
OpenVMS Linker Utility Manual

December 1995

This manual describes the OpenVMS Linker utility.

Revision/Update Information: This manual supersedes the OpenVMS
Linker Utility Manual, Version 6.2

Software Version: OpenVMS Alpha Version 7.0
OpenVMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: ACMS, AXP, DEC, DECdirect,
DEC Fortran, DECmigrate, Digital, OpenVMS, VAX, VAX BLISS-32, VAX C, VAX FORTRAN,
VAX MACRO, VMS, and the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

ZK4548

This document is available on CD–ROM.

Contents

Preface . xi

Part I Linker Utility Description

1 Introduction

1.1 Overview . 1–1
1.1.1 Linker Functions . 1–2
1.1.2 Using the Linker . 1–3
1.2 Specifying Input to the Linker . 1–4
1.2.1 Object Modules as Linker Input Files . 1–5
1.2.2 Shareable Images as Linker Input Files . 1–6
1.2.2.1 Including a Shareable Image in a Link Operation 1–7
1.2.2.2 Installing a Shareable Image . 1–8
1.2.3 Library Files as Linker Input Files . 1–8
1.2.3.1 Creating a Library File . 1–8
1.2.3.2 Including a Library File in a Link Operation 1–9
1.2.4 Symbol Table Files as Linker Input Files . 1–10
1.2.5 Options Files as Linker Input Files . 1–10
1.3 Specifying Linker Output Files . 1–12
1.3.1 Creating an Executable Image . 1–13
1.3.2 Creating a Shareable Image . 1–13
1.3.3 Creating a System Image . 1–13
1.3.4 Creating a Symbol Table File . 1–14
1.3.5 Creating a Map File . 1–14
1.3.6 Creating a Debug Symbol File (Alpha Images Only) 1–15
1.4 Optimizing the Performance of Alpha Images . 1–15
1.4.1 Linker Default Image Optimizations (Alpha Images Only) 1–15
1.4.2 Installing Images as Resident Images (Alpha Systems Only) 1–16
1.5 Controlling a Link Operation . 1–16
1.5.1 Linker Qualifiers . 1–17
1.5.2 Link Options . 1–19
1.6 Linking for Different Architectures . 1–20

2 Understanding Symbol Resolution

2.1 Overview . 2–1
2.1.1 Types of Symbols . 2–1
2.1.2 Linker Symbol Resolution Processing . 2–2
2.2 Input File Processing for Symbol Resolution . 2–5
2.2.1 Processing Object Modules . 2–6
2.2.2 Processing Shareable Images . 2–10

iii

2.2.3 Processing Library Files . 2–11
2.2.3.1 Identifying Library Files Using the /LIBRARY Qualifier 2–12
2.2.3.2 Including Specific Modules from a Library Using the /INCLUDE

Qualifier . 2–13
2.2.3.3 Processing Default Libraries . 2–13
2.2.3.4 Open Systems Library Support . 2–14
2.2.4 Processing Input Files Selectively . 2–15
2.3 Ensuring Correct Symbol Resolution . 2–16
2.3.1 Understanding Cluster Creation . 2–16
2.3.2 Controlling Cluster Creation . 2–18
2.3.2.1 Using the CLUSTER= Option to Control Clustering 2–18
2.3.2.2 Using the COLLECT= Option to Control Clustering 2–18
2.4 Resolving Symbols Defined in the OpenVMS Executive 2–19
2.5 Defining Weak and Strong Global Symbols . 2–20

3 Understanding Image File Creation

3.1 Overview . 3–1
3.2 Creating Program Sections . 3–3
3.3 Creating Image Sections . 3–9
3.3.1 Processing Clusters to Create Image Sections 3–9
3.3.2 Combining Program Sections into Image Sections 3–10
3.3.3 Processing Significant Program Section Attributes 3–11
3.3.4 Allocating Memory for Image Sections . 3–17
3.3.5 Image Section Attributes . 3–18
3.3.6 Controlling Image Section Creation . 3–21
3.3.6.1 Modifying Program Section Attributes . 3–22
3.3.6.2 Manipulating Cluster Creation . 3–22
3.3.6.3 Isolating a Program Section into an Image Section 3–23
3.4 Initializing an Image . 3–23
3.4.1 Writing the Binary Contents of Image Sections 3–23
3.4.2 Fixing Up Addresses . 3–24
3.4.3 Keeping the Size of Image Files Manageable . 3–25
3.4.3.1 Controlling Demand-Zero Image Section Creation 3–25

4 Creating Shareable Images

4.1 Overview . 4–1
4.2 Declaring Universal Symbols in VAX Shareable Images 4–2
4.2.1 Creating Upwardly Compatible Shareable Images (VAX Linking

Only) . 4–4
4.2.1.1 Creating a Transfer Vector (VAX Linking Only) 4–5
4.2.1.2 Fixing the Location of the Transfer Vector in Your Image (VAX

Linking Only) . 4–7
4.2.2 Creating Based Shareable Images (VAX Linking Only) 4–8
4.3 Declaring Universal Symbols in Alpha Shareable Images 4–8
4.3.1 Creating Upwardly Compatible Shareable Images (Alpha Linking

Only) . 4–9
4.3.2 Deleting Universal Symbols Without Disturbing Upward

Compatibility (Alpha Linking Only) . 4–10
4.3.3 Creating Run-Time Kits (Alpha Linking Only) 4–10
4.3.4 Specifying an Alias Name for a Universal Symbol (Alpha Linking

Only) . 4–11

iv

4.3.5 Improving the Performance of Installed Shareable Images (Alpha
Linking Only) . 4–11

5 Interpreting an Image Map File

5.1 Overview . 5–1
5.2 Components of an Image Map File . 5–2
5.2.1 Object Module Synopsis . 5–3
5.2.2 Module Relocatable Reference Synopsis (VAX Linking Only) 5–3
5.2.3 Image Section Synopsis Section . 5–4
5.2.4 Program Section Synopsis Section . 5–6
5.2.5 Symbols By Name Section . 5–8
5.2.6 Symbol Cross-Reference Section . 5–8
5.2.7 Symbols By Value Section . 5–9
5.2.8 Image Synopsis Section . 5–10
5.2.9 Link Run Statistics Section . 5–11

Part II LINK Command Reference

LINK . LINK–3

Qualifier Descriptions . LINK–4
/ALPHA . LINK–5
/BPAGE . LINK–6
/BRIEF . LINK–7
/CONTIGUOUS . LINK–8
/CROSS_REFERENCE . LINK–9
/DEBUG . LINK–10
/DEMAND_ZERO (Alpha Only) . LINK–11
/DSF (Alpha Only) . LINK–13
/EXECUTABLE . LINK–14
/FULL . LINK–15
/GST (Alpha Only) . LINK–16
/HEADER . LINK–17
/INCLUDE . LINK–18
/INFORMATIONALS . LINK–19
/LIBRARY . LINK–20
/MAP . LINK–21
/NATIVE_ONLY (Alpha Only) . LINK–22
/OPTIONS . LINK–23
/P0IMAGE . LINK–24
/PROTECT . LINK–25
/REPLACE (Alpha Only) . LINK–26
/SECTION_BINDING (Alpha Only) . LINK–27
/SELECTIVE_SEARCH . LINK–29
/SHAREABLE . LINK–31
/SYMBOL_TABLE . LINK–33
/SYSEXE (Alpha Only) . LINK–35
/SYSLIB . LINK–37
/SYSSHR . LINK–38

v

/SYSTEM . LINK–39
/TRACEBACK . LINK–40
/USERLIBRARY . LINK–41
/VAX . LINK–43

Option Descriptions . LINK–44
BASE= (VAX Only) . LINK–45
CASE_SENSITIVE= . LINK–47
CLUSTER= . LINK–49
COLLECT= . LINK–50
DZRO_MIN= . LINK–52
GSMATCH= . LINK–54
IDENTIFICATION= . LINK–57
IOSEGMENT= . LINK–58
ISD_MAX= . LINK–59
NAME= . LINK–60
PROTECT= . LINK–61
PSECT_ATTR= . LINK–62
RMS_RELATED_CONTEXT= . LINK–63
STACK= . LINK–64
SYMBOL= . LINK–65
SYMBOL_TABLE= (Alpha Only) . LINK–66
SYMBOL_VECTOR= (Alpha Only) . LINK–67
UNIVERSAL= (VAX Only) . LINK–69

A VAX Object Language

A.1 Object Language Overview . A–1
A.2 Header Records . A–3
A.2.1 Main Module Header Record (MHD$C_MHD) A–4
A.2.2 Language Processor Name Header Record (MHD$C_LNM) A–5
A.2.3 Source Files Header Record (MHD$C_SRC) . A–5
A.2.4 Title Text Header Record (MHD$C_TTL) . A–6
A.3 Global Symbol Directory Records . A–6
A.3.1 Program Section Definition Subrecord (GSD$C_PSC) A–8
A.3.2 Global Symbol Specification Subrecord (GSD$C_SYM) A–10
A.3.2.1 GSD Subrecord for a Symbol Definition . A–10
A.3.2.2 GSD Subrecord for a Symbol Reference . A–11
A.3.3 Entry-Point-Symbol-and-Mask-Definition Subrecord

(GSD$C_EPM) . A–12
A.3.4 Procedure-with-Formal-Argument-Definition Subrecord

(GSD$C_PRO) . A–13
A.3.5 Symbol-Definition-with-Word-Psect Subrecord (GSD$C_SYMW) A–16
A.3.6 Entry-Point-Definition-with-Word-Psect Subrecord

(GSD$C_EPMW) . A–16
A.3.7 Procedure-Definition-with-Word-Psect Subrecord (GSD$C_PROW) . . . A–16
A.3.8 Entity-Ident-Consistency-Check Subrecord (GSD$C_IDC) A–16
A.3.9 Environment-Definition/Reference Subrecord (GSD$C_ENV) A–18

vi

A.3.10 Module-Local Symbol Definition/Symbol Reference Subrecord
(GSD$C_LSY) . A–19

A.3.10.1 Module-Local Symbol Definition . A–19
A.3.10.2 Module-Local Symbol Reference . A–19
A.3.11 Module-Local Entry-Point-Definition Subrecord (GSD$C_LEPM) A–19
A.3.12 Module-Local Procedure-Definition Subrecord (GSD$C_LPRO) A–20
A.3.13 Program-Section-Definition-in-Shareable-Image Subrecord

(GSD$C_SPSC) . A–20
A.3.14 Vectored-Symbol-Definition Subrecord (GSD$C_SYMV) A–20
A.3.15 Vectored-Entry-Point-Definition Subrecord (GSD$C_EPMV) A–20
A.3.16 Vectored-Procedure-Definition Subrecord (GSD$C_PROV) A–21
A.3.17 Symbol-Definition-with-Version-Mask Subrecord (GSD$C_SYMM) . . . A–21
A.3.18 Entry-Point-Definition-with-Version-Mask Subrecord

(GSD$C_EPMM) . A–21
A.3.19 Procedure-Definition-with-Version-Mask Subrecord

(GSD$C_PROM) . A–21
A.4 Text Information and Relocation Records (OBJ$C_TIR) A–21
A.4.1 Stack Commands . A–23
A.4.2 Store Commands . A–25
A.4.3 Operator Commands . A–28
A.4.4 Control Commands . A–30
A.5 End-of-Module Record . A–31
A.6 End-of-Module-with-Word-Psect Record . A–32
A.7 Debugger Information Records . A–33
A.8 Traceback Information Records . A–33
A.9 Link Option Specification Records . A–33

B Alpha Object Language

B.1 Object Language Overview . B–1
B.2 Module Header Records (EOBJ$C_EMH) . B–5
B.2.1 Main Module Header Record (EMH$C_MHD) B–6
B.2.2 Language Processor Name Header Record (EMH$C_LNM) B–8
B.2.3 Source Files Header Record (EMH$C_SRC) . B–8
B.2.4 Title Text Header Record (EMH$C_TTL) . B–9
B.3 Global Symbol Directory Records (EOBJ$C_EGSD) B–10
B.3.1 Program Section Definition Subrecords (EGSD$C_PSC,

EGSD$C_SPSC) . B–11
B.3.1.1 Normal Program Section Definition Subrecord (EGSD$C_PSC) . . . B–11
B.3.1.2 Program-Section-Definition-in-Shareable-Image Subrecord

(GSD$C_SPSC) . B–14
B.3.1.3 Standard Program Section Names and Attributes B–16
B.3.2 Global Symbol Specification Subrecords (EGSD$C_SYM,

EGSD$C_SYMG) . B–16
B.3.2.1 GSD Subrecord for a Global Symbol Definition (EGSD$C_SYM

with EGSY$V_DEF Set) . B–17
B.3.2.2 GSD Subrecord for a Universal Symbol Definition

(EGSD$C_SYMG) . B–20
B.3.2.3 GSD Subrecord for a Symbol Reference . B–23
B.3.3 Entity-Ident-Consistency-Check Subrecord (EGSD$C_IDC) B–24

vii

B.3.4 GSD Subrecords Reserved to the OpenVMS Operating System
(EGSD$C_SYMV, EGSD$C_SYMM) . B–26

B.3.4.1 Vectored-Symbol-Definition Subrecord (EGSD$C_SYMV) B–26
B.3.4.2 Symbol-Definition-with-Version-Mask Subrecord

(EGSD$C_SYMM) . B–27
B.4 Text Information and Relocation Records (EOBJ$C_ETIR) B–27
B.4.1 Stack Commands . B–29
B.4.2 Store Commands . B–30
B.4.3 Operator Commands . B–33
B.4.4 Control Commands . B–35
B.4.5 Conditional Store Commands . B–36
B.4.5.1 Defining Conditional Linkage with Address-Related

Commands . B–36
B.4.5.2 Optimizing Instructions with Instruction-Related Commands B–38
B.4.5.2.1 Calculating JSR Hints . B–42
B.5 End-of-Module Record (EOBJ$C_EEOM) . B–43
B.6 Debugger Information Records (EOBJ$C_EDBG) B–46
B.7 Traceback Information Records (EOBJ$C_ETBT) B–46

Index

Examples

1–1 Hello World! Program (HELLO.C) . 1–3
1–2 Sample Linker Options File . 1–11
2–1 Module Containing a Symbolic Reference (my_main.c) 2–7
2–2 Module Containing a Symbol Definition (my_math.c) 2–7
3–1 Sample Program MYTEST.C . 3–5
3–2 Sample Program MYADD.C . 3–6
3–3 Sample Program MYSUB.C . 3–6
3–4 Program Sections Generated by Example 3–1 3–7
3–5 Linking Example 3–1, Example 3–2, and Example 3–3 3–10
3–6 Image Section Information in a Map File . 3–16
3–7 Program Section Information in a Map File (VAX Example) 3–16
3–8 Image Section Descriptions in an ANALYZE/IMAGE Display 3–20
3–9 Image Section Synopsis of Second Link . 3–22
4–1 Shareable Image Test Module (my_main.c) . 4–3
4–2 Shareable Image (my_math.c) . 4–3
4–3 Transfer Vector for the Shareable Image MY_MATH.EXE 4–6

Figures

1–1 Position of the Linker in Program Development 1–2
2–1 Symbol Vector Contents . 2–3
2–2 Symbol Resolution . 2–4
2–3 Clusters Created for Sample Link . 2–17
2–4 Linker Processing of Default Libraries and

SYS$BASE_IMAGE.EXE . 2–20
3–1 Communication of Image Memory Requirements 3–2

viii

3–2 Program Sections Created for Example 3–1, Example 3–2, and
Example 3–3 . 3–9

3–3 Combining Program Sections into Image Sections 3–11
4–1 Comparison of UNIVERSAL= Option and Transfer Vectors 4–5
4–2 Accessing Universal Symbols Specified Using the

SYMBOL_VECTOR= Option . 4–9
A–1 Order of Records in an Object Module . A–2
A–2 GSD Record with Multiple Subrecords . A–7
B–1 Order of Records in an Object Module . B–3
B–2 Module Header Record with Subrecords . B–6
B–3 GSD Subrecord for a Program Section Definition B–11
B–4 GSD Subrecord for a Shareable Image Program Section Definition . . . B–14
B–5 GSD Subrecord for a Global Symbol Definition (Data) B–17
B–6 GSD Subrecord for a Global Symbol Definition (Procedure) B–18
B–7 GSD Subrecords for Universal Data Definition B–20
B–8 GSD Subrecord for a Universal Procedure Definition B–21
B–9 GSD Subrecord for a Global Symbol Reference (EGSD$C_SYM with

EGSY$V_DEF Clear) . B–23
B–10 GSD Subrecord for an Entity Ident Consistency Check B–24
B–11 Optimization of a Standard Call . B–39
B–12 Calculating a Hint to a Shareable Image . B–43
B–13 End-of-Module Record . B–44

Tables

1–1 Input Files Accepted by the Linker . 1–5
1–2 Output Files Generated by the Linker . 1–12
1–3 Linker Qualifiers . 1–17
1–4 Linker Options . 1–19
1–5 Logical Names for Cross-Architecture Linking 1–20
2–1 Linker Input File Processing . 2–6
2–2 Linker Input File Cluster Processing . 2–17
3–1 Program Section Attributes . 3–4
3–2 Mapping Program Section Attributes to Image Section Attributes for

Executable Images . 3–13
3–3 Mapping Program Section Attributes to Image Section Attributes for

Shareable Images . 3–13
3–4 Significant Attributes of Program Sections in MYSUB_CLUS

Cluster . 3–15
3–5 Image Section Attributes . 3–18
4–1 Linker Qualifiers and Options Used to Create Shareable Images 4–2
5–1 LINK Command Map File Qualifiers . 5–2
5–2 Image Map Sections . 5–2
5–3 Symbol Characterization Codes . 5–10
A–1 Types of GSD Subrecords . A–7
A–2 Alignment Field Values . A–9
A–3 Stack Commands . A–24
A–4 Store Commands . A–26

ix

A–5 Operator Commands . A–29
A–6 Control Commands . A–30
B–1 Object Record Types . B–1
B–2 Relationships of Structures in the Alpha Object Language B–4
B–3 Key to Structure Prefixes . B–4
B–4 Module Header Subrecords . B–5
B–5 Types of GSD Subrecords . B–10
B–6 Alignment Field Values . B–12
B–7 Standard Program Sections . B–16
B–8 Stack Commands . B–29
B–9 Store Commands . B–30
B–10 Operator Commands . B–33
B–11 Control Commands . B–35
B–12 Summary of Store Conditional Commands for Linkage B–36
B–13 Contents of Linkage When Symbol Is Local to the Image B–37
B–14 Contents of Linkage When Symbol Is External to the Image B–37
B–15 Summary of Store Conditional Commands for Instruction

Replacement . B–41

x

Preface

Intended Audience
Programmers at all levels of experience can use this manual effectively.

Document Structure
This book has two parts and two appendixes. Part I includes five chapters
that describe the linker. Part II is a reference section that describes the LINK
command and its qualifiers and options. The appendixes contain the VAX Object
Language specification and the Alpha Object Language specification. (The
appendixes are primarily useful to compiler developers.)

In Part I, Chapter 1 introduces the OpenVMS Linker utility and how to use the
LINK command and its qualifiers and parameters.

Chapter 2 describes how the linker resolves symbolic references among input
files.

Chapter 3 describes how the linker creates image files.

Chapter 4 describes how to create shareable images and use them in link
operations.

Chapter 5 describes how to interpret image map files.

Related Documents
For information on including the debugger in the linking operation, and on
debugging in general, see the OpenVMS Debugger Manual.

For additional information on OpenVMS products and services, access the Digital
OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08

Mail OpenVMS Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

xi

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063−1260

809−781−0505

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

Conventions
The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

The following conventions are used to identify information specific to OpenVMS
Alpha or to OpenVMS VAX:

Alpha
The Alpha icon denotes the beginning of information
specific to OpenVMS Alpha.

VAX
The VAX icon denotes the beginning of information
specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
information specific to OpenVMS Alpha or to OpenVMS
VAX.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

xii

PF1 x or
GOLD x

A sequence such as PF1 x or GOLD x indicates that you must
first press and release the key labeled PF1 or GOLD and then
press and release another key or a pointing device button.

GOLD key sequences can also have a slash (/), dash (–), or
underscore (_) as a delimiter in EVE commands.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiii

Part I
Linker Utility Description

1
Introduction

This chapter introduces the OpenVMS Linker utility (the linker), describing its
primary functions and its role in software development. The chapter describes
the following:

• How to invoke the linker

• How to specify input files in a link operation

• How to specify which output files the linker produces

In addition, this chapter provides an overview of how you can control a link
operation by using qualifiers and options.

1.1 Overview
The primary purpose of the linker is to create images. An image is a file,
containing binary code and data, that can be executed on an OpenVMS system.
When invoked on a VAX system, the linker creates OpenVMS VAX images by
default; when invoked on an Alpha system, the linker creates OpenVMS Alpha
images by default.

The primary type of image the linker creates is an executable image. This
type of image can be activated at the DCL command line by issuing the RUN
command. At run time, the image activator, which is part of the operating
system, opens the image file and reads information from the image header to set
up process page tables and pass control to the location (transfer address) where
image execution is to begin.

The linker can also create a shareable image. A shareable image is a collection
of procedures that can be called by executable images or other shareable images.
A shareable image is similar to an executable image; however, it cannot be
executed by issuing the RUN command (shareable images do not contain a
transfer address). Before a shareable image can be run, you must include it as
an input file in a link operation in which an executable image is created. At run
time, when the image activator processes the header in an executable image, it
activates all the shareable images to which the executable image was linked.

The linker can also create a system image, which can be run as a standalone
system. System images generally do not have image headers and are not
activated by the image activator.

The linker creates images by processing the input files you specify. The primary
type of input file that can be specified in a link operation is an object file. Object
files are produced by language processors, such as compilers or assemblers. The
linker also accepts other input files such as shareable images and symbol table
files, both the products of previous link operations. Section 1.2 provides more
information about all the types of input files accepted by the linker. Section 1.3
provides more information about the output files created by the linker.

1–1

Introduction
1.1 Overview

Figure 1–1 illustrates the relationship of the linker to the language processor in
the program development process.

Figure 1–1 Position of the Linker in Program Development

Object Module

Executable
Image File

Image
Map File

Language

Linker

Processors

Symbol
Table File

Shareable
Image File

System
Image File

ZK−5070A−GE

Forms
Editor ACMS

1.1.1 Linker Functions
To create an image from the input files you specify, the linker performs the
following primary functions:

• Symbol resolution. Source modules can use symbols to represent the
location of a routine entry point, the location of a data item, or a constant
value. A source module may reference symbols that are defined externally
to the module. When a language processor, such as a compiler or assembler,
processes the source module it cannot find the value of a symbol defined
externally to the module. The language processors flag these externally
defined symbols as unresolved symbolic references and leaves it to the linker
to find their definitions among the other input files you specify. When the
linker finds the definition of a symbol, it substitutes the value of the symbol
(its definition) for the reference to the symbol. Chapter 2 provides more
information about symbol resolution.

• Virtual memory allocation. After resolving symbolic references among
the input files, the linker allocates virtual memory for the image, based
on the memory requirements specified in the program section definitions
processed during symbol resolution. Chapter 3 provides more information
about memory allocation.

• Image initialization. After it resolves references and specifies the memory
requirements of the image, the linker initializes the image by filling it with
the compiled binary data and code. The linker also inserts the actual value of
resolved symbols at each instance where the symbol is referenced.

Certain global symbols cannot be resolved at link time. For example, in
shareable images, the value of a symbol that represents an address cannot
be determined until run time, when the image activator loads the image
in memory. The linker lists the symbols it cannot resolve in a fix-up
section and the image activator supplies their actual address at run time by
relocating the symbols.

1–2

Introduction
1.1 Overview

When the image activator loads a shareable image in memory and relocates
all the symbols in the shareable image, it must ensure that the other
images that reference the symbols in the shareable image have their correct
addresses. Chapter 3 provides more information about image initialization.

Alpha • Image optimization. For Alpha images, the linker can perform certain
optimizations to improve the performance of the image it is creating. These
optimizations include replacing JSR instruction sequences with the more
efficient Branch to Subroutine (BSR) instruction sequence wherever the
language processors specify. For more information, see Section 1.4.♦

1.1.2 Using the Linker
You invoke the linker interactively by typing the LINK command together with
the appropriate input file names at the DCL prompt. You may also invoke the
linker by including the LINK command in a command procedure. (For more
information about invoking the linker, see Part II.)

For example, the simple program illustrated in Example 1–1 prints the greeting
‘‘Hello World!’’ on the terminal.

Example 1–1 Hello World! Program (HELLO.C)

#include <studio.h>

main()
{

printf("Hello World!\n");
}

To run this program, you must first compile the source file to create an object
module. To compile the example, written in C, invoke the appropriate C compiler
to create an object module, as in the following example:

$ CC HELLO

During compilation, the compiler translates the statements in the source file into
machine instructions and groups portions of the program into program sections
according to their memory use and other characteristics. In addition, the compiler
lists all the global symbols defined in the module and referenced in the module
in the global symbol directory (GSD). For example, in Example 1–1, the printf
routine is referenced in the module but is not defined in it.

To create an executable image, you must then link the object file produced by the
compiler, as in the following example:

$ LINK HELLO

In the link operation, you must specify as input files all the modules required
to create the image. For example, you must include the C run-time library in
the link of the program in Example 1–1 to resolve the reference to the printf
routine.

Alpha For Alpha linking, the linker processes the C run-time library shareable image
[DECC$SHARE] by default because it resides in the default system shareable
image library [IMAGELIB.OLB]. See Section 2.2.3.3 for more information about
how the linker processes default system libraries.♦

1–3

Introduction
1.1 Overview

VAX For VAX linking, you must specify the C run-time shareable image [VAXCRTL] as
an input file in the link operation explicitly, as in the following example:

$ LINK HELLO, SYS$INPUT/OPT
SYS$LIBRARY:VAXCRTL/SHARE

Ctrl/Z

(For more information about linking against the C run-time library for VAX
images, see the VAX C compiler documentation.)♦

The linker processes the input files you specify in two passes. In its first pass
through the input files, the linker resolves symbolic references between the
modules. Because the linker processes different types of input files in different
ways, the order in which you specify input files can affect symbol resolution.
Chapter 2 provides more information about this topic.

After performing symbol resolution, when the linker has determined all the
input modules necessary to create the image, the linker determines the memory
requirements of the image based on the memory requirements of each object
module. The compilers have specified the memory requirements of the object
modules as program section specifications. The linker gathers together program
sections with similar attributes into image sections. (Chapter 3 provides more
information about image creation.) At run time, the image activator reads
the memory requirements of the image by processing the list of image section
descriptors (ISDs) the linker has stored in the image header.

If the image that results from the link operation is an executable image, it can
be executed at the DCL command line. The following example illustrates how to
execute the program in Example 1–1:

$ RUN HELLO
Hello World!

Note that a LINK command required to create a real application, unlike the Hello
World! example, can involve specifying hundreds of input files of various types.

As with most other DCL commands, the LINK command supports numerous
qualifiers with which you can control various aspects of a link operation. The
linker also supports linker options, which you can use to further control a link
operation. Linker options must be specified in an options file, which is then
specified as an input file in a link operation. Section 1.2.5 describes the benefits
of using options files and describes how to create them. Part II provides reference
descriptions of all the qualifiers and options supported by the linker. Section 1.5
contains a summary table of these qualifiers and options.

1.2 Specifying Input to the Linker
You specify the files you want the linker to process on the LINK command line
or in a linker options file. (Library files may also be specified as a user library,
which the linker processes by default.) You must specify at least one input file in
every link operation and, in every link operation, at least one input file must be
an object module. Table 1–1 lists the different types of input files accepted by the
linker, along with their default file types. (The defaults are used for both VAX
and Alpha linking.) The table also describes how you can specify the file in a link
operation.

1–4

Introduction
1.2 Specifying Input to the Linker

Table 1–1 Input Files Accepted by the Linker

File
Default
File Type Description

Object file .OBJ Created by a language processor. May be specified on
LINK command line or in a linker options file. This is
the default input file accepted by the linker.

Shareable image .EXE Produced by a previous link operation. Must be
specified in a linker options file; you cannot specify
a shareable image as an input file on the command
line. Identify the input file as a shareable image
by appending the /SHAREABLE qualifier to the file
specification.

Library file .OLB Produced by the Librarian utility. May contain object
modules or shareable images. May be specified on
the LINK command line, in a linker options file, or
as a default user library processed by the linker.
Identify the input file as a library file by appending the
/LIBRARY qualifier to the library file specification. You
can also include specific modules from a library in a
link operation by appending the /INCLUDE qualifier to
the library file specification.

Symbol table file .STB Produced by a previous link operation or a language
processor. May be specified on the LINK command
line or in an options file. Because a symbol table
file is processed as an object module, it requires no
identifying qualifier.

Note that symbol table files produced by the linker
during Alpha links cannot be specified as input files in
a link operation. They are intended to be used only as
an aid to debugging with the System Dump Analyzer
utility (See Section 1.2.4 for more information.)

Options file .OPT Text file containing link option specifications or link
input file specifications. May be specified only on
the command line; you cannot specify an options file
inside another options file. Identify the input file as
an options file by appending the /OPTIONS qualifier to
the end of the file specification.

Note that you must specify only native object modules and shareable images as
input files when creating images. That is, you must specify only native OpenVMS
Alpha object modules and shareable images as input files when creating an
OpenVMS Alpha image. (Note, however, that OpenVMS VAX images can run
as translated images on OpenVMS Alpha systems and translated images can
interoperate with native OpenVMS Alpha images. See DECmigrate for OpenVMS
AXP Systems Translating Images for more information.)

1.2.1 Object Modules as Linker Input Files
When a language processor translates a source language program, it produces
an output file that contains one or more object modules. This output file, called
an object file, has the default file type of .OBJ and is the primary form of linker
input. At least one object file must be specified in any link operation. An object
file may be specified in the command line or in an options file.

1–5

Introduction
1.2 Specifying Input to the Linker

For example, in Example 1–1, the only input file specified on the LINK command
line is the object module named HELLO.OBJ (the .OBJ file type does not need to
be specified because it is the default):

$ LINK HELLO

An object module is comprised of a module header, global symbol directory (GSD)
records, and text and information relocation commands. Language processors
list the symbols defined externally to the module in the GSD. An object module
is terminated by an end-of-module (EOM) record. A module can also contain
debugger information and traceback information.

The linker processes the entire contents of an object file, that is, every object
module in the file. It cannot selectively process object modules within an object
file. The linker can process object modules selectively in an object module library
(.OLB) file only.

You cannot examine an object module by using a text editor. The only way to
examine an object file is by using the ANALYZE/OBJECT utility. This utility
produces a report that lists the records that make up the object module. This
report is primarily useful to compiler writers. (For information about using the
ANALYZE command, see the OpenVMS DCL Dictionary.)

1.2.2 Shareable Images as Linker Input Files
A shareable image is the product of a link operation. A shareable image is not
directly executable, that is, it cannot be executed by means of the DCL command
RUN. To execute, a shareable image must first be included as input in a link
operation that produces an executable image. (You can also activate a shareable
image dynamically by using the LIB$FIND_IMAGE_SYMBOL routine. For
more information, see the OpenVMS RTL Library (LIB$) Manual.) When that
executable image is run, the shareable image is also activated by the image
activator.

A shareable image file consists of an image header, one or more image sections,
and a symbol table, which appears at the end of the file. This symbol table is, in
fact, an object module whose records contain definitions of universal symbols in
the shareable image. A universal symbol is to a shareable image what a global
symbol is to a module, that is, it is a symbol that can be used to satisfy references
in external modules.

Shareable images can provide the following benefits:

• Reducing total link processing time. Because the linker needs only to
read the image header and to process the global symbol table in a shareable
image, it takes less time for the linker to process a shareable image. The
linker does not have to resolve symbolic references within the shareable
image, sort program sections into image sections, or initialize the image
section contents, as it does when processing object modules.

• Avoiding relinking entire applications. You can create a shareable image
that can be modified, recompiled, and relinked without causing the images
that were linked against previous versions of the shareable image to be
relinked. This is called upward compatibility. For more information about
this topic, see Chapter 4.

• Conserving disk space. Because many different executable images can
be linked against the same shareable image, it is necessary to keep only a
single copy of the shareable image on the disk. (Images that are linked with
shareable images do not actually contain a copy of the shareable image.)

1–6

Introduction
1.2 Specifying Input to the Linker

• Conserving physical memory. Because the system can map the shareable
pages of an installed shareable image into the address space of many
processes, each process does not need to have its own copy of these pages.
Note that, to achieve this benefit, the shareable image must be installed using
the Install utility, specifying the /SHARED qualifier.

• Reduction of paging I/O. Because a page in an installed shareable image
may be mapped into the working set of several processes, it is more likely to
be in physical memory, reducing paging I/O. Note that, to achieve this benefit,
the shareable image must be installed using the Install utility, specifying the
/SHARED qualifier.

• Implementing memory-resident databases. Because installed
shareable images are memory resident, they simplify the implementation
of applications, such as data acquisition and control systems, where response
times are so critical that control variables and data readings must remain in
main memory.

For example, a shared database may be a named FORTRAN common block
built into a shareable image. The shareable image may also include routines
to synchronize access to such data. When applications link with the shareable
image, they have easy access to the data (and routines).

Note that, to achieve this benefit, the shareable image must be installed using
the Install utility, specifying the /SHARED qualifier. If the shared database is
writable, you must also specify the /WRITE qualifier.

1.2.2.1 Including a Shareable Image in a Link Operation
To include a shareable image in a link operation, you must specify the shareable
image in an options file, identifying the input file as a shareable image by
appending the /SHAREABLE qualifier to the file specification. You cannot
specify a shareable image as an input file on the LINK command line. The
following example illustrates an options file, named MY_OPTIONS_FILE.OPT,
that contains an input file specification of the shareable image (the .EXE file type
does not need to be specified because it is the default):

MY_SHARE/SHAREABLE

The following example illustrates the LINK command in which the options file
is specified. (For more information about creating and using shareable images,
see Chapter 4.) Note that the default file types for the options file and the object
module do not need to be specified.

$ LINK MY_MAIN_PROGRAM,MY_OPTIONS_FILE/OPTIONS

By default, if you do not specify the device and directory in the file specification,
the linker looks for shareable images in your default device and directory.

You link against shareable images in a shareable image library by specifying
the library on the LINK command line or in a linker options file, identifying
the file as a library by appending the /LIBRARY qualifier to the library file
specification. You can include specific shareable images from the library
in the link operation by appending the /INCLUDE qualifier to the library
file specification, specifying which shareable images you want to include as
parameters. (For more information about specifying library files in a link
operation, see Section 1.2.3). By default, the linker looks for user library files
in the current default directory.

1–7

Introduction
1.2 Specifying Input to the Linker

Note that images that link against shareable images do not contain the shareable
image but only a reference to it. When the executable image is activated, the
image activator activates all the shareable images to which it has been linked.
By default, each image maps its own copy of the shareable image’s pages.

1.2.2.2 Installing a Shareable Image
If you install the shareable image (using the Install utility), all processes can
share the same physical copy of the shareable image in memory. To take
advantage of this feature, you must specify the ADD subcommand and the
/SHARED qualifier on the INSTALL command line, as in the following example:

$ INSTALL ADD/SHARED WORK:[PROGRAMS]MY_SHARE.EXE

The system creates a set of global sections for those image sections in the
shareable image that can be shared. The system can map these global sections
into the address space of multiple processes. For those image sections that are
not shareable (image sections with the copy-on-reference [CRF] attribute), each
process gets a private copy. (See Chapter 3 for more information about program
section and image section attributes.)

If you do not install the shareable image specifying the /SHARED qualifier, each
process receives a private copy of the image. (For information about installing
images, see the OpenVMS System Manager’s Manual.)

1.2.3 Library Files as Linker Input Files
A library file is a file produced by the Librarian utility (default file type is .OLB).
The linker accepts object module libraries and shareable image libraries as input
files.

1.2.3.1 Creating a Library File
You create a library by specifying the /CREATE qualifier with the LIBRARY
command. In the following example, the object module MY_PROG.OBJ is
inserted into the library MY_LIB.OLB:

$ LIBRARY/CREATE/INSERT MY_LIB MY_PROG

A library file contains a library header and a name table. A library name table
lists all of the global symbols in all of the modules inserted in the library and
associates the name of the symbol with the name of the module in which it is
defined.

Object module libraries contain copies of the object module. Shareable image
libraries do not contain the actual shareable image or a copy of its global symbol
table (GST). Instead, shareable image libraries contain only the name of the
shareable image that contains the definition. The linker looks for the shareable
image in the device and directory in which the library resides. If the linker
cannot find the shareable image at this location, it looks in the directory pointed
to by the logical name SYS$LIBRARY for VAX links or ALPHA$LIBRARY for
Alpha links.

You cannot examine a library file using a text editor. To find out which modules
a library contains, invoke the Librarian utility with the /LIST qualifier. The
Librarian utility lists the symbols defined in these modules if you also specify
the /NAMES qualifier. In the following example, the library MYMATH_LIB.OLB
contains the object module MYMATHROUTS.OBJ, which contains the definitions
of the symbols myadd, mysub, mydiv, and mymul:

1–8

Introduction
1.2 Specifying Input to the Linker

$ LIBRARIAN/LIST/NAMES MYMATH_LIB
Directory of OBJECT library WORK:[PROGS]MYMATH_LIB.OLB;1 on
3-SEP-1993 08:39:27
Creation date: 3-SEP-1993 08:39:05 Creator: VAX-11 Librarian V04-00
Revision date: 3-SEP-1993 08:39:05 Library format: 3.0
Number of modules: 1 Max. key length: 31
Other entries: 4 Preallocated index blocks: 49
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0

Module MYMATHROUTS
MYADD MYDIV
MYMUL MYSUB

For more information about creating and using libraries, see the OpenVMS
Command Definition, Librarian, and Message Utilities Manual.

1.2.3.2 Including a Library File in a Link Operation
You can specify a library file in a link operation in any of the following ways:

• Using the /LIBRARY qualifier. You can specify a library file on the LINK
command line or in an options file, identifying the input file as a library by
appending the /LIBRARY qualifier.

When the linker processes a library file, it searches the library’s name
table for the definitions of symbols referenced in the other input files it
has processed previously in the link operation. (Note that the order in which
the linker processes a library file can affect symbol resolution. For more
information, see Chapter 2.)

When the linker finds the definition of a symbol in the library’s name table,
it includes the module that contains the definition in the link operation
and processes it as it would any other object module or shareable image.
For object module libraries, the linker extracts the object module from the
library. The linker looks for the shareable image in the device and directory
in which the library resides. If the linker cannot find the shareable image
at this location, it looks in the directory pointed to by the logical name
SYS$LIBRARY for VAX links or ALPHA$LIBRARY for Alpha links.

• Using the /INCLUDE qualifier. You can include specific modules from a
library into a link operation by appending the /INCLUDE qualifier to the
library file specification. You specify the modules you want included in the
link operation as arguments to the qualifier.

Note, however, that the linker does not process the name table of a library
file specified using the /INCLUDE qualifier. The linker includes from the
library the modules specified as arguments to the /INCLUDE qualifier into
the link operation and processes them as it would any other object module or
shareable image.

If you append both the /LIBRARY qualifier and the /INCLUDE qualifier to a
library file specification, the linker processes the library’s name table and also
includes the specified modules in the link operation.

• Defining the library as a default user library. You can include a library
in a link operation by defining it as a default user library. To define a default
user library, assign the name of the library as the value of one of the linker’s
LNK$LIBRARY logical names. The linker processes libraries pointed to by
these logicals after processing all the other input files specified in the link
operation. See Section 2.2.3.3 for more information about default library
processing.

1–9

Introduction
1.2 Specifying Input to the Linker

The example link of the Hello World! program in Section 1.1.2 included the C
run-time library in the link operation as a default library.

1.2.4 Symbol Table Files as Linker Input Files
A symbol table file is the product of a previous link operation or a language
processor. A symbol table file is an object module that contains only an object
module header, a global symbol directory (GSD), and an end-of-module record.

VAX For VAX linking, you can specify a symbol table file as input in a link operation
as you would any other object module, as in the following example:

$ LINK MY_MAIN_PROGRAM, MY_SYMBOL_TABLE

The linker processes the GSD of the symbol table file during symbol resolution.
If the symbol table file was the by-product of a link operation in which an
executable image or system image was created, the GSD contains the names and
values of every global symbol in the image. If the symbol table file is associated
with a shareable image, it contains the names and values of the symbols in the
image declared as universal.

Note that, for a symbol table file to be useful in link operations, the values
associated with the symbols in the symbol table file must be constants. The value
of symbols that represent addresses, such as a procedure entry point, can vary
each time the image is activated (unless the image is based).

Note also that a symbol table file associated with a shareable image should not
be specified as an input file in a link operation in place of the shareable image.
The shareable image itself must be specified as input because the linker requires
more information than can be found in a symbol table file, such as the memory
requirements of the shareable image (contained in the image header).♦

Alpha For Alpha linking, symbol table files created by the linker cannot be used as input
files in a link operation. A symbol table in an OpenVMS Alpha shareable image
does not contain the actual value of a symbol, even for symbols that represent
constants. Instead, the symbol table file contains the offset of the symbol’s entry
in the image’s symbol vector.

For example, if the symbol FOO represents the constant 6000, in a VAX image
the value of FOO in the symbol table file would be 6000. In an Alpha image, the
value of FOO in the symbol table file would not be 6000 but another value that
represented the symbol’s position in the symbol vector as an offset from the base
of the symbol vector, such as 48. This entry in the symbol vector contains the
value 6000.

Symbol table files created by the linker during Alpha links can be used as an aid
to debugging a module with the System Dump Analyzer utility (SDA).♦

1.2.5 Options Files as Linker Input Files
An options file is a standard text file you must use to specify linker options and
shareable images specified as input files. You cannot specify linker options or
shareable images on the LINK command line. Linker options, similar to linker
qualifiers, allow you to control various aspects of the linker operation. Part II
includes reference descriptions of all the options supported by the linker.

In addition, you can use options files to perform the following tasks:

• Specifying frequently used input file specifications

1–10

Introduction
1.2 Specifying Input to the Linker

• Entering LINK commands that may exceed the buffer capacity of the
command language interpreter (256 characters)

When creating a linker options file, keep in mind the following restrictions:

• Separate input file specifications with a comma (,).

• Do not enter any linker qualifiers except those required to identify input files,
such as the /LIBRARY or /SHAREABLE qualifier.

• Do not specify an options file within an options file.

• Enter only one option per line.

• Continue a line by entering the continuation character (the hyphen [-]) at the
end of the line.

• Enter comments after an exclamation point (!).

• You may abbreviate the name of a link option to as few letters as needed to
make the abbreviation unique.

Example 1–2 illustrates an options file, named PROJECT3.OPT, that contains
both input file specifications and linker options.

Example 1–2 Sample Linker Options File

MOD1,MOD7,LIB3/LIBRARY,-
LIB4/LIBRARY/INCLUDE=(MODX,MODY,MODZ),-
MOD12/SELECTIVE_SEARCH
STACK=75
SYMBOL=JOBCODE,5

To use an options file in a link operation, specify the name of the options file on
the command line, identifying the file as an options file by appending the linker
qualifier /OPTIONS to the file specification (the .OPT file type does not need to be
specified because it is the default), as in the following example:

$ LINK PROGA,PROGB,PROJECT3/OPTIONS

If you precede the link operation with the SET VERIFY command, DCL displays
the contents of the options file as the file is processed.

If you want to use an options file in a command procedure or interactively
on the command line, specify the input file as the logical name SYS$INPUT,
appending the /OPTIONS qualifier to the logical name. DCL interprets the lines
immediately following the LINK command as the contents of the options file. The
following example illustrates a LINK command in a command procedure:

$! LIN command
$ LINK MAIN,SUB1,SYS$INPUT/OPTIONS
MYPROC/SHAREABLE
SYS$LIBRARY:APPLPCKGE/SHAREABLE
STACK=75
$

When you specify SYS$INPUT to create an options file interactively on the
command line, you must terminate the options file by entering the Ctrl/Z key
sequence, as in the following example:

1–11

Introduction
1.2 Specifying Input to the Linker

$ LINK MAIN,SUB1,SUB2,SYS$INPUT:/OPTIONS
MYPROC/SHAREABLE
SYS$LIBRARY:APPLPCKGE/SHAREABLE
STACK=75

Ctrl/Z

Digital recommends using command procedures to invoke the LINK command
because it enables you to keep both the LINK command and all input file
specifications, including any options files, together in a single file. To perform
a link operation using a command procedure, you simply invoke the command
procedure, as in the following example:

$ @LINKPROC

1.3 Specifying Linker Output Files
The primary output generated by the linker is an image file. In addition, the
linker can generate two other output files: a symbol table file and a map file.

Alpha For Alpha linking only, the linker can generate a debug symbol file.♦

Table 1–2 lists all the output files created by the linker.

Table 1–2 Output Files Generated by the Linker

File
Default
File Type Description

Executable image .EXE A program that can be executed at the command line.
Specify the /EXECUTABLE qualifier to create one.
This is the default output file created by the linker.

Shareable image .EXE A program that can be run only after being included
in a link operation in which an executable image is
created. Specify the /SHAREABLE qualifier to create
one.

System image .EXE A program that is meant to be run as a standalone
system. Specify the /SYSTEM qualifier to create one.

Symbol table file .STB An object module containing the global symbol table
from an executable or system image, or the universal
symbol table from a shareable image. Specify the
/SYMBOL_TABLE qualifier to create one.

Map file .MAP A text file created by the linker that provides
information about the layout of the image and
statistics about the link operation. Specify the
/MAP qualifier to create one.

‡Debug symbol file .DSF A file containing symbol information for use by the
OpenVMS Alpha System-Code Debugger. Specify the
/DSF qualifier to create one.

See OpenVMS Alpha Device Support: Developer’s
Guide for guidelines on using the system-code
debugger.

‡Alpha specific

You cannot examine an image file using a text editor. To examine an image file,
check for errors in image format, and obtain other information about the image,
you must use the ANALYZE/IMAGE utility. See the OpenVMS DCL Dictionary
for information about using this utility.

The following sections describe each of the output files.

1–12

Introduction
1.3 Specifying Linker Output Files

1.3.1 Creating an Executable Image
An executable image is a file that can be executed by the RUN command.
An executable image is made up of an image header (which contains image
identification information and the image section descriptors [ISDs] that define the
memory requirements of the image), a global symbol table, and the executable
machine code. An executable image may reference one or more shareable images.

To create an executable image, you can specify the /EXECUTABLE qualifier.
Note, however, that the linker creates executable images by default. For example,
the command used to create the executable image in Example 1–1 did not specify
the /EXECUTABLE qualifier:

$ LINK HELLO

By default, the linker uses the name of the first input file specified as the name
of the image file, giving the file the .EXE file type. However, you can alter
this default naming convention. For more information, see the LINK command
description in Part II.

1.3.2 Creating a Shareable Image
A shareable image is similar to an executable image except that it cannot be
executed from a command line. To run a shareable image, include it in a link
operation in which an executable image is created. A shareable image is made up
of an image header, a global symbol table, and executable machine code, just as
an executable image is.

To create a shareable image, specify the /SHAREABLE qualifier in the LINK
command line, as in the following example:

$ LINK/SHAREABLE MY_SHARE, MY_UNIVERSALS/OPT

Note that the preceding LINK command includes the options file MY_
UNIVERSALS.OPT. To make symbols in the shareable image available for
other modules to link against, you must declare them as universal symbols in a
linker options file. The mechanism used to declare universal symbols is different
for VAX linking and Alpha linking. For complete information about creating and
using shareable images with examples, see Chapter 4.

1.3.3 Creating a System Image
A system image is an image that does not run under the control of the operating
system. It is intended for standalone operation only.

By default, system images do not contain an image header as executable images
and shareable images do. You can create a system image with a header by
specifying the /HEADER qualifier. System images do not contain global symbol
tables.

To create a system image, specify the /SYSTEM qualifier in the LINK command
line, as in the following example:

$ LINK/SYSTEM MY_SYSTEM_IMAGE

1–13

Introduction
1.3 Specifying Linker Output Files

1.3.4 Creating a Symbol Table File
A symbol table file is an object module, produced by the linker, that contains all
the global symbol definitions in the image. You can create a symbol table for
any type of image: executable, shareable, or system. For executable images and
system images, the symbol table contains a listing of the global symbols in the
image. For shareable images, the symbol table lists the universal symbols in the
image.

VAX For VAX linking, symbol table files can be specified as input files in link
operations. For more information, see Section 1.2.4.♦

Alpha For Alpha linking, the symbol table files created by the linker cannot be used as
input files in subsequent link operations. Symbol table files are intended to be
used with the System Dump Analyzer utility (SDA) as an aid to debugging.♦

To create a symbol table file, specify the /SYMBOL_TABLE qualifier in the LINK
command line. In the following link operation in which an executable image is
created, a symbol table file is requested:

$ LINK/SYMBOL_TABLE MY_EXECUTABLE_IMAGE

By default, the linker uses the name of the first input file specified as the name
of the symbol table file, giving the file the .STB file type. However, you can alter
this default naming convention. For more information, see the description of the
/SYMBOL_TABLE qualifier in Part II.

1.3.5 Creating a Map File
The linker can generate a diagnostic file, called an image map, which you can
use to locate link-time errors, to study the image layout, and to keep track of
global symbols. The image map provides information about the linking process,
including the following types of information:

• A listing of the object modules included in the link operation

• A listing of the image sections created by the linker for the image

• A listing of all the program sections created by the linker

• A listing of all the global and universal symbols resolved by the linker for the
image

• A compilation of summary statistics about the link operation

To create an image map file, specify the /MAP qualifier on the LINK command
line. In batch mode, the linker creates a map file by default. When you invoke
the linker interactively (at the DCL command prompt), you must request a map
explicitly. By default, the linker uses the name of the first input file specified
as the name of the map file, giving the file the .MAP file type. However, you
can alter this default naming convention. For more information, see the LINK
command description in Part II.

For example, to generate a map file in Example 1–1, you would specify the /MAP
qualifier as in the following example:

$ LINK/MAP HELLO

You can determine the information contained in the image map by specifying
additional qualifiers that are related to the /MAP qualifier. For example, by
specifying the /BRIEF qualifier with the /MAP qualifier, you can generate a map
file that contains only a subset of the total information that can be returned. For

1–14

Introduction
1.3 Specifying Linker Output Files

complete information about creating a map file and the contents of a map file, see
Chapter 5.

1.3.6 Creating a Debug Symbol File (Alpha Images Only)

Alpha For Alpha linking, a debug symbol file (DSF) is a file containing debug
information for use by the OpenVMS Alpha System-Code Debugger. To create a
debug symbol file, specify the /DSF qualifier in the LINK command line, as in the
following example:

$ LINK/DSF MY_PROJ.OBJ

By default, the linker uses the name of the first input file specified as the name
of the DSF file, giving the file the .DSF file type. However, you can alter this
default naming convention. For more information, see the description of the /DSF
qualifier in Part II.♦

1.4 Optimizing the Performance of Alpha Images

Alpha For Alpha linking, the linker performs certain optimizations by default to
improve the performance of the images it creates. In addition, you can improve
the performance of installed images by installing them as resident images. The
following sections describe these optimizations.

1.4.1 Linker Default Image Optimizations (Alpha Images Only)
On Alpha systems, compilers generate a Jump to Subroutine (JSR) instruction
sequence to implement procedure calls. The first instruction in this sequence, a
Load Quadword (LDQ) instruction, loads the first quadword of the linkage pair,
identified as an offset from the base of the linkage section (LS), into register
26. This quadword contains the code address of the procedure. The second LDQ
instruction loads the second quadword of the linkage pair, which contains the
address of the routine’s procedure descriptor, into register 27. Once the registers
have been loaded, the JSR instruction is executed with the contents of register
26 passed as an argument. The following example illustrates the JSR instruction
sequence:

LDQ R26,x(LS) ; x is offset into linkage section of the code address
LDQ R27,x+8(LS) ; x+8 = location of procedure descriptor address
JSR R26,R26 ; in linkage pair

On Alpha systems, it is more efficient to execute a procedure call as a branch,
using the BSR (Branch to Subroutine) instruction sequence, than it is to execute
the call as a jump using the JSR instruction sequence. In a BSR instruction, the
destination can be expressed as an offset, requiring fewer memory fetches than
a JSR instruction sequence. If you replace the JSR instruction with the BSR
instruction, you no longer have to load R26 with the code address.

Compilers cannot always take advantage of the efficiency of the BSR instruction
because the information needed to calculate the offset is not available until link
time, when the linker lays out the image sections that make up the image.

To take advantage of this performance enhancement, compilers flag each use
of the JSR instruction sequence. The linker examines each use of the JSR
instruction sequence and attempts to replace it with the BSR instruction sequence
wherever possible. You can prevent the linker from performing code replacement
by specifying the /NOREPLACE qualifier. For more information about the
/REPLACE qualifier, see Part II.

