address of DDB associated with device. The driver-
loading procedure writes this field when the procedure
creates the associated UCB. system routines generally
read the DDB field in order to locate device driver
entry points, the address of a driver FDT, or the ACP
associated with a given device.

Process identification number of the process that has
allocated the device. Written by the $ALLOC system
service.

Address of next UCB in the chain of UCBs attached
to a single controller and associated with a DDB. The
driver-loading procedure writes this field when the
procedure adds the next UCB. Any system routine that
examines the status of all devices on the system reads
this field. Such routines include EXE$TIMEOUT,
IOC$SEARCHDEY, and power failure recovery
routines.

Address of volume control block (VCB) that describes
the volume mounted on the device. This field is written
by the device’s ACP and read by EXE$QIOACPPKT,
ACPs, and the XQP.

(continued on next page)

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block

Field Use

ucb$l_devchar First longword of device characteristics bits.
The DPT of every driver should specify symbolic
constant values (defined by the $DEVDEF macro
in SYS$LIBRARY:SYS$LIB_C.TLB) for this field.
The driver-loading procedure writes the field when
the procedure creates the UCB. The $QIO system
service reads the field to determine whether a device is
spooled, file structured, shared, has a volume mounted,
and so on.

The system defines the following device characteristics:

DEV$V_REC

DEV$V_CCL

DEV$V_TRM

DEV$V_DIR

DEV$V_SDI

DEV$V_SQD

DEV$V_SPL

DEV$V_OPR

DEV$V_RCT

DEV$V_NET

DEV$V_FOD

DEV$V_DUA

DEV$V_SHR

DEV$V_GEN

DEV$V_AVL

DEV$V_MNT

DEV$V_MBX

DEV$V_DMT

Record-oriented device

Carriage control device

Terminal device

Directory-structured device

Single directory-structured device

Sequential block-oriented device
(magnetic tape, for example)

Device spooled

Operator device

Device contains RCT

Network device

File-oriented device (disk and
magnetic tape, for example)

Dual-ported device

Shareable device (used by more
than one program simultaneously)

Generic device

Device available for use

Device mounted

Mailbox device

Device marked for dismount

(continued on next page)

331

Data Structures
17.15 UCB (Unit Control Block)

332

Table 17-18 (Cont.) Contents of Unit Control Block
ee ae ee eee ee

Field Use
Eee

ucb$]l_devchar2

DEV$V_ELG

DEV$V_ALL

DEV$V_FOR

DEV$V_SWL

DEV$V_IDV

DEV$V_ODV

DEV$V_RND

DEV$V_RTM

DEV$V_RCK

DEV$V_WCK

Error logging enabled

Device allocated

Device mounted as foreign (not
file structured)

Device software write-locked

Device capable of providing input

Device capable of providing output

Device allowing random access

Real-time device

Read-checking enabled

Write-checking enabled

Second longword of device characteristics. The
DPT of every driver should specify symbolic
constant values (defined by the $DEVDEF macro in
SYS$LIBRARY:SYS$LIB_C.TLB) for this field. The
driver-loading procedure writes the field when the
procedure creates the UCB.

The system defines the following device characteristics:

DEV$V_CLU

DEV$V_DET

DEV$V_RTT

DEV$V_CDP

DEV$V_2P

DEV$V_MSCP

DEV$V_SSM

DEV$V_SRV

DEV$V_RED

DEV$V_NNM

Device available clusterwide

Detached terminal

Remote-terminal UCB extension

Dual-pathed device with two
UCBs

Two paths known to device

Disk or tape accessed using MSCP

Shadow set member

Served by MSCP server

Redirected terminal

Device name has a prefix of the
format “node$”

(continued on next page)

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block

Field Use

DEV$V_WBC Device supports write-back
caching

DEV$V_WTC Device supports write-through
caching

DEV$V_HOC Device supports host caching

DEV$V_LOC Device accessible via local (non-
emulated) controller

DEV$V_DFS Device is DFS-served

DEV$V_DAP Device is DAP accessed

DEV$V_NLT Device has no bad block
information on its last track

DEV$V_SEX Device (TAPE) supports serious
exception handling

DEV$V_SHD Device is a member of a host
based shadow set

DEV$V_VRT Device is a shadow set virtual

unit

DEV$V_LDR Loader present (tapes)

DEV$V_NOLB Device ignores server load
balancing requests

DEV$V_NOCLU Device will never be available
clusterwide

DEV$V_VMEM Virtual member of a constituent
set

DEV$V_SCSI Device is a SCSI device

DEV$V_WLG Device has write logging
capability

DEV$V_NOFE Device does not support forced
error

ucb$l_affinity Bit mask of the CPU IDs of processors in an OpenVMS
multiprocessing system that have physical connectivity
to the device. Such processors can thereby access the
device’s registers and initiate I/O operations on the
device.

(continued on next page)

333

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block

Field Use

ucb$l_xtra Extra longword for SMP. This field is also known as
ucb$l1_altiowg (alternate start-I/O request wait
queue).

ucb$b_devclass Device class. The DPT of every driver should specify
a symbolic constant (defined by the $DCDEF macro
in SYS$LIBRARY:SYS$LIB_C.TLB) for this field.
The driver-loading procedure writes this field when it
creates the UCB.

Drivers with set mode and device characteristics
functions can rewrite the value in this field with data
supplied in the characteristics buffer, the address of
which is passed in the I/O request.

VMS defines the following device classes:

DC$_DISK Disk

DC$_TAPE Tape

DC$_SCOM Synchronous communications

DC$_CARD Card reader

DC$_TERM Terminal

DC$_LP Line printer

DC$_WORKSTATIONVorkstation

DC$_ REALTIME Real time. Note that the

definition of a device as a real-
time device (DC$_ REALTIME) is
somewhat subjective; it implies no
special treatment by OpenVMS.

DC$_BUS Bus

DC$_MAILBOX Mailbox

DC$_REMCSL_ Remote console storage
STORAGE

DC$_MISC Miscellaneous

(continued on next page)

334

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block

Field Use

ucb$b_devtype

ucb$w_devbufsiz

ucb$q_devdepend

ucb$q_devdepnd2

ucb$l_iogfl

ucb$l_iogbl

Device type. The DPT of every driver should specify
a symbolic constant (defined by the $DCDEF macro
in SYS$LIBRARY:SYS$LIB_C.TLB) for this field.
The driver-loading procedure writes the field when it
creates the UCB.

Drivers for devices with set mode and set characteris-
tics functions can rewrite the value in this field with
data supplied in the characteristics buffer, the address
of which is passed in the I/O request.

Default buffer size. The DPT can specify a value for
this field if relevant. The driver-loading procedure
writes the field when it creates the UCB.

Drivers for devices with set mode and set characteris-
tics functions can rewrite the value in this field with
data supplied in the characteristics buffer, the address
of which is passed in the I/O request. This field is used
by RMS for record I/O on nonfile devices.

Device-descriptive data interpreted by the device driver
itself. The DPT can specify a value for this field.
The driver-loading procedure writes this field when it
creates the UCB.

Drivers for devices with set mode and set characteris-
tics functions can rewrite the value in this field with
data supplied in the characteristics buffer, the address
of which is passed in the I/O request.

Second quadword for device-dependent status. This
field is an extension of ucb$q_devdepend.

Pending-I/O queue listhead forward link. The
queue contains the addresses of IRPs waiting for
processing on a device. EXE$INSERTIRP inserts IRPs
into the pending-I/O queue when a device is busy.
IOC$REQCOM dequeues IRPs when the device is idle.

The queue is a priority queue that has the highest
priority IRPs at the front of the queue. Priority is
determined by the base priority of the requesting
process. IRPs with the same priority are processed
first-in/first-out.

Pending-I/O queue listhead backward link.
EXE$INSERTIRP and IOC$REQCOM modify the

pending-I/O queue. (continued on next page)

335

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block

Field Use
I$

ucb$w_unit

ucb$w_charge

ucb$l_irp

ucb$l_refc

ucb$b_dipl

ucb$b_amod

336

Number of the physical device unit; stored as a binary
value. The driver-loading procedure writes a value
into this field when it creates the UCB. Drivers
for multiunit controllers read this field during unit
initialization to identify a unit to the controller.

Mailbox byte count quota charge, if the device is a
mailbox.

Address of IRP currently being processed on the device
unit by the driver fork process. IOC$INITIATE writes
the address of an IRP into this field before the routine
creates a driver fork process to handle an I/O request.
From this field, a driver fork process obtains the
address of the IRP being processed.

The value contained in this field is not valid if the
ucb$v_bsy bit in ucb$1_sts is clear.

Reference count of processes that currently have
process I/O channels assigned to the device. The
$ASSIGN and $ALLOC system services increment this
field. The $DASSGN and $DALLOC system services
decrement this field.

Interrupt priority level (IPL) at which the device
requests hardware interrupts. The DPT of every
driver must specify a value for this field. The driver-
loading procedure writes this field when the procedure
creates the UCB. When the driver-loading procedure
subsequently creates the device lock’s spin lock
structure (SPL), it moves the contents of this field
into spl$b_ipl.

In an OpenVMS multiprocessing environment, drivers
obtain the device lock at ucb$1_dlck before reading or
writing device registers or accessing other fields in the
UCB synchronized at device IPL, thereby also raising
IPL to device IPL in the process.

Access mode at which allocation occurred, if the device
is allocated. Written by the $ALLOC and $DALLOC
system services.

(continued on next page)

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block

Field

ucb$l_amb

ucb$l_sts

Use

Associated mailbox UCB pointer. A spooled device
uses this field for the address of its associated device.
Devices that are nonshareable and not file oriented can
use this field for the address of an associated mailbox.

Device unit status (formerly ucb$w_sts). Written
by drivers, IOC$REQCOM, IOC$CANCELIO,
IOC$INITIATE, IOC$WFIKPCH, IOC$WFIRLCH,
EXE$INSIOQ, and EXE$TIMEOUT. This field is
read by drivers, the $QIO system service routines,
IOC$REQCOM, IOC$INITIATE, and EXE$TIMEOUT.

This longword includes the following bits:

ucb$v_tim Timeout enabled.

ucb$v_int Interrupts expected.

ucb$v_erlogip Error log in progress.

ucb$v_cancel Cancel I/O on unit.

ucb$v_online Device is on line.

ucb$v_power Power has failed while unit

was busy.

ucb$v_timout Unit is timed out.

ucb$v_inttype Receiver interrupt.

ucb$v_bsy Unit is busy.

ucb$v_mounting Device is being mounted.

ucb$v_deadmo Deallocate device at
dismount.

ucb$v_valid Volume appears valid to
software.

(continued on next page)

337

Data Structures
17.15 UCB (Unit Control Block)

338

Table 17-18 (Cont.) Contents of Unit Control Block
LS

Field Use

ucb$v_unload

ucb$v_template

ucb$v_mntverip

ucb$v_wrongvol

ucb$v_deleteucb

ucb$v_lIcl_valid

ucb$v_supmvmsg

ucb$v_mntverpnd

Unload volume at dismount.

Template UCB from which
other UCBs for this device
are made. The $ASSIGN
system service checks this
bit in the requested UCB
and, if the bit is set, creates
a UCB from the template.
The new UCB is assigned
instead.

Mount verification in
progress.

Volume name does not match
name in the VCB.

Delete this UCB when
the value in ucbSw_refc
becomes zero.

The volume on this device is

valid on the local node.

Suppress mount-verification
messages if they indicate
success.

Mount verification is pending
on the device and the device
is busy.

(continued on next page)

Table 17-18 (Cont.) Contents of Unit Control Block

Data Structures
17.15 UCB (Unit Control Block)

Field Use

ucb$l_devsts

ucb$v_dismount

ucb$v_clutran

ucb$v_wrtlockmv

ucb$v_svpn_end

ucb$v_altbsy

ucb$v_snapshot

Device-dependent status.

Dismount in progress.

VAXcluster state transition
in progress.

Write-locked mount
verification in progress.

Last byte used from page is
mapped by a system virtual
page number.

Unit is busy via alternate
STARTIO path.

Restart validation is in
progress.

The system defines the following status bits:

ucb$v_prmmbx

ucb$v_delmbx

ucb$v_shmmbx

ucb$v_templ_bsy

Device is a permanent
mailbox. OpenVMS also
defines this bitfield as
ucb$v_job (job controller
has been notified).

Mailbox is marked for
deletion.

Device is shared-memory
mailbox.

Template UCB is busy.

Disk drivers use bits in the ucb$1_devsts as follows:

ucb$v_ecc

ucb$v_diagbuf

ucb$v_nocnvrt

ECC correction made.

Diagnostic buffer is
specified.

No logical block number
to media address
conversion.

(continued on next page)

339

Data Structures
17.15 UCB (Unit Control Block)

340

Table 17-18 (Cont.) Contents of Unit Control Block

Field Use
SN ee Ee eee eee

ucb$v_dx_write Console floppy write
operation.

ucb$v_datacache Data blocks are being
cached.

ucb$1_qlen

ucb$]1_duetim

ucb$l_opent

Terminal class and port drivers use bits in the
ucb$1_devsts field as follows:

ucb$v_tt_timo Terminal read timeout
in progress.

ucb$v_tt_notif Terminal user notified
of unsolicited data.

ucb$v_tt_hangup Process hang up.

ucb$v_tt_nologins No logins allowed.

Number of entries in pending-I/O queue (pointed to by
ucb$1_iogf1l).

Due time for I/O completion. Stored as the low-
order 32-bit absolute time (time in seconds since the
operating system was booted) at which the device
will time out. IOC$PRIMITIVE_WFIKPCH and
IOC$PRIMITIVE_WFIRLCH write this value when
they suspend a driver to wait for an interrupt or
timeout.

EXE$TIMEOUT examines this field in each UCB in
the I/O database once per second. If the timeout has
occurred and timeouts are enabled for the device,
EXE$TIMEOUT calls the device driver timeout
handler.

Count of operations completed on device unit since
last system bootstrap. IOC$REQCOM writes this field
every time the routine inserts an IRP into the I/O
postprocessing queue.

(continued on next page)

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block

Field Use

ucb$l_svpn

ucb$l_svapte

ucb$l_bent

ucb$l_boff

ucb$l]_softerrent

Index to the virtual address of the system PTE that the
driver loading procedure has permanently allocated to
the device. The system virtual address of the page
described by this index can be calculated by the
following formula:

(index * pte$c_bytes_per_pte) + mmg$g]_sptbase

If a DPT specifies DPT$M_SVP in the flags argument
to the DPTAB macro, the driver-loading procedure
allocates a page of nonpaged system memory to the
device. The procedure writes the system PTE’s index
into the ucb$1_svpn field when the procedure creates
the UCB.

Disk drivers use this field for ECC error correction.

For a direct-I/O transfer, the virtual address of the
system PTE for the first page to be used in the
transfer; for a buffered-I/O transfer, the virtual
address of the system buffer used in the transfer.

IOC$INITIATE writes this field from irp$l_svapte
before calling a driver start-I/O routine. Drivers read
this value to compute the starting address of a transfer.

Count of bytes in the I/O transfer. IOC$INITIATE
copies this field from the IRP. Drivers read this field
to determine how many bytes to transfer in an I/O
operation.

For a direct-I/O transfer, the byte offset into the first
page of the transfer buffer; for a buffered-I/O transfer,
the number of bytes charged to the process for the
transfer.

IOC$INITIATE copies this field from the IRP. Drivers
read the field in calculating the starting address of a
DMA transfer. If only part of a DMA transfer succeeds,
the driver adjusts the value in this field to be the
byte offset in the first page of the data that was not
transferred.

Reserved to Digital.

(continued on next page)

341

Data Structures
17.15 UCB (Unit Control Block)

Table 17-18 (Cont.) Contents of Unit Control Block
nnn nnn EES

Field Use
ih a ese ee ee

ucb$l_ertent Error retry count of the current I/O transfer. The
driver sets this field to the maximum retry count each
time it begins I/O processing. Before each retry, the
driver decreases the value in this field. During error
logging, IOC$REQCOM copies the value into the error
message buffer.

ucb$]_ertmax Maximum error retry count allowed for single I/O
transfer. The DPT of some drivers specifies a value for
this field. The driver-loading procedure writes the field
when the procedure creates the UCB. During error
logging, IOC$REQCOM copies the value into the error
message buffer.

ucb$l_errent Number of errors that have occurred on the device
since system booted. The driver-loading procedure
initializes the field to 0 when the procedure creates
the UCB. ERL$DEVICERR and ERL$DEVICTMO
increment the value in the field and copy the value into
an error message buffer. The DCL command SHOW
DEVICE displays in its error count column the value
contained in this field.

ucb$l_pdt Address of port descriptor table (PDT) or SCSI port
descriptor table (SPD). This field is reserved for
OpenVMS SCS and SCSI port drivers.

ucb$]_ddt Address of DDT for unit. The driver load procedure
writes the contents of DDB$L_DDT for the device
controller to this field when it creates the UCB.

ucb$ps_adp Address of ADP. The driver-loading procedure
initializes this field.

ucb$ps_cretx Address of CRCTX. A driver initializes this field when
it allocates a CRCTX.

ucb$]_media_id Bit-encoded media name and type, used by MSCP
devices.

ucb$ps_dtn Address of device-type name structure (DTN). Reserved
to Digital.

Se eee

Table 17-19 describes the contents of the UCB error log extension.

342

Data Structures
17.15 UCB (Unit Control Block)

Table 17-19 Contents of UCB Error Log Extension

ucb$l_emb

ucb$l1_func

ucb$l_dpc

Address of error message buffer. If error logging is
enabled and a device/controller error or timeout occurs,
the driver calls ERL$DEVICERR or ERL$DEVICTMO
to allocate an error message buffer and copy the buffer
address into this field. IOC$REQCOM writes final

device status, error counters, and I/O request status
into the buffer specified by this field.

V/O function modifiers. This field is read and written
by drivers that log errors.

Device-specific field. This field is reserved for driver
use.

Table 17-20 describes the contents of th UCB local tape extension.

Table 17-20 Contents of UCB Local Tape Extension

Field Name

ucb$w_dirseq

ucb$b_onlent

ucb$b_prev_record

ucb$l_record

ucb$l_tmv_record

ucb$w_tmv_crcl

ucb$w_tmv_erc2

ucb$w_tmv_erc3

ucb$w_tmv_crc4

Contents

Directory sequence number. If the high-order bit of
this word, ucb$v_ast_armed, is set, it indicates that
the requesting process is blocking ASTs.

Number of times the device has been placed on line
since system booted.

Tape position prior to the start of the last I/O
operation.

Current tape position or frame counter.

Position following last guaranteed successful /O
operation.

First CRC for mount verification’s media validation.

Second CRC for mount verification’s media validation.

Third CRC for mount verification’s media validation.

Fourth CRC for mount verification’s media validation.

Table 17—21 describes the contents of the UCB local disk extension.

343

Data Structures
17.15 UCB (Unit Control Block)

Table 17-21 Contents of UCB Local Disk Extension

344

ee

Field Name Contents
nnn ne EEE

ucb$w_dirseq

ucb$b_onlent

ucb$l_maxblock

ucb$l_maxbent

ucb$1_dcecb

ucb$l_qlenacc

Directory sequence number. If the high-order bit of this
word, ucb$v_ast_armed, is set, it indicates that the
requesting process is blocking ASTs.

Number of times device has been placed on line since
OpenVMS was last bootstrapped.

Maximum number of logical blocks on random-access
device. This field is written by a disk driver during unit
initialization and power recovery.

Maximum number of bytes that can be transferred. A
disk driver writes this field during unit initialization and
power recovery.

Pointer to cache control block.

Queue length accumulator.

Table 17-22 describes the contents of the UCB terminal extension.

Table 17-22 Contents of UCB Terminal Extension

Field

ucb$l_tl_ctrly

ucb$1_tl_ctrle

ucb$1_tl_outband

ucb$1_tl_bandque

ucb$l_tl_phyucb

ucb$l_tl_ctlpid

ucb$q_tl_brkthru

ucb$]_tl_posix_data

ucb$1_tl_asian_data

ucb$1_tl_a_charset

ucb$1_tl_a_fi_ucb

ucb$1_tt_rdue

Use

Listhead of CTRL/Y AST control blocks (ACBs).

Listhead of CTRL/C ACBs.

Out-of-band character mask.

Listhead of out-of-band ACBs.

Address of physical UCB.

Process ID of controlling process (used with SPAWN).

Facility broadcast bit mask.

POSIX PTC pointer

Pointer to Asian language data.

Character set bitmask. The lowest byte of this field is
also known as ucb$b_t1_a_mode and represents the
current Asian modes.

Pointer to Asian input server.

Absolute time at which a read timeout is due.

(continued on next page)

Data Structures
17.15 UCB (Unit Control Block)

Table 17-22 (Cont.) Contents of UCB Terminai Extension

Field

ucb$l_tt_rtimou

ucb$l_tt_statel

ucb$]_tt_state2

Use

Address of read timeout routine.

First longword of terminal state information.

The following fields are defined within UCBSL_TT_STATE1:

tty$v_st_power Power failure

tty$v_st_ctrls Class output

tty$v_st_modem_off Modem off

tty$v_st_fill Fill mode

tty$v_st_cursor Cursor

tty$v_st_sendlf Forced line feed

tty$v_st_backspace Backspace

tty$v_st_multi Multi-echo

tty$v_st_write Write in progress

tty$v_st_eol End of line

tty$v_st_editread Editing read in
progress

tty$v_st_rdverify Read verify in
progress

tty$v_st_recall Command recall

tty$v_st_read Read in progress

tty$v_st_posixread POSIX read

Second longword of terminal state information.

The following fields are defined within ucb$l1_tt_state2:

tty$v_st_ctrlo Output enable

tty$v_st_del Delete

tty$v_st_pasall Pass-all mode

tty$v_st_noecho No echo

tty$v_st_wrtall Write-all mode

tty$v_st_prompt Prompt

(continued on next page)

345

Data Structures
17.15 UCB (Unit Control Block)

Table 17-22 (Cont.) Contents of UCB Terminal Extension

Field Use ae eg Se ee On St EE Ae eS Re ee

tty$v_st_nofitr

tty$v_st_esc

tty$v_st_badesc

tty$v_st_nl

tty$v_st_refrsh

tty$v_st_escape

tty$v_st_typful

tty$v_st_skiplf

tty$v_st_esc_o

tty$v_st_wrap

tty$v_st_ovrfio

tty$v_st_autop

tty$v_st_ctrlr

tty$v_st_skiperlf

tty$v_st_editing

tty$v_st_tabexpand

tty$v_st_quoting

tty$v_st_overstrike

tty$v_st_termnorm

tty$v_st_echaes

tty$v_st_pre

tty$v_st_nintmulti

346

No control-character
filtering

Escape sequence

Bad escape sequence

New line

Refresh

Escape mode

Type-ahead buffer full

Skip line feed

Output escape

Wrap enable

Overflow condition

Autobaud pending

Clock prompt and
data string from read
buffer

Skip line feed
following a carriage
return

Editing operation

Expand tab characters

Quote character

Overstrike mode

Standard terminator
mask

Alternate echo string

Pre-type-ahead mode

Noninterrupt multi-
echo mode

(continued on next page)

Data Structures
17.15 UCB (Unit Control Block)

Table 17-22 (Cont.) Contents of UCB Terminal! Extension

Field

ucb$l_tt_logucb

ucb$l_tt_dechar

ucb$l_tt_dechal

ucb$l_tt_decha2

ucb$l_tt_decha3

ucb$l_tt_wflink

ucb$l_tt_wblink

ucb$l_tt_wrtbuf

ucb$l_tt_multi

ucb$w_tt_multilen

ucb$w_tt_smltlen

ucb$]l_tt_smlt

ucb$w_tt_despee

ucb$b_tt_decrf

ucb$b_tt_delff

ucb$b_tt_depari

ucb$b_tt_detype

ucb$w_tt_desize

ucb$w_tt_speed

Use

tty$v_st_reconnect

tty$v_st_ctslow

tty$v_st_tabright

Reconnect operation

Clear-to-send low

Check for tabs to the
right of the current
position

Address of logical UCB, if the redirect bit is set (dev$v_
red in ucb$1_devchar2). If this UCB describes the
logical UCB, the contents of ucb$l1_tt_loguch are
zero.

First longword of default device characteristics.

Second longword of default device characteristics.

Third longword of default device characteristics.

Fourth longword of default device characteristics.

Write queue forward link.

Write queue backward link.

Current write buffer block.

Address of current multi-echo buffer.

Length of multi-echo string to be written.

Saved length of multi-echo string.

Saved address of multi-echo buffer.

Default speed.

Default carriage-return fill.

Default line-feed fill.

Default parity/character size.

Default terminal type.

Default line size.

Terminal line speed. This field is read and written
by the class driver, and read by the port driver. It
contains the following byte fields:

ucb$b_tt_tspeed

ucb$b_tt_rspeed Receive speed

Transmit speed

(continued on next page)

347

Data Structures
17.15 UCB (Unit Control Block)

348

Table 17-22 (Cont.) Contents of UCB Terminal Extension

Field Use
an nnn nnn E EEE EEE EEE EERE!

ucb$b_tt_crfill

ucb$b_tt_lffill

ucb$b_tt_parity

ucb$l_tt_typahd

ucb$w_tt_cursor

ucb$b_tt_line

ucb$b_tt_laste

ucb$w_tt_bsplen

ucb$b_tt_fill

Number of fill characters to be output for carriage
return.

Number of fill characters to be output for line feed.

Parity, frame and stop bit information to be set when
the PORT_SET LINE service routine is called. This
field is read and written by the class driver, and read
by the port driver. It contains the following bit fields:

ucb$v_tt_xxparity Reserved to Digital.

ucb$v_tt_disparerr Reserved to Digital.

ucb$v_tt_userframe Reserved to Digital.

ucb$v_tt_len Two bits signifying
character length (not
counting start, stop,
and parity bits), as
follows: 002 = 5 bits;
Ols =6 bits; 109 =

7 bits; and 1l2 = 8
bits.

ucb$v_tt_stop Number of stop bits:
clear if one stop bit;
set if two stop bits.

ucb$v_tt_party Parity checking.
This bit is set if
parity checking is
enabled.

ucb$v_tt_odd Parity type: clear
if even parity; set if
odd parity.

Address of type-ahead buffer.

Current cursor position.

Current line position on page.

Last formatted output character.

Number of back spaces to output for non-ANSI
terminals.

Current fill character count.

(continued on next page)

Data Structures
17.15 UCB (Unit Control Block)

Table 17-22 (Cont.) Contents of UCB Terminal Extension

Field

ucb$b_tt_esc

ucb$b_tt_esc_o

ucb$b_tt_intent

ucbh$w_tt_unitbit

ucb$w_tt_hold

ucb$b_tt_prempt

ucb$b_tt_outype

ucb$l_tt_getnxt

ucb$l_tt_putnxt

ucb$l1_tt_class

ucb$l_tt_port

Use

Current read escape syntax state.

Current write escape syntax state.

Number of characters in interrupt string.

Enable and disable modem control.

Port driver’s internal flags and unit holding tank.
This is read and written by the port driver, and is not
accessed by the class driver. It contains the following
subfields:

tty$b_tank_char Character.

tty$v_tank_prempt Send preempt
character.

tty$v_tank_stop Stop output.

tty$v_tank_hold Character stored in
tty$b_tank_char.

tty$v_tank_burst Burst is active.

tty$v_tank_dma DMA transfer is
active.

Preempt character.

Amount of data to be written on a callback from the
class driver. When negative, this field indicates that
there is a burst of data ready to be returned; when
zero, it signifies that no data is to be written; and
when 1, it indicates that a single character is to be
written. This field is written by the class driver and
read by the port driver.

Address of the class driver’s input routine. This field is
read by the port driver.

Address of the class driver’s output routine. This field
is read by the port driver.

Address of the class driver’s vector table. This field
is initialized by the CLASS_CTRL_INIT macro. The
port driver reads ucb$l_tt_class whenever it must
call the class driver at an entry point other than
Wcbs! CE _getnxt or ucbs i. tl putnxe.

Address of the port driver’s vector table.

(continued on next page)

349

Data Structures
17.15 UCB (Unit Control Block)

Table 17-22 (Cont.) Contents of UCB Terminal Extension
nn EEE

Field Use

ucb$l_tt_outadr Address of the first character of a burst of data to be

written. This field is only valid when ucb$b_tt_outype
contains —1. It is read and written by the port driver,
and written by the class driver.

ucb$w_tt_outlen Number of characters in a burst of data to be written.
This field is only valid when ucb$b_tt_outype
contains —1. It is read and written by the port driver,
and written by the class driver.

ucb$w_tt_prtctl Port driver control flags. The bits in this field indicate
features that are available to the port; the class driver
specifies which of these features are to be enabled.

The following fields are defined within UCBSW_TT_PRTCTL

tty$v_pc_notime No timeout. If set, the
terminal class driver
is not to set up timers
for output.

tty$v_pc_dmaena DMA enabled. If set,
DMA transfers are
currently enabled on
this port.

tty$v_pc_dmaavl DMA supported. If
set, DMA transfers
are supported for this
port.

tty$v_pc_prmmap Permanent map

registers. If set,
the port driver is to
permanently allocate
map registers.

tty$v_pc_mapavl Map registers
available. If set,
the port driver has
currently allocated
map registers.

(continued on next page)

350

Data Structures

17.15 UCB (Unit Control Block)

Table 17-22 (Cont.) Contents of UCB Terminal Extension

Use

tty$v_pc_xofavl

tty$v_pc_xofena

tty$v_pce_nocrlf

tty$v_pc_break

tty$v_pc_portfdt

tty$v_pc_nomodem

tty$v_pc_nodisconnect

tty$v_pc_smart_read

Auto XOFF supported.
If set, auto XOFF is
supported for this
port.

Auto XOFF enabled.
If set, auto XOFF is
currently enabled on
this port.

No auto line feed. If
set, a line feed is not
generated following a
carriage return.

Break. If set, the port
driver should generate
break character; if
clear, the port should
turn off the break
feature.

FDT routine. If
set, the port driver
contains FDT
routines.

No modem. If set, the
port cannot support

modem operations.

No disconnect. If set,
the device cannot
support virtual
terminal operations.

Smart read. If set,
the port contains
additional read
capabilities.

(continued on next page)

351

Data Structures
17.15 UCB (Unit Control Block)

352

Table 17-22 (Cont.) Contents of UCB Terminal Extension

Field Use
ae

ucb$l_tt_ds_st

ucb$b_tt_ds_rev

ucb$b_tt_ds_tx

ucb$w_tt_ds_tim

ucb$b_tt_maint

ucb$l_tt_fbk

ucb$]_tt_rdverify

ucb$l1_tt_class1

tty$v_pc_accpornam Access port name. If
set, the port supports
an access port name.

tty$v_pc_multisession Multisession terminal.
If set, the port is
part of a multisession
terminal.

Current modem state.

Current receive modem.

Current transmit modem.

Current modem timeout.

Maintenance functions. This field is used as the
argument to the port driver’s PORT_MAINT routine.
It is written by the class driver and read by the port
driver.

It contains several bits that allow the following
maintenance functions:

io$m_loop Set loopback mode.

io$m_unloop Reset loopback mode.

io$m_autxof_ena Enable the use of auto

XON/XOFF on this line.
This is the default.

io$m_autxof_dis Disable the use of auto
XON/XOFF on this line.

io$m_line_off Disable interrupts on

this line.

io$m_line_on Reenable interrupts on
this line.

ucb$b_tt_maint also defines the bit ucb$v_tt_dsbl
that, when set, indicates that the line has been
disabled.

Address of fallback block.

Address of read/verify table. Reserved for future use.

First class driver longword.

(continued on next page)

17.16

Data Structures
17.15 UCB (Unit Control Block)

Table 17-22 (Cont.) Contents of UCB Terminal Extension

Field Use

ucb$l_tt_class2 Second class driver longword.

ucb$l_tt_accpornam Address of counted string.

ucb$l_tt_a_gcebadr Glyph Control Block address

ucb$w_tt_a_edsts Multibyte line edit states

ucb$b_tt_a_state On-demand loading states

ucb$b_tt_a_parse ODL parse states

ucb$b_tt_a_trans JIS conversion states

ucb$b_tt_a_xedsts Extended line edit states

ucb$l_tt_a_dechset Default char set bitmask. The lowest byte of this field
is known as ucb$b_tt_a_char and represents the
default Asian modes.

ucb$l_tp_map Map registers.

ucb$b_tp_stat DMA port-specific status.

The following fields are defined within ucb$b_tp_stat.

tty$v_tp_abort DMA abort requested
on this line.

tty$v_tp_alloc Allocate map fork in
progress.

tty$v_tp_dlloc Deallocate map fork in
progress.

VLE (Vector List Extension)

The driver loading mechanism (as directed by the SYSMAN command IO
CONNECT) connects a hardware device to one or more interrupt vectors.
Although most devices connected to VAX systems use preassigned vector

locations, many devices on Alpha systems use programmable interrupt vectors.

It is the driver’s responsibility to initialize such a device to use the vector or

vectors to which it has been connected.

The driver loading mechanism passes this information to drivers in one of two

ways:

e For devices with a single interrupt vector, the idb$1_vector field contains
the vector offset (into the SCB or the ADP vector table).

353

Data Structures
17.16 VLE (Vector List Extension)

354

¢ For devices with multiple interrupt vectors, the idb$1_vector field

contains a pointer to a vector data structure which contains a list of vectors

for the device.

The vector list extension is described in Table 17—23.

Table 17-23 Contents of the Vector List Extension

Field Use

vle$ps_idb Address of the IDB with which the VLE is associated.

vle$l_numvec Number of vector entries in the VLE.

vle$w_size Size of VLE. The driver-loading procedure writes this
field when it creates the VLE.

vle$b_type Structure type. The driver loading procedure writes
the constant DYN$C_MISC in this field.

vle$b_subtype Structure subtype. The driver loading procedure writes
the constant DYN$C_VLE in this field.

vle$l_vector_list Beginning of interrupt vector list. This field is an array

of unsigned longwords containing the appropriate byte
offset into either the SCB or the ADP vector table.

18
Device Driver Entry Points

This chapter describes the standard driver routines used as entry points in an

OpenVMS Alpha device driver.

355

OpenVMS Alpha Device Driver Entry Points

Alternate Start-I/O Routine

I

Alternate Start-I/O Routine

Initiates activity on a device that can support multiple, concurrent VO

operations and synchronizes access to its UCB.

Prototype

void driver_altstart_routine (IRP *irp, UCB *ucb)

Parameters

Name Access _ Description

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Essentials

356

Identifying the Routine
Specify the address of the alternate start-I/O routine by using the ini_ddt_
altstart macro in the driver$init_tables () routine. For example:

ini_ddt_altstart (&driverS$fdt, driver_altstart).

Called by

Called by routine EXE_STD$ALTQUEPKT in module SYSQIOREQ. A driver
FDT routine typically is the caller of EXE_STD$ALTQUEPKT.

Context

An alternate start-I/O routine begins execution at fork IPL, holding the

corresponding fork lock. It must return control to EXE_STD$ALTQUEPKT in
this context.

Because an alternate start-I/O routine gains control in fork process context, it
can access only those virtual addresses that are in system (SO) space.

Exit mechanism
The alternate start-I/O routine completes I/O requests by calling COM_
STD$POST. This routine places each IRP in the I/O postprocessing queue
and returns control to the driver. The driver can then fetch another IRP
from an internal queue. If no IRPs remain, the driver returns control to
EXE_STD$ALTQUEPKT, which relinquishes fork level synchronization and
returns to the driver FDT routine that called it. The FDT routine performs

OpenVMS Alpha Device Driver Entry Points
Alternate Start-I/O Routine

any required postprocessing and returns the SS$_FDT_COMPL status to its
caller.

Description

An alternate start-I/O routine initiates requests for activity on a device that

can process two or more I/O requests simultaneously. Because the method by
which the alternate start-I/O routine is invoked bypasses the unit’s pending-
I/O queue (UCB$L_IOQFL) and the device busy flag (UCB$V_BSY in UCB$L_
STS), the routine is activated regardless of whether the device unit is busy
with another request.

As a result, the driver that incorporates an alternate start-I/O routine must use
its own internal I/O queues (in a UCB extension, for instance) and maintain

synchronization with the unit’s pending-I/O queue. In addition, if the routine
processes more than one IRP at a time, it must use separate fork blocks for

each request.

357

OpenVMS Alpha Device Driver Entry Points

Cancel-l/O Routine

i Ee en kg ee

Cancel-I/O Routine

Prevents further device-specific processing of the I/O request currently being

processed on a device.

Prototype

void driver_cancel (CHAN *chan, IRP *irp, PCB *pcb, UCB * ucb, int reason)

Parameters

Name Access ___ Description

chan Input Pointer to the channel index number.

irp Input Pointer to the I/O request packet, if any, for
device (contents of UCB$L_IRP).

peb Input Pointer to the process control block of process for
which the I/O request is being canceled.

ucb Input Pointer to the unit control block.

reason Input Reason for cancellation can be one of the
following:

CAN$C_CANCEL—Called by $CANCEL
system service

CAN$C_DASSGN—Called by $DASSGN or
$DALLOC system service

Essentials

358

Identifying the Routine
Supply the address of the cancel-I/O routine in the ini_ddt_cancel macro in
the DRIVER$INIT_TABLES routine. The macro places the procedure value
of this routine into the DDT. Many drivers specify the system routine IOC_
STD$CANCELIO as their cancel-I/O routine.

Called by
System routines call a driver’s cancel-I/O routine under the following
circumstances:

e When a process issues a Cancel-I/O-on-Channel system service ($CANCEL)

OpenVMS Alpha Device Driver Entry Points
Cancel-I/O Routine

When a process deallocates a device, causing the device’s reference count
(UCB$L_REFC) to become zero (that is, no process I/O channels are
assigned to the device)

When a process deassigns a channel from a device, using the $DASSGN
system service

When the command interpreter performs cleanup operations as part of
image termination by canceling all pending I/O requests for the image and
closing all image-related files open on process I/O channels

Context

A cancel-I/O routine begins execution at fork IPL, holding the corresponding
fork lock. It must return control to its caller in this context.

A cancel-I/O routine executes in kernel mode in the context of the caller of the

$CANCEL, $DALLOC, or $DASSGN system service.

Exit mechanism

The cancel-I/O routine returns to its caller.

Description

A driver’s cancel-I/O routine must perform the following tasks:

L Confirm that the device is busy by examining the device-busy bit in the
UCB status longword (UCB$V_BSY in UCB$L_STS).

Confirm that the process ID (PID) of the request the device is servicing
(IRP$L_PID) matches that of the process requesting the cancellation
(PCB$L_PID).

Confirm that the channel-index number of the request the device is
servicing (IRP$L_CHAN) matches that specified in the cancel-I/O request.

Cause to be completed (canceled) as quickly as possible all active I/O
requests on the specified channel that were made by the process that has
requested the cancellation. The cancel-I/O routine usually accomplishes
this by setting UCB$V_CANCEL in the UCB$L_STS. When the next
interrupt or timeout occurs for the device, the driver’s start-I/O routine
detects the presence of an active but canceled I/O request by testing this
bit and takes appropriate action, such as completing the request without
initiating any further device activity. Other driver routines, such as the
timeout handling routine, check the cancel-I/O bit to determine whether to

retry the I/O operation or abort it.

359

OpenVMS Alpha Device Driver Entry Points

Cancel Selective Routine

a

Cancel Selective Routine

Performs additional processing on a list of I/O requests that have been

canceled.

Prototype

int driver_cancel_selective (PCB *pcb, UCB “ucb, int chan, int iosb_vector, int

iosb_count)

Parameters

Name Access ___ Description

pcb Input Pointer to the process control block of process for
which the I/O request is being canceled.

ucb Input Pointer to the unit control block.

chan Input Pointer to the channel index number.

iosb_vector Input Pointer to the vector of address of I/O status
blocks (IOSBs), or zero.

iosb_count Input Pointer to the number of addresses in the IOSB
vector.

Essentials

Identifying the Routine

Supply the address of the cancel selective routine in the ini_ddt_cancel_selecti’

macro in the DRIVER$INIT_TABLES routine. The macro places the procedure
value of this routine into the DDT.

Called by

EXE$CANCEL_SELECTIVE calls a driver’s cancel selective routine.

Context
A cancel selective routine is called at device IPL, holding the corresponding
device lock and the appropriate fork lock. The channel control block (CCB) is
locked in memory. It must return control to EXE$CANCEL_SELECTIVE in
this context.

Exit mechanism

The cancel selective routine returns to its caller.

360

OpenVMS Alpha Device Driver Entry Points
Channel Assign Routine

Channel Assign Routine

Performs specialized operations when a channel is assigned to a non-network
device.

Prototype

void driver_channel (UCB *ucb, CCB “ccb)

Parameters

Name Access __ Description

ucb Input Pointer to the unit control block.

ecb Input Pointer to the channel control block.

Essentials

identifying the Routine
Supply the address of the channel assign routine in the ini_ddt_channel_assign
macro in the DRIVER$INIT_TABLES routine. The macro places the procedure
value into the DDT.

Called by
EXE$ASSIGN_LOCAL (in module SYSASSIGN) calls a driver’s channel assign

routine.

Context
A channel assign routine is called in kernel mode at IPL 0.

Exit mechanism
The channel assign routine returns to its caller.

Description

Reserved to Digital.

361

OpenVMS Alpha Device Driver Entry Points
Cloned UCB Routine

Cloned UCB Routine

Completes the initialization of the UCB cloned when a channel is requested for

a template device.

Prototype

int driver_cloneducb (UCB *cloned_ucb, DDT *ddt, PCB *pcb, UCB *template_ucb)

Parameters

Name Access __ Description

cloned_ucb Input Pointer to the cloned unit control block. The
cloned UCB ORB is initialized using the
template UCB ORB. You can modify the ORB
on the template UCB using the DCL SET
SECURITY command.

ddt Input Pointer to the driver dispatch table.

pcb Input Pointer to the process control block of the
current process.

template_ucb Input Pointer to the template unit control block.

362

Parameter Fields

Field

OpenVMS Alpha Device Driver Entry Points
Cloned UCB Routine

Contents

cloned_ucb->

UCB$L_FQFL

UCB$L_FQBL

UCB$L_FPC

UCB$Q_FR3

UCB$Q_FR4

UCB$W_BUFQUO

UCB$L_LINK

UCB$L_IOQFL

UCB$L_IOQBL

UCB$W_UNIT

UCB$W_CHARGE

UCB$L_REFC

UCB$L_STS

UCB$L_DEVSTS

UCB$L_OPCNT

UCB$L_SVAPTE

UCB$L_BOFF

UCB$L_BCNT

UCB$L_ORB

Essentials

identifying the Routine

Address of UCB$L_FQFL

Address of UCB$L_FQFL

0

0

0

0

Address of next UCB in DDB chain

Address of UCB$L_IOQFL

Address of UCB$L_IOQFL

Device unit number

Mailbox byte quota charge (UCB$W_SIZE)

0

UCB$V_DELETEUCB set, UCB$V_ONLINE set

UCB$V_DELMBxX set if DEV$V_MBxX is set in
UCB$L_DEVCHAR

0

0

0

0

Address of object rights block (ORB) for the cloned
UCB

Specify the address of a cloned UCB routine in the ini_ddt_cloneducb macro
in the DRIVER$INIT_TABLES routine. Only drivers for template devices,
such as mailboxes, specify a cloned UCB routine.

Called by
EXES$ASSIGN calls the driver’s cloned UCB routine when an Assign I/O
Channel system service request (SASSIGN) specifies a template device (that is,

bit UCB$V_TEMPLATE in UCB$L_STS is set).

363

OpenVMS Alpha Device Driver Entry Points
Cioned UCB Routine

Context
A cloned UCB routine executes at IPL$_ASTDEL, holding the I/O database

mutex (IOC$GL_MUTEX).

A cloned UCB routine executes in kernel mode in the context of the process

that called the $ASSIGN system service.

Exit mechanism
A cloned UCB routine must return control and status to EXE$ASSIGN. If the

routine returns error status in RO, EXE$ASSIGN undoes the process of UCB
cloning and completes with failure status in RO.

Description

364

When a process requests that a channel be assigned to a template device,
EXE$ASSIGN does not assign the channel to the template device itself.

Rather, it creates a copy of the template device’s UCB and ORB, initializing
and clearing certain fields as appropriate.

The driver’s cloned UCB routine verifies the contents of these fields and

completes their initialization.

OpenVMS Alpha Device Driver Entry Points
Controller Initialization Routine

Controller Initialization Routine

Prepares a controller for operation.

Prototype

int driver_ctrlinit (IDB *idb, DDB *ddb, CRB “*crb)

Parameters

Name Access __ Description

idb Input Pointer to the interrupt dispatch block
associated with the controller.

ddb Input Pointer to the device data block associated with
the controller.

crb Input Pointer to the controller request block.

Essentials

Identifying the Routine
Specify the address of a controller initialization routine in the ini_ddt_ctrlinit
parameter in the DRIVER$INIT_TABLES routine.

Called by
The driver-loading procedure calls a driver’s controller initialization routine
when processing a CONNECT command. Also, the system calls this routine
if the device, controller, processor, or adapter to which the device is connected

experiences a power failure.

Context
OpenVMS calls a controller initialization routine at IPL$_POWER. If it must
lower IPL, the controller initialization routine cannot explicitly do so. Rather,
it must fork. Because the driver-loading procedure calls the unit initialization
routine immediately after the controller initialization returns control to it,

the driver’s initialization routines must synchronize their activities. If the
controller initialization routine forks, the unit initialization routine must be

prepared to execute before the controller initialization routine completes.

The portion of the controller initialization that services power failure cannot
acquire any spin locks. As a result, the routine cannot fork to perform power

failure servicing.

365

OpenVMS Alpha Device Driver Entry Points
Controller Initialization Routine

Because a controller initialization routine executes within system context, it

can refer only to those virtual addresses that reside in system (SO) space.

Exit mechanism

The controller initialization routine returns success or failure status to its

caller.

Description

Some controllers require initialization when the system’s driver-loading routine
loads the driver and when the system is recovering from a power failure.
Depending on the device, a controller initialization routine performs any and

all of the following actions:

366

Determines whether it is being called as a result of a power failure by
examining the power bit (UCB$V_POWER in UCB$L_STS) in the UCB. A
controller initialization routine may want to perform or avoid specific tasks
when servicing a power failure.

Clears error-status bits in device registers.

Enables controller interrupts.

Allocates resources that must be permanently allocated to the controller.

If the controller is dedicated to a single-unit device, such as a printer, fills
in IDB$PS_OWNER and set the online bit (UCB$V_ONLINE in UCB$L_
STS).

Initializes the interrupt vectors of devices with programmable interrupt
vectors.

OpenVMS Alpha Device Driver Entry Points
CSR Mapping Routine

CSR Mapping Routine

Maps the device registers, which reside in I/O space, into system virtual
address space.

Prototype

int csr_mapping_routine (IDB *idb, DDB *ddb, CRB “*crb)

Parameters

Name Access __ Description

idb Input Pointer to the IDB for the device.

ddb Input Pointer to the DDB for the device.

crb Input Pointer to the CRB for the device.

Essentials

Return value

The routine must return a successful status for the device initialization to

continue. If a unsuccessful status value is returned by the driver’s CSR
mapping routine, the controller and unit initialization routines will not be
called.

Specified by
ini_ddt_csr_mapping macro in the DRIVER$INIT_TABLES routine.

Description

The CSR mapping routine is called at IPL 8 with the IOLOCK8 spinlock
held. This environment allows the driver CSR mapping routine to call the
IOC$MAP_IO routine to map the device registers. In contrast, IOC$MAP_
IO cannot be called from the device driver’s controller or unit initialization
routines because they are called at IPL 31.

The CSR mapping routine is called during the device driver initialization

sequence after the devices I/O database structures are completed and linked
into the I/O database but before the device driver controller initialization

routine.

367

OpenVMS Alpha Device Driver Entry Points
Driver Channel Grant Fork Routine

Driver Channel Grant Fork Routine

Enabled via the IOC_STD$REQCHAN«x or IOC$REQCHAN«x routines if the

CRB is not immediately available. The procedure value of the grant routine is
contained in ucb->ucb$l_fpce.

Prototype

void driver_chn_grant (IRP *irp, IDB *idb, UCB *ucb)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet.

idb Input Pointer to the interrupt dispatch block (IDB).

ucb Input Pointer the unit control block of the device
assigned to the process I/O channel.

368

OpenVMS Alpha Device Driver Entry Points
Driver Device Timeout Routine

Driver Device Timeout Routine

The driver device timeout routine is the wait-for-interrupt timeout routine.
The EXE$TIMEOUT routine calls this routine when an operation set up by the

wfikpch or wfirlch macros take more than the specified number of seconds.

This routine is called at device IPL with both the fork spinlock and the device
spinlocks held.

Prototype

void driver_timeout (IRP “*irp, int64 fr4, UCB *ucb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet from ucb-

>uch$q_fr3.

fr4 Input The 64-bit value from ucb->fkb$q_fr4.

fr4 Input Pointer to the unit control block of the device
assigned to the process I/O channel.

369

OpenVMS Alpha Device Driver Entry Points

Device Data Structure Initialization Routine

a

Device Data Structure Initialization Routine

Called once for each unit by the $LOAD_DRIVER service after that UCB is

created. At the point of this call the UCB has not yet been fully linked into the

I/O database. This routine is responsible for filling in driver specific fields that

in the I/O database structures that are passed as parameters to this routine.

Prototype

void struc_init (CRB *crb, DDB *ddb, IDB *idb, ORB “orb, UCB *ucb)

Parameters

Name Access ___ Description

crb Input Pointer to the associated controller request
block.

ddb Input Pointer to the associated device data block.

idb Input Pointer to the associated interrupt dispatch
block.

orb Input Pointer to the associated object rights block.

ucb Input Pointer to the unit control block that is to be
initialized.

Description

370

After the device data structure initialization routine routine is called for a new

unit, the reinitialization routine is also called. The $LOAD_ DRIVER service

then completes the integration of these device specific structures into the I/O
database.

Note that this routine must confine its actions to filling in these I/O database
structures and may not attempt to initialize the hardware device. Initialization
of the hardware device is the responsibility of the controller and unit
initialization routines that are called some time later.

OpenVMS Alpha Device Driver Entry Points
Device I/O Data Structure Re-initialization Routine

Device i/O Data Structure Re-initialization Routine

Called once for each unit by the $LOAD_DRIVER service immediately after the
structure initialization routine is called. Because this routine is called once for
each unit by the $LOAD_DRIVER service when a driver image is reloaded, it
fills in the fields in the I/O database structures that point to this driver image.
Note that this routine must confine its actions to filling in these I/O database
structures.

Prototype

void struc_reinit (CRB *crb, DDB *ddb, IDB *idb, ORB *orb, LR_UCB *ucb)

Parameters

Name Access __ Description

crb Input Pointer to associated controller request block.

ddb Input Pointer to associated device data block.

idb Input Pointer to associated interrupt dispatch block.

orb Input Pointer to associated object rights block.

ucb Input Pointer to the unit control block that is to be
initialized.

371

OpenVMS Alpha Device Driver Entry Points
Driver Resume from Interrupt Routine Entry

Driver Resume from Interrupt Routine Entry

Continues the processing of an I/O request in the context of the device driver’s

interrupt service routine. This routine is specified by either the wfikpch or

wfirlch macros. This routine is invoked by using the rfi macro in the device

driver interrupt service routine.

The driver resume from interrupt routine executes at device IPL with the

device spinlock held.

Note that it may be possible to eliminate the driver resume from interrupt

routine by moving some processing directly into the interrupt service routine

and by resuming the driver in a fork routine. The driver fork routine would
then be resumed from the interrupt service routine by:

ucb->ucb$v_tim = 0;

exe_std$queue_fork ((FKB *) uch);

Prototype

void driver_resume_fi (IRP “*irp, int64 fr4, UCB *ucb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet from ucb-
>ucb$q_fr3

fr4 Input _—_— Pointer to the 64-bit value from ucb->fkb$q_fr4.

ucb Input Pointer to the unit control block of the device

372

assigned to the process I/O channel.

Note

It may be possible to eliminate the driver resume from interrupt
routine by moving some processing directly into the interrupt service
routine and by resuming the driver in a fork routine.
eee

OpenVMS Alpha Device Driver Entry Points
Driver Table Initialization Routine

Driver Table Initialization Routine

Completes the initialization of the DPT, DDT, and FDT structures. If a driver

image contains a routine named DRIVER$INIT_TABLES, this routine is called
once by the $LOAD_DRIVER service immediately after the driver image is
loaded or reloaded and before any validity checks are performed on the DPT,
DDT, and FDT. A prototype version of these structures is built into this image

at link time from the VMS$VOLATILE_PRIVATE_INTERFACES.OLB library.

Prototype

int driver$init_tables ()

Implicit Inputs

Name Access __ Description

driver$dpt Input Externally defined name for the prototype DPT
structure that is linked into the driver.

driver$ddt Input Externally defined name for the prototype DDT
structure that is linked into the driver.

driver$fdt Input Externally defined name for the prototype DDT
structure that is linked into the driver.

Description

Note that the device related data structures (that is, DDB, UCB, etc.) have

not yet been created when the Initialize Driver Tables routine is called.
routine is called. Therefore, the actions of this routine must be confined to the

initialization of the DPT, DDT, and FDT structures that are contained in the

driver image.

373

OpenVMS Alpha Device Driver Entry Points
FDT Upper-Level Action Routine

NW $$

FDT Upper-Level Action Routine

Performs any device-dependent activities needed to prepare the I/O database to

process an I/O request.

Prototype

int driver_fdt_routine (IRP *irp, PCB *pcb, UCB *ucb, CCB “ccb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet for the current
I/O request.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process-I/O channel specified as
a parameter to the $QIO request.

ecb Input Pointer to the channel control block that

describes the process-I/O channel.

Parameter Fields

Field Contents

irp->

IRP$L_FUNC I/O function code supplied in the $QIO request

IRP$L_QIO_Pn Function-specific $QIO system service arguments
(pl through p6); n corresponds to an integer from 1
to 6.

Essentials

374

Identifying the Routine
Use the ini_fdt_act macro in the DRIVER$INIT_TABLES routine to insert
the procedure value of an upper-level FDT action routine into the FDT action
routine vector slot that corresponds to a specified I/O function code. For
example:

ini_fdt_act (&driverfdt, IO_SETMODE, driver_fdt_routine, buf fered)

OpenVMS Alpha Device Driver Entry Points
FDT Upper-Level Action Routine

This macro also specifies if the I/O function is buffered or direct.

Called by

The $QIO system service calls a driver’s upper-level FDT action routine from
the module SYSQIOREQ. An upper-level FDT action routine can call any

number of FDT support routines, as long as each routine returns control and
status to the upper-level routine.

Context
An FDT routine is called at IPL$_ASTDEL and must exit at IPL$ ASTDEL.

An FDT routine must not lower IPL below IPL$_ASTDEL. If it raises IPL,

it must lower it to IPL$_ASTDEL before passing control to any other code.
Similarly, before exiting, it must release any spin locks it may have acquired in
an OpenVMS multiprocessing environment.

FDT routines execute in the context of the process that requested the I/O

activity. If an FDT routine alters the stack, it must restore the stack before
returning control to the caller of the routine.

Exit mechanism
An FDT routine must return control and status to its caller. An upper-level
FDT action routine returns SS$_FDT_COMPL status to the $QIO system
service and passes the return status to be delivered to the caller of $QIO in the
FDT_CONTEXT structure.

Description

An upper-level FDT routine (and any FDT support routine it may call)
validates the function-dependent parameter to a $QIO system service request
and prepares the I/O database to service the request. For each function that a
device supports, an upper-level FDT action routine must provide preprocessing

of requests for that function. FDT processing may complete a function that
does not involve an I/O transfer. Otherwise FDT processing can abort the

request or deliver it to the driver.

375

OpenVMS Alpha Device Driver Entry Points

FDT Error-Handling Callback Routine

ES

FDT Error-Handling Callback Routine

Processes error conditions that occur during EXE STD$READLOCK, EXE_

STD$WRITELOCK, and EXE_STD$MODIFYLOCK processing.

Prototype

int driver_errtn_routine (IRP *irp, PCB *pcb, UCB *ucb, CCB “*ccb, int status)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet for the current
I/O request.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process-I/O channel specified as
a parameter to the $QIO request.

ecb Input Pointer to the channel control block that
describes the process-I/O channel.

status Input Pointer to the error status returned by buffer
accessibility check (SS$_ACCVIO or SS$_
BADPARAM) or buffer locking operation (SS$_
ACCVIO, SS$_INSFWSL, or page fault status).

Essentials

Identifying the Routine

Use the errtn parameter in a call to EXE_STD$MODIFYLOCK, EXE_
STD$READLOCK, or EXE_STD$WRITELOCK.

Called by
EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, and EXE_STD$WRITELOCK
call the driver's error-handling callback routine to process errors incurred by a
buffer accessibility check or buffer locking operation.

Context

An error-handling callback routine is called at IPL$_ASTDEL and must exit
at IPL$_ASTDEL. An error-handling callback routine must not lower IPL
below IPL$_ASTDEL. If it raises IPL, it must lower it to IPL$_ASTDEL before

376

OpenVMS Alpha Device Driver Entry Points
FDT Error-Handling Callback Routine

passing control to any other code. Similarly, before exiting, it must release any

spin locks it may have acquired in an OpenVMS multiprocessing environment.

Error-handling callback routines execute in the context of the process that
requested the I/O activity. If a routine alters the stack, it must restore the
stack before returning control to the caller of the routine.

Exit mechanism

An error-handling callback routine must return control to its caller and
preserve the contents of RO and R1.

Description

An error-handling callback routine processes any errors incurred by

a call to EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, or EXE_
STD$WRITELOCK.

A driver typically requires an error-handling callback routine if it must lock
multiple areas into memory for a single I/O request and must regain control,
if the request is to be aborted, to unlock these areas. The routine performs
such operations as locating the addresses of the previously allocated buffers
(typically stored in the IRP) and calling MMG_STD$UNLOCK to release them.

377

OpenVMS Alpha Device Driver Entry Points

Interrupt Service Routine

a

Interrupt Service Routine

Processes interrupts generated by a device. The Interrupt Service routine is

called by the system interrupt dispatcher.

Prototype

void driver_isr (IDB *idb, int scb_offset)

Parameters

Name Access ___ Description

idb Input Pointer to the interrupt dispatch block.

scb_offset Input Pointer to the ???

Essentials

378

Identifying the Routine
Devices require an interrupt service routine for each interrupt vector. Use the

dpt_store_isr macro in the structure reinitialization routine. For example, use
dpt_store_isr (crb, driver_isr) to store the ISR procedure descriptor and
entry point address in the interrupt transfer vector block (VEC) at CRB$L_
INTD. You can find the second and third VECs at CRB$L_INTD2 and CRB$L_
INTD+2* VEC$K_LENGTH, respectively.

Called by

The interrupt service routine is called either by the OpenVMS interrupt
dispatcher (for direct-vectored adapters) or by an adapter interrupt service
routine (for non-direct-vector adapters).

Context

An OpenVMS Alpha driver’s interrupt service routine conforms to the
OpenVMS calling standard.

An interrupt service routine is called, executes, and returns at device IPL. It
must obtain the device lock associated with its device IPL. It performs this
acquisition as soon as it obtains the address of the UCB of the interrupting
device. It must release this device lock before dismissing the interrupt.

At the execution of a driver’s interrupt service routine, the processor is running
in interrupt mode on the kernel stack. As a result, an interrupt service routine
can reference only those virtual addresses that reside in system (SO) space.

OpenVMS Alpha Device Driver Entry Points
Interrupt Service Routine

Resuming the Suspended Driver Thread

The method that an interrupt service routine should use to invoke the driver’s
resume from interrupt routine depends on how the driver suspended its
execution.

If the driver is using the simple fork mechanism with a CALL-based
environment then the driver resume from interrupt routine is invoked in
C by the following:

({ucb->ucb$1_fpc) (ucb->ucb$q_fr3, ucb->ucb$q_fr4, uch);

If the driver is using the kernel process mechanism then the suspended kernel
process can be resumed in C by the following:

exeS$kp_restart(kpb);

or:

(ucb->ucb$1_fpc) (ucb->ucb$q_fr3, ucb->ucb$q_fr4, uch);

Exit mechanism
The interrupt service routine returns to the interrupt dispatcher with a RET

instruction.

Description

An interrupt service routine performs the following functions:

1. Determines whether the interrupt is expected.

2. Processes or dismisses unexpected interrupts.

3. Activates the suspended driver so it can process expected interrupts.

379

OpenVMS Alpha Device Driver Entry Points
Mount Verification Routine

Mount Verification Routine

Performs device-specific mount verification.

Prototype

int driver_mntver_routine (IRP *irp, UCB *ucb)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet, or zero to
complete mount verification.

ucb Input Pointer to the unit control block.

Essentials

Identifying the Routine

Supply the address of the mount verification routine in the ini_ddt_mntv_for
macro in the DRIVER$INIT_TABLES routine. The default value of this macro

is the only value allowed for device drivers not supplied by Digital.

Called by

Routine DRIVER_CODE in module MOUNTVER calls a driver’s mount

verification routine.

Context
A mount verification routine is called at fork IPL with the corresponding fork
lock held in a multiprocessing system.

Exit mechanism

The mount verification routine returns to its caller.

Description

380

Reserved to Digital.

OpenVMS Alpha Device Driver Entry Points
Register Dumping Routine

Register Dumping Routine

Copies the contents of a device’s registers to an error message buffer or a
diagnostic buffer.

Prototype

void driver_regdump_routine (int buffer, arg_2, UCB *ucb)

Parameters

Name Access ___ Description

buffer Input Pointer to the address of buffer into which a

register dumping routine copies the contents of
device registers.

arg 2 Input Pointer to the device-specific argument, usually
a controller register access mailbox (CRAM).

ucb Input Pointer to the Unit control block.

Essentials

Identifying the Routine

Specify the name of the register dumping routine in the ini_ddt_regdmp macro
in the DRIVER$INIT_TABLES routine.

Called by

The system error-logging routines (ERL_STD$DEVICERR, ERL_STD$DEVICTMO,
and ERL_STD$DEVICEATTN) and diagnostic buffer filling routine (IOC_
STD$DIAGBUFILL) call the register dumping routine.

Context |.
OpenVMS calls a register dumping routine at the same interrupt service
routine (IPL) at which the driver called the OpenVMS Alpha system routine
ERL_STD$DEVICERR, ERL_STD$DEVICTMO, ERL_STD$DEVICEATTN, or
IOC_STD$DIAGBUFILL. A register dumping routine must not change IPL.

A register dumping routine executes within the context of an IPL routine or a
driver fork process, using the kernel-mode stack. As a result, it can only refer

to those virtual addresses that reside in system (SO) space. If it uses the stack,
the register dumping routine must restore the stack before passing control to
another routine, waiting for an interrupt, or returning control to its caller.

381

OpenVMS Alpha Device Driver Entry Points
Register Dumping Routine

Exit mechanism
The register dumping routine returns to its caller.

