
OpenVMS Alpha System Dump
Analyzer Utility Manual

December 1995

This manual explains how to use the System Dump Analyzer (SDA) to
investigate system failures and examine a running OpenVMS system.

Revision/Update Information: This manual supersedes the OpenVMS
AXP System Dump Analyzer Utility
Manual, Version 6.1

Software Version: OpenVMS Alpha Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DEC, DECnet,
Digital, HSC, OpenVMS, VAX, VAX DOCUMENT, VAXcluster, VMS, VMScluster, VT, and the
DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

6635

This document is available on CD–ROM.

Contents

Preface . vii

SDA Description . SDA–1
1 System Management and SDA . SDA–2
1.1 Writing System Dumps . SDA–2
1.1.1 Dump File Style . SDA–3
1.1.2 Controlling the Size of Page Files and Dump Files SDA–4
1.1.3 Writing to the System Dump File . SDA–4
1.1.4 Writing to the System Page File . SDA–4
1.2 Saving System Dumps . SDA–5
1.3 Invoking SDA by Rebooting the System . SDA–6
2 Analyzing a System Dump . SDA–7
2.1 Requirements . SDA–7
2.2 Invoking SDA . SDA–8
2.3 Mapping the Contents of the Dump File . SDA–8
2.4 Building the SDA Symbol Table . SDA–9
2.5 Executing the SDA Initialization File (SDA$INIT) SDA–9
3 Analyzing a Running System . SDA–9
4 SDA Context . SDA–10
5 SDA Command Format . SDA–11
5.1 General Command Format . SDA–12
5.2 Expressions . SDA–12
5.2.1 Radix Operators . SDA–12
5.2.2 Arithmetic and Logical Operators . SDA–13
5.2.3 Precedence Operators . SDA–14
5.2.4 Symbols . SDA–14
6 Investigating System Failures . SDA–19
6.1 General Procedure for Analyzing System Failures SDA–19
6.2 Fatal Bugcheck Conditions . SDA–20
6.2.1 Fatal Exceptions . SDA–20
6.2.2 Illegal Page Faults . SDA–28
7 Inducing a System Failure . SDA–28
7.1 Meeting Crash Dump Requirements . SDA–29
7.2 Procedure for Causing a System Failure . SDA–29

SDA Usage Summary . SDA–31

SDA Qualifiers . SDA–32
/CRASH_DUMP . SDA–33
/RELEASE . SDA–34
/SYMBOL . SDA–35
/SYSTEM . SDA–36

iii

SDA Commands . SDA–37
@ (Execute Command) . SDA–38
ATTACH . SDA–39
COPY . SDA–40
DEFINE . SDA–42
DEFINE/KEY . SDA–44
EVALUATE . SDA–47
EXAMINE . SDA–50
EXIT . SDA–54
FORMAT . SDA–55
HELP . SDA–57
MAP . SDA–58
READ . SDA–61
REPEAT . SDA–66
SEARCH . SDA–68
SET CPU . SDA–70
SET FETCH . SDA–72
SET LOG . SDA–74
SET OUTPUT . SDA–75
SET PROCESS . SDA–76
SET RMS . SDA–79
SET SIGN_EXTEND . SDA–82
SHOW CALL_FRAME . SDA–83
SHOW CLUSTER . SDA–85
SHOW CONNECTIONS . SDA–89
SHOW CPU . SDA–91
SHOW CRASH . SDA–94
SHOW DEVICE . SDA–98
SHOW EXECUTIVE . SDA–102
SHOW HEADER . SDA–104
SHOW LAN . SDA–106
SHOW LOCK . SDA–112
SHOW MACHINE_CHECK . SDA–115
SHOW PAGE_TABLE . SDA–117
SHOW PFN_DATA . SDA–122
SHOW POOL . SDA–125
SHOW PORTS . SDA–129
SHOW PROCESS . SDA–132
SHOW RESOURCE . SDA–145
SHOW RMS . SDA–149
SHOW RSPID . SDA–150
SHOW SPINLOCKS . SDA–152
SHOW STACK . SDA–157
SHOW SUMMARY . SDA–161
SHOW SYMBOL . SDA–164
SPAWN . SDA–165
VALIDATE QUEUE . SDA–167

iv

SDA Extension Commands . SDA–169
CLUE CLEANUP . SDA–170
CLUE CONFIG . SDA–171
CLUE CRASH . SDA–173
CLUE ERRLOG . SDA–176
CLUE HISTORY . SDA–177
CLUE MCHK . SDA–179
CLUE MEMORY . SDA–180
CLUE PROCESS . SDA–187
CLUE STACK . SDA–189
CLUE VCC . SDA–193
CLUE XQP . SDA–195

Index

Figures

SDA–1 Mechanism Array . SDA–21
SDA–2 Signal Array . SDA–23
SDA–3 Exception Stack Frame . SDA–24
SDA–4 Stack Following an Illegal Page-Fault Error . SDA–28

Tables

SDA–1 Comparison of Full and Selective Dump Files SDA–3
SDA–2 SDA Operators . SDA–13
SDA–3 Modules Containing Global Symbols Used by SDA SDA–16
SDA–4 SDA Symbols Defined on Initialization . SDA–16
SDA–5 SDA Symbols Defined by SET CPU Command SDA–17
SDA–6 SDA Symbols Defined by SET PROCESS Command SDA–17
SDA–7 Exception Stack Frame Values . SDA–24
SDA–8 Modules Defining Global Locations Within Executive Image SDA–63
SDA–9 SET RMS Command Keywords for Displaying Process RMS

Information . SDA–79
SDA–10 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS

Displays . SDA–112
SDA–11 Virtual Page Information in the SHOW PAGE_TABLE Display SDA–119
SDA–12 Physical Page Information in the SHOW PAGE_TABLE Display SDA–120
SDA–13 Page Frame Number Information—Line One Fields SDA–123
SDA–14 Page Frame Number Information—Line Two Fields SDA–124
SDA–15 Process Section Table Entry Information in the SHOW PROCESS

Display . SDA–137
SDA–16 Process I/O Channel Information in the SHOW PROCESS Display . . . SDA–138
SDA–17 Resource Information in the SHOW RESOURCE Display SDA–145
SDA–18 Static Spin Locks . SDA–153
SDA–19 Process Information in the SHOW SUMMARY Display SDA–161

v

Preface

Intended Audience

The OpenVMS Alpha System Dump Analyzer Utility Manual is intended
primarily for the system programmer who must investigate the causes of system
failures and debug kernel mode code, such as a device driver. An understanding
of data structures is necessary to accurately interpret the results of System Dump
Analyzer (SDA) commands.

This manual also includes such system management information as maintaining
the system resources necessary to capture and store system crash dumps. If you
need to determine the cause of a hung process or improve system performance,
refer to this manual for instructions on using SDA to analyze a running system.

Document Structure
The OpenVMS Alpha System Dump Analyzer Utility Manual includes the
following information:

• An introduction to the functions, features, and key concepts of the System
Dump Analyzer (SDA). This part also includes instructions for maintaining
the optimal environment to analyze system failures.

• Instructions about how to:

Invoke SDA.

Exit from SDA.

Record the output of an SDA session.

• A description of those qualifiers to the ANALYZE command that govern the
behavior of SDA.

• A description of the function, format, and parameters of each SDA command.
It also provides usage examples for each command.

Associated Documents
For additional information, refer to the following documents:

• OpenVMS Alpha Version 7.0 Upgrade and Installation Manual

• OpenVMS Calling Standard

• OpenVMS System Manager’s Manual

• OpenVMS Programming Interfaces: Calling a System Routine

• OpenVMS Alpha Device Support: Developer’s Guide

• OpenVMS AXP Internals and Data Structures

vii

• Alpha Architecture Reference Manual

• MACRO–64 Assembler for OpenVMS AXP Systems Reference Manual

For additional information on OpenVMS products and services, access the Digital
OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08

Mail OpenVMS Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063−1260

809−781−0505

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

viii

Conventions

The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

The following conventions are used to identify information specific to OpenVMS
Alpha or to OpenVMS VAX:

Alpha
The Alpha icon denotes the beginning of information
specific to OpenVMS Alpha.

VAX
The VAX icon denotes the beginning of information
specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
information specific to OpenVMS Alpha or to OpenVMS
VAX.

ix

SDA Description
When a system failure occurs, the operating system copies the contents of
memory to a system dump file or the primary page file, recording the hardware
context of each processor in the system as well. The System Dump Analyzer
(SDA) is a utility that allows you to interpret the contents of this file, examine
the status of each processor at the time of the system failure, and investigate the
probable causes of the failure.

You can use SDA commands to perform the following operations:

• Direct (or echo) the output of an SDA session to a file or device (SET OUTPUT
or SET LOG).

• Display the condition of the operating system and the hardware context of
each processor in the system at the time of the system failure (SHOW CRASH
or CLUE CRASH).

• Select a specific processor in a multiprocessing system as the subject of
analysis (SET CPU).

• Select the default size of address data manipulated by the EXAMINE and
EVALUATE commands (SET FETCH).

• Enable or disable the sign extension of 32-bit addresses (SET SIGN_
EXTEND).

• Display the contents of a specific process stack (SHOW STACK or CLUE
STACK).

• Format a call frame from a stack location (SHOW CALL_FRAME).

• Read a set of global symbols into the SDA symbol table (READ).

• Define symbols to represent values or locations in memory and add them to
the SDA symbol table (DEFINE).

• Evaluate an expression in hexadecimal and decimal, interpreting its value as
a symbol, a condition value, a page table entry (PTE), or a processor status
(PS) quadword (EVALUATE).

• Examine the contents of memory locations, optionally interpreting them as
Alpha assembler instructions, a PTE, or a PS (EXAMINE).

• Display device status as reflected in system data structures (SHOW DEVICE).

• Display the contents of the stored machine check frame (SHOW MACHINE_
CHECK or CLUE MCHK) for selected Digital computers.

• Format system data structures (FORMAT).

• Validate the integrity of the links in a queue (VALIDATE QUEUE).

• Display a summary of all processes on the system (SHOW SUMMARY).

• Show the hardware or software context of a process (SHOW PROCESS or
CLUE PROCESS).

• Display the OpenVMS RMS data structures of a process (SHOW PROCESS
with the /RMS qualifier).

• Display memory management data structures (SHOW POOL,
SHOW PFN_DATA, SHOW PAGE_TABLE, or CLUE MEMORY).

SDA–1

SDA Description

• Display lock management data structures (SHOW RESOURCE or SHOW
LOCK).

• Display VMScluster management data structures (SHOW CLUSTER, SHOW
CONNECTIONS, SHOW RSPID, or SHOW PORTS).

• Display multiprocessor synchronization information (SHOW SPINLOCKS).

• Display the layout of the executive images (SHOW EXECUTIVE).

• Capture and archive a summary of dump file information in a list file
(CLUE HISTORY).

• Copy the system dump file (COPY).

• Define keys to invoke SDA commands (DEFINE/KEY).

• Search memory for a given value (SEARCH).

Although SDA provides a great deal of information, it does not automatically
analyze all the control blocks and data contained in memory. For this reason,
in the event of system failure, it is extremely important that you save not only
the output provided by SDA commands, but also a copy of the system dump file
written at the time of the failure.

You can also invoke SDA to analyze a running system, using the DCL command
ANALYZE/SYSTEM. Most SDA commands generate useful output when entered
on a running system.

Caution:

Although analyzing a running system may be instructive, you should
undertake such an operation with caution. System context, process
context, and a processor’s hardware context can change during any given
display.

In a multiprocessing environment, it is very possible that, during
analysis, a process running SDA could be rescheduled to a different
processor frequently. Therefore, avoid examining the hardware context of
processors in a running system.

1 System Management and SDA
The system manager must ensure that the system writes a dump file whenever
the system fails. The manager must also see that the dump file is large enough
to contain all the information to be saved, and that the dump file is saved for
analysis. The following sections describe these tasks.

1.1 Writing System Dumps
The operating system attempts to write information into the system dump file
only if the system parameter DUMPBUG is set. (The DUMPBUG parameter is
set by default. To examine and change its value, consult the OpenVMS System
Manager’s Manual.) If DUMPBUG is set and the operating system fails, the
system manager has the following choices for writing system dumps:

• Have the system dump file written to either SYSDUMP.DMP (the system
dump file) or to PAGEFILE.SYS (the primary system page file).

SDA–2

SDA Description

• Set the DUMPSTYLE system parameter to 0 or 2 (for dumps containing all
physical memory) or to 1 or 3 (for dumps containing only selected virtual
addresses).

See Section 1.1.1 for more information about the DUMPSTYLE parameter values.

1.1.1 Dump File Style
There are two types of dump files—a physical memory dump (also known as a
full dump), and a dump of selected virtual addresses (also known as a selective
dump).

In a physical memory dump, the DUMPSTYLE system parameter can be set to
either 0 or 2. Each value provides a full dump; the value of 0 yields minimal
console output while the value of 2 provides full console output. A physical
memory dump requires that all physical memory be written to the dump file.
This ensures the presence of all the page table pages required for SDA to emulate
translation of system virtual addresses. These table pages include the level 1
page table of the current process, the shared level 2 page table that maps the
system page table (SPT), and the level 3 page table pages that constitute the SPT.

In certain system configurations, it may be impossible to preserve the entire
contents of memory in a disk file. For instance, a large memory system or a
system with small disk capacity may not be able to supply enough disk space for
a full memory dump. If the system dump file cannot accommodate all of memory,
information essential to determining the cause of the system failure may be lost.

To preserve those portions of memory that contain information most useful in
determining the causes of system failures, a system manager sets the value of
the DUMPSTYLE system parameter to either 1 or 3 to specify a dump of selected
virtual address spaces. Each value provides a selective dump; the value of 1
yields minimal console output while the value of 3 provides full console output.
In a selective dump, related pages of virtual address space are written to the
dump file as a unit called a logical memory block (LMB). For example, one LMB
consists of the system and global page tables; another is the address space of a
particular process. Those LMBs most likely to be useful in crash dump analysis
are written first.

Table SDA–1 compares full and selective style dump files.

Table SDA–1 Comparison of Full and Selective Dump Files

Item Full Selective

Available
Information

Complete contents of physical
memory in use, stored in order
of increasing physical address.

System page table, global page table, system
space memory, and process and control regions
(plus global pages) for all saved processes.

Unavailable
Information

Contents of paged-out memory
at the time of the system failure.

Contents of paged-out memory at the time of the
system failure, process and control regions of
unsaved processes, L1 page tables, and memory
not mapped by a page table.

SDA Command
Limitations

None. The following commands are not useful
for unsaved processes: SHOW PROCESS
/CHANNELS, SHOW PROCESS/IMAGE, SHOW
PROCESS/RMS, SHOW STACK, and SHOW
SUMMARY/IMAGE.

SDA–3

SDA Description

1.1.2 Controlling the Size of Page Files and Dump Files
You can adjust the size of the system page file and dump file using AUTOGEN
(the recommended method) or by using SYSGEN.

AUTOGEN automatically calculates the appropriate sizes for page and dump
files. AUTOGEN invokes the System Generation utility (SYSGEN) to create
or change the files. However, you can control sizes calculated by AUTOGEN
by defining symbols in the MODPARAMS.DAT file. The file sizes specified in
MODPARAMS.DAT are copied into the PARAMS.DAT file during AUTOGEN’s
GETDATA phase. AUTOGEN then makes appropriate adjustments in its
calculations.

Although Digital recommends using AUTOGEN to create and modify page and
dump file sizes, you can use SYSGEN to directly create and change the sizes of
those files.

The sections that follow discuss how you can calculate the size of a dump file.

See the OpenVMS System Manager’s Manual for detailed information about using
AUTOGEN and SYSGEN to create and modify page and dump file sizes.

1.1.3 Writing to the System Dump File
OpenVMS Alpha writes the contents of the error-log buffers, processor registers,
and memory into the system dump file, overwriting its previous contents. If the
system dump file is too small, OpenVMS Alpha cannot copy all memory to the file
when a system failure occurs.

SYS$SYSTEM:SYSDUMP.DMP (SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP)
is furnished as an empty file in the OpenVMS Alpha software distribution kit.
To successfully store a crash dump, SYS$SYSTEM:SYSDUMP.DMP must be
enlarged to hold all of the page tables required for SDA to emulate system virtual
address translation.

To calculate the correct size for a physical memory dump to
SYS$SYSTEM:SYSDUMP.DMP, use the following formula:

size-in-blocks(SYS$SYSTEM:SYSDUMP.DMP)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ 2

Use the DCL command SHOW MEMORY to determine the total size of physical
memory on your system. There is a variable number of error log buffers in
any given system, depending on the setting of the ERRORLOGBUFFERS
system parameter. The size of each buffer depends on the setting of the
ERLBUFFERPAGES parameter. (See the OpenVMS System Manager’s Manual
for additional information about these parameters.)

1.1.4 Writing to the System Page File
If SYS$SYSTEM:SYSDUMP.DMP does not exist, the operating system writes
the dump of physical memory into SYS$SYSTEM:PAGEFILE.SYS, the primary
system page file, overwriting the contents of that file.

If the SAVEDUMP system parameter is set, the dump file is retained in
PAGEFILE.SYS when the system is booted after a system failure. If the
SAVEDUMP parameter is not set (clear), which is the default, OpenVMS Alpha
uses the entire page file for paging and any dump written to the page file is
lost. (To examine or change the value of the SAVEDUMP parameter, consult the
OpenVMS System Manager’s Manual.)

SDA–4

SDA Description

To calculate the minimum size for a physical memory dump to
SYS$SYSTEM:PAGEFILE.SYS, use the following formula:

size-in-blocks(SYS$SYSTEM:PAGEFILE.SYS)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ 2
+ value of the system parameter RSRVPAGCNT

Note that this formula calculates the minimum size requirement for saving a
physical dump in the system’s page file. Digital recommends that the page file
be a bit larger than this minimum to avoid hanging the system. Also note that
you can only write the dump of physical memory into the primary page file
(SYS$SYSTEM:PAGEFILE.SYS). Secondary page files cannot be used to save
dump file information.

It is not recommended to use a selective dump (DUMPSTYLE=1) style with
PAGEFILE.SYS. If the PAGEFILE.SYS is used for a selective dump, and if the
PAGEFILE.SYS is not large enough to contain all the logical memory blocks, the
dump fills the entire page file and the system may hang on reboot. When selective
dumping is set up, all available space is used to write out the logical memory
blocks. If the page file is large enough to contain all of physical memory, there
is no reason to use selective dumping. A full memory dump (DUMPSTYLE=0)
should be used.

Writing crash dumps to SYS$SYSTEM:PAGEFILE.SYS presumes that you will
later free the space occupied by the dump for use by the pager. Otherwise, your
system may hang during the startup procedure. To free this space, you can do
one of the following:

• Include SDA commands that free dump space in the site-specific startup
command procedure (described in Section 1.3).

• Use the SDA COPY command to copy the dump from
SYS$SYSTEM:PAGEFILE.SYS to another file. Use the SDA COPY command
instead of the DCL COPY command because the SDA COPY command causes
the pages occupied by the dump to be freed from the system’s page file.

• If you do not need to copy the dump elsewhere, issue an ANALYZE
/CRASH_DUMP/RELEASE command. When you issue this command, SDA
immediately releases the pages to be used for system paging, effectively
deleting the dump. Note that this command does not allow you to analyze the
dump before deleting it.

1.2 Saving System Dumps
Every time the operating system writes information to the system dump file,
it writes over whatever was previously stored in the file. The system writes
information to the dump file whenever the system fails or is shut down. For this
reason, the system manager must save the contents of the file after a system
failure has occurred.

The system manager can use the SDA COPY command or the DCL COPY
command. Either command can be used in a site-specific startup procedure, but
the SDA COPY command is preferred because it marks the dump file as copied.
As mentioned earlier, this is particularly important if the dump was written
into the page file, SYS$SYSTEM:PAGEFILE.SYS, because it releases those
pages occupied by the dump to the pager. Another advantage of using the SDA
COPY command is that this command copies only the saved number of blocks
and not necessarily the whole allotted dump file. For instance, if the size of the

SDA–5

SDA Description

SYSDUMP.DMP file is 100,000 blocks and the bugcheck wrote only 60,000 blocks
to the dump file, then DCL COPY would create a file of 100,000 blocks. However,
SDA COPY would generate a file of only 60,000 blocks.

Because system dump files are set to NOBACKUP, the Backup utility (BACKUP)
does not copy them to tape unless you use the qualifier /IGNORE=NOBACKUP
when invoking BACKUP. When you use the SDA COPY command to copy the
system dump file to another file, OpenVMS Alpha does not set the new file to
NOBACKUP.

As shipped by Digital, the file SYS$SYSTEM:SYSDUMP.DMP is protected
against world access. Because a dump file can contain privileged information,
Digital recommends that the system manager not change this default protection.

1.3 Invoking SDA by Rebooting the System
When the system reboots after a system failure, SDA is automatically invoked by
default. SDA archives information from the dump in a history file. In addition,
a listing file with more detailed information about the system failure is created
in the directory pointed to by the logical name CLUE$COLLECT. (Note that
the default directory is SYS$ERRORLOG unless you redefine the logical name
CLUE$COLLECT in the procedure SYS$MANAGER:SYLOGICALS.COM.) The
file name is in the form CLUE$node_ddmmyy_hhmm.LIS where the timestamp
(hhmm) corresponds to the system failure time and not the time when the file
was created.

Directed by commands in a site-specific file, SDA can take additional steps to
record information about the system failure. They include the following:

• Copying the contents of the dump file to another file. This information is
otherwise lost at the next system shutdown or failure when the system saves
information only about that shutdown or failure.

• Supplementing the contents of the list file containing the output of specific
SDA commands.

If the logical name CLUE$SITE_PROC points to a valid and existing
command file, it will be executed as part of the CLUE HISTORY command
when you reboot. If used, this file should contain only valid SDA commands.

Generated by a set sequence of commands, the CLUE list file contains only
an overview of the failure and is unlikely to provide enough information to
determine the cause of the failure. Digital, therefore, recommends that you
always copy the dump file.

The following example shows SDA commands that can make up your site-specific
command file to produce a more complete SDA listing after each system failure,
and to save a copy of the dump file:

!
! SDA command file, to be executed as part of the system
! bootstrap from within CLUE. Commands in this file can
! be used to save the dump file after a system bugcheck, and
! to execute any additional SDA commands.
!

SDA–6

SDA Description

! Note that the logical name DMP$ must have been defined
! within SYS$MANAGER:SYLOGICALS.COM
!
READ/EXEC ! read in the executive images’ symbol tables
COPY DMP$:SAVEDUMP.DMP ! copy and save dump file
SHOW STACK ! display the stack
!

The SDA commands in this site-specific command file are executed first and then
the CLUE HISTORY command is executed by default. See the reference section
on CLUE HISTORY for details on the summary information that is generated
and stored in the CLUE list file by the CLUE HISTORY command.

To point to your site-specific file, add a line such as the following to the file
SYS$MANAGER:SYLOGICALS.COM:

$ DEFINE/SYSTEM CLUE$SITE_PROC SYS$MANAGER:SAVEDUMP.COM

In this example, the site-specific file is named SAVEDUMP.COM.

The CLUE list file can be printed immediately or saved for later examination.

SDA is invoked and executes the specified commands only when the system boots
immediately after a system failure. If the system is booting for any other reason
(such as a normal system shutdown and reboot), SDA exits.

If CLUE files occupy more space than the threshold allows (the default is 5000
blocks), the oldest files will be deleted until the threshold limit is reached. The
threshold limit can be customized with the CLUE$MAX_BLOCK logical name.

To prevent the running of CLUE at system startup, define the logical
CLUE$INHIBIT in the SYLOGICALS.COM file as /SYS TRUE.

2 Analyzing a System Dump
SDA performs certain tasks before bringing a dump into memory, presenting its
initial displays, and accepting command input. These tasks include the following:

• Verifying that the process invoking it is suitably privileged to read the dump
file

• Using RMS to read in pages from the dump file

• Building the SDA symbol table from the files SDA$READ_DIR:SYS$BASE_
IMAGE.EXE and SDA$READ_DIR:REQSYSDEF.STB

• Executing the commands in the SDA initialization file

For detailed information on investigating system failures, see Section 6.

2.1 Requirements
To analyze a dump file, your process must have read access both to the file that
contains the dump and to copies of SDA$READ_DIR:SYS$BASE_IMAGE.EXE
and SDA$READ_DIR:REQSYSDEF.STB (the required subset of the symbols in
the file SYSDEF.STB). SDA reads these tables by default.

SDA–7

SDA Description

2.2 Invoking SDA
If your process can access the files listed in Section 2.1, you can issue the DCL
command ANALYZE/CRASH_DUMP to invoke SDA. If you do not specify the
name of a dump file in the command, SDA prompts you:

$ ANALYZE/CRASH_DUMP
_Dump File:

The default file specification is as follows:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command.

If you are rebooting after a system failure, SDA is automatically invoked. See
Section 1.3.

2.3 Mapping the Contents of the Dump File
SDA first attempts to map the contents of physical memory as stored in the
specified dump file. To do this, it must first locate the system page table (SPT)
among its contents. The SPT contains one entry for each page of system virtual
address space.

• If SDA cannot find the SPT in the dump file, it displays the following
message:

%SDA-E-SPTNOTFND, system page table not found in dump file

If that error message is displayed, you cannot analyze the crash dump, but
must take steps to ensure that any subsequent dump can be analyzed. To do
this, you must adjust the DUMPSTYLE system parameter as discussed in
Section 1.1.1 or increase the size of the dump file as indicated in Section 1.1.2.

• If SDA finds the SPT in an incomplete dump, the following message is
displayed:

%SDA-W-SHORTDUMP, the dump only contains m out of n blocks of physical memory

Under certain conditions, some memory locations might not be saved in the
system dump file. Additionally, if a bugcheck occurs during system initialization,
the contents of the register display may be unreliable. The symptom of such a
bugcheck is a SHOW SUMMARY display that shows no processes or only the
swapper process.

If you use an SDA command to access a virtual address that has no corresponding
physical address, SDA generates the following error message:

%SDA-E-NOTINPHYS, ’location’: virtual data not in physical memory

When analyzing a selective dump file, if you use an SDA command to access a
virtual address that has a corresponding physical address not saved in the dump
file, SDA generates the following error message:

%SDA-E-MEMNOTSVD, memory not saved in the dump file

SDA–8

SDA Description

2.4 Building the SDA Symbol Table
After locating and reading the system dump file, SDA attempts to read the system
symbol table file into the SDA symbol table. If SDA cannot find SDA$READ_
DIR:SYS$BASE_IMAGE.EXE—or is given a file that is not a system symbol
table in the /SYMBOL qualifier to the ANALYZE command—it displays a fatal
error and exits. SDA also reads into its symbol table a subset of SDA$READ_
DIR:SYSDEF.STB, called SDA$READ_DIR:REQSYSDEF.STB. This subset
provides SDA with the information needed to access some of the data structures
in the dump.

When SDA finishes building its symbol table, SDA displays a message identifying
itself and the immediate cause of the system failure. In the following example,
the cause of the system failure was the deallocation of a bad page file address.

OpenVMS Alpha System Dump Analyzer

%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]REQSYSDEF.STB;1
Dump taken on 27-MAR-1993 11:22:33.92
BADPAGFILD, Bad page file address deallocated

2.5 Executing the SDA Initialization File (SDA$INIT)
After displaying the system failure summary, SDA executes the commands in the
SDA initialization file, if you have established one. SDA refers to its initialization
file by using the logical name SDA$INIT. If SDA cannot find the file defined as
SDA$INIT, it searches for the file SYS$LOGIN:SDA.INIT.

This initialization file can contain SDA commands that read symbols into SDA’s
symbol table, define keys, establish a log of SDA commands and output, or
perform other tasks. For instance, you may want to use an SDA initialization file
to augment SDA’s symbol table with definitions helpful in locating system code. If
you issue the following command, SDA includes those symbols that define many
of the system’s data structures, including those in the I/O database:

READ SDA$READ_DIR:filename

You may also find it helpful to define those symbols that identify the modules in
the images that make up the executive by issuing the following command:

READ/EXECUTIVE SDA$READ_DIR:

After SDA has executed the commands in the initialization file, it displays its
prompt as follows:

SDA>

This prompt indicates that you can use SDA interactively and enter SDA
commands.

An SDA initialization file may invoke a command procedure with the @ command.
However, such command procedures cannot invoke other command procedures.

3 Analyzing a Running System
Occasionally, OpenVMS Alpha encounters an internal problem that hinders
system performance without causing a system failure. By allowing you to
examine the running system, SDA enables you to search for the solution without
disturbing the operating system. For example, you may be able to use SDA to
examine the stack and memory of a process that is stalled in a scheduler state,
such as a miscellaneous wait (MWAIT) or a suspended (SUSP) state.

SDA–9

SDA Description

If your process has change-mode-to-kernel (CMKRNL) privilege, you can invoke
SDA to examine the system. Use the following DCL command:

$ ANALYZE/SYSTEM

SDA attempts to load SDA$READ_DIR:SYS$BASE_IMAGE.EXE and
SDA$READ_DIR:REQSYSDEF.STB. It then executes the contents of any
existing SDA initialization file, as it does when invoked to analyze a crash
dump (see Sections 2.4 and 2.5, respectively). SDA subsequently displays its
identification message and prompt, as follows:

OpenVMS Alpha System Analyzer

SDA>

This prompt indicates that you can use SDA interactively and enter SDA
commands. When analyzing a running system, SDA sets its process context to
that of the process running SDA.

If you are analyzing a running system, consider the following:

• When used in this mode, SDA does not map the entire system, but instead
retrieves only the information it needs to process each individual command.
To update any given display, you must reissue the previous command.

Caution:

When using SDA to analyze a running system, carefully interpret its
displays. Because system states change frequently, it is possible that the
information SDA displays may be inconsistent with the current state of
the system.

• Certain SDA commands are illegal in this mode, such as SHOW CPU and
SET CPU. Use of these commands results in the following error message:

%SDA-E-CMDNOTVLD, command not valid on the running system

• The SHOW CRASH command, although valid, does not display the contents
of any of the processor’s set of hardware registers. Also, the Time of System
Crash information refers to the time at which the ANALYZE/SYSTEM
command was given.

4 SDA Context
When you invoke SDA to analyze either a crash dump or a running system, SDA
establishes a default context for itself from which it interprets certain commands.

When you are analyzing a uniprocessor system, SDA’s context is solely process
context, which means SDA can interpret its process-specific commands in the
context of either the process current on the uniprocessor or some other process
in another scheduling state. When SDA is initially invoked to analyze a crash
dump, SDA’s process context defaults to that of the process that was current
at the time of the system failure. When you invoke SDA to analyze a running
system, SDA’s process context defaults to that of the current process, that is, the
one executing SDA. To change SDA’s process context, issue any of the following
commands:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address

SDA–10

SDA Description

SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

When you invoke SDA to analyze a crash dump from a multiprocessing system
with more than one active CPU, SDA maintains a second dimension of context—
its CPU context—that allows it to display certain processor-specific information.
This information includes the reason for the bugcheck exception, the currently
executing process, the current IPL, and the spin locks owned by the processor.
When you invoke SDA to analyze a multiprocessor’s crash dump, its CPU context
defaults to that of the processor that induced the system failure. When you are
analyzing a running system, CPU context is not accessible to SDA. Therefore, the
SET CPU and SHOW CPU commands are not permitted.

You can change the SDA CPU context by using any of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH
SHOW MACHINE_CHECK cpu-id

Changing CPU context involves an implicit change in process context in either of
the following ways:

• If there is a current process on the CPU made current, SDA process context
is changed to that of that CPU’s current process.

• If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until SDA
process context is set to that of a specific process.

Changing process context can require a switch of CPU context as well. For
instance, if you issue a SET PROCESS command for a process that was current
at the time of a system failure on another CPU, SDA will automatically change
its CPU context to that of the CPU on which that process was current. The
following commands can have this effect if the process-name, pcb-address, or
index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

5 SDA Command Format
The following sections describe the format of SDA commands and the expressions
you can use with SDA commands.

SDA–11

SDA Description

5.1 General Command Format
SDA uses a command format similar to that used by the DCL interpreter. Issue
commands in the following format:

command-name[/qualifier...] [parameter][/qualifier...] [!comment]

The command-name is an SDA command. Each command tells the utility to
perform a function. Commands can consist of one or more words, and can be
abbreviated to the number of characters that make the command unique. For
example, SH stands for SHOW, and SE stands for SET.

The parameter is the target of the command. For example, SHOW PROCESS
RUSKIN tells SDA to display the context of the process RUSKIN. The command
EXAMINE 80104CD0;40 displays the contents of 40 bytes of memory, beginning
with location 80104CD0.

When you supply part of a file specification as a parameter, SDA assumes
default values for the omitted portions of the specification. The default device is
SYS$DISK, the device specified in your most recent SET DEFAULT command.
The default directory is the directory specified in the most recent SET DEFAULT
command. See the OpenVMS DCL Dictionary for a description of the DCL
command SET DEFAULT.

The qualifier modifies the action of an SDA command. A qualifier is always
preceded by a slash (/). Several qualifiers can follow a single parameter or
command name, but each must be preceded by a slash. Qualifiers can be
abbreviated to the shortest string of characters that uniquely identifies the
qualifier.

The comment consists of text that describes the command; this comment is
not actually part of the command. Comments are useful for documenting SDA
command procedures. When executing a command, SDA ignores the exclamation
point and all characters that follow it on the same line.

5.2 Expressions
You can use expressions as parameters for some SDA commands, such as
SEARCH and EXAMINE. To create expressions, use any of the following
elements:

• Numerals

• Radix operators

• Arithmetic and logical operators

• Precedence operators

• Symbols

Numerals are one possible component of an expression. The following sections
describe the use of the other components.

5.2.1 Radix Operators
Radix operators determine which numeric base SDA uses to evaluate
expressions. You can use one of the three radix operators to specify the radix
of the numeric expression that follows the operator:

• ^X (hexadecimal)

• ^O (octal)

SDA–12

SDA Description

• ^D (decimal)

The default radix is hexadecimal. SDA displays hexadecimal numbers with
leading zeros and decimal numbers with leading spaces.

5.2.2 Arithmetic and Logical Operators
There are two types of arithmetic and logical operators, both of which are listed
in Table SDA–2.

• Unary operators affect the value of the expression that follows them.

• Binary operators combine the operands that precede and follow them.

In evaluating expressions containing binary operators, SDA performs logical
AND, OR, and XOR operations, and multiplication, division, and arithmetic
shifting before addition and subtraction. Note that the SDA arithmetic operators
perform integer arithmetic on 64-bit operands.

Table SDA–2 SDA Operators

Operator Action

Unary Operators

Performs a logical NOT of the expression.

+ Makes the value of the expression positive.

– Makes the value of the expression negative.

@ Evaluates the following expression as a virtual address, then uses the contents of
that address as value.

^Q When used with the unary operator @, it specifies the size of field to be used as a
virtual address is a quadword 1.

^L When used with the unary operator @, it specifies the size of field to be used as a
virtual address is a longword2.

^W When used with the unary operator @, it specifies the size of field to be used as a
virtual address is a word3.

^B When used with the unary operator @, it specifies the size of field to be used as a
virtual address is a byte4.

G Adds FFFFFFFF 8000000016 to the value of the expression5.

H Adds 7FFE000016 to the value of the expression6.

1The command SET FETCH QUADWORD provides the same effect on all subsequent uses of unary
operator @ as if ^Q were added each time. That is, SET FETCH is making it the default. For an
example of the use of ^Q, see the SET FETCH command.
2The command SET FETCH LONGWORD provides the same effect on all subsequent uses of unary
operator @ as if ^L were added each time. That is, SET FETCH is making it the default. For an
example of the use of ^L, see the SET FETCH command.
3The command SET FETCH WORD provides the same effect on all subsequent uses of unary operator
@ as if ^W were added each time. That is, SET FETCH is making it the default. For an example of
the use of ^W, see the SET FETCH command.
4The command SET FETCH BYTE provides the same effect on all subsequent uses of unary operator
@ as if ^B were added each time. That is, SET FETCH is making it the default. For an example of
the use of ^B, see the SET FETCH command.
5The unary operator G corresponds to the first virtual address in system space. For example, the
expression GD40 can be used to represent the address FFFFFFFF 80000D4016.
6The unary operator H corresponds to a convenient base address in P1 space (7FFE000016). You can
therefore refer to an address such as 7FFE2A6416 as H2A64.

(continued on next page)

SDA–13

SDA Description

Table SDA–2 (Cont.) SDA Operators

Operator Action

Unary Operators

I Fills the leading digits of the following hexadecimal number with hex value of F.
For example:

SDA> eval i80000000
Hex = FFFFFFFF80000000 Decimal = --2147483648 G

SYS$PUBLIC_VECTORS_NPRO

Binary Operators

+ Addition

– Subtraction

* Multiplication

& Logical AND

| Logical OR

\ Logical XOR

/ Division7

@ Arithmetic shifting

"." Catenates two 32-bit values into a 64-bit value. For example:

SDA> eval fe.50000
Hex = 000000FE00050000 Decimal = 1090922020864

7In division, SDA truncates the quotient to an integer, if necessary, and does not retain a remainder.

5.2.3 Precedence Operators
SDA uses parentheses as precedence operators. Expressions enclosed in
parentheses are evaluated first. SDA evaluates nested parenthetical expressions
from the innermost to the outermost pairs of parentheses.

5.2.4 Symbols
A symbol can represent a few different types of values. It can represent a
constant, a data address, a procedure descriptor address, or a routine address.
Constants are usually offsets of a particular field in a data structure; however,
they can also represent constant values such as the BUG$_xxx symbols.

All address symbols identify memory locations. SDA generally does not
distinguish among different types of address symbols. However, for a symbol
identified as the name of a procedure descriptor, SDA takes an additional step
of creating an associated symbol to name the code entry point address of the
procedure. It forms the code entry point symbol name by appending _C to the
name of the procedure descriptor.

Also, SDA substitutes the code entry point symbol name for the procedure
descriptor symbol when you enter the following command:

SDA> EXAMINE/INSTRUCTION procedure descriptor

For example, enter the following command:

SDA> EXAMINE/INSTRUCTION SCH$QAST

SDA–14

SDA Description

SDA displays the following information:

SCH$QAST_C: SUBQ SP,#X40,SP

Now enter the EXAMINE command but do not specify the /INSTRUCTION
qualifier, as follows:

SDA> EXAMINE SCH$QAST

SDA displays the following information:

SCH$QAST: 0000002C 00003009 ".0..,..."

This display shows the contents of the first two longwords of the procedure
descriptor.

Note that there are no routine address symbols on Alpha systems, except for
those in MACRO-64 assembly language modules. Therefore, SDA creates a
routine address symbol for every procedure descriptor it has in its symbol table.
The new symbol name is the same as for the procedure descriptor except that it
has an _C appended to the end of the name.

Sources for SDA Symbols
SDA can get its information from the following places:

• Images (.EXE files)

• Image symbol table files (.STB files)

• Object files

SDA also defines symbols to access registers and to access common data
structures.

The only images with symbols are shareable images and executive images. These
images contain only universal symbols, such as constants and addresses.

The image symbol table files are produced by the linker with the /SYMBOLS
qualifier. These files normally only contain universal symbols, as do the
executable images. However, if the SYMBOL_TABLE=GLOBALS linker option is
specified, the .STB file also contains all global symbols defined in the image. See
the OpenVMS Linker Utility Manual for more information.

Object files can contain global constant values. An object file used with SDA
typically contains symbol definitions for data structure fields. Such an object file
can be generated by compiling a MACRO-32 source module that invokes specific
macros. The macros, which are typically defined in SYS$LIBRARY:LIB.MLB or
STARLET.MLB, define symbols that correspond to data structure field offsets.
The macro $UCBDEF, for example, defines offsets for fields within a unit control
block (UCB). OpenVMS Alpha provides a number of such object modules in
SDA$READ_DIR, as listed in Table SDA–3. For compatibility with OpenVMS
VAX, the modules’ file types have been renamed to .STB.

SDA–15

SDA Description

Table SDA–3 Modules Containing Global Symbols Used by SDA

File Contents

DCLDEF.STB Symbols for the DCL interpreter

DECDTMDEF.STB Symbols for transaction processing

IMGDEF.STB Symbols for the image activator

IODEF.STB I/O database structure symbols

NETDEF.STB Symbols for DECnet data structures

REQSYSDEF.STB Required symbols for SDA

RMSDEF.STB Symbols that define RMS internal and user data structures and
RMS$_xxx completion codes

SCSDEF.STB Symbols that define data structures for system communications
services

SYSDEF.STB Symbols that define system data structures, including the I/O
database

Table SDA–4 lists symbols that SDA defines automatically on initialization.

Table SDA–4 SDA Symbols Defined on Initialization

ASN Address space number

AST Both the asynchronous system trap status and enable registers:
AST<3:0> = AST enable; AST<7:4> = AST status

ESP Executive stack pointer

FEN Floating-point enable

FP Frame pointer (R29)

FP0-FP30 Floating-point registers 0-30

FPCR Floating-point control register

G FFFFFFFF 8000000016, the base address of system space

H 7FFE000016, a base address in P1 space

KSP Kernel stack pointer

PC Program counter

PS Processor status

PTBR Page table base register

R0 through R29 Integer registers

SP Current stack pointer of a process

SSP Supervisor stack pointer

USP User stack pointer

SDA–16

SDA Description

After a SET CPU command is issued (for analyzing a crash dump only), the
symbols defined in Table SDA–5 are set for that CPU.

Table SDA–5 SDA Symbols Defined by SET CPU Command

IPL Interrupt priority level register

PCBB Process context block base register

PRBR Processor base register (CPU database address)

SCBB System control block base register

SISR Software interrupt status register

After a SET PROCESS command is issued, the symbols listed in Table SDA–6
are defined for that CPU.

Table SDA–6 SDA Symbols Defined by SET PROCESS Command

ARB Address of access rights block

JIB Address of job information block

ORB Address of object rights block

PCB Address of process control block

PHD Address of process header

Other SDA commands, such as SHOW DEVICE and SHOW CLUSTER, predefine
additional symbols.

SDA Symbol Initialization
On initialization, SDA reads the universal symbols defined by SYS$BASE_
IMAGE.EXE. For every procedure descriptor address symbol found, a routine
address symbol is created (with _C appended to the symbol name).

SDA then reads the object file REQSYSDEF.STB. This file contains data structure
definitions that are required for SDA to run correctly. It uses these symbols to
access some of the data structures in the crash dump file or on the running
system.

Finally, SDA initializes the process registers defined in Table SDA–6 and executes
a SET CPU command, defining the symbols as well.

Use of SDA Symbols
There are two major uses of the address type symbols. First, the EXAMINE
command employs them to find the value of a known symbol. For example,
EXAMINE CTL$GL_PCB finds the PCB for the current process. Then, certain
SDA commands (such as EXAMINE, SHOW STACK, and FORMAT) use them to
symbolize addresses when generating output.

When the code for one of these commands needs a symbol for an address, it calls
the SDA symbolize routine. The symbolize routine tries to find the symbol in
the symbol table whose address is closest to, but not greater than the requested
address. This means, for any given address, the routine may return a symbol of
the form symbol_name+offset. If, however, the offset is greater than 0FFF16, it
fails to find a symbol for the address.

SDA–17

SDA Description

As a last resort, the symbolize routine checks to see if this address falls within a
known memory range. Currently, the only known memory ranges are those used
by the OpenVMS Alpha executive images. SDA searches through the executive
loaded image list (LDRIMG data structure) to see if the address falls within any
of the image sections. If SDA does find a match, it returns one of the following
types of symbols:

executive_image_name+offset
executive_image_name_image_section+offset

The first form is for nonsliced images. The offset is the same as the image
offset as defined in the map file.

The second form is for a sliced executive image. The image sections are not in
adjacent locations in memory, so the image section name is needed to find where
this address is within the map file. You can also use the MAP command on the
address to get the image offset as defined in the map file.

The constants in the SDA symbol table are usually used to display a data
structure with the FORMAT command. For example, the PHD offsets are
defined in SYSDEF.STB; you can display all the fields of the PHD by entering the
following commands:

SDA> READ SDA$READ_DIR:SYSDEF.STB

SDA> FORMAT/TYPE=PHD phd_address

Symbols and Address Resolution
In OpenVMS Alpha, executive and user images are loaded into dynamically
assigned address space. To help you associate a particular virtual address with
the image whose code has been loaded at that address, SDA provides several
features:

• The SHOW EXECUTIVE command

• The symbolization of addresses, described in the previous section

• The READ command

• The SHOW PROCESS command with the /IMAGES qualifier

• The MAP command

The OpenVMS Alpha executive consists of two base images, SYS$BASE_
IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE, and a number of other
separately loadable images. Some of these images are loaded on all systems,
while others support features unique to particular system configurations.
Executive images are mapped into system space during system initialization.

By default, a typical executive image is not mapped at contiguous virtual
addresses. Instead, its nonpageable image sections are loaded into a reserved
set of pages with other executive images’ nonpageable sections. The pageable
sections of a typical executive image are mapped contiguously into a different
part of system space. An image mapped in this manner is said to be sliced. A
particular system may have system parameters defined that disable executive
image slicing altogether.

Each executive image is described by a data structure called a loadable image
data block (LDRIMG). The LDRIMG specifies whether the image has been
sliced. If the image is sliced, the LDRIMG indicates the beginning of each image
section and the size of each section. All the LDRIMGs are linked together in a
list that SDA scans to determine what images have been loaded and into what

SDA–18

SDA Description

addresses they have been mapped. The SHOW EXECUTIVE command displays a
list of all images that are included in the OpenVMS Alpha executive.

Each executive image is a shareable image whose universal symbols are defined
in the SYS$BASE_IMAGE.EXE symbol vector. On initialization, SDA reads this
symbol vector and adds its universal symbols to the SDA symbol table.

Executive image .STB files define additional symbols within an executive image
that are not defined as universal symbols and thus are not in the SYS$BASE_
IMAGE.EXE symbol vector (see Sources for SDA Symbols in this section). You
can enter a READ/EXECUTIVE command to read symbols defined in all executive
image .STB files into the SDA symbol table, or a READ/IMAGE=filespec command
to read the .STB for a specified image only.

To obtain a display of all images mapped within a process, execute a SHOW
PROCESS/IMAGE command. See the description of the SHOW PROCESS
command for additional information about displaying the hardware and software
context of a process.

You can also identify the image name and offset that correspond to a specified
address with the MAP command. With the information obtained from the MAP
command, you can then examine the image map to locate the source module and
program section offset corresponding to an address.

6 Investigating System Failures
This section discusses how the operating system handles internal errors, and
suggests procedures that can aid you in determining the causes of these errors. It
illustrates, through detailed analysis of a sample system failure, how SDA helps
you find the causes of operating system problems.

For a complete description of the commands discussed in the sections that
follow, refer to the last part of this document, where all the SDA commands are
discussed in alphabetical order.

6.1 General Procedure for Analyzing System Failures
When the operating system detects an internal error so severe that normal
operation cannot continue, it signals a condition known as a fatal bugcheck and
shuts itself down. A specific bugcheck code describes each fatal bugcheck.

To resolve the problem, you must find the reason for the bugcheck. Many failures
are caused by errors in user-written device drivers or other privileged code not
supplied by Digital. To identify and correct these errors, you need a listing of the
code in question.

Occasionally, a system failure is the result of a hardware failure or an error in
code supplied by Digital. A hardware failure requires the attention of Digital
Services. To diagnose an error in code supplied by Digital, you need listings of
that code, which are available from Digital.

Start the search for the error by analyzing the CLUE list file that was created by
default when the system failed. This file contains an overview of the system
failure, which can assist you in finding the line of code that signaled the
bugcheck. CLUE CRASH displays the content of the program counter (PC)
in the list file. The content of the PC is the address of the next instruction after
the instruction that signaled the bugcheck.

SDA–19

SDA Description

However, some bugchecks are caused by unexpected exceptions. In such cases,
the address of the instruction that caused the exception is more informative than
the address of the instruction that signaled the bugcheck. The address of the
instruction that caused the exception is located on the stack. You can obtain this
address by using the SHOW STACK command to display the contents of the stack
or by using the CLUE CRASH command to display the system state at time of
exception. See Section 6.2 for information on how to proceed for several types of
bugchecks.

