OpenVMS Alpha System Dump Analyzer Utility Manual

December 1995

This manual explains how to use the System Dump Analyzer (SDA) to investigate system failures and examine a running OpenVMS system.

Revision/Update Information:	This manual supersedes the <i>OpenVMS</i> <i>AXP System Dump Analyzer Utility</i> <i>Manual</i> , Version 6.1
Software Version:	OpenVMS Alpha Version 7.0

Digital Equipment Corporation Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DEC, DECnet, Digital, HSC, OpenVMS, VAX, VAX DOCUMENT, VAXcluster, VMS, VMScluster, VT, and the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

6635

This document is available on CD-ROM.

Contents

Preface .		vii
SDA Desc	ription	SDA-1
1	System Management and SDA	SDA-2
1.1	Writing System Dumps	SDA-2
1.1.1	Dump File Style	SDA-3
1.1.2	Controlling the Size of Page Files and Dump Files	SDA-4
1.1.3	Writing to the System Dump File	SDA-4
1.1.4	Writing to the System Page File	SDA-4
1.2	Saving System Dumps	SDA-5
1.3	Invoking SDA by Rebooting the System	SDA-6
2	Analyzing a System Dump	SDA-7
21	Requirements	SDA-7
22	Invoking SDA	SDA-8
2.3	Manning the Contents of the Dump File	SDA-8
2.0	Building the SDA Symbol Table	SDA-9
2.5	Executing the SDA Initialization File (SDASINIT)	SDA-9
3	Analyzing a Running System	SDA-9
4	SDA Context	
5	SDA Command Format	
51	Conoral Command Format	
5.2	Expressions	
5.2	Padiy Operators	SDA-12 SDA-12
5.2.1	Arithmatic and Logical Operators	SDA-12 SDA_13
5.2.2	Presedence Operators	SDA-13
5.2.5	Symbols	SDA-14
5.2.4	Symbols	SDA-14
6 1	Converse Dreased up for Analyzing System Failures	SDA-19
0.1	General Procedure for Analyzing System Failures	SDA-19
0.2		SDA-20
6.2.1		SDA-20
0.2.2	Inegal Page Faults	SDA-28
7		SDA-28
7.1	Meeting Crash Dump Requirements	SDA-29
7.2	Procedure for Causing a System Failure	SDA-29
SDA Usag	Je Summary	SDA-31
SDA Qual	ifiers	SDA-32
	/CRASH_DUMP	SDA-33
	/RELEASE	SDA-34
	/SYMBOL	SDA-35
	/SYSTEM	SDA-36

SDA Commands	SDA-37
@ (Execute Command)	SDA-38
ATTACH	SDA-39
СОРУ	SDA-40
DEFINE	SDA-42
DEFINE/KEY	SDA-44
EVALUATE	SDA-47
EXAMINE	SDA-50
EXIT	SDA-54
FORMAT	SDA-55
HELP	SDA-57
MAP	SDA-58
READ	SDA-61
REPEAT	SDA-66
SEARCH	SDA-68
SET CPU	SDA-70
SET FETCH	SDA–72
SET LOG	SDA-74
SET OUTPUT	SDA–75
SET PROCESS	SDA-76
SET RMS	SDA-79
SET SIGN_EXTEND	SDA-82
SHOW CALL_FRAME	SDA-83
SHOW CLUSTER	SDA-85
SHOW CONNECTIONS	SDA-89
SHOW CPASH	SDA-91
SHOW DEVICE	SDA-94
	SDA-90
SHOW HEADER	SDA-102
SHOW I AN	SDA-104
SHOW LAN	SDA-112
SHOW MACHINE CHECK	SDA-115
SHOW PAGE TABLE	SDA-117
SHOW PFN_DATA	SDA-122
SHOW POOL	SDA-125
SHOW PORTS	SDA–129
SHOW PROCESS	SDA-132
SHOW RESOURCE	SDA-145
SHOW RMS	SDA-149
SHOW RSPID	SDA-150
SHOW SPINLOCKS	SDA-152
SHOW STACK	SDA-157
SHOW SUMMARY	SDA-161
SHOW SYMBOL	SDA-164
SPAWN	SDA-165
VALIDATE QUEUE	SDA-167

DA Extension Commands	SDA-169
CLUE CLEANUP	SDA-170
CLUE CONFIG	SDA-171
CLUE CRASH	SDA-173
CLUE ERRLOG	SDA-176
CLUE HISTORY	SDA-177
CLUE MCHK	SDA-179
CLUE MEMORY	SDA-180
CLUE PROCESS	SDA-187
CLUE STACK	SDA-189
CLUE VCC	SDA-193
CLUE XQP	SDA-195

Index

Figures

SDA-1	Mechanism Array	SDA-21
SDA–2	Signal Array	SDA-23
SDA-3	Exception Stack Frame	SDA-24
SDA-4	Stack Following an Illegal Page-Fault Error	SDA-28

Tables

S	SDA-1	Comparison of Full and Selective Dump Files	SDA-3
S	SDA-2	SDA Operators	SDA-13
S	SDA-3	Modules Containing Global Symbols Used by SDA	SDA-16
S	SDA-4	SDA Symbols Defined on Initialization	SDA-16
S	SDA-5	SDA Symbols Defined by SET CPU Command	SDA-17
Ś	SDA-6	SDA Symbols Defined by SET PROCESS Command	SDA-17
S	SDA-7	Exception Stack Frame Values	SDA-24
Ś	SDA8	Modules Defining Global Locations Within Executive Image	SDA-63
S	SDA-9	SET RMS Command Keywords for Displaying Process RMS	
		Information	SDA-79
S	SDA-10	Contents of the SHOW LOCK and SHOW PROCESS/LOCKS	
		Displays	SDA-112
S	SDA-11	Virtual Page Information in the SHOW PAGE_TABLE Display	SDA-119
S	SDA-12	Physical Page Information in the SHOW PAGE_TABLE Display	SDA-120
S	SDA-13	Page Frame Number Information—Line One Fields	SDA-123
S	SDA-14	Page Frame Number Information—Line Two Fields	SDA-124
S	SDA-15	Process Section Table Entry Information in the SHOW PROCESS	
		Display	SDA-137
Ś	SDA-16	Process I/O Channel Information in the SHOW PROCESS Display	SDA-138
S	SDA-17	Resource Information in the SHOW RESOURCE Display	SDA-145
S	SDA-18	Static Spin Locks	SDA-153
S	SDA-19	Process Information in the SHOW SUMMARY Display	SDA-161

Preface

Intended Audience

The *OpenVMS Alpha System Dump Analyzer Utility Manual* is intended primarily for the system programmer who must investigate the causes of system failures and debug kernel mode code, such as a device driver. An understanding of data structures is necessary to accurately interpret the results of System Dump Analyzer (SDA) commands.

This manual also includes such system management information as maintaining the system resources necessary to capture and store system crash dumps. If you need to determine the cause of a hung process or improve system performance, refer to this manual for instructions on using SDA to analyze a running system.

Document Structure

The *OpenVMS Alpha System Dump Analyzer Utility Manual* includes the following information:

- An introduction to the functions, features, and key concepts of the System Dump Analyzer (SDA). This part also includes instructions for maintaining the optimal environment to analyze system failures.
- Instructions about how to:
 - Invoke SDA.
 - Exit from SDA.
 - Record the output of an SDA session.
- A description of those qualifiers to the ANALYZE command that govern the behavior of SDA.
- A description of the function, format, and parameters of each SDA command. It also provides usage examples for each command.

Associated Documents

For additional information, refer to the following documents:

- OpenVMS Alpha Version 7.0 Upgrade and Installation Manual
- OpenVMS Calling Standard
- OpenVMS System Manager's Manual
- OpenVMS Programming Interfaces: Calling a System Routine
- OpenVMS Alpha Device Support: Developer's Guide
- OpenVMS AXP Internals and Data Structures

- Alpha Architecture Reference Manual
- MACRO-64 Assembler for OpenVMS AXP Systems Reference Manual

For additional information on OpenVMS products and services, access the Digital OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader's Comments

Digital welcomes your comments on this manual.

Print or edit the online form SYS\$HELP:OPENVMSDOC_COMMENTS.TXT and send us your comments by:

Internet	openvmsdoc@zko.mts.dec.com
Fax	603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08
Mail	OpenVMS Documentation Group, ZKO3-4/U08 110 Spit Brook Rd. Nashua, NH 03062-2698

How To Order Additional Documentation

Use the following table to order additional documentation or information. If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825).

Location	Call	Fax	Write
U.S.A.	DECdirect 800-DIGITAL 800-344-4825	Fax: 800–234–2298	Digital Equipment Corporation P.O. Box CS2008 Nashua, NH 03061
Puerto Rico	809–781–0505	Fax: 809–749–8300	Digital Equipment Caribbean, Inc. 3 Digital Plaza, 1st Street, Suite 200 P.O. Box 11038 Metro Office Park San Juan, Puerto Rico 00910–2138
Canada	800–267–6215	Fax: 613–592–1946	Digital Equipment of Canada, Ltd. Box 13000 100 Herzberg Road Kanata, Ontario, Canada K2K 2A6 Attn: DECdirect Sales
International	—	_	Local Digital subsidiary or approved distributor
Internal Orders	DTN: 264–4446 603–884–4446	Fax: 603–884–3960	U.S. Software Supply Business Digital Equipment Corporation 10 Cotton Road Nashua, NH 03063–1260

Telephone and Direct Mail Orders

ZK-7654A-GE

Conventions

The name of the OpenVMS AXP operating system has been changed to OpenVMS Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS Alpha or Alpha.

The following conventions are used to identify information specific to OpenVMS Alpha or to OpenVMS VAX:

The Alpha icon denotes the beginning of information specific to OpenVMS Alpha.

The VAX icon denotes the beginning of information specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of information specific to OpenVMS Alpha or to OpenVMS VAX.

SDA Description

When a system failure occurs, the operating system copies the contents of memory to a system dump file or the primary page file, recording the hardware context of each processor in the system as well. The System Dump Analyzer (SDA) is a utility that allows you to interpret the contents of this file, examine the status of each processor at the time of the system failure, and investigate the probable causes of the failure.

You can use SDA commands to perform the following operations:

- Direct (or echo) the output of an SDA session to a file or device (SET OUTPUT or SET LOG).
- Display the condition of the operating system and the hardware context of each processor in the system at the time of the system failure (SHOW CRASH or CLUE CRASH).
- Select a specific processor in a multiprocessing system as the subject of analysis (SET CPU).
- Select the default size of address data manipulated by the EXAMINE and EVALUATE commands (SET FETCH).
- Enable or disable the sign extension of 32-bit addresses (SET SIGN_EXTEND).
- Display the contents of a specific process stack (SHOW STACK or CLUE STACK).
- Format a call frame from a stack location (SHOW CALL_FRAME).
- Read a set of global symbols into the SDA symbol table (READ).
- Define symbols to represent values or locations in memory and add them to the SDA symbol table (DEFINE).
- Evaluate an expression in hexadecimal and decimal, interpreting its value as a symbol, a condition value, a page table entry (PTE), or a processor status (PS) quadword (EVALUATE).
- Examine the contents of memory locations, optionally interpreting them as Alpha assembler instructions, a PTE, or a PS (EXAMINE).
- Display device status as reflected in system data structures (SHOW DEVICE).
- Display the contents of the stored machine check frame (SHOW MACHINE_ CHECK or CLUE MCHK) for selected Digital computers.
- Format system data structures (FORMAT).
- Validate the integrity of the links in a queue (VALIDATE QUEUE).
- Display a summary of all processes on the system (SHOW SUMMARY).
- Show the hardware or software context of a process (SHOW PROCESS or CLUE PROCESS).
- Display the OpenVMS RMS data structures of a process (SHOW PROCESS with the /RMS qualifier).
- Display memory management data structures (SHOW POOL, SHOW PFN_DATA, SHOW PAGE_TABLE, or CLUE MEMORY).

- Display lock management data structures (SHOW RESOURCE or SHOW LOCK).
- Display VMScluster management data structures (SHOW CLUSTER, SHOW CONNECTIONS, SHOW RSPID, or SHOW PORTS).
- Display multiprocessor synchronization information (SHOW SPINLOCKS).
- Display the layout of the executive images (SHOW EXECUTIVE).
- Capture and archive a summary of dump file information in a list file (CLUE HISTORY).
- Copy the system dump file (COPY).
- Define keys to invoke SDA commands (DEFINE/KEY).
- Search memory for a given value (SEARCH).

Although SDA provides a great deal of information, it does not automatically analyze all the control blocks and data contained in memory. For this reason, in the event of system failure, it is extremely important that you save not only the output provided by SDA commands, but also a copy of the system dump file written at the time of the failure.

You can also invoke SDA to analyze a running system, using the DCL command ANALYZE/SYSTEM. Most SDA commands generate useful output when entered on a running system.

____ Caution: __

Although analyzing a running system may be instructive, you should undertake such an operation with caution. System context, process context, and a processor's hardware context can change during any given display.

In a multiprocessing environment, it is very possible that, during analysis, a process running SDA could be rescheduled to a different processor frequently. Therefore, avoid examining the hardware context of processors in a running system.

1 System Management and SDA

The system manager must ensure that the system writes a dump file whenever the system fails. The manager must also see that the dump file is large enough to contain all the information to be saved, and that the dump file is saved for analysis. The following sections describe these tasks.

1.1 Writing System Dumps

The operating system attempts to write information into the system dump file only if the system parameter DUMPBUG is set. (The DUMPBUG parameter is set by default. To examine and change its value, consult the *OpenVMS System Manager's Manual.*) If DUMPBUG is set and the operating system fails, the system manager has the following choices for writing system dumps:

• Have the system dump file written to either SYSDUMP.DMP (the system dump file) or to PAGEFILE.SYS (the primary system page file).

• Set the DUMPSTYLE system parameter to 0 or 2 (for dumps containing all physical memory) or to 1 or 3 (for dumps containing only selected virtual addresses).

See Section 1.1.1 for more information about the DUMPSTYLE parameter values.

1.1.1 Dump File Style

There are two types of dump files—a physical memory dump (also known as a full dump), and a dump of selected virtual addresses (also known as a selective dump).

In a physical memory dump, the DUMPSTYLE system parameter can be set to either 0 or 2. Each value provides a full dump; the value of 0 yields minimal console output while the value of 2 provides full console output. A physical memory dump requires that all physical memory be written to the dump file. This ensures the presence of all the page table pages required for SDA to emulate translation of system virtual addresses. These table pages include the level 1 page table of the current process, the shared level 2 page table that maps the system page table (SPT), and the level 3 page table pages that constitute the SPT.

In certain system configurations, it may be impossible to preserve the entire contents of memory in a disk file. For instance, a large memory system or a system with small disk capacity may not be able to supply enough disk space for a full memory dump. If the system dump file cannot accommodate all of memory, information essential to determining the cause of the system failure may be lost.

To preserve those portions of memory that contain information most useful in determining the causes of system failures, a system manager sets the value of the DUMPSTYLE system parameter to either 1 or 3 to specify a dump of selected virtual address spaces. Each value provides a selective dump; the value of 1 yields minimal console output while the value of 3 provides full console output. In a selective dump, related pages of virtual address space are written to the dump file as a unit called a logical memory block (LMB). For example, one LMB consists of the system and global page tables; another is the address space of a particular process. Those LMBs most likely to be useful in crash dump analysis are written first.

Table SDA-1 compares full and selective style dump files.

Item	Full	Selective
Available Information	Complete contents of physical memory in use, stored in order of increasing physical address.	System page table, global page table, system space memory, and process and control regions (plus global pages) for all saved processes.
Unavailable Information	Contents of paged-out memory at the time of the system failure.	Contents of paged-out memory at the time of the system failure, process and control regions of unsaved processes, L1 page tables, and memory not mapped by a page table.
SDA Command Limitations	None.	The following commands are not useful for unsaved processes: SHOW PROCESS /CHANNELS, SHOW PROCESS/IMAGE, SHOW PROCESS/RMS, SHOW STACK, and SHOW SUMMARY/IMAGE.

Table SDA-1 Comparison of Full and Selective Dump Files

1.1.2 Controlling the Size of Page Files and Dump Files

You can adjust the size of the system page file and dump file using AUTOGEN (the recommended method) or by using SYSGEN.

AUTOGEN automatically calculates the appropriate sizes for page and dump files. AUTOGEN invokes the System Generation utility (SYSGEN) to create or change the files. However, you can control sizes calculated by AUTOGEN by defining symbols in the MODPARAMS.DAT file. The file sizes specified in MODPARAMS.DAT are copied into the PARAMS.DAT file during AUTOGEN's GETDATA phase. AUTOGEN then makes appropriate adjustments in its calculations.

Although Digital recommends using AUTOGEN to create and modify page and dump file sizes, you can use SYSGEN to directly create and change the sizes of those files.

The sections that follow discuss how you can calculate the size of a dump file.

See the *OpenVMS System Manager's Manual* for detailed information about using AUTOGEN and SYSGEN to create and modify page and dump file sizes.

1.1.3 Writing to the System Dump File

OpenVMS Alpha writes the contents of the error-log buffers, processor registers, and memory into the system dump file, overwriting its previous contents. If the system dump file is too small, OpenVMS Alpha cannot copy all memory to the file when a system failure occurs.

SYS\$SYSTEM:SYSDUMP.DMP (SYS\$SPECIFIC:[SYSEXE]SYSDUMP.DMP) is furnished as an empty file in the OpenVMS Alpha software distribution kit. To successfully store a crash dump, SYS\$SYSTEM:SYSDUMP.DMP must be enlarged to hold all of the page tables required for SDA to emulate system virtual address translation.

To calculate the correct size for a physical memory dump to SYS\$SYSTEM:SYSDUMP.DMP, use the following formula:

```
size-in-blocks(SYS$SYSTEM:SYSDUMP.DMP)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ 2
```

Use the DCL command SHOW MEMORY to determine the total size of physical memory on your system. There is a variable number of error log buffers in any given system, depending on the setting of the ERRORLOGBUFFERS system parameter. The size of each buffer depends on the setting of the ERLBUFFERPAGES parameter. (See the *OpenVMS System Manager's Manual* for additional information about these parameters.)

1.1.4 Writing to the System Page File

If SYS\$SYSTEM:SYSDUMP.DMP does not exist, the operating system writes the dump of physical memory into SYS\$SYSTEM:PAGEFILE.SYS, the primary system page file, overwriting the contents of that file.

If the SAVEDUMP system parameter is set, the dump file is retained in PAGEFILE.SYS when the system is booted after a system failure. If the SAVEDUMP parameter is not set (clear), which is the default, OpenVMS Alpha uses the entire page file for paging and any dump written to the page file is lost. (To examine or change the value of the SAVEDUMP parameter, consult the *OpenVMS System Manager's Manual.*)

To calculate the minimum size for a physical memory dump to SYS\$SYSTEM:PAGEFILE.SYS, use the following formula:

```
size-in-blocks(SYS$SYSTEM:PAGEFILE.SYS)
    = size-in-pages(physical-memory) * blocks-per-page
    + number-of-error-log-buffers * blocks-per-buffer
    + 2
    + value of the system parameter RSRVPAGCNT
```

Note that this formula calculates the minimum size requirement for saving a physical dump in the system's page file. Digital recommends that the page file be a bit larger than this minimum to avoid hanging the system. Also note that you can only write the dump of physical memory into the primary page file (SYS\$SYSTEM:PAGEFILE.SYS). Secondary page files cannot be used to save dump file information.

It is not recommended to use a selective dump (DUMPSTYLE=1) style with PAGEFILE.SYS. If the PAGEFILE.SYS is used for a selective dump, and if the PAGEFILE.SYS is not large enough to contain all the logical memory blocks, the dump fills the entire page file and the system may hang on reboot. When selective dumping is set up, all available space is used to write out the logical memory blocks. If the page file is large enough to contain all of physical memory, there is no reason to use selective dumping. A full memory dump (DUMPSTYLE=0) should be used.

Writing crash dumps to SYS\$SYSTEM:PAGEFILE.SYS presumes that you will later free the space occupied by the dump for use by the pager. Otherwise, your system may hang during the startup procedure. To free this space, you can do one of the following:

- Include SDA commands that free dump space in the site-specific startup command procedure (described in Section 1.3).
- Use the SDA COPY command to copy the dump from SYS\$SYSTEM:PAGEFILE.SYS to another file. Use the SDA COPY command instead of the DCL COPY command because the SDA COPY command causes the pages occupied by the dump to be freed from the system's page file.
- If you do not need to copy the dump elsewhere, issue an ANALYZE /CRASH_DUMP/RELEASE command. When you issue this command, SDA immediately releases the pages to be used for system paging, effectively deleting the dump. Note that this command does not allow you to analyze the dump before deleting it.

1.2 Saving System Dumps

Every time the operating system writes information to the system dump file, it writes over whatever was previously stored in the file. The system writes information to the dump file whenever the system fails or is shut down. For this reason, the system manager must save the contents of the file after a system failure has occurred.

The system manager can use the SDA COPY command or the DCL COPY command. Either command can be used in a site-specific startup procedure, but the SDA COPY command is preferred because it marks the dump file as copied. As mentioned earlier, this is particularly important if the dump was written into the page file, SYS\$SYSTEM:PAGEFILE.SYS, because it releases those pages occupied by the dump to the pager. Another advantage of using the SDA COPY command is that this command copies only the saved number of blocks and not necessarily the whole allotted dump file. For instance, if the size of the SYSDUMP.DMP file is 100,000 blocks and the bugcheck wrote only 60,000 blocks to the dump file, then DCL COPY would create a file of 100,000 blocks. However, SDA COPY would generate a file of only 60,000 blocks.

Because system dump files are set to NOBACKUP, the Backup utility (BACKUP) does not copy them to tape unless you use the qualifier /IGNORE=NOBACKUP when invoking BACKUP. When you use the SDA COPY command to copy the system dump file to another file, OpenVMS Alpha does not set the new file to NOBACKUP.

As shipped by Digital, the file SYS\$SYSTEM:SYSDUMP.DMP is protected against world access. Because a dump file can contain privileged information, Digital recommends that the system manager not change this default protection.

1.3 Invoking SDA by Rebooting the System

When the system reboots after a system failure, SDA is automatically invoked by default. SDA archives information from the dump in a history file. In addition, a listing file with more detailed information about the system failure is created in the directory pointed to by the logical name CLUE\$COLLECT. (Note that the default directory is SYS\$ERRORLOG unless you redefine the logical name CLUE\$COLLECT in the procedure SYS\$MANAGER:SYLOGICALS.COM.) The file name is in the form CLUE\$*node_ddmmyy_hhmm*.LIS where the timestamp (*hhmm*) corresponds to the system failure time and not the time when the file was created.

Directed by commands in a site-specific file, SDA can take additional steps to record information about the system failure. They include the following:

- Copying the contents of the dump file to another file. This information is otherwise lost at the next system shutdown or failure when the system saves information only about that shutdown or failure.
- Supplementing the contents of the list file containing the output of specific SDA commands.

If the logical name CLUE\$SITE_PROC points to a valid and existing command file, it will be executed as part of the CLUE HISTORY command when you reboot. If used, this file should contain only valid SDA commands.

Generated by a set sequence of commands, the CLUE list file contains only an overview of the failure and is unlikely to provide enough information to determine the cause of the failure. Digital, therefore, recommends that you always copy the dump file.

The following example shows SDA commands that can make up your site-specific command file to produce a more complete SDA listing after each system failure, and to save a copy of the dump file:

!
! SDA command file, to be executed as part of the system
! bootstrap from within CLUE. Commands in this file can
! be used to save the dump file after a system bugcheck, and
! to execute any additional SDA commands.
!

```
! Note that the logical name DMP$ must have been defined
! within SYS$MANAGER:SYLOGICALS.COM
!
READ/EXEC ! read in the executive images' symbol tables
COPY DMP$:SAVEDUMP.DMP ! copy and save dump file
SHOW STACK ! display the stack
!
```

The SDA commands in this site-specific command file are executed first and then the CLUE HISTORY command is executed by default. See the reference section on CLUE HISTORY for details on the summary information that is generated and stored in the CLUE list file by the CLUE HISTORY command.

To point to your site-specific file, add a line such as the following to the file SYS\$MANAGER:SYLOGICALS.COM:

\$ DEFINE/SYSTEM CLUE\$SITE PROC SYS\$MANAGER:SAVEDUMP.COM

In this example, the site-specific file is named SAVEDUMP.COM.

The CLUE list file can be printed immediately or saved for later examination.

SDA is invoked and executes the specified commands only when the system boots immediately after a system failure. If the system is booting for any other reason (such as a normal system shutdown and reboot), SDA exits.

If CLUE files occupy more space than the threshold allows (the default is 5000 blocks), the oldest files will be deleted until the threshold limit is reached. The threshold limit can be customized with the CLUE\$MAX_BLOCK logical name.

To prevent the running of CLUE at system startup, define the logical CLUE\$INHIBIT in the SYLOGICALS.COM file as /SYS TRUE.

2 Analyzing a System Dump

SDA performs certain tasks before bringing a dump into memory, presenting its initial displays, and accepting command input. These tasks include the following:

- Verifying that the process invoking it is suitably privileged to read the dump file
- Using RMS to read in pages from the dump file
- Building the SDA symbol table from the files SDA\$READ_DIR:SYS\$BASE_ IMAGE.EXE and SDA\$READ_DIR:REQSYSDEF.STB
- Executing the commands in the SDA initialization file

For detailed information on investigating system failures, see Section 6.

2.1 Requirements

To analyze a dump file, your process must have read access both to the file that contains the dump and to copies of SDA\$READ_DIR:SYS\$BASE_IMAGE.EXE and SDA\$READ_DIR:REQSYSDEF.STB (the required subset of the symbols in the file SYSDEF.STB). SDA reads these tables by default.

2.2 Invoking SDA

If your process can access the files listed in Section 2.1, you can issue the DCL command ANALYZE/CRASH_DUMP to invoke SDA. If you do not specify the name of a dump file in the command, SDA prompts you:

\$ ANALYZE/CRASH_DUMP
_Dump File:

The default file specification is as follows:

SYS\$DISK:[default-dir]SYSDUMP.DMP

SYS\$DISK and [default-dir] represent the disk and directory specified in your last SET DEFAULT command.

If you are rebooting after a system failure, SDA is automatically invoked. See Section 1.3.

2.3 Mapping the Contents of the Dump File

SDA first attempts to map the contents of physical memory as stored in the specified dump file. To do this, it must first locate the system page table (SPT) among its contents. The SPT contains one entry for each page of system virtual address space.

• If SDA cannot find the SPT in the dump file, it displays the following message:

%SDA-E-SPTNOTFND, system page table not found in dump file

If that error message is displayed, you cannot analyze the crash dump, but must take steps to ensure that any subsequent dump can be analyzed. To do this, you must adjust the DUMPSTYLE system parameter as discussed in Section 1.1.1 or increase the size of the dump file as indicated in Section 1.1.2.

• If SDA finds the SPT in an incomplete dump, the following message is displayed:

%SDA-W-SHORTDUMP, the dump only contains m out of n blocks of physical memory

Under certain conditions, some memory locations might not be saved in the system dump file. Additionally, if a bugcheck occurs during system initialization, the contents of the register display may be unreliable. The symptom of such a bugcheck is a SHOW SUMMARY display that shows no processes or only the swapper process.

If you use an SDA command to access a virtual address that has no corresponding physical address, SDA generates the following error message:

%SDA-E-NOTINPHYS, 'location': virtual data not in physical memory

When analyzing a selective dump file, if you use an SDA command to access a virtual address that has a corresponding physical address not saved in the dump file, SDA generates the following error message:

%SDA-E-MEMNOTSVD, memory not saved in the dump file

2.4 Building the SDA Symbol Table

After locating and reading the system dump file, SDA attempts to read the system symbol table file into the SDA symbol table. If SDA cannot find SDA\$READ_ DIR:SYS\$BASE_IMAGE.EXE—or is given a file that is not a system symbol table in the /SYMBOL qualifier to the ANALYZE command—it displays a fatal error and exits. SDA also reads into its symbol table a subset of SDA\$READ_ DIR:SYSDEF.STB, called SDA\$READ_DIR:REQSYSDEF.STB. This subset provides SDA with the information needed to access some of the data structures in the dump.

When SDA finishes building its symbol table, SDA displays a message identifying itself and the immediate cause of the system failure. In the following example, the cause of the system failure was the deallocation of a bad page file address.

OpenVMS Alpha System Dump Analyzer

\$SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYS\$LDR]REQSYSDEF.STB;1
Dump taken on 27-MAR-1993 11:22:33.92
BADPAGFILD, Bad page file address deallocated

2.5 Executing the SDA Initialization File (SDA\$INIT)

After displaying the system failure summary, SDA executes the commands in the SDA initialization file, if you have established one. SDA refers to its initialization file by using the logical name SDA\$INIT. If SDA cannot find the file defined as SDA\$INIT, it searches for the file SYS\$LOGIN:SDA.INIT.

This initialization file can contain SDA commands that read symbols into SDA's symbol table, define keys, establish a log of SDA commands and output, or perform other tasks. For instance, you may want to use an SDA initialization file to augment SDA's symbol table with definitions helpful in locating system code. If you issue the following command, SDA includes those symbols that define many of the system's data structures, including those in the I/O database:

READ SDA\$READ DIR:filename

You may also find it helpful to define those symbols that identify the modules in the images that make up the executive by issuing the following command:

READ/EXECUTIVE SDA\$READ_DIR:

After SDA has executed the commands in the initialization file, it displays its prompt as follows:

SDA>

This prompt indicates that you can use SDA interactively and enter SDA commands.

An SDA initialization file may invoke a command procedure with the @ command. However, such command procedures cannot invoke other command procedures.

3 Analyzing a Running System

Occasionally, OpenVMS Alpha encounters an internal problem that hinders system performance without causing a system failure. By allowing you to examine the running system, SDA enables you to search for the solution without disturbing the operating system. For example, you may be able to use SDA to examine the stack and memory of a process that is stalled in a scheduler state, such as a miscellaneous wait (MWAIT) or a suspended (SUSP) state. If your process has change-mode-to-kernel (CMKRNL) privilege, you can invoke SDA to examine the system. Use the following DCL command:

\$ ANALYZE/SYSTEM

SDA attempts to load SDA\$READ_DIR:SYS\$BASE_IMAGE.EXE and SDA\$READ_DIR:REQSYSDEF.STB. It then executes the contents of any existing SDA initialization file, as it does when invoked to analyze a crash dump (see Sections 2.4 and 2.5, respectively). SDA subsequently displays its identification message and prompt, as follows:

OpenVMS Alpha System Analyzer

SDA>

This prompt indicates that you can use SDA interactively and enter SDA commands. When analyzing a running system, SDA sets its process context to that of the process running SDA.

If you are analyzing a running system, consider the following:

• When used in this mode, SDA does not map the entire system, but instead retrieves only the information it needs to process each individual command. To update any given display, you must reissue the previous command.

_ Caution: _

When using SDA to analyze a running system, carefully interpret its displays. Because system states change frequently, it is possible that the information SDA displays may be inconsistent with the current state of the system.

• Certain SDA commands are illegal in this mode, such as SHOW CPU and SET CPU. Use of these commands results in the following error message:

%SDA-E-CMDNOTVLD, command not valid on the running system

• The SHOW CRASH command, although valid, does not display the contents of any of the processor's set of hardware registers. Also, the Time of System Crash information refers to the time at which the ANALYZE/SYSTEM command was given.

4 SDA Context

When you invoke SDA to analyze either a crash dump or a running system, SDA establishes a default context for itself from which it interprets certain commands.

When you are analyzing a uniprocessor system, SDA's context is solely **process context**, which means SDA can interpret its process-specific commands in the context of either the process current on the uniprocessor or some other process in another scheduling state. When SDA is initially invoked to analyze a crash dump, SDA's process context defaults to that of the process that was current at the time of the system failure. When you invoke SDA to analyze a running system, SDA's process context defaults to that of the current process, that is, the one executing SDA. To change SDA's process context, issue any of the following commands:

SET PROCESS **process-name** SET PROCESS/ADDRESS=**pcb-address** SET PROCESS/INDEX=nn SET PROCESS/SYSTEM SHOW PROCESS process-name SHOW PROCESS/ADDRESS=pcb-address SHOW PROCESS/INDEX=nn SHOW PROCESS/SYSTEM

When you invoke SDA to analyze a crash dump from a multiprocessing system with more than one active CPU, SDA maintains a second dimension of context its **CPU context**—that allows it to display certain processor-specific information. This information includes the reason for the bugcheck exception, the currently executing process, the current IPL, and the spin locks owned by the processor. When you invoke SDA to analyze a multiprocessor's crash dump, its CPU context defaults to that of the processor that induced the system failure. When you are analyzing a running system, CPU context is not accessible to SDA. Therefore, the SET CPU and SHOW CPU commands are not permitted.

You can change the SDA CPU context by using any of the following commands:

SET CPU **cpu-id** SHOW CPU **cpu-id** SHOW CRASH SHOW MACHINE_CHECK **cpu-id**

Changing CPU context involves an implicit change in process context in either of the following ways:

- If there is a current process on the CPU made current, SDA process context is changed to that of that CPU's current process.
- If there is no current process on the CPU made current, SDA process context is undefined and no process-specific information is available until SDA process context is set to that of a specific process.

Changing process context can require a switch of CPU context as well. For instance, if you issue a SET PROCESS command for a process that was current at the time of a system failure on another CPU, SDA will automatically change its CPU context to that of the CPU on which that process was current. The following commands can have this effect if the **process-name**, **pcb-address**, or index number (**nn**) refers to a current process:

SET PROCESS **process-name** SET PROCESS/ADDRESS=**pcb-address** SET PROCESS/INDEX=**nn** SET PROCESS/SYSTEM SHOW PROCESS **process-name** SHOW PROCESS/ADDRESS=**pcb-address** SHOW PROCESS/INDEX=**nn** SHOW PROCESS/SYSTEM

5 SDA Command Format

The following sections describe the format of SDA commands and the expressions you can use with SDA commands.

5.1 General Command Format

SDA uses a command format similar to that used by the DCL interpreter. Issue commands in the following format:

command-name[/qualifier...] [parameter][/qualifier...] [!comment]

The **command-name** is an SDA command. Each command tells the utility to perform a function. Commands can consist of one or more words, and can be abbreviated to the number of characters that make the command unique. For example, SH stands for SHOW, and SE stands for SET.

The **parameter** is the target of the command. For example, SHOW PROCESS RUSKIN tells SDA to display the context of the process RUSKIN. The command EXAMINE 80104CD0;40 displays the contents of 40 bytes of memory, beginning with location 80104CD0.

When you supply part of a file specification as a parameter, SDA assumes default values for the omitted portions of the specification. The default device is SYS\$DISK, the device specified in your most recent SET DEFAULT command. The default directory is the directory specified in the most recent SET DEFAULT command. See the *OpenVMS DCL Dictionary* for a description of the DCL command SET DEFAULT.

The **qualifier** modifies the action of an SDA command. A qualifier is always preceded by a slash (/). Several qualifiers can follow a single parameter or command name, but each must be preceded by a slash. Qualifiers can be abbreviated to the shortest string of characters that uniquely identifies the qualifier.

The **comment** consists of text that describes the command; this comment is not actually part of the command. Comments are useful for documenting SDA command procedures. When executing a command, SDA ignores the exclamation point and all characters that follow it on the same line.

5.2 Expressions

You can use expressions as parameters for some SDA commands, such as SEARCH and EXAMINE. To create expressions, use any of the following elements:

- Numerals
- Radix operators
- Arithmetic and logical operators
- Precedence operators
- Symbols

Numerals are one possible component of an expression. The following sections describe the use of the other components.

5.2.1 Radix Operators

Radix operators determine which numeric base SDA uses to evaluate expressions. You can use one of the three radix operators to specify the radix of the numeric expression that follows the operator:

- ^X (hexadecimal)
- ^O (octal)

• ^D (decimal)

The default radix is hexadecimal. SDA displays hexadecimal numbers with leading zeros and decimal numbers with leading spaces.

5.2.2 Arithmetic and Logical Operators

Operator Action

There are two types of arithmetic and logical operators, both of which are listed in Table SDA–2.

- Unary operators affect the value of the expression that follows them.
- **Binary operators** combine the operands that precede and follow them.

In evaluating expressions containing binary operators, SDA performs logical AND, OR, and XOR operations, and multiplication, division, and arithmetic shifting before addition and subtraction. Note that the SDA arithmetic operators perform integer arithmetic on 64-bit operands.

Table SDA–2 SDA Operators

opera	
Unary	Operators
#	Performs a logical NOT of the expression.
+	Makes the value of the expression positive.
-	Makes the value of the expression negative.
@	Evaluates the following expression as a virtual address, then uses the contents of that address as value.
^Q	When used with the unary operator $@$, it specifies the size of field to be used as a virtual address is a quadword 1 .
^L	When used with the unary operator $@$, it specifies the size of field to be used as a virtual address is a longword ² .
^W	When used with the unary operator $@$, it specifies the size of field to be used as a virtual address is a word ³ .
^B	When used with the unary operator $@$, it specifies the size of field to be used as a virtual address is a byte ⁴ .
G	Adds FFFFFFF 80000000 ₁₆ to the value of the expression ⁵ .
Η	Adds $7FFE0000_{16}$ to the value of the expression ⁶ .
¹ The cooperate operate example	ommand SET FETCH QUADWORD provides the same effect on all subsequent uses of unary or $@$ as if Q were added each time. That is, SET FETCH is making it the default. For an le of the use of Q , see the SET FETCH command.

 $^2 \rm The \ command \ SET \ FETCH \ LONGWORD \ provides \ the \ same \ effect \ on \ all \ subsequent \ uses \ of \ unary \ operator \ @ \ as \ if \ ^L \ were \ added \ each \ time. \ That \ is, \ SET \ FETCH \ is \ making \ it \ the \ default. \ For \ an \ example \ of \ the \ use \ of \ ^L, \ see \ the \ SET \ FETCH \ command.$

 $^3 The command SET FETCH WORD provides the same effect on all subsequent uses of unary operator @ as if ^W were added each time. That is, SET FETCH is making it the default. For an example of the use of ^W, see the SET FETCH command.$

 $^4\text{The command SET FETCH BYTE provides the same effect on all subsequent uses of unary operator @ as if ^B were added each time. That is, SET FETCH is making it the default. For an example of the use of ^B, see the SET FETCH command.$

 $^5 \rm The unary operator G corresponds to the first virtual address in system space. For example, the expression GD40 can be used to represent the address FFFFFFF 80000D40_{16}.$

 6 The unary operator H corresponds to a convenient base address in P1 space (7FFE0000₁₆). You can therefore refer to an address such as 7FFE2A64₁₆ as H2A64.

(continued on next page)

Opera	Operator Action		
Unary	Unary Operators		
Ι	Fills the leading digits of the following hexadecima For example:	l number with hex value of F.	
	SDA> eval i80000000 Hex = FFFFFFF80000000 Decimal =2147483648	G SYS\$PUBLIC_VECTORS_NPRO	
Binar	ry Operators		
+	Addition		

Table SDA-2 (Cont.) SDA Operators

+	Addition
_	Subtraction
*	Multiplication
&	Logical AND
	Logical OR
\	Logical XOR
/	Division ⁷
@	Arithmetic shifting
"."	Catenates two 32-bit values into a 64-bit value. For example:
	SDA> eval fe.50000 Hex = 000000FE00050000 Decimal = 1090922020864

⁷In division, SDA truncates the quotient to an integer, if necessary, and does not retain a remainder.

5.2.3 Precedence Operators

SDA uses parentheses as **precedence operators**. Expressions enclosed in parentheses are evaluated first. SDA evaluates nested parenthetical expressions from the innermost to the outermost pairs of parentheses.

5.2.4 Symbols

A **symbol** can represent a few different types of values. It can represent a constant, a data address, a procedure descriptor address, or a routine address. Constants are usually offsets of a particular field in a data structure; however, they can also represent constant values such as the BUG\$_xxx symbols.

All address symbols identify memory locations. SDA generally does not distinguish among different types of address symbols. However, for a symbol identified as the name of a procedure descriptor, SDA takes an additional step of creating an associated symbol to name the code entry point address of the procedure. It forms the code entry point symbol name by appending _C to the name of the procedure descriptor.

Also, SDA substitutes the code entry point symbol name for the procedure descriptor symbol when you enter the following command:

SDA> EXAMINE/INSTRUCTION procedure descriptor

For example, enter the following command:

SDA> EXAMINE/INSTRUCTION SCH\$QAST

SDA displays the following information:

SCH\$QAST_C: SUBQ SP,#X40,SP

Now enter the EXAMINE command but do not specify the /INSTRUCTION qualifier, as follows:

SDA> EXAMINE SCH\$QAST

SDA displays the following information:

SCH\$QAST: 0000002C 00003009 ".0..,..."

This display shows the contents of the first two longwords of the procedure descriptor.

Note that there are no routine address symbols on Alpha systems, except for those in MACRO-64 assembly language modules. Therefore, SDA creates a routine address symbol for every procedure descriptor it has in its symbol table. The new symbol name is the same as for the procedure descriptor except that it has an _C appended to the end of the name.

Sources for SDA Symbols

SDA can get its information from the following places:

- Images (.EXE files)
- Image symbol table files (.STB files)
- Object files

SDA also defines symbols to access registers and to access common data structures.

The only images with symbols are shareable images and executive images. These images contain only universal symbols, such as constants and addresses.

The image symbol table files are produced by the linker with the /SYMBOLS qualifier. These files normally only contain universal symbols, as do the executable images. However, if the SYMBOL_TABLE=GLOBALS linker option is specified, the .STB file also contains all global symbols defined in the image. See the *OpenVMS Linker Utility Manual* for more information.

Object files can contain global constant values. An object file used with SDA typically contains symbol definitions for data structure fields. Such an object file can be generated by compiling a MACRO-32 source module that invokes specific macros. The macros, which are typically defined in SYS\$LIBRARY:LIB.MLB or STARLET.MLB, define symbols that correspond to data structure field offsets. The macro \$UCBDEF, for example, defines offsets for fields within a unit control block (UCB). OpenVMS Alpha provides a number of such object modules in SDA\$READ_DIR, as listed in Table SDA-3. For compatibility with OpenVMS VAX, the modules' file types have been renamed to .STB.

File	Contents
DCLDEF.STB	Symbols for the DCL interpreter
DECDTMDEF.STB	Symbols for transaction processing
IMGDEF.STB	Symbols for the image activator
IODEF.STB	I/O database structure symbols
NETDEF.STB	Symbols for DECnet data structures
REQSYSDEF.STB	Required symbols for SDA
RMSDEF.STB	Symbols that define RMS internal and user data structures and RMS\$_xxx completion codes
SCSDEF.STB	Symbols that define data structures for system communications services
SYSDEF.STB	Symbols that define system data structures, including the I/O database

Table SDA-3 Modules Containing Global Symbols Used by SDA

Table SDA-4 lists symbols that SDA defines automatically on initialization.

ASN	Address space number
AST	Both the asynchronous system trap status and enable registers: AST < 3:0 > = AST enable; $AST < 7:4 > = AST$ status
ESP	Executive stack pointer
FEN	Floating-point enable
FP	Frame pointer (R29)
FP0-FP30	Floating-point registers 0-30
FPCR	Floating-point control register
G	FFFFFFF 8000000_{16} , the base address of system space
Н	7FFE0000 ₁₆ , a base address in P1 space
KSP	Kernel stack pointer
PC	Program counter
PS	Processor status
PTBR	Page table base register
R0 through R29	Integer registers
SP	Current stack pointer of a process
SSP	Supervisor stack pointer
USP	User stack pointer

After a SET CPU command is issued (for analyzing a crash dump only), the symbols defined in Table SDA–5 are set for that CPU.

Table SDA–5	SDA Symb	ols Defined by	/ SET CP	U Command
-------------	----------	----------------	----------	-----------

IPL	Interrupt priority level register
PCBB	Process context block base register
PRBR	Processor base register (CPU database address)
SCBB	System control block base register
SISR	Software interrupt status register

After a SET PROCESS command is issued, the symbols listed in Table SDA–6 are defined for that CPU.

Table SDA–6 SDA Symbols Defined by SET PROCESS Command

ARB	Address of access rights block
JIB	Address of job information block
ORB	Address of object rights block
РСВ	Address of process control block
PHD	Address of process header

Other SDA commands, such as SHOW DEVICE and SHOW CLUSTER, predefine additional symbols.

SDA Symbol Initialization

On initialization, SDA reads the universal symbols defined by SYS\$BASE_ IMAGE.EXE. For every procedure descriptor address symbol found, a routine address symbol is created (with _C appended to the symbol name).

SDA then reads the object file REQSYSDEF.STB. This file contains data structure definitions that are required for SDA to run correctly. It uses these symbols to access some of the data structures in the crash dump file or on the running system.

Finally, SDA initializes the process registers defined in Table SDA–6 and executes a SET CPU command, defining the symbols as well.

Use of SDA Symbols

There are two major uses of the address type symbols. First, the EXAMINE command employs them to find the value of a known symbol. For example, EXAMINE CTL\$GL_PCB finds the PCB for the current process. Then, certain SDA commands (such as EXAMINE, SHOW STACK, and FORMAT) use them to symbolize addresses when generating output.

When the code for one of these commands needs a symbol for an address, it calls the SDA symbolize routine. The symbolize routine tries to find the symbol in the symbol table whose address is closest to, but not greater than the requested address. This means, for any given address, the routine may return a symbol of the form symbol_name+offset. If, however, the offset is greater than $0FFF_{16}$, it fails to find a symbol for the address.

As a last resort, the symbolize routine checks to see if this address falls within a known memory range. Currently, the only known memory ranges are those used by the OpenVMS Alpha executive images. SDA searches through the executive loaded image list (LDRIMG data structure) to see if the address falls within any of the image sections. If SDA does find a match, it returns one of the following types of symbols:

executive_image_name+offset executive_image_name_image_section+offset

The first form is for **nonsliced images**. The offset is the same as the image offset as defined in the map file.

The second form is for a **sliced executive image**. The image sections are not in adjacent locations in memory, so the image section name is needed to find where this address is within the map file. You can also use the MAP command on the address to get the image offset as defined in the map file.

The constants in the SDA symbol table are usually used to display a data structure with the FORMAT command. For example, the PHD offsets are defined in SYSDEF.STB; you can display all the fields of the PHD by entering the following commands:

SDA> READ SDA\$READ DIR:SYSDEF.STB

SDA> FORMAT/TYPE=PHD phd_address

Symbols and Address Resolution

In OpenVMS Alpha, executive and user images are loaded into dynamically assigned address space. To help you associate a particular virtual address with the image whose code has been loaded at that address, SDA provides several features:

- The SHOW EXECUTIVE command
- The symbolization of addresses, described in the previous section
- The READ command
- The SHOW PROCESS command with the /IMAGES qualifier
- The MAP command

The OpenVMS Alpha executive consists of two base images, SYS\$BASE_ IMAGE.EXE and SYS\$PUBLIC_VECTORS.EXE, and a number of other separately loadable images. Some of these images are loaded on all systems, while others support features unique to particular system configurations. Executive images are mapped into system space during system initialization.

By default, a typical executive image is not mapped at contiguous virtual addresses. Instead, its nonpageable image sections are loaded into a reserved set of pages with other executive images' nonpageable sections. The pageable sections of a typical executive image are mapped contiguously into a different part of system space. An image mapped in this manner is said to be **sliced**. A particular system may have system parameters defined that disable executive image slicing altogether.

Each executive image is described by a data structure called a **loadable image data block** (LDRIMG). The LDRIMG specifies whether the image has been sliced. If the image is sliced, the LDRIMG indicates the beginning of each image section and the size of each section. All the LDRIMGs are linked together in a list that SDA scans to determine what images have been loaded and into what

addresses they have been mapped. The SHOW EXECUTIVE command displays a list of all images that are included in the OpenVMS Alpha executive.

Each executive image is a shareable image whose universal symbols are defined in the SYS\$BASE_IMAGE.EXE symbol vector. On initialization, SDA reads this symbol vector and adds its universal symbols to the SDA symbol table.

Executive image .STB files define additional symbols within an executive image that are not defined as universal symbols and thus are not in the SYS\$BASE_IMAGE.EXE symbol vector (see *Sources for SDA Symbols* in this section). You can enter a READ/EXECUTIVE command to read symbols defined in all executive image .STB files into the SDA symbol table, or a READ/IMAGE=filespec command to read the .STB for a specified image only.

To obtain a display of all images mapped within a process, execute a SHOW PROCESS/IMAGE command. See the description of the SHOW PROCESS command for additional information about displaying the hardware and software context of a process.