Description

A register dumping routine fills the indicated buffer as follows:

1. Writes a longword value representing the number of device registers to be
written into the buffer

2. Moves device register longword values into the buffer following the register
count longword

382

OpenVMS Alpha Device Driver Entry Points
Start-l/O Routine (Simple Fork, Call Environment)

Start-I/O Routine (Simple Fork, Call Environment)

Activates a device to process a requested I/O function.

Prototype

void driver_startio (IRP *irp, UCB *ucb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block.

Parameter Fields

Field Contents

ucb->

UCB$L_BCNT Number of bytes to be transferred, copied from the
low-order word of IRP$L_BCNT

UCB$L_BOFF Byte offset into first page of direct-I/O transfer; for
buffered-I/O transfers, number of bytes to be charged
to the process allocating the buffer

UCB$L_SVAPTE For a direct-I/O transfer, virtual address of first

page-table entry (PTE) of I/O-transfer buffer; for
buffered-I/O transfer, address of buffer in system
address space

Essentials

Identifying the Routine
Specify the name of the start-I/O routine in the ini_ddt_start macro in the

DRIVERS$INIT_TABLES routine.

Called by
A traditional start-I/O routine is called as the result of a standard call issued

by IOC_STD$INITIATE and IOC_STD$REQCOM in module IOSUBNPAG.

Context

A start-I/O routine is placed into execution at fork IPL, holding the associated

fork lock. It must relinquish control of the processor in the same context.

383

OpenVMS Alpha Device Driver Entry Points

Start-I/O Routine (Simple Fork, Call Environment)

384

For many devices, the start-I/O routine raises IPL to IPL$_POWER to check

that a power failure has not occurred on the device prior to loading the device’s

registers. The start-I/O routine initiates device activity at device IPL, after

acquiring the corresponding device lock. An invocation of the WFIKPCH or

WFIRLCH macro (or KP_STALL_WFIKPCH or KP_STALL_WFIRLCH) to wait
for a device interrupt releases this device lock.

Because a start-I/O routine gains control of the processor in the context of

a fork process, it can refer only to those addresses that reside in system
(SO) space. If the start-I/O routine uses the stack, it must restore the stack

before completing the request, waiting for an interrupt, or requesting system

resources.

Exit mechanism
A traditional start-I/O routine suspends itself whenever it must wait for a

required resource, such as a controller data channel. To do so, it invokes an

OpenVMS macro (such as REQPCHAN) that saves its context in the UCB fork
block, places the UCB in a resource wait queue, and returns control to the
caller of the start-I/O routine.

The start-I/O routine also suspends itself when it issues a WFIKPCH or

WFIRLCH macro to initiate device activity. These macros also store the

driver’s context in the UCB fork block to be restored when the device interrupts
or times out.

The start-I/O routine is again suspended if it forks to complete servicing of a
device interrupt. The IOFORK macro places driver context in the UCB fork

block, inserts the fork block into a processor-specific fork queue, and requests
a software interrupt from the processor at the corresponding fork IPL. After
issuing an IOFORK macro, the routine returns control to the driver’s interrupt
service routine.

The routine completes the processing of an I/O request by invoking the
REQCOM macro. In addition to initiating device-independent postprocessing
of the current request, the REQCOM macro attempts to start the next request
waiting for a device unit. If there are no waiting requests, the macro returns
control to the caller of the start-I/O routine, which is the OpenVMS fork
dispatcher.

OpenVMS Alpha Device Driver Entry Points
Start-I/O Routine (Simple Fork, Call Environment)

Description

A driver’s start-I/O routine activates a device and waits for a device interrupt

or timeout. After a device interrupt, the driver’s interrupt service routine
returns control to the start-I/O routine at device IPL, holding the associated

device lock.

The start-I/O routine usually forks at this time to perform various device-
dependent postprocessing tasks, and returns control to the interrupt service
routine.

385

OpenVMS Alpha Device Driver Entry Points

Start-I/O Routine (Kernel Process)

NN ———— eee

Start-I/O Routine (Kernel Process)

Activates a device to process a requested I/O function.

Prototype

void driver_kpstartio (KPB *kpb)

Parameters

Name Access __ Description

kpb Input Pointer to the kernel process block.

Essentials

386

identifying the Routine
Specify the name of the kernel process start-l/O routine (EXE_STD$KP_
STARTIO) in the ini_ddt_kp_startio macro in the DRIVER$INIT_TABLES

routine.

Called by
A kernel-process start-I/O routine is called by EXE_STD$KP_STARTIO in

module KERNEL_PROCESS.

Context

A kernel process start-I/O routine is placed into execution at fork IPL, holding
the associated fork lock. The kernel process start-I/O routine must relinquish
control of the processor in the same context.

For many devices, the start-I/O routine raises IPL to IPL$_POWER to check
that a power failure has not occurred on the device prior to loading the device’s
registers. The start-I/O routine initiates device activity at device IPL, after
acquiring the corresponding device lock. An invocation of the KP_STALL_
WFIKPCH or KP_STALL_WFIRLCH macro to wait for a device interrupt
releases this device lock.

Because a start-I/O routine gains control of the processor in the context of a
fork process, it can refer only to those addresses that reside in system (SO)
space.

OpenVMS Alpha Device Driver Entry Points
Start-I/O Routine (Kernel Process)

Neither the start-I/O routine that initiates a kernel process nor the kernel
process thread can depend on inheriting the synchronization capabilities (such
as spin locks and IPL) of the other when control is exchanged betwen them. If

they must share data or perform other operations that require synchonization,
they must explicitly establish a synchronization mechanism.

The kernel process cannot assume that its initiator is not running in parallel,
nor can the initiator of the kernel process assume that the kernel process has
already executed when EXE$KP_START returns control.

Exit mechanism
A kernel process start-I/O routine suspends itself whenever it must wait for
a required resource, such as a controller data channel. To do so, the kernel

process start-I/O routine invokes an OpenVMS macro (such as KP_STALL_
REQCHAN) that saves its context in the UCB fork block, places the UCB in a

resource wait queue, and returns control to the caller of the start-I/O routine.

The start-I/O routine also suspends itself when it issues a KP_STALL_
WFIKPCH or KP_STALL_WFIRLCH macro to initiate device activity. These

macros also store the driver’s context in the UCB fork block to be restored
when the device interrupts or times out.

The start-I/O routine is again suspended if it forks to complete servicing of
a device interrupt. The KP_STALL_IOFORK macro places driver context in
the UCB fork block, inserts the fork block into a processor-specific fork queue,
and requests a software interrupt from the processor at the corresponding fork
IPL. After issuing a KP_STALL_IOFORK macro, the routine issues an RSB
instruction, returning control to the driver’s interrupt service routine.

The routine completes the processing of an I/O request by invoking the KP_
REQCOM macro. In addition to initiating device-independent postprocessing

of the current request, the KP_REQCOM macro also attempts to start the
next request waiting for a device unit. If there are no waiting requests, the
macro returns control to the caller of the kernel process start-I/O routine,

EXE$KP_STARTIO.

Description

A driver’s start-I/O routine activates a device and waits for a device interrupt
or timeout. After a device interrupt, the driver’s interrupt service routine

returns control to the start-I/O routine at device IPL, holding the associated

device lock.

The start-I/O routine usually forks at this time to perform various device-

dependent postprocessing tasks, and returns control to the interrupt service

routine.

387

OpenVMS Alpha Device Driver Entry Points

Timeout Handling Code (Kernel Process)

SS SS

Timeout Handling Code (Kernel Process)

Takes whatever action is necessary when a device has not yet responded toa

request for device activity, and the time allowed for a response has expired.

Prototype

void driver_timeout_routine (IRP *irp, int64 fr4, UCB *ucb)

Parameters

Name Access __ Description

irp Input Pointer to the pointer to the IRP from ucb-

>ucb$q_fr3.

fr4 Input Pointer to the 64-bit value from ucb->fkb$q_fr4.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Essentials

388

Branched to
The KP_STALL_WFIKPCH, and KP_STALL_WFIRLCH macros use this entry

point, but only when the label of timeout code is provided in their execpt
argument. These macros are used in the driver’s start-I/O routine; thus,

strictly speaking, the driver itself is the only entity that uses this entry point.

The OpenVMS Alpha software timer interrupt service routine restarts a stalled
driver kernel process fork procedure, passing a status (UCB$V_TIMOUT in

UCB$L_STS) to it, which is inspected by one of two instructions left at the top
of the fork procedure by the KP_STALL_WFIKPCH or KP_STALL_WFIRLCH
macro. If UCB$V_TIMOUT is set, the second instruction branches to the

timeout code.

Context

The timeout code receives control at device IPL and must exit at device IPL. At
the time the timeout code executes, the processor holds both the fork lock and
device lock associated with the device.

After taking whatever device-specific action is necessary at device IPL, timeout
code can lower IPL to fork IPL to perform less critical activities. Because its
caller restores IPL to fork IPL (and releases the device lock), if timeout code
lowers IPL, it can do so only by forking or by performing the following steps:

OpenVMS Alpha Device Driver Entry Points
Timeout Handling Code (Kernel Process)

Issue a DEVICEUNLOCK macro to lower to fork level

2. Perform timeout handling activities possible at the lower IPL

Issue a DEVICELOCK macro to again obtain the device lock and raise to
device IPL

Timeout code can access only those virtual addresses that refer to system (SO)
space.

Kernel process timeout code executes in the context of the kernel process
thread that invoked the KP_STALL_WFIKPCH or KP_STALL_WFIRLCH
macro.

Exit mechanism
Kernel process timeout code executes as part of the kernel process thread
that invoked WFIKPCH or WFIRLCH macro and therefore has no special exit
mechanism.

Description

There are no outputs required from timeout code but, depending on the

characteristics of the device, timeout code might cancel or retry the current I/O
request, send a message to the operator, or take some other action.

Before timeout code executes, OpenVMS has placed the device in a state
in which no interrupt is expected (by clearing the bit UCB$V_INT in field
UCB$L_STS). If the requested interrupt occurs while this routine executes, it
will appear to be an unsolicited interrupt. Many drivers handie this situation
by disabling interrupts while timeout code executes.

389

OpenVMS Alpha Device Driver Entry Points

Unit Delivery Routine

I $e

Unit Delivery Routine

For controllers that can control a variable number of device units, determines

which specific devices are present and available for inclusion in the system’s

configuration.

Prototype

void driver_deliver (DDB *ddb, IDB idb, int unit_number, int scratch_area, ADP

*adp)

Parameters

Name Access __ Description

ddb Input Pointer to the device data block.

idb Input Pointer to the interrupt dispatch block; 0 if none
exists.

unit_number Input Pointer to the number of unit that the unit

delivery routine must decide to configure or not
to configure.

scratch_area Input Pointer to the address of quadword scratch area.

adp Input Pointer to the adapter control block.

Essentials

Called by

The System Management (SYSMAN) utilitys IO AUTOCONFIGURE command
calls the unit delivery routine once for each unit the controller is capable of
controlling.

Context
The unit delivery routine is called at IPL$_POWER. It must not lower IPL.
The unit delivery routine executes in the context of the process within which
the autoconfiguration facility executes.

Exit mechanism

A unit delivery routine returns success or failure status to the autoconfigura-
tion facility. If the routine returns error status, the unit is not configured.

390

OpenVMS Alpha Device Driver Entry Points
Unit Delivery Routine

Description

The unit delivery routine determines which units on a controller should be
configured. For instance, a unit delivery routine can prevent the creation of

UCBs for devices that do not respond to a test for their presence.

391

OpenVMS Alpha Device Driver Entry Points

Unit Initialization Routine

a ——

Unit Initialization Routine

Prepares a device for operation and, in the case of a device on a dedicated

controller, initializes the controller.

Prototype

int driver_unit_init (IDB *idb, UCB *ucb)

Parameters

Name Access __ Description

idb Input Pointer to the interrupt dispatch block
associated with the controller.

ucb Input Pointer to the unit control block.

Essentials

392

Identifying the Routine
Specify the address of the unit initialization routine ini_ddt_unitinit macro

in the DRIVER$INIT_TABLES routine.

Called by

The driver-loading procedure calls a driver’s unit initialization routine when

processing a CONNECT command. OpenVMS calls a unit initialization routine
when the device, the controller, the processor, or the adapter to which the
device is connected undergoes power failure recovery.

Context

OpenVMS calls a unit initialization routine at IPL$_POWER. If it must lower
IPL, the controller initialization routine cannot explicitly do so. Rather, it must
fork. Because the driver-loading procedure calls the unit initialization routine
immediately after the controller initialization returns control to it, the driver’s
initialization routines must synchronize their activities.

The portion of the unit initialization routine that services power failure cannot
acquire any spin locks. As a result, the routine cannot fork to perform power
failure servicing.

Because OpenVMS calls it in system context, a unit initialization routine can
only refer to those virtual addresses that reside in system (SO) space. RO, and
preserve the contents of all registers except RO, R1, and R2.

OpenVMS Alpha Device Driver Entry Points
Unit Initialization Routine

Exit mechanism

A unit initialization routine returns success or failure status to its caller.

Description

Depending on the device, a unit initialization routine performs any or all of the
following tasks:

Ve

SL BGO RS

Determines whether it is being called as a result of a power failure by
examining the power bit (UCB$V_POWER in UCB$L_STS) in the UCB.
A unit initialization routine may want to perform or avoid specific tasks
when servicing a power failure.

Clears error-status bits in device registers.

Enables controller interrupts.

Sets the online bit (UCB$V_ONLINE in UCB$L_STS).

Allocates resources that must be permanently allocated to the device or, for

some devices, the controller.

If the device has a dedicated controller, as some printers do, fills in

IDB$PS_OWNER.

For dedicated controllers, initializes controller and device hardware.

393

wut. 4 eure eq telly re
‘slnion? qotepeine thy

- —— a

0) UPTO Sie” IY 90 tne ab encatye eahaieg

; ee = © : = = Re ow “'o

ass te fn ne one nT elaeryi ine (06 die

EVEGGA 98
0 eyy/liG pean o ° o~ « ot Pill @ antiat gs testinal o

LOT APTOS AE et 7w wre il say
, “mm! ites 4 st ‘ i. © mew
Paes oe i tlie’?

- vin Nts: wt =

Tt neg 2 Ge a

7 ws f oi @~Acqavilh Ap agin ww

=4 @ -

ij ec al: mith) See ee welche
7 — =

i

Tet ff @ Malet COlr ame ce

19
System Routines

This chapter describes many of the operating system routines commonly used
by OpenVMS Alpha device drivers.

The function prototypes for the routines used by OpenVMS Alpha device
drivers are available in the following files in SYS$LIBRARY:SYS$LIB_C.TLB:

#include

#include

#include

#include

#include
#include

#include

#include

#include
#include

<acp_routines.

<com_routines.
<erl_ routines.

<exe_routines.

<ioc_routines.

<ldr_routines.
<lnm_routines.

<mmg_routines.
<sch_routines.

<smp_routines.

h>

h>

h>

h>

h>
h>

h>

h>

h>

h>

395

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

ACP_STDS$ACCESS

ACP_STD$ACCESS

FDT routine that handles the access and create I/O function codes for device

drivers that use an ACP or the XQP.

Prototype

int acp_std$access (IRP “irp, PCB *pceb, UCB *ucb, CCB *ccb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the

Return Values

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_ACCVIO
SS$_DEVNOTMOUNT
SS$_DEVFOREIGN
SS$_EXQUOTA
SS$_FILALRACC
SS$_IVCHNLSEC
SS$_NORMAL

396

process I/O channel.

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Access violation.

Device not mounted.

Device is mounted as foreign.

File quota exceeded.

File already accessed.

Invalid section channel.

The I/O request has been successfully queued
to the appropriate ACP or XQP.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
ACP_STD$ACCESS

Context

FDT dispatching code in the $QIO system service calls ACP_STD$ACCESS as
an upper-level FDT action routine at IPL$_ASTDEL.

397

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

ACP_STD$ACCESSNET

ACP_STD$ACCESSNET

Connects to network function processing.

Prototype

int acp_std$accessnet (IRP *irp, PCB *pcb, UCB “ucb, CCB “ccb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

peb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the

Return Values

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_ACCVIO

SS$_NORMAL

SS$_EXQUOTA

SS$_FILALRACC

SS$_IVCHNLSEC

398

process I/O channel.

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Access violation.

The I/O request has been successfully queued
to the appropriate ACP or XQP.

File quota exceeded.

File already accessed.

Invalid section channel.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
ACP_STD$ACCESSNET

Context

FDT dispatching code in the $QIO system service calls ACP_STD$ACCESSNET

as an upper-level FDT action routine at IPL$_ASTDEL.

399

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

ACP_STD$DEACCESS

ACP_STD$DEACCESS

Deaccesses ACP function processing.

Prototype

int acp_std$deaccess (IRP *irp, PCB *pceb, UCB *ucb, CCB “ccb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the
process I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT

processing is complete. The routine that

receives this status can no longer safely access
the IRP.

Status in FDT_CONTEXT

SS$_FILNOTACC File not accessed.

SS$_IVCHNLSEC Invalid section channel.

SS$_NORMAL Normal, successful completion.

Context

FDT dispatching code in the $QIO system service calls ACP_STD$DEACCESS
as an upper-level FDT action routine at IPL$ ASTDEL.

400

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
ACP_STD$MODIFY

ACP_STD$MODIFY

Deletes and modifies ACP function processing.

int acp_std$modify (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Prototype

Parameters

Name Access

irp Input

pcb Input

ucb Input

ecb Input

Return Values

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_ACCVIO
SS$_DEVNOTMOUNT
SS$_DEVFOREIGN
SS$_EXQUOTA
SS$_NORMAL

Description

Pointer to the I/O request packet.

Pointer to the process control block of the

current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the channel control block for the

process I/O channel.

Warning-level status indicating that FDT
processing is complete. The routine that

receives this status can no longer safely access

the IRP.

Access violation.

Device not mounted.

Device is mounted as foreign.

File quota exceeded.

The I/O request has been successfully queued

to the appropriate ACP or XQP.

401

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
ACP_STD$MODIFY

Context

FDT dispatching code in the $QIO system service calls ACP_STD$MODIFY as

an upper-level FDT action routine at IPL$_ASTDEL.

402

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
ACP_STD$MOUNT

ACP_STD$MOUNT

Initiates ACP mount function processing.

Prototype

int acp_std$mount (IRP *irp, PCB “pcb, UCB *ucb, CCB *ccb)

Parameters

Name

irp

pcb

ucb

ecb

Access

Input

Input

Input

Input

Description

Pointer to the I/O request packet.

Pointer to the process control block of the
current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the channel control block for the

process I/O channel.

Return Values

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_ACCVIO
SS$_DEVNOTMOUNT

SS$_NOPRIV

SS$_NORMAL

Context

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access

the IRP.

Access violation.

Device not mounted.

Process has insufficient privileges.

The J/O request has been successfully queued
to the appropriate ACP or XQP.

FDT dispatching code in the $QIO system service calls ACP_LSTD$MOUNT as
an upper-level FDT action routine at IPL$_ASTDEL.

403

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

ACP_STD$READBLK

ACP_STD$READBLK

Processes a read block ACP function.

Prototype

int acp_std$readblk (IRP *irp, PCB *pceb, UCB *ucb, CCB *ccb)

Parameters

Name Access _ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the

Return Values

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_ACCVIO

SS$_ENDOFFILE

SS$_FILNOTACC

SS$_NOPRIV

SS$_ILLIOFUNC

SS$_ILLBLKNUM

SS$_NORMAL

SS$_INSFWSL

404

process I/O channel.

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Access violation.

End of file reached.

File not accessed on channel.

Process has insufficient privileges.

Illegal I/O function.

Illegal block number.

Normal, successful completion.

Insufficient working set limit.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
ACP_STD$READBLK

Context

FDT dispatching code in the $QIO system service calls ACP_STD$READBLK
as an upper-level FDT action routine at IPL$_ASTDEL.

405

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

ACP_STD$WRITEBLK

ACP_STD$WRITEBLK

Processes a write block ACP function.

Prototype

int acp_std$writeblk (IRP *irp, PCB “pcb, UCB *ucb, CCB “ccb)

Parameters

Name Access _ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the

Return Values

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_ACCVIO

SS$_BADPARAM

SS$_ENDOFFILE

SS$_FILNOTACC

SS$_NOPRIV

SS$_ILLIOFUNC

SS$_ILLBLKNUM

SS$_INSFMEM

406

process I/O channel.

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Access violation.

Record size is too small for magtape function
processing.

End of file reached.

File not accessed on channel.

Process has insufficient privileges.

Illegal I/O function.

Illegal block number.

Insufficient memory to perform erase function.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

SS$_INSFSPTS

SS$_INSFWSL

SS$_NORMAL

SS$_WRITLCK

Context

ACP_STD$WRITEBLK

Insufficient system page table entries to

perform erase function.

Insufficient working set limit.

Normal, successful completion.

Device software is write locked.

FDT dispatching code in the $QIO system service calls ACP_STD$WRITEBLK
as an upper-level FDT action routine at IPL$_ASTDEL.

407

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

COM_STD$DELATTNAST

COM_STD$DELATTNAST

Delivers all attention ASTs linked in the specified list.

Prototype

void com_std$delattnast (ACB **acb_lh, UCB *ucb)

Parameters

Name Access __ Description

acb_lh Input Pointer to the listhead of AST control blocks.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Context

COM_STD$DELATTNAST executes and exits at the caller’s IPL, and acquires

no spin locks. However, the caller must be executing at IPL$_RESCHED or
higher to avoid certain race conditions.

Description

COM_STD$DELATTNAST removes all AST control blocks (ACBs) from

the specified list. Using each ACB as a fork block, it schedules a fork
process at IPL$_QUEUEAST to queue the AST to its target process.
COM_STD$DELATTNAST dequeues each ACB from the head of the list,
thus removing them in the reverse order of their declaration by COM_
STD$SETATTNAST. Note that in certain circumstances attention ASTs can
be delivered to a user process before the delivery of I/O completion ASTs
previously posted by the driver.

408

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$DELATTNASTP

COM_STD$DELATTNASTP

Delivers all attention ASTs linked in the specified list for a given process.

Prototype

void com_std$delattnastp (ACB **acb_lh, UCB “ucb, int ipid)

Parameters

Name Access ___ Description

acb_lh Input Pointer to the listhead of AST control blocks.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ipid Input Pointer to the internal process ID (IPID) for the
target process.

Context

COM_STD$DELATTNASTP executes and exits at the caller’s IPL, and

acquires no spin locks. However, the caller must be executing at IPL$_

RESCHED or higher to avoid certain race conditions.

409

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

COM_STD$DELCTRLAST

COM_STD$DELCTRLAST

Delivers all control ASTs, linked in the specified list, that match a given

condition.

Prototype

void com_std$delctrlast (ACB **acb_lh, UCB *ucb, int matchchar, int32

*inclchar_p)

Parameters

Name Access ___ Description

acb_lh Input Pointer to the listhead of AST control blocks.

uch Input Pointer to the unit control block of the device
assigned to the process I/O channel.

matchchar Input Pointer to a match character.

inclchar_p Output Pointer to the address in which COM_

STD$DELCTRLAST writes the character to
include in the data stream, or NULL.

Context

COM_STD$DELCTRLAST executes and exits at the caller’s IPL, and acquires

no spin locks. However, the caller must be executing at IPL$_RESCHED or
higher to avoid certain race conditions.

410

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$DELCTRLASTP

COM_STD$DELCTRLASTP

Delivers all control ASTs, linked in the specified list, that match a given
condition.

Prototype

void com_std$delctrlastp (ACB **acb_lh, UCB *ucb, int ipid, int matchchar, int32
*inclchar_p)

Parameters

Name Access __ Description

acb_lh Input Pointer to the listhead of AST control blocks.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ipid Input Pointer to the internal process ID (IPID) for the

target process.

matchchar Input Pointer to a match character.

inclchar_p Output Pointer to the address in which COM_
STD$DELCTRLAST writes the character to
include in the data stream, or NULL.

Context

COM_STD$DELCTRLASTP executes and exits at the caller’s IPL, and acquires
no spin locks. However, the caller must be executing at IPL$_RESCHED or

higher to avoid certain race conditions.

411

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

COM_STD$DRVDEALMEM

nnn

COM_STD$DRVDEALMEM

Deallocates system dynamic memory.

Prototype

void com_std$drvdealmem (void “*ptr)

Parameters

Name Access __ Description

ptr Input Pointer to the block to be allocated. The block
must be a standard OpenVMS data structure
(in which offset FKB$W_SIZE contains its

size). The block size must be at least FKB$K_
LENGTH. The FKB$ symbols are defined by the
fkbdef.h header file in SYS$LIB_C.TLB.

Context

A driver can call COM_STD$DRVDEALMEM from any IPL. COM_
STD$DRVDEALMEM executes at the caller’s IPL and returns control at

that IPL. The caller retains any spin locks it held at the time of the call.

Description

COM_STD$DRVDEALMEM transfers control to EXE$SDEANONPAGED

to deallocate the buffer specified by the block parameter. If COM_
STD$DRVDEALMEM cannot deallocate memory at the caller’s IPL, it

transforms the block being deallocated into a fork block and queues the
block in the fork queue. The code that executes in the fork process then jumps
to EXE$DEANONPAGED.

If the buffer to be deallocated is less than FKB$C_LENGTH in size, or its
address is not aligned on a 16-byte boundary, COM _STD$DRVDEALMEM
issues a BADDALRQSZ bugcheck.

412

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$FLUSHATTNS

COM_STD$FLUSHATTNS

Removes specified ASTs from an attention AST list.

Prototype

int com_std$flushattns (PCB *pcb, UCB *ucb, int chan, ACB **acb_lh)

Parameters

Name

pcb

ucb

chan

acb_lh

Parameter Fields

Field

pcb->

PCB$L_PID

PCB$L_ASTCNT

Return Values

SS$_NORMAL

Context

Access __ Description

Input

Input

Input

Input

Pointer to the process control block of the
current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the number of the assigned I/O
channel.

Pointer to the listhead of AST control blocks.

Contents

Process ID.

ASTs remaining in quota. COM_STD$FLUSHATTNS
increases PCB$L_ASTCNT once for each AST

contro! block (ACB) it flushes.

Normal, successful completion

COM_STD$FLUSHATTNS raises IPL to device IPL, acquiring the
corresponding device lock. Before returning control to its caller at the caller’s
IPL, COM_STD$FLUSHATTNS releases the device lock. The caller retains

any spin locks it held at the time of the call.

413

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$FLUSHATTNS

Description

414

A driver’s cancel-I/O routine calls COM_STD$FLUSHATTNS to flush an

attention AST list. A driver FDT routine calls COM_STD$FLUSHATTNS to

service a $QIO request that specifies a set-attention-AST function and a value
of 0 in the p1 argument (IRP$L_QIO_P1).

COM_STD$FLUSHATTNS locates all ACBs blocks whose channel number and

PID match those supplied as input to the routine. It removes them from the
specified list, deallocates them, and returns control to its caller.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$FLUSHCTRLS

COM_STD$FLUSHCTRLS

Removes specified ASTs from a control AST list.

Prototype

int com_std$flushctris (PCB *pcb, UCB *ucb, int chan, ACB **acb_lh, int32
*mask_p)

Parameters

Name Access ___ Description

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

chan Input Pointer to the number of the assigned I/O

channel.

acb_lh Input Pointer to the listhead of AST control blocks.

mask_p Input Pointer to the summary mask of active control
characters. COM_STD$FLUSHCTRLS updates
this mask.

Parameter Fields

Field Contents

pcb->

PCB$L_PID Process ID.

PCB$L_ASTCNT ASTs remaining in quota. COM_STD$FLUSHCTRLS
increases PCB$L_ASTCNT once for each control

AST control block (TAST) it flushes.

Return Values

SS$_ NORMAL Normal, successful completion

415

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$FLUSHCTRLS

Context

COM_STD$FLUSHCTRLS raises IPL to device IPL, acquiring the
corresponding device lock. Before returning control to its caller at the caller’s
IPL, COM_STD$FLUSHCTRLS releases the device lock. The caller retains
any spin locks it held at the time of the call.

416

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$POST, COM_STD$POST_NOCNT

COM_STD$POST, COM_STD$POST_NOCNT

Initiate device-independent postprocessing of an I/O request independent of the
status of the device unit.

Prototype

void com_std$post (IRP *irp, UCB *ucb)

void com_std$post_nocnt (IRP “irp)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet.

uch Input (COM_STD$POST only) Pointer to the unit
control block of the device assigned to the
process I/O channel.

Parameter Fields

Field Contents

irp->

IRP$L_MEDIA Data to be copied to the I/O status block

IRP$L_MEDIA+4 Data to be copied to the I/O status block

Context

Drivers call COM_STD$POST at or above fork IPL. Drivers call COM_
STD$POST_NOCNT at or above IPL$_ASTDEL. These routines execute at
their caller’s IPL and return control at that IPL. The caller retains any spin

locks it held at the time of the call.

Description

A driver fork process calls COM_STD$POST or COM_STD$POST_NOCNT
after it has completed device-dependent I/O processing for an I/O request
initiated by EXE_STD$ALTQUEPKT. Because COM_STD$POST_NOCNT,
unlike COM_STD$POST, does not increment the unit’s operations count

(UCB$L_OPCNT), a driver uses COM_STD$POST_NOCNT to initiate

417

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$POST, COM_STD$POST_NOCNT

completion processing for an I/O request when the associated UCB is not

available.

COM_STD$POST and COM_STD$POST_NOCNT insert the IRP into the

systemwide I/O postprocessing queue, request an IPL$_IOPOST software
interrupt, and return control to the caller. Unlike IOC_STD$REQCOM, these

routines do not attempt to dequeue any IRP waiting for the device or change
the busy status of the device.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

COM_STD$SETATTNAST

COM_STD$SETATTNAST

Enables or disables attention ASTs.

Prototype

int com_std$setattnast (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb, ACB **acb_|h)

Parameters

Name

irp

peb

ucb

ecb

acb_lh

Access

Input

Input

Input

Input

Input

Description

Pointer to the I/O request packet.

Pointer to the process control block of the

current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the channel control block for the

process I/O channel.

Pointer to the listhead of AST control blocks.

419

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

COM_STD$SETATTNAST

Parameter Fields

Field Contents
ee

irp->

IRP$L_QIO_P1

IRP$L_QIO_P2

IRP$L_QIO_P3

IRP$L_CHAN

pcb->

PCB$L_ASTCNT

PCB$L_PID

Return Values

SS$_FDT_COMPL

SS$_NORMAL

Status in FDT_CONTEXT

SS$_EXQUOTA

SS$_INSFMEM

Context

$QIO system service pl argument, containing the

address of the AST routine, or zero to flush the AST

queue.

$QIO system service p2 argument, containing the

AST parameter.

$QIO system service p3 argument, containing the
access mode of the AST request.

I/O request channel index number.

Number of ASTs remaining in process quota. COM_
STD$SETATTNAST decreases PCB$L_ASTCNT if it

successfully queues the AST.

Process ID

Warning-level status indicating that FDT

processing is complete. The routine that

receives this status can no longer safely access
the IRP.

Normal, successful completion

Process AST quota exceeded.

No memory available to allocate the expanded
ACB.

The FDT support routine COM_STD$SETATTNAST must be called from
code executing at IPL$_ASTDEL. COM_STD$SETATTNAST raises IPL and
acquires the corresponding device lock, to insert the AST into the AST queue.
It returns control to its caller at IPL$ ASTDEL.

420

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$SETATTNAST

Description

A driver FDT routine calls COM_STD$SETATTNAST to service a $QIO request
that specifies a set-attention-AST function.

If the pl argument of the request contains a zero, COM_STD$SETATTNAST
transfers control to COM_STD$FLUSHATTNS, which disables all ASTs
indicated by the PID and I/O channel number (IRP$L_CHAN). COM_
STD$FLUSHATTNS searches through the AST control block (ACB) list,
extracts each identified ACB, deallocates it, and returns SS$_ NORMAL status

in RO to COM_STD$SETATTNAST. COM_STD$SETATTNAST returns this
status to its caller.

If the pl argument of the request contains the address of an AST routine,

COM_STD$SETATTNAST decreases PCB$L_ASTCNT and allocates an
expanded AST control block (ACB) that contains the following information:

e Spin lock index SPL$C_QUEUEAST

e Address of the AST routine (as specified in p1)

e AST parameter (as specified in p2)

e Access mode (the maximum, or least privileged, access mode between the
access mode specified in p3 and the current process’s access mode). Bit
ACB$V_QUOTA is set in this value to indicate that the AST was requested

by a process, not by the system.

e Number of the assigned I/O channel

e PID of the requesting process

COM_STD$SETATTNAST links the ACB to the start of the specified linked list

of ACBs located in a UCB extension area. COM$DELATTNAST can later use

the expanded ACB to fork to IPL$_QUEUEAST, at which IPL it reformats the

block into a standard ACB.

If the process exceeds its AST quota, or if there is no memory available to
allocate the expanded ACB, COM_STD$SETATTNAST restores PCB$L_
ASTCNT to its original value and calls EXE_STD$ABORTIO, passing it a qio_
sts of SS$¢_ BADPARAM. When it regains control, COM_STD$SETATTNAST

returns to its caller with this status in the FDT_CONTEXT structure and

SS$_FDT_COMPL status in RO.

The caller of COM_STD$SETATTNAST must examine the status in RO:

e Ifthe status is SS$ NORMAL, the attention AST has been enabled (or the

AST has been flushed), as requested.

421

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$SETATTNAST

e Ifthe status is SS$_FDT_COMPL, an error has occurred that has caused

the operation to be aborted. You can determine the reason for the failure
from FDT_CONTEXT$L_QIO_STATUS.

422

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

COM_STD$SETCTRLAST

COM_STD$SETCTRLAST

Enables or disables control ASTs.

Prototype

int com_std$setctrlast (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb, ACB **acb_lh,

int mask, TAST **tast_p)

Parameters

Name

irp

pcb

ucb

acb_lh

mask_p

tast_p

Access

Input

Input

Input

Input

Input

Output

Description

Pointer to the I/O request packet.

Pointer to the process control block of the

current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the listhead of AST control blocks.

Pointer to the summary mask of active control

characters.

Pointer to the address of the control AST
block (TAST), returned as output from COM_

STD$SETCTR.

423

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

COM_STD$SETCTRLAST

Parameter Fields

Field Contents

irp->

IRP$L_QIO_P1

IRP$L_QIO_P2

IRP$L_QIO_P3

IRP$L_CHAN

pcb->

PCB$L_ASTCNT

PCB$L_PID

Return Values

SS$_FDT_COMPL

SS$_NORMAL

Status in FDOT CONTEXT

SS$ _ACCVIO

SS$_EXQUOTA

SS$_INSFMEM

424

$QIO system service pl argument, containing the
address of the AST routine to call when an out-
of-band character is typed, or zero to flush the

queue.

$QIO system service p2 argument, containing
the address of the short-form terminator mask,

indicating which out-of-band characters precipitate

AST delivery. This address is passed as an AST
parameter when the AST is delivered.

$QIO system service p3 argument, containing the

access mode of the AST request.

I/O request channel index number.

Number of ASTs remaining in process quota. COM_
STD$SETCTRLAST decreases PCB$L_ASTCNT if it

successfully queues the AST.

Process ID.

Warning-level status indicating that FDT

processing is complete. The routine that

receives this status can no longer safely access
the IRP.

Normal, successful completion

Specified mask is not addressable.

Process AST quota exceeded.

No memory available to allocate the expanded
ACB.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
COM_STD$SETCTRLAST

Context

The FDT support routine COM_STD$SETCTRLAST must be called from
code executing at IPL$_ASTDEL. COM_STD$SETCTRLAST raises IPL and

acquires the corresponding device lock, to insert the AST into the AST queue.
It returns control to its caller at IPL$_ASTDEL.

425

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

ERL_STD$ALLOCEMB

ERL_STD$ALLOCEMB

Allocates an error log message buffer and initializes its header.

Prototype

int erl_std$allocemb (int size, EMBDV **embdv_p)

Parameters

Name Access __ Description

size Input Pointer to the size of the error message buffer in
bytes.

embdv_p Output Address of a pointer in which ERL_STD$ALLOCEN
writes the address of the error message buffer.

Return Values

status Low bit set indicates success, low bit clear

indicates failure

Context

A driver can call ERL_STD$ALLOCEMB from any IPL. ERL_STD$ALLOCEMB

raises IPL to IPL$_EMB and obtains the corresponding spin lock to allocate
the error message buffer. It returns control to its caller at its caller’s IPL. The
caller retains any spin locks it held at the time of the call.

426

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
ERL_STD$DEVICEATTIN, ERL_STD$DEVICERR,ERL_STD$DEVICTMO

ERL_STD$DEVICEATTN, $DEVICERR,DEVICTMO

Allocate an error message buffer and record in it information concerning the

error.

Prototype

void erl_std$deviceattn (int64 driver_param, UCB *ucb)

void erl_std$devicerr (int64 driver_param, UCB *ucb)

void erl_std$devictmo (int64 driver_param, UCB *ucb)

Parameters

Name Access __ Description

driver_param Input Pointer to the Parameter to be passed to the
register dumping routine, usually a controller
register access mailbox (CRAM).

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

427

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

ERL_ STD$DEVICEATIN, ERL_STD$DEVICERR, ERL_STDSDEVICTMO

Parameter Fields

Field Contents NGI oe eee

ucb-> write fields

UCB$L_DEVCHAR Bit DEV$V_ELG set.

UCB$L_FUNC Bit IO$V_INHERLOG clear.

UCB$L_IRP Address of IRP currently being processed (ERL_

STD$DEVICERR and ERL_STD$DEVICTMO only).

UCB$L_ORB ORB address.

UCB$L_DDB DDB address.

UCB$L_DDT DDT address. DDT$W_ERRORBUF contains the

size of the error message buffer in bytes.

ucb-> read fields

UCB$L_ERRCNT Increased.

UCB$L_EMB Address of error message buffer.

UCB$L_STS UCB$V_ERLOGIP set.

Context

A driver calls ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, or ERL_
STD$DEVICTMO at or above fork IPL, holding the corresponding fork lock in
an OpenVMS multiprocessing environment.

These routines return control to the caller at the caller’s IPL. The caller retains

any spin locks it held at the time of the call.

Description

ERL_STD$DEVICERR and ERL_STD$DEVICTMO log an error associated
with a particular I/O request. ERL_STD$DEVICEATTN logs an error that

is not associated with an I/O request. Each of these routines performs the
following steps:

1. Increases UCB$L_ERRCNT to record a device error. If the error-log-in-
progress bit (UCB$V_ERLOGIP in UCB$L_STS) is set, the routine returns
control to its caller.

2. Allocates from the current error log allocation buffer an error message
buffer of the length specified in the device’s DDT (in argument erlgbf to
the DDTAB macro). This allocation is performed at IPL$ EMB holding the
EMB spin lock.

428

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
ERL_STD$DEVICEATTN, ERL_STD$DEVICERR, ERL_STD$DEVICTMO

3

4

5.

. Places the address of the error message buffer in UCB$L_EMB.

. Sets UCB$V_ERLOGIP in UCB$L_STS.

Initializes the buffer with the current system time, error log sequence

number, and error type code. These routines use the following error type
codes:

ERL_STD$DEVICEATTN _ Device attention (EMB$C_DA)

ERL_STD$DEVICERR Device error (EMB$C_DE)

ERL_STD$DEVICTMO Device timeout (EMB$C_DT)

6. Loads fields from the UCB, the IRP, and the DDB into the buffer, including
the following:

UCB$B_DEVCLASS Device class

UCB$B_DEVTYPE Device type

IRP$L_PID Process ID of the process originating the
I/O request (ERL_STD$DEVICERR or ERL_

STD$DEVICTMO)

IRP$L_BOFF Transfer parameter (ERL_STD$DEVICERR and

ERL_STD$DEVICTMO)

IRP$L_BCNT Transfer parameter (ERL_STD$DEVICERR and

ERL_STD$DEVICTMO)

IRP$L_MEDIA Disk address

UCB$W_UNIT Unit number

UCB$L_ERRCNT Count of device errors

UCB$L_OPCNT Count of completed operations

ORB$L_OWNER UIC of volume owner

UCB$L_DEVCHAR Device characteristics

IRP$L. FUNC I/O function value (ERL_STD$DEVICERR and

ERL_STD$DEVICTMO)

DDB$T_NAME Device name (concatenated with cluster node

name if appropriate)

Loads into RO the address of the location in the buffer in which the

contents of the device registers are to be stored.

Calls the driver’s register dumping routine, the address of which is

specified in the regdmp argument to the DDTAB macro.

429

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

ERL_STD$RELEASEMB

ERL_STD$RELEASEMB

Releases an error message buffer to the error logging process.

Prototype

void erl_std$releasemb (EMBDV *embdv)

Parameters

Name Access __ Description

embdvy Input Pointer to the error message buffer to be
released.

Context

A driver can call ERL_STD$RELEASEMB from any IPL. ERL_LSTD$RELEASEMB
raises IPL to IPL$_EMB and obtains the corresponding spin lock to release

the error message buffer. It returns control to its caller at its caller’s IPL. The
caller retains any spin locks it held at the time of the call.

430

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$BUS_DELAY

EXE$BUS_DELAY

Allows a system-specific bus delay within a timed wait.

Prototype

int exe$bus_delay (ADP *adp)

Parameters

Name Access ___ Description

adp Input Pointer to the address of the ADP.

Context

EXE$BUS_DELAY conforms to the OpenVMS Calling Standard.

Returns

VMS Usage: cond_value

type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_INSFARG Not all of the required arguments were
specified.

Description

The OpenVMS VAX version of the TIMEDWAIT macro generated a processor-
specific delay for the bus indicated by the ADP before executing the series of
instructions, specified in the macro invocation, that check for the occurrence

of a specific event or condition. In OpenVMS VAX systems, the delay helps

prevent flooding the bus paths with references to device interface registers in

I/O space.

431

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$BUS_DELAY

432

An implicit call to EXE$BUS_DELAY is included in the expansion of

the TIMEDWAIT macro when you specify the bus argument. You can
explicitly call EXE$BUS_DELAY but, if you do, you must not also employ

the TIMEDWAIT macro with the bus argument.

Note

In OpenVMS Alpha, EXE$BUS_DELAY checks for the required
argument and, if it is present, returns to its caller with SS$_ NORMAL
status.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$DELAY

EXE$DELAY

Provides a short-term simple delay.

Prototype

int exe$delay (int64 *delay_nanos)

Parameters

Name Access ___ Description

delta Input Delay time specified in nanoseconds.

Context

EXE$DELAY conforms to the OpenVMS calling standard.

Returns

VMS Usage: cond_value

type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_INSFARG Not all of the required arguments were
specified.

Description

EXE$DELAY implements a simple delay by looping for at least the requested
time interval. System events such as interrupt processing may have some

impact on the actual time delay.

433

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_ALLOCATE_KPB

EXE$KP_ALLOCATE_KPB

Creates a KPB and a kernel process stack, as required by the OpenVMS kernel

process services.

Prototype

int exe$kp_allocate_kpb (KPB **kpb_p, int stksiz, int flags, int paramsiz)

Parameters

Name Access __ Description

kpb Input Pointer to the address of the KPB.

stack_size Input Requested size (in bytes) of the kernel process
stack.

flags Input Flags indicating the type, size, and configuration
of the KBP to be created.

paramsiz Input Size in bytes of the KPB parameter, if any.

Context

EXE$KP_ALLOCATE_KPB conforms to the OpenVMS Alpha calling standard.

Because EXE$KP_ALLOCATE_KPB raises IPL to IPL$_ SYNCH and obtains

the MMG spin lock, its caller cannot be executing above IPL$_SYNCH or hold

any higher ranked spin locks. EXE$KP_ALLOCATE_KPB returns control to
its caller at its caller’s IPL. The caller retains any spin locks it held at the time
of the call.

Returns

VMS Usage: cond_value

type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

434

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_ALLOCATE_KPB

Return Values

SS$_NORMAL The routine completed successfully.

SS$_BADPARAM An illegal value was specified in the flags
argument.

SS$_INSFARG Not all of the required arguments were
specified.

SS$_INSFMEM KPB cannot be allocated because of a failure

in the nonpaged pool allocation routine.

SS$_INSFRPGS Kernel process stack cannot be allocated
because of there are not enough free pages in
the system.

Description

EXE$KP_ALLOCATE_KPB creates the KPB and the kernel process stack

needed by a kernel process. It performs the following tasks:

Verifies the contents of the flags parameter. If the flags parameter is
valid, EXE$KP_ALLOCATE_KPB uses it as the basis for the mask it

writes to KPB$IS_FLAGS. It automatically sets KPB$V_SCHED for all
KPBs and, for VEST KPBs, also sets KPB$V_SPLOCK. Finally, it sets

KPB$V_PARAM if a non-zero param_size argument is specified.

EXE$KP_ALLOCATE_KPB accepts only the following flags:

KPB$V_VEST KPB must be a VEST KPB. (See Chapter 17
for a description of VEST KPBs.)

KPB$V_SPLOCK Spinlock area must be present. (Note that
EXE$KP_ALLOCATE_KPB automatically
sets this bit when KPB$V_VEST is set.)

KPB$V_DEBUG Debug area must be present.

KPB$V_DEALLOC_AT_ KP_END should call KP_DEALLOCATE.
END

Computes the size of the KPB te be allocated. For both VEST and non-
VEST KPBs, the KPB includes the base KPB and scheduling area. VEST
KPBs also, by default, include the spinlock area, which is optional for

non-VEST KPBs. For VEST and non-VEST KPBs alike, the debug and
parameter areas are optional. The presence of KP$V_DEBUG in the flags
argument causes EXE$KP_ALLOCATE_KPB to include the KPB debug
area; the presence of a non-zero param_size argument causes it to include
the KPB parameter area (rounded up to an integral number of quadwords).

435

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_ALLOCATE_KPB

436

¢ Allocates a KPB of the appropriate size. If the KPB cannot be allocated, it

returns SS$_INSFMEM status to its caller.

e Initializes the following KPB fields:

KPB$IB_TYPE DYN$C_MISC

KPB$IB_SUBTYPE DYN$C_KPB

KPB$IS_FLAGS Computed flags value

KPB$PS_SCH_PTR Address of KPB scheduling area

KPB$PS_SPL_PTR Address of KPB spinlock area, if present

KPB$PS_DBG_PTR Address of KPB debug area, if present

KPB$PS_PRM_PTR Address of KPB parameter area, if present

KPB$IS_ PRM LENGTH Length of the KPB parameter area, if

specified, rounded up to an integral number
of quadwords

¢ Computes the size of the kernel process stack by rounding the value of
stack_size up to an integral number of CPU-specific pages, converting the
result to bytes, and storing it in KPB$IS_STACK_ SIZE.

e Allocates and initializes sufficient system PTEs for the stack, plus two
no-access guard pages. If the sufficient PTEs are not available, EXE$KP_

ALLOCATE_KPB deallocates the KPB and returns SS$_INSFRPGS status
to its caller.

e Stores in KPB$PS_STACK_BASE the system virtual address of the start
of the no-access guard page at the base of the kernel process stack. The
kernel process stack grows negatively from this address.

e Inserts the address of the KPB in the location specified by the kpb
argument.

The caller of EXE$KP_ALLOCATE_KPB is responsible for providing wait and
retry operations in case of allocation failures.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_DEALLOCATE_KPB

EXE$KP_DEALLOCATE_KPB

Deallocates a KPB and its associated kernel process stack.

Prototype

int exe$kp_deallocate_kpb (KPB *kpb)

Parameters

Name Access ___ Description

kpb Input Pointer to the address of the KPB.

Context

EXE$KP_DEALLOCATE_KPB conforms to the OpenVMS Alpha calling

standard.

EXE$KP_DEALLOCATE_KPB forks to perform KPB cleanup and call the

routines that deallocate the KPB and the kernel process stack. As a result,

drivers can call EXE$KP_DEALLOCATE_KPB from any IPL.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values |

SS$_NORMAL The routine completed successfully.

SS$_INSFARG The kpb argument was not specified.

437

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_DEALLOCATE_KPB

Description

EXE$KP_DEALLOCATE_KPB deallocates the KPB and the associated kernel
process stack It performs the following tasks:

438

Validates the structure indicated by the kpb argument. If the structure is
not a KPB, or if it is currently valid, active, or in the process of deletion,
EXE$KP_DEALLOCATE_KPB requests an INCONSTATE bugcheck.

Indicates that KPB deletion is in progress by setting KPB$V_DELETING
in KPB$IS_FLAGS.

Sets up the KPB fork block (at KPB$PS_FQFL) so that the rest of KPB
cleanup can transpire at IPL$_QUEUEAST. EXE$KP_DEALLOCATE_KPB
issues a call to IOC$PRIMITIVE_FORK to queue the fork block on the
IPL$_QUEUEAST fork queue. When IOC$PRIMITIVE_FORK returns

control, EXE$KP_DEALLOCATE_KPB returns SS$ NORMAL status to its
caller.

When execution resumes at IPL$_QUEUEAST, the EXE$KP_
DEALLOCATE_KPB fork routine deallocates the stack and returns
the KPB to nonpaged pool.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_END

EXE$KP_END

Terminates the execution of a kernel process.

Prototype

int exe$kp_end(KPB “*kpb)

Parameters

Name Access ___ Description

kpb Input Pointer to the address of the KPB.

Context

EXE$KP_END conforms to the OpenVMS Alpha calling standard.

The caller of EXE$KP_END must be executing at IPL$_RESCHED or above.

Returns

VMS Usage: cond_value

type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_INSFARG The kpb argument was not specified.

Description .

EXE$KP_END performs the following tasks to terminate the execution of a

kernel process:

e Ifthe kpb argument is not supplied, returns SS$_INSFARG status to its

caller.

e Validates the structure indicated by the kpb argument. If the structure is
not a KPB, or if it is currently invalid or inactive, EXE$KP_END requests

an INCONSTATE bugcheck.

439

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_END

440

Restores the SP of the initiator of the kernel process thread from KPB$PS_
SAVED_SP and poisons that field.

Restores the preserved registers (as indicated by KPB$IS_REG_MASK)

and SP of the initiator of the kernel process thread.

Marks the kernel process as inactive and invalid by clearing KPB$V_
ACTIVE and KPB$V_VALID in KPB$IS_FLAGS.

If KPB$V_DEALLOC_AT_END in KPB$IS_FLAGS is set (as it is in VEST
KPBs), call EXE$KP_DEALLOCATE_KPB to deallocate the KPB and its
associated kernel process stack.

Returns successfully to the initiator of the kernel process thread (that is,
the caller of EXE$START_KP or EXE$RESTART KP).

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_FORK

EXE$KP_FORK

Stalls a kernel process in such a manner that it can be resumed by the
OpenVMS fork dispatcher.

Prototype

int exe$kp_fork (KPB *kpb, FKB *fkb)

Parameters

Name Access __ Description

kpb Input Pointer to the address if the caller’s KPB (which
must be a VEST KPB). KPB$PS_UCB must
contain the address of a UCB and KPB$PS_IRP

must contain the address of an IRP.

fkb Input Pointer to the address of a fork block, usually in
the UCB. If this argument is omitted, EXE$KP_

FORK uses the fork block within the KPB

(KPB$PS_FQFL).

Context

EXE$KP_FORK conforms to the OpenVMS Alpha calling standard. It can only

be called by a kernel process.

Returns

VMS Usage: cond_value
type: longword_unsigned

access: | longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

4at

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_FORK

Return Values

SS$_NORMAL The routine completed successfully.

SS$_BADPARAM The kpb argument does not specify a VEST

KPB.

SS$_INSFARG Not all of the required arguments were

specified.

Description

EXE$KP_FORK performs the following tasks in stalling the kernel process:

1. Saves the kpb argument in KPB$PS_FKBLK. If this argument is not
specified to EXEKP_FORK, EXEKP_FORK writes the address of
KPB$PS_FQFL into KPB$PS_FKBLK.

2. Inserts the procedure descriptor of subroutine STALL_FORK in KPB$PS_
SCH_STALL_RTN, thus making it the kernel process scheduling stall
routine.

3. Clears KPB$PS_SCH_RESTART, thus indicating that there is no kernel
process scheduling restart routine.

4, Calls EXE$KP_STALL_GENERAL, passing to it the address of the KPB.

Having stalled the kernel process, the STALL_FORK kernel process scheduling
stall routine returns control to EXE$KP_STALL_GENERAL, which returns to

the initiator of the kernel process thread (that is, the caller of EXE$KP_ START

or EXE$KP_RESTART). When the fork dispatcher ultimately resumes the

suspended routine, STALL_FORK calls EXE$KP_RESTART which, in turn,
passes control back to EXE$KP_FORK. The kernel process forking stall routine
then returns to the kernel process that called it.

442

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_FORK_WAIT

EXE$KP_FORK_WAIT

Stalls a kernel process in such a manner that it can be resumed by the software
timer interrupt service routine’s examination of the fork-and-wait queue.

Prototype

int exe$kp_fork_wait (KPB *kpb, FKB “fkb)

Parameters

Name Access __ Description

kpb Input Pointer to the address of the kernel process

block.

fkb Input Pointer to the address of a fork block, usually in
the UCB. If this argument is omitted, EXE$KP_
FORK_WAIT uses the fork block within the KPB
(KPB$PS_FKBLK).

Context

EXE$KP_FORK_WAIT conforms to the OpenVMS Alpha Calling Standard and

can only be called by a kernel process.

The caller of EXE$KP_FORK_WAIT must be executing at or above IPL$_
SYNCH.

Returns

VMS Usage: cond_value

type: ; longword_unsigned
access: longword (unsigned)

mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_ NORMAL The routine completed successfully.

SS$_INSFARG Not all of the required arguments were
specified.

443

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_FORK_WAIT

Description

EXE$KP_FORK_WAIT performs the following tasks in stalling a kernel

process:

1. Saves the fkb argument, if specified, in KPB$PS_FKBLK. If the argument
is not specified, EXE$KP_FORK_WAIT moves the address of KPB$PS_
FQFL into KPB$PS_FKBLK.

2. Inserts the procedure descriptor of subroutine STALL_FORK_WAIT in
KPB$PS_SCH_STALL_RTN, thus making it the kernel process scheduling

stall routine.

3. Clears KPB$PS_SCH_RESTART, thus indicating that there is no kernel
process scheduling restart routine.

4. Calls EXE$KP_STALL_GENERAL, passing to it the address of the KPB.

Note that, having stalled the kernel process, the STALL_FORK_WAIT
kernel process scheduling stall routine returns control to EXE$KP_STALL_

GENERAL, which returns to the initiator of the kernel process thread (that is,
the caller of EXE$KP_START or EXE$KP_RESTART). When the fork block is

ultimately removed from the fork-and-wait-queue, STALL_FORK_WAIT calls
EXE$KP_RESTART which, in turn, passes control back to EXE$KP_FORK_
WAIT. EXE$KP_FORK_WAIT then returns to kernel process that called it.

444

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_RESTART

EXE$KP_RESTART

Resumes the execution of a kernel process.

Prototype

int exe$kp_restart (KPB “kpb, int thread_sts)

Parameters

Name Access ___ Description

kpb Input Pointer to the address of the kernel process

block.

thread_sts Input Status value to be returned to the kernel

process that is to be resumed. This is the

status returned by the call to EXE$KP_STALL_
GENERAL. If the thread_sts argument is

not present, EXE$KP_RESTART returns SS$_
NORMAL status to the kernel process.

Context

EXE$KP_RESTART conforms to the OpenVMS Alpha Calling Standard.

The caller of EXE$KP_RESTART, usually a kernel process scheduling stall
routine, must be executing at IPL$_RESCHED or above.

Returns

VMS Usage: cond_value
type: : longword_unsigned
access: - longword (unsigned)

mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_ NORMAL The routine completed successfully.

SS$_INSFARG The kpb argument was not specified.

445

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_RESTART

Description

EXE$KP_RESTART performs the following tasks to restart a kernel process:

446

ile Validates the structure indicated by the kpb argument. If the structure
is not a KPB, or if it is currently invalid, EXE$KP_START requests an

INCONSTATE bugcheck.

Preserves the current context by saving the current stack pointer (SP)

and the registers indicated by KPB$IS_REG_MASK on the stack (which it
quadword-aligns after obtaining the current SP). It saves the new value of
the SP in KPB$PS_SAVED_SP.

Restores the SP of the stalled kernel process from KPB$PS_STACK_SP.

Restores the preserved registers (as indicated by KPB$IS_REG_MASK)

from the top of the kernel process stack, plus the original SP of the kernel
process stack.

Makes the KPB active by setting the corresponding bit in KPB$IS_FLAGS.

Calls the kernel process scheduling restart routine, if one is specified,

passing it the KPB address, the return status value, and the procedure
value of the kernel process spinlock restart routine.

Resumes the stalled kernel process.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_STALL_GENERAL

EXE$KP_STALL_GENERAL

Stalls the execution of a kernel process.

Prototype

int exe$kp_stall_general (KPB *kpb)

Parameters

Name Access ___ Description

kpb Input Pointer to the address of the kernel process
block.

Context

EXE$KP_STALL_GENERAL conforms to the OpenVMS Alpha Calling
Standard and can only be called by a kernel process.

Returns

VMS Usage: cond_value

type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_INSFARG Not all of the required arguments were
specified.

Other values As supplied to EXE$KP_RESTART

447

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_STALL_GENERAL

Description

EXE$KP_STALL_GENERAL suspends execution of the current kernel process.

It performs the following tasks:

448

Validates the structure indicated by the kpb argument. If the structure is
not a KPB, or if it is currently valid, active, or in the process of deletion,

EXE$KP_STALL_GENERAL requests an INCONSTATE bugcheck. |

Preserves the current context by saving the current kernel process stack
pointer (SP) and the registers indicated by KPB$IS_REG_MASK on the

stack (which it quadword-aligns after obtaining the current SP). It saves
the new value of the kernel process SP in KPB$PS_STACK_SP.

Restores the SP of the initiator of the kernel process thread from KPB$PS_

SAVED_SP and poisons that field.

Restores the preserved registers (as indicated by KPB$IS_REG_ MASK)
from the top of the initiator’s stack, plus the original SP of the initiator of
the kernel process thread.

Marks the kernel process as inactive by clearing KPB$V_ACTIVE in
KPB$IS_FLAGS.

Calls the kernel process scheduling stall routine indicated by the procedure

value in KPB$PS_SCH_STALL_RTN, passing it the KPB address and the

procedure value of the spin lock stall handling routine (from KPB$PS_

SPL_STALL_ROUTINE), or zero if the KPB spin lock area is not present.
If there is no kernel process scheduling stall routine, EXE$KP_STALL_
GENERAL requests an INCONSTATE bugcheck.

OpenVMS provides the following jacket routines for EXE$KP_STALL_
GENERAL that supply scheduling stall routines for basic device driver
functions:

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_STALL_GENERAL

Table 19-1 Kernel Process Stall Jacket Routines and Scheduling Stall Routines

Stall Jacket Routine

EXE$KP_ FORK

EXE$KP_FORK_WAIT

EXE$KP_IOFORK

IOC$KP_REQCHAN

Scheduling Stall Routine’

STALL_FORK

STALL_FORK_WAIT

STALL_FORK

STALL_REQCHAN

Action of Stall Routine

Calls EXE$PRIMITIVE_FORK
on behalf of a kernel process.
When it regains control from

the OpenVMS fork dispatcher,
this stall routine resumes
the kernel process by calling
EXE$KP_RESTART.

Calls EXE$PRIMITIVE_FORK_
WAIT on behalf of a kernel
process. When it regains control

from the OpenVMS software
timer interrupt service routine

(which resumes the entries on
the fork-and-wait queue), this
stall routine resumes the kernel
process by calling EXE$KP_
RESTART.

Calls EXE$PRIMITIVE_FORK
(with timeouts disabled from
the device unit associated with
the KPB [UCB$PS_UCB]) on

behalf of a kernel process.
When it regains control from
the OpenVMS fork dispatcher,
this stall routine resumes
the kernel process by calling
EXE$KP_RESTART.

Calls EXE$PRIMITIVE_
REQCHAN on behalf of a

kernel process. When it regains
control after the channel has
been granted, this stall routine

resumes the kernel process by

calling EXE$KP_RESTART.

lThese scheduling stall routines are not globally accessible.

(continued on next page)

449

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_STALL_GENERAL

Table 19-1 (Cont.) Kernel Process Stall Jacket Routines and Scheduling Stall

Routines

Stall Jacket Routine Scheduling Stall Routine! Action of Stall Routine

IOC$KP_WFIKPCH STALL_WFIXXCH Issues the WFIKPCH macro

on behalf of a kernel process.
When it regains control due
to a timeout or from interrupt

servicing, this stall routine
resumes the kernel process by
calling EXE$KP_RESTART,
returning to it SS$_ NORMAL
or SS$_TIMEOUT status.

IOC$KP_WFIRLCH STALL_WFIXXCH Issues the WFIRLCH macro

on behalf of a kernel process.
When it regains control due

to a timeout or from interrupt
servicing, it resumes the kernel
process by calling EXE$KP_
RESTART, returning to it SS$_
NORMAL or SS$_TIMEOUT
status.

1These scheduling stall routines are not globally accessible.

When the kernel process scheduling stall routine returns control, EXE$KP_
STALL_GENERAL returns SS$_NORMAL status to the initiator of the kernel
process thread (that is, the caller if EXE$KP_START or EXE$KP_RESTART).

450

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_START

EXE$KP_START

Starts the execution of a kernel process.

Format

int exe$kp_start (KPB *kpb, void (“rout)(KPB *kpb),int64 regmask)

Parameters

Name Access __ Description

kpb Input Pointer to the address of the kernel process
block.

rout Input Pointer to the procedure value of the routine to
be started as the top-level routine in the kernel
process.

regmask Input Pointer to the optional register save mask,

indicating which registers must be preserved
across kernel process context switches. Registers
RO, R1, R16 through R25, R28, R30, and
R31 (KPREG$K_ERR_REG_MASK) are never
preserved across context switches; a reg-mask
that indicates any of these registers is illegal.

Registers R12 through R15, R26, R27, and R29
(KPREG$K_MIN_REG_MASK) are always saved
and need not be specified.

Context

EXE$KP_START conforms to the OpenVMS Alpha Calling Standard. Its caller
must be executing at IPL$_RESCHED or above.

Neither the initiator of the kernel process thread nor the kernel process itself
can assume that there is any relationship between them unless they mutually
establish one. The initiator and the kernel process must establish explicit
synchronization between themselves for operations that require it.

The kernel process cannot assume that its initiator is not running in parallel.
Neither can it depend on inheriting the synchronization capabilities of its

caller (for instance, its spin locks and IPL). The initiator of the kernel process
thread cannot assume that the kernel process has already executed when

EXE$KP_START returns control.

451

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_START

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_BADPARAM An illegal reg-mask was specified.

SS$_INSFARG Not all of the required arguments were

specified.

Description

EXE$KP_START performs the following tasks to create a kernel process and

start its execution:

i

452

Validates the structure indicated by the kpb argument. If the structure is
not a KPB, or if it is currently valid, active, or in the process of deletion,

EXE$KP_START requests an INCONSTATE bugcheck.