Once you have found the address of the instruction that caused the bugcheck
or exception, find the module in which the failing instruction resides. Use the
MAP command to determine whether the instruction is part of a device driver or
another executive image. Alternatively, the SHOW EXECUTIVE command shows
the location and size of each of the images that make up the OpenVMS Alpha
executive.

If the instruction that caused the bugcheck is not part of a driver or executive
image, examine the linker’s map of the module or modules you are debugging to
determine whether the instruction that caused the bugcheck is in your program.

To determine the general cause of the system failure, examine the code that
signaled the bugcheck or the instruction that caused the exception.

6.2 Fatal Bugcheck Conditions
There are many possible conditions that can cause OpenVMS Alpha to issue
a bugcheck. Normally, these occasions are rare. When they do occur, they are
often fatal exceptions or illegal page faults occurring within privileged code. This
section describes the symptoms of several common bugchecks. A discussion of
other exceptions and condition handling in general appears in the OpenVMS
Programming Concepts Manual.

6.2.1 Fatal Exceptions
An exception is fatal when it occurs while either of the following conditions exists:

• The process is executing above IPL 2 (IPL$_ASTDEL).

• The process is executing in a privileged (kernel or executive) processor access
mode and has not declared a condition handler to deal with the exception.

When the system fails, the operating system reports the approximate cause of the
system failure on the console terminal. SDA displays a similar message when you
issue a SHOW CRASH command. For instance, for a fatal exception, SDA can
display one of these messages:

FATALEXCPT, Fatal executive or kernel mode exception

INVEXCEPTN, Exception while above ASTDEL

SSRVEXCEPT, Unexpected system service exception

UNXSIGNAL, Unexpected signal name in ACP

When a FATALEXCPT, INVEXCEPTN, SSRVEXCEPT, or UNXSIGNAL bugcheck
occurs, two argument lists, known as the mechanism and signal arrays, are
placed on the stack.

Figure SDA–1 illustrates the mechanism array, which is made up entirely of
quadwords. The first quadword of this array indicates the number of quadwords
in this array; this value is always 2B16. These quadwords are used by the
procedures that search for a condition handler and report exceptions.

SDA–20

SDA Description

Figure SDA–1 Mechanism Array

mechanism_args quadword aligned

MCH_ARGS

MCH_FLAGS

MCH_FRAME

MCH_DEPTH

MCH_RESVD1

MCH_DADDR

MCH_ESF_ADDR

MCH_SIG_ADDR

MCH_SAVR0_HIGH

MCH_SAVR1_HIGH

:0

:4

:8

:16

:20

:24

:32

:40

:48

:56

:64

MCH_SAVR0_LOW

MCH_SAVR0

MCH_SAVR1

MCH_SAVR1_LOW

ZK−4645A−GE

Integer registers 17−27

Floating registers 11−29

:160

:168

:176

:184

:344

CHF$S_CHFDEF2 = 352

MCH_SAVR16

MCH_SAVR28

MCH_SAVF0

MCH_SAVF1

MCH_SAVF30

MCH_SAVF10

SDA–21

SDA Description

Symbolic offsets into the mechanism array are defined as follows. The SDA
SHOW STACK command identifies the elements of the mechanism array on the
stack using these symbols.

Offset Meaning

CHF$IS_MCH_ARGS Number of quadwords that follow. In a mechanism array,
this value is always 2B16.

CHF$IS_MCH_FLAGS Flag bits for related argument mechanism information.

CHF$IS_MCH_FRAME Address of the FP (frame pointer) of the establisher’s call
frame.

CHF$IS_MCH_DEPTH Depth of the OpenVMS Alpha search for a condition
handler.

CHF$IS_MCH_DADDR Address of the handler data quadword, if the exception
handler data field is present.

CHF$IS_MCH_ESF_ADDR Address of the exception stack frame (see Figure SDA–3).

CHF$IS_MCH_SIG_ADDR Address of the signal array (see Figure SDA–2).

CHF$IS_MCH_SAVRnn Contents of the saved integer registers at the time of the
exception. The following registers are saved: R0, R1, and
R16 to R28 inclusive.

CHF$IS_MCH_SAVFnn If the process was using floating point, contents of the
saved floating-point registers at the time of the exception.
The following registers are saved: F0, F1, and F10 to F30
inclusive.

The signal array appears somewhat farther down the stack. This array
comprises all longwords so that the structure is VAX compatible. A signal
array describes the exception that occurred. It contains an argument count, the
exception code, zero or more exception parameters, the PC, and the PS. Therefore,
the size of a signal array can vary from exception to exception. Although there
are several possible exception conditions, access violations are most common.
Figure SDA–2 shows the signal array for an access violation. The SDA SHOW
STACK command uses the CHF$ symbols listed in the figure to identify the
signal array on the stack.

SDA–22

SDA Description

Figure SDA–2 Signal Array

31 0

Vector count (n)

Condition value

Additional arguments (or none)

PC

PS

:CHF$L_SIG_ARGS

:CHF$L_SIG_NAME

ZK−4643A−GE

n

For access violations, the signal array is set up as follows:

Value Meaning

Vector list length Number of longwords that follow. For access violations, this
value is always 5.

Condition value Exception code. The value 0C16 represents an access violation.
You can identify the exception code by using the SDA command
EVALUATE/CONDITION_VALUE or SHOW CRASH.

Additional arguments These can include a reason mask and a virtual address.

In the longword mask if bit 0 of the longword is set, the failing
instruction (at the PC saved below) caused a length violation.
If bit 1 is set, it referred to a location whose page table entry is
in a ‘‘no access’’ page. Bit 2 indicates the type of access used by
the failing instruction: it is set for write and modify operations
and clear for read operations.

The virtual address represents the low-order 32 bits of the
virtual address that the failing instruction tried to reference.

PC PC whose execution resulted in the exception.

PS PS at the time of the exception.

Figure SDA–3 illustrates the exception stack frame, which comprises all
quadwords.

SDA–23

SDA Description

Figure SDA–3 Exception Stack Frame

:0
R2

R3

R4

R5

R6

R7

PC

PS

:8

:16

:24

:32

:40

:48

:56

ZK−6788A−GE

63 0

The values contained in the exception stack frame are defined as follows:

Table SDA–7 Exception Stack Frame Values

Value Contents

INTSTK$Q_R2 Contents of R2 at the time of the exception

INTSTK$Q_R3 Contents of R3 at the time of the exception

INTSTK$Q_R4 Contents of R4 at the time of the exception

INTSTK$Q_R5 Contents of R5 at the time of the exception

INTSTK$Q_R6 Contents of R6 at the time of the exception

INTSTK$Q_R7 Contents of R7 at the time of the exception

INTSTK$Q_PC PC whose execution resulted in the exception

INTSTK$Q_PS PS at the time of the exception (except high-order bits)

The SDA SHOW STACK command identifies the elements of the exception stack
frame on the stack using these symbols.

If OpenVMS Alpha encounters a fatal exception, you can find the code that
signaled it by examining the PC in the signal array. Use the SHOW CRASH or
CLUE CRASH command to display the PC and the instruction stream around the
PC to locate the exception.

The following display shows the SDA output in response to SHOW CRASH and
SHOW STACK commands for an SSRVEXCEPT bugcheck. It illustrates the
mechanism array, signal array, and exception stack frame previously described.

SDA–24

SDA Description

OpenVMS Alpha System dump analyzer

Dump taken on 14-FEB-1995 16:39:37.79
SSRVEXCEPT, Unexpected system service exception
...analyzing a selective memory dump...

SDA> SHOW CRASH
Time of system crash: 14-FEB-1995 16:39:37.79

Version of system: OpenVMS Alpha Operating System, Version V7.0

System Version Major ID/Minor ID: 3/0

VMScluster node: ISFLM1, a DEC 3000 Model 500

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
CPU 00 -- SSRVEXCEPT, Unexpected system service exception

Exception Frame:

R2 = FFFFFFFF 8006F878 SCH$INIT_C+00674
R3 = 00000000 00000000
R4 = FFFFFFFF 805D7800
R5 = 00000000 7FFA9CB0
R6 = 00000000 7FF95E40
R7 = FFFFFFFF 81F77E70 EXE$CRE_MIN_PROCESS+00430
PC = FFFFFFFF 81F6CDB4 EXE$CRE_MIN_PROCESS_C+00A14
PS = 00000000 00000000

FFFFFFFF 81F6CDA4: JSR R26,(R26)
FFFFFFFF 81F6CDA8: LDQ R27,#XFDE0(R13)
FFFFFFFF 81F6CDAC: LDL R5,#X0238(R27)
FFFFFFFF 81F6CDB0: BEQ R5,#X000002

PC =>FFFFFFFF 81F6CDB4: LDL R26,(R5)
FFFFFFFF 81F6CDB8: BNE R26,#X00000B
FFFFFFFF 81F6CDBC: LDQ R25,#XFE00(R13)
FFFFFFFF 81F6CDC0: LDL R5,#X0D18(R25)
FFFFFFFF 81F6CDC4: BEQ R5,#X000002

PS =>
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 00 0 0 KERN 0 KERN

%SYSTEM-F-PAGRDERR, page read error, reason mask=00, virtual address=7FFA8001,
PC=81F6CDB4, PSL=00000000

Saved Scratch Registers in Mechanism Array
--
R0 = 00000000 00000002 R1 = 00000000 00000000 R16 = 00000000 00000000
R17 = 0000FFFE 00007C04 R18 = 00000000 00000000 R19 = FFFFFFFF 800650F0
R20 = 10000000 00000000 R21 = 00000000 00000000 R22 = 00000000 00000400
R23 = 00000000 2014002B R24 = 00000000 00000000 R25 = 00000000 00000000
R26 = 00000000 00000002 R27 = 00000000 7FFF0000 R28 = FFFFFFFF 81F6CDA8

CPU 00 reason for Bugcheck: SSRVEXCEPT, Unexpected system service exception

Process currently executing on this CPU: JOB_CONTROL

Current IPL: 0 (decimal)

CPU database address: 8052E000

General registers:

SDA–25

SDA Description

R0 = 00000000 00000444 R1 = 00000000 7FF95C28 R2 = FFFFFFFF 8006F878
R3 = 00000000 00000000 R4 = FFFFFFFF 805D7800 R5 = 00000000 7FFA9CB0
R6 = 00000000 7FF95E40 R7 = FFFFFFFF 81F77E70 R8 = 00000000 000203E8
R9 = 00000000 7FF59640 R10 = 00000000 7FF58608 R11 = 00000000 7FFD00A8
R12 = 00000000 00000000 R13 = FFFFFFFF 80778C10 R14 = 00000000 7FF57118
R15 = FFFFFFFF 80403400 R16 = 00000000 000003C4 R17 = 00000000 7FF95AC0
R18 = 00000000 00000168 R19 = FFFFFFFF 800650F0 R20 = 10000000 00000000
R21 = 00000000 00000000 R22 = FFFFFFFF 80778000 R23 = 00000000 7FF96000
R24 = 00000000 7FFF0024 AI = 00000000 00000002 RA = FFFFFFFF 81F43D4C
PV = FFFFFFFF 80778C10 R28 = 00000000 000005AC FP = 00000000 7FF95A20
PC = FFFFFFFF 81F44254 PS = 18000000 00000000

Processor Internal Registers:

ASN = 00000000 0000000C ASTSR/ASTEN = 0000000F
IPL = 00000000 PCBB = 00000000 0124A080 PRBR = FFFFFFFF 8052E000
PTBR = 00000000 00000A6D SCBB = 00000000 000001A5 SISR = 00000000 00000000

KSP = 00000000 7FF95A18
ESP = 00000000 7FF56AE0
SSP = 00000000 7FFA2000
USP = 00000000 7FF4A890

No spinlocks currently owned by CPU 00

SDA> SHOW STACK
Current Operating Stack (KERNEL):

7FF959F8 18000000 00000000
7FF95A00 FFFFFFFF 80778A70 EXE$SET_PAGES_READ_ONLY+00630
7FF95A08 00000000 80778B38 EXE$SIGTORET
7FF95A10 00000000 7FF95AC0

SP => 7FF95A18 00000000 7FF95C28
7FF95A20 FFFFFFFF 80778C10 EXE$EXCPTN
7FF95A28 FFFFFFFF 81F43D4C EXCEPTION_PRO+01D4C
7FF95A30 FFFFFFFF 81F77D20 EXE$CRE_MIN_PROCESS+002E0
7FF95A38 00000000 7FF95A50
7FF95A40 FFFFFFFF 80778AF8 EXE$SET_PAGES_READ_ONLY+006B8
7FF95A48 FFFFFFFF 8006F878 SCH$INIT_C+00674
7FF95A50 FFFFFFFF 80778AF8 EXE$SET_PAGES_READ_ONLY+006B8
7FF95A58 00000000 00000000
7FF95A60 FFFFFFFF 81F42790 EXE$CONTSIGNAL_C+001B0
7FF95A68 00000000 7FF95CC0
7FF95A70 FFFFFFFF 80428540 EXE$ACVIOLAT
7FF95A78 00000000 7FF95C28
7FF95A80 00000000 7FF95AC0
7FF95A88 00000000 7FF95C80
7FF95A90 00000000 7FF95CC0
7FF95A98 00000000 00000000
7FF95AA0 00000000 00000000
7FF95AA8 FFFFFFFF 8041E840 EXE$KP_DEALLOCATE_KPB
7FF95AB0 00000005 00000250 UCB$T_MSGDATA+00034
7FF95AB8 80778000 000008F8 UCB$M_VALID+000F8

CHF$IS_MCH_ARGS 7FF95AC0 00000000 0000002B
CHF$PH_MCH_FRAME 7FF95AC8 00000000 7FF56AE0
CHF$IS_MCH_DEPTH 7FF95AD0 FFFFFFFF FFFFFFFD
CHF$PH_MCH_DADDR 7FF95AD8 FFFFFFFF 8045C3E0 SYS$DKDRIVER_NPRW+001E0
CHF$PH_MCH_ESF_ADDR 7FF95AE0 00000000 7FF95C80
CHF$PH_MCH_SIG_ADDR 7FF95AE8 00000000 7FF95C28
CHF$IH_MCH_SAVR0 7FF95AF0 00000000 00000002
CHF$IH_MCH_SAVR1 7FF95AF8 00000000 00000000
CHF$IH_MCH_SAVR16 7FF95B00 00000000 00000000
CHF$IH_MCH_SAVR17 7FF95B08 0000FFFE 00007C04
CHF$IH_MCH_SAVR18 7FF95B10 00000000 00000000
CHF$IH_MCH_SAVR19 7FF95B18 FFFFFFFF 800650F0 PROCESS_MANAGEMENT_NPRO+050F0

SDA–26

SDA Description

CHF$IH_MCH_SAVR20 7FF95B20 10000000 00000000
CHF$IH_MCH_SAVR21 7FF95B28 00000000 00000000
CHF$IH_MCH_SAVR22 7FF95B30 00000000 00000400 IRP$M_MBXIO
CHF$IH_MCH_SAVR23 7FF95B38 00000000 2014002B
CHF$IH_MCH_SAVR24 7FF95B40 00000000 00000000
CHF$IH_MCH_SAVR25 7FF95B48 00000000 00000000
CHF$IH_MCH_SAVR26 7FF95B50 00000000 00000002
CHF$IH_MCH_SAVR27 7FF95B58 00000000 7FFF0000 CTL$GL_NMIOCH
CHF$IH_MCH_SAVR28 7FF95B60 FFFFFFFF 81F6CDA8 EXE$CRE_MIN_PROCESS_C+00A08

7FF95B68 00000000 00000000
7FF95B70 00000000 00000000
7FF95B78 00000000 00000000
7FF95B80 00000000 00000000
7FF95B88 00000000 00000000
7FF95B90 00000000 00000000
7FF95B98 00000000 00000000
7FF95BA0 00000000 00000000
7FF95BA8 00000000 00000000
7FF95BB0 00000000 00000000
7FF95BB8 00000000 00000000
7FF95BC0 00000000 00000000
7FF95BC8 00000000 00000000
7FF95BD0 00000000 00000000
7FF95BD8 00000000 00000000
7FF95BE0 00000000 00000000
7FF95BE8 00000000 00000000
7FF95BF0 00000000 00000000
7FF95BF8 00000000 00000000
7FF95C00 00000000 00000000
7FF95C08 00000000 00000000
7FF95C10 00000000 00000000
7FF95C18 00000000 00000000
7FF95C20 00000000 00000000

CHF$L_SIG_ARGS 7FF95C28 00000444 00000005 UCB$M_SHD_SEQCMD_HERE+00044
CHF$L_SIG_ARG1 7FF95C30 7FFA8001 00000000

7FF95C38 00000000 81F6CDB4 EXE$CRE_MIN_PROCESS_C+00A14
7FF95C40 00000002 00000001
7FF95C48 00000000 00000444 UCB$M_SHD_SEQCMD_HERE+00044
7FF95C50 00000000 00000000
7FF95C58 FFFFFFFF 81F6CDB4 EXE$CRE_MIN_PROCESS_C+00A14
7FF95C60 00000008 00000000
7FF95C68 00000000 00000000
7FF95C70 00000008 00000000
7FF95C78 00000000 7FFA8001

INTSTK$Q_R2 7FF95C80 FFFFFFFF 8006F878 SCH$INIT_C+00674
INTSTK$Q_R3 7FF95C88 00000000 00000000
INTSTK$Q_R4 7FF95C90 FFFFFFFF 805D7800
INTSTK$Q_R5 7FF95C98 00000000 7FFA9CB0
INTSTK$Q_R6 7FF95CA0 00000000 7FF95E40
INTSTK$Q_R7 7FF95CA8 FFFFFFFF 81F77E70 EXE$CRE_MIN_PROCESS+00430
INTSTK$Q_PC 7FF95CB0 FFFFFFFF 81F6CDB4 EXE$CRE_MIN_PROCESS_C+00A14
INTSTK$Q_PS 7FF95CB8 00000000 00000000
Prev SP (7FF95CC0) ==> 7FF95CC0 FFFFFFFF 81F77E70 EXE$CRE_MIN_PROCESS+00430

7FF95CC8 00000000 00000000
7FF95CD0 00000000 00000005
7FF95CD8 00000000 00000000
7FF95CE0 FFFFFFFF FFFF42D4
7FF95CE8 00000000 0000001F
7FF95CF0 FFFF8000 00000000

.

.

.

SDA–27

SDA Description

6.2.2 Illegal Page Faults
OpenVMS Alpha signals a PGFIPLHI bugcheck when a page fault occurs while
the interrupt priority level (IPL) is greater than 2 (IPL$_ASTDEL). When
OpenVMS Alpha fails because of an illegal page fault, it displays the following
message on the console terminal:

PGFIPLHI, Page fault with IPL too high

When an illegal page fault occurs, the stack appears as pictured in
Figure SDA–4.

Figure SDA–4 Stack Following an Illegal Page-Fault Error

ZK−6787A−GE

MMG$PAGEFAULT Stack Frame

SCH$PAGEFAULT Saved Scratch Registers

Exception Stack Frame

Previous Stack Content

The stack contents are as follows:

MMG$PAGEFAULT Stack
Frame

Stack frame built at entry to MMG$PAGEFAULT,
the page fault exception service routine. The frame
includes the contents of the following registers at the
time of the page fault: R3, R8, R11 to R15, R29 (frame
pointer)

SCH$PAGEFAULT Saved
Scratch Registers

Contents of the following registers at the time of the
page fault: R0, R1, R16 to R28

Exception Stack Frame Exception stack frame (see Figure SDA–3)

Previous Stack Content Contents of the stack prior to the illegal page-fault
error

When you analyze a dump caused by a PGFIPLHI bugcheck, the SHOW STACK
command identifies the exception stack frame using the symbols shown in
Table SDA–7. The SHOW CRASH or CLUE CRASH command displays the
instruction that caused the page fault and the instructions around it.

7 Inducing a System Failure
If the operating system is not performing well and you want to create a dump
you can examine, you must induce a system failure. Occasionally, a device driver
or other user-written, kernel-mode code can cause the system to execute a loop of
code at a high priority, interfering with normal system operation. This loop can
occur even though you have set a breakpoint in the code if the loop is encountered
before the breakpoint. To gain control of the system in such circumstances, you
must cause the system to fail and then reboot it.

If the system has suspended all noticeable activity and is hung, see the examples
of causing system failures in Section 7.2.

SDA–28

SDA Description

If you are generating a system failure in response to a system hang, be sure to
record the PC and PS as well as the contents of the integer registers at the time
of the system halt.

7.1 Meeting Crash Dump Requirements
The following requirements must be met before the operating system can write a
complete crash dump:

• You must not halt the system until the console dump messages have been
printed in their entirety and the memory contents have been written to the
crash dump file. Be sure to allow sufficient time for these events to take place
or make sure that all disk activity has stopped before using the console to
halt the system.

• There must be a crash dump file in SYS$SPECIFIC:[SYSEXE]: named either
SYSDUMP.DMP or PAGEFILE.SYS.

This dump file must be either large enough to hold the entire contents
of memory (as discussed in Section 1.1.1) or, if the DUMPSTYLE system
parameter is set, large enough to accommodate a subset dump (also discussed
in Section 1.1.1).

If SYSDUMP.DMP is not present, the operating system attempts to write
crash dumps to PAGEFILE.SYS. In this case, the SAVEDUMP system
parameter must be 1 (the default is 0).

• The DUMPBUG system parameter must be 1 (the default is 1).

7.2 Procedure for Causing a System Failure
This section tells you how to enter the XDelta utility (XDELTA) to force a system
failure.

Before you can use XDELTA, it must be loaded at system startup. To load
XDELTA during system bootstrap, you must set bit 1 in the boot flags. See the
OpenVMS Alpha Version 7.0 Upgrade and Installation Manual for information
about booting with the XDelta utility.

Put the system in console mode by pressing Ctrl/P or the Halt push button. Enter
the following commands at the console prompt to enter XDELTA:

>>> DEPOSIT SIRR E
>>> CONTINUE

Once you have entered XDELTA, use any valid XDELTA commands to examine
register or memory locations, step through code, or force a system failure (by
entering ;C under XDELTA). See the OpenVMS Delta/XDelta Debugger Manual
for more information about using XDELTA.

If you did not load XDELTA, you can force a system crash by entering console
commands that make the system incur an exception at high IPL. At the console
prompt, enter commands to set the program counter (PC) to an invalid address
and the PS to kernel mode at IPL 31 before continuing. This results in a forced
INVEXCEPTN-type bugcheck. Some Digital computers employ the console
command CRASH (which will force a system failure) while other systems require
that you manually enter the commands.

SDA–29

SDA Description

Enter the following commands at the console prompt to force a system failure:

>>> DEPOSIT PC FFFFFFFF00000000
>>> DEPOSIT PS 1F00
>>> CONTINUE

For more information, refer to the hardware manuals that accompanied your
computer.

SDA–30

SDA Usage Summary

The System Dump Analyzer (SDA) utility helps determine the causes of system
failures. This utility is also useful for examining the running system.

Format

ANALYZE
�

/CRASH_DUMP [/RELEASE] filespec
/SYSTEM

�
/SYMBOL=system-symbol-table

Command Parameter
filespec
Name of the file that contains the dump you want to analyze. At least one field
of the filespec is required, and it can be any field. The default filespec is the
highest version of SYSDUMP.DMP in your default directory.

Description
By default, the System Dump Analyzer is automatically invoked when you reboot
the system after a system failure.

To analyze a system dump interactively, invoke SDA by issuing the following
command:

$ ANALYZE/CRASH_DUMP filespec

If you do not specify filespec, SDA prompts you for it.

To analyze a crash dump, your process must have the privileges necessary for
reading the dump file. This usually requires system privilege (SYSPRV), but
your system manager can, if necessary, allow less privileged processes to read
the dump files. Your process needs change-mode-to-kernel (CMKRNL) privilege
to release page file dump blocks, whether you use the /RELEASE qualifier or the
SDA COPY command.

Invoke SDA to analyze a running system by issuing the following command:

SDA ANALYZE/SYSTEM

To examine a running system, your process must have change-mode-to-kernel
(CMKRNL) privilege. You cannot specify filespec when using the /SYSTEM
qualifier.

To send all output from SDA to a file, use the SDA command SET OUTPUT,
specifying the name of the output file. The file produced is 132 columns wide and
is formatted for output to a printer. To later redirect the output to your terminal,
use the following command:

SDA SET OUTPUT SYS$OUTPUT

To send a copy of all the commands you type and all the output those commands
produce to a file, use the SDA command SET LOG, specifying the name of the
log file. The file produced is 132 columns wide and is formatted for output to a
printer.

SDA–31

SDA Usage Summary

To exit from SDA, use the EXIT command. Note that the EXIT command also
causes SDA to exit from display mode. Thus, if SDA is in display mode, you must
use the EXIT command twice: once to exit from display mode, and a second time
to exit from SDA.

SDA Qualifiers
The following qualifiers described in this section determine whether the object of
an SDA session is a crash dump or a running system. They also help create the
environment of an SDA session.

/CRASH_DUMP
/RELEASE
/SYMBOL
/SYSTEM

SDA–32

SDA Qualifiers
/CRASH_DUMP

/CRASH_DUMP

Invokes SDA to analyze the specified dump file.

Format

/CRASH_DUMP filespec

Parameter

filespec
Name of the crash dump file to be analyzed. The default file specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

Description

See Section 2 for additional information on crash dump analysis.

Examples

1. $ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP
$ ANALYZE/CRASH SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP.

2. $ ANALYZE/CRASH SYS$SYSTEM:PAGEFILE.SYS

This command invokes SDA to analyze a crash dump stored in the system
page file.

SDA–33

SDA Qualifiers
/RELEASE

/RELEASE

Invokes SDA to release those blocks in the specified system page file occupied by
a crash dump.

Requires CMKRNL (change-mode-to-kernel) privilege.

Format

/RELEASE filespec

Parameter

filespec
Name of the system page file (SYS$SYSTEM:PAGEFILE.SYS). Because the
default file specification is SYS$DISK:[default-dir]SYSDUMP.DMP, you must
identify the page file explicitly. SYS$DISK and [default-dir] represent the disk
and directory specified in your last DCL command SET DEFAULT. If you do not
specify filespec, SDA prompts you for it.

Description

Use the /RELEASE qualifier to release from the system page file those blocks
occupied by a crash dump. When invoked with the /RELEASE qualifier, SDA
immediately deletes the dump from the page file and allows no opportunity to
analyze its contents.

When you specify the /RELEASE qualifier in the ANALYZE command, do the
following:

1. Use the /CRASH_DUMP qualifier.

2. Include the name of the system page file (SYS$SYSTEM:PAGEFILE.SYS) as
the filespec.

If you do not specify the system page file or the specified page file does not
contain a dump, SDA generates the following messages:

%SDA-E-BLKSNRLSD, no dump blocks in page file to release, or not page file
%SDA-E-NOTPAGFIL, specified file is not the page file

Example

$ ANALYZE/CRASH_DUMP/RELEASE SYS$SYSTEM:PAGEFILE.SYS
$ ANALYZE/CRASH/RELEASE PAGEFILE.SYS

These commands invoke SDA to release to the page file those blocks in
SYS$SYSTEM:PAGEFILE.SYS occupied by a crash dump.

SDA–34

SDA Qualifiers
/SYMBOL

/SYMBOL

Specifies an alternate system symbol table for SDA to use.

Format

/SYMBOL =system-symbol-table

Parameter

system-symbol-table
File specification of the OpenVMS Alpha SDA system symbol table required
by SDA to analyze a system dump. The specified system-symbol-table must
contain those symbols required by SDA to find certain locations in the executive
image.

If you do not specify the /SYMBOL qualifier, SDA uses SDA$READ_
DIR:SYS$BASE_IMAGE.EXE to load system symbols into the SDA symbol
table. When you specify the /SYMBOL qualifier, SDA assumes the default disk
and directory to be SYS$DISK: that is, the disk and directory specified in your
last DCL command SET DEFAULT. If you specify a file for this parameter that is
not a system symbol table, SDA exits with a fatal error.

Description

The /SYMBOL qualifier allows you to specify a system symbol table to load into
the SDA symbol table. You can use the /SYMBOL qualifier whether you are
analyzing a system dump or a running system.

Example

$ ANALYZE/CRASH_DUMP/SYMBOL=SDA$READ_DIR:SYS$BASE_IMAGE.EXE SYS$SYSTEM

This command invokes SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP, using the base image in SDA$READ_DIR.

SDA–35

SDA Qualifiers
/SYSTEM

/SYSTEM

Invokes SDA to analyze a running system.

Requires CMKRNL (change-mode-to-kernel) privilege.

Format

/SYSTEM

Parameters

None.

Description

See Section 3 to use SDA to analyze a running system.

You cannot specify the /CRASH_DUMP or /RELEASE qualifiers when you include
the /SYSTEM qualifier in the ANALYZE command.

Example

$ ANALYZE/SYSTEM

This command invokes SDA to analyze the running system.

SDA–36

SDA Commands

SDA Commands

The following SDA commands, which are described in this section, can be used to
analyze a system dump or a running system. SDA CLUE extension commands,
which can summarize information provided by certain SDA commands and
provide additional detail for some SDA commands, are described in the following
section.

@ (Execute Command)
ATTACH
COPY
DEFINE
DEFINE/KEY
EVALUATE
EXAMINE
EXIT
FORMAT
HELP
MAP
READ
REPEAT
SEARCH
SET CPU
SET FETCH
SET LOG
SET OUTPUT
SET PROCESS
SET RMS
SET SIGN_EXTEND
SHOW CALL_FRAME
SHOW CLUSTER
SHOW CONNECTIONS
SHOW CPU
SHOW CRASH
SHOW DEVICE
SHOW EXECUTIVE
SHOW HEADER
SHOW LAN
SHOW LOCK
SHOW MACHINE_CHECK
SHOW PAGE_TABLE
SHOW PFN_DATA
SHOW POOL
SHOW PORTS
SHOW PROCESS
SHOW RESOURCE
SHOW RMS
SHOW RSPID
SHOW SPINLOCKS
SHOW STACK
SHOW SUMMARY
SHOW SYMBOL
SPAWN
VALIDATE QUEUE

SDA–37

SDA Commands
@ (Execute Command)

@ (Execute Command)

Causes SDA to execute SDA commands contained in a file. Use this command to
execute a set of frequently used SDA commands.

Format

@filespec

Parameter

filespec
Name of a file that contains the SDA commands to be executed. The default file
type is .COM.

Example

SDA> @USUAL

The Execute command executes the following commands, as contained in a file
named USUAL.COM:

SET OUTPUT LASTCRASH.LIS
SHOW CRASH
SHOW PROCESS
SHOW STACK
SHOW SUMMARY

This command procedure first makes the file LASTCRASH.LIS the destination
for output generated by subsequent SDA commands. Next, the command
procedure sends to the file information about the system failure and its context, a
description of the process executing at the time of the process, the contents of the
stack on which the failure occurred, and a list of the processes active on the CPU
that failed.

An EXIT command within a command procedure terminates the procedure at
that point, as would an end-of-file.

Command procedures cannot be nested.

SDA–38

SDA Commands
ATTACH

ATTACH

Switches control of your terminal from your current process to another process in
your job (for example, one created with the SDA SPAWN command).

Format

ATTACH [/PARENT] process-name

Parameter

process-name
Name of the process to which you want to transfer control.

Qualifier

/PARENT
Transfers control of the terminal to the current process parent process. When you
specify this qualifier, you cannot specify the process-name parameter.

Examples

1. SDA> ATTACH/PARENT

This ATTACH command attaches the terminal to the parent process of the
current process.

2. SDA> ATTACH DUMPER

This ATTACH command attaches the terminal to a process named DUMPER
in the same job as the current process.

SDA–39

SDA Commands
COPY

COPY

Copies the contents of the dump file to another file.

Format

COPY [/qualifier...] output-filespec

Parameter

output-filespec
Name of the device, directory, and file to which SDA copies the dump file. The
default file specification is:

SYS$DISK:[default-dir]filename.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last DCL command SET DEFAULT. You must specify a file name.

Qualifiers

/COMPRESS
Causes SDA to compress dump data as it is writing a copy. If the dump being
analyzed is already compressed, then SDA does a normal COPY, issuing an
informational message indicating that it is ignoring the /COMPRESS request.

/DECOMPRESS
Causes SDA to decompress dump data as it is writing a copy. If the dump being
analyzed is already decompressed, then SDA does a normal COPY, issuing an
informational message indicating that it is ignoring the /DECOMPRESS request.

Description

Each time the system fails, it copies the contents of memory and the hardware
context of the current process (as directed by the DUMPSTYLE parameter) into
the file SYS$SYSTEM:SYSDUMP.DMP (or the page file), overwriting its contents.
Each time the system is shut down normally, it overwrites the dump file with
error log messages that have not yet been written to the error log file. If you do
not save this crash dump elsewhere, it will be overwritten the next time that the
system fails or is shut down.

The COPY command allows you to preserve a crash dump by copying its contents
to another file. It is generally useful to invoke SDA during system initialization
(from within SYS$MANAGER:SYSTARTUP_VMS.COM) to execute the COPY
command. This ensures that a copy of the dump file is made only after the
system has failed.

The COPY command does not affect the contents of the file containing the dump
being analyzed.

If you are using the page file (SYS$SYSTEM:PAGEFILE.SYS) as the dump file
instead of SYSDUMP.DMP, use the COPY command to explicitly release the
blocks of the page file that contain the dump, thus making them available for
page. Although the copy operation succeeds, the release operation requires that
your process have change-mode-to-kernel (CMKRNL) privilege. Once the dump
pages have been released from the page file, the dump information in these pages

SDA–40

SDA Commands
COPY

may be lost. Perform subsequent analysis upon the copy of the dump created by
the COPY command.

If you press Ctrl/T while using the COPY command, the system displays how
much of the file has been copied.

Example

SDA> COPY SYS$CRASH:SAVEDUMP

The COPY command copies the dump file into the file
SYS$CRASH:SAVEDUMP.DMP.

SDA–41

SDA Commands
DEFINE

DEFINE

Assigns a value to a symbol.

Format

DEFINE [/qualifier...] symbol-name [=] expression

Parameters

symbol-name
Name, containing from 1 to 31 alphanumeric characters, that identifies the
symbol. See Section 5.2.4 for a description of SDA symbol syntax and a list of
default symbols.

expression
Definition of the symbol’s value. See Section 5.2 for a discussion of the
components of SDA expressions.

Qualifier

/PD
Defines a symbol as a procedure descriptor (PD). It also defines the routine
address symbol corresponding to the defined symbol (the routine address symbol
has the same name as the defined symbol, only with _C appended to the symbol
name). See Section 5.2.4 for more information about symbols.

Description

The DEFINE command causes SDA to evaluate an expression and then assign
its value to a symbol. Both the DEFINE and EVALUATE commands perform
computations to evaluate expressions. DEFINE adds symbols to the SDA symbol
table but does not display the results of the computation. EVALUATE displays
the result of the computation but does not add symbols to the SDA symbol table.

Examples

1. SDA> DEFINE BEGIN = 80058E00
SDA> DEFINE END = 80058E60
SDA> EXAMINE BEGIN:END

In this example, DEFINE defines two addresses, called BEGIN and END.
These symbols serve as reference points in memory, defining a range of
memory locations for the EXAMINE command to inspect.

2. SDA> DEFINE NEXT = @PC
SDA> EXAMINE/INSTRUCTION NEXT
NEXT: HALT

The symbol NEXT defines the address contained in the program counter, so
that the symbol can be used in an EXAMINE/INSTRUCTION command.

SDA–42

SDA Commands
DEFINE

3. SDA> DEFINE VEC SCH$GL_PCBVEC
SDA> EXAMINE VEC
SCH$GL_PCBVEC: 00000000 8060F2CC "Ìò‘....."
SDA>

After the value of global symbol SCH$GL_PCBVEC has been assigned to
the symbol VEC, the symbol VEC is used to examine the memory location or
value represented by the global symbol.

4. SDA> DEFINE/PD VEC SCH$QAST
SDA> EXAMINE VEC
SCH$QAST: 0000002C 00003008 ".0..,..."
SDA> EXAMINE VEC_C
SCH$QAST_C: B75E0008 43C8153E ">.ÈC..^·"
SDA>

In this example, the DEFINE/PD command defines not only the symbol VEC,
but also the corresponding routine address symbol (VEC_C).

SDA–43

SDA Commands
DEFINE/KEY

DEFINE/KEY

Associates an SDA command with a terminal key.

Format

DEFINE/KEY [/qualifier...] key-name command

Parameters

key-name
Name of the key to be defined. You can define the following keys under SDA:

Key Name Key Designation

PF1 LK201, VT100, VT52 Red
PF2 LK201, VT100, VT52 Blue
PF3 LK201, VT100, VT52 Black
PF4 LK201, VT100
KP0 . . . KP9 Keypad 0–9
PERIOD Keypad period
COMMA Keypad comma
MINUS Keypad minus
ENTER Keypad ENTER
UP Up arrow
DOWN Down arrow
LEFT Left arrow
RIGHT Right arrow
E1 LK201 Find
E2 LK201 Insert Here
E3 LK201 Remove
E4 LK201 Select
E5 LK201 Prev Screen
E6 LK201 Next Screen
HELP LK201 Help
DO LK201 Do
F7 . . . F20 LK201 Function keys

command
SDA command to define a key. The command must be enclosed in quotation
marks (" ").

Qualifiers

/KEY
Defines a key as an SDA command. To issue the command, press the defined key
and the Return key. If you use the /TERMINATE qualifier as well, you do not
have to press the Return key.

SDA–44

SDA Commands
DEFINE/KEY

/PD
Defines a symbol as a procedure descriptor (PD). Also defines the routine address
symbol corresponding to the defined symbol (the routine address symbol has the
same name as the defined symbol, only with _C appended to the symbol name.)

/SET_STATE=state-name
Causes the key being defined to create a key state change rather than issue an
SDA command. When you use the /SET_STATE qualifier, you supply the name of
a key state in place of the key-name parameter. In addition, you must define the
command parameter as a pair of quotation marks (" ").

For example, you can define the PF1 key as the GOLD key and use the /IF_
STATE=GOLD qualifier to allow two definitions for the other keys, one in the
GOLD state and one in the non-GOLD state. For more information on using
the /IF_STATE qualifier, see the DEFINE/KEY command in the OpenVMS DCL
Dictionary: A–M.

/TERMINATE
/NOTERMINATE
Causes the key definition to include termination of the command, which causes
SDA to execute the command when the defined key is pressed. Therefore, you
do not have to press the Return key after you press the defined key if the
/TERMINATE qualifier is specified.

Description

The DEFINE/KEY command causes an SDA command to be associated with
the specified key, in accordance with any of the specified qualifiers described
previously.

If the symbol or key is already defined, SDA replaces the old definition with the
new one. Symbols and keys remain defined until you exit from SDA.

Examples

1. SDA> DEFINE/KEY PF1 "SHOW STACK"
SDA> PF1 SHOW STACK RETURN

Process stacks (on CPU 00)

Current operating stack (KERNEL):

The DEFINE/KEY command defines PF1 as the SHOW STACK command.
When the PF1 key is pressed, SDA displays the command and waits for you
to press the Return key.

SDA–45

SDA Commands
DEFINE/KEY

2. SDA> DEFINE/KEY/TERMINATE PF1 "SHOW STACK"
SDA> PF1 SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

7FF95D00 00000000 0000000B
7FF95D08 FFFFFFFF 804395C8 MMG$TBI_DATA_64+000B8
7FF95D10 00000000 00000000
7FF95D18 0000FE00 00007E04

SP => 7FF95D20 00000000 00000800 IRP$M_EXTEND
7FF95D28 00000001 000002F7 UCB$B_PI_FKB+0000B
7FF95D30 FFFFFFFF 804395C8 MMG$TBI_DATA_64+000B8
7FF95D38 00000002 00000000

.

.

.

The DEFINE/KEY command defines PF1 as the SDA SHOW STACK
command. The /TERMINATE qualifier causes SDA to execute the
SHOW STACK command without waiting for you to press the Return key.

3. SDA> DEFINE/KEY/SET_STATE="GREEN" PF1 ""
SDA> DEFINE/KEY/TERMINATE/IF_STATE=GREEN PF3 "SHOW STACK"
SDA> PF1 PF3 SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

.

.

.

The first DEFINE/KEY command defines PF1 as a key that sets a command
state GREEN. The trailing pair of quotation marks is required syntax,
indicating that no command is to be executed when this key is pressed.

The second DEFINE command defines PF3 as the SHOW STACK command,
but using the /IF_STATE qualifier, makes the definition valid only when the
command state is GREEN. Thus, the user must press PF1 before pressing
PF3 to issue the SHOW STACK command. The /TERMINATE qualifier
causes the command to execute as soon as the PF3 key is pressed.

SDA–46

SDA Commands
EVALUATE

EVALUATE

Computes and displays the value of the specified expression in both hexadecimal
and decimal. Alternative evaluations of the expression are available with the use
of the qualifiers defined for this command.

Format

EVALUATE

���
��

/CONDITION_VALUE
/PS
/PTE
/SYMBOLS

���
�	 expression

Parameter

expression
SDA expression to be evaluated. Section 5.2 describes the components of SDA
expressions.

Qualifiers

/CONDITION_VALUE
Displays the message that the $GETMSG system service obtains for the value of
the expression.

/PS
Evaluates the specified expression in the format of a processor status.

/PTE
Interprets and displays the expression as a page table entry (PTE). The individual
fields of the PTE are separated and an overall description of the PTE’s type is
provided.

/SYMBOLS
Specifies that all symbols known to be equal to the evaluated expression are to
be listed in alphabetical order. The default behavior of the EVALUATE command
displays only the first several symbols.

Description

If the expression is equal to the value of a symbol in the SDA symbol table, that
symbol is displayed. If no symbol with this value is known, the next lower valued
symbol is displayed with an appropriate offset unless the offset is extremely
large. The DEFINE command adds symbols to the SDA symbol table but does
not display the results of the computation. EVALUATE displays the result of the
computation but does not add symbols to the SDA symbol table.

SDA–47

SDA Commands
EVALUATE

Examples

1. SDA> EVALUATE -1
Hex = FFFFFFFF Decimal = -1

The EVALUATE command evaluates a numeric expression, displays the
value of that expression in hexadecimal and decimal notation, and displays a
symbol that has been defined to have an equivalent value.

2. SDA> EVALUATE 1
Hex = 00000001 Decimal = 1 CHF$M_CALEXT_CANCEL

CHF$M_FPREGS_VALID
CHF$V_CALEXT_LAST
IRP$M_BUFIO
IRP$M_CLN_READY
|

(remaining symbols suppressed by default)

The EVALUATE command evaluates a numeric expression and displays the
value of that expression in hexadecimal and decimal notation. This example
also shows the symbols that have the displayed value. A finite number of
symbols are displayed by default.

3. SDA> DEFINE TEN = A
SDA> EVALUATE TEN
Hex = 0000000A Decimal = 10 IRP$B_TYPE

IRP$S_FMOD
IRP$V_MBXIO
TEN
UCB$B_TYPE
|

(remaining symbols suppressed by default)

This example shows the definition of a symbol named TEN. The EVALUATE
command then shows the value of the symbol.

Note that A, the value assigned to the symbol by the DEFINE command,
could be a symbol. When SDA evaluates a string that can be either a symbol
or a hexadecimal numeral, it first searches its symbol table for a definition of
the symbol. If SDA finds no definition for the string, it evaluates the string
as a hexadecimal number.

4. SDA> EVALUATE (((TEN * 6) + (-1/4)) + 6)
Hex = 00000042 Decimal = 66

This example shows how SDA evaluates an expression of several terms,
including symbols and rational fractions. SDA evaluates the symbol,
substitutes its value in the expression, and then evaluates the expression.
Note that the fraction -1

4 is truncated to 0.

5. SDA> EVALUATE/CONDITION 80000018
%SYSTEM-W-EXQUOTA, exceeded quota

This example shows the output of an EVALUATE/CONDITION command.

SDA–48

SDA Commands
EVALUATE

6. SDA> EVALUATE/PS 0B03
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 0B 0 0 KERN 0 USER

SDA interprets the entered value 0B03 as though it were a processor status
(PS) and displays the resulting field values.

7. SDA> EVALUATE/PTE ABCDFFEE

3 3 2 2 2 1 1 1
1 0 9 7 0 8 6 5 7 6 0
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
|1|0|02| 005E |0|X| 02|1| FF |X| 37 |0|
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
| 00000000 |
+---+
Global PTE: Owner = S, Read Prot = KESU, Write Prot = KESU, CPY = 2

GPT Index = 00000000

The EVALUATE/PTE command displays the expression ABCDFFEE as a
page table entry (PTE) and labels the fields. It also describes the status of
the page.

SDA–49

SDA Commands
EXAMINE

EXAMINE

Displays either the contents of a location or range of locations in physical memory,
or the contents of a register. Use location parameters to display specific locations
or use qualifiers to display entire process and system regions of memory.

Format

EXAMINE [/qualifier[,...]] [location]

Parameter

location
Location in memory to be examined. A location can be represented by any valid
SDA expression. (See Section 5.2 for additional information about expressions.)
To examine a range of locations, the following syntax is used:

m:n Range of locations to be examined, from m to n
m;n Range of locations to be examined, starting at m and continuing for n

bytes

The default location that SDA uses is initially 0 in the program region (P0) of the
process that was executing at the time the system failed (if you are examining
a crash dump) or your process (if you are examining the running system).
Subsequent uses of the EXAMINE command with no parameter specified increase
the last address examined by 8. Use of the /INSTRUCTION qualifier increases
the default address by 4. To examine memory locations of other processes, you
must use the SET PROCESS command.

Qualifiers

/ALL
Examines all the locations in the program, and control regions and parts of
the writable system region, displaying the contents of memory in hexadecimal
longwords. Do not specify parameters when you use this qualifier.

/CONDITION_VALUE
Examines the specified longword, displaying the message the $GETMSG system
service obtains for the value in the longword.

/INSTRUCTION
Translates the specified range of memory locations into assembly instruction
format. Each symbol in the EXAMINE expression that is defined as a procedure
descriptor is replaced with the code entry point address of that procedure, unless
you also specify the /NOPD qualifier.

/NOPD
Can be used with the /INSTRUCTION qualifier to override treating symbols
as procedure descriptors. The qualifier can be placed immediately after the
/INSTRUCTION qualifier, or following a symbol name.

/NOSUPPRESS
Inhibits the suppression of zeros when displaying memory with one of the
following qualifiers: /ALL, /P0, /P1, /SYSTEM.

SDA–50

SDA Commands
EXAMINE

/P0
Displays the entire program region for the default process. Do not specify
parameters when you use this qualifier.

/P1
Displays the entire control region for the default process. Do not specify
parameters when you use this qualifier.

/PD
Causes the EXAMINE command to treat the location specified in the EXAMINE
command as a procedure descriptor (PD). PD can also be used to qualify symbols.

/PHYSICAL
Examines physical addresses for full dumps only. The /PHYSICAL qualifier
cannot be used in combination with the /P0, /P1, or /SYSTEM qualifiers.

/PS
Examines the specified quadword, displaying its contents in the format of
a processor status. This qualifier must precede any parameters used in the
command line.

/PTE
Interprets and displays the specified quadword as a page table entry (PTE). The
display separates individual fields of the PTE and provides an overall description
of the PTE’s type.

/SYSTEM
Displays portions of the writable system region. Do not specify parameters when
you use this qualifier.

/TIME
Examines the specified quadword, displaying its contents in the format of a
system-date-and-time quadword.

Description

The following sections describe how to use the EXAMINE command.