You can also identify the image name and offset that correspond to a specified address with the MAP command. With the information obtained from the MAP command, you can then examine the image map to locate the source module and program section offset corresponding to an address.

6 Investigating System Failures

This section discusses how the operating system handles internal errors, and suggests procedures that can aid you in determining the causes of these errors. It illustrates, through detailed analysis of a sample system failure, how SDA helps you find the causes of operating system problems.

For a complete description of the commands discussed in the sections that follow, refer to the last part of this document, where all the SDA commands are discussed in alphabetical order.

6.1 General Procedure for Analyzing System Failures

When the operating system detects an internal error so severe that normal operation cannot continue, it signals a condition known as a fatal bugcheck and shuts itself down. A specific bugcheck code describes each fatal bugcheck.

To resolve the problem, you must find the reason for the bugcheck. Many failures are caused by errors in user-written device drivers or other privileged code not supplied by Digital. To identify and correct these errors, you need a listing of the code in question.

Occasionally, a system failure is the result of a hardware failure or an error in code supplied by Digital. A hardware failure requires the attention of Digital Services. To diagnose an error in code supplied by Digital, you need listings of that code, which are available from Digital.

Start the search for the error by analyzing the CLUE list file that was created by default when the system failed. This file contains an overview of the system failure, which can assist you in finding the line of code that signaled the bugcheck. CLUE CRASH displays the content of the program counter (PC) in the list file. The content of the PC is the address of the next instruction after the instruction that signaled the bugcheck.

However, some bugchecks are caused by unexpected exceptions. In such cases, the address of the instruction that *caused* the exception is more informative than the address of the instruction that signaled the bugcheck. The address of the instruction that caused the exception is located on the stack. You can obtain this address by using the SHOW STACK command to display the contents of the stack or by using the CLUE CRASH command to display the system state at time of exception. See Section 6.2 for information on how to proceed for several types of bugchecks.

Once you have found the address of the instruction that caused the bugcheck or exception, find the module in which the failing instruction resides. Use the MAP command to determine whether the instruction is part of a device driver or another executive image. Alternatively, the SHOW EXECUTIVE command shows the location and size of each of the images that make up the OpenVMS Alpha executive.

If the instruction that caused the bugcheck is not part of a driver or executive image, examine the linker's map of the module or modules you are debugging to determine whether the instruction that caused the bugcheck is in your program.

To determine the general cause of the system failure, examine the code that signaled the bugcheck or the instruction that caused the exception.

6.2 Fatal Bugcheck Conditions

There are many possible conditions that can cause OpenVMS Alpha to issue a bugcheck. Normally, these occasions are rare. When they do occur, they are often fatal exceptions or illegal page faults occurring within privileged code. This section describes the symptoms of several common bugchecks. A discussion of other exceptions and condition handling in general appears in the *OpenVMS Programming Concepts Manual*.

6.2.1 Fatal Exceptions

An exception is fatal when it occurs while either of the following conditions exists:

- The process is executing above IPL 2 (IPL\$_ASTDEL).
- The process is executing in a privileged (kernel or executive) processor access mode and has not declared a condition handler to deal with the exception.

When the system fails, the operating system reports the approximate cause of the system failure on the console terminal. SDA displays a similar message when you issue a SHOW CRASH command. For instance, for a fatal exception, SDA can display one of these messages:

FATALEXCPT, Fatal executive or kernel mode exception INVEXCEPTN, Exception while above ASTDEL SSRVEXCEPT, Unexpected system service exception UNXSIGNAL, Unexpected signal name in ACP

When a FATALEXCPT, INVEXCEPTN, SSRVEXCEPT, or UNXSIGNAL bugcheck occurs, two argument lists, known as the mechanism and signal arrays, are placed on the stack.

Figure SDA–1 illustrates the **mechanism array**, which is made up entirely of quadwords. The first quadword of this array indicates the number of quadwords in this array; this value is always $2B_{16}$. These quadwords are used by the procedures that search for a condition handler and report exceptions.

mechanism_args	quadword aligned
MCH_ARGS	:0
MCH_FLAGS	:4
MCH_FRAME	:8
MCH_DEPTH	:16
MCH_RESVD1	:20
MCH_DADDR	:24
MCH_ESF_ADDR	:32
MCH_SIG_ADDR	:40
MCH_SAVR0 MCH_SAVR0_LOW	:48
MCH_SAVR0_HIGH	
MCH_SAVR1 MCH_SAVR1_LOW	:56
MCH_SAVR1_HIGH	
MCH_SAVR16	:64
↓ Integer registers 17–27	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MCH_SAVR28	:160
MCH_SAVF0	:168
MCH_SAVF1	:176
MCH_SAVF10	:184
Floating registers 11–29	 ~
MCH_SAVF30	:344
LCHF\$S_CHFDEF2 = 352	 ZK-4645A-GE

Figure SDA–1 Mechanism Array

SDA-21

Symbolic offsets into the mechanism array are defined as follows. The SDA SHOW STACK command identifies the elements of the mechanism array on the stack using these symbols.

Offset	Meaning
CHF\$IS_MCH_ARGS	Number of quadwords that follow. In a mechanism array, this value is always $2B_{16}$.
CHF\$IS_MCH_FLAGS	Flag bits for related argument mechanism information.
CHF\$IS_MCH_FRAME	Address of the FP (frame pointer) of the establisher's call frame.
CHF\$IS_MCH_DEPTH	Depth of the OpenVMS Alpha search for a condition handler.
CHF\$IS_MCH_DADDR	Address of the handler data quadword, if the exception handler data field is present.
CHF\$IS_MCH_ESF_ADDR	Address of the exception stack frame (see Figure SDA-3).
CHF\$IS_MCH_SIG_ADDR	Address of the signal array (see Figure SDA-2).
CHF\$IS_MCH_SAVRnn	Contents of the saved integer registers at the time of the exception. The following registers are saved: R0, R1, and R16 to R28 inclusive.
CHF\$IS_MCH_SAVFnn	If the process was using floating point, contents of the saved floating-point registers at the time of the exception. The following registers are saved: F0, F1, and F10 to F30 inclusive.

The **signal array** appears somewhat farther down the stack. This array comprises all longwords so that the structure is VAX compatible. A signal array describes the exception that occurred. It contains an argument count, the exception code, zero or more exception parameters, the PC, and the PS. Therefore, the size of a signal array can vary from exception to exception. Although there are several possible exception conditions, access violations are most common. Figure SDA–2 shows the signal array for an access violation. The SDA SHOW STACK command uses the CHF\$ symbols listed in the figure to identify the signal array on the stack.

Figure SDA-2 Signal Array

ZK-4643A-GE

For access violations, the signal array is set up as follows:

Value	Meaning
Vector list length	Number of longwords that follow. For access violations, this value is always 5.
Condition value	Exception code. The value $0C_{16}$ represents an access violation. You can identify the exception code by using the SDA command EVALUATE/CONDITION_VALUE or SHOW CRASH.
Additional arguments	These can include a reason mask and a virtual address.
	In the longword mask if bit 0 of the longword is set, the failing instruction (at the PC saved below) caused a length violation. If bit 1 is set, it referred to a location whose page table entry is in a "no access" page. Bit 2 indicates the type of access used by the failing instruction: it is set for write and modify operations and clear for read operations.
	The virtual address represents the low-order 32 bits of the virtual address that the failing instruction tried to reference.
PC	PC whose execution resulted in the exception.
PS	PS at the time of the exception.

Figure SDA–3 illustrates the exception stack frame, which comprises all quadwords.

Figure SDA–3 Exception Stack Frame

The values contained in the exception stack frame are defined as follows:

Table SDA–7 Exception Stack Frame Values

Value	Contents	
INTSTK\$Q_R2	Contents of R2 at the time of the exception	
INTSTK\$Q_R3	Contents of R3 at the time of the exception	
INTSTK\$Q_R4	Contents of R4 at the time of the exception	
INTSTK\$Q_R5	Contents of R5 at the time of the exception	
INTSTK\$Q_R6	Contents of R6 at the time of the exception	
INTSTK\$Q_R7	Contents of R7 at the time of the exception	
INTSTK\$Q_PC	PC whose execution resulted in the exception	
INTSTK\$Q_PS	PS at the time of the exception (except high-order bits)	

The SDA SHOW STACK command identifies the elements of the exception stack frame on the stack using these symbols.

If OpenVMS Alpha encounters a fatal exception, you can find the code that signaled it by examining the PC in the signal array. Use the SHOW CRASH or CLUE CRASH command to display the PC and the instruction stream around the PC to locate the exception.

The following display shows the SDA output in response to SHOW CRASH and SHOW STACK commands for an SSRVEXCEPT bugcheck. It illustrates the mechanism array, signal array, and exception stack frame previously described.

OpenVMS Alpha System dump analyzer Dump taken on 14-FEB-1995 16:39:37.79 SSRVEXCEPT, Unexpected system service exception ...analyzing a selective memory dump.... SDA> SHOW CRASH Time of system crash: 14-FEB-1995 16:39:37.79 Version of system: OpenVMS Alpha Operating System, Version V7.0 System Version Major ID/Minor ID: 3/0 VMScluster node: ISFLM1, a DEC 3000 Model 500 Crash CPU ID/Primary CPU ID: 00/00 Bitmask of CPUs active/available: 00000001/00000001 CPU bugcheck codes: CPU 00 -- SSRVEXCEPT, Unexpected system service exception Exception Frame: _ _ _ _ _ _ _ _ _ _ R2 = FFFFFFF 8006F878 SCH\$INIT C+00674 R3 = 0000000 0000000R4 = FFFFFFF 805D7800R5 = 00000000 7FFA9CB0 R6 = 00000000 7FF95E40R7 = FFFFFFF 81F77E70 EXE\$CRE MIN PROCESS+00430 PC = FFFFFFF 81F6CDB4 EXE\$CRE MIN PROCESS C+00A14 PS = 00000000 0000000 FFFFFFFF 81F6CDA4: JSR FFFFFFFF 81F6CDA8: LDQ FFFFFFFF 81F6CDAC: LDL FFFFFFFF 81F6CDB0: BEQ PC =>FFFFFFFF 81F6CDB4: LDL FFFFFFFF 81F6CDB8: BNE FFFFFFFF 81F6CDBC: LDQ FFFFFFFF 81F6CDC0: LDL FFFFFFFF 81F6CDC4: BEQ R26,(R26) R27, #XFDE0(R13) R5, #X0238(N2,, R5, #X000002 R26, (R5) R26, #X00000B R25, #XFE00(R13) R5, #X0D18(R25) R5,#X000002 PS => MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD 0 00 0000000000 00 0 KERN 0 KERN %SYSTEM-F-PAGRDERR, page read error, reason mask=00, virtual address=7FFA8001, PC=81F6CDB4, PSL=00000000 Saved Scratch Registers in Mechanism Array R0 = 00000000 0000002 R1 = 00000000 00000000 R16 = 00000000 00000000

 R17 = 00000FFFE 00007C04
 R18 = 00000000 00000000
 R19 = FFFFFFF 800650F0

 R20 = 10000000 00000000
 R21 = 0000000 00000000
 R22 = 00000000 0000000

 R23 = 00000000 2014002B
 R24 = 0000000 0000000
 R25 = 00000000 0000000

 R26 = 00000000 00000002
 R27 = 00000000 7FFF0000
 R28 = FFFFFFF 81F6CDA8

 CPU 00 reason for Buqcheck: SSRVEXCEPT, Unexpected system service exception Process currently executing on this CPU: JOB CONTROL Current IPL: 0 (decimal) CPU database address: 8052E000 General registers:

R0 = 00000000 00000444 R1 = 00000000 7FF95C28 R2 = FFFFFFFF 8006F878 R3 = 00000000 00000000 R4 = FFFFFFF 805D7800 R5 = 00000000 7FFA9CB0 R6 = 00000000 7FF95E40 R7 = FFFFFFF 81F77E70 R8 = 00000000 000203E8 R9 = 00000000 7FF59640 R10 = 00000000 7FF58608 R11 = 00000000 7FFD00A8 R12 = 00000000 00000000 R13 = FFFFFFF 80778C10 R14 = 00000000 7FF57118 R15 = FFFFFFF 80403400 R16 = 00000000 000003C4 R17 = 00000000 7FF95AC0 R18 = 00000000 00000168 R19 = FFFFFFF 800650F0 R20 = 10000000 00000000 R21 = 00000000 00000000 R22 = FFFFFFF 80778000 R23 = 00000000 7FF96000 R24 = 00000000 7FFF0024 AI = 00000000 00000002 RA = FFFFFFF 81F43D4C PV = FFFFFFFF 80778C10 R28 = 00000000 000005AC FP = 00000000 7FF95A20 PC = FFFFFFF 81F44254 PS = 18000000 00000000 Processor Internal Registers: ASN = 00000000 000000C ASTSR/ASTEN = 0000000 IPL = 00000000 PCBB = 00000000 0124A080 PRBR = FFFFFFF 8052E000 PTBR = 00000000 00000A6D SCBB = 00000000 000001A5 SISR = 00000000 00000000 KSP = 00000000 7FF95A18 = 00000000 7FF56AE0 ESP SSP = 00000000 7FFA2000 USP = 00000000 7FF4A890 No spinlocks currently owned by CPU 00 SDA> SHOW STACK Current Operating Stack (KERNEL): 7FF959F8 18000000 00000000 7FF95A00 FFFFFFF 80778A70 EXE\$SET PAGES READ ONLY+00630 7FF95A08 0000000 80778B38 EXE\$SIGTORET 7FF95A10 0000000 7FF95AC0 SP => 7FF95A18 0000000 7FF95C28 7FF95A20 FFFFFFF 80778C10 EXESEXCPTN 7FF95A28 FFFFFFF 81F43D4C EXCEPTION PRO+01D4C 7FF95A30 FFFFFFF 81F77D20 EXE\$CRE MIN PROCESS+002E0 7FF95A38 0000000 7FF95A50 7FF95A40 FFFFFFF 80778AF8 EXE\$SET_PAGES_READ_ONLY+006B8 7FF95A48 FFFFFFF 8006F878 SCH\$INIT C+00674 7FF95A50 FFFFFFFF 80778AF8 EXE\$SET PAGES READ ONLY+006B8 7FF95A58 0000000 0000000 7FF95A60 FFFFFFF 81F42790 EXE\$CONTSIGNAL C+001B0 7FF95A68 0000000 7FF95CC0 7FF95A70 FFFFFFF 80428540 EXE\$ACVIOLAT 7FF95A78 0000000 7FF95C28 7FF95A80 0000000 7FF95AC0 7FF95A88 0000000 7FF95C80 7FF95A90 0000000 7FF95CC0 7FF95A98 0000000 0000000 7FF95AA0 0000000 0000000 7FF95AA8 FFFFFFF 8041E840 EXE\$KP DEALLOCATE KPB 7FF95AB0 0000005 00000250 UCB\$T MSGDATA+00034 7FF95AB8 80778000 000008F8 UCB\$M VALID+000F8 CHF\$IS_MCH_DEPTH CHF\$IS_MCH_DEPTH CHF\$PH_MCH_DADDR CHF\$PH_MCH_FOT CHF\$IS MCH ARGS 7FF95AC0 0000000 000002B 7FF95AC8 00000000 7FF56AE0 7FF95AD0 FFFFFFFF FFFFFFD 7FF95AD8 FFFFFFF 8045C3E0 SYS\$DKDRIVER NPRW+001E0 CHF\$PH_MCH_ESF_ADDR 7FF95AE0 00000000 7FF95C80

 CHF\$PH_MCH_ESF_ADDR
 7FF95AE0
 00000000
 7FF95C80

 CHF\$PH_MCH_SIG_ADDR
 7FF95AE8
 00000000
 7FF95C28

 CHF\$IH_MCH_SAVR0
 7FF95AF0
 00000000
 00000000

 CHF\$IH_MCH_SAVR1
 7FF95AF8
 00000000
 00000000

 CHF\$IH_MCH_SAVR1
 7FF95AF8
 00000000
 00000000

 CHF\$IH_MCH_SAVR16
 7FF95B00
 00000000
 00000000

 CHF\$IH_MCH_SAVR17
 7FF95B08
 0000FFFE
 00007C04

 CHF\$IH_MCH_SAVR18
 7FF95B10
 00000000
 00000000

 CHF\$IH_MCH_SAVR19
 7FF95B18
 FFFFFFF
 800650F0
 PROCESS_MANAGEMENT_NPRO+050F0
CHF\$IH_MCH_SAVR20	7FF95B20	10000000	00000000	
CHF\$IH_MCH_SAVR21	7FF95B28	00000000	00000000	
CHF\$IH_MCH_SAVR22	7FF95B30	00000000	00000400	IRP\$M_MBXIO
CHF\$IH_MCH_SAVR23	7FF95B38	00000000	2014002B	
CHF\$IH_MCH_SAVR24	7FF95B40	00000000	00000000	
CHF\$IH_MCH_SAVR25	7FF95B48	00000000	00000000	
CHF\$IH MCH SAVR26	7FF95B50	00000000	00000002	
CHF\$IH MCH SAVR27	7FF95B58	00000000	7FFF0000	CTL\$GL NMIOCH
CHF\$IH MCH SAVR28	7FF95B60	FFFFFFFF	81F6CDA8	EXEŞCRE MIN PROCESS C+00A08
	7FF95B68	00000000	00000000	
	7FF95B70	00000000	00000000	
	7FF95B78	00000000	00000000	
	7FF95B80	00000000	00000000	
	7FF95B88	00000000	00000000	
	7FF95B90	00000000	00000000	
	7FF95B98	000000000	000000000	
	7FF95BA0	000000000	000000000	
	7FF95BA8	000000000	000000000	
	7FF95BB0	000000000	000000000	
	7FF95BB8	00000000	000000000	
	7FF95BC0	00000000	00000000	
		00000000	00000000	
		00000000	00000000	
		00000000	00000000	
		00000000	00000000	
		00000000	00000000	
	/FF95BE0	00000000	00000000	
	76695860	00000000	00000000	
	76695868	00000000	00000000	
	77795000	00000000	00000000	
	7FF95C08	00000000	00000000	
	7FF95C10	00000000	00000000	
	7FF95C18	00000000	00000000	
	7FF95C20	00000000	00000000	
CHF\$L_SIG_ARGS	7FF95C28	00000444	00000005	UCB\$M_SHD_SEQCMD_HERE+00044
CHF\$L_SIG_ARG1	7FF95C30	7FFA8001	00000000	
	7FF95C38	00000000	81F6CDB4	EXEŞCRE_MIN_PROCESS_C+00A14
	7FF95C40	00000002	00000001	
	7FF95C48	00000000	00000444	UCB\$M_SHD_SEQCMD_HERE+00044
	7FF95C50	00000000	00000000	
	7FF95C58	FFFFFFFF	81F6CDB4	EXE\$CRE_MIN_PROCESS_C+00A14
	7FF95C60	00000008	00000000	
	7FF95C68	00000000	00000000	
	7FF95C70	00000008	00000000	
	7FF95C78	00000000	7FFA8001	
INTSTK\$Q_R2	7FF95C80	FFFFFFFF	8006F878	SCH\$INIT_C+00674
INTSTK\$Q_R3	7FF95C88	00000000	00000000	
INTSTK\$Q_R4	7FF95C90	FFFFFFFF	805D7800	
INTSTK\$Q_R5	7FF95C98	00000000	7FFA9CB0	
INTSTK\$Q R6	7FF95CA0	00000000	7FF95E40	
INTSTK\$Q [¯] R7	7FF95CA8	FFFFFFFF	81F77E70	EXE\$CRE MIN PROCESS+00430
INTSTK\$Q PC	7FF95CB0	FFFFFFFF	81F6CDB4	EXE\$CRE MIN PROCESS C+00A14
INTSTK\$Q PS	7FF95CB8	00000000	00000000	
Prev SP (7FF95CC0)	==> 7FF95CC0	FFFFFFFF	81F77E70	EXE\$CRE MIN PROCESS+00430
	7FF95CC8	00000000	00000000	
	7FF95CD0	00000000	00000005	
	7FF95CD8	00000000	00000000	
	7FF95CE0	FFFFFFFF	FFFF42D4	
	7FF95CE8	00000000	000001F	
	7FF95CF0	FFFF8000	00000000	

- . .

6.2.2 Illegal Page Faults

OpenVMS Alpha signals a PGFIPLHI bugcheck when a page fault occurs while the interrupt priority level (IPL) is greater than 2 (IPL\$_ASTDEL). When OpenVMS Alpha fails because of an illegal page fault, it displays the following message on the console terminal:

PGFIPLHI, Page fault with IPL too high

When an illegal page fault occurs, the stack appears as pictured in Figure SDA-4.

ZK-6787A-GE

The stack contents are as follows:

MMG\$PAGEFAULT Stack Frame	Stack frame built at entry to MMG\$PAGEFAULT, the page fault exception service routine. The frame includes the contents of the following registers at the time of the page fault: R3, R8, R11 to R15, R29 (frame pointer)
SCH\$PAGEFAULT Saved Scratch Registers	Contents of the following registers at the time of the page fault: R0, R1, R16 to R28
Exception Stack Frame	Exception stack frame (see Figure SDA-3)
Previous Stack Content	Contents of the stack prior to the illegal page-fault error

When you analyze a dump caused by a PGFIPLHI bugcheck, the SHOW STACK command identifies the exception stack frame using the symbols shown in Table SDA–7. The SHOW CRASH or CLUE CRASH command displays the instruction that caused the page fault and the instructions around it.

7 Inducing a System Failure

If the operating system is not performing well and you want to create a dump you can examine, you must induce a system failure. Occasionally, a device driver or other user-written, kernel-mode code can cause the system to execute a loop of code at a high priority, interfering with normal system operation. This loop can occur even though you have set a breakpoint in the code if the loop is encountered before the breakpoint. To gain control of the system in such circumstances, you must cause the system to fail and then reboot it.

If the system has suspended all noticeable activity and is hung, see the examples of causing system failures in Section 7.2.

If you are generating a system failure in response to a system hang, be sure to record the PC and PS as well as the contents of the integer registers at the time of the system halt.

7.1 Meeting Crash Dump Requirements

The following requirements must be met before the operating system can write a complete crash dump:

- You must not halt the system until the console dump messages have been printed in their entirety and the memory contents have been written to the crash dump file. Be sure to allow sufficient time for these events to take place or make sure that all disk activity has stopped before using the console to halt the system.
- There must be a crash dump file in SYS\$SPECIFIC:[SYSEXE]: named either SYSDUMP.DMP or PAGEFILE.SYS.

This dump file must be either large enough to hold the entire contents of memory (as discussed in Section 1.1.1) or, if the DUMPSTYLE system parameter is set, large enough to accommodate a subset dump (also discussed in Section 1.1.1).

If SYSDUMP.DMP is not present, the operating system attempts to write crash dumps to PAGEFILE.SYS. In this case, the SAVEDUMP system parameter must be 1 (the default is 0).

• The DUMPBUG system parameter must be 1 (the default is 1).

7.2 Procedure for Causing a System Failure

This section tells you how to enter the XDelta utility (XDELTA) to force a system failure.

Before you can use XDELTA, it must be loaded at system startup. To load XDELTA during system bootstrap, you must set bit 1 in the boot flags. See the *OpenVMS Alpha Version 7.0 Upgrade and Installation Manual* for information about booting with the XDelta utility.

Put the system in console mode by pressing Ctrl/P or the Halt push button. Enter the following commands at the console prompt to enter XDELTA:

```
>>> DEPOSIT SIRR E
>>> CONTINUE
```

Once you have entered XDELTA, use any valid XDELTA commands to examine register or memory locations, step through code, or force a system failure (by entering ;C under XDELTA). See the *OpenVMS Delta/XDelta Debugger Manual* for more information about using XDELTA.

If you did not load XDELTA, you can force a system crash by entering console commands that make the system incur an exception at high IPL. At the console prompt, enter commands to set the program counter (PC) to an invalid address and the PS to kernel mode at IPL 31 before continuing. This results in a forced INVEXCEPTN-type bugcheck. Some Digital computers employ the console command CRASH (which will force a system failure) while other systems require that you manually enter the commands.

Enter the following commands at the console prompt to force a system failure:

>>> DEPOSIT PC FFFFFFF00000000 >>> DEPOSIT PS 1F00 >>> CONTINUE

For more information, refer to the hardware manuals that accompanied your computer.

SDA Usage Summary

The System Dump Analyzer (SDA) utility helps determine the causes of system failures. This utility is also useful for examining the running system.

Format

ANALYZE [/CRASH_DUMP [/RELEASE] filespec]

/SYMBOL=system-symbol-table

Command Parameter

filespec

Name of the file that contains the dump you want to analyze. At least one field of the **filespec** is required, and it can be any field. The default **filespec** is the highest version of SYSDUMP.DMP in your default directory.

Description

By default, the System Dump Analyzer is automatically invoked when you reboot the system after a system failure.

To analyze a system dump interactively, invoke SDA by issuing the following command:

\$ ANALYZE/CRASH_DUMP filespec

If you do not specify **filespec**, SDA prompts you for it.

To analyze a crash dump, your process must have the privileges necessary for reading the dump file. This usually requires system privilege (SYSPRV), but your system manager can, if necessary, allow less privileged processes to read the dump files. Your process needs change-mode-to-kernel (CMKRNL) privilege to release page file dump blocks, whether you use the /RELEASE qualifier or the SDA COPY command.

Invoke SDA to analyze a running system by issuing the following command:

SDA ANALYZE/SYSTEM

To examine a running system, your process must have change-mode-to-kernel (CMKRNL) privilege. You cannot specify **filespec** when using the /SYSTEM qualifier.

To send all output from SDA to a file, use the SDA command SET OUTPUT, specifying the name of the output file. The file produced is 132 columns wide and is formatted for output to a printer. To later redirect the output to your terminal, use the following command:

SDA SET OUTPUT SYS\$OUTPUT

To send a copy of all the commands you type and all the output those commands produce to a file, use the SDA command SET LOG, specifying the name of the log file. The file produced is 132 columns wide and is formatted for output to a printer.

To exit from SDA, use the EXIT command. Note that the EXIT command also causes SDA to exit from display mode. Thus, if SDA is in display mode, you must use the EXIT command twice: once to exit from display mode, and a second time to exit from SDA.

SDA Qualifiers

The following qualifiers described in this section determine whether the object of an SDA session is a crash dump or a running system. They also help create the environment of an SDA session.

/CRASH_DUMP /RELEASE /SYMBOL /SYSTEM

/CRASH_DUMP

Invokes SDA to analyze the specified dump file.

Format

/CRASH_DUMP filespec

Parameter

filespec

Name of the crash dump file to be analyzed. The default file specification is:

SYS\$DISK:[default-dir]SYSDUMP.DMP

SYS\$DISK and [default-dir] represent the disk and directory specified in your last SET DEFAULT command. If you do not specify **filespec**, SDA prompts you for it.

Description

See Section 2 for additional information on crash dump analysis.

Examples

1. \$ ANALYZE/CRASH_DUMP SYS\$SYSTEM:SYSDUMP.DMP \$ ANALYZE/CRASH_SYS\$SYSTEM

These commands invoke SDA to analyze the crash dump stored in SYS\$SYSTEM:SYSDUMP.DMP.

2. \$ ANALYZE/CRASH SYS\$SYSTEM:PAGEFILE.SYS

This command invokes SDA to analyze a crash dump stored in the system page file.

/RELEASE

Invokes SDA to release those blocks in the specified system page file occupied by a crash dump.

Requires CMKRNL (change-mode-to-kernel) privilege.

Format

/RELEASE filespec

Parameter

filespec

Name of the system page file (SYS\$SYSTEM:PAGEFILE.SYS). Because the default file specification is SYS\$DISK:[default-dir]SYSDUMP.DMP, you must identify the page file explicitly. SYS\$DISK and [default-dir] represent the disk and directory specified in your last DCL command SET DEFAULT. If you do not specify **filespec**, SDA prompts you for it.

Description

Use the /RELEASE qualifier to release from the system page file those blocks occupied by a crash dump. When invoked with the /RELEASE qualifier, SDA immediately deletes the dump from the page file and allows no opportunity to analyze its contents.

When you specify the /RELEASE qualifier in the ANALYZE command, do the following:

- 1. Use the /CRASH_DUMP qualifier.
- 2. Include the name of the system page file (SYS\$SYSTEM:PAGEFILE.SYS) as the **filespec**.

If you do not specify the system page file or the specified page file does not contain a dump, SDA generates the following messages:

%SDA-E-BLKSNRLSD, no dump blocks in page file to release, or not page file %SDA-E-NOTPAGFIL, specified file is not the page file

Example

\$ ANALYZE/CRASH_DUMP/RELEASE SYS\$SYSTEM:PAGEFILE.SYS \$ ANALYZE/CRASH7RELEASE PAGEFILE.SYS

These commands invoke SDA to release to the page file those blocks in SYS\$SYSTEM:PAGEFILE.SYS occupied by a crash dump.

/SYMBOL

Specifies an alternate system symbol table for SDA to use.

Format

/SYMBOL =system-symbol-table

Parameter

system-symbol-table

File specification of the OpenVMS Alpha SDA system symbol table required by SDA to analyze a system dump. The specified **system-symbol-table** must contain those symbols required by SDA to find certain locations in the executive image.

If you do not specify the /SYMBOL qualifier, SDA uses SDA\$READ_ DIR:SYS\$BASE_IMAGE.EXE to load system symbols into the SDA symbol table. When you specify the /SYMBOL qualifier, SDA assumes the default disk and directory to be SYS\$DISK: that is, the disk and directory specified in your last DCL command SET DEFAULT. If you specify a file for this parameter that is not a system symbol table, SDA exits with a fatal error.

Description

The /SYMBOL qualifier allows you to specify a system symbol table to load into the SDA symbol table. You can use the /SYMBOL qualifier whether you are analyzing a system dump or a running system.

Example

\$ ANALYZE/CRASH_DUMP/SYMBOL=SDA\$READ_DIR:SYS\$BASE_IMAGE.EXE SYS\$SYSTEM

This command invokes SDA to analyze the crash dump stored in SYS\$SYSTEM:SYSDUMP.DMP, using the base image in SDA\$READ_DIR.

/SYSTEM

Invokes SDA to analyze a running system. Requires CMKRNL (change-mode-to-kernel) privilege.

Format

/SYSTEM

Parameters

None.

Description

See Section 3 to use SDA to analyze a running system.

You cannot specify the /CRASH_DUMP or /RELEASE qualifiers when you include the /SYSTEM qualifier in the ANALYZE command.

Example

\$ ANALYZE/SYSTEM

This command invokes SDA to analyze the running system.

SDA Commands

The following SDA commands, which are described in this section, can be used to analyze a system dump or a running system. SDA CLUE extension commands, which can summarize information provided by certain SDA commands and provide additional detail for some SDA commands, are described in the following section.

@ (Execute Command) ATTACH COPY DEFINE **DEFINE/KEY EVALUATE EXAMINE** EXIT FORMAT HELP MAP READ REPEAT SEARCH SET CPU SET FETCH SET LOG SET OUTPUT SET PROCESS SET RMS SET SIGN_EXTEND SHOW CALL_FRAME SHOW CLUSTER SHOW CONNECTIONS SHOW CPU SHOW CRASH SHOW DEVICE SHOW EXECUTIVE SHOW HEADER SHOW LAN SHOW LOCK SHOW MACHINE CHECK SHOW PAGE_TABLE SHOW PFN_DATA SHOW POOL SHOW PORTS SHOW PROCESS SHOW RESOURCE SHOW RMS SHOW RSPID SHOW SPINLOCKS SHOW STACK SHOW SUMMARY SHOW SYMBOL **SPAWN** VALIDATE QUEUE

@ (Execute Command)

Causes SDA to execute SDA commands contained in a file. Use this command to execute a set of frequently used SDA commands.

Format

@filespec

Parameter

filespec

Name of a file that contains the SDA commands to be executed. The default file type is .COM.

Example

SDA> @USUAL

The Execute command executes the following commands, as contained in a file named USUAL.COM:

SET OUTPUT LASTCRASH.LIS SHOW CRASH SHOW PROCESS SHOW STACK SHOW SUMMARY

This command procedure first makes the file LASTCRASH.LIS the destination for output generated by subsequent SDA commands. Next, the command procedure sends to the file information about the system failure and its context, a description of the process executing at the time of the process, the contents of the stack on which the failure occurred, and a list of the processes active on the CPU that failed.

An EXIT command within a command procedure terminates the procedure at that point, as would an end-of-file.

Command procedures cannot be nested.

ATTACH

Switches control of your terminal from your current process to another process in your job (for example, one created with the SDA SPAWN command).

Format

ATTACH [/PARENT] process-name

Parameter

process-name

Name of the process to which you want to transfer control.

Qualifier

/PARENT

Transfers control of the terminal to the current process parent process. When you specify this qualifier, you cannot specify the **process-name** parameter.

Examples

1. SDA> ATTACH/PARENT

This ATTACH command attaches the terminal to the parent process of the current process.

2. SDA> ATTACH DUMPER

This ATTACH command attaches the terminal to a process named DUMPER in the same job as the current process.

COPY

Copies the contents of the dump file to another file.

Format

COPY [/qualifier...] output-filespec

Parameter

output-filespec

Name of the device, directory, and file to which SDA copies the dump file. The default file specification is:

SYS\$DISK:[default-dir]filename.DMP

SYS\$DISK and [default-dir] represent the disk and directory specified in your last DCL command SET DEFAULT. You must specify a file name.

Qualifiers

/COMPRESS

Causes SDA to compress dump data as it is writing a copy. If the dump being analyzed is already compressed, then SDA does a normal COPY, issuing an informational message indicating that it is ignoring the /COMPRESS request.

/DECOMPRESS

Causes SDA to decompress dump data as it is writing a copy. If the dump being analyzed is already decompressed, then SDA does a normal COPY, issuing an informational message indicating that it is ignoring the /DECOMPRESS request.

Description

Each time the system fails, it copies the contents of memory and the hardware context of the current process (as directed by the DUMPSTYLE parameter) into the file SYS\$SYSTEM:SYSDUMP.DMP (or the page file), overwriting its contents. Each time the system is shut down normally, it overwrites the dump file with error log messages that have not yet been written to the error log file. If you do not save this crash dump elsewhere, it will be overwritten the next time that the system fails or is shut down.

The COPY command allows you to preserve a crash dump by copying its contents to another file. It is generally useful to invoke SDA during system initialization (from within SYS\$MANAGER:SYSTARTUP_VMS.COM) to execute the COPY command. This ensures that a copy of the dump file is made only after the system has failed.

The COPY command does not affect the contents of the file containing the dump being analyzed.

If you are using the page file (SYS\$SYSTEM:PAGEFILE.SYS) as the dump file instead of SYSDUMP.DMP, use the COPY command to explicitly release the blocks of the page file that contain the dump, thus making them available for page. Although the copy operation succeeds, the release operation requires that your process have change-mode-to-kernel (CMKRNL) privilege. Once the dump pages have been released from the page file, the dump information in these pages may be lost. Perform subsequent analysis upon the copy of the dump created by the COPY command.

If you press Ctrl/T while using the COPY command, the system displays how much of the file has been copied.

Example

SDA> COPY SYS\$CRASH:SAVEDUMP

The COPY command copies the dump file into the file SYS\$CRASH:SAVEDUMP.DMP.

DEFINE

Assigns a value to a symbol.

Format

DEFINE [/qualifier...] symbol-name [=] expression

Parameters

symbol-name

Name, containing from 1 to 31 alphanumeric characters, that identifies the symbol. See Section 5.2.4 for a description of SDA symbol syntax and a list of default symbols.

expression

Definition of the symbol's value. See Section 5.2 for a discussion of the components of SDA expressions.

Qualifier

/PD

Defines a symbol as a procedure descriptor (PD). It also defines the routine address symbol corresponding to the defined symbol (the routine address symbol has the same name as the defined symbol, only with _C appended to the symbol name). See Section 5.2.4 for more information about symbols.

Description

The DEFINE command causes SDA to evaluate an expression and then assign its value to a symbol. Both the DEFINE and EVALUATE commands perform computations to evaluate expressions. DEFINE adds symbols to the SDA symbol table but does not display the results of the computation. EVALUATE displays the result of the computation but does not add symbols to the SDA symbol table.

Examples

In this example, DEFINE defines two addresses, called BEGIN and END. These symbols serve as reference points in memory, defining a range of memory locations for the EXAMINE command to inspect.

2. SDA> DEFINE NEXT = @PC SDA> EXAMINE/INSTRUCTION NEXT NEXT: HALT

The symbol NEXT defines the address contained in the program counter, so that the symbol can be used in an EXAMINE/INSTRUCTION command.

^{1.} SDA> DEFINE BEGIN = 80058E00 SDA> DEFINE END = 80058E60 SDA> EXAMINE BEGIN:END

3. SDA> DEFINE VEC SCH\$GL_PCBVEC SDA> EXAMINE VEC SCH\$GL_PCBVEC: 00000000 8060F2CC "Ìò`...." SDA>

After the value of global symbol SCH\$GL_PCBVEC has been assigned to the symbol VEC, the symbol VEC is used to examine the memory location or value represented by the global symbol.

4. SDA> DEFINE/PD VEC SCH\$QAST SDA> EXAMINE VEC SCH\$QAST: 0000002C 00003008 ".0..,..." SDA> EXAMINE VEC_C SCH\$QAST_C: B75E0008 43C8153E ">.ÈC..^." SDA>

In this example, the DEFINE/PD command defines not only the symbol VEC, but also the corresponding routine address symbol (VEC_C).

DEFINE/KEY

Associates an SDA command with a terminal key.

Format

DEFINE/KEY [/qualifier...] key-name command

Parameters

key-name

Name of the key to be defined. You can define the following keys under SDA:

Key Name	Key Designation
PF1	LK201, VT100, VT52 Red
PF2	LK201, VT100, VT52 Blue
PF3	LK201, VT100, VT52 Black
PF4	LK201, VT100
KP0 KP9	Keypad 0–9
PERIOD	Keypad period
COMMA	Keypad comma
MINUS	Keypad minus
ENTER	Keypad ENTER
UP	Up arrow
DOWN	Down arrow
LEFT	Left arrow
RIGHT	Right arrow
E1	LK201 Find
E2	LK201 Insert Here
E3	LK201 Remove
E4	LK201 Select
E5	LK201 Prev Screen
E6	LK201 Next Screen
HELP	LK201 Help
DO	LK201 Do
F7 F20	LK201 Function keys

command

SDA command to define a key. The command must be enclosed in quotation marks (" ").

Qualifiers

/KEY

Defines a key as an SDA command. To issue the command, press the defined key and the Return key. If you use the /TERMINATE qualifier as well, you do not have to press the Return key.

/PD

Defines a symbol as a procedure descriptor (PD). Also defines the routine address symbol corresponding to the defined symbol (the routine address symbol has the same name as the defined symbol, only with _C appended to the symbol name.)

/SET_STATE=state-name

Causes the key being defined to create a key state change rather than issue an SDA command. When you use the /SET_STATE qualifier, you supply the name of a key state in place of the **key-name** parameter. In addition, you must define the **command** parameter as a pair of quotation marks (" ").

For example, you can define the PF1 key as the GOLD key and use the /IF_ STATE=GOLD qualifier to allow two definitions for the other keys, one in the GOLD state and one in the non-GOLD state. For more information on using the /IF_STATE qualifier, see the DEFINE/KEY command in the *OpenVMS DCL Dictionary: A–M*.

/TERMINATE

/NOTERMINATE

Causes the key definition to include termination of the command, which causes SDA to execute the command when the defined key is pressed. Therefore, you do not have to press the Return key after you press the defined key if the /TERMINATE qualifier is specified.

Description

The DEFINE/KEY command causes an SDA command to be associated with the specified key, in accordance with any of the specified qualifiers described previously.

If the symbol or key is already defined, SDA replaces the old definition with the new one. Symbols and keys remain defined until you exit from SDA.

Examples

 SDA> DEFINE/KEY PF1 "SHOW STACK" SDA> PF1 SHOW STACK RETURN Process stacks (on CPU 00) Current operating stack (KERNEL):

> The DEFINE/KEY command defines PF1 as the SHOW STACK command. When the PF1 key is pressed, SDA displays the command and waits for you to press the Return key.

```
2. SDA> DEFINE/KEY/TERMINATE PF1 "SHOW STACK"
   SDA> PF1 SHOW STACK
   Process stacks (on CPU 00)
   Current operating stack (KERNEL):
                       7FF95D00 0000000 0000000B
                       7FF95D08 FFFFFFFF 804395C8 MMG$TBI_DATA_64+000B8
                       7FF95D10 0000000 0000000
                       7FF95D18 0000FE00 00007E04
                 SP => 7FF95D20 0000000 00000800 IRP$M EXTEND
                       7FF95D28 0000001 000002F7 UCB$B PI FKB+0000B
                        7FF95D30 FFFFFFF 804395C8 MMG$TBI_DATA_64+000B8
                        7FF95D38 0000002 0000000
      .
      .
   The DEFINE/KEY command defines PF1 as the SDA SHOW STACK
   command. The /TERMINATE qualifier causes SDA to execute the
   SHOW STACK command without waiting for you to press the Return key.
3. SDA> DEFINE/KEY/SET STATE="GREEN" PF1 ""
```

```
SDA> DEFINE/KEY/TERMINATE/IF_STATE=GREEN PF3 "SHOW STACK"
SDA> PF1 PF3 SHOW STACK
Process stacks (on CPU 00)
------
Current operating stack (KERNEL):
.
```

The first DEFINE/KEY command defines PF1 as a key that sets a command state GREEN. The trailing pair of quotation marks is required syntax, indicating that no command is to be executed when this key is pressed.

The second DEFINE command defines PF3 as the SHOW STACK command, but using the /IF_STATE qualifier, makes the definition valid only when the command state is GREEN. Thus, the user must press PF1 before pressing PF3 to issue the SHOW STACK command. The /TERMINATE qualifier causes the command to execute as soon as the PF3 key is pressed.

EVALUATE

Computes and displays the value of the specified expression in both hexadecimal and decimal. Alternative evaluations of the expression are available with the use of the qualifiers defined for this command.

Format

Parameter

expression

SDA expression to be evaluated. Section 5.2 describes the components of SDA expressions.

Qualifiers

/CONDITION_VALUE

Displays the message that the \$GETMSG system service obtains for the value of the expression.

/PS

Evaluates the specified expression in the format of a processor status.

/PTE

Interprets and displays the expression as a page table entry (PTE). The individual fields of the PTE are separated and an overall description of the PTE's type is provided.

/SYMBOLS

Specifies that all symbols known to be equal to the evaluated expression are to be listed in alphabetical order. The default behavior of the EVALUATE command displays only the first several symbols.

Description

If the expression is equal to the value of a symbol in the SDA symbol table, that symbol is displayed. If no symbol with this value is known, the next lower valued symbol is displayed with an appropriate offset unless the offset is extremely large. The DEFINE command adds symbols to the SDA symbol table but does not display the results of the computation. EVALUATE displays the result of the computation but does not add symbols to the SDA symbol table.

SDA Commands EVALUATE

Examples

1. SDA> EVALUATE -1 Hex = FFFFFFF Decimal = -1

The EVALUATE command evaluates a numeric expression, displays the value of that expression in hexadecimal and decimal notation, and displays a symbol that has been defined to have an equivalent value.

```
2. SDA> EVALUATE 1
Hex = 00000001 Decimal = 1 CHF$M_CALEXT_CANCEL
CHF$M_FPREGS_VALID
CHF$V_CALEXT_LAST
IRP$M_BUFI0
IRP$M_CLN_READY
(remaining symbols suppressed by default)
```

The EVALUATE command evaluates a numeric expression and displays the value of that expression in hexadecimal and decimal notation. This example also shows the symbols that have the displayed value. A finite number of symbols are displayed by default.

This example shows the definition of a symbol named TEN. The EVALUATE command then shows the value of the symbol.

Note that A, the value assigned to the symbol by the DEFINE command, could be a symbol. When SDA evaluates a string that can be either a symbol or a hexadecimal numeral, it first searches its symbol table for a definition of the symbol. If SDA finds no definition for the string, it evaluates the string as a hexadecimal number.

4. SDA> EVALUATE (((TEN * 6) + (-1/4)) + 6) Hex = 00000042 Decimal = 66

This example shows how SDA evaluates an expression of several terms, including symbols and rational fractions. SDA evaluates the symbol, substitutes its value in the expression, and then evaluates the expression. Note that the fraction $-\frac{1}{4}$ is truncated to 0.

5. SDA> EVALUATE/CONDITION 80000018 %SYSTEM-W-EXQUOTA, exceeded quota

This example shows the output of an EVALUATE/CONDITION command.

6.	SDA>	EVALU	JATE/I	PS 0B03						
		MBZ	SPAL	MBZ	IPL	VMM	MBZ	CURMOD	INT	PRVMOD
		0	00	00000000000	0B	0	0	KERN	0	USER

SDA interprets the entered value 0B03 as though it were a processor status (PS) and displays the resulting field values.

7. SDA> EVALUATE/PTE ABCDFFEE

3322 1097		2 1 0 8	1 1 6 5			76		0	
+-+-+		+-+	+-+			-+-+		+-+	
1 0 02	005E	0 X ()2 1 +-+	FF		X -+-+	37	0	
			000000	00					
Global PTE:	Owner =	S, Read GPT Inde	Prot = ex = 0	KESU, 0000000	Write	Prot	= KESU,	CPY = 2	2

The EVALUATE/PTE command displays the expression ABCDFFEE as a page table entry (PTE) and labels the fields. It also describes the status of the page.

EXAMINE

Displays either the contents of a location or range of locations in physical memory, or the contents of a register. Use location parameters to display specific locations or use qualifiers to display entire process and system regions of memory.

Format

EXAMINE [/qualifier[,...]] [location]

Parameter

location

Location in memory to be examined. A location can be represented by any valid SDA expression. (See Section 5.2 for additional information about expressions.) To examine a range of locations, the following syntax is used:

- *m:n* Range of locations to be examined, from *m* to *n*
- m;n Range of locations to be examined, starting at m and continuing for n bytes

The default location that SDA uses is initially 0 in the program region (P0) of the process that was executing at the time the system failed (if you are examining a crash dump) or your process (if you are examining the running system). Subsequent uses of the EXAMINE command with no parameter specified increase the last address examined by 8. Use of the /INSTRUCTION qualifier increases the default address by 4. To examine memory locations of other processes, you must use the SET PROCESS command.

Qualifiers

/ALL

Examines all the locations in the program, and control regions and parts of the writable system region, displaying the contents of memory in hexadecimal longwords. Do not specify parameters when you use this qualifier.

/CONDITION_VALUE

Examines the specified longword, displaying the message the \$GETMSG system service obtains for the value in the longword.

/INSTRUCTION

Translates the specified range of memory locations into assembly instruction format. Each symbol in the EXAMINE expression that is defined as a procedure descriptor is replaced with the code entry point address of that procedure, unless you also specify the /NOPD qualifier.

/NOPD

Can be used with the /INSTRUCTION qualifier to override treating symbols as procedure descriptors. The qualifier can be placed immediately after the /INSTRUCTION qualifier, or following a symbol name.

/NOSUPPRESS

Inhibits the suppression of zeros when displaying memory with one of the following qualifiers: /ALL, /P0, /P1, /SYSTEM.

/P0

Displays the entire program region for the default process. Do not specify parameters when you use this qualifier.

/P1

Displays the entire control region for the default process. Do not specify parameters when you use this qualifier.

/PD

Causes the EXAMINE command to treat the location specified in the EXAMINE command as a procedure descriptor (PD). PD can also be used to qualify symbols.

/PHYSICAL

Examines physical addresses for full dumps only. The /PHYSICAL qualifier cannot be used in combination with the /P0, /P1, or /SYSTEM qualifiers.

/PS

Examines the specified quadword, displaying its contents in the format of a processor status. This qualifier must precede any parameters used in the command line.

/PTE

Interprets and displays the specified quadword as a page table entry (PTE). The display separates individual fields of the PTE and provides an overall description of the PTE's type.

/SYSTEM

Displays portions of the writable system region. Do not specify parameters when you use this qualifier.

/TIME

Examines the specified quadword, displaying its contents in the format of a system-date-and-time quadword.

Description

The following sections describe how to use the EXAMINE command.