Constructs the register save mask trom the value specified in reg-mask,
if present, and the minimal register save mask. EXE$KP_START writes
a value into this field that reflects the register save mask specified by its
caller, plus a set of registers that are always preserved across such context

switches (KPB$K_MIN_REG_MASK), including R12 through R15, R27,
and R29.

If an illegal reg-mask is specified, EXE$KP_START returns SS$_
BADPARAM status to its caller. Otherwise, EXE$KP_ START saves

the register save mask in KPB$IS_ REG MASK.

Preserves the current context by saving the current stack pointer (SP)

and the registers indicated by KPB$IS_REG_MASK on the stack (which it
quadword-aligns after obtaining the current SP). It saves the new value of
the SP in KPB$PS_SAVED_SP.

Establishes kernel process context by loading the base of the kernel process
stack (KPB$PS_STACK_BASE) into the SP and KPB$PS_STACK SP.

Makes the KPB active and valid by setting the corresponding bits in
KPB$IS_FLAGS.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_START

6. Initializes the bottom of the kernel process stack to enable implicit kernel
process termination (by means of a call to EXE$KP_END) if the top-level

kernel process routine returns to EXE$KP_START.

7. Calls the top-level kernel process routine, as indicated by the routine
argument, passing to it the address of the KPB.

If the initiator of the kernel process thread and the kernel process must
exchange additional parameters, they can do so only by using the KPB
parameter area. The KPB parameter area is optionally created in the KPB

by EXE$KP_ALLOCATE_KPB.

8. When it regains control as the result of the kernel process invoking the

KP_REQCOM macro, calls EXE$KP_END.

453

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$KP_STARTIO

a ee

EXE$KP_STARTIO

Sets up and starts a kernel process to be used by a device driver.

Prototype

La

Context

The caller of EXE$KP_STARTIO (usually IOC$INITIATE) must be executing

at fork IPL and hold the fork lock indicated by UCB$B_FLCK. EXE$KP_

STARTIO returns to its caller in fork context with no explicit output values.

Input

Location Contents

RO Address of DDT

R3 Address of IRP

R5 Address of UCB

UCB$L_BCNT Number of bytes to be transferred

UCB$L_BOFF Byte offset into first page of direct-I/O
transfer; for buffered-I/O transfers, number

of bytes to be charged to the process
allocating the buffer

UCB$L_SVAPTE For a direct-I/O transfer, virtual address of

first page-table entry (PTE) of I/O-transfer
buffer; for buffered-I/O transfer, addess of

buffer is system address space

DDT$PS_KP_STARTIO Procedure value of the driver’s start-I/O

routine, which serves as the top-level routine
within the kernel process thread.

DDT$IS_STACK BCNT Size in bytes of the kernel process stack

DDT$IS_REG_MASK Kernel process register save mask

454

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE$KP_STARTIO

Description

EXE$KP_STARTIO uses information stored in the DDT to set up and start a

kernel process that can be used by a device driver. It performs the following
tasks:

L Kstablishes the size of the kernel process stack as the minimum of
DDT$IS_STACK_BCNT and KPB$K_MIN_IO_STACK (currently 8KB).

Issues a standard call to EXE$KP_ ALLOCATE_KPB to create the KPB and

allocate the kernel process stack, passing to it the following:

— Zero as the size of the KPB parameter area

— KPB flags, indicating a VEST KPB with scheduling and spinlock areas,

that is deallocated when the kernel process is terminated.

— the kernel process stack size

— IRP$PS_KPB as the target location of the KPB address

If there were not enough free pages in the system for the kernel process
stack, and the I/O request described by the IRP has not since been

cancelled, EXE$KP_STARTIO issues a fork-and-wait request. When
EXE$TIMEOUT resumes EXE$KP_STARTIO, it retries the call to
EXE$KP_ALLOCATE_KPB.

If the attempt to allocated nonpaged pool for the KPB failed, EXE$KP_
STARTIO requests an INCONSTATE bugcheck.

Inserts the address of the IRP in KPB$PS_IRP and the address of the UCB

in KPB$PS_UCB

Establishes the kernel process register save mask as the logical-OR of

the registers specified in DDT$IS_REG_MASK and those indicated by
KPREG$K_MIN_IO_REG_MASK (R2 through R5; the VAX AP, FP, SP,
and PC [registers R12 through R15]; and R26, R27, and R29), minus those

indicated by KPREG$K_ERR_REG_MASK (R0 and R1; R16 through R25;

R28; R30; and R31).

Issues a standard call to EXE$KP_START, passing it the register save
mask, the procedure value of a kernel process start-I/O routine (DDT$PS_

KP_STARTIO), and the address of the KPB.

Issues an RSB instruction to its caller (usually IOC$INITIATE, or

EXE$TIMEOUT if EXE$KP_STARTIO was resumed by fork-and-wait

mechanism)

455

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXESTIMEDWAIT_COMPLETE

ea

EXE$TIMEDWAIT_COMPLETE

Dermines whether the time interval of a timed wait has concluded.

Prototype

int exe$timedwait_complete (int64 *end_value_p)

Parameters

Name Access _ Description

end_value_p Input End time calculated by a previous call to
EXE$TIMEDWAIT_SETUP or EXE$TIMEDWAIT_

SETUP_10US.

Context

EXE$TIMEDWAIT_COMPLETE conforms to the OpenVMS Alpha Calling

Standard.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_CONTINUE The timed wait has not yet completed. The
time interval for the timed wait may or may
not have expired. This is a success status.

SS$_INSFARG Not all of the required arguments were
specified.

SS$_TIMEOUT The time interval for a timed wait has expired
and the timed wait is complete.

456

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXESTIMEDWAIT_COMPLETE

Description

EXE$TIMEDWAIT_COMPLETE compares the specified end-value (as
computed by a prior call to EXE$TIMEDWAIT_SETUP or EXE$TIMEDWAIT_

SETUP_10US) with an internal current-value. There are three results of this
comparison:

If the end-value is greater than or equal to the current-value value, the
timed wait has not yet completed, and EXE$TIMEDWAIT_COMPLETE
returns SS$_CONTINUE status.

If the end-value is less than the current-value, EXE$TIMEDWAIT_

COMPLETE sets the end-value to —1 and returns SS$_ CONTINUE

status.

When EXE$TIMEDWAIT_COMPLETE returns SS$_CONTINUE
status to the TIMEDWAIT macro, the macro reexecutes a specified
series of instructions that tests for a particular exit condition. Having
set the end-value to —1 prior to returning SS$_ CONTINUE status,
EXE$TIMEDWAIT_COMPLETE allows for the possibility that the exit

condition was actually met during the timed wait time interval, but after

the embedded instruction series could detect it. This could be the case, for
instance, if an interrupt occurred and was serviced after the instruction
sequence was executed but before the call to EXE$STIMEDWAIT_

COMPLETE was made. As a result of this behavior, all timed wait

instruction loops execute one additional time after the timed wait time

interval has concluded.

If the end-value is equal to —1, the timed wait has completed and
EXE$TIMEDWAIT_COMPLETE returns SS$_TIMEOUT status.

AST

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXESTIMEDWAIT_SETUP, EXESTIMEDWAIT_SETUP_10US

EXE$TIMEDWAIT_SETUP, EXE$TIMEDWAIT_SETUP_10US

Calculate and return the end-value used by EXE$TIMEDWAIT_COMPLETE

to determine when a timed wait has completed.

Format

int exe$timedwait_setup (int64 *delay_nanos, int64 *end_value_p)

int exe$timedwait_setup_10us (int64 *delay_10us, int64 *end_value_p)

Parameters

Name Access __ Description

delta Input Delay time specified in nanoseconds.

end_value_p Input End time token to be supplied as input to
EXE$TIMEDWAIT_COMPLETE.

Context

EXE$TIMEDWAIT_SETUP and EXE$TIMEDWAIT_SETUP_10US conform to
the OpenVMS Alpha Calling Standard.

Returns

VMS Usage: cond_value

type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_INSFARG Not all of the required arguments were
specified.

458

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXESTIMEDWAIT_SETUP, EXE$TIMEDWAIT_SETUP_10US

Description

EXE$TIMEDWAIT_SETUP and EXE$TIMEDWAIT_SETUP_10US compute
the end-value that is supplied as an input argument to a subsequent call to

EXE$TIMEDWAIT_COMPLETE. EXE$TIMEDWAIT_COMPLETE uses the
end-value to determine whether the timed wait time interval has concluded.

EXE$TIMEDWAIT_SETUP and EXE$TIMEDWAIT_SETUP_10US generate a
system-specific end-value from the sum of the specified delta-time and the
current time, converted to a value that can be directly compared to an internal
current-value. EXE$TIMEDWAIT_SETUP_10US performs the additional step

of converting the input delta-time to a number of nanoseconds.

459

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$ABORTIO

EXE_STD$ABORTIO

Completes the servicing of an I/O request without returning status to the 1/0

status block specified in the request.

Prototype

int exe_std$abortio (IRP *irp, PCB *pcb, UCB *ucb, int gio_sts)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

qio_sts Input Final status to be returned by the $QIO system

Return Values

SS$_FDT_COMPL

Status in FDOT CONTEXT

Contents of qio_sts
argument

460

service to its caller. EXE_STD$ABORTIO places
this status in FDT_CONTEXT$L_QIO_STATUS.
If you intend to access the FDT context structure
after EXE_STD$ABORTIO returns, you must
obtain its address from IRP$PS_FDT_CONTEXT
and store it before making the call.

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

Context

EXE STD$ABORTIO

EXE_STD$ABORTIO executes at its caller's IPL and raises to fork IPL,
acquiring the associated fork lock in a multiprocessing environment. As a
result, its caller cannot be executing above fork IPL. A driver usually transfers
control to EXE_STD$ABORTIO at IPL$_ASTDEL.

EXE_STD$ABORTIO returns to its caller at the caller’s IPL.

Description

The FDT completion routine EXE_STD$ABORTIO terminates the servicing of
an I/O request without returning status to the I/O status block specified in the
original call to the $QIO system service.

EXE_STD$ABORTIO performs the following actions:

1, Examines the qio_sts argument. If the argument contains SS$_FDT_
COMPL, EXE_STD$ABORTIO returns to its caller. This check prevents an

I/O request from being aborted more than once.

Places the status to be returned to the caller of the $QIO system service in
IRP$L_IOST1 and in the FDT_CONTEXT structure.

Clears the pointer to the FDT_CONTEXT structure in IRP$PS_FDT_

CONTEXT.

Requests the fork lock, raising IPL to fork IPL, to perform the following

tasks:

a. Clear IRP$L_IOSB so that no status is returned by I/O postprocessing

b. Clear ACB$V_QUOTA in IRP$B_RMOD to prevent the delivery of any
AST to the process specified in the I/O request

c. Update the count of available AST entries at PCB$L_ASTCNT, if

necessary

d. Insert the IRP in the local processor’s I/O postprocessing queue. If the
queue is empty, request a software interrupt from the local processor at
IPL$_IOPOST.

Releases the fork lock, restoring the caller’s IPL. The pending IPL$_
IOPOST interrupt causes I/O postprocessing to occur before the remaining
instructions in EXE_STD$ABORTIO are executed.

When all I/O postprocessing has been completed, EXE_STD$ABORTIO regains

control and returns SS$_FDT_COMPL status to its caller.

461

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$ABORTIO

Any ASTs specified when the I/O request was issued will not be delivered, and
any event flags requested will not be set.

462

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$ALLOCBUF, EXE_STD$ALLOCIRP

EXE_STD$ALLOCBUF, EXE_STD$ALLOCIRP

Allocates a buffer from nonpaged pool for a buffered-I/O operation.

Prototype

int exe_std$allocbuf (int reqsize, int32 *alosize_p, void **bufptr_p)

int exe_std$allocirp (IRP **irp_p)

Parameters

Name Access

reqsize Input

alosize_p Input

bufptr_p Input

IRP Input

Parameter Fields

Description

Size of requested buffer in bytes (EXE_
STD$ALLOCBUF only). This value should
include the 12 bytes required to store header
information.

Location in which EXE_STD$ALLOCBUF and
EXE_STD$ALLOCIRP write the size of the
requested buffer in bytes.

Location in which EXE_STD$ALLOCBUF and

EXE_STD$ALLOCIRP write the address of
allocated buffer.

Pointer to the I/O request packet.

Field Contents

bufptr_p->

IRP$W_SIZE (in Size of requested buffer in bytes (for EXE_

allocated buffer) STD$ALLOCBUF), IRP$C_LENGTH (for EXE_
STD$ALLOCIRP).

IRP$B_TYPE (in DYN$C_BUFIO (for EXE_STD$ALLOCBUF),
allocated buffer) DYN$C_IRP (for EXE_STD$ALLOCIRP).

463

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE STD$ALLOCBUF, EXE_STD$ALLOCIRP

Return Values

SS$_NORMAL Normal, successful completion.

SS$_INSFMEM Insufficient memory to satisfy request.

Context

EXE _STD$ALLOCBUF and EXE_STD$ALLOCIRP set IPL to IPL$_ASTDEL.

As a result they cannot be called by code executing above IPL$_ASTDEL. They

return control to the caller at IPL$_ASTDEL.

Description

EXE_STD$ALLOCBUF attempts to allocate a buffer of the requested size

from nonpaged pool; EXE_STD$ALLOCIRP attempts to allocate an IRP from
nonpaged pool.

If sufficient memory is not available, EXE_STD$ALLOCBUF and EXE_

STD$ALLOCIRP examine the PCB (CTL$GL_PCB) to determine whether the

process has resource wait mode enabled. If PCB$V_SSRWAIT in PCB$L_STS

is clear, these routines place the process in a resource wait state until memory

is released.

The caller must check and adjust process quotas (JIB$L_BYTCNT or JIB$L_

BYTLM, or both) by calling EXE$DEBIT_BYTCNT or EXE$DEBIT BYTCNT_
BYTLM.

Note

You can perform this task and allocate a buffer of the requested
size by using the routines EXE$DEBIT_BYTCNT_ALO and
EXE$DEBIT_BYTCNT_BYTLM_ALO. These routines invoke EXE_

STD$ALLOCBUF.)

The normal buffered I/O postprocessing routine (IOC_STD$REQCOM),
initiated by the REQCOM macro, readjusts quotas and also deallocates
the buffer.

Note

The value returned in the alosize_p areument and placed at IRP$W_
SIZE in the allocated buffer is the size of the allocated buffer. The

464

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$ALLOCBUF, EXE_STD$ALLOCIRP

actual size of the buffer is determined according to the algorithms used
by EXE$ALONONPAGED and the size of the lookaside list packets.
The nonpaged pool deallocation routine (EXE$DEANONPAGED), called
in buffered I/O postprocessing, uses similar algorithms when returning
memory to nonpaged pool.

465

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$ALTQUEPKT

EXE_STD$ALTQUEPKT

Delivers an IRP to a driver’s alternate start-I/O routine without regard for the

status of the device.

Prototype

void exe_std$altquepkt (IRP *irp, UCB *ucb)

Parameters

Name Access _ Description

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Parameter Fields

Field Contents

ucb->

UCB$B_FLCK Fork lock index.

VEESE_ DDE Address of unit’s DDT. EXE_STD$ALTQUEPKT

reads DDB$PS_ALTSTART to obtain the procedure
value of the driver’s alternate start-I/O routine.

UCB$L_ALTIOWQ Address of the alternate start-I/O wait queue

listhead.

Context

A driver FDT routine typically calls EXE_STD$ALTQUEPKT at IPL$_

ASTDEL. EXE_STD$ALTQUEPKT raises to fork IPL (acquiring the associated
fork lock) before calling the driver’s alternate start-I/O routine. When the
alternate start-I/O routine returns control to it, EXE_STD$ALTQUEPKT
returns control to its caller at the caller’s IPL (having released its acquisition
of the fork lock).

466

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$ALTQUEPKT

Description

EXE_STD$ALTQUEPKT calls the driver’s alternate start-I/O routine. It does

not test whether the unit is busy before making the call.

467

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$CARRIAGE

EXE_STD$CARRIAGE

Interprets the carriage control specifier in IRP$B_CARCON and converts it to

a generic prefix or suffix format.

Prototype

void exe_std$altquepkt (IRP *irp, UCB *ucb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Context

A driver FDT routine calls EXE_STD$CARRIAGE at IPL$_ASTDEL. EXE_

STD$CARRIAGE returns control to the driver at that IPL.

468

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$CHKxxxACCES

EXE_STD$CHKxxxACCES

Checks logical (EXE_STD$CHKLOGACCES), physical (EXE_STD$CHKPHYACCES),
read (EXE_STD$CHKRDACCES), write (EXE_STD$CHKWRTACCES), execute
(EXE_STD$CHKEXEACCES), create (EXE_STD$CHKCREACCES), or delete
(EXE_STD$CHKDELACCES) I/O function access, based on the specified
protection information.

Prototype

int exe_std$chkcreacces (ARB *arb, ORB “orb, PCB *pcb, UCB *ucb)

int exe_std$chkdelacces (ARB ‘arb, ORB “orb, PCB “pcb, UCB “ucb)

int exe_std$chkexeacces (ARB “arb, ORB “orb, PCB “pcb, UCB “ucb)

int exe_std$chklogacces (ARB *arb, ORB “orb, PCB “pcb, UCB *ucb)

int exe_std$chkphyacces (ARB “arb, ORB *orb, PCB *pcb, UCB *ucb)

int exe_std$chkrdacces (ARB “arb, ORB “orb, PCB *pcb, UCB *ucb)

int exe_std$chkwrtacces (ARB ‘arb, ORB *orb, PCB *pcb, UCB *ucb)

Parameters

Name

Return Values

SS$_NORMAL

SS$_NOPRIV

Access

Input

Input

Input

Input

Description

Pointer to the agent rights block.

Pointer to the object rights block.

Pointer to the process control block of the

current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Specified access allowed.

Specified access denied.

469

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$CHKxxxACCES

Context

A driver FDT routine calls EXE_STD$CHKPHYACCES, EXE_STD$CHKLOGACCES,
EXE_STD$CHKWRTACCES, EXE_STD$CHKRDACCES, EXE_STD$CHKCREACCES,

EXE_STD$CHKEXEACCES, and EXE_STD$CHKDELACCES, at IPL$_

ASTDEL. These routines return control to the driver at that IPL.

470

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$FINISHIO

EXE_STDS$FINISHIO

Completes the servicing of an I/O request and returns status to the I/O status
block specified in the original call to the $QIO system service.

Description

Pointer to the I/O request packet.

Prototype

int exe_std$finishio (IRP *irp, UCB *ucb)

Parameters

Name Access

irp Input

ucb Input

Return Values

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_NORMAL

Context

Pointer to the unit control block of the device

assigned to the process I/O channel.

Warning-level status indicating that FDT
processing is complete. The routine that

receives this status can no longer safely access
the IRP.

The routine completed successfully.

EXE_STD$FINISHIO executes at its caller’s IPL and raises to fork IPL,

acquiring the associated fork lock in a multiprocessing environment. As a
result, its caller cannot be executing above fork IPL. A driver usually transfers

control to EXE_STD$FINISHIO at. IPL$_ASTDEL.

EXE_STD$FINISHIO returns to its caller at the caller’s IPL.

471

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$FINISHIO

Description

472

The FDT completion routine EXE_STD$FINISHIO completes the servicing of

an I/O r and returns status to the I/O status block specified in the original call
to the $QIO system service. It performs the following actions:

1. Clears the pointer to the FDT context structure in IRP$PS_FDT_

CONTEXT.

2. Requests the fork lock, raising IPL to fork IPL, to perform the following

tasks:

a. Increase the number of I/O operations completed on the current
device in the operation count field of the UCB (UCB$L_OPCNT). This
task is performed at fork IPL, holding the associated fork lock in a
multiprocessing environment.

b. Insert the IRP in the local processor’s I/O postprocessing queue. If the
queue is empty, request a software interrupt from the local processor at
IPL$_IOPOST.

3. Releases the fork lock, restoring the caller’s IPL. The pending IPL$_
IOPOST interrupt causes I/O postprocessing to occur before the remaining
instructions in EXE_STD$FINISHIO are executed.

When all I/O postprocessing has been completed, EXE_STD$FINISHIO
regains control and returns SS$_FDT_COMPL status to its caller, passing
SS$_NORMAL as the final $QIO completion status in the FDT_ CONTEXT
structure.

The image that requested the I/O operation receives SS$_NORMAL status,
indicating that the I/O request has completed without device-independent
error.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE$ILLIOFUNC

EXE$ILLIOFUNC

Aborts I/O preprocessing for an I/O function not supported a driver.

Prototype

int exe$illiofunc (IRP *irp, PCB “pcb, UCB *ucb, CCB *ccb)

Parameters

Name

irp

peb

ucb

ecb

Return Values

SS$_FDT_COMPL

Context

Access

Input

Input

Input

Input

Description

Pointer to the I/O request packet.

Pointer to the process control block of the

current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the channel control block for the

process I/O channel.

Warning-level status indicating that FDT
processing is complete. The routine that

receives this status can no longer safely access
the IRP.

FDT dispatching code in the $QIO system service calls EXE$ILLIOFUNC at

IPL$_ASTDEL when processing an I/O function that is not supported by a
driver. EXE$ILLIOFUNC returns to the system service dispatcher at IPL$_

ASTDEL.

Description

Because any slot corresponding to an unsupported function in a driver’s

FDT action vector contains the procedure value of EXE$ILLIOFUNC, FDT
dispatching code in the $QIO system service calls EXE$ILLIOFUNC to process
any I/O request specifying an unsupported I/O function code.

EXE$ILLIOFUNC calls EXE_STD$ABORTIO to terminate the processing of

the I/O request.

473

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$INSERT_IRP

ne

EXE_STD$INSERT_IRP

Inserts an I/O request packet (IRP) into the specified queue of IRPs according

to the base priority of the process that issued the I/O request.

Prototype

int exe_std$insert_irp (IRP **irp_lh, IRP “irp)

Parameters

Name Access __ Description

irp_lh Input Pointer to the I/O queue listhead for the device.

irp Input Pointer to the I/O request packet.

Return Values

status Low bit set if at least one IRP is already in
the queue, low bit clear if the IRP is the only

entry.

Context

EXE_STD$INSERT_IRP must be called at fork IPL or higher. In an OpenVMS

multiprocessing environment, the caller must also hold the associated fork
lock. EXE_STD$INSERT_IRP does not alter IPL or acquire any spin locks. It
returns to its caller.

Description

EXE_STD$INSERT_IRP determines the position of the specified IRP in the
pending-I/O queue according to two factors:

¢ Priority of the IRP, which is derived from the requesting process’s base
priority as stored in the IRP$B_PRI

¢ Time that the entry is queued; for each priority, the queue is ordered on a
first-in/first-out basis

EXE_STD$INSERT_IRP inserts the IRP into the queue at that position,
adjusts the queue links, and returns a value to indicate the status of the
queue.

474

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$INSIOQ, EXE_STD$INSIOQC

EXE_STDS$INSIOQ, EXE_STD$INSIOQC

Insert an IRP in a device’s pending-I/O queue and call the driver’s start-I/O
routine if the device is not busy.

Prototype

void exe_std$insiog (IRP *irp, UCB *ucb)

void exe_std$insiogce (IRP *irp, UCB *ucb)

Parameters

Name Access___ Description

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block of the device

assigned to the process I/O channel.

Parameter Fields

Field Contents

ucb-> read fields

UCB$B_FLCK Fork lock index.

UCB$L_STS UCB$V_BSY set if device is busy, clear if device is

idle.

UCB$L_IOQFL Address of pending-I/O queue listhead.

UCB$L_QLEN Length of pending-I/O queue.

ucb-> write fields

UCB$L_STS UCB$V_BSY set.

UCB$W_QLEN Increased.

Context

EXE_STD$INSIOQ and EXE_STD$INSIOQC immediately raise to fork IPL

and, in a multiprocessing environment, obtain the corresponding fork lock. As

a result, their callers must not be executing at an IPL higher than fork IPL or

hold a spin lock ranked higher than the fork lock.

475

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE _STD$INSIOQ, EXE_STD$INSIOQC

EXE_STD$INSIOQ unconditionally releases ownership of the fork lock
before returning control to the caller without possession of the fork lock.
If a fork process must retain possession of the fork lock, it should call EXE_

STD$INSIOQC instead.

Description

476

EXE_STD$INSIOQ and EXE_STD$INSIOQC insert an IRP in a device’s

pending-I/O queue and call the driver’s start-I/O routine if the device is not

busy.

EXE_STD$INSIOQ and EXE_STD$INSIOQC increase UCB$L_QLEN and
proceed according to the status of the device (as indicated by UCB$V_BSY in
UCB$L_STS) as follows:

e If the device is busy, call EXE_STD$INSERT_IRP to place the IRP on the
device’s pending-I/O queue.

e Ifthe device is idle, call IOC_STD$INITIATE to begin device processing of
the I/O request immediately. IOC_LSTD$INITIATE transfers control to the
driver’s start-I/O routine.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STDSIORSNWAIT

EXE_STD$IORSNWAIT

Places a process in a resource wait state if it has enabled resource waits.

Prototype

int (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb, int qio_sts, int rsn)

Parameters

Name

irp

peb

ucb

ecb

qio_sts

rsn

Return Values

SS$_FDT_COMPL

Access

Input

Input

Input

Input

Input

Input

Description

Pointer to the I/O request packet.

Pointer to the process control block of the
current process.

Pointer to the unit control block of the device
assigned to the process I/O channel.

Pointer to the channel control block for the

process I/O channel.

Final status to be returned by the $QIO system

service to its caller if the caller has not enabled

resource wait mode. EXE_STD$IORSNWAIT
calls EXE_STD$ABORTIO to place this status
in FDT_CONTEXT$L_QIO_STATUS. If you

intend to access the FDT context structure

after EXE_STD$IORSNWAIT returns, you must

obtain its address from IRP$PS_FDT CONTEXT

and store it before making the call.

Pointer to the number of the resource for which

the request is waiting.

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access

the IRP.

477

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$IORSNWAIT

Status in FDT CONTEXT

Contents of qio_sts Process has not enabled resource waits.
argument

SS$_WAIT CALLERS _ Process has been placed in a resource wait

MODE state.

Context

EXE_STD$IORSNWAIT is called by, and returns to, a driver’s FDT routine at

IPL$_ASTDEL.

478

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$LCLDSKVALID

EXE_STD$LCLDSKVALID

Processes I/O functions that affect the online count and local valid status of a

disk.

Prototype

int exe_std$lcldskvalid (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the

current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel contro! block for the
process I/O channel.

479

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$LCLDSKVALID

Parameter Fields Pe ee i ee

Field Contents
Nee eee ee eee eee eee eee ae

ucb-> read fields

UCB$B_FLCK Fork lock index

UCB$L_STS UCB$V_LCL_VALID set if the volume is valid; clear

if the drive is unloaded or available.

UCB$B_ONLCNT Number of hosts that have set this disk on line.

ucb-> write fields

UCB$L_STS UCB$V_LCL_VALID set if the requested function is
10$_PACKACK; cleared if the requested function is
I10$ UNLOAD or IO$_AVAILABLE.

UCB$B_ONLCNT Incremented if UCB$V_LCL_VALID is not set
and the requested function is IO$_PACKACK;
decremented if UCB$V_LCL_VALID is set and
the requested function is IO$_UNLOAD or IO$_

AVAILABLE

Return Values

SS$_FDT_COMPL Warning-ievel status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

FDT dispatching code calls EXE_STD$LCLDSKVALID at IPL$ ASTDEL.
EXE_STD$LCLDSKVALID immediately raises IPL to fork IPL, requesting the
associated fork lock in a multiprocessing environment. When it regains
control from EXE_STD$QIODRVPKT or EXE_STD$FINISHIO, EXE_
STD$LCLDSKVALID lowers IPL to IPL$_ASTDEL and relinquishes the
fork lock before returning to the system service dispatcher.

480

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

Description

EXE_STD$LCLDSKVALID

A disk driver specifies the system-supplied upper-level FDT action routine
EXE_STD$LCLDSKVALID in an FDT_ACT macro invocation to service a

request for an IO$_PACKACK, IO$_ AVAILABLE, or IO$ UNLOAD function
for a local disk. The actions of EXE_STD$LCLDSKVALID depend on the I/O
function indicated by R7 and the value of UCB$V_LCL_VALID in UCB$L_STS.

For an IO$_PACKACK function, EXE_STD$LCLDSKVALID proceeds as

follows:

e If UCB$V_LCL_VALID is clear:

Sets UCB$V_LCL_VALID.

Increases UCB$B_ONLCNT.

If this is the first cluster pack acknowledgment on the disk (that
is, if UCB$B_ONLCNT equals 1), invokes the $QIODRVPKT

macro to deliver the IRP to the driver’s start-I/O routine. EXE_
STD$LCLDSKVALID regains control with SS$_FDT_COMPL status

in RO and a final $QIO system service status of SS$_ NORMAL in the

FDT_CONTEXT structure.

e If UCB$V_LCL_VALID is set, EXE_STD$LCLDSKVALID requests that the

FDT completion routine EXE_STD$FINISHIO complete the I/O request.
EXE_STD$FINISHIO returns to EXE_STD$LCLDSKVALID with SS$_

FDT_COMPL status in RO and a final $QIO system service status of SS$_

NORMAL in the FDT_CONTEXT structure.

For an IO$_UNLOAD or IO$_AVAILABLE function, EXE_STD$LCLDSKVALID
proceeds as follows:

e If UCB$V_LCL_VALID is set:

Clears UCB$V_LCL_VALID

Decreases UCB$B_ONLCNT

If this is the last cluster unload or available request, invokes the

$QIODRVPKT macro to deliver the IRP to the driver’s start-I/O
routine. EXE_STD$LCLDSKVALID regains control with SS$_FDT_

COMPL status in RO and a final $QIO system service status of SS$_

NORMAL in the FDT_CONTEXT structure.

481

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$LCLDSKVALID

e If UCB$V_LCL_VALID is clear, EXE_STD$LCLDSKVALID requests

that the FDT completion routine EXE_STD$FINISHIO complete the I/O

request. EXE_STD$FINISHIO returns to EXE_STD$LCLDSKVALID with

SS$_FDT_COMPL status in RO and a final $QIO system service status of
SS$_NORMAL in the FDT_CONTEXT structure.

A driver must define the local disk UCB extension to use this routine.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$MNTVERSIO

EXE_STD$MNTVERSIO

Initiates a mount verification I/O request to a device.

Prototype

void exe_std$mntversio (void (*rout)(), IRP *irp, UCB *ucb)

Parameters

Name Access ___ Description

rout Input Pointer to the Procedure value of action routine

to postprocess the mount verification I/O
request.

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Context

EXE_STD$MNTVERSIO raises IPL to fork IPL, obtaining the corresponding
fork lock in an OpenVMS multiprocessing system. It releases the fork lock and
returns control to its caller at its caller’s IPL.

483

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$MODIFY

EXE_STD$MODIFY

Translates a logical read/write function into a physical read/write function,

transfers $QIO system service parameters to the IRP, validates and prepares
a user buffer, and aborts the request or proceeds with a direct-I/O, DMA read

/write operation.

Prototype

int exe_std$modify (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet.

peb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the

process I/O channel.

484

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

Parameter Fields

Field

irp-> read fields

IRP$L_QIO_P1

IRP$L_QIO_P2

IRP$L_QIO_P4

IRP$L_FUNC

IRP$B_RMOD

irp-> write fields

IRP$B_CARCON

IRP$L_FUNC

IRP$L_STS

IRP$L_SVAPTE

IRP$L_BOFF

IRP$L_OBOFF

IRP$L_BCNT

EXE STDSMODIFY

Contents

$QIO system service pl argument, containing the
buffer’s virtual address.

$QIO system service p2 argument, containing the

number of bytes in transfer. The maximum number
of bytes that EXE_STD$MODIFY can transfer is
65,535 (128 pages minus one byte).

$QIO system service p4 argument, containing the
carriage control byte.

I/O function code.

Access mode of the caller of the $QIO system service.

Carriage control byte (from IRP$L_QIO_P4).

Logical read/write function code converted to

physical.

IRP$V_FUNC set to indicate read function.

System virtual address of the PTE that maps the

first page of the buffer.

Byte offset to start of transfer in page.

Original byte offset into the first page of a

segmented direct-I/O transfer.

Size of transfer in bytes.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT

processing is complete. The routine that
receives this status can no longer safely access

the IRP.

485

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$MODIFY

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buffer parameter does not

allow read access.

SS$_BADPARAM size parameter is less than zero.

SS$_INSFWSL Insufficient working set limit.

SS$_NORMAL The I/O request has been successfully queued.

SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$MODIFY as

an upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_
STD$MODIFY to prepare a direct-I/O read/write request. A driver cannot

specify EXE_STD$MODIFY for buffered-I/O functions. Drivers that process
functions that require an intermediate system buffer typically supply their own
upper-level FDT action routines to handle them.

EXE_STD$MODIFY performs the following functions:

e Sets IRP$V_FUNC in IRP$L_STS to indicate a read function

¢ Copies the p4 argument of the $QIO request from IRP$L_QIO_P4 to
IRP$B_CARCON

e Translates a logical read/write function to a physical read/write function
and stores the new function code in IRP$L_FUNC.

e Examines the size of the transfer, as specified in the p2 argument of the
$QIO request (IRP$L_QIO_P2), and takes one of the following actions:

— Ifthe transfer byte count is zero, EXE_STD$MODIFY invokes the
$QIODRVPKT macro to deliver the IRP to the driver’s start-I/O
routine. EXE_STD$MODIFY regains control with SS$_ FDT_COMPL
status in RO and a final $QIO system service status of SS$¢ NORMAL
in the FDT_CONTEXT structure. It returns to the $QIO system
service, passing these status values.

The driver start-I/O routine should check for zero-length buffers to
avoid mapping to adapter node space. An attempted mapping can
cause a system failure.

486

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$MODIFY

— Ifthe byte count is not zero, EXE_STD$MODIFY calls EXE_
STD$MODIFYLOCK, passing 0 as the value of the err_rout
argument.

EXE_STD$MODIFYLOCK disables an optimization in MMG_STD$IOLOCK

and joins the code for EXE_STD$READLOCK. EXE _STD$MODIFYLOCK

invokes the $READCHK macro, which calls EXE_STD$READCHK.

EXE_STD$READCHK performs the following actions:

¢ Moves the transfer byte count (size parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing
it a qio_sts of SS$_ BADPARAM. When it regains control, EXE_
STD$READCHK returns to EXE_STD$MODIFYLOCK with SS$_

BADPARAM status in the FDT_CONTEXT structure and SS$_FDT_

COMPL status in RO. EXE_STD$MODIFYLOCK immediately returns to

EXE_STD$MODIFY, passing these status values. EXE_STD$MODIFY, in
turn, returns to the $QIO system service.

¢ Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

— Ifthe buffer allows write access returns SS$ NORMAL in RO to EXE_

STD$MODIFYLOCK.

— Ifthe buffer does not allow write access, EXE_STD$READCHK

calls EXE_STD$ABORTIO, passing it a qio_sts of SS$_ACCVIO.

When it regains control, EXE_STD$READCHK returns to EXE_

STD$MODIFYLOCK with SS$_ACCVIO status in the FDT_

CONTEXT structure and SS$_FDT_COMPL status in RO. EXE_
STD$MODIFYLOCK immediately returns to EXE_STD$MODIFY,
passing these status values. EXE_STD$MODIFY returns to the $QIO
system service.

If EXE_STD$READCHK succeeds, EXE_STD$MODIFYLOCK moves into

IRP$L_BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and

calls MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain

the buffer, with one of the following results:

e If MMG STD$IOLOCK succeeds, EXE_STD$MODIFYLOCK stores in
IRP$L_SVAPTE the system virtual address of the process PTE that

maps the first page of the buffer, and returns SS$_NORMAL status in

RO to EXE_STD$MODIFYLOCK. EXE_STD$MODIFYLOCK returns
immediately to EXE_STD$MODIFY, passing to it this status value.

487

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$MODIFY

488

EXE_STD$MODIFY invokes the $QIODRVPKT macro to deliver the IRP
to the driver’s start-I/O routine. EXE_STD$MODIFY regains control with
SS$_FDT_COMPL status in RO and a final $QIO system service status of

SS$_ NORMAL in the FDT_CONTEXT structure. It returns to the $QIO

system service, passing these status values.

If MMG._STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or

page fault status to EXE_STD$MODIFYLOCK.

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$MODIFYLOCK
calls EXE_STD$ABORTIO, passing it one of these status values as a qio_
sts argument. When it regains control, EXE_STD$MODIFYLOCK returns
EXE_STD$MODIFY the specified status value in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in RO. EXE_STD$MODIFY
returns to the $QIO system service.

For page fault status, EXE_STD$MODIFYLOCK sets the final $QIO status
in the FDT_CONTEXT structure to SS$_QIO_CROCK and initializes FDT_

CONTEXT$L_QIO_R1_VALUE to the virtual address to be faulted. It then
adjusts the direct I/O count and AST count to the values they held before

the I/O request, deallocates the IRP, and restarts the I/O request at the
$QIO system service. This procedure is carried out so that the user process
can receive ASTs while it waits for the page fault to complete. Once the
page is faulted into memory, the $QIO system service will resubmit the I/O
request.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$MODIFYLOCK

EXE_STD$MODIFYLOCK

Validates and prepares a user buffer for a direct-I/O, DMA read/write
operation.

Prototype

int exe_std$modifylock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb, void *buf, int
bufsiz, void (“err_rout)(IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb, int errsts))

Parameters

Name

irp

pcb

ucb

ecb

buf

bufsiz

err_rout

Access

Input

Input

Input

Input

Input

Input

Input

Description

Pointer to the I/O request packet.

Pointer to the process control block of the
current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the channel control block for the

process I/O channel.

Pointer to the virtual address of buffer.

Pointer to the number of bytes in transfer.

Procedure value of error-handling callback
routine, or 0 if the driver does not process
errors.

A driver typically specifies an error-handling
callback routine when the driver must lock
multiple areas into memory for a single I/O

request and regain control to unlock these areas,
if the request is to be aborted. The routine

performs those tasks required before the request
is backed out of or aborted. Such operations

could include calling MMG_STD$UNLOCK to
release previous buffers participating in the

I/O operation. The error-handling routine must
preserve RO and Ri and return back to EXE_
STD$MODIFYLOCK.

489

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$MODIFYLOCK

Parameter Fields

Field Contents

irp->

IRP$L_SVAPTE System virtual address of the PTE that maps the

first page of the buffer.

IRP$L_BOFF Byte offset to start of transfer in page.

IRP$L_OBOFF

IRP$L_BCNT

Original byte offset into the first page of a

segmented direct-I/O transfer.

Size of transfer in bytes.

Return Values

SS$_ NORMAL

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_ACCVIO

SS$ BADPARAM

SS$_INSFWSL

SS$_ NORMAL

SS$_INSFWSL

SS$_QIO_CROCK

Context

The buffer is read-accessible and has been
locked in memory.

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Buffer specified in buf parameter does not
allow read access.

bufsiz parameter is less than zero.

Insufficient working set limit.

Nothing has occurred yet to prevent the I/O
request from being successfully queued. This
is the initial value of the status field in an
FDT_CONTEXT structure.

Insufficient working set limit.

Buffer page must be faulted into memory.

The system-supplied upper-level FDT action routine EXE_STD$MODIFY, or a
driver-specific upper-level FDT action routine, calls EXE_STD$MODIFYLOCK
at IPL$_ASTDEL.

490

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$MODIFYLOCK

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_

STD$MODIFYLOCK to check the read accessibility of an I/O buffer supplied

in a $QIO request for a read/write function, and lock the buffer in memory in

preparation for a DMA read/write operation.

A driver cannot specify EXE_STD$MODIFY for buffered-I/O functions. Drivers

that process functions that require an intermediate system buffer typically
supply their FDT routines to handle them.

EXE_STD$MODIFYLOCK disables an optimization in MMG_STD$IOLOCK

and joins the code for EXE_STD$READLOCK. EXE _STD$MODIFYLOCK

invokes the $READCHK macro, which calls EXE_STD$READCHK.

EXE_STD$READCHK performs the following actions:

¢ Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, EXE_STD$READCHK returns SS$_
BADPARAM status to EXE_STD$MODIFYLOCK.

e Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

— Ifthe buffer allows write access, EXE_STD$READCHK sets IRP$V_

FUNC in IRP$L_STS and returns SS$ NORMAL in RO to EXE_

STD$MODIFYLOCK.

— Ifthe buffer does not allow write access, EXE_STD$READCHK returns

SS$_ACCVIO status to EXE$ STD$MODIFYLOCK.

If error status (SS$_ BADPARAM or SS$_ACCVIO) is returned, EXE_

STD$MODIFYLOCK immediately calls the specified error-handling callback

routine, passing to it the IRP, PCB, UCB, CCB, and status value. The

callback routine must preserve RO and R1 and return control to EXE_

STD$MODIFYLOCK. When the callback routine returns (or if no callback

routine is specified), EXE_STD$MODIFYLOCK calls EXE_STD$ABORTIO,
passing it the error status as qio_sts. EXE_STD$ABORTIO returns to EXE_

STD$MODIFYLOCK with the error status in the FDT_CONTEXT structure

and SS$_FDT_COMPL status in RO. EXE_STD$MODIFYLOCK immediately

returns to its caller, passing these status values.

If SS$_ NORMAL status is returned, EXE_STD$MODIFYLOCK moves into

IRP$L_BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and

calls MMG_STD$IOLOCK.

491

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$MODIFYLOCK

MMG._STD$IOLOCK attempts to lock into memory those pages that contain

the buffer, with one of the following results:

e IfMMG STD$IOLOCK succeeds, EXE_STD$MODIFYLOCK stores in

IRP$L_SVAPTE the system virtual address of the process PTE that

maps the first page of the buffer, and returns SS$_NORMAL status in

RO to EXE_STD$MODIFYLOCK. EXE_STD$MODIFYLOCK returns

immediately to its caller, passing to it this status value.

e IfMMG STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or

page fault status to EXE_STD$MODIFYLOCK. EXE_STD$MODIFYLOCK

immediately calls the specified error-handling callback routine, passing
to it the IRP, PCB, UCB, CCB, and status value. The callback routine

must preserve RO and R1 and return control to EXE_STD$MODIFYLOCK.

When the callback routine returns (or if no callback routine is specified),
EXE_STD$MODIFYLOCK proceeds as follows:

— For SS$ ACCVIO and SS$_INSFWSL status, EXE_STD$MODIFYLOCK

calls EXE_STD$ABORTIO, passing it one of these status values as a
qio_sts argument. When it regains control, EXE_STD$MODIFYLOCK
returns to its caller the specified status value in the FDT_CONTEXT

structure and SS$_FDT_COMPL status in RO.

For page fault status, EXE_STD$MODIFYLOCK sets the final $QIO
status in the FDT_CONTEXT structure to SS$_QIO_CROCK and
initializes FDT_CONTEXT$L_QIO_R1 VALUE to the virtual address

to be faulted. It then adjusts the direct I/O count and AST count to
the values they held before the I/O request, deallocates the IRP, and

restarts the I/O request at the $QIO system service. This procedure is
carried out so that the user process can receive ASTs while it waits for

the page fault to complete. Once the page is faulted into memory, the
$QIO system service will resubmit the I/O request.

The caller of EXE_STD$MODIFYLOCK must examine the status in RO:

e Ifthe status is SS$ NORMAL, the buffer is write accessible and has been
successfully locked into memory and the starting virtual address of the
page table entries that map the buffer is available in IRP$L_SVAPTE.

e Ifthe status is SS$_FDT_COMPL, an error has occurred that has caused
the I/O request to be aborted. You can determine the reason for the failure
from FDT_CONTEXT$L_QIO_STATUS. Ordinarily a driver specifies an
error-handling callback routine to process such errors.

492

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$MODIFYLOCK

Note that a driver cannot access the IRP once it has received SS$_ FDT_

COMPL status. If you know you need access to information stored in the
IRP to back out an I/O request that has been aborted, you must store that
information elsewhere prior to calling EXE_STD$MODIFYLOCK.

493

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$MOUNT_VER

EXE_STD$MOUNT_VER

During I/O postprocessing, determines whether mount verification should be

initiated on a given disk or tape device on behalf of the I/O request being

completed.

Prototype

int exe_std$mount_ver (int iost1, int iost2, IRP *irp, UCB *ucb)

Parameters

Name Access ___ Description

iostl Input First longword of I/O status.

lost2 Input Second longword of I/O status.

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Return Values

status Low bit set indicates that mount verification

has not been initiated and that the caller

should continue; low bit clear indicates that

mount verification has been initiated and that

the caller should return.

Context

EXE_STD$MOUNT_VER is typically called at or above IPL$ IOPOST.

494

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$ONEPARM

EXE _STD$ONEPARM

Copies a single $QIO parameter from IRP$L_QIO_P1 to IRP$L_MEDIA and

delivers the IRP to a driver’s start-I/O routine.

Prototype

int exe_std$oneparm (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Parameters

Name

irp

pcb

ucb

ecb

Return Values

SS$_FDT_COMPL

Access

Input

Input

Input

Input

Status in FDT_CONTEXT

SS$_NORMAL

Context

Description

Pointer to the I/O request packet.

Pointer to the process control block of the
current process.

Pointer to the unit control block of the device
assigned to the process I/O channel.

Pointer to the channel control block for the
process I/O channel.

Warning-level status indicating that FDT
processing is complete. The routine that

receives this status can no longer safely access

the IRP.

The routine completed successfully.

FDT dispatching code in the $QIO system service calls EXE_STD$ONEPARM

as an upper-level FDT action routine at IPL$_ASTDEL.

495

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$ONEPARM

Description

496

A driver specifies the system-supplied upper-level FDT action routine EXE_

STD$ONEPARM to process an I/O function code that requires only one

parameter. This parameter should need no checking: for instance, for read or
write accessibility.

EXE_STD$ONEPARM copies the first $QIO function-dependent parameter

(p1) from IRP$L_QIO_P1 to IRP$L_MEDIA and invokes the $QIODRVPKT
macro to deliver the IRP to the driver. EXE_STD$ONEPARM regains control

with SS$_FDT_COMPL status in RO and a final $QIO system service status of
SS$_NORMAL in the FDT_CONTEXT structure.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$PRIMITIVE_FORK

EXE_STD$PRIMITIVE_FORK

Creates a simple fork process on the local processor.

Prototype

void exe_std$primitive_fork (int64 fr3, int64 fr4, FKB *fkb)

Parameters

Name Access ___ Description

ira Input Pointer to value to pass to the fork routine in
FKB$Q_FR3.

fr4 Input Pointer to value to pass to the fork routine in
FKB$Q_FR4.

fkb Input Pointer to the address of a fork block. At input,
FKB$B_FLCK must contain the fork lock index

and FKB$L_FPC must contain the procedure

value of the fork routine.

Context

EXE_STD$PRIMITIVE_FORK acquires no spin locks and leaves IPL

unchanged. EXE_STD$PRIMITIVE_FORK, unlike the OpenVMS VAX system
routine EXE$FORK, returns to its caller and not to its caller’s caller. It

assumes that, prior to the call, its caller has placed the procedure value of the
fork routine into FKB$L_FPC.

EXE_STD$PRIMITIVE_FORK provides fork context to the fork routine in

FKB$Q_FR3 (contents of fr3) and FKB$Q_FR4 (contents fr4). All other
registers are destroyed. The fork routine executes at the IPL indicated by the

fork lock index stored in FKB$B_FLCK.

Description

EXE_STD$PRIMITIVE_FORK moves the contents of the fr3 and fr4

arguments into FKB$Q_ FR3 and FKB$Q_FR4, respectively. It determines
the fork IPL by using the value of FKB$B_FLCK as an index into the spin lock
IPL vector (SMP$AL_IPLVEC). EXE_STD$PRIMITIVE_FORK inserts the fork
block into the fork queue on the local processor (headed by CPU$Q_SWIQFL)

corresponding to this IPL. If the queue is empty, EXE_STD$PRIMITIVE_

497

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$PRIMITIVE_FORK

498

FORK issues a SOFTINT macro, requesting a software interrupt from the local
processor at that fork IPL.

A driver that calls EXE_STD$PRIMITIVE_FORK explicitly (that is, instead of
invoking the IOFORK macro) must ensure that UCB$V_TIM in the UCB$L_
STS field is clear before making the call.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$PRIMITIVE_FORK_WAIT

EXE_STD$PRIMITIVE_FORK_WAIT

Inserts a fork block on the fork-and-wait queue.

Prototype

Parameters

void exe_std$primitive_fork_wait (int64 fr3, int64 fr4, FKB *fkb)

Name Access __ Description

fr3 Input Pointer to value to pass to the fork routine in

FKB$Q_FR3.

fr4 Input Pointer to value to pass to the fork routine in

FKB$Q_ FR4.

fkb Input Pointer to the address of a fork block. At input,
FKB$B_FLCK must contain the fork lock index
and FKB$L_FPC must contain the procedure

value of the fork routine.

Context

The caller of EXE_STD$PRIMITIVE_FORK_WAIT must be executing at or

above IPL$_SYNCH. EXE_STD$PRIMITIVE_FORK_WAIT acquires the MEGA

(SPL$C_MEGA) spin lock, raising IPL to IPL$_MEGA in the process, to access

the fork-and-wait queue (EXE$AR_FORK_WAIT_QUEUE.). It releases the spin
lock, restoring the previous IPL, prior to returning to its caller.

EXE_STD$PRIMITIVE_FORK_WAIT, unlike the OpenVMS VAX system

routine EXE$FORK_WAIT, returns to its caller and not to its caller’s caller. It

assumes that, prior to the call, its caller has placed the procedure value of the

fork routine into FKB$L_FPC.

EXE_STD$PRIMITIVE_FORK_WAIT provides fork context to the fork routine

in FKB$Q_FR3 (contents of fr3) and FKB$Q_FR4 (contents of fr4). All other
registers are destroyed. The fork routine executes at the IPL indicated by the

fork lock index stored in FKB$B_FLCK.

499

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$PRIMITIVE_FORK_WAIT

Description

EXE_STD$PRIMITIVE_FORK_ WAIT moves the contents of fr3 and fr4 into

FKB$Q_FR3 and FKB$Q_FR4 respectively. Having obtained the MEGA spin
lock, it inserts the fork block indicated by fkb at end of the fork-and-wait
queue (EXE$GL_FKWAITBL) and releases the spin lock.

Up to one second later, the software timer interrupt service routine will remove

this and all other entries from the fork-and-wait queue and resume their
respective fork routines.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$QIOACPPKT

EXE_STD$QIOACPPKT

Delivers an IRP to the appropriate ACP or XQP.

Prototype

int exe_std$qioacppkt (IRP *irp, PCB *pcb, UCB *ucb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access

the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

EXE_STD$QIOACPPKT is called by, and returns to, a driver’s FDT routine at
IPL$_ASTDEL.

501

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$QIODRVPKT

EXE_STD$QIODRVPKT

Delivers an IRP to a driver’s start-I/O routine or pending-I/O queue.

Prototype

int exe_std$qiodrvpkt (IRP *irp, UCB *ucb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Parameter Fields

Field Contents

ucb->read fields

UCB$B_FLCK Fork lock index

UCB$L_STS UCB$V_BSY set if device is busy, clear if device is

idle

UCB$L_IOQFL Address of pending-I/O queue listhead

UCB$L_QLEN Length of pending-I/O queue

ucb->write fields

UCB$L_STS UCB$V_BSY set

UCB$W_QLEN Increased

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT

processing is complete. The routine that
receives this status can no longer safely access
the IRP.

502

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$QIODRVPKT

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

EXE_STD$QIODRVPKT is called by, and returns to, a driver’s FDT routine at
IPL$_ASTDEL.

Description

The FDT completion routine EXE_STD$QIODRVPKT delivers an IRP to the
driver’s start-I/O routine or pending-I/O queue.

EXE_STD$QIODRVPKT clears the pointer to the FDT context structure in

IRP$PS_FDT_CONTEXT and calls. EXE_STD$INSIOQ checks the status of

the device and calls either EXE_STD$INSERT_IRP or IOC_STD$INITIATE
to place the IRP in the device’s pending-I/O queue or deliver it to the driver’s
start-I/O routine, respectively.

When EXE_STD$INSIOQ returns, EXE_STD$QIODRVPKT returns SS$_
FDT_COMPL status to its caller, passing SS$_ NORMAL as the final $QIO
completion status in the FDT context structure.

The image that requested the I/O operation receives SS$_ NORMAL status,

indicating that the I/O request has completed without device-independent

error.

503

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$QUEUE_FORK

EXE_STD$QUEUE_FORK

TBS

Prototype

void exe_std$queue_fork (FKB *fkb)

Parameters

Name Access ___ Description

fkb Input Pointer to the address of a fork block, usually in
the UCB.

504

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE _STD$QXQPPKT

EXE_STD$QXQPPKT

Inserts an I/O request packet on the end of the XQP work queue and initiates
its processing if it is the only request on the queue.

Prototype

void exe_std$queue_fork (FKB *fkb)

Parameters

Name Access ___ Description

pcb Input Pointer to the process control block of the

current process.

acb Pointer
to the
AST
control

block
within

the
IRP.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

EXE_STD$QXQPPKT is called by, and returns to, a driver’s FDT routine at

IPL$_ASTDEL.

505

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$READ

EXE_STD$READ

Translates a logical read function into a physical read function, transfers $QIO

system service parameters to the IRP, validates and prepares a user buffer, and

aborts the request or proceeds with a direct-I/O, DMA write operation.

Prototype

int exe_std$read (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the

current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the
process I/O channel.

506

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

Parameter Fields

Field

EXE_STD$READ

Contents

irp-> read fields

IRP$L_QIO_P1

IRP$L_QIO_P2

IRP$L_QIO_P4

IRP$L_FUNC

IRP$B_RMOD

irp-> write fields

IRP$B_CARCON

IRP$L_FUNC

IRP$L_STS

IRP$L_SVAPTE

IRP$L_BOFF

IRP$L_OBOFF

IRP$L_BCNT

Return Values

SS$_FDT_COMPL

$QIO system service pl argument, containing the
buffer’s virtual address.

$QIO system service p2 argument, containing the
number of bytes in transfer. The maximum number
of bytes that EXE_STD$READ can transfer is 65,535
(128 pages minus one byte).

$QIO system service p4 argument, containing the
carriage control byte.

I/O function code.

Access mode of the caller of the $QIO system service.

Carriage control byte (from IRP$L_QIO_P4)

Logical read function code converted to physical

IRP$V_FUNC set to indicate read function

System virtual address of the PTE that maps the
first page of the buffer

Byte offset to start of transfer in page

Original byte offset into the first page of a

segmented direct-I/O transfer

Size of transfer in bytes

Warning-level status indicating that FDT
processing is complete. The routine that

receives this status can no longer safely access

the IRP.

507

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$READ

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not

allow write access.

SS$_BADPARAM bufsiz parameter is less than zero.

SS$_INSFWSL Insufficient working set limit.

SS$_NORMAL The I/O request has been successfully queued.

SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$READ as an
upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_

STD$READ to prepare a direct-I/O read request. A driver cannot specify EXE_

STD$READ for buffered-I/O functions. Drivers that process functions that
require an intermediate system buffer typically supply their own upper-level
FDT action routines to handle them. |

EXE_STD$READ performs the following functions:

e Sets IRP$V_FUNC in IRP$L_STS to indicate a read function

¢ Copies the p4 argument of the $QIO request from IRP$L_QIO_P4 to
IRP$B_CARCON

e Translates a logical read function to a physical read function and stores the
new function code in IRP$L_FUNC.

¢ Examines the size of the transfer, as specified in the p2 argument of the
$QIO request (IRP$L_QIO_P2), and takes one of the following actions:

— Ifthe transfer byte count is zero, EXE_STD$READ invokes the
$QIODRVPKT macro to deliver the IRP to the driver’s start-I/O

routine. EXE_STD$READ regains control with SS$_FDT_COMPL
status in RO and a final $QIO system service status of SS$ NORMAL
in the FDT_CONTEXT structure. It returns to the $QIO system
service, passing these status values.

The driver start-I/O routine should check for zero-length buffers to
avoid mapping to adapter node space. An attempted mapping can
cause a system failure.

508

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$READ

— Ifthe byte count is not zero, EXE_STD$READ calls EXE_
STD$READLOCK, specifying 0 as the err_rout argument.

EXE_STD$READLOCK invokes the $READCHK macro, which calls EXE_
STD$READCHK.

EXE_STD$READCHK performs the following actions:

¢ Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing
it a qio_sts of SS$_ BADPARAM. When it regains control, EXE_
STD$READCHK returns to EXE_LSTD$READLOCK with SS$_BADPARAM
status in the FDT_CONTEXT structure and SS$_FDT_COMPL status in
RO. EXE_STD$READLOCK immediately returns to EXE_STD$READ,

passing these status values. EXE_STD$READ, in turn, returns to the

$QIO system service.

e Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

— Ifthe buffer allows write access, EXE_STD$READCHK sets IRP$V_

FUNC in IRP$L_STS and returns SS$_ NORMAL in RO to EXE_

STD$READLOCK.

— Ifthe buffer does not allow write access, EXE_STD$READCHK

calls EXE_STD$ABORTIO, passing it a qio_sts of SS$_ACCVIO.
When it regains control, EXE_STD$READCHK returns to EXE_

STD$READLOCK with SS$_ACCVIO status in the FDT_CONTEXT
structure and SS$_ FDT_COMPL status in RO. EXE_STD$READLOCK

immediately returns to EXE_STD$READ, passing these status values.
EXE_STD$READ returns to the $QIO system service.

If EXE_STD$READCHK succeeds, EXE_STD$READLOCK moves into IRP$L_

BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and calls

MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain

the buffer, with one of the following results:

e IfMMG STD$IOLOCK succeeds, EXE_STD$READLOCK stores in IRP$L_

SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns SS$_NORMAL status in RO to EXE_
STD$READLOCK. EXE_STD$READLOCK returns immediately to EXE_

STD$READ, passing to it this status value.

509

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$READ

510

EXE_STD$READ invokes the $QIODRVPKT macro to deliver the IRP

to the driver’s start-I/O routine. EXE_STD$READ regains control with
SS$_FDT_COMPL status in RO and a final $QIO system service status of
SS$_ NORMAL in the FDT_CONTEXT structure. It returns to the $QIO

system service, passing these status values.

If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or
page fault status to EXE_STD$READLOCK.

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$READLOCK calls

EXE_STD$ABORTIO, passing it one of these status values as a qio_sts
argument. When it regains control, EXE_STD$READLOCK returns EXE_

STD$READ the specified status value in the FDT_CONTEXT structure
and SS$_FDT_COMPL status in RO. EXE_STD$READ returns to the $QIO
system service.

For page fault status, EXE_STD$READLOCK sets the final $QIO status in
the FDT_CONTEXT structure to SS$_QIO_CROCK and initializes FDT_
CONTEXT$L_QIO_R1_VALUE to the virtual address to be faulted. It then

adjusts the direct I/O count and AST count to the values they held before
the I/O request, deallocates the IRP, and restarts the I/O request at the
$QIO system service. This procedure is carried out so that the user process
can receive ASTs while it waits for the page fault to complete. Once the
page is faulted into memory, the $QIO system service will resubmit the I/O
request.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$READCHK

EXE_STD$READCHK

Verifies that a process has write access to the pages in the buffer specified in a
$QIO request.

Prototype

int exe_std$readchk (IRP *inp, PCB *pcb, UCB *ucb, void “buf, int bufsiz)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

peb Input Pointer to the process control block of the

current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

buf Input Pointer to the virtual address of buffer.

bufsiz Input Pointer to the number of bytes in transfer.

Parameter Fields

Field Contents

irp->

IRP$L_STS IRP$V_FUNC set, indicating a read function

IRP$L_BCNT Size of transfer in bytes

Return Values

SS$_NORMAL The buffer is write-accessible.

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access

the IRP.

511

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$READCHK

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not

allow write access.

SS$_BADPARAM bufsiz parameter is less than zero.

SS$_INSFWSL Insufficient working set limit.

SS$_NORMAL Nothing has occurred yet to prevent the I/O

request from being successfully queued. This
is the initial value of the status field in an

FDT_CONTEXT structure.

Context

The FDT support routine EXE_STD$READLOCK, or a driver-specific FDT

routine, calls EXE_STD$READCHK at IPL$_ASTDEL.

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_
STD$READCHK to check the write accessibility of an I/O buffer supplied in a

$QIO request for a read function.

EXE_STD$READCHK performs the following actions:

¢ Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing
it a qio_sts of SS$_BADPARAM. When it regains control, EXE_
STD$READCHK returns to its caller with SS$ BADPARAM status in

the FDT_CONTEXT structure and SS$_FDT_COMPL status in RO.

e Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

— Ifthe buffer allows write access, EXE_STD$READCHK sets IRP$V_

FUNC in IRP$L_STS and returns SS$ NORMAL in RO to its caller.

— Ifthe buffer does not allow write access, EXE_STD$READCHK calls
EXE_STD$ABORTIO, passing it a qio_sts of SS$_ ACCVIO. When
it regains control, EXE_STD$READCHK returns to its caller with
SS$_ACCVIO status in the FDT_CONTEXT structure and SS$_FDT_
COMPL status in RO.

The caller of EXE_STD$READCHK must examine the status in RO:

e Ifthe status is SS$_NORMAL, the buffer is write-accessible.

512

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$READCHK

e §6If the status is SS$_FDT_COMPL, an error has occurred that has caused

the I/O request to be aborted. You can determine the reason for the failure
from FDT_CONTEXT$L_QIO_STATUS.

Certain drivers must perform additional processing to back out an I/O request
after it has aborted. For instance, if the driver has locked multiple buffers
into memory for a single I/O request, it must unlock them once the request

has been aborted. A driver cannot access the IRP once it has received SS$_
FDT_COMPL status. If you know you need access to information stored in

the IRP to back out an I/O request that has been aborted, you must store that

information elsewhere prior to calling EXE_STD$READCHK.

513

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$READLOCK

EXE_STD$READLOCK

Validates and prepares a user buffer for a direct-I/O, DMA write operation.

Prototype

int exe_std$readlock (IRP *irp, PCB *pcb, UCB “ucb, CCB “*ccb, void “buf, int

bufsiz, void (*err_rout)(IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb, int errsts))

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

peb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the
process I/O channel.

buf Input Pointer to the virtual address of buffer.

bufsiz Input Pointer to the number of bytes in transfer.

err_rout Input Pointer to the procedure value of error-handling
callback routine, or 0 if the driver does not
process errors.

A driver typically specifies an error-handling
callback routine when the driver must lock

multiple areas into memory for a single I/O

request and regain control to unlock these areas,
if the request is to be aborted. The routine

performs those tasks required before the request
is backed out of or aborted. Such operations
could include calling MMG_STD$UNLOCK to
release previous buffers participating in the
I/O operation. The error-handling routine must
preserve RO and R1 and return back to EXE_
STD$READLOCK.