Examining Locations
When you use the EXAMINE command to look at a location, SDA displays the
location in symbolic notation (symbolic name plus offset), if possible, and its
contents in hexadecimal and ASCII formats:

SDA> EXAMINE G6605C0
806605C0: 64646464 64646464 "dddddddd"

If the ASCII character that corresponds to the value contained in a byte is not
printable, SDA displays a period (.). If the specified location does not exist in
memory, SDA displays this message:

%SDA-E-NOTINPHYS, address : virtual data not in physical memory

SDA–51

SDA Commands
EXAMINE

To examine a range of locations, you can designate starting and ending locations
separated by a colon. For example:

SDA> EXAMINE G40:G200

Alternatively, you can specify a location and a length, in bytes, separated by a
semicolon. For example:

SDA> EXAMINE G400;16

When used to display the contents of a range of locations, the EXAMINE
command displays six columns of information:

• Each of the first four columns represents a longword of memory, the contents
of which are displayed in hexadecimal format.

• The fifth column lists the ASCII value of each byte in each longword displayed
in the previous four columns.

• The sixth column contains the address of the first, or rightmost, longword
in each line. This address is also the address of the first, or leftmost,
character in the ASCII representation of the longwords. Thus, you read
the hexadecimal dump display from right to left, and the ASCII display from
left to right.

If a series of virtual addresses does not exist in physical memory, SDA displays a
message specifying the range of addresses that were not translated.

If a range of virtual locations contains only zeros, SDA displays this message:

Zeros suppressed from ’loc1’ to ’loc2’

Decoding Locations
You can translate the contents of memory locations into instruction format by
using the /INSTRUCTION qualifier. This qualifier causes SDA to display the
location in symbolic notation (if possible) and its contents in instruction format.
The operands of decoded instructions are also displayed in symbolic notation. The
location must be longword assigned.

Examining Memory Regions
You can display an entire region of virtual memory by using one or more of the
qualifiers /ALL, /SYSTEM, /P0, and /P1 with the EXAMINE command.

Other Uses
Other uses of the EXAMINE command appear in the following examples.

SDA–52

SDA Commands
EXAMINE

Examples

1. SDA> EXAMINE/PS 7FF95E78
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 08 0 0 KERN 0 EXEC

This example shows the display produced by the EXAMINE/PS command.

2. SDA> EXAMINE/PTE FFE00000

3 3 2 2 2 1 1 1
1 0 9 7 0 8 6 5 7 6 0
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
|1|1|03| 007F |0|X| 00|0| 00 |X| 00 |0|
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
| 00000000 |
+---+
Demand Zero PTE: Owner = K, Read Prot = NONE, Write Prot = NONE, CPY = 3

The EXAMINE/PTE command displays and formats the system page table
entry at FFE00000.

SDA–53

SDA Commands
EXIT

EXIT

Exits from an SDA display or exits from the SDA utility.

Format

EXIT

Parameters

None.

Qualifiers

None.

Description

If SDA is displaying information on a video display terminal—and if that
information extends beyond one screen—SDA displays a screen overflow
prompt at the bottom of the screen:

Press RETURN for more.
SDA>

If you want to discontinue the current display at this point, enter the EXIT
command. If you want SDA to execute another command, enter that command.
SDA discontinues the display as if you entered EXIT, and then executes the
command you entered.

When the SDA> prompt is not immediately preceded by the screen overflow
prompt, entering EXIT causes your process to cease executing the SDA utility.
When issued within a command procedure (either the SDA initialization file or a
command procedure invoked with the execute command (@)), EXIT causes SDA to
terminate execution of the procedure and return to the SDA prompt.

SDA–54

SDA Commands
FORMAT

FORMAT

Displays a formatted list of the contents of a block of memory.

Format

FORMAT [/TYPE=block-type] location

Parameter

location
Location of the beginning of the data block. The location can be given as any
valid SDA expression.

Qualifier

/TYPE=block-type
Forces SDA to characterize and format a data block at location as the specified
type of data structure. The /TYPE qualifier thus overrides the default behavior of
the FORMAT command in determining the type of a data block, as described in
the Description section. The block-type can be the symbolic prefix of any data
structure defined by the operating system.

Description

The FORMAT command performs the following actions:

• Characterizes a range of locations as a system data block

• Assigns, if possible, a symbol to each item of data within the block

• Displays all the data within the block

Normally, you use the FORMAT command without the /TYPE qualifier. Used in
this manner, it examines the byte in the structure that contains the type of the
structure. In most OpenVMS Alpha data structures, this byte occurs at an offset
of 0A16 into the structure. If this byte does not contain a valid block type, the
FORMAT command displays the following message:

%SDA-E-INVBLKTYP, invalid block type in specified block

However, if this byte does contain a valid block type, SDA checks the next byte
(offset 0B16) for a secondary block type. When SDA has determined the type of
block, it searches for the symbols that correspond to that type of block.

If SDA cannot find the symbols associated with the block type it has found (or
that you specified in the /TYPE qualifier), it issues this message:

No "block-type" symbols found to format this block

If you receive this message, you may want to read additional symbols into
the SDA symbol table and retry the FORMAT command. Many symbols that
define OpenVMS Alpha data structures are contained within SDA$READ_
DIR:SYSDEF.STB. Thus, you would issue the following command:

SDA> READ SDA$READ_DIR:SYSDEF.STB

SDA–55

SDA Commands
FORMAT

If SDA issues the same message again, try reading additional symbols.
Table SDA–3 lists additional modules provided by the OpenVMS operating
system. Alternatively, you can create your own object modules with the MACRO-
32 Compiler for OpenVMS Alpha.

Certain OpenVMS Alpha data structures do not contain a block type at offset
0A16. If this byte contains information other than a block type—or the byte
does not contain a valid block type—SDA either formats the block in a totally
inappropriate way, based on the contents of 0A16 and 0B16, or displays this
message:

Invalid block type in specified block

To format such a block, you must reissue the FORMAT command, using the
/TYPE qualifier to designate a block-type.

The FORMAT command produces a 3-column display:

• The first column shows the virtual address of each item within the block.

• The second column lists each symbolic name associated with a location within
the block.

• The third column shows the contents of each item in hexadecimal format.

Example

SDA>READ SDA$READ_DIR:SYSDEF.STB
%SDA-I-READSYM, 913 symbols read from SYS$COMMON:[SYS$LDR]SYSDEF.STB
SDA>FORMAT G41F818
FFFFFFFF8041F818 UCB$L_FQFL 8041F818 UCB

UCB$L_MB_MSGQFL
UCB$L_RQFL
UCB$W_MB_SEED
UCB$W_UNIT_SEED

FFFFFFFF8041F81C UCB$L_FQBL 8041F818 UCB
UCB$L_MB_MSGQBL
UCB$L_RQBL

FFFFFFFF8041F820 UCB$W_SIZE 0110
FFFFFFFF8041F822 UCB$B_TYPE 10
FFFFFFFF8041F823 UCB$B_FLCK 2C
FFFFFFFF8041F824 UCB$L_ASTQFL 00000000

UCB$L_FPC
UCB$L_MB_W_AST
UCB$T_PARTNER

.

.

.

The READ command loads into SDA’s symbol table the symbols from
SDA$READ_DIR:SYSDEF.STB. The FORMAT command displays the data
structure that begins at G41F81816, a unit control block (UCB). If a field has
more than one symbolic name, all such names are displayed. Thus, the field that
starts at 8041F82416 has four designations: UCBL_ASTQFL, UCBL_FPC,
UCB$L_MB_W_AST, and UCB$T_PARTNER.

The contents of each field appear to the right of the symbolic name of the field.
Thus, the contents of UCB$L_FQBL are 8041F81816.

SDA–56

SDA Commands
HELP

HELP

Displays information about the SDA utility, its operation, and the format of its
commands.

Format

HELP [command-name]

Parameter

command-name
Command for which you need information.

You can also specify the following keywords in place of command-name:

Keyword Function

CPU_CONTEXT Describes the concept of CPU context as it governs
the behavior of SDA.

EXECUTE_COMMAND Describes the use of @ file to execute SDA commands
contained in a file.

EXPRESSIONS Prints a description of SDA expressions.
INITIALIZATION Describes the circumstances under which SDA

executes an initialization file when first invoked.
OPERATION Describes how to operate SDA at your terminal and

by means of the site-specific startup procedure.
PROCESS_CONTEXT Describes the concept of process context as it governs

the behavior of SDA.
SYMBOLS Describes the symbols used by SDA.

Qualifiers

None.

Description

The HELP command displays brief descriptions of SDA commands and concepts
on the terminal screen (or sends these descriptions to the file designated in a SET
OUTPUT command). You can request additional information by specifying the
name of a topic in response to the Topic? prompt.

If you do not specify a parameter in the HELP command, it lists those commands
and topics for which you can request help, as follows:

Information available:

ATTACH CLUE COPY CPU_Context DEFINE EVALUATE EXAMINE
Execute_Command EXIT Expressions FORMAT HELP
Initialization MAP Operation Process_Context READ
REPEAT SEARCH SET SHOW SPAWN Symbols VALIDATE

Topic?

SDA–57

SDA Commands
MAP

MAP

Transforms an address into an offset in a particular image.

Format

MAP address

Parameter

address
Address to be identified.

Qualifiers

None.

Description

The MAP command identifies the image name and offset corresponding to an
address. With this information, you can examine the image map to locate the
source module and program section offset corresponding to an address. MAP
searches for the specified address in executive images first. It then checks
activated images in process space to include those images installed using the
/RESIDENT qualifier of the Install utility. Finally, it checks all image-resident
sections in system space.

If the address cannot be found, MAP displays the following message:

%SDA-E-NOTINIMAGE, Address not within a system/installed image

Examples

1. SDA> MAP G90308
Image Base End Image Offset
SYS$VM
Nonpaged read only 80090000 800ABA00 00000308

Examining the image map identified by this MAP command (SYS$VM.MAP)
shows that image offset 308 falls within psect EXEC$HI_USE_PAGEABLE_
CODE because the psect goes from offset 0 to offset 45D3:

Psect Name Module Name Base End Length Align
---------- ----------- ---- --- ------ -----

$CODE$ 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

$GLOBAL$ 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

$LINK$ 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

OWN 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

$PLIT$ 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

. LITERAL . 00000000 00000000 00000000 (0.) QUAD 3 . . .
BUGCHECK_CODES 00000000 00000000 00000000 (0.) QUAD 3

SDA–58

SDA Commands
MAP

. BLANK . 00000000 00000000 00000000 (0.) OCTA 4 . . .
SYS$DOINIT 00000000 00000000 00000000 (0.) OCTA 4
EXECUTE_FAULT 00000000 00000000 00000000 (0.) OCTA 4
GSD_ROUTINES 00000000 00000000 00000000 (0.) OCTA 4
IOLOCK 00000000 00000000 00000000 (0.) OCTA 4

.

.

.
EXEC$HI_USE_PAGEABLE_CODE 00000000 000045D3 000045D4 (17876.) 2 ** 5 . . .

SYSCREDEL 00000000 0000149B 0000149C (5276.) 2 ** 5
SYSCRMPSC 000014A0 000045D3 00003134 (12596.) 2 ** 5

EXEC$NONPAGED_CODE 000045E0 0001B8B3 000172D4 (94932.) 2 ** 5 . . .
EXECUTE_FAULT 000045E0 0000483B 0000025C (604.) 2 ** 5
IOLOCK 00004840 000052E7 00000AA8 (2728.) 2 ** 5
LOCK_SYSTEM_PAGES

.

.

.

Specifically, image offset 308 is located within source module SYSCREDEL.
Therefore, to locate the corresponding code, you would look in SYSCREDEL
for offset 308 in psect EXEC$HI_USE_PAGEABLE_CODE.

2. SDA> MAP G550000
Image Base End Image Offset
SYS$DKDRIVER 80548000 80558000 00008000

In this example, the MAP command identifies the address as an offset into
an executive image that is not sliced. The base and end addresses are the
boundaries of the image.

3. SDA> MAP G550034
Image Base End Image Offset
SYS$DUDRIVER

Nonpaged read/write 80550000 80551400 00008034

In this example, the MAP command identifies the address as an offset into an
executive image that is sliced. The base and end addresses are the boundaries
of the image section that contains the address of interest.

4. SDA> MAP GF0040
Image Resident Section Base End Image Offset
MAILSHR 800F0000 80119000 00000040

The MAP command identifies the address as an offset into an image-resident
section residing in system space.

5. SDA> MAP 12000
Activated Image Base End Image Offset
MAIL 00010000 000809FF 00002000

The MAP command identifies the address as an offset into an activated image
residing in process-private space.

SDA–59

SDA Commands
MAP

6. SDA> MAP B2340
Compressed Data Section Base End Image Offset
LIBRTL 000B2000 000B6400 00080340

The MAP command identifies the address as being within a compressed
data section. When an image is installed with the Install utility using the
/RESIDENT qualifier, the code sections are mapped in system space. The data
sections are compressed into process-private space to reduce null pages or
holes in the address space left by the absence of the code section. The SHOW
PROCESS/IMAGE display shows how the data has been compressed; the
MAP command searches this information to map an address in a compressed
data section to an offset in an image.

7. SDA> MAP 7FC06000
Shareable Address Data Section Base End Image Offset
LIBRTL 7FC06000 7FC16800 00090000

The MAP command identifies the address as an offset into a shareable
address data section residing in P1 space.

8. SDA> MAP 7FC26000
Read-Write Data Section Base End Image Offset
LIBRTL 7FC26000 7FC27000 000B0000

The MAP command identifies the address as an offset into a read-write data
section residing in P1 space.

9. SDA> MAP 7FC36000
Shareable Read-Only Data Section Base End Image Offset
LIBRTL 7FC36000 7FC3F600 000C0000

The MAP command identifies the address as an offset into a shareable
read-only data section residing in P1 space.

10. SDA> MAP 7FC56000
Demand Zero Data Section Base End Image Offset
LIBRTL 7FC56000 7FC57000 000E0000

The MAP command identifies the address as an offset into a demand zero
data section residing in P1 space.

SDA–60

SDA Commands
READ

READ

Loads the global symbols contained in the specified file into the SDA symbol
table.

Format

READ

�����
����

/EXECUTIVE
/FORCE
/IMAGE
/RELOCATE
/SYMVA

�����
���	

filespec

Parameter

filespec
Name of the device, directory, and file that contains the file from which you
want to copy global symbols. The filespec defaults to SYS$DISK:[default-
dir]filename.STB, where SYS$DISK and [default-dir] represent the disk and
directory specified in your last DCL command SET DEFAULT. You must specify a
file name with all qualifiers except /EXECUTIVE.

Qualifiers

/EXECUTIVE directory-spec
Reads into the SDA symbol table all global symbols and global entry points
defined within all loadable images that make up the executive.

The directory-spec is the name of the directory containing the loadable images
of the executive. This parameter defaults to SYS$LOADABLE_IMAGES.

/FORCE
Forces SDA to read the symbols file, regardless of what other information or
qualifiers are specified. If you do not specify the /FORCE qualifier, SDA may not
read the symbols file if the specified filespec matches the image name in either
the executive loaded images or the current processes activated image list, and one
of the following conditions is true:

• The image has a symbols vector (is a shareable image), and a symbols vector
was not specified with the /SYMVA or /IMAGE qualifier.

• The image is sliced, and slicing information was not provided with the
/IMAGE qualifier.

• The shareable or executive image is not loaded at the same address it was
linked at, and the relocation information was not provided with either the
/IMAGE or /RELOCATE qualifier.

/IMAGE
Searches the executive loaded image list and the current process activated image
list for the image specified by filespec. If the image is found, the symbols are
read in using the image symbol vector (if there is one) and either slicing or
relocation information.

SDA–61

SDA Commands
READ

This is the preferred way to read in the .STB files produced by the linker.
These .STB files contain all universal and global symbols, unless SYMBOL_
TABLE=GLOBAL is in the linker options file, in which case the .STB file contains
global symbols only.

/RELOCATE=expression
Changes the relative addresses of the symbols to absolute addresses by adding
the value of expression to the value of each symbol in the symbol-table file to be
read. This qualifier changes those addresses to absolute addresses in the address
space into which the dump is mapped.

The relocation only applies to symbols with the relocate flag set. All universal
symbols must be found in the symbol vector for the image. All constants are read
in without any relocation.

If the image is sliced (image sections are placed in memory at different relative
offsets than how the image is linked), then the /RELOCATE qualifier does not
work. SDA compares the file name used as a parameter to the READ command
against all the image names in the executive loaded image list and the current
processes activated image list. If a match is found, and that image contains a
symbol vector, an error results. At this point you can either use the /FORCE
qualifier or the /IMAGE qualifier to override the error.

/SYMVA=expression
Informs SDA whether the absolute symbol vector address is for a shareable
image (SYS$PUBLIC_VECTORS.EXE) or base system image (SYS$BASE_
IMAGE.EXE). All symbols found in the file with the universal flag are found by
referencing the symbol vector (that is, the symbol value is a symbol vector offset).

Description

The READ command symbolically identifies locations in memory for which the
default symbol table (SDA$READ_DIR:SYS$BASE_IMAGE.EXE) provides no
definition. In other words, the required global symbols are located in modules
that have been compiled and linked separately from the executive. SDA extracts
no local symbols from the object module.

The file specified in the READ command can be the output of a compiler or
assembler (for example, an .OBJ file).

Note

READ can read both OpenVMS VAX and OpenVMS Alpha format files.
READ should not be used to read OpenVMS VAX format files that
contain VAX specific symbols, as this might change the behavior of other
OpenVMS Alpha SDA commands.

Most often the file is provided in SYS$LOADABLE_IMAGES. Many SDA
applications, for instance, need to load the definitions of system data structures
by issuing a READ command specifying SYSDEF.STB. Others require the
definitions of specific global entry points within the executive image.

Table SDA–3 lists the files that OpenVMS Alpha provides in SYS$LOADABLE_
IMAGES that define data structure offsets.

SDA–62

SDA Commands
READ

Table SDA–8 lists the files in SYS$LOADABLE_IMAGES that define global
locations within executive images.

Table SDA–8 Modules Defining Global Locations Within Executive Image

File Contents

DDIF$RMS_EXTENSION.EXE Support for Digital Document
Interchange Format (DDIF) file
operations.

ERRORLOG.STB Error-logging routines and system
services

EXCEPTION.STB Bugcheck and exception-handling
routines and those system services
that declare condition and exit
handlers

EXEC_INIT.STB Initialization code
F11BXQP.STB File system support
IMAGE_MANAGEMENT.STB Image activator and the related

system services
IO_ROUTINES.STB $QIO system service, related

system services (for example,
$CANCEL and $ASSIGN), and
supporting routines

LOCKING.STB Lock management routines and
system services

LOGICAL_NAMES.STB Logical name routines and system
services

MESSAGE_ROUTINES.STB System message routines and
system services (including
$SNDJBC and $GETTIM)

PROCESS_MANAGEMENT.STB Scheduler, report system event,
and supporting routines and
system services

RECOVERY_UNIT_SERVICES.STB Recovery unit system services
RMS.STB Global symbols and entry points

for RMS
SECURITY.STB Security management routines

and system services
SHELLxxK.STB Process shell
SYS$xxDRIVER.EXE Run-time device drivers
SYS$CPU_ROUTINES_xxx.EXE Processor-specific data and

initialization routines
SYS$NETWORK_SERVICES.EXE DECnet support
SYS$PUBLIC_VECTORS.EXE1 System service vector base image
SYS$VCC.STB Virtual I/O cache

1This file is located in SYS$LIBRARY.

(continued on next page)

SDA–63

SDA Commands
READ

Table SDA–8 (Cont.) Modules Defining Global Locations Within Executive
Image

File Contents

SYS$VM.STB System pager and swapper, along
with their supporting routines,
and management system services

SYSDEVICE.STB Mailbox driver and null driver
SYSGETSYI.STB Get System Information system

service ($GETSYI)
SYSLDR_DYN.STB Dynamic executive image loader
SYSLICENSE.STB Licensing system service

($LICENSE)
SYSTEM_PRIMITIVES*.STB Miscellaneous basic system

routines, including those that
allocate system memory, maintain
system time, create fork processes,
and control mutex acquisition

SYSTEM_SYNCHRONIZATION*.STB Routines that enforce
synchronization

Examples

1. SDA> READ SDA$READ_DIR:SYSDEF.STB
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYSEXE]SYSDEF.STB;1

The READ command causes SDA to add all the global symbols in SDA$READ_
DIR:SYSDEF.STB to the SDA symbol table. Such symbols are useful when you
are formatting an I/O data structure, such as a unit control block or an I/O
request packet.

2. SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

000000007FF95CD0 FFFFFFFF 80430CE0 SCH$STATE_TO_COM+00040
000000007FF95CD8 00000000 00000000
000000007FF95CE0 FFFFFFFF 81E9CB04 LNM$SEARCH_ONE_C+000E4
000000007FF95CE8 FFFFFFFF 8007A988 PROCESS_MANAGEMENT_NPRO+0E988

SP =>000000007FF95CF0 00000000 00000000
000000007FF95CF8 00000000 006080C1
000000007FF95D00 FFFFFFFF 80501FDC
000000007FF95D08 FFFFFFFF 81A5B720

.

.

.

SDA–64

SDA Commands
READ

SDA> READ/IMAGE SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT
%SDA-I-READSYM, reading symbol table SYS$COMMON:[SYS$LDR]PROCESS_MANAGEMENT.STB;1
SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

7FF95CD0 FFFFFFFF 80430CE0 SCH$FIND_NEXT_PROC
7FF95CD8 00000000 00000000
7FF95CE0 FFFFFFFF 81E9CB04 LNM$SEARCH_ONE_C+000E4
7FF95CE8 FFFFFFFF 8007A988 SCH$INTERRUPT+00068

SP => 7FF95CF0 00000000 00000000
7FF95CF8 00000000 006080C1
7FF95D00 FFFFFFFF 80501FDC
7FF95D08 FFFFFFFF 81A5B720

.

.

.

The initial SHOW STACK command contains an address that SDA resolves
into an offset from the PROCESS_MANAGEMENT executive image. The READ
command loads the corresponding symbols into the SDA symbol table such that
the reissue of the SHOW STACK command subsequently identifies the same
location as an offset within a specific process management routine.

SDA–65

SDA Commands
REPEAT

REPEAT

Repeats execution of the last command issued. On terminal devices, the KP0 key
performs the same function as the REPEAT command.

Format

REPEAT

Parameters

None.

Qualifiers

None.

Description

The REPEAT command is useful for stepping through a linked list of data
structures, or for examining a sequence of memory locations.

Example

SDA> SHOW CALL_FRAME
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF 80080CE0 MMG$RETRANGE_C+00180
Return address on stack = FFFFFFFF 8004CF30 EXCEPTION_NPRO+00F30

Registers saved on stack

7FF95E80 FFFFFFFF FFFFFFFD Saved R2
7FF95E88 FFFFFFFF 8042DBC0 Saved R3 EXCEPTION_NPRW+03DC0
7FF95E90 FFFFFFFF 80537240 Saved R4
7FF95E98 00000000 00000000 Saved R5
7FF95EA0 FFFFFFFF 80030960 Saved R6 MMG$IMGRESET_C+00200
7FF95EA8 00000000 7FF95EC0 Saved R7
7FF95EB0 FFFFFFFF 80420E68 Saved R13 MMG$ULKGBLWSL E
7FF95EB8 00000000 7FF95F70 Saved R29

.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP

SDA–66

SDA Commands
REPEAT

Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF 80F018D0 IMAGE_MANAGEMENT_PRO+078D0
Return address on stack = FFFFFFFF 8004CF30 EXCEPTION_NPRO+00F30

Registers saved on stack

7FF95F90 FFFFFFFF FFFFFFFB Saved R2
7FF95F98 FFFFFFFF 8042DBC0 Saved R3 EXCEPTION_ NPRW+03DC0
7FF95FA0 00000000 00000000 Saved R5
7FF95FA8 00000000 7FF95FC0 Saved R7
7FF95FB0 FFFFFFFF 80EF8D20 Saved R13 ERL$DEVINF O+00C20
7FF95FB8 00000000 7FFA0450 Saved R29

.

.

.
SDA> REPEAT
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF 80F016A0 IMAGE_MANAGEMENT_PRO+076A0
Return address on stack = 00000000 7FF2451C

Registers saved on stack

7FFA0470 00000000 7FEEA890 Saved R13
7FFA0478 00000000 7FFA0480 Saved R29

.

.

.

The first SHOW CALL_FRAME displays the call frame indicated by the current
FP value. Because the /NEXT_FP qualifier to the instruction displays the call
frame indicated by the saved FP in the current call frame, you can use the
REPEAT command to repeat the SHOW CALL_FRAME/NEXT_FP command and
follow a chain of call frames.

SDA–67

SDA Commands
SEARCH

SEARCH

Scans a range of memory locations for all occurrences of a specified value.

Format

SEARCH [/qualifier] range[=]expression

Parameters

range
Location in memory to be searched. A location can be represented by any valid
SDA expression. To search a range of locations, use the following syntax:

m:n Range of locations to be searched, from m to n
m;n Range of locations to be searched, starting at m and continuing for n bytes

expression
Indication of the value for which SDA is to search. SDA evaluates the
expression and searches the specified range of memory for the resulting
value. For a description of SDA expressions, see Section 5.2.

Qualifiers

/LENGTH=

���
��

QUADWORD
LONGWORD
WORD
BYTE

���
�	

Specifies the size of the expression value that the SEARCH command uses for
matching. If you do not specify the /LENGTH qualifier, the SEARCH command
uses a longword length by default.

/STEPS=

���
��

QUADWORD
LONGWORD
WORD
BYTE

���
�	

Specifies the step factor of the search through the specified memory range. After
the SEARCH command has performed the comparison between the value of
expression and memory location, it adds the specified step factor to the address
of the memory location. The resulting location is the next location to undergo the
comparison. If you do not specify the /STEPS qualifier, the SEARCH command
uses a step factor of a longword.

Description

SEARCH displays each location as each value is found. If you press Ctrl/T
while using the SEARCH command, the system displays how far the search has
progressed.

SDA–68

SDA Commands
SEARCH

Examples

1. SDA> SEARCH GB81F0;500 60068
Searching from 800B81F0 to 800B86F0 in LONGWORD steps for 00060068...
Match at 800B8210
SDA>

The SEARCH command finds the value 0060068 in the longword at
800B8210.

2. SDA> SEARCH/STEPS=BYTE 80000000;1000 6
Searching from 80000000 to 80001000 in BYTE steps for 00000006...
Match at 80000A99
SDA>

The SEARCH command finds the value 00000006 in the longword at
80000A99.

3. SDA> SEARCH/LENGTH=WORD 80000000;2000 6
Searching from 80000000 to 80002000 in LONGWORD steps for 0006...
Match at 80000054
Match at 800001EC
Match at 800012AC
Match at 800012B8
SDA>

The SEARCH command finds the value 0006 in the longword locations
80000054, 800001EC, 800012AC, and 800012B8.

SDA–69

SDA Commands
SET CPU

SET CPU

Selects a processor to become the SDA current CPU.

Format

SET CPU cpu-id

Parameter

cpu-id
Numeric value from 0016 to 1F16 indicating the identity of the processor to be
made the current CPU. If you specify a value outside this range or a cpu-id of a
processor that was not active at the time of the system failure, SDA displays the
following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

Qualifiers

None.

Description

When you invoke SDA to examine a system dump, the SDA current CPU context
defaults to that of the processor that caused the system to fail. When analyzing a
system failure from a multiprocessing system, you may find it useful to examine
the context of another processor in the configuration.

The SET CPU command changes the current SDA CPU context to that of the
processor indicated by cpu-id. The CPU specified by this command becomes the
current CPU for SDA until you exit from SDA or change SDA CPU context by
issuing one of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH
SHOW MACHINE_CHECK cpu-id

The following commands also change SDA CPU context if the process-name,
pcb-address, or index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

SDA–70

SDA Commands
SET CPU

Changing CPU context can cause an implicit change in process context under the
following circumstances:

• If there is a current process on the CPU made current, SDA changes its
process context to that of that CPU’s current process.

• If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until you set SDA
process context to that of a specific process.

See Section 4 for further discussion on the way in which SDA maintains its
context information.

You cannot use the SET CPU command when examining the running system with
SDA.

SDA–71

SDA Commands
SET FETCH

SET FETCH

Sets the default size of address data manipulated by the EXAMINE and
EVALUATE commands.

Format

SET FETCH

��

quad
long
word
byte

��

Parameter

quad
Sets the default size to 8 bytes.

long
Sets the default size to 4 bytes.

word
Sets the default size to 2 bytes.

byte
Sets the default size to 1 byte.

Qualifiers

None.

Description

Sets the default size of address data manipulated by EXAMINE and EVALUATE
commands. SDA uses the current default size unless it is overridden by use of
the ^Q, ^L, ^W, or ^B qualifier on the @ unary operator in an expression.

Examples

1. SDA> EXAMINE MMG$GQ_SHARED_VA_PTES
MMG$GQ_SHARED_VA_PTES: FFFFFFFD FF7FE000 ".‘a....."

This shows the location’s contents of a 64-bit virtual address.

2. SDA>SET FETCH LONG
SDA>EXAMINE @MMG$GQ_SHARED_VA_PTES
%SDA-E-NOTINPHYS, FFFFFFFFFF7FE000 : virtual data not in physical memory

This shows a failure because the SET FETCH LONG causes SDA to assume
it should take the lower 32 bits of the location’s contents as a longword value,
sign extend them, and use that value as an address.

SDA–72

SDA Commands
SET FETCH

3. SDA>EXAMINE @^QMMG$GQ_SHARED_VA_PTES
FFFFFFFD FF7FE000: 000001D0 40001119 "...@..."

This shows the correct results by overriding the SET FETCH LONG with the
^Q qualifier on the @ operator. SDA takes the full 64-bits of the location’s
contents and uses that value as an address.

4. SDA>SET FETCH QUAD
SDA>EXAMINE @MMG$GQ_SHARED_VA_PTES
FFFFFFFD FF7FE000: 000001D0 40001119 "...@..."

This shows the correct results by changing the default fetch size to a
quadword.

SDA–73

SDA Commands
SET LOG

SET LOG

Initiates or discontinues the recording of an SDA session in a text file.

Format

SET [NO]LOG filespec

Parameter

filespec
Name of the file in which you want SDA to log your commands and their output.
The default filespec is SYS$DISK:[default_dir]filename.LOG, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last DCL
command SET DEFAULT. You must specify a file name.

Qualifiers

None.

Description

The SET LOG command echoes the commands and output of an SDA session to a
log file. The SET NOLOG command terminates this behavior.

The following differences exist between the SET LOG command and the SET
OUTPUT command:

• When logging is in effect, your commands and their results are still displayed
on your terminal. The SET OUTPUT command causes the displays to be
redirected to the output file such that they no longer appear on the screen.

• If an SDA command requires that you press Return to produce successive
screens of display, the log file produced by SET LOG will record only those
screens that are actually displayed. SET OUTPUT, however, sends the entire
output of all SDA commands to its listing file.

• The SET LOG command produces a log file with a default file type of .LOG;
the SET OUTPUT command produces a listing file whose default file type is
.LIS.

• The SET LOG command does not record output from the HELP command
in its log file. The SET OUTPUT command can record HELP output in its
listing file.

• The SET LOG command does not record SDA error messages in its log file.
The SET OUTPUT command can record SDA error messages in its listing file.

• The SET OUTPUT command generates a table of contents, each item of
which refers to a display written to its listing file. SET OUTPUT also
produces running heads for each page of output. The SET LOG command
does not produce these items in its log file.

Note that, if you have used the SET OUTPUT command to redirect output to a
listing file, you cannot use a SET LOG command to direct the same output to a
log file.

SDA–74

SDA Commands
SET OUTPUT

SET OUTPUT

Redirects output from SDA to the specified file or device.

Format

SET OUTPUT filespec

Parameter

filespec
Name of the file to which SDA is to send the output generated by its commands.
The default filespec is SYS$DISK:[default_dir]filename.LIS, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last DCL
command SET DEFAULT. You must specify a file name.

Description

When you use the SET OUTPUT command to send the SDA output to a file or
device, SDA continues displaying the SDA commands that you enter but sends
the output generated by those commands to the file or device you specify. (See the
description of the SET LOG command for a list of differences between the SET
LOG and SET OUTPUT commands.)

When you finish directing SDA commands to an output file and want to return to
interactive display, issue the following command:

SDA> SET OUTPUT SYS$OUTPUT

If you use the SET OUTPUT command to send the SDA output to a listing file,
SDA builds a table of contents that identifies the displays you selected and places
the table of contents at the beginning of the output file. The SET OUTPUT
command formats the output into pages and produces a running head at the top
of each page.

SDA–75

SDA Commands
SET PROCESS

SET PROCESS

Selects a process to become the SDA current process.

Format

SET PROCESS

���
��

/ADDRESS=pcb-address
process-name
/INDEX=nn
/SYSTEM

���
�	

Parameter

process-name
Name of the process to become the SDA current process. The process-name is
a string containing up to 15 uppercase or lowercase characters; numerals, the
dollar sign ($), and the underscore (_) can also be included in the string. If
you include characters other than these, you must enclose the entire string in
quotation marks (" ").

Qualifiers

/ADDRESS=pcb-address
Specifies the process control block (PCB) address of a process in order to display
information about the process.

/INDEX=nn
Specifies the process to be made current by its index into the system’s list of
software process control blocks (PCBs). You can supply either of the following
values for nn:

• The process index itself

• The process identification (PID) or extended PID longword, from which SDA
extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY.

/SYSTEM
Specifies the new current process by the system process control block (PCB). The
system PCB and process header (PHD) parallel the data structures that describe
processes. They contain the system working set list, global section table, and
other systemwide data.

Description

When you issue an SDA command such as EXAMINE, SDA displays the contents
of memory locations in its current process. To display any information about
another process, you must change the current process with the SET PROCESS
command.

When you invoke SDA to analyze a crash dump, the process context defaults
to that of the process that was current at the time of the system failure. If the
failure occurred on a multiprocessing system, SDA sets the CPU context to that

SDA–76

SDA Commands
SET PROCESS

of the processor that caused the system to fail. The process context is set to that
of the process that was current on that processor.

When you invoke SDA to analyze a running system, its process context defaults
to that of the current process, that is, the one executing SDA.

The SET PROCESS command changes the current SDA process context to that
of the process indicated by process-name, pcb-address, or /INDEX=nn. The
process specified by this command becomes the current process for SDA until
you exit from SDA or change SDA process context by issuing one of the following
commands:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

When you analyze a crash dump from a multiprocessing system, changing process
context may require a switch of CPU context as well. For instance, if you issue
a SET PROCESS command for a process that is current on another CPU, SDA
automatically changes its CPU context to that of the CPU on which that process
is current. The following commands can have this effect if process-name,
pcb-address, or index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

See Section 4 for further discussion on the way in which SDA maintains its
context information.

Example

SDA> SHOW PROCESS
Process index: 0012 Name: ERRFMT Extended PID: 00000052

Process status: 02040001 RES,PHDRES,INTER

status2: 00000001 QUANTUM_RESCHED

SDA–77

SDA Commands
SET PROCESS

PCB address 80D772CO JIB address 80556600
PHD address 80477200 Swapfile disk address 01000F01
KTB vector address 80D775AC HWPCB address 81260080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 00010004 Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000001 Previous ASN 000000000000002E
Initial process priority 4 Delete pending count 0
open files allowed left 100 Direct I/O count/limit 150/150
UIC [00001,000004] Buffered I/O count/limit 149/150
Abs time of last event 0069D34E BUFIO byte count/limit 99424/99808
AST’s remaining 247 # of threads 1
Swapped copy of LEFC0 00000000 Timer entries allowed left 63
Swapped copy of LEFC1 00000000 Active page table count 4
Global cluster 2 pointer 00000000 Process WS page count 32
Global cluster 3 pointer 00000000 Global WS page count 31

This SHOW PROCESS command shows the current process to be ERRFMT, and
displays information from its PCB and job information block (JIB).

SDA–78

SDA Commands
SET RMS

SET RMS

Changes the options shown by the SHOW PROCESS/RMS command.

Format

SET RMS =(option[,...])

Parameter

option
Data structure or other information to be displayed by the SHOW PROCESS
/RMS command. Table SDA–9 lists those keywords that may be used as options.

Table SDA–9 SET RMS Command Keywords for Displaying Process RMS
Information

Keyword Meaning

[NO]ALL[:ifi]1 All control blocks (default)
[NO]ASB Asynchronous save block
[NO]BDB Buffer descriptor block
[NO]BDBSUM BDB summary page
[NO]BLB Buffer lock block
[NO]BLBSUM Buffer lock summary page
[NO]CCB Channel control block
[NO]DRC Directory cache
[NO]FAB File access block
[NO]FCB File control block
[NO]FWA File work area
[NO]GBD Global buffer descriptor
[NO]GBDSUM GBD summary page
[NO]GBH Global buffer header
[NO]GBSB Global buffer synchronization block
[NO]IDX Index descriptor
[NO]IFAB[:ifi]1 Internal FAB
[NO]IFB[:ifi]1 Internal FAB
[NO]IRAB Internal RAB
[NO]IRB Internal RAB
[NO]JFB Journaling file block
[NO]NAM Name block
[NO]NWA Network work area
[NO]RAB Record access block

1The optional parameter ifi is an internal file identifier. The default ifi (ALL) is all the files the
current process has opened.

(continued on next page)

SDA–79

SDA Commands
SET RMS

Table SDA–9 (Cont.) SET RMS Command Keywords for Displaying Process
RMS Information

Keyword Meaning

[NO]RLB Record lock block
[NO]RU Recovery unit structures, including the recovery unit block

(RUB), recovery unit stream block (RUSB), and recovery
unit file block (RUFB)

[NO]SFSB Shared file synchronization block
[NO]WCB Window control block
[NO]XAB Extended attribute block
[NO]* Current list of options displayed by the SHOW RMS

command

The default option is option=ALL:ALL,NOPIO, designating for display by the
SHOW PROCESS/RMS command all structures for all files related to the process
image I/O.

To list more than one option, enclose the list in parentheses and separate options
by commas. You can add a given data structure to those displayed by ensuring
that the list of keywords begins with the asterisk (*) symbol. You can delete
a given data structure from the current display by preceding its keyword with
‘‘NO.’’

Qualifiers

None.

Description

The SET RMS command determines the data structures to be displayed by the
SHOW PROCESS/RMS command. (See the examples included in the discussion
of the SHOW PROCESS command for information provided by various displays.)
You can examine the options that are currently selected by issuing a SHOW RMS
command.

SDA–80

SDA Commands
SET RMS

Examples

1. SDA> SHOW RMS
RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,XAB,RLB,
BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB

Display RMS structures for all IFI values.

SDA> SET RMS=IFB
SDA> SHOW RMS

RMS Display Options: IFB

Display RMS structures for all IFI values.

The first SHOW RMS command shows the default selection of data structures
that are displayed in response to a SHOW PROCESS/RMS command. The SET
RMS command selects only the IFB to be displayed by subsequent SET/PROCESS
commands.

2. SDA> SET RMS=(*,BLB,BLBSUM,RLB)
SDA> SHOW RMS

RMS Display Options: IFB,RLB,BLB,BLBSUM

Display RMS structures for all IFI values.

The SET RMS command adds the BLB, BLBSUM, and RLB to the list of data
structures currently displayed by the SHOW PROCESS/RMS command.

3. SDA> SET RMS=(*,NORLB,IFB:05)
SDA> SHOW RMS

RMS Display Options: IFB,BLB,BLBSUM
Display RMS structures only for IFI=5.

The SET RMS command removes the RLB from those data structures displayed
by the SHOW PROCESS/RMS command and causes only information about the
file with the ifi of 5 to be displayed.

4. SDA> SET RMS=(*,PIO)

The SET RMS command indicates that the data structures designated for display
by SHOW PROCESS/RMS be associated with process-permanent I/O instead of
image I/O.

SDA–81

SDA Commands
SET SIGN_EXTEND

SET SIGN_EXTEND

Enables or disables the sign extension of 32-bit addresses.

Format

SET SIGN_EXTEND
� on

off

�

Parameters

on
Enables automatic sign extension of 32-bit addresses with bit 31 set. This is the
default.

off
Disables automatic sign extension of 32-bit addresses with bit 31 set.

Qualifiers

None.

Description

The 32-bit S0/S1 addresses need to be sign extended to access 64-bit S0/S1 space.
To do this, specify explicitly sign-extended addresses, or set the sign extend to on,
which is the default.

However, to access addresses in P2 space, addresses must not be sign extended.
To do this, specify explicitly a zero in front of the address, or set the sign extend
to off.

Examples

1. SDA> set sign_extend on
SDA> examine 80400000
FFFFFFFF 80400000: 23DEFF90 4A607621

This shows the SET SIGN_EXTEND command as ON.

2. SDA>set sign_extend off
SDA> examine 80400000
%SDA-E-NOTINPHYS, 0000000080400000: virtual data not in physical memory

This shows the SET SIGN_EXTEND command as OFF.

SDA–82

SDA Commands
SHOW CALL_FRAME

SHOW CALL_FRAME

Displays the locations and contents of the longwords representing a procedure
call frame.

Format

SHOW CALL_FRAME
�

starting-address
/NEXT_FP

�

Parameter

starting-address
Expression representing the starting address of the procedure call frame to be
displayed. The default starting-address is the longword contained in the FP
register of the SDA current process.

Qualifier

/NEXT_FP
Displays the procedure call frame starting at the address stored in the FP
longword of the last call frame displayed by this command. You must have issued
a SHOW CALL_FRAME command previously in the current SDA session in order
to use the /NEXT_FP qualifier to the command.

Description

Whenever a procedure is called, information is stored on the stack of the calling
routine in the form of a procedure call frame. The SHOW CALL_FRAME
command displays the locations and contents of the call frame. The starting
address of the call frame is determined from the specified starting address, the
/NEXT_FP qualifier, or by default. The default starting address is contained in
the SDA current process FP register.

When using the SHOW CALL_FRAME/NEXT_FP command to follow a chain of
call frames, SDA signals the end of the chain by this message:

%SDA-E-NOTINPHYS, 00000000 : not in physical memory

This message indicates that the saved FP in the previous call frame has a zero
value.

Example

SDA> SHOW CALL_FRAME
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF 837E9F10 EXCEPTION_PRO+01F10
Return address on stack = FFFFFFFF 837E8A1C EXE$CONTSIGNAL_C+0019C

SDA–83

SDA Commands
SHOW CALL_FRAME

Registers saved on stack

7FF95F98 FFFFFFFF FFFFFFFB Saved R2
7FF95FA0 FFFFFFFF 8042AEA0 Saved R3 EXCEPTION_NPRW+040A0
7FF95FA8 00000000 00000002 Saved R5
7FF95FB0 FFFFFFFF 804344A0 Saved R13 SCH$CLREF+00188
7FF95FB8 00000000 7FF9FC00 Saved R29

.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF 800FA388 RMS_NPRO+04388
Return address on stack = FFFFFFFF 80040BFC EXCEPTION_NPRO+00BFC

Registers saved on stack

7FF99F60 FFFFFFFF FFFFFFFD Saved R2
7FF99F68 FFFFFFFF 80425BA0 Saved R3 EXCEPTION_NPRW+03DA0
7FF99F70 FFFFFFFF 80422020 Saved R4 EXCEPTION_NPRW+00220
7FF99F78 00000000 00000000 Saved R5
7FF99F80 FFFFFFFF 835C24A8 Saved R6 RMS_PRO+004A8
7FF99F88 00000000 7FF99FC0 Saved R7
7FF99F90 00000000 7FF9FDE8 Saved R8
7FF99F98 00000000 7FF9FDF0 Saved R9
7FF99FA0 00000000 7FF9FE78 Saved R10
7FF99FA8 00000000 7FF9FEBC Saved R11
7FF99FB0 FFFFFFFF 837626E0 Saved R13 EXE$OPEN_MESSAGE+00088
7FF99FB8 00000000 7FF9FD70 Saved R29
.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF 835C2438 RMS_PRO+00438
Return address on stack = FFFFFFFF 83766020 EXE$OPEN_MESSAGE_C+00740

Registers saved on stack

7FF9FD88 00000000 7FF9FDA4 Saved R2
7FF9FD90 00000000 7FF9FF00 Saved R3
7FF9FD98 00000000 7FFA0050 Saved R29

The SHOW CALL_FRAME commands in this SDA session follow a chain of call
frames from that specified in the FP of the SDA current process.

SDA–84

SDA Commands
SHOW CLUSTER

SHOW CLUSTER

Displays connection manager and system communications services (SCS)
information for all nodes in a cluster.

Format

SHOW CLUSTER

�
/CSID=csid
/NODE=name
/SCS

�

Parameters

None.

Qualifiers

/CSID=csid
Displays VMScluster system information for a specific VMScluster member node.
The value csid is the cluster system identification number (CSID) of the node to
be displayed. You can find the CSID for a specific node in a cluster by examining
the CSB list display of the SHOW CLUSTER command. Other SDA displays
refer to a system’s CSID. For instance, the SHOW LOCK command indicates
where a lock is mastered or held by CSID.

/NODE=name
Displays cluster information on a particular VMScluster member node which
is specified by its SCS node name. This is mutually exclusive with the /CSID
qualifier.

/SCS
Displays a view of the cluster as seen by SCS.

Description

By default, the SHOW CLUSTER command provides a view of the VMScluster
system from the perspective of the connection manager. When you use the /SCS
qualifier, however, SHOW CLUSTER provides a view of the cluster from the
perspective of the port driver or drivers.

VMScluster as Seen by the Connection Manager
The SHOW CLUSTER command provides a series of displays.

The VMScluster summary display supplies the following information:

• Number of votes required for a quorum

• Number of votes currently available

• Number of votes allocated to the quorum disk

• Status summary indicating whether or not a quorum is present

The CSB list displays information about the VMScluster system blocks (CSBs)
currently in operation; there is one CSB assigned to each node of the cluster. For
each CSB, the CSB list displays the following information:

• Address of the CSB

SDA–85

SDA Commands
SHOW CLUSTER

• Name of the VMScluster node it describes

• CSID associated with the node

• Number of votes (if any) provided by the node

• State of the CSB

• Status of the CSB

For information about the state and status of nodes, see the description of the
ADD command in the OpenVMS System Management Utilities Reference Manual.

The cluster block display includes information recorded in the cluster block
(CLUB), including a list of activated flags, a summary of quorum and vote
information, and other data that applies to the cluster from the perspective of the
node for which the SDA is being run.

The cluster failover control block display provides detailed information
concerning the cluster failover control block (CLUFCB), and the cluster quorum
disk control block display provides detailed information from the cluster
quorum disk control block (CLUDCB).

Subsequent displays provide information for each CSB listed previously in the
CSB list display. Each display shows the state and flags of a CSB, as well as
other specific node information. (See the OpenVMS System Management Utilities
Reference Manual for information about the flags for VMScluster nodes.)

VMScluster as Seen by the Port Driver
The SHOW CLUSTER/SCS command provides a series of displays.

The SCS listening process directory lists those processes that are listening for
incoming SCS connect requests. For each of these processes, this display records
the following information:

• Address of its directory entry

• Connection ID

• Name

• Explanatory information, if available

The SCS systems summary display provides the system block (SB) address,
node name, system type, system ID, and the number of connection paths for each
SCS system. An SCS system can be a VMScluster member, HSC, UDA, or other
such device.

Subsequent displays provide detailed information for each of the system blocks
and the associated path blocks. The system block displays include the maximum
message and datagram sizes, local hardware and software data, and SCS
poller information. Path block displays include information that describes the
connection, including remote functions and other path-related data.