Examining Locations

When you use the EXAMINE command to look at a location, SDA displays the location in symbolic notation (symbolic name plus offset), if possible, and its contents in hexadecimal and ASCII formats:

SDA> EXAMINE G6605C0 806605C0: 64646464 64646464 "dddddddd"

If the ASCII character that corresponds to the value contained in a byte is not printable, SDA displays a period (.). If the specified location does not exist in memory, SDA displays this message:

%SDA-E-NOTINPHYS, address : virtual data not in physical memory

To examine a range of locations, you can designate starting and ending locations separated by a colon. For example:

SDA> EXAMINE G40:G200

Alternatively, you can specify a location and a length, in bytes, separated by a semicolon. For example:

SDA> EXAMINE G400;16

When used to display the contents of a range of locations, the EXAMINE command displays six columns of information:

- Each of the first four columns represents a longword of memory, the contents of which are displayed in hexadecimal format.
- The fifth column lists the ASCII value of each byte in each longword displayed in the previous four columns.
- The sixth column contains the address of the first, or rightmost, longword in each line. This address is also the address of the first, or leftmost, character in the ASCII representation of the longwords. Thus, you read the hexadecimal dump display from right to left, and the ASCII display from left to right.

If a series of virtual addresses does not exist in physical memory, SDA displays a message specifying the range of addresses that were not translated.

If a range of virtual locations contains only zeros, SDA displays this message:

Zeros suppressed from 'loc1' to 'loc2'

Decoding Locations

You can translate the contents of memory locations into instruction format by using the /INSTRUCTION qualifier. This qualifier causes SDA to display the location in symbolic notation (if possible) and its contents in instruction format. The operands of decoded instructions are also displayed in symbolic notation. The location must be longword assigned.

Examining Memory Regions

You can display an entire region of virtual memory by using one or more of the qualifiers /ALL, /SYSTEM, /P0, and /P1 with the EXAMINE command.

Other Uses

Other uses of the EXAMINE command appear in the following examples.

Examples

1. SDA> EXAMINE/PS 7FF95E78 MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD 0 00 0000000000 08 0 0 KERN 0 EXEC

This example shows the display produced by the EXAMINE/PS command.

2. SDA> EXAMINE/PTE FFE00000

3 3 2 2 1 0 9 7		2 2	1 1 8 6	1 5		76		0		
11103	007F	0 X	+-+ 0 00	0	0	+-+- X	00	0 0		
			0000	0000		тт				
Demand Zero	PTE: Owner	с = К,	Read	Prot =	NONE,	Write	Prot :	 = NONE,	CPY	= 3

The EXAMINE/PTE command displays and formats the system page table entry at FFE00000.

EXIT

Exits from an SDA display or exits from the SDA utility.

Format

EXIT

Parameters

None.

Qualifiers

None.

Description

If SDA is displaying information on a video display terminal—and if that information extends beyond one screen—SDA displays a **screen overflow prompt** at the bottom of the screen:

Press RETURN for more. SDA>

If you want to discontinue the current display at this point, enter the EXIT command. If you want SDA to execute another command, enter that command. SDA discontinues the display as if you entered EXIT, and then executes the command you entered.

When the SDA> prompt is not immediately preceded by the screen overflow prompt, entering EXIT causes your process to cease executing the SDA utility. When issued within a command procedure (either the SDA initialization file or a command procedure invoked with the execute command (@)), EXIT causes SDA to terminate execution of the procedure and return to the SDA prompt.

FORMAT

Displays a formatted list of the contents of a block of memory.

Format

FORMAT [/TYPE=block-type] location

Parameter

location

Location of the beginning of the data block. The location can be given as any valid SDA expression.

Qualifier

/TYPE=block-type

Forces SDA to characterize and format a data block at **location** as the specified type of data structure. The /TYPE qualifier thus overrides the default behavior of the FORMAT command in determining the type of a data block, as described in the Description section. The **block-type** can be the symbolic prefix of any data structure defined by the operating system.

Description

The FORMAT command performs the following actions:

- · Characterizes a range of locations as a system data block
- · Assigns, if possible, a symbol to each item of data within the block
- Displays all the data within the block

Normally, you use the FORMAT command without the /TYPE qualifier. Used in this manner, it examines the byte in the structure that contains the type of the structure. In most OpenVMS Alpha data structures, this byte occurs at an offset of $0A_{16}$ into the structure. If this byte does not contain a valid block type, the FORMAT command displays the following message:

%SDA-E-INVBLKTYP, invalid block type in specified block

However, if this byte does contain a valid block type, SDA checks the next byte (offset $0B_{16}$) for a secondary block type. When SDA has determined the type of block, it searches for the symbols that correspond to that type of block.

If SDA cannot find the symbols associated with the block type it has found (or that you specified in the /TYPE qualifier), it issues this message:

No "block-type" symbols found to format this block

If you receive this message, you may want to read additional symbols into the SDA symbol table and retry the FORMAT command. Many symbols that define OpenVMS Alpha data structures are contained within SDA\$READ_ DIR:SYSDEF.STB. Thus, you would issue the following command:

SDA> READ SDA\$READ DIR:SYSDEF.STB

If SDA issues the same message again, try reading additional symbols. Table SDA-3 lists additional modules provided by the OpenVMS operating system. Alternatively, you can create your own object modules with the MACRO-32 Compiler for OpenVMS Alpha.

Certain OpenVMS Alpha data structures do not contain a block type at offset $0A_{16}$. If this byte contains information other than a block type—or the byte does not contain a valid block type—SDA either formats the block in a totally inappropriate way, based on the contents of $0A_{16}$ and $0B_{16}$, or displays this message:

Invalid block type in specified block

To format such a block, you must reissue the FORMAT command, using the /TYPE qualifier to designate a **block-type**.

The FORMAT command produces a 3-column display:

- The first column shows the virtual address of each item within the block.
- The second column lists each symbolic name associated with a location within the block.
- The third column shows the contents of each item in hexadecimal format.

Example

```
SDA>READ SDA$READ DIR:SYSDEF.STB
%SDA-I-READSYM, 913 symbols read from SYS$COMMON: [SYS$LDR] SYSDEF.STB
SDA>FORMAT G41F818
FFFFFFF8041F818 UCB$L FQFL
                                                   8041F818 UCB
                  UCB$L MB MSGQFL
                  UCB$L RQFL
                  UCB$W MB SEED
                  UCB$W_UNIT SEED
FFFFFFF8041F81C UCB$L FQBL
                                                   8041F818 UCB
                  UCB$L MB MSGQBL
                  UCB$L ROBL
FFFFFFF8041F820 UCB$W SIZE
                                                       0110
FFFFFFF8041F822 UCB$B TYPE
                                                     10
FFFFFFF8041F823 UCB$B FLCK
                                                   2C
FFFFFFF8041F824 UCB$L ASTQFL
                                                   00000000
          UCB$L FPC
          UCB$L_MB_W_AST
UCB$T_PARTNER
   .
```

The READ command loads into SDA's symbol table the symbols from SDA\$READ_DIR:SYSDEF.STB. The FORMAT command displays the data structure that begins at G41F818₁₆, a unit control block (UCB). If a field has more than one symbolic name, all such names are displayed. Thus, the field that starts at 8041F824₁₆ has four designations: UCB\$L_ASTQFL, UCB\$L_FPC, UCB\$L_MB_W_AST, and UCB\$T_PARTNER.

The contents of each field appear to the right of the symbolic name of the field. Thus, the contents of UCB L_FQBL are $8041F818_{16}$.

HELP

Displays information about the SDA utility, its operation, and the format of its commands.

Format

HELP [command-name]

Parameter

command-name

Command for which you need information.

You can also specify the following keywords in place of command-name:

Keyword	Function
CPU_CONTEXT	Describes the concept of CPU context as it governs the behavior of SDA.
EXECUTE_COMMAND	Describes the use of @ file to execute SDA commands contained in a file.
EXPRESSIONS	Prints a description of SDA expressions.
INITIALIZATION	Describes the circumstances under which SDA executes an initialization file when first invoked.
OPERATION	Describes how to operate SDA at your terminal and by means of the site-specific startup procedure.
PROCESS_CONTEXT	Describes the concept of process context as it governs the behavior of SDA.
SYMBOLS	Describes the symbols used by SDA.

Qualifiers

None.

Description

The HELP command displays brief descriptions of SDA commands and concepts on the terminal screen (or sends these descriptions to the file designated in a SET OUTPUT command). You can request additional information by specifying the name of a topic in response to the Topic? prompt.

If you do not specify a parameter in the HELP command, it lists those commands and topics for which you can request help, as follows:

Information available:

ATTACH	CLUE	COPY	CPU Context	DEFINE	EVALUATE	EXAMINE
Execute_(Command	EXIT	Expressions		FORMAT	HELP
Initializ	zation	MAP	Operation	Process	Context	READ
REPEAT	SEARCH	SET	SHOW	SPAWN	Symbols	VALIDATE

Topic?

MAP

Transforms an address into an offset in a particular image.

Format

MAP address

Parameter

address Address to be identified.

Qualifiers

None.

Description

The MAP command identifies the image name and offset corresponding to an address. With this information, you can examine the image map to locate the source module and program section offset corresponding to an address. MAP searches for the specified address in executive images first. It then checks activated images in process space to include those images installed using the /RESIDENT qualifier of the Install utility. Finally, it checks all image-resident sections in system space.

If the address cannot be found, MAP displays the following message:

%SDA-E-NOTINIMAGE, Address not within a system/installed image

Examples

1. SDA> MAP Image SYSSVM	G90308	Base	End	Image Offset
Nonpaged	read only	80090000	800ABA00	00000308

Examining the image map identified by this MAP command (SYS\$VM.MAP) shows that image offset 308 falls within psect EXEC\$HI_USE_PAGEABLE_CODE because the psect goes from offset 0 to offset 45D3:

Psect Name	Module Name	Base	End	Length	ı Align	
\$CODE\$	BUGCHECK_CODES	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000 (00000000 (0.) QUAD 0.) QUAD	3 3
\$GLOBAL\$	BUGCHECK_CODES	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000 (00000000 (0.) QUAD 0.) QUAD	3 3
\$LINK\$	BUGCHECK_CODES	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000 (00000000 (0.) QUAD 0.) QUAD	3 3
\$OWN\$	BUGCHECK_CODES	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000 (00000000 (0.) QUAD 0.) QUAD	3 3
\$PLIT\$	BUGCHECK_CODES	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000 (00000000 (0.) QUAD 0.) QUAD	3 3
. LITERAL .	BUGCHECK CODES	000000000000000000000000000000000000000	00000000	00000000 (00000000 (0.) QUAD 0.) QUAD	3 3

. BLANK .	SYS\$DOINIT EXECUTE_FAULT GSD_ROUTINES IOLOCK	00000000 00000000 00000000 00000000 0000	00000000 00000000 00000000 00000000 0000	00000000 00000000 00000000 00000000 0000	((((0.) 0.) 0.) 0.) 0.)	OCTA OCTA OCTA OCTA OCTA	4. 4 4 4	
EXEC\$HI_USE_PAG	EABLE_CODE SYSCREDEL SYSCRMPSC	00000000 00000000 000014A0	000045D3 0000149B 000045D3	000045D4 0000149C 00003134	(178 (52 (125	376.) 276.) 596.)	2 ** 2 ** 2 **	5. 5 5	
EXEC\$NONPAGED_C	DDE EXECUTE_FAULT IOLOCK LOCK_SYSTEM_PAGH	000045E0 000045E0 00004840 ES	0001B8B3 0000483B 000052E7	000172D4 0000025C 00000AA8	(949 (6 (27	932.) 504.) 728.)	2 ** 2 ** 2 **	5. 5 5	

.

Specifically, image offset 308 is located within source module SYSCREDEL. Therefore, to locate the corresponding code, you would look in SYSCREDEL for offset 308 in psect EXEC\$HI_USE_PAGEABLE_CODE.

2.	SDA> MAP G550000			
	Image	Base	End	Image Offset
	SYS\$DKDRIVER	80548000	80558000	0008000

In this example, the MAP command identifies the address as an offset into an executive image that is not sliced. The base and end addresses are the boundaries of the image.

3.	SDA> MAP G550034				
	Image	Base	End	Image Offset	
	SYS\$DUDRIVER				
	Nonpaged read/write	80550000	80551400	00008034	

In this example, the MAP command identifies the address as an offset into an executive image that is sliced. The base and end addresses are the boundaries of the image section that contains the address of interest.

4.	SDA> MAP GF0040			
	Image Resident Section	Base	End	Image Offset
	MAILSHR	800F0000	80119000	00000040

The MAP command identifies the address as an offset into an image-resident section residing in system space.

5.	SDA> MAP 12000			
	Activated Image	Base	End	Image Offset
	MAIL	00010000	000809FF	00002000

The MAP command identifies the address as an offset into an activated image residing in process-private space.

6.	SDA> MAP B2340			
	Compressed Data Section LIBRTL	Base 000B2000	End 000B6400	Image Offset 00080340

The MAP command identifies the address as being within a compressed data section. When an image is installed with the Install utility using the /RESIDENT qualifier, the code sections are mapped in system space. The data sections are compressed into process-private space to reduce null pages or holes in the address space left by the absence of the code section. The SHOW PROCESS/IMAGE display shows how the data has been compressed; the MAP command searches this information to map an address in a compressed data section to an offset in an image.

7. SDA> MAP 7FC06000 Shareable Address Data Section Base End Image Offset LIBRTL 7FC06000 7FC16800 00090000

The MAP command identifies the address as an offset into a shareable address data section residing in P1 space.

8.	SDA> MAP 7FC26000			
	Read-Write Data Section	Base	End	Image Offset
	LIBRTL	7FC26000	7FC27000	000B0000

The MAP command identifies the address as an offset into a read-write data section residing in P1 space.

9. SDA> MAP 7FC36000 Shareable Read-Only Data Section Base End Image Offset LIBRTL 7FC36000 7FC3F600 000C0000

The MAP command identifies the address as an offset into a shareable read-only data section residing in P1 space.

10.	SDA> MAP 7FC56000			
	Demand Zero Data Section	Base	End	Image Offset
	LIBRTL	7FC56000	7FC57000	000E0000

The MAP command identifies the address as an offset into a demand zero data section residing in P1 space.

READ

Loads the global symbols contained in the specified file into the SDA symbol table.

Format

		}
	FURCE	
READ	{ /IMAGE	> filespec
	/RELOCATE	
	/SYMVA	J

Parameter

filespec

Name of the device, directory, and file that contains the file from which you want to copy global symbols. The **filespec** defaults to SYS\$DISK:[default-dir]filename.STB, where SYS\$DISK and [default-dir] represent the disk and directory specified in your last DCL command SET DEFAULT. You must specify a file name with all qualifiers except /EXECUTIVE.

Qualifiers

/EXECUTIVE directory-spec

Reads into the SDA symbol table all global symbols and global entry points defined within all loadable images that make up the executive.

The **directory-spec** is the name of the directory containing the loadable images of the executive. This parameter defaults to SYS\$LOADABLE_IMAGES.

/FORCE

Forces SDA to read the symbols file, regardless of what other information or qualifiers are specified. If you do not specify the /FORCE qualifier, SDA may not read the symbols file if the specified **filespec** matches the image name in either the executive loaded images or the current processes activated image list, and one of the following conditions is true:

- The image has a symbols vector (is a shareable image), and a symbols vector was not specified with the /SYMVA or /IMAGE qualifier.
- The image is sliced, and slicing information was not provided with the /IMAGE qualifier.
- The shareable or executive image is not loaded at the same address it was linked at, and the relocation information was not provided with either the /IMAGE or /RELOCATE qualifier.

/IMAGE

Searches the executive loaded image list and the current process activated image list for the image specified by **filespec**. If the image is found, the symbols are read in using the image symbol vector (if there is one) and either slicing or relocation information.

This is the preferred way to read in the .STB files produced by the linker. These .STB files contain all universal and global symbols, unless SYMBOL_ TABLE=GLOBAL is in the linker options file, in which case the .STB file contains global symbols only.

/RELOCATE=expression

Changes the relative addresses of the symbols to absolute addresses by adding the value of **expression** to the value of each symbol in the symbol-table file to be read. This qualifier changes those addresses to absolute addresses in the address space into which the dump is mapped.

The relocation only applies to symbols with the relocate flag set. All universal symbols must be found in the symbol vector for the image. All constants are read in without any relocation.

If the image is sliced (image sections are placed in memory at different relative offsets than how the image is linked), then the /RELOCATE qualifier does not work. SDA compares the file name used as a parameter to the READ command against all the image names in the executive loaded image list and the current processes activated image list. If a match is found, and that image contains a symbol vector, an error results. At this point you can either use the /FORCE qualifier or the /IMAGE qualifier to override the error.

/SYMVA=expression

Informs SDA whether the absolute symbol vector address is for a shareable image (SYS\$PUBLIC_VECTORS.EXE) or base system image (SYS\$BASE_IMAGE.EXE). All symbols found in the file with the universal flag are found by referencing the symbol vector (that is, the symbol value is a symbol vector offset).

Description

The READ command symbolically identifies locations in memory for which the default symbol table (SDA\$READ_DIR:SYS\$BASE_IMAGE.EXE) provides no definition. In other words, the required global symbols are located in modules that have been compiled and linked separately from the executive. SDA extracts no local symbols from the object module.

The file specified in the READ command can be the output of a compiler or assembler (for example, an .OBJ file).

__ Note _

READ can read both OpenVMS VAX and OpenVMS Alpha format files. READ should not be used to read OpenVMS VAX format files that contain VAX specific symbols, as this might change the behavior of other OpenVMS Alpha SDA commands.

Most often the file is provided in SYS\$LOADABLE_IMAGES. Many SDA applications, for instance, need to load the definitions of system data structures by issuing a READ command specifying SYSDEF.STB. Others require the definitions of specific global entry points within the executive image.

Table SDA-3 lists the files that OpenVMS Alpha provides in SYS\$LOADABLE_IMAGES that define data structure offsets.
Table SDA-8 lists the files in SYS\$LOADABLE_IMAGES that define global locations within executive images.

File	Contents
DDIF\$RMS_EXTENSION.EXE	Support for Digital Document Interchange Format (DDIF) file operations.
ERRORLOG.STB	Error-logging routines and system services
EXCEPTION.STB	Bugcheck and exception-handling routines and those system services that declare condition and exit handlers
EXEC_INIT.STB	Initialization code
F11BXQP.STB	File system support
IMAGE_MANAGEMENT.STB	Image activator and the related system services
IO_ROUTINES.STB	\$QIO system service, related system services (for example, \$CANCEL and \$ASSIGN), and supporting routines
LOCKING.STB	Lock management routines and system services
LOGICAL_NAMES.STB	Logical name routines and system services
MESSAGE_ROUTINES.STB	System message routines and system services (including \$SNDJBC and \$GETTIM)
PROCESS_MANAGEMENT.STB	Scheduler, report system event, and supporting routines and system services
RECOVERY_UNIT_SERVICES.STB	Recovery unit system services
RMS.STB	Global symbols and entry points for RMS
SECURITY.STB	Security management routines and system services
SHELLxxK.STB	Process shell
SYS\$xxDRIVER.EXE	Run-time device drivers
SYS\$CPU_ROUTINES_xxx.EXE	Processor-specific data and initialization routines
SYS\$NETWORK_SERVICES.EXE	DECnet support
SYS\$PUBLIC_VECTORS.EXE ¹	System service vector base image
SYS\$VCC.STB	Virtual I/O cache

 Table SDA-8
 Modules Defining Global Locations Within Executive Image

¹This file is located in SYS\$LIBRARY.

(continued on next page)

File	Contents
SYS\$VM.STB	System pager and swapper, along with their supporting routines, and management system services
SYSDEVICE.STB	Mailbox driver and null driver
SYSGETSYI.STB	Get System Information system service (\$GETSYI)
SYSLDR_DYN.STB	Dynamic executive image loader
SYSLICENSE.STB	Licensing system service (\$LICENSE)
SYSTEM_PRIMITIVES*.STB	Miscellaneous basic system routines, including those that allocate system memory, maintain system time, create fork processes, and control mutex acquisition
SYSTEM_SYNCHRONIZATION*.STB	Routines that enforce synchronization

Table SDA-8 (Cont.) Modules Defining Global Locations Within Executive Image

Examples

1. SDA> READ SDA\$READ DIR:SYSDEF.STB %SDA-I-READSYM, reading symbol table SYS\$COMMON:[SYSEXE]SYSDEF.STB;1

> The READ command causes SDA to add all the global symbols in SDA\$READ_ DIR:SYSDEF.STB to the SDA symbol table. Such symbols are useful when you are formatting an I/O data structure, such as a unit control block or an I/O request packet.

2.	SDA> SHOW STACK Process stacks (on CPU 00))		
	Current operating stack ((KERNEL):		
	00000007FF95CD0 00000007FF95CD8	FFFFFFFF 00000000	80430CE0 00000000	SCH\$STATE_TO_COM+00040
	00000007FF95CE0	FFFFFFFF	81E9CB04	LNM\$SEARCH ONE C+000E4
	00000007FF95CE8	FFFFFFFF	8007A988	PROCESS MANAGEMENT NPRO+0E988
	SP =>00000007FF95CF0	00000000	00000000	
	00000007FF95CF8	00000000	006080C1	
	00000007FF95D00	FFFFFFFF	80501FDC	
	00000007FF95D08	FFFFFFFF	81A5B720	

The initial SHOW STACK command contains an address that SDA resolves into an offset from the PROCESS_MANAGEMENT executive image. The READ command loads the corresponding symbols into the SDA symbol table such that the reissue of the SHOW STACK command subsequently identifies the same location as an offset within a specific process management routine.

REPEAT

Repeats execution of the last command issued. On terminal devices, the KP0 key performs the same function as the REPEAT command.

Format

REPEAT

Parameters

None.

Qualifiers

None.

Description

The REPEAT command is useful for stepping through a linked list of data structures, or for examining a sequence of memory locations.

Example

SDA> SHO Call Fra	W CALL_FRA me Informa	AME ation					
Stack Frame Procedure Descriptor Flags: Base Register = FP, Jacket, Native Procedure Entry: FFFFFFF 80080CE0 MMG\$RETRANGE_C+00180 Return address on stack = FFFFFFF 8004CF30 EXCEPTION_NPRO+00F30							
Register	s saved or	n stack					
Registers saved on stack 7FF95E80 FFFFFFF FFFFFFD Saved R2 7FF95E88 FFFFFFFF 8042DBC0 Saved R3 EXCEPTION_NPRW+03DC0 7FF95E90 FFFFFFFF 80537240 Saved R4 7FF95E98 0000000 00000000 Saved R5 7FF95EA0 FFFFFFFF 80030960 Saved R6 MMG\$IMGRESET_C+00200 7FF95EA8 00000000 7FF95EC0 Saved R7 7FF95EB0 FFFFFFFF 80420E68 Saved R13 MMG\$ULKGBLWSL E 7FF95EB8 00000000 7FF95F70 Saved R29							
SDA> SHO	W CALL_FRA	AME/NEXT_F	P				

Call Frame Information Stack Frame Procedure Descriptor Flags: Base Register = FP, Jacket, Native Procedure Entry: FFFFFFF 80F018D0 IMAGE MANAGEMENT PRO+078D0 Return address on stack = FFFFFFF 8004CF30 EXCEPTION NPRO+00F30 Registers saved on stack _____ 7FF95F90 FFFFFFF FFFFFFB Saved R2 7FF95F98 FFFFFFF 8042DBC0 Saved R3 EXCEPTION NPRW+03DC0 7FF95FA0 0000000 00000000 Saved R5 7FF95FA8 0000000 7FF95FC0 Saved R7 7FF95FB0 FFFFFFF 80EF8D20 Saved R13 ERL\$DEVINF 0+00C20 7FF95FB8 0000000 7FFA0450 Saved R29 SDA> REPEAT Call Frame Information -----Stack Frame Procedure Descriptor Flags: Base Register = FP, Jacket, Native Procedure Entry: FFFFFFF 80F016A0 IMAGE MANAGEMENT PRO+076A0 Return address on stack = 00000000 7FF2451C Registers saved on stack ------7FFA0470 0000000 7FEEA890 Saved R13 7FFA0478 0000000 7FFA0480 Saved R29 . .

The first SHOW CALL_FRAME displays the call frame indicated by the current FP value. Because the /NEXT_FP qualifier to the instruction displays the call frame indicated by the saved FP in the current call frame, you can use the REPEAT command to repeat the SHOW CALL_FRAME/NEXT_FP command and follow a chain of call frames.

SEARCH

Scans a range of memory locations for all occurrences of a specified value.

Format

SEARCH [/qualifier] range[=]expression

Parameters

range

Location in memory to be searched. A location can be represented by any valid SDA expression. To search a range of locations, use the following syntax:

m:n Range of locations to be searched, from *m* to *n*

m;*n* Range of locations to be searched, starting at *m* and continuing for *n* bytes

expression

Indication of the value for which SDA is to search. SDA evaluates the **expression** and searches the specified **range** of memory for the resulting value. For a description of SDA expressions, see Section 5.2.

Qualifiers

Specifies the size of the **expression** value that the SEARCH command uses for matching. If you do not specify the /LENGTH qualifier, the SEARCH command uses a longword length by default.

Specifies the step factor of the search through the specified memory **range**. After the SEARCH command has performed the comparison between the value of **expression** and memory location, it adds the specified step factor to the address of the memory location. The resulting location is the next location to undergo the comparison. If you do not specify the /STEPS qualifier, the SEARCH command uses a step factor of a longword.

Description

SEARCH displays each location as each value is found. If you press Ctrl/T while using the SEARCH command, the system displays how far the search has progressed.

Examples

 SDA> SEARCH GB81F0;500 60068 Searching from 800B81F0 to 800B86F0 in LONGWORD steps for 00060068... Match at 800B8210 SDA>

The SEARCH command finds the value 0060068 in the longword at 800B8210.

2. SDA> SEARCH/STEPS=BYTE 80000000;1000 6 Searching from 80000000 to 80001000 in BYTE steps for 00000006... Match at 80000A99 SDA>

The SEARCH command finds the value 00000006 in the longword at 80000A99.

3. SDA> SEARCH/LENGTH=WORD 8000000;2000 6 Searching from 80000000 to 80002000 in LONGWORD steps for 0006... Match at 8000054 Match at 800001EC Match at 800012AC Match at 800012B8 SDA>

The SEARCH command finds the value 0006 in the longword locations 80000054, 800001EC, 800012AC, and 800012B8.

SET CPU

Selects a processor to become the SDA current CPU.

Format

SET CPU cpu-id

Parameter

cpu-id

Numeric value from 00_{16} to $1F_{16}$ indicating the identity of the processor to be made the current CPU. If you specify a value outside this range or a **cpu-id** of a processor that was not active at the time of the system failure, SDA displays the following message:

&SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

Qualifiers

None.

Description

When you invoke SDA to examine a system dump, the SDA current CPU context defaults to that of the processor that caused the system to fail. When analyzing a system failure from a multiprocessing system, you may find it useful to examine the context of another processor in the configuration.

The SET CPU command changes the current SDA CPU context to that of the processor indicated by **cpu-id**. The CPU specified by this command becomes the current CPU for SDA until you exit from SDA or change SDA CPU context by issuing one of the following commands:

SET CPU **cpu-id** SHOW CPU **cpu-id** SHOW CRASH SHOW MACHINE_CHECK **cpu-id**

The following commands also change SDA CPU context if the **process-name**, **pcb-address**, or index number (**nn**) refers to a current process:

SET PROCESS **process-name** SET PROCESS/ADDRESS=**pcb-address** SET PROCESS/INDEX=**nn** SET PROCESS/SYSTEM SHOW PROCESS **process-name** SHOW PROCESS/ADDRESS=**pcb-address** SHOW PROCESS/INDEX=**nn** SHOW PROCESS/SYSTEM Changing CPU context can cause an implicit change in process context under the following circumstances:

- If there is a current process on the CPU made current, SDA changes its process context to that of that CPU's current process.
- If there is no current process on the CPU made current, SDA process context is undefined and no process-specific information is available until you set SDA process context to that of a specific process.

See Section 4 for further discussion on the way in which SDA maintains its context information.

You cannot use the SET CPU command when examining the running system with SDA.

SET FETCH

Sets the default size of address data manipulated by the EXAMINE and $\ensuremath{\mathsf{EVALUATE}}$ commands.

Format

SET FETCH [quad 1 long word byte

Parameter

quad Sets the default size to 8 bytes.

long Sets the default size to 4 bytes.

word Sets the default size to 2 bytes.

byte

Sets the default size to 1 byte.

Qualifiers

None.

Description

Sets the default size of address data manipulated by EXAMINE and EVALUATE commands. SDA uses the current default size unless it is overridden by use of the Q , L , W , or B qualifier on the @ unary operator in an expression.

Examples

1. SDA> EXAMINE MMG\$GQ SHARED_VA_PTES MMG\$GQ SHARED VA PTES: FFFFFFD FF7FE000 ".`a...."

This shows the location's contents of a 64-bit virtual address.

 SDA>SET FETCH LONG SDA>EXAMINE @MMG\$GQ_SHARED_VA_PTES %SDA-E-NOTINPHYS, FFFFFFFFFFFFFF000 : virtual data not in physical memory

This shows a failure because the SET FETCH LONG causes SDA to assume it should take the lower 32 bits of the location's contents as a longword value, sign extend them, and use that value as an address. 3. SDA>EXAMINE @^QMMG\$GQ_SHARED_VA_PTES FFFFFFD FF7FE000: 000001D0 40001119 "...@..."

This shows the correct results by overriding the SET FETCH LONG with the [^]Q qualifier on the @ operator. SDA takes the full 64-bits of the location's contents and uses that value as an address.

4. SDA>SET FETCH QUAD SDA>EXAMINE @MMG\$GQ_SHARED_VA_PTES FFFFFFD FF7FE000: 000001D0 40001119 "...@..."

This shows the correct results by changing the default fetch size to a quadword.

SET LOG

Initiates or discontinues the recording of an SDA session in a text file.

Format

SET [NO]LOG filespec

Parameter

filespec

Name of the file in which you want SDA to log your commands and their output. The default **filespec** is SYS\$DISK:[default_dir]filename.LOG, where SYS\$DISK and [default-dir] represent the disk and directory specified in your last DCL command SET DEFAULT. You must specify a file name.

Qualifiers

None.

Description

The SET LOG command echoes the commands and output of an SDA session to a log file. The SET NOLOG command terminates this behavior.

The following differences exist between the SET LOG command and the SET OUTPUT command:

- When logging is in effect, your commands and their results are still displayed on your terminal. The SET OUTPUT command causes the displays to be redirected to the output file such that they no longer appear on the screen.
- If an SDA command requires that you press Return to produce successive screens of display, the log file produced by SET LOG will record only those screens that are actually displayed. SET OUTPUT, however, sends the entire output of all SDA commands to its listing file.
- The SET LOG command produces a log file with a default file type of .LOG; the SET OUTPUT command produces a listing file whose default file type is .LIS.
- The SET LOG command does not record output from the HELP command in its log file. The SET OUTPUT command can record HELP output in its listing file.
- The SET LOG command does not record SDA error messages in its log file. The SET OUTPUT command can record SDA error messages in its listing file.
- The SET OUTPUT command generates a table of contents, each item of which refers to a display written to its listing file. SET OUTPUT also produces running heads for each page of output. The SET LOG command does not produce these items in its log file.

Note that, if you have used the SET OUTPUT command to redirect output to a listing file, you cannot use a SET LOG command to direct the same output to a log file.

SET OUTPUT

Redirects output from SDA to the specified file or device.

Format

SET OUTPUT filespec

Parameter

filespec

Name of the file to which SDA is to send the output generated by its commands. The default **filespec** is SYS\$DISK:[default_dir]filename.LIS, where SYS\$DISK and [default-dir] represent the disk and directory specified in your last DCL command SET DEFAULT. You must specify a file name.

Description

When you use the SET OUTPUT command to send the SDA output to a file or device, SDA continues displaying the SDA commands that you enter but sends the output generated by those commands to the file or device you specify. (See the description of the SET LOG command for a list of differences between the SET LOG and SET OUTPUT commands.)

When you finish directing SDA commands to an output file and want to return to interactive display, issue the following command:

SDA> SET OUTPUT SYS\$OUTPUT

If you use the SET OUTPUT command to send the SDA output to a listing file, SDA builds a table of contents that identifies the displays you selected and places the table of contents at the beginning of the output file. The SET OUTPUT command formats the output into pages and produces a running head at the top of each page.

SET PROCESS

Selects a process to become the SDA current process.

Format

SET PROCESS

/ADDRESS=pcb-address `
process-name
/INDEX=nn
/SYSTEM

Parameter

process-name

Name of the process to become the SDA current process. The **process-name** is a string containing up to 15 uppercase or lowercase characters; numerals, the dollar sign (\$), and the underscore (_) can also be included in the string. If you include characters other than these, you must enclose the entire string in quotation marks (" ").

Qualifiers

/ADDRESS=pcb-address

Specifies the process control block (PCB) address of a process in order to display information about the process.

/INDEX=nn

Specifies the process to be made current by its index into the system's list of software process control blocks (PCBs). You can supply either of the following values for **nn**:

- The process index itself
- The process identification (PID) or extended PID longword, from which SDA extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW SUMMARY.

/SYSTEM

Specifies the new current process by the system process control block (PCB). The system PCB and process header (PHD) parallel the data structures that describe processes. They contain the system working set list, global section table, and other systemwide data.

Description

When you issue an SDA command such as EXAMINE, SDA displays the contents of memory locations in its current process. To display any information about another process, you must change the current process with the SET PROCESS command.

When you invoke SDA to analyze a crash dump, the process context defaults to that of the process that was current at the time of the system failure. If the failure occurred on a multiprocessing system, SDA sets the CPU context to that of the processor that caused the system to fail. The process context is set to that of the process that was current on that processor.

When you invoke SDA to analyze a running system, its process context defaults to that of the current process, that is, the one executing SDA.

The SET PROCESS command changes the current SDA process context to that of the process indicated by **process-name**, **pcb-address**, or /INDEX=**nn**. The process specified by this command becomes the current process for SDA until you exit from SDA or change SDA process context by issuing one of the following commands:

SET PROCESS process-name SET PROCESS/ADDRESS=pcb-address SET PROCESS/INDEX=nn SET PROCESS/SYSTEM SHOW PROCESS process-name SHOW PROCESS/ADDRESS=pcb-address SHOW PROCESS/INDEX=nn SHOW PROCESS/SYSTEM

When you analyze a crash dump from a multiprocessing system, changing process context may require a switch of CPU context as well. For instance, if you issue a SET PROCESS command for a process that is current on another CPU, SDA automatically changes its CPU context to that of the CPU on which that process is current. The following commands can have this effect if **process-name**, **pcb-address**, or index number (**nn**) refers to a current process:

SET PROCESS process-name SET PROCESS/ADDRESS=pcb-address SET PROCESS/INDEX=nn SET PROCESS/SYSTEM SHOW PROCESS process-name SHOW PROCESS/ADDRESS=pcb-address SHOW PROCESS/INDEX=nn SHOW PROCESS/SYSTEM

See Section 4 for further discussion on the way in which SDA maintains its context information.

Example

SDA> SHOW PROCESS Process index: 0012 Name: ERRFMT Extended PID: 00000052 Process status: 02040001 RES,PHDRES,INTER status2: 00000001 QUANTUM RESCHED

PCB address	80D772CO	JIB address	80556600
PHD address	80477200	Swapfile disk address	01000F01
KTB vector address	80D775AC	HWPCB address	81260080
Callback vector address	00000000	Termination mailbox	0000
Master internal PID	00010004	Subprocess count	0
Creator extended PID	00000000	Creator internal PID	00000000
Previous CPU Id	00000000	Current CPU Id	00000000
Previous ASNSEQ 0000000	00000001	Previous ASN 0000000	00000002E
Initial process priority	4	Delete pending count	0
# open files allowed left	100	Direct I/O count/limit	150/150
UIC [00001	L,000004]	Buffered I/O count/limit	149/150
Abs time of last event	0069D34E	BUFIO byte count/limit	99424/99808
AST's remaining	247	# of threads	1
Swapped copy of LEFC0	00000000	Timer entries allowed le	ft 63
Swapped copy of LEFC1	00000000	Active page table count	4
Global cluster 2 pointer	00000000	Process WS page count	32
Global cluster 3 pointer	00000000	Global WS page count	31

This SHOW PROCESS command shows the current process to be ERRFMT, and displays information from its PCB and job information block (JIB).

SET RMS

Changes the options shown by the SHOW PROCESS/RMS command.

Format

SET RMS =(option[,...])

Parameter

option

Data structure or other information to be displayed by the SHOW PROCESS /RMS command. Table SDA–9 lists those keywords that may be used as options.

Table SDA–9 SET RMS Command Keywords for Displaying Process RMS Information

Keyword	Meaning
[NO]ALL[: ifi] ¹	All control blocks (default)
[NO]ASB	Asynchronous save block
[NO]BDB	Buffer descriptor block
[NO]BDBSUM	BDB summary page
[NO]BLB	Buffer lock block
[NO]BLBSUM	Buffer lock summary page
[NO]CCB	Channel control block
[NO]DRC	Directory cache
[NO]FAB	File access block
[NO]FCB	File control block
[NO]FWA	File work area
[NO]GBD	Global buffer descriptor
[NO]GBDSUM	GBD summary page
[NO]GBH	Global buffer header
[NO]GBSB	Global buffer synchronization block
[NO]IDX	Index descriptor
[NO]IFAB[: ifi] ¹	Internal FAB
[NO]IFB[: ifi] ¹	Internal FAB
[NO]IRAB	Internal RAB
[NO]IRB	Internal RAB
[NO]JFB	Journaling file block
[NO]NAM	Name block
[NO]NWA	Network work area
[NO]RAB	Record access block

 1 The optional parameter **ifi** is an internal file identifier. The default **ifi** (**ALL**) is all the files the current process has opened.

(continued on next page)

Keyword	Meaning
[NO]RLB	Record lock block
[NO]RU	Recovery unit structures, including the recovery unit block (RUB), recovery unit stream block (RUSB), and recovery unit file block (RUFB)
[NO]SFSB	Shared file synchronization block
[NO]WCB	Window control block
[NO]XAB	Extended attribute block
[NO]*	Current list of options displayed by the SHOW RMS command

Table SDA–9 (Cont.) SET RMS Command Keywords for Displaying Process RMS Information

The default **option** is **option=ALL:ALL,NOPIO**, designating for display by the SHOW PROCESS/RMS command all structures for all files related to the process image I/O.

To list more than one option, enclose the list in parentheses and separate options by commas. You can add a given data structure to those displayed by ensuring that the list of keywords begins with the asterisk (*) symbol. You can delete a given data structure from the current display by preceding its keyword with "NO."

Qualifiers

None.

Description

The SET RMS command determines the data structures to be displayed by the SHOW PROCESS/RMS command. (See the examples included in the discussion of the SHOW PROCESS command for information provided by various displays.) You can examine the options that are currently selected by issuing a SHOW RMS command.

SDA Commands SET RMS

Examples

 SDA> SHOW RMS RMS Display Options: IFB, IRB, IDX, BDB, BDBSUM, ASB, CCB, WCB, FCB, FAB, RAB, NAM, XAB, RLB, BLB, BLBSUM, GBD, GBH, FWA, GBDSUM, JFB, NWA, RU, DRC, SFSB, GBSB

Display RMS structures for all IFI values.

SDA> SET RMS=IFB SDA> SHOW RMS

RMS Display Options: IFB

Display RMS structures for all IFI values.

The first SHOW RMS command shows the default selection of data structures that are displayed in response to a SHOW PROCESS/RMS command. The SET RMS command selects only the IFB to be displayed by subsequent SET/PROCESS commands.

2. SDA> SET RMS=(*,BLB,BLBSUM,RLB) SDA> SHOW RMS

RMS Display Options: IFB, RLB, BLB, BLBSUM

Display RMS structures for all IFI values.

The SET RMS command adds the BLB, BLBSUM, and RLB to the list of data structures currently displayed by the SHOW PROCESS/RMS command.

3. SDA> SET RMS=(*,NORLB,IFB:05) SDA> SHOW RMS

RMS Display Options: IFB,BLB,BLBSUM Display RMS structures only for IFI=5.

The SET RMS command removes the RLB from those data structures displayed by the SHOW PROCESS/RMS command and causes only information about the file with the **ifi** of 5 to be displayed.

4. SDA> SET RMS=(*, PIO)

The SET RMS command indicates that the data structures designated for display by SHOW PROCESS/RMS be associated with process-permanent I/O instead of image I/O.

SDA Commands SET SIGN_EXTEND

SET SIGN_EXTEND

Enables or disables the sign extension of 32-bit addresses.

Format

SET SIGN_EXTEND [on off]

Parameters

on

Enables automatic sign extension of 32-bit addresses with bit 31 set. This is the default.

off

Disables automatic sign extension of 32-bit addresses with bit 31 set.

Qualifiers

None.

Description

The 32-bit S0/S1 addresses need to be sign extended to access 64-bit S0/S1 space. To do this, specify explicitly sign-extended addresses, or set the sign extend to **on**, which is the default.

However, to access addresses in P2 space, addresses must not be sign extended. To do this, specify explicitly a zero in front of the address, or set the sign extend to **off**.

Examples

 SDA> set sign_extend on SDA> examine 80400000 FFFFFFFF 80400000: 23DEFF90 4A607621

This shows the SET SIGN_EXTEND command as ON.

 SDA>set sign_extend off SDA> examine 80400000 %SDA-E-NOTINPHYS, 000000080400000: virtual data not in physical memory

This shows the SET SIGN_EXTEND command as OFF.

SHOW CALL_FRAME

Displays the locations and contents of the longwords representing a procedure call frame.

Format

SHOW CALL_FRAME Starting-address //NEXT_FP

Parameter

starting-address

Expression representing the starting address of the procedure call frame to be displayed. The default **starting-address** is the longword contained in the FP register of the SDA current process.

Qualifier

/NEXT_FP

Displays the procedure call frame starting at the address stored in the FP longword of the last call frame displayed by this command. You must have issued a SHOW CALL_FRAME command previously in the current SDA session in order to use the /NEXT_FP qualifier to the command.

Description

Whenever a procedure is called, information is stored on the stack of the calling routine in the form of a procedure call frame. The SHOW CALL_FRAME command displays the locations and contents of the call frame. The starting address of the call frame is determined from the specified starting address, the /NEXT_FP qualifier, or by default. The default starting address is contained in the SDA current process FP register.

When using the SHOW CALL_FRAME/NEXT_FP command to follow a chain of call frames, SDA signals the end of the chain by this message:

%SDA-E-NOTINPHYS, 00000000 : not in physical memory

This message indicates that the saved FP in the previous call frame has a zero value.

Example

SDA> SHO	DW CALL_FRAME	
Call Fra	ame Information	
Flags:	Stack Frame Procedure Descriptor Base Register = FP, No Jacket, Native	
5	Procedure Entry: FFFFFFF 837E9F10 Return address on stack = FFFFFFFF 837E8A1C	EXCEPTION_PRO+01F10 EXE\$CONTSIGNAL_C+0019C

Registers saved on stack 7FF95F98 FFFFFFF FFFFFFB Saved R2 7FF95FA0 FFFFFFF 8042AEA0 Saved R3 EXCEPTION NPRW+040A0 7FF95FA8 00000000 00000002 Saved R5 7FF95FB0 FFFFFFF 804344A0 Saved R13 SCH\$CLREF+00188 7FF95FB8 0000000 7FF9FC00 Saved R29 SDA> SHOW CALL FRAME/NEXT FP Call Frame Information Stack Frame Procedure Descriptor Flags: Base Register = FP, No Jacket, Native Procedure Entry: FFFFFFF 800FA388 RMS NPRO+04388 Return address on stack = FFFFFFF 80040BFC EXCEPTION NPRO+00BFC Registers saved on stack 7FF99F60 FFFFFFF FFFFFFD Saved R2 7FF99F68 FFFFFFF 80425BA0 Saved R3 EXCEPTION_NPRW+03DA0 EXCEPTION_NPRW+00220
 7FF99F70
 FFFFFFF
 80422020
 Saved
 R4
 EXCEPTION_NPR

 7FF99F78
 00000000
 0000000
 Saved
 R5

 7FF99F80
 FFFFFFF
 835C24A8
 Saved
 R6
 RMS_PRO+004A8

 7FF99F88
 00000000
 7FF99FC0
 Saved
 R7
 7FF99F90 0000000 7FF9FDE8 Saved R8 7FF99F98 0000000 7FF9FDF0 Saved R9 7FF99FA0 0000000 7FF9FE78 Saved R10 7FF99FA8 00000000 7FF9FEBC Saved R11 7FF99FB0 FFFFFFF 837626E0 Saved R13 EXE\$OPEN MESSAGE+00088 7FF99FB8 0000000 7FF9FD70 Saved R29 . SDA> SHOW CALL FRAME/NEXT FP Call Frame Information Stack Frame Procedure Descriptor Flags: Base Register = FP, No Jacket, Native Procedure Entry: FFFFFFF 835C2438 RMS PRO+00438 Return address on stack = FFFFFFFF 83766020 EXEŞOPEN MESSAGE C+00740 Registers saved on stack 7FF9FD88 0000000 7FF9FDA4 Saved R2 7FF9FD90 0000000 7FF9FF00 Saved R3 7FF9FD98 0000000 7FFA0050 Saved R29

The SHOW CALL_FRAME commands in this SDA session follow a chain of call frames from that specified in the FP of the SDA current process.

SHOW CLUSTER

Displays connection manager and system communications services (SCS) information for all nodes in a cluster.

Format

SHOW CLUSTER { /CSID=csid /NODE=name /SCS }

Parameters

None.

Qualifiers

/CSID=csid

Displays VMScluster system information for a specific VMScluster member node. The value **csid** is the cluster system identification number (CSID) of the node to be displayed. You can find the CSID for a specific node in a cluster by examining the **CSB list** display of the SHOW CLUSTER command. Other SDA displays refer to a system's CSID. For instance, the SHOW LOCK command indicates where a lock is mastered or held by CSID.

/NODE=name

Displays cluster information on a particular VMScluster member node which is specified by its SCS node name. This is mutually exclusive with the /CSID qualifier.

/SCS

Displays a view of the cluster as seen by SCS.

Description

By default, the SHOW CLUSTER command provides a view of the VMScluster system from the perspective of the connection manager. When you use the /SCS qualifier, however, SHOW CLUSTER provides a view of the cluster from the perspective of the port driver or drivers.

VMScluster as Seen by the Connection Manager

The SHOW CLUSTER command provides a series of displays.

The VMScluster summary display supplies the following information:

- Number of votes required for a quorum
- Number of votes currently available
- Number of votes allocated to the quorum disk
- Status summary indicating whether or not a quorum is present

The **CSB list** displays information about the VMScluster system blocks (CSBs) currently in operation; there is one CSB assigned to each node of the cluster. For each CSB, the **CSB list** displays the following information:

• Address of the CSB

SDA Commands SHOW CLUSTER

- Name of the VMScluster node it describes
- CSID associated with the node
- Number of votes (if any) provided by the node
- State of the CSB
- Status of the CSB

For information about the state and status of nodes, see the description of the ADD command in the *OpenVMS System Management Utilities Reference Manual*.

The **cluster block** display includes information recorded in the cluster block (CLUB), including a list of activated flags, a summary of quorum and vote information, and other data that applies to the cluster from the perspective of the node for which the SDA is being run.

The **cluster failover control block** display provides detailed information concerning the cluster failover control block (CLUFCB), and the **cluster quorum disk control block** display provides detailed information from the cluster quorum disk control block (CLUDCB).

Subsequent displays provide information for each CSB listed previously in the **CSB list** display. Each display shows the state and flags of a CSB, as well as other specific node information. (See the *OpenVMS System Management Utilities Reference Manual* for information about the flags for VMScluster nodes.)

VMScluster as Seen by the Port Driver

The SHOW CLUSTER/SCS command provides a series of displays.

The **SCS listening process directory** lists those processes that are listening for incoming SCS connect requests. For each of these processes, this display records the following information:

- Address of its directory entry
- Connection ID
- Name
- Explanatory information, if available

The **SCS systems summary** display provides the system block (SB) address, node name, system type, system ID, and the number of connection paths for each SCS system. An **SCS system** can be a VMScluster member, HSC, UDA, or other such device.

Subsequent displays provide detailed information for each of the system blocks and the associated path blocks. The system block displays include the maximum message and datagram sizes, local hardware and software data, and SCS poller information. Path block displays include information that describes the connection, including remote functions and other path-related data.