1–15

Introduction
1.4 Optimizing the Performance of Alpha Images

When the linker replaces the JSR instruction with a BSR instruction, it also
replaces the first LDQ instruction used to load R26 with a BIS instruction
because it no longer needs to load R26 with the code address from the linkage
pair. Independent of the JSR replacement, the linker also replaces the second
LDQ instruction used to load R27 with the procedure descriptor address with a
Load Address (LDA) instruction, if possible. The following example illustrates the
BSR instruction sequence that replaces the JSR instruction sequence:

BIS R31,R31,R31 ; equivalent to a NOP
LDA R27,x(LS) ; x is offset from linkage section to procedure descriptor
BSR R26,displ ; branch

When debugging, be aware that instructions you expect to find may have been
replaced as follows:

• LDQ replaced with BIS

• LDQ replaced with LDA

• JSR replaced with BSR

In addition to code replacement, the linker can also specify hints to improve the
performance of the JSR instructions that remain in the image. A hint is used to
index the instruction cache and can improve performance. Hints are generated
for JSR instructions within the image and for JSR instructions to shareable
images.

1.4.2 Installing Images as Resident Images (Alpha Systems Only)
On Alpha systems, another way to improve the performance of an executable
image or a shareable image is to install it as a resident image. The Install utility
moves certain portions of resident images into a granularity hint region (GHR) in
system space where they function as a large single page with granularity hints
set, which provides better performance. To create a resident image, specify the
/RESIDENT qualifier on the Install utility command line, as in the following
example:

$ INSTALL ADD/RESIDENT MY_PROG.EXE

To create an image that can be installed as a resident image, you must specify
the /SECTION_BINDING qualifier in the link operation. When you specify
the /SECTION_BINDING qualifier, the linker does not replace JSR instruction
sequences with the BSR instruction sequence if it would create a dependency
on image section layout. In addition, the linker also checks for data references
that would create dependencies on the layout of image sections. When it creates
an image that can be installed as a resident image, the linker sets a flag in the
image header.

For more information, see the description of the /SECTION_BINDING qualifier
in Part II.♦

1.5 Controlling a Link Operation
The linker allows you to control various aspects of the link operation by
specifying qualifiers and options. The following sections summarize the qualifiers
and options supported by the linker. The remaining chapters of this manual
describe how to use these qualifiers and options, and Part II provides reference
information about each linker qualifier and option.

1–16

Introduction
1.5 Controlling a Link Operation

1.5.1 Linker Qualifiers
As with any DCL command, the LINK command supports qualifiers that allow
you to control aspects of linker processing. The qualifiers supported by the linker
allow you to:

• Identify input files. For example, you must identify library files by
appending the /LIBRARY qualifier to the file specification. Section 1.2
describes these qualifiers.

• Specify output files. For example, you must specify the /SHAREABLE
qualifier to direct the linker to create a shareable image. Section 1.3 describes
these qualifiers.

• Control symbol resolution. For example, if you specify the /NOSYSLIB
qualifier, the linker will not process the default system object library or the
default system image library. Chapter 2 contains more information about this
topic.

• Control image file creation. For example, if you specify the
/CONTIGUOUS qualifier, the linker attempts to allocate contiguous disk
blocks for the image file. Chapter 3 contains more information about this
topic.

Table 1–3 lists the LINK command qualifiers alphabetically.

Table 1–3 Linker Qualifiers

Qualifier Description

/ALPHA Directs the linker to build an OpenVMS Alpha image.
Section 1.6 describes this qualifier in more detail.

/BPAGE Specifies the page size the linker should use when
creating image sections.

/BRIEF Directs the linker to create a brief image map. Must be
specified with the /MAP qualifier.

/CONTIGUOUS Directs the linker to attempt to store the output image in
contiguous disk blocks.

/CROSS_REFERENCE Directs the linker to replace the Symbols By Name section
of the image map with the Symbol Cross-Reference
section. Must be specified with the /MAP qualifier.

/DEBUG Directs the linker to generate a debugger symbol table
and to give control to the OpenVMS Debugger when the
image is run.

‡/DEMAND_ZERO Controls how the linker creates demand-zero image
sections in Alpha images. Not supported for VAX linking.

‡/DSF Directs the linker to create a file called a debug symbol
file (DSF) for use by the OpenVMS Alpha System-Code
Debugger.

/EXECUTABLE Directs the linker to create an executable image.

/FULL Directs the linker to create a full image map. Used only
with the /MAP qualifier.

‡Alpha specific

(continued on next page)

1–17

Introduction
1.5 Controlling a Link Operation

Table 1–3 (Cont.) Linker Qualifiers

Qualifier Description

‡/GST Directs the linker to include symbols that have been
declared universal in the global symbol table (GST) of a
shareable image. Not supported for VAX linking.

/HEADER Directs the linker to include an image header in a system
image. Used only with the /SYSTEM qualifier.

/INCLUDE Identifies the input file to which it is appended as a
library file and directs the linker to include specific
modules from the library in the link operation.

/LIBRARY Identifies the input file to which it is appended as a
library file.

/MAP Directs the linker to create an image map.

‡/NATIVE_ONLY Directs the linker to create an Alpha image that cannot
operate with a translated VAX image. Not supported for
VAX linking.

/OPTIONS Identifies an input file as a linker options file.

/P0IMAGE Directs the linker to mark the specified executable image
as one that can run only in P0 address space.

/PROTECT Directs the linker to protect the shareable image from
user-mode and supervisor-mode write access. Used with
the /SHAREABLE qualifier when the linker creates a
shareable image.

‡/REPLACE Directs the linker to perform certain optimizations that
improve the performance of the resultant image. Not
supported for VAX linking.

‡/SECTION_BINDING Directs the linker to check if the image contains
dependencies on the layout of image sections that could
interfere with a performance enhancement the Install
utility can perform on images that are installed as
resident images. Not supported for VAX linking.

/SELECTIVE_SEARCH Directs the linker to include in the image’s global symbol
table (GST) only those global symbols that are defined in
the file and referenced by previously processed files.

/SHAREABLE Directs the linker to create a shareable image. It can also
be used to identify an input file as a shareable image.

/SYMBOL_TABLE Directs the linker to create a symbol table file.

‡/SYSEXE Directs the linker to process the OpenVMS Alpha
executive file SYS$BASE_IMAGE.EXE (located
in the directory pointed to by the logical name
ALPHA$LOADABLE_IMAGES) to resolve references
to symbols in a link operation. Not supported for VAX
images.

/SYSLIB Directs the linker to search the default system image
library and the default system object library to resolve
undefined symbolic references.

/SYSSHR Directs the linker to search the default system shareable
image library to resolve undefined symbolic references.

‡Alpha specific

(continued on next page)

1–18

Introduction
1.5 Controlling a Link Operation

Table 1–3 (Cont.) Linker Qualifiers

Qualifier Description

/SYSTEM Directs the linker to create a system image.

/TRACEBACK Directs the linker to include traceback information in the
image.

/USERLIBRARY Directs the linker to search default user libraries to
resolve undefined symbolic references. /USERLIBRARY
accepts a keyword (ALL, GROUP, PROCESS, SYSTEM,
or NONE) to further specify which logical name tables to
search for the definitions of default user libraries.

/VAX Directs the linker to build an OpenVMS VAX image.
Section 1.6 describes this qualifier in more detail.

1.5.2 Link Options
In addition to qualifiers, the linker supports options that allow you to control
other aspects of a link operation, such as the following:

• Specify image identification information. Using options such as NAME=,
ID=, and GSMATCH=, you can supply values for fields in the image header.

• Declare universal symbols in shareable images. Using the
UNIVERSAL= option for VAX linking and the SYMBOL_VECTOR= option
for Alpha linking, you can make symbols in shareable images accessible to
external modules.

• Group input files together. Using the CLUSTER= option or the
COLLECT= option, you can specify which input files (or program sections
in those input files) the linker should group together. This can affect symbol
resolution.

Note that linker options must be specified in a linker options file. (See
Section 1.2.5 for information about creating linker options files and specifying
them in link operations.)

Table 1–4 lists all the linker options alphabetically.

Table 1–4 Linker Options

Option Description

†BASE= Sets the base virtual address for the image. Not supported
for Alpha linking.

CASE_SENSITIVE= Determines whether the linker preserves the mixture of
uppercase and lowercase characters used in arguments to
linker options.

CLUSTER= Directs the linker to create a cluster, assign the cluster the
name specified, and insert the input files specified in the
cluster.

COLLECT= Moves the specified program sections into the specified
cluster.

†VAX specific

(continued on next page)

1–19

Introduction
1.5 Controlling a Link Operation

Table 1–4 (Cont.) Linker Options

Option Description

DZRO_MIN= Sets the minimum number of uninitialized, contiguous
pages that must be found in an image section before the
linker can extract the pages from the image section and
create a demand-zero image section.

GSMATCH= Sets match control parameters for a shareable image.

IDENTIFICATION= Sets the image ID field in the image header.

IOSEGMENT= Specifies the size of the image I/O segment.

ISD_MAX= Specifies the maximum number of image sections.

NAME= Sets the image name field in the image header.

PROTECT= Directs the linker to protect one or more clusters from user-
mode or supervisor-mode write access. Can be used only
with shareable images.

PSECT_ATTR= Assigns values to program section attributes.

STACK= Sets the initial size of the user-mode stack.

SYMBOL= Defines a global symbol and assigns it a value.

‡SYMBOL_TABLE= Specifies whether a symbol table file, produced in a link
operation in which a shareable image is created, should
contain all the global symbols as well as the universal
symbols in the shareable image. By default, the linker
includes only universal symbols. Not supported for VAX
images.

‡SYMBOL_VECTOR= Declares a symbol in a shareable image as universal,
making it accessible to external modules. Not supported for
VAX images.

†UNIVERSAL= Declares the specified global symbol as a universal symbol,
making it accessible to external modules. Not supported for
Alpha images.

†VAX specific
‡Alpha specific

1.6 Linking for Different Architectures
It is possible to create OpenVMS Alpha images on an OpenVMS VAX system
and to create OpenVMS VAX images on an OpenVMS Alpha system. To do this,
you must mount a system disk of the target architecture and make it accessible
on the system where the link is to occur. Also, you must assign several logical
names to point to portions of the target architecture disk.

Table 1–5 lists the logical names and the conditions of their use.

Table 1–5 Logical Names for Cross-Architecture Linking

Logical Name Description

ALPHA$LIBRARY The linker uses this logical name when creating an OpenVMS
Alpha image to locate the target system’s shareable images
and system libraries.

(continued on next page)

1–20

Introduction
1.6 Linking for Different Architectures

Table 1–5 (Cont.) Logical Names for Cross-Architecture Linking

Logical Name Description

VAX$LIBRARY The linker uses this logical name when creating an OpenVMS
VAX image on an OpenVMS Alpha computer to locate the
target system’s shareable images and system libraries.

SYS$LIBRARY The linker uses this logical name when creating an OpenVMS
VAX image on an OpenVMS VAX computer to locate the target
system’s shareable images and system libraries.

ALPHA$LOADABLE_
IMAGES

The linker uses this logical when creating an OpenVMS Alpha
image to locate the target system’s base image SYS$BASE_
IMAGE.EXE when the /SYSEXE qualifier is in the link
command line.

The /ALPHA and /VAX qualifiers control which architecture an image is built for:

• When you specify /ALPHA, the linker creates an OpenVMS Alpha
image using the OpenVMS Alpha libraries and OpenVMS Alpha images
from the target system disk that the logicals ALPHA$LIBRARY and
ALPHA$LOADABLE_IMAGES point to. When you link on an OpenVMS
Alpha system, these logical names initially point to the current system’s
libraries and images. The qualifier /ALPHA is the default on OpenVMS
Alpha systems.

• When you specify /VAX on an OpenVMS Alpha system, the linker creates an
OpenVMS VAX image using the OpenVMS VAX libraries and OpenVMS VAX
images from the target system disk that the logical VAX$LIBRARY points to.
On an OpenVMS VAX system, you create VAX images by using the OpenVMS
VAX libraries and OpenVMS VAX images that the logical SYS$LIBRARY
points to. The qualifier /VAX is the default on OpenVMS VAX systems.

1–21

2
Understanding Symbol Resolution

As one of its primary tasks, the linker must resolve symbolic references between
modules. This chapter describes how the linker performs symbol resolution and
how you can control it to ensure that the linker resolves symbolic references as
you intend.

2.1 Overview
Programs are typically made up of many interdependent modules. For example,
one module may define a symbol to represent a program location or data element
that is referenced by many other modules. The linker is responsible for finding
the correct definition of each symbol referenced in all the modules included in
the link operation. This process of matching symbolic references with their
definitions is called symbol resolution.

2.1.1 Types of Symbols
Symbols can be categorized by their scope, that is, the range of modules over
which they are intended to be visible. Some symbols, called local symbols,
are meant to be visible only within a single module. Because the definition and
the references to these symbols must be confined to a single module, language
processors such as compilers can resolve these references.

Other symbols, called global symbols, are meant to be visible to external
modules. A module can reference a global symbol that is defined in another
module. Because the value of the symbol is not available to the compiler
processing the source file, it cannot resolve the symbolic reference. Instead,
a compiler creates a global symbol directory (GSD) in an object module that lists
all of the global symbol references and global symbol definitions it contains.

In shareable images, symbols that are intended to be visible to external modules
are called universal symbols. A universal symbol in a shareable image is the
equivalent of a global symbol in an object module. Note, however, that only
those global symbols that have been declared as universal are listed in the global
symbol table (GST) of the shareable image and are available to external modules
to link against.

Language processors determine whether a symbol is local or global. For example,
in VAX FORTRAN, statement numbers are local symbols and module entry
points are global symbols. In other languages, you can explicitly specify whether
a symbol is local or global by including or excluding particular attributes in the
symbol definition. Note also that some languages allow you to specify symbols as
weak or strong (see Section 2.5 for more information).

You must explicitly declare universal symbols as part of the link operation in
which the shareable image is created. For more information about declaring
universal symbols, see Chapter 4.

2–1

Understanding Symbol Resolution
2.1 Overview

Note

In some Digital programming languages, certain types of global symbols,
such as external variables in C and COMMON data in FORTRAN,
are not listed in the GSD as global symbol references or definitions.
Because these data types implement virtual memory that is shared,
the languages implement them as program sections that are overlaid.
These symbols appear as program section definitions in the GSD, not
as a symbol definition or reference. (Compilers use program sections to
define the memory requirements of an object module.) The linker does not
include program section definitions in its symbol resolution processing.
For information about how the linker processes program sections, see
Chapter 3.

VAX On VAX systems, the VAX C language extensions globalref and globaldef allow
you to create external variables that appear as symbol references and definitions
in the GSD. For more information, see the VAX C documentation. ♦

Alpha On Alpha systems, the DEC C compiler supports the globalref and globaldef
language extensions. In addition, DEC C supports command line qualifiers and
source code pragma statements that allow you to control whether it implements
external variables as program sections or as global symbol references and
definitions. For more information, see the DEC C documentation. ♦

2.1.2 Linker Symbol Resolution Processing
During its first pass through the input files specified in the link operation,
the linker attempts to find the definition for every symbol referenced in the
input files. By default, the linker processes all the global symbols defined and
referenced in the GSD of each object module and all the universal symbols
defined and referenced in the GST of each shareable image. The definition of the
symbol provides the value of the symbol. The linker substitutes this value for
each instance where the symbol is referenced in the image.

The value of a symbol depends on what the symbol represents. A symbol can
represent a routine entry point or a data location within an image. For these
symbols, the value of the symbol is an address. A symbol can also represent a
data constant (for example, X = 10). In this case, the value of the symbol is its
actual value (in the example, the value of X is 10).

For symbols that represent addresses in object modules, the value is expressed
initially as an offset into a program section. This is how language processors
express addresses. Later in its processing, when the linker combines the program
sections contributed by all the object modules into the image sections that define
the virtual memory layout of the image, it determines the actual value of the
address. (For information about how the linker determines the virtual memory
layout of an image, see Chapter 3.)

For symbols that represent addresses in a shareable image, the value of the
symbol at link time is architecture specific.

2–2

Understanding Symbol Resolution
2.1 Overview

Alpha For Alpha images, at link time, the value of a symbol in a shareable image
(as listed in the GST of the image) is the offset of the symbol’s entry in the
symbol vector of the image. A symbol vector entry is a pair of quadwords that
contain information about the symbol. The contents of these quadwords depend
on whether the symbol represents a procedure entry point, data location, or a
constant. Figure 2–1 illustrates the contents of a symbol vector entry for each
of these three types of symbols. Note that, at link time, a symbol vector entry
for a procedure entry point or a data location is expressed as an offset into the
image. At image activation time, when the image is loaded into memory and the
base address of the image is known, the image activator converts the image offset
into a virtual address. Figure 2–1 shows the contents of the symbol vector at link
time and at image activation time.

Figure 2–1 Symbol Vector Contents

63 0

image offset of procedure entry

image offset of procedure desc.

constant value

0

image offset of data cell

Procedure

Constant

Data

virtual addr. of procedure entry

virtual addr. of procedure desc.

constant value

0

virtual addr. of data cell

At Link Time: After Image Activation:

0

63 0

0

ZK−5840A−GE

Note that the linker does not allow programs to make procedure calls to symbols
that represent data locations. ♦

VAX For VAX images, at link time, the value of a symbol in a shareable image (as
listed in the GST of the image) is the offset into the image of the routine or data
location, if the symbol was declared universal using the UNIVERSAL= option. If
the symbol was declared universal using a transfer vector, the value of the symbol
is the offset into the image of the transfer vector entry. If the symbol represents
a constant, the GST contains the actual value of the constant. ♦

The actual value of an address symbol in a shareable image is determined at run
time by the image activator when it loads the shareable image into memory. The
image activator relocates all the address references within a shareable image
when it loads the image into memory. Once it has determined the absolute values
of these addresses, the image activator fixes up references to these addresses in
the image that linked against the shareable image. Previously, the linker created
fix-ups that flag to the image activator where it must insert the actual addresses
to complete the linkage of a symbolic reference to its definition in an image. The
linker listed these fix-ups in the fix-up section it creates for the image. (For
more information about shareable images, see Chapter 4.)

2–3

Understanding Symbol Resolution
2.1 Overview

VAX For VAX images, you can specify the address at which you want a shareable
image loaded into memory by using the BASE= option. When you specify this
option, the linker can calculate the absolute addresses of symbols within the
shareable image because the base address of the shareable image is known.
By specifying a base address, you eliminate the need for the image activator to
perform fix-ups and relocations.

Note, however, that basing a shareable image can potentially destroy upward
compatibility between the shareable image and other images that were linked
against it. ♦

Figure 2–2 illustrates the interdependencies created by symbolic references
among the modules that make up an application. In the figure, arrows point
from a symbol reference to a symbol definition. (The statements do not reflect a
specific programming language.)

Figure 2–2 Symbol Resolution

MODULEA

MODULEB MODULEC

ZK−0529−GE

Call GLOBAL3
Move LOCAL1 to LOCAL2

to LOCAL2
Move LOCAL1

GLOBAL2
GLOBAL1
LOCAL2
LOCAL1

to LOCAL1
Add GLOBAL1

LOCAL2
LOCAL1

to LOCAL1
Move LOCAL2

GLOBAL3

LOCAL2
LOCAL1

from LOCAL2
Subtract GLOBAL2

2–4

Understanding Symbol Resolution
2.1 Overview

The linker creates an image even if it cannot find a definition for every symbol
referenced in the input files it processes. The linker reports these undefined
symbols as in the following example, if at least one of these unresolved references
is a strong reference. (For information about strong and weak symbolic
references, see Section 2.5.) The linker includes the message in the map file,
if a map file was requested.

$ link my_main ! The module MY_MATH is omitted
%LINK-W-NUDFSYMS, 1 undefined symbols:
1 %LINK-I-UDFSYM, MYSUB
2 %LINK-W-USEUNDEF, undefined symbol MYSUB referenced

in psect $CODE offset %X0000001A
in module MY_MAIN file WORK:[PROGRAMS]MY_MAIN.OBJ;1

1 The linker issues an informational message for each symbol for which it
cannot find a definition.

2 The linker issues a warning message for each instance where an undefined
symbol is referenced in the image.

If you run an image that contains undefined symbols and the symbols are never
accessed, the program will run successfully. If you run an image that contains
undefined symbols and the image accesses the symbols at run time, the image
will abort, in most cases, with an access violation because the linker assigns the
value zero to undefined symbols, as in the following example:

$ run my_main
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=00000000,
PC=00001018, PSL=03C00000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

MY_MAIN main 15 00000018 00001018

2.2 Input File Processing for Symbol Resolution
The linker can include object modules, shareable images, and libraries in its
symbol resolution processing. For VAX images, the linker can also include a
symbol table file in its symbol resolution processing. (Options files, in which
linker options and input files are specified, are not included in symbol resolution.)

By default, when the linker processes an object module or shareable image, it
includes all the symbol definitions from the object module or shareable image
in its processing. However, if you append the /SELECTIVE_SEARCH qualifier
to the object module or shareable image file specification, the linker includes
in its processing only those symbols from the object module or shareable image
that define symbols referenced in a previously processed input file. (For more
information about selectively processing input files, see Section 2.2.4.)

Table 2–1 summarizes how the linker processes these different types of input files
when performing symbol resolution. The following sections provide more detail
on the linker’s processing of each type of input file.

2–5

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

Table 2–1 Linker Input File Processing

Input File How Processed

Object file (.OBJ) By default, the linker processes all the symbol definitions
and references listed in the GSD of the module. If you
append the /SELECTIVE_SEARCH qualifier to the input
file specification, the linker includes in its processing only
those symbol definitions from the GSD that resolve symbolic
references found in previously processed input files.

Shareable image file
(.EXE)

By default, the linker processes all symbol definitions and
references listed in the GST of the image. Note, however, to
avoid cluttering the map file of the resultant image, the linker
lists only those symbol definitions in the map file that are
referenced by other modules.

If you append the /SELECTIVE_SEARCH qualifier to the input
file specification, the linker includes in its processing only
those symbol definitions from the GST that resolve symbolic
references found in previously processed input files.

†Symbol table file (.STB) By default, the linker processes all the symbol definitions
and references in the GSD of the module. If you append the
/SELECTIVE_SEARCH qualifier to the input file specification,
the linker includes in its processing only those symbol
definitions from the module that resolve symbolic references
found in previously processed input files.

Library files (.OLB) The linker searches the name table of the library for symbols
that are undefined in previously processed input files. (A
library file’s name table lists all the symbols available in all
of the modules it contains.) If the linker finds the definition
of a symbol referenced by a previously processed input file, it
includes in the link operation the module in the library that
contains the definition of the symbol. Once the object module
or shareable image is included in the link operation, the linker
processes it as any other object module or shareable image.

If you append the /INCLUDE qualifier to a library file
specification, the linker does not search the library’s name
table to find undefined symbolic references. Instead, the linker
simply includes the specified object module or shareable image
specified as a parameter to the /INCLUDE qualifier.

You cannot process a library file selectively. However, if
the Librarian utility’s /SELECTIVE_SEARCH qualifier was
specified when the object module or shareable image was
inserted into the library, the linker will process the module
selectively when it extracts it from the library.

†VAX specific

2.2.1 Processing Object Modules
The way the linker processes object modules to resolve symbolic references
illustrates how the linker processes most other input files. (Symbol table files
are object modules. The GST of a shareable image, which the linker processes in
symbol resolution, is also created as an object module appended to the shareable
image.)

For example, the program in Example 2–1 references the symbol mysub, which is
defined in the program in Example 2–2.

2–6

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

Example 2–1 Module Containing a Symbolic Reference (my_main.c)

#include <stdio.h>

int mysub();

main()
{

int num1, num2, result;

num1 = 5;
num2 = 6;
result = 0;

result = mysub(num1, num2);
printf("Result is: %d\n", result);

}

Example 2–2 Module Containing a Symbol Definition (my_math.c)

myadd(value_1,value_2)
int value_1;
int value_2;

{
int result;

result = value_1 + value_2;

return(result)
}

mysub(value_1,value_2)
int value_1;
int value_2;

{
int result;

result = value_1 - value_2;

return(result)
}

mymul(value_1,value_2)
int value_1;
int value_2;

{
int result;

result = value_1 * value_2;

return(result)
}

mydiv(value_1,value_2)
int value_1;
int value_2;

{
int result;

result = value_1 / value_2;

return(result)
}

The GSD created by the language processor for the object module MY_MAIN.OBJ
lists the reference to the symbol mysub. Because object modules cannot be
examined using a text editor, the following representation of the GSD is taken
from the output of the ANALYZE/OBJECT utility. The example is from the

2–7

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

analysis of an OpenVMS Alpha object module. Differences between the format
of the symbol reference between VAX object files and Alpha object files are
highlighted in the list following the example.

4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_GSD) 1 , 344 bytes
.
.
.

9) Global Symbol Specification (EGSD$C_SYM) 2
data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) EGSY$V_WEAK 0
(1) EGSY$V_DEF 0
(2) EGSY$V_UNI 0
(3) EGSY$V_REL 0
(4) EGSY$V_COMM 0
(5) EGSY$V_VECEP 0 3
(6) EGSY$V_NORM 0 4

symbol: "MYSUB"

1 For VAX object files, the symbol for the global symbol directory is OBJ$C_
GSD.

2 For VAX object files, the symbol for a global symbol specification is GSD$C_
SYM.

3 For VAX object files, this field is not included.

4 For VAX object files, this field is not included. For Alpha object files, the
value of this field is always zero for symbolic references.

The GSD created by the language processor for the object module MY_MATH.OBJ
contains the definition of the symbol mysub, as well as the other symbols defined
in the module. The definition of the symbol includes the value of the symbol.

Alpha The following excerpt from an analysis of the OpenVMS Alpha object module
(performed using the ANALYZE/OBJECT utility) shows the format of a GSD
symbol definition entry. Note that, in an OpenVMS Alpha object module, a
symbol definition is listed as a Global Symbol Specification.

4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_GSD), 46 bytes
.
.
.
9) Global Symbol Specification (EGSD$C_SYM)

data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) EGSY$V_WEAK 0
(1) EGSY$V_DEF 1
(2) EGSY$V_UNI 0
(3) EGSY$V_REL 1
(4) EGSY$V_COMM 0
(5) EGSY$V_VECEP 0
(6) EGSY$V_NORM 1 1

2 psect: 3
3 value: 64 (%X’00000040’)
4 code address psect: 5
5 code address: 8 (%X’00000008’)

symbol: "MYSUB"
.
.
.

1 The value of the EGSY$V_NORM flag is 1 if the symbol represents a

2–8

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

procedure. The value is set to zero if the symbol represents data.

2 The index of the program section that contains the procedure descriptor for
mysub.

3 The location of the procedure descriptor expressed as the offset from the
starting address of the program section that contains the procedure descriptor.

4 Index of program section that contains the code entry point.

5 The location of the code entry point, expressed as the offset from the starting
address of the program section that contains the entry point. ♦

VAX The following excerpt from an analysis of the OpenVMS VAX object module
(performed using the ANALYZE/OBJECT utility) shows the format of a GSD
symbol definition entry. Note that, on VAX systems, a symbol definition is listed
as an Entry Point Symbol and Mask Definition record.

4. GLOBAL SYMBOL DIRECTORY (OBJ$C_GSD), 46 bytes
.
.
.
2) Entry Point Symbol and Mask Definition (GSD$C_EPM)

data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) GSY$V_WEAK 0
(1) GSY$V_DEF 1
(2) GSY$V_UNI 0
(3) GSY$V_REL 1
(4) GSY$V_COMM 0

psect: 0
value: 0 (%X’0000000C’)
entry mask: <>
symbol: "MYSUB"

.

.

.

The value of the symbol is expressed as an offset into a program section. ♦

When you link the modules shown in Example 2–1 and Example 2–2 together to
create an image, you specify both object modules on the command line, as in the
following example:

$ LINK MY_MAIN, MY_MATH

When the linker processes these object modules, it reads the contents of the
GSDs, obtaining the value of the symbol from the symbol definition.

Alpha Note that, for Alpha images, in the map file associated with the image, the value
of the symbol mysub is the location within the image of the procedure descriptor
for the routine. The procedure descriptor contains the address of the routine
within the image. ♦

VAX For VAX images, the value of the symbol mysub is represented in the map file as
the location of the entry point mask. ♦

2–9

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

2.2.2 Processing Shareable Images
When the linker processes a shareable image specified as input in a link
operation, it processes all the symbol definitions and references in the GST of
the image. The GST contains all the universal symbols defined in the shareable
image. Because the linker creates the GST of a shareable image in the format
of an object module, the processing of shareable images for symbol resolution is
similar to the processing of object modules. Note that the linker includes in the
map file only those symbols that resolve references to avoid cluttering the listing
with extraneous symbols.

For example, the program in Example 2–2 (in Section 2.2.1) can be implemented
as a shareable image. (For information about creating a shareable image, see
Chapter 4.) The shareable image can be included in the link operation as in the
following example:

$ LINK/MAP/FULL MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE

The GST created by the linker for the shareable image MY_MATH.EXE contains
the definition of the symbol mysub, as well as the other symbols defined in the
module.

Because images cannot be examined using a text editor, the following
representations of the GST are taken from the output of the ANALYZE/IMAGE
utility.

Alpha For Alpha images, the universal symbol mysub in the shareable image MY_
MATH.EXE appears in the GST of the image as a Universal Symbol Specification
record, as illustrated in the following example:

SHAREABLE IMAGE - GLOBAL SYMBOL TABLE
.
.
.

4. GLOBAL SYMBOL DIRECTORY (EOBJ$C_EGSD), 200 bytes
.
.
.

3) Universal Symbol Specification (EGSD$C_SYMG)
data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) EGSY$V_WEAK 0
(1) EGSY$V_DEF 1
(2) EGSY$V_UNI 1
(3) EGSY$V_REL 1
(4) EGSY$V_COMM 0
(5) EGSY$V_VECEP 0
(6) EGSY$V_NORM 1

psect: 0
value: 16 (%X’00000010’)
symbol vector entry (procedure)

%X’00000000 00010008’
%X’00000000 00000040’

symbol: "MYSUB"
.
.
.

2–10

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

Note that the value of the symbol, as it appears in the Universal Symbol
Specification, is the location of the symbol’s entry in the image’s symbol vector,
expressed as an offset from the base of the symbol vector. The symbol vector
entry contains the address of mysub’s entry point and the address of its procedure
descriptor. These locations are expressed as offsets from the base of the image.
The entry for a symbol in the GST of an image is a duplicate of the symbol’s entry
in the symbol vector. ♦

VAX For VAX images, the universal symbol mysub in the shareable image MY_
MATH.EXE appears in the GST of the image as an Entry Point Symbol and Mask
Definition record, as illustrated in the following example:

SHAREABLE IMAGE - GLOBAL SYMBOL TABLE
.
.
.

2) Entry Point Symbol and Mask Definition (GSD$C_EPM)
data type: DSC$K_DTYPE_Z (0)
symbol flags:

(0) GSY$V_WEAK 0
(1) GSY$V_DEF 1
(2) GSY$V_UNI 1
(3) GSY$V_REL 1
(4) GSY$V_COMM 0

psect: 0
value: 8 (%X’00000008’)
entry mask: <>
symbol: "MYSUB"

.

.

.

Note that the flag GSY$V_UNI is set for universal symbols to distinguish them
from global symbols in object modules that use the same record format. ♦

Implicit Processing of Shareable Images

VAX For VAX linking, when you specify a shareable image in a link operation, the
linker not only processes the shareable image you specify, but also all the
shareable images that the shareable image has been linked against. (A shareable
image contains a global image section descriptor [GISD] for each shareable image
to which it has been linked.) ♦

Alpha For Alpha linking, the linker does not process the shareable images that the
shareable image you specify has been linked against. (Shareable images on
Alpha systems still contain GISDs for each shareable image that they have been
linked against, however.) If your application’s build procedure depends on implicit
processing of shareable images, you may need to add these shareable images to
your linker options file. ♦

2.2.3 Processing Library Files
Libraries specified as input files in link operations contain either object modules
or shareable images. The way in which the linker processes library files
depends on how you specify the library in the link operation. Section 2.2.3.1,
Section 2.2.3.2, and Section 2.2.3.3 describe these differences. Note, however, that
once an object module or shareable image is included from the library into the
link operation, the linker processes the file as it would any other object module or
shareable image.

2–11

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

For example, to create a library and insert the object module version of the
program in Example 2–2 into the library, you could specify the following
command:

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH

The librarian includes the module in its module list and all of the global symbols
defined in the module in its name table. To view the library’s module list
and name table, specify the LIBRARY command with the /LIST and /NAMES
qualifiers, as in the following example:

$ LIBRARY/LIST/NAMES MYMATH_LIB
Directory of OBJECT library WORK:[PROGS]MYMATH_LIB.OLB;1 on
28-AUG-1994 11:11:33
Creation date: 28-AUG-1994 11:08:04 Creator: VAX-11 Librarian V04-00
Revision date: 28-AUG-1994 11:08:04 Library format: 3.0
Number of modules: 1 Max. key length: 31
Other entries: 5 Preallocated index blocks: 49
Recoverable deleted blocks: 0 Total index blocks used: 2
Max. Number history records: 20 Library history records: 0

Module MY_MATH
MYADD MYDIV
MYMUL MYSUB
MY_SYMBOL

You can specify the library in the link operation using the following command:

$ LINK/MAP/FULL MY_MATH, MYMATH_LIB/LIBRARY

The map file produced by the link operation verifies that the object module MY_
MATH.OBJ was included in the link operation.

2.2.3.1 Identifying Library Files Using the /LIBRARY Qualifier
When the linker processes a library file identified by the /LIBRARY qualifier, the
linker processes the library’s name table, looking for the definitions of symbols
referenced in previously processed input files.

Note that, to resolve a reference to a symbol defined in a library, the linker must
process the module that references the symbol before processing the library file.
Thus, while the ordering of object modules and shareable images is not usually
important in a link operation, the ordering of library files can be important. (For
more information about controlling the order in which the linker processes input
files, see Section 2.3.)

Once the object module or shareable image is included from the library into the
link operation, the linker processes all the symbol definitions and references
in the module. If you want the linker to selectively process object modules or
shareable images that are included in the link operation from a library, you
must append the Librarian utility’s /SELECTIVE_SEARCH qualifier to the file
specification of the object module or shareable image when you insert it into the
library. Appending the linker’s /SELECTIVE_SEARCH qualifier to a library file
specification in a link operation is illegal. For more information about processing
input files selectively, see Section 2.2.4.

2–12

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

Processing Object Module Libraries
When the linker finds a symbol in the name table of an object module library,
it extracts from the library the object module that contains the definition and
includes it in the link operation. The linker then processes the GSD of the object
module extracted from the library, adding an entry to the linker’s list of symbol
definitions for every symbol defined in the object module, and adding entries to
the linker’s undefined symbol list for all the symbols referenced by the module (as
described in Section 2.2.1). The linker continues to process the undefined symbol
list until there are no definitions in the library for any outstanding references.
When the linker finishes processing the library, it has extracted all the modules
that resolve references generated by modules previously extracted from the
library.

Processing Shareable Image Libraries
When the linker finds a symbol in the name table of a shareable image library,
it notes which shareable image contains the symbol and then looks for the
shareable image to include it in the link operation. By default, the linker looks
for the shareable image in the same device and directory as the library file.

VAX For VAX linking, if the linker cannot find the shareable image in the device
and directory of the library file, the linker looks for the shareable image in the
directory pointed to by the logical name SYS$LIBRARY. ♦

Alpha For Alpha linking, if the linker cannot find the shareable image in the device
and directory of the library file, the linker looks for the shareable image in the
directory pointed to by the logical name ALPHA$LIBRARY. ♦

Once it locates the shareable image, the linker processes the shareable image as
it does any other shareable image (as described in Section 2.2.2).

2.2.3.2 Including Specific Modules from a Library Using the /INCLUDE Qualifier
If the library file is specified with the /INCLUDE qualifier, the linker does not
process the library’s name table. Instead, the linker includes in the link operation
the modules from the library specified in the /INCLUDE qualifier and processes
them as it would any other object module or shareable image.

If you append both the /LIBRARY qualifier and the /INCLUDE qualifier to a
library file specification, the linker processes the library’s name table to search for
modules that contain needed definitions. When the linker finds an object module
or shareable image in the library that contains a needed definition, it processes it
as described in Section 2.2.3.1. In addition, the linker also includes the modules
specified with the /INCLUDE qualifier in the link operation and processes them
as it would any other object module or shareable image.

2.2.3.3 Processing Default Libraries
In addition to the libraries you specify using the /LIBRARY qualifier or the
/INCLUDE qualifier, the linker also processes certain other libraries by default.
The linker processes these default libraries in the following order:

1. Default user library files. You specify a default user library by associating
the library with one of the linker’s default logical names from the range
LNK$LIBRARY, LNK$LIBRARY_1, . . . LNK$LIBRARY_999. If the
/NOUSERLIBRARY qualifier is specified, the linker skips processing default
user libraries. (For more information about defining a default user library,
see the description of the /USERLIBRARY qualifier in Part II.)

2–13

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

If the default user library contains shareable images, the linker looks for the
shareable image as described in Processing Shareable Image Libraries, in
Section 2.2.3.1.

2. Default system shareable image library file. The linker processes the
default system shareable image library IMAGELIB.OLB by default unless
you specify the /NOSYSSHR or the /NOSYSLIB qualifier.

Note that when the linker needs to include a shareable image from
IMAGELIB.OLB in a link operation, it always looks for the shareable images
in SYS$LIBRARY for VAX linking or ALPHA$LIBRARY for Alpha linking.
The linker does not look for the shareable image in the device and directory of
IMAGELIB.OLB as it does for other shareable image libraries.

3. Default system object module library file. The linker processes the
default system object library STARLET.OLB by default unless you specify the
/NOSYSLIB qualifier.

Alpha For Alpha linking, when the linker processes STARLET.OLB by default, it
also processes the shareable image (SYS$PUBLIC_VECTORS.EXE). This
shareable image is needed to resolve references to system services. (For VAX
linking, references to system services are resolved by linking against the file
SYS$P1_VECTOR, which resides in STARLET.OLB.)

When STARLET is not processed by default (for example, when the
/NOSYSLIB qualifier is specified), the linker does not process SYS$PUBLIC_
VECTORS.EXE automatically, even if you explicitly specify STARLET.OLB in
an options file.

If you specify SYS$PUBLIC_VECTORS.EXE explicitly in an options file when
it is already being processed by default, the linker displays the following
warning: ♦

%LINK-W-MULCLUOPT, cluster SYS$PUBLIC_VECTORS multiply defined
in options file [filename]

2.2.3.4 Open Systems Library Support
If you are developing portable applications using the Digital Network Application
Support (NAS) products, a second image library, similar to IMAGELIB, is used.
The second image library contains components that conform to NAS conventions
rather than to OpenVMS conventions. By default, the linker will not search this
library because it may contain symbols that do not conform to the OpenVMS
global symbol naming rules.

If you want the linker to include the open image library in its processing,
define the logical name LNK$OPEN_LIB with any nonnull string value. If
the LNK$OPEN_LIB logical is defined at link time, the linker searches OPEN_
LIB in the same way it searches IMAGELIB. The open image library search is
in addition to any other searches, and it is done after user libraries are searched
and before other system libraries are searched, as follows:

1. User libraries, if defined with LNK$LIBRARY_nnn

2. OPEN_LIB, if LNK$OPEN_LIB logical is defined

3. IMAGELIB, unless /NOSYSSHR is specified

4. STARLET, unless /NOSYSLIB is specified

2–14

Understanding Symbol Resolution
2.2 Input File Processing for Symbol Resolution

2.2.4 Processing Input Files Selectively
By default, the linker processes all the symbol definitions and references in
an object module or a shareable image specified as input in a link operation.
However, if you append the /SELECTIVE_SEARCH qualifier to an input file
specification, the linker processes from the input file only those symbol definitions
that resolve references in previously processed input files.

Processing input files selectively can reduce the amount of time a link operation
takes and can conserve the linker’s use of virtual memory. Note, however, that
selective processing can also introduce dependencies on the ordering of input files
in the LINK command.

Note

Processing files selectively does not affect the size of the resultant image;
the entire object module is included in the image even if only a subset of
the symbols it defines is referenced. (Shareable images do not contribute
to the size of an image.)

For example, in the link operation in Section 2.2.2, the linker processes the
shareable image MY_MATH.EXE before it processes the object module MY_
MAIN.OBJ because of the way in which the linker clusters input files. (For
information about how the linker clusters input files, see Section 2.3.2.1.)
When it processes the shareable image, the linker includes on its list of symbol
definitions all the symbols defined in the shareable image. When it processes the
object module MY_MAIN.OBJ and encounters the reference to the symbol mysub,
the linker has the definition to resolve the reference.

If you append the /SELECTIVE_SEARCH qualifier to the shareable image
file specification and all of the other input files are specified on the command
line, the link will fail. In the following example, because the linker has no
symbols on its undefined symbol list when it processes the shareable image file
MY_MATH.EXE, it does not include any symbol definitions from the shareable
image in its processing. When it subsequently processes the object module
MY_MAIN.OBJ that references the symbol mysub, the linker cannot resolve the
reference to the symbol. (For information about how to correct this link operation,
see Section 2.3.2.1.)

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE/SELECTIVE_SEARCH

Ctrl/Z

%LINK-W-NUDFSYMS, 1 undefined symbol:
%LINK-I-UDFSYM, MYSUB
%LINK-W-USEUNDEF, undefined symbol MYADD referenced

in psect $CODE offset %X00000011
in module MY_MAIN file WORK:[PROGRAMS]MY_MAIN.OBJ;6

To process object modules or shareable images in a library selectively, you must
specify the /SELECTIVE_SEARCH qualifier when you insert the module in
the library. The following example creates the library MYMATH_LIB.OLB and
inserts the file MY_MATH.OBJ into the library. (For more information about
using the Librarian utility, see the OpenVMS Command Definition, Librarian,
and Message Utilities Manual.)

$ LIBRARY/CREATE/INSERT MYMATH_LIB MY_MATH/SELECTIVE_SEARCH

2–15

Understanding Symbol Resolution
2.3 Ensuring Correct Symbol Resolution

2.3 Ensuring Correct Symbol Resolution
For many link operations, the order in which the input files are specified in
the LINK command is not important. However, in complex link operations that
specify many library files or process input files selectively, to ensure that the
linker resolves all the symbolic references among the input files as you intend,
you may need to be aware of the order in which the linker processes the input
files. To control the order in which the linker processes input files, you must
understand how the linker parses the command line.

2.3.1 Understanding Cluster Creation
As it parses the command line, the linker groups the input files you specify into
clusters and places these clusters on a cluster list. A cluster is an internal linker
construct that determines image section creation. The position of an input file in
a cluster and the position of that cluster on the linker’s cluster list determine the
order in which the linker processes the input files you specify.

The linker always creates at least one cluster, called the default cluster. The
linker may create additional clusters, called named clusters, depending on the
types of input files you specify and the linker options you specify. If it creates
additional clusters, the linker places them on the cluster list ahead of the default
cluster, in the order in which it encounters them in the options file. The default
cluster appears at the end of the cluster list. (Within the default cluster, input
files appear in the same order in which they are specified on the LINK command
line.)

Clusters for shareable images specified in shareable image libraries appear after
the default cluster on the cluster list because they are created later in linker
processing, when the linker knows which shareable images in the library are
needed for the link operation.

The linker groups input files into clusters according to file type. Table 2–2 lists
the types of input files accepted by the linker and describes how the linker
processes them when creating clusters.

2–16

Understanding Symbol Resolution
2.3 Ensuring Correct Symbol Resolution

Table 2–2 Linker Input File Cluster Processing

Input File Cluster Processing

Object file (.OBJ) Placed in the default cluster unless explicitly placed in a
named cluster using the CLUSTER= option.

Shareable image file (.EXE) Always placed in a named cluster.

†Symbol table file (.STB) Placed in the default cluster unless explicitly placed in a
named cluster using the CLUSTER= option.

Library files (.OLB) Placed in the default cluster unless explicitly placed in
a named cluster using the CLUSTER= option. If the
library contains shareable images and the linker includes a
shareable image from the library in the link operation, the
linker creates a new cluster for the shareable image.

The linker puts input files included in a link operation from
a library using the /INCLUDE qualifier in the same cluster
as the library.

The linker puts modules extracted from any default user
library that is an object library and from STARLET.OLB
in the default cluster. However, because they are
shareable images, the linker puts modules extracted from
IMAGELIB.OLB into new clusters at the end of the cluster
list (after the default cluster).

Options file (.OPT) Not placed in a cluster.

†VAX specific

The following example illustrates how the linker puts the various types of input
files in clusters. To see which clusters the linker creates for this link operation,
look at the Image Section Synopsis section of the image map file. Figure 2–3
illustrates the clusters created for this link operation.

$ DEFINE LNK$LIBRARY SYS$DISK:[]MY_DEFAULT_LIB.OLB
$ LINK MY_MAIN.OBJ, MY_LIB.OLB/LIBRARY, SYS$INPUT/OPT
CLUSTER=MY_CLUS,,,MY_PROG.OBJ
MY_SHARE.EXE/SHAREABLE
MY_SHARE_LIB.OLB/LIBRARY
MY_TAB.STB

Figure 2–3 Clusters Created for Sample Link

MY_CLUS

MY_PROG.OBJ
(from MY_SHARE_LIB)

MOD1.OBJ (from MY_LIB)
MY_SHARE_LIB.OLB
MY_TAB.STB
MOD2.OBJ (from MY_DEFAULT_LIB)
MY_DEFAULT_LIB.OLB

ZK−5291A−GE

MY_SHARE.EXE MY_MAIN.OBJ SHARE_MOD.EXE
MY_LIB.OLB

MY_SHARE DEFAULT_CLUSTER SHARE_MOD

2–17

Understanding Symbol Resolution
2.3 Ensuring Correct Symbol Resolution

The linker processes input files in cluster order: processing each input file
starting with the first file in the first cluster, then the second, and so on, until it
has processed all files in the first cluster. Then it does the same for the second
cluster, and the next, and so on, until it has processed all files in all clusters.

2.3.2 Controlling Cluster Creation
You can control in which cluster the linker places an input file by using either of
the following linker options:

• CLUSTER= option

• COLLECT= option

2.3.2.1 Using the CLUSTER= Option to Control Clustering
The CLUSTER= option causes the linker to create a named cluster and to place in
the cluster the object modules specified in the option. (The linker puts shareable
images in their own clusters by default.)

For example, you can use the CLUSTER= option to fix the link operation
illustrated in Section 2.2.4, where the link failed because a shareable image
was processed selectively. To make the linker process the object module MY_
MAIN.OBJ before it processes the shareable image MY_MAIN.EXE, put the
object module in a named cluster. In the following example, the /EXECUTABLE
qualifier is specified on the command line to specify the name of the resultant
image, because MY_MAIN is not specified on the command line.

$ link/executable=my_main sys$input/opt
CLUSTER=mymain_clus,,,my_main
my_math/shareable/selective_search

Ctrl/Z

The Object Module Synopsis section of the image map file verifies that the linker
processed the object module MY_MAIN before it processed the shareable image
MY_MATH, as in the following map file excerpt:

+------------------------+
! Object Module Synopsis !
+------------------------+

Module Name Ident Bytes File
----------- ----- ----- -----
MY_MAIN V1.0 105 MY_MAIN.OBJ;1
MY_MATH V1.0 12 MY_MATH.EXE;1

.

.

.

2.3.2.2 Using the COLLECT= Option to Control Clustering
You can also create a named cluster by specifying the COLLECT= option. The
COLLECT= option directs the linker to put specific program sections in a named
cluster. The linker creates the cluster if it does not already exist. Note that the
COLLECT= option manipulates program sections, not input files.

The linker sets the global (GBL) attribute of the program sections specified in a
COLLECT= option to enable a global search for the definition of that program
section.

2–18

Understanding Symbol Resolution
2.4 Resolving Symbols Defined in the OpenVMS Executive

2.4 Resolving Symbols Defined in the OpenVMS Executive

VAX For VAX linking, you link against the OpenVMS executive by specifying the
system symbol table (SYS$LIBRARY:SYS.STB) in the link operation. Because a
symbol table file is an object module, the linker processes the symbol table file as
it would any other object module. ♦

Alpha For Alpha linking, you link against the OpenVMS executive by specifying
the /SYSEXE qualifier. When this qualifier is specified, the linker selectively
processes the system shareable image SYS$BASE_IMAGE.EXE located in the
directory pointed to by the logical name ALPHA$LOADABLE_IMAGES. The
linker does not process SYS$BASE_IMAGE.EXE by default.

Note that, because the linker is processing a shareable image, references to
symbols in the OpenVMS executive are fixed up at image activation, not fully
resolved at link time as they are for VAX linking. Also note that the linker looks
for SYS$BASE_IMAGE.EXE in the directory pointed to by the logical name
ALPHA$LOADABLE_IMAGES, not in the directory pointed to by the logical
name SYS$LIBRARY as for VAX linking.

When the /SYSEXE qualifier is specified, the linker processes the file selectively.
To disable selective processing, specify the /SYSEXE=NOSELECTIVE qualifier.
For more information about using the /SYSEXE qualifier, see the description of
the qualifier in Part II.

Relation to Default Library Processing
When you specify the /SYSEXE qualifier, the linker processes the SYS$BASE_
IMAGE.EXE file after processing the system shareable image library,
IMAGELIB.OLB, and before processing the system object library, STARLET.OLB.
(Note that the linker also processes the system service shareable image,
SYS$PUBLIC_VECTORS.EXE, when it processes STARLET.OLB by default.)

The /SYSSHR and /SYSLIB qualifiers, which control processing of the default
system libraries, do not affect SYS$BASE_IMAGE.EXE processing. When the
/NOSYSSHR qualifier is specified with the /SYSEXE qualifier, the linker does
not process IMAGELIB.OLB, but still processes SYS$BASE_IMAGE.EXE and
then STARLET.OLB and SYS$PUBLIC_VECTORS.EXE. When /NOSYSLIB
is specified, the linker does not process IMAGELIB.OLB, STARLET.OLB, or
SYS$PUBLIC_VECTORS, but still processes SYS$BASE_IMAGE.EXE.

To process SYS$BASE_IMAGE.EXE before the shareable images in
IMAGELIB.OLB, specify SYS$BASE_IMAGE.EXE in a linker options file as
you would any other shareable image. If you specify SYS$BASE_IMAGE.EXE in
your options file, do not use the /SYSEXE qualifier.

Figure 2–4 illustrates how the /SYSEXE qualifier, in combination with the
/SYSSHR and /SYSLIB qualifiers, can affect linker processing. (The default
syntax illustrated in the figure is rarely specified.) ♦

2–19

Understanding Symbol Resolution
2.4 Resolving Symbols Defined in the OpenVMS Executive

Figure 2–4 Linker Processing of Default Libraries and SYS$BASE_IMAGE.EXE

ZK−5068A−2−GE

Default: /USERSLIBRARY=ALL/SYSSHR/SYSLIB/NOSYSEXE

Link Against SYS$BASE_IMAGE.EXE: /USERSLIBRARY=ALL/SYSSHR/SYSLIB/

STARLET.OLB and
SYS$PUBLIC_VECTORS.EXEIMAGELIB.OLBUser−Specified

Libraries

SYS$BASE_IMAGE.EXE STARLET.OLB and
SYS$PUBLIC_VECTORS.EXEIMAGELIB.OLBUser−Specified

Libraries

STARLET.OLB and
SYS$PUBLIC_VECTORS.EXE

User−Specified
Libraries

User−Specified
Libraries

Skip Both System Libraries: /USERLIBRARY=ALL/ NOSYSLIB /SYSEXE

Skip IMAGELIB.OLB: /USERLIBRARY=ALL/ NOSYSSHR /SYSLIB/SYSEXE

SYSEXE

SYS$BASE_IMAGE.EXE

SYS$BASE_IMAGE.EXE

2.5 Defining Weak and Strong Global Symbols
In the dialects of MACRO, BLISS, and Pascal supported on both VAX and Alpha
systems, you can define a global symbol as either strong or weak, and you can
make either a strong or a weak reference to a global symbol.

In these languages, all definitions and references are strong by default. To make
a weak definition or a weak reference, you must use the .WEAK assembler
directive (in MACRO), the WEAK attribute (in BLISS), or the WEAK_GLOBAL
or WEAK_EXTERNAL attribute (in Pascal).

The linker records each symbol definition and each symbol reference in its global
symbol table, noting for each whether it is strong or weak. The linker processes
weak references differently from strong references and weakly defined symbols
differently from strongly defined symbols.

A strong reference can be made to a weakly defined symbol or to a strongly
defined symbol.

For a strong reference, the linker checks all explicitly specified input modules
and libraries and all default libraries for a definition of the symbol. In addition,
if the linker cannot locate the definition needed to resolve the strong reference, it
assigns the symbol a value of 0 and reports an error. By default, all references
are strong.

A weak reference can be made to a weakly defined symbol or to a strongly defined
symbol. In either case, the linker resolves the weak reference in the same way it
does a strong reference, with the following exceptions:

• The linker will not search library modules that have been specified with the
/LIBRARY qualifier or default libraries (user-defined or system) solely to
resolve a weak reference. If, however, the linker resolves a strong reference
to another symbol in such a module, it will also use that module to resolve
any weak references.

2–20

Understanding Symbol Resolution
2.5 Defining Weak and Strong Global Symbols

• If the linker cannot locate the definition needed to resolve a weak reference,
it assigns the symbol a value of 0, but does not report an error (as it does if
the reference is strong). If, however, the linker reports any unresolved strong
references, it will also report any unresolved weak references.

One purpose of making a weak reference arises from the need to write and test
incomplete programs. The resolution of all symbolic references is crucial to a
successful linking operation. Therefore, a problem arises when the definition of a
referenced global symbol does not yet exist (as would be the case, for example, if
the global symbol definition is an entry point to a module that is not yet written).
The solution is to make the reference to the symbol weak, which informs the
linker that the resolution of this particular global symbol is not crucial to the link
operation.