SDA–86

SDA Commands
SHOW CLUSTER

Example

SDA> SHOW CLUSTER
VMScluster data structures

--- VMScluster Summary ---

Quorum Votes Quorum Disk Votes Status Summary
------ ----- ----------------- --------------

2 2 1 qf_dynvote,qf_vote,quorum

--- CSB list ---

Address Node CSID Votes State Status
------- ---- ---- ----- ----- ------

805FA780 FLAM5 00010006 0 local member,qf_same,qf_noaccess
8062C400 ROMRDR 000100ED 1 open member,qf_same,qf_watcher,qf_active
8062C780 VANDQ1 000100EF 0 open member,qf_same,qf_noaccess

--- Cluster Block (CLUB) 805FA380 ---

Flags: 16080005 cluster,qf_dynvote,init,qf_vote,qf_newvote,quorum

Quorum/Votes 2/2 Last transaction code 02
Quorum Disk Votes 1 Last trans. number 596
Nodes 3 Last coordinator CSID 000100EF
Quorum Disk 1DIA0 Last time stamp 31-DEC-1992
Found Node SYSID 00000000FC03 17:26:35
Founding Time 3-JAN-1993 Largest trans. id 00000254

21:04:21 Resource Alloc. retry 0
Index of next CSID 0007 Figure of Merit 00000000
Quorum Disk Cntrl Block 805FADC0 Member State Seq. Num 0203
Timer Entry Address 00000000 Foreign Cluster 00000000
CSP Queue empty
--- Cluster Failover Control Block (CLUFCB) 805FA4C0 ---

Flags: 00000000

Failover Step Index 00000037 CSB of Synchr. System 8062C780
Failover Instance ID 00000254

--- Cluster Quorum Disk Control Block (CLUDCB) 805FADC0 ---

State : 0002 qs_rem_act
Flags : 0100 qf_noaccess
CSP Flags : 0000

Iteration Counter 0 UCB address 00000000
Activity Counter 0 TQE address 805FAE00
Quorum file LBN 00000000 IRP address 00000000

Watcher CSID 000100ED

--- FLAM5 Cluster System Block (CSB) 805FA780 ---

State: 0B local
Flags: 070260AA member,qf_same,qf_noaccess,selected,local,status_rcvd,send_status
Cpblty: 00000000

Quorum/Votes 1/0 Next seq. number 0000 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd 0000 Resend queue 00000000
CSID 00010006 Last ack. seq num 0000 Block xfer Q. 805FA7D8
Eco/Version 0/23 Unacked messages 0 CDT address 00000000
Reconn. time 00000000 Ack limit 0 PDT address 00000000
Ref. count 2 Incarnation 1-JAN-1993 TQE address 00000000
Ref. time 31-AUG-1992 00:00:00 SB address 80421580

17:26:35 Lock mgr dir wgt 0 Current CDRP 00000001

SDA–87

SDA Commands
SHOW CLUSTER

--- ROMRDR Cluster System Block (CSB) 8062C400 ---

State: 01 open
Flags: 0202039A member,qf_same,cluster,qf_active,selected,status_rcvd
Cpblty: 00000000

Quorum/Votes 2/1 Next seq. number B350 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd E786 Resend queue 00000000
CSID 000100ED Last ack. seq num B350 Block xfer Q. 8062C458
Eco/Version 0/22 Unacked messages 1 CDT address 805E8870
Reconn. time 00000000 Ack limit 3 PDT address 80618400
Ref. count 2 Incarnation 19-AUG-1992 TQE address 00000000
Ref. time 19-AUG-1992 16:15:00 SB address 8062C140

16:17:08 Lock mgr dir wgt 0 Current CDRP 00000000

--- VANDQ1 Cluster System Block (CSB) 8062C780 ---

State: 01 open
Flags: 020261AA member,qf_same,qf_noaccess,cluster,selected,status_rcvd
Cpblty: 00000000

Quorum/Votes 1/0 Next seq. number 32B6 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd A908 Resend queue 00000000
CSID 000100EF Last ack. seq num 32B6 Block xfer Q. 8062C7D8
Eco/Version 0/23 Unacked messages 1 CDT address 805E8710
Reconn. time 00000000 Ack limit 3 PDT address 80618400
Ref. count 2 Incarnation 17-AUG-1992 TQE address 00000000
Ref. time 19-AUG-1992 15:37:06 SB address 8062BCC0

16:21:22 Lock mgr dir wgt 0 Current CDRP 00000000

This example illustrates the default output of the SHOW CLUSTER command.

SDA–88

SDA Commands
SHOW CONNECTIONS

SHOW CONNECTIONS

Displays information about all active connections between System
Communications Services (SCS) processes or a single connection.

Format

SHOW CONNECTIONS

�
/ADDRESS=cdt-address
/NODE=name
/SYSAP=name

�

Parameters

None.

Qualifiers

/ADDRESS=cdt-address
Displays information contained in the connection descriptor table (CDT) for a
specific connection. You can find the cdt-address for any active connection on
the system in the CDT summary page display of the SHOW CONNECTIONS
command. In addition, CDT addresses are stored in many individual data
structures related to SCS connections. These data structures include class driver
request packets (CDRPs) and unit control blocks (UCBs) for class drivers that use
SCS, and cluster system blocks (CSBs) for the connection manager.

/NODE=name
Displays all CDTs associated with the specified remote SCS node name.

/SYSAP=name
Displays all CDTs associated with the specified local SYSAP.

Description

The SHOW CONNECTIONS command provides a series of displays.

The CDT summary page lists information regarding each connection on the
local system, including the following:

• CDT address

• Name of the local process with which the CDT is associated

• Connection ID

• Current state

• Name of the remote node (if any) to which it is currently connected

The CDT summary page concludes with a count of CDTs that are free and
available to the system.

SHOW CONNECTIONS next displays a page of detailed information for each
active CDT listed previously.

SDA–89

SDA Commands
SHOW CONNECTIONS

Example

SDA> SHOW CONNECTIONS

--- CDT Summary Page ---

CDT Address Local Process Connection ID State Remote Node
----------- ------------- ------------- ----- -----------

805E7ED0 SCS$DIRECTORY FF120000 listen
805E8030 MSCP$TAPE FF120001 listen
805E8190 VMS$VMScluster FF120002 listen
805E82F0 MSCP$DISK FF120003 listen
805E8450 SCA$TRANSPORT FF120004 listen
805E85B0 MSCP$DISK FF150005 open VANDQ1
805E8710 VMS$VMScluster FF120006 open VANDQ1
805E8870 VMS$VMScluster FF120007 open ROMRDR
805E89D0 MSCP$DISK FF120008 open ROMRDR
805E8C90 VMS$DISK_CL_DRVR FF12000A open ROMRDR
805E8DF0 VMS$DISK_CL_DRVR FF12000B open VANDQ1
805E8F50 VMS$TAPE_CL_DRVR FF12000C open VANDQ1

Number of free CDT’s: 188

--- Connection Descriptor Table (CDT) 805E7ED0 ---

State: 0001 listen Local Process: SCS$DIRECTORY
Blocked State: 0000

Local Con. ID FF120000 Datagrams sent 0 Message queue 805E7F00
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q. 805E7F08
Receive Credit 0 Datagram discard 0 PB address 00000000
Send Credit 0 Messages Sent 0 PDT address 00000000
Min. Rec. Credit 0 Messages Rcvd. 0 Error Notify 804540D0
Pend Rec. Credit 0 Send Data Init. 0 Receive Buffer 00000000
Initial Rec. Credit 0 Req Data Init. 0 Connect Data 00000000
Rem. Sta. 000000000000 Bytes Sent 0 Aux. Structure 00000000
Rej/Disconn Reason 0 Bytes rcvd 0
Queued for BDLT 0 Total bytes map 0
Queued Send Credit 0

--- Connection Descriptor Table (CDT) 805E8030 ---

State: 0001 listen Local Process: MSCP$TAPE
Blocked State: 0000

Local Con. ID FF120001 Datagrams sent 0 Message queue 805E8060
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q. 805E8068
Receive Credit 0 Datagram discard 0 PB address 00000000
Send Credit 0 Messages Sent 0 PDT address 00000000
Min. Rec. Credit 0 Messages Rcvd. 0 Error Notify 804540D0
Pend Rec. Credit 0 Send Data Init. 0 Receive Buffer 00000000
Initial Rec. Credit 0 Req Data Init. 0 Connect Data 00000000
Rem. Sta. 000000000000 Bytes Sent 0 Aux. Structure 00000000
Rej/Disconn Reason 0 Bytes rcvd 0
Queued for BDLT 0 Total bytes map 0
Queued Send Credit 0

.

.

.

This example shows the default output of the SHOW CONNECTIONS command.

SDA–90

SDA Commands
SHOW CPU

SHOW CPU

Displays information about the state of a processor at the time of the system
failure.

Format

SHOW CPU [cpu-id]

Parameter

cpu-id
Numeric value from 00 to 1F16 indicating the identity of the processor for which
context information is to be displayed. If you specify a value outside this range,
or you specify the cpu-id of a processor that was not active at the time of the
system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the cpu-id parameter, the SHOW CPU command performs an implicit
SET CPU command, making the processor indicated by cpu-id the current CPU
for subsequent SDA commands. (See the description of the SET CPU command
and Section 4 for information on how this can affect the CPU context—and
process context—in which SDA commands execute.)

Qualifiers

None.

Description

The SHOW CPU command displays system failure information about the
processor specified by cpu-id or, by default, the SDA current CPU, as defined
in Section 4. You cannot use the SHOW CPU command when examining the
running system with SDA.

The SHOW CPU command produces several displays. First, there is a brief
description of the system failure and its environment that includes the following:

• Reason for the bugcheck.

• Name of the currently executing process. If no process has been scheduled on
this processor, SDA displays the following message:

Process currently executing: no processes currently scheduled on the processor

• File specification of the image executing within the current process (if there is
a current process).

• Interrupt priority level (IPL) of the processor at the time of the system
failure.

Next, the general registers display shows the contents of the processor’s integer
registers (R0 to R30), and the AI, RA, PV, FP, PC, and PS at the time of the
system failure.

SDA–91

SDA Commands
SHOW CPU

The processor registers display consists of the following parts:

• Common processor registers

• Processor-specific registers

• Stack pointers

The first part of the processor registers display includes registers common to all
Alpha processors, which are used by the operating system to maintain the current
process virtual address space, system space, or other system functions. This part
of the display includes the following registers:

• Hardware privileged context block base register (PCBB)

• System control block base register (SCBB)

• Software interrupt summary register (SISR)

• Address space number register (ASN)

• AST summary register (ASTSR)

• AST enable register (ASTEN)

• Interrupt priority level register (IPL)

• Processor priority level register (PRBR)

• Page table base register (PTBR)

The last part of the display includes the four stack pointers: the pointers of
the kernel, executive, supervisor, and user stacks (KSP, ESP, SSP, and USP,
respectively).

The SHOW CPU command concludes with a listing of the spin locks, if any,
owned by the processor at the time of the system failure, reproducing some of the
information given by the SHOW SPINLOCKS command. The spinlock display
includes the following information:

• Name of the spin lock.

• Address of the spinlock data structure (SPL).

• IPL and rank of the spin lock.

• Number of processors waiting for this processor to release the spin lock.

• Indication of the depth of this processor’s ownership of the spin lock. A
number greater than 1 indicates that this processor has nested acquisitions of
the spin lock.

SDA–92

SDA Commands
SHOW CPU

Example

SDA> SHOW CPU
CPU 00 Processor crash information

CPU 00 reason for Bugcheck: UNXINTEXC, Unexpected interrupt or exception

Process currently executing on this CPU: UETCLIG00master

Current image file: 1DKB400:[SYS64.SYSCOMMON.][SYSTEST]UETCLIG00.EXE;1

Current IPL: 13 (decimal)

CPU database address: 805AE000

General registers:

R0 = 00000000 00000001 R1 = 00000000 0000003B R2 = FFFFFFFF 8004FF88
R3 = FFFFFFFF 80428070 R4 = 00000000 00000001 R5 = 00000000 00000D04
R6 = 00000000 7FF78BE6 R7 = 00000000 00000064 R8 = FFFFFFFF 806CEA96
R9 = 00000000 00000030 R10 = 00000000 00002270 R11 = 00000000 0C040087
R12 = 00000000 00000001 R13 = FFFFFFFF 80435270 R14 = FFFFFFFF 80434AE0
R15 = FFFFFFFF 80403200 R16 = 00000000 00000410 R17 = 00000000 00000001
R18 = 00000000 000005D0 R19 = 00000000 000000EA R20 = FFFFFFFF 80403200
R21 = FFFFFFFF 8040C810 R22 = 00000000 000000FA R23 = FFFFFFFF 8040C7F0
R24 = FFFFFFFF 8040C7E0 AI = 00000000 00000000 RA = 00000000 00000014
PV = 00000000 0000003B R28 = 00000000 0000003B FP = 00000000 7FF95D00
PC = FFFFFFFF 80050020 PS = 00000000 00000D04

Processor Internal Registers:

ASN = 00000000 00000000 ASTEN/ASTSR = 0000000E
IPL = 0000000D PCBB = 00000000 03742080 PRBR = FFFFFFFF 805AE000
PTBR = 00000000 00000F34 SCBB = 00000000 00000500 SISR = 00000000 00000000

KSP = 00000000 7FF95A00
ESP = 00000000 7FF9A000
SSP = 00000000 7FFA04C0
USP = 00000000 7FE719F0

Spinlocks currently owned by CPU 00

SCHED Address 80427880
Owner CPU ID 00000000 IPL 00000008
Ownership Depth 00000001 Rank 00000012
CPUs Waiting 00000000 Index 00000032

This example shows the default output of the SHOW CPU command.

SDA–93

SDA Commands
SHOW CRASH

SHOW CRASH

In the analysis of a system failure, displays information about the state of the
system at the time of the failure. In the analysis of a running system, provides
information identifying the system.

Format

SHOW CRASH

Parameters

None.

Qualifiers

None.

Description

The SHOW CRASH command has two different manifestations, depending on
whether it is issued in the analysis of a running system or a system failure.

In either case, if the SDA current CPU context is not that of the processor that
signaled the bugcheck, the SHOW CRASH command performs an implicit SET
CPU command to make that processor the SDA current CPU. (See the description
of the SET CPU command and Section 4 for a discussion of how this can affect
the CPU context—and process context—in which SDA commands execute.)

When used during the analysis of a running system, the SHOW CRASH command
produces a display that describes the system and the version of OpenVMS Alpha
that it is running. The system crash information display contains the following
information:

• Date and time that the ANALYZE/SYSTEM command was issued (titled
‘‘Time of system crash’’ in the display)

• Name and version number of the operating system

• Major and minor IDs of the operating system

• Identity of the Alpha system, including an indication of its cluster
membership

• CPU ID of the primary CPU

• Exception display for fatal system bugchecks or PGFIPLHI bugchecks

When used during the analysis of a system failure, the SHOW CRASH command
produces several displays that identify the system and describe its state at the
time of the failure.

The system crash information display in this context provides the following
information:

• Date and time of the system failure.

• Name and version number of the operating system.

• Major and minor IDs of the operating system.

• Identity of the system.

SDA–94

SDA Commands
SHOW CRASH

• CPU IDs of both the primary CPU and the CPU that initiated the bugcheck.
In an Alpha uniprocessor system, these IDs are identical.

• For each active processor in the system, the name of the bugcheck that caused
the system failure. Generally, there will be only one significant bugcheck in
the system. All other processors typically display the following as their reason
for taking a bugcheck:

CPUEXIT, Shutdown requested by another CPU

Subsequent screens of the SHOW CRASH command display information about
the state of each active processor on the system at the time of the system failure.
The information in these screens is identical to that produced by the SHOW CPU
command, including the general-purpose registers, processor-specific registers,
stack pointers, and records of spinlock ownership. The first such screen presents
information about the processor that caused the failure; others follow according to
the numeric order of their CPU IDs.

Examples

1. SDA> SHOW CRASH
System crash information

Time of system crash: 24-JAN-1995 10:16:12.71

Version of system: OpenVMS Alpha VERSION 7.0

System Version Major ID/Minor ID: 1/0

System type: Flamingo/EV4

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
CPU 00 -- SSRVEXCEPT, Unexpected system service exception

System State at Time of Exception

Exception Frame:

R2 = 00000000 00001200
R3 = FFFFFFFF 80425BA0
R4 = FFFFFFFF 80422020
R5 = FFFFFFFF 80444C88
R6 = 00000000 7FFD0080
R7 = 00000000 00000000
PC = FFFFFFFF 8010D480
PS = 30000000 0000000A

%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=00000008, PC=8010D480,
PSL=0000000A

Saved Registers in Mechanism Array

R0 = 00000000 7FFD01E8 R1 = 00000000 00000000 R16 = 00000000 7FFD008C
R17 = 00000000 00000001 R18 = 00000000 00000000 R19 = 00000000 00000000
R20 = 00000000 00000001 R21 = 00000000 7FFF0140 R22 = 00000000 00000002
R23 = 00000000 00000008 R24 = 00000000 00000000 R25 = 00000000 00000003
R26 = FFFFFFFF 8010974C R27 = 00000000 000001FF R28 = 00000000 000001FF

CPU 00 reason for Bugcheck: SSRVEXCEPT, Unexpected system service exception

SDA–95

SDA Commands
SHOW CRASH

Process currently executing on this CPU: SERVER_001C

Current IPL: 0 (decimal)

CPU database address: 805AE000

General registers:

R0 = 00000000 00000004 R1 = FFFFFFFF 80405C30 R2 = 00000000 00001200
R3 = FFFFFFFF 80425BA0 R4 = FFFFFFFF 80422020 R5 = FFFFFFFF 80444C88
R6 = 00000000 7FFD0080 R7 = 00000000 00000000 R8 = 00000000 7FF9FDF0
R9 = 00000000 00000000 R10 = 00000000 00000002 R11 = 00000000 7FFD0080
R12 = 00000000 00000008 R13 = FFFFFFFF 8044DB78 R14 = 00000000 7FFD0080
R15 = 00000000 7FEE1C20 R16 = 00000000 000003C0 R17 = 00000000 7FF99C80
R18 = 00000000 7FF99E40 R19 = FFFFFFFF 80425F28 R20 = 00000000 00000001
R21 = 00000000 7FFF0140 R22 = FFFFFFFF 8335C000 R23 = 00000000 7FF9A000
R24 = 00000000 7FFF0028 AI = 00000000 00000002 RA = FFFFFFFF 837E9F3C
PV = FFFFFFFF 80405C30 R28 = FFFFFFFF 837E8810 FP = 00000000 7FF99C10
PC = FFFFFFFF 80002010 PS = 00000000 00000009

Processor Internal Registers:

ASN = 00000000 00000000 ASTEN/ASTSR = 0000000F
IPL = 00000000 PCBB = 00000000 02F28080 PRBR = FFFFFFFF 805AE000
PTBR = 00000000 000012DA SCBB = 00000000 00000500 SISR = 00000000 00000000

KSP = 00000000 7FF96000
ESP = 00000000 7FF99BF8
SSP = 00000000 7FF9FD70
USP = 00000000 7FE6B780

No spinlocks currently owned by CPU 00

This long display reflects the output of the SHOW CRASH command within the
analysis of a system failure.

2. SDA> SHOW CRASH
System crash information

Time of system crash: 19-JAN-1995 10:16:12.71

Version of system: OpenVMS Alpha VERSION 7.0

System Version Major ID/Minor ID: 1/0

System type: Flamingo/EV4

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
CPU 00 -- PGFIPLHI, Page fault with IPL too high

System State at Time of Page Fault:

Page fault for address 00000000 7FFAB000 occured at IPL: 18
Memory management flags: 80000000 00000000 (data write)

SDA–96

SDA Commands
SHOW CRASH

Exception Frame:

R2 = 00000000 7FFF0200
R3 = 00000000 00000000
R4 = FFFFFFFF 805DC700
R5 = 00000000 7FF8C000
R6 = FFFFFFFF 808C4F40
R7 = 00000000 00000000
PC = FFFFFFFF 80BB4A2C EXE$PRCDELMSG_C+005FC
PS = 30000000 00000200

FFFFFFFF80BB4A1C: BLE R0,#X000009
FFFFFFFF80BB4A20: BIS R31,R1,R17
FFFFFFFF80BB4A24: ADDQ R2,#X04,R16
FFFFFFFF80BB4A28: BIS R31,R0,R25

PC => FFFFFFFF80BB4A2C: INSQUEL/D
FFFFFFFF80BB4A30: LDQ R24,#X0078(R13)
FFFFFFFF80BB4A34: BIS R31,R25,R0
FFFFFFFF80BB4A38: SUBL R0,#X01,R0
FFFFFFFF80BB4A3C: ADDL R1,R24,R1

PS =>
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 30 00000000000 02 0 0 KERN 0 KERN

This display reflects the output of a SHOW CRASH command within the analysis
of a PGFIPLHI bugcheck.

SDA–97

SDA Commands
SHOW DEVICE

SHOW DEVICE

Displays a list of all devices in the system and their associated data structures,
or displays the data structures associated with a given device or devices.

Format

SHOW DEVICE
�

device-name
/ADDRESS=ucb-address

�

Parameter

device-name
Device or devices for which data structures are to be displayed. There are several
uses of the device-name parameter.

To Display the Structures
For . . . Action

All devices in the system Do not specify a device-name (for example,
SHOW DEVICE).

A single device Specify an entire device-name (for example,
SHOW DEVICE VTA20).

All devices of a certain type
on a single controller

Specify only the device type and controller
designation (for example, SHOW DEVICE RTA
or SHOW DEVICE RTB).

All devices of a certain type
on any controller

Specify only the device type (for example, SHOW
DEVICE RT).

All devices whose names
begin with a certain
character or character string

Specify the character or character string (for
example, SHOW DEVICE D).

All devices on a single node
or HSC

Specify only the node name or HSC name (for
example, SHOW DEVICE GREEN$).

Qualifier

/ADDRESS=ucb-address
Indicates the device for which data structure information is to be displayed by the
address of its unit control block (UCB). The /ADDRESS qualifier is an alternate
method of supplying a device name to the SHOW DEVICE command. If both the
device-name parameter and the /ADDRESS qualifier appear in a single SHOW
DEVICE command, SDA responds only to the parameter or qualifier that appears
first.

Description

The SHOW DEVICE command produces several displays taken from system data
structures that describe the devices in the system configuration.

If you use the SHOW DEVICE command to display information for more than
one device or one or more controllers, it initially produces the DDB (device data
block) list display to provide a brief summary of the devices for which it renders
information in subsequent screens.

SDA–98

SDA Commands
SHOW DEVICE

Information in the DDB list appears in five columns, the contents of which are
as follows:

• Address of the device data block (DDB)

• Controller name

• Name of the ancillary control process (ACP) associated with the device

• Name of the device driver

• Address of the driver prologue table (DPT)

The SHOW DEVICE command then produces a display of information pertinent
to the device controller. This display includes information gathered from the
following structures:

• Device data block (DDB)

• Primary channel request block (CRB)

• Interrupt dispatch block (IDB)

• Driver dispatch table (DDT)

If the controller is an HSC controller, SHOW DEVICE also displays information
from its system block (SB) and each path block (PB).

Many of these structures contain pointers to other structures and driver routines.
Most notably, the DDT display points to various routines located within driver
code, such as the start I/O routine, unit initialization routine, and cancel I/O
routine.

For each device unit subject to the SHOW DEVICE command, SDA displays
information taken from its unit control block, including a list of all I/O request
packets (IRPs) in its I/O request queue. For certain mass storage devices, SHOW
DEVICE also displays information from the primary class driver data block
(CDDB), the volume control block (VCB), and the ACP queue block (AQB). For
units that are part of a shadow set, SDA displays a summary of shadow set
membership.

As it displays information for a given device unit, SHOW DEVICE defines the
following symbols as appropriate:

Symbol Meaning

UCB Address of unit control block
SB Address of system block
ORB Address of object rights block
DDB Address of device data block
DDT Address of driver dispatch table
CRB Address of channel request block
AMB Associated mailbox UCB pointer
IRP Address of I/O request packet
2P_UCB Address of alternate UCB for dual-pathed device
LNM Address of logical name block for mailbox
PDT Address of port descriptor table

SDA–99

SDA Commands
SHOW DEVICE

Symbol Meaning

CDDB Address of class driver descriptor block for MSCP served device
2P_CDDB Address of alternate CDDB for MSCP served device
RWAITCNT Resource wait count for MSCP served device
VCB Address of volume control block for mounted device

If you are examining a driver-related system failure, you may find it helpful to
issue a SHOW STACK command after the appropriate SHOW DEVICE command,
examining the stack for any of these symbols. Note, however, that although the
SHOW DEVICE command defines those symbols relevant to the last device unit
it has displayed, and redefines symbols relevant to any subsequently displayed
device unit, it does not undefine symbols. (For instance, SHOW DEVICE DUA0
defines the symbol PDT, but SHOW DEVICE MBA0 does not undefine it, even
though the PDT structure is not associated with a mailbox device.) In order to
maintain the accuracy of such symbols that appear in the stack listing, use the
DEFINE command to modify the symbol name. For example:

SDA> DEFINE DUA0_PDT PDT
SDA> DEFINE MBA0_UCB UCB

See the descriptions of the READ and FORMAT commands for additional
information on defining and examining the contents of device data structures.

Examples

1. SDA>SHOW DEVICE/ADDRESS=8041E540
OPA0 VT300_Series UCB address 8041E540

Device status: 00000010 online
Characteristics: 0C040007 rec,ccl,trm,avl,idv,odv

00000200 nnm

Owner UIC [000001 ,000004] Operation count 160 ORB address 8041E4E8
PID 00010008 Error count 0 DDB address 8041E3F8

Class/Type 42/70 Reference count 2 DDT address 8041E438
Def. buf. size 80 BOFF 00000001 CRB address 8041E740
DEVDEPEND 180093A0 Byte count 0000012C I/O wait queue 8041E5AC
DEVDEPND2 FB101000 SVAPTE 80537B80
DEVDEPND3 00000000 DEVSTS 00000001
FLCK index 3A
DLCK address 8041E880

*** I/O request queue is empty ***

This example reproduces the SHOW DEVICE display for a single device unit,
OPA0. Whereas this display lists information from the UCB for OPA0, including
some addresses of key data structures and a list of pending I/O requests for the
unit, it does not display information about the controller or its device driver. To
display the latter information, specify the device-name as OPA (for example,
SHOW DEVICE OPA).

SDA–100

SDA Commands
SHOW DEVICE

2. SDA> SHOW DEVICE DU
I/O data structures

DDB list

Address Controller ACP Driver DPT
------- ---------- --- ------ ---

80D0B3C0 BLUES$DUA F11XQP SYS$DKDRIV 807735B0
8000B2B8 RED$DUA F11XQP SYS$DKDRIV 807735B0
80D08BA0 BIGTOP$DUA F11XQP SYS$DKDRIV 807735B0
80D08AE0 TIMEIN$DUA F11XQP SYS$DKDRIV 807735B0

.

.

.
Press RETURN for more.

.

.

.

This excerpt from the output of the SHOW DEVICE DU command illustrates
the format of the DDB list display. In this case, the DDB list concerns itself
with those devices whose device type begins with DU. It displays devices of these
types attached to various HSCs (RED$ and BLUES$) and systems in a cluster
(BIGTOP$ and TIMEIN$).

SDA–101

SDA Commands
SHOW EXECUTIVE

SHOW EXECUTIVE

Displays the location and size of each loadable image that makes up the
executive.

Format

SHOW EXECUTIVE

Parameters

None.

Qualifiers

None.

Description

The executive consists of two base images and a number of other executive
images.

The base image called SYS$BASE_IMAGE.EXE contains:

• Symbol vectors for universal executive routines and data cells

• Procedure descriptors for universal executive routines

• Globally referenced data cells

The base image called SYS$PUBLIC_VECTORS.EXE contains:

• Symbol vectors for system service procedures

• Procedure descriptors for system services

• Transfer routines for system services

The base images are the pathways to routines and system service procedures in
the other executive images.

The SHOW EXECUTIVE command lists the location and size of each executive
image. It can enable you to determine whether a given memory address falls
within the range occupied by a particular image. (Table SDA–8 describes the
contents of each executive image.)

SHOW EXECUTIVE also displays the nonzero length image section base address
and length. The base address and length are blank for sliced loadable executive
images.

By default, SDA displays each location within an executive image as an
offset from the beginning of one of the loadable images; for instance,
EXCEPTION+00282. Similarly, those symbols that represent system services
point to the transfer routine in SYS$PUBLIC_VECTORS.EXE and not to the
actual system service procedure. When tracing the course of a system failure
through the listings of modules contained within a given executive image, you
may find it useful to load into the SDA symbol table all global symbols and global
entry points defined within one or all executive images. See the description of the
READ command for additional information.

SDA–102

SDA Commands
SHOW EXECUTIVE

The SHOW EXECUTIVE command usually shows all components of the
executive, as illustrated in the following example. In rare circumstances, you
may obtain a partial listing. For instance, once it has loaded the EXCEPTION
module (in the INIT phase of system initialization), the system can successfully
post a bugcheck exception and save a crash dump before loading all the executive
images normally loaded.

Example

SDA> SHOW EXECUTIVE
OpenVMS Alpha Executive Layout

Image Base End Length SymVec

SYSWSDRIVER
Nonpaged read only 802DE000 802DF400 00001400
Nonpaged read/write 80CB2600 80CB2E00 00000800
Linked 1-OCT-1995 13:07 LDRIMG 80DEEA00

SYS$IKDRIVER
Nonpaged read only 802D2000 802DC800 0000A800
Nonpaged read/write 80CB1000 80CB2600 00001600
Linked 1-OCT-1995 13:56 LDRIMG 80DE9840

SYS$IMDRIVER
Nonpaged read only 802CC000 802D0A00 00004A00
Nonpaged read/write 80CB0400 80CB1000 00000C00
Linked 1-OCT-1995 13:56 LDRIMG 80DE9580

SYS$INDRIVER
Nonpaged read only 802BC000 802CAA00 0000EA00
Nonpaged read/write 80CAF400 80CB0400 00001000
Linked 1-OCT-1995 13:57 LDRIMG 80DE9100

SYS$RTTDRIVER
Nonpaged read only 802B8000 802BB600 00003600
Nonpaged read/write 80CAEA00 80CAF400 00000A00
Linked 30-SEP-1995 22:17 LDRIMG 80DE4A00

SYS$CTDRIVER
Nonpaged read only 802AC000 802B6C00 0000AC00
Nonpaged read/write 80CACE00 80CAEA00 00001C00
Linked 30-SEP-1995 22:10 LDRIMG 80DE4440

NDDRIVER
Nonpaged read only 802A8000 802AB600 00003600
Nonpaged read/write 80CAC400 80CAC300 00000A00
Linked 30-SEP-1995 22:14 LDRIMG 80D143CO

NETDRIVER
Nonpaged read only 80290000 802A7800 00017800
nonpaged read/write 80CA9A00 80CAC400 00002A00
Paged read only 8028E000 8028E200 00000200
Linked 30-SEP-1995 22:12 LDRIMG 80D13E80

SYS$SODRIVER
Nonpaged read only 8028A000 8028DC00 00003C00
Nonpaged read/write 80CA8800 80CA9A00 00001200
Linked 30-SEP-1995 22:14 LDRIMG 80DBEAC0

SYS$YRDRIVER
Nonpaged read only 80282000 80288200 00006200

The SHOW EXECUTIVE command displays the location and length of executive
images.

SDA–103

SDA Commands
SHOW HEADER

SHOW HEADER

Displays the header of the dump file.

Format

SHOW HEADER

Parameters

None.

Qualifiers

None.

Description

The SHOW HEADER command produces a 10-column display, each line of which
displays both the hexadecimal and ASCII representation of the contents of
the dump file header in 32-byte intervals. Thus, the first eight columns, when
read right to left, represent the hexadecimal contents of 32 bytes of the header;
the ninth column, when read left to right, records the ASCII equivalent of the
contents. (Note that the period [.] in this column indicates an ASCII character
that cannot be displayed.)

After it displays the contents of the first header block, the SHOW HEADER
command displays the hexadecimal contents of the saved error log buffers.

See the OpenVMS AXP Internals and Data Structures manual for a discussion of
the information contained in the dump file header.

Example

ZK−6789A−GE

SDA–104

SDA Commands
SHOW HEADER

The SHOW HEADER command displays the contents of the dump file’s header.
Ellipses indicate hexadecimal information omitted from the display; two slashes
(//) indicate an interruption in the ASCII display.

SDA–105

SDA Commands
SHOW LAN

SHOW LAN

Displays information contained in various local area network (LAN) data
structures.

Format

SHOW LAN [/qualifier[,...]]

Parameters

None.

Qualifiers

/CLIENT=name
Specifies that information be displayed for the specified client. Valid client
designators are SCA, DECNET, LAT, MOPRC, TCPIP, DIAG, ELN, BIOS, LAST,
USER, ARP, MOPDL, LOOP, BRIDGE, DNAME, ENCRY, DTIME, and LTM.
The /CLIENT, /DEVICE, and /UNIT qualifiers are synonymous and mutually
exclusive.

/CLUEXIT
Specifies that cluster protocol information be displayed.

/COUNTERS
Specifies that the LAN station block (LSB) and unit control block (UCB) counters
be displayed.

/CSMACD
Specifies that Carrier Sense Multiple Access with Collision Detect (CSMA/CD)
information for the LAN be displayed. By default, both CSMA/CD and Fiber
Distributed Data Interface (FDDI) information is displayed.

/DEVICE=name
Specifies that information be displayed for the specified device, unit, or client.
For each LAN adapter on the system there is one device and multiple users of
that device called units or clients. Device designators are specified in the format
XXdn, where XX is the type of device, d is the device letter, and n is the unit
number. The device letter and unit number are optional. The first unit, which
is always present, is the template unit. These are specified as indicated in this
example, for a DEMNA which is called EX:

/DEVICE=EX—display all EX devices on the system
/DEVICE=EXA—display the first EX device only
/DEVICE=EXA0—display the first EXA unit
/DEVICE=SCA—display SCA unit
/DEVICE=LAT—display LAT units

Valid client names are listed in the /CLIENT=name qualifier. The /CLIENT,
/DEVICE, and /UNIT qualifiers are synonymous and mutually exclusive.

/ERRORS
Specifies that the LSB and UCB error counters be displayed.

SDA–106

SDA Commands
SHOW LAN

/FDDI
Specifies that Fiber Distributed Data Interface (FDDI) information for the LAN
be displayed. By default, both CSMA/CD and FDDI information is displayed.

/FULL
Specifies that all information from the LAN, LSB, and UCB data structures be
displayed.

/SUMMARY
Specifies that only a summary of LAN information (a list of flags, LSBs, UCBs,
and base addresses) be printed. This is the default.

/TIMESTAMPS
Specifies the print time information (such as start and stop times and error times)
from the device and unit data structures. SDA displays the data in chronological
order.

/UNIT=name
Specifies that information be displayed for the specified unit. See the descriptions
for /CLIENT=name and /DEVICE=name qualifiers.

Description

The SHOW LAN command displays information contained in various local area
network (LAN) data structures. By default, or when the /SUMMARY qualifier is
specified, SHOW LAN displays a list of flags, LSBs, UCBs, and base addresses.
When the /FULL qualifier is specified, SHOW LAN displays all information found
in the LAN, LSB, and UCB data structures.

Examples

1. SDA> SHOW LAN/FULL
LAN Data Structures

-- LAN Information Summary 12-FEB-1995 11:08:45 --

LAN flags: 00000002 LAN_INIT

LAN module version 1 First SVAPTE FFE06960
LAN address 805636C0 Number of PTEs 2
Number of stations 1 SVA of first page 81A58000
First LSB address 8057B240

-- LAN CSMACD Network Management 12-FEB-1995 11:08:45 --

Creation time None Times created 0
Deletion time None Times deleted 0
Module EAB 00000000 Latest EIB 00000000
Port EAB 00000000
Station EAB 00000000
NM flags: 00000000

-- LAN FDDI Network Management 12-FEB-1995 11:08:45 --

Creation time None Times created 0
Deletion time None Times deleted 0
Module EAB 00000000 Link EAB 00000000
Port EAB 00000000 PHY port EAB 00000000
Station EAB 00000000
NM flags: 00000000

SDA–107

SDA Commands
SHOW LAN

-- ESA Device Information 12-FEB-1995 11:08:45 --

LSB address 8057B240 Active unit count 3
ADP address 80572600 IDB address 8054F900
Driver version 00000001 01050019 Driver code address 8046BDE0
Device1 version 00000000 00000000 Device1 code address 00000000
Device2 version 00000000 00000000 Device2 code address 00000000
LAN version 00000001 01050037 LAN code address 8046BFE0
Device name ES_LANCE DLL type CSMACD
MOP ID 39 MOP name SVA
HW version 00000000 HW serial Not supplied

Flags: 00000000
Char: 00000000
Status: 00000003 INITED,RUN

-- ESA Device Information (cont) 12-FEB-1995 11:08:45 --

Fork block R3 00000000 00000000 Alt fork block R3 00000000 00000000
Fork pending flag 00000000 Receive ring size 16
Min receive buffers 9 Max receive buffers 17
Put rcv ptr/index 00000000 Get rcv ptr/index 0000000D
Put xmt ptr/index 8057BBB8 Get xmt ptr/index 8057BBB8
Put cmd ptr/index 00000000 Get cmd ptr/index 00000000
Put uns ptr/index 00000000 Get uns ptr/index 00000000
Put smt ptr/index 00000000 Get smt ptr/index 00000000
RBufs owned by dev 0 All multicast state OFF
XEnts owned by dev 0 Promiscuous mode OFF
XEnts owned by host 4 Hardware mode 00000000
Controller mode NORMAL Hardware address 08-00-2B-1D-B7-58
Internal loopback OFF Physical address AA-00-04-00-BD-FD
CRC generation mode ON

-- ESA Device Information (cont) 12-FEB-1995 11:08:45 --

DAT stage 00000000 DAT xmt status 0000003C 003C0001
DAT number started 1 DAT xmt complete 11-FEB 14:09:57
DAT number failed 0 DAT rcv found None

Creation time None Create count 0
Deletion time None Enable count 0
Enabled time None Fatal error count 0
Disabled time None Number of ports 0

Last fork sched 12-FEB 11:08:44 Last fork time 12-FEB 11:08:44
Last receive 12-FEB 11:08:44 Last transmit 12-FEB 11:08:41
Last CRC error None Last exc collision None
Last length error None Last loss of carrier None
Last USB error None Last late collision None
Last UUB error 12-FEB 10:19:25 Prev fatal error None
Last fatal error None

-- ESA Device Information (cont) 12-FEB-1995 11:08:45 --

System buffer quota 0 Min 1st chain segment 0
Additional quota 1 Min transmit length 0
Maximum quota 8 Receive alignment 0
Device dependent longword 00000000 Receive buffer size 1518
restarts pending 0 Dev xmt header size 0

NMgmt advised buffer count 0 Events logged 0
EIB address 00000000 NMgmt assigned adr None

SDA–108

SDA Commands
SHOW LAN

-- ESA Queue Information 12-FEB-1995 11:08:45 --

Control hold queue 8057B428 Status: Valid, empty
Control request queue 8057B430 Status: Valid, empty
Control pending queue 8057B438 Status: Valid, empty
Transmit request queue 8057B420 Status: Valid, empty
Transmit pending queue 8057B440 Status: Valid, empty
Receive buffer queue 8057B470 Status: Valid, 10 elements
Receive pending queue 8057B448 Status: Valid, empty
Post process queue 8057B450 Status: Valid, empty
Delay queue 8057B458 Status: Valid, empty
Auto restart queue 8057B460 Status: Valid, empty
Netwrk mgmt hold queue 8057B468 Status: Valid, empty

-- ESA Multicast Address Information 12-FEB-1995 11:08:45 --

AB-00-00-04-00-00

-- ESA Unit Summary 12-FEB-1995 11:08:45 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
ESA0 8054F980
ESA2 80584E00 Eth 60-03 DECnet 0017 STRTN,LEN,UNIQ,STRTD
ESA3 805A2980 Eth 60-04 LAT 0015 STRTN,UNIQ,STRTD
ESA5 805A7780 Eth 80-41 LAST 0015 STRTN,UNIQ,STRTD

-- ESA Counters Information 12-FEB-1995 11:08:45 --

Octets received 95212950 Octets sent 43030048
PDUs received 684755 PDUs sent 170284
Mcast octets received 78765974 Mcast octets sent 478125
Mcast PDUs received 581005 Mcast PDUs sent 6385
Unrec indiv dest PDUs 0 PDUs sent, deferred 13511
Unrec mcast dest PDUs 0 PDUs sent, one coll 10136
Data overruns 0 PDUs sent, mul coll 10554
Unavail station buffs 0 Excessive collisions 0
Last USB time None Last exc collision None
Unavail user buffers 2 Carrier check failure 0
Last UUB time 12-FEB 10:19:25 Last carrier failure None
CRC errors 0 Short circuit failure 0
Seconds since zeroed 75467 Open circuit failure 0
Station failures 0 Transmits too long 0

-- ESA Counters Information (cont) 12-FEB-1995 11:08:45 --

Last CRC time None Late collisions 0
Last CRC srcadr None Last late collision None
Alignment errors 0 Coll detect chk fail 0
Frames too long 0 Send data length err 0
Rcv data length err 0 Frame size errors 0

Fatal error count 0 Last fatal error None
Restart failures 0 Prev fatal error None
Power failures 0 Last error CSR 00000000
Transmit timeouts 0 Fatal error code None
Control timeouts 0 Prev fatal error None
Invalid length 0

SDA–109

SDA Commands
SHOW LAN

-- ESA Counters Information (cont) 12-FEB-1995 11:08:45 --

Internal counters address 8057C0E0 Internal counter 1 134704
Internal counters size 28 Internal counter 2 0
No work transmits 0 Internal counter 3 0
Buffer_Adr transmits 0 Internal counter 4 0
SVAPTE/BOFF transmits 0 Internal counter 5 0
Global page transmits 0 Internal counter 6 0
Bad PTE transmits 0 Internal counter 7 0
Loopback sent 0 Loopback failures 0
System ID sent 250 System ID failures 0
ReqCounters sent 0 ReqCounters failures 0

-- ESA0 Template Unit Information 12-FEB-1995 11:08:45 --

LSB address 8057B240 Error count 0
VCIB address 00000000 Controller mode NORMAL
Starter’s PID 00000000 Internal loopback OFF
Creator’s PID 00000000 Access mode EXCLUSV
LAN medium CSMACD Promiscuous mode OFF
Packet format Ethernet All multicast mode OFF
Eth protocol type 00-00 Padding mode ON
802E protocol ID 00-00-00-00-00 Automatic restart OFF
802.2 SAP 00000000 Allow prom client ON
802.2 Group SAPs A8,FA,0D,A7 Can change address OFF
Maximum header size 0 802.2 service OFF
Device buffer size 1500 CRC generation mode ON
Maximum buffer size 1500 Maintenance state ON
Hrdwre buffer quota 9 User transmit FC ON
Rcv buffer quota 0 User receive FC OFF
Rcv buffs to queue 1 Default FC value 00
Hardware address 08-00-2B-1D-B7-58 Physical address FF-FF-FF-FF-FF-FF

-- ESA2 60-03 (DECnet) Unit Information 12-FEB-1995 11:08:45 --

LSB address 8057B240 Error count 0
VCIB address 00000000 Controller mode NORMAL
Starter’s PID 0001000C Internal loopback OFF
Creator’s PID 0001000C Access mode EXCLUSV
LAN medium CSMACD Promiscuous mode OFF
Packet format Ethernet All multicast mode OFF
Eth protocol type 60-03 Padding mode ON
802E protocol ID 00-00-00-00-00 Automatic restart OFF
802.2 SAP 00000000 Allow prom client ON
802.2 Group SAPs A8,FA,0D,A7 Can change address OFF
Maximum header size 16 802.2 service OFF
Device buffer size 1500 CRC generation mode ON
Maximum buffer size 1498 Maintenance state ON
Hrdwre buffer quota 9 User transmit FC ON
Rcv buffer quota 15040 User receive FC OFF
Rcv buffs to queue 10 Default FC value 00
Hardware address 08-00-2B-1D-B7-58 Physical address AA-00-04-00-BD-FD

SDA–110

SDA Commands
SHOW LAN

-- ESA2 60-03 (DECnet) Counters & Misc Info 12-FEB-1995 11:08:45 --

Last receive 12-FEB 11:08:40 Last transmit 12-FEB 11:08:39
Octets received 14227801 Octets sent 41873076
PDUs received 64065 PDUs sent 121441
Mcast octets received 1576501 Mcast octets sent 302160
Mcast PDUs received 10077 Mcast PDUs sent 5036
Unavail user buffer 2 Last start attempt None
Last UUB time 12-FEB 10:19:25 Last start done 11-FEB 14:09:58
Multicast not enabled 0 Last start failed None
User buff too small 0 Share UCB total quota 0

Receive IRP queue 80585070 Status: Valid, 1 element
Shared users queue 80585060 Status: Valid, empty
Receive pending queue 80585068 Status: Valid, empty

-- ESA2 60-03 (DECnet) Multicast Address Info 12-FEB-1995 11:08:45 --

Multicast address table, embedded:
AB-00-00-04-00-00

The SHOW LAN/FULL command displays information for all LAN, LSB, and
UCB data structures.

2. SDA> SHOW LAN/TIME

-- LAN History Information 12-FEB-1995 11:08:48 --

12-FEB 11:08:47.92 ESA Last receive
12-FEB 11:08:47.92 ESA Last fork scheduled
12-FEB 11:08:47.92 ESA Last fork time
12-FEB 11:08:47.77 ESA5 LAST Last receive
12-FEB 11:08:47.72 ESA3 LAT Last receive
12-FEB 11:08:41.25 ESA Last transmit
12-FEB 11:08:41.25 ESA5 LAST Last transmit
12-FEB 11:08:40.02 ESA2 DECnet Last receive
12-FEB 11:08:39.14 ESA2 DECnet Last transmit
12-FEB 11:08:37.39 ESA3 LAT Last transmit
12-FEB 10:19:25.31 ESA Last unavail user buffer
12-FEB 10:19:25.31 ESA2 DECnet Last unavail user buffer
11-FEB 14:10:20.09 ESA5 LAST Last start completed
11-FEB 14:10:02.16 ESA3 LAT Last start completed
11-FEB 14:09:58.44 ESA2 DECnet Last start completed
11-FEB 14:09:57.44 ESA Last DAT transmit

The SHOW LAN/TIME command displays print time information from device
and unit data structures.

SDA–111

SDA Commands
SHOW LOCK

SHOW LOCK

Displays information about all lock management locks in the system, or about a
specified lock.

Format

SHOW LOCK

���
��

lock-id
/ALL
/CACHED
/NAME=name

���
�	

Parameter

lock-id
Name of a specific lock.

Qualifiers

/ALL
Lists all locks that exist in the system. This is the default behavior of the SHOW
LOCK command.

/CACHED
Displays locks that are no longer valid. The memory for these locks is kept
around so that later requests for locks can use them. Cached locks are not
displayed in the other SHOW LOCK commands.

/NAME=name
Displays a specified lock with the given name.

Description

The SHOW LOCK command displays the information described in Table SDA–10
for each lock management lock in the system, or for the lock indicated by lock-id.
(Use the SHOW SPINLOCKS command to display information about spin locks.)
You can obtain a similar display for the locks owned by a specific process by
issuing the appropriate SHOW PROCESS/LOCKS command. See the OpenVMS
Programming Concepts Manual for additional information.

You can display information about the resource to which a lock is queued by
issuing the SHOW RESOURCE command specifying the resource’s lock-id.

Table SDA–10 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS
Displays

Display Element Description

Process Index1 Index in the PCB array to a pointer to the process
control block (PCB) of the process that owns the lock.

Name1 Name of the process that owns the lock.

1This display element is produced only by the SHOW PROCESS/LOCKS command.

(continued on next page)

SDA–112

SDA Commands
SHOW LOCK

Table SDA–10 (Cont.) Contents of the SHOW LOCK and SHOW PROCESS
/LOCKS Displays

Display Element Description

Extended PID1 Clusterwide identification of the process that owns the
lock.

Lock ID Identification of the lock.
PID Systemwide identification of the lock.
Flags Information specified in the request for the lock.
Par. ID Identification of the lock’s parent lock.
Granted at Lock mode at which the lock was granted.
Sublocks Identification numbers of the locks that the lock owns.
LKB Address of the lock block (LKB). If a blocking AST

has been enabled for this lock, the notation ‘‘BLKAST’’
appears next to the LKB address.

Resource Dump of the resource name. The two leftmost columns
of the dump show its contents as hexadecimal values,
the least significant byte being represented by the
rightmost two digits. The rightmost column represents
its contents as ASCII text, the least significant byte
being represented by the leftmost character.

Status Status of the lock, information used internally by the
lock manager.