Example

SDA> SHOW CLUSTER VMScluster data structures --- VMScluster Summary ---Votes Quorum Disk Votes Status Summary Ouorum -----_ _ _ _ _ _ _ -----1 2 2 qf dynvote,qf vote,quorum --- CSB list ---Address Node CSID Votes State Status ----_ _ _ _ _ _ 805FA780 FLAM5 00010006 0 local member,qf same,qf noaccess 8062C400 ROMRDR 000100ED 1 open member,qf_same,qf_watcher,qf_active 8062C780 VANDQ1 000100EF 0 open member,qf_same,qf_noaccess --- Cluster Block (CLUB) 805FA380 ---Flags: 16080005 cluster, qf dynvote, init, qf vote, qf newvote, quorum Ouorum/Votes 2/2 Last transaction code 02 596 1 Last trans. number Quorum Disk Votes Nodes3Last coordinator CSID000100EFQuorum Disk\$1\$DIA0Last time stamp31-DEC-1992Found Node SYSID0000000FC0317:26:35Founding Time3-JAN-1993Largest trans. id000002541ndex of next CSID0007Figure of Merit000000000Quorum Disk Cntrl Block805FADC0Member State Seq. Num0203Cince Figure00000000Fereign Cluster00000000 3 Last coordinator CSID 000100EF Nodes Timer Entry Address 00000000 Foreign Cluster 00000000 CSP Oueue empty --- Cluster Failover Control Block (CLUFCB) 805FA4C0 ---Flags: 00000000 Failover Step Index 00000037 CSB of Synchr. System 8062C780 Failover Instance ID 00000254 --- Cluster Quorum Disk Control Block (CLUDCB) 805FADC0 ---State : 0002 gs rem act Flags : 0100 qf noaccess CSP Flags : 0000 Iteration Counter0Activity Counter0Quorum file LBN00000000 UCB address 00000000 TQE address 805FAE00 IRP address 00000000 Watcher CSID 000100ED --- FLAM5 Cluster System Block (CSB) 805FA780 ---State: OB local Flags: 070260AA member,qf_same,qf_noaccess,selected,local,status_rcvd,send_status
Cpblty: 00000000 Quorum/Votes 1/0 Quor. Disk Vote 1 Next seq. number 0000 Send queue 00000000 Last seq num rcvd 0000 Resend queue 00000000 CSID 00010006 Last ack. seq num 0000 Block xfer Q. 805FA7D8 Eco/Version0/23Unacked messages0CDT address00000000Reconn. time00000000Ack limit0PDT address00000000 Ref. count 2 Incarnation 1-JAN-1993 TQE address 0000000
 Ref. time
 31-AUG-1992
 00:00:00
 SB address
 80421580

 17:26:35
 Lock mgr dir wgt
 0
 Current CDRP
 00000001

SDA Commands SHOW CLUSTER

--- ROMRDR Cluster System Block (CSB) 8062C400 ---State: 01 open Flags: 0202039A member, qf same, cluster, qf active, selected, status rcvd Cpblty: 00000000 Quorum/Votes2/1Next seq. numberB350Send queue0000000Quor. Disk Vote1Last seq num rcvdE786Resend queue0000000CSID000100EDLast ack. seq numB350Block xfer Q.8062C458Eco/Version0/22Unacked messages1CDT address805E8870Reconn. time0000000Ack limit3PDT address80618400 Ref. count 2 Incarnation 19-AUG-1992 TQE address 00000000 Ref. time 19-AUG-1992 16:15:00 SB address 8062C140 16:17:08 Lock mgr dir wgt 0 Current CDRP 0000000 --- VANDQ1 Cluster System Block (CSB) 8062C780 ---State: 01 open Flags: 020261AA member,qf same,qf noaccess,cluster,selected,status rcvd Cpblty: 00000000 Quorum/Votes1/0Next seq. number32B6Send queue0000000Quor. Disk Vote1Last seq num rcvdA908Resend queue00000000CSID000100EFLast ack. seq num32B6Block xfer Q.8062C7D8Eco/Version0/23Unacked messages1CDT address805E8710Peconn time00000000Ack limit3PDT address80618400 Ref. count 2 Incarnation 17-AUG-1992 TQE address 00000000 Ref. time 19-AUG-1992 15:37:06 SB address 8062BCC0 16:21:22 Lock mgr dir wgt 0 Current CDRP 0000000

This example illustrates the default output of the SHOW CLUSTER command.

SHOW CONNECTIONS

Displays information about all active connections between System Communications Services (SCS) processes or a single connection.

Format

SHOW CONNECTIONS

/ADDRESS=cdt-address /NODE=name /SYSAP=name

Parameters

None.

Qualifiers

/ADDRESS=cdt-address

Displays information contained in the connection descriptor table (CDT) for a specific connection. You can find the **cdt-address** for any active connection on the system in the **CDT summary page** display of the SHOW CONNECTIONS command. In addition, CDT addresses are stored in many individual data structures related to SCS connections. These data structures include class driver request packets (CDRPs) and unit control blocks (UCBs) for class drivers that use SCS, and cluster system blocks (CSBs) for the connection manager.

/NODE=name

Displays all CDTs associated with the specified remote SCS node name.

/SYSAP=name

Displays all CDTs associated with the specified local SYSAP.

Description

The SHOW CONNECTIONS command provides a series of displays.

The **CDT summary page** lists information regarding each connection on the local system, including the following:

- CDT address
- Name of the local process with which the CDT is associated
- Connection ID
- Current state
- Name of the remote node (if any) to which it is currently connected

The **CDT summary page** concludes with a count of CDTs that are free and available to the system.

SHOW CONNECTIONS next displays a page of detailed information for each active CDT listed previously.

SDA Commands SHOW CONNECTIONS

Example

SDA> SHOW CONNECTIONS

--- CDT Summary Page ---

CDT Address	Local Process	Connection ID	State	Remote Node
805E7ED0	SCS\$DIRECTORY	FF120000	listen	
805E8030	MSCP\$TAPE	FF120001	listen	
805E8190	VMS\$VMScluster	FF120002	listen	
805E82F0	MSCP\$DISK	FF120003	listen	
805E8450	SCA\$TRANSPORT	FF120004	listen	
805E85B0	MSCP\$DISK	FF150005	open	VANDQ1
805E8710	VMS\$VMScluster	FF120006	open	VANDQ1
805E8870	VMS\$VMScluster	FF120007	open	ROMRDR
805E89D0	MSCP\$DISK	FF120008	open	ROMRDR
805E8C90	VMS\$DISK CL DRVR	FF12000A	open	ROMRDR
805E8DF0	VMS\$DISK CL DRVR	FF12000B	open	VANDQ1
805E8F50	VMS\$TAPE_CL_DRVR	FF12000C	open	VANDQ1

Number of free CDT's: 188

--- Connection Descriptor Table (CDT) 805E7ED0 ---

State: 0001 listen Loca Blocked State: 0000	l Process:	SCS\$DIRECT	ORY	
Local Con. ID FF120000 Remote Con. ID 0000000 Receive Credit 0 Send Credit 0 Min. Rec. Credit 0 Pend Rec. Credit 0 Initial Rec. Credit 0 Rem. Sta. 00000000000 Rej/Disconn Reason 0 Queued for BDLT 0 Queued Send Credit 0 Connection Descripto	Datagrams sent Datagrams rcvd Datagram discard Messages Sent Messages Rcvd. Send Data Init. Req Data Init. Bytes Sent Bytes rcvd Total bytes map	0 0 0 0 0 0 0 0 0 0	Message queue Send Credit Q. PB address PDT address Error Notify Receive Buffer Connect Data Aux. Structure	805E7F00 805E7F08 0000000 804540D0 0000000 0000000 0000000 0000000
State: 0001 listen Loca Blocked State: 0000	l Process:	MSCP\$TAPE		
Local Con. ID FF120001 Remote Con. ID 0000000 Receive Credit 0 Send Credit 0 Min. Rec. Credit 0 Pend Rec. Credit 0 Initial Rec. Credit 0 Rem. Sta. 00000000000 Rej/Disconn Reason 0 Queued for BDLT 0 Queued Send Credit 0	Datagrams sent Datagrams rcvd Datagram discard Messages Sent Messages Rcvd. Send Data Init. Req Data Init. Bytes Sent Bytes rcvd Total bytes map	0 0 0 0 0 0 0 0 0	Message queue Send Credit Q. PB address PDT address Error Notify Receive Buffer Connect Data Aux. Structure	805E8060 805E8068 00000000 804540D0 00000000 00000000 00000000

This example shows the default output of the SHOW CONNECTIONS command.

SHOW CPU

Displays information about the state of a processor at the time of the system failure.

Format

SHOW CPU [cpu-id]

Parameter

cpu-id

Numeric value from 00 to $1F_{16}$ indicating the identity of the processor for which context information is to be displayed. If you specify a value outside this range, or you specify the **cpu-id** of a processor that was not active at the time of the system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the **cpu-id** parameter, the SHOW CPU command performs an implicit SET CPU command, making the processor indicated by **cpu-id** the current CPU for subsequent SDA commands. (See the description of the SET CPU command and Section 4 for information on how this can affect the CPU context—and process context—in which SDA commands execute.)

Qualifiers

None.

Description

The SHOW CPU command displays system failure information about the processor specified by **cpu-id** or, by default, the SDA current CPU, as defined in Section 4. You cannot use the SHOW CPU command when examining the running system with SDA.

The SHOW CPU command produces several displays. First, there is a brief description of the system failure and its environment that includes the following:

- Reason for the bugcheck.
- Name of the currently executing process. If no process has been scheduled on this processor, SDA displays the following message:

Process currently executing: no processes currently scheduled on the processor

- File specification of the image executing within the current process (if there is a current process).
- Interrupt priority level (IPL) of the processor at the time of the system failure.

Next, the **general registers** display shows the contents of the processor's integer registers (R0 to R30), and the AI, RA, PV, FP, PC, and PS at the time of the system failure.

The **processor registers** display consists of the following parts:

- Common processor registers
- Processor-specific registers
- Stack pointers

The first part of the processor registers display includes registers common to all Alpha processors, which are used by the operating system to maintain the current process virtual address space, system space, or other system functions. This part of the display includes the following registers:

- Hardware privileged context block base register (PCBB)
- System control block base register (SCBB)
- Software interrupt summary register (SISR)
- Address space number register (ASN)
- AST summary register (ASTSR)
- AST enable register (ASTEN)
- Interrupt priority level register (IPL)
- Processor priority level register (PRBR)
- Page table base register (PTBR)

The last part of the display includes the four stack pointers: the pointers of the kernel, executive, supervisor, and user stacks (KSP, ESP, SSP, and USP, respectively).

The SHOW CPU command concludes with a listing of the spin locks, if any, owned by the processor at the time of the system failure, reproducing some of the information given by the SHOW SPINLOCKS command. The spinlock display includes the following information:

- Name of the spin lock.
- Address of the spinlock data structure (SPL).
- IPL and rank of the spin lock.
- Number of processors waiting for this processor to release the spin lock.
- Indication of the depth of this processor's ownership of the spin lock. A number greater than 1 indicates that this processor has nested acquisitions of the spin lock.

Example

```
SDA> SHOW CPU
CPU 00 Processor crash information
CPU 00 reason for Bugcheck: UNXINTEXC, Unexpected interrupt or exception
Process currently executing on this CPU: UETCLIG00master
Current image file: $1$DKB400:[SYS64.SYSCOMMON.][SYSTEST]UETCLIG00.EXE;1
Current IPL: 13 (decimal)
CPU database address: 805AE000
General registers:
R0 = 00000000 0000001 R1 = 00000000 0000003B R2 = FFFFFFF 8004FF88
R3 = FFFFFFF 80428070 R4 = 0000000 0000001 R5 = 0000000 00000004
R6 = 00000000 7FF78BE6 R7 = 00000000 00000064 R8 = FFFFFFF 806CEA96
R9 = 00000000 00000030 R10 = 00000000 00002270 R11 = 00000000 0C040087
R12 = 00000000 0000001 R13 = FFFFFFF 80435270 R14 = FFFFFFFF 80434AE0
R15 = FFFFFFF 80403200 R16 = 00000000 00000410 R17 = 00000000 00000001
R18 = 00000000 000005D0 R19 = 00000000 000000EA R20 = FFFFFFF 80403200
R21 = FFFFFFF 8040C810 R22 = 00000000 000000FA R23 = FFFFFFFF 8040C7F0
R24 = FFFFFFFF 8040C7E0 AI = 00000000 00000000 RA = 00000000 00000014
PV = 00000000 000003B R28 = 00000000 000003B FP = 00000000 7FF95D00
PC = FFFFFFF 80050020 PS = 00000000 00000D04
Processor Internal Registers:
ASN = 00000000 0000000
                                           ASTEN/ASTSR =
                                                                  0000000E
              0000000D PCBB = 00000000 03742080 PRBR = FFFFFFFF 805AE000
IPL =
PTBR = 00000000 00000F34 SCBB = 00000000 00000500 SISR = 00000000 00000000
        KSP
             = 00000000 7FF95A00
        ESP = 00000000 7FF9A000
        SSP
             = 00000000 7FFA04C0
              = 00000000 7FE719F0
        USP
```

Spinlocks currently owned by CPU 00

	Address	80427880
00000000	IPL	00000008
0000001	Rank	00000012
00000000	Index	00000032
	00000000 0000001 00000000	Address 00000000 IPL 00000001 Rank 00000000 Index

This example shows the default output of the SHOW CPU command.

SHOW CRASH

In the analysis of a system failure, displays information about the state of the system at the time of the failure. In the analysis of a running system, provides information identifying the system.

Format

SHOW CRASH

Parameters

None.

Qualifiers

None.

Description

The SHOW CRASH command has two different manifestations, depending on whether it is issued in the analysis of a running system or a system failure.

In either case, if the SDA current CPU context is not that of the processor that signaled the bugcheck, the SHOW CRASH command performs an implicit SET CPU command to make that processor the SDA current CPU. (See the description of the SET CPU command and Section 4 for a discussion of how this can affect the CPU context—and process context—in which SDA commands execute.)

When used during the analysis of a running system, the SHOW CRASH command produces a display that describes the system and the version of OpenVMS Alpha that it is running. The **system crash information** display contains the following information:

- Date and time that the ANALYZE/SYSTEM command was issued (titled "Time of system crash" in the display)
- Name and version number of the operating system
- Major and minor IDs of the operating system
- Identity of the Alpha system, including an indication of its cluster membership
- CPU ID of the primary CPU
- Exception display for fatal system bugchecks or PGFIPLHI bugchecks

When used during the analysis of a system failure, the SHOW CRASH command produces several displays that identify the system and describe its state at the time of the failure.

The **system crash information** display in this context provides the following information:

- Date and time of the system failure.
- Name and version number of the operating system.
- Major and minor IDs of the operating system.
- Identity of the system.

- CPU IDs of both the primary CPU and the CPU that initiated the bugcheck. In an Alpha uniprocessor system, these IDs are identical.
- For each active processor in the system, the name of the bugcheck that caused the system failure. Generally, there will be only one significant bugcheck in the system. All other processors typically display the following as their reason for taking a bugcheck:

CPUEXIT, Shutdown requested by another CPU

Subsequent screens of the SHOW CRASH command display information about the state of each active processor on the system at the time of the system failure. The information in these screens is identical to that produced by the SHOW CPU command, including the general-purpose registers, processor-specific registers, stack pointers, and records of spinlock ownership. The first such screen presents information about the processor that caused the failure; others follow according to the numeric order of their CPU IDs.

Examples

```
SDA> SHOW CRASH
 System crash information
 Time of system crash: 24-JAN-1995 10:16:12.71
 Version of system: OpenVMS Alpha VERSION 7.0
 System Version Major ID/Minor ID: 1/0
 System type: Flamingo/EV4
 Crash CPU ID/Primary CPU ID: 00/00
 Bitmask of CPUs active/available: 00000001/00000001
 CPU bugcheck codes:
         CPU 00 -- SSRVEXCEPT, Unexpected system service exception
 System State at Time of Exception
   Exception Frame:
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
  R2 = 00000000 00001200
  R3 = FFFFFFF 80425BA0
  R4 = FFFFFFF 80422020
  R5 = FFFFFFF 80444C88
  R6 = 00000000 7FFD0080
  R7 = 00000000 0000000
  PC = FFFFFFF 8010D480
  PS = 30000000 000000A
 %SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=00000008, PC=8010D480,
 PSL=000000A
 Saved Registers in Mechanism Array
 -----
 R0 = 00000000 7FFD01E8 R1 = 00000000 00000000 R16 = 00000000 7FFD008C
 R17 = 00000000 00000001 R18 = 00000000 00000000 R19 = 00000000 00000000
 R20 = 00000000 00000001 R21 = 00000000 7FFF0140 R22 = 00000000 00000002

      R23 = 00000000 0000008
      R24 = 00000000 0000000
      R25 = 00000000 0000003

      R26 = FFFFFFF 8010974C
      R27 = 00000000 000001FF
      R28 = 00000000 000001FF

 CPU 00 reason for Bugcheck: SSRVEXCEPT, Unexpected system service exception
```

Process currently executing on this CPU: SERVER_001C

Current IPL: 0 (decimal)

CPU database address: 805AE000

General registers:

 R0
 =
 00000000
 00000004
 R1
 =
 FFFFFFF
 80405C30
 R2
 =
 00000000
 00001200

 R3
 =
 FFFFFFF
 80425BA0
 R4
 =
 FFFFFFF
 80422020
 R5
 =
 FFFFFFF
 80444C88

 R6
 =
 00000000
 7FFD0080
 R7
 =
 00000000
 00000000
 R8
 =
 00000000
 7FF9FDF0

 R9
 =
 00000000
 00000000
 R10
 =
 00000000
 00000000
 R11
 =
 00000000
 7FF0080

 R12
 =
 00000000
 00000000
 R10
 =
 00000000
 0000000
 7FF0080

 R13
 =
 FFFFFFF
 8044DF8
 R14
 =
 0000000
 7FF0080

 R15
 =
 0000000
 7FF99E40
 R19
 =
 FFFFFFF
 80425F28
 R20
 =
 00000000
 7FF90280

 R18
 =
 00000000
 7FF99E40
 R19
 =
 FFFFFFF
 8335C000
 R23
 =
 00000000
 7FF9A000

 R24

Processor Internal Registers:

ASN = 0000000 0000000 ASTEN/ASTSR = 0000000F IPL = 0000000 PCBB = 0000000 02F28080 PRBR = FFFFFFF 805AE000 PTBR = 0000000 000012DA SCBB = 0000000 00000500 SISR = 00000000 00000000 KSP = 00000000 7FF96000 ESP = 00000000 7FF99BF8 SSP = 00000000 7FF99D70 USP = 00000000 7FE6B780

No spinlocks currently owned by CPU 00

This long display reflects the output of the SHOW CRASH command within the analysis of a system failure.

2. SDA> SHOW CRASH System crash information

Exception Frame:										
	R2 R3 R4 R5 R6 R7 PC PS	= 0000 = 0000 = FFF] = 0000 = FFF] = 0000 = FFF] = 3000	00000 00000 FFFFF 00000 FFFFF 00000 FFFFF 00000	7FFF02 000000 805DC7 7FF8C0 808C4F 000000 80BB4A 000002	20 20 20 20 20 40 20 20 1 20	EXE\$1	PRCDI	ELMSG_(2+005	FC
PC =>	FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF	FFFF8(FFFF8(FFFF8(FFFF8(FFFF8(FFFF8(FFFF8(FFFF8(FFFF8(0BB4A1 0BB4A2 0BB4A2 0BB4A2 0BB4A2 0BB4A3 0BB4A3 0BB4A3 0BB4A3	LC: 20: 24: 28: 22: 30: 34: 38: 38: 38:	BLI BIS ADI BIS LDQ BIS SUH ADI	E 5 0Q 5 5 6 0 1 5 5 5 5 5 5 5 1 0 1 0 1	L/D	F F F F F F F F	20, #X 21, R 2, #X 31, R 21, R 224, # 31, R 31, R 20, #X 1, R2	000009 1,R17 04,R16 0,R25 X0078(R13) 25,R0 01,R0 4,R1
PS =:	> MD7	CDAI		MD7	тот	77MM	MD7	CIIDMOL	יד אזידי	ΠΟΜΊΟΟ
	0	30	00000	0000000	02	0	0	KERN	0	KERN

This display reflects the output of a SHOW CRASH command within the analysis of a PGFIPLHI bugcheck.

SHOW DEVICE

Displays a list of all devices in the system and their associated data structures, or displays the data structures associated with a given device or devices.

Format

SHOW DEVICE { device-name /ADDRESS=ucb-address }

Parameter

device-name

Device or devices for which data structures are to be displayed. There are several uses of the **device-name** parameter.

To Display the Structures For	Action
All devices in the system	Do not specify a device-name (for example, SHOW DEVICE).
A single device	Specify an entire device-name (for example, SHOW DEVICE VTA20).
All devices of a certain type on a single controller	Specify only the device type and controller designation (for example, SHOW DEVICE RTA or SHOW DEVICE RTB).
All devices of a certain type on any controller	Specify only the device type (for example, SHOW DEVICE RT).
All devices whose names begin with a certain character or character string	Specify the character or character string (for example, SHOW DEVICE D).
All devices on a single node or HSC	Specify only the node name or HSC name (for example, SHOW DEVICE GREEN\$).

Qualifier

/ADDRESS=ucb-address

Indicates the device for which data structure information is to be displayed by the address of its unit control block (UCB). The /ADDRESS qualifier is an alternate method of supplying a device name to the SHOW DEVICE command. If both the **device-name** parameter and the /ADDRESS qualifier appear in a single SHOW DEVICE command, SDA responds only to the parameter or qualifier that appears first.

Description

The SHOW DEVICE command produces several displays taken from system data structures that describe the devices in the system configuration.

If you use the SHOW DEVICE command to display information for more than one device or one or more controllers, it initially produces the **DDB (device data block) list** display to provide a brief summary of the devices for which it renders information in subsequent screens.
Information in the **DDB list** appears in five columns, the contents of which are as follows:

- Address of the device data block (DDB)
- Controller name
- Name of the ancillary control process (ACP) associated with the device
- Name of the device driver
- Address of the driver prologue table (DPT)

The SHOW DEVICE command then produces a display of information pertinent to the device controller. This display includes information gathered from the following structures:

- Device data block (DDB)
- Primary channel request block (CRB)
- Interrupt dispatch block (IDB)
- Driver dispatch table (DDT)

If the controller is an HSC controller, SHOW DEVICE also displays information from its system block (SB) and each path block (PB).

Many of these structures contain pointers to other structures and driver routines. Most notably, the DDT display points to various routines located within driver code, such as the start I/O routine, unit initialization routine, and cancel I/O routine.

For each device unit subject to the SHOW DEVICE command, SDA displays information taken from its unit control block, including a list of all I/O request packets (IRPs) in its I/O request queue. For certain mass storage devices, SHOW DEVICE also displays information from the primary class driver data block (CDDB), the volume control block (VCB), and the ACP queue block (AQB). For units that are part of a shadow set, SDA displays a summary of shadow set membership.

As it displays information for a given device unit, SHOW DEVICE defines the following symbols as appropriate:

Symbol	Meaning
UCB	Address of unit control block
SB	Address of system block
ORB	Address of object rights block
DDB	Address of device data block
DDT	Address of driver dispatch table
CRB	Address of channel request block
AMB	Associated mailbox UCB pointer
IRP	Address of I/O request packet
2P_UCB	Address of alternate UCB for dual-pathed device
LNM	Address of logical name block for mailbox
PDT	Address of port descriptor table

Symbol	Meaning
CDDB	Address of class driver descriptor block for MSCP served device
2P_CDDB	Address of alternate CDDB for MSCP served device
RWAITCNT	Resource wait count for MSCP served device
VCB	Address of volume control block for mounted device

If you are examining a driver-related system failure, you may find it helpful to issue a SHOW STACK command after the appropriate SHOW DEVICE command, examining the stack for any of these symbols. Note, however, that although the SHOW DEVICE command defines those symbols relevant to the last device unit it has displayed, and redefines symbols relevant to any subsequently displayed device unit, it does not undefine symbols. (For instance, SHOW DEVICE DUA0 defines the symbol PDT, but SHOW DEVICE MBA0 does not undefine it, even though the PDT structure is not associated with a mailbox device.) In order to maintain the accuracy of such symbols that appear in the stack listing, use the DEFINE command to modify the symbol name. For example:

SDA> DEFINE DUA0_PDT PDT SDA> DEFINE MBA0 UCB UCB

See the descriptions of the READ and FORMAT commands for additional information on defining and examining the contents of device data structures.

Examples

1.	SDA>SHOW DEVICE/A OPA0	DDRESS=804	1E540 VT300_Series	UCB ac	ldress	8041E54	0
	Device status: Characteristics:	00000010 o: 0C040007 r 00000200 n:	nline ec,ccl,trm,avl,idv nm	, odv			
	Owner UIC [000001 PID Class/Type Def. buf. size DEVDEPEND DEVDEPND2 DEVDEPND3 FLCK index DLCK address	,000004] 00010008 42/70 80 180093A0 FB101000 0000000 3A 8041E880	Operation count Error count Reference count BOFF Byte count SVAPTE DEVSTS	160 0 2 00000001 0000012C 80537B80 00000001	ORB DDB DDT CRB I/O	address address address address wait queue	8041E4E8 8041E3F8 8041E438 8041E740 8041E5AC

*** I/O request queue is empty ***

This example reproduces the SHOW DEVICE display for a single device unit, OPA0. Whereas this display lists information from the UCB for OPA0, including some addresses of key data structures and a list of pending I/O requests for the unit, it does not display information about the controller or its device driver. To display the latter information, specify the **device-name** as OPA (for example, SHOW DEVICE OPA).

		DD	B list		
	Address	Controller	ACP	Driver	DPT
	80D0B3C0	BLUES\$DUA	F11XOP	SYS\$DKDRIV	807735B0
	8000B2B8	RED\$DUA	F11XQP	SYS\$DKDRIV	807735B0
	80D08BA0	BIGTOP\$DUA	F11XQP	SYS\$DKDRIV	807735B0
	80D08AE0	TIMEIN\$DUA	F11XQP	SYS\$DKDRIV	807735B0
•					
Press	RETURN for	more.			

This excerpt from the output of the SHOW DEVICE DU command illustrates the format of the **DDB list** display. In this case, the **DDB list** concerns itself with those devices whose device type begins with DU. It displays devices of these types attached to various HSCs (RED\$ and BLUES\$) and systems in a cluster (BIGTOP\$ and TIMEIN\$).

SHOW EXECUTIVE

Displays the location and size of each loadable image that makes up the executive.

Format

SHOW EXECUTIVE

Parameters

None.

Qualifiers

None.

Description

The executive consists of two base images and a number of other executive images.

The base image called SYS\$BASE_IMAGE.EXE contains:

- Symbol vectors for universal executive routines and data cells
- Procedure descriptors for universal executive routines
- Globally referenced data cells

The base image called SYS\$PUBLIC_VECTORS.EXE contains:

- Symbol vectors for system service procedures
- Procedure descriptors for system services
- Transfer routines for system services

The base images are the pathways to routines and system service procedures in the other executive images.

The SHOW EXECUTIVE command lists the location and size of each executive image. It can enable you to determine whether a given memory address falls within the range occupied by a particular image. (Table SDA–8 describes the contents of each executive image.)

SHOW EXECUTIVE also displays the nonzero length image section base address and length. The base address and length are blank for sliced loadable executive images.

By default, SDA displays each location within an executive image as an offset from the beginning of one of the loadable images; for instance, EXCEPTION+00282. Similarly, those symbols that represent system services point to the transfer routine in SYS\$PUBLIC_VECTORS.EXE and not to the actual system service procedure. When tracing the course of a system failure through the listings of modules contained within a given executive image, you may find it useful to load into the SDA symbol table all global symbols and global entry points defined within one or all executive images. See the description of the READ command for additional information.

SDA Commands SHOW EXECUTIVE

The SHOW EXECUTIVE command usually shows all components of the executive, as illustrated in the following example. In rare circumstances, you may obtain a partial listing. For instance, once it has loaded the EXCEPTION module (in the INIT phase of system initialization), the system can successfully post a bugcheck exception and save a crash dump before loading all the executive images normally loaded.

Example

SDA> SHOW EXECUTIVE OpenVMS Alpha Executive Layout

Image	Base	End	Length	SymVec
SYSWSDRIVER				
Nonpaged read only	802DE000	802DF400	00001400	
Nonpaged read/write	80CB2600	80CB2E00	00000800	
Linked 1-OCT-1995 13:07	LDRIMG	80DEEA00		
SYS\$IKDRIVER				
Nonpaged read only	802D2000	802DC800	008A000	
Nonpaged read/write	80CB1000	80CB2600	00001600	
Linked 1-OCT-1995 13:56	LDRIMG	80DE9840		
SYS\$IMDRIVER				
Nonpaged read only	802CC000	802D0A00	00004A00	
Nonpaged read/write	80CB0400	80CB1000	00000000	
Linked 1-0CT-1995 13:56	LDRIMG	80DE9580		
SYS\$INDRIVER				
Nonpaged read only	802BC000	802CAA00	0000EA00	
Nonpaged read/write	80CAF400	80CB0400	00001000	
Linked 1-OCT-1995 13:57	LDRIMG	80DE9100		
SYS\$RTTDRIVER				
Nonpaged read only	802B8000	802BB600	00003600	
Nonpaged read/write	80CAEA00	80CAF400	000000A00	
Linked 30-SEP-1995 22:17	LDRIMG	80DE4A00		
SYSSCIDRIVER	00070000	000000000	00003000	
Nonpaged read only	802AC000	802B6C00	0000AC00	
Nonpaged read/write	80CACEUU	80CAEA00	00001000	
LIIIKEU 30-SEP-1995 22:10	LDRIMG	80DE4440		
NUDRIVER Norpogod road only	00070000	00270600	00002600	
Nonpaged read (write	802A8000	802AB000	00003000	
Linked 30_GED_1995 22.14	L.DP.TMC	80CAC300 80D143CO	00000A00	
	LIDICING	00014300		
Nonpaged read only	80290000	80227800	00017800	
nonpaged read/write	800290000	80CAC400	00002200	
Paged read only	8028E000	8028E200	00000200	
Linked 30-SEP-1995 22.12	LDRIMG	80D13E80	00000200	
SYSSODRIVER	LDRING	000101000		
Nonpaged read only	8028A000	8028DC00	00003C00	
Nonpaged read/write	80CA8800	80CA9A00	00001200	
Linked 30-SEP-1995 22:14	LDRIMG	80DBEAC0		
SYS\$YRDRIVER				
Nonpaged read only	80282000	80288200	00006200	

The SHOW EXECUTIVE command displays the location and length of executive images.

SHOW HEADER

Displays the header of the dump file.

Format

SHOW HEADER

Parameters

None.

Qualifiers

None.

Description

The SHOW HEADER command produces a 10-column display, each line of which displays both the hexadecimal and ASCII representation of the contents of the dump file header in 32-byte intervals. Thus, the first eight columns, when read right to left, represent the hexadecimal contents of 32 bytes of the header; the ninth column, when read left to right, records the ASCII equivalent of the contents. (Note that the period [.] in this column indicates an ASCII character that cannot be displayed.)

After it displays the contents of the first header block, the SHOW HEADER command displays the hexadecimal contents of the saved error log buffers.

See the *OpenVMS AXP Internals and Data Structures* manual for a discussion of the information contained in the dump file header.

SDA> SHOW HEADER

Dump file header

00000000	7FF96000	00000000	7FF91C08	00000000	0000104B	64000101	00000000	ÁKù`ù	00000000
00001FFF	(0000000)	00002000	000000000	00000000	7FA214B0	00000000	7FF9C100	.Áù°.ċ	00000020
0000F367	00000000	0D0D0D01	0000000D	D0D40500	FCFFFFFF	03000000	8D810000	bó	00000040
65746365	74656420	00606060	534D5220	3454462D	43513558	6000000D	0000F362	bóX5OC-FT4 RXS detecte	6060006
4145444R	41435326	0D0D6R6F	69746964	6R6F6320	64696061	76686920	6R612064	d an invelid condition(SCANDRA	0.00000 R
00726F72	72652065	60626174	20656761	70206461	6564206E	61 63 53 20	20545044	NPT. Scan dead wage table error.	606000A
6F632065	63 6B 65 7 2	65666572	206B6F69	74636553	20204745	48464552	43455330	OSECREENEG. Section reference co	000000000
4E544E43	52485323	00000000	00000065	76697461	67656E20	746E6577	20746E75	unt went negative	0000000
00000000	60620000	0064FFF9	00000000	6F632001	72616873	204E0264	20204745	BC. d.N shar. coù	60600100
•									
•									
Saved er	ror log m	essacies							
0004FFF9	0000040B	00000001	00000000	00000060	80946800	B094600C	000000000	ù	B0 946000
1EBE0026	60030000	00000000	00000020	20544B54	53484308	00000000	00020000	`````````````````````````````````	80,9460,20
30303320	43454417	00000287	00000000	3454462D	43513558	00030097	95EDEILA7	51°X50C-PT4DEC 300	BO 94604(
00000000	00010004	00000000	00000000	00000000	00303034	20606564	6F4D2030	0 Kodel 400	B0 946060
20544E54	53484308	00000000	00020041	4B442454	4E545348	430A0000	000000F0	SCHSTNTSDKACHSTNT	8094608
3454462D	43513558	00012020	41544045	442IB44B	35580000	00000000	00000020		B0 9460 A
00000000	00303034	20606564	6P4D2030	30303320	43454412	00000002	000000000	DEC 3000 Nodel 400	B0 9460 CO
4B442454	4E545348	430A012C	00000184	00000000	00010001	00000000	000000000	CHSTNT\$OK	809460Đ
534D5650	58410000	00000000	00000000	00000000	00000000	00000000	00000041	AAXPV%S	B094610

:

The SHOW HEADER command displays the contents of the dump file's header. Ellipses indicate hexadecimal information omitted from the display; two slashes (//) indicate an interruption in the ASCII display.

SHOW LAN

Displays information contained in various local area network (LAN) data structures.

Format

SHOW LAN [/qualifier[,...]]

Parameters

None.

Qualifiers

/CLIENT=name

Specifies that information be displayed for the specified client. Valid client designators are SCA, DECNET, LAT, MOPRC, TCPIP, DIAG, ELN, BIOS, LAST, USER, ARP, MOPDL, LOOP, BRIDGE, DNAME, ENCRY, DTIME, and LTM. The /CLIENT, /DEVICE, and /UNIT qualifiers are synonymous and mutually exclusive.

/CLUEXIT

Specifies that cluster protocol information be displayed.

/COUNTERS

Specifies that the LAN station block (LSB) and unit control block (UCB) counters be displayed.

/CSMACD

Specifies that Carrier Sense Multiple Access with Collision Detect (CSMA/CD) information for the LAN be displayed. By default, both CSMA/CD and Fiber Distributed Data Interface (FDDI) information is displayed.

/DEVICE=name

Specifies that information be displayed for the specified device, unit, or client. For each LAN adapter on the system there is one **device** and multiple users of that device called **units** or **clients**. Device designators are specified in the format **XXdn**, where **XX** is the type of device, **d** is the device letter, and **n** is the unit number. The device letter and unit number are optional. The first unit, which is always present, is the template unit. These are specified as indicated in this example, for a DEMNA which is called EX:

/DEVICE=EX—display all EX devices on the system /DEVICE=EXA—display the first EX device only /DEVICE=EXA0—display the first EXA unit /DEVICE=SCA—display SCA unit /DEVICE=LAT—display LAT units

Valid client names are listed in the /CLIENT=name qualifier. The /CLIENT, /DEVICE, and /UNIT qualifiers are synonymous and mutually exclusive.

/ERRORS

Specifies that the LSB and UCB error counters be displayed.

/FDDI

Specifies that Fiber Distributed Data Interface (FDDI) information for the LAN be displayed. By default, both CSMA/CD and FDDI information is displayed.

/FULL

Specifies that all information from the LAN, LSB, and UCB data structures be displayed.

/SUMMARY

Specifies that only a summary of LAN information (a list of flags, LSBs, UCBs, and base addresses) be printed. This is the default.

/TIMESTAMPS

Specifies the print time information (such as start and stop times and error times) from the device and unit data structures. SDA displays the data in chronological order.

/UNIT=name

Specifies that information be displayed for the specified unit. See the descriptions for /CLIENT=name and /DEVICE=name qualifiers.

Description

The SHOW LAN command displays information contained in various local area network (LAN) data structures. By default, or when the /SUMMARY qualifier is specified, SHOW LAN displays a list of flags, LSBs, UCBs, and base addresses. When the /FULL qualifier is specified, SHOW LAN displays all information found in the LAN, LSB, and UCB data structures.

Examples

1. SDA> SHOW LAN/FULL

LAN Data Structures

-- LAN Information Summary 12-FEB-1995 11:08:45 --

LAN flags: 00000002 LAN_INIT

LAN module version	1	First SVAPTE	FFE06960
LAN address	805636C0	Number of PTEs	2
Number of stations	1	SVA of first page	81A58000
First LSB address	8057B240		

-- LAN CSMACD Network Management 12-FEB-1995 11:08:45 --

Creation time	None	Times created	0
Deletion time	None	Times deleted	0
Module EAB	00000000	Latest EIB	0000000
Port EAB	00000000		
Station EAB	00000000		
NM flags: 00000000			

-- LAN FDDI Network Management 12-FEB-1995 11:08:45 --

Creation time	None	Times created	0
Deletion time	None	Times deleted	0
Module EAB	00000000	Link EAB	0000000
Port EAB	00000000	PHY port EAB	0000000
Station EAB	00000000		
NM flags: 00000000			

-- ESA Device Information 12-FEB-1995 11:08:45 --

LSB address		8057B240	Active unit count		3
ADP address		80572600	IDB address		8054F900
Driver version (0000001	01050019	Driver code address		8046BDE0
Devicel version (00000000	00000000	Devicel code address		00000000
Device2 version (00000000	00000000	Device2 code address		00000000
LAN version (00000001	01050037	LAN code address		8046BFE0
Device name		ES LANCE	DLL type		CSMACD
MOP ID		- 39	MOP name		SVA
HW version		00000000	HW serial	Not	supplied
Flags: 00000000					

Char: 00000000 Status: 00000003 INITED,RUN

-- ESA Device Information (cont) 12-FEB-1995 11:08:45 --

Fork block R3	00000000	00000000	Alt fork block R3 0000000 0000000
Fork pending flag		00000000	Receive ring size 16
Min receive buffers	1	9	Max receive buffers 17
Put rcv ptr/index		00000000	Get rcv ptr/index 000000D
Put xmt ptr/index		8057BBB8	Get xmt ptr/index 8057BBB8
Put cmd ptr/index		00000000	Get cmd ptr/index 00000000
Put uns ptr/index		00000000	Get uns ptr/index 00000000
Put smt ptr/index		00000000	Get smt ptr/index 00000000
RBufs owned by dev		0	All multicast state OFF
XEnts owned by dev		0	Promiscuous mode OFF
XEnts owned by host		4	Hardware mode 0000000
Controller mode		NORMAL	Hardware address 08-00-2B-1D-B7-58
Internal loopback		OFF	Physical address AA-00-04-00-BD-FD
CRC generation mode	2	ON	

-- ESA Device Information (cont) 12-FEB-1995 11:08:45 --

DAT stage DAT number started DAT number failed	00000000 1 0	DAT xmt status DAT xmt complete DAT rcv found	0000003C 11-FEB	003C0001 14:09:57 None
Creation time Deletion time Enabled time Disabled time	None None None None	Create count Enable count Fatal error count Number of ports		0 0 0
Last fork sched Last receive Last CRC error Last length error Last USB error Last UUB error Last fatal error	12-FEB 11:08:44 12-FEB 11:08:44 None None 12-FEB 10:19:25 None	Last fork time Last transmit Last exc collision Last loss of carrie Last late collision Prev fatal error	12-FEB 12-FEB r	11:08:44 11:08:41 None None None

-- ESA Device Information (cont) 12-FEB-1995 11:08:45 --

System buffer quota	0	Min 1st chain segment	0
Additional quota	1	Min transmit length	0
Maximum quota	8	Receive alignment	0
Device dependent longword	00000000	Receive buffer size	1518
# restarts pending	0	Dev xmt header size	0
NMgmt advised buffer count	0	Events logged	0
EIB address	00000000	NMgmt assigned adr	None

-- ESA Queue Information 12-FEB-1995 11:08:45 --

8057B428	Status:	Valid,	empty
8057B430	Status:	Valid,	empty
8057B438	Status:	Valid,	empty
8057B420	Status:	Valid,	empty
8057B440	Status:	Valid,	empty
8057B470	Status:	Valid,	10 elements
8057B448	Status:	Valid,	empty
8057B450	Status:	Valid,	empty
8057B458	Status:	Valid,	empty
8057B460	Status:	Valid,	empty
8057B468	Status:	Valid,	empty
	8057B428 8057B430 8057B430 8057B420 8057B440 8057B470 8057B470 8057B450 8057B450 8057B458 8057B460 8057B468	8057B428 Status: 8057B430 Status: 8057B438 Status: 8057B420 Status: 8057B420 Status: 8057B470 Status: 8057B470 Status: 8057B458 Status: 8057B458 Status: 8057B458 Status: 8057B468 Status:	8057B428 Status: Valid, 8057B430 Status: Valid, 8057B438 Status: Valid, 8057B420 Status: Valid, 8057B470 Status: Valid, 8057B470 Status: Valid, 8057B450 Status: Valid, 8057B450 Status: Valid, 8057B458 Status: Valid, 8057B460 Status: Valid, 8057B468 Status: Valid,

-- ESA Multicast Address Information 12-FEB-1995 11:08:45 --

AB-00-00-04-00-00

-- ESA Unit Summary 12-FEB-1995 11:08:45 --

UCB	UCB Addr	Fmt	Value	Client	State
ESA0	8054F980				
ESA2	80584E00	Eth	60-03	DECnet	0017 STRTN, LEN, UNIQ, STRTD
ESA3	805A2980	Eth	60-04	LAT	0015 STRTN, UNIQ, STRTD
ESA5	805A7780	Eth	80-41	LAST	0015 STRTN, UNIQ, STRTD

-- ESA Counters Information 12-FEB-1995 11:08:45 --

Octets received	95212950	Octets sent	43030048
PDUs received	684755	PDUs sent	170284
Mcast octets received	78765974	Mcast octets sent	478125
Mcast PDUs received	581005	Mcast PDUs sent	6385
Unrec indiv dest PDUs	0	PDUs sent, deferred	13511
Unrec mcast dest PDUs	0	PDUs sent, one coll	10136
Data overruns	0	PDUs sent, mul coll	10554
Unavail station buffs	0	Excessive collisions	0
Last USB time	None	Last exc collision	None
Unavail user buffers	2	Carrier check failure	0
Last UUB time 12-FEB	8 10:19:25	Last carrier failure	None
CRC errors	0	Short circuit failure	0
Seconds since zeroed	75467	Open circuit failure	0
Station failures	0	Transmits too long	0

-- ESA Counters Information (cont) 12-FEB-1995 11:08:45 --

Last CRC time Last CRC srcadr Alignment errors Frames too long Rcv data length err	None None 0 0 0	Late collisions Last late collision Coll detect chk fail Send data length err Frame size errors	0 None 0 0
Fatal error count Restart failures Power failures Transmit timeouts Control timeouts Invalid length	0 0 0 0 0	Last fatal error Prev fatal error Last error CSR Fatal error code Prev fatal error	None None 00000000 None None

-- ESA Counters Information (cont) 12-FEB-1995 11:08:45 --

Internal counters address	8057C0E0	Internal counter 1	134704
Internal counters size	28	Internal counter 2	0
No work transmits	0	Internal counter 3	0
Buffer Adr transmits	0	Internal counter 4	0
SVAPTE7BOFF transmits	0	Internal counter 5	0
Global page transmits	0	Internal counter 6	0
Bad PTE transmits	0	Internal counter 7	0
Loopback sent	0	Loopback failures	0
System ID sent	250	System ID failures	0
ReqCounters sent	0	ReqCounters failures	0

-- ESA0 Template Unit Information 12-FEB-1995 11:08:45 --

LSB address	8057B240	Error count	0
VCIB address	0000000	Controller mode	NORMAL
Starter's PID	0000000	Internal loopback	OFF
Creator's PID	0000000	Access mode	EXCLUSV
LAN medium	CSMACD	Promiscuous mode	OFF
Packet format	Ethernet	All multicast mode	OFF
Eth protocol type	00-00	Padding mode	ON
802E protocol ID	00-00-00-00-00	Automatic restart	OFF
802.2 SAP	0000000	Allow prom client	ON
802.2 Group SAPs	A8,FA,OD,A7	Can change address	OFF
Maximum header size	0	802.2 service	OFF
Device buffer size	1500	CRC generation mode	e ON
Maximum buffer size	1500	Maintenance state	ON
Hrdwre buffer quota	. 9	User transmit FC	ON
Rcv buffer quota	0	User receive FC	OFF
Rcv buffs to queue	1	Default FC value	00
Hardware address	08-00-2B-1D-B7-58	Physical address	FF-FF-FF-FF-FF-FF

-- ESA2 60-03 (DECnet) Unit Information 12-FEB-1995 11:08:45 --

LSB address	8057B240	Frror count	0
	00576240		0
VCIB address	0000000	Controller mode	NORMAL
Starter's PID	0001000C	Internal loopback	OFF
Creator's PID	0001000C	Access mode	EXCLUSV
LAN medium	CSMACD	Promiscuous mode	OFF
Packet format	Ethernet	All multicast mode	OFF
Eth protocol type	60-03	Padding mode	ON
802E protocol ID	00-00-00-00-00	Automatic restart	OFF
802.2 SAP	0000000	Allow prom client	ON
802.2 Group SAPs	A8,FA,OD,A7	Can change address	OFF
Maximum header size	16	802.2 service	OFF
Device buffer size	1500	CRC generation mode	e ON
Maximum buffer size	1498	Maintenance state	ON
Hrdwre buffer quota	9	User transmit FC	ON
Rcv buffer quota	15040	User receive FC	OFF
Rcv buffs to queue	10	Default FC value	00
Hardware address	08-00-2B-1D-B7-58	Physical address	AA-00-04-00-BD-FD

-- ESA2 60-03 (DECnet) Counters & Misc Info 12-FEB-1995 11:08:45 --

Last receive12-FEB 11:08:40Last transmitOctets received14227801Octets sentDDUa received64065PDUa sent 12-FEB 11:08:39 41873076 PDUs received64065PDUs sentMcast octets received1576501Mcast octets sentMcast PDUs received10077Mcast PDUs sentUnavail user buffer2Last start attempt 121441 302160 5036 None Unavail user buller2Last start accumptNoneLast UUB time12-FEB 10:19:25Last start done11-FEB 14:09:58Multicast not enabled0Last start failedNoneUser buff too small0Share UCB total quota0 User buff too small 0 Share UCB total quota 0 Receive IRP queue 80585070 Status: Valid, 1 element Shared users queue 80585060 Status: Valid, empty Receive pending queue 80585068 Status: Valid, empty -- ESA2 60-03 (DECnet) Multicast Address Info 12-FEB-1995 11:08:45 --Multicast address table, embedded: AB-00-00-04-00-00

The SHOW LAN/FULL command displays information for all LAN, LSB, and UCB data structures.

2. SDA> SHOW LAN/TIME

-- LAN History Information 12-FEB-1995 11:08:48 --

12-FEB 11:08:47.92 12-FEB 11:08:47.92 12-FEB 11:08:47.92 12-FEB 11:08:47.77 12-FEB 11:08:47.72 12-FEB 11:08:41.25 12-FEB 11:08:41.25 12-FEB 11:08:39.14 12-FEB 11:08:37.39 12-FEB 10:19:25.31 12-FEB 10:19:25.31 11-FEB 14:10:20.09	ESA ESA ESA5 ESA3 ESA ESA2 ESA2 ESA3 ESA ESA2 ESA2	LAST LAT LAST DECnet LAT DECnet LAST	Last Last Last Last Last Last Last Last	receive fork scheduled fork time receive receive transmit transmit transmit transmit unavail user buffer unavail user buffer start completed
11-FEB 14:10:20.09	ESA5	LAST	Last	start completed
11-FEB 14:10:02.16 11-FEB 14:09:58.44 11-FEB 14:09:57.44	ESA3 ESA2 ESA	LAT DECnet	Last Last Last	start completed start completed DAT transmit

The SHOW LAN/TIME command displays print time information from device and unit data structures.

SHOW LOCK

Displays information about all lock management locks in the system, or about a specified lock.

Format

Parameter

lock-id Name of a specific lock.