By default, all global symbols in all VAX and Alpha languages have a strong
definition.

A strongly defined symbol in a library module is included in the library symbol
table; a weakly defined symbol in a library module is not. As a result, if the
module containing the weak symbol definition is in a library but has not been
specified for inclusion by means of the /INCLUDE qualifier, the linker will not
be able to resolve references (strong or weak) to the symbol. If, however, the
linker has selected that library module for inclusion (in order to resolve a strong
reference), it will be able to resolve references (strong or weak) to the weakly
defined symbol.

If the module containing the weak symbol definition is explicitly specified either
as an input object file or for extraction from a library (by means of the /INCLUDE
qualifier), the weak symbol definition is as available for symbol resolution as a
strong symbol definition.

2–21

3
Understanding Image File Creation

This chapter describes how the linker creates an image from the input files you
specify in a link operation and how you can control image file creation by using
linker qualifiers and options.

3.1 Overview
After the linker has resolved all symbolic references between the input files
specified in the LINK command (described in Chapter 2), the linker knows all the
object modules and shareable images that are required to create the image. For
example, the linker has extracted from libraries specified in the LINK command
those modules that contain the definitions of symbols required to resolve symbolic
references in other modules. The linker must now combine all these modules into
an image.

To create an image, the linker must perform the following processing:

• Determine the memory requirements of the image. The memory
requirements of an image are the sum of the memory requirements of each
object module included in the link operation. The language processors that
create the object modules specify the memory requirements of an object
module as program section definitions. A program section represents an
area of memory that has a name, a length, and other characteristics, called
attributes, which describe the intended or permitted usage of that portion of
memory. Section 3.2 describes program sections.

The linker processes the program section definitions in each object module,
combining program sections with similar attributes into an image section.
Each image section specifies the size and attributes of a portion of the virtual
memory of an image. The image activator uses the image section attributes
to determine the characteristics of the physical memory pages into which it
loads the image, such as protection.

Figure 3–1 illustrates how memory requirements are communicated from the
language processor to the linker and from the linker to the image activator.
Section 3.3 provides more information about this process.

3–1

Understanding Image File Creation
3.1 Overview

Figure 3–1 Communication of Image Memory Requirements

Linker

ZK−5199A−GE

Language Processor
(Compiler, assembler, etc.)

Image Activator

Program Section

Image Section

Physical Page

Note that shareable images included in link operations have already been
processed by the linker. These images are separate images with their own
memory requirements, as specified by their own image sections. The linker
does, however, create special global image section descriptors (GISDs) for each
shareable image to which an image has been linked. The image activator
activates these shareable images at run time.

• Initialize the image. When image sections are first created, they are empty.
In this step of linker processing, the linker fills the image sections with the
machine code and data, as specified by the Text Information and Relocation
(TIR) commands in the object module. Section 3.4 provides more information
about this process.

Alpha For Alpha linking, the linker also attempts to optimize the performance of
an image by replacing Jump to Subroutine (JSR) instruction sequences with
the more efficient Branch to Subroutine (BSR) instruction sequences. See
Section 1.4 for more information. ♦

After creating image sections and filling them with binary code and data, the
linker writes the image to an image file. Section 3.4.1 describes this process. To
keep the size of image files manageable, the linker does not allocate space in the
image file for image sections that have not been initialized with any data (that
is, the linker does not write pages of zeros to the image file). Instead, the linker
creates demand-zero image sections, which are initialized at run time by the
operating system when a reference to the image section requires the operating
system to move the pages into memory. Section 3.4.3 describes how the linker
creates demand-zero image sections.

3–2

Understanding Image File Creation
3.2 Creating Program Sections

3.2 Creating Program Sections
Language processors create program sections and define their attributes. The
number of program sections created by a language processor and the attributes
of these program sections are dependent upon language semantics. For example,
some programming languages implement global variables as separate program
sections with a particular set of attributes. Programmers working in high-level
languages typically have little direct control over the program sections created by
the language processor. Medium- and low-level languages provide programmers
with more control over program section creation. For more information about the
program section creation features of a particular programming language, see the
language processor documentation.

Alpha In general, the linker does not create program sections. However, for Alpha
linking, the linker creates a special program section for a shareable image,
named $SYMVECT, which contains the symbol vector of the shareable image. ♦

Program Section Attributes
The language processors define the attributes of the program sections they create
and communicate these attributes to the linker in program section definition
records in the global symbol directory (GSD) in an object module. (The GSD also
contains global symbol definitions and references, as described in Chapter 2.)

Program section attributes control various characteristics of the area of memory
described by the program section, such as the following:

• Access. Using program section attributes, compilers can prohibit some types
of access, such as write access. Using other program section attributes,
compilers can allow access to the program section by more than one process.

• Positioning. By specifying certain program section attributes, compilers can
specify to the linker how it should position the program section in memory.

Program section attributes are Boolean values, that is, they are either on or off.
Table 3–1 lists all program section attributes with the keyword you can use to set
or clear the attribute, using the PSECT_ATTR= option. (For more information
about using the PSECT_ATTR= option, see Section 3.3.6.)

For example, to specify that a program section should have write access, specify
the writability attribute as WRT. To turn off an attribute, specify the negative
keyword. Some attributes have separate keywords that express the negative
of the attribute. For example, to turn off the global attribute (GBL), you must
specify the local attribute (LCL). Note that the alignment of a program section is
not strictly considered an attribute of the program section. However, because you
can set it using the PSECT_ATTR= option, it is included in the table.

3–3

Understanding Image File Creation
3.2 Creating Program Sections

Table 3–1 Program Section Attributes

Attribute Keyword Description

Alignment – Specifies the alignment of the program section as an integer
that represents the power of 2 required to generate the desired
alignment. For certain alignments, the linker supports keywords to
express the alignment. The following table lists all the alignments
supported by the linker with their keywords:

Power
of 2 Keyword Meaning

0 BYTE Alignment on byte boundaries.

1 WORD Alignment on word boundaries.

2 LONG Alignment on longword boundaries.

3 QUAD Alignment on quadword boundaries.

4 OCTA Alignment on octaword boundaries.

9 – Alignment on 512-byte boundaries.

13 – Alignment on 8 KB boundaries.

14 – Alignment on 16 KB boundaries.

15 – Alignment on 32 KB boundaries.

16 – Alignment on 64 KB boundaries.

– PAGE Alignment on the default target page size,
which is 64 KB for Alpha linking and 512
bytes for VAX linking. You can override this
default by specifying the /BPAGE qualifier.

Position
Independence

PIC/NOPIC Specifies that the program section can run anywhere in virtual
address space. Applicable in shareable images only. Note that this
attribute is not meaningful for Alpha images, but it is still used to
sort program sections.

Overlaid
/Concatenated

OVR/CON When set to OVR, specifies that the linker may combine (overlay)
this program section with other program sections with the same
name and attribute settings. Program sections that are overlaid
are assigned the same base address. When set to CON, the linker
concatenates the program sections.

Relocatable
/Absolute

REL/ABS When set to REL, specifies that the linker can place the program
section anywhere in virtual memory, according to the memory
allocation strategy for the type of image being produced. When
set to ABS, this attribute specifies that the program section is
an absolute program section that contains no binary data or code
and appears to be based at virtual address 0. Absolute program
sections are used by compilers primarily to define constants.

Global/Local GBL/LCL When set to GBL, specifies that the linker should gather
contributions to the program section from all clusters and place
them in the same image section. When set to LCL, the linker
gathers program sections into the same image section only if they
are in the same cluster. The memory for a global program section is
allocated in the cluster that contains the first contributing module.

(continued on next page)

3–4

Understanding Image File Creation
3.2 Creating Program Sections

Table 3–1 (Cont.) Program Section Attributes

Attribute Keyword Description

Shareability SHR/NOSHR Specifies that the program section can be shared between several
processes. Only used to sort program sections in shareable images.

Executability EXE/NOEXE Specifies that the program section contains executable code. If
an image transfer address is defined in a nonexecutable program
section, the linker issues a diagnostic message.

‡For Alpha linking, the EXE attribute is propagated to the image
section descriptor where it is used by the Install utility when it is
installing the image as a resident image. (For information about
resident images, see the description of the /SECTION_BINDING
qualifier in Part II.)

Writability WRT/NOWRT Specifies that the contents of a program section can be modified at
run time.

Protected Vectors VEC/NOVEC Specifies that the program section contains privileged change-mode
vectors or message vectors. In shareable images, image sections
with the VEC attribute are automatically protected.

Solitary SOLITARY Specifies that the linker should place this program section in its
own image section. Useful for programs that map data into specific
locations in their virtual memory space. Note that compilers do
not set this attribute. You can set this attribute using the PSECT_
ATTR= option.

‡Unmodified NOMOD/MOD When set, specifies that the program section has not been
initialized (NOMOD). On Alpha systems, the linker uses this
attribute to create demand zero sections; see Section 3.4.3. Only
compilers can set this attribute. You can clear this attribute only
by specifying the MOD keyword in the PSECT_ATTR= option.

‡COM – Used by the DEC C compiler to implement the relaxed symbol
reference/definition model for external variables. See the C
documentation for more information. This attribute cannot be
modified using the PSECT_ATTR= option.

Readability RD Reserved by Digital.

User/Library USR/LIB Reserved by Digital. To ensure future compatibility, this attribute
should be clear.

‡Alpha specific

To illustrate program section creation, consider the program sections created by
the VAX C compiler when it processes the sample programs in Example 3–1,
Example 3–2, and Example 3–3.

Example 3–1 Sample Program MYTEST.C

extern int global_data;

int myadd();
int mysub();

main()
{

int num1, num2, res1, res2;
static int my_data;

num1 = 5;
num2 = 6;

(continued on next page)

3–5

Understanding Image File Creation
3.2 Creating Program Sections

Example 3–1 (Cont.) Sample Program MYTEST.C

res1 = myadd(num1, num2);
res2 = mysub(num1, num2);
printf("res1 = %d, res2 =%d, globaldata=%d\n",

res1,res2,global_data);
}

Example 3–2 Sample Program MYADD.C

#include <stdio.h>

myadd(value_1,value_2)
int value_1;
int value_2;
{
int result;
static int add_data;

printf("In MYADD.C\n");

result = value_1 + value_2;
return(result);
}

Example 3–3 Sample Program MYSUB.C

int global_data = 5;

mysub(value_1,value_2)
int value_1;
int value_2;
{
int result;
static int sub_data;

result = value_1 - value_2;
return(result);
}

To see what program sections the VAX C compiler creates for these programs,
use the ANALYZE/OBJECT utility to examine the global symbol directory (GSD)
in each object module. (Note that the names the language processors assign to
program sections are architecture specific.)

Example 3–4 presents an excerpt from the analysis of the object module
MYTEST.OBJ. Only the program section definitions are included in the excerpt.
(Note that you can also determine the program sections in an object module after
a link operation by looking at the Program Section Synopsis section of an image
map file, as illustrated in Example 3–7.)

3–6

Understanding Image File Creation
3.2 Creating Program Sections

Example 3–4 Program Sections Generated by Example 3–1

4. GLOBAL SYMBOL DIRECTORY (OBJ$C_GSD), 138 bytes
.
.
.

6) Program Section Definition (GSD$C_PSC)
1 alignment: 4-byte boundary <-- psect 0
2 attribute flags:

(0) GPS$V_PIC 1
(1) GPS$V_LIB 0
(2) GPS$V_OVR 0
(3) GPS$V_REL 1
(4) GPS$V_GBL 0
(5) GPS$V_SHR 1
(6) GPS$V_EXE 1
(7) GPS$V_RD 1
(8) GPS$V_WRT 0
(9) GPS$V_VEC 0

3 allocation: 63 (%X’0000003F’)
4 symbol: "$CODE"
7) Program Section Definition (GSD$C_PSC)

alignment: 4-byte boundary <-- psect 1
attribute flags:

(0) GPS$V_PIC 1
(1) GPS$V_LIB 0
(2) GPS$V_OVR 0
(3) GPS$V_REL 1
(4) GPS$V_GBL 0
(5) GPS$V_SHR 0
(6) GPS$V_EXE 0
(7) GPS$V_RD 1
(8) GPS$V_WRT 1
(9) GPS$V_VEC 0

allocation: 4 (%X’00000004’)
symbol: "DATA"

8) Program Section Definition (GSD$C_PSC)
alignment: 4-byte boundary <-- psect 2
attribute flags:

(0) GPS$V_PIC 1
(1) GPS$V_LIB 0
(2) GPS$V_OVR 1
(3) GPS$V_REL 1
(4) GPS$V_GBL 1
(5) GPS$V_SHR 1
(6) GPS$V_EXE 0
(7) GPS$V_RD 1
(8) GPS$V_WRT 1
(9) GPS$V_VEC 0

allocation: 4 (%X’00000004’)
symbol: "GLOBAL_DATA"

(continued on next page)

3–7

Understanding Image File Creation
3.2 Creating Program Sections

Example 3–4 (Cont.) Program Sections Generated by Example 3–1
9) Program Section Definition (GSD$C_PSC)

alignment: 4-byte boundary <-- psect 3
attribute flags:

(0) GPS$V_PIC 1
(1) GPS$V_LIB 0
(2) GPS$V_OVR 0
(3) GPS$V_REL 1
(4) GPS$V_GBL 0
(5) GPS$V_SHR 0
(6) GPS$V_EXE 0
(7) GPS$V_RD 1
(8) GPS$V_WRT 1
(9) GPS$V_VEC 0

allocation: 36 (%X’00000024’)
symbol: "$CHAR_STRING_CONSTANTS"
.
.
.

The items in the following list correspond to the numbered items in Example 3–4:

1 Alignment specifies the address boundary at which the linker places a
module’s contribution to the program section.

2 Attribute flags indicate which program section attributes are set. The
attributes are listed by their full symbolic name, that is, each abbreviation
is preceded by the character string ‘‘GPS$V_’’. Note that, for attributes
that are turned off by specifying different keywords, only the keyword that
sets the attribute is listed. For example, you can see whether the program
section is overlaid by checking attribute flag number 2. If the value is 1, the
program section is overlaid; if the value is 0, the program section must be
concatenated. Table 3–1 lists all the program section attributes. Note that
the solitary attribute is not included in the GSD of an object module because
that attribute is not set by language processors.

Alpha For Alpha linking, the program section display includes several additional
attribute flags. The COM attribute is reserved for use by Digital. The
NOMOD attribute indicates that the program section does not contain
initialized data. The linker gathers program sections with this attribute
into demand-zero image sections. Section 3.4.3 describes how the linker
creates demand-zero image sections. ♦

3 Allocation indicates the number of bytes required for the program section.

4 Symbol indicates the name of the program section.

Figure 3–2 illustrates the program sections created by the VAX C compiler for the
programs in Example 3–1, Example 3–2, and Example 3–3. (The shaded areas
represent the settings of the program section attributes the linker considers when
sorting the program sections into image sections in an executable image. See
Section 3.3.3 for more information about how the linker creates image sections.)

3–8

Understanding Image File Creation
3.2 Creating Program Sections

Figure 3–2 Program Sections Created for Example 3–1, Example 3–2, and Example 3–3

ZK−5200A−GE

mytest.obj myadd.obj mysub.obj

$CODE $CODE$CODE

$DATA

GLOBAL_DATA

$DATA

$CHAR_STRING
_CONSTANTS

GLOBAL_DATA

$DATA

$CHAR_STRING
_CONSTANTS

3.3 Creating Image Sections
To create the image sections that define the memory requirements and page
protection characteristics of an image, the linker processes the program section
definitions in the object modules specified in the link operation. The number and
type of image sections the linker creates depend on the number of clusters the
linker creates when processing the LINK command and on the attributes of the
program sections in the object modules in each cluster. Section 3.3.1 describes
how the clustering of input files affects image section creation. Section 3.3.2
describes the effects of program section attributes on image section creation.

3.3.1 Processing Clusters to Create Image Sections
To create image sections, the linker processes the program section definitions
in the input files you specify in the LINK command. The linker processes these
input files on a cluster-by-cluster basis (as described in Section 2.3.1).

In general, only program sections in a particular cluster can contribute to a
particular image section. However, the linker crosses cluster boundaries when
processing program sections with the global (GBL) attribute. When the linker
encounters a program section with the global attribute, it searches all the
previously processed clusters for a program section with the same name and
attributes and, if it finds one, places the new definition of the global program
section in the same cluster as the first definition of the program section.

The linker processes input files in the order in which they appear in the clusters,
making two passes through the cluster list.

On its first pass, the linker processes based clusters. Based clusters specify the
location within memory at which the linker must position them. A based cluster
can be a cluster that contains a based shareable image or a cluster, created by
the CLUSTER= option, in which a base address was specified.

3–9

Understanding Image File Creation
3.3 Creating Image Sections

VAX For VAX linking, you can also use the BASE= option to specify the base address
of the default cluster. ♦

For more information about creating based clusters, see the descriptions of the
CLUSTER= and BASE= options in Part II.

After processing based clusters, the linker then processes nonbased clusters. The
linker ignores nonbased (position-independent) shareable image clusters because
they are allocated virtual memory at run time.

For example, Example 3–5 presents a LINK command to create an image using
the object modules in Section 3.2.

Example 3–5 Linking Example 3–1, Example 3–2, and Example 3–3

$ LINK/MAP/FULL MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
SYS$LIBRARY:VAXCRTL/SHARE

Ctrl/Z

The CLUSTER= option in this LINK command causes the linker to create a
cluster named MYSUB_CLUS, which contains the object module MYSUB.OBJ.
The linker also creates a cluster for the C run-time library shareable image
VAXCRTL.EXE. The linker puts the object modules MYTEST.OBJ and
MYADD.OBJ in the default cluster. These clusters appear on the linker’s
cluster list in the following order:

1. MYSUB_CLUS

2. VAXCRTL

3. DEFAULT_CLUSTER

The linker always processes the default cluster last. (For Alpha linking, you
do not need to explicitly include the C run-time library shareable image in the
link operation because it resides in the default system shareable image library
IMAGELIB.OLB, which the linker processes by default.)

3.3.2 Combining Program Sections into Image Sections
The linker creates image sections by grouping together program sections with
similar attributes. Within an image section, the linker organizes program
sections alphabetically by name. If more than one object module contributes to
the same program section, the linker lays out their contributions in the order it
processes them.

Figure 3–3 shows how the linker groups the program sections in the object
modules from the sample link into image sections, based on the setting of their
significant attributes. In the figure, the settings of these significant attributes
are represented by shading. (The figure considers attributes that are significant
when creating executable images, not shareable images. Section 3.3.3 provides
more information about which program section attributes are significant.)

Note, in the figure, that the overlaid contributions from MYSUB.OBJ and
MYTEST.OBJ to the program section, GLOBAL_DATA, both appear in the
MYSUB_CLUS cluster, even though the object module MYTEST.OBJ is in the
default cluster. The linker puts all contributions to a global program section in
the cluster in which it is first defined.

3–10

Understanding Image File Creation
3.3 Creating Image Sections

Figure 3–3 Combining Program Sections into Image Sections

Program Sections

Isect1

ZK−5201A−GE

Image Sections

$CHAR_STRING
_CONSTANTS

$CHAR_STRING
_CONSTANTS

$CODE

$CODE

$DATA

$CODE

$DATA

$CODE

$DATA

$CHAR_STRING
_CONSTANTS

$CODE

$DATA

GLOBAL_DATA

$CHAR_STRING
_CONSTANTS

$DATA

GLOBAL_DATA

$DATA

$CODE

GLOBAL_DATA

Isect2

Isect3

Isect4

From mysub

From mytest

From myadd

Mysub_clus
Cluster

Default
Cluster

From mysub

From mysub

From mytest

From mytest

From mytest

From myadd

From myadd

From mysub

From mysub &
mytest

From mysub

From mytest

From myadd

From mytest

From mytest

From myadd

From myadd

3.3.3 Processing Significant Program Section Attributes
When combining program sections into image sections, the linker considers only
a subset of program section attributes. The set of significant attributes varies
according to the type of image being created. When creating an executable image,
the linker considers all combinations of the following attributes when combining
program sections into image sections:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Protected vector (VEC/NOVEC)

3–11

Understanding Image File Creation
3.3 Creating Image Sections

Alpha • Unmodified (NOMOD/MOD) (Alpha linking only) ♦

When creating a shareable image, the linker considers all combinations of the
following attributes when combining program sections into image sections:

• Writability (WRT/NOWRT)

• Executability (EXE/NOEXE)

• Shareability (SHR/NOSHR)

• Position independence (PIC/NOPIC)

• Protected vector (VEC/NOVEC)

Alpha • Unmodified (NOMOD/MOD) (Alpha linking only) ♦

The linker creates only one large image section for system images, so combining
program sections by attributes is not applicable.

Table 3–2 and Table 3–3 list all the possible combinations of program section
attributes for executable images and shareable images. Note that the order in
which the combinations appear in the table (each row) is the same order in which
the linker processes them. For example, the linker first processes all program
sections with the NOWRT, NOEXE, and NOVEC attributes, creating an image
section of program sections with these attributes. The linker then processes all
program sections with the WRT, NOEXE, and NOVEC attributes, creating an
image section for these program sections. The linker continues this processing
until all the combinations of significant attributes have been processed and all
the program sections in the cluster have been placed in an image section.

The tables include only program sections that are relocatable (with the REL
attribute). Absolute program sections (with the ABS attribute), by definition,
can have no allocation (they contain only constants) and cannot contribute to an
image section.

Alpha For OpenVMS Alpha images, the tables assume that the images are linked
using the /DEMAND_ZERO qualifier, which is the default. (When this qualifier
is specified, the linker groups program sections that do not contain any data
into demand-zero image sections, allocating memory for the image section but
not writing zeros to disk.) If the image is linked with the /NODEMAND_ZERO
qualifier, the linker allocates space for the image section in the image file. Note
that the /NODEMAND_ZERO qualifier does not affect how the linker sorts
program sections; it proceeds exactly as specified by the table. However, when
the image is written, the linker allocates disk space for the image section and fills
the space with zeros. ♦

The tables also show how a particular combination of program section attributes
determines the attributes of the image section in which it is placed. For more
information about image section attributes, see Section 3.3.5.

3–12

Understanding Image File Creation
3.3 Creating Image Sections

Table 3–2 Mapping Program Section Attributes to Image Section Attributes for Executable
Images

Significant Psect Attribute Settings1
Type of
Isect Isect Attributes Set2

NOWRT NOEXE NOVEC ‡MOD NORMAL –

WRT NOEXE NOVEC ‡MOD " WRT, CRF

NOWRT EXE NOVEC ‡MOD " ‡EXE

WRT EXE NOVEC ‡MOD " WRT, CRF, ‡EXE

NOWRT NOEXE VEC ‡MOD " VECTOR,PROTECT

WRT NOEXE VEC ‡MOD " WRT,VECTOR, PROTECT,CRF

NOWRT EXE VEC ‡MOD " VECTOR,PROTECT, ‡EXE

WRT EXE VEC ‡MOD " WRT,VECTOR,PROTECT,‡EXE

‡NOWRT ‡NOEXE ‡NOVEC ‡NOMOD " DZRO

‡WRT ‡NOEXE ‡NOVEC ‡NOMOD " WRT,DZRO3

1For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with
GPS$V_.
2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with
ISD$V_.
3If the /NODEMAND_ZERO qualifier is specified, the copy-on-reference (CRF) attribute is set instead of the DZRO
attribute.
‡Alpha specific

Table 3–3 Mapping Program Section Attributes to Image Section Attributes for Shareable
Images

Significant Psect Attribute Settings1
Type of
Isect Isect Attributes Set2

NOWRT NOEXE SHR NOPIC NOVEC ‡MOD SHRFXD –

WRT NOEXE SHR NOPIC NOVEC ‡MOD " WRT

NOWRT EXE SHR NOPIC NOVEC ‡MOD " ‡EXE

WRT EXE SHR NOPIC NOVEC ‡MOD " WRT,‡EXE

NOWRT NOEXE NOSHR NOPIC NOVEC ‡MOD PRVFXD –

WRT NOEXE NOSHR NOPIC NOVEC ‡MOD " WRT, CRF

NOWRT EXE NOSHR NOPIC NOVEC ‡MOD " ‡EXE

WRT EXE NOSHR NOPIC NOVEC ‡MOD " WRT,CRF,‡EXE

NOWRT NOEXE SHR PIC NOVEC ‡MOD SHRPIC PIC

WRT NOEXE SHR PIC NOVEC ‡MOD " WRT, PIC

NOWRT EXE SHR PIC NOVEC ‡MOD " PIC, ‡EXE

1For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with
GPS$V_.
2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with
ISD$V_.
‡Alpha specific

(continued on next page)

3–13

Understanding Image File Creation
3.3 Creating Image Sections

Table 3–3 (Cont.) Mapping Program Section Attributes to Image Section Attributes for
Shareable Images

Significant Psect Attribute Settings1
Type of
Isect Isect Attributes Set2

WRT EXE SHR PIC NOVEC ‡MOD " WRT,PIC,‡EXE

NOWRT NOEXE NOSHR PIC NOVEC ‡MOD PRVPIC PIC

WRT NOEXE NOSHR PIC NOVEC ‡MOD " WRT, CRF, PIC

NOWRT EXE NOSHR PIC NOVEC ‡MOD " PIC,‡EXE

WRT EXE NOSHR PIC NOVEC ‡MOD " WRT,CRF,PIC, ‡EXE

NOWRT NOEXE SHR NOPIC VEC ‡MOD SHRFXD VECTOR,PROTECT

WRT NOEXE SHR NOPIC VEC ‡MOD " WRT,VECTOR,PROTECT

NOWRT EXE SHR NOPIC VEC ‡MOD " VECTOR,PROTECT,‡EXE

WRT EXE SHR NOPIC VEC ‡MOD " WRT,VECTOR,PROTECT,‡EXE

NOWRT NOEXE NOSHR NOPIC VEC ‡MOD PRVFXD VECTOR,PROTECT

WRT NOEXE NOSHR NOPIC VEC ‡MOD " WRT, CRF

NOWRT EXE NOSHR NOPIC VEC ‡MOD " VECTOR,PROTECT,‡EXE

WRT EXE NOSHR NOPIC VEC ‡MOD " WRT,CRF,VECTOR,PROTECT,
‡EXE

NOWRT NOEXE SHR PIC VEC ‡MOD SHRPIC PIC,VECTOR,PROTECT

WRT NOEXE SHR PIC VEC ‡MOD " WRT,PIC,VECTOR,PROTECT

NOWRT EXE SHR PIC VEC ‡MOD " PIC,VECTOR,PROTECT,‡EXE

WRT EXE SHR PIC VEC ‡MOD " WRT,PIC,VECTOR,PROTECT,
‡EXE

NOWRT NOEXE NOSHR PIC VEC ‡MOD PRVPIC PIC,VECTOR,PROTECT

WRT NOEXE NOSHR PIC VEC ‡MOD " WRT,CRF,PIC,VECTOR,
PROTECT

NOWRT EXE NOSHR PIC VEC ‡MOD " PIC,VECTOR,PROTECT,
‡EXE

WRT EXE NOSHR PIC VEC ‡MOD " WRT,CRF,PIC,VECTOR,
PROTECT,‡EXE

‡NOWRT ‡NOEXE ‡SHR ‡NOPIC ‡NOVEC ‡NOMOD SHRFXD –

‡WRT ‡NOEXE ‡SHR ‡NOPIC ‡NOVEC ‡NOMOD " WRT

1For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with
GPS$V_.
2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with
ISD$V_.
‡Alpha specific

(continued on next page)

3–14

Understanding Image File Creation
3.3 Creating Image Sections

Table 3–3 (Cont.) Mapping Program Section Attributes to Image Section Attributes for
Shareable Images

Significant Psect Attribute Settings1
Type of
Isect Isect Attributes Set2

‡NOWRT ‡NOEXE ‡NOSHR ‡NOPIC ‡NOVEC ‡NOMOD PRVFXD DZRO

‡WRT ‡NOEXE ‡NOSHR ‡NOPIC ‡NOVEC ‡NOMOD " WRT,DZRO3

‡NOWRT ‡NOEXE ‡NOSHR ‡PIC ‡NOVEC ‡NOMOD PRVPIC DZRO

‡WRT ‡NOEXE ‡NOSHR ‡PIC ‡NOVEC ‡NOMOD " WRT,DZRO 3, PIC

‡NOWRT ‡NOEXE ‡SHR ‡PIC ‡NOVEC ‡NOMOD SHRPIC PIC

‡WRT ‡NOEXE ‡SHR ‡PIC ‡NOVEC ‡NOMOD " WRT,PIC

1For Alpha images, these attributes are prefixed with EGPS$V_. For VAX images, these attributes are prefixed with
GPS$V_.
2For Alpha images, these attributes are prefixed with EISD$V_. For VAX images, these attributes are prefixed with
ISD$V_.
3If the /NODEMAND_ZERO qualifier is specified, the copy-on-reference (CRF) attribute is set instead of the DZRO
attribute.
‡Alpha specific

For example, Table 3–4 summarizes the settings of the significant attributes of
the program sections in the module MYADD.OBJ. (Because this is an OpenVMS
VAX object module, the MOD attribute is not considered.)

Table 3–4 Significant Attributes of Program Sections in MYSUB_CLUS Cluster

Writability Executability Protected Vector

$CODE NOWRT EXE NOVEC

DATA WRT NOEXE NOVEC

$CHAR_STRING_CONSTANTS WRT NOEXE NOVEC

The linker puts both the DATA and $CHAR_STRING_CONSTANTS program
sections in the same image section because they both have the same settings of
significant attributes. Within the image section, the linker organizes the program
sections alphabetically, so the $CHAR_STRING_CONSTANTS program section
appears before the DATA program section. The linker creates a separate image
section for the $CODE program section.

The linker performs similar processing of the program sections in the default
cluster. The Image Section Synopsis section of the map file lists the clusters
the linker created and lists the image sections it created for each cluster. This
section also describes the layout of the image in memory, including the base
address of each image section. Example 3–6 illustrates an excerpt of the Image
Section Synopsis section from the map file produced with the sample link. The
listing includes clusters for contributions for the VAX C Run-Time Library. (For
more information about the image section synopsis section of a map file, see
Section 5.2.3.)

3–15

Understanding Image File Creation
3.3 Creating Image Sections

Example 3–6 Image Section Information in a Map File

+------------------------+
! Image Section Synopsis !
+------------------------+

Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging . . .
------- ---- ----- --------- -------- --- ---------------------

MYSUB_CLUS 0 1 00000200 2 0 READ WRITE COPY ON REF
0 1 00000400 3 0 READ ONLY

VAXCRTL 3 4 00000000-R 0 0 READ ONLY
3 1 00000800-R 0 0 READ ONLY
4 1 00000A00-R 0 0 READ WRITE COPY ON REF
3 17 00000C00-R 0 0 READ ONLY
3 142 00002E00-R 0 0 READ ONLY
4 21 00014A00-R 0 0 READ WRITE COPY ON REF
4 1 P-00017400-R 0 0 READ WRITE COPY ON REF
2 3 00017600-R 0 0 READ WRITE FIXUP VECTORS

LIBRTL 3 193 00000000-R 0 0 READ ONLY
4 8 00018200-R 0 0 READ WRITE DEMAND ZERO

MTHRTL 3 335 00000000-R 0 0 READ ONLY
2 1 00029E00-R 0 0 READ WRITE FIXUP VECTORS

DEFAULT_CLUSTER 0 1 00000600 4 0 READ WRITE COPY ON REF
0 1 00000800 5 0 READ ONLY
0 1 00000A00 6 0 READ WRITE FIXUP VECTORS

253 20 7FFFD800 0 0 READ WRITE DEMAND ZERO

To find out which program sections the linker placed in each image section, look
at the Program Section Synopsis section of the map file. This section lists all
the program sections in each cluster and lists the contributions (the number of
bytes) to each program section from each object module. By comparing the base-
address of the program sections with the base-addresses of the image sections
in the Image Section Synopsis section, you can tell in which image section the
program sections appear. Example 3–7 is an excerpt from the Program Section
Synopsis section of the map file produced by the sample link operation. (For more
information about the program synopsis section of a map file, see Section 5.2.4.)

Example 3–7 Program Section Information in a Map File (VAX Example)

+--------------------------+
! Program Section Synopsis !
+--------------------------+

Psect Name Module Name Base End Length Align Attributes
---------- ----------- ---- --- ------ ----- ----------

$DATA 00000200 00000203 00000004 (4.) LONG 2 PIC,USR,CON . . .
MYSUB 00000200 00000203 00000004 (4.) LONG 2

GLOBAL_DATA 00000204 00000207 00000004 (4.) LONG 2 PIC,USR,OVR . . .
MYSUB 00000204 00000207 00000004 (4.) LONG 2
MYTEST 00000204 00000207 00000004 (4.) LONG 2

$CODE 00000400 0000040B 0000000C (12.) LONG 2 PIC,USR,CON . . .
MYSUB 00000400 0000040B 0000000C (12.) LONG 2

$CHAR_STRING_CONSTANTS 00000600 0000062D 0000002E (46.) LONG 2 PIC,USR,CON . . .
MYTEST 00000600 00000623 00000024 (36.) LONG 2
MYADD 00000624 0000062D 0000000A (10.) LONG 2

(continued on next page)

3–16

Understanding Image File Creation
3.3 Creating Image Sections

Example 3–7 (Cont.) Program Section Information in a Map File (VAX Example)

$DATA 00000630 00000637 00000008 (8.) LONG 2 PIC,USR,CON . . .
MYTEST 00000630 00000633 00000004 (4.) LONG 2
MYADD 00000634 00000637 00000004 (4.) LONG 2

$CODE 00000800 00000858 00000059 (89.) LONG 2 PIC,USR,CON . . .
MYTEST 00000800 0000083E 0000003F (63.) LONG 2
MYADD 00000840 00000858 00000019 (25.) LONG 2

.

.

.

3.3.4 Allocating Memory for Image Sections
When it creates an image section, the linker allocates enough memory for the
image section to accommodate all the program sections it contains. Each program
section definition includes its size.

The linker aligns image sections on CPU-specific page boundaries. Within an
image section, the linker assigns to each program section a virtual address
relative to the base address of the image section.

Concatenated Program Sections
If the program sections have the concatenated (CON) attribute set, the linker
positions the program sections one after the other within an image section,
inserting padding bytes between the program sections if necessary to achieve the
alignment requirement of a particular contribution to a program section. The
linker retains the alignment specified for each program section contribution but
uses the largest alignment of a contributing module as the alignment of the whole
program section.

Overlaid Program Sections
If the program sections have the overlaid (OVR) attribute set, the linker uses the
same start address for the program sections so that they occupy the same virtual
memory (that is, the program sections overlay each other). For overlaid program
sections, the linker allocates enough space to accommodate the largest of all the
program section contributions. Note that the linker does not generate a warning
message if the contributions specify different size allocations.

Any module can initialize the contents of an overlaid program section. However,
the final contents of the program section are determined by the last contributing
module. Therefore, the order in which you specify the input modules is important.

Assigning Virtual Addresses
The linker keeps track of free (available) virtual addresses by maintaining a
free virtual memory list. For each cluster, the linker determines the number of
pages required, searches the list beginning at the lowest virtual address for a
contiguous number of pages large enough to contain the cluster, allocates those
addresses to the cluster, then removes those addresses from the list.

The linker allocates virtual memory to the first cluster beginning at a page size
boundary for executable images in the P0 region of the user’s virtual address
space, unless the cluster is based, in which case it allocates virtual memory
beginning at the specified address. For VAX linking, the default is 512 (200
hexadecimal). However, you can specify the page size using the /BPAGE qualifier.
(For information about the /BPAGE qualifier, see Part II.)

3–17

Understanding Image File Creation
3.3 Creating Image Sections

On its first pass through the cluster list, the linker allocates virtual addresses
to any based user clusters or based shareable image clusters on the cluster
list, removing the allocated addresses from the free virtual memory list as it
proceeds. On its second pass, it repeats this procedure for nonbased user clusters.
(Remember that nonbased shareable image clusters will have memory allocated
for them at run time.)

Because the linker processes clusters in the order of their appearance on the
cluster list, the virtual address space of the final image will generally contain
contiguous image sections of consecutive clusters on the basis of their order in
the cluster list. The presence of based clusters, however, may prevent such an
outcome, and for this reason they are not recommended.

After allocating memory for a cluster, the linker relocates its contents by
performing the following processing:

1. Relocating each image section. The linker adds the starting virtual
address of the cluster to the relative offset of the image section from the
cluster base and places the result in the appropriate field of the image section
descriptor (ISD).

2. Relocating each program section in the image section. The linker
adds the newly calculated starting virtual address of the image section to the
relative offset of the program section from the base of the image section.

3. Relocating each global symbol in the program section. The linker adds
the newly calculated program section virtual address to the relative offset of
the global symbols from the base of the program section.

3.3.5 Image Section Attributes
When it creates image sections, the linker assigns attributes to the image
section based on the attributes of the program sections it contains. The image
section attributes describe certain characteristics of the portion of memory they
represent, for example, the protection characteristics. For example, an image
section that contains program sections with the writability attribute also has
the writability attribute set. Table 3–2 and Table 3–3 include the image section
attributes associated with an image section that contains program sections with
a particular set of attributes. Table 3–5 lists all the image section attributes.
Image section attributes, like program section attributes, are Boolean values that
are either on or off.

Table 3–5 Image Section Attributes

Attribute Symbol Function

Global [E]ISD$M_GBL GBL is set when the ISD came from a shareable image. On both VAX
and Alpha systems, the first ISD of a shareable image is included in
the base image for use by the image activator. For VAX linking, if the
shareable image is based, all of its ISDs are included in the image being
linked.

Copy On
Reference

[E]ISD$M_CRF CRF is set whenever the psect attributes are WRT and not SHR. CRF is
also set by the linker whenever it creates fix-ups to the section (which
require the image activator to write to it).

(continued on next page)

3–18

Understanding Image File Creation
3.3 Creating Image Sections

Table 3–5 (Cont.) Image Section Attributes

Attribute Symbol Function

Demand
Zero

[E]ISD$M_
DZRO

Demand zero is set for VAX linking for executable images if:

• The section was never written to with a TIR (Text and Information
Relocation) command.

• The section resulted from compression of empty pages from an
existing section.

Demand zero is set for Alpha executable and Alpha shareable images if
the user has not specified /NODEMAND_ZERO and if:

• The section was never written to with an ETIR command.

• The program sections in the section have the NOMOD bit set.

DZRO is always set for stack ISDs on both VAX images and Alpha
images.

Executability [E]ISD$M_EXE The EXE attribute is inherited from the program section.

Write [E]ISD$M_WRT The WRT attribute is inherited from the program section. WRT is also
set by the linker if fix-ups are made to the section. When this is done,
the linker also generates a change protection fix-up so that the image
activator can change the protection back to NOWRT after the fix-up is
applied.

Match
Control

ISD$M_
MATCHCTL

This is used only for VAX images. It is not an attribute. MATCHCTL is
a 3-bit field inside the flags field. It contains the match control bits. For
Alpha images, this information is contained in a completely separate
field.

Last Cluster [E]ISD$M_
LASTCLU

LASTCLU is set only for sections in executable images. LASTCLU
indicates that an image section was generated off of the last cluster
(which was not a shareable image cluster) in the cluster list. If
FIXUPVEC is set, LASTCLU is clear.

Initial Code [E]ISD$M_
INITALCODE

This attribute is reserved by Digital.

Based [E]ISD$M_
BASED

BASED indicates that the section is based. This is set when BASE=
is specified in the options file. This attribute may also be set if based
shareable images are encountered during linking. This attribute is
present but not used for Alpha linking.

Fix-Up
Vectors

[E]ISD$M_
FIXUPVEC

FIXUPVEC marks the section that contains the image activator fix-ups.
This section is created by the linker. The attribute cannot be set by the
user.

Resident [E]ISD$M_
RESIDENT

This attribute is reserved by Digital.

Vectored [E]ISD$M_
VECTOR

VECTOR indicates a vectored section, either a message section or a
privileged library vector.

Protected [E]ISD$M_
PROTECT

Protect indicates that a section is protected. The linker sets the
PROTECT attribute whenever VECTOR is set. PROTECT is also
set if the /PROTECT qualifier is used, or if the cluster that the section
is spawned from came after a PROTECT=YES option (and before a
PROTECT=NO option).

The linker uses type designations instead of image section attributes to propagate
the SHR and PIC program section attributes. The linker assigns the type
designation [E]ISD$K_NORMAL for image sections in executable images. Image
sections in shareable images can be any of the following types:

3–19

Understanding Image File Creation
3.3 Creating Image Sections

Image Section Type Attribute Settings

Share fixed ([E]ISD$K_SHRFXD) SHR,NOPIC

Private fixed ([E]ISD$K_PRVFXD) NOSHR,NOPIC

Share position-independent
([E]ISD$K_SHRPIC)

SHR,PIC

Private position-independent
([E]ISD$K_PRVPIC)

NOSHR,PIC

The Image Section Synopsis section of a map file lists the attributes of each
image section created in the Protection and Paging column. See Example 3–6
for an illustration. You can also get a listing of all the image sections created
by the linker by using the ANALYZE/IMAGE utility. The output generated by
this utility includes a list of all the image sections that make up the image, with
their attributes. Example 3–8 is an excerpt from the analysis of the image file
MYTEST.EXE.

Example 3–8 Image Section Descriptions in an ANALYZE/IMAGE Display

Image Section Descriptors (ISD)

1)1 image section descriptor (16 bytes)
2 page count: 1
3 base virtual address: %X’00000200’ (P0 space)
4 page fault cluster size: default
5 IS flags:
(0) ISD$V_GBL 0
(1) ISD$V_CRF 1
(2) ISD$V_DZRO 0
(3) ISD$V_WRT 1
(7) ISD$V_LASTCLU 0
(8) ISD$V_INITALCODE 0
(9) ISD$V_BASED 0
(10) ISD$V_FIXUPVEC 0
(11) ISD$V_RESIDENT 0
(17) ISD$V_VECTOR 0
(18) ISD$V_PROTECT 0
6 section type: ISD$K_NORMAL
7 base VBN: 2

.

.

.
9) image section descriptor (31 bytes)
page count: 193
base virtual address: %X’00000000’ (P0 space)
page fault cluster size: default
IS flags:
(0) ISD$V_GBL 1
(1) ISD$V_CRF 0
(2) ISD$V_DZRO 0
(3) ISD$V_WRT 0
(7) ISD$V_LASTCLU 0
(8) ISD$V_INITALCODE 0
(9) ISD$V_BASED 0
(10) ISD$V_FIXUPVEC 0
(11) ISD$V_RESIDENT 0
(17) ISD$V_VECTOR 0
(18) ISD$V_PROTECT 0

(continued on next page)

3–20

Understanding Image File Creation
3.3 Creating Image Sections

Example 3–8 (Cont.) Image Section Descriptions in an ANALYZE/IMAGE
Display

section type: ISD$K_SHRPIC
base VBN: 0

8 global section major id: %X’01’, minor id: %X’00000E’
9 match control: ISD$K_MATLEQ
1 0 global section name: "LIBRTL_001"

The items in the following list correspond to the numbers in Example 3–8:

1 The size of the image section descriptor.

2 The size of the image section, expressed in pages. For Alpha images, the
value is expressed in bytes.

3 The start address assigned to the image section by the linker. Note that
this address is an offset from the beginning of the image, which is assumed
to start at virtual address zero. (The linker always inserts an empty page
at the beginning of every executable image.) Note also that the linker does
not assign a start address for image sections representing shareable images
because this information cannot be determined until run time, when the
shareable image is loaded into memory by the image activator.

4 The number of pagelets that should be mapped in when the initial page fault
occurs. You can set this value by using the CLUSTER= option.

5 The settings of image section attributes. Table 3–5 lists these attributes.

6 The type of image section, based on the combination of image section
attributes.

7 The virtual block in the image file at which the image section begins.

8 Image sections that represent shareable images include the global section
identification number, which specifies the identification number of the
shareable image.

9 Image sections that represent shareable images also include a match control
field that identifies the match control algorithm the image activator should
apply to the global image section identification number when it activates the
shareable image this ISD describes.

1 0 Image sections that represent shareable images include the global section
name field, which is the name of the shareable image. The ‘‘_001"’’ is
appended to the name by the linker to indicate which ISD in the image this
represents.

3.3.6 Controlling Image Section Creation
You can control how the linker combines program sections into image sections in
the following ways:

• By modifying the attributes of program sections

• By putting object modules into named clusters

• By using the SOLITARY attribute

3–21

Understanding Image File Creation
3.3 Creating Image Sections

3.3.6.1 Modifying Program Section Attributes
The linker combines program sections in the same cluster into the same image
section if they have the same settings for the significant program section
attributes. To force the linker to put the program sections into different image
sections, change the attributes of one of the program sections by using the
PSECT_ATTR= option.

For example, in the sample link operation, the DATA program section and the
$CHAR_STRING_CONSTANTS program section are combined into the same
image section. If you want the $CHAR_STRING_CONSTANTS program section
to appear in a different image section, change one of the significant attributes.
For example, in the following link of the sample programs, the writability
attribute is set to NOWRT. (For Alpha linking, you do not need to explicitly
specify the C run-time library in the link operation because it resides in the
default system shareable image library [IMAGELIB.OLB], which the linker
processes by default.)

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=$CHAR_STRING_CONSTANTS,NOWRT
SYS$LIBRARY:VAXCRTL/SHARE

Ctrl/Z

Example 3–9 presents an excerpt from the Image Section Synopsis section of
the map file produced by this link. Note that the default cluster contains
one additional image section, a read-only image section beginning at virtual
address 0x00000600, than the default cluster in the original link, illustrated in
Section 3.3.1.

Example 3–9 Image Section Synopsis of Second Link

Cluster Type Pages Base Addr Disk VBN PFC Protection and Paging . . .
------- ---- ----- --------- -------- --- ---------------------

.

.

.
DEFAULT_CLUSTER 0 1 00000600 4 0 READ ONLY

0 1 00000800 0 0 READ WRITE DEMAND ZERO
0 1 00000A00 5 0 READ ONLY
0 1 00000C00 6 0 READ WRITE FIXUP VECTORS

253 20 7FFFD800 0 0 READ WRITE DEMAND ZERO
.
.
.

3.3.6.2 Manipulating Cluster Creation
In general, the linker creates image sections on a per-cluster basis; that is, only
program sections within a particular cluster can contribute to image section
creation. (The linker can collect program sections with the global attribute from
all clusters into a single image section.) To ensure that a program section appears
in a particular image section, put the program section in a specific cluster.

For example, in the sample link operation illustrated in Example 3–5, the linker
puts all the program sections in the object module MYSUB.OBJ in the cluster
named MYSUB_CLUS because the CLUSTER= option is specified. If you wanted
to group all of the program sections that contain code from all the other clusters
into the MYSUB_CLUS cluster, you could specify the COLLECT= option, as in
the following example. (By convention, VAX language processors put the code

3–22

Understanding Image File Creation
3.3 Creating Image Sections

they generate into program sections named $CODE. Program section naming
conventions are architecture specific.)

$ LINK/MAP/FULL MYTEST, MYADD, SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
COLLECT=MYSUB_CLUS,$CODE
SYS$LIBRARY:VAXCRTL/SHARE

Ctrl/Z

3.3.6.3 Isolating a Program Section into an Image Section
You can specify that the linker place a particular program section into its own
image section. This can be useful for programs that map data into predefined
locations within an image.

To isolate a program section into an image section, specify the SOLITARY
attribute of the program section using the PSECT_ATTR= option. For example,
to isolate the GLOBAL_DATA program section in the sample link into its own
image section, specify the following:

$ LINK/MAP/FULL MYTEST,MYADD,SYS$INPUT/OPT
CLUSTER=MYSUB_CLUS,,,MYSUB
PSECT_ATTR=GLOBAL_DATA,SOLITARY

Ctrl/Z

Alpha For Alpha linking, when mapping data into an existing location in the virtual
memory of your program using the Create and Map Global Section ($CRMPSC)
system service or the Map Global Section ($MGBLSC) system service, you must
specify an address range (in the inadr argument) that is aligned on a CPU-
specific page boundary. Because the linker aligns image sections on CPU-specific
page boundaries and the program section in which the section is to be mapped is
the only program section in the image section, you ensure that the start address
of the location is page aligned. In addition, because Alpha systems must map at
least an entire page of memory at a time, using the SOLITARY attribute allows
you to ensure that no other data in the image section is inadvertently overwritten
by the mapping. By default, the linker creates the next image section on the next
page boundary so that no data can be overwritten. ♦

3.4 Initializing an Image
After allocating memory for the image, the linker initializes the image by writing
the binary contents of the image sections by processing text information and
relocation (TIR) records in the object modules. These records direct the linker
in the initialization of the image section by telling it what to store in the image
section buffers. In addition, the linker inserts the addresses of symbols within
the image wherever they are referenced.

3.4.1 Writing the Binary Contents of Image Sections
A TIR record contains object language commands, such as stack and store
commands. Stack commands direct the linker to put information on its stack, and
store commands direct the linker to write the information from its stack to the
buffer for that image section.

During this image section initialization, the linker keeps track of the program
section being initialized and the image section to which it has been allocated.
The first attempt to initialize part of an image section by storing nonzero data
causes the linker to allocate a buffer in its own program region to contain the
binary contents of the generated image section. This allocation is achieved by the
Expand Region ($EXPREG) system service, and it requires that the linker have

3–23

Understanding Image File Creation
3.4 Initializing an Image

available a virtually contiguous region of its own memory at least as large as the
image section being initialized.

A buffer is not allocated for an image section until the linker executes a store
command (with nonzero data) within that image section.

Debugger information (DBG) records and traceback information (TBT) records
are processed only if the debugger was requested and traceback information was
not excluded by the /NOTRACE qualifier in the LINK command. Otherwise,
these records are ignored. The records contain stack and store object language
commands (TIR records), but they are stored in the debugger symbol table
(DST) instead of in an image section. (The linker expands its memory region to
accommodate the DST, unless the /NOTRACEBACK qualifier was specified in the
LINK command.)

When the linker processes end-of-module (EOM) records, it checks that its
internal stack has been collapsed to its initial state. When this processing is
complete, the linker has written the binary contents of all image sections to
image section buffers in its own address space.

The linker writes the contents of its buffers in the following order:

1. All image sections to the image file.

2. The debugger symbol table to the image file, unless /NOTRACEBACK was
specified in the LINK command.

3. The remaining sections of the map to the map file, if requested in the LINK
command. (These sections include all requested sections except the Object
Module Synopsis, which it already wrote, and the Link Run Statistics, which
it cannot write until the linking operation finishes.)

4. The global symbol table to the image file, and also to another separate file if
requested in the LINK command.

5. The image header to the image file.

6. The link statistics to the map file, if requested in the LINK command.

3.4.2 Fixing Up Addresses
Executable images and based images are loaded into memory at a known location
in P0 space. The linker cannot know where in memory a shareable image will be
located when it is loaded into memory at run time by the image activator. Thus,
the linker cannot initialize references to symbols within the shareable image from
external modules or to internal symbolic references within the shareable image
itself. For shareable images, the linker creates fix-ups that the image activator
must resolve when it activates the images at run time.

The linker uses the fix-up image section to do the following:

• It adjusts the values stored by any .ADDRESS directives that are encountered
during the creation of the nonbased shareable image. This action, together
with subsequent adjustment of these values by the image activator, preserves
the position independence of the shareable image.

VAX • For VAX linking, it processes all general-address-mode code references to
targets in position-independent shareable images. In this way, it creates the
linkage between these code references and their targets, whose locations are
not known until run time. ♦

3–24

Understanding Image File Creation
3.4 Initializing an Image

3.4.3 Keeping the Size of Image Files Manageable
Because neither language processors nor the linker initialize data areas in a
program with zeros, leaving this task to the operating system instead, some
image sections may contain uninitialized pages. To keep the size of the image
file as small as possible, the linker does not write pages of zeros to disk for these
uninitialized pages. Instead, the linker searches image sections that contain
initialized data for groups of contiguous, uninitialized pages and creates demand-
zero image sections out of these pages (called demand-zero compression).
Demand-zero image sections reduce the size of the image file and enhance
the performance of the program. At run time, when a reference is made that
initializes the section, the operating system initializes the allocated page of
physical memory with zeros (hence the name ‘‘demand-zero’’).

Note that the linker creates demand-zero image sections only for executable
images.

Alpha The Alpha compilers identify to the linker program sections that have not been
initialized by setting the NOMOD attribute of the program section. The linker
groups these uninitialized program sections into a demand-zero image section.

If two modules contribute to the same program section and one contribution
has the NOMOD attribute set and the other does not, the linker performs a
logical AND of the NOMOD bits so that the two contributions end up in the same
(non-demand-zero) image section.

The linker can create demand-zero image sections for both executable and
shareable images. Program sections with the SHR and the NOMOD attributes
set are not sorted into demand-zero image sections in shareable images.♦

3.4.3.1 Controlling Demand-Zero Image Section Creation
When performing demand-zero compression, by default the linker searches the
pages of existing image sections looking for the default minimum of contiguous,
uninitialized pages. You can specify a different minimum by using the DZRO_
MIN= option. For more information about the effect of this option on image size
and performance, see the description of the DZRO_MIN= option in Part II.

You can control demand-zero compression by specifying the maximum number of
image sections that the linker can create using the ISD_MAX= option.