Length Length of the resource name.
Mode Processor access mode of the namespace in which the

resource block (RSB) associated with the lock resides.
Owner Owner of the resource. Certain resources owned by the

operating system list ‘‘System’’ as the owner. Resources
owned by a group have the number (in octal) of the
owning group in this field.

Copy Indication of whether the lock is mastered on the local
system or is a process copy.

1This display element is produced only by the SHOW PROCESS/LOCKS command.

Example

SDA> SHOW LOCK
Lock database

Lock id: 00010001 PID: 00000000 Flags: NOQUEUE SYNCSTS SYSTEM
Par. id: 00000000 Granted at EX CVTSYS
Sublocks: 1
LKB: 80D0B8A0
Resource: 5F535953 24535953 SYS$SYS_ Status: NOQUOTA
Length 16 00000000 4C774449 IDwL....
Exec. mode 00000000 00000000
System 00000000 00000000
Local copy

SDA–113

SDA Commands
SHOW LOCK

Lock id: 00010004 PID: 00000000 Flags: CONVERT SYNCSTS CVTSYS
Par. id: 00000000 Granted at CR
Sublocks: 16
LKB: 80D091A0 BLKAST
Resource: 4D567624 42313146 F11B$vVM Status: NOQUOTA
Length 18 20204E41 4A353153 S15JAN
Kernel mode 00000000 00002020
System 00000000 00000000
Local copy

Lock id: 00280009 PID: 00000000 Flags: VALBLK CONVERT SYNCSTS
Par. id: 00000000 Granted at CR NOQUOTA CVTSYS
Sublocks: 0
LKB: 80CDA880
Resource: 52414B5F 24535953 SYS$_KAR Status: MSTCPY
Length 17 30415544 24455441 ATE$DUA0
Kernel mode 00000000 0000003A :.......
System 00000000 00000000
Master copy of lock 001C00F5 on system 000100A1

.

.

.
SDA> SHOW RESOURCE/LOCK=280009
Resource database

Address of RSB: 80BD2150 Group grant mode: CR
Parent RSB: 00000000 Conversion grant mode: CR
Sub-RSB count: 0 BLKAST count: 0
Value block: 00000000 00000000 00000000 00000019 Seq. #: 0000002D
Resource: 52414B5F 24535953 SYS$_KAR
Length 17 30415544 24455441 ATE$DUA0 CSID: 00000000
Kernel mode 00000000 0000003A :.......
System 00000000 00000000

Granted queue (Lock ID / Gr mode):
00DA1269 CR 00280009 CR 0094054D CR
00270B9F CR 00D70BFE CR 000D0F4F CR
000D1017 CR 00601418 CR 01131450 CR
000F1964 CR 000200DF CR

Conversion queue (Lock ID / Gr/Rq mode):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode):
*** EMPTY QUEUE ***

This SDA session shows the output of the SHOW LOCK command for several
locks. The SHOW RESOURCE command, executed for the last displayed lock,
verifies that the lock is in the resource’s granted queue, among many other locks
given concurrent read (CR) access to the resource. (See Table SDA–17 for a full
explanation of the contents of the display of the SHOW RESOURCE command.)

SDA–114

SDA Commands
SHOW MACHINE_CHECK

SHOW MACHINE_CHECK

Displays the contents of the stored machine check frame. This command is valid
for the DEC 4000 Alpha, DEC 7000 Alpha, and DEC 10000 Alpha computers only.

Format

SHOW MACHINE_CHECK [/FULL] [cpu-id]

Parameter

cpu-id
Numeric value from 00 to 1F16 indicating the identity of the processor for which
context information is to be displayed. This parameter changes the SDA current
CPU (the default) to the CPU specified with cpu-id. If you specify a value outside
this range, or you specify the cpu-id of a processor that was not active at the
time of the system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the cpu-id parameter, the SHOW MACHINE_CHECK command
performs an implicit SET CPU command, making the processor indicated by
cpu-id the current CPU for subsequent SDA commands. (See the description of
the SET CPU command and Section 4 for information on how this can affect the
CPU context—and process context—in which SDA commands execute.)

Qualifier

/FULL
Specifies that a detailed version of the machine check information be displayed.
This is currently identical to the default summary display.

Description

The SHOW MACHINE_CHECK command displays the contents of the stored
machine check frame. A separate frame is allocated at boot time for every CPU
in a multiple-CPU system. This command is valid for the DEC 4000 Alpha, DEC
7000 Alpha, and DEC 10000 Alpha computers only.

If no qualifier is specified, a summary version of the machine check frame is
displayed.

The default cpu-id is the SDA current CPU.

SDA–115

SDA Commands
SHOW MACHINE_CHECK

Examples

1. SDA> SHOW MACHINE_CHECK
CPU 00 Stored Machine Check Crash Data

Processor specific information:

Exception address: FFFFFFFF 800B0250 Exception Summary: 00000000 00000000
Pal base address: 00000000 00008000 Exception Mask: 00000000 00000000
HW Interrupt Request: 00000000 00000342 HW Interrupt Ena: 00000001 FFC01CE0
MM_CSR 00000000 00003640 ICCSR: 00000002 381F0000
D-cache address: 00000007 FFFFFFFF D-cache status: 00000000 000002E0
BIU status: 00000000 00000050 BIU address [7..0]: 00000000 000060E0
BIU control: 00000008 50006447 Fill Address: 00000000 00006120
Single-bit syndrome: 00000000 00000000 Processor mchck VA: 00000000 00006190
A-box control: 00000000 0000040E B-cache TAG: 00106100 83008828

System specific information:

Garbage bus info: 00200009 00000038 Device type: 000B8001
LCNR: 00000001 Memory error: 00000000
LBER: 00000009 Bus error synd 0,1: 00000000 00000000
Bus error cmd: 00048858 00AB1C88 Bus error synd 2,3: 00000000 0000002C
LEP mode: 00010010 LEP lock address: 00041108

The SHOW MACHINE_CHECK command in this SDA display shows the contents
of the stored machine check frame.

2. SDA> SHOW MACHINE_CHECK 1

CPU 01 Stored Machine Check Crash Data

Processor specific information:

Exception address: FFFFFFFF 800868A0 Exception Summary: 00000000 00000000
Pal base address: 00000000 00008000 Exception Mask: 00000000 00000000
HW Interrupt Request: 00000000 00000342 HW Interrupt Ena: 00000000 1FFE1CE0
MM_CSR 00000000 00005BF1 ICCSR: 00000000 081F0000
D-cache address: 00000007 FFFFFFFF D-cache status: 00000000 000002E0
BIU status: 00000000 00000050 BIU address [7..0]: 00000000 000063E0
BIU control: 00000008 50006447 Fill Address: 00000000 00006420
Single-bit syndrome: 00000000 00000000 Processor mchck VA: 00000000 00006490
A-box control: 00000000 0000040E B-cache TAG: 35028EA0 50833828

System specific information:

Garbage bus info: 00210001 00000038 Device type: 000B8001
LCNR: 00000001 Memory error: 00000080
LBER: 00040209 Bus error synd 0,1: 00000000 00000000
Bus error cmd: 00048858 00AB1C88 Bus error synd 2,3: 00000000 0000002C
LEP mode: 00010010 LEP lock address: 00041108

The SHOW MACHINE_CHECK command in this SDA display shows the contents
of the stored machine check frame for cpu-id 01.

SDA–116

SDA Commands
SHOW PAGE_TABLE

SHOW PAGE_TABLE

Displays a range of system page table entries, the entire system page table, or
the entire global page table.

Format

SHOW PAGE_TABLE [/qualifier[,...]] [range]

Parameter

range
Range of virtual addresses for which SDA is to display page table entries. You
can express a range using the following syntax:

m:n Range of virtual addresses from m to n
m;n Range of virtual addresses starting at m and continuing for n bytes

Qualifiers

/FREE
Causes the free starting addresses of blocks of free page table entries in the
specified range to be displayed.

/GLOBAL
Lists the global page table.

/GPT
Specifies the portion of page table space that maps the global page table as the
address range.

/L1
Lists the process L1 page table.

/L2
Lists the process L2 page table.

/L3
Lists the process L3 page table.

/PT
Specifies page table space as the address range, as viewed in the context of the
current process, or as viewed from system context if there is no current process.

/S0S1
Specifies S0 and S1 space as the address range.

/S2
Specifies S2 space as the address range.

/SPTW
Displays the contents of the system page table window. Level qualifiers are
ignored.

/ALL
Lists both the global and system page tables.

SDA–117

SDA Commands
SHOW PAGE_TABLE

Description

For each virtual address displayed by the SHOW PAGE_TABLE command,
the first six columns of the listing provide the associated page table entry and
describe its location, characteristics, and contents. SDA obtains this information
from the system page table. Table SDA–11 describes the information displayed by
the SHOW PAGE_TABLE command.

SDA–118

SDA Commands
SHOW PAGE_TABLE

Table SDA–11 Virtual Page Information in the SHOW PAGE_TABLE Display

Value Meaning

ADDRESS System virtual address that marks the base of the virtual page.
SVAPTE System virtual address of the page table entry that maps the

virtual page. Equal values in the two SVAPTE columns indicates
a valid link between physical and virtual address space.

PTE Contents of the page table entry, a quadword that describes a
system virtual page.

Type Type of virtual page. There are the following eight types:

Type Meaning

VALID Valid page (in main memory).
TRANS Transitional page (between main memory and page

lists).
DZERO Demand-allocated, zero-filled page.
PGFIL Page within a paging file.
STX Section table’s index page.
GPTX Index page for a global page table.
IOPAG Page in I/O address space.
NXMEM Page not represented in physical memory. The

page frame number (PFN) of this page is not
mapped by any of the system’s memory controllers.
This indicates an error condition.

READ A code, derived from bits in the PTE, that designates the
processor access modes (kernel, executive, supervisor, or user)
for which read access is granted.

WRITE A code, derived from bits in the PTE, that designates the
processor access modes (kernel, executive, supervisor, or user)
for which write access is granted.

Bits Letters that represent the setting of a bit or a combination of
bits in the PTE. These bits indicate attributes of a page. The
following codes are listed:

Code Meaning

A Address space match is set.
M Page has been modified.
L Page is locked into a working set.
K Owner can access the page in kernel mode.
E Owner can access the page in executive mode.
S Owner can access the page in supervisor mode.
U Owner can access the page in user mode.

GH Contents of granularity hint bits.

SDA–119

SDA Commands
SHOW PAGE_TABLE

If the virtual page has been mapped to a physical page, the last seven columns
of the listing include information from the page frame number (PFN) database
Otherwise, the section is left blank. Table SDA–12 describes the physical page
information displayed by the SHOW PAGE_TABLE command.

Table SDA–12 Physical Page Information in the SHOW PAGE_TABLE Display

Category Meaning

PAGTYP Type of physical page. It is one of the following types:

Page Type Meaning

PROCESS Page is part of process space.
SYSTEM Page is part of system space.
GLOBAL Page is part of a global section.
PPGTBL Page is part of a process page table.
GPGTBL Page is part of a global page table.
GBLWRT Page is part of a global, writable section.
UNKNOWN Unknown.

LOC Location of the page within the system. It is one of the
following eight types:

Location Meaning

ACTIVE Page is in a working set.
MDFYLST Page is in the modified-page list.
FREELST Page is in the free-page list.
BADLST Page is in the bad-page list.
RELPEND Release of the page is pending.
RDERROR Page has had an error during an attempted

read operation.
PAGEOUT Page is being written into a paging file.
PAGEIN Page is being brought into memory from a

paging file.

BAK Place to find information on this page when all links to this
PTE are broken: either an index into a process section table or
the number of a virtual block in the paging file.

REFCNT Number of references being made to this page.
SVAPTE System virtual address of the page table entry that maps

the virtual page. Equal values in the two SVAPTE columns
indicates a valid link between physical and virtual address
space.

(continued on next page)

SDA–120

SDA Commands
SHOW PAGE_TABLE

Table SDA–12 (Cont.) Physical Page Information in the SHOW PAGE_TABLE
Display

Category Meaning

FLINK Forward link within PFN database that points to the next
physical page; this longword also acts as the count of the
number of processes that are sharing this global section.

BLINK Backward link within PFN database; also acts as an index into
the working set list.

SDA indicates pages are inaccessible by displaying the following message:

-------- n NULL PAGES

Here, n indicates the number of inaccessible pages.

SDA–121

SDA Commands
SHOW PFN_DATA

SHOW PFN_DATA

Displays information that is contained in the page lists and PFN database.

Format

SHOW PFN_DATA

��
�

[/qualifier]
[pfn] [;length]
[pfn] [:end-pfn]

��
	

Parameters

pfn
Page frame number (PFN) of the physical page for which information is to be
displayed.

length
Specifies the length of the PFN list to be displayed. When you specify the length
parameter, a range of PFNs is displayed. This range starts at the PFN specified
by the pfn parameter and contains the number of entries specified by the length
parameter.

end-pfn
Specifies the last PFN to be displayed. When you specify the end-pfn parameter,
a range of PFNs is displayed. This range starts at the PFN specified by the pfn
parameter and ends with the PFN specified by the end-pfn parameter.

Qualifiers

/ADDRESS=<PFN-entry-address>
Displays the PFN database entry at the address specified. The address specified
is rounded to the nearest entry address so if you have an address that points to
one of the fields of the entry, the correct database entry will still be found.

/ALL
Displays the free-page list, modified-page list, and bad-page list. This is the
default behavior of the SHOW PFN_DATA command. SDA precedes each list
with a count of the pages it contains and its low and high limits.

/BAD
Displays the bad-page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/FREE
Displays the free-page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/MODIFIED
Displays the modified-page list. SDA precedes the list with a count of the pages
it contains, its low limit, and its high limit.

/SYSTEM
Displays the entire PFN database in order by page frame number, starting at
PFN 0000.

SDA–122

SDA Commands
SHOW PFN_DATA

Description

For each page frame number it displays, the SHOW PFN_DATA command lists
information used in translating physical page addresses to virtual page addresses.
The display has two lines of information. Table SDA–13 shows the first line’s
fields; Table SDA–14 shows the second line’s fields.

Table SDA–13 Page Frame Number Information—Line One Fields

Item Contents

PFN Page frame number.
DB ADDRESS Address of PFN structure for this page.
PT PFN PFN of the page page table page that maps this page.
BAK Place to find information on this page when all links

to this PTE are broken: either an index into a process
section table or the number of a virtual block in the
paging file.

FLINK Forward link within PFN database that points to the next
physical page; this longword also acts as the count of the
number of processes that are sharing this global section.

BLINK Backward link within PFN database; also acts as an index
into the working set list.

SWP/BO Either a swap file page number or a buffer object reference
count, depending on a flag set in the page state field.

LOC Location of the page within the system. It is one of the
following eight types:

Location Meaning

ACTIVE Page is in a working set.
MDFYLST Page is in the modified-page list.
FREELST Page is in the free-page list.
BADLST Page is in the bad-page list.
RELPEND Release of the page is pending.
RDERROR Page has had an error during an

attempted read operation.
PAGEOUT Page is being written into a paging file.
PAGEIN Page is being brought into memory from

a paging file.

(continued on next page)

SDA–123

SDA Commands
SHOW PFN_DATA

Table SDA–13 (Cont.) Page Frame Number Information—Line One Fields

Item Contents

FLAGS Displays in text form the flags that are set in page state.
Possible flags are:

Flag Meaning

BUFOBJ Set if any buffer objects reference this
page.

COLLISION Empty collision queue when page
read is complete.

BADPAG Bad page.
RPTEVT Report event on I/O completion.
DELCON Delete PFN when REFCNT=0.
MODIFY Dirty page (modified).
UNAVAILABLE PFN is unavailable. Most likely a

console page.

Table SDA–14 Page Frame Number Information—Line Two Fields

Item Contents

Blank
PTE ADDRESS System virtual address of the page table entry that

describes the virtual page mapped into this physical page.
Blank
Blank
Blank
Blank
REFCNT Number of references being made to this page.
PAGETYP Type of physical page. It is one of the following:

Page Type Meaning

PROCESS Page is part of process space.
SYSTEM Page is part of system space.
GLOBAL Page is part of a global section.
PPT(Ln) Page is part of a process page table, where

n is the page table level number.
GPGTBL Page is part of a global page table.
GBLWRT Page is part of a global, writable section.
UNKNOWN Unknown.

Blank

SDA–124

SDA Commands
SHOW POOL

SHOW POOL

Displays the contents of the nonpaged dynamic storage pool and the paged
dynamic storage pool. You can display part or all of each pool. If no range or
qualifiers are specified, the default is SHOW POOL/ALL. Optionally, it displays
the nonpaged pool history ring buffer.

Format

SHOW POOL

��

/FREE
/HEADER
/SUMMARY
/TYPE=block-type

��

������

range
/ALL
/NONPAGED
/PAGED
/RING_BUFFER
/STATISTICS

������

Parameter

range
Range of virtual addresses in pool that SDA is to examine. You can express a
range using the following syntax:

m:n Range of virtual addresses in pool from m to n
m;n Range of virtual addresses in pool starting at m and continuing for n bytes

Qualifiers

/ALL
Displays the entire contents of memory, except for those portions of memory that
are free (available). This is the default behavior of the SHOW POOL command.

/FREE
Displays the entire contents, both allocated and free, of the specified region or
regions of pool. Use the /FREE qualifier with a range to show all of the used and
free pool in the given range.

/HEADER
Displays only the first 16 longwords of each data block found within the specified
region or regions of pool.

/NONPAGED
Displays the contents of the nonpaged dynamic storage pool currently in use.

/PAGED
Displays the contents of the paged dynamic storage pool currently in use.

/RING_BUFFER
Displays the contents of the nonpaged pool history ring buffer if pool checking has
been enabled. Entries are displayed in reverse chronological order; that is, most
to least recent. This qualifier is mutually exclusive of all other SHOW POOL
qualifiers.

SDA–125

SDA Commands
SHOW POOL

/STATISTICS
Displays usage statistics about each lookaside list. For each list, its queue header
address, packet size, attempts, fails, and deallocations are displayed.

/SUMMARY
Displays only an allocation summary for each specified region of pool.

/TYPE=block-type
Displays the blocks within the specified region or regions of pool that are of the
indicated block-type. If SDA finds no blocks of that type in the pool region, it
displays a blank screen, followed by an allocation summary of the region.

Description

The SHOW POOL command displays information about the contents of any
specified region of pool in an 8-column format. The contents of the full display,
from left to right, are listed as follows:

Column 1 contains the type of control block that starts at the virtual address in
pool indicated in column 2. If SDA cannot interpret the block type, it displays a
block type of ‘‘UNKNOWN.’’ Column 3 lists the number of bytes (in decimal) of
memory allocated to the block.

The remaining columns contain a dump of the contents of the block, in 4-longword
intervals, until the block is complete. Columns 4 through 7 display, from right
to left, the contents in hexadecimal; column 8 displays, from left to right, the
contents in ASCII. If the ASCII value of a byte is not a printing character, SDA
displays a period (.) instead.

For each region of pool it examines, the SHOW POOL command displays an
allocation summary. This 4-column table lists, in column 2, the types of control
block identified in the region and records the number of each in column 1. The
last two columns represent the amount of the pool region occupied by each type of
control block: column 3 records the total number of bytes, and column 4 records
the percentage. The summary concludes with an indication of the number of
bytes used within the particular pool region, as well as the number of bytes
remaining. It provides an estimate of the percentage of the region that has been
allocated.

SDA–126

SDA Commands
SHOW POOL

Examples

1. SDA> SHOW POOL G0BADE00;260
Non-paged dynamic storage pool

Dump of blocks allocated from non-paged pool

CIMSG 80BADE00 144
001000DA 003C0090 0000A900 00036FF0 .o........<.....
D9B3001C 00000000 A0B5001D 35E60017 ...5............
41414141 00000600 65EA0004 00000600e....AAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA

.

.

.
UNKNOWN 80BADE90 112

41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA
41414141 41414141 41414141 41414141 AAAAAAAAAAAAAAAA

.

.

.
CIDG 80BADED0 144

807708BB 003B0090 0004D7E0 000008F0;...w.
61616161 61616161 61616161 016CE87C ..l.aaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
UNKNOWN 80BADF60 64

61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
CIDG 80BADFA0 144

807708BB 003B0090 0003FFC0 0004B1B0;...w.
61616161 61616161 61616161 016CE94C L.l.aaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

.

.

.
UNKNOWN 80BAE030 48

61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa
61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

Summary of non-paged pool contents

3 UNKNOWN = 176 (29%)
2 CIDG = 288 (48%)
1 CIMSG = 144 (24%)

Total space used = 608 out of 608 total bytes, 0 bytes left

Total space utilization = 100%

SDA–127

SDA Commands
SHOW POOL

This example examines 608 (26016) bytes of nonpaged pool, starting at
address 80BADE0016, which happens to be the starting address of the CIMSG
block listed in the example’s output. SDA attempts to identify allocated blocks
as it proceeds through the specified region of pool, and displays an allocation
summary when it completes the listing.

2. SDA> SHOW POOL/PAGED/HEADER
Paged dynamic storage pool

Dump of blocks allocated from paged pool

RSHT 8024FE00 528
802DC710 00380210 00000000 FFFFFF808...-.

LNM 80250010 96
8015B847 00400060 802D75A0 00000000u-.‘.@.G...

LNM 80250070 48
8015B847 01400030 802500A0 802D7400 .t-...%.0.@.G...

LNM 802500A0 96
8015B847 02400060 802DC170 80250070 p.%.p.-.‘.@.G...

LNM 80250100 48
8015B847 00400030 802DC510 802E1B60 ‘.....-.0.@.G...

.

.

.

The SHOW POOL/PAGED/HEADER command displays only the name of
each block allocated from paged pool, its starting address, its size, and the
first 4 longwords of its contents.

SDA–128

SDA Commands
SHOW PORTS

SHOW PORTS

Displays those portions of the port descriptor table (PDT) that are port
independent.

Format

SHOW PORTS [/qualifier[,...]]

Parameters

None.

Qualifiers

/ADDRESS=pdt-address
Displays the specified port descriptor table (PDT). You can find the pdt-address
for any active connection on the system in the PDT summary page display
of the SHOW PORTS command. This command also defines the symbol PE_
PDT. The connection descriptor table (CDT) addresses are also stored in many
individual data structures related to System Communications Services (SCS)
connections; for instance, in the path block displays of the SHOW CLUSTER/SCS
command.

/BUS=bus-address
Displays bus (LAN device) structure data.

/CHANNEL=channel-address
Displays channel (CH) data.

/DEVICE
Displays the network path description for a channel.

/MESSAGE
Displays the message data associated with a virtual circuit (VC).

/NODE=node
Shows only the virtual circuit block associated with the specific node. When you
use the /NODE qualifier, you must also specify the address of the PDT using the
/ADDRESS qualifier.

/VC=vc-address
Displays the virtual circuit data.

Description

The SHOW PORTS command provides port-independent information from the
port descriptor table (PDT) for those CI ports with full System Communications
Services (SCS) connections. This information is used by all SCS port drivers.

Note that the SHOW PORTS command does not display similar information
about UDA ports, BDA ports, and similar controllers.

SDA–129

SDA Commands
SHOW PORTS

The SHOW PORTS command also defines symbols for PEDRIVER based on the
cluster configuration. These symbols include the following information:

• Virtual circuit (VC) control blocks for each of the remote systems

• Bus data structure for each of the local LAN adapters

• Some of the data structures used by both PEDRIVER and the LAN drivers

The following symbols are defined automatically:

• VC_nodename—Example: VC_NODE1, address of the local node’s virtual
circuit to node NODE1.

• CH_nodename—The preferred channel for the virtual circuit. For example,
CH_NODE1, address of the local node’s preferred channel to node NODE1.

• BUS_busname—Example: BUS_ETA, address of the local node’s bus
structure associated with LAN adapter ETA0.

• PE_PDT—Address of PEDRIVER’s port descriptor table.

• MGMT_VCRP_busname—Example: MGMT_VCRP_ETA, address of the
management VCRP for bus ETA.

• HELLO_VCRP_busname—Example: HELLO_VCRP_ETA, address of the
HELLO message VCRP for bus ETA.

• VCIB_busname—Example: VCIB_ETA, address of the VCIB for bus ETA.

• UCB_LAVC_busname—Example: UCB_LAVC_ETA, address of the LAN
device’s UCB used for the local-area VMScluster protocol.

• UCB0_LAVC_busname—Example: UCB0_LAVC_ETA, address of the LAN
device’s template UCB.

• LDC_LAVC_busname—Example: LDC_LAVC_ETA, address of the LDC
structure associated with LAN device ETA.

• LSB_LAVC_busname—Example: LSB_LAVC_ETA, address of the LSB
structure associated with LAN device ETA.

These symbols equate to system addresses for the corresponding data structures.
You can use these symbols, or an address, after the equal sign in SDA commands.

The SHOW PORTS command produces several displays. The initial display, the
PDT summary page, lists the PDT address, port type, device name, and driver
name for each PDT. Subsequent displays provide information taken from each
PDT listed on the summary page.

You can use the /ADDRESS qualifier to the SHOW PORTS command to produce
more detailed information about a specific port. The first display of the SHOW
PORTS/ADDRESS command duplicates the last display of the SHOW PORTS
command, listing information stored in the port’s PDT. Subsequent displays list
information about the port blocks and virtual circuits associated with the port.

SDA–130

SDA Commands
SHOW PORTS

Example

SDA> SHOW PORTS/ADDRESS=80618400

--- Port Descriptor Table (PDT) 80618400 ---

Type: 03 pe
Characteristics: 0000

--- Port Block 80618BC0 ---

Status: 0001 authorize
VC Count: 3
Secs Since Last Zeroed: 18635

SBUF Size 516 LBUF Size 1848 Next Refork 1863571
SBUF Count 9 LBUF Count 1 Forks Count 217383
SBUF Max 768 LBUF Max 384 Refork Count 0
SBUF Quo 11 LBUF Quo 1 SCS Messages 198478
SBUF Miss 9 LBUF Miss 249 VC Queue Cnt 12308
SBUF Allocs 205551 LBUF Allocs 598 TQE Received 18635
SBUFs In Use 0 LBUFs In Use 0 Timer Done 18635
Peak SBUF In Use 9 Peak LBUF In Use 2 RWAITQ Count 781
SBUF Queue Empty 0 LBUF Queue Empty 0 LDL Buf/Msg 6218
TR SBUF Queue Empty 0
No SBUF for ACK 0

Bus Addr Bus LAN Address Error Count Last Error Time of Last Error
-------- --- ----------------- ----------- ---------- -----------------------
80619280 LCL 00-00-00-00-00-00 0
806198C0 ESA AA-00-04-00-C7-FF 0

--- Virtual Circuit (VC) Summary ---

VC Addr Node SCS ID Lcl ID Status Summary Last Event Time
-------- -------- ------ ------ ----------------- -----------------------
8062A240 FLAM5 65479 223/DF open,path 31-AUG-1995 17:30:17.05
8062BA40 VANDQ1 64894 222/DE open,path 31-AUG-1995 17:30:18.87
8062BEC0 ROMRDR 64515 221/DD open,path 31-AUG-1995 17:30:19.07

This example illustrates the output produced by the SHOW PORTS command for
the PDT at address 80618400.

SDA–131

SDA Commands
SHOW PROCESS

SHOW PROCESS

Displays the software and hardware context of any process in the balance set.

Format

SHOW PROCESS [/qualifier[,...]]

����

/ADDRESS=pcb-address
ALL
process-name
/INDEX=nn
/SYSTEM

����

Parameters

ALL
Shows information about all processes that exist in the system.

process-name
Name of the process for which information is to be displayed. Use of the process-
name parameter, the /INDEX qualifier, or the /SYSTEM qualifier causes the
SHOW PROCESS command to perform an implicit SET PROCESS command,
making the indicated process the current process for subsequent SDA commands.
You can determine the names of the processes in the system by issuing a SHOW
SUMMARY command.

The process-name can contain up to 15 letters and numerals, including the
underscore (_) and dollar sign ($). If it contains any other characters, you must
enclose the process-name in quotation marks (" ").

Qualifiers

/ADDRESS=pcb-address
Specifies the process control block (PCB) address of a process in order to display
information about the process.

/ALL
Displays all information shown by the following qualifiers:

/PCB
/PHD
/REGISTERS
/WORKING_SET_LIST
/PROCESS_SECTION_TABLE
/PAGE_TABLES
/CHANNEL
/BUFFER_OBJECTS
/IMAGES
/RMS

/BUFFER_OBJECTS
Displays all the buffer objects that a process has created.

/CHANNEL
Displays information about the I/O channels assigned to the process.

SDA–132

SDA Commands
SHOW PROCESS

/IMAGES
Displays the address of the image control block, the start and end addresses of
the image, the activation code, the protected and shareable flags, the image name,
and the major and minor IDs of the image. The /IMAGES qualifier also displays
the base, end, image offset, and section type for installed resident images in use
by this process.

See the OpenVMS Linker Utility Manual and the Install utility chapter in the
OpenVMS System Management Utilities Reference Manual for more information
on images installed using the /RESIDENT qualifier.

/INDEX=nn
Specifies the process for which information is to be displayed by its index into the
system’s list of software process control blocks (PCBs). You can supply either of
the following values for nn:

• The process index itself

• The process identification (PID) or extended PID longword, from which SDA
extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY.

/INDEX=n
Displays the software and hardware context of the thread which is specified by
the index of the software PCB into the system’s PCB vector. Alternately, this
value could be the process identification (PID or EPID) from which SDA extracts
the correct index.

/LOCKS
Displays the lock management locks owned by the current process.

The /LOCKS qualifier produces a display similar in format to that produced by
the SHOW LOCKS command. See Table SDA–10 for additional information.

/PAGE_TABLES

����������

range
/L1
/L2
/L3
/P0
/P1
/P2
/RDE=id

����������

Displays the page tables of the process program (P0) and control (P1) regions,
the process L1 and L2 page tables, both the P0 and P1 page tables (/L3),
or, optionally, either the page table or the page table entries for a range of
addresses.

The /RDE=id displays the page tables for the address range of the specified
address region. When no ID is specified, the page tables are displayed for all the
process-permanent and user-defined regions.

You can express a range using the following syntax:

m:n Displays the page table entries that correspond to the range of virtual
addresses from m to n

SDA–133

SDA Commands
SHOW PROCESS

m;n Displays the page table entries that correspond to a range of n pages,
starting with page m

/PCB
Displays the information contained in the process control block (PCB). This is the
default behavior of the SHOW PROCESS command.

/PHD
Lists the information included in the process header (PHD).

/PROCESS_SECTION_TABLE
Lists the information contained in the process section table (PST).

/RDE=id
Lists the information contained in the process region table for the specified
region. If no region is specified, the entire table is displayed, along with the
process-permanent regions.

/REGIONS
Displays the process region table entries for a particular process, or for a
particular region if the qualifier is supplied with a region ID for a value. Is a
synonym for the /RDE qualifier.

/REGISTERS
Lists the hardware context of the process, as reflected in the process registers
stored in the hardware privileged context block (HWPCB), its kernel stack, and
possibly, in its PHD.

/RMS[=option[,...]]
Displays certain specified RMS data structures for each image I/O or process
permanent I/O file the process has open. To display RMS data structures for
process-permanent files, specify the PIO option to this qualifier.

SDA determines the structures to be displayed according to either of the following
methods:

• If you provide the name of a structure or structures in the option parameter,
SHOW PROCESS/RMS displays information from only the specified
structures. (See Table SDA–9 for a list of keywords that may be supplied
as options.)

• If you do not specify an option, SHOW PROCESS/RMS displays the current
list of options as shown by the SHOW RMS command and set by the SET
RMS command.

/SEMAPHORE
Displays the Inner Mode Semaphore for a multithreaded process.

/SYSTEM
Displays the system process control block. Use of the process-name parameter,
the /INDEX qualifier, or the /SYSTEM qualifier causes the SHOW PROCESS
command to perform an implicit SET PROCESS command, making the indicated
process the current process for subsequent SDA commands. (See the description
of the SET PROCESS command and Section 4 for information on how this can
affect the process context—and CPU context—in which SDA commands execute.)
The system PCB and process header (PHD) parallel the data structures that

SDA–134

SDA Commands
SHOW PROCESS

describe processes. They contain the system working set, global section table,
global page table, and other systemwide data.

/THREADS
Displays the software and hardware context of all the threads associated with the
current process.

/WORKING_SET_LIST
Displays the working set list for the process.

Description

The SHOW PROCESS command displays information about the process specified
by process-name, the process specified in the /INDEX qualifier, the system
process, or all processes. The SHOW PROCESS command performs an implicit
SET PROCESS command under certain uses of its qualifiers and parameters,
as noted previously. By default, the SHOW PROCESS command produces
information about the SDA current process, as defined in Section 4.

The default of the SHOW PROCESS command provides information taken from
the software process control block (PCB). This is the first display provided by
the /ALL qualifier and the only display provided by the /PCB qualifier. This
information describes the following characteristics of the process:

• Software context

• Condition-handling information

• Information on interprocess communication

• Information on counts, quotas, and resource usage

Among the displayed information are the process PID, EPID, priority, job
information block (JIB) address, and process header (PHD) address. SHOW
PROCESS also describes the resources owned by the process, such as event flags
and mutexes. The ‘‘State’’ field records the process current scheduling state; in a
multiprocessing system, the display indicates the CPU ID of any process whose
state is CUR.

The SHOW PROCESS/ALL command displays additional process-specific
information, also provided by several of the individual qualifiers to the command.

The process header display, also produced by the /PHD qualifier, provides
information taken from the PHD, which is swapped into memory when the
process becomes part of the balance set. Each item listed in the display reflects a
quantity, count, or limit for the process use of the following resources:

• Process memory

• The pager

• The scheduler

• Asynchronous system traps

• I/O activity

• CPU activity

The process registers display, also produced by the /REGISTERS qualifier,
describes the process hardware context, as reflected in its registers.

SDA–135

SDA Commands
SHOW PROCESS

There are two places where a process hardware context is stored:

• If the process is currently executing on a processor in the Alpha system
(that is, in the CUR scheduling state), its hardware context is contained in
that processor’s registers. (That is, the process registers and the processor’s
registers contain identical values, as illustrated by a SHOW CPU command
for that processor or a SHOW CRASH command if the process was current at
the time of the system failure).

• If the process is not executing, its privileged hardware context is stored in the
part of the PHD known as the HWPCB. Its integer register context is stored
on its kernel stack. Its floating-point registers are stored in its PHD.

The process registers display first lists those registers stored in the HWPCB,
kernel stack, and PHD (‘‘Saved process registers’’). If the process to be displayed
is currently executing on a processor in the Alpha system, the display then lists
the processor’s registers (‘‘Active registers for the current process’’). In each
section, the display lists the registers in the following groups:

• Integer registers (R0 through R29)

• Special-purpose registers (PC and PS)

• Stack pointers (KSP, ESP, SSP, and USP)

• Page table base register (PTBR)

• AST enable and summary registers (ASTEN and ASTSR)

• Address space number register (ASN)

The working set information and working set list displays, also produced
by the /WORKING_SET_LIST qualifier, describe those virtual pages that the
process can access without a page fault. After a brief description of the size,
scope, and characteristics of the working set list itself, SDA displays the following
information for each entry in the working set list:

Column Contents

INDEX Index into the working set list at which information for this entry
can be found

ADDRESS Virtual address of the page that this entry describes
STATUS Three columns that list the following status information:

• Location of the page in physical memory

• Page status of VALID

• Indication of whether the page is locked into the working set

When SDA locates one or more unused working set entries, it issues the following
message:

--- n empty entries

In this message, n is the number (in decimal) of contiguous, unused entries.

The process section table information and process section table displays,
also produced by the /PROCESS_SECTION_TABLE qualifier, list each entry in
the process section table (PST) and display the offsets to, and the indices of, the
first free entry and last used entry.

SDA–136

SDA Commands
SHOW PROCESS

SDA displays the information listed in Table SDA–15 for each PST entry.

Table SDA–15 Process Section Table Entry Information in the SHOW PROCESS
Display

Part Definition

INDEX Index number of the entry. Entries in the process section
table begin at the highest location in the table, and the table
expands toward lower addresses.

ADDRESS Virtual address that marks the beginning of the first page of
the section described by this entry.

PAGELETS Length of the process section. This is in units of pagelets,
except for a PFN-mapped section in which the units are pages.

WINDOW Address of the window control block on which the section file
is open.

CHANNEL Address of the channel control block on which the section file
is open.

VBN Virtual block number. The number of the file’s virtual block
that is mapped into the section’s first page.

CLUSTER Cluster size used when faulting pages into this process section.
REFCNT Number of pages of this section that are currently mapped.
FLINK Forward link. The pointer to the next entry in the PST list.
BLINK Backward link. The pointer to the previous entry in the PST

list.
FLAGS Flags that describe the access that processes have to the

process section.

The P0 page table, P1 page table, and P2 page table displays, also produced
by the /PAGE_TABLES qualifier, display listings of the process page table entries
in the same format as that produced by the SHOW PAGE_TABLE command (see
Tables SDA–11 and SDA–12).

The process active channels display, the last produced by SHOW PROCESS
/ALL and the only one produced by the /CHANNEL qualifier, displays the
following information for each I/O channel assigned to the process:

Column Contents

Channel Number of the channel
Window Address of the window control block (WCB) for

the file if the device is a file-oriented device; zero
otherwise

Status Status of the device: ‘‘Busy’’ if the device has an
I/O operation outstanding; blank otherwise

Device/file accessed Name of the device and, if applicable, name of
the file being accessed on that device

The information listed under the heading ‘‘Device/file accessed’’ varies from
channel to channel and from process to process. SDA displays certain information
according to the conditions listed in Table SDA–16.

SDA–137

SDA Commands
SHOW PROCESS

Table SDA–16 Process I/O Channel Information in the SHOW PROCESS
Display

Information Displayed1 Type of Process

dcuu: SDA displays this information for devices that are not
file structured, such as terminals, and for processes that
do not open files in the normal way.

dcuu:filespec SDA displays this information only if you are examining
a running system, and only if your process has enough
privilege to translate the file-id into the filespec.

dcuu:(file-id)filespec SDA displays this information only when you are
examining a dump. The filespec corresponds to the
file-id on the device listed. If you are examining a dump
from your own system, the filespec is probably valid. If
you are examining a dump from another system, the
filespec is probably meaningless in the context of your
system.

dcuu:(file-id) The file-id no longer points to a valid filespec, as when
you look at a dump from another system; or the process
in which you are running SDA does not have enough
privilege to translate the file-id into the corresponding
filespec.

1This table uses the following conventions to identify the information displayed:
dcuu:(file-id)filespec
where:
dcuu: is the name of the device.
file-id is the RMS file identification.
filespec is the full file specification, including directory name.

SDA–138

SDA Commands
SHOW PROCESS

Examples

1. SDA> SHOW PROCESS

Process index: 001A Name: VERIFICATION Extended PID: 0000051A

Process status: 22040023 RES,PHDRES,INTER
status2: 00000001 QUANTUM_RESCHED

PCB address 80613240 JIB address 805B1B40
PHD address 80C3A000 Swapfile disk address 00000000
KTB vector address 80D775AC HWPCB address 81260080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 0005001A Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000001 Previous ASN 000000000000002E
Initial process priority 4 Delete pending count 0
open files allowed left 100 Buffered I/O count/limit 150/150
UIC [00001,000004] Buffered I/O count/limit 149/150
Abs time of last event 005D9941 BUFIO byte count/limit 32128/32128
AST’s remaining 247 # of threads 1
Swapped copy of LEFC0 00000000 Timer entries allowed left 20
Swapped copy of LEFC1 00000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 250
Global cluster 3 pointer 00000000 Global WS page count 0

The SHOW PROCESS command displays information taken from the software
PCB of VERIFICATION, the SDA current process. According to the ‘‘State’’ field
in the display, process VERIFICATION is current.

2. SDA> SHOW PROCESS/ALL
Process index: 001A Name: VERIFICATION Extended PID: 0000051A

Process status: 02040001 RES,PHDRES,INTER

status2: 00000001 QUANTUM_RESCHED

PCB address 80613240 JIB address 805B1B40
PHD address 80C3A000 Swapfile disk address 00000000
KTB vector address 80D775AC HWPCB address 81260080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 0005001A Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 000000000000190A Previous ASN 000000000000003F
Initial process priority 4 Delete pending count 0
open files allowed left 100 Direct I/O count/limit 150/150
UIC [00001,000200] AST’s remaining 97
Mutex count 0 Buffered I/O count/limit 18/18
Abs time of last event 005D9941 BUFIO byte count/limit 32128/32128
AST’s remaining 247 # of threads 1
Swapped copy of LEFC0 00000000 Timer entries allowed left 20
Swapped copy of LEFC1 00000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 250
Global cluster 3 pointer 00000000 Global WS page count 0

Extended PID: 00000052 Thread index: 0000

Current capabilities: System: 0000000C QUORUM,RUN

User: 00000000

SDA–139

SDA Commands
SHOW PROCESS

Permanent capabilities: System: 0000000C QUORUM,RUN
User: 00000000

Current affinities: 00000000
Permanent affinities: 00000000
Thread status: 02040001

status2: 00000001

KTB address 80D772C0 HWPCB address 81260080
PKTA address 7FFEFFC0 Callback vector address 00000000
Internal PID 00010012 Callback error 00000000
Extended PID 00000052 Current CPU id 00000000
State LEF Flags 00000000
Base priority 4 Current priority 9
Waiting EF cluster 0 Event flag wait mask DFFFFFFF
CPU since last quantum FFF1 Mutex count 0
AST’s active NONE

Saved process registers

R0 = 00000000 00000001 R1 = 00000000 00000000 R2 = FFFFFFFF 80C8FEB0
R3 = 00000000 7FFCF680 R4 = 00000000 0000001D R5 = 00000000 7FFCF680
R6 = 00000000 7FFCE4C0 R7 = 00000000 7FFAC9F0 R8 = 00000000 7B015EB8
R9 = 00000000 7FFAC410 R10 = 00000000 7FFAD238 R11 = 00000000 7FFCE3E0
R12 = 00000000 00000000 R13 = FFFFFFFF 80C68AC0 R14 = 00000000 00000000
R15 = 00000000 7B0A17A0 R16 = FFFFFFFF 80C05F18 R17 = FFFFFFFF 80D772C0
R18 = 00000000 00000002 R19 = 00000000 00000001 R20 = 00000000 7FFF0010
R21 = FFFFFFFD FF7FE000 R22 = FFFFFFFF 800CCFC8 R23 = 00000000 7FFA1FC0
R24 = 00000000 7B015EB8 R25 = 00000000 00000005 R26 = 00000000 00000FD2
R27 = FFFFFFFF 80C652A0 R28 = 00000000 7B0A17A0 FP = 00000000 7FFAC280
PC = FFFFFFFF 800CCFC8 PS = 00000000 00000012
KSP = 00000000 7FFA1EF0 ESP = 00000000 7FFA6000 SSP = 00000000 7FFAC270
USP = 00000000 7B013AF0 PTBR = 00000000 00000552
AST{SR/EN} = 0000000F ASN = 00000000 0000002E

Extended PID: 00000052 Thread index: 0000

Process header

First free P0 VA 00000000.00000000 Accumulated CPU time 00000014
First free P1 VA 00000000.7B012000 Subprocess quota 10
First free P2 VA 00000000.80000000 ASTs enabled KESU
Free page file pages 3027 ASN sequence # 0000000000000001
Page fault cluster size 4 AST limit 250
Page table cluster size 1 Process header index 0001
Flags 00000084 Backup address vector 0005AFE8
Direct I/O count 27 PTs having locked WSLEs 2
Buffered I/O count 86 PTs having valid WSLEs 4
Limit on CPU time 00000000 Active page tables 4
Maximum page file count 3125 Maximum active PTs 3
Total page faults 262 Guaranteed fluid WS pages 20
File limit 100 Extra dynamic WS entries 94
Timer queue limit 20 Current page file template 00000000
Local event flag cluster 0 C0000001 Local event flag cluster 1 80000000
Page Table Base Register 00000552 Virtual PT Base FFFFFFFC.00000000

Process page file assignments

PROCIDX SYSIDX REFCNT

0 3 40 Current assignment
1 0 0
2 0 0
3 0 0

SDA–140

SDA Commands
SHOW PROCESS

Remaining reserved pages 20 Total reserved pages 20

Extended PID: 00000052 Thread index: 0000

Working set information

First WSL entry 00000001 Current authorized working set size 250
First locked entry 00000007 Default (initial) working set size 125
First dynamic entry 00000009 Maximum working set allowed (quota) 250
Last entry replaced 00000079
Last entry in list 000000D3

Working set list

INDEX ADDRESS STATUS

0001 FFFFFFFD FF7FC000 VALID PPT(L1) WSLOCK
0002 FFFFFFFD FF000000 VALID PPT(L2) WSLOCK
0003 FFFFFFFC 001FE000 VALID PPT(L3) WSLOCK
0004 00000000 7FFA0000 VALID PROCESS MODIFIED WSLOCK
0005 00000000 7FFF0000 VALID PROCESS WSLOCK
0006 FFFFFFFF 81260000 VALID PHD WSLOCK

Locked entries:
0007 00000000 7B108000 VALID PROCESS WSLOCK
0008 00000000 7B10A000 VALID PROCESS WSLOCK

Dynamic entries:
0009 00000000 7B054000 VALID GLOBAL
000A 00000000 7B0B0000 VALID GLOBAL
000B FFFFFFFC 001EC000 VALID PPT(L3) WSLOCK
000C 00000000 7B0D0000 VALID GLOBAL
000D 00000000 7B0C4000 VALID GLOBAL
000E 00000000 7B0C0000 VALID GLOBAL
000F 00000000 7FFA4000 VALID PROCESS
0010 00000000 7FFD0000 VALID PROCESS
0011 00000000 7FF96000 VALID PROCESS
0012 00000000 7B0C6000 VALID GLOBAL
0013 00000000 7B0DC000 VALID GLOBAL
0014 00000000 7B0E4000 VALID GLOBAL
0015 00000000 7B0E6000 VALID GLOBAL
0016 00000000 7B0DE000 VALID GLOBAL
0017 00000000 7FFAA000 VALID PROCESS
0018 00000000 7B0E2000 VALID GLOBAL
0019 00000000 7FFCE000 VALID PROCESS
001A 00000000 7B0D2000 VALID GLOBAL
001B 00000000 7B13E000 VALID PROCESS
001C 00000000 7B140000 VALID PROCESS
001D 00000000 7B0EA000 VALID GLOBAL
001E 00000000 7B0CE000 VALID GLOBAL
001F 00000000 7B068000 VALID GLOBAL
0020 00000000 7B0CC000 VALID GLOBAL
0021 00000000 7B07C000 VALID GLOBAL
0022 00000000 7B07E000 VALID GLOBAL
0023 00000000 7B084000 VALID GLOBAL
0024 00000000 7B086000 VALID GLOBAL
0025 00000000 7FFB8000 VALID PROCESS
0026 00000000 7B144000 VALID PROCESS
0027 FFFFFFFC 00000000 VALID PPT(L3)
0028 00000000 7FF88000 VALID PROCESS
0029 00000000 7FFBA000 VALID PROCESS

---- 8 empty entries

0032 00000000 7FF8A000 VALID PROCESS

SDA–141

SDA Commands
SHOW PROCESS

---- 6 empty entries

0039 00000000 7B0D6000 VALID GLOBAL
003A 00000000 7B0D8000 VALID GLOBAL

---- 3 empty entries

003E 00000000 7B0DA000 VALID GLOBAL

---- 8 empty entries

0047 00000000 7B066000 VALID GLOBAL
0048 00000000 7B104000 VALID PROCESS
0049 00000000 7B0B8000 VALID GLOBAL
004A 00000000 7B07A000 VALID GLOBAL

---- 11 empty entries

0056 00000000 7B13A000 VALID PROCESS
0057 00000000 7B13C000 VALID PROCESS

---- 81 empty entries

00A9 00000000 7FFEE000 VALID PROCESS
00AA 00000000 7B142000 VALID PROCESS

00AB 00000000 7FFB0000 VALID PROCESS
00AC 00000000 7B0FE000 VALID PROCESS
00AD 00000000 7B09E000 VALID PROCESS
00AE 00000000 7B0A0000 VALID PROCESS
00AF 00000000 7B0A2000 VALID PROCESS
00B0 00000000 7B0A4000 VALID PROCESS
00B1 00000000 7B100000 VALID PROCESS

---- 18 empty entries

00C4 00000000 7B138000 VALID PROCESS

Process section table information

Last entry allocated 0000
First free entry 0000

P0 Space

No pages allocated to this region

Process active channels

Channel Window Status Device/file accessed
------- ------ ------ --------------------
0010 00000000 DKB400:
0040 00000000 Busy OPA0:
0060 00000000 OPA0:
0090 80D83BC0 DKB400:(390,17,0)

(section file)
00A0 80D8AF40 DKB400:(3888,39,0)

(section file)

Process activated images

SDA–142

SDA Commands
SHOW PROCESS

IMCB Start End Sym Vect Type Image Name Major ID, Minor ID
-------- -------- -------- -------- --------- ---------- --------- --------

Total images = 0 Pages allocated = 0

Process Buffered Objects

ADDRESS ACMODE SEQUENCE REFCNT PID PAGCNT BASE PVA BASE SVA
-------- ------ -------- -------- -------- -------- ---------- ----- --
No buffer objects for this proces

The SHOW PROCESS/ALL command displays information taken from the PCB
of process VERIFICATION, and then proceeds to display the process header,
the process registers, the process section table, the P0 page table, the P1 page
table, the P2 page table, and information about the I/O channels owned by the
process. These displays may also be obtained by the /PCB, /PHD, /REGISTERS,
/RDE, /PROCESS_SECTION_TABLE, /P0, /P1, /P2, and /CHANNEL qualifiers,
respectively.