Qualifiers

/ALL

Lists all locks that exist in the system. This is the default behavior of the SHOW LOCK command.

/CACHED

Displays locks that are no longer valid. The memory for these locks is kept around so that later requests for locks can use them. Cached locks are not displayed in the other SHOW LOCK commands.

/NAME=name

Displays a specified lock with the given name.

Description

The SHOW LOCK command displays the information described in Table SDA–10 for each lock management lock in the system, or for the lock indicated by **lock-id**. (Use the SHOW SPINLOCKS command to display information about spin locks.) You can obtain a similar display for the locks owned by a specific process by issuing the appropriate SHOW PROCESS/LOCKS command. See the *OpenVMS Programming Concepts Manual* for additional information.

You can display information about the resource to which a lock is queued by issuing the SHOW RESOURCE command specifying the resource's **lock-id**.

Table SDA-10 Contents of the SHOW LOCK and SHOW PROCESS/LOCKS Displays

Display Element	Description
Process Index ¹	Index in the PCB array to a pointer to the process control block (PCB) of the process that owns the lock.
Name ¹	Name of the process that owns the lock.

¹This display element is produced only by the SHOW PROCESS/LOCKS command.

(continued on next page)

Display Element	Description
Extended PID ¹	Clusterwide identification of the process that owns the lock.
Lock ID	Identification of the lock.
PID	Systemwide identification of the lock.
Flags	Information specified in the request for the lock.
Par. ID	Identification of the lock's parent lock.
Granted at	Lock mode at which the lock was granted.
Sublocks	Identification numbers of the locks that the lock owns.
LKB	Address of the lock block (LKB). If a blocking AST has been enabled for this lock, the notation "BLKAST" appears next to the LKB address.
Resource	Dump of the resource name. The two leftmost columns of the dump show its contents as hexadecimal values, the least significant byte being represented by the rightmost two digits. The rightmost column represents its contents as ASCII text, the least significant byte being represented by the leftmost character.
Status	Status of the lock, information used internally by the lock manager.
Length	Length of the resource name.
Mode	Processor access mode of the namespace in which the resource block (RSB) associated with the lock resides.
Owner	Owner of the resource. Certain resources owned by the operating system list "System" as the owner. Resources owned by a group have the number (in octal) of the owning group in this field.
Сору	Indication of whether the lock is mastered on the local system or is a process copy.

Table SDA–10 (Cont.) Contents of the SHOW LOCK and SHOW PROCESS /LOCKS Displays

¹This display element is produced only by the SHOW PROCESS/LOCKS command.

Example

SDA> SHOW Lock datab	LOCK ase						
Lock id:	00010001	PID:	0000000	0 Flags	NOQUE	JE SYNCSTS	SYSTEM
Sublocks:	1	Granted	at i	1X	CVISI	0	
LKB:	80D0B8A0						
Resource:	5F535	5953 2453	5953	SYS\$SYS_	Status:	NOQUOTA	
Length	16 0000	0000 4C77	4449	IDwL			
Exec. mod	e 00000	0000 0000	0000				
System	00000	0000 0000	0000				
Local copy							

Lock id: 00010004 PID: 00000000 Flags: CONVERT SYNCSTS CVTSYS Par. id: 00000000 Granted at CR Sublocks: 16 LKB: 80D091A0 BLKAST Resource: 4D567624 42313146 F11B\$vVM Status: NOQUOTA Length 18 20204E41 4A353153 S15JAN Kernel mode 00000000 00002020 System 00000000 00000000 Local copy Lock id: 00280009 PID: 00000000 Flags: VALBLK CONVERT SYNCSTS Par. id: 00000000 Granted at CR NOQUOTA CVTSYS Sublocks: 0 LKB: 80CDA880 Resource: 52414B5F 24535953 SYS\$_KAR Status: MSTCPY Length 17 30415544 24455441 ATE\$DUA0 Kernel mode 0000000 000003A :.... System 00000000 0000000 Master copy of lock 001C00F5 on system 000100A1 . SDA> SHOW RESOURCE/LOCK=280009 Resource database Address of RSB: 80BD2150 Group grant mode: CR Parent RSB: 0000000 Conversion grant mode: CR Sub-RSB count: 0 BLKAST count: 0 Value block: 00000000 00000000 00000000 00000019 Seq. #: 0000002D Resource: 52414B5F 24535953 SYS\$_KAR Length 17 30415544 24455441 ATE\$DUA0 CSID: 00000000 Resource:
 Kernel mode
 00000000
 00000003A
 :.....

 System
 00000000
 00000000

 Granted queue (Lock ID / Gr mode):
 00DA1269
 CR
 00280009
 CR
 0094054D
 CR

 00270B9F
 CR
 00D70BFE
 CR
 000D0F4F
 CR

 000D1017
 CR
 00601418
 CR
 01131450
 CR

 000F1964
 CR
 000200DF
 CR
 CR
 CR
 CR
 Conversion queue (Lock ID / Gr/Rq mode): *** EMPTY OUEUE *** Waiting queue (Lock ID / Rg mode): *** EMPTY QUEUE ***

This SDA session shows the output of the SHOW LOCK command for several locks. The SHOW RESOURCE command, executed for the last displayed lock, verifies that the lock is in the resource's granted queue, among many other locks given concurrent read (CR) access to the resource. (See Table SDA–17 for a full explanation of the contents of the display of the SHOW RESOURCE command.)

SHOW MACHINE_CHECK

Displays the contents of the stored machine check frame. This command is valid for the DEC 4000 Alpha, DEC 7000 Alpha, and DEC 10000 Alpha computers only.

Format

SHOW MACHINE_CHECK [/FULL] [cpu-id]

Parameter

cpu-id

Numeric value from 00 to $1F_{16}$ indicating the identity of the processor for which context information is to be displayed. This parameter changes the SDA current CPU (the default) to the CPU specified with **cpu-id**. If you specify a value outside this range, or you specify the **cpu-id** of a processor that was not active at the time of the system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the **cpu-id** parameter, the SHOW MACHINE_CHECK command performs an implicit SET CPU command, making the processor indicated by **cpu-id** the current CPU for subsequent SDA commands. (See the description of the SET CPU command and Section 4 for information on how this can affect the CPU context—and process context—in which SDA commands execute.)

Qualifier

/FULL

Specifies that a detailed version of the machine check information be displayed. This is currently identical to the default summary display.

Description

The SHOW MACHINE_CHECK command displays the contents of the stored machine check frame. A separate frame is allocated at boot time for every CPU in a multiple-CPU system. This command is valid for the DEC 4000 Alpha, DEC 7000 Alpha, and DEC 10000 Alpha computers only.

If no qualifier is specified, a summary version of the machine check frame is displayed.

The default **cpu-id** is the SDA current CPU.

SDA Commands SHOW MACHINE_CHECK

Examples

SDA> SHOW MACHINE CHE CPU 00 Stored Machine	CK Check Cra	ash Data			
Processor specific in	formation	:			
Exception address: Pal base address: HW Interrupt Request: MM_CSR D-cache address: BIU status: BIU control: Single-bit syndrome: A-box control:	FFFFFFF 00000000 00000000 00000007 00000000	800B0250 00008000 0000342 00003640 FFFFFFF 00000050 50006447 0000000 0000040E	Exception Summary: Exception Mask: HW Interrupt Ena: ICCSR: D-cache status: BIU address [70]: Fill Address: Processor mchck VA: B-cache TAG:	00000000 00000001 00000002 00000000 00000000	00000000 00000000 FFC01CE0 381F0000 000002E0 000060E0 00006120 00006190 83008828
System specific inform	mation:				
Garbage bus info: LCNR: LBER: Bus error cmd:	00200009	00000038 00000001 00000009 00AB1C88	Device type: Memory error: Bus error synd 0,1: Bus error synd 2,3:	000000000000000000000000000000000000000	000B8001 00000000 00000000 0000002C
	SDA> SHOW MACHINE CHB CPU 00 Stored Machine Processor specific in: Exception address: Pal base address: HW Interrupt Request: MM_CSR D-cache address: BIU status: BIU control: Single-bit syndrome: A-box control: System specific infort Garbage bus info: LCNR: LBER: Bus error cmd: LEP mode:	SDA> SHOW MACHINE CHECK CPU 00 Stored Machine Check Cra Processor specific information Exception address: FFFFFFF Pal base address: 0000000 HW Interrupt Request: 0000000 D-cache address: 0000000 D-cache address: 0000000 BIU status: 0000000 BIU control: 0000000 Single-bit syndrome: 0000000 A-box control: 0000000 System specific information: Garbage bus info: 0020009 LCNR: LBER: Bus error cmd: 00048858 LEP mode:	SDA> SHOW MACHINE CHECK CPU 00 Stored Machine Check Crash Data Processor specific information: Exception address: FFFFFFF 800B0250 Pal base address: 0000000 0000342 MM_CSR 0000000 0000342 MM_CSR 0000000 00003640 D-cache address: 0000000 7FFFFFFF BIU status: 0000000 00000050 BIU control: 0000000 00000000 A-box control: 0000000 00000000 A-box control: 0000000 00000000 System specific information: 	SDA> SHOW MACHINE CHECKCPU 00 Stored Machine Check Crash DataProcessor specific information:Exception address:FFFFFFF 800B0250Pal base address:0000000 00008000HW Interrupt Request:0000000 0000342HW Interrupt Request:0000000 00003640D-cache address:0000000 0000000D-cache address:0000000 0000050BIU status:0000000 0000000BIU control:0000000 0000000Single-bit syndrome:0000000 0000000A-box control:0000000 0000000System specific information:	SDA> SHOW MACHINE CHECKCPU 00 Stored Machine Check Crash DataProcessor specific information:Exception address:FFFFFFF 800B0250Pal base address:0000000 00008000HW Interrupt Request:0000000 0000342HW Interrupt Request:0000000 00003640ICCSR:0000000D-cache address:0000000 0000050BIU status:0000000 0000050BIU control:0000000 0000000Single-bit syndrome:0000000 0000000Processor mchck VA:0000000System specific information:Device type:CRN:0000000System specific information:Memory error:LCNR:0000000LBR:000488580000000Bus error synd 0,1:Duddress:0000000LEP mode:00010010LEP lock address:0000000

The SHOW MACHINE_CHECK command in this SDA display shows the contents of the stored machine check frame.

2. SDA> SHOW MACHINE CHECK 1

The SHOW MACHINE_CHECK command in this SDA display shows the contents of the stored machine check frame for **cpu-id** 01.

SHOW PAGE_TABLE

Displays a range of system page table entries, the entire system page table, or the entire global page table.

Format

SHOW PAGE_TABLE [/qualifier[,...]] [range]

Parameter

range

Range of virtual addresses for which SDA is to display page table entries. You can express a range using the following syntax:

- *m:n* Range of virtual addresses from *m* to *n*
- *m*;*n* Range of virtual addresses starting at *m* and continuing for *n* bytes

Qualifiers

/FREE

Causes the free starting addresses of blocks of free page table entries in the specified range to be displayed.

/GLOBAL

Lists the global page table.

/GPT

Specifies the portion of page table space that maps the global page table as the address range.

/L1

Lists the process L1 page table.

/L2

Lists the process L2 page table.

/L3

Lists the process L3 page table.

/PT

Specifies page table space as the address range, as viewed in the context of the current process, or as viewed from system context if there is no current process.

/S0S1

Specifies S0 and S1 space as the address range.

/S2

Specifies S2 space as the address range.

/SPTW

Displays the contents of the system page table window. Level qualifiers are ignored.

/ALL

Lists both the global and system page tables.

SDA Commands SHOW PAGE_TABLE

Description

For each virtual address displayed by the SHOW PAGE_TABLE command, the first six columns of the listing provide the associated page table entry and describe its location, characteristics, and contents. SDA obtains this information from the system page table. Table SDA–11 describes the information displayed by the SHOW PAGE_TABLE command.

Value	Meaning	g					
ADDRESS	System	System virtual address that marks the base of the virtual page.					
SVAPTE	System virtual address of the page table entry that maps the virtual page. Equal values in the two SVAPTE columns indicates a valid link between physical and virtual address space.						
PTE	Content system	s of the page table entry, a quadword that describes a /irtual page.					
Туре	Type of	virtual page. There are the following eight types:					
	Туре	Meaning					
	VALID	Valid page (in main memory).					
	TRANS	Transitional page (between main memory and page lists).					
	DZERO	Demand-allocated, zero-filled page.					
	PGFIL	Page within a paging file.					
	STX	Section table's index page.					
	GPTX	Index page for a global page table.					
	IOPAG	Page in I/O address space.					
	NXMEN	1 Page not represented in physical memory. The page frame number (PFN) of this page is not mapped by any of the system's memory controllers. This indicates an error condition.					
READ	A code, processo for whic	derived from bits in the PTE, that designates the or access modes (kernel, executive, supervisor, or user) ch read access is granted.					
WRITE	A code, processo for whic	derived from bits in the PTE, that designates the or access modes (kernel, executive, supervisor, or user) ch write access is granted.					
Bits	Letters bits in t followin	that represent the setting of a bit or a combination of he PTE. These bits indicate attributes of a page. The g codes are listed:					
	Code	Meaning					
	A	Address space match is set.					
	Μ	Page has been modified.					
	L	Page is locked into a working set.					
	Κ	Owner can access the page in kernel mode.					
	Ε	Owner can access the page in executive mode.					
	S	Owner can access the page in supervisor mode.					
	U	Owner can access the page in user mode.					
GH	Content	ts of granularity hint bits.					

Table SDA-11 Virtual Page Information in the SHOW PAGE_TABLE Display

If the virtual page has been mapped to a physical page, the last seven columns of the listing include information from the page frame number (PFN) database Otherwise, the section is left blank. Table SDA–12 describes the physical page information displayed by the SHOW PAGE_TABLE command.

Category	Meaning				
PAGTYP	Type of physical page. It is one of the following types:				
	Page Type	Meaning			
	PROCESS	Page is part of process space.			
	SYSTEM	Page is part of system space.			
	GLOBAL	Page is part of a global section.			
	PPGTBL Page is part of a process page table.				
	GPGTBL	Page is part of a global page table.			
	GBLWRT	Page is part of a global, writable section.			
	UNKNOWN	Unknown.			
LOC	Location of the page within the system. It is one of the following eight types:				
	Location	Meaning			
	ACTIVE	Page is in a working set.			
	MDFYLST	Page is in the modified-page list.			
	FREELST	Page is in the free-page list.			
	BADLST	Page is in the bad-page list.			
	RELPEND	Release of the page is pending.			
	RDERROR	Page has had an error during an attempted read operation.			
	PAGEOUT	Page is being written into a paging file.			
	PAGEIN	Page is being brought into memory from a paging file.			
BAK	Place to find i PTE are broke the number of	nformation on this page when all links to this en: either an index into a process section table or a virtual block in the paging file.			
REFCNT	Number of ref	erences being made to this page.			
SVAPTE	System virtua the virtual pa indicates a va space.	ystem virtual address of the page table entry that maps ne virtual page. Equal values in the two SVAPTE columns ndicates a valid link between physical and virtual address pace.			

 Table SDA-12
 Physical Page Information in the SHOW PAGE_TABLE Display

(continued on next page)

Category	Meaning
FLINK	Forward link within PFN database that points to the next physical page; this longword also acts as the count of the number of processes that are sharing this global section.
BLINK	Backward link within PFN database; also acts as an index into the working set list.

Table SDA–12 (Cont.) Physical Page Information in the SHOW PAGE_TABLE Display

SDA indicates pages are inaccessible by displaying the following message:

----- n NULL PAGES

Here, *n* indicates the number of inaccessible pages.

SHOW PFN_DATA

Displays information that is contained in the page lists and PFN database.

Format

SHOW PFN_DATA { [/qualifier] [pfn] [;length] [pfn] [:end-pfn] }

Parameters

pfn

Page frame number (PFN) of the physical page for which information is to be displayed.

length

Specifies the length of the PFN list to be displayed. When you specify the **length** parameter, a range of PFNs is displayed. This range starts at the PFN specified by the **pfn** parameter and contains the number of entries specified by the **length** parameter.

end-pfn

Specifies the last PFN to be displayed. When you specify the **end-pfn** parameter, a range of PFNs is displayed. This range starts at the PFN specified by the **pfn** parameter and ends with the PFN specified by the **end-pfn** parameter.

Qualifiers

/ADDRESS=<PFN-entry-address>

Displays the PFN database entry at the address specified. The address specified is rounded to the nearest entry address so if you have an address that points to one of the fields of the entry, the correct database entry will still be found.

/ALL

Displays the free-page list, modified-page list, and bad-page list. This is the default behavior of the SHOW PFN_DATA command. SDA precedes each list with a count of the pages it contains and its low and high limits.

/BAD

Displays the bad-page list. SDA precedes the list with a count of the pages it contains, its low limit, and its high limit.

/FREE

Displays the free-page list. SDA precedes the list with a count of the pages it contains, its low limit, and its high limit.

/MODIFIED

Displays the modified-page list. SDA precedes the list with a count of the pages it contains, its low limit, and its high limit.

/SYSTEM

Displays the entire PFN database in order by page frame number, starting at PFN 0000.

Description

For each page frame number it displays, the SHOW PFN_DATA command lists information used in translating physical page addresses to virtual page addresses. The display has two lines of information. Table SDA–13 shows the first line's fields; Table SDA–14 shows the second line's fields.

Table SDA-13 Page Frame Number Information—Line One Fields

Item	Contents	Contents				
PFN	Page frame number.					
DB ADDRESS	Address of PF	Address of PFN structure for this page.				
PT PFN	PFN of the pa	PFN of the page page table page that maps this page.				
BAK	Place to find i to this PTE an section table o paging file.	Place to find information on this page when all links to this PTE are broken: either an index into a process section table or the number of a virtual block in the paging file.				
FLINK	Forward link physical page; number of pro	Forward link within PFN database that points to the next physical page; this longword also acts as the count of the number of processes that are sharing this global section.				
BLINK	Backward link into the worki	Backward link within PFN database; also acts as an index into the working set list.				
SWP/BO	Either a swap count, depend	Either a swap file page number or a buffer object reference count, depending on a flag set in the page state field.				
LOC	Location of th following eigh	e page within the system. It is one of the types:				
	Location	Meaning				
	ACTIVE	Page is in a working set.				
	MDFYLST	Page is in the modified-page list.				
	FREELST	Page is in the free-page list.				
	BADLST	Page is in the bad-page list.				
	RELPEND	Release of the page is pending.				
	RDERROR	Page has had an error during an attempted read operation.				
	PAGEOUT	Page is being written into a paging file.				
	PAGEIN	Page is being brought into memory from a paging file.				

(continued on next page)

ltem	Contents				
FLAGS	Displays in text form the flags that are set in page state. Possible flags are:				
	Flag	Meaning			
	BUFOBJ	Set if any buffer objects reference this page.			
	COLLISION	Empty collision queue when page read is complete.			
	BADPAG	Bad page.			
	RPTEVT	Report event on I/O completion.			
	DELCON	Delete PFN when REFCNT=0.			
	MODIFY	Dirty page (modified).			
	UNAVAILABLE	PFN is unavailable. Most likely a console page.			

Table SDA-13 (Cont.) Page Frame Number Information—Line One Fields

_ine Two Fields
•

Item	Contents					
Blank						
PTE ADDRESS	System virtual address of the page table entry that describes the virtual page mapped into this physical page					
Blank						
Blank						
Blank						
Blank						
REFCNT	Number of ref	Number of references being made to this page.				
PAGETYP	Type of physical page. It is one of the following:					
	Page Type	Meaning				
	PROCESS	Page is part of process space.				
	SYSTEM	Page is part of system space.				
	GLOBAL	Page is part of a global section.				
	PPT(Ln)	Page is part of a process page table, where n is the page table level number.				
	GPGTBL	Page is part of a global page table.				
	GBLWRT	Page is part of a global, writable section.				

SHOW POOL

Displays the contents of the nonpaged dynamic storage pool and the paged dynamic storage pool. You can display part or all of each pool. If no range or qualifiers are specified, the default is SHOW POOL/ALL. Optionally, it displays the nonpaged pool history ring buffer.

Format

SHOW POOL
$$\begin{bmatrix}
/FREE \\
/HEADER \\
/SUMMARY \\
/TYPE=block-type
\end{bmatrix}
\begin{bmatrix}
range \\
/ALL \\
/NONPAGED \\
/PAGED \\
/RING_BUFFER \\
/STATISTICS
\end{bmatrix}$$

Parameter

range

Range of virtual addresses in pool that SDA is to examine. You can express a range using the following syntax:

- *m:n* Range of virtual addresses in pool from *m* to *n*
- *m*;*n* Range of virtual addresses in pool starting at *m* and continuing for *n* bytes

Qualifiers

/ALL

Displays the entire contents of memory, except for those portions of memory that are free (available). This is the default behavior of the SHOW POOL command.

/FREE

Displays the entire contents, both allocated and free, of the specified region or regions of pool. Use the /FREE qualifier with a **range** to show all of the used and free pool in the given range.

/HEADER

Displays only the first 16 longwords of each data block found within the specified region or regions of pool.

/NONPAGED

Displays the contents of the nonpaged dynamic storage pool currently in use.

/PAGED

Displays the contents of the paged dynamic storage pool currently in use.

/RING_BUFFER

Displays the contents of the nonpaged pool history ring buffer if pool checking has been enabled. Entries are displayed in reverse chronological order; that is, most to least recent. This qualifier is mutually exclusive of all other SHOW POOL qualifiers.

SDA Commands SHOW POOL

/STATISTICS

Displays usage statistics about each lookaside list. For each list, its queue header address, packet size, attempts, fails, and deallocations are displayed.

/SUMMARY

Displays *only* an allocation summary for each specified region of pool.

/TYPE=block-type

Displays the blocks within the specified region or regions of pool that are of the indicated **block-type**. If SDA finds no blocks of that type in the pool region, it displays a blank screen, followed by an allocation summary of the region.

Description

The SHOW POOL command displays information about the contents of any specified region of pool in an 8-column format. The contents of the full display, from left to right, are listed as follows:

Column 1 contains the type of control block that starts at the virtual address in pool indicated in column 2. If SDA cannot interpret the block type, it displays a block type of "UNKNOWN." Column 3 lists the number of bytes (in decimal) of memory allocated to the block.

The remaining columns contain a dump of the contents of the block, in 4-longword intervals, until the block is complete. Columns 4 through 7 display, from right to left, the contents in hexadecimal; column 8 displays, from left to right, the contents in ASCII. If the ASCII value of a byte is not a printing character, SDA displays a period (.) instead.

For each region of pool it examines, the SHOW POOL command displays an allocation summary. This 4-column table lists, in column 2, the types of control block identified in the region and records the number of each in column 1. The last two columns represent the amount of the pool region occupied by each type of control block: column 3 records the total number of bytes, and column 4 records the percentage. The summary concludes with an indication of the number of bytes used within the particular pool region, as well as the number of bytes remaining. It provides an estimate of the percentage of the region that has been allocated.

Examples

SDA: Non-	SDA> SHOW POOL GOBADE00;260 Non-paged dynamic storage pool						
			Dump of b	locks all	ocated fro	om non-pag	ged pool
CIMS	G	80BADE00	144 001000DA D9B3001C 41414141 41414141 41414141	003C0090 00000000 00000600 41414141 41414141	0000A900 A0B5001D 65EA0004 41414141 41414141	00036FF0 35E60017 00000600 41414141 41414141	.0 5eAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
UNKI	10MN	80BADE90	112 41414141 41414141 41414141 41414141	41414141 41414141 41414141 41414141	41414141 41414141 41414141 41414141	41414141 41414141 41414141 41414141	АЛЛАЛАЛАЛАЛАЛА АЛЛАЛАЛАЛАЛАЛАЛ АЛЛАЛАЛАЛАЛАЛАЛА АЛЛАЛАЛАЛАЛАЛАЛ АЛЛАЛАЛАЛАЛАЛАЛА
CIDO		80BADED0	144 807708BB 61616161 61616161 61616161	003B0090 61616161 61616161 61616161	0004D7E0 61616161 61616161 61616161	000008F0 016CE87C 61616161 61616161	;; 1.aaaaaaaaaaa aaaaaaaaaaaaa
UNKI	JOWN	80BADF60	64 61616161 61616161 61616161 61616161	61616161 61616161 61616161 61616161	61616161 61616161 61616161 61616161	61616161 61616161 61616161 61616161	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
CIDO		80BADFA0	144 807708BB 61616161 61616161 61616161	003B0090 61616161 61616161 61616161	0003FFC0 61616161 61616161 61616161	0004B1B0 016CE94C 61616161 61616161	L.l.aaaaaaaaaa aaaaaaaaaaaaaaaaa aaaaaaaa
UNKI	IOMN	80BAE030	48 61616161 61616161 61616161	61616161 61616161 61616161	61616161 61616161 61616161	61616161 61616161 61616161	aaaaaaaaaaaaaaa aaaaaaaaaaaaaa aaaaaaaa
Summ	nary	of non-pa	aged pool con	tents			
	3 1 2 0 1 0	UNKNOWN CIDG CIMSG	= 176 = 288 = 144	(29%) (48%) (24%)			
Tota	al sj	pace used	= 608 out of	608 tota	l bytes,	0 bytes le	eft
Tota	al sj	pace util:	ization = 100	00	- '	-	

This example examines $608 (260_{16})$ bytes of nonpaged pool, starting at address $80BADE00_{16}$, which happens to be the starting address of the CIMSG block listed in the example's output. SDA attempts to identify allocated blocks as it proceeds through the specified region of pool, and displays an allocation summary when it completes the listing.

2. SDA> SHOW POOL/PAGED/HEADER Paged dynamic storage pool

Dump of blocks allocated from paged pool

RSHT	8024FE00	528				
		802DC710	00380210	00000000	FFFFF80	8
LNM	80250010	96				
		8015B847	00400060	802D75A0	00000000	u`.@.G
LNM	80250070	48				
		8015B847	01400030	802500A0	802D7400	.t%.0.@.G
LNM	802500A0	96				
		8015B847	02400060	802DC170	80250070	p.%.p`.@.G
LNM	80250100	48				
		8015B847	00400030	802DC510	802E1B60	`0.@.G
•						

The SHOW POOL/PAGED/HEADER command displays only the name of each block allocated from paged pool, its starting address, its size, and the first 4 longwords of its contents.

SHOW PORTS

Displays those portions of the port descriptor table (PDT) that are port independent.

Format

SHOW PORTS [/qualifier[,...]]

Parameters

None.

Qualifiers

/ADDRESS=pdt-address

Displays the specified port descriptor table (PDT). You can find the **pdt-address** for any active connection on the system in the **PDT summary page** display of the SHOW PORTS command. This command also defines the symbol PE_PDT. The connection descriptor table (CDT) addresses are also stored in many individual data structures related to System Communications Services (SCS) connections; for instance, in the path block displays of the SHOW CLUSTER/SCS command.

/BUS=bus-address

Displays bus (LAN device) structure data.

/CHANNEL=channel-address

Displays channel (CH) data.

/DEVICE

Displays the network path description for a channel.

/MESSAGE

Displays the message data associated with a virtual circuit (VC).

/NODE=node

Shows only the virtual circuit block associated with the specific node. When you use the /NODE qualifier, you must also specify the address of the PDT using the /ADDRESS qualifier.

/VC=vc-address

Displays the virtual circuit data.

Description

The SHOW PORTS command provides port-independent information from the port descriptor table (PDT) for those CI ports with full System Communications Services (SCS) connections. This information is used by all SCS port drivers.

Note that the SHOW PORTS command does not display similar information about UDA ports, BDA ports, and similar controllers.

SDA Commands SHOW PORTS

The SHOW PORTS command also defines symbols for PEDRIVER based on the cluster configuration. These symbols include the following information:

- Virtual circuit (VC) control blocks for each of the remote systems
- Bus data structure for each of the local LAN adapters
- Some of the data structures used by both PEDRIVER and the LAN drivers

The following symbols are defined automatically:

- VC_nodename—Example: VC_NODE1, address of the local node's virtual circuit to node NODE1.
- CH_nodename—The preferred channel for the virtual circuit. For example, CH_NODE1, address of the local node's preferred channel to node NODE1.
- BUS_busname—Example: BUS_ETA, address of the local node's bus structure associated with LAN adapter ETA0.
- PE_PDT—Address of PEDRIVER's port descriptor table.
- MGMT_VCRP_busname—Example: MGMT_VCRP_ETA, address of the management VCRP for bus ETA.
- HELLO_VCRP_busname—Example: HELLO_VCRP_ETA, address of the HELLO message VCRP for bus ETA.
- VCIB_busname—Example: VCIB_ETA, address of the VCIB for bus ETA.
- UCB_LAVC_busname—Example: UCB_LAVC_ETA, address of the LAN device's UCB used for the local-area VMScluster protocol.
- UCB0_LAVC_busname—Example: UCB0_LAVC_ETA, address of the LAN device's template UCB.
- LDC_LAVC_busname—Example: LDC_LAVC_ETA, address of the LDC structure associated with LAN device ETA.
- LSB_LAVC_busname—Example: LSB_LAVC_ETA, address of the LSB structure associated with LAN device ETA.

These symbols equate to system addresses for the corresponding data structures. You can use these symbols, or an address, after the equal sign in SDA commands.

The SHOW PORTS command produces several displays. The initial display, the **PDT summary page**, lists the PDT address, port type, device name, and driver name for each PDT. Subsequent displays provide information taken from each PDT listed on the summary page.

You can use the /ADDRESS qualifier to the SHOW PORTS command to produce more detailed information about a specific port. The first display of the SHOW PORTS/ADDRESS command duplicates the last display of the SHOW PORTS command, listing information stored in the port's PDT. Subsequent displays list information about the port blocks and virtual circuits associated with the port.

Example

SDA> SHOW PORTS/ADDRESS=80618400 --- Port Descriptor Table (PDT) 80618400 ---Type: 03 pe Characteristics: 0000 --- Port Block 80618BC0 ---Status: 0001 authorize VC Count: 3 Secs Since Last Zeroed: 18635 SBUF Size 516 LBUF Size 1848 Next Refork 1863571 SBUF Count 9 LBUF Count 1 Forks Count 217383 SBUF Max 768 LBUF Max 384 Refork Count 0 SBUF Quo 11 LBUF Quo 1 SCS Messages 198478 SBUF Miss 9 LBUF Miss 249 VC Queue Cnt 12308 SBUF Miss 9 LBUF Miss 249 VC Queue Cnt 12308 SBUF Ailocs 205551 LBUF Allocs 598 TQE Received 18635 SBUFS In Use 0 LBUFS In Use 0 Timer Done 18635 SBUF Queue Empty 0 LBUF Queue Empty 0 LDL Buf/Msg 6218 TR SBUF Queue Empty 0 No SBUF for ACK 0 Bus Addr Bus LAN Address Error Count Last Error Time of Last Error --- Virtual Circuit (VC) Summary ---

VC Addr	Node	SCS ID	Lcl ID	Status Summary	Last Event Time
8062A240	FLAM5	65479	223/DF	open,path	31-AUG-1995 17:30:17.05
8062BA40	VANDQ1	64894	222/DE	open,path	31-AUG-1995 17:30:18.87
8062BEC0	ROMRDR	64515	221/DD	open,path	31-AUG-1995 17:30:19.07

This example illustrates the output produced by the SHOW PORTS command for the PDT at address 80618400.

SHOW PROCESS

Displays the software and hardware context of any process in the balance set.

Format

SHOW PROCESS [/qualifier[,...]] [/ADDRESS=pcb-address] ALL process-name /INDEX=nn /SYSTEM

Parameters

ALL

Shows information about all processes that exist in the system.

process-name

Name of the process for which information is to be displayed. Use of the **process-name** parameter, the /INDEX qualifier, or the /SYSTEM qualifier causes the SHOW PROCESS command to perform an implicit SET PROCESS command, making the indicated process the current process for subsequent SDA commands. You can determine the names of the processes in the system by issuing a SHOW SUMMARY command.

The **process-name** can contain up to 15 letters and numerals, including the underscore (_) and dollar sign (\$). If it contains any other characters, you must enclose the **process-name** in quotation marks (" ").

Qualifiers

/ADDRESS=pcb-address

Specifies the process control block (PCB) address of a process in order to display information about the process.

/ALL

Displays all information shown by the following qualifiers:

/PCB /PHD /REGISTERS /WORKING_SET_LIST /PROCESS_SECTION_TABLE /PAGE_TABLES /CHANNEL /BUFFER_OBJECTS /IMAGES /RMS

/BUFFER_OBJECTS

Displays all the buffer objects that a process has created.

/CHANNEL

Displays information about the I/O channels assigned to the process.

/IMAGES

Displays the address of the image control block, the start and end addresses of the image, the activation code, the protected and shareable flags, the image name, and the major and minor IDs of the image. The /IMAGES qualifier also displays the base, end, image offset, and section type for installed resident images in use by this process.

See the *OpenVMS Linker Utility Manual* and the Install utility chapter in the *OpenVMS System Management Utilities Reference Manual* for more information on images installed using the /RESIDENT qualifier.

/INDEX=nn

Specifies the process for which information is to be displayed by its index into the system's list of software process control blocks (PCBs). You can supply either of the following values for **nn**:

- The process index itself
- The process identification (PID) or extended PID longword, from which SDA extracts the correct index

To obtain these values for any given process, issue the SDA command SHOW SUMMARY.

/INDEX=n

Displays the software and hardware context of the thread which is specified by the index of the software PCB into the system's PCB vector. Alternately, this value could be the process identification (PID or EPID) from which SDA extracts the correct index.

/LOCKS

Displays the lock management locks owned by the current process.

The /LOCKS qualifier produces a display similar in format to that produced by the SHOW LOCKS command. See Table SDA–10 for additional information.

Displays the page tables of the process program (P0) and control (P1) regions, the process L1 and L2 page tables, both the P0 and P1 page tables (/L3), or, optionally, either the page table or the page table entries for a **range** of addresses.

The /RDE=id displays the page tables for the address range of the specified address region. When no ID is specified, the page tables are displayed for all the process-permanent and user-defined regions.

You can express a **range** using the following syntax:

m:n Displays the page table entries that correspond to the range of virtual addresses from m to n

SDA Commands SHOW PROCESS

m;*n* Displays the page table entries that correspond to a range of *n* pages, starting with page *m*

/PCB

Displays the information contained in the process control block (PCB). This is the default behavior of the SHOW PROCESS command.

/PHD

Lists the information included in the process header (PHD).

/PROCESS_SECTION_TABLE

Lists the information contained in the process section table (PST).

/RDE=id

Lists the information contained in the process region table for the specified region. If no region is specified, the entire table is displayed, along with the process-permanent regions.

/REGIONS

Displays the process region table entries for a particular process, or for a particular region if the qualifier is supplied with a region ID for a value. Is a synonym for the /RDE qualifier.

/REGISTERS

Lists the hardware context of the process, as reflected in the process registers stored in the hardware privileged context block (HWPCB), its kernel stack, and possibly, in its PHD.

/RMS[=option[,...]]

Displays certain specified RMS data structures for each image I/O or process permanent I/O file the process has open. To display RMS data structures for process-permanent files, specify the PIO option to this qualifier.

SDA determines the structures to be displayed according to either of the following methods:

- If you provide the name of a structure or structures in the **option** parameter, SHOW PROCESS/RMS displays information from only the specified structures. (See Table SDA–9 for a list of keywords that may be supplied as options.)
- If you do not specify an **option**, SHOW PROCESS/RMS displays the current list of options as shown by the SHOW RMS command and set by the SET RMS command.

/SEMAPHORE

Displays the Inner Mode Semaphore for a multithreaded process.

/SYSTEM

Displays the system process control block. Use of the **process-name** parameter, the /INDEX qualifier, or the /SYSTEM qualifier causes the SHOW PROCESS command to perform an implicit SET PROCESS command, making the indicated process the current process for subsequent SDA commands. (See the description of the SET PROCESS command and Section 4 for information on how this can affect the process context—and CPU context—in which SDA commands execute.) The system PCB and process header (PHD) parallel the data structures that
describe processes. They contain the system working set, global section table, global page table, and other systemwide data.

/THREADS

Displays the software and hardware context of all the threads associated with the current process.

/WORKING_SET_LIST

Displays the working set list for the process.

Description

The SHOW PROCESS command displays information about the process specified by **process-name**, the process specified in the /INDEX qualifier, the system process, or all processes. The SHOW PROCESS command performs an implicit SET PROCESS command under certain uses of its qualifiers and parameters, as noted previously. By default, the SHOW PROCESS command produces information about the SDA current process, as defined in Section 4.

The default of the SHOW PROCESS command provides information taken from the software process control block (PCB). This is the first display provided by the /ALL qualifier and the only display provided by the /PCB qualifier. This information describes the following characteristics of the process:

- Software context
- Condition-handling information
- Information on interprocess communication
- Information on counts, quotas, and resource usage

Among the displayed information are the process PID, EPID, priority, job information block (JIB) address, and process header (PHD) address. SHOW PROCESS also describes the resources owned by the process, such as event flags and mutexes. The "State" field records the process current scheduling state; in a multiprocessing system, the display indicates the CPU ID of any process whose state is CUR.

The SHOW PROCESS/ALL command displays additional process-specific information, also provided by several of the individual qualifiers to the command.

The **process header** display, also produced by the /PHD qualifier, provides information taken from the PHD, which is swapped into memory when the process becomes part of the balance set. Each item listed in the display reflects a quantity, count, or limit for the process use of the following resources:

- Process memory
- The pager
- The scheduler
- Asynchronous system traps
- I/O activity
- CPU activity

The **process registers** display, also produced by the /REGISTERS qualifier, describes the process hardware context, as reflected in its registers.

There are two places where a process hardware context is stored:

- If the process is currently executing on a processor in the Alpha system (that is, in the CUR scheduling state), its hardware context is contained in that processor's registers. (That is, the process registers and the processor's registers contain identical values, as illustrated by a SHOW CPU command for that processor or a SHOW CRASH command if the process was current at the time of the system failure).
- If the process is not executing, its privileged hardware context is stored in the part of the PHD known as the HWPCB. Its integer register context is stored on its kernel stack. Its floating-point registers are stored in its PHD.

The **process registers** display first lists those registers stored in the HWPCB, kernel stack, and PHD ("Saved process registers"). If the process to be displayed is currently executing on a processor in the Alpha system, the display then lists the processor's registers ("Active registers for the current process"). In each section, the display lists the registers in the following groups:

- Integer registers (R0 through R29)
- Special-purpose registers (PC and PS)
- Stack pointers (KSP, ESP, SSP, and USP)
- Page table base register (PTBR)
- AST enable and summary registers (ASTEN and ASTSR)
- Address space number register (ASN)

The **working set information** and **working set list** displays, also produced by the /WORKING_SET_LIST qualifier, describe those virtual pages that the process can access without a page fault. After a brief description of the size, scope, and characteristics of the working set list itself, SDA displays the following information for each entry in the working set list:

Column	Contents		
INDEX	Index into the working set list at which information for this entry can be found		
ADDRESS STATUS	Virtual address of the page that this entry describes Three columns that list the following status information:		
	Location of the page in physical memory		
	Page status of VALID		

• Indication of whether the page is locked into the working set

When SDA locates one or more unused working set entries, it issues the following message:

--- n empty entries

In this message, *n* is the number (in decimal) of contiguous, unused entries.

The **process section table information** and **process section table** displays, also produced by the /PROCESS_SECTION_TABLE qualifier, list each entry in the process section table (PST) and display the offsets to, and the indices of, the first free entry and last used entry.

SDA displays the information listed in Table SDA-15 for each PST entry.

	Display
Part	Definition
INDEX	Index number of the entry. Entries in the process section table begin at the highest location in the table, and the table expands toward lower addresses.
ADDRESS	Virtual address that marks the beginning of the first page of the section described by this entry.
PAGELETS	Length of the process section. This is in units of pagelets, except for a PFN-mapped section in which the units are pages.
WINDOW	Address of the window control block on which the section file is open.
CHANNEL	Address of the channel control block on which the section file is open.
VBN	Virtual block number. The number of the file's virtual block that is mapped into the section's first page.
CLUSTER	Cluster size used when faulting pages into this process section.
REFCNT	Number of pages of this section that are currently mapped.
FLINK	Forward link. The pointer to the next entry in the PST list.
BLINK	Backward link. The pointer to the previous entry in the PST list.
FLAGS	Flags that describe the access that processes have to the process section.

 Table SDA-15
 Process Section Table Entry Information in the SHOW PROCESS

 Display

The **P0 page table**, **P1 page table**, and **P2 page table** displays, also produced by the /PAGE_TABLES qualifier, display listings of the process page table entries in the same format as that produced by the SHOW PAGE_TABLE command (see Tables SDA–11 and SDA–12).

The **process active channels** display, the last produced by SHOW PROCESS /ALL and the only one produced by the /CHANNEL qualifier, displays the following information for each I/O channel assigned to the process:

Column	Contents
Channel	Number of the channel
Window	Address of the window control block (WCB) for the file if the device is a file-oriented device; zero otherwise
Status	Status of the device: "Busy" if the device has an I/O operation outstanding; blank otherwise
Device/file accessed	Name of the device and, if applicable, name of the file being accessed on that device

The information listed under the heading "Device/file accessed" varies from channel to channel and from process to process. SDA displays certain information according to the conditions listed in Table SDA–16.

Information Displayed ¹	Type of Process
dcuu:	SDA displays this information for devices that are not file structured, such as terminals, and for processes that do not open files in the normal way.
dcuu:filespec	SDA displays this information only if you are examining a running system, and only if your process has enough privilege to translate the <i>file-id</i> into the <i>filespec</i> .
dcuu:(file-id)filespec	SDA displays this information only when you are examining a dump. The <i>filespec</i> corresponds to the <i>file-id</i> on the device listed. If you are examining a dump from your own system, the <i>filespec</i> is probably valid. If you are examining a dump from another system, the <i>filespec</i> is probably meaningless in the context of your system.
dcuu:(file-id)	The <i>file-id</i> no longer points to a valid <i>filespec</i> , as when you look at a dump from another system; or the process in which you are running SDA does not have enough privilege to translate the <i>file-id</i> into the corresponding <i>filespec</i> .
¹ This table uses the follow dcu whe dcu file- files	ing conventions to identify the information displayed: u:(file-id)filespec re: u: is the name of the device. id is the RMS file identification. pec is the full file specification, including directory name.

Table SDA-16 Process I/O Channel Information in the SHOW PROCESS Display

Examples

1. SDA> SHOW PROCESS

Process index: 001AName: VERIFICATIONExtended PID: 0000051AProcess status: 22040023RES,PHDRES,INTER
status2: 0000001QUANTUM_RESCHEDPCB address80613240JIB address805B1B40PHD address80C3A000Swapfile disk address0000000KTB vector address80D775ACHWPCB address81260080Callback vector address0000000Termination mailbox0000Master internal PID0005001ASubprocess count0Creator extended PID0000000Creator internal PID0000000Previous CPU Id000000000Current CPU Id00000000Previous ASNSEQ00000000000001Previous ASN000000000002EInitial process priority4Delete pending count0# open files allowed left100Buffered I/O count/limit150/150UIC[00001,00004]Buffered I/O count/limit32128/32128AST's remaining247# of threads1Swapped copy of LEFC00000000Timer entries allowed left20Swapped copy of LEFC10000000Active page table count0Global cluster 2 pointer 0000000Frocess WS page count250Global cluster 3 pointer 0000000Global WS page count0

The SHOW PROCESS command displays information taken from the software PCB of VERIFICATION, the SDA current process. According to the "State" field in the display, process VERIFICATION is current.