3–25

4
Creating Shareable Images

This chapter describes how to create shareable images and how to declare
universal symbols in shareable images.

4.1 Overview
To create a shareable image, specify the /SHAREABLE qualifier on the LINK
command line. You can specify as input files in the link operation any of the
types of input files accepted by the linker, as described in Chapter 1.

Note, however, to enable other modules to reference symbols in the shareable
image, you must declare them as universal symbols. High- and mid-level
languages do not provide semantics to declare universal symbols. You must
declare universal symbols at link time using linker options. The linker lists
all universal symbols in the global symbol table (GST) of the shareable image.
The linker processes the GST of a shareable image specified as an input file in
a link operation during symbol resolution. (For more information about symbol
resolution, see Chapter 2.)

VAX For VAX linking, you declare universal symbols by listing the symbols in a
UNIVERSAL= option statement in a linker options file. You can create shareable
images that can be modified, recompiled, and relinked without causing the images
that were linked against previous versions of the shareable image to be relinked.
To provide this upward compatibility, you must create a transfer vector that
contains an entry for each universal symbol in the image. For more information
about these topics, see Section 4.2. ♦

Alpha For Alpha linking, you declare universal symbols by listing the symbols in a
SYMBOL_VECTOR= option statement in a linker options file. You do not need to
create a transfer vector to create an upwardly compatible shareable image. The
symbol vector can provide upward compatibility. For more information about this
topic, see Section 4.3 ♦

The linker supports qualifiers and options that control various aspects of
shareable image creation. Table 4–1 lists these qualifiers and options. (For more
information about linker qualifiers and options, see Part II.)

4–1

Creating Shareable Images
4.1 Overview

Table 4–1 Linker Qualifiers and Options Used to Create Shareable Images

Qualifier Description

‡/GST For Alpha images, directs the linker to include universal symbols
in the global symbol table (GST) of the shareable image, which is
the default. When you specify the /NOGST qualifier, the linker
creates an empty GST for the image. See Section 4.3.3 for more
information about using this qualifier to create run-time kits.
Not supported for VAX images.

/PROTECT Directs the linker to protect the shareable image from write
access by user or supervisor mode.

/SHAREABLE Directs the linker to create a shareable image, when specified in
the link command line. When appended to a file specification in
a linker options file, this qualifier identifies the input file as a
shareable image.

Option Description

GSMATCH= Sets the major and minor identification numbers in the header
of the shareable image and specifies the algorithm the linker
uses when comparing identification numbers.

PROTECT= When specified with the YES keyword in a linker options file,
this option directs the linker to protect the clusters created by
subsequent options specified in the options file. You turn off
protection by specifying the PROTECT=NO option in the options
file.

‡SYMBOL_TABLE= For Alpha linking, when specified with the GLOBALS keyword,
this option directs the linker to include in a symbol table file all
the global symbols defined in the shareable image, in addition
to the universal symbols. By default, the linker includes
only universal symbols in a symbol table file associated with
a shareable image (SYMBOL_TABLE=UNIVERSALS). Not
supported for VAX linking.

‡SYMBOL_VECTOR= For Alpha linking, specifies symbols in the shareable image that
you want declared as universal. Not supported for VAX linking.

†UNIVERSAL= For VAX linking, specifies symbols in the shareable image that
you want declared as universal. Not supported for Alpha linking.

†VAX specific
‡Alpha specific

4.2 Declaring Universal Symbols in VAX Shareable Images

VAX For VAX linking, you declare universal symbols by specifying the UNIVERSAL=
option in an options file. List the symbol or symbols you want to be universal
as an argument to the option. The symbols listed in a UNIVERSAL= option can
represent procedures, relocatable data, or constants. For each symbol declared
as universal, the linker creates an entry in the global symbol table (GST) of the
image. At link time, when the linker performs symbol resolution, it processes the
symbols listed in the GSTs of the shareable images included in the link operation.

To illustrate how to declare universal symbols, consider the programs in
Example 4–1 and Example 4–2.

4–2

Creating Shareable Images
4.2 Declaring Universal Symbols in VAX Shareable Images

Example 4–1 Shareable Image Test Module (my_main.c)

#include <stdio.h>

extern int my_data;

globalref int my_symbol;

int mysub();

main()
{

int num1, num2, result;

num1 = 5;
num2 = 6;

result = mysub(num1, num2);
printf("Result= %d\n", result);
printf("Data implemented as overlaid psect= %d\n", my_data);
printf("Global reference data is= %d\n", my_symbol);

}

Example 4–2 Shareable Image (my_math.c)

int my_data = 5;

globaldef int my_symbol = 10;

myadd(value_1, value_2)
int value_1;
int value_2;
{

int result;

result = value_1 + value_2;
return(result);

}
mysub(value_1,value_2)
int value_1;
int value_2;
{
int result;

result = value_1 - value_2;
return(result);
}
mydiv(value_1, value_2)
int value_1;
int value_2;

{
int result;

result = value_1 / value_2;
return(result);

}
mymul(value_1, value_2)
int value_1;
int value_2;

{
int result;

result = value_1 * value_2;
return(result);

}

4–3

Creating Shareable Images
4.2 Declaring Universal Symbols in VAX Shareable Images

To implement Example 4–2 as a shareable image, you must declare the universal
symbols in the image by using the following LINK command:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
PSECT_ATTR=my_data,NOSHR
UNIVERSAL=myadd
UNIVERSAL=mysub
UNIVERSAL=mymul
UNIVERSAL=mydiv
UNIVERSAL=my_symbol

Ctrl/Z

Note that the symbol my_data in Example 4–2 does not have to be declared
universal because of the way in which VAX C implements it. Several Digital
programming languages, including VAX C and VAX FORTRAN, implement
certain external variables as program sections with the overlaid (OVR), global
(GBL), and relocatable (REL) attributes. When the linker processes these object
modules, it overlays the program sections so that the various object modules that
reference the variable access the same virtual memory. Symbols implemented in
this way are declared universal (appear in the GST of the image) by default.

In the sample link operation, the SHR attribute of the program section that
implements the data symbol my_data is reset to NOSHR. If you do not reset the
shareable attribute for program sections that are writable, you must install the
shareable image to run the program. (The shareable attribute [SHR] determines
whether multiple processes have shared access to the memory.)

The following example illustrates how to link the object module MY_MAIN.OBJ
with the shareable image MY_MATH.EXE. Note that the LINK command sets
the shareability attribute of the program section my_data to NOSHR, as in the
link operation in which the shareable was created.

$ LINK MY_MAIN, SYS$INPUT/OPT
MY_MATH/SHAREABLE
PSECT_ATTR=my_data,NOSHR

Ctrl/Z

4.2.1 Creating Upwardly Compatible Shareable Images (VAX Linking Only)
For VAX linking, you can create a shareable image that can be modified,
recompiled, and relinked without causing the images that were linked
against previous versions of the image to be relinked. To provide this upward
compatibility, you must ensure that the values of relocatable universal symbols
within the image remain constant with each relinking.

Universal Symbols that Represent Procedures
To fix the locations of universal symbols that represent procedures in a shareable
image, create a transfer vector for the shareable image. In a transfer vector,
you create small routines in VAX MACRO that define an entry point in the
image and then transfer control to another location in memory. You declare the
entry points defined in the transfer vector as the universal symbols and have
each routine transfer control to the actual location of the procedures within the
shareable image. As long as you ensure that the location of the transfer vector
remains the same with each relinking, images that linked with previous versions
of the shareable image will access the procedures at the locations they expect.

Figure 4–1 illustrates the flow of control at run time between a main image and
a shareable image in which the actual routines are declared as universal symbols
(as shown in Section 4.2) and between a main image and a shareable image in

4–4

Creating Shareable Images
4.2 Declaring Universal Symbols in VAX Shareable Images

which the transfer vector entry points are declared as universal symbols (as
shown in Section 4.2.1.1).

Figure 4–1 Comparison of UNIVERSAL= Option and Transfer Vectors

Accessing symbols by using the UNIVERSAL=option:

Transfer Vector

ZK−5069A−GE

jump myadd
jump mysub
jump mymul
jump mydiv

Accessing symbols by using transfer vectors:

myadd:

mysub:

mymul:

mydiv:

myadd:

mysub:

mymul:

mydiv:

mysub

mysub

Shareable Image
(mymathrouts.exe)

Executable Image
(mytest.exe)

Shareable Image
(mymathrouts.exe)

Executable Image
(mytest.exe)

Universal Symbols that Represent Data
To provide upwardly compatible symbols that represent data locations, you must
also fix these locations within memory. You can accomplish this by allocating the
data symbols at the end of the transfer vector file. In this way, when you fix the
location of the transfer vector within an image, the data locations also remain the
same. See Section 4.2.1.1 for more information.

4.2.1.1 Creating a Transfer Vector (VAX Linking Only)
You create a transfer vector using VAX MACRO. Specify the .TRANSFER
directive because it declares the symbol that you specify as its argument as a
universal symbol by default. Digital recommends the following coding conventions
for creating a transfer vector:

1 .transfer FOO ;Begin transfer vector to FOO
2 .mask FOO ;Store register save mask
3 jmp L^FOO+2 ;Jump to routine

1 The .TRANSFER directive causes the symbol, named FOO in the example, to
be added to the shareable image’s global symbol table. (You do not need to
also specify the symbol in a UNIVERSAL= statement in a linker options file.)

4–5

Creating Shareable Images
4.2 Declaring Universal Symbols in VAX Shareable Images

2 The .MASK directive causes the assembler to allocate 2 bytes of memory,
find the register save mask accompanying the entry point (FOO in the
example), and store the register save mask of the procedure. (According
to the OpenVMS calling standard, procedure calls using the CALLS or
CALLG instructions include a word, called the register save mask, whose bits
represent which registers must be preserved by the routine.)

3 The JMP instruction transfers control to the address specified as its
argument. In the example, this address is two bytes past the routine entry
point FOO (the first two bytes of the routine are the register save mask).

Digital recommends that you use a jump instruction (for example, JMP L^)
in the transfer vector. Transfering control with a BSBW or JSB instruction
results in saving the address of the next instruction from the transfer vector
on the stack. In addition, the displacement used by the BSBW instruction
must be expressible in 16 bits, which may not be sufficient to reach the target
routine. Also, to avoid making the image position dependent, do not use an
absolute mode instruction.

Note that the preceding convention assumes that the routine is called using the
procedure call format, the default for most high-level language compilers. If a
routine is called as a subroutine, using the JSB instruction, you do not need to
include the .MASK directive. When creating a transfer vector for a subroutine
call, Digital recommends adding bytes of padding to the transfer vectors. This
padding makes a subroutine transfer vector the same size as a transfer vector
for a procedure call. If you need to replace a subroutine transfer vector with a
procedure call transfer vector, you can make the replacement without disturbing
the addresses of all the succeeding transfer vectors.

The following example illustrates a subroutine transfer vector that uses the
.BLKB directive to allocate the padding:

.TRANSFER FOO ;Begin transfer vector to FOO
JMP L^FOO ;Jump to routine
.BLKB 2 ;Pad vector to 8 bytes

To ensure upward compatibility, follow these guidelines when creating a transfer
vector:

• Preserve the order and placement of entries in a transfer vector. Once you
establish the order in which entries appear in a transfer vector, do not change
it. Images that were linked against the shareable image depend on the
location of the symbol in the transfer vector.

You can reserve space within a transfer vector for future growth by specifying
dummy transfer vector entries at various positions in a transfer vector.

• Add new entries to the end of a transfer vector. When including universal
data in a transfer vector file, use padding to leave adequate room for future
growth between the end of the transfer vector and the beginning of the list of
universal data declarations.

Example 4–3 illustrates a transfer vector for the program in Example 4–2.

Example 4–3 Transfer Vector for the Shareable Image MY_MATH.EXE

(continued on next page)

4–6

Creating Shareable Images
4.2 Declaring Universal Symbols in VAX Shareable Images

Example 4–3 (Cont.) Transfer Vector for the Shareable Image MY_MATH.EXE

.transfer myadd

.mask myadd
jmp l^myadd+2
.transfer mysub
.mask mysub
jmp l^mysub+2
.transfer mymul
.mask mymul
jmp l^mymul+2
.transfer mydiv
.mask mydiv
jmp l^mydiv+2
.end

Assemble the transfer vector file to create an object module that can be included
in a link operation:

$ MACRO MY_MATH_TRANS_VEC.MAR

4.2.1.2 Fixing the Location of the Transfer Vector in Your Image (VAX Linking Only)
For VAX linking, you include a transfer vector in a link operation as you would
any other object module. However, to ensure upward compatibility, you must
make sure that the transfer vector always appears in the same location in the
image. The best way to accomplish this is to make the transfer vector always
appear at the beginning of the image by forcing the linker to process it first. If
you put the transfer vector file in a named cluster, using the CLUSTER= option,
and specify it as the first option in an options file that can generate a cluster, the
transfer vector will appear at the beginning of the file. (For more information
about controlling cluster creation, see Section 2.3.)

The following example illustrates how to include the transfer vector in the link
operation, using the CLUSTER= option, so that the linker processes it first:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
1 GSMATCH=lequal,1,1000
2 CLUSTER=trans_vec_clus,,,MY_MATH_TRANS_VEC.OBJ

Ctrl/Z

1 To enable images that linked against a shareable image to run with various
versions of the shareable image, you must specify the identification numbers
of the image. By default, the linker assigns a unique identification number
to each version of a shareable image. At run time, if the ID of the shareable
image as it is listed in the executable image does not match the ID of the
shareable image the image activator finds to activate, the activation will
abort. For information about using the GSMATCH= option to specify ID
numbers, see the description of the GSMATCH= option in Part II.

2 This CLUSTER= option causes the linker to create the named cluster
TRANS_VEC_CLUS and to put the transfer vector file in this cluster.

4–7

Creating Shareable Images
4.2 Declaring Universal Symbols in VAX Shareable Images

4.2.2 Creating Based Shareable Images (VAX Linking Only)
For VAX linking, you can create a based shareable image by specifying the
BASE= option in a linker options file. In a based image, you specify the starting
address at which you want the linker to begin allocating memory for the image.
For more information about the BASE= option, see Part II.

Digital does not recommend using based shareable images.

Based shareable Alpha images are not supported. ♦

4.3 Declaring Universal Symbols in Alpha Shareable Images

Alpha For Alpha linking, you declare universal symbols by listing them in a SYMBOL_
VECTOR= option. For each symbol listed in the SYMBOL_VECTOR= option,
the linker creates an entry in the shareable image’s symbol vector and creates
an entry for the symbol in the shareable image’s global symbol table (GST).
When the shareable image is included in a subsequent link operation, the linker
processes the symbols listed in its GST.

To implement Example 4–2 as an Alpha shareable image, you must declare the
universal symbols in the image by using the following LINK command:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(myadd=PROCEDURE,-

mysub=PROCEDURE,-
mymul=PROCEDURE,-
mydiv=PROCEDURE,-
my_symbol=DATA,-
my_data=PSECT)

Ctrl/Z

You must identify the type of symbol vector entry you want to create by specifying
a keyword. The linker allows you to create symbol vector entries for procedures,
data (relocatable or constant), and for global data implemented as an overlaid
program section.

A symbol vector entry is a pair of quadwords that contains information about the
symbol. The contents of these quadwords depends on what the symbol represents.
If the symbol represents a procedure, the symbol vector entry contains the
address of the procedure entry point and the address of the procedure descriptor.
If the symbol represents a data location, the symbol vector entry contains the
address of the data location. If the symbol represents a data constant, the symbol
vector entry contains the actual value of the constant.

When you create the shareable image (by linking it specifying the /SHARE
qualifier), the value of a universal symbol listed in the GST is the offset of its
entry into the symbol vector (expressed as the offset z in Figure 4–2).

When you include this shareable image in a subsequent link operation, the linker
puts this value in the linkage pair in the linkage section of the executable image
that references the symbol. (A linkage pair is a data structure defined by the
OpenVMS calling standard.)

At run time, when the image activator loads the shareable image into memory,
it calculates the actual locations of the routines and relocatable data within the
image and stores these values in the symbol vector. The image activator then
fixes up the references to these symbols in the executable image that references
symbols in the shareable image, moving the values from the symbol vector in
the shareable image into the linkage section in the executable image. When

4–8

Creating Shareable Images
4.3 Declaring Universal Symbols in Alpha Shareable Images

the executable image makes the call to the procedure, shown as the Jump-to-
Subroutine (JSR) instruction sequence in Figure 4–2, control is transferred
directly to the location of the procedure within the shareable image.

Figure 4–2 Accessing Universal Symbols Specified Using the SYMBOL_
VECTOR= Option

MY_MATHMY_MAIN

n
m

mysub::

mysub = Z

m + base of MY_MATH
n + base of MY_MATH

LDQ R26, X (LS)
LDQ R27, X+8 (LS)
JSR R26, R26

z = offset from base of symbol vector of symbol vector entry for mysub
m = offset from base of image of procedure descriptor of mysub
n = offset from base of image of procedure entry point for mysub
x = offset from base of linkage section of Linkage Pair for mysub

LS

ZK−5333A−GE

Linkage
Pair

Symbol
Vector

X

Proc. Descriptor for mysub
Linkage
Section

Entry for
Mysub

Code

GST

m

z

n

Linkage
Section

Note that, unlike VAX linking, global symbols implemented as overlaid program
sections are not universal by default. Instead, you control which of these
symbols is a universal symbol by including it in the SYMBOL_VECTOR=
option, specifying the PSECT keyword. The example declares the program
section my_data as a universal symbol. (Note that you must specify the qualifier
/EXTERN_MODEL=COMMON on the compile command line to make the
DEC C for OpenVMS Alpha compiler implement the symbol as an overlaid
program section. For more information, see the DEC C for OpenVMS Alpha
documentation.)

The name of a symbol implemented as an overlaid program section can duplicate
the name of a symbol representing a procedure or data location. If the program
section specified in a SYMBOL_VECTOR= option does not exist, the linker issues
a warning, places zeros in the symbol vector entry, and does not create an entry
for the program section in the image’s GST.

4.3.1 Creating Upwardly Compatible Shareable Images (Alpha Linking Only)
The SYMBOL_VECTOR= option allows you to create upwardly compatible
shareable images without requiring you to create transfer vectors as for VAX
images.

However, as with transfer vectors, to ensure upward compatibility when using a
SYMBOL_VECTOR= option, you must preserve the order and placement of the
entries in the symbol vector with each relinking. Do not delete existing entries.
Add new entries only at the end of the list. If you use multiple SYMBOL_

4–9

Creating Shareable Images
4.3 Declaring Universal Symbols in Alpha Shareable Images

VECTOR= option statements in a single options file to declare the universal
symbols, you must also maintain the order of the SYMBOL_VECTOR= option
statements in the options file. If you specify SYMBOL_VECTOR= options in
separate options files, make sure the linker always processes the options files in
the same order. (The linker creates only one symbol vector for an image.)

Note, however, that there is no need to anchor the symbol vector at a particular
location in memory, as you would anchor a transfer vector for a VAX link. The
value at link time of a universal symbol in an Alpha shareable image is its
location in the symbol vector, expressed as an offset from the base of the symbol
vector, and the location of the symbol vector is stored in the image header. (For
VAX linking, the value of a universal symbol at link time is the location of the
symbol in the image, expressed as an offset from the base of the image.) Thus,
the relative position of the symbol vector within the image does not affect upward
compatibility.

4.3.2 Deleting Universal Symbols Without Disturbing Upward Compatibility
(Alpha Linking Only)

To delete a universal symbol without disturbing the upward compatibility of an
image, use the PRIVATE_PROCEDURE or PRIVATE_DATA keywords. In the
following example, the symbol mysub is deleted using the PRIVATE_PROCEDURE
keyword:

$ LINK/SHAREABLE MY_MATH, SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(myadd=PROCEDURE,-

mysub=PRIVATE_PROCEDURE,-
mymul=PROCEDURE,-
mydiv=PROCEDURE,-
my_symbol=DATA,-
my_data=PSECT)

Ctrl/z

When you specify the PRIVATE_PROCEDURE or PRIVATE_DATA keyword in
the SYMBOL_VECTOR= option, the linker creates symbol vector entries for the
symbols but does not create an entry for the symbol in the GST of the image.
The symbol still exists in the symbol vector and none of the other symbol vector
entries have been disturbed. Images that were linked with previous versions of
the shareable image that reference the symbol will still work, but the symbol will
not be available for new images to link against.

Using the PRIVATE_PROCEDURE keyword, you can replace an entry for an
obsolete procedure with a private entry for a procedure that returns a message
that explains the status of the procedure.

4.3.3 Creating Run-Time Kits (Alpha Linking Only)
If you use shareable images in your application, you may want to ship a run-
time kit with versions of these shareable images that cannot be used in link
operations.

To do this, you must first link your application, declaring the universal symbols
in the shareable images using the SYMBOL_VECTOR= option so that references
to these symbols can be resolved. After the application is linked, you must then
relink the shareable images so that they have fully populated symbol vectors but
empty global symbol tables (GSTs). The fully populated symbol vectors allow your
application to continue to use the shareable images at run time. The empty GSTs
prevent other images from linking against your application.

4–10

Creating Shareable Images
4.3 Declaring Universal Symbols in Alpha Shareable Images

To create this type of shareable image for a run-time kit (without having to
disturb the SYMBOL_VECTOR= option statements in your application’s options
files), relink the shareable image after development is completed, specifying the
/NOGST qualifier on the LINK command line. When you specify the /NOGST
qualifier, the linker builds a complete symbol vector, containing the symbols you
declared universal in the SYMBOL_VECTOR= option, but does not create entries
for the symbols that you declared universal in the GST of the shareable image.
For more information about the /GST qualifier, see Part II.

4.3.4 Specifying an Alias Name for a Universal Symbol (Alpha Linking Only)
For Alpha linking, a universal symbol can have a name, called a universal alias,
different from the name contributed by the object module in which it is defined.
You specify the universal alias name when you declare the global symbol as a
universal symbol using the SYMBOL_VECTOR= option. The universal alias
name precedes the internal name of the global symbol, separated by a slash (/).
In the following example, the global symbol mysub is declared as a universal
symbol under the name sub_alias.

$ LINK/SHAREABLE MY_SHARE/SYS$INPUT/OPT
SYMBOL_VECTOR=(myadd=procedure,-

sub_alias/mysub=procedure,-
mymul=procedure,-
mydiv=procedure,-
my_symbol=DATA,-
my_data=PSECT)

Ctrl/Z

You can specify universal alias names for symbols that represent procedures or
data; you cannot declare a universal alias name for a symbol implemented as
an overlaid program section. In link operations in which the shareable image is
included, the calling modules must refer to the universal symbol by its universal
alias name to enable the linker to resolve the symbolic reference.

In a privileged shareable image, calls from within the image that use the alias
name result in a fix-up and subsequent vectoring through the privileged library
vector (PLV), which results in a mode change. Calls from within the shareable
image that use the internal name are done in the caller’s mode. (Calls from
external images always result in a fix-up.) For more information about creating a
PLV, see the OpenVMS Programming Concepts Manual.

4.3.5 Improving the Performance of Installed Shareable Images (Alpha Linking
Only)

For Alpha linking, you can improve the performance of an installed shareable
image by installing it as a resident image (by using the /RESIDENT qualifier of
the Install utility). INSTALL moves the executable, read-only pages of resident
images into system space where they reside on huge pages. Executing your image
in huge pages improves performance. See Section 1.4 for more information about
installing shareable images as resident images. ♦

4–11

5
Interpreting an Image Map File

This chapter describes how to interpret the information returned in an image
map and describes the combinations of linker qualifiers used to obtain a map.

5.1 Overview
At your request, the linker can generate information that describes the contents
of the image and the linking process itself. This information, called an image
map, can be helpful when locating link-time errors, studying the layout of the
image in virtual memory, and keeping track of global symbols.

You can obtain the following types of information about an image from its image
map:

• The names of all modules included in the link operation, both explicitly in the
LINK command and implicitly from libraries

• The names, sizes, and other information about the image sections that
comprise the image

• The names, sizes, and locations of program sections within an image

• The names and values of all the global symbols referenced in the image,
including the name of the module in which the symbol is defined and the
names of the modules in which the symbol is referenced

• Statistical summary information about the image and the link operation itself

You determine which information the linker includes in a map file by specifying
qualifiers in the LINK command line. If you specify the /MAP qualifier, the map
file includes certain information by default (called the default map). You can
also request a map file that contains less information about the image (called a
brief map) or a map file that contains more information about the image (called
a full map). Table 5–1 lists the LINK command qualifiers that affect map file
production.

5–1

Interpreting an Image Map File
5.1 Overview

Table 5–1 LINK Command Map File Qualifiers

/MAP Directs the linker to create a map file. This is the default
for batch jobs. /NOMAP is the default for interactive link
operations.

/BRIEF When used in combination with the /MAP qualifier, directs the
linker to create a map file that contains only a subset of all the
possible information.

/FULL When used in combination with the /MAP qualifier, directs
the linker to create a map file that contains all the possible
information.

/CROSS_REFERENCE When used in combination with the /MAP qualifier, directs the
linker to replace the Symbols By Name section with a Symbol
Cross-Reference section, in which all the symbols in each module
are listed with the modules in which they are called. You cannot
request this type of listing in a brief map file.

5.2 Components of an Image Map File
The linker formats the information it includes in a map file into sections.
Table 5–2 lists the sections of a map file in the order in which they appear in
the file. The table also indicates whether the section appears in a brief map, full
map, or default map file.

Table 5–2 Image Map Sections

Section Name Description
Default
Map

Full
Map

Brief
Map

Object Module Synopsis1 Lists all the object modules in the
image.

Yes Yes Yes

†Module Relocatable
Reference Synopsis

Specifies the number of .ADDRESS
directives in each module.

– Yes –

Image Section Synopsis Lists all the image sections and clusters
created by the linker.

– Yes –

Program Section Synopsis1 Lists the program sections and their
attributes.

Yes Yes –

Symbols By Name1 Lists global symbol names and values. Yes Yes –

Symbol Cross-Reference1 Lists each symbol name, its value, the
name of the module that defined it,
and the names of the modules that
refer to it. Replaces the Symbols By
Name section when the /CROSS_
REFERENCE qualifier is specified.

Yes Yes –

Symbols By Value Lists all the symbols with their values
(in hexadecimal representation).

– Yes –

Image Synopsis Presents statistics and other
information about the output image.

Yes Yes Yes

Link Run Statistics Presents statistics about the link run
that created the image.

Yes Yes Yes

1In a full map file, these sections include information about modules that were included in the link
operation from libraries but were not explicitly specified on the LINK command line.
†VAX specific

5–2

Interpreting an Image Map File
5.2 Components of an Image Map File

The following sections describe each of the image map sections in detail. The
examples of the map sections are taken from the map file created in a link
operation of the executable image in Chapter 4.

5.2.1 Object Module Synopsis
The first section that appears in a map file is the Object Module Synopsis. This
section lists the name of each module included in the link operation in the order
in which it was processed. Note that shareable images included in the link
operation are listed here as well. This section of the map file also includes other
information about each module, arranged in columns, as in the following example:

+------------------------+
! Object Module Synopsis !
+------------------------+

Module Name 1 Ident 2 Bytes 3 File 4 Creation Date 5 Creator 6
----------- ----- ----- ----- ------------- -------
MY_MATH V1.0 0 WORK:[PROGS]MY_MATH.EXE;11 14-AUG-1993 12:27 Linker T10-37
MY_MAIN V1.0 553 WORK:[PROGS]MY_MAIN.OBJ;15 14-AUG-1993 12:27 DEC C X1.1-048E
DECC$SHR V1.0 0 [SYSLIB]DECC$SHR.EXE;2 5-MAR-1993 07:49 Linker T10-03
SYS$PUBLIC_VECTORS

X-26 0 [SYSLIB]SYS$PUBLIC_VECTORS.EXE;2 5-MAR-1993 07:34 Linker T10-03

1 Module Name. The name of each object module included in the link operation.
The modules are listed in the order in which the linker processed them. If the
linker encounters an error during its processing of an object module, an error
message appears on the line directly following the line containing the name of
that object module.

2 Ident. The text string in the IDENT field in an object module or in the image
header of a shareable image.

3 Bytes. The number of bytes the object module contributes to the image.
Because shareable images are activated at run time, the linker cannot
calculate the size of their contributions to the image. Thus, the value 0 (zero)
is associated with shareable images.

4 File. Full file specification of the input file, including device and directory. If
the specification is longer than 35 characters, it is shortened by dropping the
device portion of the file specification or both the device and directory portions
of the file specification.

5 Creation Date. The date and time the file was created.

6 Creator. Identification of the language processor or other utility that created
the file.

The order in which the modules are listed in this section reflects the order in
which the linker processes the input files specified in the link operation. Note
that the order of processing can be different from the order in which the files
were specified in the command line. For more information about how the linker
processes input files, see Chapter 2.

5.2.2 Module Relocatable Reference Synopsis (VAX Linking Only)

VAX For VAX linking, the information contained in the Module Relocatable Reference
Synopsis section varies with the type of image being created. For shareable
images, this section lists all of the modules that contain at least one .ADDRESS
directive. For executable or system images, this section lists the names of all
object modules containing at least one .ADDRESS reference to a shareable image.
The section lists the modules in the order in which the linker processes them,

5–3

Interpreting an Image Map File
5.2 Components of an Image Map File

including the number of .ADDRESS references found. The linker formats the
information as in the following example:

+---------------------------------------+
! Module Relocatable Reference Synopsis !
+---------------------------------------+

Module Name 1 Number 2 Module Name Number Module Name Number
----------- ------ ----------- ------ ----------- ------

MAIN1 1

1 Module Name. The name of each object module included in the link operation.
The modules are listed in the order in which the linker processed them.

2 Number. The number of .ADDRESS references found.

Note that you can reduce linker and image activator processing time by removing
.ADDRESS directives from input files. ♦

5.2.3 Image Section Synopsis Section
The Image Section Synopsis section of the linker map file lists the image sections
created by the linker. The image sections appear in the order in which the linker
created them, which is the same order as the clusters in the linker’s cluster list.
(For more information about clusters, see Chapter 2.) The section includes other
information about these image sections, formatted in columns, as in the following
example:

9

3

4

4 5 6 7 8

 +−−−−−−−−−−−−−−−−−−−−−−−−+

9 10

 ! Image Section Synopsis !

111

 +−−−−−−−−−−−−−−−−−−−−−−−−+

2

 Cluster Type Pglts Base Addr Disk VBN PFC Protection and Paging Global Sec. Name Match Majorid Minorid
 −−−−−−− −−−− −−−−− −−−−−−−−− −−−−−−−− −−− −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−− −−−−− −−−−−−− −−−−−−−

MY_MATH 2 1 00000000−R 0 0 READ WRITE COPY ON REF MY_MATH_001 EQUAL 113 5598831
 2 1 00010000−R 0 0 READ WRITE COPY ON REF MY_MATH_002 EQUAL 113 5598831
 3 1 00020000−R 0 0 READ ONLY MY_MATH_003 EQUAL 113 5598831
 4 1 00030000−R 0 0 READ WRITE COPY ON REF MY_MATH_004 EQUAL 113 5598831
 2 1 00040000−R 0 0 READ WRITE FIXUP VECTORS MY_MATH_005 EQUAL 113 5598831

DEFAULT_CLUSTER 0 1 00010000 3 0 READ WRITE NON−SHAREABLE ADDRESS DATA
 0 1 00020000 4 0 READ ONLY
 0 1 00030000 5 0 READ WRITE FIXUP VECTORS
 253 20 7FFF0000 0 0 READ WRITE DEMAND ZERO

DECC$SHR 2 132 00000000−R 0 0 READ WRITE COPY ON REF DECC$SHR_001 LESS/EQUAL 1 0
 2 4 00020000−R 0 0 READ WRITE COPY ON REF DECC$SHR_002 LESS/EQUAL 1 0
 3 11 00030000−R 0 0 READ ONLY DECC$SHR_003 LESS/EQUAL 1 0
 3 965 00040000−R 0 0 READ ONLY DECC$SHR_004 LESS/EQUAL 1 0
 4 7 000C0000−R 0 0 READ WRITE COPY ON REF DECC$SHR_005 LESS/EQUAL 1 0
 4 71 000D0000−R 0 0 READ WRITE COPY ON REF DECC$SHR_006 LESS/EQUAL 1 0
 4 1 P−000E0000−R 0 0 READ WRITE COPY ON REF DECC$SHR_007 LESS/EQUAL 1 0
 2 9 000F0000−R 0 0 READ WRITE FIXUP VECTORS DECC$SHR_008 LESS/EQUAL 1 0

SYS$PUBLIC_VECTORS
 2 15 00000000−R 0 0 READ ONLY SYS$PUBLIC_VECTO EQUAL 113 14651409
 1 24 00004000−R 0 0 READ WRITE COPY ON REF SYS$PUBLIC_VECTO EQUAL 113 14651409
 2 1 00008000−R 0 0 READ WRITE FIXUP VECTORS SYS$PUBLIC_VECTO EQUAL 113 14651409

 Key for special characters above:
 +−−−−−−−−−−−−−−−−−−−−+
 ! R − Relocatable !
 ! P − Protected !
 +−−−−−−−−−−−−−−−−−−−−+

ZK−5292A−GE

The items in the following list correspond to the numbered items in the preceding
figure:

1 Cluster. The name of each cluster the linker created, listed in the order in
which the linker created them.

5–4

Interpreting an Image Map File
5.2 Components of an Image Map File

2 Type. The type of image section, expressed as one of the following codes:

Code Image Section Type

1 Shareable fixed image section

2 Private fixed image section

3 Shareable position-independent image section

4 Private position-independent image section

253 Stack image section

For more information about the types of image sections the linker creates, see
Section 3.3.5.

3 Pages or pagelets. The length of each image section, expressed in pages or
pagelets.

4 Base Address. The base address assigned to the image section. Note that
if the cluster is relocatable, the image activator relocates the base address.
In this case, the base address entry for each image section in the cluster
MY_MATH has the letter ‘‘R’’ appended to it, indicating that the base address
entry is an offset to be added to the cluster base address assigned by the
image activator.

Alpha For Alpha linking, when images are installed as resident images, the
Install utility moves image sections containing code into system space.
This invalidates the base addresses listed for these image sections in this
section of the map file. Note, however, that the relative positions of the
program sections within the image section, listed in the Program Section
Synopsis section of the map file, remain valid when the image section is
moved into system space. ♦

5 Disk VBN (virtual block number). The virtual block number of the image
file on disk where the image section begins. The number 0 indicates that the
image section is not in the image file.

6 Page fault cluster (PFC). The number of pagelets read into memory by the
operating system when the initial page fault occurs for that image section.
The number 0 indicates that the system parameter PFCDEFAULT determines
this value, rather than the linker.

7 Protection and Paging. A keyword phrase that characterizes the settings
of certain attributes of the image section, such as the attributes that affect
protection and paging. The following table lists the keywords used by the
linker to indicate these characteristics of an image section:

Keyword Meaning

COPY ON REF Indicates that the image section is a copy-on-reference image
section. Because a copy-on-reference image section is readable
and writable, but not shareable, each process receives a copy of
it.

DEMAND ZERO Indicates that the image section is a demand-zero image
section. (For more information, see Section 3.4.3.)

EXECUTABLE Indicates that the image section contains code.

5–5

Interpreting an Image Map File
5.2 Components of an Image Map File

Keyword Meaning

FIXUP VECTORS Indicates that the image section contains the fix-up section.
There is always a change-protection fix-up for the fix-up section,
so that when the image activator is done, the image activator
changes the protection of the image section to READ ONLY.

NON-SHAREABLE
ADDRESS DATA

Indicates that the linker set a READ ONLY page in the image
section to WRITE so that the image activator can fix up address
references (.ADDRESS) in the image section. The linker creates
a change-protection fix-up for these image sections that causes
the image activator to set the attributes of the image section
back to READ ONLY when it finishes processing the address
references.

READ ONLY Indicates that the image section is protected against write
access.

READ WRITE Indicates that the image section allows both read and write
access.

The linker may use more than one keyword to describe an image section. For
example, to describe an image section that contains code, the linker uses the
READ ONLY and EXECUTABLE keywords.

Note that a program section that you may have protected from write access
(by setting the NOWRT program section attribute) may appear in the map
file as writable (with the READ WRITE keyword). If this program section
also has the NON-SHAREABLE ADDRESS DATA keyword (as the first image
section in DEFAULT_CLUSTER illustrates), the linker has enabled write
access to the program section to allow the image activator to fix up address
references in the image section at run time. The image activator resets the
program section attributes to READ ONLY after it is finished.

8 Global Section Name. The name assigned by the linker to each image section
comprising a shareable image. The linker creates the names by appending
the characters ‘‘_00x’’ after the file name, where ‘‘x’’ is an integer, starting
with 1, and incremented for each image section in a shareable image.

9 Match. The algorithm the image activator uses when comparing identification
numbers in a shareable image, expressed by the keyword LESS/EQUAL,
EQUAL, or ALWAYS. For more information about this topic, see the
description of the GSMATCH= option in Part II.

1 0 Majorid. An identification number assigned to the image. The linker assigns
the number to the image if it is not specified as part of the link operation in
the GSMATCH= option.

1 1 Minorid. An identification number assigned to the image. The linker assigns
the number to the image if it is not specified as part of the link operation in
the GSMATCH= option.

5.2.4 Program Section Synopsis Section
The Program Section Synopsis section lists the program sections that comprise
the image, with information about the size of the program section, its starting-
and ending-addresses, and its attributes. The Module Name column in this
section lists the modules that contribute to each program section. The following
example illustrates this format:

5–6

Interpreting an Image Map File
5.2 Components of an Image Map File

 +−−−−−−−−−−−−−−−−−−−−−−−−−−+
 ! Program Section Synopsis !
 +−−−−−−−−−−−−−−−−−−−−−−−−−−+

Psect Name Module Name Base End Length Align Attributes
−−−−−−−−−− −−−−−−−−−−− −−−− −−− −−−−−− −−−−− −−−−−−−−−−

$LINK$ 00010000 000100BF 000000C0 (192.) OCTA 4 NOPIC,CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 MY_MAIN 00010000 000100BF 000000C0 (192.) OCTA 4

MY_DATA 00010010 00010013 00000004 (4.) OCTA 4 NOPIC,OVR,REL,GBL,NOSHR,NOEXE, WRT,NOVEC, MOD
 MY_MATH 00010010 00010010 00000000 (0.) OCTA 4
 MY_MAIN 00010010 00010013 00000004 (4.) OCTA 4

$LITERAL$ 000100C0 00010108 00000049 (73.) OCTA 4 PIC,CON,REL,LCL, SHR,NOEXE,NOWRT,NOVEC, MOD
 MY_MAIN 000100C0 00010108 00000049 (73.) OCTA 4

$READONLY$ 00010110 00010110 00000000 (0.) OCTA 4 NOPIC,CON,REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC, MOD
 MY_MAIN 00010110 00010110 00000000 (0.) OCTA 4

BSS 00020000 00020000 00000000 (0.) OCTA 4 NOPIC,CON,REL,LCL,NOSHR,NOEXE, WRT,NOVEC, MOD
 MY_MAIN 00020000 00020000 00000000 (0.) OCTA 4

$DATA$ 00020000 00020000 00000000 (0.) OCTA 4 NOPIC,CON,REL,LCL,NOSHR,NOEXE, WRT,NOVEC, MOD
 MY_MAIN 00020000 00020000 00000000 (0.) OCTA 4

$CODE$ 00020000 0002011B 0000011C (284.) OCTA 4 PIC,CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD
 MY_MAIN 00020000 0002011B 0000011C (284.) OCTA 4

1 2 3 5 6 74

ZK−5294A−GE

The items in the following list correspond to the numbered items in the preceding
figure:

1 Psect Name. The name of each program section in the image in ascending
order of its base virtual address.

2 Module Name. The names of the modules that contribute to the program
section whose name appears on the line directly above in the Psect Name
column. If a shareable image appears in this column, the linker processed the
program section as a shareable image reference.

3 Base. The starting virtual address of the program section or of a module that
contributes to a program section.

4 End. The ending virtual address of the program section or of a module that
contributes to a program section.

5 Length. The total length of the program section or of a module that
contributes to a program section.

6 Align. The type of alignment used for the entire program section or for an
individual program section contribution. The alignment is expressed in two
ways. In the first column, the alignment is expressed using a predefined
keyword, such as OCTA. In the second column, the alignment is expressed as
an integer that is the power of 2 that creates the alignment. For example,
octaword alignment would be expressed as the keyword OCTA and as the
integer 4 (because 24 = 16).

If the linker does not support a keyword to express an alignment, it puts the
text ‘‘2 **’’ in the column in which the keyword usually appears. When read
with the integer in the second column, it expresses these alignments, such as
2 ** 5.

7 Attributes. The attributes associated with the program section. For a list of
all the possible attributes, see Chapter 3.

5–7

Interpreting an Image Map File
5.2 Components of an Image Map File

Alpha For Alpha linking, the linker includes the MOD attribute in the list of
program section attributes (as illustrated in the example). To make room
in the display for this attribute, the linker leaves out the Readability (RD
/NORD) and User Library (USR/LIB) attributes, which are reserved for future
use. ♦

VAX For VAX linking, the list of attributes includes the Readability (RD/NORD)
and User Library (USR/LIB) attributes. The Modified (MOD/NOMOD)
attribute, which is not supported for VAX images, is not included. ♦

Note that, if a routine is extracted from the default system library to resolve a
symbolic reference, the Program Section Synopsis section in a full map contains
information about the program sections comprising that routine. The Program
Section Synopsis section in a default map does not.

5.2.5 Symbols By Name Section
The Symbols By Name section lists the global symbols contained in all the
modules included in the link operation. The section includes the value of the
symbol, in the following format:

+-----------------+
! Symbols By Name !
+-----------------+

Symbol 1 Value 2 Symbol Value Symbol Value Symbol Value
------ ----- ------ ----- ------ ----- ------ -----
DECC$EXIT 00001FD0-RX
DECC$GPRINTF 00001710-RX
DECC$MAIN 000007D0-RX
MAIN 00010000-R
MYSUB 00000010-RX
MY_SYMBOL 00000050-RX
SYS$IMGSTA 00000340-RX
__MAIN 00010078-R

1 Symbol. The names of the image’s global symbols in alphabetical order.

2 Value. The value of the symbol, expressed in hexadecimal. The linker
appends characters to the end of the symbol value to describe other
characteristics of the symbol. For an explanation of these symbols, see
Section 5.2.7.

Note that this section is replaced by the Symbol Cross-Reference section when
you specify the /CROSS_REFERENCE qualifier in the LINK command. The
Symbols by Value section, described in Section 5.2.7, lists the same symbols by
value.

5.2.6 Symbol Cross-Reference Section
The Symbol Cross-Reference Section, which is produced in place of the Symbols
By Name section when you specify the /CROSS_REFERENCE qualifier, lists all
of the symbols referenced in the image, along with the module in which they are
defined and with all the modules that reference them. The section formats this
information as in the following example:

5–8

Interpreting an Image Map File
5.2 Components of an Image Map File

+------------------------+
! Symbol Cross Reference !
+------------------------+

Symbol 1 Value 2 Defined By 3 Referenced By ... 4
------ ----- ---------- -----------------
DECC$EXIT 00001FD0-RX DECC$SHR MY_MAIN
DECC$GPRINTF 00001710-RX DECC$SHR MY_MAIN
DECC$MAIN 000007D0-RX DECC$SHR MY_MAIN
MAIN 00010000-R MY_MAIN
MYSUB 00000010-RX MY_MATH MY_MAIN
MY_SYMBOL 00000050-RX MY_MATH MY_MAIN
SYS$IMGSTA 00000340-RX SYS$PUBLIC_VECTORS
__MAIN 00010078-R MY_MAIN

1 Symbol. The name of the global symbol.

2 Value. The value of the global symbol, expressed in hexadecimal. The
linker appends characters to the end of the symbol value to describe other
characteristics of the symbol. For an explanation of these symbols, see
Section 5.2.7.

3 Defined By. The name of the module in which the symbol is defined. For
example, the symbol mysub is defined in the module named MY_MATH.

4 Referenced By.... The name or names of all the modules that contain at least
one reference to the symbol.

5.2.7 Symbols By Value Section
The Symbols By Value section lists all the global symbols in the image in order
by value, in ascending numeric order. The linker formats the information into
columns, as in the following example:

+------------------+
! Symbols By Value !
+------------------+

Value 1 Symbols...2
----- ----------
00000010 RX-MYSUB
00000050 RX-MY_SYMBOL
00000340 RX-SYS$IMGSTA
000007D0 RX-DECC$MAIN
00001710 RX-DECC$GPRINTF
00001FD0 RX-DECC$EXIT
00010000 R-MAIN
00010078 R-__MAIN

1 Value. The value of each global symbol, expressed in hexadecimal, in
ascending numerical order.

2 Symbols... The names of the global symbols. If more than one symbol has
the same value, the linker lists them on more than one line. The characters
prefixed to the symbol names indicate other characteristics of the symbol,
such as its scope. Table 5–3 lists these codes.

5–9

Interpreting an Image Map File
5.2 Components of an Image Map File

Table 5–3 Symbol Characterization Codes

Code Meaning

asterisk(*) Symbol is undefined.

‡A Symbol is the alias name for a universal symbol.

‡I Symbol is the internal name of a symbol that has a universal alias name.

U Symbol is a universal symbol.

R Symbol is a relocatable symbol.

X Symbol is an external symbol.

WK Symbol is a weak symbol. (For more information, see Chapter 2.)

‡Alpha specific

5.2.8 Image Synopsis Section
The Image Synopsis section contains miscellaneous information about the image,
such as its name and identification numbers, and a summary of various attributes
of the image, such as the number of files used to build the image. The following
example illustrates the format of this section of a map file. The list following
the example provides more information about items in this section that are not
self-explanatory.

+----------------+
! Image Synopsis !
+----------------+

Virtual memory allocated:1 00010000 0003FFFF 00030000 (196608. bytes, 384. pages)
Stack size: 20. pages
Image header virtual block limits: 1. 2. (2. blocks)
Image binary virtual block limits: 3. 5. (3. blocks)
Image name and identification: MY_MAIN V1.0
Number of files: 7.
Number of modules: 4.
Number of program sections: 11.
Number of global symbols: 944.
Number of cross references: 13.
Number of image sections: 20.
User transfer address: 00010078
Debugger transfer address: 00000340
Number of code references to shareable images: 6.
Image type: EXECUTABLE.
Map format: FULL WITH CROSS REFERENCE in file WORK:[PROGS]MY_MAIN.MAP;15
Estimated map length: 148. blocks

The following list explains the information returned in each line of the Image
Synopsis section:

1 Virtual memory allocated. This line contains the following information:

• The starting-address of the image (base-address)

• The ending-address of the image

• The total size of the image, expressed in bytes, in hexadecimal radix

The numbers in parentheses at the end of the line indicate the total size
of the image, expressed in bytes and in pagelets. Both these values are
expressed in decimal.

5–10

Interpreting an Image Map File
5.2 Components of an Image Map File

5.2.9 Link Run Statistics Section
The Link Run Statistics section contains miscellaneous statistical information
about the link operation, such as performance indicators, formatted as in the
following example:

+---------------------+
! Link Run Statistics !
+---------------------+

Performance Indicators Page Faults CPU Time Elapsed Time
---------------------- ----------- -------- ------------

Command processing: 93 00:00:00.18 00:00:00.81
Pass 1: 345 00:00:00.55 00:00:12.04
Allocation/Relocation: 9 00:00:00.04 00:00:00.30
Pass 2: 29 00:00:00.14 00:00:00.62
Map data after object module synopsis: 3 00:00:00.05 00:00:00.31
Symbol table output: 0 00:00:00.00 00:00:00.10

Total run values: 479 00:00:00.96 00:00:14.18

Using a working set limited to 2048 pages and 946 pages of data storage (excluding image)

Total number object records read (both passes): 167
of which 0 were in libraries and 0 were DEBUG data records containing 0 bytes

Number of modules extracted explicitly = 0
with 0 extracted to resolve undefined symbols

5 library searches were for symbols not in the library searched

A total of 0 global symbol table records was written

LINK/MAP/FULL/CROSS MY_MAIN,SYS$INPUT/OPT
my_math/share

5–11

Part II
LINK Command Reference

LINK

LINK

Invokes the OpenVMS Linker utility to link one or more input files into a
program image and defines the execution characteristics of the image.

Format

LINK file-spec [,...]

Qualifiers Defaults

/ALPHA See reference description.
/BPAGE See reference description.
/BRIEF None
/[NO]CONTIGUOUS /NOCONTIGUOUS
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG[=file-spec] /NODEBUG
/[NO]DEMAND_ZERO /DEMAND_ZERO (Alpha linking only)
/[NO]DSF[=file-spec] /NODSF (Alpha linking only)
/[NO]EXECUTABLE[=file-spec] /EXECUTABLE
/FULL None
/[NO]GST /GST (Alpha linking only)
/HEADER None
/INCLUDE=(module-name[,...]) None
/[NO]INFORMATIONALS /INFORMATIONALS
/LIBRARY None
/[NO]MAP[=file-spec] /NOMAP
/[NO]NATIVE_ONLY /NATIVE_ONLY (Alpha linking only)
/OPTIONS None
/P0IMAGE None
/PROTECT None
/[NO]REPLACE /REPLACE (Alpha linking only)
/[NO]SECTION_BINDING=(CODE,DATA) /NOSECTION_BINDING (Alpha linking only)
/SELECTIVE_SEARCH None
/[NO]SHAREABLE[=file-spec] /NOSHAREABLE
/[NO]SYMBOL_TABLE[=file-spec] /NOSYMBOL_TABLE
/[NO]SYSEXE /NOSYSEXE (Alpha linking only)
/[NO]SYSLIB /SYSLIB
/[NO]SYSSHR /SYSSHR
/[NO]SYSTEM[=base-address] /NOSYSTEM
/[NO]TRACEBACK /TRACEBACK
/[NO]USERLIBRARY[=(table[,...])] /USERLIBRARY=ALL
/VAX See reference description.

Parameters

file-spec [,...]
Specifies one or more input files (wildcard characters are not allowed). Input files
may be object modules, shareable images, libraries to be searched for external
references or from which specific modules are to be included, or options files to be
read by the linker. Separate multiple input file specifications with commas (,) or
plus signs (+). In either case, the linker creates a single image file.

If you omit the file type in an input file specification, the linker supplies default
file types, based on the nature of the input file. For object modules, the default
file type is .OBJ. For more information about specifying input files, see Chapter 1.

LINK–3

LINKER Qualifiers

Qualifier Descriptions

This section describes the LINK command qualifiers.

LINK–4

LINKER Qualifiers
/ALPHA

/ALPHA

Directs the linker to produce an OpenVMS Alpha image. The default action,
when neither /ALPHA nor /VAX is specified, is to create an OpenVMS VAX image
on an OpenVMS VAX system and to create an OpenVMS Alpha image on an
OpenVMS Alpha system.

Format

/ALPHA

Qualifier Values

None.

Description

This qualifier is used to instruct the linker to accept OpenVMS Alpha object files
and library files to produce an OpenVMS Alpha image.

You must inform the linker where OpenVMS Alpha system libraries and
shareable images are located with the logical names ALPHA$LOADABLE_
IMAGES and ALPHA$LIBRARY. On an OpenVMS Alpha system, these logicals
are already defined to point to the correct directories on the current system disk.
On OpenVMS VAX, you must define these logical names so that they translate to
the location of an OpenVMS Alpha system disk residing on the system where the
Alpha linking is to occur.

For more information on cross-architecture linking, see Section 1.6.

Example

$ DEFINE ALPHA$LIBRARY DKB100:[VMS$COMMON.SYSLIB]
$ DEFINE ALPHA$LOADABLE_IMAGES DKB100:[VMS$COMMON.SYS$LDR]
$ LINK/ALPHA ALPHA.OBJ

This example, which is performed on an OpenVMS VAX system, shows the
definition of logical names to point to the appropriate areas on an OpenVMS
Alpha system disk mounted on device DKB100. The qualifier /ALPHA tells the
linker to expect the object file, ALPHA.OBJ, to be an OpenVMS Alpha object
file and to link it using the OpenVMS Alpha libraries and images on DKB100, if
necessary.

LINK–5

LINKER Qualifiers
/BPAGE

/BPAGE

Specifies the page size the linker should use when it creates the image sections
that make up an image.

Format

/BPAGE [=page-size-indicator]

Qualifier Values

page-size-indicator
An integer that specifies a page size as the power of 2 required to create a page
that size. For example, to get an 8 KB page size, specify the value 13 because 213

equals 8K. The following table lists the page sizes supported by the linker with
the defaults:

Value Page Size Defaults

9 512 bytes Default value for VAX links when the /BPAGE
qualifier is not specified.

13 8 KB Default value for VAX links when the /BPAGE
qualifier is specified without a value.

14 16 KB –
15 32 KB –
16 64 KB Default value for Alpha links when /BPAGE is not

specified or when the /BPAGE qualifier is specified
without a value.

Description

The images the linker creates are made up of image sections that the linker
allocates on page boundaries. When you specify a larger page size, the origin of
image sections increases to the next multiple of that size.

An image linked to a page size that is larger than the page size of the CPU
generally runs correctly, but it might consume more virtual address space.