3. SDA> SHOW PROCESS/PAGE_TABLES/ADDRESS=805E7980

P0 page table

ADDRESS SVAPTE PTE TYPE READ WRIT BITS GH PAGTYP LOC
BAK REFCNT SVAPTE FLINK BLINK

-------- 8 NULL PAGES

00010000 80C08040 00000A2E 00160F09 VALID KESU NONE M-U- 00 PROCESS ACTIVE 0300
000000000000 1 80C08040 00000000 000000DC
00012000 80C08048 00000A2F 00160F09 VALID KESU NONE M-U- 00 PROCESS ACTIVE 0300
000000000000 1 80C08048 00000000 000000DD
00014000 80C08050 00000A30 00160F09 VALID KESU NONE MLU- 00 PROCESS ACTIVE 0300
000000000000 1 80C08050 00000000 000000C7
00016000 80C08058 00000A31 00060F09 VALID KESU NONE --U- 00 PROCESS ACTIVE 0300
000000000000 1 80C08058 00000000 000000DF

-------- 4 NULL PAGES

00020000 80C08080 00000AA1 0016FF09 VALID KESU KESU M-U- 00 PROCESS ACTIVE 0300
000000000000 1 80C08080 00000000 000000F4

-------- 7 NULL PAGES

00030000 80C080C0 00000A35 00060F01 VALID KESU NONE -LU- 00 PROCESS ACTIVE 0000
FFE200010000 1 80C080C0 00000000 000000C6
00032000 80C080C8 00000A36 00060F01 VALID KESU NONE --U- 00 PROCESS ACTIVE 0000
FFE200010000 1 80C080C8 00000000 000000E1
00034000 80C080D0 00000A37 00060F01 VALID KESU NONE --U- 00 PROCESS ACTIVE 0000
FFE200010000 1 80C080D0 00000000 000000E2

This example displays the page tables of a process whose PCB address is
805E7980.

SDA–143

SDA Commands
SHOW PROCESS

4. SDA> SHOW PROCESS/BUFFER_OBJECTS

Process Buffered Objects

ADDRESS ACMODE SEQUENCE REFCNT PID PAGCNT BASE PA BASE VA
-------- ------ -------- -------- -------- -------- -------- --------
805E4580 User 00000008 00000001 00010020 00000001 00020000 826BC000
805E7880 User 00000009 00000001 00010020 00000001 00020000 826BE000
8057AEC0 User 0000000A 00000001 00010020 00000001 00020000 826C0000
805E6EC0 User 0000000B 00000001 00010020 00000001 00020000 82764000

The SHOW PROCESS/BUFFER_OBJECTS command displays all the buffered
objects that a process has created.

5. SDA> SHOW PROCESS/IMAGES

Process activated images

IMCB Start End Sym Vect Type Image Name Major ID,Minor ID
-------- -------- -------- -------- ------------ -----------------------------
7FF78810 00010000 001107FF 00000000 MAIN SDA 0,0
7FF789B0 001E6000 002263FF 001E80B0 GLBL SHR LBRSHR 2,9
7FF76480 001A4000 001E43FF 001A4950 GLBL SHR SCRSHR 1,2900
7FF785A0 00112000 001A27FF 00186AE0 GLBL SHR SMGSHR 1,104
7FF78060 7FC06000 7FC67FFF 7FC144B0 GLBL SHR LIBRTL 1,1

Base End ImageOff Section Type
80400000 80481C00 00000000 System Resident Code
7FC06000 7FC16800 00090000 Shareable Address Data
7FC26000 7FC27000 000B0000 Read-Write Data
7FC36000 7FC3F600 000C0000 Shareable Read-Only Data
7FC46000 7FC46200 000D0000 Read-Write Data
7FC56000 7FC57000 000E0000 Demand Zero Data
7FC66000 7FC67400 000F0000 Read-Write Data

7FF78330 7FC76000 7FCA7FFF 7FC86000 GLBL SHR LIBOTS 1,3
Base End ImageOff Section Type

80482000 8048FA00 00020000 System Resident Code
7FC76000 7FC78600 00000000 Shareable Read-Only Data
7FC86000 7FC87C00 00010000 Shareable Address Data
7FCA6000 7FCA6200 00030000 Read-Write Data

7FF78130 80810110 8081C770 80810110 GLBL SYS$BASE_IMAGE 114,15303694
7FF784D0 80802A18 80803FF8 80802A18 GLBL SYS$PUBLIC_VECTORS 114,15295276

Total images = 8 Pages allocated = 344

The SHOW PROCESS/IMAGES command displays the address of the image
control block; the start and end addresses of the image; the activation code; the
protected and shareable flags; the image name; the major and minor IDs of the
image; and the base, end, image offset, and section type for installed resident
images.

SDA–144

SDA Commands
SHOW RESOURCE

SHOW RESOURCE

Displays information about all resources in the system, or about a resource
associated with a specific lock.

Format

SHOW RESOURCE

���
��

/ALL
/CACHED
/LOCKID=lock-id
/NAME=resource-name

���
�	

Parameters

None.

Qualifiers

/ALL
Displays information from all resource blocks (RSBs) in the system. This is the
default behavior of the SHOW RESOURCE command.

/CACHED
Displays resource blocks that are no longer valid. The memory for these resources
is kept around so that later requests for resources can use them.

/LOCKID=lock-id
Displays information on the resource associated with the lock with the specified
lock-id.

/NAME=resource-name
Displays information about a specific resource.

Description

The SHOW RESOURCE command displays the information listed in
Table SDA–17 for each resource in the system or for the specific resource
associated with the specified lock-id.

Table SDA–17 Resource Information in the SHOW RESOURCE Display

Field Contents

Address of RSB Address of the resource block (RSB) that describes this
resource.

Parent RSB Address of the RSB that is the parent of this RSB. This
field is 00000000 if the RSB itself is a parent block.

Sub-RSB count Number of RSBs of which this RSB is the parent. This
field is 0 if the RSB has no sub-RSBs.

(continued on next page)

SDA–145

SDA Commands
SHOW RESOURCE

Table SDA–17 (Cont.) Resource Information in the SHOW RESOURCE Display

Field Contents

Group grant mode Indication of the most restrictive mode in which a
lock on this resource has been granted. This field can
contain the following values (shown in order from the
least restrictive mode to the most restrictive):

Value Meaning

NL Null mode
CR Concurrent-read mode
CW Concurrent-write mode
PR Protected-read mode
PW Protected-write mode
EX Exclusive mode

For information on conflicting and incompatible lock
modes, see the OpenVMS System Services Reference
Manual.

Conversion grant mode Indication of the most restrictive lock mode to which a
lock on this resource is waiting to be converted. This
does not include the mode for which the lock at the
head of the conversion queue is waiting.

BLKAST count Number of locks on this resource that have requested a
blocking AST.

Value block Hexadecimal dump of the 16-byte block value block
associated with this resource.

Sequence # Sequence number associated with the resource’s value
block. If the number indicates that the value block is
not valid, the words ‘‘Not valid’’ appear to the right of
the number.

CSID Cluster system identification number (CSID) of the
node that owns the resource.

Resource Dump of the name of this resource, as stored at the end
of the RSB. The first two columns are the hexadecimal
representation of the name, with the least significant
byte represented by the rightmost two digits in the
rightmost column. The third column contains the
ASCII representation of the name, the least significant
byte being represented by the leftmost character in the
column. Periods in this column represent values that
correspond to nonprinting ASCII characters.

Length Length in bytes of the resource name.
Mode Processor mode of the namespace in which this RSB

resides.
(continued on next page)

SDA–146

SDA Commands
SHOW RESOURCE

Table SDA–17 (Cont.) Resource Information in the SHOW RESOURCE Display

Field Contents

Owner Owner of the resource. Certain resources, owned by
the operating system, list ‘‘System’’ as the owner.
Locks owned by a group have the number (in octal) of
the owning group in this field.

Granted queue List of locks on this resource that have been granted.
For each lock in the list, SDA displays the number
of the lock and the lock mode in which the lock was
granted.

Conversion queue List of locks waiting to be converted from one mode
to another. For each lock in the list, SDA displays
the number of the lock, the mode in which the lock
was granted, and the mode to which the lock is to be
converted.

Waiting queue List of locks waiting to be granted. For each lock in
the list, SDA displays the number of the lock and the
mode requested for that lock.

Example

SDA> SHOW RESOURCE
Resource database

Address of RSB: 807F6120 Group grant mode: NL
Parent RSB: 806EA180 Conversion grant mode: NL
Sub-RSB count: 0 BLKAST count: 0
Value block: 806CE510 00000000 00000002 00000002 Seq. #: 00000008
Resource: 09ED7324 42313146 F11B$sí.
Length 10 00000000 00000200 CSID: 00020041
Kernel mode 00000000 00000000
System 00000000 00000000

Granted queue (Lock ID / Gr mode):
006801AE NL

Conversion queue (Lock ID / Gr/Rq mode):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode):
*** EMPTY QUEUE ***

Address of RSB: 807EB9E0 Group grant mode: PW
Parent RSB: 00000000 Conversion grant mode: EX
Sub-RSB count: 0 BLKAST count: 1
Value block: 00000000 00000003 00000000 0000FFF2 Seq. #: 0000027F Not valid
Resource: 32245F24 44414853 SHAD$_$2
Length 16 3A31534A 44243435 54$DJS1: CSID: 0002001A
Kernel mode 00000000 00000000
System 00000000 00000000

SDA–147

SDA Commands
SHOW RESOURCE

Granted queue (Lock ID / Gr mode):
00020301 CR

Conversion queue (Lock ID / Gr/Rq mode):
095B00F2 PW/EX

Waiting queue (Lock ID / Rq mode):
054400BC EX

.

.

.

The SHOW RESOURCE command displays information taken from the RSBs of
all resources in the system. For instance, the RSB at 807EB9E016 is a parent
block with no sub-RSBs.

SDA–148

SDA Commands
SHOW RMS

SHOW RMS

Displays the RMS data structures selected by the SET RMS command to be
included in the default display of the SHOW PROCESS/RMS command.

Format

SHOW RMS

Parameters

None.

Qualifiers

None.

Description

The SHOW RMS command lists the names of the data structures selected for the
default display of the SHOW PROCESS/RMS command.

For a description of the significance of the options listed in the SHOW RMS
display, see the description of the SET RMS command and Table SDA–9.

For an illustration of the information displayed by the SHOW PROCESS/RMS
command, see the examples included in the description of the SHOW PROCESS
command.

Examples

1. SDA> SHOW RMS

RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,
XAB,RLB,BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB
Display RMS structures for all IFI values.

The SHOW RMS command displays the full set of options available for
display by the SHOW PROCESS/RMS command. SDA, by default, selects the
full set of RMS options at the beginning of an analysis.

2. SDA> SET RMS=(IFAB,CCB,WCB)
SDA> SHOW RMS

RMS Display Options: IFB,CCB,WCB
Display RMS structures for all IFI values.

The SET RMS command establishes the IFB, CCB, and WCB as the
structures to be displayed when the SHOW PROCESS/RMS command is
issued. The SHOW RMS command verifies this selection of RMS options.

SDA–149

SDA Commands
SHOW RSPID

SHOW RSPID

Displays information about response IDs (RSPIDs) of all System Communications
Services (SCS) connections or, optionally, a specific SCS connection.

Format

SHOW RSPID [/CONNECTION=cdt-address]

Parameters

None.

Qualifier

/CONNECTION=cdt-address
Displays RSPID information for the specific SCS connection whose connection
descriptor table (CDT) address is provided in cdt-address. You can find the
cdt-address for any active connection on the system in the CDT summary
page display of the SHOW CONNECTIONS command. CDT addresses are also
stored in many individual data structures related to SCS connections. These data
structures include class driver request packets (CDRPs) and unit control blocks
(UCBs) for class drivers that use SCS and cluster system blocks (CSBs) for the
connection manager.

Description

Whenever a local system application (SYSAP) requires a response from a remote
SYSAP, a unique number, called an RSPID, is assigned to the response by the
local system. The RSPID is transmitted in the original request (as a means of
identification), and the remote SYSAP returns the same RSPID in its response to
the original request.

The SHOW RSPID command displays information taken from the response
descriptor table (RDT), which lists the currently open local requests that require
responses from SYSAPs at a remote node. For each RSPID, SDA displays the
following information:

• RSPID value

• Address of the class driver request packet (CDRP), which generally represents
the original request

• Address of the CDT that is using the RSPID

• Name of the local process using the RSPID

• Remote node from which a response is required (and has not yet been
received)

SDA–150

SDA Commands
SHOW RSPID

Examples

1. SDA> SHOW RSPID

--- Summary of Response Descriptor Table(RDT) 805E6F18 ---

RSPID CDRP Address CDT Address Local Process Name Remote Node
----- ------------ ----------- ------------------ -----------

39D00000 8062CC80 805E8710 VMS$VMScluster VANDQ1
EE210001 80637260 805E8C90 VMS$DISK_CL_DRVR ROMRDR
EE240002 806382E0 805E8DF0 VMS$DISK_CL_DRVR VANDQ1
EE440003 806393E0 805E8F50 VMS$TAPE_CL_DRVR VANDQ1
5DB90004 80636BC0 805E8870 VMS$VMScluster ROMRDR
5C260005 80664040 805E8870 VMS$VMScluster ROMRDR
38F80006 80664A80 805E8710 VMS$VMScluster VANDQ1

This example shows the default output for the SHOW RSPID command.

2. SDA> SHOW RSPID/CONNECTION=805E8F50

--- Summary of Response Descriptor Table(RDT) 805E6F18 ---

RSPID CDRP Address CDT Address Local Process Name Remote Node
----- ------------ ----------- ------------------ -----------

EE440003 806393E0 805E8F50 VMS$TAPE_CL_DRVR VANDQ1

This example shows the output for a SHOW RSPID/CONNECTION command.

SDA–151

SDA Commands
SHOW SPINLOCKS

SHOW SPINLOCKS

Displays the multiprocessing synchronization data structures.

Format

SHOW SPINLOCKS [/OWNED]
�

/BRIEF
/FULL

� �
/DYNAMIC
/STATIC

�
� name

/ADDRESS=expression
/INDEX=expression

�

Parameter

name
Name of the spin lock, fork lock, or device lock structure to be displayed. Device
lock names are of the form [node$]lock, where node optionally indicates the
VMScluster node name (allocation class) and lock indicates the device and
controller identification (for example, HAETAR$DUA).

Qualifiers

/ADDRESS=expression
Displays the lock at the address specified in expression. You can use the
/ADDRESS qualifier to display a specific device lock; however, the name of the
device lock is listed as ‘‘Unknown’’ in the display.

/BRIEF
Produces a condensed display of the lock information displayed by default by
the SHOW SPINLOCKS command, including the following: address, spinlock
name or device name, IPL or device IPL, rank, index, ownership depth, number
of waiting CPUs, CPU ID of the owner CPU, and interlock status (depth of
ownership).

/DYNAMIC
Displays information for all device locks in the system.

/FULL
Displays full descriptive and diagnostic information for each displayed spin lock,
fork lock, or device lock.

/INDEX=expression
Displays the system spin lock whose index is specified in expression. You cannot
use the /INDEX qualifier to display a device lock.

/OWNED
Displays information for all spin locks, fork locks, and device locks owned by the
SDA current CPU. If a processor does not own any spin locks, SDA displays the
following message:

No spinlocks currently owned by CPU xx

The xx represents the CPU ID of the processor.

SDA–152

SDA Commands
SHOW SPINLOCKS

/STATIC
Displays information for all system spin locks and fork locks.

Description

The SHOW SPINLOCKS command displays status and diagnostic information
about the multiprocessing synchronization structures known as spin locks.

A static spin lock is a spin lock whose data structure is permanently assembled
into the system. Static spin locks are accessed as indexes into a vector of
longword addresses called the spin lock vector, the address of which is
contained in SMP$AR_SPNLKVEC. System spin locks and fork locks are static
spin locks. Table SDA–18 lists the static spin locks.

A dynamic spin lock is a spin lock that is created based on the configuration
of a particular system. One such dynamic spin lock is the device lock SYSMAN
creates when configuring a particular device. This device lock synchronizes access
to the device’s registers and certain UCB fields. The system creates a dynamic
spin lock by allocating space from nonpaged pool, rather than assembling the lock
into the system as it does in creating a static spin lock.

See the OpenVMS Alpha Device Support: Developer’s Guide for a full discussion
of the role of spin locks in maintaining synchronization of kernel mode activities
in a multiprocessing environment.

Table SDA–18 Static Spin Locks

Name Description

QUEUEAST Fork lock for queuing ASTs at IPL 6
FILSYS Lock on file system structures
IOLOCK8/SCS Fork lock for executing a driver fork process at IPL 8
TX_SYNCH Transaction processing lock
TIMER Lock for adding and deleting timer queue entries and

searching the timer queue
IO_MISC Miscellaneous short term I/O locks
MMG Lock on memory management, PFN database, swapper,

modified page writer, and creation of per-CPU database
structures

SCHED Lock on process control blocks (PCBs), scheduler database,
and mutex acquisition and release structures

IOLOCK9 Fork lock for executing a driver fork process at IPL 9
IOLOCK10 Fork lock for executing a driver fork process at IPL 10
IOLOCK11 Fork lock for executing a driver fork process at IPL 11
MAILBOX Lock for sending messages to mailboxes
POOL Lock on nonpaged pool database
PERFMON Lock for I/O performance monitoring

(continued on next page)

SDA–153

SDA Commands
SHOW SPINLOCKS

Table SDA–18 (Cont.) Static Spin Locks

Name Description

INVALIDATE Lock for system space translation buffer (TB) invalidation
HWCLK Lock on hardware clock database, including the quadword

containing the due time of the first timer queue entry
(EXE$GQ_1ST_TIME) and the quadword containing the
system time (EXE$GQ_SYSTIME)

MEGA Lock for serializing access to fork-wait queue
EMB/MCHECK Lock for allocating and releasing error-logging buffers and

synchronizing certain machine error handling

For each spin lock, fork lock, or device lock in the system, SHOW SPINLOCKS
provides the following information:

• Name of the spin lock (or device name for the device lock)

• Address of the spinlock data structure (SPL)

• The owner CPU’s CPU ID

• IPL at which allocation of the lock is synchronized on a local processor

• Number of nested acquisitions of the spin lock by the processor owning the
spin lock (‘‘Ownership Depth’’)

• Rank of the spin lock

• Number of processors waiting to obtain the spin lock

• Spinlock index (for static spin locks only)

• Timeout interval for spinlock acquisition (in terms of 10 milliseconds)

SHOW SPINLOCKS/BRIEF produces a condensed display of this same
information.

If the system under analysis was executing with full-checking multiprocessing
enabled (according to the setting of the MULTIPROCESSING system parameter),
SHOW SPINLOCKS/FULL adds to the spinlock display the last eight PCs at
which the lock was acquired or released. If applicable, SDA also displays the PC
of the last release of multiple, nested acquisitions of the lock.

SDA–154

SDA Commands
SHOW SPINLOCKS

Examples

1. SDA> SHOW SPINLOCKS
System static spinlock structures

EMB Address 80424480
Owner CPU ID None DIPL 0000001F
Ownership Depth 00000000 Rank 00000000
CPUs Waiting 00000000 Index 00000020

EMB Address 80424480
Owner CPU ID None DIPL 0000001F
Ownership Depth 00000000 Rank 00000000
CPUs Waiting 00000000 Index 00000020

MEGA Address 80424500
Owner CPU ID None DIPL 00000016
Ownership Depth 00000000 Rank 00000002
CPUs Waiting 00000000 Index 00000022

HWCLK Address 80424580
Owner CPU ID None DIPL 00000016
Ownership Depth 00000000 Rank 00000004
CPUs Waiting 00000000 Index 00000024

.

.

.
System dynamic spinlock structures

OPA Address 8041E880
Owner CPU ID None DIPL 00000014
Ownership Depth 00000000 Rank FFFFFFFF
CPUs Waiting 00000000

MBA Address 80424780
Owner CPU ID None DIPL 0000000B
Ownership Depth 00000000 Rank 0000000C
CPUs Waiting 00000000 Index 0000002C

NLA Address 80424780
Owner CPU ID None DIPL 0000000B
Ownership Depth 00000000 Rank 0000000C
CPUs Waiting 00000000 Index 0000002C

PKI Address 80552800
Owner CPU ID None DIPL 00000014
Ownership Depth 00000000 Rank FFFFFFFF
CPUs Waiting 00000000

.

.

.

This excerpt illustrates the default output of the SHOW SPINLOCKS command.

SDA–155

SDA Commands
SHOW SPINLOCKS

2. SDA> SHOW SPINLOCKS/BRIEF
Address Spnlck Name IPL Rank Index Depth #Waiting Ownr CPU Interlock

--

8041F400 EMB 001F 00000000 00000020 00000000 00000000 None Free
8041F400 EMB 001F 00000000 00000020 00000000 00000000 None Free
8041F480 MEGA 001F 00000002 00000022 00000000 00000000 None Free
8041F500 HWCLK 0016 00000004 00000024 00000000 00000000 None Free
8041F580 INVALIDATE 0015 00000006 00000026 00000000 00000000 None Free
8041F600 PERFMON 000F 00000008 00000028 00000000 00000000 None Free
8041F680 POOL 000B 0000000A 0000002A 00000000 00000000 None Free
8041F700 MAILBOX 000B 0000000C 0000002C 00000000 00000000 None Free
8041F780 IOLOCK11 000B 0000000E 0000002E 00000000 00000000 None Free
8041F800 IOLOCK10 000A 0000000F 0000002F 00000000 00000000 None Free
8041F880 IOLOCK9 0009 00000010 00000030 00000000 00000000 None Free
8041F900 SCHED 0008 00000012 00000032 00000000 00000000 None Free
8041F980 MMG 0008 00000014 00000034 00000000 00000000 None Free
8041FA00 IO_MISC 0008 00000016 00000036 00000000 00000000 None Free
8041FA80 TIMER 0008 00000018 00000038 00000000 00000000 None Free
8041FB00 TX_SYNCH 0008 00000019 00000039 00000000 00000000 None Free
8041FB80 SCS 0008 0000001A 0000003A 00000000 00000000 None Free
8041FC00 FILSYS 0008 0000001C 0000003C 00000000 00000000 None Free
8041FC80 QUEUEAST 0006 0000001E 0000003E 00000000 00000000 None Free
80419880 PIPERA$OPA 0015 FFFFFFFF 00000000 00000000 None Free
8041F700 PIPERA$MBA 000B 0000000C 0000002C 00000000 00000000 None Free
8041F700 PIPERA$NLA 000B 0000000C 0000002C 00000000 00000000 None Free
805E9900 PIPERA$DKB 0016 FFFFFFFF 00000000 00000000 None Free
805E9E80 PIPERA$PKB 0015 FFFFFFFF 00000000 00000000 None Free
8041FB80 PIPERA$FTA 0008 0000001A 0000003A 00000000 00000000 None Free
805B9400 PIPERA$PKA 0015 FFFFFFFF 00000000 00000000 None Free
805BBC00 PIPERA$DKA 0016 FFFFFFFF 00000000 00000000 None Free
805BC780 PIPERA$ESA 0015 FFFFFFFF 00000000 00000000 None Free
805BE080 PIPERA$TTA 0015 FFFFFFFF 00000000 00000000 None Free
805BEB00 PIPERA$SOA 0015 FFFFFFFF 00000000 00000000 None Free
8041FB80 PIPERA$NET 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$NDA 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$RTA 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$RTB 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$LTA 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$RTC 0008 0000001A 0000003A 00000000 00000000 None Free
8041FB80 PIPERA$PDA 0008 0000001A 0000003A 00000000 00000000 None Free

This excerpt illustrates the condensed form of the display produced in the first
example.

SDA–156

SDA Commands
SHOW STACK

SHOW STACK

Displays the location and contents of the process stacks (of the SDA current
process) and the system stack.

Format

SHOW STACK
� range

/qualifier[,...]

�

Parameter

range
Range of memory locations you want to display in stack format. You can express
a range using the following syntax:

m:n Range of virtual addresses from m to n
m;n Range of virtual addresses starting at m and continuing for n bytes

Qualifiers

/ALL
Displays the locations and contents of the four process stacks for the current SDA
process and the system stack.

/EXECUTIVE
Shows the executive stack for the SDA current process.

/INTERRUPT
The interrupt stack does not exist in OpenVMS Alpha. This qualifier shows the
system stack and is retained for compatibility with OpenVMS VAX.

/KERNEL
Shows the kernel stack for the SDA current process.

/LONG
Displays longword width stacks. If this qualifier is not specified, SDA by default
displays quadword width stacks.

/QUAD
Displays quadword width stacks. This is the default.

/SUPERVISOR
Shows the supervisor stack for the SDA current process.

/SYSTEM
Shows the system stack.

/USER
Shows the user stack for the SDA current process.

SDA–157

SDA Commands
SHOW STACK

Description

The SHOW STACK command, by default, displays the stack that was in use when
the system failed, or, in the analysis of a running system, the current operating
stack. For a process that became the SDA current process as the result of a SET
PROCESS command, the SHOW STACK command by default shows its current
operating stack.

The various qualifiers to the command can display any of the four per-process
stacks for the SDA current process, as well as the system stack for the SDA
current CPU.

You can define SDA process and CPU context by using the SET CPU, SHOW
CPU, SHOW CRASH, SET PROCESS, and SHOW PROCESS commands as
indicated in their command descriptions. A complete discussion of SDA context
control appears in Section 4.

SDA provides the following information in each stack display:

Section Contents

Identity of stack SDA indicates whether the stack is a process stack (user,
supervisor, executive, or kernel) or the system stack.

Stack pointer The stack pointer identifies the top of the stack. The
display indicates the stack pointer by the symbol SP =>.

Stack address SDA lists all the virtual addresses that the operating
system has allocated to the stack. The stack addresses
are listed in a column that increases in increments of
8 bytes (one quadword), unless you specify the /LONG
qualifier in which case addresses are listed in increments
of 4 (one longword).

Stack contents SDA lists the contents of the stack in a column to the
right of the stack addresses.

Symbols SDA attempts to display the contents of a location
symbolically, using a symbol and an offset.
If the address cannot be symbolized, this column is left
blank.

If a stack is empty, the display shows the following:

SP => (STACK IS EMPTY)

SDA–158

SDA Commands
SHOW STACK

Example

SDA> SHOW STACK

Current Operating Stack (SYSTEM):
FFFFFFFF8244BD08 FFFFFFFF 800600FC SCH$REPORT_EVENT_C+000FC
FFFFFFFF8244BD10 00000000 00000002
FFFFFFFF8244BD18 00000000 00000005
FFFFFFFF8244BD20 FFFFFFFF 8060C7C0

SP => FFFFFFFF8244BD28 FFFFFFFF 8244BEE8
FFFFFFFF8244BD30 FFFFFFFF 80018960 EXE$HWCLKINT_C+00260
FFFFFFFF8244BD38 00000000 000001B8
FFFFFFFF8244BD40 00000000 00000050
FFFFFFFF8244BD48 00000000 00000210 UCB$N_RSID+00002
FFFFFFFF8244BD50 00000000 00000000
FFFFFFFF8244BD58 00000000 00000000
FFFFFFFF8244BD60 FFFFFFFF 804045D0 SCH$GQ_IDLE_CPUS
FFFFFFFF8244BD68 FFFFFFFF 8041A340 EXE$GL_FKWAITFL+00020
FFFFFFFF8244BD70 00000000 00000250 UCB$T_MSGDATA+00034
FFFFFFFF8244BD78 00000000 00000001

CHF$IS_MCH_ARGS FFFFFFFF8244BD80 00000000 0000002B
CHF$PH_MCH_FRAME FFFFFFFF8244BD88 FFFFFFFF 8244BFB0
CHF$IS_MCH_DEPTH FFFFFFFF8244BD90 80000000 FFFFFFFD G
CHF$PH_MCH_DADDR FFFFFFFF8244BD98 00000000 00001600 CTL$C_CLIDATASZ+00060
CHF$PH_MCH_ESF_ADDR FFFFFFFF8244BDA0 FFFFFFFF 8244BF40
CHF$PH_MCH_SIG_ADDR FFFFFFFF8244BDA8 FFFFFFFF 8244BEE8
CHF$IH_MCH_SAVR0 FFFFFFFF8244BDB0 FFFFFFFF 8041FB00 SMP$RELEASEL+00640
CHF$IH_MCH_SAVR1 FFFFFFFF8244BDB8 00000000 00000000
CHF$IH_MCH_SAVR16 FFFFFFFF8244BDC0 00000000 0000000D
CHF$IH_MCH_SAVR17 FFFFFFFF8244BDC8 0000FFF0 00007E04
CHF$IH_MCH_SAVR18 FFFFFFFF8244BDD0 00000000 00000000
CHF$IH_MCH_SAVR19 FFFFFFFF8244BDD8 00000000 00000001
CHF$IH_MCH_SAVR20 FFFFFFFF8244BDE0 00000000 00000000
CHF$IH_MCH_SAVR21 FFFFFFFF8244BDE8 FFFFFFFF 805AE4B6 SISR+0006E
CHF$IH_MCH_SAVR22 FFFFFFFF8244BDF0 00000000 00000001
CHF$IH_MCH_SAVR23 FFFFFFFF8244BDF8 00000000 00000010
CHF$IH_MCH_SAVR24 FFFFFFFF8244BE00 00000000 00000008
CHF$IH_MCH_SAVR25 FFFFFFFF8244BE08 00000000 00000010
CHF$IH_MCH_SAVR26 FFFFFFFF8244BE10 00000000 00000001
CHF$IH_MCH_SAVR27 FFFFFFFF8244BE18 00000000 00000000
CHF$IH_MCH_SAVR28 FFFFFFFF8244BE20 FFFFFFFF 804045D0 SCH$GQ_IDLE_CPUS

FFFFFFFF8244BE28 30000000 00000300 UCB$L_PI_SVA
FFFFFFFF8244BE30 FFFFFFFF 80040F6C EXE$REFLECT_C+00950
FFFFFFFF8244BE38 18000000 00000300 UCB$L_PI_SVA
FFFFFFFF8244BE40 FFFFFFFF 804267A0 EXE$CONTSIGNAL+00228
FFFFFFFF8244BE48 00000000 7FFD00A8 PIO$GW_IIOIMPA
FFFFFFFF8244BE50 00000003 00000000
FFFFFFFF8244BE58 FFFFFFFF 8003FC20 EXE$CONNECT_SERVICES_C+00920
FFFFFFFF8244BE60 FFFFFFFF 8041FB00 SMP$RELEASEL+00640
FFFFFFFF8244BE68 00000000 00000000
FFFFFFFF8244BE70 FFFFFFFF 8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF8244BE78 00000000 0000000D
FFFFFFFF8244BE80 0000FFF0 00007E04
FFFFFFFF8244BE88 00000000 00000000
FFFFFFFF8244BE90 00000000 00000001
FFFFFFFF8244BE98 00000000 00000000
FFFFFFFF8244BEA0 FFFFFFFF 805AE4B6 SISR+0006E
FFFFFFFF8244BEA8 00000000 00000001
FFFFFFFF8244BEB0 00000000 00000010
FFFFFFFF8244BEB8 00000000 00000008
FFFFFFFF8244BEC0 00000000 00000010
FFFFFFFF8244BEC8 00000000 00000001
FFFFFFFF8244BED0 00000000 00000000
FFFFFFFF8244BED8 FFFFFFFF 804045D0 SCH$GQ_IDLE_CPUS
FFFFFFFF8244BEE0 00000000 00000001

SDA–159

SDA Commands
SHOW STACK

CHF$L_SIG_ARGS FFFFFFFF8244BEE8 0000000C 00000005
CHF$L_SIG_ARG1 FFFFFFFF8244BEF0 FFFFFFFC 00010000 SYS$K_VERSION_08

FFFFFFFF8244BEF8 00000300 FFFFFFFC UCB$L_PI_SVA
FFFFFFFF8244BF00 00000002 00000001
FFFFFFFF8244BF08 00000000 0000000C
FFFFFFFF8244BF10 00000000 00000000
FFFFFFFF8244BF18 00000000 FFFFFFFC
FFFFFFFF8244BF20 00000008 00000000
FFFFFFFF8244BF28 00000000 00000001
FFFFFFFF8244BF30 00000008 00000000
FFFFFFFF8244BF38 00000000 FFFFFFFC

INTSTK$Q_R2 FFFFFFFF8244BF40 FFFFFFFF 80404668 SCH$GL_ACTIVE_PRIORITY
INTSTK$Q_R3 FFFFFFFF8244BF48 FFFFFFFF 8042F280 SCH$WAIT_KERNEL_MODE
INTSTK$Q_R4 FFFFFFFF8244BF50 FFFFFFFF 80615F00
INTSTK$Q_R5 FFFFFFFF8244BF58 00000000 00000000
INTSTK$Q_R6 FFFFFFFF8244BF60 FFFFFFFF 805AE000
INTSTK$Q_R7 FFFFFFFF8244BF68 00000000 00000000
INTSTK$Q_PC FFFFFFFF8244BF70 00000000 FFFFFFFC
INTSTK$Q_PS FFFFFFFF8244BF78 30000000 00000300 UCB$L_PI_SVA

FFFFFFFF8244BF80 FFFFFFFF 80404668 SCH$GL_ACTIVE_PRIORITY
FFFFFFFF8244BF88 00000000 7FFD00A8 PIO$GW_IIOIMPA
FFFFFFFF8244BF90 00000000 00000000
FFFFFFFF8244BF98 FFFFFFFF 8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF8244BFA0 00000000 00000044
FFFFFFFF8244BFA8 FFFFFFFF 80403C30 SMP$GL_FLAGS

Prev SP (8244BFB0) ==> FFFFFFFF8244BFB0 FFFFFFFF 8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF8244BFB8 00000000 00000000
FFFFFFFF8244BFC0 FFFFFFFF 805EE040
FFFFFFFF8244BFC8 FFFFFFFF 8006DB54 PROCESS_MANAGEMENT_NPRO+0DB54
FFFFFFFF8244BFD0 FFFFFFFF 80404668 SCH$GL_ACTIVE_PRIORITY
FFFFFFFF8244BFD8 FFFFFFFF 80615F00
FFFFFFFF8244BFE0 FFFFFFFF 8041B220 SCH$RESOURCE_WAIT
FFFFFFFF8244BFE8 00000000 00000044
FFFFFFFF8244BFF0 FFFFFFFF 80403C30 SMP$GL_FLAGS
FFFFFFFF8244BFF8 00000000 7FF95E00

The SHOW STACK command displays a system stack. The data shown above the
stack pointer may not be valid. Note that the mechanism array, signal array, and
exception frame symbols displayed on the left will appear only for INVEXCEPTN,
FATALEXCPT, UNXSIGNAL, and SSRVEXCEPT bugchecks.

SDA–160

SDA Commands
SHOW SUMMARY

SHOW SUMMARY

Displays a list of all active processes and the values of the parameters used in
swapping and scheduling these processes.

Format

SHOW SUMMARY
�

/IMAGE
/THREAD

�

Parameters

None.

Qualifiers

/IMAGE
Causes SDA to display, if possible, the name of the image being executed within
each process.

/THREAD
Displays information on all the current threads associated with the current
process.

Description

The SHOW SUMMARY command displays the information in Table SDA–19 for
each active process in the system.

Table SDA–19 Process Information in the SHOW SUMMARY Display

Column Contents

Extended PID The 32-bit number that uniquely identifies the process
Indx Index of this process into the PCB array
Process name Name assigned to the process
Username Name of the user who created the process

(continued on next page)

SDA–161

SDA Commands
SHOW SUMMARY

Table SDA–19 (Cont.) Process Information in the SHOW SUMMARY Display

Column Contents

State Current state of the process, which is one of the following 14
states:

State Meaning

COM Computable and resident in memory
COMO Computable, but outswapped
CUR Currently executing
CEF Waiting for a common event flag
LEF Waiting for a local event flag
LEFO Outswapped and waiting for a local event flag
HIB Hibernating
HIBO Hibernating and outswapped
SUSP Suspended
SUSPO Suspended and outswapped
PFW Waiting for a page that is not in memory (page-

fault wait)
FPG Waiting to add a page to its working set (free-

page wait)
COLPG Waiting for a page collision to be resolved

(collided-page wait); this usually occurs when
several processes cause page faults on the same
shared page

MWAIT Waiting for a system resource (miscellaneous
wait)

Pri Current scheduling priority of the process
PCB Address of the process control block
PHD Address of the process header
Wkset Number (in decimal) of pages currently in the process

working set

SDA–162

SDA Commands
SHOW SUMMARY

Example

SDA> SHOW SUMMARY/IMAGE
Current process summary

Extended Indx Process name Username State Pri PCB/KTB PHD/FRED Wkset
-- PID -- ---- --------------- ----------- ------- --- -------- -------- -

00000041 0001 SWAPPER HIB 16 80C641D0 80C63E00 0
00000045 0005 IPCACP SYSTEM HIB 10 80DC0780 81266000 39
00000046 0006 ERRFMT SYSTEM HIB 8 80DC2240 8126C000 57
00000047 0007 OPCOM SYSTEM HIB 8 80DC3340 81272000 31
00000048 0008 AUDIT_SERVER AUDIT$SERVER HIB 10 80D61280 81278000 152
00000049 0009 JOB_CONTROL SYSTEM HIB 10 80D620C0 8127E000 50
0000004A 000A SECURITY_SERVER SYSTEM HIB 10 80DC58C0 81284000 253
0000004B 000B TP_SERVER SYSTEM HIB 10 80DC8900 8128A000 75
0000004C 000C NETACP DECNET HIB 10 80DBFE00 8125A000 78
0000004D 000D EVL DECNET HIB 6 80DCA080 81290000 76
0000004E 000E REMACP SYSTEM HIB 8 80DE4E00 81296000 14
00000050 0010 DECW$SERVER_0 SYSTEM HIB 8 80DEF940 812A2000 739
00000051 0011 DECW$LOGINOUT <login> LEF 4 80DF0F00 812A8000 273
00000052 0012 SYSTEM SYSTEM LEF 9 80D772C0 81260000 75

The SHOW SUMMARY/IMAGE command describes all active processes in the
system at the time of the system failure. Note that the process NETACP is in the
CUR state at the time of the failure.

SDA–163

SDA Commands
SHOW SYMBOL

SHOW SYMBOL

Displays the hexadecimal value of a symbol and, if the value is equal to an
address location, the contents of that location.

Format

SHOW SYMBOL [/ALL] symbol-name

Parameter

symbol-name
Name of the symbol to be displayed. You must provide a symbol-name.

Qualifier

/ALL
Displays information on all symbols whose names begin with the characters
specified in symbol-name.

Description

The SHOW SYMBOL/ALL command is useful for determining the values of
symbols that belong to a symbol set, as illustrated in the following examples.

Examples

1. SDA> SHOW SYMBOL G
G = 80000000 : 201F0104

The SHOW SYMBOL command evaluates the symbol G as 8000000016 and
displays the contents of address 8000000016 as 201F010416.

2. SDA> SHOW SYMBOL/ALL BUG

Symbols sorted by name

BUG$L_BUGCHK_FLAGS = FFFFFFFF804031E8 : 00000001
BUG$L_FATAL_SPSAV = FFFFFFFF804031F0 : 00000001
BUG$REBOOT = FFFFFFFF8042E320 : 00001808
BUG$REBOOT_C = FFFFFFFF8004f4D0 : 00000000

Symbols sorted by value

BUG$REBOOT_C = FFFFFFFF8004f4D0 : 00000000
BUG$L_BUGCHK_FLAGS = FFFFFFFF804031E8 : 00000001
BUG$L_FATAL_SPSAV = FFFFFFFF804031F0 : 00000001
BUG$REBOOT = FFFFFFFF8042E320 : 00001808

.

.

.

This example shows the display produced by the SHOW SYMBOL/ALL
command. SDA searches its symbol table for all symbols that begin with the
string ‘‘BUG’’ and displays the symbols and their values. Although certain
values equate to memory addresses, it is doubtful that the contents of those
addresses are actually relevant to the symbol definitions in this instance.

SDA–164

SDA Commands
SPAWN

SPAWN

Creates a subprocess of the process currently running SDA, copying the context
of the current process to the subprocess and, optionally, executing a specified
command within the subprocess.

Format

SPAWN [/qualifier[,...]] [command]

Parameter

command
Name of the command that you want the subprocess to execute.

Qualifiers

/INPUT=filespec
Specifies an input file containing one or more command strings to be executed
by the spawned subprocess. If you specify a command string with an input file,
the command string is processed before the commands in the input file. Once
processing is complete, the subprocess is terminated.

/NOLOGICAL_NAMES
Specifies that the logical names of the parent process are not to be copied to the
subprocess. The default behavior is that the logical names of the parent process
are copied to the subprocess.

/NOSYMBOLS
Specifies that the DCL global and local symbols of the parent process are not
to be passed to the subprocess. The default behavior is that these symbols are
passed to the subprocess.

/NOTIFY
Specifies that a message is to be broadcast to SYS$OUTPUT when the subprocess
completes processing or aborts. The default behavior is that such a message is
not sent to SYS$OUTPUT.

/NOWAIT
Specifies that the system is not to wait until the subprocess is completed before
allowing more commands to be specified. This qualifier allows you to specify new
commands while the spawned subprocess is running. If you specify /NOWAIT,
use /OUTPUT to direct the output of the subprocess to a file to prevent more than
one process from simultaneously using your terminal.

The default behavior is that the system waits until the subprocess is completed
before allowing more commands to be specified.

/OUTPUT=filespec
Specifies an output file to which the results of the SPAWN operation are written.
To prevent output from the spawned subprocess from being displayed while
you are specifying new commands, specify an output other than SYS$OUTPUT
whenever you specify /NOWAIT. If you omit the /OUTPUT qualifier, output is
written to the current SYS$OUTPUT device.

SDA–165

SDA Commands
SPAWN

/PROCESS=process-name
Specifies the name of the subprocess to be created. The default name of the
subprocess is USERNAME_n, where USERNAME is the user name of the parent
process. The variable n represents the subprocess number.

Example

SDA> SPAWN
$ MAIL

.

.

.
$ DIR

.

.

.
$ LO

Process SYSTEM_1 logged out at 5-JAN-1993 15:42:23.59
SDA>

This example uses the SPAWN command to create a subprocess that issues DCL
commands to invoke the Mail utility. The subprocess then lists the contents of a
directory before logging out to return to the parent process executing SDA.

SDA–166

SDA Commands
VALIDATE QUEUE

VALIDATE QUEUE

Validates the integrity of the specified queue by checking the pointers in the
queue.

Format

VALIDATE QUEUE [address]

���
��

/LIST
/QUADWORD
/SELF_RELATIVE
/SINGLY_LINKED

���
�	

Parameter

address
Address of an element in a queue.

If you specify the period (.) as the address, SDA uses the last evaluated
expression as the queue element’s address.

If you do not specify an address, the VALIDATE QUEUE command determines
the address from the last issued VALIDATE QUEUE command in the current
SDA session.

If you do not specify an address, and no queue has previously been specified,
SDA displays the following error message:

%SDA-E-NOQUEUE, no queue has been specified for validation

Qualifiers

/LIST
Displays address of each element in the queue.

/QUADWORD
Allows the validate operation to occur on queues with linked lists of quadword
addresses.

/SELF_RELATIVE
Specifies that the selected queue is a self-relative queue. Other processes cannot
insert or remove queue entries while the current process is doing so.

/SINGLY_LINKED
Allows validation of queues that have no backward pointers.

Description

The VALIDATE QUEUE command uses the forward, and optionally, backward
pointers in each element of the queue to make sure that all such pointers are
valid and that the integrity of the queue is intact. If the queue is intact, SDA
displays the following message:

Queue is complete, total of n elements in the queue

In these messages, n represents the number of entries the VALIDATE QUEUE
command has found in the queue.

SDA–167

SDA Commands
VALIDATE QUEUE

If SDA discovers an error in the queue, it displays one of the following error
messages:

Error in forward queue linkage at address nnnnnnnn after tracing x elements
Error comparing backward link to previous structure address (nnnnnnnn)
Error occurred in queue element at address oooooooo after tracing pppp elements

These messages can appear frequently when the VALIDATE QUEUE command
is used within an SDA session that is analyzing a running system. In a running
system, the composition of a queue can change while the command is tracing its
links, thus producing an error message.

If there are no entries in the queue, SDA displays this message:

The queue is empty

Examples

1. SDA> VALIDATE QUEUE/SELF_RELATIVE IOC$GQ_POSTIQ
Queue is complete, total of 159 elements in the queue

This example validates the self-relative queue IOC$GQ_POSTIQ. The
validation is successful and determines that there are 159 IRPs in the list.

2. SDA> validate queue/quad FFFFFFFF80D0E6CO/list
Entry Address Flink Blink
----- ------- ------ -----
Header FFFFFFFF80D0E6CO FFFFFFFF80D03780 FFFFFFFF80D0E800

1. FFFFFFFF80D0E790 FFFFFFFF80D0E7CO FFFFFFFF80D0E6C0
2. FFFFFFFF80D0E800 FFFFFFFF80D0E6C0 FFFFFFFF80D0E7C0

Queue is complete, total of 3 elements in the queue

This example shows the validation of quadword elements in a list.

3. SDA> validate queue/sing exe$gl_nonpaged+4
Queue is zero-terminated, total of 95 elements in the queue

This example shows the validation of singly linked elements in the queue.
The forward link of the final element is zero instead of being a pointer back
to the queue header.

SDA–168

SDA Extension Commands

SDA Extension Commands

The SDA CLUE (Crash Log Utility Extractor) extension commands can
summarize information provided by certain standard SDA commands and
provide additional detail for some SDA commands. These SDA CLUE commands
can interpret the contents of the dump to perform additonal analysis.

All CLUE commands can be used when analyzing crash dumps; the only CLUE
commands that are not allowed when analyzing a running system are CLUE
CRASH, CLUE ERRLOG, CLUE HISTORY, and CLUE STACK.

When rebooting after a system failure, CLUE commands by default automatically
analyze and save summary information from the crash dump file in CLUE history
and listing files. This information includes the following:

• Crash dump summary information

• System configuration

• Stack decoder

• Page and swap files

• Memory management statistics

• Process DCL recall buffer

• Active XQP processes

• XQP cache header

For additional information on the contents of the CLUE listing file, see the
reference section on CLUE HISTORY.