514

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

Parameter Fields

EXE STD$READLOCK

Field Contents

irp->

IRP$L_STS IRP$V_FUNC set, indicating a read function

IRP$L_SVAPTE System virtual address of the PTE that maps the

first page of the buffer

IRP$L_BOFF Byte offset to start of transfer in page

IRP$L_OBOFF

IRP$L_BCNT

Return Values

SS$_ NORMAL

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_ACCVIO

SS$_BADPARAM

SS$_INSFWSL

SS$_NORMAL

SS$_QIO_CROCK

Context

Original byte offset into the first page of a
segmented direct-I/O transfer

Size of transfer in bytes

The buffer is write-accessible and has been
locked in memory.

Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access

the IRP.

Buffer specified in buf parameter does not
allow write access.

bufsiz parameter is less than zero.

Insufficient working set limit.

Nothing has occurred yet to prevent the I/O
request from being successfully queued. This

is the initial value of the status field in an
FDT_CONTEXT structure.

Buffer page must be faulted into memory.

The system-supplied upper-level FDT action routine EXE_STD$READ, or a
driver-specific upper-level FDT action routine, calls EXE_STD$READLOCK at

IPL$_ASTDEL.

515

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE _STD$READLOCK

Description

516

A driver FDT routine calls the system-supplied FDT support routine EXE_

STD$READLOCK to check the write accessibility of an I/O buffer supplied in a

$QIO request for a read function, and lock the buffer in memory in preparation

for a DMA write operation.

A driver cannot specify EXE_STD$READ for buffered-I/O functions. Drivers

that process functions that require an intermediate system buffer typically

supply their own FDT routines to handle them.

EXE STD$READLOCK invokes the $READCHK macro, which calls EXE_

STD$READCHK.

EXE_STD$READCHK performs the following actions:

¢ Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, EXE_STD$READCHK returns SS$_
BADPARAM status to EXE_STD$READLOCK.

e¢ Determines if the specified buffer is write accessible for a read I/O function,
with one of the following results:

— Ifthe buffer allows write access, EXE_STD$READCHK sets IRP$V_

FUNC in IRP$L_STS and returns SS$_ NORMAL in RO to EXE_
STD$READLOCK.

— Ifthe buffer does not allow write access, EXE_STD$READCHK returns
SS$_ACCVIO status to EXE$_STD$READLOCK.

If error status (SS$_BADPARAM or SS$_ACCVIO) is returned, EXE_
STD$READLOCK immediately calls the specified error-handling callback
routine, passing to it the IRP, PCB, UCB, CCB, and status value. The

callback routine must preserve RO and Ri and return control to EXE_
STD$READLOCK. When the callback routine returns (or if no callback
routine is specified), EXE_STD$READLOCK calls EXE_STD$ABORTIO,
passing it the error status as qio_sts. EXE_STD$ABORTIO returns to EXE_
STD$READLOCK with the error status in the FDT_CONTEXT structure and
SS$_FDT_COMPL status in RO. EXE_STD$READLOCK immediately returns
to its caller, passing these status values.

If SS$_NORMAL status is returned, EXE_STD$READLOCK moves into
IRP$L_BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and
calls MMG_STD$IOLOCK.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$READLOCK

MMG_STD$IOLOCK attempts to lock into memory those pages that contain
the buffer, with one of the following results:

If MMG_STD$IOLOCK succeeds, EXE_STD$READLOCK stores in IRP$L_

SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns SS$_ NORMAL status in RO to EXE_
STD$READLOCK. EXE_STD$READLOCK returns immediately to its
caller, passing to it this status value.

If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL,
or page fault status to EXE_STD$READLOCK. EXE_STD$READLOCK
immediately calls the specified error-handling callback routine, passing

to it the IRP, PCB, UCB, CCB, and status value. The callback routine

must preserve RO and Ri and return control to EXE_STD$READLOCK.

When the callback routine returns (or if no callback routine is specified),
EXE_STD$READLOCK proceeds as follows:

—- For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$READLOCK
calls EXE_STD$ABORTIO, passing it one of these status values as a
qio_sts argument. When it regains control, EXE_STD$READLOCK
returns to its caller the specified status value in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in RO.

— For page fault status, EXE_STD$READLOCK sets the final $QIO
status in the FDT_CONTEXT structure to SS$_QIO_CROCK and
initializes FDT_CONTEXT$L_QIO_R1_VALUE to the virtual address
to be faulted. It then adjusts the direct I/O count and AST count to

the values they held before the I/O request, deallocates the IRP, and

restarts the I/O request at the $QIO system service. This procedure is
carried out so that the user process can receive ASTs while it waits for

the page fault to complete. Once the page is faulted into memory, the
$QIO system service will resubmit the I/O request.

The caller of EXE_STD$READLOCK must examine the status in RO:

If the status is SS$ NORMAL, the buffer is write accessible and has been

successfully locked into memory and the starting virtual address of the
page table entries that map the buffer is available in IRP$L_SVAPTE.

If the status is SS$_ FDT_COMPL, an error has occurred that has caused

the I/O request to be aborted. You can determine the reason for the failure

from FDT_CONTEXT$L_QIO_STATUS. Ordinarily a driver specifies an
error-handling callback routine to process such errors.

517

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$READLOCK

518

Note that a driver cannot access the IRP once it has received SS$_FDT_

COMPL status. If you know you need access to information stored in the
IRP to back out an I/O request that has been aborted, you must store that
information elsewhere prior to calling EXE_STD$READLOCK.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$SENSEMODE

EXE_STD$SENSEMODE

Copies device-dependent characteristics from the device’s UCB into the second
longword of the I/O status block (IOSB) specified in a $QIO system service call,

and completes the I/O operation successfully.

Prototype

int exe_std$sensemode (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Parameters

Name Access’ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the

current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the
process I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access

the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$SENSEMODE
as an upper-level FDT action routine at IPL$_ASTDEL.

519

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$SENSEMODE

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_

STD$SENSEMODE to process the sense-device-mode (IO$_SENSEMODE) and

sense-device-characteristics (IO$_ SENSECHAR) I/O functions.

EXE_STD$SENSEMODE loads the contents of UCB$L_DEVDEPEND into

the second longword of the I/O status block (IOSB) specified in the original
$QIO system service call. It then places SS$_ NORMAL status into the FDT_
CONTEXT structure and transfers control to EXE_STD$FINISHIO to insert
the IRP in the local processor’s I/O postprocessing queue.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$SETCHAR, EXE_STD$SETMODE

EXE _STD$SETCHAR, EXE_STD$SETMODE

Write device-specific status and control information into the device’s UCB and

complete the I/O request (EXE_STD$SETCHAR); or write the information
into the IRP and deliver the IRP to the driver’s start-I/O routine (EXE_
STD$SETMODE).

Prototype

int exe_std$setchar (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

int exe_std$setmode (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Parameters

Name

irp

pcb

ucb

ecb

Access

Input

Input

Input

Input

Description

Pointer to the I/O request packet.

Pointer to the process control block of the

current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the channel control block for the

process I/O channel.

521

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$SETCHAR, EXE_STD$SETMODE

Parameter Fields

Field Contents

irp-> read fields

IRP$L_FUNC

IRP$B_RMOD

IRP$L_QIO_P1

irp-> write fields

IRP$L_MEDIA

IRP$L_MEDIA+4

ucb-> write fields

UCB$B_DEVCLASS

UCB$B_DEVTYPE

UCB$W_DEVBUFSIZ

UCB$L_DEVDEPEND

Return Values

SS$_FDT_COMPL

Status in FDT_CONTEXT

SS$_NORMAL

SS$_ACCVIO

522

I/O function code supplied in the $QIO request.

Mode of the $QIO caller.

$QIO system service pl argument, containing the

device characteristics quadword.

First longword of device characteristics.

Second longword of device characteristics.

Byte 0 of device characteristics quadword.

Byte 1 of device characteristics quadword.

Bytes 2 and 3 of device characteristics quadword.

Bytes 4 through 7 of device characteristics

quadword.

Warning-level status indicating that FDT

processing is complete. The routine that

receives this status can no longer safely access
the IRP.

The routine completed successfully.

Process calling the $QIO system service

with the IO$_SETMODE or IO0$_SETCHAR
function does not have read access to
the quadword containing the new device
characteristics.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE _STD$SETCHAR, EXE_STD$SETMODE

SS$_ILLIOFUNC I0$_SETMODE and IO$_SETCHAR functions
are not legal for disk devices.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$SETCHAR
and EXE_STD$SETMODE as upper-level FDT action routines at IPL$_

ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine

EXE_STD$SETCHAR or EXE_STD$SETMODE to process the set-device-

mode (I10$_SETMODE) and set-device-characteristics (IO$_ SETCHAR)

functions, respectively. If setting device characteristics requires device

activity or synchronization with fork processing, the driver’s FDT_ACT
macro invocation must specify EXE_STD$SETMODE. Otherwise, it can specify
EXE_STD$SETCHAR.

EXE STD$SETCHAR and EXE_STD$SETMODE examine the current value
of UCB$B_DEVCLASS to determine whether the device permits the specified
function. If the device class is disk (DC$_DISK), the routines place SS$_
ILLIOFUNC status in the FDT_CONTEXT structure and transfer control to

EXE_STD$ABORTIO to terminate the request.

EXE_STD$SETCHAR and EXE_STD$SETMODE then ensure that the process
has read access to the quadword containing the new device characteristics.
If it does not, the routines place SS$_ACCVIO status in the FDT_CONTEXT

structure and transfer control to EXE_STD$ABORTIO to terminate the

request.

If the request passes these checks, EXE_STD$SETCHAR and EXE_

STD$SETMODE proceed as follows:

e EXE STD$SETCHAR stores the specified characteristics in the UCB. For

an 10$ SETCHAR function, the device type and class fields (UCB$B_
DEVCLASS and UCB$B_DEVTYPE, respectively) receive the first word

of data. For both I0$¢_SETCHAR and IO$_SETMODE functions, EXE_

STD$SETCHAR writes the second word into the default-buffer-size

field (UCB$W_DEVBUFSIZ) and the third and fourth words into the

device-dependent-characteristics field (UCB$Q_DEVDEPEND).

523

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$SETCHAR, EXE_STD$SETMODE

524

Finally, EXE_STD$SETCHAR stores normal completion status (SS$_

NORMAL) in the FDT_CONTEXT structure and transfers control to the
FDT completion routine EXE_STD$FINISHIO to insert the IRP in the

local processor’s I/O postprocessing queue. EXE_STD$FINISHIO returns

to EXE_STD$SETCHAR with SS$_FDT_COMPL status in RO and a final
$QIO system service status of SS$_ NORMAL in the FDT_CONTEXT
structure.

¢ EXE_STD$SETMODE stores the specified quadword of characteristics
in IRP$L_MEDIA, places normal completion status (SS$_NORMAL) in
the FDT_CONTEXT structure, and transfers control to FDT completion

routine EXE_STD$QIODRVPKT to deliver the IRP to the driver’s start-I/O

routine. EXE_STD$QIODRVPKT returns to EXE_STD$SETMODE with

SS$_FDT_COMPL status in RO and a final $QIO system service status of
SS$ NORMAL in the FDT_CONTEXT structure.

The driver’s start-I/O routine copies data from IRP$L_MEDIA and the

following longword into UCB$W_DEVBUFSIZ, UCB$L_DEVDEPEND, and,

if the I/O function is IO$_SETCHAR, UCB$B_DEVCLASS and UCB$B_
DEVTYPE as well.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$SNDEVMSG

EXE _STD$SNDEVMSG

Builds and sends a device-specific message to the mailbox of a system process,
such as the job controller or OPCOM.

int exe_std$sndevmsg (MB_UCB *mb_ucb, int msgtyp, UCB *ucb)

Prototype

Parameters

Name Access

mb_ucb Input

msgtyp Input

ucb Input

Return Values

SS$_DEVNOTMBX

SS$_INSFMEM

SS$_MBFULL

SS$_MBTOOSML

SS$_NOPRIV

SS$_NORMAL

Description

Pointer to the Mailbox UCB. (SYS$AR_
JOBCTLMB contains the address of the
job controller’s mailbox; SYS$AR_OPRMBX
contains the address of OPCOM’s mailbox.)

Pointer to the Message type. OPCOM

message types have the prefix OPC$_ and
are defined by the $OPCMSG macro in
SYS$LIBRARY:STARLET.MLB.

Pointer to the unit control block of the device

assigned to the process I/O channel.

mb_ucb does not specify a mailbox UCB.

The system is unable to allocate memory for

the message.

The message mailbox is full of messages.

The message is too large for the mailbox.

The caller lacks privilege to write to the

mailbox.

Normal, successful completion.

525

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$SNDEVMSG

Context

Because EXE_STD$SNDEVMSG raises IPL to IPL$_ MAILBOX and obtains

the MAILBOX spin lock in a multiprocessing environment, its caller cannot

be executing above IPL$_MAILBOX. EXE_STD$SNDEVMSG returns control
to its caller at the caller’s IPL. The caller retains any spin locks it held at the

time of the call.

Description

EXE_STD$SNDEVMSG builds a 32-byte message on the stack that includes
the following information:

Bytes Contents

0 and 1 Low word of msgtyp parameter

2 and 3 Device unit number (UCB$W_UNIT)

4 through 31 Counted string of device controller name, formatted as
node$controller for clusterwide devices

EXE_STD$SNDEVMSG then calls EXE_STD$WRTMAILBOX to send the

message to a mailbox.

526

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$WRITE

EXE_STD$WRITE

Translates a logical write function into a physical write function, transfers
$QIO system service parameters to the IRP, validates and prepares a user

buffer, and aborts the request or proceeds with a direct-I/O, DMA read
operation.

Prototype

int exe_std$write (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the
process I/O channel.

527

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$WRITE

Parameter Fields

Field Contents

irp-> read fields

IRP$L_QIO_P1

IRP$L_QIO_P2

IRP$L_QIO_P4

IRP$L_FUNC

IRP$B_RMOD

irp->write fields

IRP$B_CARCON

IRP$L_FUNC

IRP$L_SVAPTE

IRP$L_BOFF

IRP$L_OBOFF

IRP$L_BCNT

$QIO system service pl argument, containing the

buffer’s virtual address.

$QIO system service p2 argument, containing the
number of bytes in transfer. The maximum number
of bytes that EXE_STDSWRITE can transfer is
65,535 (128 pages minus one byte).

$QIO system service p4 argument, containing the

carriage control byte.

I/O function code.

Access mode of the caller of the $QIO system service.

Carriage control byte (from IRP$L_QIO_P4)

Logical write function code converted to physical

System virtual address of the PTE that maps the
first page of the buffer

Byte offset to start of transfer in page

Original byte offset into the first page of a
segmented direct-I/O transfer

Size of transfer in bytes

Return Values

528

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that

receives this status can no longer safely access
the IRP.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$WRITE

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not
allow read access.

SS$_BADPARAM bufsiz parameter is less than zero.

SS$_INSFWSL Insufficient working set limit.

SS$_NORMAL The I/O request has been successfully queued.

SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$WRITE as
an upper-level FDT action routine at IPL$_ASTDEL.

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_

STD$WRITE to prepare a direct-I/O write request. A driver cannot specify
EXE_STD$WRITE for buffered-I/O functions. Drivers that process functions

that require an intermediate system buffer typically supply their own upper-
level FDT action routines to handle them.

EXE_STD$WRITE performs the following functions:

¢ Copies the p4 argument of the $QIO request from IRP$L_QIO_P4 to

IRP$B_CARCON

e Translates a logical write function to a physical write function and stores

the new function code in IRP$L_FUNC.

e Examines the size of the transfer, as specified in the p2 argument of the
$QIO request (IRP$L_QIO_P2), and takes one of the following actions:

— Ifthe transfer byte count is zero, EXE_STD$WRITE invokes the
$QIODRVPKT macro to deliver the IRP to the driver’s start-I/O
routine. EXE_STD$WRITE regains control with SS$_FDT_COMPL

status in RO and a final $QIO system service status of SS$_ NORMAL
in the FDT_CONTEXT structure. It returns to the $QIO system

service, passing these status values.

The driver start-I/O routine should check for zero-length buffers to
avoid mapping to adapter node space. An attempted mapping can

cause a system failure.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$WRITE

530

— Ifthe byte count is not zero, EXE STD$WRITE calls EXE_

STD$WRITELOCK, passing 0 as the value of the err_rout argument.

EXE_STD$WRITELOCK invokes the $WRITECHK macro, which calls EXE_

STD$WRITECHK.

EXE_STD$WRITECHK performs the following actions:

Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing

it a qio_sts of SS$_BADPARAM. When it regains control, EXE_
STD$WRITECHK returns to EXE_LSTD$WRITELOCK with SS$_
BADPARAM status in the FDT_CONTEXT structure and SS$_FDT_

COMPL status in RO. EXE_STD$WRITELOCK immediately returns to
EXE_STD$WRITE, passing these status values. EXE_STD$WRITE, in
turn, returns to the $QIO system service.

Determines if the specified buffer is read accessible for a write I/O function,

with one of the following results:

— Ifthe buffer allows read access returns SS$ NORMAL in RO to EXE_

STD$WRITELOCK.

— Ifthe buffer does not allow read access, EXE_STD$WRITECHK

calls EXE_STD$ABORTIO, passing it a qio_sts of SS$_ACCVIO.
When it regains control, EXE_STD$WRITECHK returns to
EXE_STD$WRITELOCK with SS$_ACCVIO status in the FDT_

CONTEXT structure and SS$_FDT_COMPL status in RO. EXE_

STD$WRITELOCK immediately returns to EXE_STD$WRITE, passing
these status values. EXE_STD$WRITE returns to the $QIO system
service.

If EXE_STD$WRITECHK succeeds, EXE_STD$WRITELOCK moves into
IRP$L_BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and
calls MMG_STD$IOLOCK.

MMG_STD$IOLOCK attempts to lock into memory those pages that contain
the buffer, with one of the following results:

If MMG_STD$IOLOCK succeeds, EXE_STD$WRITELOCK stores in
IRP$L_SVAPTE the system virtual address of the process PTE that maps
the first page of the buffer, and returns SS$_ NORMAL status in RO to
EXE_STD$WRITELOCK. EXE_STD$WRITELOCK returns immediately to
EXE_STD$WRITE, passing to it this status value.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$WRITE

EXE_STD$WRITE invokes the $QIODRVPKT macro to deliver the IRP

to the driver’s start-I/O routine. EXE_STD$WRITE regains control with
SS$_FDT_COMPL status in RO and a final $QIO system service status of
SS$_NORMAL in the FDT_CONTEXT structure. It returns to the $QIO
system service, passing these status values.

If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or

page fault status to EXE_STD$WRITELOCK.

For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$WRITELOCK

calls EXE_STD$ABORTIO, passing it one of these status values as a qio_

sts argument. When it regains control, EXE_STD$WRITELOCK returns
EXE_STD$WRITE the specified status value in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in RO. EXE_STD$WRITE returns
to the $QIO system service.

For page fault status, EXE_STD$WRITELOCK sets the final $QIO status
in the FDT_CONTEXT structure to SS$_QIO_CROCK and initializes FDT_

CONTEXT$L_QIO_R1_VALUE to the virtual address to be faulted. It then
adjusts the direct I/O count and AST count to the values they held before

the I/O request, deallocates the IRP, and restarts the I/O request at the

$QIO system service. This procedure is carried out so that the user process
can receive ASTs while it waits for the page fault to complete. Once the
page is faulted into memory, the $QIO system service will resubmit the I/O

request.

531

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$WRITECHK

EXE_STD$WRITECHK

Verifies that a process has read access to the pages in the buffer specified in a

$QIO request.

Prototype

int exe_std$writechk (IRP *irp, PCB *pcb, UCB “ucb, void *buf, int bufsiz)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

peb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

buf Input Pointer to the virtual address of buffer.

bufsiz Input Pointer to the number of bytes in transfer.

Return Values

SS$_NORMAL

SS$_FDT_COMPL

Status in FDT CONTEXT

SS$_ACCVIO

SS$_BADPARAM

SS$_INSFWSL

532

The buffer is read-accessible.

Warning-level status indicating that FDT
processing is complete. The routine that

receives this status can no longer safely access
the IRP.

Buffer specified in buf parameter does not
allow read access.

bufsiz parameter is less than zero.

Insufficient working set limit.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$WRITECHK

SS$_NORMAL Nothing has occurred yet to prevent the I/O

Context

request from being successfully queued. This
is the initial value of the status field in an

FDT_CONTEXT structure.

The FDT support routine EXE_STD$WRITELOCK, or a driver-specific FDT
routine, calls EXE_STD$WRITECHK at IPL$ ASTDEL.

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_

STD$WRITECHK to check the read accessibility of an I/O buffer supplied in a
$QIO request for a write function.

EXE_STD$WRITECHK performs the following actions:

Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, it calls EXE_STD$ABORTIO, passing
it a qio_sts of SS$_BADPARAM. When it regains control, EXE_
STD$WRITECHK returns to its caller with SS$ BADPARAM status in

the FDT_CONTEXT structure and SS$_FDT_COMPL status in RO.

Determines if the specified buffer is read accessible for a write I/O function,
with one of the following results:

— Ifthe buffer allows read access, EXE_STD$WRITECHK returns SS$_

NORMAL in RO to its caller.

— Ifthe buffer does not allow read access, EXE_STD$WRITECHK calls

EXE_STD$ABORTIO, passing it a qio_sts of SS$_ ACCVIO. When
it regains control, EXE_STD$WRITECHK returns to its caller with
SS$ _ACCVIO status in the FDT_CONTEXT structure and SS$_FDT_

COMPL status in RO.

The caller of EXE _STD$WRITECHK must examine the status in RO:

If the status is SS$_ NORMAL, the buffer is read-accessible.

If the status is SS$_ FDT_COMPL, an error has occurred that has caused

the I/O request to be aborted. You can determine the reason for the failure

from FDT_CONTEXT$L_QIO_STATUS.

533

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$WRITECHK

534

Certain drivers must perform additional processing to back out an I/O request

after it has aborted. For instance, if the driver has locked multiple buffers into
memory for a single I/O request, it must unlock them once the request has

been aborted. Note that a driver cannot access the IRP once it has received
SS$_FDT_COMPL status. If you know you need access to information stored
in the IRP to back out an I/O request that has been aborted, you must store
that information elsewhere prior to calling EXE_STD$WRITELOCK.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE STD$WRITELOCK

EXE_STD$WRITELOCK

Validates and prepares a user buffer for a direct-I/O, DMA read operation.

Prototype

int exe_std$writelock (IRP *irp, PCB *pcb, UCB “ucb, CCB *ccb, void *buf, int
bufsiz, void (“err_rout)(IRP *irp, PCB *pcb, UCB *ucb, CCB “*ccb, int errsts))

Parameters

Name

irp

peb

ucb

ecb

buf

bufsiz

err_rout

Access

Input

Input

Input

Input

Input

Input

Input

Description

Pointer to the I/O request packet.

Pointer to the process control block of the

current process.

Pointer to the unit control block of the device

assigned to the process I/O channel.

Pointer to the channel control block for the

process I/O channel.

Pointer to the virtual address of buffer.

Pointer to the number of bytes in transfer.

Procedure value of error-handling callback

routine, or 0 if the driver does not process

errors.

A driver typically specifies an error-handling
callback routine when it must lock multiple
areas into memory for a single I/O request and
must regain control to unlock these areas, if the
request is to be aborted. The routine performs
those tasks required before the request is backed
out of or aborted. Such operations could include
calling MMG_STD$UNLOCK to release previous
buffers participating in the I/O operation. The

error-handling routine must preserve RO and R1

and return back to EXE_STD$WRITELOCK.

535

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$WRITELOCK

Parameter Fields
Se Se Bes Ea SS eS

Field Contents

irp->

IRP$L_SVAPTE System virtual address of the PTE that maps the

first page of the buffer

IRP$L_BOFF Byte offset to start of transfer in page

IRP$L_OBOFF Original byte offset into the first page of a
segmented direct-I/O transfer

IRP$L_BCNT Size of transfer in bytes

Return Values

SS$ NORMAL The buffer is read-accessible and has been

locked in memory.

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that

receives this status can no longer safely access
the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Buffer specified in buf parameter does not

allow read access.

SS$_BADPARAM bufsiz parameter is less than zero.

SS$_INSFWSL Insufficient working set limit.

SS$_NORMAL Nothing has occurred yet to prevent the I/O
request from being successfully queued. This

is the initial value of the status field in an
FDT_CONTEXT structure.

SS$_INSFWSL Insufficient working set limit.

SS$_QIO_CROCK Buffer page must be faulted into memory.

Context

The system-supplied upper-level FDT action routine EXE_STD$WRITE, or a
driver-specific upper-level FDT action routine, calls EXE_STD$WRITELOCK
at IPL$_ASTDEL.

536

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$WRITELOCK

Description

A driver FDT routine calls the system-supplied FDT support routine EXE_

STD$WRITELOCK to check the read accessibility of an I/O buffer supplied
in a $QIO request for a write function, and lock the buffer in memory in
preparation for a DMA write operation.

A driver cannot specify EXE_STD$WRITE for buffered-I/O functions. Drivers

that process functions that require an intermediate system buffer typically
supply their FDT routines to handle them.

EXE_STD$WRITELOCK invokes the $WRITECHK macro, which calls EXE_
STD$WRITECHK.

EXE_STD$WRITECHK performs the following actions:

¢ Moves the transfer byte count (bufsiz parameter) into IRP$L_BCNT.

If the byte count is negative, EXE_STD$WRITECHK returns SS$_
BADPARAM status to EXE_STD$READLOCK.

e Determines if the specified buffer is read accessible for a write I/O function,

with one of the following results:

— Ifthe buffer allows read access, EXE_STD$WRITECHK returns SS$_
NORMAL in RO to EXE_STD$WRITELOCK.

— Ifthe buffer does not allow write access, EXE_STD$READCHK returns

SS$_ACCVIO status to EXE$_STD$READLOCK.

If error status (SS$_BADPARAM or SS$_ACCVIO) is returned, EXE_
STD$WRITELOCK immediately calls the specified error-handling callback
routine, passing to it the IRP, PCB, UCB, CCB, and status value. The
callback routine must preserve RO and R1 and return control to EXE_

STD$WRITELOCK. When the callback routine returns (or if no callback

routine is specified), EXE_LSTD$WRITELOCK calls EXE_STD$ABORTIO,
passing it the error status as qio_sts. EXE_STD$ABORTIO returns to EXE_

STD$WRITELOCK with the error status in the FDT_CONTEXT structure and

SS$_FDT_COMPL status in RO. EXE_STD$WRITELOCK immediately returns

to its caller, passing these status values.

If SS$_ NORMAL status is returned, EXE_STD$WRITELOCK moves into
IRP$L_BOFF and IRP$L_OBOFF the byte offset to the start of the buffer and

calls MMG_STD$IOLOCK.

537

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE _STD$WRITELOCK

538

MMG._STD$IOLOCK attempts to lock into memory those pages that contain

the buffer, with one of the following results:

If MMG_STD$IOLOCK succeeds, EXE_STD$WRITELOCK stores in

IRP$L_SVAPTE the system virtual address of the process PTE that maps

the first page of the buffer, and returns SS$_NORMAL status in RO to

EXE STD$WRITELOCK. EXE_STD$WRITELOCK returns immediately to

its caller, passing to it this status value.

If MMG_STD$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or

page fault status to EXE_STD$WRITELOCK. EXE_STD$WRITELOCK
immediately calls the specified error-handling callback routine, passing

to it the IRP, PCB, UCB, CCB, and status value. The callback routine

must preserve RO and R1 and return control to EXE_STD$WRITELOCK.
When the callback routine returns (or if no callback routine is specified),
EXE_STD$WRITELOCK proceeds as follows:

- For SS$_ACCVIO and SS$_INSFWSL status, EXE_STD$WRITELOCK
calls EXE_STD$ABORTIO, passing it one of these status values as a
qio_sts argument. When it regains control, EXE_STD$WRITELOCK
returns to its caller the specified status value in the FDT_CONTEXT
structure and SS$_FDT_COMPL status in RO.

— For page fault status, EXE_STD$WRITELOCK sets the final $QIO
status in the FDT_CONTEXT structure to SS$_QIO_CROCK and
initializes FDT_CONTEXT$L_QIO_R1_VALUE to the virtual address

to be faulted. It then adjusts the direct I/O count and AST count to
the values they held before the I/O request, deallocates the IRP, and

restarts the I/O request at the $QIO system service. This procedure is
carried out so that the user process can receive ASTs while it waits for

the page fault to complete. Once the page is faulted into memory, the
$QIO system service will resubmit the I/O request.

The caller of EXE_STD$WRITELOCK must examine the status in RO:

If the status is SS$ NORMAL, the buffer is write accessible and has been
successfully locked into memory and the starting virtual address of the
page table entries that map the buffer is available in IRP$L_SVAPTE.

If the status is SS$_FDT_COMPL, an error has occurred that has caused
the I/O request to be aborted. You can determine the reason for the failure
from FDT_CONTEXT$L_QIO_STATUS. Ordinarily a driver specifies an
error-handling callback routine to process such errors.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE _STD$WRITELOCK

Note that a driver cannot access the IRP once it has received SS$_FDT_
COMPL status. If you know you need access to information stored in the
IRP to back out an I/O request that has been aborted, you must store that
information elsewhere prior to calling EXE_STD$WRITELOCK.

539

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$WRTMAILBOX

EXE_STDS$WRTMAILBOX

Sends a message to a mailbox.

Prototype

int exe_std$wrtmailbox (MB_UCB *mb_ucb, int msgsiz, void *msg)

Parameters

Name Access __ Description

mb_ucb Input Pointer to the Mailbox unit control block.
(SYS$AR_JOBCTLMB contains the address of
the job controller’s mailbox; SYS$AR_OPRMBX

contains the address of OPCOM’s mailbox.)

msgsiz Input Pointer to the message size.

msg Input Pointer to the address of the buffer containing
the message.

Return Values

SS$_INSFMEM The system is unable to allocate memory for
the message.

SS$_MBFULL The message mailbox is full of messages.

SS$_MBTOOSML The message is too large for the mailbox.

SS$_NOPRIV The caller lacks privilege to write to the
mailbox.

SS$_NORMAL Normal, successful completion.

Context

Because EXE_STD$WRTMAILBOX raises IPL to IPL$ MAILBOX and obtains
the MAILBOX spin lock in a multiprocessing environment, its caller cannot be
executing above IPL$ MAILBOX. EXE_STD$WRTMAILBOX returns control
to its caller at the caller’s IPL. The caller retains any spin locks it held at the
time of the call.

540

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE_STD$WRTMAILBOX

Description

EXE_STD$WRTMAILBOX checks fields in the mailbox UCB (UCB$W_
MSGQUO, UCB$W_DEVMSGSIZ) to determine whether it can deliver a
message of the specified size to the mailbox. It also checks fields in the

associated ORB to determine whether the caller is sufficiently privileged to
write to the mailbox. Finally, it calls EXESALONONPAGED to allocate a block
of nonpaged pool to contain the message. If it fails any of these operations,
EXE_STD$WRTMAILBOxX returns error status to its caller.

If it is successful thus far, EXE_STD$WRTMAILBOX creates a message and
delivers it to the mailbox’s message queue, adjusts its UCB fields accordingly,

and returns success status to its caller.

541

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

EXE_STD$ZEROPARM

EXE_STD$ZEROPARM

Delivers an I/O request that requires no parameters to a driver’s start-I/O

routine.

Prototype

int exe_std$zeroparm (IRP *irp, PCB *pcb, UCB *ucb, CCB “ccb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the

current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the
process I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Status in FDT_CONTEXT

SS$_NORMAL The routine completed successfully.

Context

FDT dispatching code in the $QIO system service calls EXE_STD$ZEROPARM
as an upper-level FDT action routine at IPL$ ASTDEL.

542

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
EXE _STD$ZEROPARM

Description

A driver specifies the system-supplied upper-level FDT action routine EXE_

STD$ZEROPARM to process an I/O function code that has no required
parameters.

EXE_STD$ZEROPARM clears IRP$L_MEDIA and invokes the $QIODRVPKT
macro to deliver the IRP to the driver. EXE_STD$ZEROPARM regains control

with SS$_FDT_COMPL status in RO and a final $QIO system service status of
SS$_NORMAL in the FDT_CONTEXT structure.

543

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$ALLOC_CNT_RES

IOC$ALLOC_CNT_RES

Allocates the requested number of items of a counted resource.

Prototype

int ioc$alloc_cnt_res (CRAB *crab, CRCTX “crcetx, [int64 cntxt1], int64 cntx)

Parameters

Name

crab

cerctx

entztl, 2. ora

Context

Access

Input

Input

Input

Description

Pointer to the address of CRAB that describes
the counted resource. For adapters that supply
a counted resource, such as map registers,
ADP$L_CRAB often contains this address.

Pointer to the address of CRCTX structure that
describes the request for the counted resource.

Optional arguments showing context to be

saved in the CRTX if the allocation request
fails because of unavailable resources. If the
requested resource is not available, and the
caller has supplied a callback routine in the
CRTX, the Context 1, 2, 3 arguments will be

saved in the CRTX$Q_Context1, 2, or 3

IOC$ALLOC_CNT_RES conforms to the OpenVMS Alpha Calling Standard.
Its caller must be executing at fork IPL, holding the corresponding fork lock.

Returns

VMS Usage:

type:

access:
mechanism:

cond_value
longword_unsigned
longword (unsigned)
write only—by value

Status indicating the success or failure of the operation.

544

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

Return Values

SS$_NORMAL

SS$_BADPARAM

SS$_INSFMAPREG

Description

lIOC$ALLOC_CNT_RES

The routine completed successfully.

Request count was greater than the total

number of items managed by the CRAB or the
total number of items defined by a bounded

request. This status is also returned if the
lower bound of the request (CRCTX$L_LOW_
BOUND) is greater than the upper bound
(CRCTX$L_UP_BOUND).

Insufficient resources to satisfy request,

or other requests precede this one in the
resource-wait queue.

IOC$ALLOC_CNT_RES allocates a requested number of items from a counted
resource. The resource request is described in the CRCTX structure; the
counted resource itself is described in the CRAB.

A driver typically initializes the following fields of the CRCTX before

submitting it in a call to IOC$ALLOC_CNT_RES.

Field

CRCTX$L_ITEM CNT

CRCTX$L. CALLBACK

Description

Number of items to be allocated. When
requesting map registers, this value in this

field should include two extra map registers to be
allocated and loaded as guard pages to prevent

runaway transfers.

Procedure value of the callback routine to be

called when the deallocation of resource items

allows a stalled resource request to be granted.

A value of 0 in this field indicates that, on an

allocation failure, control should return to the

caller immediately without queueing the CRCTX
to the CRAM’s wait queue.

A caller can also specify the upper and lower bounds of the search for

allocatable resource items by supplying values for CRCTX$L_LOW_BOUND

and CRCTX$L_UP_BOUND.

545

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$ALLOC_CNT_RES

546

IOC$ALLOC_CNT_RES performs the following tasks:

It acquires the spin lock indicated by CRAB$L_SPINLOCK, raising IPL to

IPL$_IOLOCK11 in the process.

If there are no waiters for the counted resource (that is, the resource

wait queue headed by CRAB$L_WQFL is empty) or if the CRCTX

describes a high-priority allocation request (CRCTX$V_HIGH_PRIO in

CRCTX$L_FLAGS is set), IOC$ALLOC_CNT_RES attempts the allocation
immediately. It scans the CRAB allocation array for a descriptor that

contains as many free items as requested by the caller (in CRCTX$L_

ITEM_CNT).

In performing the scan, IOC$ALLOC_CNT_RES considers any indicated

range of counted resource items that are to be involved in the scan, and
limits its search to those item descriptors in the allocation array that
describe items within these bounds. A bounded search is indicated by
nonzero values in CRCTX$L_UP_BOUND and CRCTX$L_LOW_BOUND.

IOC$ALLOC_CNT_RES rounds up the allocation request to the minimal

allocation granularity, as indicated by CRAB$L_ALLOC_GRAN_MASK.

The number of the first resource item granted to the caller is placed in
CRCTX$L_ITEM_NUM and CRCTX$V_ITEM_VALID is set in CRCTX$L_
FLAGS.

If this allocation attempt fails, saves the current values of R3, R4, and

R5 in the CRCTX fork block. IOC$ALLOC_CNT_RES writes a —1 to

CRCTX$L_ITEM_NUM, and inserts the CRCTX in the resource-wait queue

(headed by CRAB$L_WQFL). It then returns SS$_INSFMAPREG status to
its caller.

Note

If a counted resource request does not specify a callback routine

(CRCTX$L_CALLBACK), IOC$ALLOC_CNT_RES does not insert

its CRCTX in the resource-wait queue. Rather, it returns SS$_

INSFMAPREG status to its caller.

When a counted resource deallocation occurs, the CRCTX is removed from
the wait queue and the allocation is attempted again.

When the allocation succeeds, IOC$ALLOC_CNT_ RES issues a JSB
instruction to the callback routine (CRCTX$L_CALLBACK), passing it the
following values:

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$ALLOC_CNT_RES

Location Contents

RO SS$_NORMAL

Rl Address of CRAB

R2 Address of CRCTX

R3 Contents of R3 at the time of the original
allocation request (CRCTX$Q_FR3)

R4 Contents of R4 at the time of the original

allocation request (CTCTX$Q_FR4)

R5 Contents of R5 at the time of the original

allocation request (CRCTX$Q_FR5)

Other registers Destroyed

The callback routine checks RO to determine whether it has been called

with SS$_ NORMAL or SS$_CANCEL status (from IOC$CANCEL_CNT_

RES). If the former, it typically proceeds to loads the map registers that
have been allocated.

e It releases the spin lock indicated by CRAB$L_SPINLOCK.

OpenVMS Alpha allows you to indicate that a counted resource request
should take precedence over any waiting request by setting the CRCTX$V_

HIGH_PRIO bit in CRCTX$L_FLAGS. A driver uses a high-priority counted

resource request to preempt normal I/O activity and service some exception
condition from the device. (For instance, during a multivolume backup, a tape
driver might make a high-priority request, when it encounters the end-of-tape
marker, to get a subsequent tape loaded before normal I/O activity to the tape
can resume. A disk driver might issue a high-priority request to service a disk

offline condition.)

IOC$ALLOC_CNT_RES never stalls a high-priority counted resource request
or places its CRCTX in a resource-wait queue. Rather, it attempts to allocate
the requested number of resource items immediately. If IOC$ALLOC_

CNT_RES cannot grant the requested number of items, it returns SS$_

INSFMAPREG status to its caller.

547

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$ALLOC_CRAB

lIOC$ALLOC_CRAB

Allocates and initializes a counted resource allocation block (CRAB).

Prototype

int ioc$alloc_crab (int itemcent, int gran, CRAB **crab_p)

Parameters

Name Access __ Description

itement Input Number of items associated with the resource.

gran Input Requested allocation granularity associated with

the resource.

crab_p Input Pointer to the Address of a cell to which
IOC$ALLOC_CRAB returns the address of
the allocated CRAB.

Context

IOC$ALLOC_CRAB conforms to the OpenVMS Alpha calling standard.
Because IOC$ALLOC_CRAB calls EXESALONONPAGED to allocate sufficient
memory for a CRAB, its caller cannot be executing above IPL$_POOL.

Returns

VMS Usage: cond_value

type: longword_unsigned
ACCESS: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_BADPARAM Specified allocation granularity is larger than
the specified item count.

SS$_NORMAL The routine completed successfully.
SS$_INSFMEM Memory allocation request failed.

548

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$ALLOC_CRAB

Description

A driver calls IOC$ALLOC_CRAB to allocate a counted resource allocation

block (CRAB) that describes a counted resource. A counted resources, such as

a set of map registers, has the following attributes:

e The resource consists of an ordered set of items.

¢ The allocator can request one or more items. When requesting multiple

items, the requester expects to receive a contiguous set of items. Thus,

allocated items can be described by a starting number and a count.

e Allocation and deallocation of the resource are common operations and,
thus, must be efficient and quick.

e Asingle deallocation may allow zero or more stalled allocation requests to
proceed.

IOC$ALLOC_CRAB computes the size of the CRAB as the sum of the fixed
portion of the CRAB, plus the maximum number of descriptors required in the
allocation array. It then calls EXE$ALONONPAGED to allocate the CRAB. If
the allocation request succeeds, IOC$ALLOC_CRAB initializes the CRAB as
follows and returns SS$_NORMAL to its caller:

Field

CRAB$W_SIZE

CRAB$B_TYPE

CRAB$B_SUBTYPE

CRAB$L_WQFL

CRAB$L_WQBL

CRAB$L_TOTAL_ITEMS

CRAB$L_ALLOC_GRAN_
MASK

CRAB$L_VALID_DESC_
CNT

CRAB$L_SPINLOCK

Description

Size of the CRAB in bytes

DYN$C_MISC

DYN$C_CRAB

CRAB$L_WQFL

CRAB$L_WQFL

Contents of the item_cnt argument

One less than the contents of the req_alloc_gran
argument (rounded up to the next highest power

of two if the value specified is not a power of two)

1

Address of dynamic spin lock used to synchronize
access to this CRAB. Currently, CRAB spin locks
are obtained at IPL$_IOLOCK11.

IOC$ALLOC_CRAB initializes the first descriptor in the allocation array to

indicate a set of item_cnt items of the resource, starting at item 0.

549

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$ALLOC_CRCTX

IOC$ALLOC_CRCTX

Allocates and initializes a counted resource context block (CRCTX).

Prototype

int ioc$alloc_crctx (CRAB *crab, CRCTX **crctx_p, [int flck])

Context

IOC$ALLOC_CRCTX conforms to the OpenVMS Alpha calling standard.

Because IOC$ALLOC_CRCTX calls EXE$ALONONPAGED to allocate
sufficient memory for a CRCTX, its caller cannot be executing above IPL$_
POOL.

Parameters

Name Access ___ Description

crab Input Pointer to the address of CRAB that describes
the counted resource. For adapters that supply
a counted resource, such as map registers,
ADP$L_CRAB often contains this address.

erctx_p Input Pointer to the address of a location in which

IOC$ALLOC_CRCTX places the address of the
allocated CRCTX.

fick Input Optional longword fork lock index. If this

argument is not supplied, the routine defaults to
spl$c_iolock8 saved in erctx$b_fick.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)

550

mechanism: write only—by value

Status indicating the success or failure of the operation.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$ALLOC_CRCTX

Return Values

SS$ NORMAL The routine completed successfully.

SS$_INSFMEM Memory allocation request failed.

Description

A driver calls IOC$6ALLOC_CRCTX to allocate a CRCTX to describe a specific
request for a given counted resource, such as a set of map registers. The driver
subsequently uses the CRCTX as input to IOC$ALLOC_CNT_RES to allocate a
given set of the objects managed as a counted resource.

IOC$ALLOC_CRCTX calls EXE$ALONONPAGED to allocate the CRCTX. If

the allocation request succeeds, IOC$ALLOC_CRCTX initializes the CRCTX as

follows and returns SS$_ NORMAL to its caller:

Field Description

CRCTX$W_SIZE Size of the CRCTX in bytes

CRCTX$B_TYPE DYN$C_MISC

CRCTX$B_SUBTYPE DYN$C_CRCTX

CRCTX$L_CRAB Address of CRAB as specified in the crab
argument

CRCTX$B_FLCK Contents of flck_index argument if it is supplied,
otherwise it defaults to IPL$C_IOLOCK8

551

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$ALLOCATE_CRAM

IOC$ALLOCATE_CRAM

Allocates a controller register access mailbox.

Prototype

int ioc$allocate_cram (CRAM **cram_p, IDB *idb, UCB *ucb, ADP *adp)

Parameters

Name Access ___ Description

cram Input Pointer to the address of the CRAM allocated by
IOC$ALLOCATE_CRAM.

idb Input Pointer to the address of the IDB for the device.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

adp Input Pointer to the address of the ADP.

Context

IOC$ALLOCATE_CRAM conforms to the OpenVMS Alpha Calling Standard.
Because IOC$ALLOCATE_CRAM may need to allocate pages from the free

page list, its caller must be executing at or below IPL$_SYNCH and must not
hold spin locks ranked higher than IO_MISC.

IOC$ALLOCATE_CRAM acquires and releases the IO_MISC spin lock and
returns to its caller at its caller’s IPL.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

552

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$ALLOCATE_CRAM

Return Values

SS$_NORMAL CRAM has been successfully allocated.

SS$_INSFARG Insufficient arguments supplied in call

Description

IOC$ALLOCATE_CRAM allocates a single controller register access mailbox
(CRAM) and fills in the following fields:

CRAM$W_SIZE Size of CRAM

CRAM$B_TYPE Structure type (DYN$C_MISC)

CRAM$B_SUBTYPE Structure type (DYN$C_CRAM)

CRAM$Q RBADR Address of remote tightly-coupled I/O intercon-
nect (from IDB$Q_CSR)

CRAM$Q_ HW_MBX Physical address of hardware I/O mailbox

CRAM$L_MBPR Mailbox pointer register (from ADP$PS_MBPR)

CRAM$Q_ QUEUE_TIME Default mailbox queue timeout value (from
ADP$Q_QUEUE_TIME)

CRAM$Q_ WAIT_TIME Default mailbox wait-for-completion timeout
value (from ADP$Q_WAIT_TIME)

CRAM$B_HOSE Number of remote tightly-coupled I/O intercon-
nect (from ADP$B HOSE NUM)

CRAM$L_IDB IDB address

CRAM$L_UCB UCB address

A driver may choose to allocate a CRAM on a per-controller or a per-unit
basis. Typically a driver specifies values in the idb_crams and ucb_crams
arguments of the DPTAB macro that indicate how many CRAMs should be
allocated to a controller (IDB) or a unit (UCB). If these values (DPT$W_

IDB_CRAMS and DPT$W_UCB_CRAMS) are nonzero in the DPT, the driver
loading procedure automatically invokes IOC$ALLOCATE_CRAM to allocate
the specified number of CRAMs. The driver-loading procedure thereafter

sets up IDB$PS_CRAM to point to a linked list of CRAMs associated with a

controller, UCB$PS_CRAM to a linked list of CRAMs associated with a device

unit.

553

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$CANCEL_CNT_RES

IOC$CANCEL_CNT_RES

Cancels a thread that has been stalled waiting for a counted resource.

Prototype

int ioc$cancel_cnt_res (CRAB “crab, CRCTX “erctx, int resume)

Parameters

Name

crab

erctx

resume

Context

IOC$CANCEL_CNT_RES conforms to the OpenVMS Alpha Calling Standard.
Its caller must be executing at fork IPL, holding the corresponding fork lock.

Returns

554

VMS Usage:

type:

access:
mechanism:

Access

Input

Input

Input

cond_value
longword_unsigned
longword (unsigned)
write only—by value

Description

Pointer to the address of CRAB that describes

the counted resource. For adapters that supply

a counted resource, such as map registers,
ADP$L_CRAB often contains this address.

Pointer to the address of CRCTX structure that
describes the request for the counted resource.

Indication of whether the cancelled thread

should be resumed. If true, IOC$SCANCEL_
CNT_RES calls the driver callback routine with

SS$_CANCEL status. If not specified or false,
IOC$CANCEL_CNT_RES does not resume the
cancelled thread.

Status indicating the success or failure of the operation.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$CANCEL_CNT_RES

Return Values

SS$_NORMAL The routine completed successfully.

SS$_BADPARAM The specified CRCTX was not found in the

CRAB wait queue.

Description

IOC$CANCEL_CNT_RES cancels a thread that has been stalled waiting for a
counted resource. The resource request is described in the CRCTX structure;
the counted resource itself is described in the CRAB.

IOC$CANCEL_CNT_RES scans the CRAB wait queue (CRAB$L_WFQL) to
locate the specified CRCTX. If it cannot locate the CRCTX, it returns SS$_
BADPARAM status to its caller.

If it locates the CRCTX in the CRAB wait queue and the resume_flag
argument is not specified or is false, it removes the CRCTX from the queue
and returns SS$_NORMAL status to its caller. Otherwise, after removing the
CRCTX, it calls the driver’s callback routine (CRCTX$L_CALLBACK), passing
it the following values:

Location Contents

RO, R21 SS$_CANCEL

R1, R16 Address of CRAB

RZ, R17 Address of CRCTX

R3, R18 CRCTX$Q_FR3

R4, R19 CRCTX$Q_FR4

R5, R20 CRCTX$Q_FR5

The callback routine checks RO to determine whether it has been called with
SS$ NORMAL (from IOC$ALLOC_CNT_RES) or SS$_CANCEL status. If the
latter, it takes appropriate steps to respond to the request cancellation.

When it regains control from the driver callback routine, IOC6CANCEL_CNT_

RES returns SS$ NORMAL status to its caller.

555

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$CRAM_CMD

lIOC$CRAM_CMD

Generates values for the command, mask, and remote I/O interconnect address

fields of the hardware I/O mailbox that are specific to the interconnect that is

the target of the mailbox operation, inserting these values into the indicated

mailbox, buffer, or both.

Prototype

int ioc$cram_cmd (int cmdidx, int byteoffset, ADP “adp, CRAM “cram, uint64

*iohandle)

Context

IOC$CRAM_CMD conforms to the OpenVMS Alpha Calling Standard. It
acquires no spin locks and leaves IPL unchanged. After inserting the hardware
I/O mailbox values into the CRAM or specified buffer, IOC6CRAM_CMD
returns to its caller.

Parameters

Name Access __ Description

emdidx Input IOC$CRAM_CMD uses this index to generate a
mailbox command that is specific to the tightly-
coupled interconnect that is to be the target of a
request using this CRAM.

byteoffset Input Pointer to the byte offset of the field to be
written or read from the base of device interface
register (CSR) space. Calculation of the RBADR
and MASK fields of the hardware mailbox

depends on the addressing and masking

mechanisms provided by the remote bus. The

byteoffset argument is used by IOC$CRAM_
CMD to calculate the RBADR.

adp Input Pointer to the address of ADP associated with
this command. IOC$CRAM_CMD uses this
parameter to determine which tightly-coupled
I/O interconnect is the object of the mailbox
transaction and to construct the mailbox
command accordingly.

556

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$CRAM_CMD

Name Access __ Description

cram Input Pointer to the address of the CRAM. IOC$CRAM_

CMD returns the command, mask, and remote
bus address values in the corresponding fields of
the hardware I/O mailbox.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The calculated command, mask, and remote
bus address values have been written to the

CRAM and/or the specified buffer.

SS$_BADPARAM Illegal command supplied as input or illegal
argument supplied in call

SS$_INSFARG Insufficient arguments supplied in call

Description

IOC$CRAM_CMD calculates the COMMAND, MASK, and RBADR fields
for a hardware I/O mailbox according to the requirements of a specific I/O

interconnect. It performs the following tasks:

e Obtains the address of the command table specific to the given I/O
interconnect from ADP$PS_COMMAND_TBL.

¢ Uses the value specified in the command argument as an index into the
command table to determine the corresponding command supported by the

I/O interconnect.

e Ifthe command is valid for the I/O interconnect, IOC$6CRAM_CMD writes

it to CRAM$L_COMMAND, to the specified buffer, or to both. If the

command is invalid for the I/O interconnect, IOC$CRAM_CMD returns

SS$_BADPARAM status to its caller.

557

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$CRAM_CMD

558

Calculates the RBADR and MASK fields based of the hardware I/O
mailbox, basing their values on the command, the address of device
register interface space (ADP$Q_CSR or IDB$Q_CSR, if the cram

argument is specified), the byte_offset argument, and interconnect-
specific requirements. It writes these values to CRAM$B_BYTE_ MASK

and CRAM$Q_RBADR, to the specified buffer, or to both.

Returns SS$_ NORMAL status to its caller.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$CRAM_IO

lIOC$CRAM_IO

Queues the hardware I/O mailbox defined within a controller register access
mailbox (CRAM) to the mailbox pointer register (MBPR) and awaits the
completion of the mailbox transaction.

Prototype

int ioc$cram_io (CRAM *cram)

Parameters

Name Access __ Description

cram Input Pointer to the address of CRAM associated with
the hardware I/O mailbox transaction.

Context

IOC$CRAM_IO conforms to the OpenVMS Alpha calling standard. It acquires
no spin locks and leaves IPL unchanged. After queuing the request and

waiting for its completion, IOC$CRAM_IO returns to its caller.

Returns

VMS Usage: cond_value

type: longword_unsigned
access: longword (unsigned)

mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values |

SS$_NORMAL CRAM has been successfully queued to the
MBPR.

SS$_BADPARAM Supplied argument is not a CRAM.

SS$_CTRLERR Error bit set in mailbox transaction.

SS$_INSFARG No argument supplied in call.

SS$_INTERLOCK Failed to queue hardware I/O mailbox to

MBPR in queue time.

559

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$CRAM_IO

SS$_TIMEOUT Mailbox operation did not complete in mailbox

transaction timeout interval.

Description

560

IOC$CRAM_IO performs an entire hardware I/O mailbox transaction from

the queuing of the hardware I/O mailbox to the MBPR to the transaction’s

completion. A call to IOC$CRAM_IO is the equivalent of independent calls to

IOC$CRAM_QUEUE and IOC$CRAM_WAIT. Prior to calling IOC$CRAM_IO,

a driver typically calls IOC$CRAM_CMD to insert a command, mask, and
remote interconnect address into the hardware I/O mailbox portion of the

CRAM. For CRAMs involved in writes to device interface registers, the driver
must also insert the data to be written into CRAM$Q_ WDATA,

IOC$CRAM_IO initiates an I/O operation to a device in remote I/O space
by writing the physical address of the hardware I/O mailbox portion of a
CRAM to the MBPR. If it is not able to post the mailbox to the MBPR in the

MBPR queue timeout interval (CRAM$Q QUEUE_TIME), it returns SS$_

INTERLOCK status to its caller.

If it successfully queues the mailbox, it sets the CRAM$V_IN_USE bit in
CRAM$B_CRAM_FLAGS and repeatedly checks the done bit in the hardware

I/O mailbox (CRAM$V_MBX_DONE in CRAM$W_MBX_FLAGS):

e If the done bit is not set in the mailbox transaction timeout interval

(CRAM$Q WAIT _TIME), IOC$CRAM_IO leaves the CRAM$V_IN_USE bit

in CRAM$B_CRAM_FLAGS set and returns SS$_ TIMEOUT status to its
caller.

e If the done bit is set, but the error bit in the mailbox (CRAM$V_MBX_

ERROR in CRAM$W_MBX_FLAGS) is also set, IOC$CRAM_IO clears
CRAM$V_IN_USE and returns SS$_CTRLERR status to its caller. Note
that, if the disable-error bit (CRAM$V_DER) is set, IOC$CRAM_IO never
returns an error (although it may request an IOMBXERR fatal bugcheck
in the event of an error).

e Ifthe done bit is set and the error bit is clear, IOC$CRAM_IO clears
CRAM$V_IN_USE and returns SS$_ NORMAL status to its caller. If
IOC$CRAM_IO returns SS$_NORMAL status for read mailbox operations,
the requested data has been returned to CRAM$Q_RDATA. A return of
SS$_NORMAL status for mailbox write operations does not necessarily
guarantee that the data placed in CRAM$Q_WDATA has been successfully
written to the device register.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$CRAM_QUEUE

lIOC$CRAM_QUEUE

Queues the hardware I/O mailbox defined within a controller register access
mailbox (CRAM) to the mailbox pointer register (MBPR).

Prototype

int ioc$cram_queue (CRAM *cram)

Parameters

Name Access ___ Description

cram Input Pointer to the address of the CRAM to be
queued.

Context

IOC$CRAM_QUEUE conforms to the OpenVMS Alpha Calling Standard. It
acquires no spin locks and leaves IPL unchanged. After queuing the request,
IOC$CRAM_QUEUE returns to its caller. It is expected that the caller will
eventually call IOC$CRAM_WAIT to await completion of the request.

Returns

VMS Usage: cond_value
type: longword_unsigned

access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values ie

SS$_NORMAL CRAM has been successfully queued to the
MBPR.

SS$_BADPARAM Supplied argument is not a CRAM.

SS$_INSFARG No argument supplied in call

SS$_INTERLOCK Failed to queue hardware I/O mailbox to

MBPR in queue time.

561

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$CRAM_QUEUE

Description

IOC$CRAM_QUEUE initiates an I/O operation to a device in remote I/O space
by writing the physical address of the hardware I/O mailbox portion of a
CRAM to the MBPR. Prior to calling IOC$CRAM_QUEUE, a driver typically

calls IOC$CRAM_CMD to insert a command, mask, and remote interconnect

address into the hardware I/O mailbox portion of the CRAM. For CRAMs
involved in writes to device interface registers, the driver must also insert the

data to be written into CRAM$Q_ WDATA,

If it is not able to post the mailbox to the MBPR in the MBPR queue timeout
interval (CRAM$Q_QUEUE_TIME), IOC$CRAM_QUEUE returns SS$_
INTERLOCK status to its caller. If the disable-error bit (CRAM$V_DER) is
set, IOC$CRAM_QUEUE does not return an error (although it may request an
IOMBXERR fatal bugcheck in the event of an error).

If IOC$¢CRAM_QUEUE does successfully queue the mailbox, it sets the
CRAM$V_IN_USE bit in CRAM$B_CRAM_FLAGS and returns SS$_ NORMAL.

562

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$CRAM_WAIT

IOC$CRAM_WAIT

Awaits the completion of a hardware I/O mailbox transaction to a tightly-
coupled I/O interconnect.

Prototype

int ioc$cram_wait (CRAM *cram)

Parameters

Name Access __ Description

cram Input Pointer to the address of CRAM associated

with a previously-queued hardware I/O mailbox
transaction.

Context

IOC$CRAM_WAIT conforms to the OpenVMS Alpha calling standard. It
acquires no spin locks and leaves IPL unchanged. After queuing the request,
IOC$CRAM_WAIT returns to its caller.

IOC$CRAM_WAIT assumes that its caller has previously called IOC$CRAM_

QUEUE to post to the MBPR the hardware I/O mailbox defined within the

specified CRAM for an I/O operation.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

563

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$CRAM_WAIT

Return Values

SS$_NORMAL CRAM has been successfully queued to the
MBPR.

SS$_BADPARAM Supplied argument is not a CRAM.

SS$_CTRLERR Error bit set in mailbox transaction.

SS$_INSFARG No argument supplied in call.

SS$_TIMEOUT Mailbox operation did not complete in mailbox
transaction timeout interval.

Description

IOC$CRAM_WAIT checks the done bit in the hardware I/O mailbox (CRAM$V_

MBX_DONE in CRAM$W_MBX_FLAGS):

564

If CRAM$V_MBX_DONE is not set in the mailbox transaction timeout

interval (CRAM$Q_WAIT_TIME), IOC$CRAM_WAIT leaves the CRAM$V_

IN_USE bit in CRAM$B_CRAM_FLAGS set and returns SS$_TIMEOUT
status to its caller.

If CRAM$V_MBX_DONE is set, but the error bit in the mailbox (CRAM$V_

MBX_ERROR in CRAM$W_MBX_FLAGS) is also set, IOC$CRAM_ WAIT

clears CRAM$V_IN_USE and returns SS$_CTRLERR status to its caller.

In this case, CRAM$W_ERROR BITS contains a device-specific encoding of
additional status information.

If the done bit is set and the error bit is clear, IOC$CRAM_ WAIT clears

CRAM$V_IN_USE and returns SS$ NORMAL status to its caller. If

IOC$CRAM_WAIT returns SS$ NORMAL status for read mailbox

operations, the requested data has been returned to CRAM$Q_RDATA.
A return of SS$_NORMAL status for mailbox write operations does not

necessarily guarantee that the data placed in CRAM$Q_WDATA has been
successfully written to the device register.

Note

If the disable-error bit (CRAM$V_DER) is set, IOC$CRAM_ WAIT does
not return an error (although it may request an IOMBXERR fatal
bugcheck in the event of an error).

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$DEALLOC_CNT_RES

lIOC$DEALLOC_CNT_RES

Deallocates the requested number of items of a counted resource.

Prototype

int ioc$dealloc_cnt_res (CRAB “crab, CRCTX “crctx)

Parameters

Name Access __ Description

crab Input Pointer to the address CRAB that describes
the counted resource. For adapters that supply

a counted resource, such as map registers,
ADP$L_CRAB often contains this address.

erctx Input Pointer to the address of CRCTX structure that
describes the request for the counted resource.

Context

IOC$DEALLOC_CNT_RES conforms to the OpenVMS Alpha calling standard.

Its caller must be executing at fork IPL, holding the corresponding fork lock.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)

mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_ BADPARAM CRCTX$L_ITEM CNT and CRCTX$L_ITEM_

NUM fields are invalid.

565

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$DEALLOC_CNT_RES

Description

IOC$DEALLOC_CNT_RES deallocates a requested number of items of a
counted resource. The resource request is described in the CRCTX structure;

the counted resource itself is described in the CRAB. After deallocating the
items, if there are any waiting requests, queues a fork thread that will to

restart any waiters for the resource.

IOC$DEALLOC_CNT_RES performs the following tasks:

566

its It examines CRCTX$V_ITEM VALID in CRCTX$L_FLAGS. If it is clear,

IOC$DEALLOC_CNT_RES returns SS$_BADPARAM status to its caller.

It acquires the spin lock indicated by CRAB$L_SPINLOCK, raising IPL to
IPL$_IOLOCKLL in the process.

It scans the CRAB allocation array for a descriptor into which the items
being deallocated (indicated by CRCTX$L_ITEM_CNT) can be merged.

It adjusts the CRAB allocation array and CRAB$L_VALID_DESC_CNT to

reflect the deallocation.

If there are waiters for the counted resource, IOC$DEALLOC_CNT_RES

queues a fork thread that will attempt to restart any waiters for the
resource.

When the fork thread eventually executes, it attempts to allocate the
resource to any waiting CRCTX. If the fork thread succeeds in an

allocation, the fork thread acquires the spinlock indicated by CRCTX$_
FLCK, and invokes the callback routine indicated by CRCTX$L_

CALLBACK.

If there are no waiters for the counted resource, IOC$DEALLOC_CNT_
RES conditionally releases the spin lock indicated by CRAB$L_SPINLOCK,
and returns SS$ NORMAL status to its caller.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$DEALLOC_CRAB

IOC$DEALLOC_CRAB

Deallocates a counted resource allocation block (CRAB).

Prototype

int ioc$dealloc_crab (CRAB *crab)

Parameters

Name Access ___ Description

crab Input Pointer to the address of the CRAB to be
deallocated.

Context

IOC$DEALLOC_CRAB conforms to the OpenVMS Alpha calling standard.
Because IOC$DEALLOC_CRAB calls EXE$DEANONPAGED, its caller cannot
be executing above IPL$_SYNCH.

Returns

VMS Usage: cond_value
type: longword_unsigned

access: longword (unsigned)

mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

Description

A driver calls IOC$DEALLOC_CRAB to deallocate a CRAB. IOC6DEALLOC_
CRAB passes the address of the CRAB to EXE$DEANONPAGED and returns

SS$_NORMAL status to its caller.