VAX For VAX linking, linking a shareable image to a larger page size can cause the
value of transfer vector offsets to change if they were not allocated in page 0
of the image. Do not link against a shareable image that was created with a
different page size. (You cannot determine the page size used in the creation of a
VAX image from the image.) ♦

Alpha For Alpha linking, by default, the linker creates image sections on 64 KB
boundaries, thus allowing the images to run properly on any Alpha system,
regardless of page size.♦

Example

$ LINK/BPAGE=16 MY_PROG.OBJ

Including the value 16 with the /BPAGE qualifier causes the linker to create
image sections on 64 KB page boundaries.

LINK–6

LINKER Qualifiers
/BRIEF

/BRIEF

Directs the linker to produce a brief image map. For more information, see also
the /MAP and /FULL qualifiers.

Format

/MAP/BRIEF

Qualifier Values

None.

Description

A brief map contains the following sections:

• Object Module Synopsis

• Image Section Synopsis

• Link Run Statistics

In contrast, the default image map contains the Object Module Synopsis, Image
Synopsis, Link Run Statistics, Program Section Synopsis, and Symbols By Name
sections. For more information about image maps, see Chapter 5.

The /BRIEF qualifier must be specified with the /MAP qualifier and is
incompatible with the /FULL qualifier and the /CROSS_REFERENCE qualifier.

Example

$ LINK/MAP/BRIEF MY_PROG

In this example, the linker creates a brief image map with the file name MY_
PROG.MAP.

LINK–7

LINKER Qualifiers
/CONTIGUOUS

/CONTIGUOUS

Directs the linker to place the entire image in consecutive disk blocks. If
sufficient contiguous space is not available on the output disk, the linker reports
an error and terminates the link operation.

Format

/CONTIGUOUS

/NOCONTIGUOUS (default)

Qualifier Values

None.

Description

You can use the /CONTIGUOUS qualifier to speed up the activation time of any
type of image because images usually activate more slowly if their image disk
blocks are not contiguous. Note, however, that in most cases performance benefits
do not warrant the use of the /CONTIGUOUS qualifier.

You can also use the /CONTIGUOUS qualifier when linking bootstrap programs
for certain system images that require contiguity.

Even when you do not specify the /CONTIGUOUS qualifier, the file system
tries to use contiguous disk blocks for images, if sufficient contiguous space is
available.

Example

$ LINK/CONTIGUOUS MY_PROG

This example directs the linker to place the entire image named MY_PROG.EXE
in consecutive disk blocks.

LINK–8

LINKER Qualifiers
/CROSS_REFERENCE

/CROSS_REFERENCE

Directs the linker to replace the "Symbols By Name" section in a full or default
image map with the Symbol Cross-Reference section.

Format

/MAP/CROSS_REFERENCE

/MAP/NOCROSS_REFERENCE (default)

Qualifier Values

None.

Description

The Symbol Cross-Reference section lists, in alphabetical order, the name of each
global symbol, together with the following information about each:

• Its value

• The name of the first module in which it is defined

• The name of each module in which it is referenced

The number of symbols listed in the cross-reference section depends on whether
the linker generates a full map or a default map. In a full map, this section
includes global symbols from all modules in the image, including those extracted
from all libraries. In a default map, this section does not include global symbols
from modules extracted from the default system libraries IMAGELIB.OLB and
STARLET.OLB. For more information about image map files, see Chapter 5.

The /CROSS_REFERENCE qualifier is incompatible with the /BRIEF qualifier.

Example

$ LINK/MAP/CROSS_REFERENCE MY_PROG

This example produces an image map file named MY_PROG.MAP that includes a
Symbol Cross-Reference section.

LINK–9

LINKER Qualifiers
/DEBUG

/DEBUG

Directs the linker to generate a debugger symbol table (DST) using DBG and TBT
object language records and to give the debugger control when the image is run.

Format

/DEBUG[=file-spec]

/NODEBUG (default)

Qualifier Values

file-spec
Identifies a user-written debugger module.

If you specify the /DEBUG qualifier without entering a file specification, the
OpenVMS Debugger gains control at run time. Requesting the OpenVMS
Debugger does not affect the location of code within the image because the
debugger is mapped into the process address space at run time, not at link time.
See the OpenVMS Debugger Manual for additional information.

If you specify the /DEBUG qualifier with a file specification, the user-written
debugger module identified by the file specification gains control at run time. The
linker assumes a default file type of .OBJ. Requesting a user-written debugger
module does affect the location of code within the image because the debugger
module code is processed by the linker together with program code.

Description

The /DEBUG qualifier automatically includes the /TRACEBACK qualifier. If
you specify the /DEBUG qualifier and the /NOTRACEBACK qualifier, the linker
overrides your specification and includes traceback information.

To debug a shareable image, you must include it in a link operation that creates
an executable image. Specify the /DEBUG qualifier when compiling the source
modules that comprise the shareable image and specify the /DEBUG qualifier
when linking the shareable image.

Example

$ LINK/DEBUG MY_PROG

This example produces an executable image named MY_PROG.EXE. Upon image
activation, control will be passed to the debugger.

LINK–10

LINKER Qualifiers
/DEMAND_ZERO (Alpha Only)

/DEMAND_ZERO (Alpha Only)

Alpha For Alpha linking, enables demand-zero image section production for both
executable and shareable images.

Format

/DEMAND_ZERO[=per_page] (default)

/NODEMAND_ZERO

Qualifier Values

per_page
Enables the linker to perform demand zero compression on Alpha images on a
per-page basis. If this keyword is not used, the linker performs demand zero
compression on an image-section basis only.

Description

On Alpha systems, compilers identify to the linker which program sections have
not been initialized by setting the NOMOD program section attribute. The
linker collects these uninitialized program sections into demand-zero image
sections. (For more information about demand-zero image section production, see
Section 3.4.3.)

If you specify the /NODEMAND_ZERO qualifier, the linker still gathers
uninitialized program sections into demand-zero image sections but writes
them to disk. Thus, the virtual memory layout of an image is the same when
the /DEMAND_ZERO qualifier is specified and when the /NODEMAND_ZERO
qualifier is specified. (If you specify the /NODEMAND_ZERO qualifier, the linker
turns the demand-zero image sections containing the NOMOD program sections
into regular image sections and sets the copy-on-reference [CRF] attribute if the
write [WRT] attribute is set.)

To force the linker to write a program section to disk, that otherwise would be
included in a demand-zero image section, turn off the NOMOD attribute of the
program section by using the PSECT_ATTR= option, as in the following example:

PSECT_ATTR=psect-name,MOD

Note that only language processors can set the NOMOD attribute of a program
section.♦

LINK–11

LINKER Qualifiers
/DEMAND_ZERO (Alpha Only)

Examples

1. $ LINK/NODEMAND_ZERO

In this example, the linker does not perform demand zero compression.

2. $ LINK/DEMAND_ZERO

In this example, the linker by default performs demand zero compression on
a per-image-section basis.

3. $ LINK/NODEMAND_ZERO=PER_PAGE

In this example, the linker performs demand zero compression on both a
per-image-section basis and a per-page basis.

LINK–12

LINKER Qualifiers
/DSF (Alpha Only)

/DSF (Alpha Only)

Alpha For Alpha linking, directs the linker to create a file called a debug symbol file
(DSF) for use by the OpenVMS Alpha System-Code Debugger. See OpenVMS
Alpha Device Support: Developer’s Guide for guidelines on using this debugger.

Format

/DSF[=file-spec]

/NODSF default

Qualifier Values

file-spec
Specifies the character string you want the linker to use as the name of the debug
symbol file. If you do not include a file type in the character string, the linker
appends the .DSF file type to the file name.

If you specify the /DSF qualifier without the file specification, the linker creates
a debug symbol file with the file name of the first input file and the default file
type .DSF. If you append the /DSF qualifier to one of the input file specifications,
the linker creates a debug symbol file with the file name of the file to which the
qualifier is appended and with the default file type .DSF.

Description

The /DSF qualifier directs the linker to create a separate file to contain the
debug information required by the OpenVMS Alpha System-Code Debugger. The
/DSF qualifier can be used with the /NOTRACEBACK qualifier to suppress the
appearance of SYS$IMGSTA in the image’s transfer array. The /DSF qualifier
has no effect on the contents of the image, including the image header.

The /DSF and /DEBUG qualifiers are not mutually exclusive. However, the
combination is not generally useful. The debug bit in the image header will be
set and SYS$IMGSTA will be included in the transfer array, but there will be no
information for the symbolic debugger included in the image. The DSF file will
be generated as usual.

Example

$ LINK/DSF/NOTRACEBACK MY_PROG.OBJ

In this example, the linker will create the files MY_PROG.DSF and
MY_PROG.EXE.♦

LINK–13

LINKER Qualifiers
/EXECUTABLE

/EXECUTABLE

Directs the linker to create an executable image, as opposed to a shareable image
or a system image.

Format

/EXECUTABLE[=file-spec] (default)

/NOEXECUTABLE

Qualifier Values

file-spec
Specifies the character string you want the linker to use as the name of the
image file produced by the link operation. If you do not specify a file type in the
character string, the linker assigns the .EXE file type by default.

If you do not specify a file name with the /EXECUTABLE qualifier, the linker
creates an executable image with the file name of the first input file. If you
append the /EXECUTABLE qualifier to an input file specification, the linker
creates an executable image with the file name of the file to which the qualifier is
appended.

Description

The /NOEXECUTABLE qualifier directs the linker to perform the linking
operation but to not create an image file. Use the /NOEXECUTABLE qualifier
to have the linker process the input files you specify without creating an image
file to check for errors in your LINK command syntax or other link-time errors.
You can also use the linker to produce a map file or symbol table file only
by specifying the /NOEXECUTABLE qualifier with the /MAP qualifier or the
/SYMBOL_TABLE qualifier.

The linker assumes the /EXECUTABLE qualifier as the default unless you specify
the /NOEXECUTABLE qualifier, the /SHAREABLE qualifier, or the /SYSTEM
qualifier. Note, however, that when used with the /SYSTEM qualifier, you can
use the /EXECUTABLE qualifier to specify the name of a system image.

Examples

1. $ LINK/NOEXECUTABLE MY_PROG

This example directs the linker to link the object module in the file MY_
PROG.OBJ without creating an image file.

2. $ LINK/EXECUTABLE MY_PROG

This example directs the linker to produce an executable image named MY_
PROG.EXE. (The command line $ LINK MY_PROG will yield the same result
because the /EXECUTABLE qualifier is the default.)

3. $ LINK/EXECUTABLE=MY_IMAGE MY_PROG

This example directs the linker to produce an executable image with the
name MY_IMAGE.EXE instead of the name MY_PROG.EXE.

LINK–14

LINKER Qualifiers
/FULL

/FULL

Directs the linker to create a full image map file. For more information, see also
the /MAP, /CROSS_REFERENCE, and /BRIEF qualifiers.

Format

/MAP/FULL

Qualifier Values

None.

Description

A full map, which is the most complete image map, contains the following
sections:

• Object Module Synopsis

• Module Relocatable Reference Synopsis (VAX linking only)

• Image Section Synopsis

• Program Section Synopsis

• Symbols By Name (and the Symbol Cross-Reference section if the
/CROSS_REFERENCE qualifier is specified)

• Symbols By Value

• Image Synopsis

• Link Run Statistics

The full map also contains information about modules included from the default
system libraries STARLET.OLB and IMAGELIB.OLB in the Object Module
Synopsis, Program Section Synopsis, and Symbols By Name sections. For more
information about image map files, see Chapter 5.

The /FULL qualifier is valid only if you also specify the /MAP qualifier in
the LINK command. The /FULL qualifier is compatible with the /CROSS_
REFERENCE qualifier, but it is not compatible with the /BRIEF qualifier.

Example

$ LINK/MAP/FULL MY_PROG

This example directs the linker to produce a full image map named
MY_PROG.MAP.

LINK–15

LINKER Qualifiers
/GST (Alpha Only)

/GST (Alpha Only)

Alpha For Alpha linking, directs the linker to include in the global symbol table (GST)
of a shareable image those symbols that have been declared as universal symbols
in a symbol vector.

Format

/GST (default)

/NOGST

Qualifier Values

None.

Description

By default, the linker lists in the global symbol table (GST) of a shareable
image the global symbols in the image that have been declared universal. By
listing these symbols in the GST, the linker allows them to be referenced in link
operations where the shareable image is specified as an input file.

To create a shareable image that can be activated by the images that linked
against it, but that cannot be used to resolve symbolic references in a link
operation, you can specify the /NOGST qualifier. When this qualifier is specified,
the linker creates the image with an empty GST. (The linker still creates a GST.)
By using the /NOGST qualifier, you can create a run-time version of a shareable
image without having to remove the symbol vector from the link operation.

The images that were linked against the shareable image can still access symbols
within the image because the /NOGST qualifier does not affect the symbol vector
in the image. A symbol vector is an array of linkage pairs that contains the
address within the image of the symbols. The value of a universal symbol in the
GST is the offset of its entry in the symbol vector. Thus, to the images that were
linked against the shareable image, the value of the symbol is the offset of its
entry into the symbol vector.

This qualifier is valid only when used with the /SHAREABLE qualifier to create
a shareable image.

Example

$ LINK/NOGST/SHAREABLE MY_SHARE,UNIVERSALS/OPT

This example creates the shareable image MY_PROG.EXE without listing entries
for universal symbols in its global symbol table. The image contains an empty
global symbol table.♦

LINK–16

LINKER Qualifiers
/HEADER

/HEADER

When specified with the /SYSTEM qualifier, directs the linker to include an image
header in a system image.

Format

/HEADER

Qualifier Values

None.

Description

The linker always creates executable images and shareable images with headers;
they are a required component of image files. The linker creates system images
without a header by default. To create a system image with a header, you must
specify the /HEADER qualifier along with the /SYSTEM qualifier on the command
line.

The linker ignores the /HEADER qualifier if it is specified for any other type of
image (executable or shareable).

Example

$ LINK/SYSTEM/HEADER MY_SYS

This example directs the linker to produce a system image named MY_SYS.EXE
with an image header. For more information about when to specify the /HEADER
qualifier with the /SYSTEM qualifier, see the description of the /SYSTEM
qualifier.

LINK–17

LINKER Qualifiers
/INCLUDE

/INCLUDE

Identifies the input file specification to which it is appended as a library file and
directs the linker to include in the link operation the module or modules specified
as the value of the qualifier.

Format

library-name/INCLUDE=(module-name[,...])

Qualifier Values

library-name
Specifies the name of the library from which you want a module or modules
extracted. The file name must specify a library file. The linker assumes the
default file type of .OLB.

module-name
Specifies the module or modules that you want to extract from the library. To
specify more than one module, enclose the list in parentheses and separate the
module names with commas.

Description

Note that the /INCLUDE qualifier does not cause the linker to process the library
for the definitions of unresolved symbolic references. If you want the linker to
search the library for definitions of unresolved symbols, you must also specify the
/LIBRARY qualifier before the /INCLUDE qualifier.

Examples

1. $ LINK MY_PROG,MY_LIB/INCLUDE=(MOD1,MOD2,MOD5)

This example directs the linker to include modules MOD1, MOD2, and MOD5
from the library MY_LIB.OLB in the link operation with MY_PROG.

2. $ LINK MY_PROG,MY_LIB/LIBRARY/INCLUDE=(MOD1,MOD2,MOD5)

This example directs the linker to extract modules MOD1, MOD2, and MOD5
from the library MY_LIB.OLB and then to search that library for symbol
definitions that are unresolved in all four modules.

LINK–18

LINKER Qualifiers
/INFORMATIONALS

/INFORMATIONALS

Directs the linker to output informational messages produced by a link operation.

Format

/INFORMATIONALS (default)

/NOINFORMATIONALS

Qualifier Values

None.

Description

The linker outputs informational messages by default. To suppress informational
messages, specify the /NOINFORMATIONALS qualifier.

Example

$ LINK/NOINFORMATIONALS MY_PROG

When the /NOINFORMATIONALS qualifier is specified, informational messages
are suppressed.

LINK–19

LINKER Qualifiers
/LIBRARY

/LIBRARY

Identifies the input file specification to which it is appended as a library file
and directs the linker to process the library’s name table as part of its symbol
resolution processing. When the linker finds in the library the definition of a
symbol referenced in a previously processed input file, the linker includes from
the library the module in which the symbol is defined.

Format

library-name/LIBRARY

Qualifier Values

library-name
Specifies the name of the library to be included in the link operation. You must
specify a library file. The linker assumes the default file type of .OLB.

Description

The order in which a library file is specified in the command string (or in an
options file) is important because the linker uses the library file to resolve
undefined symbols in previously processed (not subsequently processed) modules
only. For more information about how the linker processes input files to resolve
symbolic references, see Chapter 2.

Examples

1. $ LINK MY_PROG,MY_LIB/LIBRARY,PROG2,PROG3

In this example, the linker uses the library MY_LIB.OLB to resolve undefined
symbols in MY_PROG, but not in PROG2 or PROG3.

2. $ LINK MY_PROG,PROG2,PROG3,MY_LIB/LIBRARY

In this example, the linker can resolve undefined symbols in MY_PROG,
PROG2, and PROG3 from the library MY_LIB.OLB.

LINK–20

LINKER Qualifiers
/MAP

/MAP

Directs the linker to create an image map file. For more information, see also the
/BRIEF, /CROSS_REFERENCE, and /FULL qualifiers.

Format

/MAP[=file-spec] (default in batch mode)

/NOMAP (default in interactive mode)

Qualifier Values

file-spec
If you enter a file specification with the /MAP qualifier, the linker creates an
image map file with that file name. If you do not enter a file type after the file
name, the linker assumes a file type of .MAP.

If you do not enter a file specification with the /MAP qualifier, the linker creates
an image map file with the file name of the first input file specified on the
command line and the file type .MAP. (If there are no input files specified on the
command line, the linker names the map file .MAP.)

If you append the /MAP qualifier to one of the input file specifications, the linker
creates an image map file with the file name of the file to which the qualifier is
appended, using the .MAP file type.

Description

The /MAP qualifier causes the linker to produce a default image map file
containing the following sections:

• Object Module Synopsis

• Image Section Synopsis

• Program Section Synopsis

• Symbols By Name

• Link Run Statistics

See Chapter 5 for more information about image map files.

Examples

1. $ LINK/MAP MY_PROG

This example directs the linker to produce an image map with the default
name of MY_PROG.MAP.

2. $ LINK/MAP=MY_MAP MY_PROG

This example directs the linker to produce an image map with the name of
MY_MAP.MAP instead of the default name of MY_PROG.MAP.

LINK–21

LINKER Qualifiers
/NATIVE_ONLY (Alpha Only)

/NATIVE_ONLY (Alpha Only)

Alpha For Alpha linking, prevents the linker from passing along procedure signature
block (PSB) information in special fix-ups to the image activator. The image
activator uses this information to build jackets so that native OpenVMS Alpha
images can call translated OpenVMS VAX images. Note that this qualifier does
not prevent incoming calls from translated OpenVMS VAX images.

Format

/NATIVE_ONLY (default)

/NONATIVE_ONLY

Qualifier Values

None.

Description

Jacket routines reformat data passed in procedure calls between the VAX and
Alpha architectures. Jackets are required in images that make calls to translated
components.

The linker does not build jackets. It stores PSB data from the compiler in the
fixup section. The image activator uses this saved PSB information to build
jackets, if they are needed, when the image is activated. Compilers create PSBs
when you specify the /TIE qualifier. (For more information, see the OpenVMS
Alpha compiler documentation.)

For more information about creating OpenVMS Alpha images that can operate
with OpenVMS VAX images, see Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications.

Example

$ LINK/NATIVE_ONLY MY_PROG

In this example, the linker creates an image, named MY_PROG.EXE, that cannot
interoperate with translated OpenVMS VAX images.♦

LINK–22

LINKER Qualifiers
/OPTIONS

/OPTIONS

Identifies the input file specification to which it is appended as a linker options
file.

Format

options-file-name/OPTIONS

Qualifier Values

options-file-name
The file specification of a linker options file. The linker assumes the file type
.OPT by default.

Description

A linker options file can contain linker option specifications and input file
specifications. For information about creating an options file, see Chapter 1.

Examples

1. $ LINK MY_PROG,MY_OPTIONS/OPTIONS

This example directs the linker to use an options file named MY_
OPTIONS.OPT to produce an executable image named MY_PROG.EXE.

2. $ LINK MY_PROG,SYS$INPUT/OPTIONS
MY_SHARE/SHAREABLE

Ctrl/Z

This example illustrates how to create an options file interactively by
specifying SYS$INPUT as the file specification. After entering the options,
press Ctrl/Z to end the options file.

LINK–23

LINKER Qualifiers
/P0IMAGE

/P0IMAGE

Directs the linker to place an executable image entirely in P0 address space.
When the /P0IMAGE qualifier is specified, the user stack and OpenVMS RMS
buffers, which usually reside in P1 space, are placed in P0 space by the image
activator.

Format

/P0IMAGE

Qualifier Values

None.

Description

Note that the address of the stack shown in the map of an image linked with
the /P0IMAGE qualifier does not reflect the true address of the stack at run time
because, when /P0IMAGE is specified, the virtual address space for the stack is
dynamically allocated at the end of P0 space at run time.

/P0IMAGE is used to create executable images that modify P1 address space.

Example

$ LINK/P0IMAGE MY_PROG

This example directs the linker to set up an executable image named
MY_PROG.EXE to be run entirely in the P0 address space.

LINK–24

LINKER Qualifiers
/PROTECT

/PROTECT

Directs the linker to protect an entire shareable image from user-mode write
access and supervisor-mode write access. Can be specified only with the
/SHAREABLE qualifier.

Format

/PROTECT

/NOPROTECT (default)

Qualifier Values

None.

Description

The /PROTECT qualifier protects an entire shareable image from user-mode
write access and supervisor-mode write access. To protect only specific image
sections within a shareable image, but not the entire shareable image, use the
PROTECT= option. For more information about using the PROTECT= option, see
its description later in this section.

The /PROTECT qualifier is commonly used to protect shareable images that
are used to implement user-written system services (called privileged shareable
images) from user-mode access. If only certain clusters in the shareable image
need protection, use the PROTECT= option.

The /PROTECT qualifier is incompatible with the /EXECUTABLE qualifier and
the /SYSTEM qualifier.

Example

$ LINK/SHAREABLE/PROTECT MY_SHARE

This example directs the linker to produce a privileged shareable image named
MY_SHARE.EXE.

LINK–25

LINKER Qualifiers
/REPLACE (Alpha Only)

/REPLACE (Alpha Only)

Alpha For Alpha linking, specifies that the linker should perform certain optimizations
to improve the performance of the resultant image, when instructed by the
compiler.

Format

/REPLACE (default)

/NOREPLACE

Qualifier Values

None.

Description

For Alpha linking, it is more efficient to execute a procedure call as a branch,
using the BSR (Branch to Subroutine) instruction sequence, than it is to execute
the call as a jump, using the JSR (Jump to Subroutine) instruction sequence. In
a BSR instruction, the destination can be expressed as an offset, requiring fewer
memory fetches than a JSR instruction sequence.

Compilers cannot always take advantage of the efficiency of the BSR instruction
because the information needed to calculate the offset is not available until link
time, when the linker lays out the image sections that make up the image. To
achieve this performance enhancement, compilers flag uses of the JSR instruction
sequence and the linker examines each use and attempts to replace it with the
BSR instruction sequence wherever possible.

In addition to code replacement, the linker can also specify hints to improve the
performance of the JSR instructions that remain in the image. A hint is used to
index the instruction cache and can improve performance. Hints are generated
for JSR instructions within the image and for JSR instructions to shareable
images.

For more information about this optimization, see Section 1.4. ♦

LINK–26

LINKER Qualifiers
/SECTION_BINDING (Alpha Only)

/SECTION_BINDING (Alpha Only)

Alpha For Alpha linking, directs the linker to create an image that can be installed as a
resident image and to flag coding practices in the image that would prevent this.

Format

/[NO]SECTION_BINDING[=(CODE,DATA)]

/NOSECTION_BINDING (default)

Qualifier Values

CODE
Prevents the linker from replacing the Jump to Subroutine (JSR) instruction
sequence with the more efficient Branch to Subroutine (BSR) instruction sequence
when the target of the branch crosses an image section boundary.

DATA
Directs the linker to check for address calculations that create dependencies on
the layout of data image sections. The linker reports such occurrences.

When the /SECTION_BINDING qualifier is specified without either the CODE or
DATA keyword, the linker performs both types of checking by default.

Description

For Alpha linking, you can improve the performance of an installed image by
installing it as a resident image (by using the /RESIDENT qualifier of the Install
utility). The Install utility moves portions of resident images into system space
where they reside on a large single page with granularity hints set (called a
granularity hint region or GHR), thus improving performance.

For an image to be installed as a resident image, it must not contain any
dependencies on the layout of image sections, such as branch instructions that
cross image section boundaries. The offsets calculated by the linker for such
branches depend on the layout of the image sections. The relative position of
the code image sections changes when they are moved to system space and the
accuracy of the offsets calculated by the linker is destroyed. (These dependencies
are created by the linker when it replaces the JSR instruction sequence with
the BSR instruction sequence. For more information, see the description of the
/REPLACE qualifier.)

When the /SECTION_BINDING qualifier is specified, the linker does not replace
JSR instructions when the destination crosses an image section boundary. The
linker still replaces the JSR instruction sequence for calls that stay within the
boundaries of an image section.

In addition to eliminating image section layout dependencies in code image
sections, the linker can also check the data image sections in an image to see
if they contain coding practices that produce dependencies on image section
layout. The image activator can reposition data image sections to eliminate
the gaps in virtual memory left by the code image sections that were moved
to system space. However, data image sections can also contain dependencies
on image section layout. For example, when an image initializes an address
by performing arithmetic on two addresses that reside in two different image

LINK–27

LINKER Qualifiers
/SECTION_BINDING (Alpha Only)

sections, the address calculation creates a dependency on the layout of the data
image sections, as in the following example:

OWN
FOO: INITIAL (FOO - BAR)

If the linker detects the compiler adding or subtracting two intra-image
addresses, it assumes that a relative branch is being calculated and displays
the following warning:

%LINK-W-BINDFAIL, failed to bind reference at %X00030000 between sections
at locations %X00030000 and %X00010000
in module X file WORK:[TEST]X.OBJ;6

The warning message produced by the linker indicates the two addresses being
operated on and the virtual address where it was trying to write the result. To
find the source code that is creating the dependency, examine the map file to
determine what entities reside at these addresses and then search the source
code for places where they are used in calculations. In this example, module X
contained a data cell, FOO, initialized with the difference between FOO’s address
and BAR’s (as in the previous code example). In the image map, FOO resides
at %X00030000 and BAR at %X00010000. Because these addresses appear in
different image sections, the calculation introduces a dependency on the layout
of image sections. To fix this dependency, rewrite the source code to remove the
calculation or move the two data cells into the same image section by using the
COLLECT= option or the PSECT_ATTR= option.

The linker issues a message for each address calculation in data image sections
that create dependencies on the layout of image sections, as in the following
example:

%LINK-W-BINDISABLE, section binding of data has been disabled
%LINK-W-BINDFAIL, failed to bind reference at %X0000865D between sections

at locations %X00008000 and %X00000000
in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1

%LINK-W-BINDFAIL, failed to bind reference at %X00008665 between sections
at locations %X00008000 and %X00000000
in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1

%LINK-W-BINDFAIL, failed to bind reference at %X0000866D between sections
at locations %X00008000 and %X00000000
in module MKDRIVER file X56Y_RESD$:[DRIVER.OBJ]DRIVER.OLB;1

Example

$ LINK/SHARE/SECTION_BINDING MY_PROG

In this example, the linker creates the image MY_PROG.EXE and processes it so
that it can be installed as a resident image.♦

LINK–28

LINKER Qualifiers
/SELECTIVE_SEARCH

/SELECTIVE_SEARCH

When this qualifier is appended to an input file specification, the linker processes
only those symbols in the input file that have been referenced by previously
processed input files.

Format

input-file-name/SELECTIVE_SEARCH

Qualifier Values

input-file-name
The input file you want included in the link operation. The /SELECTIVE_
SEARCH qualifier works with object modules and shareable images only.
This qualifier is illegal with library files. (To process the modules in a library
selectively, you specify the /SELECTIVE qualifier when inserting the files into the
library. For more information, see the OpenVMS Command Definition, Librarian,
and Message Utilities Manual.)

Description

If you do not specify the /SELECTIVE_SEARCH qualifier with an input file, the
linker includes all the input file’s global symbols in the global symbol table of the
image it is creating by default.

Note that the /SELECTIVE_SEARCH qualifier does not affect the size of the
resultant image. The entire object module is included in the image, even if only
a subset of the symbols in its global symbol table are needed to resolve symbolic
references. Specifying the /SELECTIVE_SEARCH qualifier can improve the
performance of a link operation and conserve the linker’s use of virtual memory.

Examples

1. $ LINK/MAP MY_MAIN,MY_PROG/SELECTIVE_SEARCH

In this example, the linker processes the object module MY_PROG.OBJ
selectively. You can verify this processing by checking the list of symbols
in the image map file created in this link. The only symbols from the file
MY_PROG.OBJ that will appear in the map file are those symbols that were
referenced by MY_MAIN.OBJ.

2. $ LINK/MAP=MY_MAIN/EXE=MY_MAIN SYS$INPUT/OPT
CLUSTER=MY_MAIN_CLUS,,,MY_MAIN
MY_SHARE/SHARE/SELECTIVE_SEARCH

Ctrl/Z

In this example, the linker processes the shareable image MY_SHARE.EXE
selectively. Note that, to ensure that the linker processes references to
symbols in the shareable image before it processes the shareable image
selectively, the input file MY_MAIN.OBJ is placed in a named cluster (MY_
MAIN_CLUS), using the CLUSTER= option. If the object modules had been
specified on the LINK command line, the linker would have put it in the
default cluster. The linker processes named clusters before it processes the
default cluster.

LINK–29

LINKER Qualifiers
/SELECTIVE_SEARCH

3. $ LIBRARIAN/INSERT/SELECTIVE MY_LIB MY_PROG
$ LINK MY_PROG,MY_LIB/LIBRARY

In this example, the object module MY_PROG.OBJ is inserted into the library
MY_LIB.OLB selectively. When the library is specified in a link operation,
the linker processes the object module selectively. This link operation is
equivalent to the link operation in example 1.

LINK–30

LINKER Qualifiers
/SHAREABLE

/SHAREABLE

When specified anywhere on the LINK command line, the /SHAREABLE qualifier
directs the linker to create a shareable image. When the /SHAREABLE qualifier
is appended to a file specification in a linker options file, it identifies the input file
as a shareable image.

Format

/SHAREABLE[=file-spec]

shareable-image-file-name/SHAREABLE

Qualifier Values

file-spec
When the /SHAREABLE qualifier is used to create a shareable image, this
parameter specifies the name you want the linker to assign to the shareable
image being created. If you do not include a file specification, the linker assigns
the shareable image the name of the file to which the /SHAREABLE qualifier
is appended in the LINK command line. If the /SHAREABLE qualifier is not
appended to an input file specification, the linker assigns to the shareable image
the name of the first input file specified on the command line using the extension
.EXE.

If you designate a file name but omit the file type, the linker assigns the
shareable image the file type .EXE.

shareable-image-file-name
Specifies the name of a shareable image. Note that you can use the
/SHAREABLE qualifier to identify a shareable image only in a linker options
file. It is illegal to include a shareable image in a link operation by specifying it
on the LINK command line.

Description

The linker creates executable images by default; you must specify the
/SHAREABLE qualifier to create a shareable image. The /SHAREABLE qualifier
is incompatible with the /SYSTEM qualifier.

For more information about creating and using shareable images, see Chapter 4.

Examples

1. $ LINK/SHAREABLE MY_SHARE,UNIVERSALS/OPT

This example directs the linker to produce a shareable image named MY_
SHARE.EXE. The options file UNIVERSALS.OPT contains declarations of the
universal symbols in the shareable image.

2. $ LINK/SHAREABLE=MY_APP MY_SHARE, UNIVERSALS/OPT

This example directs the linker to produce a shareable image named MY_
APP.EXE using the object module MY_SHARE.OBJ as input.

LINK–31

LINKER Qualifiers
/SHAREABLE

3. $ TYPE MY_OPTIONS.OPT
MY_SHARE/SHAREABLE
$ LINK MY_PROG,MY_OPTIONS.OPT/OPTION

In this example, a shareable image is included in a link operation. The
shareable image is specified in the options file MY_OPTIONS.OPT, which is
specified as an input file on the LINK command line.

4. $ LINK MY_PROG,SYS$INPUT/OPTION
MY_SHARE/SHAREABLE

Ctrl/Z

This example shows how the shareable image MY_SHARE.EXE is used,
together with the object file MY_PROG.OBJ, to create an executable image
named MY_PROG.EXE.

Note how you can specify options interactively at the command line by
identifying the logical name SYS$INPUT as an options file. The linker
interprets the lines following the LINK command as the contents of an
options file, until you terminate the options by entering the Ctrl/Z key
sequence.

LINK–32

LINKER Qualifiers
/SYMBOL_TABLE

/SYMBOL_TABLE

Directs the linker to create a symbol table file.

Format

/SYMBOL_TABLE[=file-spec]

/NOSYMBOL_TABLE (default)

Qualifier Values

file-spec
Specifies the character string you want the linker to use as the name of the
symbol table file. If you do not include a file type in the character string, the
linker appends the .STB file type to the file name.

If you specify the /SYMBOL_TABLE qualifier without the file specification, the
linker creates a symbol table file with the file name of the first input file and the
default file type .STB. If you append the /SYMBOL_TABLE qualifier to one of the
input file specifications, the linker creates a symbol table file with the file name
of the file to which the qualifier is appended, with the default file type .STB.

Description

A symbol table file contains a copy of the image’s global symbol table, excluding
definitions from shareable images, in object module format.

VAX For VAX linking, a global symbol table produced by a link that creates a shareable
image contains only universal symbols. A global symbol table produced by a link
that creates an executable image contains all the global symbols in the image.

You can specify symbol table files as input files in link operations if they were
produced in an operation in which an executable or system image was created.
Symbol table files produced in a link operation in which a shareable image was
created do not always contain enough information to be used as input files in link
operations. (See Section 1.2.4 for more information.)♦

Alpha For Alpha linking, you cannot specify symbol table files as input files in a link
operation. Symbol table files of Alpha images are intended only as an aid in
debugging crash dumps using the OpenVMS Alpha System Dump Analyzer
utility (SDA). For more information, see Section 1.2.4.

Note that you can direct the linker to include global symbols in a symbol table file
associated with a shareable image by specifying the SYMBOL_TABLE=GLOBALS
option. When this option is specified, the linker includes both global symbols as
well as universal symbols in the symbol table file. The linker includes only
universal symbols in a symbol table file by default.♦

Examples

1. $ LINK/SYMBOL_TABLE/NOEXE MY_PROG

In this example, the linker produces a symbol table file named MY_
PROG.STB without producing an executable image.

LINK–33

LINKER Qualifiers
/SYMBOL_TABLE

2. $ LINK/SYMBOL_TABLE=MY_PROG_SYMB_TAB MY_PROG

In this example, the linker produces a symbol table file named MY_PROG_
SYMB_TAB.STB. An executable image file named MY_PROG.EXE is also
produced.

3. $ LINK/SHAREABLE/SYMBOL_TABLE MY_SHARE,SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(myproc=PROCEDURE,-

mydata=DATA,-
myproc2=PROCEDURE)

SYMBOL_TABLE=GLOBALS
Ctrl/Z

In this example, the linker creates a symbol table file on an Alpha system,
named MY_SHARE.STB, that contains both global symbols and universal
symbols because the linker option SYMBOL_TABLE=GLOBALS is specified
in the options file.

LINK–34

LINKER Qualifiers
/SYSEXE (Alpha Only)

/SYSEXE (Alpha Only)

Alpha For Alpha linking, directs the linker to process the system shareable
image, SYS$BASE_IMAGE.EXE, in a link operation. The linker looks for
SYS$BASE_IMAGE.EXE in the directory pointed to by the logical name
ALPHA$LOADABLE_IMAGES.

Format

/SYSEXE[=[NO]SELECTIVE]

/NOSYSEXE (default)

Qualifier Values

SELECTIVE
When you specify the SELECTIVE keyword, the linker processes the SYS$BASE_
IMAGE.EXE file selectively, including only those symbols from the global symbol
table of the SYS$BASE_IMAGE.EXE file that were referenced by input files
previously processed in the link operation.

NOSELECTIVE
When you specify the NOSELECTIVE keyword, the linker includes all the
symbols from the SYS$BASE_IMAGE.EXE global symbol table in the link
operation.

When the /SYSEXE qualifier is specified without a keyword, the linker processes
the executive image selectively.

Description

When you specify the /SYSEXE qualifier, the linker processes the SYS$BASE_
IMAGE.EXE file selectively after processing the system shareable image library,
IMAGELIB.OLB, and before processing the system object library, STARLET.OLB,
and the system service shareable image, SYS$PUBLIC_VECTORS.EXE,
which is associated with STARLET.OLB. (By default, the linker processes
IMAGELIB.OLB, STARLET.OLB, and SYS$PUBLIC_VECTORS.EXE, in that
order, to resolve symbols that remain undefined after all the files specified in
the LINK command have been processed and after any user-specified libraries
have been processed.) Note that the linker qualifiers that determine whether
the linker processes the default system libraries, /SYSSHR and /SYSLIB, do not
affect SYS$BASE_IMAGE.EXE processing.

If you want the linker to process SYS$BASE_IMAGE.EXE before processing
IMAGELIB.OLB, specify SYS$BASE_IMAGE.EXE in an options file, as you
would any other shareable image. If you specify SYS$BASE_IMAGE.EXE in your
options file, do not specify the /SYSEXE qualifier in the LINK command.

Note

The linker looks for SYS$BASE_IMAGE.EXE in the directory pointed to
by the logical name ALPHA$LOADABLE_IMAGES.

For more information about linking against the OpenVMS executive, see
Section 2.4.

LINK–35

LINKER Qualifiers
/SYSEXE (Alpha Only)

Example

$ LINK/SHARE/SYSEXE MY_SHARE, SYS$INPUT/OPT
SYMBOL_VECTOR=(MY_PROC=PROCEDURE)

Ctrl/Z

In this example, the linker processes the OpenVMS system executive file,
SYS$BASE_IMAGE.EXE, to create a shareable image named MY_SHARE.EXE.♦

LINK–36

LINKER Qualifiers
/SYSLIB

/SYSLIB

Directs the linker to process the default system shareable image library,
IMAGELIB.OLB, and the default system object module library, STARLET.OLB,
to resolve symbolic references that remain undefined after all specified input files
and any default user libraries have been processed.

Format

/SYSLIB (default)

/NOSYSLIB

Qualifier Values

None.

Description

The linker first searches IMAGELIB.OLB, the default system shareable image
library, then STARLET.OLB, the default system object library.

Alpha For Alpha linking, the linker also searches the shareable image SYS$PUBLIC_
VECTORS.EXE to resolve references to system services. (For more information
about processing SYS$PUBLIC_VECTORS.EXE, see the description of the
/SYSEXE qualifier.) The linker looks for these default libraries in the directory
pointed to by the logical name ALPHA$LIBRARY.♦

VAX For VAX linking, the linker looks for these default libraries in the directory
pointed to by the logical name SYS$LIBRARY.♦

If you specify the /NOSYSLIB qualifier and the /SYSSHR qualifier, the /SYSSHR
qualifier is ignored.

If you want the linker to search IMAGELIB.OLB but not STARLET.OLB, specify
the /NOSYSLIB qualifier (to inhibit the default search of both default system
libraries) and then specify IMAGELIB.OLB in the LINK command line or in an
options file.

Example

$ LINK/NOSYSLIB MY_PROG

In this example, the linker creates the executable image MY_PROG.EXE without
referencing the default system libraries IMAGELIB.OLB or STARLET.OLB.

LINK–37

LINKER Qualifiers
/SYSSHR

/SYSSHR

Directs the linker to process the default system shareable image library
(IMAGELIB.OLB) to resolve symbolic references that remain undefined after
all specified input files and any default user libraries have been processed.

Format

/SYSSHR (default)

/NOSYSSHR

Qualifier Values

None.

Description

To specify that the linker should skip processing the default system shareable
image library, IMAGELIB.OLB, but still process the default system object library,
STARLET.OLB, specify the /NOSYSSHR qualifier.

See the description of the /SYSLIB qualifier for information about controlling how
the linker processes the default system libraries.

Example

$ LINK/NOSYSSHR MY_PROG

In this example, the linker processes the default system object library
(STARLET.OLB), but does not process the default system shareable image
library (IMAGELIB.OLB), to resolve symbolic references while producing an
executable image named MY_PROG.EXE.

LINK–38

LINKER Qualifiers
/SYSTEM

/SYSTEM

Directs the linker to create a system image and optionally allows you to specify
the address at which the image should be loaded into memory. A system image
cannot be activated with the RUN command; it must be bootstrapped or otherwise
loaded into memory.

Format

/SYSTEM[=base-address]

Qualifier Values

base-address
Specifies the address at which the image is to be loaded in virtual memory. You
can specify a base address in hexadecimal (%X), octal (%O), or decimal (%D)
format. The default base address is %X80000000.

Note that if you specify the /HEADER qualifier, the linker adjusts the base
address to the next highest page boundary if it is not already a page boundary.
The next highest page boundary is the smallest number that is greater than
the value specified in the base-address parameter and that is divisible by the
default page size (which is architecture specific) or the page size specified using
the /BPAGE qualifier.

Description

System images are intended for special purposes, such as standalone operating
system diagnostics. When the linker creates a system image, it orders the
program sections in alphanumeric order and ignores all program section
attributes.

The linker creates the system image with the file name of the first input file and
the file type .EXE. If you want a different output file specification, specify that
file specification with the /EXECUTABLE qualifier.

If you specify the /SYSTEM qualifier, you cannot specify the /SHAREABLE
qualifier or the /DEBUG qualifier.

Example

$ LINK/SYSTEM MY_SYS

This example directs the linker to produce a system image named MY_SYS.EXE
based at address %X80000000.

LINK–39

LINKER Qualifiers
/TRACEBACK

/TRACEBACK

Directs the linker to include traceback information in the image file. If you
specify the /DEBUG qualifier, the linker includes traceback information by
default, overriding the /NOTRACEBACK qualifier if it is specified.

Format

/TRACEBACK (default)

/NOTRACEBACK

Qualifier Values

None.

Description

Traceback is a facility that displays information from the call stack when a
program error occurs. The output shows which modules were called before the
error occurred.

Note that the traceback handler can display traceback information only from the
main executable image, not from any shareable images.

Example

$ LINK/NOTRACEBACK MY_PROG

In this example, the linker does not include traceback information in the
executable image named MY_PROG.EXE.

LINK–40

LINKER Qualifiers
/USERLIBRARY

/USERLIBRARY

Directs the linker to process one or more default user libraries to resolve
symbolic references that remain undefined after all specified input files have
been processed.

Format

/USERLIBRARY[=(table[,...])]

/NOUSERLIBRARY

/USERLIBRARY=ALL (default)

Qualifier Values

table
Specifies the logical name tables that the linker searches for default user
libraries. The following keywords are the only acceptable parameter values:

Keyword Description

ALL Directs the linker to search the process, group, and system logical
name tables for default user library definitions. This is the
default.

GROUP Directs the linker to search the group logical name table for
default user library definitions.

NONE Directs the linker not to search any logical name table;
the /USERLIBRARY=NONE qualifier is equivalent to the
/NOUSERLIBRARY qualifier.

PROCESS Directs the linker to search the process logical name table for
default user library definitions.

SYSTEM Directs the linker to search the system logical name table for
default user library definitions.

Description

A default user library may be an object module library or a shareable image
library.

To define a default user library, you must use the DCL command DEFINE or
ASSIGN to equate the logical name LNK$LIBRARY to the file specification of the
library, because the linker looks for this logical name to determine if a default
user library exists.

Further, to control access to the library, you can define LNK$LIBRARY in the
process, group, or system logical name tables by using the /PROCESS qualifier,
the /GROUP qualifier, and the /SYSTEM qualifier, respectively, in the DEFINE
command.

For example, if you want the library MY_LIB to be your default user library, the
library GROUP_LIB to be the default user library of everyone else in your group,
and the library ANY_LIB to be the default user library of everyone else on the
system, you would issue the following commands:

LINK–41

LINKER Qualifiers
/USERLIBRARY

$ DEFINE LNK$LIBRARY DB2:[MARK]MY_LIB
$ DEFINE/GROUP LNK$LIBRARY DB2:[PROJECT]GROUP_LIB
$ DEFINE/SYSTEM LNK$LIBRARY SYS$LIBRARY:ANY_LIB

Note that the GRPNAM and SYSNAM privileges are required to use the /GROUP
qualifier and the /SYSTEM qualifier, respectively.

If you are defining more than one library in a single logical name table, use the
logical names LNK$LIBRARY for the first library, LNK$LIBRARY_1 for the
second library, LNK$LIBRARY_2 for the third, and so on, up to the last possible
logical name of LNK$LIBRARY_999. However, you must specify these logical
names in numeric order without skipping any, because when the linker does not
find the next sequential logical name, it stops searching in that logical name
table.

The search of default user libraries proceeds as follows:

1. If you specify the /USERLIBRARY=PROCESS qualifier or the
/USERLIBRARY qualifier, the linker searches the process logical name
table for the name LNK$LIBRARY. If this entry exists, the linker
translates the logical name and searches the specified library for unresolved
strong references. If you exclude PROCESS from the table list in the
/USERLIBRARY qualifier or if no entry exists for LNK$LIBRARY, the linker
proceeds to step 4 (searching the group logical name table).

2. If any unresolved strong references remain, the linker searches the process
logical name table for the name LNK$LIBRARY_1 and follows the logic of
step 1. If no entry exists for LNK$LIBRARY_1, the linker proceeds to step 4
(searching the group logical name table).

3. If any unresolved strong references remain, the linker follows the logic of step
1 for LNK$LIBRARY_2, LNK$LIBRARY_3, and so on, until it finds no match
in the process logical name table, at which point it proceeds to step 4.

4. If you specify the /USERLIBRARY=GROUP qualifier or the /USERLIBRARY
qualifier, the linker follows the logic in steps 1 through 3 using the group
logical name table. If you exclude GROUP from the table list in the
/USERLIBRARY qualifier or when any logical name translation fails, the
linker proceeds to step 5.

5. If you specify the /USERLIBRARY=SYSTEM qualifier or the /USERLIBRARY
qualifier, the linker follows the logic in steps 1 through 3 using the system
logical name table. If you exclude SYSTEM from the table list in the
/USERLIBRARY qualifier or when any logical name translation fails, the
search of default user libraries is complete. By default, the linker proceeds to
search the default system libraries if any unresolved references remain.

Search lists are not recognized in LNK$LIBRARY* logical names. Instead, use
LNK$LIBRARY_nnn with a single library specification.

Example

$ LINK/USERLIBRARY=(GROUP) MY_PROG

In this example, the linker searches only the group logical name table to translate
the logical names LNK$LIBRARY, LNK$LIBRARY_1, LNK$LIBRARY_2, and so
on.

LINK–42

LINKER Qualifiers
/VAX

/VAX

Directs the linker to produce an OpenVMS VAX image. The default action, when
neither /ALPHA nor /VAX is specified, is to create an OpenVMS VAX image on an
OpenVMS VAX system and to create an OpenVMS Alpha image on an OpenVMS
Alpha system.

Format

/VAX

Qualifier Values

None.

Description

This qualifier is used to instruct the linker to accept OpenVMS VAX object files
and library files to produce an OpenVMS VAX image.

You must inform the linker where OpenVMS VAX system libraries and shareable
images are located. On an OpenVMS VAX system, you use the logical name
SYS$LIBRARY to do this. On an OpenVMS Alpha system, you use the logical
name VAX$LIBRARY to do this. Therefore, if the link is to occur on an OpenVMS
Alpha system, you must define the logical VAX$LIBRARY so that it translates to
the location of an OpenVMS VAX system disk residing on the system where the
VAX linking is to occur.

For more information on cross-architecture linking, see Section 1.6.

Example

$ DEFINE VAX$LIBRARY DKB200:[VMS$COMMON.SYSLIB]
$ LINK/VAX VAX.OBJ

This example, performed on an OpenVMS Alpha system, shows the definition
of the logical name VAX$LIBRARY to point to an OpenVMS VAX system disk
mounted on device DKB200 in the appropriate area. The qualifier tells the linker
to expect the object file, VAX.OBJ, to be an OpenVMS VAX object file and to link
it using the OpenVMS VAX libraries and images on DKB200, if necessary.

LINK–43

LINKER Options

Option Descriptions

This section describes the linker options that you may specify in a linker options
file. For information about creating and using linker options files, see Chapter 1.

You can express numeric parameters in decimal (%D), hexadecimal (%X), or octal
(%O) radix by prefixing the number with the corresponding radix operator. If no
radix operator is specified, the linker assumes decimal radix.

The default and maximum numeric values in this manual are expressed in
decimal numbers, as are the values in any linker messages relating to these
options.

Options Defaults

BASE= See description. (VAX linking only)
CASE_SENSITIVE=YES/NO NO
CLUSTER= See description.
COLLECT= None
GSMATCH= See description.
IDENTIFICATION= See description.
IOSEGMENT= 0,[NO]P0BUFS
ISD_MAX= Approximately 96
NAME= Name of the output image file
PROTECT=YES/NO NO
PSECT_ATTR= None
RMS_RELATED_CONTEXT= YES
STACK= 20 pagelets
SYMBOL= None
SYMBOL_TABLE=GLOBALS/UNIVERSALS SYMBOL_TABLE=UNIVERSALS (Alpha linking only)
SYMBOL_VECTOR= None (Alpha linking only)
UNIVERSAL= None (VAX linking only)

LINK–44

LINKER Options
BASE= (VAX Only)

BASE= (VAX Only)

VAX For VAX linking, specifies the base address (starting address) that you want the
linker to assign to the image.

Format

BASE=address

Option Values

address
The address at which you want the image based. You can express the number in
decimal (%D), octal (%O), or hexadecimal (%X) notation. If the address specified
is not divisible by 512, the linker automatically adjusts it upward to the next
multiple of 512, that is, to the next highest page boundary. Do not attempt
to base an image linked with a larger page size (specified using the /BPAGE
qualifier).

The linker bases shareable images at address 0, by default, and bases system
images at address %X80000000, by default.

Description

The BASE= option is illegal in a link operation that produces a system image. To
specify a base address for a system image, use the /SYSTEM qualifier.

The BASE= option is not supported for Alpha linking. Note, however, that you
can set the base address for an executable image by specifying the address as a
parameter to the CLUSTER= option. You cannot create a based shareable Alpha
image.

In general, the use of the BASE= option to create based images is not
recommended. The memory management component of the OpenVMS operating
system cannot relocate a based shareable image in the virtual address space,
which could result in possible fragmentation of the virtual address space.

The linker processes the BASE= option by assigning the specified base address to
the default cluster. If the linker creates additional clusters before it searches the
default libraries, which it does if a CLUSTER= or COLLECT= option is specified
or if a shareable image is explicitly specified, the following effects may occur:

• If the additional clusters are based (that is, if the CLUSTER= option specifies
a base address or if the shareable image is a based shareable image), the
linker must check that memory requirements for each based cluster do not
conflict. Memory requirements conflict when more than one cluster requires
the same section of address space. If they do conflict, the linker issues an
error message and aborts the linking operation. If they do not conflict, the
linker allocates each cluster the memory space it requests.

• If the additional clusters are not based, there will be no conflicting memory
requirements. However, the linker will place each additional cluster at an
address higher than that of the default cluster (because the base address
of the default cluster must be the base address of the entire image).
Consequently, the location of clusters (relative to each other) in the image
will differ from what you would expect based on the position of each cluster
in the cluster list. (Remember that the additional clusters precede the default

LINK–45

LINKER Options
BASE= (VAX Only)

cluster on the cluster list and that the linker typically allocates memory for
clusters beginning at the first cluster on the cluster list, then the second,
and so on.) For more information about the linker’s clustering algorithm,
see Chapter 2. For more information about the linker’s memory allocation
algorithm, see Chapter 3.♦

LINK–46

LINKER Options
CASE_SENSITIVE=

CASE_SENSITIVE=

Directs the linker to preserve the mixture of uppercase and lowercase characters
used in character string arguments to linker options.

Format

CASE_SENSITIVE=YES/NO

Option Values

YES
Enables case sensitivity. You can use any mixture of uppercase and lowercase
characters when specifying the keyword YES.

NO
Disables case sensitivity. Note that you must use only uppercase characters when
specifying the keyword NO because case sensitivity is enabled and the linker does
not accept mixed case in keywords.

Description

Once case sensitivity has been enabled, the linker preserves the case of all
succeeding character string arguments to linker options until you explicitly
disable it. When the CASE_SENSITIVE= option is disabled (which is the
default), the linker changes all the characters in a character string to uppercase
before processing the string.

Note that the CASE_SENSITIVE= option only affects how the linker processes
arguments to linker options. When it searches object files and shareable image
files for symbols that need to be resolved, the linker preserves the case used in
the symbol names (created by the language compilers). Also, the names of the
linker options (all the characters preceding the equal sign, as in the NAME=
option) are unaffected by the case-sensitivity option. The linker changes all the
characters in option names to uppercase characters before processing the option,
even if case sensitivity has been enabled.