The following SDA CLUE extension commands are described in this section:

CLUE CLEANUP
CLUE CONFIG
CLUE CRASH
CLUE ERRLOG
CLUE HISTORY
CLUE MCHK
CLUE MEMORY
CLUE PROCESS
CLUE STACK
CLUE VCC
CLUE XQP

SDA–169

SDA Extension Commands
CLUE CLEANUP

CLUE CLEANUP

Performs housekeeping operations to conserve disk space.

Format

CLUE CLEANUP

Parameters

None.

Qualifiers

None.

Description

CLUE CLEANUP performs housekeeping operations to conserve disk space. To
avoid filling up the system disk with listing files generated by CLUE, CLUE
CLEANUP is run during system startup to check the overall disk space used by
all CLUE$*.LIS files.

If the CLUE$COLLECT:CLUE$*.LIS files occupy more space than the logical
CLUE$MAX_BLOCKS allows, then the oldest files are deleted until the threshold
is reached. If this logical name is not defined, a default value of 5,000 disk blocks
is assumed. A value of zero disables housekeeping and no check on the disk space
is performed.

Example

SDA> CLUE CLEANUP
%CLUE-I-CLEANUP, housekeeping started...
%CLUE-I-MAXBLOCK, maximum blocks allowed 5000 blocks
%CLUE-I-STAT, total of 4 CLUE files, 192 blocks.

In this example, the CLUE CLEANUP command displays that the total number
of blocks of disk space used by CLUE files does not exceed the maximum number
of blocks allowed. No files are deleted.

SDA–170

SDA Extension Commands
CLUE CONFIG

CLUE CONFIG

Displays the system, memory, and device configurations.

Format

CLUE CONFIG

Parameters

None.

Qualifiers

None.

Description

CLUE CONFIG displays the system, memory, and device configurations.

Example

SDA> CLUE CONFIG
System Configuration:

System Information:
System Type DEC 7000 Model 610 Primary CPU ID 00
Cycle Time 5.5 nsec (181 MHz) Pagesize 8192 Byte

Memory Configuration:
Cluster PFN Start PFN Count Range (MByte) Usage
#01 0 256 0.0 MB - 2.0 MB Console
#02 256 16128 2.0 MB - 128.0 MB System

Per-CPU Slot Processor Information:
CPU ID 00 CPU State rc,pa,pp,cv,pv,pmv,pl
CPU Type EV4 P3.0 Halt PC 00000000 20000000
PAL Code 5.41 Halt PS 00000000 00001F00
CPU Revision Halt Code 00000000 00000000
Serial Number GA30366899 Bootstrap or Powerfail

Adapter Configuration:

TR Adapter Name (Address) Hose Bus Node Device Name HW-Id/SW
-- ---------------------- ---- ------ ---- -------------- --------
1 KA0302 (805C9FC0) 0 LSB

0 KA0302_EV4_4MB 00008001
7 KA0302_MEM 00004000
8 KA0302_IOP 00002000

2 XMI (805CA380) 0 XMI
1 DEMNA 08020C03
2 KDM70 BB110C22
4 XZA_SCSI 413F0C36
5 XZA_SCSI 413F0C36
8 LAMB 0105102A
13 CIMNA 01110C2F
14 DEMFA 05130823

3 DEMNA (805CA840) 0 GENXMI
0 DEMNA 00000C03

4 KDM70 (805CAA80) 0 KDM70
0 KDM70 00000C22

5 XZA (805CB600) 0 SCSI

SDA–171

SDA Extension Commands
CLUE CONFIG

Adapter Configuration:

TR Adapter Name (Address) Hose Bus Node Device Name HW-Id/SW
-- ---------------------- ---- ----- ---- -------------- --------

0 XZA_SCSI 00000C36
1 XZA_SCSI 00000C36

6 XZA (805CBA40) 0 SCSI
0 XZA_SCSI 00000C36
1 XZA_SCSI 00000C36

7 CIMNA (805CBEC0) 0 CI
0 CIMNA 00000C2F

8 GENXMI (805CC200) 0 GENXMI

SDA–172

SDA Extension Commands
CLUE CRASH

CLUE CRASH

Displays a crash dump summary.

Format

CLUE CRASH

Parameters

None.

Qualifiers

None.

Description

CLUE CRASH displays a crash dump summary, which includes the following
items:

• Bugcheck type

• Current process and image

• Failing PC and PS

• Executive image section name and offset

• General registers

• Failing instructions

• Exception frame, signal and mechanism arrays (if available)

Example

SDA> CLUE CRASH
Crashdump Summary Information:

Crash Time: 11-MAY-1994 00:44:38.97
Bugcheck Type: UNXSIGNAL, Unexpected signal name in ACP
Node: CLAWS (Clustered)
CPU Type: DEC 7000 Model 610
VMS Version: V6.1
Current Process: OPERATOR
Current Image: 65DUA3:[SYS2.SYSCOMMON.][SYSEXE]BACKUP.EXE
Failing PC: FFFFFFFF 8484F93C
Failing PS: 38000000 00000000
Module: F11BXQP
Offset: 0000D93C

Boot Time: 11-MAY-1994 09:03:22.00
System Uptime: 0 15:41:16.97
Crash/Primary CPU: 00/00
Saved Processes: 19
Pagesize: 8 KByte (8192 bytes)
Physical Memory: 128 MByte (16384 PFNs)
Dumpfile Pagelets: 83405 blocks

Dump Flags: olddump,writecomp,errlogcomp,dump_style
EXE$GL_FLAGS: poolpging,init,bugdump

SDA–173

SDA Extension Commands
CLUE CRASH

Stack Pointers:
KSP = 00000000 7FF4EDF0 ESP = 00000000 7FF9A000 SSP = 00000000 7FFA0100
USP = 00000000 7FE530C8

General Registers:
R0 = 00000000 0000041C R1 = 00000000 7FF4F218 R2 = FFFFFFFF 84880590
R3 = 00000000 00000000 R4 = 00000000 7FF4F3AC R5 = FFFFFFFF 8077FA40
R6 = 00000000 00000072 R7 = 00000000 7FF4F3BC R8 = 00000000 7FF4F3B8
R9 = 00000000 7FF4F348 R10 = 00000000 7FF4F3AC R11 = 00000000 7FF4F344
R12 = 00000000 7FF4F340 R13 = 00000000 00000003 R14 = FFFFFFFF 806D7780
R15 = 00000000 7FF4F610 R16 = 00000000 0000041C R17 = 00000000 7FF4EEC0
R18 = 00000000 7FF4F080 R19 = 00000000 7FF4F028 R20 = FFFFFFFF 8487E380
R21 = FFFFFFFF 8059BF00 R22 = 00000000 00000040 R23 = FFFFFFFF 84880590
R24 = FFFFFFFF 80417C60 AI = 00000000 7FF4F028 RA = 00000000 7FF4EEC0
PV = FFFFFFFF 84880590 R28 = FFFFFFFF 8485F57C FP = 00000000 7FF4EDF0
PC = FFFFFFFF 8485F5E0 PS = 30000000 00000000

Exception Frame:
R2 = FFFFFFFF 84882718 R3 = 00000000 00000000 R4 = 00000000 7FF4F3AC
R5 = FFFFFFFF 8077FA40 R6 = 00000000 00000072 R7 = 00000000 7FF4F3BC
PC = FFFFFFFF 8484F93C PS = 38000000 00000000

Signal Array:
Arg Count = 00000005
Condition = 0000000C
Argument #2 = 00000004
Argument #3 = 00970D2B
Argument #4 = 8484F93C
Argument #5 = 00000000

Mechanism Array:
Arguments = 0000002B Establisher FP = 00000000 7FF4F218
Flags = 00000000 Exception FP = 00000000 7FF4F080
Depth = 00000002 Signal Array = 00000000 7FF4F028
R0 = FFFFFFFF 80594F80 R1 = FFFFFFFF 80594F80 R16 = FFFFFFFF 806D7780
R17 = 00000000 7FF4F344 R18 = FFFFFFFF 8076344C R19 = 00000000 7FF4F3AC
R20 = FFFFFFFF 8487E380 R21 = FFFFFFFF 8059BF00 R22 = 00000000 00970D27
R23 = FFFFFFFF 80CEB227 R24 = FFFFFFFF 80594F80 R25 = 00000000 00000003
R26 = FFFFFFFF 8487099C R27 = FFFFFFFF 8487E380 R28 = 00000000 00000000

System Registers:
Page Table Base Register (PTBR) 00000000 000005A9
Processor Base Register (PRBR) FFFFFFFF 80590000
Privileged Context Block Base (PCBB) 00000000 03ADE080
System Control Block Base (SCBB) 00000000 00000560
Software Interrupt Summary Register (SISR) 00000000 00000000
Address Space Number (ASN) 00000000 0000003F
AST Summary / AST Enable (ASTSR_ASTEN) 00000000 0000000F
Floating-Point Enable (FEN) 00000000 00000000
Interrupt Priority Level (IPL) 00000000 00000000
Machine Check Error Summary (MCES) 00000000 00000000
Virtual Page Table Base Register (VPTB) 00000002 00000000

Failing Instruction:
F11BXQP_PRO+0193C: STL R24,#X0004(R22)

SDA–174

SDA Extension Commands
CLUE CRASH

Instruction Stream (last 20 instructions):
F11BXQP_PRO+018EC: LDA SP,#XFFE0(SP)
F11BXQP_PRO+018F0: BIS R31,R17,R0
F11BXQP_PRO+018F4: STQ R27,(SP)
F11BXQP_PRO+018F8: BIS R31,R10,R19
F11BXQP_PRO+018FC: STQ R26,#X0010(SP)
F11BXQP_PRO+01900: BIS R31,R27,R20
F11BXQP_PRO+01904: STQ FP,#X0018(SP)
F11BXQP_PRO+01908: BIS R31,SP,FP
F11BXQP_PRO+0190C: BIS R31,R0,R1
F11BXQP_PRO+01910: LDA R17,#XFF98(R19)
F11BXQP_PRO+01914: LDL R21,#X0014(R16)
F11BXQP_PRO+01918: BIS R31,R1,R24
F11BXQP_PRO+0191C: LDL R22,(R21)
F11BXQP_PRO+01920: XOR R21,R22,R23
F11BXQP_PRO+01924: BNE R23,#X000005
F11BXQP_PRO+01928: STL R24,#X0004(R21)
F11BXQP_PRO+0192C: STL R24,(R21)
F11BXQP_PRO+01930: STL R21,#X0004(R24)
F11BXQP_PRO+01934: STL R21,(R24)
F11BXQP_PRO+01938: BR R31,#X000004
F11BXQP_PRO+0193C: STL R24,#X0004(R22)

SDA–175

SDA Extension Commands
CLUE ERRLOG

CLUE ERRLOG

Extracts the error log buffers from the dump file and places them into the binary
file called CLUE$ERRLOG.SYS.

Format

CLUE ERRLOG

Parameters

None.

Qualifiers

None.

Description

CLUE ERRLOG extracts the error log buffers from the dump file and places them
into the binary file called CLUE$ERRLOG.SYS. These buffers contain messages
not yet written to the error log file at the time of the failure. When you analyze
a failure on the same system on which it occurred, you can run the Error Log
utility on the actual error log file to see these error log messages. When analyzing
a failure from another system, use the CLUE ERRLOG command to create a file
containing the failing system’s error log messages just prior to the failure. System
failures are often triggered by hardware problems, so determining what, if any,
hardware errors occurred prior to the failure can help you troubleshoot a failure.

You can define the logical CLUE$ERRLOG to any file specification if you want
error log information written to a file other than CLUE$ERRLOG.SYS.

Example

SDA> CLUE ERRLOG

Sequence Date Time
-------- ----------- -----------

128 11-MAY-1994 00:39:31.30
129 11-MAY-1994 00:39:32.12
130 11-MAY-1994 00:39:44.83
131 11-MAY-1994 00:44:38.97 * Crash Entry

The CLUE ERRLOG command diplays the sequence, date, and time of each error
log buffer extracted from a dump file in the file CLUE$ERRLOG.SYS.

SDA–176

SDA Extension Commands
CLUE HISTORY

CLUE HISTORY

Updates history file and generates crash dump summary output.

Format

CLUE HISTORY [/qualifier]

Parameters

None.

Qualifiers

/OVERRIDE
Allows execution of this command even if the dump file has already been analyzed
(DMP$V_OLDDUMP bit set).

Description

This command updates the history file pointed to by the logical name
CLUE$HISTORY with a one-line entry and the major crash dump summary
information. If CLUE$HISTORY is not defined, a file CLUE$HISTORY.DAT in
your default directory will be created.

In addition, a listing file with summary information about the system failure is
created in the directory pointed to by CLUE$COLLECT. The file name is of the
form CLUE$node_ddmmyy_hhmm.LIS where the timestamp (hhmm) corresponds
to the system failure time and not the time when the file was created.

The listing file contains summary information collected from the following SDA
commands:

• CLUE CRASH

• CLUE CONFIG

• CLUE MEMORY/FILES

• CLUE MEMORY/STATISTIC

• CLUE PROCESS/RECALL

• CLUE XQP/ACTIVE

Refer to the reference section for each of these commands to see examples of the
displayed information.

The logical name CLUE$FLAG controls how much information is written to the
listing file.

• Bit 0—Include crash dump summary

• Bit 1—Include system configuration

• Bit 2—Include stack decoding information

• Bit 3—Include page and swap file usage

• Bit 4—Include memory management statistics

• Bit 5—Include process DCL recall buffer

SDA–177

SDA Extension Commands
CLUE HISTORY

• Bit 6—Include active XQP process information

• Bit 7—Include XQP cache header

If this logical name is undefined, all bits are set by default internally and all
information is written to the listing file. If the value is zero, no listing file is
generated. The value has to be supplied in hexadecimal form (for example,
DEFINE CLUE$FLAG 81 will include the crash dump summary and the XQP
cache header information).

If the logical name CLUE$SITE_PROC points to a valid and existing file, it will
be executed as part of the CLUE HISTORY command (for example, automatic
saving of the dump file during system startup). If used, this file should contain
only valid SDA commands.

Refer to Section 1.3 for more information on site-specific command files.

SDA–178

SDA Extension Commands
CLUE MCHK

CLUE MCHK

Displays machine-check information, including PALcode-specific, processor-
specific, and system-specific information.

Format

CLUE MCHK

Parameters

None.

Qualifiers

None.

Description

The CLUE MCHK command displays machine-check information, including
PALcode-specific, processor-specific, and system-specific information.

Example

SDA> CLUE MCHK

Machine Check Information:

Mchk Frame 83760000 Frame Size 000001E8 Frame Flags 00000000
Mchk Ident 00000088 CPU Offset 00000118 System Offset 000001A8

PALcode Temporary Registers:
R0 = 00000000 00000001 R1 = 00000000 00000000 R2 = 000044F8 00000004
R3 = 00000000 00ED25B0 R4 = 00000000 00000001 R5 = 00000000 00426380
R6 = 00000000 00314FD0 R7 = 00000000 000F4000 R8 = 00000000 00000000
R9 = 00000000 0000001B R10 = 0000459E 253B8997 R11 = 00000000 00000000
R12 = 00000000 00000000 R13 = FFFFFFFF 8042F548 R14 = 00000000 00315900
R15 = 00000000 00000018 R16 = 00000000 00000001 R17 = 00000000 00000000
R18 = 00000000 00000000 R19 = 00000000 00000000 R20 = 00000000 0000001B
R21 = 00000000 004DC4A0 R22 = FFFFFFFF FFF929C4 R23 = 00000000 00000001
R24 = FFFFFFFF 80570000 R25 = 00000000 00010000 R26 = 00000000 7FF96000
R27 = 00000000 00000000 R28 = 00000000 0143A000 R29 = 00000002 00000000
R30 = 00000000 00900000 R31 = 00000000 01556080

Processor Specific Information:
Exception Address 00000000 0038219A Exception Summary 00000000 00000000
PAL Base Address 00000000 00054000 Exception Mask 00000000 00000000
HW Interrupt Request 00000000 00000300 HW Interrupt Enable 00000001 FFFFD8F0
MM_CSR 00000000 00005000 ICCSR 00000000 00000000
D-Cache Address 00000007 FFFFFFFF D-Cache Status 00000000 00004238
BIU Status 00000000 00007340 BIU Address [7..0] 00000000 014054C8
BIU Control 0000000E 20006447 Fill Address 00000000 014054C0
Single-Bit Syndrome 00000000 00000052 Processor Mchk VA 00000000 000F8190
A-Box Control 00000000 0000040E B-Cache TAG 00000000 00001415

System Specific Information:
Exception Ident 00000000 00000088 Mem Conf Register 11111111 11808080
IO Slot Conf Reg 00000000 00140000 Failing Address 00000000 02000018
TC Config Register 00000000 00000016 TC Error Register 00000000 0F000200
Interrupt Register 00000000 0007FE00 Interrupt Mask Reg 00000000 00000010

SDA–179

SDA Extension Commands
CLUE MEMORY

CLUE MEMORY

Displays memory- and pool-related information.

Format

CLUE MEMORY [/qualifier[,...]]

Parameters

None.

Qualifiers

/FILES
Displays information about page and swap file usage.

/FREE [/FULL]
Validates and displays dynamic nonpaged free packet list queue.

/GH [/FULL]
Displays information about the granularity hint regions.

/LAYOUT
Decodes and displays much of the system virtual address space layout.

/LOOKASIDE
Validates the lookaside list queue heads and counts the elements for each list.

/STATISTIC
Displays systemwide performance data such as page fault, I/O, pool, lock
manager, MSCP, and file system cache.

Description

The CLUE MEMORY command displays memory- and pool-related information.

Examples

1. SDA> CLUE MEMORY/FILES

Paging File Usage (blocks):

Process
Index Type Total Size Free Reservable Page Swap Flags
----- ---- ---------- ---------- ---------- ---- ---- ----------
1 Swap 38272 38272 38272 0 0 inited
3 Page 270080 270080 190912 20 0 inited

This example shows the display produced by the CLUE MEMORY/FILES
command.

SDA–180

SDA Extension Commands
CLUE MEMORY

2. SDA> CLUE MEMORY/FREE/FULL

Nonpaged Dynamic Pool - Free Packet Queue:
--

CLASSDR 80B1A380 : 64646464 64646464 00000040 80B1A480 .¤±.@...dddddddd

CLASSDR 80B1A480 : 64646464 64646464 00000040 80B43C80 .<´.@...dddddddd

IPC 80B43C80 : 8016B950 207B0040 00000040 80B50640 @.µ.@...@.{ P¹..

ACB 80B50640 : 8008AF6C 03020024 00000040 80B52E80 ..µ.@...$...l¯..

ACB 80B52E80 : 8008AF6C 03020024 00000040 80B5FC00 .üµ.@...$...l¯..

ACB 80B5FC00 : 8008AF6C 03020024 00000040 80B610C0 À.¶.@...$...l¯..

ACB 80B610C0 : 8008AF6C 03020024 00000040 80B66CC0 Àl¶.@...$...l¯..

ACB 80B66CC0 : 8008AF6C 03020024 00000040 80B704C0 À.·.@...$...l¯..

CLASSDR 80B704C0 : 64646464 64646464 00000080 80B72EC0 À.·.....dddddddd

CLASSDR 80B72EC0 : 64646464 64646464 00000080 80B73700 .7·.....dddddddd

CLASSDR 80B73700 : 64646464 64646464 00000080 80B752C0 ÀR·.....dddddddd

TWP 80B752C0 : 8005C30C 3A300080 00000080 80B77A80 .z·.......0:.Ã..

CLASSDR 80B77A80 : 64646464 64646464 00000040 80B79380 ..·.@...dddddddd

CLASSDR 80B79380 : 64646464 64646464 00000040 80B79C80 ..·.@...dddddddd

CLASSDR 80B79C80 : 64646464 64646464 00000080 80B7AB40 @«·.....dddddddd

CLASSDR 80B7AB40 : 64646464 64646464 00000040 80B7B640 @¶·.@...dddddddd

CLASSDR 80B7B640 : 64646464 64646464 00000080 80B7C180 .Á·.....dddddddd

CLASSDR 80B7C180 : 64646464 64646464 00000040 80B7C280 .Â·.@...dddddddd

CDRP 80B7C280 : 8014C730 3A390088 000000C0 80B7CC00 .Ì·.À.....9:0Ç..

CLASSDR 80B7CC00 : 64646464 64646464 000000C0 80B81100 ..¸.À...dddddddd

CLASSDR 80B81100 : 64646464 64646464 00000080 80B81A00 ..¸.....dddddddd

CLASSDR 80B81A00 : 64646464 64646464 000000C0 80B81B80 ..¸.À...dddddddd

CLASSDR 80B81B80 : 64646464 64646464 00000040 80B82740 @’¸.@...dddddddd

CLASSDR 80B82740 : 64646464 64646464 00000100 80B83680 .6¸.....dddddddd

ACB 80B83680 : 8008AF6C 03020024 00000040 80B84340 @C¸.@...$...l¯..

CLASSDR 80B84340 : 64646464 64646464 00000040 80B85380 .S¸.@...dddddddd

CIMSG 80B85380 : 8025660C 003C00C0 000000C0 80B86580 .e¸.À...À.<..f%.

CLASSDR 80B86580 : 64646464 64646464 00000240 80B87640 @v¸.@...dddddddd

CXB 80B87640 : 802B686C 611B02C0 00000440 80B885C0 À.¸.@...À..alh+.

DSRV 80B885C0 : 8019B6F4 036900C0 000000C0 80B88CC0 À.¸.À...À.i.ô¶..

CIMSG 80B88CC0 : 8025660C 003C00C0 00000240 80B89000 ..¸.@...À.<..f%.

CLASSDR 80B89000 : 64646464 64646464 00000040 80B89900 ..¸.@...dddddddd

CXB 80B89900 : 8005CD20 001B0740 00000740 80B8A780 .§¸.@...@... Í..

CXB 80B8A780 : 8005CEC0 001B0740 00000E80 80B8BC40 @¼¸.....@...ÀÎ..

CXB 80B8BC40 : 802B686C 611B02C0 000002C0 80B8C1C0 ÀÁ¸.À...À..alh+.

CLASSDR 80B8C1C0 : 64646464 64646464 00003E40 00000000@>..dddddddd

Free Packet Queue, Status: Valid, 36 elements

SDA–181

SDA Extension Commands
CLUE MEMORY

The CLUE MEMORY/FULL/FREE command validates and displays dynamic
nonpaged free packet list queue.

3. SDA> CLUE MEMORY/GH/FULL
Granularity Hint Regions - Huge Pages:

Execlet Code Region Pages/Slices

Base/End VA FFFFFFFF80000000 FFFFFFFF80346000 Current Size 419/ 419
Base/End PA FFFFFFFF00400000 FFFFFFFF00746000 Free / 0
Total Size FFFFFFFF00346000 3.2 MB In Use / 419
Bitmap VA/Size FFFFFFFF80A12460 FFFFFFFF00000040 Initial Size 512/ 512
Slice Size FFFFFFFF00002000 Released 93/ 93
Next free Slice FFFFFFFF000001A3

Image Base End Length
SYS$PUBLIC_VECTORS FFFFFFFF80000000 FFFFFFFF80001600 00001600
SYS$BASE_IMAGE FFFFFFFF80002000 FFFFFFFF8000CA00 0000AA00
SYS$PNBTDRIVER FFFFFFFF8000E000 FFFFFFFF80016800 00008800
SYS$OPDRIVER FFFFFFFF80018000 FFFFFFFF8001BC00 00003C00
SYSTEM_PRIMITIVES FFFFFFFF8001C000 FFFFFFFF80036600 0001A600
SYSTEM_SYNCHRONIZATION FFFFFFFF80038000 FFFFFFFF80041A00 00009A00
ERRORLOG FFFFFFFF80042000 FFFFFFFF80044E00 00002E00
SYS$CPU_ROUTINES_0302 FFFFFFFF80046000 FFFFFFFF8005E200 00018200
EXCEPTION FFFFFFFF80060000 FFFFFFFF8006C400 0000C400
IO_ROUTINES FFFFFFFF8006E000 FFFFFFFF80089E00 0001BE00
SYSDEVICE FFFFFFFF8008A000 FFFFFFFF8008DC00 00003C00
PROCESS_MANAGEMENT FFFFFFFF8008E000 FFFFFFFF800A3400 00015400
SYS$VM FFFFFFFF800A4000 FFFFFFFF800C3E00 0001FE00
SHELL8K FFFFFFFF800C4000 FFFFFFFF800C4E00 00000E00
LOCKING FFFFFFFF800C6000 FFFFFFFF800D7000 00011000
MESSAGE_ROUTINES FFFFFFFF800D8000 FFFFFFFF800DE600 00006600
LOGICAL_NAMES FFFFFFFF800E0000 FFFFFFFF800E2800 00002800
F11BXQP FFFFFFFF800E4000 FFFFFFFF800EA800 00006800
IMAGE_MANAGEMENT FFFFFFFF800EC000 FFFFFFFF800EEC00 00002C00
SECURITY FFFFFFFF800F0000 FFFFFFFF800F9600 00009600
SYSGETSYI FFFFFFFF800FA000 FFFFFFFF800FB200 00001200
SYS$TRANSACTION_SERVICES FFFFFFFF800FC000 FFFFFFFF8011E600 00022600
SYS$UTC_SERVICES FFFFFFFF80120000 FFFFFFFF80121200 00001200
SYS$VCC FFFFFFFF80122000 FFFFFFFF8012DA00 0000BA00
SYS$SCS FFFFFFFF8012E000 FFFFFFFF80139000 0000B000
SYS$CLUSTER FFFFFFFF8013A000 FFFFFFFF8016C600 00032600
SYS$IPC_SERVICES FFFFFFFF8016E000 FFFFFFFF801AAC00 0003CC00
MSCP FFFFFFFF801AC000 FFFFFFFF801B2E00 00006E00
SYSLDR_DYN FFFFFFFF801B4000 FFFFFFFF801B5400 00001400
SYS$TTDRIVER FFFFFFFF801B6000 FFFFFFFF801C8000 00012000
SYS$PNDRIVER FFFFFFFF801C8000 FFFFFFFF801E1600 00019600
SYS$DUDRIVER FFFFFFFF801E2000 FFFFFFFF801F0C00 0000EC00
SYS$SHDRIVER FFFFFFFF801F2000 FFFFFFFF80233A00 00041A00
RMS FFFFFFFF80234000 FFFFFFFF802A7800 00073800
SYS$PUDRIVER FFFFFFFF802A8000 FFFFFFFF802AE200 00006200
SYS$EXDRIVER FFFFFFFF802B0000 FFFFFFFF802C6800 00016800
SYS$PEDRIVER FFFFFFFF802C8000 FFFFFFFF802E7200 0001F200
SYS$PKZDRIVER FFFFFFFF802E8000 FFFFFFFF802F3600 0000B600
SYS$DKDRIVER FFFFFFFF802F4000 FFFFFFFF802FC000 00008000
SYS$TUDRIVER FFFFFFFF802FC000 FFFFFFFF8030D600 00011600
SYS$FTDRIVER FFFFFFFF8030E000 FFFFFFFF80310000 00002000
SYS$MKDRIVER FFFFFFFF80310000 FFFFFFFF80315000 00005000
NETDRIVER FFFFFFFF80316000 FFFFFFFF80316200 00000200
NETDRIVER FFFFFFFF80318000 FFFFFFFF80330200 00018200
NDDRIVER FFFFFFFF80332000 FFFFFFFF80335600 00003600
SYS$CTDRIVER FFFFFFFF80336000 FFFFFFFF80340E00 0000AE00
SYS$RTTDRIVER FFFFFFFF80342000 FFFFFFFF80345800 00003800

SDA–182

SDA Extension Commands
CLUE MEMORY

Execlet Data Region Pages/Slices
Base/End VA FFFFFFFF80800000 FFFFFFFF808B0000 Current Size 88/1408
Base/End PA FFFFFFFF00800000 FFFFFFFF008B0000 Free / 28
Total Size FFFFFFFF000B0000 0.6 MB In Use /1380
Bitmap VA/Size FFFFFFFF80A124A0 FFFFFFFF00000100 Initial Size 128/2048
Slice Size FFFFFFFF00000200 Released 40/ 640
Next free Slice FFFFFFFF00000564

Image Base End Length
SYS$PUBLIC_VECTORS FFFFFFFF80800000 FFFFFFFF80804200 00004200
SYS$BASE_IMAGE FFFFFFFF80804200 FFFFFFFF8081F000 0001AE00
SYS$PNBTDRIVER FFFFFFFF8081F000 FFFFFFFF80822600 00003600
SYS$OPDRIVER FFFFFFFF80822600 FFFFFFFF80823000 00000A00
SYSTEM_PRIMITIVES FFFFFFFF80823000 FFFFFFFF80829800 00006800
SYSTEM_SYNCHRONIZATION FFFFFFFF80829800 FFFFFFFF8082B600 00001E00
ERRORLOG FFFFFFFF8082B600 FFFFFFFF8082BC00 00000600
SYS$CPU_ROUTINES_0302 FFFFFFFF8082BC00 FFFFFFFF80833400 00007800
EXCEPTION FFFFFFFF80833400 FFFFFFFF80838800 00005400
IO_ROUTINES FFFFFFFF80838800 FFFFFFFF8083E000 00005800
SYSDEVICE FFFFFFFF8083E000 FFFFFFFF8083EC00 00000C00
PROCESS_MANAGEMENT FFFFFFFF8083EC00 FFFFFFFF80843C00 00005000
SYS$VM FFFFFFFF80843C00 FFFFFFFF80848200 00004600
SHELL8K FFFFFFFF80848200 FFFFFFFF80849000 00000E00
LOCKING FFFFFFFF80849000 FFFFFFFF8084AC00 00001C00
MESSAGE_ROUTINES FFFFFFFF8084AC00 FFFFFFFF8084C400 00001800
LOGICAL_NAMES FFFFFFFF8084C400 FFFFFFFF8084D800 00001400
F11BXQP FFFFFFFF8084D800 FFFFFFFF8084EA00 00001200
SYSLICENSE FFFFFFFF8084EA00 FFFFFFFF8084EE00 00000400
IMAGE_MANAGEMENT FFFFFFFF8084EE00 FFFFFFFF8084F600 00000800
SECURITY FFFFFFFF8084F600 FFFFFFFF80852200 00002C00
SYSGETSYI FFFFFFFF80852200 FFFFFFFF80852400 00000200
SYS$TRANSACTION_SERVICES FFFFFFFF80852400 FFFFFFFF80858E00 00006A00
SYS$UTC_SERVICES FFFFFFFF80858E00 FFFFFFFF80859400 00000600
SYS$VCC FFFFFFFF80859400 FFFFFFFF8085AE00 00001A00
SYS$SCS FFFFFFFF8085AE00 FFFFFFFF8085C600 00001800
SYS$CLUSTER FFFFFFFF8085C600 FFFFFFFF80864A00 00008400
SYS$IPC_SERVICES FFFFFFFF80864A00 FFFFFFFF8086A000 00005600
MSCP FFFFFFFF8086A000 FFFFFFFF8086B600 00001600
SYSLDR_DYN FFFFFFFF8086B600 FFFFFFFF8086CC00 00001600
SYS$TTDRIVER FFFFFFFF8086CC00 FFFFFFFF8086F400 00002800
SYS$PNDRIVER FFFFFFFF8086F400 FFFFFFFF80874600 00005200
SYS$DUDRIVER FFFFFFFF80874600 FFFFFFFF80877400 00002E00
SYS$SHDRIVER FFFFFFFF80877400 FFFFFFFF80877600 00000200
SYS$SHDRIVER FFFFFFFF80877600 FFFFFFFF80880E00 00009800
RMS FFFFFFFF80880E00 FFFFFFFF80894200 00013400
RECOVERY_UNIT_SERVICES FFFFFFFF80894200 FFFFFFFF80894600 00000400
SYS$PUDRIVER FFFFFFFF80894600 FFFFFFFF80895A00 00001400
SYS$EXDRIVER FFFFFFFF80895A00 FFFFFFFF80897E00 00002400
SYS$PEDRIVER FFFFFFFF80897E00 FFFFFFFF8089E600 00006800
SYS$PKZDRIVER FFFFFFFF8089E600 FFFFFFFF808A0200 00001C00
SYS$DKDRIVER FFFFFFFF808A0200 FFFFFFFF808A1E00 00001C00
SYS$TUDRIVER FFFFFFFF808A1E00 FFFFFFFF808A2000 00000200
SYS$TUDRIVER FFFFFFFF808A2000 FFFFFFFF808A5200 00003200
SYS$FTDRIVER FFFFFFFF808A5200 FFFFFFFF808A5A00 00000800
SYS$MKDRIVER FFFFFFFF808A5A00 FFFFFFFF808A6C00 00001200
NETDRIVER FFFFFFFF808A6C00 FFFFFFFF808A9600 00002A00
NDDRIVER FFFFFFFF808A9600 FFFFFFFF808AA000 00000A00
SYS$CTDRIVER FFFFFFFF808AA000 FFFFFFFF808ABE00 00001E00
SYS$RTTDRIVER FFFFFFFF808ABE00 FFFFFFFF808AC800 00000A00
28 free Slices FFFFFFFF808AC800 FFFFFFFF808B0000 00003800

SDA–183

SDA Extension Commands
CLUE MEMORY

VMS Exec Data Region Pages/Slices
Base/End VA FFFFFFFF80900000 FFFFFFFF80B50000 Current Size 296/296
Base/End PA FFFFFFFF00900000 FFFFFFFF00B50000 Free / 1
Total Size FFFFFFFF00250000 2.3 MB In Use /295
Bitmap VA/Size FFFFFFFF80A125A0 FFFFFFFF00000028 Initial Size 96/296
Slice Size FFFFFFFF00002000 Released 0/ 0
Next free Slice FFFFFFFF00000085

Item Base End Length
System Header FFFFFFFF80900000 FFFFFFFF80904000 00004000
PFN Database FFFFFFFF80904000 FFFFFFFF80A04000 00100000
Error Log Allocation Buffers FFFFFFFF80A04000 FFFFFFFF80A06000 00002000
3 free Slices FFFFFFFF80A06000 FFFFFFFF80A0C000 00006000
Nonpaged Pool (initial size) FFFFFFFF80A0C000 FFFFFFFF80B50000 00144000

Resident Image Code Region Pages/Slices
Base/End VA FFFFFFFF80400000 FFFFFFFF805CE000 Current Size 231/231
Base/End PA FFFFFFFF00C00000 FFFFFFFF00DCE000 Free / 0
Total Size FFFFFFFF001CE000 1.8 MB In Use /231
Bitmap VA/Size FFFFFFFF80A125C8 FFFFFFFF00000040 Initial Size 512/512
Slice Size FFFFFFFF00002000 Released 281/281
Next free Slice FFFFFFFF000000E7

Image Base End Length
DPML$SHR FFFFFFFF80400000 FFFFFFFF804B6600 000B6600
DECC$SHR FFFFFFFF804B8000 FFFFFFFF80541600 00089600
DECC$SHR FFFFFFFF80542000 FFFFFFFF80542400 00000400
LIBRTL FFFFFFFF80544000 FFFFFFFF805BEE00 0007AE00
LIBOTS FFFFFFFF805C0000 FFFFFFFF805CDC00 0000DC00

The CLUE MEMORY/GH/FULL command displays data structures that describe
huge pages.

4. SDA> CLUE MEMORY/LAYOUT

System Virtual Address Space Layout:

Item Base End Length
Code Huge Page FFFFFFFF80000000 FFFFFFFF80400000 00400000
Data Huge Page FFFFFFFF80400000 FFFFFFFF80500000 00100000
System Header FFFFFFFF80500000 FFFFFFFF80506000 00006000
PFN Database FFFFFFFF80506000 FFFFFFFF80586000 00080000
Error Log Allocation Buffers FFFFFFFF80586000 FFFFFFFF80588000 00002000
Nonpaged Pool (initial size) FFFFFFFF80590000 FFFFFFFF806A0000 00110000
Nonpaged Pool Expansion Area FFFFFFFF806A0000 FFFFFFFF80B94000 004F4000
Balance Slots FFFFFFFF80B94000 FFFFFFFF84374E50 037E0E50
Global Page Table (GPT) FFFFFFFF84374E50 FFFFFFFF8437C000 000071B0
Paged Pool FFFFFFFF8437C000 FFFFFFFF845FA000 0027E000
System Control Block (SCB) FFFFFFFF845FA000 FFFFFFFF84644000 0004A000
Hardware Restart Parameter Block (HWRPB) FFFFFFFF84644000 FFFFFFFF846458F8 000018F8
Guard Page FFFFFFFF84658000 FFFFFFFF8465A000 00002000
Prim CPU System Context Kernel Stack FFFFFFFF8465A000 FFFFFFFF8465C000 00002000
Guard Page FFFFFFFF8465C000 FFFFFFFF8465E000 00002000
Prim CPU Machine Check Logout Area FFFFFFFF8465E000 FFFFFFFF8465E300 00000300
Guard Page FFFFFFFF84660000 FFFFFFFF84662000 00002000
Lock ID Table FFFFFFFF8469C000 FFFFFFFF846DE000 00042000
Dumpfile Write Memory Mapping FFFFFFFF847BA000 FFFFFFFF847CA000 00010000
Swapper Process Kernel Stack FFFFFFFF847EE000 FFFFFFFF847F0000 00002000
Idle Loop’s Mapping of Zero Pages FFFFFFFF847F0000 FFFFFFFF847F2000 00002000
Posix Cloning Parent’s Page Mapping FFFFFFFF847FE000 FFFFFFFF84800000 00002000
Posix Cloning Child’s Page Mapping FFFFFFFF84800000 FFFFFFFF84802000 00002000
Swapper L2PT and L3PT FFFFFFFF8480A000 FFFFFFFF84816000 0000C000
Process Creation L1PT FFFFFFFF84816000 FFFFFFFF84818000 00002000
Tape Mount Verification Buffer FFFFFFFF8493A000 FFFFFFFF8493E000 00004000
Mount Verification Buffer FFFFFFFF8493E000 FFFFFFFF84940000 00002000
Demand Zero Optimization Page FFFFFFFF84940000 FFFFFFFF84942000 00002000

SDA–184

SDA Extension Commands
CLUE MEMORY

Erase Pattern Buffer Page FFFFFFFF84942000 FFFFFFFF84944000 00002000
Erase Pattern Page Table Page FFFFFFFF84944000 FFFFFFFF84946000 00002000
Executive Mode Data Page FFFFFFFF84946000 FFFFFFFF84948000 00002000
System Space Expansion Region FFFFFFFF88000000 FFFFFFFFFFE00000 77E00000
System Page Table (SPT) FFFFFFFFFFE00000 FFFFFFFFFFFFFFFF 00200000

The CLUE MEMORY/LAYOUT command decodes and displays the system virtual
address space layout.

5. SDA> CLUE MEMORY/LOOKASIDE

Lookaside List Queue Information:

Listhead Addr: 8041FC00 Size: 64 Status: Valid, 56 elements
Listhead Addr: 8041FC08 Size: 128 Status: Valid, 6 elements
Listhead Addr: 8041FC10 Size: 192 Status: Valid, 183 elements
Listhead Addr: 8041FC18 Size: 256 Status: Valid, 138 elements
Listhead Addr: 8041FC20 Size: 320 Status: Valid, 1 element
Listhead Addr: 8041FC28 Size: 384 Status: Valid, 1 element
Listhead Addr: 8041FC30 Size: 448 Status: Valid, 1 element
Listhead Addr: 8041FC38 Size: 512 Status: Valid, 1 element
Listhead Addr: 8041FC40 Size: 576 Status: Valid, 1 element
Listhead Addr: 8041FC48 Size: 640 Status: Valid, 1 element
Listhead Addr: 8041FC50 Size: 704 Status: Valid, empty
Listhead Addr: 8041FC58 Size: 768 Status: Valid, 1 element
Listhead Addr: 8041FC60 Size: 832 Status: Valid, empty
Listhead Addr: 8041FC68 Size: 896 Status: Valid, 1 element
Listhead Addr: 8041FC70 Size: 960 Status: Valid, 1 element
Listhead Addr: 8041FC78 Size: 1024 Status: Valid, 1 element
Listhead Addr: 8041FC80 Size: 1088 Status: Valid, 1 element
Listhead Addr: 8041FC88 Size: 1152 Status: Valid, empty
Listhead Addr: 8041FC90 Size: 1216 Status: Valid, empty
Listhead Addr: 8041FC98 Size: 1280 Status: Valid, 1 element
Listhead Addr: 8041FCA0 Size: 1344 Status: Valid, 1 element
Listhead Addr: 8041FCA8 Size: 1408 Status: Valid, empty
Listhead Addr: 8041FCB0 Size: 1472 Status: Valid, 1 element
Listhead Addr: 8041FCB8 Size: 1536 Status: Valid, 1 element
Listhead Addr: 8041FCC0 Size: 1600 Status: Valid, 1 element
Listhead Addr: 8041FCC8 Size: 1664 Status: Valid, 1 element
Listhead Addr: 8041FCD0 Size: 1728 Status: Valid, empty
Listhead Addr: 8041FCD8 Size: 1792 Status: Invalid, memory access error

Error in queue linkage at address A404FFFC, after tracing 0 elements
Not in physical memory

Listhead Addr: 8041FCE0 Size: 1856 Status: Valid, empty
Listhead Addr: 8041FCE8 Size: 1920 Status: Valid, 1 element
Listhead Addr: 8041FCF0 Size: 1984 Status: Valid, empty
Listhead Addr: 8041FCF8 Size: 2048 Status: Valid, 1 element
Listhead Addr: 8041FD00 Size: 2112 Status: Valid, empty
[...]

The CLUE MEMORY/LOOKASIDE command summarizes the state of
nonpageable lookaside lists. For each list, an indication of whether the queue
is well formed is given. If a queue is not well formed or is invalid, messages
indicating what is wrong with the queue are displayed. This command is
analogous to the SDA command VALIDATE QUEUE.

These messages can also appear frequently when the VALIDATE QUEUE
command is used within an SDA session that is analyzing a running system. In
a running system, the composition of a queue can change while the command is
tracing its links, thus producing an error message.

SDA–185

SDA Extension Commands
CLUE MEMORY

6. SDA> CLUE MEMORY/STATISTIC

Memory Management Statistics:

Pagefaults: Non-Paged Pool:
Total Page Faults 39454 Successful Exp Attempts 0
Total Page Reads 21885 Unsuccessful Exp Attempts 0
I/O’s to read Pages 9150 Expansion Failures 0
Modified Pages Written 0 Failed Pages Accumulator 0
I/O’s to write Mod Pages 0 Total Alloc Requests 13545
Demand Zero Faults 8296 Failed Alloc Requests 0
Global Valid Faults 6680 Paged Pool:
Modified Faults 15261 Total Failures 0
Read Faults 0 Failed Pages Accumulator 0
Execute Faults 2062 Total Alloc Requests 2063

Failed Alloc Requests 0

Direct I/O 25810 Cur Mapped Gbl Sections 246
Buffered I/O 34491 Max Mapped Gbl Sections 246
Split I/O 1664 Cur Mapped Gbl Pages 3052
Hits 27847 Max Mapped Gbl Pages 3058
Logical Name Transl 162354 Maximum Processes 21
Dead Page Table Scans 0 Sched Zero Pages Created 8562
Memory Management Statistics:

Distributed Lock Manager: Local Incoming Outgoing
$ENQ New Lock Requests 18635 4353 10334
$ENQ Conversion Requests 21209 13 653
$DEQ Dequeue Requests 17953 4165 10070
Blocking ASTs 17 14 1
Directory Functions 541406 12580
Deadlock Messages 189 120

$ENQ Requests that Wait 349 Deadlock Searches Performed 39
$ENQ Requests not Queued 166 Deadlocks Found 39

MSCP Statistics: Total IOs 1947594
Count of VC Failures 0 Split IOs 0
Count of Hosts Served 2 IOs that had to Wait (Buf) 0
Count of Disks Served 9 Requests in MemWait Queue 0
MSCP_BUFFER (SYSGEN) 128 Max Req ever in MemWait 0
MSCP_CREDITS (SYSGEN) 8
Memory Management Statistics:

File System Cache: Current SYSGEN Param Hits Misses Hitrate
File Header Cache (ACP_HDRCACHE = 196) 3543 1090 76.4%
Storage Bitmap Cache (ACP_MAPCACHE = 49) 20 529 3.6%
Directory Data Cache (ACP_DIRCACHE = 196) 5938 530 91.8%
Directory LRU (ACP_DINDXCACHE= 49) 5350 232 95.8%
FID Cache (ACP_FIDCACHE = 64) 303 12 96.1%
Extent Cache (ACP_EXTCACHE = 64) 547 31 94.6%
Quota Cache (ACP_QUOCACHE = 100) 0 0 0.0%

Volume Synch Locks 2140 Window Turns 353
Volume Synch Locks Wait 27 Currently Open Files 254
Dir/File Synch Locks 12389 Total Count of OPENs 2061
Dir/file Synch Locks Wait 8 Total Count of ERASE QIOs 314
Access Locks 7502
Free Space Cache Wait 4

RMS GblBufQuo Remaining 1023 RMS_GBLBUFQUO (SYSGEN) 1024
Global Pagefile Quota 1011 GBLPAGFIL (SYSGEN) Limit 1024

The CLUE MEMORY/STATISTIC command displays systemwide performance
data such as page fault, I/O, pool, lock manager, MSCP, and file system cache.

SDA–186

SDA Extension Commands
CLUE PROCESS

CLUE PROCESS

Displays process-related information from the current process context.

Format

CLUE PROCESS [/qualifier[,...]]

Parameters

None.

Qualifiers

/BUFFER [/ALL]
Displays the buffer objects for the current process. If the /ALL qualifier is
specified, then the buffer objects for all processes (that is, all existing buffer
objects) are displayed.

/LAYOUT
Displays the process P1 virtual address space layout.

/LOGICAL
Displays the process logical names and equivalence names, if they can be
accessed.

/RECALL
Displays the DCL recall buffer, if it can be accessed.

Description

The CLUE PROCESS command displays process-related information from the
current process context. Much of this information is in pageable address space
and thus may not be present in a dump file.

Examples

1. SDA> CLUE PROCESS/LOGICAL

Process Logical Names:

"SYS$OUTPUT" = "_CLAWS$LTA5004:"
"SYS$OUTPUT" = "_CLAWS$LTA5004:"
"SYS$DISK" = "WORK1:"
"BACKUP_FILE" = "_65DUA6"
"SYS$PUTMSG" = "...À...À.."
"SYS$COMMAND" = "_CLAWS$LTA5004:"
"TAPE_LOGICAL_NAME" = "_1MUA3:"
"TT" = "LTA5004:"
"SYS$INPUT" = "_$65$DUA6:"
"SYS$INPUT" = "_CLAWS$LTA5004:"
"SYS$ERROR" = "21C00303.LOG"
"SYS$ERROR" = "_CLAWS$LTA5004:"
"ERROR_FILE" = "_65DUA6"

The CLUE PROCESS/LOGICAL command displays logical names for each
running process.

SDA–187

SDA Extension Commands
CLUE PROCESS

2. SDA> CLUE PROCESS/RECALL
Process DCL Recall Buffer:

Index Command
1 ana/sys
2 @login
3 mc sysman io auto /log
4 show device d
5 sea <.x>*.lis clue$
6 tpu <.x>*0914.lis
7 sh log *hsj*
8 xd <.x>.lis
9 mc ess$ladcp show serv

10 tpu clue_cmd.cld
11 ana/sys

The CLUE PROCESS/RECALL command displays a listing of the DCL
commands that have been executed most recently.

SDA–188

SDA Extension Commands
CLUE STACK

CLUE STACK

Identifies and displays the current stack. Use the SDA command SHOW STACK
to display and decode the whole stack for the more common bugcheck types.

Format

CLUE STACK

Parameters

None.

Qualifiers

None.

Description

The CLUE STACK command identifies and displays the current stack together
with the upper and lower stack limits. In case of a FATALEXCPT, INVEXCEPTN,
SSRVEXCEPT, UNXSIGNAL, or PGFIPLHI bugcheck, CLUE STACK tries to
decode the whole stack.