567

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$DEALLOC_CRCTX

lIOC$DEALLOC_CRCTX

Deallocates a counted resource context block (CRCTX).

Prototype

int ioc$dealloc_crctx (CRCTX “*crctx)

Parameters

Name Access __ Description

erctx Input Pointer to the address CRCTX to be deallocated.

Context

IOC$DEALLOC_CRCTX conforms to the OpenVMS Alpha Calling Standard.
Because IOC$DEALLOC_CRCTX calls EXE$DEANONPAGED, its caller

cannot be executing above IPL$_SYNCH.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

Description

A driver calls IOC$DEALLOC_CRCTX to deallocate a CRCTX. IOC$DEALLOC_
CRCTX passes the address of the CRCTX to EXE$DEANONPAGED and
returns SS$_NORMAL status to its caller.

568

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$DEALLOCATE_CRAM

lIOCS$DEALLOCATE_CRAM

Deallocates a controller register access mailbox.

Prototype

int ioc$deallocate_cram (CRAM *cram)

Parameters

Name Access___ Description

cram Input Pointer to the address of CRAM to be
deallocated by IOC$DEALLOCATE_CRAM.

Context

IOC$DEALLOCATE_CRAM conforms to the OpenVMS Alpha Calling
Standard. Its caller must be executing at or below IPL 8 and must not

hold spin locks ranked higher than IO_MISC.

IOC$DEALLOCATE_CRAM acquires and releases the IO_MISC spin lock and

returns to its caller at its caller’s IPL.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)

mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL CRAM has been successfully deallocated.

SS$_BADPARAM Supplied argument is not a CRAM.

SS$_INSFARG Insufficient arguments supplied in call

569

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$DEALLOCATE_CRAM

Description

IOC$DEALLOCATE_CRAM deallocates a single controller register access
mailbox (CRAM).

570

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lOC$KP_REQCHAN

lIOC$KP_REQCHAN

Stalls a kernel process in such a manner that it can be resumed by the
granting of a device controller channel.

Prototype

int oc$kp_reqchan (KPB *kpb, int pri)

Parameters

Name Access___ Description

kpb Input Pointer to the address of the caller’s kernel

process block, which must be a VEST KPB.
KPB$PS_UCB must contain the address of
a UCB and KPB$PS_IRP must contain the
address of an IRP.

pri Input Priority of the request for the controller channel.

Context

IOC$KP_REQCHAN conforms to the OpenVMS Alpha Calling Standard. It
can only be called by a kernel process.

A kernel process calls IOC$KP_REQCHAN at fork IPL holding the appropriate

fork lock.

If the requested channel is busy, either the channel-requesting routine
IOC$PRIMITIVE_REQCHANH or IOC$PRIMITIVE_REQCHANL preserves
the contents of its caller’s R3 in UCB$Q_FR3 (contents of caller’s R3).

IOC$RELCHAN eventually issues a JSB instruction to the fork routine
upon granting the channel request. At this time, the kernel process is provided
with the contents of UCB$Q_FR3 in R3, the IDB address in R4, and the UCB

address in Rd.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

571

OpenVMS System Routines Called by iia Alpha Device Drivers

IOC$KP_REQCHAN

Return Values

SS$_NORMAL The routine completed successfully.

SS$_BADPARAM The kpb argument does not specify a VEST

KPB, or an illegal value was supplied in the

priority argument.

SS$_INSFARG Not all of the required arguments were

specified.

Description

IOC$KP_REQCHAN first checks the CRB to determine if the controller

channel is busy. If the CRB is not busy (CRB$V_BSY in CRB$B_MASK is
clear), IOC$KP_REQCHAN grants the channel request immediately by placing
the UCB address in IDB$L_ OWNER and returning SS$_NORMAL status to
its caller.

If the CRB is busy, IOC$KP_REQCHAN performs the following tasks to

initiate a stall of the kernel process:

1. Copies the priority argument to KPB$IS_CHANNEL_DATA.

You must specify one of the following symbolic constants:

Constant Meaning

KPB$K_LOW Insert fork block of UCB requesting controller channel
at the tail of the channel-wait queue.

KPB$K_HIGH Insert fork block of UCB requesting controller channel
at the head of the channel-wait queue.

2. Inserts the procedure descriptor of subroutine STALL_REQCHAN in

KPB$PS_SCH_STALL_RTN, thus making it the kernel process scheduling
stall routine.

3. Clears KPB$PS_SCH_RESTART, thus indicating that there is no kernel
process scheduling restart routine.

4. Calls EXE$KP_STALL_GENERAL, passing to it the address of the KPB.

Note that, having stalled the kernel process, the STALL_REQCHAN
kernel process scheduling stall routine returns control to EXE$KP_STALL_
GENERAL, which returns to the initiator of the kernel process thread (that
is, the caller of EXE$KP_START or EXE$KP_RESTART). When the controller
channel request is ultimately granted, STALL_REQCHAN calls EXE$KP_

572

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lIOC$KP_REQCHAN

RESTART which, in turn, passes control back to IOC$KP_REQCHAN.
IOC$KP_REQCHAN then returns to the kernel process that called it.

573

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$KP_WFIKPCH, lIOC$KP_WFIRLCH

lIOC$KP_WFIKPCH, lIOC$KP_WFIRLCH

Stall a kernel process in such a manner that it can be resumed by device

interrupt processing.

Prototype

int ioc$kp_wfikpch (KPB *kpb, int tmo, int newipl)

int ioc$kp_wfirlch (KPB *kpb, int tmo, int newipl)

Parameters

Name Access Description

Address of the caller’s KPB (which must be kpb

time

newipl

Context

IOC$KP_WFIKPCH and IOC$KP_WFIRLCH conform to the OpenVMS Alpha
Calling Standard. They can only be called by a kernel process.

574

Input

Input

Input

a VEST KPB). KPB$PS_UCB must contain

the address of a UCB and KPB$PS_IRP must

contain the address of an IRP.

Timeout value in seconds.

IPL to which to lower before returning to the
initiator of the kernel process thread (that is,
the caller of EXE$KP_START or EXE$KP__

RESTART). This IPL must be the fork IPL
associated with device processing and at
which the kernel process was executing prior
to invoking the DEVICELOCK macro.

When called, IOC$KP_WFIKPCH or IOC$KP_WFIRLCH assumes that the
local processor has obtained the appropriate synchronization with the device

database by securing the appropriate device lock, as recorded in the unit
control block (UCB$L_DLCK) of the device unit from which the interrupt is
expected. This requirement also presumes that the local processor is executing
at the device IPL associated with the lock.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$KP_WFIKPCH, lOC$KP_WFIRLCH

Before exiting, the wait-for-interrupt routine (IOC$PRIMITIVE_WFIKPCH or
IOC$PRIMITIVE_WFIRLCH) conditionally releases the device lock, so that if
the initiator of the kernel process thread previously owned the device lock, it
will continue to hold it when it regains control. IOC$PRIMITIVE_WFIKPCH
or IOC$PRIMITIVE_WFIRLCH also lowers the local processor’s IPL to the IPL
specified in the newipl argument.

Returns

VMS Usage: cond_value
type: longword_unsigned

access: longword (unsigned)

mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_BADPARAM The kpb argument does not specify a VEST
KPB.

SS$_INSFARG Not all of the required arguments were
specified.

SS$_TIMEOUT A timeout has occurred.

Description

IOC$KP_WFIKPCH and IOC$KP_WFIRLCH perform the following tasks to

initiate a stall of the kernel process:

1. Copy the time argument to KPB$IS_TIMEOUT_TIME and the newipl
argument to KPB$IS_RESTORE_IPL.

2. Move the symbolic constant KPB$K_KEEP (for IOC$KP_WFIKPCH) or

KPB$K_RELEASE (for IOC$KP_WFIRLCH) to KPB$IS_CHANNEL_

DATA.

3. Insert the procedure descriptor of subroutine STALL_WFIXXCH in

KPB$PS_SCH_STALL_RTN, this making it the kernel process scheduling

stall routine.

4. Clear KPB$PS_SCH_RESTART, thus indicating that there is no kernel

process scheduling restart routine.

5. Call EXE$KP_STALL_GENERAL, passing to it the address of the KPB.

575

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$KP_WFIKPCH, lIOC$KP_WFIRLCH

576

Note that, having stalled the kernel process, the STALL_WFIXXCH kernel
process scheduling stall routine returns control to EXE$KP_STALL_

GENERAL, which returns to the initiator of the kernel process thread (that
is, the caller of EXE$KP_START or EXE$KP_RESTART). When interrupt

servicing transfers control back to STALL_WFIXXCH, or a timeout occurs,

STALL_WFIXXCH calls EXE$KP_RESTART which, in turn, passes control

back to IOC$KP_WFIKPCH or IOC$KP_WFIRLCH. The kernel process
wait-for-interrupt stall routine then returns to the kernel process that called it.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$LOAD_MAP

IOC$LOAD_MAP

Loads a set of adapter-specific map registers.

Prototype

int ioc$load_map (ADP *adp, CRCTX “crctx, PTE *svapte, int boff, void
*“*dma_addr_p)

Parameters

Name Access ___ Description

adp Input Pointer to the address of ADP for adapter which

provides the map registers.

erctx Input Pointer to the address of CRCTX that describes
a map register allocation (that is, a CRCTX that
has been obtained by a call to IOC$ALLOC_

CRCTX and supplied in a call to IOC$ALLOC_
CNT_RES for the CRAB that manages this
adapter’s map registers).

svapte Input Pointer to the system virtual address of the PTE
for the first page to be used in the transfer.

boff Input Pointer to byte offset into the first page of the
transfer buffer.

dma_address_ref Input Pointer to address of a location to receive a
port-specific DMA address. For DEC 3000-
500 systems, this address is a function of the
starting map register and the byte offset. A
DEC 3000-500 system port driver must strip off
two lower bits when loading the address register

of the DMA device.

Context

IOC$LOAD_MAP conforms to the OpenVMS Alpha calling standard.

577

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$LOAD_MAP

Returns

VMS Usage: cond_value

type: longword_unsigned

access: longword (unsigned)
mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_ NORMAL The routine completed successfully.

SS$_INSMEM Memory allocation failure.

Description

A driver calls IOC$LOAD_MAP to load a set of adapter-specific map registers.

The driver must have previously allocated the map registers (including an

extra two to serve as guard pages) in calls to IOC$ALLOC_CRCTX and
IOC$ALLOC_CNT_RES.

IOC$LOAD_MAP computes a port-specific DMA address and returns it to the

driver for use in a hardware I/O mailbox operation that loads the address
register of a DMA device.

578

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$MAP_IO

IOC$MAP_IO

Maps I/O bus physical address space into an address region accessible by the
processor. The caller of this routine can express the mapping request in terms
of the bus address space without regard to address swizzle space, dense space,
or Sparse space.

IOC$MAP_IO is supported on PCI, EISA, TURBOchannel, and Futurebus+
systems. It is not supported on XMI systems.

Prototype

int ioc$map_io (ADP *adp, int node, uint64 *physical_offset, int num_bytes, int
attributes, uint64 *iohandle)

Parameters

Name Access ___ Description

adp Input Address of bus ADP. Driver can get this from
IDB$PS_ADP.

node Input Bus node number of device. Bus specific
interpretation. Available to driver in CRB$L_
NODE (driver must be loaded with /NODE

qualifier).

physical_offset Input Address of a quadword cell. For EISA, PCI,
and Futurebus +, the quadword cell should

contain the starting bus physical address to
be mapped. For Turbochannel, the quadword
cell should contain the physical offset from the

Turbochannel slot base address.

num_bytes Input Number of bytes to be mapped. Expressed in
terms of the bus/device without regard to the
platform hardware addressing techniques.

579

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$MAP_IO

Name Access _ Description

attributes Input Specifies desired attributes of space to be

580

mapped from [libliocdef. One of the following:

e IOC$K BUS_IO_BYTE_GRAN— Request
mapping in a platform address space which
corresponds to bus I/O space and provides

byte granularity access. In general, if you
are mapping device control registers that
exist in bus I/O space, you should specify
this attribute. For example, drivers for PCI

devices with registers in PCI I/O space or
EISA devices with EISA I/O port addresses
should request mapping with this attribute.

e IOC$K_BUS_MEM BYTE GRAN— Request

mapping in a platform address space which
corresponds to bus memory space and

provides byte granularity access. In general,

if you are mapping device registers that exist
in bus memory space, you should specify this
attribute. For example, drivers for PCI

devices with registers in PCI memory space
should request mapping with this attribute.

e IOC$K_BUS_DENSE_SPACE— Request
mapping in a platform address space
that corresponds to bus memory space

and provides coarse access granularity.
IOC$K_BUS_DENSE_SPACE is suitable
for mapping device memory buffers such as
graphics frame buffers. In IOC$K_BUS_
DENSE_SPACE, there must be no side

effects on reads and it may be possible for
the processor to merge writes. Thus you

should not map device registers in dense
space.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$MAP_IO

Name Access __ Description

iohandle Input Pointer to a 64 bit cell. A 64 bit magic number

is written to this cell by IOC6MAP_IO when
the mapping request is successful. The caller

must save the iohandle, as it is an input to
IOC$CRAM_CMD and to the new platform
independent access routines IOC$READ_IO and
IOC$WRITE_IO.

Return Values

SS$_NORMAL The routine completed successfully. The
address space is mapped. A 64 bit IOHANDLE

is written to the caller’s buffer.

SS$_BADPARAM Bad input argument. For example, the
requested bus address may not be accessible
from the CPU, or the attribute may be
unrecognized.

SS$_UNSUPPORTED Address space with the requested attributes
not available on this platform. For example,
the DEC 2000 Model 150 platform does not
support EISA memory dense space.

SS$_INSFSPTS Not enough PTEs to satisfy mapping request.

581

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$NODE_FUNCTION

IOC$NODE_FUNCTION

Performs node-specific functions on behalf of a driver, such as enabling or

disabling interrupts from a bus slot.

Prototype

int ioc$node_function (CRB “crb, int func)

Parameters

Name Access __ Description

crb Input Pointer to the address of the CRB.

func Input Pointer to the function to be effected for the bus
node indicated by the erb argument.

Context

IOC$NODE_FUNCTION conforms to the OpenVMS Alpha calling standard. It

may be called in kernel mode at any IPL and may acquire the MEGA spin lock
(SPL$C_MEGA), raising IPL to IPL$_MEGA in the process, depending on the
function code.

Returns

VMS Usage: cond_value
type: longword_unsigned
access: longword (unsigned)

mechanism: write only—by value

Status indicating the success or failure of the operation.

Return Values

SS$_NORMAL The routine completed successfully.

SS$_ILLIOFUNC Requested function not available on this
platform or bus.

582

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lIOC$NODE_FUNCTION

Description

IOC$NODE_FUNCTION locates the ADP associated with the specified CRB
(from VEC$PS_ADP) and calls the adapter-specific node function routine
specified in ADP$PS_NODE_FUNCTION. The node function routine performs
the function indicated by the func argument. You can specify one of the

following values (defined by the $IOCDEF macro in SYS$LIBRARY:LIB.MLB).
Note that not all function codes are supported by all adapters.

Code Action

IOC$K_ENABLE_INTR Enable interrupts

IOC$K_ DISABLE INTR Disable interrupts

IOC$K_ENABLE_SG Enable scatter/gather map

IOC$K_DISABLE_SG Disable scatter/gather map

IOC$K_ENABLE_PAR Enable parity

IOC$K_DISABLE_PAR Disable parity

IOC$K_ ENABLE BLKM Enable block mode

IOC$K_DISABLE_BLKM Disable block mode

Drivers request the node-specific functions as follows:

IOCK_ENABLE_INTR, IOCK_DISABLE_INTR

On both DEC 3000-500 and DEC 3000-300 systems, when the console
transfers control to OpenVMS Alpha, TURBOchannel interrupts from all
slots are disabled. The controller or unit initialization routine of a driver
for a TURBOchannel devices must call IOC$NODE_FUNCTION, specifying

the IOC$K_ENABLE_INTR function code, to enable interrupts for the

TURBOchannel slot in which the device resides. The field CRB$L_NODE

of the specified CRB contains this slot number.

Calling IOC$NODE_FUNCTION with the IOC$K_DISABLE_INTR code
disables interrupts from the node.

IOCK_ENABLE_SG, IOCK_DISABLE_SG

On DEC 3000-500 systems, calling IOC6NODE_FUNCTION with function

code IOC$K_ENABLE_SG, allows DMA transactions from a device to use

the DEC 3000-500 system scatter/gather map. The TURBOchannel slot of
the device is indicated by the field CRB$L_NODE in the specified CRB.

Calling IOC$NODE_FUNCTION with the IOC$K_DISABLE_SG code

disables the scatter/gather map.

583

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$NODE_FUNCTION

584

DEC 3000-300 systems have no scatter/gather map. IOC$NODE_

FUNCTION returns SS$ ILLIOFUNC if it is called on a DEC 3000-

300 system with either an IOC$K_ENABLE_SG or IOC$K_DISABLE_SG

function code.

IOCK_ENABLE_PAR, IOCK_DISABLE_PAR

On DEC 3000-500 systems, calling IOC6NODE_FUNCTION with
function code IOC$K_ENABLE_PAR causes parity to be generated on

TURBOchannel transactions directed to a device, and causes parity to
be checked on TURBOchannel transactions coming from the device. The
TURBOchannel slot of the device is indicated by the field CRB$L_NODE in

the specified CRB.

If an adapter supports TURBOchannel parity, a driver controller or unit
initialization routine enable it by calling IOC6NODE_FUNCTION with the
IOC$K_ENABLE_PAR function code.

Calling IOC6NODE_FUNCTION with the IOC$K_DISABLE_PAR code
disables TURBOchannel parity.

DEC 3000-300 systems do not support TURBOchannel parity. IOC6NODE_

FUNCTION returns SS$_ILLIOFUNC if it is called on a DEC 3000-300
system with either an IOC$K_ENABLE_PAR or IOC$K_DISABLE_PAR
function code.

IOCK_ENABLE_BLKM, IOCK_DISABLE_BLKM

On DEC 3000-500 systems, calling IOC6NODE_FUNCTION with
function code IOC$K_ENABLE_BLKM causes block mode to be used

on TURBOchannel transactions to and from the device indicated by the
field CRB$L_NODE in the specified CRB. Most drivers have no need to

enable block mode.

DEC 3000-300 systems do not support TURBOchannel block mode.
IOC$NODE_FUNCTION returns SS$_ ILLIOFUNC if it is called on a
DEC 3000-300 system with either an IOC$K_ENABLE_BLKM or IOC$K_
DISABLE_BLKM function code.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$READ_!IO

IOCS$READ_IO

Reads a value from a previously mapped location in I/O address space. This

routine requires that the I/O space to be accessed has been previously mapped
by a call to IOC$MAP_IO.

IOC$READ_IO is supported on PCI, EISA, TURBOchannel, and PCI systems.
It is not supported on XMI systems.

Prototype

int int ioc$read_io (ADP *adp, uint64 *iohandle, int offset, int length, void

*read_data)

Parameters

Name Access___ Description

adp Input Pointer to the address of bus ADP. Driver can
get this from IDB$PS_ADP.

iohandle Input Pointer to a 64 bit IOHANDLE. The 64 bit
IOHANDLE is obtained by calling the platform
independent mapping routine IOC$MAP_IO.

offset Input Offset in device space of field to be read or
written. This should be specified as an offset
from the base of the space that was previously

mapped by the call to IOC$MAP_IO. The offset
is specified in terms of the device or bus without
regard to any hardware address techniques.

length Input Length of field to be read or written. Should be
1 (byte), 2 (word), 3 (tribyte), 4 (longword) or 8

(quadword). Note that not all of these lengths
are supported on all buses.

read_data Input Pointer to a data cell. For ioc$read_io, the data
read from the device will be returned in this
cell. If the requested data length was 1, 2, 3,

or 4, a longword is written to the data cell with
valid data in the byte lane(s) corresponding to
the requested length and offset. If the requested
data length was 8, a quadword is written to the

data cell.

585

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC$READ_IO

Name Access

write_data Input

Return Values

586

SS$ NORMAL Success

SS$_BADPARAM

SS$_UNSUPPORTED

Description

Pointer to a data cell. The data cell should
contain the data to be written to the device.
For lengths of 1, 2, 3 or 4, the IOC$WRITE_IO
routine reads a longword from the data cell and
writes this longword to the bus with the proper
byte enables set according to the length and
offset. The actual data to be written must be
positioned in the proper byte lane(s) according
to the requested length and offset. For a length

8 transfer, the IOC$WRITE_IO routine reads a
quadword from the data cell.

If IOC$READ_IO, data is returned in the

caller’s buffer. If IOC$WRITE_IO, data is
written to device.

Bad input argument, such as an illegal length.

A transaction length not supported by this bus
or platform.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOCSUNMAP_IO

IOCSUNMAP_IO

Unmaps a previously mapped I/O address space, returning the IOHANDLE

and the PTEs to the system. The caller’s quadword cell containing the
IOHANDLE is cleared.

Prototype

int ioc$unmap_io (ADP *adp, uint64 *iohandle)

Parameters

Name Access___ Description

adp Input Address of bus ADP. Driver can get this from
IDB$PS_ADP.

iohandle Input Pointer to a 64 bit IOHANDLE. The 64 bit
IOHANDLE is obtained by calling the platform
independent mapping routine IOC$MAP_IO.

587

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC$WRITE_IO

IOCSWRITE_IO

Writes a value to a previously mapped location in I/O address space.

IOC$WRITE_IO requires that the I/O space to be accessed has been previously

mapped by a call to IOC$MAP_IO.

Prototype

int ioc$write_io (ADP *adp, uint64 *iohandle, int offset, int length, void *write_data)

Parameters

Name

adp

iohandle

offset

length

read_data

588

Access

Input

Input

Input

Input

Input

Description

Address of bus ADP. Driver can get this from
IDB$PS_ADP.

Pointer to a 64 bit IOHANDLE. The 64 bit
IOHANDLE is obtained by calling the platform
independent mapping routine IOC$MAP_IO.

Offset in device space of field to be read or
written. This should be specified as an offset
from the base of the space that was previously

mapped by the call to IOC$MAP_IO. The offset
is specified in terms of the device or bus without
regard to any hardware address techniques.

Length of field to be read or written. Should be
1 (byte), 2 (word), 3 (tribyte), 4 (longword) or 8

(quadword). Note that not all of these lengths
are supported on all buses.

Pointer to a data cell. For IOC$READ_IO,

the data read from the device will be returned
in this cell. If the requested data length was
1, 2, 3, or 4, a longword is written to the

data cell with valid data in the byte lane(s)

corresponding to the requested length and offset.
If the requested data length was 8, a quadword
is written to the data cell.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

Name Access

write_data Input

Return Values

SS$ NORMAL Success

SS$_BADPARAM

SS$_UNSUPPORTED

IOC$WRITE_IO

Description

Pointer to a data cell. The data cell should
contain the data to be written to the device.
For lengths of 1, 2, 3 or 4, the ioc$write_io

routine reads a longword from the data cell and
writes this longword to the bus with the proper
byte enables set according to the length and
offset. The actual data to be written must be
positioned in the proper byte lane(s) according

to the requested length and offset. For a length

8 transfer, the ioc$write_io routine reads a
quadword from the data cell.

If IOC$READ_IO, data is returned in the
caller’s buffer. If IOC$WRITE_IO, data is
written to device.

Bad input argument, such as an illegal length.

A transaction length not supported by this bus
or platform.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STD$ALTREQCOM

lIOC_STD$ALTREQCOM

Completes an I/O request for a device using the disk or tape class drivers.

Prototype

void ioc_std$altreqcom (int iost1, int iost2, CDRP *cdrp, IRP **irp_p, UCB **ucb_p)

Parameters

Name Access __ Description

iost1 Input Pointer to the first longword of I/O status.

iost2 Input Pointer to the second longword of I/O status.

cdrp Input Pointer to the class driver request packet.

irp_p Input Pointer to the address at which IOC_
STD$ALTREQCOM writes the address of the
I/O request packet.

ucb_p Input Pointer to the address at which IOC_
STD$ALTREQCOM writes the address of the
unit control block.

Context

IOC_STD$ALTREQCOM is typically called at fork IPL with the corresponding
fork lock held in an OpenVMS multiprocessing system.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$BROADCAST

lOC_STD$BROADCAST

Broadcasts the specified message to a given terminal.

Prototype

int ioc_std$broadcast (int msglen, void *msg_p, UCB *ucb)

Parameters

Name Access Description -

msglen Input Pointer to the message length.

msg_p Input Pointer to the message.

ucb Input Pointer to the address of target terminal’s UCB.

Return Values

SS$_ILLIOFUNC The specified term_uch is not associated with
a terminal.

SS$_INSFMEM Insufficient dynamic nonpaged pool to satisfy
the request.

SS$_NORMAL The broadcast completed successfully.

Context

IOC_STD$BROADCAST is typically called at fork IPL with the corresponding
fork lock held in an OpenVMS multiprocessing system.

591

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1O0C_STDS$CANCELIO

lIOC_STD$CANCELIO

Conditionally marks a UCB so that its current I/O request will be canceled.

Prototype

void ioc_std$cancelio (int chan, IRP *irp, PCB *pcb, UCB *ucb)

Parameters

Name Access ___ Description

chan Input Pointer to the channel index number.

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel. IOC_
STD$CANCELIO reads UCB$L_STS to
determine if the device is busy (UCB$V_

BSY set) or idle (UCB$V_BSY clear). IOC_

STD$CANCELIO sets UCB$V_CANCEL if the
I/O request should be canceled.

Parameter Fields

Field Contents

irp->

IRP$L_PID Process identification of the process that queued the
I/O request

IRP$L_CHAN I/O request channel index number

Context

IOC_STD$CANCELIO executes at its caller’s IPL, obtains no spin locks,
and returns control to its caller at the caller’s IPL. It is usually called by
EXE$CANCEL (if specified in the DDT as the driver’s cancel-I/O routine) at
fork IPL, holding the corresponding fork lock in a multiprocessing environment.

592

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lOC_STD$CANCELIO

Description

IOC_STD$CANCELIO cancels I/O to a device in the following device-

independent manner:

1. It confirms that the device is busy by examining the device-busy bit in the
UCB status longword (UCB$V_BSY in UCB$L_STS).

2. It confirms that the IRP in progress on the device originates from the
current process (that is, the contents of IRP$L_PID and PCB$L_PID are
identical).

3. It confirms that the specified channel-index number is the same as the
value stored in the IRP’s channel-index field (IRP$L_CHAN).

4. It sets the cancel-I/O bit in the UCB status longword (UCB$V_CANCEL in

UCB$L_STS).

593

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

IOC_STD$CLONE_UCB

lOC_STD$CLONE_UCB

Copies a template UCB and links it to the appropriate DDB list.

Prototype

int ioc_std$clone_ucb (UCB *tmpl_ucb, UCB **new_ucb)

Parameters

Name Access ___ Description

tmpl_ucb Input Pointer to the template unit control block.

new_ucb_p Input Pointer to the location into which IOC_

STD$CLONE_UCB writes the address of the

newly-created unit control block.

Return Values

SS$_NORMAL UCB cloning was successful.

SS$_INSFMEM Insufficient nonpaged pool to copy UCB.

Context

A driver calls IOC_STD$CLONE_UCB at or below IPL$_ MAILBOX with the
I/O database locked for write access.

594

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lIOC_STD$COPY_UCB

lIOC_STD$COPY_UCB

Copies and initializes a template UCB and ORB.

Prototype

int ioc_std$copy_ucb (UCB “src_ucb, UCB **new_ucb)

Parameters

Name = ~—sCAccess’-s«CDescription = tt ttst—<isSsSCS

src_ucb Input Pointer to the template unit control block.

new_ucb Input Pointer to the location into which IOC_
STD$COPY_UCB writes the address of the
newly-created duplicate unit control block.

Return Values

SS$_NORMAL UCB copy was successful.

SS$_INSFMEM Insufficient nonpaged pool to copy UCB.

Context

A driver calls IOC_STD$COPY_UCB at or below IPL$_MAILBOX with the I/O

database locked for write access.

595

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$CREDIT_UCB

lOC_STD$CREDIT_UCB

Credits the UCB charges associated with a given UCB against the process
identified by the contents of UCB$L_CPID.

Prototype

void ioc_std$credit_ucb (UCB “ucb)

Parameters

Name Access __ Description

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Context

A driver calls IOC_STD$CREDIT_UCB at IPL$_ASTDEL.

596

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lIOC_STD$CVT_DEVNAM

lIOC_STD$CVT_DEVNAM

Converts a device name and unit number to a physical device name string.

Prototype

int ioc_std$cvt_devnam (int buflen, char “buf, int form, UCB *ucb, int32 *outlen_p)

Parameters

Name Access ___ Description

buflen Input Pointer to the size of output buffer in bytes.

buf Input Pointer to the output buffer.

form Input Pointer to the name string formation mode. See
Description section for more information.

ucb Input Pointer to the unit control block for device.

outlen_p Input Pointer to the address of location in which IOC_

STD$CVT_DEVNAM returns the length of the
conversion string.

Return Values

SS$_BUFFEROVF Successful completion, but specified buffer

cannot hold the entire device name string.

SS$_NORMAL Normal, successful completion.

Context

IOC_STD$CVT_DEVNAM is typically called at fork IPL with the
corresponding fork lock held in an OpenVMS multiprocessing system.

Description

The form argument uses the name string formation mode, as follows:

597

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$CVT_DEVNAM

598

Mode

-2 (DVI$_DISPLAY_
DEVNAM)

—1 (DVI$_DEVNAM)

Description

Name suitable for displays but not suitable for

$ASSIGN: "$alloclass$dden: (host1[, host2])",
"node$dden", or "dden"

Name suitable for displays: "node$dden" for non-local

devices or "node$ddcn" or "dden" for local devices

0 (DVI$_FULLDEVNAMName with appropriate node information: either
"€alloclass$dden" or "node$dden"

1 (DVI$_ALLDEVNAM) Name with allocation class information: either

2 (no GETDVI item

code)

3 (no GETDVI item

code)

4 (no GETDVI item

code)

"€alloclass$ddcn" or "node$ddcn"

Old-fashioned name: "dden"

Secondary path name for displays (same as —1 except
secondary path name is returned)

Path controller name for displays (same as —1 except
no unit number is appended)

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

lOC_STD$CVTLOGPHY

1OC_STD$CVTLOGPHY

Conditionally converts a logical block number to a physical disk address and
stores the result in the I/O request packet.

Prototype

void ioc_std$cvtlogphy (int Ibn, IRP *irp, UCB *ucb)

Parameters

Name

Ibn

irp

ucb

Context

Access

Input

Input

Input

Description

Pointer to the logical block number to be
converted.

Pointer to the I/O request packet.

Pointer to the unit control block of the device

assigned to the process I/O channel.

A driver calls IOC_STD$CVTLOGPHY at fork IPL with the corresponding fork

lock held in a multiprocessing system.

599

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$DELETE_UCB

lOC_STD$DELETE_UCB

Deletes the specified UCB if its reference count is zero and UCB$V_

DELETEUCB is set in UCB$L_STS.

Prototype

void ioc_std$delete_ucb (UCB *ucb)

Parameters

Name Access ___ Description

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Context

A driver calls IOC_STD$DELETE_UCB with the I/O database locked for write

access.

600

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1IOC_STD$DIAGBUFILL

1OC_STD$DIAGBUFILL

Fills a diagnostic buffer if the original $QIO request specified such a buffer.

Prototype

void ioc_std$diagbufill (int driver_param, UCB *ucb)

Parameters

Name Access ___ Description ;

driver_param Input Pointer to the parameter to be passed to the

driver’s register dumping routine. Typically, a
driver supplies the address of a CRAM in this
register.

ucb Input Pointer to the unit control block. IOC_
STD$DIAGBUFILL reads the final error retry

count from UCB$L_ERTCNT. It obtains the
address of the current IRP from UCB$L_IRP.

IOC_STD$DIAGBUFILL obtains the address

of the DDB from UCB$L_DDB and the address
of the DDT from DDB$L_DDT. The procedure
value of driver’s register dumping routine is
obtained from DDT$L_REGDUMP.

Parameter Fields

Field Contents

irp->

IRP$L_STS. IRP$V_DIAGBUF set if a diagnostic buffer exists

IRP$L_DIAGBUF Address of diagnostic buffer, if one is present

Context

The caller of IOC_STD$DIAGBUFILL may be executing at or above fork IPL
and must hold the corresponding fork lock. IOC_LSTD$DIAGBUFILL returns
control to its caller at the caller’s IPL. The caller retains any spin locks it held

at the time of the call.

601

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$DIAGBUFILL

Description

A device driver fork process calls IOC_STD$DIAGBUFILL at the end of I/O

processing but before releasing the I/O channel. IOC_LSTD$DIAGBUFILL
stores the I/O completion time and the final error retry count in the diagnostic
buffer. (IOC_STD$INITIATE has already placed the I/O initiation time
[from EXE$GQ_SYSTIME] in the first quadword of the buffer.) IOC_

STD$DIAGBUFILL then calls the driver’s register dumping routine, passing
to it in the buffer argument an address within the diagnostic buffer in
which the routine can place the register values it retrieves from device
interface register space by means of hardware mailbox read transactions.

It also passes the contents of the driver_param and ucb arguments. The
register dumping routine fills the remainder of the buffer, and returns to
IOC_STD$DIAGBUFILL, which returns to its caller.

602

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1IOC_STD$FILSPT

lIOC_STD$FILSPT

Fills a system page-table entry (PTE) with the transfer PTE of a buffer that is
locked in memory so that the system PTE may be directly addressed.

Prototype

void *ioc_std$filspt (UCB *ucb)

Parameters

Name Access ___ Description

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel. IOC_
STD$FILSPT reads UCB$L_SVAPTE to obtain
the system virtual address of PTE that maps the
first page of the buffer.

Return Values

sva System virtual address of the first byte in the
page that contains the buffer.

Context

The caller of IOC_STD$FILSPT may be executing at fork IPL or above and

must hold the corresponding fork lock in a multiprocessing environment.

603

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1IOC_STD$GETBYTE

lIOC_STD$GETBYTE

Fetches a single byte of data from a user buffer.

int ioc_std$getbyte (void *sva, UCB “ucb, void **sva_p)

Prototype

Parameters

Name Access

sva Input

ucb Input

sva_p Input

Return Values

byte

Context

Description

Pointer to the system virtual address of a single-
page window into the user buffer. Prior to
calling IOC_LSTD$GETBYTE, a driver must

have called IOC_STD$INITBUFWIND to map
the system page-table entry to the user buffer.

Pointer to the Unit control block. IOC_
STD$GETBYTE updates UCB$L_SVAPTE
whenever a page boundary is crossed.

Pointer to the location in which IOC_
STD$GETBYTE writes the updated system
virtual address.

One byte of data (not zero-extended) returned
from the user buffer.

The caller of IOC_STD$GETBYTE may be executing at fork IPL or above and
must hold the corresponding fork lock in a multiprocessing environment.

604

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STDS$INITBUFWIND

1IOC_STDSINITBUFWIND

Initializes a single-page window into a user buffer.

Prototype

void *ioc_std$initbufwind (UCB *ucb)

Parameters

Name Access __ Description

ucb Input Pointer to the unit control block of the device

assigned to the process I/O channel.

Return Values

sva System virtual address of the first byte in the

page that contains the buffer.

Context

The caller of IOC_STD$INITBUFWIND may be executing at fork IPL or above
and must hold the corresponding fork lock in a multiprocessing environment.

605

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1IOC_STD$INITIATE

lOC_STDSINITIATE

Initiates the processing of the next I/O request for a device unit.

Prototype

void ioc_std$initiate (IRP *irp, UCB *ucb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Parameter Fields

Field Contents

irp-> read fields

IRP$L_SVAPTE Address of system buffer (buffered I/O) or system

virtual address of the PTE that maps process buffer
(direct I/O).

IRP$L_BOFF Byte offset of start of buffer.

IRP$L_BCNT Size in bytes of transfer.

IRP$W_STS IRP$V_DIAGBUF set if a diagnostic buffer exists.

IRP$L_DIAGBUF Address of diagnostic buffer, if one is present. IOC_

STD$INITIATE writes the current system time from
EXE$GQ_SYSTIME into the first quadword of this
buffer.

ucb-> read fields

UCB$L_DDB Address of DDB.

UCB$L_DDT Address of DDT. DDT$PS_START contains the
procedure value of the driver’s start-I/O routine.

UCB$L_AFFINITY Device’s affinity mask.

606

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STDSINITIATE

Field Contents

ucb-> write fields

UCB$L_IRP Address of IRP

UCB$L_SVAPTE IRP$L_SVAPTE

UCB$L_BOFF IRP$L_BOFF

UCB$L_BCNT IRP$L_BCNT

UCB$L_STS UCB$V_CANCEL and UCB$V_TIMOUT cleared

Context

IOC_STD$INITIATE is called at fork IPL with the corresponding fork lock held

in a multiprocessing system. Within this context, it transfers control to the
driver’s start-I/O routine.

Description

IOC_STD$INITIATE creates the context in which a driver fork process services

an I/O request. IOC_STD$INITIATE creates this context and activates the
driver’s start-I/O routine in the following steps:

1. Checks the CPU ID of the local processor against the device's affinity mask
to determine whether the local processor can initiate the I/O operation on

the device. If it cannot, IOC_STD$INITIATE takes steps to initiate the I/O
function on another processor in a multiprocessing system. It then returns
to its caller.

2. Stores the address of the current IRP in UCB$L_IRP.

3. Copies the transfer parameters contained in the IRP into the UCB:

a. Copies the address of the system buffer (buffered I/O) or the system
virtual address of the PTE that maps process buffer (direct I/O) from
IRP$L_SVAPTE to UCB$L_SVAPTE

b. Copies the byte offset within the page from IRP$L_BOFF to UCB$L
BOFF

c. Copies the byte count from IRP$L_BCNT to UCB$L_BCNT

4. Clears the cancel-I/O and timeout bits in the UCB status longword
(UCB$V_CANCEL and UCB$V_TIMOUT in UCB$L_STS).

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC_STDS$INITIATE

5. Ifthe I/O request specifies a diagnostic buffer, as indicated by IRP$V_
DIAGBUF in IRP$L_STS, stores the system time in the first quadword
of the buffer to which IRP$L_DIAGBUF points (the $QIO system service
having already allocated the buffer).

6. Transfers control to the driver’s start-I/O routine.

608

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1IOC_STD$LINK_UCB

IOC_STD$LINK_UCB

Searches the UCB list attached to the device data block identified by the
specified UCB and links the specified UCB into the list in ascending unit
number order.

Prototype

int ioc_std$link_ucb (UCB *ucb)

Parameters

Name Access ___ Description

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Return Values

SS$_ NORMAL Link operation was successful.

SS$_OPINCOMPL Link operation failed due to the presence of
a UCB with the same unit number as the

specified UCB.

Context

A driver calls IOC_STD$LINK_UCB with the I/O database locked for write

access.

609

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STDS$MAPVBLK

ee ee

IOC_STD$MAPVBLK

Maps a virtual block to a logical block using a mapping window.

Prototype

int ioc_std$mapvblk (int vbn, int numbytes, WCB “web, IRP *irp, UCB *ucb, int32

*Ibn_p, int32 *notmapped_p, UCB **new_ucb_p)

Parameters

Name Access __ Description

vbn Input Pointer to the virtual block number.

numbytes Input Pointer to the number of bytes to map.

web Input Pointer to the window control block.

irp Input Pointer to the I/O request packet.

ucb Input Pointer to the unit control block.

Ibn_p Output Pointer to the address at which IOC_
STD$MAPVBLK writes the logical block number
of the first block it maps.

notmapped_p Output Pointer to the address at which IOC_
STD$MAPVBLK writes the number of

unmapped bytes.

new_ucb_p Output Pointer to the address at which IOC_

Return Values

status

Context

STD$MAPVBLK writes the address of the

updated UCB.

Low bit set indicates partial map with
all output parameters valid, low bit clear

indicates total mapping failure with only the
notmapped_p parameter valid.

IOC_STD$MAPVBLK raises IPL to IPL$_FILSYS and obtains the
corresponding spin lock to perform the mapping. As a result, it cannot be
called by a driver executing above IPL 8, or by a driver is executing at IPL 8
but holds the IOLOCK8 fork lock.

610

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC_STD$MNTVER

10C_STD$MNTVER

Assists a driver with mount verification.

Prototype

void ioc_std$mntver (IRP *irp, UCB *ucb)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet. I/O request
packet, or 0. If irp contains the address of an
IRP, EXE_STD$MNTVER inserts the IRP at the
head of the pending-I/O queue in the UCB. If it
contains zero, EXE_STD$MNTVER removes the

IRP from the head of the pending-I/O queue and
attempts to initiate I/O processing.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

Context

IOC_STD$MNTVER is called at fork IPL with the corresponding fork lock held

in a multiprocessing system.

611

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STD$MOVFRUSER, IOC_STD$MOVFRUSER2

lOC_STD$MOVFRUSER, lOC_STD$MOVFRUSER2

Move data from a user buffer to an internal buffer.

Prototype

void *ioc_std$movfruser (void *sysbuf, int numbytes, UCB *ucb, void **sysbuf_p)

void *ioc_std$movfruser2 (void *sysbuf, int numbytes, UCB “*ucb, void *sva, void

**sysbuf_p)

Parameters

Name Access __ Description

sysbuf Input Pointer to the address of internal buffer.

numbytes Input Pointer to the number of bytes to move.

ucb Input Pointer to the unit control block.

sva Input Pointer to the system virtual address of the
byte in the user buffer after the last byte moved
(IOC_STD$MOVFRUSER2 only).

sysbuf_p Output Pointer to the system virtual address of the

Parameter Fields

Field

byte in the user buffer after the last byte
moved. IOC_LSTD$MOVFRUSER and IOC_
STD$MOVFRUSER2 write this field.

Contents

ucb->

UCB$L_SVAPTE

UCB$L_SVPN

UCB$L_BOFF

System virtual address of PTE that maps the first
page of the user buffer.

System virtual page number of SPTE allocated to
driver.

Byte offset within the first page to start of user
buffer TOC_STD$MOVFRUSER only).

612

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$MOVFRUSER, lIOC_STD$MOVFRUSER2

Return Values

pointer System virtual address of the byte in the

internal buffer after the last byte moved.

Context

The caller of IOC_LSTD$MOVFRUSER or IOC_STD$MOVFRUSER2 may be
executing at fork IPL or above and must hold the corresponding fork lock in a
multiprocessing environment. Either routine returns control to its caller at the

caller’s IPL. The caller retains any spin locks it held at the time of the call.

Description

A driver calls IOC_STD$MOVFRUSER and IOC_STD$MOVFRUSER2 to move

data from a user buffer to a device that cannot itself map the user buffer to
system virtual addresses (for instance, a non-DMA device).

To use either routine, the driver must have set bit DPT$V_SVP in the driver

prologue table, typically by using the flags argument of the DPTAB macro.
This causes OpenVMS to allocate a a system page-table entry (SPTE) for driver

use.

In order to accomplish the move, IOC_STD$MOVFRUSER and IOC_
STD$MOVFRUSER2 first map the user buffer using the system page-table
entry (SPTE) the driver allocated in a DPTAB macro invocation. If an SPTE
has not been allocated to the driver, these routines cause an access violation

when they attempt to refer to the location addressed by the contents of the
field UCB$L_SVAPTE.

I0C_STD$MOVFRUSER2 is useful for moving blocks of data in several pieces,

each piece beginning within a page rather than on a page boundary. To begin,
the driver calls IOC_STD$MOVFRUSER. For each subsequent piece, the driver
calls IOC_STD$MOVFRUSER2.

613

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STD$MOVTOUSER, lIOC_STD$MOVTOUSER2

lIOC_STD$MOVTOUSER, lIOC_STD$MOVTOUSER2

Move data from an internal buffer to a user buffer.

Prototype

void *ioc_std$movtouser (void *sysbuf, int numbytes, UCB *ucb, void **sysbuf_p)

void *ioc_std$movtouser2 (void *sysbuf, int numbytes, UCB *ucb, void *sva, void

**sysbuf_p)

Parameters

Name Access

sysbuf Input

numbytes Input

ucb Input

sva Input

sysbuf_p Output

Parameter Fields

Description

Pointer to the address of internal buffer.

Pointer to the number of bytes to move.

Pointer to the unit control block.

Pointer to the system virtual address of the

byte in the user buffer after the last byte moved

(IOC_STD$MOVTOUSER2 only).

Pointer to the system virtual address of the
byte in the user buffer after the last byte
moved. IOC_STD$MOVTOUSER and IOC_
STD$MOVTOUSER2 write this field.

Field Contents

ucb->

UCB$I.SVAPTE System virtual address of PTE that maps the first
page of the user buffer.

UCB$L_SVPN System virtual page number of SPTE allocated to
driver.

UCB$L_BOFF Byte offset within the first page to start of user
buffer IOC_STD$MOVTOUSER only).

614

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lOC_STD$MOVTOUSER, IOC_STD$MOVTOUSER2

Return Values

pointer System virtual address of the byte in the

internal buffer after the last byte moved.

Context

The caller of IOC_LSTD$MOVTOUSER or IOC_STD$MOVTOUSER2 may be
executing at fork IPL or above and must hold the corresponding fork lock in a
multiprocessing environment. Either routine returns control to its caller at the

caller’s IPL. The caller retains any spin locks it held at the time of the call.

Description

A driver calls IOC_STD$MOVTOUSER and IOC_STD$MOVTOUSER2 to
move data from a device to a user buffer when the device itself (for instance, a

non-DMA device) cannot map the user buffer to system virtual addresses.

To use either routine, the driver must have set bit DPT$V_SVP in the driver

prologue table, typically by using the flags argument of the DPTAB macro.

This causes OpenVMS to allocate a a system page-table entry (SPTE) for driver
use. (See the description of the DPTAB macro in Chapter 19 for additional
information.)

In order to accomplish the move, IOC_STD$MOVTOUSER and IOC_
STD$MOVTOUSER2 first map the user buffer using the system page-table
entry (SPTE) the driver allocated in a DPTAB macro invocation. If an SPTE

has not been allocated to the driver, these routines cause an access violation

when they attempt to refer to the location addressed by the contents of the

field UCB$L_SVAPTE.

IOC_STD$MOVTOUSER2 is useful for moving blocks of data in several

pieces, each piece beginning within a page rather than on a page boundary.
It handles as many pages as you need. To begin, the driver calls IOC_

STD$MOVTOUSER. For each subsequent buffer to move, the driver calls

IOC_STD$MOVTOUSER2.

615

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1IOC_STD$PARSDEVNAM

lIOC_STD$PARSDEVNAM

Parses a device name string, checking its syntax and extracting the node name,

allocation class number, and unit number.

Prototype

int ioc_std$parsdevnam (int devnamlen, char *devnam, int flags, int32 *unit_p,
int32 *scslen_p, int32 *devnamlen_p, char **devnam_p, int32 *flags_p)

Parameters

Name Access

devnamlen Input

devnam Input

flags Input

unit_p Output

scslen_p Output

devnamlen_p Output

devnam_p Output

flags_p Output

Description

Pointer to the size of the name string.

Pointer to the name string.

Pointer to the flags.

Pointer to the address at which IOC_
STD$PARSDEVNAM writes an integer
representing the unit number.

Pointer to the address at which IOC_
STD$PARSDEVNAM writes an integer
representing either the length of the SCS node
name, the allocation class number, or the device
type code.

Pointer to the address at which IOC_
STD$PARSDEVNAM writes an integer
representing the size of the name string.

Pointer to the address at which IOC_
STD$PARSDEVNAM writes the address of
the name string.

Pointer to the address at which IOC_

STD$PARSDEVNAM writes an integer that
contains the flags.

Return Values

SS$_IVDEVNAM

616

Invalid device name string.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1IOC_STD$PARSDEVNAM

SS$_NORMAL Valid device name string.

Context

IOC_STD$PARSDEVNAM is typically called at fork IPL with the

corresponding fork lock held in an OpenVMS multiprocessing system.

617

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1IOC_STD$POST_IRP

lOC_STD$POST_IRP

Inserts an I/O request packet in a CPU-specific I/O postprocessing queue.

Prototype

void ioc_std$post_irp (IRP “irp)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet.

Context

Mount verification processing calls IOC_STD$POST_IRP at or above IPL$_
ASTDEL.

618

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$PTETOPFN

lIOC_STD$PTETOPFN

Returns a page frame number (PFN) from a page-table entry (PTE) that has
already been determined to be invalid.

Prototype

int ioc_std$ptetopfn (PTE “pte)

Parameters

Name Access ___ Description

pte Input Quadword page-table entry.

Return Values

pfn Page frame number (zero-extended).

Context

The caller of IOC_STD$PTETOPFN may be executing at or above IPL 0 in

kernel mode.

619

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1IOC_STD$QNXTSEG1

lIOC_STD$QNXTSEG1

Queues the next segment of a virtual I/O request that did not map to a single

contiguous I/O request.

Prototype

void ioc_std$qnxtseg1 (int vbn, int bent, WCB *web, IRP “irp, PCB *pcb, UCB

*ucb, UCB **ucb_p)

Parameters

Name Access __ Description

vbn Output Pointer to the virtual block number of the start
of the next segment.

bent Output Pointer to the required byte count of next
segment.

web Output Pointer to the window control block.

irp Output Pointer to the I/O request packet.

pcb Output Pointer to the process control block.

ucb Output Pointer to the unit control block.

ucb_p Input Pointer to the address at which IOC_

STD$QNXTSEG1 writes the address of the
unit control block.

Context

620

The caller of IOC_STD$QNXTSEGI1 typically executes at or above fork IPL.
IOC_STD$QNXTSEG1 executes at its caller’s IPL and returns control at that
IPL. The caller retains any spin locks it held at the time of the call.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1IOC_STD$PRIMITIVE_REQCHANH,IOC_STD$PRIMITIVE_REQCHANL

1OC_STD$PRIMITIVE_REQCHANH,REQCHANL

Request a controller’s data channel and, if unavailable, place process in
channel wait queue.

Prototype

int ioc_std$primitive_reqchanh (IRP *irp, UCB *ucb, IDB **idb_p)

int ioc_std$primitive_reqchanl (IRP *irp, UCB *ucb, IDB **idb_p)

Parameters

Name

irp
ucb

idb_p

Access

Input

Input

Output

Description

Pointer to the I/O request packet.

Pointer to the Unit control block. IOC_

STD$REQPCHANH and IOC_STD$REQPCHANL
write the contents of the irp parameter

in UCB$Q_FR3, and the address of the
UCB in IDB$PS_OWNER. If the channel

is busy, IOC_STD$REQPCHANH and IOC_
STD$REQPCHANL update CRB$L_WQFL and
CRB$L_WQBL.

Pointer to the address of location in which IOC_

STD$REQPCHANH and IOC_STD$REQPCHANL
write the address of the interrupt dispatch block

(IDB).

621

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STD$PRIMITIVE_REQCHANH, IOC_STD$PRIMITIVE_REQCHANL

Parameter Fields

Field Contents
TO eg eg

ucb->

UCB$L_FPC Procedure value of fork routine to be executed when

the channel is granted if the channel cannot be

granted immediately

UCB$L_CRB Address of controller request block (CRB). IOC_

STD$REQPCHANH and IOC_STD$REQPCHANL

access the following CRB fields:

Return Values

CRB fields

CRB$B_MASK CRB$V_BSY set if the channel is busy.

CRB$L_INTD+VEC$L_ Address of IDB.

IDB

CRB$L_WQFL Head of queue of UCBs waiting for the controller

channel.

CRB$L_WQBL Tail of queue of UCBs waiting for the controller

channel.

SS$_NORMAL Channel has been granted immediately.

0 Channel is busy and UCB fork block has been
queued on channel-wait queue.

Context

622

A driver calls IOC_STD$PRIMITIVE_REQCHANH or IOC_STD$PRIMITIVE _
REQCHANL at fork IPL holding the appropriate fork lock. Either IOC_
STD$PRIMITIVE_REQCHANH or IOC_STD$PRIMITIVE_REQCHANL,
unlike the corresponding OpenVMS VAX system routine, returns to its caller

and not to its caller’s caller. Each assumes that, prior to the call, its caller has
placed the procedure value of the fork routine into UCB$L_FPC.

If the requested channel is busy, either IOC_STD$PRIMITIVE_REQCHANH
or IOC_STD$PRIMITIVE_REQCHANL preserves the contents of the irp
parameter in UCB$Q_FR3 . IOC_STD$RELCHAN eventually calls the fork
routine upon granting the channel request, passing the irp, idb, and ucb
parameters.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1IOC_STD$PRIMITIVE_REQCHANH, !OC_STD$PRIMITIVE_ REQCHANL

Description

A driver fork process calls IOC_STD$PRIMITIVE_REQCHANH or IOC_

STD$PRIMITIVE_REQCHANL to acquire ownership of the controller’s data
channel.

Each routine examines CRB$V_BSY in CRB$B_MASK. If the selected

controller’s data channel is idle, the routine grants the channel to the
fork process, placing its UCB address in IDB$PS_OWNER and returning

successfully with the IDB address in the location specified by the idb_p

parameter.

If the data channel is busy, the routine saves process context by placing the
IRP address, as specified in the irp parameter, into the UCB fork block. IOC_

STD$REQCHANH then inserts the UCB at the head of the channel wait queue

(CRB$L_WQFL); IOC_STD$REQCHANL inserts the UCB at the tail of the
queue (CRB$L_WQBL). Finally, the routine returns control to its caller.

When the controller channel is available to a waiting fork process, IOC_
STD$RELCHAN resumes the suspended fork process at its channel grant

routine, passing to it the irp, idb, and ucb parameters.

623

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1IOC_STD$PRIMITIVE_WFIKPCH, lIOC_STD$PRIMITIVE_WFIRLCH

lIOC_STD$PRIMITIVE_WFIKPCH, lOC_STD$PRIMITIVE_WFIRLCH

Suspend a driver fork thread and fold its context into a fork block in

anticipation of a device interrupt or timeout.

Prototype

void ioc_std$primitive_wfirlch (IRP *irp, int64 fr4, UCB *ucb, int tmo, int restore_ipl)

void ioc_std$primitive_wfirlch (IRP *irp, int64 fr4, UCB *ucb, int tmo, int restore_ipl)

Parameters

Name Access’ __ Description

irp Input Pointer to the I/O request packet.

fr4 Input Pointer to the parameter to be passed to the
interrupt service routine or timeout handling
routine.

ucb Input Pointer to the unit control block.

tmo Input Pointer to the timeout value in seconds.

restore_ipl Input Pointer to the IPL to which to lower before

returning to caller. This IPL must be the fork
IPL associated with device processing and at
which the driver was executing prior to invoking
the DEVICELOCK macro.

624

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$PRIMITIVE_WFIKPCH, |OC_STD$PRIMITIVE_WFIRLCH

Parameter Fields

Field Contents

ucb-> read fields

UCB$L_FPC Procedure value of fork routine which may be the

destination of a JSB instruction issued by either the
driver’s interrupt service routine or EXE$TIMEOUT.

UCB$B_FLCK Fork lock index.

ucb-> write fields

UCB$L_DUETIM Sum of timeout value and EXE$GL_ABSTIM

UCB$L_STS UCB$V_INT is set to indicate that interrupts

are expected on the device; UCB$V_TIM is set to
indicate device I/O is being timed; and UCB$V_
TIMOUT is cleared to indicate that unit has not yet

timed out.

UCB$Q_FR3 R3 of caller.

UCB$Q_FR4 R4 of caller.

Context

When it is called, IOC_STD$PRIMITIVE_WFIKPCH or IOC_STD$PRIMITIVE_
WFIRLCH assumes that the local processor has obtained the appropriate

synchronization with the device database by securing the appropriate device

lock, as recorded in the unit control block (UCB$L_DLCK) of the device unit

from which the interrupt is expected. This requirement also presumes that the

local processor is executing at the device IPL associated with the lock.

Before exiting, IOC_STD$PRIMITIVE_WFIKPCH or IOC_STD$PRIMITIVE_
WFIRLCH conditionally releases the device lock, so that if the caller of the

driver fork thread (the caller’s caller) previously owned the device lock, it will
continue to hold it when it regains control. IOC_LSTD$PRIMITIVE_WFIKPCH

or IOC_STD$PRIMITIVE_WFIRLCH also lowers the local processor’s IPL to

the IPL specified in the restore_ipl parameter.

625

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STD$PRIMITIVE_WFIKPCH, IOC_STD$PRIMITIVE_WFIRLCH

Description

626

A driver fork process calls IOC_STD$PRIMITIVE_WFIKPCH to wait for an

interrupt while keeping ownership of the controller’s data channel; IOC_

STD$PRIMITIVE_WFIRLCH, by contrast, releases the channel.

Either routine performs the following operations:

1. Moves contents of the irp and fr4 parameters into the UCB fork block.

2. Sets UCB$V_INT to indicate an expected interrupt from the device unit.

3. Sets UCB$V_TIM to indicate that OpenVMS should check for timeouts

from the device unit.

4. Determines the timeout due time by adding the timeout value specified in

R1 to EXE$GL_ABSTIM and storing the result in UCB$L_DUETIM.

5. Clears UCB$V_TIMOUT to indicate that the unit has not yet timed out.

6. Invokes the DEVICEUNLOCK macro to conditionally release the device
lock associated with the device unit and to lower IPL to the IPL specified in
the restore_ipl parameter. These actions presume that the DEVICELOCK
macro has been issued prior to the wait-for-interrupt invocation.

7. Returns to its caller.

Note that IOC_STD$PRIMITIVE_WFIRLCH exits by transferring control
to IOC_STD$RELCHAN. IOC_STD$RELCHAN releases the controller data

channel and eventually issues an RSB instruction to IOC_STD$PRIMITIVE __

WFIRLCH which returns to its caller. Because the release of the channel
occurs at fork IPL, an interrupt service routine cannot reliably distinguish

between operations initiated by IOC_LSTD$PRIMITIVE_WFIKPCH and IOC_
STD$PRIMITIVE_WFIRLCH by examining the ownership of the CRB.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lOC_STDS$RELCHAN

lIOC_STD$RELCHAN

Releases device ownership of all controller data channels.

Prototype

void ioc_std$relchan (UCB “ucb)

Parameters

Name Access ___ Description

ucb Input Pointer to the unit Control block. IOC_

STD$RELCHAN reads UCB$L_CRB to obtain

the address of the controller request block (CRB)

in order to access the CRB fields.

Parameter Fields

Field Contents

crb->

CRB$B_MASK CRB$V_BSY set if the channel is busy. IOC_
STD$RELCHAN clears this bit if no driver is

waiting for the controller channel.

CRB$L_INTD+VEC$L__ Address of IDB. IOC_STD$RELCHAN obtains the
IDB address the UCB that owns the controller channel

from IDB$L_OWNER. IOC_STD$RELCHAN clears
IDB$L_OWNER if no driver is waiting for the

controller channel.

CRB$L_WQFL Head of queue of UCBs waiting for the controller.

Context

A driver fork process calls IOC_STD$RELCHAN at fork IPL, holding

the corresponding fork lock in a multiprocessing environment. IOC_
STD$RELCHAN returns control to its caller after resuming execution of
other fork processes waiting for a controller channel.

627

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1OC_STD$RELCHAN

Description

628

A driver fork process calls IOC_STD$RELCHAN to release all controller data
channels assigned to a device.

If the channel wait queue contains waiting fork processes, IOC_STD$RELCHAN

dequeues a process, assigns the channel to that process and calls the suspended
fork process at its channel grant routine, passing to it the irp, idb, and ucb
parameters.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lOC_STD$REQCOM

lOC_STD$REQCOM

Completes an I/O operation on a device unit, requests I/O postprocessing of the
current request, and starts the next I/O request waiting for the device.

Prototype

void ioc_std$reqcom (int iost1, int iost2, UCB *ucb)

Parameters

Name

lostl

lost2

ucb

Parameter Fields

Field

ucb->

UCB$L_ERTCNT

UCB$L_ERTMAX

UCB$L_EMB

UCB$L_IRP

UCB$B_DEVCLASS

UCB$L_IOQFL

UCB$L_OPCNT

UCB$L_STS

Access ___ Description

Input

Input

Input

Pointer to the first longword of I/O status.

Pointer to the second longword of I/O status.

Pointer to the unit control block.

Contents

Final error count.

Maximum error retry count.

Address of error message buffer.

Address of IRP. IOC_STD$REQCOM writes iost1
and iost2 into IRP$L_IOST1 and IRP$L_IOST2,

respectively.

DC$_DISK and DC$_TAPE devices are subject to

mount verification checks.

Device unit’s pending-I/O queue. IOC_STD$REQCOM
updates this field.

Unit operations count. IOC_STD$REQCOM
increases this field.

If error logging is in progress (that is, UCB$V_
ERLOGIP is set), IOC_STD$REQCOM writes
the following fields in the error message buffer.

IOC_STD$REQCOM then clears UCB$V_BSY and

UCB$V_ERLOGIP.

629

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

lOC_STD$REQCOM

ee Te

Field Contents ree ee ae eee

Error Message

Buffer Fields

EMB$L_DV_STS UCB$L_STS.

EMB$L_DV_ERTCNT UCB$L_ERTCNT.

EMB$L_DV_ UCB$L_ERTMAX.

ERTCNT+1

EMB$Q_ DV_IOSB Quadword of I/O status.

Context

A driver fork process calls IOC_STD$REQCOM at fork IPL, holding

the corresponding fork lock in a multiprocessing environment. IOC_
STD$REQCOM transfers control to IOC_STD$RELCHAN, which may call
the OpenVMS fork dispatcher to resume another driver fork process. When it
regains control, IOC_STD$REQCOM returns to the driver fork process.

Description

A driver fork process calls this routine after a device I/O operation and all

device-dependent processing of an I/O request is complete.

IOC$REQCOM performs the following tasks:

1. If error logging is in progress for the device (as indicated by UCB$V_

ERLOGIP in UCB$L_STS), writes into the error message buffer the status

of the device unit, the error retry count for the transfer, the maximum

error retry count for the driver, and the final status of the I/O operation. It:
then releases the error message buffer by calling ERL_STD$RELEASEMB.

Increases the device unit’s operations count (UCB$L_OPCNT).

If UCB$B_DEVCLASS specifies a disk device (DC$_DISK) or tape device
(DC$_TAPE) and error status is reported, performs a set of checks to

determine if mount verification is necessary. Tape end-of-file (EOF) errors
(SS$_ENDOFFILE) are exempt from these checks. For a tape device with

success status, checks to determine if CRC must be generated.

Writes final I/O status (RO and R1) into IRP$L_IOST1 and IRP$L_IOST2.

Inserts the IRP in systemwide I/O postprocessing queue.

Requests a software interrupt from the local processor at IPL$_IOPOST.

630

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lIOoC_STD$REQCOM

7. Attempts to remove an IRP from the device’s pending-I/O queue (at
UCB$L_IOQFL). If successful, it transfers control to IOC_STD$INITIATE

to begin driver processing of this I/O request. If the queue is empty, it

clears the unit busy bit (UCB$V_BSY in UCB$L_STS) to indicate that the
device is idle.