Carefully delimit the section of a linker options file in which you use case
sensitivity to avoid unintentional side effects. For example, if you include options
in the case sensitive region that accept keyword arguments, such as YES, NO,
EXE, and SHR, make sure the keywords are specified using uppercase characters.
Because these keywords appear after the equal sign, they are affected by case
sensitivity. Similarly, character string arguments used to name a program
section, cluster, or image are also affected by case sensitivity.

Example

$ link/share/map/full test, sys$input:/opt
case_sensitive=YES
name=ImageName
symbol=OneSymbol,1
case_sensitive=NO
universal=myroutine

Ctrl/Z

In the example, the CASE_SENSITIVE= option with the value YES enables case
sensitivity in the linker options file. Because case sensitivity has been enabled,

LINK–47

LINKER Options
CASE_SENSITIVE=

the linker preserves the mix of uppercase and lowercase characters used in
character string arguments to all succeeding linker options. In the example, this
includes the character string ImageName passed to the NAME= option and the
character string OneSymbol passed to the SYMBOL= option.

Specifying the CASE_SENSITIVE= option with the value NO turns off case
sensitivity. Note that you must use uppercase characters when specifying the
keyword NO. Because case sensitivity has been disabled, the linker changes all
the characters in the universal symbol myroutine to uppercase. The following
excerpt from the map file produced by this link illustrates how these identifiers
were stored by the linker:

ImageName
OneSymbol
MYROUTINE

LINK–48

LINKER Options
CLUSTER=

CLUSTER=

Directs the linker to create a cluster. (The linker groups input files into clusters
before processing their contents.)

Format

CLUSTER=cluster-name,[base-address],[pfc],[file-spec,...]

Option Values

cluster-name
The name you want assigned to the cluster.

base-address
The base virtual address for the cluster. If you omit the base-address value, you
must still enter the comma.

Alpha For Alpha linking, it is illegal to specify a base address for a cluster when
creating a shareable image.♦

pfc (page fault cluster)
The number of pagelets read into memory by the operating system when the
initial page fault occurs for a page in the cluster. If you do not specify the pfc
parameter, the operating system uses the default value established by the system
parameter PFCDEFAULT. If you omit the page fault cluster value, you must still
enter the comma.

file-spec,...
The file you want the linker to place in the cluster. Note that you should not
specify in the LINK command itself any file that you specify with the CLUSTER=
option (unless you want to include two copies of the file in the final image).

Description

You can use the CLUSTER= option in the following ways:

• To control the order in which the linker processes input files

• To cause specified modules to be placed close together in virtual memory

If you do not specify the CLUSTER= option, the linker always creates at least
one cluster, called the default cluster. For more information about how the linker
creates clusters, see Chapter 2.

You can also create a cluster by specifying the COLLECT= option

Example

$ LINK MY_PROG,SYS$INPUT/OPT
CLUSTER=MY_CLUSTER,,,PROG2,PROG3

In this example, the linker creates a cluster, named MY_CLUSTER, that contains
the input files named PROG2.OBJ and PROG3.OBJ.

LINK–49

LINKER Options
COLLECT=

COLLECT=

Directs the linker to place the specified program section (or program sections) into
the specified cluster.

Format

COLLECT=cluster-name [/ATTRIBUTES=
�

RESIDENT
INITIALIZATION_CODE

�
], psect-name[,...]

Option Values

cluster-name
Name of the cluster.

psect-name[,...]
Name of the program sections (psects) you want placed in the cluster.

Qualifier

/ATTRIBUTES

Alpha For Alpha linking, directs the linker to mark the cluster ’cluster-name’ with the
indicated qualifier keyword value. This qualifier is used to build Alpha drivers.
See OpenVMS Alpha Device Support: Developer’s Guide for guidelines for using
this qualifier.

Qualifier Values

RESIDENT
Marks the cluster ’cluster-name’ as RESIDENT so that the image section
created from that cluster has the EISD$V_RESIDENT flag set. This will
cause the loader to map the image section into non-paged memory.

INITIALIZATION_CODE
Marks the cluster ’cluster-name’ as INITIALIZATION_CODE so that the
image section created from that cluster has the EISD$V_INITALCOD
flag set. The initialization code will be executed by the loader. This
keyword is specifically intended for use with program sections from modules
SYS$DOINIT and SYS$DRIVER_INIT in STARLET.OLB.♦

Description

If the specified cluster does not already exist, the linker creates the cluster when
it processes the COLLECT= option.

The linker sets the global (GBL) attribute for all the program sections specified,
if they do not already have this attribute set. Program sections from a shareable
image referenced in the options file with the /SHARE qualifier cannot be specified
in the COLLECT= option.

LINK–50

LINKER Options
COLLECT=

Example

$ LINK MY_PROG,SYS$INPUT/OPT
COLLECT=MY_CLUSTER,PSECT2,PSECT3

Ctrl/Z

In the example, the linker creates the cluster named MY_CLUSTER, if it does
not already exist, and puts the program sections named PSECT2 and PSECT3 in
the cluster.

LINK–51

LINKER Options
DZRO_MIN=

DZRO_MIN=

Specifies the minimum number of contiguous, uninitialized pages that the
linker must find in an image section before it can extract the pages from the
image section and place them in a newly created demand-zero image section.
By creating demand-zero image sections (image sections that do not contain
initialized data), the linker can reduce the size of images.

Format

DZRO_MIN=number-of-pages

Option Values

number-of-pages
Specifies the minimum number of contiguous pages.

VAX For VAX linking, the linker, by default, uses a minimum of 5 pages. Each VAX
page equals 512 bytes.♦

Alpha For Alpha linking, the linker, by default, uses a minimum of 1 page. The size of
an Alpha page is CPU-specific. The initial set of Alpha systems uses an 8 KB
page.♦

The number of pages must be equal to or greater than the value specified in the
parameter.

Description

A demand-zero image section contains uninitialized, writable pages, which do
not occupy physical memory in the image file on disk, but which, when accessed
during program execution, are allocated memory and initialized with binary zeros
by the operating system. (For more information about demand-zero compression,
see Chapter 3.)

When specifying a value for this option, be aware that a low value (less than the
default value) increases the likelihood that the linker will encounter the required
number of contiguous, uninitialized pages and thus may increase the number of
demand-zero image sections the linker creates for the image (depending on the
contents of the object modules). While this can reduce the size of the image file
on disk, it can also decrease the image’s paging performance during execution.
Conversely, a value higher than the default value decreases the likelihood that
the linker will encounter the required number of contiguous, uninitialized pages;
decreases the number of demand-zero image sections the linker creates; and may
increase the size of the image file on disk but provide better paging performance
during execution.

The linker stops creating demand-zero image sections when the total number of
image sections in the image reaches the value specified by the ISD_MAX= option
or the default value. (For more information, see the description of the ISD_MAX=
option.)

The DZRO_MIN= option is illegal in a link operation that produces a system
image.

LINK–52

LINKER Options
DZRO_MIN=

Example

$ LINK MY_PROG,SYS$INPUT/OPT
DZRO_MIN=15

Ctrl/Z

In this example, the value of the DZRO_MIN= is set to 15.

LINK–53

LINKER Options
GSMATCH=

GSMATCH=

Sets match control parameters for a shareable image and specifies the match
algorithm. This option allows you to specify whether executable images that
link with a shareable image must be relinked each time the shareable image is
updated and relinked.

Format

GSMATCH=keyword,major-id,minor-id

Option Values

keyword
Identifies the match algorithm used by the image activator. Specify one of the
following keywords:

Keyword Meaning

EQUAL Directs the image activator to allow the executable image to
map to the shareable image when the major ID and minor ID
in the image section descriptor (ISD) of the executable image
are equal to the IDs in the shareable image file.

LEQUAL Directs the image activator to allow the executable image to
map to the shareable image when the major ID is equal to,
and the minor ID in the ISD of the executable image is less
than or equal to the minor ID in the shareable image file.

ALWAYS Directs the image activator to allow the executable image
to map to the shareable image, regardless of the values of
the major ID and minor ID, providing that the image section
names are the same. Note that you must still specify values
for the major ID and minor ID parameters to satisfy the
requirements of the option syntax.

major-id
Specifies the major identification number. The linker uses bits 32 through 47 of
the image creation time as the default value of the major ID.

minor-id
Specifies the minor identification number. The linker uses bits 16 through 31 of
the image creation time as the default value of the minor ID.

Description

The GSMATCH= option causes a major identification parameter (major-id), a
minor identification parameter (minor-id), and a match control keyword to be
stored in the image header of the shareable image.

When an executable image is linked with a shareable image, the image header of
the executable image contains an image section descriptor (ISD) for the shareable
image (as well as an ISD for each image section in the image). The ISD for the
shareable image contains a major ID, minor ID, and match control keyword,
which the linker copies from the shareable image at link time.

LINK–54

LINKER Options
GSMATCH=

When the executable image is run and the image activator begins processing the
ISDs in the image header of the executable image, the image activator encounters
the ISD for the shareable image. At this time, the image activator compares the
image section name in the ISD to the image section name in the image header of
the current shareable image file.

If the image section names do not match, the image activator does not allow the
executable image to map to the shareable image, regardless of the GSMATCH
parameters.

If the image section names match, the image activator compares the major
ID parameters. If they do not match, the image activator does not allow the
executable image to map to the shareable image unless GSMATCH=ALWAYS has
been specified.

If the major ID parameters match, the image activator compares the minor ID
parameters. If the relation between the minor ID parameters does not satisfy
the relation specified by the match control keyword, the image activator does
not allow the executable image to map to the shareable image. Then the image
activator issues an error message stating that the executable image must be
relinked.

The match control keyword must be the same in both the shareable and
executable image files. If it is different, then the more restrictive match is used.
For example, if a shareable image is linked with ALWAYS, and an executable
image contains EQUAL (from an earlier version of the shareable image), then the
test at activation time will be EQUAL.

Thus, to create an upwardly compatible shareable image, increment only the
value of the minor ID and leave unchanged the value of the major ID. If the
match control keyword is LEQUAL, the executable image that links against it
will run. (If the major ID is changed, executable images can never map to the
shareable image unless ALWAYS is specified.) By using this convention, you can
ensure that executable images that linked with an older version of the shareable
image can map to the newer version.

Examples

1. $ LINK/SHARE MY_SHARE,SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1000

Ctrl/Z

In this example, the GSMATCH= option sets the major and minor
identification numbers for this shareable image.

2. $ LINK/SHARE MY_SHARE,SYS$INPUT/OPT
GSMATCH=LEQUAL,1,1001

Ctrl/Z

In this example, the shareable image created in the previous example is
relinked and the minor identification number is incremented. Note that
executable images that link with the new version cannot map to the old
version, whereas executable images that link with the old version can map to
the new version.

LINK–55

LINKER Options
GSMATCH=

3. $ LINK/SHARE MY_SHARE,SYS$INPUT/OPT
GSMATCH=ALWAYS,0,0

Ctrl/Z

By specifying the keyword ALWAYS, an executable image can run with any
version of the shareable image (newer or older).

LINK–56

LINKER Options
IDENTIFICATION=

IDENTIFICATION=

Sets the image-id field in the image header.

Format

IDENTIFICATION=id-name

Option Values

id-name
The maximum length of the identification character string is 15 characters. If the
string contains characters other than uppercase and lowercase A through Z, the
numerals 0 through 9, the dollar sign, and the underscore, enclose it in quotation
marks.

Description

The linker uses the value of the ID of the first object module processed as the
default image ID when producing any kind of image with an image header.
Thereafter, as long as the image-id field is not empty, it is not changed unless
the linker encounters an object module that has a transfer address on the end-of-
module (EOM) object record. (A transfer address is the main entry point for the
image.) When it encounters an object module that contains a transfer address,
the linker uses the ID from that object module as the value of the image ID.

Because shareable images normally do not have a main entry point, the image ID
usually remains as the ID of the first object module processed.

Example

$ LINK MY_PROG,SYS$INPUT/OPT
IDENTIFICATION=MY_15_CHAR_NAME

Ctrl/Z

LINK–57

LINKER Options
IOSEGMENT=

IOSEGMENT=

Specifies the amount of space to be allocated for the image I/O segment, which
holds the buffers and OpenVMS RMS control information for all files used by the
image.

Format

IOSEGMENT=number-of-pages[,[NO]P0BUFS]

Option Values

number-of-pages
Specifies the number of pagelets (512-byte units) to be allocated for the image I/O
segment. By default, the operating system uses the value set by the IMGIOCNT
system parameter to determine the size of the image I/O space.

[NO]P0BUFS
By default, the operating system allocates the I/O segment in the P1 region of
the process space and, if additional space is needed, at the end of the P0 region.
If you specify NOP0BUFS, you deny OpenVMS RMS additional pages in the P0
region.

Description

Specifying the value of number-of-pages to be greater than the value of
IMGIOCNT ensures the contiguity of P1 address space, providing that OpenVMS
RMS does not require more pages than the value specified. If OpenVMS RMS
requires more pages than the value specified, the pages in the P0 region would be
used (by default).

Note that if you specify NOP0BUFS and if OpenVMS RMS requires more pages
than have been allocated for it, OpenVMS RMS issues an error message.

Example

$ LINK MY_PROG,SYS$INPUT/OPT
IOSEGMENT=100,P0BUFS

Ctrl/Z

LINK–58

LINKER Options
ISD_MAX=

ISD_MAX=

Specifies the maximum number of image sections allowed in the image.

Format

ISD_MAX=number-of-image-sections

Option Values

number-of-image-sections
The maximum number of image sections that may be created. You can specify
the value in hexadecimal (%X), decimal (%D), or octal (%O) radix. The default is
decimal radix.

Description

This option is used to control the linker’s creation of demand-zero image sections
by imposing an upward limit on the number of total image sections. Thus, if the
linker is creating demand-zero image sections, and if the total number of image
sections reaches the ISD_MAX= value, demand-zero image section creation ceases
at that point. (For more information about how the linker creates demand-zero
image sections, see Section 3.4.3.)

The ISD_MAX= option may be specified only in a link operation that produces
an executable image. The ISD_MAX= option is illegal in a link operation that
produces either a shareable or a system image.

The default value for ISD_MAX= is approximately 96. Note that any value you
specify is also an approximation. The linker determines an exact ISD_MAX=
value based on characteristics of the image, including the different combinations
of section attributes. The exact value, however, will be equal to or slightly greater
than what you specify; it will never be less.

Example

$ LINK MY_PROG,SYS$INPUT/OPT
ISD_MAX=126

Ctrl/Z

LINK–59

LINKER Options
NAME=

NAME=

Sets the image-name field in the image header.

Format

NAME=image-name

Option Values

image-name
A character string up to 39 characters in length. If the name contains characters
other than uppercase and lowercase A through Z, the numerals 0 through 9, the
dollar sign, and the underscore, enclose it in quotation marks.

Description

If the NAME= option is not specified, the string specified with /SHARE or /EXE
is used for the image-name field. If no string was specified to /SHARE or /EXE,
the name of the first module processed is used.

The NAME= option does not affect the name of the image file.

The image-name field is not used by the linker or librarian.

Alpha For Alpha linking, the NAME= option also determines the string used in the
shareable image list if the image contains a SYMBOL_VECTOR clause with an
ALIAS keyword. The use of aliases causes the linker to set up an image with
references to itself, including fixups and an entry for itself in the shareable image
list.

When the file name is different from the image-name field, the image activator
uses the image-name field to identify self-references in the shareable image list.
The file name and the image-name field can differ if the image file is renamed, or
if they are forced to differ by the NAME= option.♦

Example

$ LINK MY_PROG,SYS$INPUT/OPT
NAME=MY_IMAGE

Ctrl/Z

LINK–60

LINKER Options
PROTECT=

PROTECT=

Specifies that the image sections in one or more clusters in a shareable image
should be protected from user-mode or supervisor-mode write access.

Format

PROTECT=YES/NO

Option Values

YES
Enables protection of all the clusters defined in subsequent lines in the options
file by the CLUSTER= option or the COLLECT= option, up to a line containing
another PROTECT= option.

NO
Disables protection for all clusters specified on subsequent lines of a linker
options file by the CLUSTER= option or the COLLECT= option, up to the line
containing another PROTECT=YES option. Protection is disabled by default.

Description

This option is commonly used to protect clusters that contain privileged code or
data in shareable images that implement user-written system services (called
privileged shareable images). For more information about creating user-written
system services, see the OpenVMS Programming Concepts Manual.

Note that the protection applies to the image sections the linker creates from
the cluster, not the cluster itself. A cluster is an internal construct the linker
uses to organize how it processes input files. The linker communicates the actual
memory requirements of an image, including its protection, to the image activator
as image section specifications.

If the entire shareable image needs to be protected, specify the /PROTECT
qualifier.

Example

$ LINK MY_PROG,SYS$INPUT/OPT
PROTECT=YES
CLUSTER=A,,,MOD1,MOD2
UNIVERSAL=ENTRY
PROTECT=NO
CLUSTER=B,,,MOD3
PROTECT=YES
COLLECT=B,PSECTX,PSECTY,PSECTZ

Ctrl/Z

In this example, the modules MOD1 and MOD2 in cluster A are protected; MOD3
in cluster B is not protected; and program sections PSECTX, PSECTY, and
PSECTZ in cluster B are protected. Note that other linker options, such as the
UNIVERSAL= option in the example, are not affected.

LINK–61

LINKER Options
PSECT_ATTR=

PSECT_ATTR=

Specifies the attributes of a program section.

Format

PSECT_ATTR=psect-name,attribute-keyword[,...]

Option Values

psect-name
Specifies the name of the program section whose attributes you want to set. The
name may be a character string up to 31 characters in length.

attribute-keyword[,...]
One or more attributes, identified by a keyword, separated by commas.
Section 3.2 lists the attributes with the keywords you use to specify them.

Description

Attributes not specified in a PSECT_ATTR= option remain unchanged.

If you specify a program section alignment that is greater than the target page
size, the linker issues a warning and adjusts the alignment to be equal to the
target page size.

Example

$ LINK MY_PROG,SYS$INPUT/OPT
PSECT_ATTR=PSECT_1,NOWRT

Ctrl/Z

In this example, the linker protects the program section PSECT_1 from write
access and leaves all other attributes of PSECT_1 unchanged.

LINK–62

LINKER Options
RMS_RELATED_CONTEXT=

RMS_RELATED_CONTEXT=

Enables or disables RMS related name context processing. This is also known
as file specification "stickiness." The default is to have RMS related name
context processing enabled. This default applies at the start of each options
file regardless of the setting in a previous options file. The related name context
itself (the collection of data structures RMS maintains to supply the most recently
specified fields) does not carry over from one linker options file to the next. That
is, previously specified fields in the previous options file are not used to fill in
absent fields for file specifications in the current options file.

Format

RMS_RELATED_CONTEXT=YES/NO

Option Values

YES
Enables RMS related name context processing starting with the context
previously saved by a RMS_RELATED_CONTEXT=NO command. If RMS
related name context processing is already enabled, this option has no effect.

NO
Disables RMS related name context processing. When RMS related name context
processing is disabled, the current context is saved for a possible future RMS_
RELATED_CONTEXT=YES option. If RMS related name context processing is
already disabled, specifying RMS_RELATED_CONTEXT=NO has no effect.

Description

When RMS related name processing is enabled (by default at the beginning
of each options file), file specifications that do not have all fields of the file
specification present will have the missing fields replaced with the corresponding
fields most recently specified in earlier file specifications. When disabled, fields in
the file specification that are absent are not replaced with corresponding fields of
previous file specifications.

When RMS related name processing is disabled, the current related name context
is saved. When RMS related name processing is enabled via this option, the
saved related name context is restored.

LINK–63

LINKER Options
STACK=

STACK=

Specifies the size of the user-mode stack.

Format

STACK=number-of-pages

Option Values

number-of-pages
Specifies the size of the stack in pagelets (512-byte units).

Description

If you do not specify the STACK= option, the linker allocates 20 pagelets (512-
byte units) for the user-mode stack. Note that additional pages for the user-mode
stack are automatically allocated, if needed, during program execution.

The STACK= option may be specified only in a link operation that produces an
executable image.

Note that the STACK= option is primarily used to set the stack size for images
that are linked with the /P0IMAGE qualifier, where the stack could grow into the
mapped image and corrupt it.

LINK–64

LINKER Options
SYMBOL=

SYMBOL=

Directs the linker to define an absolute global symbol with the specified name and
assign it the specified value.

Format

SYMBOL=symbol-name,symbol-value

Option Values

symbol-name
A character string up to 31 characters in length.

symbol-value
The value you want to assign to the symbol. An absolute global symbol has a
fixed numeric value and is therefore not relocatable. Thus, the value must be a
number.

Description

The definition of a symbol specified by the SYMBOL= option constitutes the first
definition of that symbol, and it overrides subsequent definitions of the symbol in
input object modules. In particular:

• If the symbol is defined as relocatable in an input object module, the linker
ignores this definition, uses the definition specified by the SYMBOL= option,
and issues a warning message.

• If the symbol is defined as absolute in an input object module, the linker
ignores this definition and uses the definition specified by the SYMBOL=
option; however, it does not issue a warning message.

For more information about symbol resolution, see Chapter 2.

Note

The SYMBOL= option cannot be used with the UNIVERSAL= option or
the SYMBOL_VECTOR= option.

Example

$ LINK MY_PROG,SYS$INPUT/OPT
SYMBOL=MY_SYMB,15

Ctrl/Z

LINK–65

LINKER Options
SYMBOL_TABLE= (Alpha Only)

SYMBOL_TABLE= (Alpha Only)

Alpha For Alpha linking, specifies whether the linker should include global symbols in
a symbol table file produced in a link operation in which a shareable image is
created. By default, the linker includes only universal symbols in a symbol table
file associated with a shareable image.

Format

SYMBOL_TABLE=GLOBALS/UNIVERSALS

Option Values

GLOBALS
Specifies that the linker should include global symbols and universal symbols in
the symbol table file associated with the shareable image.

UNIVERSALS
Specifies that the linker should include only universal symbols in the symbol
table file associated with the shareable image.

Description

This option may be specified only in the creation of a shareable image. Note
that the symbol table file affected by this option cannot be used as input in a
subsequent link operation but is intended to be used with the OpenVMS Alpha
System Dump Analyzer utility (SDA) as an aid to debugging.

Example

$ LINK/SHARE/SYMBOL_TABLE MY_SHARE,SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(proc1=PROCEDURE,-

proc2=PROCEDURE,-
proc4=PROCEDURE)

SYMBOL_TABLE=GLOBALS
Ctrl/Z

In the example, the symbols proc1, proc2, and proc4 are declared as universal
symbols. Normally, these symbols would be the only symbols to appear in a
symbol table file associated with this shareable image. (The symbol table file
duplicates the global symbol table of the shareable image.) However, because
the SYMBOL_TABLE=GLOBALS option is specified, the linker also puts all the
global symbols in the shareable image into the symbol table file. You must specify
the /SYMBOL_TABLE qualifier to obtain a symbol table file.♦

LINK–66

LINKER Options
SYMBOL_VECTOR= (Alpha Only)

SYMBOL_VECTOR= (Alpha Only)

Alpha For Alpha linking, declares universal symbols in shareable images.

Format

SYMBOL_VECTOR=([alias-name/]symbol-name=symbol-vector-entry-type)

Option Values

alias-name
Optionally specifies an alias name for the symbol you want to declare universal.
When specified, the alias name appears in the GST of the image and values
associated with the name specified in the symbol-name parameter appear in
the symbol vector of the image. Note that you can specify alias names only for
symbol vector entries declared using the DATA or PROCEDURE keywords. For
more information about symbol vector entry types, see the following table.

symbol-name
Specifies the name of the symbol in the shareable image that you want to declare
universal.

symbol-vector-entry-type
Specifies the type of the symbol vector entry. The following table lists the types of
symbol vector entries supported by the linker along with the keyword you use to
specify them:

Keyword Function

1DATA Creates a symbol vector entry for data (relocatable
or constant). The linker creates an entry for the
symbol in the GST of the shareable image.

1PROCEDURE Creates a symbol vector entry for a procedure and
creates an entry for the symbol in the GST of the
shareable image.

PRIVATE_DATA Creates a symbol vector entry for data; however, the
linker does not create an entry for the data in the
GST of the shareable image. Thus, the symbol is
not available for other modules to link against.

PRIVATE_PROCEDURE Creates a symbol vector entry for a procedure;
however, the linker does not create an entry for the
procedure in the GST of the shareable image. Thus,
the symbol is not available for other modules to link
against.

PSECT Creates a symbol vector entry for a program section
and creates an entry for the symbol in the GST of
the shareable image.

1You can specify an alias name for this type of symbol vector entry.

LINK–67

LINKER Options
SYMBOL_VECTOR= (Alpha Only)

Keyword Function

SPARE Use this keyword to create a placeholder when
you delete an entry in an existing symbol vector.
SPARE allows you to preserve the order of symbol
vector entries when you need to create an upwardly
compatible shareable image. The SPARE keyword is
used alone; it is not preceded by a symbol name and
equal sign.

Description

The linker creates an entry in the global symbol table (GST) of a shareable image
for each symbol listed in the SYMBOL_VECTOR= option, unless the symbol is
declared private, the /NOGST qualifier is specified, or the symbol is the internal
name for an alias. Symbols that appear in the GST of a shareable image are
available for external modules to link against. For more information about
creating and using shareable Alpha images, see Chapter 4.

Example

$ LINK/SHARE MY_SHARE,SYS$INPUT/OPT
GSMATCH=lequal,1,1000
SYMBOL_VECTOR=(my_proc=PROCEDURE,-

my_proc2=PROCEDURE,-
SPARE,-
my_data=DATA,-
my_data_psect=PSECT,-
report_err=PRIVATE_PROCEDURE)

Ctrl/Z

This example creates a symbol vector with entries for procedures, data, and
program sections.♦

LINK–68

LINKER Options
UNIVERSAL= (VAX Only)

UNIVERSAL= (VAX Only)

VAX For VAX linking, declares a symbol in a shareable image as universal, causing
the linker to include it in the global symbol table of a shareable image.

Format

UNIVERSAL= symbol-name[,...]

Option Values

symbol-name[,...]
The name of the symbol or symbols you want to declare universal.

Description

This option may be specified only in the creation of a shareable image.

For more information about declaring universal symbols, refer to Chapter 4.

Example

$ LINK/SHARE MY_SHARE,SYS$INPUT/OPT
UNIVERSAL=MY_SYMBOL

Ctrl/Z

In this example, the linker includes the universal symbol MY_SYMBOL in the
global symbol table of the shareable image MY_SHARE.EXE.♦

LINK–69

A
VAX Object Language

VAX This appendix describes the VAX object language according to Digital software
specifications. The object language described is for use with all VAX family
software; no subsetting will occur.

The VAX object language describes the contents of object modules to the
OpenVMS Linker, as well as to the object module librarian. All language
processors that produce code for execution in native mode are free to use any or
all of the described object language.

This information is useful primarily to programmers writing compilers or
assemblers that must generate object modules acceptable for input to the
OpenVMS Linker. These programmers may also find the description of the
ANALYZE/OBJECT command in the OpenVMS DCL Dictionary useful because
it explains how the DCL command ANALYZE/OBJECT may be used to check
whether an object module conforms to the requirements of the VAX object
language.

This appendix contains nine sections. The first section provides an overview of
the object language and lists the main types of records. Each subsequent section
discusses a main record including its subrecords and fields.

The $OBJDEF macro, which defines all symbols used in this section, is available
to programmers in VAX MACRO and VAX BLISS-32. VAX MACRO programmers
will find this macro in the STARLET.MLB object library; VAX BLISS-32
programmers will find it in the STARLET.REQ require file.

A.1 Object Language Overview
Each object module specified as input to the linker must be in the format
described by the object language. Thus, object files, object library files, and all
symbol table files (which the linker creates) will conform to the format described
by the object language.

The object language defines an object module as an ordered set of variable-length
records. The following table shows the main record types currently available.
Column 1 displays the name of the record, followed by its abbreviation. Column
2 displays the name of the record in symbolic notation; this name is placed
in the first byte of the record to identify the record type. Column 3 displays
the numerical code corresponding to the name in Column 2; this code may be
substituted for the symbolic name in the first byte of the record, though this is
not recommended.

Record Type Symbol Code

Header (HDR) OBJ$C_HDR 0

A–1

VAX Object Language
A.1 Object Language Overview

Record Type Symbol Code

Global symbol directory (GSD) OBJ$C_GSD 1

Text information and relocation (TIR) OBJ$C_TIR 2

End-of-module (EOM) OBJ$C_EOM 3

Debugger information (DBG) OBJ$C_DBG 4

Traceback information (TBT) OBJ$C_TBT 5

Link option specification (LNK) OBJ$C_LNK 6

End-of-module-with-word-psect (EOMW) OBJ$C_EOMW 7

Reserved for Digital use 8–100

Reserved always 101–200

Reserved for customer use 201–255

Reserved indicates that the item must not be present because it is reserved for
possible future use by the linker and Digital. The linker produces an error if a
reserved item is found in an object module.

All legal record types need not appear in a single object module. However, each
object module must contain the following:

• One (and only one) main-module-header (MHD) record appearing first in the
object module (see Section A.2.1)

• One (and only one) language-name-header (LNM) record appearing second in
the object module (see Section A.2.2)

• At least one global-symbol-directory (GSD) record

• Either one end-of-module (EOM) record or one end-of-module-with-word-psect
(EOMW) record, but not both, appearing last in the object module

An object module may contain any number of GSD, TIR, DBG, and TBT records,
in any order, as long as they are not first or last in the object module. Figure A–1
depicts the correct ordering of records within an object module.

Figure A–1 Order of Records in an Object Module

ZK−0532−GE

MHD

LNM

EOMW
or

EOM

Main−Module−Header Record

Language−Name−Header Record

GSD, TIR, DBG, TBT Records

End−of−Module−with−Word−Psect Record
or

End−of−Module Record

A–2

VAX Object Language
A.1 Object Language Overview

If a field is currently ignored by the linker, you must still allocate space for it,
filling it with zeros to its entire specified length.

Records in the object language may contain the names of program sections, object
modules, language processors, utilities, and so on. Two methods of specifying
names are implemented in the VAX object language:

• The standard naming method, which uses two fields of the record. The first
field is the 1-byte name length field containing the length in characters of
the name. The second field is the name field containing the name in ASCII
notation.

• The single field naming method, which uses a single field containing the
name in ASCII notation. The name is not preceded by a 1-byte name length
field.

All name strings except the names specified in header records may be up to 31
characters long.

The following sections contain diagrams of the VAX records and subrecords. Each
record or subrecord contains several fields. The left-hand column of a diagram
gives, for each field, its name, symbolic representation, and length in bytes.
The right-hand column gives the value (which may be a symbolic name), where
appropriate, and a description of the field.

Note that many records contain identical fields; if the right-hand column of
a diagram does not give a description of a field, that field has already been
described in a previous record.

Also note that corresponding numerical codes for record types, subrecord types
(in HDR and GSD records), and TIR commands are defined and are given in this
section. Though these may be substituted for the symbolic name of the record or
subrecord in the appropriate field, this practice is not recommended.

A.2 Header Records
The object language currently provides for the definition of six types of header
records. Of the remaining possible types, types 7 to 100 are reserved for use by
Digital, and types 101 to 255 are ignored.

The next table lists the various types of header records. Column 1 lists the
name of the header type, followed by its abbreviation. Column 2 lists the related
symbolic representations and column 3 lists the corresponding numerical codes.

Header Type Symbol Code

Main module header (MHD)1 MHD$C_MHD 0

Language processor name header (LNM)1 MHD$C_LNM 1

Source file header (SRC)2 MHD$C_SRC 2

Title text header (TTL)2 MHD$C_TTL 3

Copyright header (CPR)2 MHD$C_CPR 4

Maintenance status header (MTC)2 MHD$C_MTC 5

General text header (GTX)2 MHD$C_GTX 6

1This record is required by the linker.
2This record is currently ignored by the linker.

A–3

VAX Object Language
A.2 Header Records

Header Type Symbol Code

Reserved 7–100

Ignored 101–255

The content and format of the MHD and LNM header types, both of which are
required in each object module, are described in the following subsections.

Though currently ignored by the linker, the header types SRC, TTL, CPR, MTC,
and GTX exist to allow the language processors to provide printable information
within the object module for documentation purposes. The format of the SRC,
TTL, CPR, MTC, and GTX records consists of a record type field, header type
field, and a field containing the ASCII text.

The content and format of the SRC and TTL records are depicted in Section A.2.3
and Section A.2.4. The contents of these records, as well as the MTC record
(which contains information about the maintenance status of the object module),
are displayed in an object module analysis. (See the description of the ANALYZE
/OBJECT command in the OpenVMS DCL Dictionary.)

A.2.1 Main Module Header Record (MHD$C_MHD)
The following presents the name, symbolic representation, and length of each
field in the main module header record. The listing includes a symbolic value or
an explanation of the contents of the field, where appropriate.

RECORD TYPE Name: MHD$B_RECTYP

Length: 1 byte

The record type is OBJ$C_HDR.

HEADER TYPE Name: MHD$B_HDRTYP

Length: 1 byte

The header type is MHD$C_MHD.

STRUCTURE LEVEL Name: MHD$B_STRLVL

Length: 1 byte

The structure level is OBJ$C_STRLVL. Because the format of the MHD record
never changes, the structure level field is provided so that changes in the format
of other records can be made without recompiling every module that conformed to
the previous format.

MAXIMUM RECORD SIZE Name: MHD$W_RECSIZ

Length: 2 bytes

The maximum record size is OBJ$C_MAXRECSIZ, which is limited to 2048 bytes.
This field contains the size in bytes of the longest record that can occur in the
object module.

MODULE NAME LENGTH Name: MHD$B_NAMLNG

Length: 1 byte

This field contains the length in characters of the module name.

MODULE NAME Name: MHD$T_NAME

A–4

VAX Object Language
A.2 Header Records

Length: variable, 1 to 31 bytes for
object modules, 1 to 39 bytes for the
module header at the beginning of a
shareable image symbol table

This field contains the module name in ASCII format.

MODULE VERSION Name: None

Length: variable, 2 to 32 bytes

This field contains the module version number in standard name format.

CREATION TIME AND DATE Name: None

Length: 17 bytes

This field contains the module creation time and date in the fixed format dd-
mmm-yyyy hh:mm, where dd is the day of the month, mmm is the standard
3-character abbreviation of the month, yyyy is the year, hh is the hour (00 to 23),
and mm is the minutes of the hour (00 to 59). Note that a space is required after
the year and that the total character count for this time format is 17 characters
(including hyphens (-), the space, and the colon (:)).

TIME AND DATE OF LAST PATCH Name: None

Length: 17 bytes

This field is currently ignored by the linker and should be padded with 17 zeros.

A.2.2 Language Processor Name Header Record (MHD$C_LNM)
The following presents the name, symbolic representation, and length of each field
in the language processor name header record. The listing includes a symbolic
value or an explanation of the contents of the field, where appropriate.

RECORD TYPE Name: MHD$B_RECTYP

Length: 1 byte

The record type is OBJ$C_HDR.

HEADER TYPE Name: MHD$B_HDRTYP

Length: 1 byte

The header type is MHD$C_LNM.

LANGUAGE NAME Name: None

Length: variable

This field, which is generated by the language processor, contains the name and
version of the source language that the language processor translates into the
object language. It consists of a variable-length string of ASCII characters and is
not preceded by a byte count of the string.

A.2.3 Source Files Header Record (MHD$C_SRC)
The following presents the name, symbolic representation, and length of each
field in the source files header record. The listing includes a symbolic value or an
explanation of the contents of the field, where appropriate. The contents of this
record, though ignored by the linker, are displayed in an object module analysis.
(See the description of the ANALYZE/OBJECT command in the OpenVMS DCL
Dictionary.)

A–5

VAX Object Language
A.2 Header Records

RECORD TYPE Name: MHD$B_RECTYP

Length: 1 byte

The record type is OBJ$C_HDR.

HEADER TYPE Name: MHD$B_HDRTYP

Length: 1 byte

The header type is MHD$C_SRC.

SOURCE FILES Name: None

Length: variable

This field, which is generated by the language processor, contains the list of
file specifications from which the object module was created. It consists of a
variable-length string of ASCII characters and is not preceded by a byte count of
the string.

A.2.4 Title Text Header Record (MHD$C_TTL)
The following presents the name, symbolic representation, and length of each
field in the title text header record. The listing includes a symbolic value or an
explanation of the contents of the field, where appropriate. The contents of this
record, though ignored by the linker, are displayed in an object module analysis.
(See the description of the ANALYZE/OBJECT command in the OpenVMS DCL
Dictionary.)

RECORD TYPE Name: MHD$B_RECTYP

Length: 1 byte

The record type is OBJ$C_HDR.

HEADER TYPE Name: MHD$B_HDRTYP

Length: 1 byte

The header type is MHD$C_TTL.

TITLE TEXT Name: None

Length: variable

This field, which is generated by the language processor, contains a brief
description of the object module. It consists of a variable-length string of ASCII
characters and is not preceded by a byte count of the string.

A.3 Global Symbol Directory Records
GSD records contain information that the linker uses to build the global symbol
table and the program section table. Using this information, the linker allocates
virtual address space and combines program sections into image sections.

At least one GSD record must appear in an object module.

The first field in a GSD record is the record type GSD$B_RECTYP, whose value
is OBJ$C_GSD. Subsequent fields describe one or more GSD subrecords, each of
which begins with the GSD type field GSD$B_GSDTYP.

Table A–1 lists each type of GSD subrecord together with its symbolic
representation and its corresponding numerical code.

A–6

VAX Object Language
A.3 Global Symbol Directory Records

Table A–1 Types of GSD Subrecords

GSD Subrecord Symbol Code

Program section definition GSD$C_PSC 0

Global symbol specification GSD$C_SYM 1

Entry point symbol and mask definition GSD$C_EPM 2

Procedure with formal argument definition GSD$C_PRO 3

Symbol definition with word psect GSD$C_SYMW 4

Entry point definition with word psect GSD$C_EPMW 5

Procedure definition with word psect GSD$C_PROW 6

Entity ident consistency check GSD$C_IDC 7

Environment definition/reference GSD$C_ENV 8

Module-local symbol definition/reference GSD$C_LSY 9

Module-local entry point definition GSD$C_LEPM 10

Module-local procedure definition GSD$C_LPRO 11

Program section definition in a
shareable image

GSD$C_SPSC 12

Again, a single GSD record may contain one or more of the above types of
subrecords. Figure A–2 displays the general format of a GSD record that contains
multiple subrecords. Column 1 displays the field names; column 2 displays
possible values for those fields. Note that the RECORD TYPE field appears only
once at the beginning. Each subrecord begins with the GSD TYPE field.

Figure A–2 GSD Record with Multiple Subrecords

ZK−0533−GE

Field Type

OBJ$C_GSD

GSD$C_SYM

GSD$C_PSC

GSD$C_PRO

(GSY$B_GSDTYP)
GSD Type

(GSD$B_RECTYP)
Record Type

(PRO$B_GSDTYP)
GSD Type

(GPS$B_GSDTYP)
GSD Type

Example Content

A–7

VAX Object Language
A.3 Global Symbol Directory Records

The following subsections describe the format and content of each GSD subrecord.
For each subrecord, the name, length, value, and description of each field are
given, where appropriate.

Note that the RECORD TYPE field is not listed with the GSD subrecords.
Remember that this field must always appear first in the GSD record and that it
appears only once, regardless of how many GSD subrecords are included in the
GSD record.

A.3.1 Program Section Definition Subrecord (GSD$C_PSC)
The linker assigns program sections an identifying index number as it encounters
their respective GSD subrecords, that is, the GSD$C_PSC records. The linker
assigns these numbers in sequential order, assigning 0 to the first program
section it encounters, 1 to the second, and so on, up to the maximum allowable
limit of 65,535 (216 –1) within any single object module.

Program sections are referred to by other object language records by means of this
program section index. For example, the global symbol specification subrecord
(GSD$C_SYM) contains a field that specifies the program section index. This field
is used to locate the program section containing a symbol definition. Also, TIR
commands use the program section index.

Of course, care is required to ensure that program sections are defined to the
linker (and thus assigned an index) in proper order so that other object language
records that reference a program section by means of the index are in fact
referencing the correct program section.

The following presents the name, symbolic representation, and length of each
field in the program section definition subrecord. The listing includes a symbolic
value or an explanation of the contents of the field, where appropriate. Note that
the names of fields in this subrecord begin with GPS rather than PSC.

GSD TYPE Name: GPS$B_GSDTYP

Length: 1 byte

The GSD type is GSD$C_PSC.

ALIGNMENT Name: GPS$B_ALIGN

Length: 1 byte

This field specifies the virtual address boundary at which the program section is
placed. Each module contributing to a particular program section may specify its
own alignment unless the program section is overlaid, in which case each module
must specify the same alignment. An overlaid program section is one in which
the value of flag bit 2 (GPS$V_OVR) is not equal to 0.

The contents of the alignment field is a number from 0 to 9, which is interpreted
as a power of 2; the value of this expression is the alignment in bytes. The
value 9 in the alignment field indicates alignment on page boundaries, which
is the limit for program section alignment. Table A–2 illustrates some common
alignment field values.

A–8

VAX Object Language
A.3 Global Symbol Directory Records

Table A–2 Alignment Field Values

Value Alignment

0 1 (BYTE)

1 2 (WORD)

2 4 (LONGWORD)

3 8 (QUADWORD)

9 PAGE

FLAGS Name: GPS$W_FLAGS

Length: 2 bytes

This field is a word-length bit field, each bit indicating (when set) that the
program section has the corresponding attribute. (See Section 3.2 for a
description of program section attributes.) The next table lists the numbers,
names, and corresponding meanings of each bit in the field:

Bit Name Meaning if Set

0 GPS$V_PIC Program section is position independent.

1 GPS$V_LIB Program section is defined in the symbol table of a
shareable image, to which this image is bound. This
bit is used by the linker and should not be set in user-
defined program sections.

2 GPS$V_OVR Contributions to this program section by more than one
module are overlaid.

3 GPS$V_REL Program section is relocatable. If this bit is not set, the
program section is absolute and therefore contains only
symbol definitions. Note that memory is not allocated for
absolute program sections.

4 GPS$V_GBL Program section is global.

5 GPS$V_SHR Program section is shareable between two or more active
processes.

6 GPS$V_EXE Program section is executable.

7 GPS$V_RD Program section is readable.

8 GPS$V_WRT Program section is writable.

9 GPS$V_VEC Program section contains change mode dispatch vectors
or message vectors.

10–15 Reserved.

ALLOCATION Name: GPS$L_ALLOC

Length: 4 bytes

This field contains the length in bytes of this module’s contribution to the program
section. If the program section is absolute, the value of the allocation field must
be zero.

PSECT NAME LENGTH Name: GPS$B_NAMLNG

Length: 1 byte

A–9

VAX Object Language
A.3 Global Symbol Directory Records

This field contains the length in characters of the program section name.

PSECT NAME Name: GPS$T_NAME

Length: variable, 1 to 31 bytes

This field contains the name of the program section in ASCII format.

A.3.2 Global Symbol Specification Subrecord (GSD$C_SYM)
The global symbol specification subrecord is used to describe the nature of a
symbol (global or universal, relocatable or absolute) and how it is being used
(definition or reference, weak or strong). This information is specified in the
FLAGS field of the subrecord.

There are two formats for a global symbol specification subrecord, one for a
symbol definition and one for a symbol reference. A symbol definition is indicated
when bit 1 (GSY$V_DEF) in the FLAGS field is set, that is, when GSY$V_DEF =
1. A symbol reference is indicated when GSY$V_DEF = 0.

Section A.3.2.1 describes the format of the global symbol specification subrecord
for symbol definitions; Section A.3.2.2 does the same for symbol references. Note
that the PSECT INDEX and VALUE fields are present only for symbol definitions,
not for symbol references.

A.3.2.1 GSD Subrecord for a Symbol Definition
The following presents the name, symbolic representation, and length of each
field in the global symbol specification subrecord for a symbol definition. The
listing includes a symbolic value or an explanation of the contents of the field,
where appropriate.

GSD TYPE Name: SDF$B_GSDTYP

Length: 1 byte

The GSD type is GSD$C_SYM.

DATA TYPE Name: SDF$B_DATYP

Length: 1 byte

This field describes the data type of the global symbol. The data type is encoded
as described in the OpenVMS Programming Interfaces: Calling a System Routine.
The linker currently ignores this field.

FLAGS Name: SDF$W_FLAGS

Length: 2 bytes

This field is a 2-byte bit field, whose bits describe the strong global symbol. Only
bits 0 through 3 are used. The following table lists the numbers, names, and
meanings of each bit in the field:

Bit Name Meaning

0 GSY$V_WEAK When this bit is set, a weak symbol definition is
indicated; when clear, a strong symbol definition.

1 GSY$V_DEF This bit is set for a symbol definition.

2 GSY$V_UNI When this bit is set, a universal symbol definition is
indicated; when clear, a global symbol definition. Note
that when this bit is set, the value of GSY$V_WEAK is
ignored.

A–10

VAX Object Language
A.3 Global Symbol Directory Records

Bit Name Meaning

3 GSY$V_REL When this bit is set, the symbol is defined as relocatable;
when clear, as absolute. When it is relocated, the value
of a relocatable symbol is augmented by the base address
of the module’s contribution to the program section.

4–15 Reserved.

PSECT INDEX Name: SDF$B_PSINDX

Length: 1 byte

This field contains the program section index, described in Section A.3.1. This
field identifies the program section that contains the symbol definition. It may
contain a number from 0 through 255 (28 –1).

VALUE Name: SDF$L_VALUE

Length: 4 bytes

This field contains the value assigned to the symbol by the language processor.

NAME LENGTH Name: SDF$B_NAMLNG

Length: 1 byte

This field contains the length in characters of the symbol name.

SYMBOL NAME Name: SDF$T_NAME

Length: variable, 1 to 31 bytes

This field contains the symbol name in ASCII format.

A.3.2.2 GSD Subrecord for a Symbol Reference
The following presents the name, symbolic representation, and length of each
field in the global symbol specification subrecord for a symbol reference. The
listing includes a symbolic value or an explanation of the contents of the field,
where appropriate.

GSD TYPE Name: SRF$B_GSDTYP

Length: 1 byte

The GSD type is GSD$C_SYM.

DATA TYPE Name: SRF$B_DATYP

Length: 1 byte

This field describes the data type of a global symbol. The data type is encoded as
described in the OpenVMS Programming Interfaces: Calling a System Routine.
The linker currently ignores this field.

FLAGS Name: SRF$W_FLAGS

Length: 2 bytes

This field is a 2-byte bit field, whose bits describe the global symbol. Only bits 0
through 3 are used. The following are the numbers, names, and corresponding
meanings of each bit in the field:

A–11

VAX Object Language
A.3 Global Symbol Directory Records

Bit Name Meaning

0 GSY$V_WEAK When this bit is set, a weak symbol definition is
indicated; when clear, a strong symbol definition.

1 GSY$V_DEF This bit is set for a symbol definition.

2 GSY$V_UNI The linker ignores the value of this bit for a symbol
reference.

3 GSY$V_REL The linker ignores the value of this bit for a symbol
reference.

4–15 Reserved.

NAME LENGTH Name: SRF$B_NAMLNG

Length: 1 byte

This field contains the length in characters of the symbol name.

SYMBOL NAME Name: SRF$T_NAME

Length: variable, 1 to 31 bytes

This field contains the symbol name in ASCII format.

A.3.3 Entry-Point-Symbol-and-Mask-Definition Subrecord (GSD$C_EPM)
The following presents the name, symbolic representation, and length of each field
in the entry-point-symbol-and-mask-definition subrecord. The listing includes a
symbolic value or an explanation of the contents of the field, where appropriate.

GSD TYPE Name: EPM$B_GSDTYP

Length: 1 byte

The GSD type is GSD$C_EPM.

DATA TYPE Name: EPM$B_DATYP

Length: 1 byte

This field describes the data type of a global symbol. The data type is encoded as
described in the OpenVMS Programming Interfaces: Calling a System Routine.
The linker currently ignores this field.

FLAGS Name: EPM$W_FLAGS

Length: 2 bytes

This field is a 2-byte bit field, whose bits describe the strong global symbol.
Only bits 0 through 3 are used. The following are the numbers, names, and
corresponding meanings of each bit in the field:

Bit Name Meaning

0 GSY$V_WEAK When this bit is set, a weak symbol definition is
indicated; when clear, a strong symbol definition.

1 GSY$V_DEF This bit is set for a symbol definition.

2 GSY$V_UNI When this bit is set, a universal symbol definition is
indicated; when clear, a global symbol definition. Note
that when this bit is set, the value of GSY$V_WEAK is
ignored.

A–12

VAX Object Language
A.3 Global Symbol Directory Records

Bit Name Meaning

3 GSY$V_REL When this bit is set, the symbol is defined as relocatable;
when clear, as absolute. When it is relocated, the value
of a relocatable symbol is augmented by the base address
of the module’s contribution to the program section.

4–15 Reserved.

PSECT INDEX Name: EPM$B_PSINDX

Length: 1 byte

This field contains the program section index, described in Section A.3.2. This
field identifies the program section that contains the symbol definition. It may
contain a number from 0 through 255 (28 –1).

VALUE Name: EPM$L_ADDRS

Length: 4 bytes

This field contains the value assigned to the symbol by the language processor.

ENTRY MASK Name: EPM$W_MASK

Length: 2 bytes

The point of entry to a procedure invoked by a CALLS or CALLG instruction has
an entry mask. Transfer vectors to these procedures also use entry masks. The
language processor uses a TIR command to direct the linker to insert the mask at
the procedure entry point or at the transfer vector.

NAME LENGTH Name: EPM$B_NAMLNG

Length: 1 byte

This field contains the length in characters of the symbol name.

SYMBOL NAME Name: EPM$T_NAME

Length: variable, 1 to 31 bytes

This field contains the symbol name in ASCII format.

A.3.4 Procedure-with-Formal-Argument-Definition Subrecord (GSD$C_PRO)
The following presents the name, symbolic representation, and length of each
field in the procedure-with-formal-argument-definition subrecord. The listing
includes a symbolic value or an explanation of the contents of the field, where
appropriate.

GSD TYPE Name: PRO$B_GSDTYP

Length: 1 byte

The GSD type is GSD$C_PRO.

DATA TYPE Name: PRO$B_DATYP

Length: 1 byte

This field describes the data type of a global symbol. The data type is encoded as
described in the OpenVMS Programming Interfaces: Calling a System Routine.
The linker currently ignores this field.

FLAGS Name: PRO$W_FLAGS

A–13

VAX Object Language
A.3 Global Symbol Directory Records

Length: 2 bytes

This field is a 2-byte bit field, whose bits describe the strong global symbol.
Only bits 0 through 3 are used. The following are the numbers, names, and
corresponding meanings of each bit in the field:

Bit Name Meaning

0 GSY$V_WEAK When this bit is set, a weak symbol definition is
indicated; when clear, a strong symbol definition.

1 GSY$V_DEF This bit is set for a symbol definition.

2 GSY$V_UNI When this bit is set, a universal symbol definition is
indicated; when clear, a global symbol definition. Note
that when this bit is set, the value of GSY$V_WEAK is
ignored.

3 GSY$V_REL When this bit is set, the symbol is defined as relocatable;
when clear, as absolute. When it is relocated, the value
of a relocatable symbol is augmented by the base address
of the module’s contribution to the program section.

4–15 Reserved.

PSECT INDEX Name: PRO$B_PSINDX

Length: 1 byte

This field contains the program section index, described in Section A.3.2. This
field identifies the program section that contains the symbol definition. It may
contain a number from 0 through 255 (28 –1).

VALUE Name: PRO$L_ADDRS

Length: 4 bytes

This field contains the value assigned to the symbol by the language processor.

ENTRY MASK Name: PRO$W_MASK

Length: 2 bytes

The point of entry to a procedure invoked by a CALLS or CALLG instruction has
an entry mask. Transfer vectors to these procedures also use entry masks. The
language processor uses a TIR command to direct the linker to insert the mask at
the procedure entry point or at the transfer vector.

NAME LENGTH Name: PRO$B_NAMLNG

Length: 1 byte

This field contains the length in characters of the symbol name.

SYMBOL NAME Name: PRO$T_NAME

Length: variable, 1 to 31 bytes

This field contains the symbol name in ASCII format.

MINIMUM ACTUAL ARGUMENTS Name: FML$B_MINARGS

Length: 1 byte

A–14

VAX Object Language
A.3 Global Symbol Directory Records

This field specifies the minimum number of arguments required for a valid call
to this procedure. Permissible values are 0 to 255. The number must include the
function return value if it exists.

MAXIMUM ACTUAL ARGUMENTS Name: FML$B_MAXARGS

Length: 1 byte

This field specifies the maximum number of arguments that may be included in a
valid call to this procedure. Permissible values are 0 to 255. Note that the linker
does not perform argument validation; however, it will issue a warning message
if the value of MINIMUM ACTUAL ARGUMENTS is greater than the value of
MAXIMUM ACTUAL ARGUMENTS.

FORMAL ARG1 DESCRIPTOR Name: None

Length: variable, 2 to 256 bytes

This field specifies a single formal argument descriptor. There is a FORMAL
ARG DESCRIPTOR field for each formal argument specified. This field contains
three subfields; its format is displayed at the end of this section.

FORMAL ARGn DESCRIPTOR Name: None

Length: variable, 2 to 256 bytes

This field specifies the last (n) formal argument descriptor and is identical in
format to previous formal argument descriptor fields. Note that if there is a
function return value, this field specifies it.