Process status:02040001RES,PHDRES,INTER status2:PCB address80613240JIB address805B1B40PHD address8003A000Swapfile disk address0000000KTB vector address800775ACHWPCB address81260080Callback vector address8000000Termination mailbox0000Master internal PID0005001ASubprocess count0Creator extended PID0000000Creator internal PID00000000Previous CPU Id000000000000000000000000000000000	SDA> SHOW PROCESS/ALL Process index: 001A Nam	ne: VERIFICA	TION Extended PID: 0000	051A
PCB address80613240JIB address805B1B40PHD address80C3A000Swapfile disk address0000000KTB vector address80D775ACHWPCB address81260080Callback vector address0000000Termination mailbox0000Master internal PID0005001ASubprocess count0Creator extended PID0000000Creator internal PID0000000Previous CPU Id000000000000000000000000000000000	Process status: status2:	02040001 00000001	RES, PHDRES, INTER QUANTUM_RESCHED	
Extended PID: 00000052 Thread index: 0000 Current capabilities: System: 0000000C OUORUM,RUN	PCB address PHD address KTB vector address Callback vector address Master internal PID Creator extended PID Previous CPU Id Previous ASNSEQ 00000000 Initial process priority # open files allowed left UIC [00001 Mutex count Abs time of last event AST's remaining Swapped copy of LEFC0 Swapped copy of LEFC1 Global cluster 2 pointer Global cluster 3 pointer	80613240 80C3A000 80D775AC 00000000 0005001A 00000000 00000190A 4 100 1,000200] 005D9941 247 0000000 0000000 0000000 0000000 000000	JIB address Swapfile disk address HWPCB address Termination mailbox Subprocess count Creator internal PID Current CPU Id Previous ASN 0000000 Delete pending count Direct I/O count/limit AST's remaining Buffered I/O count/limit BUFIO byte count/limit # of threads Timer entries allowed le Active page table count Process WS page count Global WS page count	805B1B40 0000000 81260080 0000 00000000 00000000 00000003F 0 150/150 97 18/18 32128/32128 1 ft 20 0 250 0
	Extended PID: 00000052 Current capabilities:	Thread in System: 000	dex: 0000 0000C QUORUM,RUN	

SDA Commands SHOW PROCESS

Permanent capabilities:	System: 00000 User: 00000	00C QUORUM, RUN 000
Current affinities: Permanent affinities: Thread status: status2:	00000000 00000000 02040001 00000001	
KTB address PKTA address Internal PID Extended PID State Base priority Waiting EF cluster CPU since last quantum AST's active	80D772C0 H 7FFEFFC0 C 00010012 C 00000052 C LEF F 4 C 0 E FFF1 M NONE	WPCB address81260080allback vector address0000000allback error0000000urrent CPU id0000000lags0000000urrent priority9vent flag wait maskDFFFFFFFutex count0
Saved process registers		
R0 = 0000000 0000001 R3 = 0000000 7FFCF680 R6 = 0000000 7FFCE4C0 R9 = 0000000 7FFC410 R12 = 0000000 7FFAC410 R12 = 0000000 7B0A17A0 R18 = 0000000 7B0A17A0 R18 = 0000000 7B0A17B0 R24 = 0000000 7B015EB8 R27 = FFFFFFF FFFF 80CC5C20 PC = FFFFFFFF 80CC5C28 KSP = 00000000 7FFA1EF0 USP = 0000000 7FFA1EF0 USP = 0000000 7B013AF0 AST{SR/EN} = 0000000F Extended PID: 0000052	$\begin{array}{rcrcr} R1 &=& 00000\\ R4 &=& 00000\\ R7 &=& 00000\\ R10 &=& 00000\\ R13 &=& FFFFF\\ R16 &=& FFFFF\\ R19 &=& 00000\\ R22 &=& FFFFF\\ R25 &=& 00000\\ R28 &=& 00000\\ PS &=& 00000\\ PTBR &=& 00000\\ PTBR &=& 00000\\ ASN &=& 00000\\ Thread index \end{array}$	000 00000000 R2 = FFFFFFFF 80C8FEB0 000 0000001D R5 = 00000000 7FFCF680 000 7FFAC9F0 R8 = 0000000 7FFCF680 000 7FFAC9F0 R8 = 0000000 7B015EB8 000 7FFAD238 R11 = 00000000 7FFCE3E0 FFF 80C68AC0 R14 = 00000000 0000000 FFF 80C05F18 R17 = FFFFFFFF 80D772C0 000 00000001 R20 = 00000000 7FFA1FC0 000 00000005 R26 = 00000000 7FFA1FC0 000 7B0A17A0 FP = 00000000 7FFA2280 000 7FFA6000 SSP = 00000000 7FFA270 000 0000002E x: 00000000 7FFA270 x: 0000 0000 SSP = 00000000
Process header		
First free P0 VA 000000 First free P1 VA 000000 First free P2 VA 000000 Free page file pages Page fault cluster size Page table cluster size Flags Direct I/O count Buffered I/O count Limit on CPU time Maximum page file count Total page faults File limit Timer queue limit Local event flag cluster Page Table Base Register Process page file assignt	00.0000000 00.7B012000 00.8000000 3027 4 1 00000084 27 86 00000000 3125 262 100 20 0 C0000001 00000552 ments	Accumulated CPU time00000014Subprocess quota10ASTs enabledKESUASN sequence #000000000000000AST limit250Process header index0001Backup address vector0005AFE8PTs having locked WSLEs2PTs having valid WSLEs4Active page tables4Maximum active PTs3Guaranteed fluid WS pages20Extra dynamic WS entries94Current page file template 0000000Local event flag cluster 1 8000000Virtual PT BaseFFFFFFC.00000000

PROCIDX SYSIDX REFCNT 0 3 40 Current assignment 1 0 0 2 0 0 3 0 0 Remaining reserved pages 20 Total reserved pages

20

Extended PID: 00000052 Thread index: 0000

Working set information -----

First WSL entry	0000001	Current authorized working set size 250
First locked entry	00000007	Default (initial) working set size 125
First dynamic entry	0000009	Maximum working set allowed (quota) 250
Last entry replaced	00000079	
Last entry in list	00000D3	

Working set list -----

INDEX	ADDRESS		STA	TUS		
0001	ਰਸ਼ਸ਼ਸ਼ਸ਼ਸ	FF7FC000	νατ.τρ	DDT (1.1)	WGT.OCK	
0001	U 1111111 U 7777777	FF000000	VALID	ГГГ (ШГ) РРТ (Т.2)	WSLOCK	
0002	7477777777	001FE000	VALID	DDL (17)	WSLOCK	
0000	00000000	7FFA0000	VALID	PROCESS	MODIFIED	WSLOCK
0005	000000000	777770000	VALID	PROCESS	WSLOCK	попоси
0006	77777777	81260000	VALID	PHD	WSLOCK	
Locked	entries	01200000	VIILLD	1110	HD LO CIT	
0007	00000000	7B108000	VALTD	PROCESS	WSLOCK	
0008	000000000	7B10A000	VALTD	PROCESS	WSLOCK	
Dvnamic	entries	, D1011000	VIILLD	11000000	No Lo en	
0009	00000000	7B054000	VALTD	GLOBAL		
4000	000000000	7B0B0000	VALTD	GLOBAL		
000B	FFFFFFC	001EC000	VALTD	PPT(13)	WSLOCK	
0000	00000000	7B0D0000	VALTD	GLOBAL		
0000	000000000	7B0C4000	VALTD	GLOBAL		
000E	000000000	7B0C0000	VALTD	GLOBAL		
000E	000000000	7FFA4000	VALTD	PROCESS		
0010	000000000	7FFD0000	VALTD	PROCESS		
0011	000000000	7FF96000	VALTD	PROCESS		
0012	000000000	7B0C6000	VALTD	GLOBAL		
0013	000000000	7B0DC000	VALTD	GLOBAL		
0014	00000000	7B0E4000	VALID	GLOBAL		
0015	00000000	7B0E6000	VALID	GLOBAL		
0016	00000000	7B0DE000	VALTD	GLOBAL		
0017	00000000	7FFAA000	VALID	PROCESS		
0018	00000000	7B0E2000	VALID	GLOBAL		
0019	00000000	7FFCE000	VALID	PROCESS		
001A	00000000	7B0D2000	VALID	GLOBAL		
001B	00000000	7B13E000	VALID	PROCESS		
001C	00000000	7B140000	VALID	PROCESS		
001D	00000000	7B0EA000	VALID	GLOBAL		
001E	00000000	7B0CE000	VALID	GLOBAL		
001F	00000000	7B068000	VALID	GLOBAL		
0020	00000000	7B0CC000	VALID	GLOBAL		
0021	00000000	7B07C000	VALID	GLOBAL		
0022	00000000	7B07E000	VALID	GLOBAL		
0023	00000000	7B084000	VALID	GLOBAL		
0024	00000000	7B086000	VALID	GLOBAL		
0025	00000000	7FFB8000	VALID	PROCESS		
0026	00000000	7B144000	VALID	PROCESS		
0027	FFFFFFC	00000000	VALID	PPT(L3)		
0028	00000000	7FF88000	VALID	PROCESS		
0029	00000000	7FFBA000	VALID	PROCESS		
	8 empty e	entries				

0032 0000000 7FF8A000 VALID PROCESS

SDA Commands SHOW PROCESS

---- 6 empty entries 0039 0000000 7B0D6000 VALID GLOBAL 003A 0000000 7B0D8000 VALID GLOBAL ---- 3 empty entries 003E 00000000 7B0DA000 VALID GLOBAL ---- 8 empty entries 0047 0000000 7B066000 VALID GLOBAL 0048 0000000 7B104000 VALID PROCESS 0049 00000000 7B104000 VALID FROCES. 0049 00000000 7B0B8000 VALID GLOBAL 004A 00000000 7B07A000 VALID GLOBAL ---- 11 empty entries 0056 0000000 7B13A000 VALID PROCESS 0057 0000000 7B13C000 VALID PROCESS ---- 81 empty entries 00A9 00000000 7FFEE000 VALID PROCESS 00AA 00000000 7B142000 VALID PROCESS 00AB 00000000 7FFB0000 VALID PROCESS
 00AB
 00000000
 7FFB0000
 VALID
 PROCE

 00AC
 00000000
 7B0FE000
 VALID
 PROCESS

 00AD
 00000000
 7B09E000
 VALID
 PROCESS

 00AE
 00000000
 7B09E000
 VALID
 PROCESS

 00AE
 00000000
 7B0A0000
 VALID
 PROCESS

 00AF
 00000000
 7B0A2000
 VALID
 PROCESS

 00B0
 00000000
 7B0A4000
 VALID
 PROCESS

 00B1
 00000000
 7B100000
 VALID
 PROCESS
 ---- 18 empty entries 00C4 0000000 7B138000 VALID PROCESS Process section table information _____ Last entry allocated 0000 First free entry 0000 P0 Space -----No pages allocated to this region Process active channels -----Channel Window Status Device/file accessed ----------DKB400: 0010 00000000 0040 0000000 Busy OPA0: 0060 0000000 OPA0: OPA0: 0090 80D83BC0 DKB400:(390,17,0) (section file) 00A0 80D8AF40 DKB400: (3888,39,0) (section file) Process activated images

IMCB Start End Sym Vect Type Image Name Major ID, Minor ID
Total images = 0 Pages allocated = 0
Process Buffered Objects
ADDRESS ACMODE SEQUENCE REFCNT PID PAGCNT BASE PVA BASE SVA
No buffer objects for this proces

The SHOW PROCESS/ALL command displays information taken from the PCB of process VERIFICATION, and then proceeds to display the process header, the process registers, the process section table, the P0 page table, the P1 page table, the P2 page table, and information about the I/O channels owned by the process. These displays may also be obtained by the /PCB, /PHD, /REGISTERS, /RDE, /PROCESS_SECTION_TABLE, /P0, /P1, /P2, and /CHANNEL qualifiers, respectively.

3. SDA> SHOW PROCESS/PAGE TABLES/ADDRESS=805E7980

P0 page table

ADDRESS SVAPTE PTE TYPE READ WRIT BITS GH PAGTYP LOC BAK REFCNT SVAPTE FLINK BLINK

----- 8 NULL PAGES

----- 4 NULL PAGES

00020000 80C08080 00000AA1 0016FF09 VALID KESU KESU M-U- 00 PROCESS ACTIVE 0300 00000000000 1 80C08080 00000000 000000F4

----- 7 NULL PAGES

 00030000
 80C080C0
 00000A35
 00060F01
 VALID
 KESU
 NONE
 -LU 00
 PROCESS
 ACTIVE
 0000

 FFE20010000
 1
 80C080C0
 00000000
 000000C6
 0000
 0000
 0000

 00032000
 80C080C8
 00000A36
 00060F01
 VALID
 KESU
 NONE
 --U 00
 PROCESS
 ACTIVE
 0000

 FFE20010000
 1
 80C080C8
 00000000
 000000E1
 0000
 0000
 0000
 0000
 0000
 FFE20010000
 1
 80C080D0
 00000000
 000000E2
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000</td

This example displays the page tables of a process whose PCB address is 805E7980.

SDA Commands SHOW PROCESS

4. SDA> SHOW PROCESS/BUFFER_OBJECTS

Process Buffered Objects

 ADDRESS
 ACMODE
 SEQUENCE
 REFCNT
 PID
 PAGCNT
 BASE PA
 BASE VA

 805E4580
 User
 00000008
 00000001
 00010020
 00000001
 00020000
 826BC000

 805E7880
 User
 0000000A
 0000001
 00010020
 00000001
 00020000
 826BE000

 805F7AEC0
 User
 0000000B
 00000001
 00010020
 00000001
 00020000
 826C0000

 805E6EC0
 User
 0000000B
 00000001
 00010020
 00000001
 00020000
 82764000

The SHOW PROCESS/BUFFER_OBJECTS command displays all the buffered objects that a process has created.

5. SDA> SHOW PROCESS/IMAGES

Process activated images

IMCB	Start	End	Sym Vect	Туре	Image Name	Major	ID,Minor	ID
	00010000							
/FF/8810	00010000	UUIIU/FF	00000000	MAIN	SDA U,U			
./F.F./89B0	001E6000	002263FF	001E80B0	GLBL SHR	LBRSHR 2,9			
7FF76480	001A4000	001E43FF	001A4950	GLBL SHR	SCRSHR 1,29	00		
7FF785A0	00112000	001A27FF	00186AE0	GLBL SHR	SMGSHR 1,10	4		
7FF78060	7FC06000	7FC67FFF	7FC144B0	GLBL SHR	LIBRTL 1,1			
	Base	End	ImageOff	Section 7	Гуре			
	80400000	80481C00	00000000	System Res	ident Code			
	7FC06000	7FC16800	00090000	Shareable A	Address Data			
	7FC26000	7FC27000	000B0000	Read-Write	Data			
	7FC36000	7FC3F600	000C0000	Shareable 1	Read-Only Da	ta		
	7FC46000	7FC46200	000D0000	Read-Write	Data			
	7FC56000	7FC57000	000E0000	Demand Zer	o Data			
	7FC66000	7FC67400	000F0000	Read-Write	Data			
7FF78330	7FC76000	7FCA7FFF	7FC86000	GLBL SHR	LIBOTS 1,3			
	Base	End	ImageOff	Section 7	Гуре			
	80482000	8048FA00	00020000	System Res	ident Code			
	7FC76000	7FC78600	00000000	Shareable 1	Read-Only Da	ta		
	7FC86000	7FC87C00	00010000	Shareable A	Address Data			
	7FCA6000	7FCA6200	00030000	Read-Write	Data			
7FF78130	80810110	8081C770	80810110	GLBL	SYSSBASE IM	AGE 114	1,15303694	
7FF784D0	80802A18	80803FF8	80802A18	GLBL	SYS\$PUBLIC	VECTORS	5 114,1529	5276
Total images = 8 Pages allocated = 344								

The SHOW PROCESS/IMAGES command displays the address of the image control block; the start and end addresses of the image; the activation code; the protected and shareable flags; the image name; the major and minor IDs of the image; and the base, end, image offset, and section type for installed resident images.

SHOW RESOURCE

Displays information about all resources in the system, or about a resource associated with a specific lock.

Format

SHOW RESOURCE

/CACHED /LOCKID=lock-id /NAME=resource-name

Parameters

None.

Qualifiers

/ALL

Displays information from all resource blocks (RSBs) in the system. This is the default behavior of the SHOW RESOURCE command.

/CACHED

Displays resource blocks that are no longer valid. The memory for these resources is kept around so that later requests for resources can use them.

/LOCKID=lock-id

Displays information on the resource associated with the lock with the specified **lock-id**.

/NAME=resource-name

Displays information about a specific resource.

Description

The SHOW RESOURCE command displays the information listed in Table SDA–17 for each resource in the system or for the specific resource associated with the specified **lock-id**.

Field	Contents
Address of RSB	Address of the resource block (RSB) that describes this resource.
Parent RSB	Address of the RSB that is the parent of this RSB. This field is 00000000 if the RSB itself is a parent block.
Sub-RSB count	Number of RSBs of which this RSB is the parent. This field is 0 if the RSB has no sub-RSBs.

Table SDA-17 Resource Information in the SHOW RESOURCE Display

(continued on next page)

Field	Contents		
Group grant mode	Indication of the most restrictive mode in which a lock on this resource has been granted. This field can contain the following values (shown in order from the least restrictive mode to the most restrictive):		
	Value	Meaning	
	NL	Null mode	
	CR	Concurrent-read mode	
	CW	Concurrent-write mode	
	PR	Protected-read mode	
	PW	Protected-write mode	
	EX	Exclusive mode	
	For info modes, s <i>Manual</i>	rmation on conflicting and incompatible lock see the <i>OpenVMS System Services Reference</i>	
Conversion grant mode	Indication of the most restrictive lock mode to which a lock on this resource is waiting to be converted. This does not include the mode for which the lock at the head of the conversion queue is waiting.		
BLKAST count	Number of locks on this resource that have requested a blocking AST.		
Value block	Hexadecimal dump of the 16-byte block value block associated with this resource.		
Sequence #	Sequence number associated with the resource's value block. If the number indicates that the value block is not valid, the words "Not valid" appear to the right of the number.		
CSID	Cluster system identification number (CSID) of the node that owns the resource.		
Resource	Dump of the name of this resource, as stored at the end of the RSB. The first two columns are the hexadecimal representation of the name, with the least significant byte represented by the rightmost two digits in the rightmost column. The third column contains the ASCII representation of the name, the least significant byte being represented by the leftmost character in the column. Periods in this column represent values that correspond to nonprinting ASCII characters.		
Length	Length	in bytes of the resource name.	
Mode	Processor mode of the namespace in which this RSB resides.		

(continued on next page)

Field	Contents
Owner	Owner of the resource. Certain resources, owned by the operating system, list "System" as the owner. Locks owned by a group have the number (in octal) of the owning group in this field.
Granted queue	List of locks on this resource that have been granted. For each lock in the list, SDA displays the number of the lock and the lock mode in which the lock was granted.
Conversion queue	List of locks waiting to be converted from one mode to another. For each lock in the list, SDA displays the number of the lock, the mode in which the lock was granted, and the mode to which the lock is to be converted.
Waiting queue	List of locks waiting to be granted. For each lock in the list, SDA displays the number of the lock and the mode requested for that lock.

Table SDA–17 (Cont.) Resource Information in the SHOW RESOURCE Display

Example

```
SDA> SHOW RESOURCE
Resource database
-----
Address of RSB: 807F6120 Group grant mode: NL
Parent RSB: 806EA180 Conversion grant mode: NL
Sub-RSB count: 0 BLKAST count: 0

        Value block:
        806CE510 0000000 0000002 00000002
        Seq. #:
        0000000

        Resource:
        09ED7324 42313146
        F11B$sí.
        Ength
        CSID:
        00020041

 Length 10 0000000 00000200 .....
Kernel mode 00000000 00000000 .....
              0000000 0000000 .....
 System
Granted queue (Lock ID / Gr mode):
     006801AE NL
Conversion queue (Lock ID / Gr/Rq mode):
      *** EMPTY QUEUE ***
Waiting queue (Lock ID / Rq mode):
      *** EMPTY QUEUE ***
Address of RSB: 807EB9E0 Group grant mode: PW
Parent RSB: 0000000 Conversion grant mode: EX
Sub-RSB count: 0 BLKAST count: 1
Value block: 00000000 0000003 0000000 0000FFF2 Seq. #: 0000027F Not valid
Resource: 32245F24 44414853 SHAD$_$2
Length 16 3A31534A 44243435 54$DJS1:
                                                               CSID: 0002001A
 Kernel mode 00000000 00000000 .....
               0000000 0000000 .....
 System
```

SDA Commands SHOW RESOURCE

Granted queue (Lock ID / Gr mode): 00020301 CR Conversion queue (Lock ID / Gr/Rq mode): 095B00F2 PW/EX Waiting queue (Lock ID / Rq mode): 054400BC EX

The SHOW RESOURCE command displays information taken from the RSBs of all resources in the system. For instance, the RSB at $807EB9E0_{16}$ is a parent block with no sub-RSBs.

SHOW RMS

Displays the RMS data structures selected by the SET RMS command to be included in the default display of the SHOW PROCESS/RMS command.

Format

SHOW RMS

Parameters

None.

Qualifiers

None.

Description

The SHOW RMS command lists the names of the data structures selected for the default display of the SHOW PROCESS/RMS command.

For a description of the significance of the options listed in the SHOW RMS display, see the description of the SET RMS command and Table SDA-9.

For an illustration of the information displayed by the SHOW PROCESS/RMS command, see the examples included in the description of the SHOW PROCESS command.

Examples

1. SDA> SHOW RMS

RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM, XAB,RLB,BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB Display RMS structures for all IFI values.

The SHOW RMS command displays the full set of options available for display by the SHOW PROCESS/RMS command. SDA, by default, selects the full set of RMS options at the beginning of an analysis.

2. SDA> SET RMS=(IFAB,CCB,WCB) SDA> SHOW RMS

RMS Display Options: IFB,CCB,WCB Display RMS structures for all IFI values.

The SET RMS command establishes the IFB, CCB, and WCB as the structures to be displayed when the SHOW PROCESS/RMS command is issued. The SHOW RMS command verifies this selection of RMS options.

SHOW RSPID

Displays information about response IDs (RSPIDs) of all System Communications Services (SCS) connections or, optionally, a specific SCS connection.

Format

SHOW RSPID [/CONNECTION=cdt-address]

Parameters

None.

Qualifier

/CONNECTION=cdt-address

Displays RSPID information for the specific SCS connection whose connection descriptor table (CDT) address is provided in **cdt-address**. You can find the **cdt-address** for any active connection on the system in the **CDT summary page** display of the SHOW CONNECTIONS command. CDT addresses are also stored in many individual data structures related to SCS connections. These data structures include class driver request packets (CDRPs) and unit control blocks (UCBs) for class drivers that use SCS and cluster system blocks (CSBs) for the connection manager.

Description

Whenever a local system application (SYSAP) requires a response from a remote SYSAP, a unique number, called an RSPID, is assigned to the response by the local system. The RSPID is transmitted in the original request (as a means of identification), and the remote SYSAP returns the same RSPID in its response to the original request.

The SHOW RSPID command displays information taken from the response descriptor table (RDT), which lists the currently open local requests that require responses from SYSAPs at a remote node. For each RSPID, SDA displays the following information:

- RSPID value
- Address of the class driver request packet (CDRP), which generally represents the original request
- Address of the CDT that is using the RSPID
- Name of the local process using the RSPID
- Remote node from which a response is required (and has not yet been received)

Examples

1. SDA> SHOW RSPID

--- Summary of Response Descriptor Table(RDT) 805E6F18 ---

RSPID	CDRP Address	CDT Address	Local Process Name	Remote Node
39D00000	8062CC80	805E8710	VMS\$VMScluster	VANDQ1
EE210001	80637260	805E8C90	VMS\$DISK CL DRVR	ROMRDR
EE240002	806382E0	805E8DF0	VMS\$DISK CL DRVR	VANDQ1
EE440003	806393E0	805E8F50	VMS\$TAPE CL DRVR	VANDQ1
5DB90004	80636BC0	805E8870	VMS\$VMScluster	ROMRDR
5C260005	80664040	805E8870	VMS\$VMScluster	ROMRDR
38F80006	80664A80	805E8710	VMS\$VMScluster	VANDQ1

This example shows the default output for the SHOW RSPID command.

2. SDA> SHOW RSPID/CONNECTION=805E8F50

Summar	ry of Response	Descriptor Table	(RDT) 805E6F18	
RSPID	CDRP Address	CDT Address	Local Process Name	Remote Node
EE440003	806393E0	80558750	VMSSTAPE CL DRVR	VANDO1

This example shows the output for a SHOW RSPID/CONNECTION command.

SHOW SPINLOCKS

Displays the multiprocessing synchronization data structures.

Format

SHOW SPINLOCKS [/OWNED] [/BRIEF] [/DYNAMIC] /STATIC]
[name
/ADDRESS=expression
/INDEX=expression
]

Parameter

name

Name of the spin lock, fork lock, or device lock structure to be displayed. Device lock names are of the form [node\$]lock, where node optionally indicates the VMScluster node name (allocation class) and lock indicates the device and controller identification (for example, HAETAR\$DUA).

Qualifiers

/ADDRESS=expression

Displays the lock at the address specified in **expression**. You can use the /ADDRESS qualifier to display a specific device lock; however, the name of the device lock is listed as "Unknown" in the display.

/BRIEF

Produces a condensed display of the lock information displayed by default by the SHOW SPINLOCKS command, including the following: address, spinlock name or device name, IPL or device IPL, rank, index, ownership depth, number of waiting CPUs, CPU ID of the owner CPU, and interlock status (depth of ownership).

/DYNAMIC

Displays information for all device locks in the system.

/FULL

Displays full descriptive and diagnostic information for each displayed spin lock, fork lock, or device lock.

/INDEX=expression

Displays the system spin lock whose index is specified in **expression**. You cannot use the /INDEX qualifier to display a device lock.

/OWNED

Displays information for all spin locks, fork locks, and device locks owned by the SDA current CPU. If a processor does not own any spin locks, SDA displays the following message:

No spinlocks currently owned by CPU xx

The xx represents the CPU ID of the processor.

/STATIC

Displays information for all system spin locks and fork locks.

Description

The SHOW SPINLOCKS command displays status and diagnostic information about the multiprocessing synchronization structures known as spin locks.

A **static spin lock** is a spin lock whose data structure is permanently assembled into the system. Static spin locks are accessed as indexes into a vector of longword addresses called the **spin lock vector**, the address of which is contained in SMP\$AR_SPNLKVEC. System spin locks and fork locks are static spin locks. Table SDA-18 lists the static spin locks.

A **dynamic spin lock** is a spin lock that is created based on the configuration of a particular system. One such dynamic spin lock is the device lock SYSMAN creates when configuring a particular device. This device lock synchronizes access to the device's registers and certain UCB fields. The system creates a dynamic spin lock by allocating space from nonpaged pool, rather than assembling the lock into the system as it does in creating a static spin lock.

See the *OpenVMS Alpha Device Support: Developer's Guide* for a full discussion of the role of spin locks in maintaining synchronization of kernel mode activities in a multiprocessing environment.

Name	Description
QUEUEAST	Fork lock for queuing ASTs at IPL 6
FILSYS	Lock on file system structures
IOLOCK8/SCS	Fork lock for executing a driver fork process at IPL 8
TX_SYNCH	Transaction processing lock
TIMER	Lock for adding and deleting timer queue entries and searching the timer queue
IO_MISC	Miscellaneous short term I/O locks
MMG	Lock on memory management, PFN database, swapper, modified page writer, and creation of per-CPU database structures
SCHED	Lock on process control blocks (PCBs), scheduler database, and mutex acquisition and release structures
IOLOCK9	Fork lock for executing a driver fork process at IPL 9
IOLOCK10	Fork lock for executing a driver fork process at IPL 10
IOLOCK11	Fork lock for executing a driver fork process at IPL 11
MAILBOX	Lock for sending messages to mailboxes
POOL	Lock on nonpaged pool database
PERFMON	Lock for I/O performance monitoring

Table SDA–18 Static Spin Locks

(continued on next page)

Name	Description
INVALIDATE	Lock for system space translation buffer (TB) invalidation
HWCLK	Lock on hardware clock database, including the quadword containing the due time of the first timer queue entry (EXE\$GQ_1ST_TIME) and the quadword containing the system time (EXE\$GQ_SYSTIME)
MEGA	Lock for serializing access to fork-wait queue
EMB/MCHECK	Lock for allocating and releasing error-logging buffers and synchronizing certain machine error handling

Table SDA-18	(Cont.)	Static Spin L	ocks
--------------	---------	---------------	------

For each spin lock, fork lock, or device lock in the system, SHOW SPINLOCKS provides the following information:

- Name of the spin lock (or device name for the device lock)
- Address of the spinlock data structure (SPL)
- The owner CPU's CPU ID
- · IPL at which allocation of the lock is synchronized on a local processor
- Number of nested acquisitions of the spin lock by the processor owning the spin lock ("Ownership Depth")
- Rank of the spin lock
- Number of processors waiting to obtain the spin lock
- Spinlock index (for static spin locks only)
- Timeout interval for spinlock acquisition (in terms of 10 milliseconds)

SHOW SPINLOCKS/BRIEF produces a condensed display of this same information.

If the system under analysis was executing with full-checking multiprocessing enabled (according to the setting of the MULTIPROCESSING system parameter), SHOW SPINLOCKS/FULL adds to the spinlock display the last eight PCs at which the lock was acquired or released. If applicable, SDA also displays the PC of the last release of multiple, nested acquisitions of the lock.

Examples

1.

SDA> SHOW SPINLOC System static spin	KS nlock structur	es	
EMB Owner CPU ID Ownership Depth CPUs Waiting	None 00000000 00000000	Address DIPL Rank Index	80424480 0000001F 00000000 00000020
EMB Owner CPU ID Ownership Depth CPUs Waiting	None 00000000 00000000	Address DIPL Rank Index	80424480 0000001F 00000000 00000020
MEGA Owner CPU ID Ownership Depth CPUs Waiting	None 00000000 00000000	Address DIPL Rank Index	80424500 00000016 00000002 00000022
HWCLK Owner CPU ID Ownership Depth CPUs Waiting	None 00000000 00000000	Address DIPL Rank Index	80424580 00000016 00000004 00000024
· ·			
System dynamic sp	inlock structu	res	
OPA Owner CPU ID Ownership Depth CPUs Waiting	None 00000000 00000000	Address DIPL Rank	8041E880 00000014 FFFFFFFF
MBA Owner CPU ID Ownership Depth CPUs Waiting	None 00000000 00000000	Address DIPL Rank Index	80424780 0000000B 0000000C 0000002C
NLA Owner CPU ID Ownership Depth CPUs Waiting	None 00000000 00000000	Address DIPL Rank Index	80424780 0000000B 0000000C 0000002C
PKI Owner CPU ID Ownership Depth CPUs Waiting	None 00000000 00000000	Address DIPL Rank	80552800 00000014 FFFFFFFF

. .

This excerpt illustrates the default output of the SHOW SPINLOCKS command.

SDA Commands SHOW SPINLOCKS

2.	SDA> SHO Address	N SPINLOCKS/H Spnlck Name	BRIEF IPL	Rank	Index	Depth	#Waiting	Ownr CPU	Interlock
	8041F400	EMB	001F	00000000	00000020	00000000	00000000	None	Free
	8041F400	EMB	001F	00000000	00000020	00000000	00000000	None	Free
	8041F480	MEGA	001F	00000002	00000022	00000000	00000000	None	Free
	8041F500	HWCLK	0016	00000004	00000024	00000000	00000000	None	Free
	8041F580	INVALIDATE	0015	00000006	00000026	00000000	00000000	None	Free
	8041F600	PERFMON	000F	00000008	00000028	00000000	00000000	None	Free
	8041F680	POOL	000B	A000000A	0000002A	00000000	00000000	None	Free
	8041F700	MAILBOX	000B	0000000C	0000002C	00000000	00000000	None	Free
	8041F780	IOLOCK11	000B	0000000E	0000002E	00000000	00000000	None	Free
	8041F800	IOLOCK10	000A	0000000F	0000002F	00000000	00000000	None	Free
	8041F880	IOLOCK9	0009	00000010	0000030	00000000	00000000	None	Free
	8041F900	SCHED	0008	00000012	00000032	00000000	00000000	None	Free
	8041F980	MMG	0008	00000014	0000034	00000000	00000000	None	Free
	8041FA00	IO_MISC	0008	00000016	00000036	00000000	00000000	None	Free
	8041FA80	TIMER	0008	00000018	00000038	00000000	00000000	None	Free
	8041FB00	TX_SYNCH	0008	00000019	00000039	00000000	00000000	None	Free
	8041FB80	SCS	0008	000001A	000003A	00000000	00000000	None	Free
	8041FC00	FILSYS	0008	0000001C	0000003C	00000000	00000000	None	Free
	8041FC80	QUEUEAST	0006	0000001E	000003E	00000000	00000000	None	Free
	80419880	PIPERA\$OPA	0015	FFFFFFFF		00000000	00000000	None	Free
	8041F700	PIPERA\$MBA	000B	0000000C	0000002C	00000000	00000000	None	Free
	8041F700	PIPERA\$NLA	000B	0000000C	0000002C	00000000	00000000	None	Free
	805E9900	PIPERAŞDKB	0016	FFFFFFFF		00000000	00000000	None	Free
	805E9E80	PIPERA\$PKB	0015	FFFFFFFF		00000000	00000000	None	Free
	8041FB80	PIPERAȘFTA	0008	0000001A	0000003A	00000000	00000000	None	Free
	805B9400	PIPERAŞPKA	0015	FFFFFFFF		00000000	00000000	None	Free
	805BBC00	PIPERAŞDKA	0016	FFFFFFFF		00000000	00000000	None	Free
	805BC780	PIPERAȘESA	0015	FFFFFFFF		00000000	00000000	None	Free
	805BE080	PIPERAȘTTA	0015	FFFFFFFF		00000000	00000000	None	Free
	805BEB00	PIPERAȘSOA	0015	FFFFFFFF		00000000	00000000	None	Free
	8041FB80	PIPERAȘNET	0008	0000001A	0000003A	00000000	00000000	None	Free
	8041FB80	PIPERAȘNDA	0008	0000001A	0000003A	00000000	00000000	None	Free
	8041FB80	PIPERAȘRTA	0008	0000001A	0000003A	00000000	00000000	None	Free
	8041FB80	PIPERAȘRTB	0008	0000001A	000003A	00000000	00000000	None	Free
	8041FB80	PIPERAȘLTA	0008	0000001A	000003A	00000000	00000000	None	Free
	8041FB80	PIPERAȘRTC	0008	0000001A	000003A	00000000	00000000	None	Free
	8041FB80	PIPERA\$PDA	0008	0000001A	000003A	00000000	00000000	None	Free

This excerpt illustrates the condensed form of the display produced in the first example.

SHOW STACK

Displays the location and contents of the process stacks (of the SDA current process) and the system stack.

Format

SHOW STACK [range /qualifier[,...]]

Parameter

range

Range of memory locations you want to display in stack format. You can express a **range** using the following syntax:

- *m:n* Range of virtual addresses from *m* to *n*
- *m*;*n* Range of virtual addresses starting at *m* and continuing for *n* bytes

Qualifiers

/ALL

Displays the locations and contents of the four process stacks for the current SDA process and the system stack.

/EXECUTIVE

Shows the executive stack for the SDA current process.

/INTERRUPT

The interrupt stack does not exist in OpenVMS Alpha. This qualifier shows the system stack and is retained for compatibility with OpenVMS VAX.

/KERNEL

Shows the kernel stack for the SDA current process.

/LONG

Displays longword width stacks. If this qualifier is not specified, SDA by default displays quadword width stacks.

/QUAD

Displays quadword width stacks. This is the default.

/SUPERVISOR

Shows the supervisor stack for the SDA current process.

/SYSTEM

Shows the system stack.

/USER

Shows the user stack for the SDA current process.

Description

The SHOW STACK command, by default, displays the stack that was in use when the system failed, or, in the analysis of a running system, the current operating stack. For a process that became the SDA current process as the result of a SET PROCESS command, the SHOW STACK command by default shows its current operating stack.

The various qualifiers to the command can display any of the four per-process stacks for the SDA current process, as well as the system stack for the SDA current CPU.

You can define SDA process and CPU context by using the SET CPU, SHOW CPU, SHOW CRASH, SET PROCESS, and SHOW PROCESS commands as indicated in their command descriptions. A complete discussion of SDA context control appears in Section 4.

Section	Contents
Identity of stack	SDA indicates whether the stack is a process stack (user, supervisor, executive, or kernel) or the system stack.
Stack pointer	The stack pointer identifies the top of the stack. The display indicates the stack pointer by the symbol $SP =>$.
Stack address	SDA lists all the virtual addresses that the operating system has allocated to the stack. The stack addresses are listed in a column that increases in increments of 8 bytes (one quadword), unless you specify the /LONG qualifier in which case addresses are listed in increments of 4 (one longword).
Stack contents	SDA lists the contents of the stack in a column to the right of the stack addresses.
Symbols	SDA attempts to display the contents of a location symbolically, using a symbol and an offset.
	If the address cannot be symbolized, this column is left blank.

SDA provides the following information in each stack display:

If a stack is empty, the display shows the following:

SP => (STACK IS EMPTY)

Example

SDA> SHOW STACK				
Current Operating Stac	k (SYSTEM):			
	FFFFFFFF8244BD08	FFFFFFF	800600FC	SCH\$REPORT_EVENT_C+000FC
	FFFFFFFFF8244BD10	00000000	00000002	
	FFFFFFFF8244BD18	00000000	00000005	
	FFFFFFFF8244BD20	FFFFFFFF	80600700	
SP =>	FFFFFFFFF8244BD28	FFFFFFFF	8244BEE8	
	FFFFFFFF8244BD30	F.F.F.F.F.F.F.F.	80018960	EXEŞHWCLKINT_C+00260
	FFFFFFFF8244BD38	00000000	00000188	
	FFFFFFFF8244BD40	00000000	00000050	HODON DOLD . 00000
		00000000	00000210	OCBŞN_RSID+00002
	FFFFFFFF6244BDSU	00000000	00000000	
			000000000 804045D0	COUCO IDIE CDIIC
			004045D0	
	FFFFFFFFF8244BD00	00000000	00000250	UCBST MSCDATA+00034
	FFFFFFFFF8244BD78	000000000	00000230	OCDQ1_MOODATA1000034
CHESIS MCH ARGS	FFFFFFFFF8244BD80	000000000	00000001	
CHFSPH MCH FRAME	FFFFFFFF8244BD88	777777777	8244BFB0	
CHFSIS MCH DEPTH	FFFFFFFF8244BD90	80000000	DALATA 20	G
CHFSPH MCH DADDR	FFFFFFFF8244BD98	000000000	00001600	CTLSC CLIDATASZ+00060
CHFSPH MCH ESF ADDR	FFFFFFFF8244BDA0	777777777	8244BF40	01240_02000000
CHFSPH MCH SIG ADDR	FFFFFFFF8244BDA8	FFFFFFFF	8244BEE8	
CHFSIH MCH SAVRO	FFFFFFF8244BDB0	FFFFFFFF	8041FB00	SMP\$RELEASEL+00640
CHF\$IH MCH SAVR1	FFFFFFF8244BDB8	00000000	00000000	
CHF\$IH MCH SAVR16	FFFFFFFF8244BDC0	00000000	0000000D	
CHF\$IH MCH SAVR17	FFFFFFFF8244BDC8	0000FFF0	00007E04	
CHF\$IH MCH SAVR18	FFFFFFFF8244BDD0	00000000	00000000	
CHF\$IH MCH SAVR19	FFFFFFFF8244BDD8	00000000	00000001	
CHF\$IH_MCH_SAVR20	FFFFFFFF8244BDE0	00000000	00000000	
CHF\$IH MCH SAVR21	FFFFFFF8244BDE8	FFFFFFFF	805AE4B6	SISR+0006E
CHF\$IH_MCH_SAVR22	FFFFFFFF8244BDF0	00000000	00000001	
CHF\$IH_MCH_SAVR23	FFFFFFFF8244BDF8	00000000	00000010	
CHF\$IH_MCH_SAVR24	FFFFFFFF8244BE00	00000000	80000008	
CHF\$IH_MCH_SAVR25	FFFFFFFF8244BE08	00000000	00000010	
CHF\$IH_MCH_SAVR26	FFFFFFFF8244BE10	00000000	00000001	
CHF\$IH_MCH_SAVR27	FFFFFFFF8244BE18	00000000	00000000	
CHF\$IH_MCH_SAVR28	FFFFFFFFF8244BE20	FFFFFFF	804045D0	SCHŞGQ_IDLE_CPUS
	FFFFFFFF8244BE28	30000000	00000300	UCBŞL_PI_SVA
	FFFFFFFFF8244BE30	FFFFFFFF	80040F6C	EXESREFLECT C+00950
	FFFFFFFF8244BE38	18000000	00000300	
			804267A0	EAEŞCUNISIGNAL+00228
		00000000	7FFD00A8	PIOŞGW_IIOIMPA
	FFFFFFFFF8244BE50	50000000 FFFFFFFF	80035020	
	FFFFFFFFF8244BE60	777777777	8041FB00	SMP\$RELEASEL+00640
	FFFFFFFF8244BE68	00000000	000000000	
	FFFFFFFF8244BE70	777777777	8042CD50	SCHSWAIT PROC+00060
	FFFFFFFF8244BE78	00000000	0000000D	
	FFFFFFFF8244BE80	0000FFF0	00007E04	
	FFFFFFFF8244BE88	00000000	00000000	
	FFFFFFFF8244BE90	00000000	00000001	
	FFFFFFFF8244BE98	00000000	00000000	
	FFFFFFFF8244BEA0	FFFFFFFF	805AE4B6	SISR+0006E
	FFFFFFFF8244BEA8	00000000	00000001	
	FFFFFFFF8244BEB0	00000000	00000010	
	FFFFFFFF8244BEB8	00000000	80000008	
	FFFFFFFF8244BEC0	00000000	00000010	
	FFFFFFFF8244BEC8	00000000	00000001	
	FFFFFFFF8244BED0	00000000	00000000	
	FFFFFFFF8244BED8	FFFFFFFF	804045D0	SCHŞGQ_IDLE_CPUS
	FFFFFFFF8244BEE0	000000000	00000001	

SDA Commands SHOW STACK

CUECT CTC ADCC		00000000 0000000	
CUECL SIG_ARGS		EFEFERE 00010005	CVCCV VEDCION 00
CHL2T_2IG_WGI			SISSK_VERSION_00
			UCBŞL_PI_SVA
	FFFFFFFF8244BF00	0000002 0000001	
	FFFFFFFF8244BF08		
	FFFFFFFF8244BF10	00000000 00000000	
	FFFFFFFF8244BF18	00000000 FFFFFFC	
	FFFFFFFF8244BF20	0000008 0000000	
	FFFFFFFF8244BF28	00000000 00000001	
	FFFFFFFF8244BF30	00000008 0000000	
	FFFFFFFF8244BF38	00000000 FFFFFFC	
INTSTK\$Q_R2	FFFFFFF8244BF40	FFFFFFFF 80404668	SCH\$GL_ACTIVE_PRIORITY
INTSTK\$Q_R3	FFFFFFF8244BF48	FFFFFFFF 8042F280	SCH\$WAIT_KERNEL_MODE
INTSTK\$Q R4	FFFFFFFF8244BF50	FFFFFFFF 80615F00	
INTSTK\$Q_R5	FFFFFFFF8244BF58	00000000 00000000	
INTSTK\$Q_R6	FFFFFFFF8244BF60	FFFFFFFF 805AE000	
INTSTK\$Q_R7	FFFFFFFF8244BF68	00000000 00000000	
INTSTK\$Q PC	FFFFFFFF8244BF70	00000000 FFFFFFC	
INTSTK\$Q PS	FFFFFFFF8244BF78	3000000 0000300	UCB\$L PI SVA
- ~ <u> </u>	FFFFFFFF8244BF80	FFFFFFFF 80404668	SCHSGL ACTIVE PRIORITY
	FFFFFFFF8244BF88	00000000 7FFD00A8	PIOŚGW IIOIMPA
	FFFFFFFF8244BF90	0000000 00000000	· _
	FFFFFFF8244BF98	FFFFFFFF 8042CD50	SCHŚWAIT PROC+00060
	FFFFFFFF8244BFA0	0000000 00000044	
	FFFFFFF8244BFA8	FFFFFFFF 80403C30	SMP\$GL FLAGS
Prev SP (8244BFB0) =	==> FFFFFFFF8244BFB0	FFFFFFFF 8042CD50	SCHŚWAIT PROC+00060
1101 01 (01112120)	FFFFFFF8244BFB8	0000000 00000000	
	FFFFFFF8244BFC0	FFFFFFFF 805EE040	
	FFFFFFF8244BFC8	FFFFFFFF 8006DB54	PROCESS MANAGEMENT NPRO+0DB54
	FFFFFFF8244BFD0	FFFFFFF 80404668	SCHSGL ACTIVE PRIORITY
	FFFFFFF8244BFD8	FFFFFFFF 80615F00	
	FFFFFFFF8244BFF0	FFFFFFFF 80/1B220	CURPECUIDCE MAIT
	FFFFFFFF8244PFF8		Denykibbooken_WATT
		EEEEEEE 80703030	SMDÇCI, FIJACS
	rrrrrrrroz44DFFÖ	ししししししし ノービンコピー	

The SHOW STACK command displays a system stack. The data shown above the stack pointer may not be valid. Note that the mechanism array, signal array, and exception frame symbols displayed on the left will appear only for INVEXCEPTN, FATALEXCPT, UNXSIGNAL, and SSRVEXCEPT bugchecks.

SHOW SUMMARY

Displays a list of all active processes and the values of the parameters used in swapping and scheduling these processes.

Format

SHOW SUMMARY [/IMAGE]

Parameters

None.

Qualifiers

/IMAGE

Causes SDA to display, if possible, the name of the image being executed within each process.

/THREAD

Displays information on all the current threads associated with the current process.

Description

The SHOW SUMMARY command displays the information in Table SDA–19 for each active process in the system.

Table SDA-19 Process Information in the SHOW SUMMARY Display

Column	Contents
Extended PID	The 32-bit number that uniquely identifies the process
Indx	Index of this process into the PCB array
Process name	Name assigned to the process
Username	Name of the user who created the process

(continued on next page)

Column	Contents					
State	Current state of the process, which is one of the following 14 states:					
	State	Meaning				
	СОМ	Computable and resident in memory				
	СОМО	Computable, but outswapped				
	CUR	Currently executing				
	CEF	Waiting for a common event flag				
	LEF	Waiting for a local event flag				
	LEFO	Outswapped and waiting for a local event flag				
	HIB	Hibernating				
	HIBO	Hibernating and outswapped				
	SUSP	Suspended				
	SUSPO	Suspended and outswapped				
	PFW	Waiting for a page that is not in memory (page- fault wait)				
	FPG	Waiting to add a page to its working set (free- page wait)				
	COLPG	Waiting for a page collision to be resolved (collided-page wait); this usually occurs when several processes cause page faults on the same shared page				
	MWAIT	Waiting for a system resource (miscellaneous wait)				
Pri	Current se	cheduling priority of the process				
PCB	Address of	Address of the process control block				
PHD	Address of	Address of the process header				
Wkset	Number (in decimal) of pages currently in the process working set					

Table SDA-19 (Cont.) Process Information in the SHOW SUMMARY Display

Example

S C	SDA> SHOW SUMMARY/IMAGE Current process summary								
-	Extended - PID	Indx	Process name	Username	State	Pri	PCB/KTB	PHD/FRED	Wkset -
-									
	00000041	0001	SWAPPER		HIB	16	80C641D0	80C63E00	0
	00000045	0005	IPCACP	SYSTEM	HIB	10	80DC0780	81266000	39
	00000046	0006	ERRFMT	SYSTEM	HIB	8	80DC2240	8126C000	57
	00000047	0007	OPCOM	SYSTEM	HIB	8	80DC3340	81272000	31
	00000048	0008	AUDIT SERVER	AUDIT\$SERVER	HIB	10	80D61280	81278000	152
	00000049	0009	JOB CONTROL	SYSTEM	HIB	10	80D620C0	8127E000	50
	0000004A	000A	SECURITY SERVER	SYSTEM	HIB	10	80DC58C0	81284000	253
	0000004B	000B	TP SERVER	SYSTEM	HIB	10	80DC8900	8128A000	75
	0000004C	000C	NETACP	DECNET	HIB	10	80DBFE00	8125A000	78
	0000004D	000D	EVL	DECNET	HIB	6	80DCA080	81290000	76
	0000004E	000E	REMACP	SYSTEM	HIB	8	80DE4E00	81296000	14
	00000050	0010	DECW\$SERVER 0	SYSTEM	HIB	8	80DEF940	812A2000	739
	00000051	0011	DECWSLOGINOUT	<login></login>	LEF	4	80DF0F00	812A8000	273
	00000052	0012	SYSTEM	SYSTEM	LEF	9	80D772C0	81260000	75

The SHOW SUMMARY/IMAGE command describes all active processes in the system at the time of the system failure. Note that the process NETACP is in the CUR state at the time of the failure.

SHOW SYMBOL

Displays the hexadecimal value of a symbol and, if the value is equal to an address location, the contents of that location.

Format

SHOW SYMBOL [/ALL] symbol-name

Parameter

symbol-name

Name of the symbol to be displayed. You must provide a symbol-name.

Qualifier

/ALL

Displays information on all symbols whose names begin with the characters specified in **symbol-name**.

Description

The SHOW SYMBOL/ALL command is useful for determining the values of symbols that belong to a symbol set, as illustrated in the following examples.

Examples

1. SDA> SHOW SYMBOL G G = 80000000 : 201F0104

The SHOW SYMBOL command evaluates the symbol G as 8000000_{16} and displays the contents of address 8000000_{16} as $201F0104_{16}$.

2. SDA> SHOW SYMBOL/ALL BUG

Symbols sorted by name				
BUG\$L_BUGCHK_FLAGS BUG\$L_FATAL_SPSAV BUG\$REBOOT BUG\$REBOOT_C	= = =	FFFFFFF804031E8 FFFFFFF804031F0 FFFFFFF8042E320 FFFFFFF8004f4D0	: : :	00000001 00000001 00001808 00000000
Symbols sorted by value				
BUG\$REBOOT_C BUG\$L_BUGCHK_FLAGS BUG\$L_FATAL_SPSAV BUG\$REBOOT	= = =	FFFFFFF8004f4D0 FFFFFFF804031E8 FFFFFFF804031F0 FFFFFFF8042E320	: : :	00000000 00000001 00000001 00001808

This example shows the display produced by the SHOW SYMBOL/ALL command. SDA searches its symbol table for all symbols that begin with the string "BUG" and displays the symbols and their values. Although certain values equate to memory addresses, it is doubtful that the contents of those addresses are actually relevant to the symbol definitions in this instance.

SPAWN

Creates a subprocess of the process currently running SDA, copying the context of the current process to the subprocess and, optionally, executing a specified command within the subprocess.

Format

SPAWN [/qualifier[,...]] [command]

Parameter

command

Name of the command that you want the subprocess to execute.

Qualifiers

/INPUT=filespec

Specifies an input file containing one or more command strings to be executed by the spawned subprocess. If you specify a command string with an input file, the command string is processed before the commands in the input file. Once processing is complete, the subprocess is terminated.

/NOLOGICAL_NAMES

Specifies that the logical names of the parent process are not to be copied to the subprocess. The default behavior is that the logical names of the parent process are copied to the subprocess.

/NOSYMBOLS

Specifies that the DCL global and local symbols of the parent process are not to be passed to the subprocess. The default behavior is that these symbols are passed to the subprocess.

/NOTIFY

Specifies that a message is to be broadcast to SYS\$OUTPUT when the subprocess completes processing or aborts. The default behavior is that such a message is not sent to SYS\$OUTPUT.

/NOWAIT

Specifies that the system is not to wait until the subprocess is completed before allowing more commands to be specified. This qualifier allows you to specify new commands while the spawned subprocess is running. If you specify /NOWAIT, use /OUTPUT to direct the output of the subprocess to a file to prevent more than one process from simultaneously using your terminal.

The default behavior is that the system waits until the subprocess is completed before allowing more commands to be specified.

/OUTPUT=filespec

Specifies an output file to which the results of the SPAWN operation are written. To prevent output from the spawned subprocess from being displayed while you are specifying new commands, specify an output other than SYS\$OUTPUT whenever you specify /NOWAIT. If you omit the /OUTPUT qualifier, output is written to the current SYS\$OUTPUT device.

/PROCESS=process-name

Specifies the name of the subprocess to be created. The default name of the subprocess is *USERNAME_n*, where *USERNAME* is the user name of the parent process. The variable *n* represents the subprocess number.

Example

SDA \$	> MAI	SPAWN L	1						
	•								
	•								
\$	DIR	1							
	•								
	·								
\$	LO Prc	cess	SYSTEM 1	logged	out	at	5-JAN-1993	15:42:23.59	
SDA	/>								

This example uses the SPAWN command to create a subprocess that issues DCL commands to invoke the Mail utility. The subprocess then lists the contents of a directory before logging out to return to the parent process executing SDA.

VALIDATE QUEUE

Validates the integrity of the specified queue by checking the pointers in the queue.

Format

Parameter

address

Address of an element in a queue.

If you specify the period (.) as the **address**, SDA uses the last evaluated expression as the queue element's address.