Examples

1. SDA> CLUE STACK
Stack Decoder:

Normal Process Kernel Stack:
Stack Pointer FFFFFFFF7FF91D58
Stack Limits (low) FFFFFFFF7FF90000

(high) FFFFFFFF7FF92000

CLUE STACK identifies and displays the current stack together with the upper
and lower stack limits.

2. SDA> CLUE STACK
Stack Decoder:

System Stack (NULL Process):
Stack Pointer FFFFFFFF887DFB28
Stack Limits (low) FFFFFFFF887DE000

(high) FFFFFFFF887E0000

INVEXCEPTN Stack:

Stack Pointer SP => FFFFFFFF887DFB28

Information saved by Bugcheck:
a(Signal Array) FFFFFFFFF887DFB28 FFFFFFFF 887DFCE8

SDA–189

SDA Extension Commands
CLUE STACK

Fixed Exception Context Area:
Linkage Pointer FFFFFFFF887DFB30 FFFFFFFF 8007FA14 EXE$ALTQUEPKT_C+00044
a(Signal Array) FFFFFFFF887DFB38 00000000 000001B8
a(Mechanism Array) FFFFFFFF887DFB40 00000000 00000050
a(Exception Frame) FFFFFFFF887DFB48 00000000 00000210 UCB$N_RSADDR
Exception FP FFFFFFFF887DFB50 FFFFFFFF 80B93380
Unwind SP FFFFFFFF887DFB58 00000000 00000000
Reinvokable FP FFFFFFFF887DFB60 EEEEEEEE EEEEEEEE
Unwind Target FFFFFFFF887DFB68 FFFFFFFF 887DFC60
#Sig Args/Byte Cnt FFFFFFFF887DFB70 80B880E0 00000250 BUG$_NETRCVPKT
a(Msg)/Final Status FFFFFFFF887DFB78 80B93380 00000001

Mechanism Array:
Flags/Arguments FFFFFFFF887DFB80 00000000 0000002B
a(Establisher FP) FFFFFFFF887DFB88 FFFFFFFF 887DFFB0
reserved/Depth FFFFFFFF887DFB90 FFFFFFFF FFFFFFFD
a(Handler Data) FFFFFFFF887DFB98 FFFFFFFF 808A8FD0 NETDRIVER_NPRW+023D0
a(Exception Frame) FFFFFFFF887DFBA0 FFFFFFFF 887DFD40
a(Signal Array) FFFFFFFF887DFBA8 FFFFFFFF 887DFCE8
saved R0 FFFFFFFF887DFBB0 FFFFFFFF 88EA1D60
saved R1 FFFFFFFF887DFBB8 00000000 00000001
saved R16 FFFFFFFF887DFBC0 00000000 00000000
saved R17 FFFFFFFF887DFBC8 00000000 00000000
saved R18 FFFFFFFF887DFBD0 FFFFFFFF 80859468 CACHE$GL_LRU_TIME
saved R19 FFFFFFFF887DFBD8 00000000 00000008
saved R20 FFFFFFFF887DFBE0 FFFFFFFF 80A0C4B6 SISR+0006E
saved R21 FFFFFFFF887DFBE8 00000000 0000003E
saved R22 FFFFFFFF887DFBF0 00000000 000017C7 CTL$C_CLIDATASZ+00227
saved R23 FFFFFFFF887DFBF8 00000000 000017C7 CTL$C_CLIDATASZ+00227
saved R24 FFFFFFFF887DFC00 00000000 00000000
saved R25 FFFFFFFF887DFC08 00000000 00000001
saved R26 FFFFFFFF887DFC10 FFFFFFFF 88EA0960
saved R27 FFFFFFFF887DFC18 00000000 0000FFFF
saved R28 FFFFFFFF887DFC20 00000000 00000001
FP Regs not valid [......]
SP Align = 08(hex) [......]

Signal Array:
Arguments FFFFFFFF887DFCE8 00000005
Condition FFFFFFFF887DFCEC 0000000C
Argument #2 FFFFFFFF887DFCF0 00000000
Argument #3 FFFFFFFF887DFCF4 00000000
Argument #4 FFFFFFFF887DFCF8 80125AC8 CACHE$TRUNCATE_C+00448
Argument #5 FFFFFFFF887DFCFC 00000804 UCB$M_VALID+00004

Exception Record:
Count/Flag/Kind FFFFFFFF887DFD00 00000002 00000001
Expt Value FFFFFFFF887DFD08 00000000 0000000C
Expt Next FFFFFFFF887DFD10 00000000 00000000
Expt PC FFFFFFFF887DFD18 FFFFFFFF 80125AC8 CACHE$TRUNCATE_C+00448
Extent/Kind FFFFFFFF887DFD20 00000008 00000000
Value/Pointer FFFFFFFF887DFD28 00000000 00000000
Extent/Kind FFFFFFFF887DFD30 00000008 00000000
Value/Pointer FFFFFFFF887DFD38 00000000 00000000

Interrupt/Exception Frame:
saved R2 FFFFFFFF887DFD40 00000000 00000280 BUG$_NOBUFPCKT
saved R3 FFFFFFFF887DFD48 00000000 00000000
saved R4 FFFFFFFF887DFD50 FFFFFFFF 80B774C0
saved R5 FFFFFFFF887DFD58 00000000 00000010
saved R6 FFFFFFFF887DFD60 00000000 00000200 IRP$M_TERMIO
saved R7 FFFFFFFF887DFD68 FFFFFFFF 88EA1D40
saved PC FFFFFFFF887DFD70 FFFFFFFF 80125AC8 CACHE$TRUNCATE_C+00448
saved PS FFFFFFFF887DFD78 10000000 00000804 IPL INT CURR PREV
SP Align = 10(hex) [......] 08 1 Kern Kern

SDA–190

SDA Extension Commands
CLUE STACK

Stack (not decoded):
FFFFFFFF887DFD90 FFFFFFFF 80125840 CACHE$TRUNCATE_C+001C0
FFFFFFFF887DFD98 FFFFFFFF 81609488
FFFFFFFF887DFDA0 FFFFFFFF 80D61AC0
FFFFFFFF887DFDA8 FFFFFFFF 80859990 CACHE$TRUNCATE+00020
FFFFFFFF887DFDB0 FFFFFFFF 8012631C CACHE$TRUNCATE_C+00C9C
FFFFFFFF887DFDB8 FFFFFFFF 80B9B7C0
FFFFFFFF887DFDC0 FFFFFFFF 80D61AC0
FFFFFFFF887DFDC8 00000000 00000200 IRP$M_TERMIO
FFFFFFFF887DFDD0 FFFFFFFF 8009E370 SCH$INTERRUPT+003D0
FFFFFFFF887DFDD8 00000000 00000000
FFFFFFFF887DFDE0 00000000 0000029F BUG$_NONEXSTACP+00007
FFFFFFFF887DFDE8 00000000 00000001
FFFFFFFF887DFDF0 FFFFFFFF 80859A00 CACHE$TRUNCATE+00090
FFFFFFFF887DFDF8 FFFFFFFF 80804200 EXE$GR_SYSTEM_DATA_CELLS
FFFFFFFF887DFE00 FFFFFFFF 800273E0 EXE_STD$QUEUE_FORK_C+0027
FFFFFFFF887DFE08 00000004 80AF4940
FFFFFFFF887DFE10 FFFFFFFF 80B11D00
FFFFFFFF887DFE18 FFFFFFFF 801240E8 CACHE$IOPOST_C+00618
FFFFFFFF887DFE20 00000000 00000001
FFFFFFFF887DFE28 00000000 7FF9D190
FFFFFFFF887DFE30 00000000 00000000
FFFFFFFF887DFE38 FFFFFFFF 80859810 CACHE$IOPOST
FFFFFFFF887DFE40 FFFFFFFF 80072EC8 IOC$IOPOST_C+00248
FFFFFFFF887DFE48 00000000 00000280 BUG$_NOBUFPCKT
FFFFFFFF887DFE50 FFFFFFFF 81609488
FFFFFFFF887DFE58 FFFFFFFF 80B9B7C0
FFFFFFFF887DFE60 00000000 00000200 IRP$M_TERMIO
FFFFFFFF887DFE68 FFFFFFFF 8009E370 SCH$INTERRUPT+003D0
FFFFFFFF887DFE70 00000000 00000001
FFFFFFFF887DFE78 00000000 00000000
FFFFFFFF887DFE80 00000000 7FF9D190
FFFFFFFF887DFE88 00000000 00000000
FFFFFFFF887DFE90 FFFFFFFF 8083A510 IOC$IOPOST
FFFFFFFF887DFE98 00000000 00000001
FFFFFFFF887DFEA0 00000000 7FF9D190
FFFFFFFF887DFEA8 00000000 00000000
FFFFFFFF887DFEB0 00000000 00000001
FFFFFFFF887DFEB8 FFFFFFFF 808407A0 SCH$IDLE
FFFFFFFF887DFEC0 FFFFFFFF 80804200 EXE$GR_SYSTEM_DATA_CELLS
FFFFFFFF887DFEC8 00000000 00000001
FFFFFFFF887DFED0 00000000 00000303 UCB$Q_PI_IQ+00003
FFFFFFFF887DFED8 00000000 0000000D
FFFFFFFF887DFEE0 FFFFFFFF 808319A0 SYS$CPU_ROUTINES_0302_NPRW+05
FFFFFFFF887DFEE8 FFFFFFFF 80804200 EXE$GR_SYSTEM_DATA_CELLS
FFFFFFFF887DFEF0 FFFFFFFF 80A0C4B6 SISR+0006E
FFFFFFFF887DFEF8 FFFFFFFF 80A0C4B6 SISR+0006E
FFFFFFFF887DFF00 00000000 00000200 IRP$M_TERMIO
FFFFFFFF887DFF08 00000000 00000037
FFFFFFFF887DFF10 00000000 00000201 UCB$W_LMERRCNT+00001
FFFFFFFF887DFF18 FFFFFFFF 80804200 EXE$GR_SYSTEM_DATA_CELLS
FFFFFFFF887DFF20 00000000 7C46FD50
FFFFFFFF887DFF28 00000000 00000008
FFFFFFFF887DFF30 FFFFFFFF 80804200 EXE$GR_SYSTEM_DATA_CELLS
FFFFFFFF887DFF38 FFFFFFFF 887DFFB0
FFFFFFFF887DFF40 FFFFFFFF 80840064 SCH$AL_CPU_PRIORITY+000E4
FFFFFFFF887DFF48 FFFFFFFF 80842CE0 SCH$GR_SCHEDULER_LINKAGE_SEC
FFFFFFFF887DFF50 FFFFFFFF 80CC7C00
FFFFFFFF887DFF58 00000000 00000001
FFFFFFFF887DFF60 FFFFFFFF 80A0C000
FFFFFFFF887DFF68 FFFFFFFF 8009E370 SCH$INTERRUPT+003D0
FFFFFFFF887DFF70 FFFFFFFF 80090ABC SCH$IDLE_C+0009C
FFFFFFFF887DFF78 30000000 00000303 UCB$Q_PI_IQ+00003
FFFFFFFF887DFF80 00000000 00000001
FFFFFFFF887DFF88 00000003 00000008

SDA–191

SDA Extension Commands
CLUE STACK

FFFFFFFF887DFF90 FFFFFFFF 80090A90 SCH$IDLE_C+00070
FFFFFFFF887DFF98 00000000 00000001
FFFFFFFF887DFFA0 FFFFFFFF 80840064 SCH$AL_CPU_PRIORITY+000E4
FFFFFFFF887DFFA8 00000000 00000001

Stack Frame:
PV FFFFFFFF887DFFB0 FFFFFFFF 808407A0 SCH$IDLE

Entry Point FFFFFFFF 80090A20 SCH$IDLE_C
FFFFFFFF887DFFB8 00000000 00000000
FFFFFFFF887DFFC0 FFFFFFFF 80CC7C00

return PC FFFFFFFF887DFFC8 FFFFFFFF 8009E094 SCH$INTERRUPT+000F4
saved R2 FFFFFFFF887DFFD0 FFFFFFFF 80840064 SCH$AL_CPU_PRIORITY+000E4
saved R4 FFFFFFFF887DFFD8 FFFFFFFF 80CC7C00
saved R13 FFFFFFFF887DFFE0 00000000 7FEA8850
saved R14 FFFFFFFF887DFFE8 00000005 00000000
saved R15 FFFFFFFF887DFFF0 00000000 00000001
saved FP FFFFFFFF887DFFF8 00000000 7FE1FA30

CLUE STACK displays and decodes the current stack if it is one of the more
popular and known bugcheck types. In this case, CLUE STACK trys to decode
the whole INVEXCEPTN stack.

SDA–192

SDA Extension Commands
CLUE VCC

CLUE VCC

Displays virtual I/O cache-related information.

Format

CLUE VCC [/qualifier[,...]]

Parameters

None.

Qualifiers

/CACHE
Decodes and displays the cache lines that are used to correlate the file virtual
block numbers (VBNs) with the memory used for caching.

/LIMBO
Walks through the limbo queue (LRU order) and displays information for the
cached file header control blocks (FCBs).

/STATISTIC
Displays statistical and performance information related to the virtual I/O cache.

/VOLUME
Decodes and displays the cache volume control blocks (CVCB).

Examples

1. SDA> CLUE VCC/STATISTIC
Virtual I/O Cache Statistics:

Cache State pak,on,img,data,enabled
Cache Flags on,protocol_only
Cache Data Area 80855200

Total Size (pages) 400 Total Size (MBytes) 3.1 MB
Free Size (pages) 0 Free Size (MBytes) 0.0 MB
Read I/O Count 34243 Read I/O Bypassing Cache 3149
Read Hit Count 15910 Read Hit Rate 46.4%
Write I/O Count 4040 Write I/O Bypassing Cache 856
IOpost PID Action Rtns 40829 IOpost Physical I/O Count 28
IOpost Virtual I/O Count 0 IOpost Logical I/O Count 7
Read I/O past File HWM 124 Cache Id Mismatches 44
Count of Cache Block Hits 170 Files Retained 100

Cache Line LRU 82B11220 82B11620 Oldest Cache Line Time 00001B6E
Limbo LRU Queue 80A97E3C 80A98B3C Oldest Limbo Queue Time 00001B6F
Cache VCB Queue 8094DE80 809AA000 System Uptime (seconds) 00001BB0

SDA–193

SDA Extension Commands
CLUE VCC

2. SDA> CLUE VCC/VOLUME
Virtual I/O Cache - Cache VCB Queue:

CacheVCB RealVCB LockID IRP Queue CID LKSB Ocnt State
-------- -------- -------- ----------------- ---- ---- ---- ---------------
8094DE80 80A7E440 020007B2 8094DEBC 8094DEBC 0000 0001 0002 on
809F3FC0 809F97C0 0100022D 809F3FFC 809F3FFC 0000 0001 0002 on
809D0240 809F7A40 01000227 809D027C 809D027C 0000 0001 0002 on
80978B80 809F6C00 01000221 80978BBC 80978BBC 0000 0001 0002 on
809AA000 809A9780 01000005 809AA83C 809AA03C 0007 0001 0002 on

3. SDA> CLUE VCC/LIMBO
Virtual I/O Cache - Limbo Queue:

CFCB CVCB FCB CFCB IOerrors FID (hex)

-------- -------- -------- -Status- -------- --------------
80A97DC0 809AA000 80A45100 00000200 00000000 (076B,0001,00)
80A4E440 809AA000 809CD040 00000200 00000000 (0767,0001,00)
80A63640 809AA000 809FAE80 00000200 00000000 (0138,0001,00)
80AA2540 80978B80 80A48140 00000200 00000000 (0AA5,0014,00)
80A45600 809AA000 80A3AC00 00000200 00000000 (0C50,0001,00)
80A085C0 809AA000 809FA140 00000200 00000000 (0C51,0001,00)
80A69800 809AA000 809FBA00 00000200 00000000 (0C52,0001,00)
80951000 809AA000 80A3F140 00000200 00000000 (0C53,0001,00)
80A3E580 809AA000 80A11A40 00000200 00000000 (0C54,0001,00)
80A67F80 809AA000 80978F00 00000200 00000000 (0C55,0001,00)
809D30C0 809AA000 809F4CC0 00000200 00000000 (0C56,0001,00)
809D4B80 809AA000 8093E540 00000200 00000000 (0C57,0001,00)
[......]
80A81600 809AA000 8094B2C0 00000200 00000000 (0C5D,0001,00)
80AA3FC0 809AA000 80A2DEC0 00000200 00000000 (07EA,000A,00)
80A98AC0 809AA000 8093C640 00000200 00000000 (0C63,0001,00)

4. SDA> CLUE VCC/CACHE

Virtual I/O Cache - Cache Lines:

CL VA CVCB CFCB FCB CFCB IOerrors FID (hex)
-------- -------- -------- -------- -------- -Status- -------- ------------
82B11200 82880000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B15740 82AAA000 809AA000 80A07A00 80A24240 00000000 00000000 (0765,0001,00)
82B14EC0 82A66000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B12640 82922000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B123C0 8290E000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B13380 8298C000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B15A40 82AC2000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B15F40 82AEA000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B12AC0 82946000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B12900 82938000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B10280 82804000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B122C0 82906000 809AA000 80A1AC00 80A48000 00000000 00000000 (0164,0001,00)
82B14700 82A28000 809AA000 809FFEC0 809F8DC0 00000004 00000000 (07B8,0001,00)
82B11400 82890000 809AA000 80A113C0 80A11840 00000000 00000000 (00AF,0001,00)
[......]
82B11380 8288C000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)
82B130C0 82976000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)
82B11600 828A0000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)

SDA–194

SDA Extension Commands
CLUE XQP

CLUE XQP

Displays XQP-related information.

Format

CLUE XQP [/qualifier[,...]]

Parameters

None.

Qualifiers

/ACTIVE [/FULL]
Displays all active XQP processes.

/AQB
Displays any current I/O request packets (IRPs) waiting at the interlocked queue.

/BFRD=index
Displays the buffer descriptor (BFRD) referenced by the index specified. The
index is identical to the hash value.

/BFRL=index
Displays the buffer lock block descriptor (BFRL) referenced by the index specified.
The index is identical to the hash value.

/BUFFER=(n,m) [/FULL]
Displays the BFRDs for a given pool. Specify either 0, 1, 2 or 3, or a combination
of these in the parameter list.

/CACHE_HEADER
Displays the block buffer cache header.

/FCB=address [/FULL]
Displays all file header control blocks (FCBs) with a nonzero DIRINDX for a
given volume. If no address is specified, the current volume of the current process
is used.

The address specified can also be either a valid volume control block (VCB), unit
control block (UCB), or window control block (WCB) address.

/FILE=address
Decodes and displays file header (FCB), window (WCB), and cache information
for a given file. The file can be identified by either its FCB or WCB address.

/GLOBAL
Displays the global XQP area for a given process.

/LBN_HASH=lbn
Calculates and displays the hash value for a given logical block number (LBN).

SDA–195

SDA Extension Commands
CLUE XQP

/LIMBO
Searches through the limbo queue and displays FCB information from available,
but unused file headers.

/LOCK=lockbasis
Displays all file system serialization, arbitration, and cache locks found for the
specified lockbasis.

/THREAD=n
Displays the XQP thread area for a given process. The specified thread number
is checked for validity. If no thread number is specified, the current thread is
displayed. If no current thread, but only one single thread is in use, then that
thread is displayed. If more than one thread exists or an invalid thread number
is specified, then a list of currently used threads is displayed.

/VALIDATE=(n,m)
Performs certain validation checks on the block buffer cache to detect corruption.
Specify 1, 2, 3, 4, or a combination of these in the parameter list. If an
inconsistency is found, a minimal error message is displayed. If you add the
/FULL qualifier, additional information is displayed.

Description

The CLUE XQP command displays XQP information. XQP is part of the I/O
subsystem.

Examples

1. SDA> CLUE XQP/CACHE_HEADER
Block Buffer Cache Header:

Cache_Header 8437DF90 BFRcnt 000005D2 FreeBFRL 843916A0
Bufbase 8439B400 BFRDbase 8437E080 BFRLbase 8438F7E0
Bufsize 000BA400 LBNhashtbl 84398390 BFRLhashtbl 84399BC8
Realsize 000D78A0 LBNhashcnt 0000060E BFRLhashcnt 0000060E

Pool #0 #1 #2 #3
Pool_LRU 8437E5C0 84385F40 84387E90 8438EEB0

8437F400 84385D60 8438AC80 8438EE20
Pool_WAITQ 8437DFE0 8437DFE8 8437DFF0 8437DFF8

8437DFE0 8437DFE8 8437DFF0 8437DFF8
Waitcnt 00000000 00000000 00000000 00000000
Poolavail 00000094 00000252 00000251 00000094
Poolcnt 00000095 00000254 00000254 00000095

AmbigQFL 00000000 Process_Hits 00000000 Cache_Serial 00000000
AmbigQBL 00000000 Valid_Hits 00000000 Cache_Stalls 00000000
Disk_Reads 00000000 Invalid_Hits 00000000 Buffer_Stalls 00000000
Disk_Writes 00000000 Misses 00000000

The SDA command CLUE XQP/CACHE_HEADER displays the block buffer cache
header.

2. SDA> CLUE XQP/VALIDATE=1,4
Searching BFRD Array for possible Corruption...
Searching Lock Basis Hashtable for possible Corruption...

In this example, executing the CLUE XQP/VALIDATE=1,4 command indicated
that no corruption was detected in either the BFRD Array or the Lock Basis
Hashtable.

SDA–196

Index

A
Access rights block, SDA–17
Access violations, SDA–22, SDA–23
ACP (ancillary control process), SDA–99
Addition operator (+), SDA–14
/ADDRESS=<PFN-entry-address> qualifier,

SDA–122
Addresses

examining, SDA–50
/ADDRESS qualifier, SDA–89, SDA–98, SDA–129

in SET PROCESS command, SDA–76
in SHOW PROCESS command, SDA–132

Address space number (ASN), SDA–16
/ALL qualifier, SDA–50, SDA–112, SDA–117,

SDA–122, SDA–125, SDA–132, SDA–145,
SDA–157, SDA–164

ANALYZE command
/CRASH_DUMP qualifier, SDA–8, SDA–31,

SDA–33
/RELEASE qualifier, SDA–34
/SYMBOL qualifier, SDA–35
/SYSTEM qualifier, SDA–2, SDA–31, SDA–36

AND operator (&), SDA–14
AQB (ACP queue block), SDA–100
/AQB qualifier, SDA–195
ARB symbol, SDA–17
Arithmetic operators, SDA–13
Arithmetic shifting operator (@), SDA–14
ASB (asynchronous save block), SDA–79
ASN register

displaying, SDA–92
ASN symbol, SDA–16
ASTEN register

displaying, SDA–92
ASTs (asynchronous system traps), SDA–16
ASTSR register

displaying, SDA–92
AST symbols, SDA–16
At sign (@) as shifting operator, SDA–38
ATTACH command, SDA–39

B
Backup utility (BACKUP)

copying system dump file, SDA–6
/BAD qualifier, SDA–122
BDB (buffer descriptor block), SDA–79
BDB summary page (BDBSUM), SDA–79
/BFRD qualifier, SDA–195
/BFRL qualifier, SDA–195
Binary operators, SDA–14
BLB (buffer lock block), SDA–79
BLB summary page (BLBSUM), SDA–79
/BRIEF qualifier, SDA–152
/BUFFER_OBJECTS qualifier, SDA–132
Bugcheck

code, SDA–19
fatal conditions, SDA–20 to SDA–28
halt/restart, SDA–8
handling routines

global symbols, SDA–63
reasons, SDA–95

/BUS qualifier, SDA–129

C
/CACHED qualifier, SDA–112, SDA–145
/CACHE qualifier, SDA–193
/CACHE_HEADER qualifier, SDA–195
Call frames

displaying in SDA, SDA–83
following a chain, SDA–83

Cancel I/O routine, SDA–99
CCB (channel control block)

displaying in SDA, SDA–79
CDDB (class driver data block), SDA–100
CDRP (class driver request packet), SDA–89,

SDA–150
CDT (connection descriptor table), SDA–89,

SDA–150
/CHANNEL qualifier, SDA–129, SDA–132,

SDA–137
/CLIENT qualifier, SDA–106
CLUB (cluster block), SDA–86

Index–1

CLUDCB (cluster quorum disk control block),
SDA–86

CLUE$SITE_PROC logical name, SDA–178
CLUE CLEANUP command, SDA–170
CLUE commands

archiving information, SDA–6
CLUE CONFIG command, SDA–171
CLUE CRASH command, SDA–20, SDA–173
CLUE ERRLOG command, SDA–176
CLUE HISTORY command, SDA–177
CLUE MCHK command, SDA–179
CLUE MEMORY command, SDA–180
CLUE PROCESS command, SDA–187
CLUE STACK command, SDA–189
CLUE VCC command, SDA–193
/CLUEXIT qualifier, SDA–106
CLUE XQP command, SDA–195
CLUFCB (cluster failover control block), SDA–86
Compressed data section, SDA–60
/COMPRESS qualifier, SDA–40
Condition-handling routines

global symbols, SDA–63
Condition values

evaluating, SDA–47
examining, SDA–50

/CONDITION_VALUE qualifier, SDA–47
Connection manager

displaying SDA information, SDA–85
/CONNECTION qualifier, SDA–150
Connections

displaying SDA information, SDA–89,
SDA–129, SDA–150

Contents of stored machine check frames
displaying in SDA, SDA–115

Context
SDA CPU, SDA–11
SDA process, SDA–10

Control
regions

examining, SDA–51
Control blocks

formatting, SDA–55
Control region, SDA–16
Control region operator (H), SDA–13
COPY command, SDA–5, SDA–6, SDA–40
/COUNTERS qualifier, SDA–106
CPU context

changing, SDA–77
displaying, SDA–91
using SET CPU to change, SDA–70
using SHOW CPU to change, SDA–91
using SHOW CRASH to change, SDA–94
using SHOW PROCESS to change, SDA–132

CPU ID
See CPU identification number

CPU identification number, SDA–91
Crash dumps

See also System failures
file headers, SDA–104
headers, SDA–104
incomplete, SDA–8
short, SDA–8

/CRASH_DUMP qualifier, SDA–8
CRB (channel request block), SDA–99
CREATE command, SDA–4
CSBs (cluster system blocks), SDA–85, SDA–89
CSID (cluster system identification number),

SDA–85, SDA–146
/CSID qualifier, SDA–85
/CSMACD qualifier, SDA–106
Current stack pointer, SDA–16

D
Data structures

formatting, SDA–55
global symbols, SDA–16
stepping through a linked list, SDA–66

DCLDEF.STB file, SDA–16
DCL interpreter

global symbols, SDA–16
DDB (device data block), SDA–99
DDIF$RMS_EXTENSION.EXE file, SDA–63
DDT (driver dispatch table), SDA–99
DECDTMDEF.STB file, SDA–16
Decimal value of an expression, SDA–47
DECnet data structures

global symbols, SDA–16
/DECOMPRESS qualifier, SDA–40
DEFINE command, SDA–42, SDA–44
Device driver routines

address, SDA–99
/DEVICE qualifier, SDA–106, SDA–129
Devices

displaying SDA information, SDA–98
Division operator (/), SDA–14
DPT (driver prologue table), SDA–99
DUMPBUG parameter, SDA–2, SDA–29
Dump file

analyzing, SDA–31
copying the contents, SDA–40
displaying a summary of, SDA–173
displaying machine check information,

SDA–179
displaying memory with CLUE MEMORY,

SDA–180
displaying process information, SDA–187
displaying the current stack, SDA–189
displaying virtual I/O cache, SDA–193
displaying XQP information, SDA–195
extracting errorlog buffers, SDA–176
purging files using CLUE CLEANUP,

SDA–170

Index–2

Dump file (cont’d)
saving output, SDA–177
using CLUE CONFIG, SDA–171

Dump file information
saving automatically, SDA–6

DUMPSTYLE parameter, SDA–3
DUMP subset, SDA–3
/DYNAMIC qualifier, SDA–152

E
ERRORLOG.STB file, SDA–63
ERRORLOGBUFFERS system parameter, SDA–4
Error logging routines

global symbols, SDA–63
Error log messages, SDA–176
/ERRORS qualifier, SDA–106
ESP symbol, SDA–16
EVALUATE command, SDA–47
EXAMINE command, SDA–50
EXCEPTION.STB file

global symbols, SDA–63
Exception-handling routines

global symbols, SDA–63
Executive images

contents, SDA–63, SDA–102
global symbols, SDA–61

/EXECUTIVE qualifier, SDA–61, SDA–157
Executive stack pointer, SDA–16
EXEC_INIT.STB file, SDA–63
EXIT command, SDA–54
Exiting from SDA, SDA–54
Expressions, SDA–12

evaluating, SDA–47

F
F11BXQP.STB file, SDA–63
FABs (file access blocks), SDA–79
Fatal exceptions, SDA–20
FATALEXCPT bugcheck, SDA–20
FCB (file control block), SDA–79
/FDDI qualifier, SDA–107
FEN symbol, SDA–16
/FILE qualifier, SDA–195
/FILES qualifier, SDA–180
File systems

global symbols, SDA–63
Floating-point control register, SDA–16
Floating-point enable, SDA–16
Floating-point registers, SDA–16
/FORCE qualifier, SDA–61
FORMAT command, SDA–55
FPCR symbol, SDA–16
FP symbol, SDA–16
Frame pointers, SDA–16

/FREE qualifier, SDA–117, SDA–122, SDA–125
/FULL qualifier, SDA–107, SDA–115, SDA–152
FWA (file work area), SDA–79

G
GBD (global buffer descriptor)

summary page, SDA–79
GBH (global buffer header), SDA–79
GBSB (global buffer synchronization block),

SDA–79
Global page tables

displaying, SDA–117
/GLOBAL qualifier, SDA–117, SDA–195
G operator, SDA–13
/GPT qualifier, SDA–117
G symbol, SDA–16

H
/HEADER qualifier, SDA–125
Headers

crash dump, SDA–104
HELP command, SDA–57

recording output, SDA–74
Hexadecimal value of an expression, SDA–47
H operator, SDA–13
H symbol, SDA–16

I
I/O databases

displaying SDA information, SDA–98
global symbols, SDA–16

IDB (interrupt dispatch block), SDA–99
IDX (index descriptor), SDA–79
IFAB (internal file access block), SDA–79
IFI (internal file identifier), SDA–79
Image activator

global symbols, SDA–16, SDA–63
/IMAGE qualifier, SDA–61, SDA–161
/IMAGES qualifier, SDA–133
IMAGE_MANAGEMENT.STB file

global symbols, SDA–63
IMGDEF.STB file, SDA–16
/INDEX=nn qualifier, SDA–133
/INDEX=n qualifier, SDA–133
/INDEX qualifier, SDA–76, SDA–133, SDA–152
Initialization code

global symbols, SDA–63
/INPUT qualifier, SDA–165
/INSTRUCTION qualifier, SDA–50
Interlocked queues

validating, SDA–167
/INTERRUPT qualifier, SDA–157
INVEXCEPTN bugcheck, SDA–20

Index–3

Invoking SDA by default, SDA–6
IODEF.STB file, SDA–16
IO_ROUTINES.STB file

global symbols, SDA–63
IPL$_ASTDEL file

PGFIPLHI bugcheck, SDA–28
IPL register

displaying, SDA–92
IPL symbol, SDA–17
IRAB (internal record access block), SDA–79
IRP (I/O request packet), SDA–99

J
JFB (journaling file block), SDA–79
JIBs (job information blocks), SDA–135
JIB symbol, SDA–17
Job information block

See JIB

K
/KERNEL qualifier, SDA–157
Kernel stacks

displaying contents, SDA–157
pointer, SDA–16

/KEY qualifier, SDA–44
Keys

defining for SDA, SDA–44
KSP symbol, SDA–16

L
/L1 qualifier, SDA–117
/L2 qualifier, SDA–117
/L3 qualifier, SDA–117
/LAYOUT qualifier, SDA–180, SDA–187
/LBN_HASH qualifier, SDA–195
/LIMBO qualifier, SDA–193, SDA–196
Linker map

use in crash dump analysis, SDA–20
Linking two 32-bit values ("."), SDA–14
/LIST qualifier, SDA–167
LKB (lock block), SDA–113
Location in memory

examining, SDA–50
SDA default, SDA–50
translating to instruction, SDA–50

/LOCKID qualifier, SDA–145
LOCKING.STB file, SDA–63
Lock management routines

global symbols, SDA–63
Lock manager

displaying SDA information, SDA–112
Lock mode, SDA–146
/LOCK qualifier, SDA–196

Locks
displaying SDA information, SDA–145

/LOCKS qualifier, SDA–133
Logical operators, SDA–13, SDA–14

AND operator (&), SDA–14
NOT operator (#), SDA–13
OR operator (|), SDA–14
XOR operator (\), SDA–14

/LOGICAL qualifier, SDA–187
LOGICAL_NAMES.STB file

global symbols, SDA–63
/LONG qualifier, SDA–157
Lookaside lists

displaying contents, SDA–125
/LOOKASIDE qualifier, SDA–180

M
Machine check frames

displaying in SDA, SDA–115
MAP command, SDA–58
Mechanism arrays, SDA–20
Memory

examining, SDA–50
formatting, SDA–55
location

decoding, SDA–52
examining, SDA–51

region
examining, SDA–52

/MESSAGE qualifier, SDA–129
MESSAGE_ROUTINES.STB file

global symbols, SDA–63
/MODIFIED qualifier, SDA–122
Multiplication operator (*), SDA–14
Multiprocessing

global symbols, SDA–64
Multiprocessors

analyzing crash dumps, SDA–10
displaying synchronization structures,

SDA–152

N
/NAME qualifier, SDA–112, SDA–145
NAMs (name blocks), SDA–79
Negative operator (–), SDA–13
NETDEF.STB file, SDA–16
/NEXT_FP qualifier, SDA–83
/NODE qualifier, SDA–85, SDA–89, SDA–129
/NOLOGICAL_NAMES qualifier, SDA–165
Nonpaged dynamic storage pool

displaying contents, SDA–125
/NONPAGED qualifier, SDA–125
/NOPD qualifier, SDA–50
/NOSUPPRESS qualifier, SDA–50

Index–4

/NOSYMBOLS qualifier, SDA–165
/NOTIFY qualifier, SDA–165
NOT operator (#), SDA–13
/NOWAIT qualifier, SDA–165
NWA (network work area), SDA–79

O
Object rights block, SDA–17
OpenVMS RMS

See RMS
Operators

precedence of, SDA–13, SDA–14
Operators (mathematical), SDA–13
ORB symbol, SDA–17
OR operator (|), SDA–14
/OUTPUT qualifier, SDA–165
/OVERRIDE qualifier, SDA–177
/OWNED qualifier, SDA–152

P
/P0 qualifier, SDA–51
P0 region

examining, SDA–51
/P1 qualifier, SDA–51
P1 region

examining, SDA–51
Paged dynamic storage pool

displaying contents, SDA–125
/PAGED qualifier, SDA–125
Page faults

illegal, SDA–28
Page files

See also SYS$SYSTEM:PAGEFILE.SYS file
Page table base register, SDA–16
Page table entry

evaluating, SDA–47
examining, SDA–51

Page tables
displaying, SDA–117, SDA–133

/PAGE_TABLES qualifier, SDA–133
Parentheses (())

as precedence operator, SDA–14
/PARENT qualifier, SDA–39
PB (path block), SDA–99
PCBB register, SDA–17

displaying, SDA–92
PCBB symbol, SDA–17
/PCB qualifier, SDA–134
PCBs (process control blocks), SDA–17, SDA–162

displaying, SDA–134
hardware, SDA–136
specifying the address of, SDA–76, SDA–132

PCB symbol, SDA–17

PCs (program counters), SDA–16
in a crash dump, SDA–19

PC symbol, SDA–16
/PD qualifier, SDA–42, SDA–45, SDA–51
PDT (port descriptor table), SDA–129
PFN (page frame number)

See PFN database
PFN database, SDA–120, SDA–122

displaying, SDA–122
PGFIPLHI bugcheck, SDA–28
PHD (process header), SDA–162

displaying, SDA–134
/PHD qualifier, SDA–134
PHD symbol, SDA–17
/PHYSICAL qualifier, SDA–51
PID numbers, SDA–133
Port drivers

displaying SDA information, SDA–85
Ports

displaying SDA information, SDA–129
Positive operator (+), SDA–13
PRBR register

displaying, SDA–92
PRBR symbol, SDA–17
Precedence operators, SDA–14
Privileges required

to analyze a crash dump, SDA–31
to analyze a running system, SDA–10, SDA–31

Process context
changing, SDA–71, SDA–76, SDA–94,

SDA–132
Process control blocks

See PCBs
Process control region, SDA–16
Process control region operator (H), SDA–13
Processes

channel, SDA–132
displaying SDA information, SDA–132,

SDA–161
examining hung, SDA–9
image, SDA–161
listening, SDA–86
lock, SDA–133
scheduling state, SDA–136, SDA–162
spawning a subprocess, SDA–165

Process headers, SDA–17
Process indexes, SDA–133
Process names, SDA–132
Processor base registers, SDA–17
Processor context

changing, SDA–70, SDA–77, SDA–91, SDA–94,
SDA–132

Processor status
See PS

/PROCESS qualifier, SDA–166

Index–5

PROCESS_MANAGEMENT.STB file
global symbols, SDA–63

/PROCESS_SECTION_TABLE qualifier, SDA–134
Program region

examining, SDA–51
PS (processor status)

evaluating, SDA–47
examining, SDA–51

/PS qualifier, SDA–47, SDA–51
PS symbol, SDA–16
PST (process section table)

displaying, SDA–134
PTBR register

displaying, SDA–92
PTBR symbol, SDA–16
/PTE qualifier, SDA–47, SDA–51
/PT qualifier, SDA–117

Q
/QUAD qualifier, SDA–157
/QUADWORD qualifier, SDA–167
Queues

stepping through, SDA–66
validating, SDA–167

Quorum, SDA–85

R
RABs (record access blocks), SDA–79
Radixes

default, SDA–13
Radix operators, SDA–12
/RDE=id qualifier, SDA–134
RDT (response descriptor table), SDA–150
READ command, SDA–62

SYS$DISK, SDA–62
/RECALL qualifier, SDA–187
Recovery unit system services

global symbols, SDA–63
RECOVERY_UNIT_SERVICES.STB file

global symbols, SDA–63
/REGIONS qualifier, SDA–134
Registers

displaying, SDA–91, SDA–134
integer, SDA–16

/REGISTERS qualifier, SDA–134
/RELOCATE qualifier, SDA–62
REPEAT command, SDA–66
Report system event

global symbols, SDA–63
REQSYSDEF.STB file, SDA–16
Resident images, SDA–133, SDA–144
/RESIDENT qualifier

installing an image, SDA–60
Resources

displaying SDA information, SDA–145

/RING_BUFFER qualifier, SDA–125
RLB (record lock block), SDA–80
RMS

data structures shown by SDA, SDA–79
displaying data structures, SDA–134, SDA–149
global symbols, SDA–16, SDA–63

RMS.STB file, SDA–63
RMSDEF.STB file, SDA–16
/RMS qualifier, SDA–134
RSB (resource block), SDA–113, SDA–145
RSPID (response ID)

displaying SDA information, SDA–150
RUB (recovery unit block), SDA–80
RUFB (recovery unit file block), SDA–80
RUSB (recovery unit stream block), SDA–80

S
S0 region

examining, SDA–51
/S0S1 qualifier, SDA–117
/S2 qualifier, SDA–117
SAVEDUMP system parameter, SDA–4, SDA–29
SB (system block), SDA–86, SDA–99
SCBB register

displaying, SDA–92
SCBB symbol, SDA–17
Scheduler

global symbols, SDA–63
SCS (System Communications Services)

displaying SDA information, SDA–85, SDA–86,
SDA–89, SDA–129, SDA–150

global symbols, SDA–16
SCSDEF.STB file, SDA–16
/SCS qualifier, SDA–85
SDA$INIT logical name, SDA–9
SDA$READ_DIR:REQSYSDEF.STB file, SDA–7,

SDA–9
SDA$READ_DIR:SYS$BASE_IMAGE.EXE file,

SDA–7, SDA–9
SDA$READ_DIR:SYSDEF.STB file, SDA–9
SDA command format, SDA–11 to SDA–12
SDA current CPU, SDA–11, SDA–70, SDA–77,

SDA–91, SDA–94, SDA–132, SDA–158
SDA current process, SDA–10, SDA–11, SDA–71,

SDA–76, SDA–94, SDA–132, SDA–158
SDA symbol table

building, SDA–9
expanding, SDA–9

SEARCH command, SDA–68
Section type, SDA–133, SDA–144
SECURITY.STB file

global symbols, SDA–63
Self-relative queue

validating, SDA–167
/SELF_RELATIVE qualifier, SDA–167

Index–6

/SEMAPHORE qualifier, SDA–134
SET CPU command, SDA–11, SDA–70

analyzing a running system, SDA–10
SET FETCH command, SDA–72
SET LOG command, SDA–74

compared with SET OUTPUT command,
SDA–74

SET NOLOG command, SDA–74
SET OUTPUT command, SDA–75

compared with SET LOG command, SDA–74
SET PROCESS command, SDA–11, SDA–76
SET RMS command, SDA–79
SET SIGN_EXTEND command, SDA–82
/SET_STATE qualifier, SDA–45
SFSB (shared file synchronization block), SDA–80
Shadow set

displaying SDA information, SDA–100
Shareable address data section, SDA–60
SHOW CALL_FRAME command, SDA–83
SHOW CLUSTER command, SDA–85
SHOW CONNECTIONS command, SDA–89
SHOW CPU command, SDA–11, SDA–70,

SDA–91
analyzing a running system, SDA–10

SHOW CRASH command, SDA–11, SDA–20,
SDA–70, SDA–94

analyzing a running system, SDA–10
SHOW DEVICE command, SDA–20, SDA–98
SHOW EXECUTIVE command, SDA–102
SHOW HEADER command, SDA–104
SHOW LAN command, SDA–106
SHOW LOCK command, SDA–112
SHOW MACHINE_CHECK command, SDA–11,

SDA–115
SHOW MEMORY command, SDA–4
SHOW PAGE_TABLE command, SDA–117
SHOW PFN_DATA command, SDA–122
SHOW POOL command, SDA–125
SHOW PORTS command, SDA–129
SHOW PROCESS/ALL command, SDA–135
SHOW PROCESS command, SDA–77, SDA–132
SHOW PROCESS command, SDA–77
SHOW PROCESS/LOCKS command, SDA–112
SHOW PROCESS/RMS command, SDA–149

selecting display options, SDA–80
SHOW RESOURCE command, SDA–112,

SDA–145
SHOW RMS command, SDA–149
SHOW RSPID command, SDA–150
SHOW SPINLOCKS command, SDA–153
SHOW STACK command, SDA–157
SHOW SUMMARY command, SDA–132,

SDA–161
SHOW SYMBOL command, SDA–164
Signal array, SDA–22
/SINGLY_LINKED qualifier, SDA–167

SISR register
displaying, SDA–92

SISR symbol, SDA–17
Site-specific startup command procedure, SDA–6,

SDA–178
releasing page file blocks, SDA–5

Software interrupt status register, SDA–17
SPAWN command, SDA–165
Spin locks

displaying SDA information, SDA–152
owned, SDA–92

SP symbol, SDA–16
SPT (system page table)

displaying, SDA–117
in system dump file, SDA–4

/SPTW qualifier, SDA–117
SSP symbol, SDA–16
SSRVEXCEPT bugcheck, SDA–20
Stack frames

displaying in SDA, SDA–83
following a chain, SDA–83

Stacks
displaying contents, SDA–157

Start I/O routine, SDA–99
/STATIC qualifier, SDA–153
/STATISTIC qualifier, SDA–180, SDA–193
/STATISTICS qualifier, SDA–126
Subprocesses, SDA–165
Subtraction operator (–), SDA–14
/SUMMARY qualifier, SDA–107, SDA–126
/SUPERVISOR qualifier, SDA–157
Supervisor stack

displaying contents, SDA–157
Supervisor stack pointer, SDA–16
Symbols

defining for SDA, SDA–42
evaluating, SDA–164
listing, SDA–164
loading into the SDA symbol table, SDA–62
name, SDA–42
representing executive modules, SDA–102
user-defined, SDA–42

/SYMBOLS qualifier, SDA–47
for EVALUATE, SDA–47

Symbol table files
reading into SDA symbol table, SDA–62

Symbol tables
See also SDA symbol table, System symbol

table
specifying an alternate SDA, SDA–35

/SYMVA qualifier, SDA–62
SYS$DISK

as SDA output, SDA–75
global read, SDA–62

SYS$LOADABLE_IMAGES:SYS.EXE file
contents, SDA–63

Index–7

SYS$SYSTEM:PAGEFILE.SYS file, SDA–29
See also System dump files
as dump file, SDA–4
releasing blocks containing a crash dump,

SDA–34
SYS$SYSTEM:SYS.EXE file, SDA–61

contents, SDA–102
SYS$SYSTEM:SYSDEF.STB file, SDA–10
SYS$SYSTEM:SYSDUMP.DMP file, SDA–29

See also System dump files
protection, SDA–6
size of, SDA–4

SYSAP (system application), SDA–150
/SYSAP qualifier, SDA–89
SYSDEVICE.STB file

global symbols, SDA–64
SYSGETSYI.STB file

global symbols, SDA–64
SYSLDR_DYN.STB file

global symbols, SDA–64
SYSLICENSE.STB file

global symbols, SDA–64
System Communications Services (SCS)

See SCS
System control block base register, SDA–17
System dump files, SDA–2 to SDA–5

mapping physical memory to, SDA–8
requirements for analysis, SDA–7

System failures
analyzing, SDA–19
causing, SDA–28 to SDA–31
diagnosing from PC contents, SDA–19
summary, SDA–94

System hang, SDA–29
System images

contents, SDA–63, SDA–102
global symbols, SDA–61

System management
creating a crash dump file, SDA–2

System message routines
global symbols, SDA–63

System page file
as dump file, SDA–4
releasing blocks containing a crash dump,

SDA–34
System PCB (process control block)

displaying, SDA–135
System processes, SDA–76
/SYSTEM qualifier, SDA–51, SDA–76, SDA–122,

SDA–134, SDA–157
System region

examining, SDA–51
Systems

analyzing running, SDA–2, SDA–9 to SDA–10,
SDA–31

investigating performance problems, SDA–9

System space base address, SDA–16
System space operator (G), SDA–13
System symbol table, SDA–7
System time quadword

examining, SDA–51
SYSTEM_PRIMITIVES.STB file

global symbols, SDA–64
SYSTEM_SYNCHRONIZATION_xxx.STB file

global symbols, SDA–64

T
Terminal keys

defining for SDA, SDA–44
/TERMINATE qualifier, SDA–45
/THREAD qualifier, SDA–161, SDA–196
/THREADS qualifier, SDA–135
/TIME qualifier, SDA–51
/TIMESTAMPS qualifier, SDA–107
Transaction processing

global symbols, SDA–16
/TYPE qualifier, SDA–55, SDA–126

U
UCB (unit control block), SDA–89
Unary operator, SDA–13 to SDA–14
/UNIT qualifier, SDA–107
UNXSIGNAL bugcheck, SDA–20
/USER qualifier, SDA–157
User stacks

displaying contents, SDA–157
pointer, SDA–16

USP symbol, SDA–16

V
/VALIDATE qualifier, SDA–196
VALIDATE QUEUE command, SDA–167
VCB (volume control block), SDA–100
/VC qualifier, SDA–129
Virtual address operator (@), SDA–13
Virtual address operator (^B), SDA–13
Virtual address operator (^L), SDA–13
Virtual address operator (^Q), SDA–13
Virtual address operator (^W), SDA–13
VMScluster environments

displaying SDA information, SDA–85
/VOLUME qualifier, SDA–193
Votes, SDA–85

W
WCB (window control block), SDA–80
/WORKING_SET_LIST qualifier, SDA–135

Index–8

X
XABs (extended attribute blocks), SDA–80
XOR operator (\), SDA–14

Index–9