Each FORMAL ARG DESCRIPTOR field contains three subfields. The content
and format are as follows:

ARG VAL CTL ARG$B_VALCTL

Length: 1 byte

This field is the argument validation control byte. Bits 0 and 1 together define
the argument passing mechanism (ARG$V_PASSMECH). Bits 2 through 7 are
ignored. There are four possible values for ARG$V_PASSMECH corresponding
to the four possible values (0 through 3) resulting from the combination of the
values of bits 0 and 1:

ARG$V_PASSMECH Name Description

0 ARG$K_UNKNOWN Unspecified

1 ARG$K_VALUE By value

2 ARG$K_REF By reference

3 ARG$K_DESC By descriptor

REM BTYE CNT Name: ARG$B_BYTECNT

Length: 1 byte

This field contains the length in bytes of the remainder of the argument
descriptor. Permissible values are 0 through 255. Because the linker does
not perform argument validation, it uses the value of this field only to determine
how many subsequent bytes to ignore.

DETAILED ARGUMENT DESCRIPTION Name: None

A–15

VAX Object Language
A.3 Global Symbol Directory Records

Length: variable, 0 to 255 bytes

This field contains a detailed description of the argument. The linker currently
ignores this field.

Note that if bits 2 through 7 in ARG$B_VALCTL are not equal to 0 or the value of
ARG$B_BYTECNT is not equal to 0, or both, then recompiling the object module
may be necessary if that argument validation is implemented in a future version
of the linker.

A.3.5 Symbol-Definition-with-Word-Psect Subrecord (GSD$C_SYMW)
This subrecord is identical in format to the global symbol definition subrecord
described in Section A.3.2.1, with the exception that the PSINDX field in this
subrecord is 2 bytes long.

The field names in this record begin with SYMW, instead of SYM as in the global
symbol definition subrecord. For example, in this subrecord the name of the GSD
TYPE is SYMW$B_GSDTYP.

Note that the name of the PSECT INDEX field in this subrecord is SYMW$W_
PSINDX.

A.3.6 Entry-Point-Definition-with-Word-Psect Subrecord (GSD$C_EPMW)
This subrecord is identical in format to the entry-point-symbol-and-mask-
definition subrecord described in Section A.3.3, with the exception that the
PSINDX field in this subrecord is 2 bytes long.

The field names in this record begin with EPMW, instead of EPM as in the entry-
point-symbol-and-mask-definition subrecord. For example, in this subrecord the
name of the GSD TYPE is EPMW$B_GSDTYP.

Note that the name of the PSECT INDEX field in this subrecord is EPMW$W_
PSINDX.

A.3.7 Procedure-Definition-with-Word-Psect Subrecord (GSD$C_PROW)
This subrecord is identical in format to the procedure with formal argument
definition subrecord described in Section A.3.4, with the exception that the
PSINDX field in this subrecord is 2 bytes long.

The field names in this record begin with PROW, instead of PRO as in the
procedure-with-formal-argument-definition subrecord. For example, in this
subrecord the name of the GSD TYPE is PROW$B_GSDTYP.

Note that the name of the PSECT INDEX field in this subrecord is PROW$W_
PSINDX.

A.3.8 Entity-Ident-Consistency-Check Subrecord (GSD$C_IDC)
This subrecord allows for the consistency checking of an entity at link time.
Using this subrecord, a compiler may emit code to check the consistency of any
type of entity that has either an ASCIC or binary ident string associated with it.

The following presents the name, symbolic representation, and length of each
field in the entity ident consistency check subrecord. The listing includes a
symbolic value or an explanation of the contents of the field, where appropriate.

GSD TYPE Name: IDC$B_GSDTYP

A–16

VAX Object Language
A.3 Global Symbol Directory Records

Length: 1 byte

The GSD type is GSD$C_IDC.

FLAGS Name: IDC$W_FLAGS

Length: 2 bytes

The FLAGS field is a 2-byte bit field, of which only the first five bits are used.
When bit 0 (IDC$V_BINIDENT) is set, that is, when IDC$V_BINIDENT = 1, the
ident is a 32-bit binary value; when clear, the ident is an ASCIC string.

Bits 1 and 2 (IDC$V_IDMATCH) specify the ident match control for 32-bit binary
idents and are thus only significant when IDC$V_BINIDENT = 1. IDC$V_
MATCH may take two values: 0 (IDC$C_LEQ) or 1 (IDC$C_EQUAL).

When IDC$V_MATCH = IDC$C_LEQ, the binary ident of the entity specified in
the subrecord must be less than or equal to the binary ident of the entity that is
listed in the entity name table.

When IDC$V_MATCH = IDC$C_EQUAL, the binary ident of the entity specified
in the subrecord must be equal to the binary ident of the entity that is listed in
the entity name table. Remaining values of IDC$V_MATCH, that is, the numbers
2 to 8, are reserved.

Bits 3 to 5 (IDC$V_ERRSEV) specify error message severity levels. When the
value of IDC$V_ERRSEV is 0, the message severity is warning; when 1, success;
when 2, error; when 3, informational; when 4, severe.

Bits 6 to 15 in the FLAGS field are reserved.

NAME LENGTH Name: IDC$B_NAMLNG

Length: 1 byte

This field contains the length in characters of the entity name.

ENTITY NAME Name: IDC$T_NAME

Length: variable, 1 to 31 bytes

This field contains the entity name in ASCII format.

IDENT LENGTH Name: None

Length: 1 byte

This field contains the length in bytes of the ident string. For binary idents, this
field contains the value 4.

IDENT STRING Name: None

Length: variable, 1 to 31 bytes

This field contains the ident string. The ident string may be an ASCIC string or
a 32-bit binary value. If this string specifies a 32-bit binary value, it consists of
24 bits of minor ident and 8 bits of major ident, analogous to the global section
match values for a shareable image. If this string specifies an ASCIC string, its
length is variable.

OBJECT NAME LENGTH Name: None

Length: 1 byte

A–17

VAX Object Language
A.3 Global Symbol Directory Records

This field contains the length in bytes of the name of the entity in the entity
name table.

OBJECT NAME Name: None

Length: 1 to 31 bytes

This field contains the name of the entity in the entity name table.

When this GSD subrecord is processed during Pass 1, the linker searches the
entity name table (which is a single name table for all entity types) for an entity
of the same name. If the linker locates such an entity, it compares the idents.
If the idents do not satisfy the specified match control value, the linker issues a
warning message.

A.3.9 Environment-Definition/Reference Subrecord (GSD$C_ENV)
The following presents the name, symbolic representation, and length of each
field in the environment and reference subrecord. The listing includes a symbolic
value or an explanation of the contents of the field, where appropriate.

GSD TYPE Name: ENV$B_GSDTYP

Length: 1 byte

The GSD type is GSD$C_ENV.

FLAGS Name: ENV$W_FLAGS

Length: 2 bytes

This is a 2-byte bit field.

Bit 0 (ENV$V_DEF) is a bit mask. When ENV$V_DEF = 1, the subrecord
describes an environment definition; when clear, an environment reference.

Bit 1 (ENV$V_NESTED) is set to indicate that the current environment is
nested within another environment. The parent environment index is ENV$W_
ENVINDX.

Bits 2 through 15 are not used.

ENVIRONMENT INDEX Name: ENV$W_ENVINDX

Length: 2 bytes

This field contains the environment index, a number from 0 through 65,535. As
with a program section, each environment is assigned a number (its index) that
the TIR records and GSD records use to refer to it.

If the current environment is contained within another environment (for example,
a nested environment), then this field contains the index of the surrounding or
‘‘parent’’ environment. Otherwise, this field is 0. However, because a 0 could also
be interpreted as the current environment being contained within environment 0,
the ENV$V_NESTED bit may be tested to clear up this ambiguity.

NAME LENGTH Name: ENV$B_NAMLNG

Length: 1 bytes

This field contains the length in characters of the environment name.

ENVIRONMENT NAME Name: ENV$T_NAME

Length: variable, 1 to 31 bytes

This field contains the environment name.

A–18

VAX Object Language
A.3 Global Symbol Directory Records

The linker reports any undefined environments at the end of Pass 1. Note that
a total of 65,535 environments may be defined or referenced in any single object
module.

A.3.10 Module-Local Symbol Definition/Symbol Reference Subrecord
(GSD$C_LSY)

This subrecord, as with the global symbol specification subrecord described in
Section A.3.2, has two formats: one for a symbol definition and one for a symbol
reference. The following subsections describe each of these formats.

A.3.10.1 Module-Local Symbol Definition
The format of a module-local symbol definition is identical to the format of the
symbol-definition-with-word-psect subrecord described in Section A.3.5, with the
following exceptions:

• The field names in this record begin with LSDF instead of SYMW as in the
symbol-definition-with-word-psect subrecord. For example, in this subrecord
the name of the GSD TYPE is LSDF$B_GSDTYP.

• The module-local symbol definition subrecord contains an additional field,
directly following the FLAGS field and preceding the PSINDX field: the
ENVIRONMENT INDEX field (LSDF$W_ENVINDX).

• Only two of the four bits in the FLAGS field are used in this subrecord.
Because this is a definition, LSY$V_DEF must be set. Bit 3 (LSY$V_REL) is
set or not set depending on whether the module-local symbol is relocatable or
not relocatable, respectively. Bit 0 (LSY$V_WEAK) and bit 2 (LSY$V_UNI)
are ignored because a module-local symbol may not be defined as either weak
or universal.

A.3.10.2 Module-Local Symbol Reference
The format of a module-local symbol reference is identical to the format of the
global symbol reference subrecord described in Section A.3.2.2, with the following
exceptions:

• The field names in this record begin with LSRF instead of SRF as in the
global symbol reference subrecord. For example, in this subrecord the name
of the GSD TYPE is LSRF$B_GSDTYP.

• The module-local symbol reference subrecord contains an additional field
directly following the FLAGS field and preceding the NAME LENGTH field:
the ENVIRONMENT INDEX field (LSRF$W_ENVINDX).

• Only bit 1 (LSY$V_DEF) in the FLAGS field is used. Because this is a
reference, LSY$V_DEF must be reset. Bits 0, 2, and 3 are ignored.

A.3.11 Module-Local Entry-Point-Definition Subrecord (GSD$C_LEPM)
This subrecord is identical in format to the entry-point-definition-with-word-psect
subrecord described in Section A.3.6, with the following exceptions:

• The field names in this record begin with LEPM instead of EPMW as in
the entry-point-definition-with-word-psect subrecord. For example, in this
subrecord the name of the GSD TYPE is LEPM$B_GSDTYP.

• The module-local entry point definition subrecord contains an additional
field directly following the FLAGS field and preceding the PSINDX field: the
ENVIRONMENT INDEX field (LEPM$W_ENVINDX).

A–19

VAX Object Language
A.3 Global Symbol Directory Records

A.3.12 Module-Local Procedure-Definition Subrecord (GSD$C_LPRO)
This subrecord is identical in format to the procedure-definition-with-word-psect
subrecord described in Section A.3.7, with the following exceptions:

• The field names in this record begin with LPRO instead of PROW as in
the procedure-definition-with-word-psect subrecord. For example, in this
subrecord the name of the GSD TYPE is LPRO$B_GSDTYP.

• The module-local procedure definition subrecord contains an additional field
directly following the FLAGS field and preceding the PSINDX field: the
ENVIRONMENT INDEX field (LEPM$W_ENVINDX).

A.3.13 Program-Section-Definition-in-Shareable-Image Subrecord
(GSD$C_SPSC)

This subrecord is identical in format to the program section definition subrecord
described in Section A.3.1, with the following exceptions:

• This subrecord is generated only by the linker and is reserved to the linker.

• This subrecord is only legal in the global symbol table (GST) of a shareable
image.

• This subrecord contains an additional 4-byte field directly following the
ALLOCATION field and preceding the PSECT NAME LENGTH field: the
BASE field (SGPS$L_BASE). The BASE field contains the base address of
this program section in the shareable image.

• The field names in this subrecord begin with SGPS instead of GPS as in the
program section definition subrecord. For example, in this subrecord the
name of the GSD TYPE is SGPS$B_GSDTYP.

A.3.14 Vectored-Symbol-Definition Subrecord (GSD$C_SYMV)
This subrecord is identical in format to the global symbol definition subrecord
described in Section A.3.2.1, with the exception of an additional longword field,
SDFV$L_VECTOR.

The field names in this record begin with SDFV instead of SDF as in the global
symbol definition subrecord. For example, in this subrecord the name of the GSD
type field is SDFV$B_GSDTYPE instead of SDF$B_GSDTYPE.

This subrecord is reserved for use by Digital only.

A.3.15 Vectored-Entry-Point-Definition Subrecord (GSD$C_EPMV)
This subrecord is identical in format to the entry point symbol and mask
definition subrecord described in Section A.3.3, with the exception of an additional
longword field, EPMV$L_VECTOR.

The field names in this record begin with EPMV instead of EPM as in the entry-
point-symbol-and-mask-definition subrecord. For example, in this subrecord
the name of the GSD type field is EPMV$B_GSDTYPEl instead of EPM$B_
GSDTYPEl.

This subrecord is reserved for use by Digital only.

A–20

VAX Object Language
A.3 Global Symbol Directory Records

A.3.16 Vectored-Procedure-Definition Subrecord (GSD$C_PROV)
This subrecord is identical in format to the procedure definition subrecord
described in Section A.3.4, with the exception of an additional longword field,
PROV$L_VECTOR.

The field names in this record begin with PROV instead of PRO as in the
procedure definition subrecord. For example, in this subrecord the name of the
GSD type field is PROV$B_GSDTYP instead of PRO$B_GSDTYP.

This subrecord is reserved for use by Digital only.

A.3.17 Symbol-Definition-with-Version-Mask Subrecord (GSD$C_SYMM)
This subrecord is identical in format to the global symbol definition subrecord
described in Section A.3.2.1, with the exception of an additional longword field,
SDFM$L_VERSION_MASK.

The field names in this record begin with SDFM instead of SDF as in the global
symbol definition subrecord. For example, in this subrecord the name of the GSD
type field is SDFM$B_GSDTYPE instead of SDF$B_GSDTYPE.

This subrecord is reserved for use by Digital only.

A.3.18 Entry-Point-Definition-with-Version-Mask Subrecord (GSD$C_EPMM)
This subrecord is identical in format to the entry-point-symbol-and-mask-
definition subrecord described in Section A.3.3, with the exception of an additional
longword field, EPMM$L_VERSION_MASK.

The field names in this record begin with EPMM instead of EPM as in the
entry-point-symbol-and-mask-definition subrecord. For example, in this subrecord
the name of the GSD type field is EPMM$B_GSDTYPE instead of EPM$B_
GSDTYPE.

This subrecord is reserved for use by Digital only.

A.3.19 Procedure-Definition-with-Version-Mask Subrecord (GSD$C_PROM)
This subrecord is identical in format to the procedure definition subrecord
described in Section A.3.4, with the exception of an additional longword field,
PROV$L_VECTOR.

The field names in this record begin with PROV instead of PRO as in the
procedure definition subrecord. For example, in this subrecord the name of the
GSD type field is PROV$B_GSDTYP instead of PRO$B_GSDTYP.

This subrecord is reserved for use by Digital only.

A.4 Text Information and Relocation Records (OBJ$C_TIR)
A text information and relocation record contains commands and data that the
linker uses to compute and record the contents of the image.

The linker’s creation of the binary content of an image file is controlled by the
language processor using the commands contained in TIR records.

A TIR record consists of the RECORD TYPE field (TIR$B_RECTYP) followed by
one COMMAND field and one DATA field for each TIR command in the record.
Because a TIR record may contain many TIR commands, it may be quite long. It
may not, however, exceed the record size limit for the object module. This limit
is set in the MAXIMUM RECORD SIZE field (MHD$W_RECSIZ) in the main
module header record (MHD$C_MHD).

A–21

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

The fields in a TIR record are described in this section. Note that the description
given for the first COMMAND and first DATA field applies to all TIR commands
but one, the STORE IMMEDIATE command, while the description given for
the second COMMAND and second DATA field applies only to the STORE
IMMEDIATE command. This does not imply that the STORE IMMEDIATE
command must follow other TIR commands; TIR commands may appear within
the TIR record in any order.

RECORD TYPE Name: TIR$RECTYP

Length: 1 byte

The record type is OBJ$C_TIR.

COMMAND Name: None

Length: 1 byte

This field designates the TIR command. This description of the COMMAND field
applies to all TIR commands except the STORE IMMEDIATE command, which
is described in the following COMMAND field. There are 85 TIR commands
(excluding the STORE IMMEDIATE command), and each has a positive number
ranging from 0 to 84 that is used to encode the command in the field.

DATA Name: ENV$T_NAME

Length: variable

This field contains the data upon which the previously specified (in the
COMMAND field) TIR command operates. The length of this field is implied
by the command itself. For example, if the previous COMMAND field specifies a
stack-byte command, the length of this DATA field is 1 byte.

COMMAND Name: None

Length: 1 byte

This field contains the name of a TIR command. This description of the
COMMAND field applies only to the STORE IMMEDIATE command. The
STORE IMMEDIATE command is designated by any negative number (bit 7 is
set) in the COMMAND field. The absolute value of the COMMAND field is the
length in bytes of the following DATA field. The STORE IMMEDIATE command
directs the linker to write the contents of the DATA field directly to the output
image file, without using the internal stack. Thus, from 1 to 128 bytes of data
may be immediately stored by means of this command.

DATA Name: ENV$T_NAME

Length: variable

This field contains the data upon which the previously specified TIR command
operates. The length of this field is given by the command itself. When the
previous COMMAND field contains a STORE IMMEDIATE command, the length
of this DATA field is the absolute value of the COMMAND field.

Most TIR commands operate on values on the linker’s internal stack, which is
longword-aligned at all times. Values placed on the stack by TIR commands
are retained during processing of other record types; however, the stack must be
completely collapsed when the EOM or EOMW record is processed. The minimum
stack space available is never less than 25 longwords.

TIR commands fall into four categories:

• Stack commands place data on the stack.

A–22

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

• Store commands pop data from the stack and write it to the output image file.
The only exception is the STORE IMMEDIATE command, which writes data
directly to the image file without using the stack.

• Operator commands perform arithmetic operations on data currently on the
stack.

• Control commands reposition the linker’s location counter.

In the interest of linker performance, a few implementation decisions and their
possible side effects should be noted.

• The linker does not execute a STORE REPEATED command when the value
being stored is zero. Such a command is, in effect, a null operation. The
reason for this is twofold. First, the pages of an image are guaranteed to be
zero anyway, unless otherwise initialized by the compiler. Second, demand-
zero compression works only on pages that have not been initialized; thus,
not allowing a STORE REPEATED command to initialize a page with zeros
permits the linker to compress that page.

• The linker is a two-pass processor of object modules. It ignores TIR records
on its first pass but processes them on its second pass to produce the output
image file. TIR records are not processed if the linking operation is aborted
because of a command or link-time error before the linker’s second pass.
Consequently, user or compiler errors (such as truncation errors) that are
usually detectable during the linker’s second pass are not detected in this
case.

TIR commands are described in the following four subsections. Section A.4.1
discusses the stack commands; Section A.4.2, the store commands;
Section A.4.3, operator commands; and Section A.4.4, control commands.
The commands are presented in numerical order, based on their equivalent
numerical codes (in decimal), except for the STORE IMMEDIATE command,
which does not have a specific numerical code. The STORE IMMEDIATE
command has been described under the second TIR COMMAND.

A.4.1 Stack Commands
The stack commands place bytes, words, and longwords on the stack. Byte and
word stack commands (except those that stack the values of global symbols
or addresses) have signed-extension-to-longword format and zero-extension-to-
longword format.

The data placed on the stack is taken from one of the following sources:

• The DATA field directly following the COMMAND field

• A global symbol

• A computation derived from the base address of a program section

Table A–3 lists the stack commands and related codes, together with a brief
description of each command.

A–23

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

Table A–3 Stack Commands

Code Command Description

0 TIR$C_STA_GBL (Stack
Global)

Data is the name of the global symbol in standard
name format. The command stacks the 32-bit
binary value of the stacks symbol.

1 TIR$C_STA_SB (Stack
Signed Byte)

Data is a 1-byte constant, which is sign-extended to
32 bits.

2 TIR$C_STA_SW (Stack
Signed Word)

Data is a 2-byte constant, which is sign-extended to
32 bits.

3 TIR$C_STA_LW (Stack
Longword)

Data is a 4-byte constant.

4 TIR$C_STA_PB (Stack
Psect Base Plus Byte
Offset)

Data is a 1-byte program section index followed by
a single signed byte offset1. The psect base and
byte offset are added and stacked.

5 TIR$C_STA_PW (Stack
Psect Base Plus Word
Offset)

Data is a 1-byte program section index followed by
a single signed word offset1. The psect base and
word offset are added and stacked.

6 TIR$C_STA_PL (Stack
Psect Base Plus
Longword Offset)

Data is a 1-byte program section index followed by
a single signed longword offset1. The psect base
and longword offset are added and stacked.

7 TIR$C_STA_UB (Stack
Unsigned Byte)

Same as Stack Signed Byte except that the value is
zero-extended to 32 bits.

8 TIR$C_STA_UW (Stack
Unsigned Word)

Same as Stack Signed Word except that the value is
zero-extended to 32 bits.

9 TIR$C_STA_BFI (Stack
Byte From Image)

This command is reserved for use by Digital. The
top longword on the stack is used as an address, in
the image, from which to retrieve a byte. The byte
is zero-extended and replaces the top longword on
the stack.

10 TIR$C_STA_WFI (Stack
Word From Image)

This command is reserved for use by Digital. It is
the word equivalent of the previous command.

11 TIR$C_STA_LFI (Stack
Longword From Image)

This command is reserved for use by Digital. It
is the longword equivalent of the previous two
commands.

12 TIR$C_STA_EPM (Stack
Entry Point Mask)

This command has the same format as the Stack
Global command. However, it stacks the entry point
mask (unsigned stack’s word) that accompanies the
symbol definition, rather than the symbol value. An
error results if the symbol is not an entry point.

1Although this command provides for a signed offset value, negative offsets are rarely correct. Note
too that the base address is that of this module’s contribution to the program section.

(continued on next page)

A–24

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

Table A–3 (Cont.) Stack Commands

Code Command Description

13 TIR$C_STA_CKARG
(Compare Procedure
Argument and Stack for
TRUE or FALSE)

This command checks to see whether the argument
passing mechanism (ARG$V_PASSMECH) in the
formal argument descriptor matches the argument
passing mechanism in the actual argument
descriptor. The DATA field for this command
consists of the ASCIC symbol name in standard
name format (1 count byte followed by the symbol
name (1 to 31 bytes)). This is followed by the 1-
byte argument index and the actual argument
descriptor. The format of the actual argument
descriptor is the same as the format of the formal
argument descriptor described in Section A.3.4. The
linker compares the values of ARG$V_PASSMECH
for the formal and actual argument descriptors. If
these values agree or if there is no formal argument
descriptor, the linker places the TRUE value on top
of the stack; otherwise, it stacks the FALSE value.

14 TIR$C_STA_WPB (Stack
Psect Base Plus Byte
Offset with Word Psect)

Same as TIR$C_STA_PB except the program
section index is a word rather than a byte.

15 TIR$C_STA_WPW
(Stack Psect Base Plus
Word Offset with Word
Psect)

Same as TIR$C_STA_PW except the program
section index is a word rather than a byte.

16 TIR$C_STA_WPL
(Stack Psect Base Plus
Longword Offset with
Word Psect)

Same as TIR$C_STA_PL except the program section
index is a word rather than a byte.

17 TIR$C_STA_LSY (Stack
Local Symbol Value)

Data is a 2-byte environment index followed by the
ASCIC symbol name in standard name format.

18 TIR$C_STA_LIT (Stack
Literal)

Data is a 1-byte index of the literal to be stacked.
If the literal has not been defined, the linker stacks
zero and issues an error message.

19 TIR$C_STA_LEPM
(Stack Local Symbol
Entry Point Mask)

This command has the same format as the Stack
Local Symbol Value command and the same action
as the Stack Entry Point Mask command.

A.4.2 Store Commands
The store commands pop the top longword from the stack and write it to the
output image file. Several store commands provide validation of the quantity
being stored, with the possibility of issuing truncation errors during the
operation. After a store command is executed, the location counter is pointing to
the next byte in the output image.

Table A–4 lists the store commands and related codes, together with a brief
description of each command.

A–25

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

Table A–4 Store Commands

Code Command Description

20 TIR$C_STO_SB (Store
Signed Byte)

Low byte is written to image. Bits 31:7 must
be identical.

21 TIR$C_STO_SW (Store
Signed Word)

Low word is written to image. Bits 31:15
must be identical.

22 TIR$C_STO_LW (Store
Longword)

One longword is written to image.

23 TIR$C_STO_BD (Store
Byte Displaced)

Current location counter plus 1 is subtracted
from the top longword on the stack. Low
byte of resulting value is written to image.
Bits 31:7 must be identical.

24 TIR$C_STO_WD (Store
Word Displaced)

Current location counter plus 2 is subtracted
from the top longword on the stack. Low
word of resulting value is written to image.
Bits 31:15 must be identical.

25 TIR$C_STO_LD (Store
Longword Displaced)

Current location counter plus 4 is subtracted
from the top longword on the stack.
Resulting value is written to image.

26 TIR$C_STO_LI (Store
Short Literal)

Low byte of top longword on the stack is
written to image. Bits 31:6 must be zero.

27 TIR$C_STO_PIDR
(Store Position-
Independent Data
Reference)

The longword on top of the stack is the
address of a data item. If the address is
absolute, the longword is written to the
image. If the address is relocatable, the
linker stores information in the image file
to allow the image activator to initialize the
location when the image is run.

28 TIR$C_STO_PICR
(Store Position-
Independent Code
Reference)

The purpose of this command is to generate a
position-independent code reference. The top
longword on stack is the address of an item
to which a position-independent instruction
makes reference. If the item is absolute, the
byte 9F hexadecimal (the operand specifier
for absolute addressing mode) followed by
the top longword on the stack are written
to the image, and the location counter is
incremented. If the item is relocatable, the
byte EF hexadecimal (the operand specifier
for longword relative addressing mode) is
written to the image; the top longword on
the stack is Store Longword Displaced (see
TIR$C_STO_LD); and the location counter
is incremented. If the item is relocatable
and contained in a shareable image, the
byte FF (the operand specifier for longword
relative deferred addressing mode) is written
to the image; the top longword on the stack
is Store Longword Displaced (target is in
the EXIT vector); and the location counter is
incremented.

(continued on next page)

A–26

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

Table A–4 (Cont.) Store Commands

Code Command Description

29 TIR$C_STO_RSB (Store
Repeated Signed Byte)

The longword on top of the stack is used
as a repeat count. The low byte of the next
longword on the stack is then written to
the image the indicated number of times.
Both longwords are removed from the stack
upon completion. See note in Section A.4
regarding the use of this command with
zeros.

30 TIR$C_STO_RSW (Store
Repeated Signed Word)

Same as above command except that a word
rather than a byte is written.

31 TIR$C_STO_RL (Store
Repeated Longword)

Same as previous two commands except that
a longword is written.

32 TIR$C_STO_VPS (Store
Arbitrary Field)

This command writes a bit field to the image.
The data field consists of an unsigned byte
containing the value p, followed by another
unsigned byte containing the value s. Bits 0
to s–1 of the top longword on the stack are
written to the image starting at bit p of the
current location. Only the specified bits of
the image are altered. After the operation,
the location counter is the address of the byte
containing bit (p+s) of the location modified.
Note that the value of p+s must be greater
than zero and less than or equal to either 32
or ((P+8)/8)8–1, whichever is less. In other
words, the bit field must be contained within
a single byte.

33 TIR$C_STO_USB (Store
Unsigned Byte)

Same as TIR$C_STO_SB except that bits
31:8 must be zero.

34 TIR$C_STO_USW
(Store Unsigned Word)

Same as TIR$C_STO_SW except that bits
31:16 must be zero.

35 TIR$C_STO_RUB (Store
Repeated Unsigned
Byte)

Same as TIR$C_STO_RSB except that bits
31:8 of the stored byte must be zero.

36 TIR$C_STO_RUW
(Store Repeated
Unsigned Word)

Same as TIR$C_STO_RSW except that bits
31:16 of the stored word must be zero.

37 TIR$C_STO_B (Store
Byte)

This command writes the low byte of the top
longword on the stack to the image file. It
thus permits any 8-bit value (from –128 to
255) to be written to the image. If the top
longword on the stack is negative, then bits
31:7 must be 1; if positive, then bits 31:8
must be zero.

38 TIR$C_STO_W (Store
Word)

This command writes the low word of the top
longword on the stack to the image file. It
thus permits any 16-bit value (from –32768
to 65535) to be written to the image. If the
top longword on the stack is negative, bits
31:15 must be 1; if positive, the bits 31:16
must be zero.

(continued on next page)

A–27

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

Table A–4 (Cont.) Store Commands

Code Command Description

39 TIR$C_STO_RB (Store
Repeated Byte)

The top longword on the stack is used as
a repeat count. The low byte of the next
longword on the stack is then written to the
image the indicated number of times. This
is the repeated version of Store Byte (see
TIR$C_STO_B).

40 TIR$C_STO_RW (Store
Repeated Word)

This is the word version of the Store
Repeated Byte command.

41 TIR$C_STO_RIVB
(Store Repeated
Immediate Variable
Bytes)

Data is a 1-byte count n field followed by
n bytes of data. These n bytes of data are
written to the image the number of times
specified by the top longword on the stack
(which is removed from the stack upon
completion of the command). If the top
longword on the stack is zero, nothing is
stored.

42 TIR$C_STO_PIRR
(Store Position-
Independent Reference
Relative)

The longword (longword 1) on the top of
the stack is the address of a data item. If
the data item is absolute, the command is
the same as the Store Longword command
except that the next longword on the stack
(following the top one) is also removed from
the stack upon completion of the command.
If the data item is relocatable, the value
of the second longword (longword 2) on
the stack is checked. If its value is –1,
the current value of the location counter is
substituted for longword 2, and the value
stored is longword 1 minus longword 2. Both
longwords are removed from the stack upon
completion of the command.

43–49 Reserved.

A.4.3 Operator Commands
Operator commands perform arithmetic operations on the top one or two
longwords on the stack. Upon completion of the operation, the result is the
top longword on the stack.

The linker evaluates expressions in Post Fix Polish form. All arithmetic
operations are performed in signed 32-bit two’s complement integers. There
is no provision for floating-point, string, or quadword computation. Attempts to
divide by zero produce a zero result and a nonfatal warning message.

Table A–5 lists the operator commands and related codes, together with a brief
description of each command.

A–28

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

Table A–5 Operator Commands

Code Command Description

50 TIR$C_OPR_NOP (No-
Operation)

No operation results.

51 TIR$C_OPR_ADD (Add) Top two longwords on the stack are added.

52 TIR$C_OPR_SUB
(Subtract)

Top longword on the stack is subtracted from the
next longword on the stack.

53 TIR$C_OPR_MUL
(Multiply)

Top two longwords on the stack are multiplied.

54 TIR$C_OPR_DIV
(Divide)

Top longword on the stack is divided into the next
longword on the stack.

55 TIR$C_OPR_AND
(Logical AND)

Logical AND of top two longwords.

56 TIR$C_OPR_IOR
(Logical Inclusive OR)

Inclusive OR of top two longwords.

57 TIR$C_OPR_EOR
(Logical Exclusive OR)

Exclusive OR of top two longwords.

58 TIR$C_OPR_NEG
(Negate)

Top longword is negated.

59 TIR$C_OPR_COM
(Complement)

Top longword is complemented.

60 TIR$C_OPR_INSV
(Insert Field)

This command is reserved. It is similar to TIR$C_
STO_VPS except that the bit field is written to the
next longword on the stack instead of to the image
file. The location counter is therefore unaffected.
After completion of the command, only the top
longword on the stack is removed.

61 TIR$C_OPR_ASH
(Arithmetic Shift)

The top longword on the stack specifies the shift
count and direction to be applied to the next
longword on the stack. When the top longword
is negative, bits in the next longword are shifted
right with replication of the sign bit. When the
top longword is positive, bits in the next longword
are shifted left with zeros moved into low-order
bits.

62 TIR$C_OPR_USH
(Unsigned Shift)

Same as previous command except that, for a shift
right, zeros are always moved into the high bits.

63 TIR$C_OPR_ROT
(Rotate)

The top longword on the stack specifies the rotate
count and direction to be applied to the next
longword on the stack. When the top longword is
positive, the next longword is rotated left; when
negative, right. The top longword must have an
absolute value of 0 to 32.

(continued on next page)

A–29

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

Table A–5 (Cont.) Operator Commands

Code Command Description

64 TIR$C_OPR_SEL
(Select)

This command manipulates the top three
longwords on the stack. If the top longword
has the value TRUE (low bit set), it and the
next (second) longword on the stack are removed,
leaving the third longword (unchanged) on top
of the stack. If the top longword has the value
FALSE (low bit clear), the value of the next
(second) longword is copied to the following (third)
longword, and the top and second longwords are
removed, leaving the third (now having the value
of the second) on top of the stack. Thus, the
command collapses three longwords on the stack
to a single longword that has the value of the
second or third based on the value of the first.

65 TIR$C_OPR_REDEF
(Redefine Symbol to
Current Location)

This command is used only in the creation of
shareable images. Data for the command consists
of a symbol name in standard name format, that
is, 1 count byte followed by a variable-length (1 to
31 bytes) ASCII string. The value of the symbol,
as listed in the shareable image’s symbol table,
is made equal to the value of the current location
counter (at the time the command is processed).
Values of the symbol within the image itself are
not affected by the command. The value is not
assigned until after all image binary has been
written to the image output file. If no binary
is generated (or is aborted), the value is not
assigned. The symbol is also made universal.

66 TIR$C_OPR_DFLIT
(Define a Literal)

Data is a 1-byte field that indicates the literal (0
to 255) to be defined. The literal is assigned the
value of the top longword on the stack, which is
removed upon completion of the command. Note
that this command does not stack a result.

67–79 Reserved.

A.4.4 Control Commands
Control commands manipulate the linker’s location counter. Table A–6 lists the
control commands and related codes, together with a brief description of each
command.

Table A–6 Control Commands

Code Command Description

80 TIR$C_CTL_SETRB
(Set Relocation Base)

The top longword on the stack is placed into the
location counter and then removed from the stack.

81 TIR$C_CTL_AUGRB
(Augment Relocation
Base)

Data consists of a signed longword. The value
of this longword is added to the current location
counter.

(continued on next page)

A–30

VAX Object Language
A.4 Text Information and Relocation Records (OBJ$C_TIR)

Table A–6 (Cont.) Control Commands

Code Command Description

821 TIR$C_CTL_DFLOC
(Define Location)

The value of the top longword on the stack is used
as an index. The value of the current location
counter is then saved under this index. Upon
completion of the command, the top longword is
removed from the stack.

831 TIR$C_CTL_STLOC
(Set Location)

The value of the top longword on the stack is an
index (from a previous Define Location command)
that is used to locate a previously saved location
counter. The value of the previously saved location
counter is then set as the value of the current
location counter. Upon completion of the command,
the top longword is removed from the stack.

841 TIR$C_CTL_STKDL
(Stack Debug)

The value of the top longword on the stack is an
index (from a previous Define Location command).
The top longword is removed from the stack, and
the saved location counter, located by means of the
index, is placed on top of the stack.

85–127 Reserved.

1This command is legal only in debugger information (DBG) and traceback information (TBT) records.
For each object module, a list of debugger indexes is kept. These commands operate on the list for the
object module in which the DBG or TBT record occurs.

A.5 End-of-Module Record
The end-of-module (EOM) record declares the end of the module. Either this
record or the end-of-module-with-word-psect (EOMW) record must be the last
record in the object module.

If the module does not contain a program section that contains the transfer
address, the EOM record is 2 bytes long, consisting of only the RECORD TYPE
and ERROR SEVERITY fields.

If the module does contain a program section that contains the transfer address,
the EOM record can be either 7 or 8 bytes long, depending on whether the
optional TRANSFER FLAGS field is included.

The fields in an EOM record are described in the following table.

RECORD TYPE Name: EOM$B_RECTYP

Length: 1 byte

The record type is OBJ$C_EOM.

ERROR SEVERITY Name: EOM$B_COMCOD

Length: 1 byte

This field contains completion codes, which are generated by the language
processor. This field may contain a value from 0 to 3, where each number
corresponds to a completion code. Values from 4 to 10 are reserved, and values
from 11 to 255 are ignored. The following table lists the name, corresponding
value, and meaning of each of the four completion codes.

A–31

VAX Object Language
A.5 End-of-Module Record

Value Name Meaning

0 EOM$C_SUCCESS Successful compilation or assembly; no errors
detected.

1 EOM$C_WARNING Language processor generated warning
messages. The linker issues a warning message
and proceeds with the linking operation.

2 EOM$C_ERROR Language processor generated severe errors.
The linker issues an error message, proceeds
with the linking operation, but does not produce
an output image file.

3 EOM$C_ABORT Language processor generated fatal errors. The
linker aborts the linking operation.

4–10 Reserved.

11–255 Ignored.

PSECT INDEX Name: EOM$B_PSINDX

Length: 1 byte

This field contains the program section index of the program section within the
module that contains the transfer address. Note that this field is present only if
the module contains a program section that contains the transfer address.

TRANSFER ADDRESS Name: EOM$L_TRFADR

Length: 4 bytes

This field contains the location of the transfer address. This location is expressed
as an offset from the base of this module’s contribution to the program section
that contains the transfer address. Note that this field is present only if the
module contains a program section that contains the transfer address.

TRANSFER FLAGS Name: EOM$L_TFRFLG

Length: 1 byte

This field is a 1-byte bit mask that contains information about the transfer
address. When bit 0 is set (EOM$V_WKTFR = 1), a weak transfer address
is indicated; when clear (EOM$V_WKTFR = 0), a strong transfer address is
indicated. If bit 0 is set and a transfer address has already been defined, no error
results. Bits 1 to 7 are reserved and must contain zeros. Note that this field
may be present only if the module contains a program section that contains the
transfer address, and even then it is optional.

A.6 End-of-Module-with-Word-Psect Record
The end-of-module-with-word-psect record is identical in format to the end-of-
module record (OBJ$C_EOM), with the following exceptions:

• The field names in the EOMW record begin with EOMW instead of EOM as
in the end-of-module record. For example, in the EOMW record, the RECORD
TYPE field has the name EOMW$B_RECTYP.

• The PSECT INDEX field for the EOMW record is 2 bytes long instead of 1
byte as in the EOM record.

A–32

VAX Object Language
A.7 Debugger Information Records

A.7 Debugger Information Records
The purpose of debugger information records is to allow the language processors
to pass compilation information, such as descriptions of local variables, to the
debugger. The transmission of this information may make use of all the functions
(commands) available in the TIR command set.

The command stream in DBG records generates a debugger symbol table (DST).
The DST immediately follows the binary of the user image, and the image header
contains a descriptor of where in the file such data is written. The production of
the DST in memory makes use of a separate location counter within the linker.
This location counter is initialized as if the DST is the highest addressed part of
the program region of the image. Note, however, the DST is not mapped into the
user image.

The linker produces a DST only if the /DEBUG qualifier is specified at link time.

A.8 Traceback Information Records
Traceback information records are the means by which language processors pass
information to the facility that produces a traceback of the call stack. From the
point of view of the linker and its processing of these records, they are identical
to DBG records. That is, they may be mixed with DBG records, and all data
generated goes into the DST as if they are DBG records.

The purpose of separating the information contained in DBG records is to
allow inclusion of a DST containing only traceback data when no debugging is
requested at link time. If the production of traceback information is disabled at
link time, then these records are ignored.

A.9 Link Option Specification Records
The link option specification records are defined to allow the language processor
to provide the linker with additional input files to be searched for symbol
resolution at link time.

As a result, the file specifications in the link option records must be correct at
link time. Also, because the files in the LNK records are encountered during the
first pass of the linking operation, no related name defaulting can be performed
for file specifications.

The linker can, however, apply default file types if none are present in the file
specifications in the LNK records:

OBJ Indicates object files

OLB Indicates object libraries and shareable image libraries

EXE Indicates shareable images

The first field in a LNK record is the record type LNK$B_RECTYP, whose value is
OBJ$C_LNK. The next field describes the LNK subrecord type, LNK$B_LNKTYP.

The next table lists each LNK subrecord type, its symbolic representation, and its
numeric code value.

A–33

VAX Object Language
A.9 Link Option Specification Records

LNK Subrecord Symbol Code

Object library file specification LNK$C_OLB 0

Shareable image library file specification LNK$C_SHR 1

Object library with inclusion list LNK$C_OLI 2

Object file or symbol table file LNK$C_OBJ 3

Shareable image file LNK$C_SHA 4

FLAGS Name: LNK$W_FLAGS

Length: 2 bytes

This field follows the subrecord type and is a word-length bit field. Currently,
only the two flag bits described in the next table are used with LNK$W_FLAGS.

Bit Name Meaning if Set

0 LNK$V_SELSER Selectively searches object module or symbol table. This bit
is valid only for LNK$C_OBJ subrecords.

1 LNK$V_LIBSRCH After module inclusion, searches this library for resolution
of currently undefined symbols. The need for this bit arises
out of an ambiguity between the usage of the two record
types LNK$C_OLI and LNK$C_OLB. The use of this bit
is best illustrated by the /LIBRARY and /INCLUDE file
qualifiers. Note that an input file specification such as A
/INCLUDE=(B,C) corresponds to a LNK$C_OLI type, and
an input file specification such as A/LIB corresponds to a
LNK$C_OLB type. However, an input file such as A/LIB
/INCLUDE=(B,C) is indicated by a linker options record
type of LNK$C_OLI with the LNK$V_LIBSRCH bit set.
This bit is valid only for LNK$C_OLI subrecords.

FILE NAME LENGTH Name: LNK$W_NAMLNG

Length: 2 bytes

This field is one word in length and is the length of the file name string. For
LNK$C_OLI subrecord types, this length does not include the length of the list of
modules to be included.

FILE NAME Name: LNK$T_NAME

Length: LNK$W_NAMLNG

This field is the file specification of the file to be included.

Note that for all subrecord types except LNK$C_OLI, this is the end of the LNK
record. For LNK$C_OLI records, the modules to be included are described as
a series of ASCII counted strings and appear immediately after the file name
LNK$T_NAME. The end of the module inclusion list is indicated by 1 byte of
zero. ♦

A–34

B
Alpha Object Language

Alpha This appendix defines Structure Level 2 of the Alpha object language. The object
language describes the contents of object modules to the OpenVMS Linker utility
(the linker), as well as to the OpenVMS Librarian utility. All language processors
that produce code for execution in native mode are free to use any or all of the
object language components.

This information is useful primarily to programmers writing compilers or
assemblers that must generate object modules acceptable for input to the linker.
These programmers may also find the description of the ANALYZE/OBJECT
command in the OpenVMS DCL Dictionary useful. ANALYZE/OBJECT will parse
the object module and perform limited integrity checking on the object.

This appendix contains seven sections. The first section provides an overview of
the object language and lists the main types of records. Each subsequent section
discusses a main record and its subrecords, as well as the context in which it
must be used.

The symbols used in this section are available to BLISS-32 programmers in
STARLET.REQ and STARLET.L32. These files also contain definitions for the
VAX object language defined in Appendix A. For C programmers, these symbols
are defined in EOBJRECDEF.H on Alpha systems and in OBJRECDEF.H on VAX
systems.

B.1 Object Language Overview
Each object module (or compiler-generated symbol table file) specified as input to
the linker must be in the format described in this appendix. The object language
defines an object module as an ordered set of variable-length records. Note that
for VAX object language, the record length can be determined only by the value
returned by OpenVMS RMS on each read operation, but that for Alpha object
language, the total length of the record is recorded in the size field (EOBJ$W_
SIZE). Table B–1 shows the main record types currently available.

Table B–1 Object Record Types

Record Type Symbol Value

Header (HDR) EOBJ$C_EMH 8

End-of-module (EOM) EOBJ$C_EEOM 9

Global symbol directory (GSD) EOBJ$C_EGSD 10

Text information and relocation (TIR) EOBJ$C_ETIR 11

Debugger information (DBG) EOBJ$C_EDBG 12

(continued on next page)

B–1

Alpha Object Language
B.1 Object Language Overview

Table B–1 (Cont.) Object Record Types

Record Type Symbol Value

Traceback information (TBT) EOBJ$C_ETBT 13

Reserved to Digital All others

The term reserved indicates that the value must not be used in the EOBJ$W_
RECTYP field because it is reserved for possible future use by Digital. The linker
will issue a warning if it encounters an illegal value.

All six legal record types do not have to appear in a single object module.
However, each object module must contain the following:

• One (and only one) main module header record (EOBJ$C_EMH, subtype
EMH$C_MHD) appearing first in the object module (see Section B.2.1)

• One (and only one) language name header record (EOBJ$C_EMH, subtype
EMH$C_LNM) appearing second in the object module (see Section B.2.2)

• At least one global symbol directory record (EOBJ$C_EGSD)

• One end-of-module (EOBJ$C_EEOM) record at the end of the object module

An object module may contain any number of global symbol directory (EOBJ$C_
EGSD), text information and relocation (EOBJ$C_ETIR), debugger (EOBJ$C_
EDBG), or traceback (EOBJ$C_ETBT) records as long as they are not first or last
in the object module. An object file may contain any number of object modules,
delimited by header and end-of-module records. Figure B–1 depicts the correct
ordering of records within an object module.

If a field is currently ignored by the linker, you must still allocate space for it,
filling it with zeros to its entire specified length. Some structures require padding
at the end with zeros in order to achieve quadword alignment.

Object records may contain the names of program sections, object modules,
language processors, utilities, and so on. Most records implement names as
counted strings (1-byte name length field followed by the indicated number of
ASCII characters). Others, such as the EOBJ$C_EMH subrecord EOBJ$C_
LNM, place the name at the end of the record and use the record’s size field to
extrapolate the size of the name.

Table B–2 shows the relationships between structure definitions. Each column
in the table lists a structure prefix in bold letters. The meaning of the prefix
is listed in Table B–3. The values in the column below the prefix represent the
key on which a substructure is based. The next column in that row is another
structure prefix in bold letters. For example, a simple global symbol definition
record is described with four structures. The EOBJ$ structure defines the main
record. The EGSD$ structure defines the envelope around the subrecords, of
which the EGSY$ and ESDF$ structures define the particulars of the symbol
definition.

B–2

Alpha Object Language
B.1 Object Language Overview

Figure B–1 Order of Records in an Object Module

Number of Bytes in EMH EOBJ$C_EMH

EOBJ$C_MHD

Number of Bytes in EMH EOBJ$C_EMH

EOBJ$C_LNM

Total Bytes for Record

Bytes for Subrecord

Bytes for Subrecord

0

EOBJ$C_EGSD

EOBJ$C_SYM

EOBJ$C_PSC

Total Bytes for Record

Bytes for Subrecord

EOBJ$C_ETIR

ETIR$C_STO_IMN

ETIR$C_STA_GBL

EOBJ$C_EEOMNumber of Bytes in EEOM

Bytes for Subrecord

EOBJ$W_RECTYP, EOBJ$W_SZIE

EOBJ$W_SUBTYP

EOBJ$W_RECTYP, EOBJ$W_SIZE

EOBJ$W_SUBTYP

EOBJ$W_RECTYP,EOBJ$W_RECSIZE

EGSD$L_ALIGNLW

EGSY$W_GSDTYP, EGPS$W_GSDSIZ

EGPS$W_GSDTYP, EGPS$W_GSDSIZ

EOBJ$W_RECTYP,EOBJ$W_RECSIZE

ETIR$W_RECTYP

EOBJ$W_RECTYP, EOBJ$W_SIZE

Main Module Header Record

Language Name Header Record

GSD Record

(GSD Subrecord)

(GSD Subrecord)

ETIR Record

(ETIR Subrecord)

(ETIR Subrecord)

End−of−Module Record

ZK−5277A−GE

31 0

B–3

Alpha Object Language
B.1 Object Language Overview

Table B–2 Relationships of Structures in the Alpha Object Language

EOBJ$

EOBJ$C_EMH EMH$

EOBJ$C_EEOM EEOM$

EOBJ$C_EGSD EGSD$

EGSD$C_PSC EGPS$

EGSD$C_SYM EGSY$

EGSY$V_DEF=1 ESDF$

EGSY$V_DEF=0 ESRF$

EGSD$C_IDC EIDC$

EGSD$C_SPSC1 ESGPS$

EGSD$C_SYMV1 ESDFV$

EGSD$C_SYMM1 ESDFM$

EGSD$C_SYMG1 EGST$

EOBJ$C_ETIR ETIR$

EOBJ$C_EDBG EDBG$

EOBJ$C_ETBT ETBT$

1This record is reserved for use by the linker.

Table B–3 Key to Structure Prefixes

EOBJ$ Object Record
Defines the type and size fields of a variable-length record, and the
object record types.

EMH$ Module Header Record
Defines the module header record and its subrecord types.

EEOM$ End Of Module Record
Defines the end-of-module record.

EGSD$ Global Symbol Directory Record
Defines a global symbol directory record and its subrecord types.

EGPS$ Psect Definition
Defines the GSD subrecord for a psect definition.

EGSY$ Symbol Definition or Reference
Defines the common fields in a GSD subrecord for a symbol definition
or reference.

ESDF$ Symbol Definition
Defines the fields in the GSD subrecord for a symbol definition that
follows the common fields defined by EGSY$.

ESRF$ Symbol Reference
Defines the fields in the GSD subrecord for a symbol reference that
follows the common fields defined by EGSY$.

EIDC$ Entity Identity Check
Defines the GSD subrecord for an entity ident consistency check.

(continued on next page)

B–4

Alpha Object Language
B.1 Object Language Overview

Table B–3 (Cont.) Key to Structure Prefixes

ESGPS$1 Shareable Psect Definition
Defines the GSD subrecord for a shareable image psect definition.

ESDFV$1 Vectored Symbol Definition
Defines the GSD subrecord for a vectored symbol.

ESDFM$1 Masked Symbol Definition
Defines the GSD subrecord for a masked symbol.

EGST$1 Universal Symbol Definition
Defines a GSD subrecord for a universal symbol definition.

ETIR$ Text Information and Relocation Record
Defines a text information and relocation command.

EDBG$ Debugger Record
Defines a record used to build a debugger symbol table. Contains TIR
subrecords defined by ETIR$.

ETBT$ Traceback Record
Defines a record used to build a debugger symbol table for use with the
traceback facility. Contains TIR subrecords defined by ETIR$.

1This record is reserved for use by the linker.

The following sections contain descriptions and diagrams of the Alpha object
language records and subrecords.

B.2 Module Header Records (EOBJ$C_EMH)
The Alpha object language currently defines seven types of header records. Each
type is assigned a symbolic code with values between 0 and 6. All other values
are illegal in an Alpha object module.

Table B–4 lists the various types of header records.

Table B–4 Module Header Subrecords

Subtype Symbol Value

Main module header (MHD)1 EMH$C_MHD 0

Language processor name header (LNM)1 EMH$C_LNM 1

Source file header (SRC)2 EMH$C_SRC 2

Title text header (TTL)2 EMH$C_TTL 3

Copyright header (CPR)2 EMH$C_CPR 4

Maintenance status header (MTC)2 EMH$C_MTC 5

General text header (GTX)2 EMH$C_GTX 6

Reserved to Digital All others

1This record is required by the linker.
2This record is currently ignored by the linker.

The content and format of the MHD and LNM header subtypes, both of which
are required in each object module, are described in the following subsections.
Figure B–2 depicts a module header with MHD and LNM subrecords.

B–5

Alpha Object Language
B.2 Module Header Records (EOBJ$C_EMH)

Figure B–2 Module Header Record with Subrecords

Number of Bytes in Record EOBJ$C_EMH

EMH$C_MHD

EOBJ$C_EMH

EOBJ$W_RECTYP, EOBJ$W_SIZE

EOBJ$W_SUBTYP, EOBJ$B_MHD_STRLVL,0

31 0

0

0

Size in Bytes of Longest Record

ASCII Text of Compile Date

ASCII Text of Module Name Length

Length

Uncounted ASCII Name of Compiler that Built the Object

EMH$C_LNM

EOBJ$C_STRLVL
EOBJ$B_MHD_HOLD

EMH$L_ARCH1

EMH$L_ARCH2

EMH$L_RECSIZ

EMH$B_NAMLNG

EOBJ$W_RECTYP, EOBJ$W_SIZE

EOBJ$W_SUBTYP

ZK−5278A−GE

Number of Bytes in Record

ASCII Text of Module Version Length

Though currently ignored by the linker, the header subtypes SRC, TTL, CPR,
MTC, and GTX exist to allow the language processors to provide printable
information within the object module for documentation purposes.

The format of the LNK, SRC, TTL, CPR, MTC, and GTX records consists of a
record type field (EOBJ$W_RECTYP) containing the value EOBJ$C_EMH, a
record size field (EOBJ$W_SIZE), a header subtype field (EOBJ$W_SUBTYP),
and a field containing the uncounted ASCII text.

The content and format of the SRC and TTL records are depicted in subsections
B.2.3 and B.2.4, respectively. The contents of these records, as well as the MTC
record (which contains information about the maintenance status of the object
module), are displayed in an object module analysis. (See the description of the
ANALYZE/OBJECT command in the OpenVMS DCL Dictionary.)