8. Exits by transferring control to IOC_STD$RELCHAN.

631

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STD$SEARCHDEV

Nene ee eee eee eee EE ee

lOC_STD$SEARCHDEV

Searches the I/O database for a specific physical device.

Prototype

int ioc_std$searchdev (void *descr_p, UCB **ucb_p, DDB **ddb_p, SB **sb_p)

Parameters

Name Access __ Description

descr_p Input Pointer to the descriptor of device logical name.

ucb_p Output Pointer to the address at which IOC_
STD$SEARCHDEV writes the unit control
block (UCB) address.

ddb_p Output Pointer to the address at which IOC_
STD$SEARCHDEV writes the device data

block (DDB) address.

sb_p Output Pointer to the address at which IOC_

Return Values

SS$_ACCVIO

SS$_DEVALLOC

SS$_DEVMOUNT

SS$_DEVOFFLINE

SS$_IVDEVNAM

SS$_IVLOGNAM

SS$_NODEVAVL

SS$_NONLOCAL

SS$_NOPRIV

SS$_NORMAL

SS$_NOSUCHDEV

SS$_TEMPLATEDEV

632

STD$SEARCHDEYV writes the system block
(SB) address.

Name string is not readable.

Device is allocated to another user.

Device already mounted.

Device marked offline.

Invalid device name string.

Invalid logical name.

Device exists but is not available.

Nonlocal device.

Insufficient privilege to access device.

Device found.

Device not found.

Cannot allocate template device.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
1IOC_STD$SEARCHDEV

SS$_TOOMANYLNAM Maximum logical name recursion limit

exceeded.

Context

A driver calls IOC_STD$SEARCHDEV at IPL$_ASTDEL holding the I/O
database mutex.

633

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STD$SEARCHINT

lOC_STD$SEARCHINT

Searches the I/O database for the specified device, using specified search rules.

Prototype

int ioc_std$searchint (int unit, int scslen, int devnamlen, char *devnam, int flags,

UCB **ucb_p, DDB **ddb_p, SB **sb_p, void **lock_val_p)

Parameters

Name Access

unit Input

scslen Input

devnamlen Input

devnam Input

flags Input

ucb_p Output

ddb_p Output

sb_p Output

lock_val_p Output

Description

Pointer to the unit number.

Pointer to the integer representing either the

length of the SCS node name, the allocation
class number, or the device type code.

Pointer to the size of the name string.

Pointer to the name string.

Pointer to the flags.

Pointer to the address at which IOC_
STD$SEARCHINT writes the UCB address.

Pointer to the address at which IOC_
STD$SEARCHINT writes the DDB address.

Pointer to the address at which IOC_

STD$SEARCHINT writes the system block
(SB) address.

Pointer to the address at which IOC_

STD$SEARCHINT writes the address of the
lock value block.

Return Values

SS$_DEVMOUNT

SS$_DEVOFFLINE

SS$_NODEVAVL

SS$_NOPRIV

634

Device already mounted.

Device marked offline.

Device exists but is not available.

Insufficient privilege to access device.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lOC_STD$SEARCHINT

SS$_ NORMAL Device found.

SS$_NOSUCHDEV Device not found.

SS$_TEMPLATEDEV Cannot allocate template device.

Context

A driver calls IOC_STD$SEARCHINT at IPL$_ASTDEL holding the I/O
database mutex. It may be called at elevated IPL only for searches specifying
IOC$V_ANY.

635

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1IOC_STD$SENSEDISK

lOC_STD$SENSEDISK

Copies the disk’s size in logical blocks from the device’s UCB into the second

longword of the I/O status block (IOSB) specified in a $QIO system service call,

and completes the I/O operation successfully.

Prototype

int ioc_std$sensedisk (IRP *irp, PCB *peb, UCB *ucb, CCB “ccb)

Parameters

Name Access __ Description

irp Input Pointer to the I/O request packet for the current
I/O request.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process-I/O channel specified as
an argument to the $QIO request.

ecb Input Pointer to the channel control block that
describes the process-I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Status in FDT_CONTEXT

SS$ NORMAL The routine completed successfully.

Context

FDT dispatching code in the $QIO system service calls IOC_STD$SENSEDISK
as an upper-level FDT action routine at IPL$ ASTDEL.

636

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
IOC_STD$SEVER_UCB

lOC_STD$SEVER_UCB

Removes the specified UCB from the UCB list of the device data block
identified within the specified UCB.

Prototype

void ioc_std$sever_ucb (UCB “ucb)

Parameters

Name Access ___ Description

uch Input Pointer to the unit control block.

Context

A driver calls IOC_STD$SEVER_UCB with the I/O database locked for write

access.

637

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

1OC_STD$SIMREQCOM

lIOC_STD$SIMREQCOM

Completes an I/O operation by setting an event flag, modifying an I/O

status block (IOSB), setting an event flag, or queuing an AST to the process

requesting the I/O. The caller of this routine is responsible for checking quotas

and updating the I/O count.

Prototype

int ioc_std$simreqcom (int32 iosb[2], int pri, int efn, int32 iost[2] ACB *acb, int

acmode)

Parameters

Name Access __ Description

iosb Input Pointer to the I/O status block. If this
parameter contains the address of an IOSB,
IOC_STD$SIMREQCOM checks for write

access to the IOSB. If it contains a zero,

IOC_STD$SIMREQCOM makes no IOSB

modifications.

pri Input Pointer to the priority boost class to be passed
directly to SCH$POSTEF and SCH$QAST. If an
IOSB address is supplied to the iosb parameter,
this parameter has no effect. If this parameter
contains a zero, there is no priority boost.

efn Input Pointer to the common or local event flag to be
set. If this parameter contains —1, no event flag
is set.

iost Input Pointer to the internal process identification

(IPID) of the target process (if the iosb
parameter is zero); address of a quadword
containing the new contents of the user’s IOSB
Gf the iosb is non-zero).

638

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

Name

acb

acmode

Return Values

SS$_ILLEFC

SS$_NONEXPR

SS$_NORMAL

SS$_UNASEFC

SS$_WASCLR

SS$_WASSET

Context

Access

Input

Input

lIOC_STD$SIMREQCOM

Description

Pointer to the AST control block. If this
parameter is zero, no AST is delivered. When
the acb parameter is non-zero and ACB$L_
AST is zero, IOC_STD$SIMREQCOM checks
ACB$V_NODELETE. If ACB$V_NODELETE is
clear, IOC_STD$SIMREQCOM uses ACB$W_
SIZE to return the ACB and any structure in
which it is embedded to nonpaged pool.

Pointer to the access mode of the process
originally requesting the I/O operation. IOC_
STD$SIMREQCOM uses this value to probe the
IOSB (if specified) for write access. If the iosb
parameter is zero, this parameter is ignored.

Illegal cluster number.

Nonexistent process.

Normal, successful completion.

Unassigned cluster number.

Specified event flag was clear initially.

Specified event flag was set initially.

If supplying a non-zero value for the iosb parameter, the caller of IOC_
STD$SIMREQCOM must be executing in the context of the target process.

639

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
lOC_STD$THREADCRB

lIOC_STD$THREADCRB

Threads a controller request block (CRB) onto the CRB timeout queue chain
headed by IOC$GL_CRBTMOUT.

Prototype

void ioc_std$threadcrb (CRB “*crb)

Parameters

Name Access ___ Description

crb Input Pointer to the controller request block.

Context

Mount verification processing calls IOC_STD$THREADCRB at or above IPL$_
ASTDEL.

640

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
MMG_STD$IOLOCK

MMG_STD$IOLOCK

Locks process pages in memory.

Prototype

int mmg_std$iolock (void *buf, int bufsiz, int is_read, PCB “pcb, void **svapte_p)

Parameters

Name Access ___ Description

buf Input Pointer to the buffer.

bufsize Input Pointer to the size of output buffer in bytes.

is_read Input Pointer to the transfer direction indicator, as
follows: 0—write from memory to I/O device,

1—read into memory from I/O device, 5—Write
from and read into memory from I/O device.

peb Input Pointer to the process control block.

svapte_p Input Pointer to the address of location in which
MMG_STD$IOLOCK returns either the system
virtual address of the first page-table entry (if
the returned status is SS$ NORMAL) or the
address of a page to be faulted into memory (if
the returned status is 0).

Return Values

SS$_ACCVIO Specified buffer is not a process buffer, but
does not fully reside in system space; or

process buffer overruns balance set slots.

SS$_INSFWSL Insufficient working set list.

SS$_NORMAL Normal, successful completion.

0 Virtual address must be faulted into memory.

Context

MMG. STD$IOLOCK must be called at IPL$_ASTDEL.

641

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

MMG_STD$UNLOCK

ee nn ann nena

MMG_STD$UNLOCK

Unlocks process pages previously locked for a direct-I/O operation.

Prototype

void mmg_std$unlock (int npages, void *svapte)

Parameters

Name Access __ Description

npages Input Pointer to number of buffer pages to unlock.

svapte Input Pointer to system virtual address of PTE for the
first buffer page.

Context

Because MMG_STD$UNLOCK raises IPL to IPL$_SYNCH, and obtains

the MMG spin lock in a multiprocessing environment, its caller cannot be
executing above IPL$_SYNCH or hold any higher ranked spin locks. MMG_
STD$UNLOCK returns control to its caller at the caller’s IPL. The caller
retains any spin locks it held at the time of the call.

Description

642

Drivers rarely use MMG_STD$UNLOCK. At the completion of a direct-I/O
transfer, IOC_STD$IOPOST automatically unlocks the pages of both the user

buffer and any additional buffers specified in region 1 (if defined) and region

2 (if defined) for all the IRPKs linked to the packet undergoing completion
processing.

However, driver FDT routines do use MMG_STD$UNLOCK when an attempt
to lock IRPE buffers for a direct-I/O transfer fails. The buffer-locking routines
called by such a driver (EXE_STD$READLOCK, EXE_STD$WRITELOCK, and
EXE_STD$MODIFYLOCK) allow a driver to specify an error-handling callback
routine that can call MMG_STD$UNLOCK to unlock all previously locked
regions and deallocate the IRPE using EXE_STD$DEANONPAGED.

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
MT_STD$CHECK_ACCESS

MT_STD$CHECK_ACCESS

Checks access rights for magtape control write functions.

Prototype

int mt_std$check_access (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Parameters

Name Access ___ Description

irp Input Pointer to the I/O request packet.

pcb Input Pointer to the process control block of the
current process.

ucb Input Pointer to the unit control block of the device
assigned to the process I/O channel.

ecb Input Pointer to the channel control block for the
process I/O channel.

Return Values

SS$_FDT_COMPL Warning-level status indicating that FDT
processing is complete. The routine that
receives this status can no longer safely access
the IRP.

Status in FDT_CONTEXT

SS$_ACCVIO Process does not have write access to volume.

SS$_NORMAL I/O request has been successfully queued to
the driver’s start-I/O routine.

SS$_NOPRIV Process has insufficient privileges to perform a
control write function.

SS$_WRITLCK Device software is write locked.

643

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
MT_STD$CHECK_ACCESS

Context

FDT dispatching code in the $QIO system service calls MT_STD$CHECK_
ACCESS as an upper-level FDT action routine at IPL$_ASTDEL.

644

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
SCH_STD$IOLOCKR

SCH_STD$IOLOCKR

Locks the I/O database mutex on behalf of its caller for read access.

Prototype

MUTEX *sch_std$iolockr (PCB *pcb)

Parameters

Name Access ___ Description

peb Input Pointer to the process control block of the
current process.

Return Values

pointer Address of I/O database mutex.

Context

SCH_STD$IOLOCKR must be called at or below IPL$_SYNCH. It returns to

its caller at IPL$_ASTDEL.

645

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers

SCH_STD$IOLOCKW

SCH_STD$IOLOCKW

Locks the I/O database mutex on behalf of its caller for write access.

Prototype

MUTEX *sch_std$iolockw (PCB *pcb)

Parameters

Name Access ___— Description

peb Input Pointer to the process control block of the
current process.

Return Values

pointer Address of I/O database mutex.

Context

SCH_STD$IOLOCKW must be called at or below IPL$ SYNCH. It returns to

its caller at IPL$_ASTDEL.

646

OpenVMS System Routines Called by OpenVMS Alpha Device Drivers
SCH_STD$IOUNLOCK

SCH_STD$IOUNLOCK

Releases ownership of the I/O database mutex and, if the mutex has thus
become available to waiting processes, reactivates the next eligible process.

Prototype

void sch_std$iounlock (PCB *pcb)

Parameters

Name Access __ Description

pcb Input Pointer to the process control block of the
current process.

Context

SCH_STD$IOUNLOCK must be called below IPL$_SCHED. It returns to its

caller at its caller’s IPL.

647

HOR MO
ae :

neon Weare

Te
—

nn, ee ee

S671. STOSIOLOOCR WwW

adi oni sath ew Quant Gotten petnecll’
anne Wigs san off ontevinoset setapoy paiiiee of aldal

py Croll ype

WTR ‘eet_ ie “a *yelS -

.
_ eae ae jae =

Pur atieyse &

ee 520 pas Vial @ Oe ~ : .
ee aT ena s = = : =a je ey . Ne a
a 3 ee Te ee 0 oath - di ; . “

hae
s= to _doatel ferns sem rertey iit pain i eae =

Seesety seria

pi veri

e..%) a

aft a Pele ak) on kt sated Ang EAS she. sie

ul pie tp

ie ¥ ar 4 , Af)

20
C Driver Macros

This chapter describes the C macros that can be used by OpenVMS
Alpha device drivers. These macros are defined in the vms_macros.h and
vms_drivers.h header files. Any definitions of data types, function prototypes,
and other macros that these macros require are also included in the these

header files.

649

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers

DEVICE_LOCK

oo 0000

DEVICE_LOCK

Use to acquire a device spinlock and to optionally save the original IPL.

Format

device_lock (lockaddr, raise_ipl, savip|_p)

Parameters

Name Access __ Description

lockaddr Input Pointer to the device spinlock structure of type
SPL.

raise_ipl Input Either the integer value RAISE_IPL or
NORAISE_IPL. The symbol RAISE_IPL is
defined to be 1 and the symbol NORAISE_IPL
is defined to be 0 by the vms_drivers.h file. If
raise_ipl is equal to RAISE_IPL, then the IPL

is set using the value in the spinlock structure.

Caution should be exercised not to use the
constant NOLOWER_IPL for the raise_
ip] parameter. If NOLOWER_IPL is used
erroneously, the effect is that IPL will be
raised. However, the effect of using values

other than RAISE_IPL or NORAISE_IPL for the
raise_ipl parameter should be considered as

unpredictable. Remember that IPL is raised (or
held) when acquiring a spin lock and lowered (or
held) on release.

savipl_p Output Pointer to a 32-bit integer passed by reference
in which the original IPL is returned. If the
address of this parameter is NOSAVE_IPL, then
the current IPL is not returned. The symbol
NOSAVE_IPL is defined to be a null pointer,
that is, ((int *) 0), by the vms_drivers.h file.

650

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
DEVICE_LOCK

Defined by:

#include <vms_drivers.h>.

651

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers

DEVICE_UNLOCK

DEVICE_UNLOCK

Format

Use to either release or restore (that is, conditionally release) a device spinlock

and to optionally set a new IPL.

device_unlock (lockaddr, newipl, restore)

Parameters

652

Name Access Description

lockaddr

newipl

restore

Input

Input

Input

Pointer to the the device spinlock structure of

type SPL.

The integer value of the desired new IPL or
the value NOLOWER_IPL if the IPL should be
left unchanged. The symbol NOLOWER_IPL is
defined to be -1 by the vms_drivers.h file.

Caution should be exercised not to use the
constants RAISE_IPL nor NORAISE_IPL
instead of NOLOWER_IPL for the newipl

parameter. If either of these are used
erroneously in place of NOLOWER_IPL the
effect is that IPL will be set to either 0 or 1.

Remember that IPL is raised (or held) when
acquiring a spin lock and lowered (or held) on
release.

Either the integer value SMP_RESTORE or

SMP_RELEASE. If SMP_RELEASE is specified
then the spinlock is unconditionally released
by calling SMP_STD$RELEASEL, otherwise
the spinlock is conditionally released by calling
SMP_STD$RESTOREL. The symbol SMP__
RESTORE is defined to be 1 and the symbol
SMP_RELEASE is defined to be 0 by the
vms_drivers.h file.

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
DEVICE_UNLOCK

Defined by:

#include <vms_drivers .h>

653

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
DSBINT

DSBINT

Use to set processor IPL to specified value and save previous value. Usually
used to raise IPL and paired with a subsequent use of the enbint macro to
return to the previous IPL.

Format

dsbint (newipl,saved_ ipl)

Parameters

Name Access __ Description

newipl Input The integer value of the desired new IPL.

saved_ipl Output An integer variable into which the previous IPL
is written.

Defined by:

#include <vms_macros.h>

654

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
ENBINT

ENBINT

Use to set processor IPL to specified value. Usually used to return to the
previous IPL obtained from an earlier use of the dsbint macro.

Format

enbint (newipl)

Parameters

Name Access __ Description

newipl Input The integer value of the desired new IPL.

Defined by:

#include <vms_macros.h>

655

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers

FORK

FORK

Use to queue a specified fork routine with specified fork routine parameters.

After the fork routine is queued, execution continues with the next statement

following the fork macro.

Format

fork (fork_routine, fr3, fr4, fkb)

Parameters

Name Access ___ Description

fork_routine Input The procedure value of the routine that is to be
executed in a fork thread. This value is passed
to the fork dispatcher via fkb—fkb$l_fpc.

fr3 Input The 64-bit value to pass to the fork routine via
fkb—fkb$q_fr3. This parameter is cast as a
64-bit integer.

fr4 Input The 64-bit value to pass to the fork routine via

fkb—fkb$q_fr4. This parameter is cast as a
64-bit integer.

fkb Input Pointer to the fork block. This parameter is cast
as a pointer to an FKB.

Defined by:

#include <vms_drivers.h>

656

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
FORK_LOCK

FORK_LOCK

Use to acquire a fork spin lock and to optionally save the original IPL.

Format

fork_lock (lockidx, savipl_p)

Parameters

Name Access __ Description

lockidx Input The integer value of the spin lock index.

savipl_p Output Pointer to the 32-bit integer in which the
original IPL is returned. If the address of this
parameter is NOSAVE_IPL, then the original
IPL is not returned. The symbol NOSAVE_IPL
is defined to be a null pointer, i.e. ((int *) 0), by

the vms_drivers.h file.

Defined by:

#include <vms_drivers .h>

657

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers

FORK_UNLOCK

FORK_UNLOCK

Format

Use to either release or restore (i.e. conditionally release) a fork spin lock and

to optionally set a new IPL.

fork_unlock (lockidx, newipl, restore)

Parameters

Name Access Description

lockidx Input

newipl Input

restore Input

Defined by:

658

#include <vms_drivers.h>

The integer value of the spin lock index.

The integer value of the desired new IPL or
the value NOLOWER_IPL if the IPL should be
left unchanged. The symbol NOLOWER_IPL is
defined to be -1 by the vms_drivers.h file.

Caution should be exercised not to use the
constants RAISE_IPL nor NORAISE_IPL
instead of NOLOWER_IPL for the newipl

parameter. If either of these are used
erroneously in place of NOLOWER_IPL the

effect is that IPL will be set to either 0 or 1.
Remember that IPL is raised (or held) when
acquiring a spin lock and lowered (or held) on
release.

Either the integer value SMP_RESTORE or
SMP_RELEASE. If SMP_RELEASE is specified
then the spin lock is unconditionally released by
calling SMP_STD$RELEASE, otherwise the spin

lock is conditionally released by calling SMP_
STD$RESTORE. The symbol SMP_RESTORE is
defined to be 1 and the symbol SMP_RELEASE
is defined to be 0 by the vms_drivers.h file.

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
FORK_WAIT

FORK_WAIT

Use to queue a specified fork routine with specified fork routine parameters for

delayed execution. After the fork routine is queued, execution continues with
the next statement following the fork macro.

Format

fork_wait (fork_routine, fr3, fr4, fkb)

Parameters

Name

fork_routine

fr3

fr4

fkb

Defined by:

Access

Input

Input

Input

Input

#include <vms_drivers.h>

Description

Pointer to the procedure value of the routine
that is to be executed in a fork thread. This
value is passed to the fork dispatcher via
fkb—fkb$1_fpc.

The 64-bit value to pass to the fork routine via
fkb—fkb$q_fr3. This parameter is cast as a
64-bit integer.

The 64-bit value to pass to the fork routine via

fkb—fkb$q_fr4. This parameter is cast as a

64-bit integer.

Pointer to the fork block. This parameter is cast

as a pointer to an FKB.

659

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers

IOFORK

IOFORK

Format

Parameters

Name Access

fork_routine Input

fr3 Input

fr4 Input

ucb Input

Defined by:

660

Use to queue a fork routine with specified fork routine parameters. This macro

is very similar to fork, except that the fork block is assumed to be a UCB and
the ucb$v_tim bit is cleared before the fork routine is queued.

iofork (fork_routine, fr3, fr4, ucb)

Description

Pointer to the procedure value of the routine
that is to be executed in a fork thread. This
value is passed to the fork dispatcher via
ucb—ucb$l_fpc.

The 64-bit value to pass to the fork routine via

ucb—ucb$q_fr3. This parameter is cast as a
64-bit integer.

The 64-bit value to pass to the fork routine via
ucb—ucb$q_fr4. This parameter is cast as a
64-bit integer.

Pointer to the unit control block. This parameter
is cast as a pointer to a UCB.

#include vms_drivers.h

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
RFI (RESUME FROM INTERRUPT)

RFI (RESUME FROM INTERRUPT)

Use in an interrupt service routine to invoke the resume from interrupt routine
that has been set up by either the wfikpch or wfirlch macros.

Note that it may be possible to eliminate the driver resume from interrupt
routine (and thus the need to use the rfi macro) by moving some processing
directly into the interrupt service routine and by resuming the driver in a fork
routine. The driver fork routine would then be resumed from the interrupt

service routine by:

ucb->ucb$v_tim = 0;
exe_std$queue_fork ((FKB *) ucb);

Format

rfi (irp, fr4, ucb)

Parameters

Name Access ___ Description

irp Input Pointer to an IRP type, but can be any value
which is expected as the first parameter of the

resume from interrupt routine.

fr4 Input Pointer to value which is expected as the second
parameter of the resume from interrupt routine.

ucb Input Pointer to a Unit Control Block and is the third
parameter of the resume from interrupt routine.
This parameter is cast as a pointer to an UCB.

Defined by:

#include <vms.drivers.h

661

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
SETIPL

SETIPL

Use to set processor IPL to specified value.

Format

setipl (newipl)

Parameter

Name Access ___ Description

newip! Input Integer value of the desired new IPL.

Defined by:

#include <vms_macros.h>

662

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
SOFTINT

SOFTINT

Use to requests a software initiated interrupt at the specified IPL level.

Format

softint (ipl)

Parameters

Name Access ___ Description

ipl Input Pointer to the integer value of the IPL of the
desired software initiated interrupt.

Defined by:

#include <vms_macros.h>

663

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
SYS_LOCK

SYS_LOCK

Use to acquire a spinlock and raise IPL if necessary.

Format

sys_lock (lockname,change_ipl,saved_ipl)

Parameters

Name Access

lockname Input

change_ipl Input

saved_ip] Input

Defined by:

#include <vms_macros.h>

664

Description

Spinlock name in uppercase, for example, MMG.
The macro appends this name to the SPL$C_
prefix to form the spinlock index constant.

Constant 0 if the caller knows that the current
IPL is exactly the IPL required for this spinlock
and that a change of IPL is not necessary,
othrwise 1.

Pointer to an integer into which the original IPL
is returned or is the constant 0 if the caller does
not want to obtain the previous IPL.

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
SYS_UNLOCK

SYS_UNLOCK

Use to release or restore a spinlock and optionally set IPL.

Format

sys_unlock (lockname,new_ipl,restore)

Parameters

Name Access ___ Description

lockname Input Spinlock name in uppercase, for example, MMG.
The macro appends this name to the SPL$C_
prefix to form the spinlock index constant.

new_ipl Input An integer value. If non-negative, the current
IPL is set to this integer value after the spinlock
is released or restored. If negative, the current
IPL is not altered.

restore Input An integer value. If non-zero, the spinlock
is restored to its previous state. If zero, the

spinlock is unconditionally released.

Defined by:

#include <vms_macros.h>

665

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers

WFIKPCH (Wait for Interrupt and Keep Channel)

WFIKPCH (Wait for Interrupt and Keep Channel)

Use to set up an interrupt resume routine and a device interrupt timeout

routine without releasing the channel, that is, the CRB.

Format

wfikpch (resume_rout, tout_rout, irp, fr4, ucb, tmo, restore_ipl)

Description

Pointer to the procedure value of the resume
from interrupt routine that is to be called by the
interrupt service routine. This value is passed to
the interrupt service routine via ucb—ucb$l_fpc.

Pointer to the procedure value of the device

interrupt timeout routine that may be called
by EXESTIMEOUT. This value is passed via
ucb—ucb$ps_toutrout.

Pointer to an IRP type that is passed to the
interrupt resume or timeout routine by way of
ucb—ucb$q_fr3.

A 64-bit value to pass to the resume from
interrupt or timeout routine via ucb—ucb$q_fr4.
This parameter is cast as a 64-bit integer.

Pointer to a Unit Control Block. This parameter
is cast as a pointer to an UCB.

An integer specifying the timeout value in
seconds.

An integer specifying the IPL to lower to prior to
returning.

Parameters

Name Access

resume_rout Input

tout_rout Input

irp Input

fr4 Input

ueb Input

tmo Input

restore_ipl Input

Defined by:

j4404

666

OpenVMS C Macros Used by OpenVMS Alpha Device Drivers
WFIRLCH (Wait for Interrupt and Release Channel)

WFIRLCH (Wait for Interrupt and Release Channel)

Use to set up an interrupt resume routine and a device interrupt timeout
routine, and to release the channel, that is, CRB.

Format

wfirlch (resume_rout, tout_rout, irp, fr4, ucb, tmo, restore_ipl)

Parameters

Name Access

resume_rout Input

tout_rout Input

irp Input

fr4 Input

ucb Input

tmo Input

restore_ipl Input

Description

Pointer to the procedure value of the resume
from interrupt routine that is to be called by the
interrupt service routine. This value is passed to
the interrupt service routine via ucb—ucb$l_fpc.

Pointer to the procedure value of the device
interrupt timeout routine that may be called
by EXE$TIMEOUT. This value is passed via
ucb—ucb$ps_toutrout.

Pointer to an IRP type that is passed to the
interrupt resume or timeout routine by way of
ucb—ucb$q_fr3.

A 64-bit value to pass to the resume from
interrupt or timeout routine via ucb—ucb$q_fr4.

This parameter is cast as a 64-bit integer.

Pointer to a Unit Control Block. This parameter
is cast as a pointer to an UCB.

An integer specifying the timeout value in

seconds.

An integer specifying the IPL to lower to prior to

returning.

Defined by:

#include <vms_drivers .h>

667

conn? aghedh of old ENMNOAG hives enon
Chesi sweat eo eneetsT RB eninge er so tn HD

lS a = cee Sg Say ED a

WK Ch donwiGpeaotah ee

Ln rees tw), arid or ir, wamadueet i win a >
wvitin® wists BRD ab title wt ;

oe oouliecwmtept amt. deundegiianaedaatatean signa

Poranwetst? b: ad - Satie a ES

| s a are y ‘emcieaeal »

> —— ner aa a eee

git essaght tn emisy wultimboge ait | Se
ods wd batuan @? of «) duds emadene Pyar vlna anal ed + iliee thnt © aw ie
o| begeeq #i @olev AT spbhvee O77ee MQ eine Nealians

* orf 1rtite- tt abv meltrien anbrees Jqurtiay OP ie caret Teale -_ a tet]
oid mide gulay on beteegeeds «eae. / gpl. wane
balla ect yon Jads ute? ignee) (ERA (eye Reieg ual ual De niv Honing ej coiey tT TOE RAR eee N The on be

Snax “hi—aley); iS

aii) ob-baseny i Int) ong Ah a tee rye than te
lp ysw ye efile: Speaiat 90 ae Rays agouw iv Ved, eeutiee By

: Maia, he

vere? a

yee)

nro Stim off ot @ Gakiolen or | ae Suyndges ® (he So
n 4 » * ey ; ~ Tt picoure ca aly aniiegs Dr@ant Ww ieee y \ Goctey vreine vin W

tirgeii) diribi a bo bees 0 te/nm ine © een @ 6e th

oa n psareagryt tT dowtt beta nl » epaneeier, * Garp .orty ue Mock.

, GLI aa of seine @ A A) 6 eedar te w OCS.

i «lev hin of) pape ipetidaas TR aes Ue teenie ¢
al, ie :

i jurity ebopered oLl'l! ail) eilnghnagt \ephGihe> ap bailey the o) 4

Part VI
Appendixes

Part VI contains PCI and EISA system address maps, an example driver
program, and an example ICBM program. It includes the following chapters:

Appendix A illustrates OpenVMS Alpha system maps for platforms that
support PCI and EISA devices.

Appendix B contains a sample driver written in C.

Appendix C contains a sample IOGEN configuration building module

(ICBM).

Vist ---
2oxibrieqgA

eqewirh eljoreaa on gam eonhhe natets Atak ta eaicttun 1 ' nal Po ;
F A prays gecmetied oT) cabtitsai 9 ataryeag MEO eee ae bie cari”

4 yualt eprtiahy yh @qert) jane msgtaA tapers arn oe
nei PETE tae FE ogee _

7 aiustihre web dlgaas 8 eahalane 8 vihangga -
sleboar oriblicd usidaspfiain x, A alyuie @ olay ao.

i

&
OpenVMS Alpha System Address Maps

OpenVMS Alpha System Address Maps

Figure A-1 AlphaServer 1000 Address Map as Seen by a PCI or an EISA Device

Scatter/Gather DMA
window, based at 0,

max size 1 GB. DMA
addresses in this window
8 MB translated by SG Map
into a main memory address.

Direct DMA window
based at 1 GB, extends
to 2 GB-1. DMA addresses
in this window mapped to
0 to 1 GB-1 in main
memory.

Using the Direct DMA
window—call ioc$node_data
to get base/size of Direct
DMA window. Then the
PCI address that maps to
the main memory buffer
address is:
PCI address =

main mem addr +
direct DMA base

Using the SG DMA window:
Call ioc$alloc_cnt_res to get
a set of map registers. Call
ioc$ioad_map to map main
memory DMA buffer and to
get PCI DMA address. When
DMA is complete call
ioc$dealloc_cnt_res to retum
map registers to system.

672

EISA memory

8 MB

1GB

2GB

Scatter/Gather Map.
Each entry maps a PC! page
to a main memory page.

PCI memory

Entries 0-3FF, corresponding to
DMA addresses below 8MB

DMA buffers
with main memory
address below 1 GB
are accessible via
the PC! Direct DMA
window.

Scatter/Gather

window

1GB

DMA
window

2GB

3GB

4GB

ZK-7554A-GE

OpenVMS Alpha System Address Maps

Figure A-2 AlphaServer 1000 Address Map as Seen by CPU

Main memory

0 0000 0000

Call ioc$map_io to map device registers/memory buffers into system virtual address space.
4GB Then use ioc$readMrite_io or ioc$cram_cmd/cram_io to access device registers.

O FFFF FFFF

PCI I/O, swizzied, 8 MB accessible on PCI PCI /O EISA i/O

1 C000 0000)
FFFF = 64K-1

7F FFFF

1 CFFF FFFF PCI I/O ddresses below
64K passed to EISA

PCI memory, swizzled, 128 MB accessible on PC] PCI memory EISA memory

2 0000 0000 fe)

FF FFFF = 16 MB-1

2 1FFF FFFF
2 2000 0000 SU Mh

87FF FFFF

2. FEF FREE

PCI memory, dense, 4 GB accessible on PC! PCI memory EISA memory

3 0000 0000 (0)

4GB 4GB 4 GB

Si-EER EERE FEEEIEFEE

ZK-7555A-GE

673

OpenVMS Alpha System Address Maps

Figure A-3 AlphaStation 600 Address Map as Seen by a PCI or an EISA Device

Scatter/Gather DMA
window, based at 0,
max size 1 GB. DMA
addresses in this window
translated by SG Map
into a main memory
address.

Direct DMA window
based at 1 GB, extends
to 2 GB-1. DMA addresses
in this window mapped to
G to 1 GB-1 in main
memory.

Using the Direct DMA
window--call ioc$node_data
to get base/size of Direct
DMA window. Then the
PCI address that maps to
the main memory buffer
address is:
PCI address =

main mem addr +
direct DMA base

Using the SG DMA window:
Call ioc$alloc_cnt_res to get
a set of map registers. Call
ioc$load_map to map main
memory DMA buffer and to get
PCI DMA address. When DMA
is complete call
ioc$dealloc_cnt_res to return
map registers to the system.

674

SG DMA window

1 GB

Direct DMA window

registers

PCI
memory
buffers

4GB

Entries O-3FF, corresponding
to DMA addresses below 8 MB
are not used.

Scatter/Gather Map.
Each entry maps a PCI page

2 GB

4GB

6GB

8GB

ZK-7556A-GE

OpenVMS Alpha System Address Maps

Figure A-4 AlphaServer 600 Platform Address Map as Seen by CPU

Main memory 8 GB max

0 0000 0000

Call ioc$map_io to map device registers/memory buffers into system virtual address space.
8GB Then use ioc$read/write_io or ioc$cram_cmd/cram_io to access device registers.

01 FFFF FFFF

PCl Memory, swizzled, 704 MB accessible on PCI PCI memory EISA memory

80 0000 0000 8000 0000

A7FF FFFF

84 FFFF FFFF

85 0000 0000 0

O3FF FFFF = 64 MB-1
85 7FFF FFFF

PC] I/O, swizzled, 64 MB accessible on PCI PCI VO EISA I/O

85 8000 0000 0

FFFF = 64K-1

PCI I/O ddresses below

85 FFFF FFFF 64K passed to EISA

PCI memory, dense, 4 GB accessible on PCI PCI memory EISA memory

86 0090 0000 0000 0000

4GB 4GB 4GB

86 FFFF FFFF ddeldaaZ

ZK-7557A-GE

675

OpenVMS Alpha System Address Maps

Figure A-5 AlphaServer 20000 Address Map as Seen by a PCI or an EISA Device

EISA memory PCI memory Main memory

E/ISA memory buffers
from 0-8 MB-1

SG DMA window A
from 8 to 16 MB-1

Direct DMA window B
based at 1GB, extends
to 2 GB-1

F000 0000=4 GB-256 MB

FFFF FFFF=4 GB-1

SG DMA window C
from (4 GB-256 MB)
to 4 GB-1

14 GB

ZK-7558A-GE

676

OpenVMS Alpha System Address Maps

Figure A-6 AlphaServer 20000 Platform Address Map as Seen by CPU

TIOP in system bus slot 4, CPU to PCI address mapping:

PCIA on hose 0 of TIOP. 39 38 36 35 34 33 32 31 je AD

Bit 39: 0 = main memory, 1 = I/O
Bits 38:36 system bus slot number of TIOP

000=slot 4, 001=slot 5, 010=slot 6, 011=slot 7, 100=slot 8
‘ Bits 35:34: TIOP hose number of PCIA

Main memory Bits 33:32: Space select
00 = PCI memory, dense

00 0000 0000 01 = PCI memory, swizzled
10 = PCI I/O, swizzled

Bits 31:5: byte aligned bus address
Bits 4:3: transfer length (used for byte enables)

7= EFER FFEE 00 = byte, 01 = word, 10 = tribyte,, 11 = longword
Bits 2:0: always 0

PC] memory, dense, 4 GB on PCI PCI memory EISA memory

80 0000 0000

80 FFFF FFFF

PCI memory, swizzled, 128 MB on PC! PCI memory EISA memory

0
81 0000 0000

0000 0000 7FF FFFF
FFFF FFFE

Call loc$map_io to map device registers/memory buffers into system virtual address space.
Then use ioc$read/write_io or ioc$cram_cmd/cram_io to access device registers.

81 FFFF FFFF

PCI I/O, swizzled, 128 MB on PCI PCI I/O EISA 0

82 0000 0000 0000 0000 o
128 MB

O7FF FFFF = 128 MB-1 FFFF

82 FFFF FFFF
ZK-7559A-GE

677

OpenVMS Alpha System Address Maps

Figure A-7 AlphaServer 2100 Address Map as Seen by a PCI or an EISA Device

Scatter/Gather DMA
window, based at 0,
max size 1 GB. DMA
addresses in this window
8 MB translated by SG Map
into a main memory address.

Direct DMA window
based at 1 GB, extends
to 2 GB-1. DMA addresses
in this window mapped to
0 to 1 GB-1 in main
memory.

Using the Direct DMA
window—call ioc$node_data
to get base/size of Direct
DMA window. Then the
PCI address that maps to
the main memory buffer
address is:
PCI address =

main mem addr +
direct DMA base

Using the SG DMA window:
Call ioc$alloc_cnt_res to get
a set of map registers. Call
ioc$load_map to map main
memory DMA buffer and to
get PCI DMA address. When
DMA is compkete call
ioc$dealloc_cnt_res to retum
map registers to system.

678

EISA memory

1GB

2GB

3 GB

Scatter/Gather Map.
Each entry maps a PC! page
to a main memory page.

PCI memory Main memory

Entries 0-3FF, corresponding to
DMA addresses below 8 MB

Scatter/Gather
DMA

window

Direct
DMA

window

ZK-7560A-—GE

OpenVMS Alpha System Address Maps

Figure A-8 AlphaServer 2100 Platform Address Map as Seen by CPU

Main memory

0 0000 0000

Call ioc$map_io to map device registers/memory buffers into system virtual address space.
4GB Then use ioc$read/write_io or ioc$cram_cmd/cram_io to access device registers.

0 FFFF FFFF

PCI Memory, swizzled, 128 MB accessible on PCI/EISA PCI memory EISA memory

2 0000 0000 8000 0000

8007 FFFF
2 00FF FFFF

2 0100 0000 8 0000 = 512K

7F FFFF = 8 MB-1

2 OFFF FFFF
2 1000 0000 8080 0000

87FF FFFF

2 FFFF FFFF

PCI I/O, swizzled, 8MB accessible on PC!

3 A000 0000 0

FFFF = 64K-1

3 AFFF FFFF PCI I/O addresses below
64K passed to EISA

PCI memory, dense, 1 GB accessible on PCI/EISA PC! memory EISA memory

3 C000 0000 | C000 0000

1GB 1 GB 1 GB

3 FFFF FFFF a ateladdae

ZK-7561A-GE

679

OpenVMS Alpha System Address Maps

Figure A-9 AlphaServer 400, 200 Address Map as Seen by a PCI or an EISA Device

Scatter/Gather DMA
window, based at 0,
max size 1 GB. DMA
addresses in this window 8 MB
8 MB translated by SG Map
into a main memory address.

16 MB

Direct DMA window
based at 1 GB, extends
to 2 GB-1. DMA addresses Direct
in this window mapped to DMA
0 to 1 GB-1 in main window
memory.

Using the Direct DMA
window——call ioc$node_data
to get base/size of Direct
DMA window. Then the
PCI address that maps to
the main memory buffer
address is:
PCI address =

main mem addr +
direct DMA base

Using the SG DMA window:

Call ioc$alloc_cnt_res to get
a set of map registers. Call
ioc$load_map to map main
memory DMA buffer and to
get PCI DMA address. When
DMA is complete call
ioc$dealloc_cnt_res to return
map registers to system.

680

Scatter/Gather Map.
Each entry maps a PC! page
to a main memory page.

ey Entries 0-3FF, corresponding to
DMA addresses below 8 MB

2GB

3 GB

4GB

ZK-7562A-GE

OpenVMS Alpha System Address Maps

Figure A-10 AlphaServer 400, 200 Platform Address Map as Seen by CPU

Main memory

0 0000 0000

Call ioc$map_io to map device registers/memory buffers into system virtual address space.
4CB Then use ioc$read/Mwrite_io or ioc$cram_cmd/cram_io to access device registers.

O FFFF FFFF

PCI I/O, swizzed, 8 MB accessible on PCl PCI I/O ISA I/O

1 C000 0000 : ; 0

FFFF = 64K-1

Ueladar

1 CFFF FFFF PCI I/O ddresses below
64K passed to EISA

PC! memory, swizzled, 128 MB accessible on PC] PCI memory ISA memory

2 0000 0000 O
FF FFFF = 16 MB-1

2Ndsadaae ||
2 2000 0000

2 FEE Eee

PCI memory, dense, 4 GB accessible on PC! PCl memory ISA memory

lee FF FFFF = 16 MB-1

4GB 4GB

SEEEP EERE

ZK-7563A-GE

681

OpenVMS Alpha System Address Maps

Figure A-11_ DEC 2000 Platform Address Map as Seen by CPU

Main memory

0 0000 0000

Call ioc$map_io to map device registers/memory buffers into system virtual address space.
Then use ioc$read/write_io or ioc$cram_cmd/cram_io to access device registers.

O FFFF FFFF

EISA memory, sparse, 32 MB on EISA EISA memory

2 0000 0000 0000 0000

32 MB

001F FFFF =32 MB-1
4GB

2 FFFF FFFF

EISA I/O, sparse, 32 MB on EISA EISA I/O

a6 0000 0000
000 0000 32 MB

4CB 001F FFFF = 32 MB-1

Madde lads

ZK-7564A-GE

682

OpenVMS Alpha System Address Maps

Figure A-12 DEC 2000 Address Map as Seen by an EISA Device

Direct DMA window

based at 0, extends
to 4 GB-1. DMA addresses
in this window mapped to
0 to 4 GB-1 in main
memory.

Using the Direct DMA
window—call ioc$node_data
to get base/size of Direct
DMA window. Then the
PCI address that maps to
the main memory buffer
address is:
PCI address =

main mem addr +
direct DMA base

EISA memory Main memory

0 0
frame

buffers,

2MB

1GB
1 GB

Direct
DMA

window

2GB

2GB

3GB 3CB

4GB

ZK-7565A-GE

683

ae Oe eT ol
: 7

Dost tei a arma MRED
.

' os —

——

:

Tirure A- M SSO Soe

ivaee apes

Sample Driver Written in C

This appendix contains a sample driver written in C and a command procedure
for compiling and linking the driver.

B.1 LRDRIVER Example

The LRDRIVER is for the parallel output port of the VL82C106 Combo chip on
an ISA option card for the DEC 2000 Model 300 Alpha system. You can obtain

the most current version of this driver from the SYS$EXAMPLES directory.

#pragma module LRDRIVER "X-3"
/*

KREKKKRKK KKK KKK KR KKK KEK KK KKK KERR KKK KKK KERR KKK KKK KK KKK KKK KEK KKK KKK KKK KKK KKK KKK KEK ERE

*

Copyright © Digital Equipment Corporation, 1993, 1995 All Rights Reserved.
Unpublished rights reserved under the copyright laws of the United States.

The software contained on this media is proprietary to and embodies the

confidential technology of Digital Equipment Corporation. Possession, use,
duplication or dissemination of the software and media is authorized only
pursuant to a valid written license from Digital Equipment Corporation.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in Subparagraph
{c) (1) (41) of DFARS 252.227-7013, or in FAR 52.227-19, as applicable.

KKK KKK KKK KR KKK KKK RRR EKER KKK KEK KK KEKE KKK RR KK EK KKK KKK KKK KKK KK KKK KKK KKK KKK KK KKK KEK KK

FACILITY:

Example Device Driver for OpenVMS AXP

ABSTRACT:

This is an example device driver for OpenVMS AXP Version V7.0 for the
parallel printer port of the VL82C106 Combo chip. This driver supports
the VL82C106 either on the system bus or on an ISA option card.

2 SR 6 oR Sh oF OE Rs 2b A ee OE OEE Oe 2b OE oF oe EP Ob Oe) Se OE. OE The parallel printer port is a simple programmed I/O device. There

685

Sample Driver Written in C
B.1 LRDRIVER Example

cI a OM SS a, I, Ae a I eS A SS Sn er ee
—

is a single control register (LPC), a status register (LPS), and a
write data register (LWD).

This driver supports transfers from buffers in 64-bit virtual address

spaces.

AUTHOR:

OpenVMS Alpha Development Group

REVISION HISTORY:

X-3 VMS001 OpenVMS Alpha Driver2 6-Jan-1996
If call to exe_std$writechk fails abort the I/O. The code

assumed that the call aborted the I/O. The routine claimed

that is what it did. The problem is that the code did not do
what the routine description said it did.

X-2 VMS000 OpenVMS Alpha Drivers 29-Jun-1995
This example driver is now the same source that is used to
produce the SYSSLRDRIVER.EXE image that ships on the VMS kit.
This driver supports transfers from buffers in a 64-bit
virtual address space.

X-1 VMS000 OpenVMS Alpha Drivers 5-Nov-1993
Initial version.

/* Define system data structure types and constants */

686

Sample Driver Written in C
B.1 LRDRIVER Example

#include <bufiodef.h> /* Define the packet header for a system */
/* buffer for buffered I/O data */

#include <ccbdef.h> /* Channel control block */
#include <crbdef.h> /* Controller request block */

#include <cramdef .h> /* Controller register access method */
#include <dcdef.h> /* Device codes */
#include <ddbdef.h> /* Device data block */
#include <ddtdef.h> /* Driver dispatch table */
#include <devdef.h> /* Device characteristics */
#include <dptdef.h> /* Driver prologue table */
#include <fdtdef.h> /* Function decision table */
#include <fkbdef.h> [ROL Ke DOCK ss);
#include <hwrpbdef .h> /* Hardware restart parameter block */
#include <idbdef.h> /* Interrupt data block */
#include <iocdef.h> /* IOC constants */
#include <iodef.h> /* I/O function codes */
#include <irpdef.h> /* I/O request packet */
#include <ka0602def.h> /* DEC 2000 Model 300 AXP specific defs */
#include <lpdef.h> /* Line printer definitions */
#include <orbdef.h> /* Object rights block */
#include <pcbdef .h> /* Process control block */
#include <msgdef.h> /* System-wide mailbox message codes */
#include <ssdef.h> /* System service status codes */
#include <stsdef.h> /* Status value fields */
#include <ucbdef.h> Pants control locks,
#include <vecdef.h> /* IDB interrupt transfer vector */

/* Define function prototypes for system routines */

#include <exe_routines.h> /* Prototypes for exe$ and exe_std$ routines */
#include <ioc_routines.h> /* Prototypes for ioc$ and ioc_std$ routines */

#include <sch_routines.h> /* Prototypes for sch$ and sch_std$ routines */

/* Define various device driver macros */

#include <vms_drivers.h> /* Device driver support macros, including */
/* table initialization macres and prototypes*/

/* Define the DEC C functions used by this driver */

#include <builtins.h> /* OpenVMS AXP specific C builtin functions */
#include <string.h> /* String routines provided by "kernel CRTL" */

#include "src$:lrdriver.h" /* Fallback translation table */

/* Define constants specific to this driver */

687

Sample Driver Written in C
B.1 LRDRIVER Example

LINES _PER_PAGE 66, /* Default paper size */

enum { /* Miscellaneous constants */

FALSE =a: /* True and False Flags */

TRUE = My

DEVICE_IPL aes /* Interrupt priority level of device */

NUMBER_CRAMS = 3) /* Number of CRAMs needed */

DATA_EXPND_CUSHION = 32 /* Extra room in system buffer for expansion */

Mi

enum { /* Define various timeout constants */

LR_WFI_TMO = 1NSy, ff Interrupt timeout value in seconds */

LR_OFFLINE_TMO = 60, /* Initial interval between offline messages */
ONE_HOUR = (60260) /* One hour in seconds */

ie

enum { /* Define names for some ASCII characters */

CR UNOd", fe Carriage return character */

DEL = AWD ei ip tay /* Delete */
ne = NOC, Hes: Form Feed */

HT = NGOS)! /* Horizontal Tab */
ie = IN Oa /* Line feed character */

Sea INO) [® Space */

wes '\x0b! /*~ Vertical Tab character */

1s

/* Define the line printer port CSR offsets.
*

* Note: We have to do some special setup work because the Jensen built in
* parallel port is on the system bus and is not byte-laned. At the present

* time other systems with built in parallel ports treat these as though they
* live on the ISA bus. The Unit Init routine figures how to correctly deal
* with the built in controller and add on controllers.
*

* Note also that due to the byte-laned I/0 space, data read from the ISA

* LPS register (byte offset 1) must be shifted right 1 byte, and data read
* from the LPC register (byte offset 2) must be shifted right 2 bytes.
*

/* Offsets for Jensen parallel port on system bus */
#define LR_JENSEN_LWD Ox3be §#£/* line printer port data write */

#define LR_JENSEN_LPS Ox3bd /* line printer port status */
#define LR_JENSEN_LCW Ox3be fz line printer port control write */

/* Offsets for ISA space parallel port */
#define LR_LPT1 PORT Ox3bec [* ISA I/O address for LPT1 */

#define LR_LPT2_ PORT 0x378 /* ISA I/O address for LPT2 */

#define LR_LPT3_ PORT 0x278 f* ISA I/O address for LPT3 */

/* Actual register offset is LR_LPT2_PORT or */
/* LR_LPT2_PORT plus one of the following: */

#define LR_ISA_LWD 0x0 iPS line printer port data write */
#define LR_ISA_LPS Oxl ifs line printer port status */
#define LR_ISA_LCW 0x2 /* line printer port control write */

688

Sample Driver Written in C
B.1 LRDRIVER Example

#define LR_LPT2_IRQ i! /* Expected ISA IRQ for LPT2 */
#define LR_LPT3_IROQ 5 /* Expected ISA IRQ for LPT3 */

/* Line Printer Control Register
* Mask values are defined for each of the control bits in the LPC. This

driver always writes a new value to the LPC when a bit needs to be set.
A convenient way of doing this is to logically or together a subset of the

* following masks to form the new LPC value.
oF

enum lpc_masks {

*

*

LPC_M_ STROBE OO /* Strobe data to printer */

LPC_M_AUTO_FEED = 0x02, /* Auto line feed enabled */

LPC_M_INIT_OFF = 0x04, /* Disable INIT signal */

LPC_M_SELECT =O XO Gr /* Select printer "on line" */

LPC_M_IRQ_EN =m OXGO; /* Interrupt enable */

LPC_M_DIR_READ = 0x20 /* Direction is read if set, else write */

ee

/* Line Printer Status Register
* Define a structure type with bit fields that corresponds to the status
* bits. This structure type facilitates the testing of these conditions.

wt |
typedef struct _lps {

unsigned int
unsigned int lps_irgqp
unsigned int lps_ok

unsigned int lps_online
unsigned int lps_paperout :
unsigned int lps_nak
unsigned int lps_ready

Tu Psy

/* Reserved */

/* Interrupt pending */
(Oka status len) NOmerrore */

Select on line */
/* Paper empty */

/* Not acknowledge */
/* Ready, i.e. not busy */ PRPRPRPRrPPR bd

a

*

/* Define a structure type for the carraige control information that
* is returned from exe_std$carriage. This information is returned in
* the IRP at the longword that begins with irp->irp$b_carcon.

“lf
typedef struct {

uint8 prefix_count; /* Number of prefix chars */
char prefix_char; /* The prefix char, 0 if newline */

uint8 suffix_count; /* Number of suffix chars */
char suffix_char; /* The suffix char, 0 if newline */

} CARCON;

689

Sample Driver Written in C
B.1 LRDRIVER Example

/* Define a structure with the character formatting data in it. This is passed

* to character formatting code.

a
typedef struct {

int buffer_space; /* Size of system buffer in bytes */
int column_pos; /* Column on page where character will go */
int cr_pend; /* If printer is /CR flag indicating we held a CR */

int line_on_page; /* Line numer we are currently on */
int page_length; /* Length of page */
int page_width; /* Width of papge in columns */
int total_bytes; /* Numbers of bytes to output */
int total_lines; /* Total lines printed for this I/O request */
char *sys_datap; /* Pointer to current slot in system buffer */

} FMT_DATA;

/* Define Device-Dependent Unit Control Block with extensions for LR device */

typedef struct {
UCB ucb$r_ucb; /* Generic UCB */
int ucb$1_lr_msg_tmo; /* Time out value for device offline msg */

int ucb$l_lr_oflent; /* Offline time, print msg when reaches lr_msg_tmo *,

int wucbSl_lrocursor; /* Current horizontal position */
ipele wch Sil alainente: /* Current line count on page */
int ucb$1_lr_cr_pend; /* Pending CR flag */

int ucb$1_lr_jensen; /* Unit is on system bus, not ISA option */
int ucb$]1_lr_isa_io_address[2]/* ISA I/O address range */
int UCHSlel rosemary /* IRQ returned from iocSnode_data */

CRAM *ucb$ps_cram_lwd; /* Line printer write data register */
CRAM *ucb$ps_cram_lps; /* Line printer status register */

CRAM ‘*ucb$ps_cram_lew; /* Line printer control register write */
Je uRBUGBS

/* Prototypes for driver routines defined in this module */

/* Driver table initialization routine */

int driver$init_tables ();

/* Device I/O database structure initialization routine */

void lr$struc_init (CRB *crb, DDB *ddb, IDB *idb, ORB *orb, LR_UCB *ucb);

/* Device I/O database structure re-initialization routine */

void lr$struc_reinit (CRB *crb, DDB *ddb, IDB *idb, ORB *orb, LR_UCB *ucb);

/* Unit initialization routine */

int Ilr$unit_init (IDB *idb, LR_UCB *ucb);

/* FDT routine for write functions */

int Ir$write (IRP *irp, PCB *pcb, LR_UCB *ucb, CCB *ccb);

690

/*

/*

/*

[*

/*

/*

/*

26 OE tb eh ig A eb 2b 6.38 5b 2b 6 3b oF 6 2b 9 6 6b 56 i Ee OP EF

Sample Driver Written in C
B.1 LRDRIVER Example

Output formatting routine */
int l1r$format_char(LR_UCB *ucb, unsigned char out_char, FMT DATA *fmt_data) ;

FDT routine for set mode and set characteristics functions */

int Ir$setmode (IRP *irp, PCB *pcb, LR_UCB *ucb, CCB *ccb);

Start I/O routine */

void lr$startio (IRP *irp, LR_UCB *ucb);

Local routine that sends the next character to the device */

static int lr$send_char_dev (LR_UCB *ucb);

Interrupt service routine */

void lr$interrupt (IDB *idb);

Driver fork routine entered when all I/O completed by interrupt service */

void lr$iodone_fork (IRP *irp, void *not_used, LR_UCB *ucb);

Wait-for-interrupt timeout routine */

void lrSwfi_timeout (IRP *irp, void *not_used, LR_UCB *ucb);

Periodic Check for Device Ready via Fork-wait mechanism */

void lr$check_ready_fork (IRP *irp, void *not_used, LR_UCB *ucb);

DRIVERSINIT_TABLES - Initialize Driver Tables

Functional description:

This routine completes the initialization of the DPT, DDT, and FDT

structures. If a driver image contains a routine named DRIVERSINIT_TABLES

then this routine is called once by the $LOAD_DRIVER service immediately
after the driver image is loaded or reloaded and before any validity checks
are performed on the DPT, DDT, and FDT. A prototype version of these
structures is built into this image at link time from the
VMS$VOLATILE_PRIVATE_INTERFACES.OLB library. Note that the device related
data structures (e.g. DDB, UCB, etc.) have not yet been created when this

routine is called. Thus the actions of this routine must be confined to

the initialization of the DPT, DDT, and FDT structures which are contained

in the driver image.

Calling convention:

status = driver$init_tables ();

Input parameters:

None.

691

Sample Driver Written in C
B.1 LRDRIVER Example

Output parameters:

None.

Return value:

status If the status is not successful, then the driver image will
be unloaded. Note that the ini_* macros used below will

result in a return from this routine with an error status if

an initialization error is detected.

Implicit inputs:

driver$dpt, driver$ddt, driver$fdt
These are the externally defined names for the prototype
DPT, DDT, and FDT structures that are linked into this driver.

*

*

*

2

x

=

*

*

23

ie

*

K

*

x

x

*

ai

* Environment:
x

x Kernel mode, system context.
* /

int driverSinit_tables () {

/* Prototype driver DPT, DDT, and FDT will be pulled in from the
* VMSSVOLATILE_PRIVATE_INTERFACES.OLB library at link time.

oh
extern DPT driver$dpt;

extern DDT driversddt;
extern FDT driversfdt;

/* Finish initialization of the Driver Prologue Table (DPT) */

&driver$dpt, "LRDRIVER");

&driver$dpt, ATS_KA0602);
ini_dpt_defunits &driver$dpt, 1);

ini_dpt_ucbsize &driver$dpt, sizeof(LR_UCB));

ini_dpt_name (

(
(
(

ini_dpt_struc_init (&driverdpt, Irstruc_init);

(
(
(

ini_dpt_adapt

ini_dpt_struc_reinit (&driverdpt, lrstruc_reinit);
ini_dpt_ucb_crams

ini_dpt_end
&driver$dpt, NUMBER_CRAMS) ;
&driver$dpt) ;

/* Finish initialization of the Driver Dispatch Table (DDT) */

ini_ddt_unitinit

ini_ddt_start

ini_ddt_cancel

ini_ddt_end

&driver$ddt, lrSunit_init);

&driverddt, Irstartio);
&driverddt, ioc_stdcancelio) ;
&driver$ddt) ;

692

SG ee OE OO EOE OO OE OO OF OF 8 8k OF Sb OR 8G OF Of SF Oe 8k Ae OE

inieekdiwact
ini_fdt_act

ini_fdt_act

ini_fdt_act

ini_fdt_act
ini_fdt_act

ini_ fdt_act

ini_fdt_end

(&driversSfdt,
(&driversSfdt,

(&driversSfdt,
(&driver$fdt,
(&driver$fdt,
(&driversSfdt,

(&driverSfdt,
(&driver$fdt)

I0$_WRITELBLK, lr$write,

I0$_WRITEPBLK, lr$write,

IO$_WRITEVBLK, lrSwrite,

IO$_SETMODE, lrS$setmode,
IO$_SETCHAR, lr$setmode,

Sample Driver Written in C
B.1 LRDRIVER Example

Finish initialization of the Function Decision Table (FDT)

The BUFFERED_64 indicates that this driver supports a 64-bit
virtual address in the QIO Pl parameter for that function.
This driver, therefore, supports 64-bit user buffers in all
of its I/O functions.

BUFFERED_64)
BUFFERED_64)
BUFFERED_64)
BUFFERED_64)
BUFFERED_64)

ae
‘au
gy:
oF
‘id
|

.
/

.
,

.
/

°
ff}

°
,

IO$_SENSEMODE, exe_std$sensemode, BUFFERED 64);

I0$_SENSECHAR, exe_std$sensemode, BUFFERED 64);

/* If we got this far then everything worked, so return success. */

return SS$_NORMAL;

LRSSTRUC_INIT - Device Data Structure Initialization Routine

Functional description:

This routine is called once for each unit by the $LOAD DRIVER service

after that UCB is created.
yet been fully linked into the I/O database.

At the point of this call the UCB has not
This routine is responsible

for filling in driver specific fields that in the I/O database structures
that are passed as parameters to this routine.

This routine is responsible for filling in the fields that are not
affected by a RELOAD of the driver image. In contrast, the structure

reinitialization routine is responsible for filling in the fields that
need to be corrected when (and if) this driver image is reloaded.

After this routine is called for a new unit, then the reinitialization

routine is called as well. Then the $LOAD DRIVER service completes the

integration of these device specific structures into the I/O database.

Note that this routine must confine its actions to filling in these I/0
database structures and may not attempt to initialize the hardware device.
Initialization of the hardware device is the responsibility of the
controller and unit initialization routines which are called some time

later.

Calling convention:

IrSstruc_init (crb, ddb, idb, orb, ucb)

Input parameters:

693

Sample Driver Written in C
B.1 LRDRIVER Example

crb Pointer to associated controller request block.

ddb Pointer to associated device data block.
idb Pointer to associated interrupt dispatch block.
orb Pointer to associated object rights block.
ucb Pointer to the unit control block that is to be initialized.

Output parameters:

None.

Return value:

None.

Environment:

Kernel mode, system context, IPL may be as high as 31 and may not be

altered.

36) (Ee BE. OE SS ORD) DB) RS 5: 3, OR ok SE. OR SE Ae OE OR OE i

void IrSstruc_init (CRB *crb, DDB *ddb, IDB *idb, ORB *orb, LR_UCB *ucb) {

/* Initialize the fork lock and device IPL fields */

ucb->ucb$r_uch.ucb$b_flck = SPLS$C_IOLOCK8;

uchb->ucb$r_uch.ucb$b_dipl = DEVICE_IPL;

/* Device Characteristics are : Record oriented (REC), Available (AVL),

* Carriage control device (CCL), Output device (ODV)

af
ucb->ucb$r_ucbh.ucbh$l_devchar = DEV$M_REC | DEVS$M_AVL | DEV$M_CCL | DEV$M_ODV;

/* Set to prefix device name with "node$", set device class, device type,
* and default buffer size.

Bef
ucb->ucb$r_uch.ucb$l_devchar2 = DEVSM_NNM;
ucb->ucb$r_uch.ucb$b_devclass = DC$_LP;
ucb->ucb$r_ucb.ucb$b_devtype = LP$_LP11;
ucb->ucb$r_uch.ucb$w_devbufsiz = 132;

/* Lines per page in highest byte of ucb$l_devdepend and LP attributes
* in lower three bytes.
ry

ucb->ucb$r_ucb.ucb$l_devdepend = (LINES_PER_PAGE << 24)

LPSM_MECHFORM | LPSM_TRUNCATE;
return;

694

Sample Driver Written in C
B.1 LRDRIVER Example

LR$STRUC_REINIT - Device Data Structure Re-Initialization Routine

Functional description:

This routine is called once for each unit by the $LOAD_ DRIVER service
immediately after the structure initialization routine is called.

Additionally, this routine is called once for each unit by the $LOAD DRIVER
service when a driver image is RELOADED. Thus, this routine is
responsible for filling in the fields in the I/O database structures
that point into this driver image.

Note that this routine must confine its actions to filling in these I/O
database structures.

Calling convention:

Ir$struc_reinit (crb, ddb, idb, orb, uch)

Input parameters:

crb Pointer to associated controller request block.
ddb Pointer to associated device data block.
idb Pointer to associated interrupt dispatch block.
orb Pointer to associated object rights block.
ucb Pointer to the unit control block that is to be initialized.

Output parameters:

None.

Return value:

None.

Environment:

Kernel mode, system context, IPL may be as high as 31 and may not be

altered.

3 OO EEE /

void lr$struc_reinit (CRB *crb, DDB *ddb, IDB *idb, ORB *orb, LR_UCB *ucb) {

extern DDT driver$ddt;

/* Setup the pointer from our DDB in the I/O database to the driver
* dispatch table that’s within this driver image.