If you do not specify an **address**, the VALIDATE QUEUE command determines the address from the last issued VALIDATE QUEUE command in the current SDA session.

If you do not specify an **address**, and no queue has previously been specified, SDA displays the following error message:

%SDA-E-NOQUEUE, no queue has been specified for validation

Qualifiers

/LIST

Displays address of each element in the queue.

/QUADWORD

Allows the validate operation to occur on queues with linked lists of quadword addresses.

/SELF_RELATIVE

Specifies that the selected queue is a self-relative queue. Other processes cannot insert or remove queue entries while the current process is doing so.

/SINGLY_LINKED

Allows validation of queues that have no backward pointers.

Description

The VALIDATE QUEUE command uses the forward, and optionally, backward pointers in each element of the queue to make sure that all such pointers are valid and that the integrity of the queue is intact. If the queue is intact, SDA displays the following message:

Queue is complete, total of n elements in the queue

In these messages, n represents the number of entries the VALIDATE QUEUE command has found in the queue.

If SDA discovers an error in the queue, it displays one of the following error messages:

Error in forward queue linkage at address nnnnnnnn after tracing x elements Error comparing backward link to previous structure address (nnnnnnn) Error occurred in queue element at address oooooooo after tracing pppp elements

These messages can appear frequently when the VALIDATE QUEUE command is used within an SDA session that is analyzing a running system. In a running system, the composition of a queue can change while the command is tracing its links, thus producing an error message.

If there are no entries in the queue, SDA displays this message:

The queue is empty

Examples

1. SDA> VALIDATE QUEUE/SELF RELATIVE IOC\$GQ POSTIQ Queue is complete, total of 159 elements in the queue

This example validates the self-relative queue IOC\$GQ_POSTIQ. The validation is successful and determines that there are 159 IRPs in the list.

2.	SDA> validate queue/quad FFFFFF80D0E6CO/list					
	Entry	Address	Flink	Blink		
	Header	FFFFFFFF80D0E6CO	FFFFFFF80D03780	FFFFFFFF80D0E800		
	1.	FFFFFFFF80D0E790	FFFFFFFF80D0E7CO	FFFFFFFF80D0E6C0		
	2.	FFFFFFFF80D0E800	FFFFFFFF80D0E6C0	FFFFFFFF80D0E7C0		
	Queue is d	complete, total of 3 el	ements in the queue			

This example shows the validation of quadword elements in a list.

 SDA> validate queue/sing exe\$gl_nonpaged+4 Queue is zero-terminated, total of 95 elements in the queue

This example shows the validation of singly linked elements in the queue. The forward link of the final element is zero instead of being a pointer back to the queue header.

SDA Extension Commands

The SDA CLUE (Crash Log Utility Extractor) extension commands can summarize information provided by certain standard SDA commands and provide additional detail for some SDA commands. These SDA CLUE commands can interpret the contents of the dump to perform additonal analysis.

All CLUE commands can be used when analyzing crash dumps; the only CLUE commands that are not allowed when analyzing a running system are CLUE CRASH, CLUE ERRLOG, CLUE HISTORY, and CLUE STACK.

When rebooting after a system failure, CLUE commands by default automatically analyze and save summary information from the crash dump file in CLUE history and listing files. This information includes the following:

- Crash dump summary information
- System configuration
- Stack decoder
- Page and swap files
- Memory management statistics
- Process DCL recall buffer
- Active XQP processes
- XQP cache header

For additional information on the contents of the CLUE listing file, see the reference section on CLUE HISTORY.

The following SDA CLUE extension commands are described in this section:

CLUE CLEANUP CLUE CONFIG CLUE CRASH CLUE ERRLOG CLUE HISTORY CLUE MCHK CLUE MEMORY CLUE PROCESS CLUE STACK CLUE VCC CLUE XQP

CLUE CLEANUP

Performs housekeeping operations to conserve disk space.

Format

CLUE CLEANUP

Parameters

None.

Qualifiers

None.

Description

CLUE CLEANUP performs housekeeping operations to conserve disk space. To avoid filling up the system disk with listing files generated by CLUE, CLUE CLEANUP is run during system startup to check the overall disk space used by all CLUES*.LIS files.

If the CLUE\$COLLECT:CLUE\$*.LIS files occupy more space than the logical CLUE\$MAX_BLOCKS allows, then the oldest files are deleted until the threshold is reached. If this logical name is not defined, a default value of 5,000 disk blocks is assumed. A value of zero disables housekeeping and no check on the disk space is performed.

Example

SDA> CLUE CLEANUP
%CLUE-I-CLEANUP, housekeeping started...
%CLUE-I-MAXBLOCK, maximum blocks allowed 5000 blocks
%CLUE-I-STAT, total of 4 CLUE files, 192 blocks.

In this example, the CLUE CLEANUP command displays that the total number of blocks of disk space used by CLUE files does not exceed the maximum number of blocks allowed. No files are deleted.
CLUE CONFIG

Displays the system, memory, and device configurations.

Format

CLUE CONFIG

Parameters

None.

Qualifiers

None.

Description

CLUE CONFIG displays the system, memory, and device configurations.

Example

SDA Sys	> CLUE CONF: tem Configu	IG ration:					
Sys Sys Cyc	tem Informat tem Type le Time	tion: DEC 7000 Mode 5.5 nsec (18)	el 610 1 MHz)		Primar Pagesi	y CPU ID 00 ze 8192 B	yte
Mem Clu #0 #0	ory Configun ster PFN 1 2	ration: Start PFN 0 256 10	Count 256 6128		Ran 0.0 M 2.0 M	ge (MByte) B - 2.0 MB B - 128.0 MB	Usage Console System
Per CPU CPU PAL CPU Ser	-CPU Slot Pr ID Type Code Revision ial Number	rocessor Info 00 EV4 P3.0 5.41 GA30366899	rmatio	n:	CPU St Halt P Halt P Halt C	ate rc,pa,pp C 00000000 S 00000000 ode 00000000 Bootstraj	,cv,pv,pmv,pl 20000000 00001F00 00000000 o or Powerfail
Ada	pter Configu	uration:					
TR	Adapter Nar	ne (Address)	Hose	Bus	Node	Device Name	HW-Id/SW
1	KA0302	(805C9FC0)	0	LSB	0 7 8	KA0302_EV4_4MB KA0302_MEM KA0302_IOP	00008001 00004000 00002000
2	API	(00304300)	0	AMI	1 2 4 5 8 13 14	DEMNA KDM70 XZA_SCSI XZA_SCSI LAMB CIMNA DEMFA	08020C03 BB110C22 413F0C36 413F0C36 0105102A 01110C2F 05130823
3	DEMNA	(805CA840)	0	GENXM	1I 0	DEMNA	00000C03
4	KDM70	(805CAA80)	0	KDM70) (KDM70	000000022
5	XZA	(805CB600)	0	SCSI	5		000000000

SDA Extension Commands CLUE CONFIG

Adapter Configuration: TR Adapter Name (Address) Hose Bus Node Device Name HW-Id/SW 0 XZA_SCSI 00000C36 1 XZA_SCSI 00000C36 6 XZA (805CBA40) 0 SCSI 0 XZA_SCSI 00000C36 7 CIMNA (805CBEC0) 0 CI 8 GENXMI (805CC200) 0 GENXMI

CLUE CRASH

Displays a crash dump summary.

Format

CLUE CRASH

Parameters

None.

Qualifiers

None.

Description

CLUE CRASH displays a crash dump summary, which includes the following items:

- Bugcheck type
- Current process and image
- Failing PC and PS
- Executive image section name and offset
- General registers
- Failing instructions
- Exception frame, signal and mechanism arrays (if available)

Example

```
SDA> CLUE CRASH
Crashdump Summary Information:
Crash Time: 11-MAY-1994 00:44:38.97

Bugcheck Type: UNXSIGNAL, Unexpected signal name in ACP

Node: CLAWS (Clustered)

CPU Type: DEC 7000 Model 610

VMS Version: V6.1

Current Process: OPERATOR

Current Image: $65$DUA3:[SYS2.SYSCOMMON.][SYSEXE]BACKUP.EXE

Failing PC: FFFFFFF 8484F93C

Failing PS: 3800000 0000000

Module: F11BXQP

Offset: 0000D93C
 -----
Offset:
                           0000D93C
                     11-MAY-1994 09:03:22.00
Boot Time:
System Uptime:
                                         0 15:41:16.97
Crash/Primary CPU: 00/00
Saved Processes: 19
                             8 KByte (8192 bytes)
Pagesize:
Physical Memory: 128 MByte (16384 PFNs)
Dumpfile Pagelets: 83405 blocks
                           olddump,writecomp,errlogcomp,dump style
Dump Flags:
EXE$GL FLAGS: poolpging, init, bugdump
```

Stack Pointers: KSP = 00000000 7FF4EDF0 USP = 00000000 7FE530C8	ESP = 00000000	7FF9A000 SS	P =	00000000	7FFA0100
General Registers: R0 = 0000000 000041C R3 = 0000000 000000 R6 = 0000000 7F4F348 R12 = 0000000 7FF4F340 R15 = 0000000 7FF4F340 R15 = 0000000 7FF4F610 R18 = 0000000 7FF4F080 R21 = FFFFFFF 8059BF00 R24 = FFFFFFFF 80417C60 PV = FFFFFFFF 84880590 PC = FFFFFFFF 8485F5E0	R1 = 00000000 R4 = 00000000 R7 = 00000000 R10 = 00000000 R13 = 00000000 R16 = 00000000 R19 = 00000000 R22 = 00000000 AI = 00000000 R28 = FFFFFFFF PS = 30000000	7FF4F218 R2 7FF4F3AC R5 7FF4F3BC R8 7FF4F3AC R1 00000003 R1 0000041C R1 7FF4F028 R2 00000040 R2 7FF4F028 RA 8485F57C FP 00000000 FP	= = 1 = 4 = 7 = 0 = 3 = =	FFFFFFF FFFFFFF 00000000 FFFFFFFF 000000	84880590 8077FA40 7FF4F3B8 7FF4F344 806D7780 7FF4EEC0 8487E380 84880590 7FF4EEC0 7FF4EDF0
Exception Frame: R2 = FFFFFFF 84882718 R5 = FFFFFFF 8077FA40 PC = FFFFFFFF 8484F93C	R3 = 00000000 R6 = 00000000 PS = 38000000	00000000 R4 00000072 R7 00000000	=	000000000000000000000000000000000000000	7FF4F3AC 7FF4F3BC
Signal Array: Arg Count = 00000005 Condition = 00000000 Argument #2 = 00000004 Argument #3 = 00970D2B Argument #4 = 8484F93C Argument #5 = 0000000					
Mechanism Array: Arguments = 0000002B Flags = 0000000 Depth = 00000002 R0 = FFFFFFF 80594F80 R17 = 0000000 7FF4F344 R20 = FFFFFFF 8487E380 R23 = FFFFFFFF 80CEB227 R26 = FFFFFFFF 8487099C	R1 = FFFFFFFF R18 = FFFFFFFF R21 = FFFFFFFF R24 = FFFFFFFF R27 = FFFFFFFF	Establisher F Exception FP Signal Array 80594F80 R1 8076344C R1 8059BF00 R2 80594F80 R2 8487E380 R2	P = = 6 = 9 = 2 = 5 = 8 =	00000000 00000000 FFFFFFF 00000000 000000	7FF4F218 7FF4F028 806D7780 7FF4F3AC 00970D27 00000003 00000000
System Registers: Page Table Base Register Processor Base Register (Privileged Context Block System Control Block Base Software Interrupt Summar Address Space Number (ASN AST Summary / AST Enable Floating-Point Enable (FE Interrupt Priority Level Machine Check Error Summa Virtual Page Table Base R Failing Instruction:	(PTBR) (PRBR) Base (PCBB) e (SCBB) cy Register (SISF I) (ASTSR_ASTEN) EN) (IPL) ary (MCES) Register (VPTB)	2)		00000000 FFFFFFF 00000000 0000000 000000	000005A9 80590000 03ADE080 00000560 00000000 0000003F 0000000F 00000000 00000000
F11BXQP_PRO+0193C: STL	R24,#X0004(R22)	1			

Instruct	ion	Stream	(last	20 instructions):
F11BXQP_	PRO+	018EC:	LDA	SP,#XFFE0(SP)
F11BXQP	PRO+	018F0:	BIS	R31,R17,R0
F11BXQP	PRO+	018F4:	STQ	R27,(SP)
F11BXQP	PRO+	018F8:	BIS	R31,R10,R19
F11BXQP	PRO+	018FC:	STQ	R26,#X0010(SP)
F11BXQP	PRO+	01900:	BIS	R31,R27,R20
F11BXQP	PRO+	01904:	STQ	FP,#X0018(SP)
F11BXQP	PRO+	01908:	BIS	R31,SP,FP
F11BXQP	PRO+	0190C:	BIS	R31,R0,R1
F11BXQP	PRO+	01910:	LDA	R17,#XFF98(R19)
F11BXQP	PRO+	01914:	LDL	R21,#X0014(R16)
F11BXQP	PRO+	01918:	BIS	R31,R1,R24
F11BXQP	PRO+	0191C:	LDL	R22,(R21)
F11BXQP	PRO+	01920:	XOR	R21,R22,R23
F11BXQP	PRO+	01924:	BNE	R23,#X000005
F11BXQP	PRO+	01928:	STL	R24,#X0004(R21)
F11BXQP	PRO+	0192C:	STL	R24,(R21)
F11BXQP	PRO+	01930:	STL	R21,#X0004(R24)
F11BXQP	PRO+	01934:	STL	R21,(R24)
F11BXQP	PRO+	01938:	BR	R31,#X000004
F11BXQP	PRO+	0193C:	STL	R24,#X0004(R22)

CLUE ERRLOG

Extracts the error log buffers from the dump file and places them into the binary file called CLUE\$ERRLOG.SYS.

Format

CLUE ERRLOG

Parameters

None.

Qualifiers

None.

Description

CLUE ERRLOG extracts the error log buffers from the dump file and places them into the binary file called CLUE\$ERRLOG.SYS. These buffers contain messages not yet written to the error log file at the time of the failure. When you analyze a failure on the same system on which it occurred, you can run the Error Log utility on the actual error log file to see these error log messages. When analyzing a failure from another system, use the CLUE ERRLOG command to create a file containing the failing system's error log messages just prior to the failure. System failures are often triggered by hardware problems, so determining what, if any, hardware errors occurred prior to the failure can help you troubleshoot a failure.

You can define the logical CLUE\$ERRLOG to any file specification if you want error log information written to a file other than CLUE\$ERRLOG.SYS.

Example

SDA> CLUE ERRLOG Sequence Date Time 128 11-MAY-1994 00:39:31.30 129 11-MAY-1994 00:39:32.12 130 11-MAY-1994 00:39:44.83 131 11-MAY-1994 00:44:38.97 * Crash Entry

The CLUE ERRLOG command diplays the sequence, date, and time of each error log buffer extracted from a dump file in the file CLUE\$ERRLOG.SYS.

CLUE HISTORY

Updates history file and generates crash dump summary output.

Format

CLUE HISTORY [/qualifier]

Parameters

None.

Qualifiers

/OVERRIDE

Allows execution of this command even if the dump file has already been analyzed (DMP\$V_OLDDUMP bit set).

Description

This command updates the history file pointed to by the logical name CLUE\$HISTORY with a one-line entry and the major crash dump summary information. If CLUE\$HISTORY is not defined, a file CLUE\$HISTORY.DAT in your default directory will be created.

In addition, a listing file with summary information about the system failure is created in the directory pointed to by CLUE\$COLLECT. The file name is of the form CLUE\$*node_ddmmyy_hhmm*.LIS where the timestamp (*hhmm*) corresponds to the system failure time and not the time when the file was created.

The listing file contains summary information collected from the following SDA commands:

- CLUE CRASH
- CLUE CONFIG
- CLUE MEMORY/FILES
- CLUE MEMORY/STATISTIC
- CLUE PROCESS/RECALL
- CLUE XQP/ACTIVE

Refer to the reference section for each of these commands to see examples of the displayed information.

The logical name CLUE\$FLAG controls how much information is written to the listing file.

- Bit 0—Include crash dump summary
- Bit 1—Include system configuration
- Bit 2—Include stack decoding information
- Bit 3—Include page and swap file usage
- Bit 4—Include memory management statistics
- Bit 5—Include process DCL recall buffer

- Bit 6—Include active XQP process information
- Bit 7—Include XQP cache header

If this logical name is undefined, all bits are set by default internally and all information is written to the listing file. If the value is zero, no listing file is generated. The value has to be supplied in hexadecimal form (for example, DEFINE CLUE\$FLAG 81 will include the crash dump summary and the XQP cache header information).

If the logical name CLUE\$SITE_PROC points to a valid and existing file, it will be executed as part of the CLUE HISTORY command (for example, automatic saving of the dump file during system startup). If used, this file should contain only valid SDA commands.

Refer to Section 1.3 for more information on site-specific command files.

CLUE MCHK

Displays machine-check information, including PALcode-specific, processorspecific, and system-specific information.

Format

CLUE MCHK

Parameters

None.

Qualifiers

None.

Description

The CLUE MCHK command displays machine-check information, including PALcode-specific, processor-specific, and system-specific information.

Example

SDA> CLUE MCHK

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Machine Check Information:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Mchk Frame Mchk Ident	83760000 00000088	Frame Size CPU Offset	000001E8 00000118	Frame H System	Flags Offset	00000000 000001A8
PALcode Tempora R0 = 00000000 R3 = 00000000 R6 = 00000000 R9 = 00000000 R12 = 00000000 R15 = 00000000 R18 = 00000000 R21 = 00000000 R24 = FFFFFFF R27 = 00000000 R30 = 00000000	ary Registers 0000001 00ED25B0 00314FD0 0000001B 00000000 00000018 00000000 004DC4A0 80570000 0000000 00900000	: R1 = 0000000 R4 = 0000000 R7 = 0000000 R10 = 00004593 R13 = FFFFFFF R16 = 0000000 R19 = 0000000 R22 = FFFFFFF R25 = 0000000 R28 = 0000000 R31 = 0000000	<pre>0 0000000 0 000F4000 2 253B8997 F 8042F548 0 00000001 0 00000000 F FFF929C4 0 00010000 0 0143A000 0 01556080</pre>	R2 = R5 = R11 = R14 = R17 = R20 = R23 = R26 = R29 =	$\begin{array}{c} 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	00000004 00426380 00000000 00315900 00000000 0000001B 00000001 7FF96000 00000000
Processor Spec: Exception Addre PAL Base Addres HW Interrupt Re MM CSR D-Cache Address BIU Status BIU Control Single-Bit Sync A-Box Control	ific Informat ess 000000 sequest 000000 s 000000 000000 000000 drome 000000 000000	ion: 00 0038219A 00 00054000 00 00005000 07 FFFFFFF 00 00007340 0E 20006447 00 0000052 00 0000040E	Exception Sum Exception Mas HW Interrupt I ICCSR D-Cache Status BIU Address [7 Fill Address Processor Mch] B-Cache TAG	mary S Enable 70] C VA	00000000 0000000 0000000 0000000 000000	00000000 FFFFD8F0 00000000 0004238 014054C8 014054C0 000F8190 00001415
System Specific Exception Ident IO Slot Conf Re TC Config Regis Interrupt Regis	c Information c 000000 eg 000000 ster 000000 ster 000000	: 00 00000088 00 00140000 00 00000016 00 0007FE00	Mem Conf Regis Failing Addres TC Error Regis Interrupt Masl	ster ss ster & Reg	1111111 00000000 00000000 00000000	11808080 02000018 0F000200 00000010

CLUE MEMORY

Displays memory- and pool-related information.

Format

CLUE MEMORY [/qualifier[,...]]

Parameters

None.

Qualifiers

/FILES

Displays information about page and swap file usage.

/FREE [/FULL] Validates and displays dynamic nonpaged free packet list queue.

/GH [/FULL] Displays information about the granularity hint regions.

/LAYOUT Decodes and displays much of the system virtual address space layout.

/LOOKASIDE Validates the lookaside list queue heads and counts the elements for each list.

/STATISTIC

Displays systemwide performance data such as page fault, I/O, pool, lock manager, MSCP, and file system cache.

Description

The CLUE MEMORY command displays memory- and pool-related information.

Examples

1. SDA> CLUE MEMORY/FILES

Paging File Usage (blocks):

Index Type	Total Size	Free	Reservable	# Pro Page	ocess Swap	Flags
1 Swap	38272	38272	38272	0	0	inited

This example shows the display produced by the CLUE MEMORY/FILES command.

2. SDA> CLUE MEMORY/FREE/FULL

Nonpaged Dynamic Pool - Free Packet Queue:

CLASSDR	80B1A380	:	64646464	64646464	00000040	80B1A480	.¤±.@dddddddd
CLASSDR	80B1A480	:	64646464	64646464	00000040	80B43C80	.<´.@dddddddd
IPC	80B43C80	:	8016B950	207B0040	0000040	80B50640	@.µ.@@.{ P¹
ACB	80B50640	:	8008AF6C	03020024	00000040	80B52E80	µ.@\$l ⁻
ACB	80B52E80	:	8008AF6C	03020024	00000040	80B5FC00	.üµ.@\$l ⁻
ACB	80B5FC00	:	8008AF6C	03020024	00000040	80B610C0	À.¶.@\$1 ⁻
ACB	80B610C0	:	8008AF6C	03020024	0000040	80B66CC0	$\lambda 1$.@\$1 ⁻
ACB	80B66CC0	:	8008AF6C	03020024	00000040	80B704C0	$\lambda \cdots @ \cdots $ \cdots 1^{-} \cdots$
CLASSDR	80B704C0	:	64646464	64646464	00000080	80B72EC0	À.•dddddddd
CLASSDR	80B72EC0	:	64646464	64646464	00000080	80B73700	.7·ddddddd
CLASSDR	80B73700	:	64646464	64646464	00000080	80B752C0	$AR \cdot \ldots . dddddddd$
TWP	80B752C0	:	8005C30C	3A300080	00000080	80B77A80	.z·0:.Ã
CLASSDR	80B77A80	:	64646464	64646464	0000040	80B79380	@dddddddd
CLASSDR	80B79380	:	64646464	64646464	0000040	80B79C80	@dddddddd
CLASSDR	80B79C80	:	64646464	64646464	00000080	80B7AB40	@«•dddddddd
CLASSDR	80B7AB40	:	64646464	64646464	0000040	80B7B640	$@\P \cdot . @ \dots dddddddd$
CLASSDR	80B7B640	:	64646464	64646464	00000080	80B7C180	.Á∙ddddddd
CLASSDR	80B7C180	:	64646464	64646464	0000040	80B7C280	.Â∙.@ddddddd
CDRP	80B7C280	:	8014C730	3A390088	00000000	80B7CC00	.ì•.à9:0Ç
CLASSDR	80B7CC00	:	64646464	64646464	00000C0	80B81100	,.Àddddddd
CLASSDR	80B81100	:	64646464	64646464	00000080	80B81A00	,ddddddd
CLASSDR	80B81A00	:	64646464	64646464	00000000	80B81B80	,.Àdddddddd
CLASSDR	80B81B80	:	64646464	64646464	0000040	80B82740	@′,.@dddddddd
CLASSDR	80B82740	:	64646464	64646464	00000100	80B83680	.6,ddddddd
ACB	80B83680	:	8008AF6C	03020024	0000040	80B84340	@C,.@\$1 ⁻
CLASSDR	80B84340	:	64646464	64646464	0000040	80B85380	.S,.@dddddddd
CIMSG	80B85380	:	8025660C	003C00C0	00000000	80B86580	.e,.ÀÀ. <f%.< td=""></f%.<>
CLASSDR	80B86580	:	64646464	64646464	00000240	80B87640	@v,.@dddddddd
CXB	80B87640	:	802B686C	611B02C0	00000440	80B885C0	À.,.@Àalh+.
DSRV	80B885C0	:	8019B6F4	036900C0	00000000	80B88CC0	À.,.ÀÀ.i.ô¶
CIMSG	80B88CC0	:	8025660C	003C00C0	00000240	80B89000	,.@À. <f%.< td=""></f%.<>
CLASSDR	80B89000	:	64646464	64646464	0000040	80B89900	,.@dddddddd
CXB	80B89900	:	8005CD20	001B0740	00000740	80B8A780	.§,.@@ Í
CXB	80B8A780	:	8005CEC0	001B0740	00000E80	80B8BC40	@¼,Àî
CXB	80B8BC40	:	802B686C	611B02C0	000002C0	80B8C1C0	ÀÁ,.ÀÀalh+.
CLASSDR	80B8C1C0	:	64646464	64646464	00003E40	00000000	@>dddddddd
Free Pac	ket Queue,	, Sta	tus: Vali	d, 36 elem	ments		

The CLUE MEMORY/FULL/FREE command validates and displays dynamic nonpaged free packet list queue.

3. SDA> CLUE MEMORY/GH/FULL

Granularity Hint Regions - Huge Pages:

Execlet Code Region Base/End VA Base/End PA Total Size Bitmap VA/Size Slice Size Next free Slice	FFFFFFFF8000000 FFFFFFFF0040000 FFFFFFFF00346000 FFFFFFFF80A12460 FFFFFFFF00002000 FFFFFFFFF00001A3	FFFFFFF80 FFFFFFF00 FFFFFFF00	346000 C 746000 F 3.2 MB I: 000040 I R	urrent ree n Use nitial eleased	Pages/S Size 419/ 4 / Size 512/ 5 93/	lices 19 0 19 12 93
Next free Slice Image SYS\$PUBLIC_VECTO SYS\$BASE_IMAGE SYS\$PUBDTRIVER SYS\$OPDRIVER SYSTEM_PRIMITIVE SYSTEM_SYNCHRONI ERRORLOG SYS\$CPU_ROUTINES EXCEPTION IO_ROUTINES SYSDEVICE PROCESS_MANAGEMEN SYS\$VM SHELL8K LOCKING MESSAGE_ROUTINES LOGICAL_NAMES F11BXQP IMAGE_MANAGEMENT SECURITY SYSGETSYI SYS\$TRANSACTION SYS\$UTC_SERVICES SYS\$CC SYS\$CS SYS\$CLUSTER SYS\$IPC_SERVICES SYS\$CLUSTER SYS\$IPC_SERVICES SYS\$CLUSTER SYS\$IPC_SERVICES SYS\$CLUSTER SYS\$IPC_SERVICES SYS\$CLUSTER SYS\$IPC_SERVICES SYS\$CLUSTER SYS\$IPC_SERVICES SYS\$CLUSTER SYS\$IPC_SERVICES SYS\$CLUSTER SYS\$IPC_SERVICES SYS\$CLUSTER SYS\$UDRIVER SYS\$PDDRIVER SYS\$PDRIVER SYS\$PDRIVER SYS\$PDRIVER SYS\$PDRIVER SYS\$PDRIVER SYS\$PDRIVER SYS\$PEDRIVER SYS\$PEDRIVER SYS\$PEDRIVER	FFFFFFF000001A3 I I I I I I I I I I I I I	Base FF80000000 FF8002000 FF8002000 FF80012000 FF80012000 FF80042000 FF80042000 FF8004000 FF80060000 FF8008000 FF8008000 FF8008000 FF8002000 FF800E0000 FF800E0000 FF800F0000 FF800F0000 FF800F0000 FF800F0000 FF80120000 FF80280000 FF80080000 FF80080000 FF80080000 FF80080000 FF80080000 FF80080	End FFFFFFF8 FFFFFF8 FFFFFF8 FFFFFF8 FFFFFF	0001600 000CA00 0016800 001BC00 0041A00 0044E00 005E200 006C400 0089E00 008DC00 00C4E00 00C4E00 00C4E00 00C4E00 00C4E00 00F9600 00F9600 012200 012DA00 012DA00 012DA00 012DA00 012DA00 012DA00 012DA00 012DA00 012E00 011E600 0122A00 012C00 0122A00 0122A00 0227200 0227200	Length 00001600 0000A00 0003C00 0001A600 00002E00 00018200 00002E00 00018200 00015400 00015400 00015400 00015400 00015400 00002800 00002800 00002800 00002800 00002800 00002600 00002600 00002600 00002600 00002600 00002600 00002600 00002600 0000200 0000200 0000200 00001200 00001400 00012000 0001400 00012000 0001400 00012000 0001400 00012000 00016800 00016800 00015200	
SYS\$TUDRIVER SYS\$TUDRIVER SYS\$FTDRIVER	FFFFFFF FFFFFFF	FF802FC000	FFFFFFFF8 FFFFFFFF8	030D600 0310000	00011600	
SYS\$MKDRIVER NETDRIVER NETDRIVER NDDRIVER SYS\$CTDRIVER	FFFFFF FFFFFFF FFFFFFF FFFFFFF FFFFFFFF	FF80310000 1 FF80316000 1 FF80318000 1 FF80332000 1 FF80336000 1	FFFFFFF8 FFFFFFF8 FFFFFFF8 FFFFFFF8 FFFFFF	0315000 0316200 0330200 0335600 0340E00	00005000 00000200 00018200 00003600 00004E00	
SYS\$RTTDRIVER	FFFFFF	FF80342000	FFFFFFFF8	0345800	00003800	

Execlet Data Region						Pages/Slices
Base/End VA	FFFFFFFF808	300000	FFFFFFFF808	B0000	Current Si	.ze 88/1408
Base/End PA	FFFFFFFF008	300000	FFFFFFFF008	B0000	Free	/ 28
Total Size	FFFFFFFF000)B0000	0.6 MB		In Use	/1380
Bitmap VA/Size	FFFFFFFF802	A124A0	FFFFFFF000	00100	Initial Si	.ze 128/2048
Slice Size	FFFFFFF000	00200			Released	40/ 640
Next free Slice	FFFFFFF00(00564				
Image			Base		End	Length
SYSSPUBLIC VECT	ORS	FFFFF	FFF80800000	FFFFF	FFF80804200	00004200
SYS\$BASE IMAGE		FFFFF	FFF80804200	FFFFF	FFF8081F000	0001AE00
SYS\$PNBTDRIVER		FFFFF	FFF8081F000	FFFFF	FFF80822600	00003600
SYS\$OPDRIVER		FFFFF	FFF80822600	FFFFF	FFF80823000	00000A00
SYSTEM PRIMITIV	ES	FFFFF	FFF80823000	FFFFF	FFF80829800	00006800
SYSTEM SYNCHRON	IZATION	FFFFF	FFF80829800	FFFFF	FFF8082B600	00001E00
ERRORLOG		FFFFF	FFF8082B600	FFFFF	FFF8082BC00	00000600
SYS\$CPU ROUTINE	S 0302	FFFFF	FFF8082BC00	FFFFF	FFF80833400	00007800
EXCEPTION	-	FFFFF	FFF80833400	FFFFF	FFF80838800	00005400
IO ROUTINES		FFFFF	FFF80838800	FFFFF	FFF8083E000	00005800
SYSDEVICE		FFFFF	FFF8083E000	FFFFF	FFF8083EC00	00000C00
PROCESS_MANAGEM	ENT	FFFFF	FFF8083EC00	FFFFF	FFF80843C00	00005000
SYS\$VM		FFFFF	FFF80843C00	FFFFF	FFF80848200	00004600
SHELL8K		FFFFF	FFF80848200	FFFFF	FFF80849000	00000E00
LOCKING		FFFFF	FFF80849000	FFFFF	FFF8084AC00	00001C00
MESSAGE_ROUTINE	S	FFFFF	FFF8084AC00	FFFFF	FFF8084C400	00001800
LOGICAL_NAMES		FFFFF	FFF8084C400	FFFFF	FFF8084D800	00001400
F11BXQP		FFFFF	FFF8084D800	FFFFF	FFF8084EA00	00001200
SYSLICENSE		FFFFF	FFF8084EA00	FFFFF	FFF8084EE00	00000400
IMAGE_MANAGEMEN	Т	FFFFF	FFF8084EE00	FFFFF	FFF8084F600	0080000
SECURITY		FFFFF	FFF8084F600	FFFFF	FFF80852200	00002C00
SYSGETSYI		FFFFF	FFF80852200	FFFFF	FFF80852400	00000200
SYS\$TRANSACTION	SERVICES	FFFFF	FFF80852400	FFFFF	FFF80858E00	00006A00
SYSSUTC_SERVICE	S	FFFFF	FFF80858E00	FFFFF	FFF80859400	00000600
SYS\$VCC		FFFFF	FFF80859400	FFFFF	FFF8085AE00	00001A00
SYSSSCS		F.F.F.F.F.	FFF8085AE00	F.F.F.F.F.F	FFF8085C600	0001800
SYSSCLUSTER	a	F.F.F.F.F.	FFF8085C600	F.F.F.F.F.	FFF80864A00	00008400
SYSSIPC_SERVICE	S	FFFFF	FFF80864A00	FFFFF	FFF8086A000	00005600
MSCP		FFFFF	FFF8086A000	FFFFF	FFF8086B600	00001600
SYSLDR_DYN Gwadmend Twed		FFFFF	FFF8086B600	FFFFF	FFF8086CC00	00001600
SYSSITDRIVER		FFFFF	FFF8086CC00	FFFFF	FFF8086F400	00002800
SISSPNDRIVER		FFFFF	FFF8086F400	FFFFF	FFF80874600	00005200
SISSDUDRIVER		FFFFF.		rrrrr ppppp		00002600
SISSSUDAIVER		rrrrr vvvvv		rrrrr vvvvv		00000200
DMC		rrrrr vvvvv		rrrrr rrrrr		00009800
	FDVICEC	rrrrr rrrrr		rrrrr rrrrr	FFF00094200	00013400
	ERVICES	FFFFFF	FFF80894200	rrrrr FFFFF	FFF80894000	00000400
CVC¢FYDDIVFD			FFF80895700		FFF80897F00	00001400
SYSSEADRIVER		77777	FFF80897F00	77777	FFF8089F600	00002400
SYSSPEDRIVER		77777	FFF8089F600	77777	FFF80820200	000000000
SYSSDKDRIVER		77777	FFF80820200	77777	FFF808A1E00	00001000
SYSSTUDRIVER		٦구구구	FFF808A1E00	····	FFF808A2000	00000200
SYSSTUDRIVER		FFFFF	FFF808A2000	FFFFF	FFF808A5200	00003200
SYSSFTDRIVER		FFFFF	FFF808A5200	FFFFF	FFF808A5A00	00000800
SYSSMKDRIVER		FFFFF	FFF808A5A00	FFFFF	FFF808A6C00	00001200
NETDRIVER		FFFFF	FFF808A6C00	FFFFF	FFF808A9600	00002A00
NDDRIVER		FFFFF	FFF808A9600	FFFFF	FFF808AA000	00000A00
SYS\$CTDRIVER		FFFFF	FFF808AA000	FFFFF	FFF808ABE00	00001E00
SYS\$RTTDRIVER		FFFFF	FFF808ABE00	FFFFF	FFF808AC800	00000A00
28 free Slices		FFFFF	FFF808AC800		FFF808B0000	00003800

SDA Extension Commands CLUE MEMORY

VMS	Exec Data Region Base/End VA Base/End PA Total Size Bitmap VA/Size Slice Size Next free Slice	1 FFFFFFF8090000 FFFFFFF0090000 FFFFFFFF0025000 FFFFFFF80A1252 FFFFFFF80002000 FFFFFFFF0000000	00 00 00 00 A0 00 85	FFFFFFF80B5000 FFFFFFF00B5000 2.3 N FFFFFFFF0000000	00 00 MB 28	Current Free In Use Initial Released	Size Size	Pag 29 9	ges/Slices 16/296 / 1 /295 16/296 0/ 0
	Item System Header PFN Database Error Log Alloca 3 free Slices Nonpaged Pool (i	ation Buffers initial size)	FFI FFI FFI FFI	Base FFFFF80900000 FFFFF80904000 FFFFF80A04000 FFFFF80A06000 FFFFF80A0C000	FFI FFI FFI FFI FFI	End FFFFFF809 FFFFFF80A FFFFFF80A FFFFFF80E	04000 04000 06000 0C000 50000	Le 000 001 000 000 001	ength 004000 002000 002000 006000 L44000
Res:	ident Image Code Base/End VA Base/End PA Total Size Bitmap VA/Size Slice Size Next free Slice	Region FFFFFFF8040000 FFFFFFFF000000 FFFFFFFF001CE00 FFFFFFFF80A1250 FFFFFFFF0000200 FFFFFFFFF0000000	00 00 00 08 00 E7	FFFFFFFF805CE00 FFFFFFFF00DCE00 1.8 MB FFFFFFFF0000000	00 00 40	Current Free In Use Initial Released	Size Size	Pag 23 51 28	yes/Slices 1/231 / 0 /231 2/512 2/512 21/281
	Image DPML\$SHR DECC\$SHR DECC\$SHR LIBRTL LIBOTS			Base FFFFFFF8040000 FFFFFFF804B800 FFFFFFF8054200 FFFFFFF8054400 FFFFFFF805C000	00 00 00 00	End FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFFF	804B66(805416(805424(805BEE(805BEE() ()) ()) ()) ()) ()	Length 000B6600 00089600 00000400 0007AE00 0000DC00

The CLUE MEMORY/GH/FULL command displays data structures that describe huge pages.

4. SDA> CLUE MEMORY/LAYOUT

System Virtual Address Space Layout:

Item	Base	End	Length
Code Huge Page	FFFFFFFF8000000	FFFFFFFF80400000	00400000
Data Huge Page	FFFFFFFF80400000	FFFFFFFF8050000	00100000
System Header	FFFFFFFF8050000	FFFFFFFF80506000	00006000
PFN Database	FFFFFFFF80506000	FFFFFFFF80586000	00080000
Error Log Allocation Buffers	FFFFFFFF80586000	FFFFFFFF80588000	00002000
Nonpaged Pool (initial size)	FFFFFFFF80590000	FFFFFFFF806A0000	00110000
Nonpaged Pool Expansion Area	FFFFFFFF806A0000	FFFFFFFF80B94000	004F4000
Balance Slots	FFFFFFFF80B94000	FFFFFFFF84374E50	037E0E50
Global Page Table (GPT)	FFFFFFFF84374E50	FFFFFFFF8437C000	000071B0
Paged Pool	FFFFFFFF8437C000	FFFFFFFF845FA000	0027E000
System Control Block (SCB)	FFFFFFFF845FA000	FFFFFFFF84644000	0004A000
Hardware Restart Parameter Block (HWRPB)	FFFFFFFF84644000	FFFFFFFF846458F8	000018F8
Guard Page	FFFFFFFF84658000	FFFFFFFF8465A000	00002000
Prim CPU System Context Kernel Stack	FFFFFFFF8465A000	FFFFFFFF8465C000	00002000
Guard Page	FFFFFFFF8465C000	FFFFFFFF8465E000	00002000
Prim CPU Machine Check Logout Area	FFFFFFFF8465E000	FFFFFFFF8465E300	00000300
Guard Page	FFFFFFFF84660000	FFFFFFFF84662000	00002000
Lock ID Table	FFFFFFFF8469C000	FFFFFFFF846DE000	00042000
Dumpfile Write Memory Mapping	FFFFFFFF847BA000	FFFFFFFF847CA000	00010000
Swapper Process Kernel Stack	FFFFFFFF847EE000	FFFFFFFF847F0000	00002000
Idle Loop's Mapping of Zero Pages	FFFFFFFF847F0000	FFFFFFFF847F2000	00002000
Posix Cloning Parent's Page Mapping	FFFFFFFF847FE000	FFFFFFFF84800000	00002000
Posix Cloning Child's Page Mapping	FFFFFFF84800000	FFFFFFFF84802000	00002000
Swapper L2PT and L3PT	FFFFFFFF8480A000	FFFFFFFF84816000	0000C000
Process Creation L1PT	FFFFFFFF84816000	FFFFFFFF84818000	00002000
Tape Mount Verification Buffer	FFFFFFFF8493A000	FFFFFFFF8493E000	00004000
Mount Verification Buffer	FFFFFFF8493E000	FFFFFFFF84940000	00002000
Demand Zero Optimization Page	FFFFFFFF84940000	FFFFFFFF84942000	00002000

Erase Pattern Buffer Page Erase Pattern Page Table Page Executive Mode Data Page System Space Expansion Region System Page Table (SPT)

FFFFFFFF84942000	FFFFFFFF84944000	00002000
FFFFFFFF84944000	FFFFFFFF84946000	00002000
FFFFFFFF84946000	FFFFFFFF84948000	00002000
FFFFFFFF88000000	FFFFFFFFFFE00000	77E00000
FFFFFFFFFFE00000	FFFFFFFFFFFFFFF	00200000

The CLUE MEMORY/LAYOUT command decodes and displays the system virtual address space layout.

5. SDA> CLUE MEMORY/LOOKASIDE

Lookaside I	Lookaside List Queue Information:							
Listhead Ad	ddr:	8041FC00	Size:	64	Status:	Valid,	56 elements	
Listhead Ad	ddr:	8041FC08	Size:	128	Status:	Valid,	6 elements	
Listhead Ad	ddr:	8041FC10	Size:	192	Status:	Valid,	183 elements	
Listhead Ad	ddr:	8041FC18	Size:	256	Status:	Valid,	138 elements	
Listhead Ad	ddr:	8041FC20	Size:	320	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC28	Size:	384	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC30	Size:	448	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC38	Size:	512	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC40	Size:	576	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC48	Size:	640	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC50	Size:	704	Status:	Valid,	empty	
Listhead Ad	ddr:	8041FC58	Size:	768	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC60	Size:	832	Status:	Valid,	empty	
Listhead Ad	ddr:	8041FC68	Size:	896	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC70	Size:	960	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC78	Size:	1024	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC80	Size:	1088	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FC88	Size:	1152	Status:	Valid,	empty	
Listhead Ad	ddr:	8041FC90	Size:	1216	Status:	Valid,	empty	
Listhead Ad	ddr:	8041FC98	Size:	1280	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FCA0	Size:	1344	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FCA8	Size:	1408	Status:	Valid,	empty	
Listhead Ad	ddr:	8041FCB0	Size:	1472	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FCB8	Size:	1536	Status:	Valid,	1 element	
Listhead Ac	ddr:	8041FCC0	Size:	1600	Status:	Valid,	1 element	
Listhead Ac	ddr:	8041FCC8	Size:	1664	Status:	Valid,	1 element	
Listhead Ac	ddr:	8041FCD0	Size:	1728	Status:	Valid,	empty	
Listhead Ac	ddr:	8041FCD8	Size:	1792	Status:	Invali	d, memory access error	
Error in	n que	ue linkage	at add	dress	A404FFFC,	after	tracing 0 elements	
Not in p	physi	cal memory						
Listhead Ac	ddr:	8041FCE0	Size:	1856	Status:	Valid,	empty	
Listhead Ac	ddr:	8041FCE8	Size:	1920	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FCF0	Size:	1984	Status:	Valid,	empty	
Listhead Ac	ddr:	8041FCF8	Size:	2048	Status:	Valid,	1 element	
Listhead Ad	ddr:	8041FD00	Size:	2112	Status:	Valid,	empty	
[]								

The CLUE MEMORY/LOOKASIDE command summarizes the state of nonpageable lookaside lists. For each list, an indication of whether the queue is well formed is given. If a queue is not well formed or is invalid, messages indicating what is wrong with the queue are displayed. This command is analogous to the SDA command VALIDATE QUEUE.

These messages can also appear frequently when the VALIDATE QUEUE command is used within an SDA session that is analyzing a running system. In a running system, the composition of a queue can change while the command is tracing its links, thus producing an error message.

SDA Extension Commands CLUE MEMORY

6. SDA> CLUE MEMORY/STATISTIC

Memory Management Statistics:

Pagefaults: Total Page Faults Total Page Reads I/O's to read Pages Modified Pages Written I/O's to write Mod Pages Demand Zero Faults Global Valid Faults Modified Faults Read Faults Execute Faults	39454 21885 9150 0 8296 6680 15261 0 2062	Non-Paged Pool: Successful Exp Attempts Unsuccessful Exp Attempts Expansion Failures Failed Pages Accumulator Total Alloc Requests Failed Alloc Requests Paged Pool: Total Failures Failed Pages Accumulator Total Alloc Requests Failed Alloc Requests	0 0 0 13545 0 0 2063 0
Direct I/O Buffered I/O Split I/O Hits Logical Name Transl Dead Page Table Scans Memory Management Statist	25810 34491 1664 27847 162354 0 cics:	Cur Mapped Gbl Sections Max Mapped Gbl Sections Cur Mapped Gbl Pages Max Mapped Gbl Pages Maximum Processes Sched Zero Pages Created	246 246 3052 3058 21 8562
Distributed Lock Manager: \$ENQ New Lock Requests \$ENQ Conversion Requests \$DEQ Dequeue Requests Blocking ASTs Directory Functions Deadlock Messages	L 1 2 1	ocal Incoming 0 8635 4353 1209 13 7953 4165 17 14 541406 189 189	Dutgoing 10334 653 10070 1 12580 120
\$ENQ Requests that Wait \$ENQ Requests not Queued	349 166	Deadlock Searches Performed Deadlocks Found	39 39
MSCP Statistics: Count of VC Failures Count of Hosts Served Count of Disks Served MSCP_BUFFER (SYSGEN) MSCP_CREDITS (SYSGEN) Memory Management Statist	0 2 9 128 8 cics:	Total IOs Split IOs IOs that had to Wait (Buf) Requests in MemWait Queue Max Req ever in MemWait	1947594 0 0 0 0
File System Cache:CuFile Header Cache(ACStorage Bitmap Cache(ACDirectory Data Cache(ACDirectory LRU(ACFID Cache(ACExtent Cache(ACQuota Cache(AC	rrent SYSGEN CP HDRCACHE CP MAPCACHE CP DIRCACHE CP DINDXCACHE CP FIDCACHE CP FIDCACHE CP EXTCACHE CP QUOCACHE	Param Hits Misses = 196) 3543 1090 = 49) 20 529 = 196) 5938 530 = 49) 5350 232 = 64) 303 12 = 64) 547 31 = 100) 0 0	Hitrate 76.4% 3.6% 91.8% 95.8% 96.1% 94.6% 0.0%
Volume Synch Locks Volume Synch Locks Wait Dir/File Synch Locks Dir/file Synch Locks Wait Access Locks Free Space Cache Wait	2140 27 12389 5 8 7502 4	Window Turns Currently Open Files Total Count of OPENs Total Count of ERASE QIOs	353 254 2061 314
RMS GblBufQuo Remaining Global Pagefile Quota	1023 1011	RMS_GBLBUFQUO (SYSGEN) GBLPAGFIL (SYSGEN) Limit	1024 1024

The CLUE MEMORY/STATISTIC command displays systemwide performance data such as page fault, I/O, pool, lock manager, MSCP, and file system cache.

CLUE PROCESS

Displays process-related information from the current process context.

Format

CLUE PROCESS [/qualifier[,...]]

Parameters

None.

Qualifiers

/BUFFER [/ALL]

Displays the buffer objects for the current process. If the /ALL qualifier is specified, then the buffer objects for all processes (that is, all existing buffer objects) are displayed.

/LAYOUT

Displays the process P1 virtual address space layout.

/LOGICAL

Displays the process logical names and equivalence names, if they can be accessed.

/RECALL

Displays the DCL recall buffer, if it can be accessed.

Description

The CLUE PROCESS command displays process-related information from the current process context. Much of this information is in pageable address space and thus may not be present in a dump file.

Examples

1. SDA> CLUE PROCESS/LOGICAL

```
Process Logical Names:

"SYS$OUTPUT" = "_CLAWS$LTA5004:"

"SYS$OUTPUT" = "_CLAWS$LTA5004:"

"SYS$DISK" = "WORK1:"

"BACKUP_FILE" = "_$65$DUA6"

"SYS$PUTMSG" = "...À...À.."

"SYS$COMMAND" = "_CLAWS$LTA5004:"

"TAPE_LOGICAL_NAME" = "_$1$MUA3:"

"TT" = "LTA5004:"

"SYS$INPUT" = "_$65$DUA6:"

"SYS$ERROR" = "CLAWS$LTA5004:"

"SYS$ERROR" = "_CLAWS$LTA5004:"

"SYS$ERROR" = "_CLAWS$LTA5004:"

"SYS$ERROR" = "_S65$DUA6"
```

The CLUE PROCESS/LOGICAL command displays logical names for each running process.

SDA Extension Commands CLUE PROCESS

```
2. SDA> CLUE PROCESS/RECALL
Process DCL Recall Buffer:
......
Index Command
1 ana/sys
2 @login
3 mc sysman io auto /log
4 show device d
5 sea <.x>*.lis clue$
6 tpu <.x>*0914.lis
7 sh log *hsj*
8 xd <.x>.lis
9 mc ess$ladcp show serv
10 tpu clue_cmd.cld
11 ana/sys
```

The CLUE PROCESS/RECALL command displays a listing of the DCL commands that have been executed most recently.