=
ddb->ddb$ps_ddt = &driver$ddt;

695

Sample Driver Written in C
B.1 LRDRIVER Example

/* Setup the procedure descriptor and code entry addresses in the VEC

* portion of the CRB in the I/O database to point to the interrupt

* service routine that’s within this driver image.

y
dpt_store_isr (crb, lr$interrupt) ;

return;

LRSUNIT_INIT - Unit Initialization Routine

Functional description:

This routine is called once for each unit by the $LOAD_DRIVER service
after a new unit control block has been created, initialized, and

fully integrated into the I/O database.

This routine is also called for each unit during power fail recovery.

It is the responsibility of this routine to bring unit "on line” and
to make it ready to accept I/O requests.

Calling convention:

Seeieiss = leSieakie alaule (acl), wiels))

Input parameters:

idb Pointer to associated interrupt dispatch block.
ucb Pointer to the unit control block that is to be initialized.

Output parameters:

None.

Return value:

status SS$_NORMAL indicates that the unit was initialized successfully.
SS$_IVADDR indicates that an unexpected ISA I/O address or IRQ

level was detected.

Environment:

Kernel mode, system context, IPL 31.
DE oe SE OE SE OR 2) SR 8 OE ob) SRW Se ok OF 2 Ek ER DE DE: oh 6 OF bok. DEF rok oe eI beat oh 56) eae Ok /

int Ir$unit_init (IDB *idb, LR_UCB *ucb) {

extern uint64 EXESGOQ SYSTYPE;
static int jensen_combo_initialized = 0; /* First unit is on system bus */

696

Sample Driver Written in C
B.1 LRDRIVER Example

CRAM *cram;

ADP *adp;

int isa_io_addr; /* Slot I/O address if ISA option */
int device data; /* Data from or for CRAM */
int status;

#1£ defined DEBUG

/* If a debug version of this driver is being built then invoke the loaded
* system debugger. This could either be the High Level Language System
* Debugger, XDELTA, or nothing.

i)

{
extern void iniS$brk (void);

iniS$brk ();

}
#endif

/* Set device initially offline (for error exits) and initialize other

RUC Cells

tail
ucb->ucb$r_uch.ucb$v_online = 0;

ucb->ucb$l1_lr_msg_tmo = LR_OFFLINE_TMO;

/* This driver can service only a single unit per DDB and IDB. Thus,
* make the single unit the permanent owner of the IDB. This facilitates
* getting the UCB address in our interrupt service routine.

Lay
idb->idbSps_owner = &(ucb->ucb$r_uch) ;

/* Initialize the three CRAMs that were requested in our DPT and allocated
* before this unit initialization routine was called.

y:
adp = ucb->ucb$r_ucb.ucb$ps_adp; /* Pointer to our ADP */
cram = ucb->ucb$r_uch.ucb$ps_cram; /* Pointer to first CRAM */

/* If the system is a Jensen then we assume that the first port is
* the VL82C106'on the system bus. All subsequent units are in ISA

* space.

sai
if (! jensen_combo_initialized &&

EXESGQ_SYSTYPE == HWRPB_SYSTYPESK_JENSEN) {

jensen_combo_initialized = 1; /* Unit on system bus initialized */
ucb->ucb$]1_lr_jensen = 1; /* This unit is for VL82C106 on system bus */

/* Initialize CRAM used to write the data register */

cram->cram$v_der = 1;
uch->ucb$ps_cram_lwd = cram;
ioc$cram_cmd (CRAMCMD$K_WTLONG32, LR_JENSEN_LWD, adp, cram, 0);

/* Initialize CRAM used to read the status register */

697

Sample Driver Written in C
B.1 LRDRIVER Example

cram = cram->cram$l_flink;
cram->cram$v_der = 1;
ucb->ucb$ps_cram_lps = cram;
ioc$cram_cmd (CRAMCMD$K_RDLONG32, LR_JENSEN_LPS, adp, cram, 0);

/* Initialize CRAM used to write the control register */

cram = cram->cram$l_flink;

cram->cram$v_der = 1;
ucb->ucb$ps_cram_lew = cram;

jioc$cram_cmd (CRAMCMD$K_WTLONG32, LR_JENSEN_LCW, adp, cram, 0);

} else { /* This unwe as ISA bus ard: *7

/* Get and validate the ISA IRQ */

status = iocSnode_data (ucb->ucb$r_ucb.ucb$l_crb, IOC$K_EISA_IRQ,

&ucb->ucb$1_lr_isa_irg[0]);

if { ! SVMS_STATUS_SUCCESS(status)) return status;

/* Get and validate the ISA I/O address */

status = ioc$node_ data (uchb->ucb$r_ucb.ucb$l_crb, IOCSK_EISA_IO PORT,
&ucb->ucb$1_lr_isa_io_address[0] };

if ({ ! $VMS_STATUS_SUCCESS(status)) return status;

isa_io_addr = ucb->ucb$l_lr_isa_io_address[0] & Oxfff; /* Keep Address only */

/* Initialize CRAM used to write the data register */

cram->cram$v_der = 1;

ucb->ucb$ps_cram_lwd = cram;

ioc$cram_cmd (CRAMCMDS$K_WTBYTE32, isa_io_addr+LR_ISA_LWD, adp, cram, 0);

/* Initialize CRAM used to read the status register */

cram = cram->cram$l_flink;

cram->cram$v_der = 1;

ucb->ucb$ps_cram_lps = cram;

loc$cram_cmd (CRAMCMD$K_RDBYTE32, isa_io_addr+LR_ISA_LPS, adp, cram, 0);

/* Initialize CRAM used to write the control register */

cram = cram->cram$l_flink;

cram->cramSv_der = 1;

ucb->ucb$ps_cram_lcw = cram;
ioc$cram_cmd (CRAMCMD$K_WTBYTE32, isa_io_addr+LR_ISA_LCw, adp, cram, 0);

}

/* Enable interrupts */

status = loc$node_function (ucb->ucb$r_ucb.ucbl_crb, IOCK_ENABLE_INTR)
if (! $VMS_STATUS_SUCCESS(status) } return status;

t

698

EE EP ET oe ob ee RE ob eT SE OR SET SE se ob oF OE SET OR” OE BT ET RT RP oe oe ok oe” OF

Sample Driver Written in C
B.1 LRDRIVER Example

/* Set the INIT_OFF bit in the port control register. The INIT signal is
* asserted as long as INIT_OFF is clear. Note byte-lane shift if ISA
* option.

ody
if (ucb->ucb$l_lr_ jensen)

device_data = LPC_M INIT OFF;
else

device_data = LPC_M_INIT_OFF << 16;

ucb->ucb$ps_cram_lcw->cram$q_wdata = device data;
lioc$cram_io (ucb->ucb$ps_cram_lcw) ;

/* Mark the device as "on line" and ready to accept I/O requests */

ucb->ucb$r_ucb.ucb$v_online = 1;

return SS$_NORMAL;

LRSSETMODE - FDT Routine for Set Mode and Set Characteristics

Functional description:

This routine is called by the FDT dispatcher in the $QIO system service
to process set mode and set characteristics functions. This FDT routine
completes the I/O request without sending it to the driver start I/0
routine. The user buffer address is contained in irp$q_qio_pl ($QI0
Pl parameter) on input and will be treated as a 64-bit address.

Since this is an upper-level FDT routine, this routine always returns
the SS$_FDT_COMPL status. The $QIO status that is to be returned to

the caller of the $QIO system service is returned indirectly by the
FDT completion routines (e. g. exe_std$abortio, exe_std$finishio) via
the FDT context structure.

Calling convention:

status = lIr$setmode (irp, pcb, uch, ccb)

Input parameters:

irp Pointer to I/O request packet
pcb Pointer process control block
ucb Pointer to unit control block
ecb Pointer to channel control block

Output parameters:

None.

Return value:

699

Sample Driver Written in C
B.1 LRDRIVER Example

13

* status SS$_FDT_COMPL
*

* Environment:
*

us Kernel mode, user process context, IPL 2.

Dal

int lr$setmode (IRP *irp, PCB *pcb, LR_UCB *ucb, CCB *ccb) {

/* Define a structure that corresponds to the layout of the caller’s
* set mode or set characteristics buffer and declare a local pointer

* to a structure of this type.

my
typedef struct {

unsigned char devclass;
unsigned char devtype;
unsigned short devbufsiz;
unsigned int devdepend;

} SETMODE_BUF;

#pragma __required_pointer_size __save
#pragma __required_pointer_size _ long

/* Define a type for a 64-bit pointer to a SETMODE_BUF structure.

+7,
typedef SETMODE_BUF *SETMODE_BUF_PQ;

#pragma __required_pointer_size _ restore

/* This must be a pointer to a 64-bit address since it will be containing
* the address of a user buffer which may be a 64-bit or a 32-bit value.

=
SETMODE_BUF_PQ setmode_bufp;

/* The caller passes the address of their setmode buffer in the $QIO Pl
* parameter.

a
setmode_bufp = (SETMODE_BUF_PQ) irp->irp$q_qio_p1;

/* Assure that the caller’s setmode buffer is readable by the caller.
* If not, abort the I/O request now with an ACCVIO status and return

* back to the FDT dispatcher in the $QIO system service.

Pi
if (! (_PAL_PROBER (setmode_bufp, sizeof (SETMODE_BUF)-1, irp->irp$b_rmod)

return (call_abortio (irp, pcb, (UCB *)ucb, SS$_ACCVIO));

/* If function is SETCHAR then set dev class and type */

if (irp->irp$v_fcode == IO$_SETCHAR) {
ucb->ucb$r_ucbh.ucb$b_devclass = setmode_bufp->devclass;

ucb->ucb$r_ucb.ucb$b_devtype = setmode_bufp->devtype;

}

/* Set the default buffer and device dependent characteristics */

700

2 RT OR SE Oe OR ok oe OE oh ob ob OF oh 8b FE 8k OF OF FR OF OF OOF oF OF OR OF Sb: Ob OR OE ob OR Oe 0b OR ok ob oe ob ob

Sample Driver Written in C
B.1 LRDRIVER Example

ucb->ucb$r_ucb.ucbh$w_devbufsiz

ucb->ucb$r_uch.ucb$1_devdepend
setmode_bufp->devbufsiz;
setmode_bufp->devdepend;

/* Finish the 10; return SS$_FDT_COMPL to the FDT dispatcher in the $QIO
* system service.

|
return (call_finishio (irp, (UCB *)ucb, SS$_NORMAL, 0));

LRSWRITE - FDT Routine for Write Function Codes

Functional description:

This routine is called by the FDT dispatcher in the $QIO system service
to process write functions. This FDT routine validates the request,

allocates a buffered I/O packet, formats and copies the contents of the
user buffer into the buffered I/O packet, and queues the IRP to this
driver’s start I/O routine. The user buffer address is contained in
irp$q_qio_p1 ($QIO Pl parameter) on input and will be treated as a
64-bit address.

When the IRP is successfully queued to the driver’s start I/O routine,

irp$ps_bufio_pkt points to the buffered I/0 packet, irp$l_boff is the
number of bytes that have been charged against the process, and irp$l_bent
is the actual count of data bytes in the buffered I/O packet that are
to be sent to the printer. Note that the contents of the irp$ps_bufio_pkt
and irp$l_boff cells must not be changed since I/O post processing will

use these to deallocate the buffer packet and to credit the process.

Since this is an upper-level FDT routine, this routine always returns
the SS$_FDT_COMPL status. The $QIO status that is to be returned to

the caller of the $QI1O system service is returned indirectly by the
FDT completion routines (e. g. exe_std$abortio, exe_std$qiodrvpkt) via

the FDT context structure.

Calling convention:

Status = lirswrites (imp, pcb. eb. ccb)) -

Input parameters:

irp Pointer to I/O request packet
pcb Pointer process control block
ucb Pointer to unit control block
ecb Pointer to channel control block

Output parameters:

None.

701

Sample Driver Written in C
B.1 LRDRIVER Example

x

x

*

*

x

*

*

x /

int

702

Return value:

status SS$_FDT_COMPL

Environment :

Kernel mode, user process context, IPL 2.

IrSwrite (IRP *irp, PCB *pcb, LR_UCB *ucb, CCB *ecb) {

CHAR_PQ gqio_bufp; /* 64-bit pointer to caller's buffer */
int qio_buflen; /* Number of bytes in caller’s buffer */
BUFIO *sys_bufp; /* Pointer to a system buffer packet */
int32 sys_buflen; /* Computed required system packet size */
int sys_bufspace; /* Actual space in system buffer for data */
char *sys_datap; /* Working pointer to next byte in sysbuf */
int pass_all; /* True if this is a "pass all" write */
int carcon_count;

char carcon_char;

int status;
int tmp_status;

FMT_DATA fmt_data; /* Formatting status information */

/* Get the pointer to the caller’s buffer and the size of the caller's
* buffer from the $QIO Pl and P2 parameters respectively. The caller's
* buffer is treated as a 64-bit address although it may be a 32-bit
* address.

et
gio_bufp = (CHAR_PQ)irp->irp$q_qio_p1;
gio_buflen = irp->irp$l_gio_p2;

/* Assure that the caller has read access to this buffer to do a write
operation. If abort the I/O request and return the SS$_FDT_COMPL

warning status. If this is the case, we must return back to the FDT
dispatcher in the $QIO system service. Note we continue on even if
the user buffer is zero length since there may be * carriage control
to output.

/
ae (Copley lewbe deta, Wes (0) Xf

status = exe_std$writechk (irp, pcb, &(ucb->ucb$r_ucb) ,

qio_bufp, qio_buflen) ;
if (! $VMS_STATUS_SUCCESS(status))

return (call_abortio (irp, pcb, (UCB *)ucb, status));

a oF 2 OE EOE

}

/* Start out assuming that the required system buffer packet size is
* the size of the $QI0O buffer plus the size of the 64-bit buffer
* packet header.

yf
sys_buflen = qio_buflen + BUFIOSK_HDRLEN64;

Sample Driver Written in C
B.1 LRDRIVER Example

/* This is a "pass all" request either if the write physical function
* was specified or if the device is set to "write pass all" mode.
Sh

pass_all = irp->irp$v_func == I10$ WRITEPBLK

oy

(ucb->ucb$r_ucb.ucb$1_devdepend & LP$M_PASSALL) ;

If this is not a "pass all" request, then interpret the $QIO P4

carriage control parameter. Adjust the required system buffer packet
size by the prefix and suffix counts plus room of data expansion.
Currently, the only expansion possible is an extra CR in the prefix
and suffix characters if "new line" was specified.

if (pass_all)

{

}

/* Allocate a system buffer for the data in the user buffer. If this
* fails then abort the I/O request and return back to the FDT dispatcher
* in the $QIO system service. Otherwise, exe_std$alloc_bufio_64 will

* point irp$ps_bufio_pkt (overlays irp$l_svapte) to the bufio packet
* and irp$l_boff to the number of bytes charged.

oP

status = exe_std$alloc_bufio_64 (irp,

peb,

(VOID_PQ) gio_bufp, /* user buffer uy}

sys_buflen); /* buff size plus header */

if (! $VMS_STATUS_SUCCESS (status))
return (call_abortio (irp, pcb, (UCB *)ucb, status) };

/* sys_bufp points to the bufio header packet. 0
sys_bufp = irp->irp$ps_bufio_pkt;

/* sys_datap points to the first free data byte in the buffer packet. */

sys_datap = sys_bufp->bufio$ps_pktdata;

/* Copy the contents of the user buffer to the bufio data area. 8

memcpy (sys_datap, gio_bufp, qio_buflen);

irp->irp$l_bent = qio_buflen;

else

{
/* These next steps only need to be done once before formatting the

* buffer.

Bs
irp->irp$l_iost2 = irp->irp$l_qio_p4;
exe _std$carriage (irp);

sys_buflen += ((CARCON *) &irp->irp$b_carcon) ->prefix_count +

((CARCON *) &irp->irp$b_carcon) ->suffix_count;

703

Sample Driver Written in C
B.1 LRDRIVER Example

704

/* When we format the buffer it is possible that the buffer we allocate
* will not be large enough. So we allocate a system buffer and try to
* format users buffer into it. If it does not fit we will deallocate
* the buffer and return the quota and try a larger buffer. If it fits
* we will update the row and column data and drop out of the format

* loop.
* /

fmt_data.page_length = (int) ucb->ucb$r_ucb.ucb$b_vertsz;

fmt_data.page_width = (int) ucb->ucb$r_ucb.ucb$w_devbufsiz;

do

{
sys_buflen += DATA_EXPND_CUSHION;

status = exe_std$alloc_bufio_64(irp,
peb,

(VOID_PQ) qio_bufp, /* user buffer */
sys_buflen);/* buf siz plus header */

if (! SVMS_STATUS_SUCCESS(status))

return (call_abortio (irp, pcb, (UCB *)ucb, status));

/* sys_bufp points to the bufio header packet. */
sys_bufp = irp->irp$ps_bufio_pkt;

/* sys_buflen is the number of bytes charged by alloc_bufio. =A |
sys_buflen = sys_bufp->bufio$w_size;

fmt_data.cr_pend = ucb->ucb$l_lr_cr_pend;
fmt_data.sys_datap = (char *) sys_bufp->bufio$ps_pktdata;
fmt_data.buffer_space = sys_buflen - BUFIOSK_HDRLEN64;
fmt_data.column_pos = ucb->ucb$l_lr_ cursor;

fmt_data.line_on_page = ucb->ucb$l_lr_lincnt;
fmt_data.total_lines = 0;

fmt_data.total_bytes = 0;

/* Expand the prefix carriage control into the allocated system
* buffer. If the carriage control count is non-zero and the
* carriage control character is 0, this means "new line." Output
* an initial CR, then the counted number of LFs.
a

Sample Driver Written in C
B.1 LRDRIVER Example

carcon_count = ((CARCON *) &irp->irp$b_carcon) ->prefix_count;
if (carcon_count != 0) {

carcon_char = ((CARCON *) &irp->irp$b_carcon) ->prefix_char;
Em (Carconuchare=—1 0m

status = lr$format_char (ucb, CR, &fmt_data);
carcon_char = LF;

}
while ((status & SS$_NORMAL) && (carcon_count > 0))

{
status = Ir$format_char(ucb, carcon_char, &fmt_data);

carcon_count -= 1;

}

/* If no error so far then format the users buffer */

carcon_count = 0;

while ((status & SS$_NORMAL) && (carcon_count < qio_buflen))

{
status = lr$format_char(uch, gio_bufp[carcon_count], &fmt_data) ;

carcon_count += 1;

/* Expand the suffix carriage control into the allocated system
* buffer. If the carriage control count is non-zero and the

* carriage control character is 0, this means "new line." Output

* an initial CR, then the counted number of LFs.

we
carcon_count = ((CARCON *) &irp->irp$b_carcon) ->suffix_count;

if (({carcon_count != 0) && (status & SS$_NORMAL)) {
carcon_char = ((CARCON *) &irp->irp$b_carcon) ->suffix_char;

ie (Carcone char ==) O\ed
status = lr$format_char(ucb, CR, &fmt_data);

carcon_char = LF;

}
while ((status & SS$S_NORMAL) && (carcon_count > 0))

{
status = IrSformat_char(ucb, carcon_char, &fmt_data);

carcon_count -= 1;

/* If an error has occured then we need to delete the buffer so
* we can try to get a larger buffer and try to format it once

again.

if (! (SVMS_STATUS_SUCCESS (status) })

{
exe_std$credit_bytcnt (irp->irp$l_boff, pcb);
irp->irp$ps_bufio_pkt = (void *) 0;
irp->irp$l_boff = 0;
tmp_status = exe_std$deanonpaged({ (void *)sys_bufp) ;

}

705

Sample Driver Written in C
B.1 LRDRIVER Example

ee ee ee, a, SS Se Ce Se, me Ce a Nea, 2 A of

} while (! $VMS_STATUS_SUCCESS (status)) ;

ucb->ucb$1_lr_cr_pend = fmt_data.cr_pend;

ucb->ucb$1_lr_ cursor = fmt_data.column_pos;

ucb->ucb$1_lr_lincnt = fmt_data.line_on_page;

irp->irp$l_iost2 = fmt_data.total_lines;

irp->irp$l_bent = fmt_data.total_bytes;

}

/* If characters to be output Queue this 1/0 request to the start I/O
* routine and return SS$_FDT_COMPL back to the FDT dispatcher in the

* $QIO system service. If not then just finish the request, it is
* possible that there will be no output if the printer is set to truncate
* and we are already at the right margin when a new output is started.

iff
if (irp->irp$l_bent)

{
return (call_qiodrvpkt (irp, (UCB *)ucb));

}
else

{
return ({ call_finishio (irp, (UCB *)ucb, SS$_NORMAL, 0) };

}

LRSFORMAT_CHAR - This routine is used to format users data

Functional description:

This routine determines if any special action needs to be taken based
on what the character is and how the printer port is configured.
Additionally, it handles truncating output or wrapping output, as well
as tabs, line feeds, form feeds, and carriage return.

Calling convention:

status = lr$format_char (ucb, out_char, fmt_data)

Input parameters:

ucb Pointer to UCB for this device
out_char Character to be output

fmt_data Data structure with a variety of data

Output parameters:

none

Return value:

706

Oe ob: Oe Oe 2 oe

Sample Driver Written in C
B.1 LRDRIVER Example

status SSSNORMAL - Buffer filled with no problem
SS$_TOOMUCHDATA - Buffer to small could not format all the data

Environment:

Kernel mode, user process context, IPL 2.

/

int I1r$format_char (LR_UCB *ucb, unsigned char out_char, FMT_DATA *fmt_data)

{

unsigned char tmp_char;

int char_mask; /* Bit in array segment for this character */
int fill_chars; /* Number filler chracters needed */
int ne /* temporary counter */
int index; /* Index into array of character characteristics */
int status = SS$_NORMAL;

int tab_stop; /* Next tab stop position */

if (fmt_data->cr_pend)

{
fmt_data->cr_pend = FALSE;

if ({out_char != FF) && (out_char != VT) && (out_char < DEL))

{
tmp_char = out_char;

fmt_data->column_pos = 0;

if (fmt_data->total_bytes++ < fmt_data->buffer_space)

{
*fmt_data->sys_datapt+t+ = CR;
status = lr$format_char(ucb, tmp_char, fmt_data);

return(status) ;

}
else

return (SS$_TOOMUCHDATA) ;

}
}

/* Compute character array index and bit position. This is done to make it
easy to see if character is considerd a control character or something

that can be upcased */

index = (int) out_char/32;
char_mask = 1 << (int) out_char%32;

707

Sample Driver Written in C
B.1 LRDRIVER Example

if (CTRL_TABLE[index] & char_mask)

{
if ((out_char >= DEL) && (!(ucb->ucb$r_ucb.ucb$1_devdepend & LP$M_PRINTALL)))

{

}
elsemt (outechar ==) CR) PRECR/

{

return (SS$_NORMAL) ; /* Drop character */

if (! (ucb->ucb$r_ucb.ucb$1_devdepend & LP$M_CR))

{
fmt_data->cr_pend = TRUE;

return (SS$_NORMAL) ;

}
else

{
if (fmt_data->total_bytest++ < fmt_data->buffer_space)

{
fmt_data->column_pos = 0;

*fmt_data->sys_datapt++ = CR;
return(SS$_NORMAL) ;

}
else

return (SS$_TOOMUCHDATA) ;

}

}
else if (out_char == HT) pOTAR ss

{
if (!(ucb->ucb$r_ucb.ucb$]1_devdepend & LPSM_TAB))

{
tab_stop = (fmt_data->column_pos + 8) & ~7;

fill_chars = tab_stop - fmt_data->column_pos;

= Oe

while ((status & SS$_NORMAL) && {i < fill chars))

{
status = lr$format_char(ucb, SP, fmt_data);
deh oles

}
return (status);

}
}
else if (out_char ==) TEIN SOLS §

{
if (!(ucb->ucb$r_uch.ucb$1_devdepend & LP$M_PRINTALL))

{
return (SS$_NORMAL) ; /* Drop character */

}
}
else if (out_char == FF) {ei oN) eh)
{

fill_chars = fmt_data->page_length - fmt_data->line_on_page;
if (ucb->ucb$r_uch.ucb$l1_devdepend & LP$M_MECHFORM)
{

708

Sample Driver Written in C
B.1 LRDRIVER Example

fmt_data->total_lines = fmt_data->total_lines + fill chars;
fmt_data->line_on_page = 0;

}
else

{
Le

Pa ((status & SS$_NORMAL) && (i < fill_chars))

status = lr$format_char(ucb, LF, fmt_data);
ah Ge ILE

}
return (status);

}
}
else if (out_char == LF) (het |

{
if (fmt_data->tctal_bytes++ < fmt_data->buffer_space)

{
*fmt_data->sys_datapt++ = LF;

fmt_data->line_on_page += 1;
fmt_data->total_lines += 1;

fmt_data->column_pos = 0;

if (fmt_data->line_on_page >= fmt_data->page_length)

{
fmt_data->line_on_page = 0;

}
return(SS$_NORMAL) ;

}
else

return (SS$_ TOOMUCHDATA) ;

}
else /* Other control chars */

{
if (!(ucb->ucb$r_ucb.ucb$l_devdepend & LPSM_PRINTALL))

{
return (SS$_NORMAL) ; /* Drop character */

}
}

}
else if (! (ucb->ucb$r_uch.ucb$l_devdepend & LP$M_LOWER))
ff
nv

if (CASE_TABLE[index] & char_mask) /* Character is lower case */

{
out _char = outlchar — SP;

}

}

/* If here we have a character to output see if room to do so. If space and if
FALLBACK is set then translate it */

709

Sample Driver Written in C
B.1 LRDRIVER Example

if (fmt_data->column_pos > fmt_data->page_width)

{
if ((ucb->ucb$r_uch.ucb$l_devdepend & LPS$M_TRUNCATE) &&

(! (ucb->ucb$r_ucb.ucb$]_devdepend & LPS$M_WRAP)))

{

}
else

return (SS$ NORMAL) ;

status= lr$format_char(ucb, CR, fmt_data);

if (status & SS$ NORMAL)

status= lrSformat_char(ucb, LF, fmt_data);
if (!(status & SS$_NORMAL)) return (status);

}
}
fmt_data->column_pos +=1;

if (fmt_data->total_bytes++ < fmt_data->buffer_space)

{
if (!(ucb->ucb$r_ucb.ucb$]1_devdepend & LPSM_FALLBACK))

{
*fmt_data->sys_datap++ = out_char;

}
else

*fmt_data->sys_datap++ = TRANS_TABLE[out_char];

}
return (SS$ NORMAL) ;

}
else

{

}
return (SS$_TOOMUCHDATA) ;

}

710

Sample Driver Written in C
B.1 LRDRIVER Example

LRSSTARTIO - Start I/O Routine

Functional description:

This routine is the driver start I/O routine. This routine is called
by ioc_std$initiate to process the next I/O request that has been
queued to this device. For this driver, the only function that is
passed to the start I/O routine is a write operation.

Before this routine is called, ucbv_cancel, ucbv_int, ucb$v_tim, and

ucb$v_timout are cleared. The ucbl_svapte, ucbl_boff, and ucb$l_bent
cells are set in ioc_std$initiate from their corresponding IRP cells.
Unlike their IRP counterparts, these UCB cells are working storage and
can be changed by a driver. This driver uses ucb$l_svapte to point to
the next byte to output in the system buffer packet, and irp$l_bent to
keep the count of the remaining bytes to output.

This routine acquires the device lock and raises IPL to device IPL.
The device lock is restored and the original IPL is restored via wfikpch
before this routine returns to its caller.

Calling convention:

Ir$startio (irp, ucb)

Input parameters:

irp Pointer to I/O request packet
ucb Pointer to unit control block

Output parameters:

None.

Return value:

None.

Environment:

2 FF OF OF OF OF 8 OF OE OF Oe OOO OO OOOO EE

Kernel mode, system context, fork IPL, fork lock held.

if

void lr$startio (IRP *irp, LR_UCB *uch) {

Sh olomoy anke mann obi

/* Adjust ucb$l_svapte such that it points to the start of the data in

* the system buffer packet.

a)
ucb->ucb$r_ucb.ucb$l_svapte = (char *) ucb->ucb$r_uch.ucb$l_svapte +

BUFIOSK_HDRLEN64;

711

Sample Driver Written in C
B.1 LRDRIVER Example

/* Acquire the device lock, raise IPL, saving original IPL */

device_lock (ucb->ucb$r_ucb.ucb$l1_dlck, RAISE_IPL, &orig_ipl);

/* Send the first character to the device. We can ignore the status,
* since we will timeout if the device is not ready.

aa
lr$send_char_dev (uch) ;

/* Set up a wait for the completion of the I/O by using the wfikpch macro.
* Wfikpch will restore the device lock and restore IPL. When output of
* the entire buffer has been completed, the lr$interrupt routine will
* queue the lr$iodone_fork routine. If the I/O does not complete within

* LR WFI_TMO seconds, then exeStimeout will call 1lr$wfi_timeout.

Ail
wfikpch (lr$iodone_fork, lr$wfi_timeout, irp, 0, ucb, LR_WFI_TMO, orig_ipl);

return;

LRSSEND_CHAR_ DEV - Send Character to the Device

Functional description:

This routine sends the next character from the system buffer to the
device via the printer write data register. This routine decrements the
count of remaining bytes (ucb$l_bent) and advances the pointer to the
next character (ucb$l_svapte). (ucb$l_svapte was made to point to the
bufio data packet area in LRSSTARTIO by adding the header length to the
original bufio header pointer.)

This is an internal routine that is used by the start I/O, interrupt
service, and periodic check device ready routines.

Calling convention:

status = lr$send_char_dev (ucb)

Input parameters:

ucb Pointer to unit control block

Output parameters:

None.

Return value:

status SS$_NORMAL if the next data byte was sent to the printer
device.

SS$_DEVOFFLINE if the next data byte was not sent to the
a a, a, A, i ee, ee Se a ee ee ey. A, a, SO, a, Sn, ROC, Se ae Sie et Se,

712

Sample Driver Written in C
B.1 LRDRIVER Example

s printer device since it is not ready to accept
a data.
*

* Environment:
*

* Kernel mode, system context, device IPL, device lock held.

if

static int lr$send_char_dev (LR_UCB *ucb) {

int device_data; /* Data from or for CRAM */
char *sys_datap; /* Pointer to next byte in buffer packet */

/* Set the Port Control Register.
Set the INIT_OFF bit to disable the "INIT" signal. Set the IRQ_EN bit

to enable interrupts. Assure that the STROBE bit is clear so that we
can cause a 0-to-1 transition after loading the data register. Assure
that the DIR_READ bit is clear since we are doing writes to the data
register. Note byte-lane shift if ISA option.

i
if (ucb->ucb$l_lr_jensen)

device_data = LPC_M_INIT_OFF | LPC_M_IRQ_EN;

else

device_data = (LPC_M_INIT_OFF | LPC_M_IRQ_EN) << 16;

+ + 6 & HF

ucb->ucb$ps_cram_lcw->cram$q_wdata = device_data;
ioc$cram_io (ucb->ucb$ps_cram_lcw) ;

/* Read the port status register. Note byte-lane shift if ISA option. */

ioc$cram_io (ucb->ucb$ps_cram_lps) ;
device_data = ucb->ucb$ps_cram_lps->cram$q_rdata;
if (! ucb->ucb$l_lr_ jensen) device_data >>= 8;

/* If the device is not ready to accept a character, then do not attempt
* to send it. Return an error status.

af
ne ((LPS *) &device_data) ->lps_paperout /* paper out */

! ((LPS *) &device_data) ->lps_ok | [is SNAG igs algGio Eraigone *//

| ((LPS *) &device_data)->lps_online || /* not online */
! ((LPS *) &device_data) ->lps_ready) [ee nOeetaeadyany,

return SS$_DEVOFFLINE;

/* The device is ready. Load the data byte. Update ucb$l_svapte to
* point to the next byte and decrement the count of bytes lef in
* ucb$l_bent. Note that no byte-lane shift is necessary for this register.

*)
sys_datap = (char *) ucb->ucb$r_ucb.ucb$1l_svapte;
device_data = *sys_dataptt;
ucb->ucb$r_ucbh.ucb$l_svapte = (void *) sys_datap;

ucb->ucb$r_ucb.ucb$]_bent--;
ucb->ucb$ps_cram_lwd->cram$q_wdata = device_data;

ioc$cram_io (ucb->ucb$ps_cram_lwd) ;

713

Sample Driver Written in C
B.1 LRDRIVER Example

/* Latch the data byte to the printer.
* Because some printers trigger on the 0 to 1 transistion of STROBE and

* other trigger on the 1 to 0 transitions we have to write to the line

* control register twice. INIT_OFF and IRQ_EN were set earlier and are

* kept set. DIR_READ is kept clear. Note byte-lane shift if ISA option.

if (ucb->ucb$l_lr_jensen)
device_data = LPC_M_INIT_OFF | LPC_M_IRQ_EN | LPC_M_STROBE;

else
device_data = (LPC_M_INIT_OFF | LPC_M_IRQ_EN | LPC_M_STROBE) << 16;

ucb->ucb$ps_cram_lcw->cram$q_wdata = device_data;

ioc$cram_io (ucb->ucb$ps_cram_lew) ;

if (ucb->ucb$1_lr_ jensen)
device_data = LPC_M_INIT_OFF | LPC_M_IRQ_EN;

else
device_data = (LPC_M_INIT_OFF | LPC_M_IRQ_EN) << 16;

ucb->ucb$ps_cram_lcw->cram$q_wdata = device_data;
ioc$cram_io (ucb->ucb$ps_cram_lcw) ;

/* Data byte sent. Return success. */

return SS$ NORMAL;

LRSINTERRUPT - Interrupt Service Routine

Functional description:

This is the interrupt service routine for the parallel line printer
port. This routine is called by the system interrupt dispatcher.

This routine will attempt to send the next character to the device
until either there are no more characters left or the I/O is canceled.
At which point, this routine will queue the lr$iodone_fork routine

which was set up either in lr$startio or lr$check_ready_ fork.

If the interrupt is not expected by an active I/O on this device then
it is simply dismissed.

Calling convention:

IrSinterrupt (idb)

Input parameters:

idb Pointer to interrupt dispatch block

a, a ee a. ee MN oe, ei Se ee, ee em SM A 5, 1 ST, ee ee Output parameters:

714

Sample Driver Written in C
B.1 LRDRIVER Example

*

* None.
*

* Return value:
*

* None.
*

* Environment:
*

ws Kernel mode, system context, device IPL.
*

i |

void lr$interrupt (IDB *idb) {

LR_UCB *ucbh;

int device data; /* Data from or for CRAM */
int status;

/* Get the UCB from the IDB owner field which was set up by the lr$unit_init
* routine.

ef
ucb = (LR_UCB *) idb->idb$ps_owner;

/* Acquire the device lock. We are already at device IPL */

device_lock (ucb->ucb$r_uch.ucb$l1_dlck, NORAISE_IPL, NOSAVE_IPL);

/* If interrupt is expected, then process it, otherwise ignore it */

if (ucb->ucb$r_ucb.ucb$v_int) {

/* If there are characters left and the I/O has not been cancelled

* then attempt to send the next character. There is no need to check
* the status since the interrupt timeout will expire if the device is
* not ready. Otherwise, queue the I/O done fork routine that was
* setup via wfikpch.

ah
if (ucb->ucb$r_ucb.ucb$l_bent > 0 && ! ucb->ucb$r_uch.ucb$v_cancel) {

Ir$send_char_dev (uch);

} else { ;
ucb->ucb$r_ucb.ucb$v_int = 0;
ucb->ucb$r_ucb.ucb$v_tim = 0;
exe_std$queue_fork((FKB *)ucb });

}
}

/* Restore the device lock, stay at device IPL */

device_unlock (ucb->ucb$r_ucb.ucb$1_dlck, NOLOWER_IPL, SMP_RESTORE) ;

/* return back to interrupt dispatcher */

return;

}

715

Sample Driver Written in C
B.1 LRDRIVER Example

LRSIODONE_FORK - I/O Completion Fork Routine

Functional description:

This is the fork routine which passes the current I/O reque
I/O postprocessing. This routine is queued by the interrup
routine when the I/O request has been completed. This routine can also

be called directly from Ir$check_ready_fork if the I/O request is
cancelled while it is stalled due to an offline condition.

Calling convention:

lr$iodone_fork {irp, not_used, ucb)

Input parameters:

irp Pointer to I/O request packet
not_used Unused fork routine parameter fr4
ucb Pointer to unit control block

Output parameters:

None.

Return value:

None.

Environment:

Kernel mode, system context, fork IPL, fork lock held.
SIR Ew gia ee. Mi ee, i, ee a, ae, A, eM, A, ees a OR, (le, oe, ee, GO a, An A SP SM A, /

void lr$iodone_fork (IRP *irp, void *not_used, LR_UCB *ucb)

int status = SS$_NORMAL; ‘* Assume everything went ok *

/* If the request was cancelled or timed out of its own accord then
* set the status accordingly.
ay

if (ucb->ucb$r_ucb.ucb$v_cancel) {

status = SS$_ ABORT;
} else if (ucb->ucb$r_ucb.ucb$v_timout) {

status = SS$_TIMEOUT;

}

/* Send this I/0 request to I/O post processing *

loc_std$reqcom (status, 0, &{ucb->ucb$r_ucb));
return;

716

Sample Driver Written in C
B.1 LRDRIVER Example

LRSWFI_TIMEOUT - Wait-for-interrupt timeout routine

Functional description:

This routine is the wait-for-interrupt timeout routine. It is called
by exe$timeout when an operation set up by wfikpch takes more that the
specified number of seconds.

This routine queues a fork routine, lr$check_ready_fork, to handle
periodic checking of the readiness of the device to resume output and
to issue periodic "device offline" messages via OPCOM.

Calling convention:

lIr$wfi_timeout (irp, not_used, ucb)

Input parameters:

irp Pointer to I/O request packet
not_used Unused fork routine parameter fr4

ucb Pointer to unit control block

Output parameters:

None.

Return value:

None.

Environment :

Kernel mode, system context, device IPL, fork lock held, device lock held.

2 3 3b 3G ee: OR Oe oR oe SR ok Oo OR oh OR OO oe) Ee oe aR oR ok ok oe OF OF OR OF a OF OF ok /

void lr$Swfi_timeout (IRP *irp, void *not_used, LR_UCB *uchb) {

/* A wait-for-interrupt has timed out. Count the device as having been
* offline for the duration of the wait-for-interrupt interval.

Ba.
ucb->ucb$1_lr_oflcnt = LR_WFI_TMO;

/* Queue a fork-wait thread that checks once a second for the device being
* ready to accept data. One reason for deferring this work to fork level

* is that exe_std$sndevmsg cannot be called at device IPL.

|
fork_wait (lr$check_ready_fork, irp, 0, ucb);

return;

717

Sample Driver Written in C
B.1 LRDRIVER Example

/*

* LRSCHECK_READY_FORK - Periodic Check for Device Ready
x

* Functional description:

This routine performs a once-a-second check of the readiness of the
device to resume output. While the device remains offline this fork
routine reschedules itself via the fork wait queue. When the device
is ready to resume, the next character is sent and the remainder of
the output is done by the interrupt service routine.

If the device remains offline for ucb$l_lr_msg_tmo seconds (initially
set to LR_OFFLINE_TMO) then a "device offline" message is sent to

OPCOM. The device offline message interval is doubled each time while
it is less than an hour. When the device becomes ready again, the offline
message interval is reset to its initial LR_OFFLINE_TMO value.

Calling convention:

lr$check_ready_fork (irp, not_used, ucb)

Input parameters:

irp Pointer to I/O request packet
not_used Unused fork routine parameter fr4

uch Pointer to unit control block

Output parameters:

None.

Return value:

None.

Environment:

ae, i, Sheer. I, ST iat, Re, ee a, a He ee. ee ee et. ee, Se ae oe, A ee ee ee ee Se) ee ee ee ee, eee
——

Kernel mode, system context, fork IPL, fork lock held.

void 1lr$check_ready_fork (IRP *irp, void *not_used, LR_UCB *ucb) {

int orig_ipl;

int status;

718

Sample Driver Written in C
B.1 LRDRIVER Example

/* If the I/O request has been canceled while we've been waiting or there
* are no more characters to send to the device then call our I/O done fork
* routine directly to complete the I/O request and then return from this
* routine.

tof
if (ucb->ucb$r_ucbh.ucb$v_cancel || ucb->ucb$r_uch.ucb$l_bent == 0) {

lr$iodone_fork (irp, 0, ucb);
return;

}

/* Acquire the device lock, raise IPL, saving original IPL */

device_lock (ucb->ucb$r_ucb.ucb$l_dlck, RAISE_IPL, &orig_ipl);

/* Attempt to send the next character to the device. If the device is

* still not ready, then the character will not be sent and an error status
* will be returned.

e/
status = lr$send_char_dev (uch);

/* If we successfully sent a character to the device then we're back in
* business. Set up a wait for the completion of the I/O via wfikpch
* just like our start I/O routine. Wfikpch will restore the device lock
* and restore IPL. But first, clear the offline count and set the offline

* message interval to its initial value. And, return from this routine.

rf
if ($VMS_STATUS_SUCCESS(status)) {

ucb->ucb$l1_lr_msg_tmo = LR_OFFLINE_TMO;
ucb->ucb$l_lr_oflent = 0;
wfikpch (lr$iodone_fork, lr$wfi_timeout, irp, 0, ucb,

LR_WFI_TMO, orig_ipl);

return;

}

/* Otherwise, the device is still offline. Increment the offline time. */

ucb->ucb$1_lr_oflcnt++;

/* Restore the device lock, return to the original entry IPL */

device_unlock (uch->ucb$r_uch.ucb$l_dlck, orig_ipl, SMP_RESTORE) ;

/* If the offline count has reached the "device offline" message interval
* then it’s time to send it to OPCOM and start a new offline interval.
* Tf this message interval was less than an hour, double the next one.

ii
if (ucb->ucb$l_lr_oflcnt >= ucb->ucb$l_lr_msg_tmo) {

extern MB_UCB *sys$ar_oprmbx; /* Pointer to OPCOM mbx uch */

exe_std$sndevmsg (sys$ar_oprmbx, MSG$_DEVOFFLIN, &(ucb->ucb$r_ucb)) ;

ucb->ucb$1_lr_oflcnt = 0;

if (ucb->ucb$l_lr_msg_tmo < ONE_HOUR)
ucb->ucb$l_lr_msg_tmo *= 2;

719

Sample Driver Written in C
B.1 LRDRIVER Example

/* Setup to check the device again in one second via the fork-wait queue */

fork_wait (lr$check_ready_fork, irp, 0, ucb);

return;

B.2 LRDRIVER.H

This section contains the LRDRIVER.H file, which is the fallback table

remapping for DEC Multinational Character Set "MCS".

[ee Xl

** Copyright © Digital Equipment Corporation, 1994 All Rights Reserved.
*x Unpublished rights reserved under the copyright laws of the United States.

*x The software contained on this media is proprietary to and embodies the
** confidential technology of Digital Equipment Corporation. Possession, use,
x* duplication or dissemination of the software and media is authorized only
** pursuant to a valid written license from Digital Equipment Corporation.

** RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
** Government is subject to restrictions as set forth in Subparagraph
a (c) (1) (11) of DFARS 252.227-7013, or in FAR 52.227-19, as applicable.

WKS +

2S RAC Mi mys:

nat Example Device Driver for OpenVMS AXP

** MODULE DESCRIPTION:

a This module contains the fallback table remapping for DEC Multinational
uk Character Set "MCS".
xk

** AUTHOR:
Kk

bat OpenVMS Alpha Development Group

** MODIFICATION HISTORY:

as X-1 VMS000 OpenVMS Alpha Drivers 20-July-1994
Initial version,

720

Sample Driver Written in C
B.2 LRDRIVER.H

Build up a table with the whole ASCII 8-Bit character set. This table
* is used to translate 8-Bit characters to 7-Bit characters if the printer is

doing character fallback translation. This only exists for to keep the *

* printer code equivalent to that in the old LP11 interface. Any modern
* printer that is likely to be controlled by LRDRIVER should be capable of
* deaing with 8-Bit characters.
*

*/
NUL
SOH
STX
ETX

static unsigned char

ENXO0",, es
U\\540) Hes
INZO2 4, Hs
ANOS 4 fs
BNOA [*

INKO5" iis
aYx064, as
ENO, ifs
BNSOS a ifs
PNEZOS!, [*

NON a [
'\x0B’, /*

INKOGS, ies
avecOD) a, Ips
NOR, /*

ENO na. [*

ANSTO! [*

NS [*

Ne te ies

ON Stal Sauer pe
‘x14’, /*

DNS as
DN 16 7 fe
Vote ae {*
ANS ie
EN ce Hes
ONXAG fe
aNKIB', fyhes
INTC ifhes
ENSUD IC; ips
UNGAR, fs
INET if
NZ Odie {*
Avoez1., p*
GND Die ifs
ENDS {gis
ENXQA, fe
UN Raye ies
ANKZ64 [i
ENO] lie
ANGE S"5 f*

i
gi

TRANS_TABLE[256] = {

721

Sample Driver Written in C
B.2 LRDRIVER.H

INX22" sta rh
UNS GND /* * */

UNEASY /* + */

ENS OAC tog a]:
a2 Dia ipo oy
U\KZE";, ii Bf
NXE, hae *y
ENS 30 /* 0 */

NGG ages i
ING WAU {/* 2 */

NESS, age: a,
"\x3d", /* 4 yf
ONES"; iS iif
G\x3 67, fEAG “if
NX Seay, Hata} */

‘\xs8y, {eos ai
ENex8 Ot /* 9 x]

ON NG /* : */

ING BS” 5 fog ai,
+\20C 4, Mir Es sy
UND /* = 0}

ING TRH ie ss * /

R\KOr SG, foe |
'\x40', LS a
y\x4al”, (ek WM
"\x42', j* 3 ey
ENA BU HEENe uy
ON xealile JES AD) * /

ENA Se /* E * /

"\x46', ae */
FNS ANTE fis @ */

ENG gS /* x /

EN MNT er a */

NAN He 0) wif

'\x4B’, L® ok LY)
NG ae als a
BAKA! | i |
UNS AT /* N */

INA TO /* 0 */

xno"; je =
Hay coy Nie /* Q */

j\x52% 5 (= ® -
AN dyes /* Ss */

tyxbas, eT */
P\RDO" 5 fu */
AN aol ae /* Vv */

er *Wo
BSS oe [XX */
INXS OUT /* Y */
INSAUy Pay, * /
INXOB” /* [*/
OXRSCT, /* \ */

722

Sample Driver Written in C
B.2 LRDRIVER.H

'\x5D', /* | */

"\X5E", is i)
'NXSEYs, [Ss */

oO, /* * /
EN Gilets, /*ta * /

"\x62', etme * fe
PNK GSH, aa: rf
'\x64', [ya * f
NOON: /* e * /

‘\x66', iNet a
ENS OnET, ee ej eS
ENX6Sis, He Ve) “af
NOO [kad * /

"\x6A', ey i
aNXOB";, [mek “af
ONGC, ive ¥ ‘|
UNXODY), rain a]

NOE, IP Soi 1a]

ANXGE? eee) eh
DN Oia he ae eh
ONSITE, eg ll,
'\x72", ae “)
Noe, /* s * /

INSTA, [* € */

IS), eit dt:
eres, [ev iif
BNI IeN, /* w * /

EIS, [eX i]
OIE Hy, cay
NTA"; [re Wi |

NIB", [Pe 4 aff
Wed, [se] A
aa D ae [es ef

‘\x7E', fe ~ oa
BN Xa Een (ae eee)
B\xSEU, [> 80 */ /* Remap most of the C1/GR codes to _ */

NX 5K :, [Ee 81 */
Nest alle [* 82) %/
NS Ee, /* Soe
UNXSES, / END S437;

UNS do /*® NEL 85 */
ENKXSK, [PSS RSOn

ONG as ce ESRe Byles,
UNS Ble /* HTS 88 */

BND Bes, (ea Wid Oo) %G/
Nx Sie [EE NILS: Cay ty/,
ONG Se ji PLDS SB 2/
UNS agin /* PLU 8C */
ENXS EN, eee OD,
NOEs, Sole Ob ma)

NXE, Ve SSo Shee,

ING asa LE OCS ES Oey

723

Sample Driver Written in C
B.2 LRDRIVER.H

NESE L SPUI O17

ANSON e 7 /* PU2 925%/

E\SSO RT Hit ISAMSS SIS) 127)

ENSSO cn. je ACCH 9A

ON he Jes sigh Ns) ey

INCE SPARS Get)

ENS Ge His VAIN Shh Lay

ENeCS ip px 98 */

INSEE Le HS) ay

UN orésyilt jes GA */

Noa PACS IBe* /

NaS Hes Sil GXer ns

ENO i OSCHO Dery

PN oie ne /*=*PM 9B */

UNeaey i NP CRS Bet)

Neon, fis AO */
POPE Hes i INI EH

ING 5 ir eI 8
NACE Wis 38 - NB

ENSOE Gy, fe Bae)
ENES Oe fe PING alll

NSN ps ING Jhyf
NS Hite SING 33)

NARS He INS 8
INXS id Key NG aff

ENSCOHG, pit OS = NN ah)
UN oiday Gl /* « BB */

Noa i's INGE 34)/

UN devel /* AD */

‘NSOF ips AE */
ENS is ARDY /

‘NXOF”, /* 6 BO */
IN CEMT = ie ae Bl */
PNG ae [/* 2 B2 * /

PNB /* 3 B3 x /

NST /* B4 */
INTSY Pid TON 1shSy BY)
\XSE pk GE Aey hy
NRE pee BTe
E Npc ee if B8 */
Noes /* 1 B9 */

Norse! /* 2 BA */

Words /* >» BB */

UNS fed Uh Ber y/

RSP /*% BD */
UN pay ifs BE */

ONES hie sf BE es)

Vad PA Che]
\xd1", iy | I ey)
NSALS JPR COIR]
Nott fra. SCA es)

“Neal? ie? ee a

724

e\xae
E\XSER,
ENA Gir
ONS es
ENX45)
iNx45u-

E\R4A5 1 #

iN KAQIE

EN XAG
e\xA Oe

BN xa),
ENG VEY

NA Re
EN x4 be
ENA a
ENxXaR!,
ENA

BAe
EN XSEEP
ONG ey nee
N55

E\xXO5SI2;

ENX55e
EN x5 5ce
B\XS 9)
INX5F!,

ING doa Le
ENxX61u

Nod Sibi

i\Nx61Ns

INO;

Ne 4 ol

Nord yt Le
INS RES

ENS EZ
UNG dala ¢

ENO

ENKX6 511,

PENX 650
Note

TG ASE)

ENX69uG,

'\x69',
UNG doy Sea

ENXOB\,

ENXOBGy,

INX6E”,

P\XOF

ENXOE
NEG Bisa
NXE,

eS es
a ae, ee) oe

[*

ID

HH: ER HN HY ed: D> No

KC: OAH’ a &k CO: OOrOr Z&

Hh Rs BD: > O oa B Me M: Ar A A. A W

‘le O: O% O> Ov Of PR

Sample Driver Written in C
B.2 LRDRIVER.H

725

Sample Driver Written in C
B.2 LRDRIVER.H

INKOE [S62 Fo Sh
ONE fe ee My
INSP Sy; ck Wh WN
NGS ji TL Ae} sy
NETS" PR ee Gy
NID" foe EDS
O\Sc5 baa fe FE */
INS esol pe FF *)

};

/*

wat

is Define chrarcter that can be translated to uppercase by subtracting
* 32 from their value. These are "a" through "{", "}", "a" through "i", and
ey ONE telongaybreloy, Sil
ae

oy
static unsigned int CASE_TABLE[8] = {0, 0, 0, Ox2FFFFFFE, 0, 0, 0, Ox3FFEFFFF};

/*

He

rs Define those characters that cannot be printed.
*

5
static unsigned int CTRL_TABLE[8] = {OxFFFFFFFF, 0, 0, 0x80000000, OxFFFFFFFF, 0, 0, 0};

B.3 LRDRIVER.COM

This section contains the LRDRIVER.COM command procedure, which
compiles and links the LRDRIVER.C device driver.

726

Sample Driver Written in C
B.3 LRDRIVER.COM

$ SET NOON

$ SAVED_VFY = FSVERIFY("NO", "NO")

$ ON CONTROL_Y THEN GOTO QUIT

$ SET VERIFY= (PROCEDURE, NOIMAGE)

$!
$! LRDRIVER.COM

$! This is the compile and link procedure for the example device driver
$! LRDRIVER.C.

$!
$! Usage:
$!
$! @LRDRIVER [DEBUG]

$!

$! Pl If specified as DEBUG then a version of the driver is built
$! that facilitates debugging with the High Level Language System
$! Debugger.
$! The default is to build a normal version of the driver.

'

$!'FSVERIFY ("NO") ’
3!
S DEBUG CC.0PTc=
pear Pt NES ac
$ THEN

IF Pl .NES. "DEBUG" THEN EXIT %X14 ! SS$_BADPARAM
DEBUG_CC_OPT = "/DEBUG/NOOPTIMIZE/DEFINE=DEBUG"

ENDIF
|

IF FSTRNLNM("SRC$") .EQS. "" THEN DEFINE/NOLOG SRC$ ‘FSENVIRONMENT ("DEFAULT") '
IF FSTRNLNM("LIS$") .EQS. "" THEN DEFINE/NOLOG LIS$ 'FSENVIRONMENT ("DEFAULT") ‘
IF FSTRNLNM("OBJ$") .EQS. "" THEN DEFINE/NOLOG OBJ$ '‘FSENVIRONMENT ("DEFAULT") ’

) .EQS. "" THEN DEFINE/NOLOG EXE$ ‘FSENVIRONMENT ("DEFAULT") '

IF FSTRNLNM("MAPS") .EQS. "" THEN DEFINE/NOLOG MAP$ 'FSENVIRONMENT ("DEFAULT") '

SET VERIFY= (PROCEDURE, NOIMAGE)

$
$
>
$
S
$
$
$ IF FSTRNLNM("EXE$"

>
>
5
$!
$! Compile the driver
3!
$ CC/STANDARD=RELAXED_ANSI89 / INSTRUCTION=NOFLOATING_POINT/EXTERN=STRICT-

/POINTER_SIZE=32-
‘DEBUG_CC_OPT’ -

/LIS=LIS$: LRDRIVER/MACHINE_CODE-

/OBJ=OBJ$: LRDRIVER-
SRC$:LRDRIVER -
+SYSS$LIBRARY: SYS$LIB_C.TLB/LIBRARY

$!
$! Link the driver
$!
$ LINK/ALPHA/USERLIB=PROC/NATIVE_ONLY/BPAGE=14/SECTION/REPLACE-

/NODEMAND_ZERO/NOTRACEBACK /SYSEXE/NOSYSSHR-

/ SHARE=EXES : SYSSLRDRIVER. EXE- ! Driver image

/DSF=EXES : SYSSLRDRIVER. DSF- ! Debug symbol file
/SYMBOL=EXES : SYSS$LRDRIVER. STB- ! Symbol table

727

Sample Driver Written in C
B.3 LRDRIVER.COM

/MAP=MAP$: SYSSLRDRIVER.MAP/FULL/CROSS - ! Map listing

SYSSINPUT: /OPTIONS
!

! Define symbol table for SDA using all global symbols, not just

| universal ones
|

SYMBOL_TABLE=GLOBALS

! This cluster is used to control the order of symbol resolution. All
! psects must be collected off of this cluster so that it generates
| no image sections.
|

CLUSTER=VMSDRIVER, , , -
|

! Start with the driver module

OBJ$: LRDRIVER. OBJ, -
|

! Next process the private interfaces. (Only include BUGCHECK_CODES if
! used by the driver module). The /LIB qualifier causes the linker to
! resolve references in the driver module to DRIVERSINI_xxx routines

| (which are defined in the module DRIVER_TABLE_ INIT}.
|

SYS$LIBRARY : VMS$VOLATILE_PRIVATE_INTERFACES / INCLUDE= (BUGCHECK_CODES) /LIB, -

|

!

! Explicitly include routines for the initialization section - there
! will be no outstanding references to cause this to happen when STARLET
! is searched automatically.
|

SYSSLIBRARY : STARLET/ INCLUDE: (SYS$DRIVER_INIT, SYS$DOINIT)

|

| Use the COLLECT statement to implicitly declare the NONPAGED_EXECUTE_PSECTS
! cluster. Mark the cluster with the RESIDENT attribute so that the image
! section produced is nonpaged. Collect only the code psect into the cluster.
|

COLLECT=NONPAGED_EXECUTE_PSECTS/ATTRIBUTES=RESIDENT, -
SCODE$

|

! Coerce the psect attributes on the different data psects to that they
! all match. This will force NONPAGED_READWRITE_PSECTS cluster to yield only
| one image section.
|

PSECT_ATTR=$LINK$, WRT

PSECT_ATTR=S$INITIALS$, WRT

PSECT_ATTR=$LITERALS$, NOPIC, NOSHR, WRT

PSECT_ATTR=$READONLY$, NOPIC, NOSHR, WRT

PSECT_ATTR=$$$105_ PROLOGUE, NOPIC

PSECT_ATTR=$$$110_DATA, NOPIC

PSECT_ATTR=$$$115_ LINKAGE, WRT

728

Sample Driver Written in C
B.3 LRDRIVER.COM

|

! Use a COLLECT statement to implicitly declare the NONPAGED_DATA PSECTS
! cluster. Mark the cluster with the RESIDENT attribute so that the image
! section produced is nonpaged. Collect all the data psects into the cluster.
!

COLLECT=NONPAGED_READWRITE_PSECTS/ATTRIBUTES=RESIDENT, -
|

! Psect generated by BLISS modules
|

SPLITS, -
SINITIALS, -
SGLOBALS, -
SOWNS ia

|

! Psects generated by DRIVER_TABLES
|

$$$105_PROLOGUE, -
$$$110_DATA, -
$$$115_ LINKAGE, -
|

! Standard Psects generated by all languages,
! including the high level language driver module
|

SBSSS, -
SDATAS, -
SLINKS, -
SLITERALS, -
SREADONLY$

|

! Coerce the program section attributes for initialization code so
! that code and data will be combined into a single image section.
!

PSECT_ATTR=EXECS$INIT_CODE, NOSHR

729

Sample Driver Written in C
B.3 LRDRIVER.COM

|

|

|

|

!

|

|

|

|

|

|

!

|

|

|

Use a COLLECT statement to implicitly declare the INITIALIZATION_PSECTS

cluster. Mark the cluster with the INITIALIZATION_CODE attribute so that the image
section produced is identified as INITIALCOD.

These program sections have special names so that when the linker sorts them
alphabetically they will fall in the order: initialization vector table, code,
linkage, build table vector. The order in which they are collected does not affect

their order in the image section.

This is the only place where code and data should reside in the
same section.

NOTE: The linker will attach the fixup vectors to this cluster. This is expected.

COLLECT=INITIALIZATION_PSECTS /ATTRIBUTES=INITIALIZATION_CODE, -

$!

EXECSINIT_000, -
EXECSINIT_001, -
EXECSINIT_002, -
EXECSINIT_CODE, -
EXEC$INIT_LINKAGE, -

EXECSINIT_SSTBL_000, -
EXECSINIT_SSTBL_001, -
EXECSINIT_SSTBL_002

SQUIT: ! ‘FSVERIFY(SAVED_VFY) '
$ EXIT $STATUS

730

C
Sample IOGEN Configuration Building

Module (ICBM)

This appendix contains a sample IOGEN configuration building module (ICBM)
and a sample command procedure for compiling and linking the sample ICBM.

C.1 ICBM Example
#pragma module MMOVSICBM "V1"

/*

*

i i i i ee | Si ee a a re

MMOVSICBM -- MultiMedia Configuration Building Module

Copyright © Digital Equipment Corporation, 1996 All Rights Reserved.
Unpublished rights reserved under the copyright laws of the United States.

The software contained on this media is proprietary to and embodies the
confidential technology of Digital Equipment Corporation. Possession,
use, duplication or dissemination of the software and media is

authorized only pursuant to a valid written license from Digital
Equipment Corporation.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.

Government is subject to restrictions as set forth in Subparagraph
(c) (1) {id} of DFARS 252.22727013, 96% -in@FARV52°227-19, as applicable,

ABSTRACT:

This is the IOGEN Configuration Building Module for the Multimedia Services
for OpenVMS. The primary function of this module is to load the video
driver for the AV301/321 FullSupreme Video PCI module, and the J300 Sound
and Motion TurboChannel module; and to load the sound driver for the

Microsoft Windows Sound System ISA module.

This module is a shareable image invoked by IOGEN as part of system
autoconfiguration. It initializes an Autoconfiguration Bus Mapping table,
passes it back to IOGEN, and contains routines that load the video driver

for the TurboChannel or the PCI, and the audio driver for the ISA and EISA

731

Sample IOGEN Configuration Building Module (iCBM)
C.1 ICBM Example

3 EE OR OE SE De: ok, SE Gar oe? (oe OO” Siebi ChB Sf Or Fok Oe OF

* Myayeudl

Zo),
#include
#include

#include
#include
#include

#include

#include

#include

#include
#include
#include
#include

#include

#include

#include

732

Note:

model 500 systems.
known as the AXP 150, or the DECpc 150.

buses.

This ICBM example does not work on the DEC 2000 model 300 or

These systems are also sometimes

ENVIRONMENT:

Merged as a shareable image by IOGEN Autoconfiguration. Called in
EXEC mode at IPL 0. This image must be installed as a known image
($ INSTALL ADD SYSSSHARE:MMOVSICBM_07.EXE, for example) in order
for AUTOCONFIGURE to activate it. If it’s being activated by a test
image (as in debugging) it need not be installed.