CLUE STACK

Identifies and displays the current stack. Use the SDA command SHOW STACK to display and decode the whole stack for the more common bugcheck types.

Format

CLUE STACK

Parameters

None.

Qualifiers

None.

Description

The CLUE STACK command identifies and displays the current stack together with the upper and lower stack limits. In case of a FATALEXCPT, INVEXCEPTN, SSRVEXCEPT, UNXSIGNAL, or PGFIPLHI bugcheck, CLUE STACK tries to decode the whole stack.

Examples

1.	SDA> CLUE STA	CK	
	Stack Decoder	:	
		-	
	Normal Proces	s Kernel	Stack:
	Stack Pointer		FFFFFFFF7FF91D58
	Stack Limits	(low)	FFFFFFFF7FF90000
		(hiqh)	FFFFFFFF7FF92000

CLUE STACK identifies and displays the current stack together with the upper and lower stack limits.

SDA Extension Commands CLUE STACK

Fixed Exception Cont	:ext Area:			
Linkage Pointer	FFFFFFFF887DFB30	FFFFFFFF	8007FA14	EXE\$ALTQUEPKT_C+00044
a(Signal Array)	FFFFFFF887DFB38	00000000	000001B8	
a(Mechanism Array)	FFFFFFF887DFB40	00000000	00000050	
a(Exception Frame)	FFFFFFF887DFB48	00000000	00000210	UCB\$N_RSADDR
Exception FP	FFFFFFFF887DFB50	FFFFFFFF	80B93380	
Unwind SP	FFFFFFF887DFB58	00000000	00000000	
Reinvokable FP	FFFFFFF887DFB60	EEEEEEE	EEEEEEE	
Unwind Target	FFFFFFF887DFB68	FFFFFFFF	887DFC60	
#Sig Args/Byte Cnt	FFFFFFFF887DFB70	80B880E0	00000250	BUGS NETRCVPKT
a (Msg) /Final Status	FFFFFFFF887DFB78	80B93380	00000001	
Mechanism Array:				
Flags/Arguments	FFFFFFF887DFB80	00000000	0000002B	
a(Establisher FP)	FFFFFFF887DFB88	FFFFFFFF	887DFFB0	
reserved/Depth	FFFFFFF887DFB90	FFFFFFFF	FFFFFFD	
a(Handler Data)	FFFFFFF887DFB98	FFFFFFFF	808A8FD0	NETDRIVER NPRW+023D0
a (Exception Frame)	FFFFFFFF887DFBA0	FFFFFFFF	887DFD40	-
a (Signal Array)	FFFFFFFF887DFBA8	77777777	887DFCE8	
gaved RO	FFFFFFFF887DFBB0	888888888	88FA1D60	
gaved RU		00000000	000000001	
saved RI		00000000	00000001	
Saved RI6	FFFFFFF687DFBC0	00000000	00000000	
saved RI/	FFFFFFF887DFBC8	00000000	00000000	
saved R18	FFFFFFF887DFBD0	FFFFFFFF	80859468	CACHEŞGL_LRU_TIME
saved R19	FFFFFFF887DFBD8	00000000	00000008	
saved R20	FFFFFFF887DFBE0	FFFFFFFF	80A0C4B6	SISR+0006E
saved R21	FFFFFFF887DFBE8	00000000	000003E	
saved R22	FFFFFFF887DFBF0	00000000	000017C7	CTL\$C CLIDATASZ+00227
saved R23	FFFFFFFF887DFBF8	00000000	000017C7	CTL\$C_CLIDATASZ+00227
saved R24	FFFFFFFF887DFC00	00000000	00000000	
saved R25	FFFFFFF887DFC08	00000000	00000001	
caved R26	FFFFFFFF887DFC10		88F70960	
gaved R20		00000000	00DA0J00	
saved R27	FFFFFFFF667DFC10	00000000	000000000	
Saved R28	FFFFFFF887DFC20	00000000	00000001	
FP Regs not valid	[]			
SP Align = 08(hex)	[]			
Signal Arrav.				
Arguments	FFFFFFFF887DFCF8		00000005	
Condition	FFFFFFFF887DFCFC		00000000	
Argument #2	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		00000000	
Arguillent #2			00000000	
Argument #3	FFFFFFF887DFCF4		00000000	
Argument #4	FFFFFFFF887DFCF8		80125AC8	CACHESTRUNCATE_C+00448
Argument #5	FFFFFFF887DFCFC		00000804	UCB\$M_VALID+00004
December December				
Exception Record:				
Count/Flag/Kind	FFFFFFFF887DFD00	00000002	00000001	
Expt Value	FFFFFFFF887DFD08	000000000	0000000C	
Expt Next	FFFFFFF887DFD10	00000000	00000000	
Expt PC	FFFFFFF887DFD18	FFFFFFFF	80125AC8	CACHE\$TRUNCATE_C+00448
Extent/Kind	FFFFFFFF887DFD20	00000008	00000000	_
Value/Pointer	FFFFFFF887DFD28	00000000	00000000	
Extent/Kind	FFFFFFFF887DFD30	00000008	00000000	
Value/Pointer	FFFFFFFF887DFD38	00000000	00000000	
Interrupt/Exception	Frame:			
saved R2	FFFFFFFF887DFD40	00000000	00000280	BUG\$ NOBUFPCKT
saved R3	FFFFFFF887DFD48	00000000	00000000	_
saved R4	FFFFFFFF887DFD50	FFFFFFFF	80B774C0	
saved R5	FFFFFFFF887DFD58	00000000	00000010	
saved R6	FFFFFFFF887DFD60	00000000	00000200	IRPŚM TERMIO
saved R7	FFFFFFFFF887DFD68	777777777	88EA1D40	
saved PC		7777777777	80125208	CACHESTRINCATE C+004/8
saved PS		10000000	00000804	TPI, INT CURP DREV
SP Align = $10(hev)$		10000000	NR 1	Kern Kern
~- ····	· · · · · ·]		55 I	

Stack (not decoded):

FFFFFFFF887DFD90	FFFFFFFF	80125840	CACHESTRUNCATE C+001C0
FFFFFFFF887DFD98	77777777	81609488	
		010001000 00061700	
	FFFFFFFF	80D01AC0	
		00059990	
FFFFFFFF887DFDB0	FFFFFFFF	80126310	CACHEŞIRUNCAIE_C+UUC9C
F.F.F.F.F.F.F.F.88.7DF.DB8	F.F.F.F.F.F.F.F.	80B9B7C0	
FFFFFFFF887DFDC0	FFFFFFFF	80D61AC0	
FFFFFFFF887DFDC8	00000000	00000200	IRP\$M_TERMIO
FFFFFFFF887DFDD0	FFFFFFFF	8009E370	SCH\$INTERRUPT+003D0
FFFFFFFF887DFDD8	00000000	00000000	
FFFFFFFF887DFDE0	00000000	0000029F	BUG\$ NONEXSTACP+00007
FFFFFFFF887DFDE8	00000000	00000001	—
FFFFFFFF887DFDF0	FFFFFFFF	80859A00	CACHESTRUNCATE+00090
FFFFFFFF887DFDF8	FFFFFFFF	80804200	EXESGR SYSTEM DATA CELLS
FFFFFFF887DFE00	FFFFFFFF	800273E0	EXE STDSOUEUE FORK C+0027
FFFFFFFF887DFE08	00000004	80AF4940	
FFFFFFFF887DFE10	777777777	80B11D00	
FFFFFFFF887DFE18	77777777	801240E8	CACHESIOPOST C+00618
FFFFFFF887DFF20	00000000	00000001	
FFFFFFFF887DFF28	00000000	7FF9D190	
	00000000	00000000	
		00000000	CACHECTODOCT
	rrrrrrr vvvvvvvv	00059010	CACHESIOPOSI
		00072EC0	
	00000000	00000280	BOG\$_NOBOFPCKI
FFFFFFFF88/DFE50	FFFFFFFF	81609488	
FFFFFFFF887DFE58	F.F.F.F.F.F.F.F.	80B9B7C0	
FFFFFFFF887DFE60	00000000	00000200	IRPSM_TERMIO
FFFFFFFF887DFE68	F.F.F.F.F.F.F.F.F.	8009E370	SCHŞINTERRUPT+003D0
FFFFFFFF887DFE70	00000000	00000001	
FFFFFFFF887DFE78	00000000	00000000	
FFFFFFFF887DFE80	00000000	7FF9D190	
FFFFFFFF887DFE88	00000000	00000000	
FFFFFFFF887DFE90	FFFFFFFF	8083A510	IOC\$IOPOST
FFFFFFF887DFE98	00000000	00000001	
FFFFFFF887DFEA0	00000000	7FF9D190	
FFFFFFFF887DFEA8	00000000	00000000	
FFFFFFF887DFEB0	00000000	00000001	
FFFFFFF887DFEB8	FFFFFFF	808407A0	SCH\$IDLE
FFFFFFF887DFEC0	FFFFFFF	80804200	EXE\$GR SYSTEM DATA CELLS
FFFFFFFF887DFEC8	00000000	00000001	
FFFFFFFF887DFED0	00000000	00000303	UCB\$Q PI IQ+00003
FFFFFFFF887DFED8	00000000	000000D	
FFFFFFFF887DFEE0	FFFFFFFF	808319A0	SYS\$CPU ROUTINES 0302 NPRW+05
FFFFFFF887DFEE8	FFFFFFFF	80804200	EXESGR SYSTEM DATA CELLS
FFFFFFFF887DFEF0	ननननननन	80A0C4B6	SISR+0006E
FFFFFFFF887DFEF8	FFFFFFFF	80A0C4B6	SISR+0006E
FFFFFFFF887DFF00	00000000	00000200	TRPSM TERMIO
FFFFFFFF887DFF08	00000000	00000037	
FFFFFFFF887DFF10	00000000	00000201	UCBŚW LMERRCNT+00001
FFFFFFFF887DFF18	80000000	80804200	EXEGR SYSTEM DATA CELLS
FFFFFFFF887DFF20	00000000	7C46FD50	DVDQOK_DIDIDN_DVIK_CDDDD
	00000000	0000000	
		000000000	ΕΥΕΈΛΟ ΟΥΟΤΕΜ ΠΑΤΆ ΛΕΙΙΟ
	FFFFFFFF	00004200 007DEED0	EVE20K_2121EM_DAIA_CEDD2
	rrrrrrr TTTTTTT	0070550	
		00040004	SCHOAL_CPU_PRIORIII+000E4
FFFFFFFF88/DFF48	FFFFFFFF	80842CE0	SCHSGR_SCHEDULER_LINKAGE_SEC
FFFFFFFF887DFF50	FFFFFFFF	80007000	
FFFFFFFF887DFF58	00000000	0000001	
FFFFFFFFF887DFF60	FFFFFFFF	80A0C000	
FFFFFFFF887DFF68	FFFFFFFF	8009E370	SCHŞINTERRUPT+003D0
FFFFFFFF887DFF70	FFFFFFFF	80090ABC	SCHŞIDLE_C+0009C
FFFFFFFF887DFF78	30000000	00000303	UCBSO PT TO+00003
FFFFFFF887DFF80	00000000	00000001	

SDA Extension Commands CLUE STACK

	FFFFFFFF887DFF90	FFFFFFF	80090A90	SCH\$IDLE C+00070
	FFFFFFFF887DFF98	00000000	0000001	-
	FFFFFFFF887DFFA0	FFFFFFFF	80840064	SCH\$AL CPU PRIORITY+000E4
	FFFFFFFF887DFFA8	00000000	0000001	
Stack Frame:				
PV	FFFFFFFF887DFFB0	FFFFFFF	808407A0	SCH\$IDLE
Entry Point	FFFFFF	F 80090A20) SCH\$IDL	EC
	FFFFFFFF887DFFB8	00000000	00000000	-
	FFFFFFFF887DFFC0	FFFFFFF	80CC7C00	
return PC	FFFFFFFF887DFFC8	FFFFFFFF	8009E094	SCH\$INTERRUPT+000F4
saved R2	FFFFFFFF887DFFD0	FFFFFFF	80840064	SCH\$AL CPU PRIORITY+000E4
saved R4	FFFFFFFF887DFFD8	FFFFFFFF	80CC7C00	
saved R13	FFFFFFFF887DFFE0	00000000	7FEA8850	
saved R14	FFFFFFFF887DFFE8	00000005	00000000	
saved R15	FFFFFFFF887DFFF0	00000000	0000001	
saved FP	FFFFFFFF887DFFF8	00000000	7FE1FA30	

CLUE STACK displays and decodes the current stack if it is one of the more popular and known bugcheck types. In this case, CLUE STACK trys to decode the whole INVEXCEPTN stack.

CLUE VCC

Displays virtual I/O cache-related information.

Format

CLUE VCC [/qualifier[,...]]

Parameters

None.

Qualifiers

/CACHE

Decodes and displays the cache lines that are used to correlate the file virtual block numbers (VBNs) with the memory used for caching.

/LIMBO

Walks through the limbo queue (LRU order) and displays information for the cached file header control blocks (FCBs).

/STATISTIC

Displays statistical and performance information related to the virtual I/O cache.

/VOLUME

Decodes and displays the cache volume control blocks (CVCB).

Examples

1.	SDA> CLUE VCC/STATISTIC Virtual I/O Cache Statistics:								
	Cache State Cache Flags Cache Data Area	<pre>pak,on,img,data,enabled on,protocol_only 80855200</pre>							
	Total Size (pages)	400	Total Size (MBvtes)	3.1 MB				
	Free Size (pages)	,	0	Free Size (MBytes)	0.0 MB				
	Read I/O Count		34243	Read I/O Bypassing Cache	3149				
	Read Hit Count		15910	Read Hit Rate	46.4%				
	Write I/O Count		4040	Write I/O Bypassing Cache	856				
	IOpost PID Action	Rtns	40829	IOpost Physical I/O Count	28				
	IOpost Virtual I/	0 Count	0	IOpost Logical I/O Count	7				
	Read I/O past File	e HWM	124	Cache Id Mismatches	44				
Count of Cache Block Hits			170	Files Retained	100				
	Cache Line LRU Limbo LRU Queue Cache VCB Queue	82B11220 80A97E3C 8094DE80	82B11620 80A98B3C 809AA000	Oldest Cache Line Time Oldest Limbo Queue Time System Uptime (seconds)	00001B6E 00001B6F 00001BB0				

SDA Extension Commands CLUE VCC

2. SDA> CLUE VCC/VOLUME Virtual I/O Cache - Cache VCB Queue:

CacheVCB	RealVCB	LockID	IRP Ç)ueue	CID	LKSB	Ocnt	State
8094DE80	80A7E440	020007B2	8094DEBC	8094DEBC	0000	0001	0002	on
809F3FC0	809F97C0	0100022D	809F3FFC	809F3FFC	0000	0001	0002	on
809D0240	809F7A40	01000227	809D027C	809D027C	0000	0001	0002	on
80978B80	809F6C00	01000221	80978BBC	80978BBC	0000	0001	0002	on
809AA000	809A9780	01000005	809AA83C	809AA03C	0007	0001	0002	on

3. SDA> CLUE VCC/LIMBO

Virtual I/O Cache - Limbo Queue:

CFCB	CVCB	FCB	CFCB	I0errors	FID (hex)
			-Status-		
80A97DC0	809AA000	80A45100	00000200	00000000	(076B,0001,00)
80A4E440	809AA000	809CD040	00000200	00000000	(0767,0001,00)
80A63640	809AA000	809FAE80	00000200	00000000	(0138,0001,00)
80AA2540	80978B80	80A48140	00000200	00000000	(0AA5,0014,00)
80A45600	809AA000	80A3AC00	00000200	00000000	(0C50,0001,00)
80A085C0	809AA000	809FA140	00000200	00000000	(0C51,0001,00)
80A69800	809AA000	809FBA00	00000200	00000000	(OC52,0001,00)
80951000	809AA000	80A3F140	00000200	00000000	(OC53,0001,00)
80A3E580	809AA000	80A11A40	00000200	00000000	(0C54,0001,00)
80A67F80	809AA000	80978F00	00000200	00000000	(0C55,0001,00)
809D30C0	809AA000	809F4CC0	00000200	00000000	(0C56,0001,00)
809D4B80	809AA000	8093E540	00000200	00000000	(0C57,0001,00)
[]					
80A81600	809AA000	8094B2C0	00000200	00000000	(0C5D,0001,00)
80AA3FC0	809AA000	80A2DEC0	00000200	00000000	(07EA,000A,00)
80A98AC0	809AA000	8093C640	00000200	00000000	(OC63,0001,00)

4. SDA> CLUE VCC/CACHE

Virtual I/O Cache - Cache Lines:

CL	VA	CVCB	CFCB	FCB	CFCB	I0errors	FID (hex)
					-Status-		
82B11200	82880000	809D0240	809D7000	80A01100	00000200	00000000	(006E,0003,00)
82B15740	82AAA000	809AA000	80A07A00	80A24240	00000000	00000000	(0765,0001,00)
82B14EC0	82A66000	809AA000	80A45600	80A3AC00	00000200	00000000	(OC50,0001,00)
82B12640	82922000	809D0240	809D7000	80A01100	00000200	00000000	(006E,0003,00)
82B123C0	8290E000	809AA000	80A45600	80A3AC00	00000200	00000000	(OC50,0001,00)
82B13380	8298C000	809D0240	809D7000	80A01100	00000200	00000000	(006E,0003,00)
82B15A40	82AC2000	809AA000	80A45600	80A3AC00	00000200	00000000	(0C50,0001,00)
82B15F40	82AEA000	809D0240	809D7000	80A01100	00000200	00000000	(006E,0003,00)
82B12AC0	82946000	809D0240	809D7000	80A01100	00000200	00000000	(006E,0003,00)
82B12900	82938000	809D0240	809D7000	80A01100	00000200	00000000	(006E,0003,00)
82B10280	82804000	809AA000	80A45600	80A3AC00	00000200	00000000	(0C50,0001,00)
82B122C0	82906000	809AA000	80A1AC00	80A48000	00000000	00000000	(0164,0001,00)
82B14700	82A28000	809AA000	809FFEC0	809F8DC0	00000004	00000000	(07B8,0001,00)
82B11400	82890000	809AA000	80A113C0	80A11840	00000000	00000000	(00AF,0001,00)
[]							
82B11380	8288C000	809AA000	809DA0C0	809C99C0	00002000	00000000	(00AB,0001,00)
82B130C0	82976000	809AA000	809DA0C0	809C99C0	00002000	00000000	(00AB,0001,00)
82B11600	828A0000	809AA000	809DA0C0	809C99C0	00002000	00000000	(00AB,0001,00)

CLUE XQP

Displays XQP-related information.

Format

CLUE XQP [/qualifier[,...]]

Parameters

None.

Qualifiers

/ACTIVE [/FULL] Displays all active XQP processes.

/AQB

Displays any current I/O request packets (IRPs) waiting at the interlocked queue.

/BFRD=index

Displays the buffer descriptor (BFRD) referenced by the index specified. The index is identical to the hash value.

/BFRL=index

Displays the buffer lock block descriptor (BFRL) referenced by the index specified. The index is identical to the hash value.

/BUFFER=(n,m) [/FULL]

Displays the BFRDs for a given pool. Specify either 0, 1, 2 or 3, or a combination of these in the parameter list.

/CACHE_HEADER

Displays the block buffer cache header.

/FCB=address [/FULL]

Displays all file header control blocks (FCBs) with a nonzero DIRINDX for a given volume. If no address is specified, the current volume of the current process is used.

The address specified can also be either a valid volume control block (VCB), unit control block (UCB), or window control block (WCB) address.

/FILE=address

Decodes and displays file header (FCB), window (WCB), and cache information for a given file. The file can be identified by either its FCB or WCB address.

/GLOBAL

Displays the global XQP area for a given process.

/LBN_HASH=lbn

Calculates and displays the hash value for a given logical block number (LBN).

SDA Extension Commands CLUE XQP

/LIMBO

Searches through the limbo queue and displays FCB information from available, but unused file headers.

/LOCK=lockbasis

Displays all file system serialization, arbitration, and cache locks found for the specified lockbasis.

/THREAD=n

Displays the XQP thread area for a given process. The specified thread number is checked for validity. If no thread number is specified, the current thread is displayed. If no current thread, but only one single thread is in use, then that thread is displayed. If more than one thread exists or an invalid thread number is specified, then a list of currently used threads is displayed.

/VALIDATE=(n,m)

Performs certain validation checks on the block buffer cache to detect corruption. Specify 1, 2, 3, 4, or a combination of these in the parameter list. If an inconsistency is found, a minimal error message is displayed. If you add the /FULL qualifier, additional information is displayed.

Description

The CLUE XQP command displays XQP information. XQP is part of the I/O subsystem.

Examples

1.	SDA> CLUE XQP/ Block Buffer C	CACHE HEADER ache Header:					
	Cache_Header Bufbase Bufsize Realsize	8437DF90 8439B400 000BA400 000D78A0	BFRcnt BFRDbase LBNhashtbl LBNhashcnt		000005D2 8437E080 84398390 0000060E	FreeBFRL BFRLbase BFRLhashtbl BFRLhashcnt	843916A0 8438F7E0 84399BC8 0000060E
	Pool Pool_LRU	#0 8437E5C0 8437E400	#1 84385F40 84385D60	#2 843 843	387E90	#3 8438EEB0 8438EE20	
	Pool_WAITQ	8437DFE0 8437DFE0	8437DFE8 8437DFE8	843 843	37DFF0 37DFF0	8437DFF8 8437DFF8	
	Waitcnt Poolavail Poolcnt	00000000 00000094 00000095	00000000 00000252 00000254	000 000 000	000000 000251 000254	00000000 00000094 00000095	
	AmbigQFL AmbigQBL Disk_Reads Disk_Writes	00000000 0000000 00000000 00000000	Process_Hit; Valid_Hits Invalid_Hit; Misses	5 5	00000000 00000000 00000000 00000000	Cache_Serial Cache_Stalls Buffer_Stalls	00000000 00000000 00000000

The SDA command CLUE XQP/CACHE_HEADER displays the block buffer cache header.

 SDA> CLUE XQP/VALIDATE=1,4 Searching BFRD Array for possible Corruption... Searching Lock Basis Hashtable for possible Corruption...

In this example, executing the CLUE XQP/VALIDATE=1,4 command indicated that no corruption was detected in either the BFRD Array or the Lock Basis Hashtable.

Index

Α

Access rights block, SDA-17 Access violations, SDA-22, SDA-23 ACP (ancillary control process), SDA-99 Addition operator (+), SDA-14 /ADDRESS=<PFN-entry-address> qualifier, **SDA-122** Addresses examining, SDA-50 /ADDRESS qualifier, SDA-89, SDA-98, SDA-129 in SET PROCESS command, SDA-76 in SHOW PROCESS command, SDA-132 Address space number (ASN), SDA-16 /ALL qualifier, SDA-50, SDA-112, SDA-117, SDA-122, SDA-125, SDA-132, SDA-145, SDA-157, SDA-164 ANALYZE command /CRASH DUMP qualifier, SDA-8, SDA-31, SDA-33 /RELEASE qualifier, SDA-34 /SYMBOL qualifier, SDA-35 /SYSTEM qualifier, SDA-2, SDA-31, SDA-36 AND operator (&), SDA-14 AQB (ACP queue block), SDA-100 /AQB qualifier, SDA-195 ARB symbol, SDA-17 Arithmetic operators, SDA-13 Arithmetic shifting operator (@), SDA-14 ASB (asynchronous save block), SDA-79 ASN register displaying, SDA-92 ASN symbol, SDA-16 ASTEN register displaying, SDA-92 ASTs (asynchronous system traps), SDA-16 ASTSR register displaying, SDA-92 AST symbols, SDA-16 At sign (@) as shifting operator, SDA-38 ATTACH command, SDA-39

Β

Backup utility (BACKUP) copying system dump file, SDA-6 /BAD qualifier, SDA-122 BDB (buffer descriptor block), SDA-79 BDB summary page (BDBSUM), SDA-79 /BFRD qualifier, SDA-195 /BFRL qualifier, SDA-195 Binary operators, SDA-14 BLB (buffer lock block), SDA-79 BLB summary page (BLBSUM), SDA-79 /BRIEF qualifier, SDA-152 /BUFFER_OBJECTS qualifier, SDA-132 **Bugcheck** code, SDA-19 fatal conditions, SDA-20 to SDA-28 halt/restart, SDA-8 handling routines global symbols, SDA-63 reasons, SDA-95 /BUS qualifier, SDA-129

С

/CACHED qualifier, SDA-112, SDA-145 /CACHE qualifier, SDA-193 /CACHE_HEADER qualifier, SDA-195 Call frames displaying in SDA, SDA-83 following a chain, SDA-83 Cancel I/O routine, SDA-99 CCB (channel control block) displaying in SDA, SDA-79 CDDB (class driver data block), SDA-100 CDRP (class driver request packet), SDA-89, SDA-150 CDT (connection descriptor table), SDA-89, SDA-150 /CHANNEL qualifier, SDA-129, SDA-132, SDA-137 /CLIENT qualifier, SDA-106 CLUB (cluster block), SDA-86

CLUDCB (cluster quorum disk control block), **SDA-86** CLUE\$SITE PROC logical name, SDA-178 CLUE CLEANUP command. SDA-170 **CLUE** commands archiving information, SDA-6 CLUE CONFIG command, SDA-171 CLUE CRASH command, SDA-20, SDA-173 CLUE ERRLOG command, SDA-176 CLUE HISTORY command, SDA-177 CLUE MCHK command, SDA-179 CLUE MEMORY command, SDA-180 CLUE PROCESS command, SDA-187 CLUE STACK command, SDA-189 CLUE VCC command, SDA-193 /CLUEXIT qualifier, SDA-106 CLUE XQP command. SDA-195 CLUFCB (cluster failover control block), SDA-86 Compressed data section, SDA-60 /COMPRESS qualifier, SDA-40 **Condition-handling routines** global symbols, SDA-63 Condition values evaluating, SDA-47 examining, SDA-50 /CONDITION_VALUE qualifier, SDA-47 **Connection manager** displaying SDA information, SDA-85 /CONNECTION qualifier, SDA-150 Connections displaying SDA information, SDA-89, SDA-129, SDA-150 Contents of stored machine check frames displaying in SDA, SDA-115 Context SDA CPU, SDA-11 SDA process, SDA-10 Control regions examining, SDA-51 **Control blocks** formatting, SDA-55 Control region, SDA-16 Control region operator (H), SDA-13 COPY command, SDA-5, SDA-6, SDA-40 /COUNTERS qualifier, SDA-106 CPU context changing, SDA-77 displaying, SDA-91 using SET CPU to change, SDA-70 using SHOW CPU to change, SDA-91 using SHOW CRASH to change, SDA-94 using SHOW PROCESS to change, SDA-132 CPU ID See CPU identification number

CPU identification number, SDA-91 Crash dumps See also System failures file headers, SDA-104 headers, SDA-104 incomplete, SDA-8 short, SDA-8 /CRASH_DUMP qualifier, SDA-8 CRB (channel request block), SDA-99 CREATE command, SDA-4 CSBs (cluster system blocks), SDA-85, SDA-89 CSID (cluster system identification number), SDA-85, SDA-146 /CSID qualifier, SDA-85 /CSMACD qualifier, SDA-106 Current stack pointer, SDA-16

D

Data structures formatting, SDA-55 global symbols, SDA-16 stepping through a linked list, SDA-66 DCLDEF.STB file, SDA-16 DCL interpreter global symbols, SDA-16 DDB (device data block), SDA-99 DDIF\$RMS EXTENSION.EXE file, SDA-63 DDT (driver dispatch table). SDA-99 DECDTMDEF.STB file, SDA-16 Decimal value of an expression, SDA-47 **DECnet data structures** global symbols, SDA-16 /DECOMPRESS qualifier, SDA-40 DEFINE command, SDA-42, SDA-44 Device driver routines address. SDA-99 /DEVICE qualifier, SDA-106, SDA-129 **Devices** displaying SDA information, SDA-98 Division operator (/), SDA-14 DPT (driver prologue table), SDA-99 DUMPBUG parameter, SDA-2, SDA-29 Dump file analyzing, SDA-31 copying the contents, SDA-40 displaying a summary of, SDA-173 displaying machine check information, SDA-179 displaying memory with CLUE MEMORY, SDA-180 displaying process information, SDA-187 displaying the current stack, SDA-189 displaying virtual I/O cache, SDA-193 displaying XQP information, SDA-195 extracting errorlog buffers, SDA-176 purging files using CLUE CLEANUP, SDA-170

Dump file (cont'd) saving output, SDA-177 using CLUE CONFIG, SDA-171 Dump file information saving automatically, SDA-6 DUMPSTYLE parameter, SDA-3 DUMP subset, SDA-3 /DYNAMIC qualifier, SDA-152

Ε

ERRORLOG.STB file, SDA-63 ERRORLOGBUFFERS system parameter, SDA-4 Error logging routines global symbols, SDA-63 Error log messages, SDA-176 /ERRORS qualifier, SDA-106 ESP symbol, SDA-16 EVALUATE command, SDA-47 EXAMINE command, SDA-50 EXCEPTION.STB file global symbols, SDA-63 Exception-handling routines global symbols, SDA-63 Executive images contents, SDA-63, SDA-102 global symbols, SDA-61 /EXECUTIVE qualifier, SDA-61, SDA-157 Executive stack pointer, SDA-16 EXEC_INIT.STB file, SDA-63 EXIT command, SDA-54 Exiting from SDA, SDA-54 Expressions, SDA-12 evaluating, SDA-47

F

F11BXQP.STB file, SDA-63 FABs (file access blocks), SDA-79 Fatal exceptions, SDA-20 FATALEXCPT bugcheck, SDA-20 FCB (file control block), SDA-79 /FDDI qualifier. SDA-107 FEN symbol, SDA-16 /FILE qualifier, SDA-195 /FILES qualifier, SDA-180 File systems global symbols, SDA-63 Floating-point control register, SDA-16 Floating-point enable, SDA-16 Floating-point registers, SDA-16 /FORCE qualifier, SDA-61 FORMAT command, SDA-55 FPCR symbol, SDA-16 FP symbol, SDA-16 Frame pointers, SDA-16

/FREE qualifier, SDA-117, SDA-122, SDA-125 /FULL qualifier, SDA-107, SDA-115, SDA-152 FWA (file work area), SDA-79

G

GBD (global buffer descriptor) summary page, SDA-79
GBH (global buffer header), SDA-79
GBSB (global buffer synchronization block), SDA-79
Global page tables displaying, SDA-117
/GLOBAL qualifier, SDA-117, SDA-195
G operator, SDA-13
/GPT qualifier, SDA-117
G symbol, SDA-16

Η

/HEADER qualifier, SDA-125 Headers crash dump, SDA-104 HELP command, SDA-57 recording output, SDA-74 Hexadecimal value of an expression, SDA-47 H operator, SDA-13 H symbol, SDA-16

I/O databases displaying SDA information, SDA-98 global symbols, SDA-16 IDB (interrupt dispatch block), SDA-99 IDX (index descriptor), SDA-79 IFAB (internal file access block), SDA-79 IFI (internal file identifier), SDA-79 Image activator global symbols, SDA-16, SDA-63 /IMAGE qualifier, SDA-61, SDA-161 /IMAGES qualifier, SDA-133 IMAGE_MANAGEMENT.STB file global symbols, SDA-63 IMGDEF.STB file, SDA-16 /INDEX=nn qualifier, SDA-133 /INDEX=n qualifier, SDA-133 /INDEX qualifier, SDA-76, SDA-133, SDA-152 Initialization code global symbols, SDA-63 /INPUT qualifier, SDA-165 /INSTRUCTION qualifier, SDA-50 Interlocked queues validating, SDA-167 /INTERRUPT qualifier, SDA-157 INVEXCEPTN bugcheck, SDA-20

Invoking SDA by default, SDA-6 IODEF.STB file, SDA-16 IO_ROUTINES.STB file global symbols, SDA-63 IPL\$_ASTDEL file PGFIPLHI bugcheck, SDA-28 IPL register displaying, SDA-92 IPL symbol, SDA-17 IRAB (internal record access block), SDA-79 IRP (I/O request packet), SDA-99

J

JFB (journaling file block), SDA-79 JIBs (job information blocks), SDA-135 JIB symbol, SDA-17 Job information block See JIB

Κ

/KERNEL qualifier, SDA-157 Kernel stacks displaying contents, SDA-157 pointer, SDA-16 /KEY qualifier, SDA-44 Keys defining for SDA, SDA-44 KSP symbol, SDA-16

L

/L1 qualifier, SDA-117 /L2 qualifier, SDA-117 /L3 qualifier, SDA-117 /LAYOUT qualifier, SDA-180, SDA-187 /LBN_HASH qualifier, SDA-195 /LIMBO qualifier, SDA-193, SDA-196 Linker map use in crash dump analysis, SDA-20 Linking two 32-bit values ("."), SDA-14 /LIST qualifier, SDA-167 LKB (lock block), SDA-113 Location in memory examining, SDA-50 SDA default, SDA-50 translating to instruction, SDA-50 /LOCKID qualifier, SDA-145 LOCKING.STB file, SDA-63 Lock management routines global symbols, SDA-63 Lock manager displaying SDA information, SDA-112 Lock mode, SDA-146 /LOCK qualifier, SDA-196

Locks displaying SDA information, SDA-145 /LOCKS qualifier, SDA-133 Logical operators, SDA-13, SDA-14 AND operator (&), SDA-14 NOT operator (#), SDA-14 NOT operator (\), SDA-14 XOR operator (\), SDA-14 /LOGICAL qualifier, SDA-187 LOGICAL_NAMES.STB file global symbols, SDA-63 /LONG qualifier, SDA-157 Lookaside lists displaying contents, SDA-125 /LOOKASIDE qualifier, SDA-180

Μ

Machine check frames displaying in SDA, SDA-115 MAP command, SDA-58 Mechanism arrays, SDA-20 Memory examining, SDA-50 formatting, SDA-55 location decoding, SDA-52 examining, SDA-51 region examining, SDA-52 /MESSAGE qualifier, SDA-129 MESSAGE_ROUTINES.STB file global symbols, SDA-63 /MODIFIED qualifier, SDA-122 Multiplication operator (*), SDA-14 Multiprocessing global symbols, SDA-64 Multiprocessors analyzing crash dumps, SDA-10 displaying synchronization structures, SDA-152

Ν

/NAME qualifier, SDA-112, SDA-145
NAMs (name blocks), SDA-79
Negative operator (-), SDA-13
NETDEF.STB file, SDA-16
/NEXT_FP qualifier, SDA-83
/NODE qualifier, SDA-85, SDA-89, SDA-129
/NOLOGICAL_NAMES qualifier, SDA-165
Nonpaged dynamic storage pool displaying contents, SDA-125
/NOPAGED qualifier, SDA-50
/NOSUPPRESS qualifier, SDA-50 /NOSYMBOLS qualifier, SDA-165 /NOTIFY qualifier, SDA-165 NOT operator (#), SDA-13 /NOWAIT qualifier, SDA-165 NWA (network work area), SDA-79

0

Object rights block, SDA-17 OpenVMS RMS See RMS Operators precedence of, SDA-13, SDA-14 Operators (mathematical), SDA-13 ORB symbol, SDA-17 OR operator (|), SDA-14 /OUTPUT qualifier, SDA-165 /OVERRIDE qualifier, SDA-177 /OWNED qualifier, SDA-152

Ρ

/P0 qualifier, SDA-51 P0 region examining, SDA-51 /P1 qualifier, SDA–51 P1 region examining, SDA-51 Paged dynamic storage pool displaying contents, SDA-125 /PAGED qualifier, SDA-125 Page faults illegal, SDA-28 Page files See also SYS\$SYSTEM:PAGEFILE.SYS file Page table base register, SDA-16 Page table entry evaluating, SDA-47 examining, SDA-51 Page tables displaying, SDA-117, SDA-133 /PAGE_TABLES qualifier, SDA-133 Parentheses (()) as precedence operator, SDA-14 /PARENT qualifier, SDA-39 PB (path block), SDA-99 PCBB register, SDA-17 displaying, SDA-92 PCBB symbol, SDA-17 /PCB qualifier, SDA-134 PCBs (process control blocks), SDA-17, SDA-162 displaying, SDA-134 hardware, SDA-136 specifying the address of, SDA-76, SDA-132 PCB symbol, SDA-17

PCs (program counters), SDA-16 in a crash dump, SDA-19 PC symbol, SDA-16 /PD qualifier, SDA-42, SDA-45, SDA-51 PDT (port descriptor table), SDA-129 PFN (page frame number) See PFN database PFN database, SDA-120, SDA-122 displaying, SDA-122 PGFIPLHI bugcheck, SDA-28 PHD (process header), SDA-162 displaying, SDA-134 /PHD qualifier, SDA-134 PHD symbol, SDA-17 /PHYSICAL qualifier, SDA-51 PID numbers, SDA-133 Port drivers displaying SDA information, SDA-85 Ports displaying SDA information, SDA-129 Positive operator (+), SDA-13 PRBR register displaying, SDA-92 PRBR symbol, SDA-17 Precedence operators, SDA-14 **Privileges required** to analyze a crash dump, SDA-31 to analyze a running system, SDA-10, SDA-31 Process context changing, SDA-71, SDA-76, SDA-94, SDA-132 Process control blocks See PCBs Process control region, SDA-16 Process control region operator (H), SDA-13 Processes channel, SDA-132 displaying SDA information, SDA-132, SDA-161 examining hung, SDA-9 image, SDA-161 listening, SDA-86 lock, SDA-133 scheduling state, SDA-136, SDA-162 spawning a subprocess, SDA-165 Process headers, SDA-17 Process indexes, SDA-133 Process names, SDA-132 Processor base registers, SDA-17 Processor context changing, SDA-70, SDA-77, SDA-91, SDA-94, SDA-132 Processor status See PS /PROCESS qualifier, SDA-166

PROCESS_MANAGEMENT.STB file global symbols, SDA-63 /PROCESS_SECTION_TABLE qualifier, SDA-134 Program region examining, SDA-51 PS (processor status) evaluating, SDA-47 examining, SDA-51 /PS qualifier, SDA-47, SDA-51 PS symbol, SDA-16 PST (process section table) displaying, SDA-134 **PTBR** register displaying, SDA-92 PTBR symbol, SDA-16 /PTE gualifier, SDA-47, SDA-51 /PT qualifier, SDA-117

Q

/QUAD qualifier, SDA-157 /QUADWORD qualifier, SDA-167 Queues stepping through, SDA-66 validating, SDA-167 Quorum, SDA-85

R

RABs (record access blocks), SDA-79 Radixes default, SDA-13 Radix operators, SDA-12 /RDE=id qualifier, SDA-134 RDT (response descriptor table), SDA-150 READ command, SDA-62 SYS\$DISK, SDA-62 /RECALL qualifier, SDA-187 Recovery unit system services global symbols, SDA-63 RECOVERY_UNIT_SERVICES.STB file global symbols, SDA-63 /REGIONS qualifier, SDA-134 Registers displaying, SDA-91, SDA-134 integer, SDA-16 /REGISTERS qualifier, SDA-134 /RELOCATE qualifier, SDA-62 **REPEAT command**, SDA-66 Report system event global symbols, SDA-63 REQSYSDEF.STB file, SDA-16 Resident images, SDA-133, SDA-144 /RESIDENT qualifier installing an image, SDA-60 Resources displaying SDA information, SDA-145

/RING_BUFFER qualifier, SDA-125
RLB (record lock block), SDA-80
RMS
data structures shown by SDA, SDA-79
displaying data structures, SDA-134, SDA-149
global symbols, SDA-16, SDA-63
RMS.STB file, SDA-63
RMSDEF.STB file, SDA-16
/RMS qualifier, SDA-134
RSB (resource block), SDA-113, SDA-145
RSPID (response ID)
displaying SDA information, SDA-150
RUB (recovery unit block), SDA-80
RUFB (recovery unit stream block), SDA-80

S

S0 region examining, SDA-51 /S0S1 qualifier, SDA-117 /S2 qualifier, SDA-117 SAVEDUMP system parameter, SDA-4, SDA-29 SB (system block), SDA-86, SDA-99 SCBB register displaying, SDA-92 SCBB symbol, SDA-17 Scheduler global symbols, SDA-63 SCS (System Communications Services) displaying SDA information, SDA-85, SDA-86, SDA-89, SDA-129, SDA-150 global symbols, SDA-16 SCSDEF.STB file, SDA-16 /SCS qualifier, SDA-85 SDA\$INIT logical name, SDA-9 SDA\$READ_DIR:REQSYSDEF.STB file, SDA-7, SDA-9 SDA\$READ_DIR:SYS\$BASE_IMAGE.EXE file, SDA-7, SDA-9 SDA\$READ_DIR:SYSDEF.STB file, SDA-9 SDA command format, SDA-11 to SDA-12 SDA current CPU, SDA-11, SDA-70, SDA-77, SDA-91, SDA-94, SDA-132, SDA-158 SDA current process, SDA-10, SDA-11, SDA-71, SDA-76, SDA-94, SDA-132, SDA-158 SDA symbol table building, SDA-9 expanding, SDA-9 SEARCH command, SDA-68 Section type, SDA-133, SDA-144 SECURITY.STB file global symbols, SDA-63 Self-relative queue validating, SDA-167 /SELF_RELATIVE qualifier, SDA-167

/SEMAPHORE qualifier, SDA-134 SET CPU command, SDA-11, SDA-70 analyzing a running system, SDA-10 SET FETCH command. SDA-72 SET LOG command, SDA-74 compared with SET OUTPUT command, SDA-74 SET NOLOG command, SDA-74 SET OUTPUT command, SDA-75 compared with SET LOG command, SDA-74 SET PROCESS command, SDA-11, SDA-76 SET RMS command, SDA-79 SET SIGN_EXTEND command, SDA-82 /SET_STATE qualifier, SDA-45 SFSB (shared file synchronization block), SDA-80 Shadow set displaying SDA information. SDA-100 Shareable address data section, SDA-60 SHOW CALL FRAME command, SDA-83 SHOW CLUSTER command, SDA-85 SHOW CONNECTIONS command, SDA-89 SHOW CPU command, SDA-11, SDA-70, SDA-91 analyzing a running system, SDA-10 SHOW CRASH command, SDA-11, SDA-20, SDA-70, SDA-94 analyzing a running system, SDA-10 SHOW DEVICE command, SDA-20, SDA-98 SHOW EXECUTIVE command, SDA-102 SHOW HEADER command. SDA-104 SHOW LAN command. SDA-106 SHOW LOCK command. SDA-112 SHOW MACHINE_CHECK command, SDA-11, SDA-115 SHOW MEMORY command. SDA-4 SHOW PAGE TABLE command, SDA-117 SHOW PFN_DATA command, SDA-122 SHOW POOL command, SDA-125 SHOW PORTS command, SDA-129 SHOW PROCESS/ALL command, SDA-135 SHOW PROCESS command, SDA-77, SDA-132 SHOW PROCESS command, SDA-77 SHOW PROCESS/LOCKS command. SDA-112 SHOW PROCESS/RMS command, SDA-149 selecting display options, SDA-80 SHOW RESOURCE command, SDA-112, SDA-145 SHOW RMS command, SDA-149 SHOW RSPID command, SDA-150 SHOW SPINLOCKS command, SDA-153 SHOW STACK command, SDA-157 SHOW SUMMARY command, SDA-132, SDA-161 SHOW SYMBOL command, SDA-164 Signal array, SDA-22 /SINGLY_LINKED qualifier, SDA-167

SISR register displaying, SDA-92 SISR symbol, SDA-17 Site-specific startup command procedure, SDA-6, **SDA-178** releasing page file blocks, SDA-5 Software interrupt status register, SDA-17 SPAWN command, SDA-165 Spin locks displaying SDA information, SDA-152 owned, SDA-92 SP symbol, SDA-16 SPT (system page table) displaying, SDA-117 in system dump file, SDA-4 /SPTW qualifier, SDA-117 SSP symbol. SDA-16 SSRVEXCEPT bugcheck, SDA-20 Stack frames displaying in SDA, SDA-83 following a chain, SDA-83 Stacks displaying contents, SDA-157 Start I/O routine, SDA-99 /STATIC qualifier, SDA-153 /STATISTIC qualifier, SDA-180, SDA-193 /STATISTICS qualifier, SDA-126 Subprocesses, SDA-165 Subtraction operator (-), SDA-14 /SUMMARY qualifier, SDA-107, SDA-126 /SUPERVISOR qualifier, SDA-157 Supervisor stack displaying contents, SDA-157 Supervisor stack pointer, SDA-16 Symbols defining for SDA, SDA-42 evaluating, SDA-164 listing, SDA-164 loading into the SDA symbol table, SDA-62 name, SDA-42 representing executive modules, SDA-102 user-defined, SDA-42 /SYMBOLS qualifier. SDA-47 for EVALUATE, SDA-47 Symbol table files reading into SDA symbol table, SDA-62 Symbol tables See also SDA symbol table, System symbol table specifying an alternate SDA, SDA-35 /SYMVA qualifier, SDA-62 **SYS\$DISK** as SDA output, SDA-75 global read, SDA-62 SYS\$LOADABLE_IMAGES:SYS.EXE file contents, SDA-63

SYS\$SYSTEM:PAGEFILE.SYS file, SDA-29 See also System dump files as dump file, SDA-4 releasing blocks containing a crash dump, SDA-34 SYS\$SYSTEM:SYS.EXE file, SDA-61 contents, SDA-102 SYS\$SYSTEM:SYSDEF.STB file, SDA-10 SYS\$SYSTEM:SYSDUMP.DMP file, SDA-29 See also System dump files protection, SDA-6 size of, SDA-4 SYSAP (system application), SDA-150 /SYSAP qualifier, SDA-89 SYSDEVICE.STB file global symbols, SDA-64 SYSGETSYI.STB file global symbols, SDA-64 SYSLDR_DYN.STB file global symbols, SDA-64 SYSLICENSE.STB file global symbols, SDA-64 System Communications Services (SCS) See SCS System control block base register, SDA-17 System dump files, SDA-2 to SDA-5 mapping physical memory to, SDA-8 requirements for analysis, SDA-7 System failures analyzing, SDA-19 causing, SDA-28 to SDA-31 diagnosing from PC contents, SDA-19 summary, SDA-94 System hang, SDA-29 System images contents, SDA-63, SDA-102 global symbols, SDA-61 System management creating a crash dump file, SDA-2 System message routines global symbols, SDA-63 System page file as dump file, SDA-4 releasing blocks containing a crash dump, SDA-34 System PCB (process control block) displaying, SDA-135 System processes, SDA-76 /SYSTEM qualifier, SDA-51, SDA-76, SDA-122, SDA-134, SDA-157 System region examining, SDA-51 Systems analyzing running, SDA-2, SDA-9 to SDA-10, SDA-31 investigating performance problems, SDA-9

System space base address, SDA-16 System space operator (G), SDA-13 System symbol table, SDA-7 System time quadword examining, SDA-51 SYSTEM_PRIMITIVES.STB file global symbols, SDA-64 SYSTEM_SYNCHRONIZATION_xxx.STB file global symbols, SDA-64

T

Terminal keys defining for SDA, SDA-44 /TERMINATE qualifier, SDA-45 /THREAD qualifier, SDA-161, SDA-196 /THREADS qualifier, SDA-135 /TIME qualifier, SDA-51 /TIMESTAMPS qualifier, SDA-107 Transaction processing global symbols, SDA-16 /TYPE qualifier, SDA-55, SDA-126

U

UCB (unit control block), SDA-89 Unary operator, SDA-13 to SDA-14 /UNIT qualifier, SDA-107 UNXSIGNAL bugcheck, SDA-20 /USER qualifier, SDA-157 User stacks displaying contents, SDA-157 pointer, SDA-16 USP symbol, SDA-16

V

/VALIDATE qualifier, SDA-196
VALIDATE QUEUE command, SDA-167
VCB (volume control block), SDA-100
/VC qualifier, SDA-129
Virtual address operator (@), SDA-13
Virtual address operator (^B), SDA-13
Virtual address operator (^L), SDA-13
Virtual address operator (^Q), SDA-13
Virtual address operator (^W), SDA-13

W

WCB (window control block), SDA-80 /WORKING_SET_LIST qualifier, SDA-135 Χ

XABs (extended attribute blocks), SDA-80 XOR operator (\), SDA-14