The image name must include the system type and optionally the
CPU type. These are obtained using the DCL lexical function
FSGETSYI, parameters "SYSTYPE" and "CPUTYPE". The systype and
CPU type are appended to the end of the image name following an
underscore. These values must be two hex digits each. For example,
on a DEC 3000 Model 300, systype is 07 and CPU type is 02, so the
ICBM image name on this system is MMOVSICBM_0702.EXE. The CPU
type is optional; the ICBM name could be MMOVSICBM_07.8XE. The

systype and CPU type are used by AUTOCONFIGURE to form the image
name. The same image can be used on many different systems, as
long as it is name appropriately.

ude files

<adpdef .h> /* Adapter control block so
<busarraydef.h> /* Bus array x7
<crbdef .h> /* Channel request block +7
<ctype. h> /* Character type macros 4
<dcedef.h> /* Adapter type codes wi
<descrip.h> /* String descriptor definitions*/
<hwrpbdef . h> /* HWRPB field definitions Et /
<ioc_routines.h> /* for ioc$node_data */
<iocdef.h> /* for IOCS$K_EISA_IRQ */
<iogendef .h> /* IOGEN symbols and item codes */
<ssdef.h> /* system error codes */
<starlet.h> /* system service prototypes */
<string.h> /* C string definitions a)
<stsdef.h> /* status decoding macros x7
<vecdef .h> /* interrupt vector symbols +

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

/*

* External routines in IOGEN

ei
int iogen$ac_select ();

int iogen$assign_controller ({);
int iogen$log ();
int sys$load_driver ({);

/*

* External references to system globals
*

* Define a pointer to the hardware RPB. This is used to locate the
* EISA configuration pointer table, which in turn is used to determine
* if a device supported by this ICBM exists on the system.
*

* The hardware RPB is a data structure used to pass information from
* the system console firmware to the operating system. For more
* details, refer to the OpenVMS AXP Internals and Data Structures
* manual, published by Digital Press (ISBN 1-55558-120-X).
*

x Use exe$gpl_hwrpb_1, the 32-bit pointer, instead of exe$gpq_hwrpb, a
64-bit pointer. *

rm /
extern HWRPB *exe$gpl_hwrpb_1;

/*

* Other external definitions
*

* These are IOGEN status codes. They are exported as the addresses of
* data cells from the IOGEN shareable image.

ut)
extern int IOGENS_ICBM_OK; /* Exported by IOGEN shareable image */
extern int IOGEN$_EXCLUDE; /* Exported by IOGEN shareable image */

/*

* Routine prototypes

A
int iogen$icbm_init (ABM **abm);
static int mmovSconfigure_bus (int handle, ADP *adp);
Static int mmov$configure_bus_eisa (int handle, ADP *adp);
static void connect_the_ driver (int handle, ADP *adp, int mct_index,

BUSARRAYENTRY *ba) ;

static int write_crb reconnect (CRB *crb, BUSARRAYENTRY *ba) ;

733

Sample IOGEN Configuration Building Module (ICBM)

C.1 ICBM Example

* Data structures used within this module.

/*

* The form of a SYSSLOAD DRIVER itemlist entry.

Li)
typedef struct itemlist

{
short int buffer_size;
short int item_code;

void *buffer_address;
short *return_length;
} ITEMLIST;

/*

* Autoconfigure bus mapping table. This table includes an entry
* for each bus this ICBM knows how to configure. Each entry
* in the table consists of an adapter type and an associated
* routine in the ICBM that configures devices on this adapter.
* Autoconfigure refers to this table as it scans the system ADP
* list, to determine if this ICBM needs to be called.
*

* The ABM structure is defined in IOGENDEF.H.
ey

static ABM mmov_abm[] =

{
AT$_PCI, mmov$configure_bus,
ATSC mmov$configure_bus,

AT$_ISA, mmov$configure_bus,
AT$_EISA, mmov$configure_bus_eisa,

e 0 /* Zero signals end of table */

734

a le i i i i | i i i i i a th i a i i ob ee Te i a i i a A

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

Multimedia device configuration table. This table includes the
8-byte device ID string the ICBM uses to determine if a device
exists on the system, the device name and the driver name that
corresponds to the device, and the adapter type for the bus the
the device is on.

The device ID is assumed to be no larger than 8 bytes, and if it’s
smaller than 8 bytes, the significant data is in the lower bytes
and the upper bytes are zero. This is done to simplify comparisons;
the device ID is treated as a 64-bit integer and one comparison is
done.

The form of the device ID differs for different buses. Sometimes
it differs for the same device.

For the AV301/AV321, the device ID is the contents of the 32-bit
PCI configuration space PCI ID register. The upper 32 bits are
zero.

For the AV300-AA, the device ID is the first 8 bytes of the
Turbochannel option ROM. This is the ASCII string "AV300-AA".

For the Microsoft Sound Board, the device ID varies. On ISA

machines, the console command "add_sound" sets the device ID to

the string "PCXBJ"; VMS copies only the first four bytes of this
string to the bus array device ID field, resulting in "PCXB".

On EISA machines, the default ECU configuration file identifies
the Microsoft Sound Board as "ISA2000". The ICBM checks for this

complete string.

"MSB" as a device ID for the Microsoft Sound Board is included in
the configuration table because it was useful in debugging ISA
configurations.

The complete list of devices supported by this ICBM is:

AV301 -- FullVideo Supreme video capture PCI card
AV321 -- FullVideo Supreme JPEG video capture PCI card with

on-board JPEG compression/decompression

AV300 -- Sound and Motion J300 video capture Turbochannel card
with on-board JPEG compression/decompression
(Note that this board also has sound capability,
which is not supported!)

Microsoft Sound System Sound Card
Oak Technologies Mozart Sound Card
Sound card in Digital PCI workstations that are compatible

with the Microsoft Sound System.

The configuration table definition is below. The union for the device

735

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

* ID is necessary because the version of the DEC C compiler in use doesn’t

* provide a way to statically initialize a 64-bit field. Note that the

* low-order longword is first, then the high-order longword.

|
static struct

{
union

{
struct

{
unsigned int id_l;

unsigned int id_h;

} id_fields;
unsigned __int64 id;
} a_alels

char *device_name;

char *driver_name;

unsigned int adp_type;
} config_table[] =

{
/*

* 8-byte device ID device driver adapter
* low high name name
*

*

*

AV301 device ID

0x00131011, 0x00000000, "VI", "MMOVSVIDRIVER", ATS$_PCI,

/* AV321 device ID */

0x000E1011, 0x00000000, "VI", "MMOVSVIDRIVER", ATS PCI,

[NB 00-AAZ im ASCII 57

0x30335641, 0x41412D30, "VI", “MMOVSVIDRIVER", ATS$_TC,

(ke NSB ame AS Citigns |

0x0042534D, 0x00000000, "AU", "MMOVSMSBDRIVER", ATS_ISA,

par VSDCRB? ine RSCL] 7

0x42584350, 0x00000000, "AU", "MMOVSMSBDRIVER", ATS$_ISA,

/® *TSA2Z000* im ASCII */

0x32415349, 0x00303030, "AU", "MMOVSMSBDRIVER", ATS_EISA

Wh

static int config_table_size = sizeof(config_table) / sizeof (config_table[0]);

736

% 3 OE OF Ee Ee OE EE

*

int

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

iogen$icbm_init -- IOGEN initialization routine for this ICBM

This routine is called by IOGEN when the ICBM is loaded. It
returns the address of the Autoconfiguration Bus Mapping Table (ABM).

Inputs:

abm -- address of a longword cell to receive the address
of the ABM.

Outputs:

The address of the MMOV ABM is written to the input address.

Status Returns:

IOGENS_ICBM_OK

Note: the "&" operator is used below because this symbol is
exported from the IOGEN shareable image as if it were the
address of a data cell.

iogen$icbm_init (ABM **abm)

{
*abm = mmov_abm;

return (int) &IOGENS_ICBM_OK;

}

737

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

mmov$configure_bus -- look for our devices in the ADP’s bus array.

This routine scans the bus array pointed to by the input ADP for
devices supported by this ICBM. If a supported device is found, the
associated driver is loaded and the unit connected. If no device is

found, exit.

Inputs:

handle -- magic number interpreted by the autoconfigure support

routines
adp -- pointer to the ADP to be checked for supported devices.

Implicit Inputs:

The multimedia device configuration table.

Outputs:

none

Implicit Outputs:

A device driver may be loaded, and a device unit created.

Status Returns:

SS$_NORMAL

The only errors that could be propagated up are those from

the connect_the_driver routine, which does not return any errors. 36) 9b 3 0b oF 8 iE: OR OE: ob. Ok ok ok OF. Ob OR Sk 0G SE OE Oe 6 eb SE) OF a OE 2 OF 6

+

By
static int mmov$configure_bus (int handle, ADP *adp)

{
WMG, Tn hee

union

{
char tempid1 [8];
__int64 tempid2;
} u_tempid;

char “1diptr:

BUSARRAY_HEADER *bah;
BUSARRAYENTRY *ba;

bah = (BUSARRAY_HEADER *) adp->adp$ps_bus_array;
ba = (BUSARRAYENTRY *) &bah->busarray$q_entry list;

738

Sample lIOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

Scan through the bus array entry list looking for anything in
* the configuration table. For each one found, load the driver and
* connect the unit. All the bus differences, et al., are handled in
* the connect_the driver routine.

a
for (1 = 0; i < bah->busarray$l_bus_node_cnt; i++)

{
/*

* The busarray$q_hw_id field is a 64-bit quantity. Do a simple
* 64-bit comparison to look for a match. If this is an
* ISA ID, this was entered by the user at the console using the
* isacfg console command. The user entered an up to 8-byte ASCII
* string. Convert this string to upper case before doing the
* comparison, as a convenience to the user.

“ei
if (adp->adp$1l_adptype == AT$_ISA)

{
id_ptr
ROK

{
u_tempid.tempid1[k] = toupper(id_ptr[k]);

}

(char *) &ba[i].busarray$q_hw_id;
0; k < 8; k++)

}
else

{
u_tempid.tempid2 = ba[i].busarray$q_hw_id;

}

Compare the hardware ID in the bus array slot with each entry
in the configuration table. Load the driver on the first match

in the configuration table. As one last consistency check,
make sure the adapter type in the configuration table matches
that in the ADP.

S 2 OF OF oe /
ton (Gj = 07) jJaqicontig itablersize: a++)

{
if (u_tempid.tempid2 == config_table[j].u_id.id)

{
if (config_table[j].adp_type == adp->adp$l_adptype)

{
connect_the_driver(handle, adp, j,

(BUSARRAYENTRY *) &ba[i]};

break;

}
}

} i fox 4 -=90; -72<. config _tablessize;ig++)'y*/

} /* for (i = 0; i < bah->busarray$l_bus_node_cnt; itt) */

return (SS$_NORMAL) ;
}

739

Sample IOGEN Configuration Building Module (ICBM)

C.1 ICBM Example

mmov$configure_bus_eisa -- look for our devices in the console

data block

This routine locates our devices in the EISA Configuration
Pointer Table. This table is pointed to by the HWRPB offset
HWRPBSIL_CDB OFFSET_L. This value is added to the base
address of the HWRPB to get the address of the configuration
pointer table. The configuration pointer table consists
of a collection of 3-longword items. Each item contains
a 7-byte ASCII identification string, followed by a 32-
bit offset. The offset is from the base of the Pointer
Table, and points to the compressed configuration data
block for that device. The configuration data block, and
the information in the pointer table, all come from data
entered by the user using the ECU at the console prompt.

This is the only way to determine if an ISA device supported
by this ICBM is configured on the system.

This routine is different from the mmov$configure_bus

routine, because the location of the data we’re looking

for is very different. The only thing in the bus array
that’s valid for an ISA device on an EISA bus is the CSR,
and only the connect_the_driver routine cares about that.

NOTE NOTE NOTE NOTE NOTE

This routine does not work on the DEC 2000 model 300 or model
500 systems (also known as the AXP 150 or DECpc 150 systems).
The data structures describing the EISA bus on these systems
are laid out very differently than on subsequent

EISA-based systems, and this routine does not take these
differences into account.

Inputs:

handle -- magic number interpreted by the autoconfigure support
routines

adp -- pointer to the ADP

Implicit Inputs:

The multimedia device configuration table.

The HWRPB, and the EISA configuration pointer
table.

Outputs:

none

a i ee Te oe TO Dee me SO Te Se eM Te SO ee Se, Se a er te Implicit Outputs:

740

9 5 2b SF oF OF oF OF OF

cs

ae

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

A device driver may be loaded, and a device unit created.

Status Returns:

SS$_NORMAL -- everything worked.

The only errors that could be propagated up are those from
the connect_the_driver routine, which does not return any errors.

static int mmov$configure_bus_eisa (int handle, ADP *adp)
{
int found, i, j, status;

HWRPB *hwrpb;

% 2 OF 2 OF OF 0

*

m/

BUSARRAY_HEADER *bah;

BUSARRAYENTRY *ba;

Define a structure for EISA configuration pointer table items. Note
that although the first 8 bytes are ASCII in the table, define it
as an int64 here to make comparisons with the device configuration
table easier. Use the member_alignment pragma to make sure the
compiler aligns the members on longword (4-byte) boundaries; otherwise
the compiler inserts padding before the offset member that doesn’t
match how the data is laid out in memory.

#pragma __member_alignment save

#pragma __nomember_alignment LONGWORD

typedef struct _cpt {
__int64 device_id;

void ‘*offset;

be aigsy tes eaue

#pragma __member_alignment restore

EISA_CPT *cpt;
[*

* Get the pointer to the bus array header, and a pointer to

* the first entry in the bus array.

at
bah = (BUSARRAY_HEADER *) adp->adp$ps_bus_array;
ba = (BUSARRAYENTRY *) &bah->busarray$q_entry_list;

/*

* Locate the configuration pointer table. Note that the HWRPB cell
* is called "cdb offset"; this cell points to the CPT, and the

* offset member of the CPT points to the CDB for each EISA slot.

ld
hwrpb = exe$gpl_hwrpb_l; ,
cpt = (EISA_CPT *) { (char *)hwrpb + hwrpb->hwrpb$il_cdb_offset_l);

741

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

742

/*

* -8Ca
*

oe Tha:
x

* 1)

*

*

* 2)

*

*

*

*

x

uy
FOr (he

{
/*

*

*

*

*

*

s/
for

}

n through the CPT looking for our device.

s loop depends on the following facts:

the entries in the bus array and those in the CPT are in
the same order. This order is based on the hardware bus

slot number.

this order is maintained because the first entry (index zero)
in the bus array describes the X-bus (the mouse, keyboard,
floppy, etc. devices), and the first entry in the CPT is
for the system motherboard (or CPU board). The next entry

in both the bus array and the CPT describes the first EISA
slot.

= 0; i < bah->busarray$l_bus_node_cnt; i++)

Compare the hardware ID in the EISA configuration pointer table
with each entry in the configuration table. Load the driver on
the first match in the configuration table. As one last

consistency check, make sure the adapter type in the configuration
table matches that in the ADP.

(j = 0; j < config_table_size; j++)

if (cpt[i].device_id == config_table[j].u_id.id)

£
if (config_table[j].adp_type == adp->adp$l_adptype)

{
connect_the_driver(handle, adp, j,

(BUSARRAYENTRY *) &ba[i]);

break;

}
}

} /* for (j = 0; j < config table size; qeepory

/* for (i = 0; i < bah->busarray$l_bus_node_cnt; i++) */

return (SS$ NORMAL);

}

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

connect_the_driver -- loads the driver and connects the unit

This routine loads the device driver specified by the configuration
table entry, based on information in the ADP and the bus array
entry.

Note that if the device is on an EISA bus, the IRQ is nowhere to be

found in the ADP or bus array entry. Unfortunately, this is needed to
load the driver. So, the code has to jump through a couple of extra
hoops to find this value, as described below.

Inputs:

handle -- the autoconfigure magic number
adp -- pointer to the ADP
mct_index -- index into the multimedia configuration table

ba -- pointer to the bus array entry for the device

Outputs:

none

Side Effects:

A device driver is loaded, and the required portions of the I/0
database are created. The driver’s controller and unit

initialization routines are executed.

Status Returns:

i i a i, a i 2 none.
a

oa
static void connect_the driver(int handle, ADP *adp, int mct_index, BUSARRAYENTRY *ba)

{ ;
int status, temp_vector;
char *device_name_pointer;
short int iosb[4];
ITEMLIST itemlist[6]; /* for LOAD DRIVER */

int arglist[4]; /* for CMKRNL calls */

GREE cr:
HWRPB *hwrpb;

struct dsc$descriptor driver_name_desc;
struct dsc$descriptor device_name_desc;

char device_name [4];

743

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

/*

* Set up the driver name descriptor.

)
driver_name_desc.dsc$w_length = strlen(config_table[mct_index] .driver_name) ;

driver_name_desc.dsc$b_dtype = DSC$K_DTYPE_T;
driver_name_desc.dsc$b_class = DSC$K_CLASS_S;

driver_name_desc.dsc$a_pointer = config_table[mct_index] .driver_name;

/*

* Construct the device name. The first two letters are the device
* name from the configuration table, the next is the controller
* letter, which come from either the bus array entry or from an
* JOGEN routine, followed by an ASCII "0".

* First fill in the device name descriptor.

sf
device_name_desc.dsc$w_length = 4;
device_name_desc.dsc$b_dtype = DSCSK_DTYPE_T;
device _name_desc.dsc$b_ class = DSCSK_CLASS_S;
device_name_desc.dsc$a_pointer = &device_name[0];

/*

* Now, construct the device name proper, leaving out the
* controller letter.

|
device_name_pointer = config_table[mct_index] .device_name;

device_name[0] = device_name_pointer[0];

device_name[1] = device_name_pointer[1];
device_name[3] = ‘0’;

/*

* If the system has assigned a controller letter already, use it.
* Otherwise, ask IOGEN to assign one. iogen$assign_controller returns
* the assigned controller letter in busarray$b_ctrlltr.

%y
if (ba->busarray$b_ctrlltr == 0)

{
status = logen$assign_controller (handle, device_name, ba);
if (!S$VMS_STATUS_SUCCESS (status))

{
device_name[2] = '?';
logen$log(handle, status, &device_name_desc, &driver_name_desc);
return;

}
}

device_name[2] = ba->busarray$b_ctrlltr;

744

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

Check whether the device is being implicitly or explicitly excluded.
AUTOCONFIGURE will return either SS$_NORMAL, to indicate the device
should be configured; or IOGENS EXCLUDE, which means the device
is implicitly or explicitly excluded. In the latter case, simply

* return.

Pt, 2 a

+]
status = iogen$ac_select (handle, &device_name_desc) ;

if (status == (int) &IOGENS EXCLUDE) return;

/*

* Check to see this device is already configured. If so, don’t
* do it again -- multiple connects aren’t allowed. If the no_reconnect

* bit in the bus array entry flags is set, the device has already been
* comnected.

af
if (ba->busarray$v_no_reconnect) return;

His

* Now fill in the item list for $load_driver, specifying the adapter,
* the CSR, the interrupt vector, the node number, and a pointer to

* receive the address of the created CRB. Like all standard VMS
* item lists, it is terminated by a zero.

if

/* The adapter */
itemlist(0].buffer_size = sizeof (adp->adp$l_tr);

itemlist[0].item_code = IOGENS_ADAPTER;
itemlist(0].buffer_address = &adp->adp$l_tr;
itemlist[0].return_length = 0;

/* The CSR address */
itemlist[1].buffer_size = sizeof (ba->busarray$q_csr) ;
itemlist[1].item_code = IOGEN$_CSR;
itemlist[1].buffer_address = &ba->busarray$q_csr;
itemlist[1].return_length = 0;

/*

* The interrupt vector. This is located in a different place for

* each bus, and is especially complicated for EISA.

“i
itemlist[2].buffer_size = sizeof (ba->busarray$l_bus_specific_l);

itemlist[2].item_code = IOGEN$_VECTOR;
itemlist(2].return_length = 0;

745

Sample IOGEN Configuration Building Module (iCBM)

C.1 ICBM Example

switch (adp->adp$l_adptype)

{
case ATS PCI:

/*

* If this is the PCI device, the interrupt vector comes

* from the low longword of the bus_specific field of the

* bus array entry.

Me
itemlist[2].buffer_address = &ba->busarray$l_bus_specific_l;

break;

case ATS_TC:
/*

* If it’s Turbochannel, the vector comes from the

* autoconfig cell.

x/
itemlist[2].buffer_address = &ba->busarray$l_autoconfig;

break;

case ATS_ISA:
/*

* If this is ISA,-the vector is the bus_specific_l

* cell times 4.

cf
temp_vector = ba->busarray$l_bus_specific_l * 4;
itemlist[2].buffer_address = &temp_vector;

break;

case ATS EISA:
/*

* If this is EISA, ask the system for the IRQ, via a call
to IOCSNODE_DATA, which has to be called in kernel mode.
This routine requires a CRB, which, unfortunately, isn’t
allocated ‘til after the SYSSLOAD DRIVER call. So,
allocate a private, local CRB, and fill in the values
needed by IOC$NODE_DATA, namely CRBSL_NODE (which comes
from BUSARRAY$L_NODE_NUMBER}, and the address of the ADP.

Don't worry about the rest of the local CRB contents, since
the code path thru IOC$NODE_DATA doesn't touch anything else.

When IOCS$NODE_DATA returns, multiply the IRQ times 4.
/ Se ete He FM 8 Ee oe oe

{
CRB local_crb;

VEC *vec;

local_crb.crb$l_node = ba->busarray$l_node_number;
vec = (VEC *) &local_crb.crb$l_intd;
vec->vec$ps_adp = adp;

746

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

angusesic ((0)]e= mor
arglist[1] = (int) &local_crb;

arglist[2] = IOCS$K_EISA_IROQ;

arglist[3] = (int) &temp_vector;
status = sys$cmkrnl (ioc$node_data, arglist);

/*

* On certain platforms, 7 must be added to the IRQ to
* account for a hardware oddity in the way interrupt
* lines are wired.

*}

#ifndef HWRPB_SYSTYPE$K_LYNX /* defined after V6.2 shipped */
#define HWRPB_SYSTYPESK_LYNX 24

#endif
hwrpb = (HWRPB *) exe$gpl_hwrpb_l;

switch (hwrpb->hwrpb$iq_systype)

{
case HWRPB_SYSTYPE$K_TURBOLASER: /* Alphaserver 8200/8400

case HWRPB_SYSTYPESK_SABLE: /* Alphaserver 2100
case HWRPB_SYSTYPESK_LYNX: /* Alphaserver 2100A

temp_vector += 7;
break;

default:

break;

}

temp_vector *= 4;
itemlist[2].buffer_address = &temp_vector;
break;

}

default:
[®

* Tf control gets to here, it’s an adapter type this
* routine doesn’t know how to handle. Simply return.

a
return;

break;
} /* switch (adp->adp$l_adptype) */

/* The node number */
itemlist[3].buffer_size = sizeof (ba->busarray$1]_node_number) ;

itemlist[3].item_code = IOGENS$_NODE;
itemlist[3].buffer_address = &ba->busarray$1l_node_number;

itemlist[3].return_length = 0;

/* A pointer to the CRB to be allocated */
itemlist[4].buffer_size = sizeof (crb);

itemlist[4].item_code = IOGENS$_CRB;
itemlist[4].buffer_address = &crb;
itemlist[4].return_length = 0;

si
na
ny!

747

Sample IOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

748

/* Terminate the list */

itemlist[5].buffer_size = 0;

itemlist[5].item_code = 0;
itemlist[5].buffer_address = 0;

itemlist[5].return_length = 0;

status = sys$load_driver (IOGEN$_CONNECT, &device_name_desc,

Lie

/*
*
*

*

&driver_name_desc, itemlist, iosb);

(SVMS_STATUS_SUCCESS(status)) status = (int) iosb[0];

Log errors here through IOGEN’s logging function. This
information is output when the /LOG qualifier is used on
the AUTOCONFIGURE command.

git
iogen$log(handle, status, &device_name_desc, &driver_name_desc) ;

/*

ce ee i a er eee a, 2, i J. SE

8G

sys$load_driver can return two errors which can be ignored:

SS$_DEVEXISTS and SS$_DEVOFFLINE. DEVEXISTS can never happen

if the no_reconnect bit is used. Logic above uses this bit to

prevent attempting to load the driver twice. DEVOFFLINE means
that for some reason, the device didn’t come on line by the
time sys$load_driver completed its work. This could be because
some units take a long time to come on line. Or it could be
because the driver detected some error during controller or
unit initialization -- the multimedia video and audio drivers
work this way. Either way, these are not errors as far as
the ICBM is concerned, so they are ignored.

On any other error, exit here without changing the state of the
no_reconnect bit.

/
((status == SS$_DEVEXISTS) || (status == SS$_DEVOFFLINE))
status = SS$_ NORMAL;
(!$VMS_STATUS_SUCCESS(status)) return;

Sample lIOGEN Configuration Building Module (ICBM)
C.1 ICBM Example

/*

* Now that the driver is loaded and the unit connected, save the

* address of the CRB in the bus array entry. Also, set the
* no_reconnect flag to indicate the unit cannot be re-connected.
* These operations must be done in kernel mode, because the memory
* containing the bus array entry is not writeable in exec mode.
*

* Normally, these two functions would be perfomed by a callback to
* IOGEN. However, the IOGEN shareable image does not export these
* functions. So, there is one little kernel-mode routine to do

* the work. Finally, note that the status from the sys$cmkrnl call
* is ignored. It's there as a debugging aid.
* /

Arg lise lO} 2%
argiast la (ante) ererb:

arglist(2)e=" nt) ba:
status = sys$Scmkrnl (write_crb_reconnect, arglist);

return;

}

/
write_crb reconnect -- write the CRB address and set the no_reconnect bit

This routine duplicates the actions of the kernel mode IOGEN routines
IOGENSWRITE_IOGEN_CRB and IOGENSSET_NORECONNECT, which are not exported

by the IOGEN shareable image. The address of the specified CRB is written
into busarray$ps_crb, and the no_reconnect bit is set.

This routine must be called in kernel mode, because the memory containing
the bus array entry is not writeable in exec mode.

Inputs:

crb -- address of the CRB to write into the bus array entry
ba -- pointer to the bus array entry

Outputs: |

none

Side Effects:

none

Completion Codes:

3G OE 3 8 OF EE OE Oe 8 OE a OE Oe OE 8 Oe Oe OR 8b a ie 6 ab) oe

SS$_NORMAL

oy
static int write_crb_reconnect (CRB *crb, BUSARRAYENTRY *ba)

{

749

Sample IOGEN Configuration Building Module (iCBM)

C.1 ICBM Example

ba->busarray$ps_crb = crb;
ba->busarray$v_no_reconnect = 1;

return SS$_NORMAL;

}

C.2 ICBM Example Command Procedure

This section contains the SYS$ICBM_EXAMPLE.COM command procedure,

which compiles and links the example ICBM SYS$ICBM_EXAMPLE.C.

$ SET NOON
$ SAVED_VFY = F$VERIFY("NO", "NO")
$ ON CONTROL_Y THEN GOTO QUIT

$ SET VERIFY= (PROCEDURE, NOIMAGE)

SYS$ICBM_EXAMPLE.COM

This procedure builds the example ICBM SYSSICBM_EXAMPLE.C, creating the
image SYSSICBM_EXAMPLE. EXE.

This procedure assumes that the source file is in the SRC$ directory,
the object and executable file will be put into the OBJ$ directory, and
that listings and link maps will be put into the LIS$ directory. If
these logical names are not defined, this procedure defines them to be
the local directory.

This procedure assumes the DEC C compiler is installed, and is the
default compiler run with the "CC" DCL command. The example ICBM is
written in C, and requires the DEC C compiler.

Usage:

@SYSSICBM_EXAMPLE [DEBUG]

Pl If specified as DEBUG then the ICBM is built with the
debugger. Note that since the ICBM code runs in EXEC
mode, the DELTA debugger must be used. To use this

debugger, first define the logical name LIBSDEBUG to

DEBUG_CC_OPT = ""

1S) ASH airs
THEN

IF Pl .NES. "DEBUG" THEN EXIT %X14

DEBUG_CC_OPT = "/DEBUG/NOOPTIMIZE"

DEENA ALAN NN HMNNNONNMNNAMNNNYNHNNONMNNNANYNNUNNWUYN WY

ENDIF
|

$ IF FSTRNLNM("SRC$") .EQS. "" THEN DEFINE/NOLOG SRC§ ' FSENVIRONMENT ("DEFAULT") ‘
$ IF FSTRNLNM("LIS$") .EQS. "" THEN DEFINE/NOLOG LIS$ ' FSENVIRONMENT ("DEFAULT") ’
$ IF FSTRNLNM("OBJ$") .EQS. "" THEN DEFINE/NOLOG OBJ$ ' FSENVIRONMENT ("DEFAULT")

750

Sample lIOGEN Configuration Building Module (ICBM)
C.2 ICBM Example Command Procedure

$ IF FSTRNLNM("EXE$") .EQS. "" THEN DEFINE/NOLOG EXE$ 'F$ENVIRONMENT ("DEFAULT") '
$ IF FSTRNLNM("MAP$") .EQS. "" THEN DEFINE/NOLOG MAPS 'FSENVIRONMENT ("DEFAULT") '
$!
$ SET VERIFY= (PROCEDURE, NOIMAGE)
$!
$! Compile the ICBM

|

$ CC 'DEBUG_CC_OPT’ /OBJECT=OBJ$: /LIST=LIS$: /MACHINE/ INSTRUCTION=NOFLOAT/EXTERN=STRICT-

/L_DOUBLE=64 /STANDARD=RELAXED /show=include -
SRC$:SYSSICBM_EXAMPLE.C + SYSSLIBRARY:SYSSLIB_C.TLB/LIBRARY

$! Link the ICBM

$ LINK /ALPHA/USERLIB=PROC/NATIVE_ONLY/BPAGE/SECTION/REPLACE/VMS_EXEC -

/NODEMAND_ZERO/SYSEXE/NOSYSSHR/NOTRACEBACK -

/MAP=MAP$:SYSSICBM_EXAMPLE.MAP/FULL/CROSS -

/SHARE=EXE$: SYSSICBM_EXAMPLE.EXE -

SYSSINPUT: /OPTIONS

OBJ$:SYSSICBM_EXAMPLE. OBJ, -

sys$library:starlet.olb/include=(iogen$ichm_control) , -

sysS$share: logen$share/share

$!
SQUIT:

$ EXIT SSTATUS

751

~

wel

nt ne See apeet eee: CSD BACT Aree ee? ami
ha Caagge iene: yraen’ FIG COON aut ea aye? é

5 |

ne

|

erg vn

(7

oe

iM)

70
ae

®

ihe?

‘

=

ic BA;

a” T 72. ey

{ cwonghe ? soni raed Prosecarts

reiriry ape wt Tao
yen)

raiser: Pultiolars

Mout):

Li ina a & is ne

Pe Sawa,
Sa

iae 7 e tb -4} oe mi"

feinbins leg iy satiate’ Aare trg a

*

“as POM AS TAN ETP \SCA TS | CF thai nF

}

aus
4

é

Ps ©

i

=

o

>

1

- ADA TOM rea ee

thet tu « eo triegn 2) sete fet shen, Selmaeae ta aw
shed ehd/ocuree Oh! otaks Hisiuepo) erage

ae: TA Lee at. 2 seigare
° 1? STTeE_ Se

ohe @ ‘
oot} ey

at >

» 6 4& Ge “an

at et thee le rey.
j - i Ss wy &<? iM Vee @

. Lie po Var attnie wane . “hgh

_

ae Cn Se
E ee Tata aa nade Inthe

Lae | b meri Tie nese ie rm ew
a —J - 7 a

: ee

7

at

= ® |@ mii? ig — af

| oped <ew 1CEY cote. vane bm Ee
Ce » ued .Ty Gee thee

t ’ Swe a) ie be 2 ye :

ind

ae “> § :

7 vat wi eS 4

"? Wel (a> ae wee:

“ ob Ape

A
ACB (AST control block), 408, 409, 413

contents, 419

ACB$V_QUOTA, 421
ACP_STD$ACCESS routine, 396
ACP_STD$ACCESSNET routine, 398
ACP_STD$DEACCESS routine, 400
ACP_STD$MODIFY routine, 401
ACP_STD$MOUNT routine, 403
ACP_STD$READBLK routine, 404, 405
ACP_STD$WRITEBLK routine, 406
ADP (adapter control block), 11, 266, 275

child, 267
parent, 266

ADP list, 266
AlphaStation series computers

system board resources, 241
Alternate start I/O routine, 466

address, 110

Alternate start-I/O routines, 356

AST (asynchronous system trap), 419, 423
delivering, 26, 408, 409, 462

for aborted I/O request, 462
process-requested, 421

queuing, 26
special kernel-mode, 26, 27, 74

Attention AST
delivering, 408, 409

disabling, 419
enabling, 419
flushing, 413

Index

AUTOCONFIGURE command
in System Management utility (SYSMAN),

129

B
Buffer

allocating, 19, 72, 73, 463

data area, 73

deallocating, 74, 412
format, 73

header area, 73, 74

locking, 19, 116, 484, 489, 506, 514, 527,
535, 641

moving data to from system to user, 614
moving data to from user to system, 612

size, 72

storing address of, 72
testing accessibility of, 71, 484, 489, 506,

§ 1i51465277532) 535

unlocking, 642

Buffered function mask, 112

Buffered I/O, 19

FDT routines for, 71, 74

functions, 112

postprocessing, 74

reasons for using, 19, 116

Bus array entry, 274, 275

BUSARRAY, 273, 275

Busy bit

See ucb$v_bsy
BYTCNT (byte count) quota, 34

debiting, 464

Index—1

BYTLM (byte limit) quota, 34

debiting, 464

Cc
C Driver Macros, 649

Cancel I/O bit
See ucb$v_cancel

Cancel I/O routine

address, 110

flushing ASTs in, 413

Cancel selective routines, 360

Cancel-I/O routine, 16

Cancel-I/O routines, 358

CCB (channel control block), 11, 275, 277

Channel, 11

Channel assign routines, 361
Channel index number, 593

Channel wait queue

See Device controller data channel wait

queue
Cloned UCB routine

address, 110

Cloned UCB routines, 362

Common interrupt dispatcher

use of memory barriers, 38

Compiling
device drivers, 121

COM_STD$DELATTNAST routine, 408
COM_STD$DELATTNASTP routine, 409
COM_STD$DELCTRLAST routine, 410
COM_STD$DELCTRLASTP routine, 411
COM_STD$DRVDEALMEM routine, 412
COM_STD$FLUSHATTNS, 421

COM_STD$FLUSHATTNS routine, 413
COM_STD$FLUSHCTRLS routine, 415
COM_STD$POST routine, 417

COM_STD$POST_NOCNT routine, 417
COM_STD$SETATTNAST routine, 419

COM_STD$SETCTRLAST routine, 423
CONNECT command

in System Management utility (SYSMAN),
131

Index—2

Control AST

disabling, 423
enabling, 423

Controller initialization routine, 14

address, 110

allocating controller data channel in, 81

Controller initialization routines, 365

Controlling executive image slicing, 140
Counted resource

defined, 53, 549

Counted resource items

allocating, 53, 55, 58, 59

deallocating, 59
CRAB (counted resource allocation block),

53

CRAM (controller register access mailbox),
277, 282

allocating, 48, 50

initializing, 50, 51

using, 52
CRB (channel request block), 10, 283, 286

synchronizing access to, 37

CRCTX (counted resource context block), 53

allocating, 54

deallocating, 59

initializing, 55
CSR (control and status register)

address, 81

defined, 43

loading, 83

CSR Mapping routine, 367

D
Data structure

initializing, 108
Data transfer

overlapping with seek operation, 81
zero byte count, 486, 508, 529

DDB (device data block), 10, 287, 289

DDT (driver dispatch table), 9, 289, 294
creating, 110

Delta/XDelta Debugger (DELTA/XDELTA),
165

Device

disk, 523, 630

tape, 630

Device activation bit mask, 82

Device affinity, 607
Device characteristics, 66

retrieving, 519

setting, 521
Device controller, 10

multiunit, 81, 84

single unit, 90
synchronizing access to, 37

Device controller data channel

obtaining ownership of, 81
releasing, 84, 89, 90, 627

requesting, 81

unavailability, 81

Device controller data channel wait queue,
628

Device Data Structure Initialization routine,

370

Device database, 28, 37

Device driver

asynchronous nature, 13
configuring, 136
context, 17

definition, 3

entry points, 9, 110

example, 685

flow, 19, 21

functions, 3

loading, 107
showing information, 136
suspending, 83

synchronization methods used by, 13, 23

Device I/O Database Structure Re-
initialization routine, 371

Device interrupt, 10, 28, 84

disabling, 92
expected, 85

unsolicited, 87

waiting for, 83

Device IPL, 28, 84

Device lock, 28, 33, 37, 82

See also Spinlock
obtaining, 30

ownership, 37
rank, 37

releasing, 30

Device mode, 66

Device registers, 10, 18

accessing, 43, 52

modification by power failure, 83
synchronizing access to, 28, 37, 82

using hardware I/O mailbox to access, 48

Device timeout

See Timeout

Device timeout bit

See ucb$v_timout
Device unit, 10

activating, 82, 83

operations count, 630

Devices

configuring with ISA_CONFIG.DAT file,
230, 234

device_lock macro, 29, 30, 650

used by interrupt service routine, 85
device_unlock macro, 30

Diagnostic buffer, 608
filling, 601

specifying, 110

Direct I/O, 19

checking accessibility of process buffer for,
511, 532

FDT routines for, 66, 70

locking a process buffer for, 484, 489,
506, 514, 527, 535

reasons for using, 19, 116

unlocking process buffer, 642

Disk driver, 65, 81, 84, 87, 479

DMA (direct memory I/O) transfer, 53, 59
DMA transfer, 18

flow, 19, 21

for read operation, 506, 514
for read/write operation, 484

for write operation, 489, 527, 535

start-I/O routine, 75

Index—3

DMA transfer (cont'd)

using direct /O in, 117
DPT (driver prologue table), 9, 28, 295, 301

creating, 107

DPT$V_SVP, 613, 615
dpt_store_isr macro, 117

dpt_store_isr_vec, 117

Driver entry points, 354
Driver Table Initialization routine, 373

dsbint macro, 29, 30, 83, 84

Dynamic spinlock, 33

E
EISA bus

configuring devices

using SYSMAN, 255
EMB spinlock, 35

enbint macro, 29, 30

ERL$RELEASEMB, 91
ERL_STD$ALLOCEMB routine, 426

ERL_STD$DEVICEATTN routine, 427

ERL_STD$DEVICERR routine, 427
ERL_STD$DEVICTMO routine, 427

ERL_STD$RELEASEMB routine, 430

Error

servicing within driver, 16, 83

Error logging, 427
Error message buffer, 35, 91

releasing, 91, 630

specifying size, 110

Error-logging
final error count, 91

Error-logging enable bit

See ucb$v_erlogip
Error-logging routine, 16

Event flag

handling for aborted I/O request, 462
EXE$BUS_DELAY, 431
EXE$CREDIT_BYTCNT, 74
EXE$DELAY, 433
EXE$FORKDSPTH, 28
EXE$GQ_1ST_TIME, 34, 35

Index—4

EXE$GQ SYSTIME, 35
EXE$ILLIOFUNC, 473
EXE$ILLIOFUNC routine, 112

EXE$KP_ALLOCATE_KPB, 99, 100, 434

EXE$KP_DEALLOCATE_KPB, 99, 437
EXE$KP_END, 99, 439

EXE$KP_FORK, 99, 441
EXE$KP_FORK WAIT, 99, 443
EXE$KP_RESTART, 99, 445
EXE$KP_STALL_GENERAL, 99, 447
EXE$KP_START, 99, 100, 451
EXE$KP_STARTIO, 454

EXE$READCHK, 71

EXE$TIMEDWAIT_COMPLETE, 456
EXE$TIMEDWAIT_SETUP, 458
EXE$TIMEDWAIT_SETUP_10US, 458
EXE$WRITECHK, 71
EXE$WRTMAILBOX routine, 540
Executive image slicing

controlling, 140
EXE _STD$ABORTIO, 523
EXE_STD$ABORTIO routine, 112
EXE_STD$ABORTIO system routine, 460

EXE_STD$ALLOCBUF, 72

EXE_STD$ALLOCBUF routine, 463

EXE_STD$ALLOCIRP routine, 463
EXE_STD$ALTQUEPKT routine, 466
EXE_STD$CARRIAGE routine, 468
EXE_STD$CHKCREACCES routine, 469
EXE_STD$CHKDELACCES routine, 469
EXE_STD$CHKEXEACCES routine, 469

EXE_STD$CHKLOGACCES routine, 469
EXE_STD$CHKPHYACCES routine, 469
EXE_STD$CHKRDACCES routine, 469
EXE_STD$CHKWRTACCES routine, 469
EXE_STD$DEBIT_BYTCNT_ALO, 72

EXE_STD$DEBIT_ BYTCNT_BYTLM, 72

EXE_STD$DEBIT_BYTCNT_BYTLM_ALO,
xg

EXE_STD$FINISHIO, 66, 481, 482
EXE_STD$FINISHIO routine, 471, 524

EXE_STD$INSERT_IRP routine, 474
EXE_STD$INSIOQ, 80, 503

EXE_STD$INSIOQ routine, 475
EXE_STD$INSIOQC routine, 475
EXE_STD$IORSNWAIT routine, 477
EXE_STD$KP_STARTIO, 99, 100, 102
EXE_STD$LCLDSKVALID, 65
EXE_STD$LCLDSKVALID routine, 479
EXE_STD$MNTVERSIO routine, 483

EXE_STD$MODIFY, 66
EXE_STD$MODIFY routine, 484
EXE_STD$MODIFYLOCK, 642
EXE_STD$MODIFYLOCK routine, 489
EXE_STD$MOUNT_VER routine, 494
EXE_STD$ONEPARM, 66
EXE_STD$ONEPARM routine, 495
EXE_STD$PRIMITIVE_FORK, 86
EXE_STD$PRIMITIVE_FORK routine, 89,

497

EXE_STD$PRIMITIVE_FORK_WAIT
routine, 499

EXE_STD$QIOACPPKT routine, 501

EXE_STD$QIODRVPKT, 66, 67, 80, 481,
486, 496, 508, 543

EXE_STD$QIODRVPKT routine, 502, 524,
529

EXE_STD$QUEUE_FORK routine, 504
EXE_STD$QXQPPKT routine, 505
EXE_STD$READ, 66
EXE _STD$READ routine, 506

EXE_STD$READCHK routine, 511
EXE_STD$READLOCK, 642
EXE_STD$READLOCK routine, 514
EXE _STD$SENSEMODE, 66

EXE_STD$SENSEMODE routine, 519
EXE_STD$SETCHAR, 66
EXE_STD$SETCHAR routine, 521
EXE_STD$SETMODE, 66
EXE_STD$SETMODE routine, 521
EXE STD$SNDEVMSG routine, 525
EXE_STD$WRITE, 66

EXE_STD$WRITE routine, 527
EXE_STD$WRITECHK routine, 532
EXE_STD$WRITELOCK, 642
EXE_STD$WRITELOCK routine, 535

EXE_STD$WRTMAILBOX routine, 526
EXE_STD$ZEROPARM, 67, 542

Expected interrupt

See Device interrupt

F

FDT (function decision table), 9

creating, 112

FDT action routine vector, 112

FDT completion routine, 63
FDT completion routines, 67, 70

FDT error handling callback routines, 376
FDT processing

calling sequence, 64, 65

FDT routine, 9, 19

adjusting process quotas in, 464
allocating system buffer in, 72, 73

completing an I/O operation in, 471

context, 62

creating, 61, 74

for buffered I/O, 71, 74

for direct I/O, 66, 70, 484, 506, 527

for disk I/O, 479

register usage, 62

setting attention ASTs in, 419
setting control ASTs in, 423

system-provided, 65, 74

unlocking process buffers in, 642
upper-level, 63, 64, 65

FDT routines, 374

upper-level action, 15

FDT support routine, 63

File system
synchronizing access to, 34

FILSYS spinlock, 34

Fork block, 10, 18, 89

dequeuing, 28

Fork context, 18

Fork database, 28

Fork dispatcher, 25, 28

Fork IPL, 24, 28, 37

Fork lock, 28, 33, 37

See also Spinlock
obtained by fork dispatcher, 28

Index—5

Fork lock (contd)

obtaining, 30
rank, 34, 35

releasing, 30
Fork lock index, 34, 35

fork macro, 32

Fork process, 17, 80

context, 77

creation by driver, 89
creation by IOC_STD$INITIATE, 80, 91,

606

suspending, 83

Forking, 37
from interrupt service routine, 87

fork_lock macro, 29, 30

fork_unlock macro, 30

Full duplex device driver, 68

V/O completion for, 417

H
Hardware control status registers

defined, 43

Hardware I/O mailboxes

commands, 50, 51

defined, 44

using, 52

HWCLK spinlock, 35

YO adapter, 11

VO database, 8, 11, 136, 263

creation, 107

YO function

analyzing, 75
indicating a buffered, 112
indicating as legal to a device, 112
legal, 112

I/O function code

converting to device-specific function code,
82

defining device-specific, 116

system-defined, 114, 116

Index-—6

I/O postprocessing, 27, 88, 91
device-dependent, 74, 89, 91

device-independent, 74
for aborted I/O request, 461
for buffered /O, 74

for full duplex device driver, 417

for I/O request involving no device
activity, 471

synchronization flow, 26
I/O postprocessing queue, 91, 417, 630

I/O preprocessing
device-dependent, 61, 74

IPL requirements, 26

V/O request
aborting, 460

canceling, 592

completing, 629, 638

restarting after power failure, 83

returning completion status of to process,

89, 90
synchronizing simultaneous processing of

multiple, 68

with no parameters, 67, 542
with one parameter, 66, 495

V/O requests
queuing, 61

ICBM
example, 731

IDB (nterrupt dispatch block), 10, 301, 304

idb$l_owner, 81, 85

Interface registers
defined, 43

Interprocessor interrupt, 26, 35
Interrupt, 25

dismissing, 88

interprocessor, 26, 35

requesting a software, 31
Interrupt context, 17

Interrupt dispatcher, 28

use of memory barriers, 38
Interrupt enable bit, 82

Interrupt expected bit

See ucb$v_int

Interrupt Request Line

See IRQ
Interrupt service routine, 16, 25, 35, 84

for solicited interrupt, 85
for unsolicited interrupt, 87
functions, 84

preemption of device timeout handling,
92

synchronization requirements, 28, 85
Interrupt service routines, 378
Interval clock, 35

role in device timeouts, 16

INVALIDATE spinlock, 35
IO$_AVAILABLE function, 65

servicing, 481

I0$_PACKACK function, 65
servicing, 481

I0$_SENSECHAR function

servicing, 519
I0$_SENSEMODE function

servicing, 519
I0$_SETCHAR function

servicing, 521
I0$ SETMODE function

servicing, 521

IO$_UNLOAD function, 65

servicing, 481
IOC$ALLOCATE_CRAM, 48, 49, 50, 552
IOC$ALLOC_CNT_RES, 55, 58, 544
IOC$ALLOC_CRAB, 548
IOC$ALLOC_CRCTX, 54, 550
IOC$CANCEL_CNT_RES, 56, 547, 554
IOC$CRAM_CMD, 48, 50, 51, 556
IOC$CRAM_IO, 48, 52, 559
IOC$¢CRAM_QUEUE, 561
IOC$CRAM_WAIT, 563
IOC$DEALLOCATE_CRAM, 48, 569
IOC$DEALLOC_CNT_RES, 59, 565
IOC$DEALLOC_CRAB, 567
IOC$DEALLOC_CRCTX, 59, 568
IOC$IOPOST, 27
IOC$KP_REQCHAN, 99, 571
IOC$KP_WFIKPCH, 99, 574

IOC$KP_WFIRLCH, 99, 574
IOC$LOAD_MAP, 58, 577
IOC$MAP_IO, 579
IOC$NODE_DATA routine

on EISA, 253

on ISA, 237

on PCI, 213

IOC$NODE_FUNCTION, 582
IOC$NODE_FUNCTION routine

on ISA, 237

IOC_STD$ALTREQCOM routine, 590
IOC_STD$BROADCAST routine, 591
IOC_STD$CANCELIO routine, 592
IOC_STD$CLONE_UCB routine, 594

IOC_STD$COPY_UCB routine, 595
IOC_STD$CREDIT_UCB routine, 596
IOC_STD$CVTLOGPHY routine, 599
IOC_STD$CVT_DEVNAM routine, 597
IOC_STD$DELETE_UCB routine, 600
IOC_STD$DIAGBUFILL routine, 601
IOC_STD$FILSPT routine, 603
IOC_STD$GETBYTE routine, 604
IOC_STD$INITBUFWIND routine, 605
IOC_STD$INITIATE, 80, 91
IOC_STD$INITIATE routine, 606

IOC_STD$IOPOST
unlocking process buffers, 642

IOC_STD$LINK_UCB routine, 609
IOC_STD$MAPVBLK routine, 610
IOC_STD$MNTVER routine, 611

IOC_STD$MOVFRUSER routine, 612

IOC_STD$MOVFRUSER2 routine, 612
IOC_STD$MOVTOUSER routine, 614

IOC_STD$MOVTOUSER2 routine, 614
IOC_STD$PARSDEVNAM routine, 616

IOC_STD$POST_IRP routine, 618

IOC_STD$PRIMITIVE_REQCHANH, 81
IOC_STD$PRIMITIVE_REQCHANH routine,

621

IOC_STD$PRIMITIVE_ REQCHANL, 81
IOC_STD$PRIMITIVE_REQCHANL routine,

621

Index—7

IOC_STD$PRIMITIVE_WFIKPCH routine,

624

IOC_STD$PRIMITIVE_WFIRLCH routine,

624

IOC_STD$PTETOPFN routine, 619
IOC_STD$QNXTSEGI1 routine, 620

IOC_STD$RELCHAN, 90
IOC_STD$RELCHAN routine, 627
IOC_STD$REQCOM, 27, 80, 90, 91, 464
IOC_STD$REQCOM routine, 629

IOC_STD$SEARCHDEYV routine, 632
IOC_STD$SEARCHINT routine, 634

IOC_STD$SENSEDISK routine, 636
IOC_STD$SEVER_UCB routine, 637

IO0C_STD$SIMREQCOM routine, 638
IOC_STD$THREADCRB routine, 640
iodef.h header file, 114

iofork macro, 32, 89

IOFORK macro, 86

IOGEN$AC_SELECT routine, 149
IOGEN$ASSIGN_CONTROLLER routine,

150

IOGEN$AUTOCONFIGURE routine, 152
IOGEN$GET_PREFIX routine, 154
IOGEN$LOG routine, 155

IOLOCK10 fork lock, 34

IOLOCK11 fork lock, 35

IOLOCKS8 fork lock, 34
IOLOCK9 fork lock, 34
IOSB (J/O status block), 89, 630

IPL (Gnterrupt priority level), 13, 23, 32
hardware, 23

lowering, 29, 32

raising, 29, 32, 36

relation to spinlock, 36
saving, 31

software, 24

IPL$_ASTDEL, 24, 26, 478, 501, 503, 505

IPL$_FILSYS, 34
IPL$_IOLOCK8, 34
IPL$_IOPOST, 24, 27, 91, 418, 461, 472,

630

IPL$_JIB, 34

Index-—8

IPL$ MAILBOX, 24, 29, 35, 526, 540

IPL$_MMG, 34
IPL$_POOL, 24
IPL$_POWER, 29, 83, 84

IPL$_QUEUEAST, 24, 34
IPL$_RESCHED, 24, 27

IPL$_SCHED, 34
IPL$ SYNCH, 24, 27
IPL$_TIMER, 34

IPL$_TIMERFORK, 24
IRP (I/O request packet), 11, 305, 312

copying to UCB, 75
insertion in pending-I/O queue, 80, 474,

475

removal from pending I/O queue, 91

unlocking buffers specified in, 642

IRP$B_CARCON, 486, 508, 529
irp$l_bent, 77

writing, 71

IRP$L_BCNT, 607
irp$l_boff, 72, 74

IRP$L_BOFF, 607

IRP$L_CHAN, 593
IRP$L_DIAGBUF, 608
irp$l_media, 90

IRP$L_MEDIA, 496, 524, 543
IRP$L_PID, 593
irp$l_sts

for read function, 71

irp$l_svapte, 77

for buffered I/O, 72, 74

IRP$L_SVAPTE, 607
IRP$V_DIAGBUF, 608
irp$v_func, 71, 74

IRP$V_FUNC, 508
irp$w_boff, 77
IRP$W_FUNC, 82
IRP$W_STS

for read function, 74

for write function, 74

IRPE (I/O request packet extension), 312,
313

deallocation, 642

unlocking buffers specified in, 642

IRQ
determining availability, 239
entering assignments, 229

ISA bus, 227 to 246
adding a device, 228
configuration strategy, 228

configuring devices

using ISA_CONFIG.DAT file, 230
using SYSMAN, 234

determining IRQ availability, 239
entering IRQ assignments, 229
troubleshooting, 240

using device driver routines, 237
ISA_CONFIG.DAT file

sample, 242

using to configure devices, 230, 234

J
JIB (Gob information block), 34

JIB spinlock, 34

jib$l_bytent, 72, 74

JIB$L_BYTCNT, 34, 464

JIB$L_BYTLM, 34, 464

Job attached bit

See ucb$v_job
Job controller

sending a message to, 526, 540
Job quota

byte count, 34, 464

byte limit, 34, 464

K
Kernel process, 78, 95

creating, 99

exchanging data with its creator, 102
mixing with simple fork process, 78

suspending, 101

synchronizing with its initiator, 103
terminating, 102

Kernel process private stack, 95, 97

Kernel stack, 77

KPB (kernel process block), 95, 97, 313, 324

L
Linking

device drivers, 121

Local disk UCB extension
required for EXE_STD$LCLDSKVALID

routine, 482

Local processor, 13

Logical I/O function

translation to physical function, 484, 506,
527

LRDRIVER, 685

Machine check, 35

Mailbox

sending a message to, 525, 540
synchronizing access to, 29, 35

MAILBOX spin lock, 526, 540

MAILBOX spinlock, 35

Mailboxes

See Hardware I/O mailboxes

Map registers

allocating, 53, 59

loading, 58
releasing, 89

MCHECK spinlock, 35

MEGA spinlock, 35
Memory barriers, 38

Memory management resources
synchronizing access to, 34

MMG spin lock, 642

MMG spinlock, 34
MMG_STD$IOLOCK routine, 641

MMG_STD$UNLOCK routine, 642

Modify function
FDT routine for, 66

Mount verification routine

address, 110

Mount verification routines, 380

Index—9

MT _STD$CHECK_ACCESS routine, 643

Mutex
locking, 645, 646

unlocking, 647

N
Nonpaged pool

allocating, 463
deallocating, 412

lookaside list, 464

synchronizing access to, 35

O
OPCOM process

sending a message to, 526, 540

ORB (object rights block), 324, 325

P

Page fault

taken within driver code, 26

PCB (process control block), 26, 27

synchronizing access to, 34

peb$l_jib, 72
PCB$L_PID, 593
PCI bus

configuring devices

using SYSMAN, 220
Pending-I/O queue, 80, 474, 475, 502, 630

bypassing, 466
PERFMON spinlock, 35

PIO transfer, 18

using buffered I/O in, 117

PMI (processor-memory interconnect), 266
POOL spinlock, 35

Postprocessing

See I/O postprocessing

Power bit

See ucb$v_power
Power failure

blocking, 29

determining the occurrence of, 83

Index—10

Power failure recovery procedure
device timeout forced by, 92

Process context, 17, 62

Process quota
byte count, 74

Q
$QIO (Queue I/O Request system service)

parameters, 61, 62

QUEUEAST spin lock, 421
QUEUEAST spinlock, 34

R
Rank

of spinlock, 36
Read function

FDT routine for, 66

Read operation
ordering with other I/O operations, 38

Read/write ordering

enforcing, 38

Register dumping routine
address, 110

Register dumping routines, 381

Register-dumping routine, 16

Registers

See Device registers

Resource wait mode, 464

S
savip| macro, 31
SCH$QAST, 26
SCHED spinlock, 26, 34

Scheduler

blocking activity of, 27

SCH_STD$IOLOCKW routine, 646
SCH_STD$IOUNLOCK routine, 647
Seek operation, 84

overlapping with data transfer, 81

Sense device characteristics function, 66

Sense device mode function, 66

Set device characteristics function, 66

Set device mode function, 66

SET PREFIX command
in System Management utility (SYSMAN),

135

setip] macro, 29, 30

SHOW DEVICE command

in System Management utility (SYSMAN),
136

SHOW PREFIX command

in System Management utility (SYSMAN),
138

Simple fork process
mixing with kernel process, 78

SMP$AR_SPNLKVEC, 33
softint macro, 31

Software timer interrupt service routine, 91

Solicited interrupt

See Device interrupt
Spin locks

use of memory barriers, 38

Spin wait, 36

Spinlock, 13, 25, 33, 37

See also Device lock, Fork lock, SPL,

Spinlock index, Spin wait
acquisition IPL, 31, 36

dynamic, 33

multiple acquisition of, 36
obtaining, 30

ownership, 36

Tanks Oo, GDs 00) a,

releasing, 30 —

static, 33

system, 33

Spinlock index, 33, 35

Spinlock IPL vector

See SMP$AR_SPNLKVEC
SS$_ACCVIO, 523
SS$_ILLIOFUNC, 523

Stack
device driver use of, 77

Stalling a driver, 78
Start I/O routine

activating, 475

address, 110

checking for zero length buffer, 486, 508,
529

transferring control to, 502, 606

Start-I/O routine, 15

context, 77

kernel process, 110

synchronization requirements, 29, 82
transferring control to, 80, 91

writing, 75
Start-I/O routines

kernel process, 386

Simple Fork, CALL Environment, 383

Static spinlock, 33
Suspending a driver, 78
Synchronization techniques, 13, 23

SYS$ASSIGN, 11
SYS$CANCEL, 16
SYS$LOAD_DRIVERroutine, 156
SYSMAN

commands
IO

AUTOCONFIGURE, 129
CONNECT, 131
SET PREFIX, 135
SHOW DEVICE, 136
SHOW PREFIX, 138

I/O configuration support, 127

System board resources

for AlphaStation series computers, 241

System context, 17

System Management utility (SYSMAN)

See SYSMAN
System page-table entry

allocating permanent, 613, 615

System parameters

displaying

V/O subsystems, 136

System spinlock, 33
System time, 35

Index—11

sys_lock macro, 29, 30 ucb$l_irp, 90

sys_unlock macro, 30 UCB$L_IRP, 607
ucb$l_sts, 83

T ucb$l_svapte, 77
a PEE Oe ce) Ee ee ee ee eee UCB$L_SVAPTE, 607, 613, 615
Timeout ucb$q_fr3, 89

caused by power failure recovery ucb$q_fr4, 89

procedure, 92 ucb$v_bsy, 91

disabling, 89 UCB$V_BSY, 68, 593
Timeout enable bit UCB$V_CANCEL, 593, 607

See ucb$v_tim ucb$v_erlogip, 91
Timeout handling code UCB$V_ERLOGIP, 630

kernel process, 388 ucb$v_int, 85, 92
Timeout handling routine, 16, 86, 91 ucb$v_power, 83, 92

address, 88 ucb$v_tim, 89, 92

context, 92 ucb$v_timout, 92
functions, 92 UCB$V_TIMOUT, 607

Timeout interval ucb$w_bent, 77

specifying, 91 ucb$w_boff, 77
Timer queue, 35 UCB$W_BUFQUO
TIMER spinlock, 34 in mailbox UCB, 541

UCB$W_DEVBUFSIZ, 523
U in mailbox UCB, 541

eee UCBLQ _DEVDEPEND, 523
UCB (unit control block), 10, 27, 326, 353 UCB_DEVSTS, 91

error log extension, 342, 343 Unit delivery routines, 390
local disk extension, 343, 344, 482 Unit initialization routine, 14
local tape extension, 343 address, 110

synchronizing access to, 28, 37 allocating controller data channel in, 81,
terminal extension, 344, 345, 353 90

UCB$B_DEVCLASS, 523 Unit initialization routines, 392
UCB$B_DEVTYPE, 523

UCB$B_DIPL, 28, 92

ucb$b_ertent, 91

Unsolicited interrupt

See Device interrupt

Upper-level FDT action routine, 63, 64, 65
ucb$b_fick, 89 : ee aay UCB$B_FLCK, 28 Upper-level FDT action routines, 15

UCB$L_AFFINITY, 607
UCB$L_BCNT, 607 V
UCB$L_BOFF, 607

VEC (inte t t UCB$L_DEVDEPEND, 520 (interrupt transfer vector block), 286,
: 287

oe ne oe VLE (vector list extension), 353, 354
ucb$l_emb, 91 Be rae

ucb$l_ioqfl, 91 olume valid bi
See ucb$v_valid

Index—12

W
Wait for interrupt macro

See wfikpch macro, wfirlch macro

wfikpch macro, 82, 84

wfirlch macro, 82, 84

Write function

FDT routine for, 66

Write operation
ordering with other I/O operations, 38

Index—13

Was (t

umes Qa iast@= 9 Gp im

) coe!

dieiukog,

ia

han nl lets
en

ee Tek

aed

ue

>

ng!

a ot 2 o 34

win ..

—

esi

.
%~

Fy 9 @ as oped

wip fyire 71

ouey, Zz
of eee as, .
MA Beisel, GQ: 1°
whiiwrt, SA, wy
qidy_ jowe, 2 &

nee tied ae - og oe ua Be- " . 7
cmv Stade, .vat bal
we Pe) -_-_

~achew

ccm Mew!
i> merece Sta

isang wr fet tas.
iy tage |

UCRLS rps 1.
neye, 61

{3S detirrery mala seu.
Lcd ‘eu Melati Gerd, *

wlifes th)

omniing womiietier Gage
~~

ln! Sent olet Ge) compen, 9
Seas s'onk WAn crepe .

Gin (lence «

‘\aeeie- AU aeten vali
(eertevd VW ition fad

VoS sBertep Ap date

Vi ame Oolig [28 4
ies Gomie weld

*

— =

es <i

a -

a _ Te

Fe
=

Writing |
OpenVMS Alpha

_ Device Drivers
Tk @

DEVELOPER'S GUIDE AND REFERENCE MANUAL” © = Margie Sherlock » Leonard Szubowicz

Writing OpenVMS Alpha Device Drivers in C provides definitive information about
MVaidiaremel-\U(a-meo lala M[ameal-m Om elceyele-liiltaliare| language ice) m- Moa -maelalal-a cre mcon-1a)
PN Te) aF- Mo) gelato)

The book introduces the components of OpenVMS Alpha asics drivers and explains
baaleliquce)(cM lam dal=Me) ol-)e-)4lalem)\-1¢-100mm DI-1e-]] (10 Maal-] o)¢-1e- Mae) 1 male) um comaele(-meaeliale)i(-r- Lalo,
link drivers and how to load them into the operating system. An expanded reference

~ section defines data structures, routines, and macros used in OpenVMS Alpha device
driver Brod arIning:

Fhroughout Writing OpenVMS Alpha Device Drivers in C, examples of actual code
illustrate the key concepts. The working rt-Taa) ol(-me(- Vila =e lime (-tselariag- it e-lal-la asl.)

im ©) oJ-1a VA -NI olal-Me(-\Ula-mel@iV-] man aiae-lem am on

_ Margie Sherlock, a technical principal writer with Digital Equipment Ganon ation: has
been writing about the OpenVMS operating system for over eight years. She has .
documented many components of the OpenVMS VAX and Alpha operating systems.
Margie is the author of Using DECwindows Motif for OpenVMS, also published by
Digital Press.

Leonard Seba: F) oui ielate software engineer with Digital Equipment Corporation,
has been a contributor to the OpenVMS operating system for over nine years. As the
architect and project leader for the High-Level Language Device Driver development
effort, he was responsible irelmel-tfelallare m-lare| Mnpreme: trig LOK 0) o) olola mi colmuralelare)
OpenVMS Alpha drivers in €.

ISBN 1-55558-133-1

| 90000

eee ||! ll 9781555581336 An imprint of Butterworth-Heinemann

AER g