B.2.1 Main Module Header Record (EMH$C_MHD)
The main module header record, depicted in Figure B–2, is composed of the
following fields. The name, symbolic representation, and length of each field are
presented, followed by a symbolic value or an explanation of the contents of the
field, where appropriate.

B–6

Alpha Object Language
B.2 Module Header Records (EOBJ$C_EMH)

RECORD TYPE Name: EMH$W_RECTYP

Length: 2 bytes

The field EMH$W_RECTYP redefines EOBJ$W_RECTYP. It must contain the
value EOBJ$C_EMH.

RECORD SIZE Name: EMH$W_SIZE

Length: 2 bytes

The field EMH$W_SIZE redefines EOBJ$W_SIZE. It is the size of the entire
record, including the preceding record type field.

HEADER TYPE Name: EMH$W_HDRTYP

Length: 2 bytes

The field EMH$W_HDRTYP redefines EOBJ$W_SUBTYP. It must contain a
header subtype such as EMH$C_MHD (main module header) or EMH$C_LNM
(language name and version).

STRUCTURE LEVEL Name: EMH$B_STRLVL

Length: 1 byte

The structure level is EOBJ$C_STRLVL. Because the format of the MHD record
never changes, the structure level field is provided so that changes in the format
of other records can be made without recompiling every module that conformed to
the previous format.

ALIGNMENT BYTE Name: EMH$B_TEMP

Length: 1 byte

Alignment, must be zero.

ARCHITECTURE Name: EMH$L_ARCH1

Length: 4 bytes

Currently unused, must be zero.

ARCHITECTURE Name: EMH$L_ARCH2

Length: 4 bytes

Currently unused, must be zero.

MAXIMUM RECORD SIZE Name: EMH$L_RECSIZ

Length: 4 bytes

This field contains the size in bytes of the longest record that can occur in the
object module. This value may not exceed the maximum size of a record that is
defined by the constant EOBJ$C_MAXRECSIZ, which is 8192 bytes.

MODULE NAME LENGTH Name: EMH$B_NAMLNG

Length: 1 byte

This field contains the length in bytes of the module name.

MODULE NAME Name: EMH$T_NAME

Length: Variable, 1 to 31 bytes for
object modules, 1 to 39 bytes for the
module header at the beginning of a
shareable image’s global symbol table

B–7

Alpha Object Language
B.2 Module Header Records (EOBJ$C_EMH)

This field contains the module name in ASCII format.

MODULE VERSION Name: None

Length: Variable, 1 to 32 bytes,
including the length byte

This field contains the module version number as an ASCII counted string. The
length byte must be present and contain 0 if there is no module version.

CREATION TIME AND DATE Name: None

Length: 17 bytes

This field contains the module creation time and date in the fixed format dd-
mmm-yyyy hh:mm, where dd is the day of the month, mmm is the standard
3-character abbreviation of the month, yyyy is the year, hh is the hour (00 to 23),
and mm is the minutes of the hour (00 to 59). Note that a space is required after
the year and that the total character count for this time format is 17 characters
(including hyphens (-), the space, and the colon (:)).

B.2.2 Language Processor Name Header Record (EMH$C_LNM)
The language processor name header record is composed of the following fields:

RECORD TYPE Name: EMH$W_RECTYP

Length: 2 bytes

EMH$W_RECTYP redefines EOBJ$W_RECTYP. The record type is EOBJ$C_
EMH.

RECORD SIZE Name: EMH$W_SIZE

Length: 2 bytes

The field EMH$W_SIZE redefines EOBJ$W_SIZE. It is the size of the entire
record, including the preceding record type field.

HEADER TYPE Name: EMH$W_HDRTYP

Length: 2 bytes

EMH$W_HDRTYP redefines EOBJ$W_SUBTYP. The header type is EMH$C_
LNM.

LANGUAGE NAME Name: None

Length: Variable

This field, which is generated by the language processor, contains the name and
version of the compiler that wrote the object module. It consists of a variable-
length string of ASCII characters and is not preceded by a byte count of the
string.

B.2.3 Source Files Header Record (EMH$C_SRC)
The contents of the source files header record, although ignored by the linker,
are displayed in an object module analysis. (See the description of the ANALYZE
/OBJECT command in the OpenVMS DCL Dictionary.) The source files header
record is composed of the following fields:

RECORD TYPE Name: EMH$W_RECTYP

Length: 2 bytes

B–8

Alpha Object Language
B.2 Module Header Records (EOBJ$C_EMH)

EMH$W_RECTYP redefines EOBJ$W_RECTYP. The record type is EOBJ$C_
EMH.

RECORD SIZE Name: EMH$W_SIZE

Length: 2 bytes

The field EMH$W_SIZE redefines EOBJ$W_SIZE. It is the size of the entire
record, including the preceding record type field.

HEADER TYPE Name: EMH$W_HDRTYP

Length: 2 bytes

EMH$W_HDRTYP redefines EOBJ$W_SUBTYP. The header type is EMH$C_
SRC.

SOURCE FILES Name: None

Length: Variable

This field, which is generated by the compiler, contains the list of file
specifications from which the object module was created. It consists of a variable-
length string of ASCII characters and is not preceded by a byte count of the
string.

B.2.4 Title Text Header Record (EMH$C_TTL)
The contents of the title text header record, although ignored by the linker, are
displayed in an object module analysis. (See the description of the ANALYZE
/OBJECT command in the OpenVMS DCL Dictionary.) The title text header
record is composed of the following fields:

RECORD TYPE Name: EMH$W_RECTYP

Length: 2 bytes

EMH$W_RECTYP redefines EOBJ$W_RECTYP. The record type is EOBJ$C_
EMH.

RECORD SIZE Name: EMH$W_SIZE

Length: 2 bytes

The field EMH$W_SIZE redefines EOBJ$W_SIZE. It is the size of the entire
record, including the preceding record type field.

HEADER TYPE Name: EMH$W_HDRTYP

Length: 2 bytes

EMH$W_HDRTYP redefines EOBJ$W_SUBTYP. The header type is EMH$C_
TTL.

TITLE TEXT Name: None

Length: Variable

This field, which is generated by the language processor, contains a brief
description of the object module. It consists of a variable-length string of ASCII
characters and is not preceded by a byte count of the string.

B–9

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

B.3 Global Symbol Directory Records (EOBJ$C_EGSD)
GSD records contain information that the linker uses to build link-time structures
describing symbol references, symbol definitions, procedure definitions, and psect
definitions. These structures are used to build the global symbol table, the
debugger symbol table, and image sections, including the fix-up section.

At least one GSD record must appear in each object module.

A GSD record consists of a type field (EGSD$W_RECTYP), a size field (EGSD$W_
RECSIZ), a quadword-alignment field (EGSD$L_ALIGNLW), and one or more
GSD subrecords. Each subrecord consists of a type field, a size field, and one or
more fields that differ depending on the type value. Each GSD subrecord must
start on a quadword boundary. The beginning of the GSD record is filled out to a
quadword by the EGSD$L_ALIGNLW field. This places the first subrecord on a
quadword boundary. Each subrecord must be filled out to a quadword boundary
by padding with zeros so that the following subrecord is also quadword aligned.
Any padding must be reflected in the record’s total byte count.

Table B–5 lists each type of GSD subrecord together with its symbolic
representation and its corresponding numeric value.

Table B–5 Types of GSD Subrecords

GSD Subrecord Symbol Value

Program section definition EGSD$C_PSC 0

Global symbol specification EGSD$C_SYM 1

Random identity check EGSD$C_IDC 2

Reserved to Digital 3–4

Shareable program section definition1 EGSD$C_SPSC 5

Vectored symbol definition2 EGSD$C_SYMV 6

Masked symbol definition2 EGSD$C_SYMM 7

Universal symbol definition1 EGSD$C_SYMG 8

Reserved to Digital All others

1This record is reserved to the linker for building global symbol tables.
2This record is reserved to the linker for building the VMS executive.

A single GSD record must contain at least one of the above types of subrecords.
The number of subrecords in a GSD record is limited by the maximum record
size specified in the header field EMH$L_RECSIZ. Figure B–1 shows the general
format of a GSD record that contains two subrecords. Note that the RECORD
TYPE and RECORD SIZE fields appear only once at the beginning of the record,
regardless of how many subrecords there are. The RECORD SIZE field counts
all of the bytes in the record, including the RECORD TYPE and RECORD SIZE
fields themselves, and all of the GSD subrecords. Each GSD subrecord includes
a GSD SUBRECORD TYPE and GSD SUBRECORD SIZE field. The RECORD
TYPE and RECORD SIZE fields for the GSD record are not listed in the following
sections, which describe each subrecord, and are not shown in the diagrams.

B–10

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

B.3.1 Program Section Definition Subrecords (EGSD$C_PSC, EGSD$C_SPSC)
The linker assigns program sections an identifying index number as it processes
each successive psect definition, that is, each EGSD$C_PSC subrecord. The
linker assigns these numbers in sequential order, assigning 0 to the first program
section it encounters, 1 to the second, and so on, up to the maximum allowable
limit of 65,535 (216 –1) within any single object module.

Program sections are referred to by other object language records by means of this
program section index. For example, the global symbol specification subrecord
(EGSD$C_SYM) contains a field that specifies the program section index. This
field is used to locate the program section containing storage for the symbol. Text
information and relocation (TIR) commands also use the program section index.

Care is required to ensure that program sections are defined to the linker (and
thus assigned an index) in the proper order so that other object language records
that reference a program section by means of the index are in fact referencing
the correct program section. Program sections may be referenced before they are
defined, although it is good practice to define the program sections first when
possible.

B.3.1.1 Normal Program Section Definition Subrecord (EGSD$C_PSC)
Figure B–3 depicts the format of a program section definition subrecord, showing
the fields it contains and providing a description of each.

Figure B–3 GSD Subrecord for a Program Section Definition

EGSD$C_PSC EGPS$W_GSDTYP, EGPS$W_SIZE

EGRPS$B_ALIGN, EGPS$B_TEMP,

Bytes for Subrecord

Flags 0 Exponent

Number of Bytes in the psect

LengthASCII string plus padding

EGPS$W_FLAGS

to align following subrecord on

EGPS$L_ALLOC

quadword boundary

EGPS$B_NAMLNG

ZK−5283A−GE

31 0

GSD SUBRECORD TYPE Name: EGPS$W_GSDTYP

Length: 2 bytes

The GSD type is EGSD$C_PSC.

GSD SUBRECORD SIZE Name: EGPS$W_SIZE

Length: 2 bytes

This field contains the size of the entire subrecord, including the preceding type
field and any padding used to quadword align the following record.

PSECT ALIGNMENT Name: EGPS$B_ALIGN

B–11

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

Length: 1 byte

This field specifies the virtual address boundary at which the program section
is placed. Each contribution to a particular program section may specify its own
alignment. If the contributions have different alignments, the greatest alignment
is used to align the entire program section. The flags field of an overlaid program
section has the EGPS$V_OVR bit set.

The alignment field contains a value between 0 and 16, which is interpreted as a
power of 2; the value of this expression is the alignment in bytes between 1 and
64K. Table B–6 illustrates some common alignment field values.

Table B–6 Alignment Field Values

Value Alignment in Bytes

0 1 (BYTE)

1 2 (WORD)

2 4 (LONGWORD)

3 8 (QUADWORD)

4 16 (OCTAWORD)

9 512 (PAGELET)

13 8K (8K BIG PAGE)

16 64K (64K BIG PAGE)

ALIGNMENT BYTE Name: EGPS$B_TEMP

Length: 1 byte

Field alignment byte. Must be 0.

FLAGS Name: EGPS$W_FLAGS

Length: 2 bytes

This field is a word-length bit field, each bit indicating (when set) that the
program section has the corresponding attribute. (See Section 3.2 for a
description of program section attributes.) The following table lists the numbers,
names, and corresponding meanings of each bit in the field:

Bit Name Meaning if Set

0 EGPS$V_PIC Not meaningful. For compatability reasons, the
linker still sorts psects on this attribute when
building image sections. This bit should never
be the only distinguishing attribute between two
different psects. If two psects have exactly the same
attributes except for EGSP$V_PIC, then the psect
attributes should be changed so that they match.

1 EGPS$V_LIB Program section is defined in the symbol table of
a shareable image, to which this image is bound.
This bit is used by the linker and should not be set
in user-defined program sections.

B–12

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

Bit Name Meaning if Set

2 EGPS$V_OVR Contributions to this program section by more than
one module are overlaid. If this bit is set, EGPS$V_
REL and EGPS$V_GBL must also be set. An
overlaid program section must not be referenced by
the ESDF$L_PSINDX field of a symbol definition.

3 EGPS$V_REL Program section is relocatable. If this bit is not
set, the program section is absolute and therefore
contains only symbol definitions. Note that memory
is not allocated for absolute program sections.

4 EGPS$V_GBL Program section is global.

5 EGPS$V_SHR Program section is shareable between two or more
active processes.

6 EGPS$V_EXE Program section is executable.

7 EGPS$V_RD Program section is readable. This attribute is
currently ignored by the linker.

8 EGPS$V_WRT Program section is writable.

9 EGPS$V_VEC Program section contains change mode dispatch
vectors or message vectors. This bit is normally left
clear and set by the programmer with the linker
option PSECT_ATTRIBUTE=psect-name,VEC

10 EGPS$V_NOMOD Program section contains unmodified data and can
be included in a demand-zero image section.

11 EGPS$V_COM Program section defines conditional storage for a
symbol with the EGSD$V_COMM bit set. If this bit
is set, EGPS$V_OVR, EGPS$V_REL, and EGPS$V_
GBL must also be set.

12–15 Reserved to Digital.

ALLOCATION Name: EGPS$L_ALLOC

Length: 4 bytes

This field contains the length in bytes of this module’s contribution to the program
section. If the program section is absolute, the value of the allocation field must
be 0.

PSECT NAME LENGTH Name: EGPS$B_NAMLNG

Length: 1 byte

This field contains the length in bytes of the program section name.

PSECT NAME Name: EGPS$T_NAME

Length: Variable, 1 to 31 bytes

This field contains the name of the program section in ASCII format. Note that
program section names are limited to 31 bytes, while symbol names are limited to
64 bytes. Compilers that implement global symbols as overlaid program sections
(as opposed to global symbol definitions with storage allocated by a concatenated
program section) must be aware of this restriction.

B–13

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

B.3.1.2 Program-Section-Definition-in-Shareable-Image Subrecord (GSD$C_SPSC)
This subrecord is reserved to the linker. It is generated in the GST when a
program section is made universal with the SYMBOL_VECTOR keyword PSECT.
When a main image links against a shareable image that contains these special
universal program sections, the linker matches program sections from the main
image to those in the shareable image and overlays them. The overlay is done
only if the program sections have the same name, the attributes EGSY$V_
OVR, EGSY$V_REL, and EGSY$V_GBL, and the same allocation. References
to the program section in the main image are fixed up and thereby converted to
references to the corresponding program section in the shareable image.

Shareable program sections have indexes, but are never referenced by symbol
definitions. All symbol definitions in the GST point to an absolute program
section, regardless of whether they are relocatable, that is, regardless of whether
the EGSY$V_REL bit is set or clear. Figure B–4 depicts the format of a definition
subrecord, followed by a short description of each field.

Figure B–4 GSD Subrecord for a Shareable Image Program Section Definition

EGSD$C_SPSC ESGPS$W_GSDTYP, ESGPSD$W_SIZE

ESGPS$B_ALIGN, ESGPS$B_TEMP,

Bytes for Subrecord

Flags 0 Exponent

LengthASCII string plus padding

ESGPS$W_FLAGS

to align following subrecord on

ESGPS$L_ALLOC

quadword boundary

ESGPS$B_NAMLNG

ZK−5287A−GE

Number of Bytes in the Psect

0

Symbol Vector Offset

ESGPS$L_BASE

ESGPS$L_VALUE

Image Offset of Psect

GSD SUBRECORD TYPE Name: ESGPS$W_GSDTYP

Length: 2 bytes

GSD type is EGSD$C_SPSC.

GSD SUBRECORD SIZE Name: ESGPS$W_SIZE

Length: 2 bytes

This field contains the size of the entire subrecord, including the preceding type
field and any padding used to quadword align the following record.

PSECT ALIGNMENT Name: ESGPS$B_ALIGN

Length: 1 byte

B–14

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

This field specifies the virtual address boundary at which the program section is
placed. The alignment for the entire program section is the largest one specified
by any of its contributions. Valid values for this field are 0 to 16.

ALIGNMENT BYTE Name: ESGPS$B_TEMP

Length: 1 byte

Field alignment byte. Must be 0.

FLAGS Name: ESGPS$W_FLAGS

Length: 2 bytes

This field is a word-length bit field, each bit indicating (when set) that the
program section has the corresponding attribute. The next table lists the
numbers, names, and corresponding meanings of each bit in the field:

Bit Name Meaning if Set

0 ESGPS$V_PIC Reserved, must be 1.

1 ESGPS$V_LIB Reserved, must be 0.

2 ESGPS$V_OVR Always set. Even if the contributions to this
program section were concatenated, this
attribute is set on the GST entry for the
universal program section definition.

3 ESGPS$V_REL Program section is relocatable. Must be 1.

4 ESGPS$V_GBL Program section is global. Must be 1.

5 ESGPS$V_SHR Program section is shareable between two or
more active processes. Propagated from the
contributing psects.

6 ESGPS$V_EXE Reserved, must be 0.

7 ESGPS$V_RD Reserved, must be 0.

8 ESGPS$V_WRT Program section is writable. Propagated from
the contributing psects.

9 ESGPS$V_VEC Reserved, must be 0.

10 ESGPS$V_NOMOD Reserved, must be 0.

11 ESGPS$V_COM Reserved, must be 0.

12–15 Reserved to Digital.

ALLOCATION Name: ESGPS$L_ALLOC

Length: 4 bytes

This field contains the length in bytes of this module’s contribution to the program
section. The value is always nonzero.

BASE Name: ESGPS$L_BASE

Length: 4 bytes

This field contains a copy of the low-order longword of the second half of the
symbol vector entry. It is the image offset of the program section.

VALUE Name: ESGPS$L_VALUE

Length: 4 bytes

B–15

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

This field contains the offset into the symbol vector of an entry for this program
section.

PSECT NAME LENGTH Name: ESGPS$B_NAMLNG

Length: 1 byte

This field contains the length in bytes of the program section name.

PSECT NAME Name: ESGPS$T_NAME

Length: Variable, 1 to 31 bytes

This field contains the name of the program section in ASCII format.

B.3.1.3 Standard Program Section Names and Attributes
Table B–7 describes the standard program section names and attributes used by
the Alpha compilers provided by Digital.

Table B–7 Standard Program Sections

Name Attributes Use

ABS NOPIC CON ABS LCL SHR NOEXE NORD
NOWRT

Contains the absolute program
section, which is used by global
constants. It has no allocation.
Note that the linker builds the
global symbol table with an
absolute program section named
.$$ABS$$., which has the attributes
PIC, LIB, and RD.

BSS NOPIC CON REL LCL NOSHR NOEXE RD
WRT NOMOD

Contains unmodified data. Used
to construct demand-zero image
sections.

$CODE$ PIC CON REL LCL SHR EXE NORD NOWRT Contains executable instructions.

$DATA$ NOPIC CON REL LCL NOSHR NOEXE RD
WRT [NOMOD]

Contains read/write, statically
initialized data.

$LINK$ NOPIC CON REL LCL NOSHR NOEXE RD
NOWRT

Contains linkage consisting of
procedure descriptors, linkage
pairs, and .ADDRESS references.

$LITERAL$ PIC CON REL LCL SHR NOEXE RD NOWRT Contains read-only literals

Common Data NOPIC OVR REL GBL NOSHR NOEXE RD
WRT [NOMOD]

Contains common data. These
psects are usually named after
the variable they represent (for
example, FORTRAN common
blocks). They are no longer marked
SHR by default, as on VAX systems.

$READONLY$ PIC CON REL LCL SHR NOEXE RD NOWRT Contains read-only data.

B.3.2 Global Symbol Specification Subrecords (EGSD$C_SYM,
EGSD$C_SYMG)

The global symbol specification subrecords are used to describe the nature of a
symbol (global or universal, relocatable or absolute) and how it is being used
(definition or reference, weak or strong). This information is specified in the
FLAGS field of the subrecord. Unlike the GSD$C_SYM record on VAX systems,
this record type is also used to define procedures (by setting the EGSY$V_NORM
bit in the FLAGS field). There is no Alpha object language equivalent to the
GSD$C_EPM record type, which is used on VAX systems to define an entry point
mask for a global procedure.

B–16

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

There are two formats for a global symbol specification subrecord, one for a
symbol definition and one for a symbol reference. A symbol definition is indicated
when the EGSY$V_DEF bit in the FLAGS field is set. A symbol reference is
indicated when the EGSY$V_DEF bit is clear.

Section B.3.2.1 describes the format of the global symbol specification subrecord
for symbol definitions; Section B.3.2.3 does the same for symbol references.

B.3.2.1 GSD Subrecord for a Global Symbol Definition (EGSD$C_SYM with EGSY$V_DEF Set)
Figure B–5 depicts a global symbol specification subrecord that defines data.
Figure B–6 depicts a global symbol specification that defines a procedure. The
structures of each of these definitions are identical and have the same names,
but some of the fields are interpreted differently based on the setting of the
EGSY$V_NORM bit in the EGSY$W_FLAGS field. The Alpha object language
does not have a separate subrecord type for procedures (for example, the VAX
entry-point-symbol-and-mask-definition [GSD$C_EPM] subrecord).

Figure B–5 GSD Subrecord for a Global Symbol Definition (Data)

EGSD$C_SYM EGSY$W_GSDTYP, EGSY$W_SIZE

EGSY$B_DATYP, EGSY$B_TEMP,

0

Bytes for Subrecord

EGSY$M_DEF... 0 Data Type

Psect Offset or Constant Value

0

0

0

Program Section Index

LengthASCII string plus padding

EGSY$W_FLAGS

to align following subrecord on

ESDF$L_VALUE

quadword boundary

ESDF$L_CA_PSINDX

ESDF$L_PSINDX

ESDF$B_NAMLNG

ZK−5280A−GE

ESDF$L_CODE_ADDRESS

31 0

B–17

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

Figure B–6 GSD Subrecord for a Global Symbol Definition (Procedure)

EGSD$C_SYM EGSY$W_GSDTYP, EGSY$W_SIZE

EGSY$B_DATYP, EGSY$B_TEMP,

0

Bytes for Subrecord

EGSY$M_NORM... 0 Data Type

Psect Offset of Procedure Descriptor

Psect offset of Procedure Entry Point

0

Index of psect Containing Procedure Entry Point

LengthASCII string plus padding

EGSY$W_FLAGS

to align following subrecord on

ESDF$L_VALUE

quadword boundary

ESDF$L_CA_PSINDX

ESDF$L_PSINDX

ESDF$B_NAMLNG

ZK−5282A−GE

ESDF$L_CODE_ADDRESS

Index of psect Containing Procedure Descriptor

31 0

The following is a list of the fields in a global symbol definition subrecord. Fields
that have different meanings depending on the value of the FLAGS field are
noted.

GSD SUBRECORD TYPE Name: ESDF$W_GSDTYP

Length: 2 bytes

This field redefines EGSY$W_GSDSIZ. GSD type is EGSD$C_SYM.

GSD SUBRECORD SIZE Name: ESDF$W_SIZE

Length: 2 bytes

This field redefines EGSY$W_GSDSIZ. It is the size of the entire subrecord,
including the preceding type field and any padding used to quadword align the
following record.

DATA TYPE Name: ESDF$B_DATYP

Length: 1 byte

This field redefines EGSY$B_DATYP. It contains the data type of the global
symbol. The data type is encoded as described in the OpenVMS Programming
Interfaces: Calling a System Routine. The linker currently ignores this field.

ALIGNMENT BYTE Name: ESDF$B_TEMP

Length: 1 byte

This field redefines EGSY$B_TEMP. Alignment field must be 0.

FLAGS Name: ESDF$W_FLAGS

Length: 2 bytes

B–18

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

This field redefines EGSY$W_FLAGS. It is a 2-byte bit field, but only bits 0
through 6 are used. The following table lists the numbers, names, and meanings
of each bit in the field:

Bit Name Meaning

0 EGSY$V_WEAK When this bit is set, a weak symbol definition or
reference is indicated; when clear, a strong symbol
definition or reference.

1 EGSY$V_DEF This bit is set for a symbol definition.

2 EGSY$V_UNI Reserved, must be 0.

3 EGSY$V_REL When this bit is set, the symbol is defined as relocatable;
when clear, as absolute. When it is relocated, the value
of a relocatable symbol is augmented by the base address
of the module’s contribution to the program section.

4 EGSY$V_COMM Conditional Symbol Definition. If set, then EGSY$V_
REL and EGSY$V_WEAK must be set, and the program
section that contains the storage for the symbol must
have EGPS$V_COM set.

5 EGSY$V_VECEP Reserved, must be 0.

6 EGSY$V_NORM Indicates Normal Procedure Definition. If set, then
EGSY$V_REL must be set.

7–15 Reserved to Digital.

VALUE Name: ESDF$L_VALUE

Length: 4 bytes

This field contains the value assigned to the symbol by the language processor. If
the EGSY$V_NORM bit is set, the value of this field is the offset into the program
section (indicated in ESDF$L_PSINDX) of the procedure descriptor.

PROCEDURE ENTRY POINT OFFSET Name: ESDF$L_CODE_ADDRESS

Length: 4 bytes

If the EGSY$V_NORM bit is set, the value in this field is the offset into the
program section (indicated by ESDF$L_CA_PSINDX) of the entry point of the
procedure. If the EGSY$V_NORM bit is clear, this field must be 0.

PROCEDURE ENTRY POINT PSECT INDEX Name: ESDF$L_CA_PSINDX

Length: 4 bytes

If the EGSY$V_NORM bit is set, the value in this field contains the program
section index of the program section that contains the code address. If the
EGSY$V_NORM bit is clear, this field must be 0.

PSECT INDEX Name: ESDF$L_PSINDX

Length: 4 bytes

This field contains the program section index, described in Section B.3.1. If
EGSY$V_REL is set, the value in this field identifies a relocatable program
section (one with EGPS$V_REL set) that contains the storage for the data
or procedure descriptor. If the EGSY$V_REL bit is clear (the symbol is a
constant), the PSECT INDEX must point to an absolute program section (one
with EGPS$V_REL clear).

B–19

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

SYMBOL NAME LENGTH Name: ESDF$B_NAMLNG

Length: 1 byte

This field contains the length in bytes of the symbol name.

SYMBOL NAME Name: ESDF$T_NAME

Length: Variable, 1 to 64 bytes

This field contains the symbol name in ASCII format.

B.3.2.2 GSD Subrecord for a Universal Symbol Definition (EGSD$C_SYMG)
This record is reserved for use by the linker. It is used solely in global symbol
tables in shareable images and global symbol table files (.STB) generated by
the linker. This record type is not used in compiler-generated symbol table
files. Figure B–7 depicts the universal symbol specification subrecord for a data
definition.

Figure B–7 GSD Subrecords for Universal Data Definition

EGSD$C_SYMG EGSY$W_GSDTYP, EGSY$W_SIZE

EGSY$B_DATYP, EGSY$B_TEMP,

Bytes for Subrecord

EGSY$M_DEF... 0 Data Type

LengthASCII string plus padding

EGSY$W_FLAGS

to align following subrecord on

EGST$L_VALUE

quadword boundary

EGST$B_NAMLNG

ZK−5285A−GE

Symbol Vector Offset

0

0

0

Constant Value or Image Offset of Data Cell

Index Pointing to an Absolute psect

EGST$L_LP_1

EGST$L_LP_2

EGST$L_PSINDX

31 0

0

Figure B–8 depicts the universal symbol specification subrecord for a procedure
definition.

B–20

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

Figure B–8 GSD Subrecord for a Universal Procedure Definition

EGSD$C_SYMG EGSY$W_GSDTYP, EGSY$W_SIZE

EGSY$B_DATYP, EGSY$B_TEMP,

Bytes for Subrecord

EGSY$M_DEF... 0 Data Type

LengthASCII string plus padding

EGSY$W_FLAGS

to align following subrecord on

EGST$L_VALUE

quadword boundary

EGST$B_NAMLNG

ZK−5286A−GE

Symbol Vector Offset

0

0

Image Offset of Procedure Descriptor

Index Pointing to an Absolute psect

EGST$L_LP_1

EGST$L_LP_2

EGST$L_PSINDX

Image Offset of Procedure Entry Point

31 0

0

The following is a list of the fields in a universal symbol definition subrecord.

GSD SUBRECORD TYPE Name: EGST$W_GSDTYP

Length: 2 bytes

This field redefines EGSY$W_GSDTYP. The GSD type is EGSD$C_SYMG.

GSD SUBRECORD SIZE Name: EGST$W_SIZE

Length: 2 bytes

This field redefines EGSY$W_GSDSIZ. It is the size of the entire subrecord,
including the preceding type field and any padding used to quadword align the
following record.

DATA TYPE Name: EGST$B_DATYP

Length: 1 byte

This field redefines EGSY$B_DATYP. Reserved, must be 0.

ALIGNMENT BYTE Name: EGST$B_TEMP

Length: 1 byte

This field redefines EGSY$B_TEMP. Used for alignment, must be 0.

FLAGS Name: EGST$W_FLAGS

Length: 2 bytes

B–21

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

This field redefines EGSY$W_FLAGS. It is a 2-byte bit field, whose bits describe
the universal symbol.

Bit Name Meaning

0 EGSY$V_WEAK Reserved, must be 0.

1 EGSY$V_DEF Indicates definition, must be 1.

2 EGSY$V_UNI Indicates universal symbol, must be 1.

3 EGSY$V_REL When this bit is set, the symbol is defined as relocatable;
when clear, it is absolute. EGSY$V_REL should be set
if the symbol identifies a procedure (EGSY$V_NORM is
set) or if the symbol identifies a relocatable data cell. If
the symbol is a constant, the EGSY$V_REL bit should
be clear.

4 EGSY$V_VECEP Reserved, must be 0.

5 EGSY$V_COMM Reserved, must be 0.

6 EGSY$V_NORM Normal Procedure Definition.

7–15 Reserved to Digital.

VALUE Name: EGST$L_VALUE

Length: 4 bytes

This field contains the offset into the symbol vector of the symbol vector entry
for this symbol. If the symbol is a constant, the VALUE field still contains an
offset into the symbol vector; the constant value resides in the symbol vector
itself. External references to a constant symbol will receive fix-ups. Unlike VAX
systems, there are no link-time constants on Alpha systems.

FIRST HALF OF SYMBOL VECTOR ENTRY Name: EGST$L_LP_1

Length: 4 bytes

This field contains the low-order 32 bits of of the first quadword of the symbol’s
entry in the symbol vector. If the EGSY$V_NORM bit is set, this is the offset into
the image of the procedure entry point. Otherwise, this field contains zeros.

SECOND HALF OF SYMBOL VECTOR
ENTRY

Name: EGST$L_LP_2

Length: 4 bytes

This field contains the low-order 32 bits of of the second quadword of the symbol’s
entry in the symbol vector. If the EGSY$V_REL bit is clear, the symbol is a
constant and this field contains the constant value. If EGSY$V_REL bit is set
and the EGSY$V_NORM bit is clear, this field contains the image offset of data.
When the EGSY$V_NORM bit is set, the GSD subrecord defines a procedure and
the field contains the image offset of a procedure descriptor.

PSECT INDEX Name: EGST$L_PSINDX

Length: 4 bytes

This must be the index of an absolute psect. Normally there is only one absolute
psect, named ‘‘.$$ABS$$.’’, and its index is 0.

SYMBOL NAME LENGTH Name: EGST$B_NAMLNG

Length: 1 byte

B–22

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

This field contains the length in bytes of the symbol name.

SYMBOL NAME Name: EGST$T_NAME

Length: Variable, 1 to 64 bytes

This field contains the symbol name in ASCII format.

B.3.2.3 GSD Subrecord for a Symbol Reference
Figure B–9 depicts the global symbol specification subrecord for a symbol
reference. It is followed by a short description of each field.

Figure B–9 GSD Subrecord for a Global Symbol Reference (EGSD$C_SYM with EGSY$V_DEF
Clear)

EGSD$C_SYM EGSY$W_GSDTYP, EGSY$W_SIZE,

EGSY$B_DATYP, EGSY$B_TEMP,

Bytes for Subrecord

0 Data Type

LengthASCII string plus padding
to align following subrecord on ESRF$B_NAMLNG
quadword boundary

ZK−5281A−GE

0
EGSY$W_FLAGS

31 0

GSD SUBRECORD TYPE Name: ESRF$W_GSDTYP

Length: 2 bytes

This field redefines EGSY$W_GSDTYP. The GSD type is EGSD$C_SYM.

GSD SUBRECORD SIZE Name: ESRF$W_SIZE

Length: 2 bytes

This field redefines EGSY$W_GSDSIZ. It is the size of the entire subrecord,
including the preceding type field and any padding used to quadword align the
following record.

DATA TYPE Name: ESRF$B_DATYP

Length: 1 byte

This field redefines EGSY$B_DATYP. The linker currently ignores this field.
Should be 0.

ALIGNMENT BYTE Name: ESRF$B_TEMP

Length: 1 byte

This field redefines EGSY$B_TEMP. Used for alignment, must be 0.

FLAGS Name: ESRF$W_FLAGS

Length: 2 bytes

B–23

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

This field redefines EGSY$W_FLAGS. The bits in this 2-byte bit field describe
the global symbol. Only bits 0 through 1 are used. The following table lists the
numbers, names, and corresponding meanings of each bit in the field.

Bit Name Meaning

0 EGSY$V_WEAK When this bit is set, a weak symbol definition or
reference is indicated; when clear, a strong symbol
definition or reference.

1 EGSY$V_DEF This bit must be 0.

2–15 Reserved to Digital.

SYMBOL NAME LENGTH Name: ESRF$B_NAMLNG

Length: 1 byte

This field contains the length in bytes of the symbol name.

SYMBOL NAME Name: ESRF$T_NAME

Length: Variable, 1 to 64 bytes

This field contains the symbol name in ASCII format.

B.3.3 Entity-Ident-Consistency-Check Subrecord (EGSD$C_IDC)
This subrecord allows for the consistency checking of an entity (qualified by its
object) at link time. Using this subrecord, a compiler may emit code to check the
consistency of any type of entity/object combination that has either an ASCII or a
binary ident string associated with it.

Figure B–10 depicts the format of an entity-ident-consistency-check subrecord.

Figure B–10 GSD Subrecord for an Entity Ident Consistency Check

EGSD$C_IDC EIDC$W_GSDTYP, EIDC$W_SIZE

EIDC$L_FLAGS

Bytes for Subrecord

Flags

Length EIDC$B_NAMLNG

ZK−5284A−GE

Length

Length

ASCII string

ASCII string
of object name

of entity name

ASCII ident string or binary

31

 ident value with length=4 plus

0

 padding to align following record on quadword boundary

B–24

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

When this GSD subrecord is processed during Pass 1, the linker searches its
entity name table (which is a single name table for all entity types) using the
concatenated entity and object strings (including the length bytes) as the lookup
key. This process differs from VAX systems, where the key is the entity name
alone. If the linker does not find an entry using the concatenated key, it creates
one. If the linker finds an entry for the key, it compares the idents. If the idents
do not satisfy the specified match control value, the linker issues a message, with
the severity specified by the EIDC$V_ERRSEV field.

The following is a short description of each field in the entity-ident-consistency-
check subrecord.

GSD SUBRECORD TYPE Name: EIDC$W_GSDTYP

Length: 2 bytes

The GSD type is EGSD$C_IDC.

GSD SUBRECORD SIZE Name: EIDC$W_SIZE

Length: 2 bytes

This field contains the size of the entire subrecord, including the preceding type
field and any padding used to quadword align the following record.

FLAGS Name: EIDC$L_FLAGS

Length: 4 bytes

Only the first five bits of this 4-byte bit field are used. When the EIDC$V_
BINIDENT bit is set, the IDENT STRING has a length of 4 and is a 32-bit binary
value; when clear, the IDENT STRING is a counted ASCII string.

EIDC$V_IDMATCH points to the first bit of a two-bit substructure in the FLAGS
field. The match bits specify the match control for the IDENT STRING when the
EIDC$V_BINIDENT flag is set, that is, when the idents are 32-bit binary values.
The match bits may have two values: 0 (EIDC$C_LEQ) or 1 (EIDC$C_EQUAL).
If EIDC$V_BINIDENT is clear, then the ASCII idents must be equal.

When the match bits are clear (EIDC$C_LEQ), the binary ident of the entity
specified in the subrecord must be less than or equal to the binary ident of the
entity listed in the entity name table.

When the first match bit is set (EIDC$C_EQUAL), the binary ident of the entity
specified in the subrecord must be equal to the binary ident of the entity listed
in the linker’s entity name table. Remaining values for the two-bit substructure
pointed to by EIDC$V_IDMATCH (the values 2 through 3) are reserved.

EIDC$V_ERRSEV points to the first bit of a three-bit substructure in the FLAGS
field. The severity bits determine the severity of the message issued if the IDENT
STRING fields do not meet the match criteria. When the severity bits equal
0, the message severity is warning; when 1, success; when 2, error; when 3,
informational; when 4, severe.

Bits 6 to 31 in the FLAGS field are reserved.

ENTITY NAME LENGTH Name: EIDC$B_NAMLNG

Length: 1 byte

B–25

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

This field contains the length in bytes of the entity name.

ENTITY NAME Name: EIDC$T_NAME

Length: Variable, 1 to 31 bytes

This field contains the entity name in ASCII format.

OBJECT NAME LENGTH Name: None

Length: 1 byte

This field contains the length in bytes of the object name.

OBJECT NAME Name: None

Length: Variable, 1 to 31 bytes

This field contains the object name in ASCII format.

IDENT STRING LENGTH Name: None

Length: 1 byte

This field contains the length in bytes of the ident string. For binary idents, this
field contains the value 4.

IDENT STRING Name: None

Length: Variable, 1 to 31 bytes

This field contains the ident string. The ident string may be a counted ASCII
string or a 32-bit binary value, determined by the flags field. If this string
specifies a 32-bit binary value, it consists of 24 bits of minor ident and 8 bits of
major ident, analogous to the global section match values for a shareable image.
If this string specifies a counted ASCII string, its length is variable.

B.3.4 GSD Subrecords Reserved to the OpenVMS Operating System
(EGSD$C_SYMV, EGSD$C_SYMM)

The following sections define subrecords reserved to the OpenVMS Alpha
operating system for building the executive. Vectored symbol definitions
(EGSD$C_SYMV) occur in the global symbol tables of execlets and are used
for loading. Version mask subrecords (EGSD$C_SYMM) are currently found
only in the system image SYS$BASE_IMAGE.EXE. The mechanisms used by
the linker to generate these record types are not documented. This section is
provided for readers who need to understand more about the internals of the
OpenVMS Alpha operating system.

B.3.4.1 Vectored-Symbol-Definition Subrecord (EGSD$C_SYMV)
This subrecord is identical in format to the global symbol definition subrecord
described in Section B.3.2.1, with the following exceptions:

• The field names begin with ESDFV$ instead of ESDF$ as in the global symbol
definition subrecord.

• This subrecord contains an additional longword field, ESDFV$L_VECTOR,
which contains an offset into the symbol vector of either SYS$BASE_
IMAGE.EXE or SYS$PUBLIC_VECTORS.EXE. The target image is
determined by the name of the absolute program section pointed to by
the field ESDFV$L_PSINDX. If the name of the psect is ‘‘.$$SYS$BASE_
IMAGE$$.’’ then the symbol vector of SYS$BASE_IMAGE.EXE is modified. If
the name of the absolute program section is ‘‘.$$SYS$PUBLIC_VECTORS$$.’’
then the symbol vector of SYS$PUBLIC_VECTORS.EXE is modified. Once

B–26

Alpha Object Language
B.3 Global Symbol Directory Records (EOBJ$C_EGSD)

the symbol vector is modified, it points (directly or indirectly) to the loaded
data or procedure.

• This subrecord does not contain the ESDF$L_CODE_ADDESS or ESDF$L_
CA_PSINDX fields.

• The VALUE field contains an image offset, not a symbol vector offset.
Execlets do not have symbol vectors; therefore, the VALUE field is treated
differently.

This subrecord is reserved for use by Digital only.

B.3.4.2 Symbol-Definition-with-Version-Mask Subrecord (EGSD$C_SYMM)
This subrecord is identical in format to the global symbol definition subrecord
described in Section B.3.2.1, with the following exceptions:

• The field names in this record begin with ESDFM$ instead of ESDF$ as in
the global symbol definition subrecord.

• This subrecord contains an additional longword field, ESDFM$L_VERSION_
MASK. This mask is used to index a list of system components on which the
symbol is dependent. This mask is used by the linker to create the system
version array in an image that links against SYS$BASE_IMAGE.EXE.

• This subrecord does not contain the ESDF$L_CODE_ADDESS or ESDF$L_
CA_PSINDX fields.

This subrecord is reserved for use by Digital only.

B.4 Text Information and Relocation Records (EOBJ$C_ETIR)
A text information and relocation (TIR) record contains commands and data
that the linker uses to manipulate its internal stack, perform calculations, and
initialize the image.

A TIR record consists of the RECORD TYPE field (EOBJ$W_RECTYP, set
to EOBJ$C_ETIR), the record size (EOBJ$W_SIZE), and one or more TIR
commands. Each TIR command consists of a type (ETIR$W_RECTYP), the
command size (ETIR$W_SIZE), and the command arguments. A TIR record may
contain many TIR commands, but it must not exceed the record size limit for
the object module as defined in the MAXIMUM RECORD SIZE field (EMH$L_
RECSIZ) of the main module header record.

RECORD TYPE Name: EOBJ$W_RECTYP

Length: 2 bytes

The record type is EOBJ$C_ETIR.

RECORD SIZE Name: EOBJ$W_SIZE

Length: 2 bytes

The record size must include the record size and type fields themselves, as well
as the size of any TIR commands that the record contains.

TIR COMMAND TYPE Name: ETIR$W_RECTYP

Length: 2 bytes

B–27

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

This field designates the TIR command type.

TIR COMMAND SIZE Name: ETIR$W_SIZE

Length: 2 bytes

The command size must include the command size and type fields themselves, as
well as the aggregate length of any command arguments.

There are 69 text information and relocation commands, divided into five classes
with the following associated ranges:

Command Type Minimum Value Maximum Value

Stack ETIR$C_MINSTACOD (0) ETIR$C_MAXSTACOD (6)

Store ETIR$C_MINSTOCOD (50) ETIR$C_MAXSTOCOD
(65)

Operator ETIR$C_MINOPRCOD (100) ETIR$C_MAXOPRCOD
(116)

Control ETIR$C_MINCTLCOD (150) ETIR$C_MAXCTLCOD
(154)

Store Conditional ETIR$C_MINSTCCOD (200) ETIR$C_MAXCTLCOD
(214)

TIR commands either manipulate the linker’s stack or initialize storage in the
image. Stack commands cause the linker to push values onto the stack. The
linker’s stack is 64 bits wide. Each value pushed onto the stack is converted to
a 64-bit value as required. Store commands are used to fetch global values or to
pop the stack and store the results in the image. Operator commands perform
operations on values that were pushed onto the stack with previous operations.
The result is always stored back on the stack. Control commands set the linker’s
location counter in preparation for the next store command. Conditional store
commands are used to set up conditional linkages and to optimize the instruction
stream.

The most common store command, STORE IMMEDIATE (ETIR$C_STO_IMM),
is used to write the specified binary directly into the image. This is how the
instruction stream is written. The linker is unaware of the instructions written
by a STORE IMMEDIATE command. The only way for the linker to interact with
the instruction stream is by means of the conditional store commands. The linker
does not execute a STORE IMMEDIATE command (either ETIR$C_STO_IMM or
ETIR$C_STO_IMMR) when the value being stored is zero. Such a command is,
in effect, a null operation. The pages of an image file are guaranteed to be zero
until they are specifically initialized by the compiler.

When the linker finishes processing the TIR commands for a given module, that
is, when it processes the EEOM record, the stack must be completely collapsed.
Otherwise, the linker will issue a warning, LINK-W-EOMSTCK.

TIR commands are described in the following five subsections. Section B.4.1
discusses the stack commands; Section B.4.2, the store commands; Section B.4.3,
operator commands; Section B.4.4, control commands; and Section B.4.5,
conditional store commands. The commands are presented in numerical order,
based on their equivalent numerical values (in decimal).

B–28

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

B.4.1 Stack Commands
The stack commands place longwords and quadwords on the stack. The value
placed on the stack is taken from one of the following sources:

• The arguments directly following the ETIR$W_SIZE field

• A global symbol

• A computation derived by adding an offset to the base address of a program
section

Each stack command increments the linker’s stack pointer. Context is saved to
indicate whether the value on the stack is relocatable or defined by a shareable
image and therefore external to the image. This context is used later by the
operator and store commands. Table B–8 lists the stack commands and their
related values, together with a brief description of each command.

Table B–8 Stack Commands

Value Command Description

0 ETIR$C_STA_GBL
(Stack Global)

Argument is a counted ASCII string containing the
name of a global symbol. The command stacks the
32-bit binary value of the symbol. The value is not
sign extended. The high-order 32 bits are always 0.
The saved context identifies the value as relocatable
if the EGSY$V_REL bit in the symbol definition
was set. The saved context identifies the value as
external if the symbol was defined by a shareable
image.

1 ETIR$C_STA_LW
(Stack Longword)

Argument is a 4-byte constant. The value is sign
extended to 64 bits.

2 ETIR$C_STA_QW
(Stack Quadword)

Argument is an 8-byte constant. If the high-order
32 bits are nonzero, they are ignored in calculations
performed with subsequent operator commands.

3 ETIR$C_STA_PQ
(Stack Psect Base Plus
Byte Offset)

Arguments are a longword program section index
and a quadword whose low-order 32 bits represent
a signed byte offset from the program section
base.1 The quadword argument is pushed onto the
stack and context is saved to indicate whether the
program section is relocatable or defined by another
shareable image. A subsequent ETIR$C_STO_
OFF adds the 32-bit offset to the program section
base and sign-extends the result to 64 bits. This
command should always be followed by an ETIR$C_
STO_OFF command.

4 ETIR$C_STA_LI
(Stack Literal)

Not supported in structure level 2.

5 ETIR$C_STA_MOD
(Stack Module)

Not supported in structure level 2.

1For VAX object language, the TIR$C_STA_PB command provides for a signed offset value, to be used
with absolute psects to express constants. For Alpha object language, this is illegal. The result will
be relocated, which is inappropriate for constants. Use the ETIR$C_STA_QW and ETIR$C_STA_LW
commands with constants.

(continued on next page)

B–29

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–8 (Cont.) Stack Commands

Value Command Description

6 ETIR$C_STA_CKARG
(Compare Procedure
Argument and Stack for
TRUE or FALSE)

Not supported in structure level 2.

7–49 Reserved to Digital.

B.4.2 Store Commands
Store commands instruct the linker to write a stream of bytes at the current
image location counter. The image location counter is set implicitly by a previous
store command or explicitly with a control command (for example, ETIR$C_
CTL_SETRB). After a store command is executed, the image location counter is
pointing to the next byte in the output image. Some store commands pop values
from the linker’s stack (decrementing the linker’s stack pointer), and others do
not.

The context for a value that is saved by a stack command indicates whether the
value is relocatable and must be treated as an address by subsequent operator
and store commands. A relocation is generated if the image is relocatable (for
example, linked /SHARE) and the saved context indicates that the address occurs
within the image. When the image activator processes relocations, it adds the
base address of the image to the value stored at the location indicated by the
linker.

If the saved context indicates that the value is defined by a shareable image
and is therefore external to the image being created, then a fix-up is generated.
Fix-ups are generated without consideration of whether the value is relocatable.
For VAX images, references to constants that were defined externally were
resolved at link time, and therefore they did not require fixing up. For Alpha
images, the linker generates fix-ups for references to externally defined constants.
The references are finally resolved by the image activator. This makes it easier
to construct an upwardly compatible Alpha shareable image. When the image
activator processes fix-ups, it moves an entry from the symbol vector of the
shareable image that defined the symbol into the linkage section of the image
that referenced it.

Table B–9 lists the store commands and a brief description of each command.
Commands that pop the stack and thereby decrement the linker’s stack pointer
are noted.

Table B–9 Store Commands

Value Command Description

50 ETIR$C_STO_B
(Store Byte)

The stack is popped. The low byte is
written to the image. If the value on
the stack is a constant contributed
by a shareable image, the linker
issues an error message indicating
that byte fix-ups are not supported.

(continued on next page)

B–30

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–9 (Cont.) Store Commands

Value Command Description

51 ETIR$C_STO_W
(Store Word)

The stack is popped. The low word is
written to the image. If the value on
the stack is a constant contributed
by a shareable image, the linker
issues an error message indicating
that word fix-ups are not supported.

52 ETIR$C_STO_LW
(Store Longword)

The stack is popped. The low
longword is written to the image.
A relocation or fix-up is generated
based on the saved context.

53 ETIR$C_STO_QW
(Store Quadword)

The stack is popped. A quadword is
written to the image. A relocation
or fix-up is generated based on the
saved context.

54 ETIR$C_STO_IMMR
(Store Immediate Repeated)

Arguments are a longword count of
bytes and a stream of binary data.
The stack is popped. The low-order
32 bits of the popped value are used
as a repeat count. The data stream
is successively stored the number of
times the count indicates.

55 ETIR$C_STO_GBL
(Store Global)

Argument is a counted ASCII string
containing the name of a global
symbol. If the global value is not
external and not relocatable then the
32-bit value field is sign extended
to 64 bits. Otherwise, the high-
order 32 bits are 0. A quadword
is written to image. If the global
value is relocatable and the image is
relocatable, a relocation is generated.
If the global value is contributed
by a shareable image, a fix-up is
generated.

56 ETIR$C_STO_CA
(Store Code Address)

Argument is a counted ASCII string
containing the name of a global
symbol. The address of the entry
point of the procedure named by the
string is written into the image. The
address is written as a quadword
with the high-order 32 bits set to
0. A relocation is generated if the
image is relocatable and the global
symbol is not external. A fix-up is
generated if the procedure is defined
by a shareable image.

57 ETIR$C_STO_RB
(Store Relative Branch)

Not supported in structure level 2.

58 ETIR$C_STO_AB
(Store Absolute Branch)

Not supported in structure level 2.

(continued on next page)

B–31

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–9 (Cont.) Store Commands

Value Command Description

59 ETIR$C_STO_OFF
(Store Offset to Psect)

The quadword offset is popped
from the stack and the low-order
32 bits are added to the base of
the saved program section. The
result is sign extended to 64 bits and
written to the image. The value is
always treated as an address and
relocated if the image is relocatable,
or fixed up if the program section is
contributed by a shareable image.
This command should always be
preceded by an ETIR$C_STA_PQ
command.

60 Reserved to Digital.

61 ETIR$C_STO_IMM
(Store Immediate)

Arguments are a longword count of
bytes and a stream of binary data.
The data stream is stored directly
into the image at the current image
location counter.

62 Reserved to Digital.

63 ETIR$C_STO_LP_PSB
(Store LP with Procedure
Signature)

Not supported in structure level 2.

64 ETIR$C_STO_BR_GBL
(Store Branch Global)

Arguments are a longword program
section index and quadword offset
pointing to the instruction to be
replaced, a longword program section
and quadword offset pointing to a
base address, and a counted string
containing the name of a procedure.
If the longword displacement from
the base address to the code address
associated with the procedure name
can be expressed as a signed 21-bit
integer, then store the displacement
in the low-order 21 bits of the
instruction pointed to by the first
program section index and quadword
offset.

(continued on next page)

B–32

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–9 (Cont.) Store Commands

Value Command Description

65 ETIR$C_STO_BR_PS
(Store Branch Psect + Offset)

Arguments are a longword program
section index and quadword offset
pointing to the instruction to be
replaced; a longword program section
and quadword offset pointing to
a base address; and a longword
program section and quadword offset
pointing to a target address. If the
longword displacement from the base
address to the target address can be
expressed as a signed 21-bit integer,
then store the displacement in the
low-order 21 bits of the instruction
pointed to by the first program
section index and quadword offset.

66–99 Reserved to Digital.

B.4.3 Operator Commands
Operator commands perform 32-bit arithmetic operations on the low-order
longwords of operands popped from the stack. The linker evaluates expressions
in Post Fix Polish form. All arithmetic operations are performed in signed 32-bit
two’s complement integers. There is no provision for floating-point, string, or
quadword computation. Attempts to divide by zero produce a zero result and
a nonfatal warning message. Upon completion of the operation, the result is
pushed back on the stack. The contents of the high-order 32 bits of the result
are not predictable. Therefore the result should be popped from the stack with
a longword store command (ETIR$C_STO_LW) rather than a quadword store
command (ETIR$C_STO_QW).

The operator commands check the context saved by previous stack or operator
commands. If one of the operands is defined by a shareable image, then the other
operand must be a constant and the operation must be addition or subtraction.
The context saved for the result is the context of the relocatable operand. In those
cases where both operands are relocatable, neither is allowed to be external, so
the saved context for the result simply indicates that it is relocatable and not
external.

Table B–10 lists the operator commands and related values, together with a brief
description of each command.

Table B–10 Operator Commands

Value Command Description

100 ETIR$C_OPR_NOP
(No-Operation)

No operation results.

101 ETIR$C_OPR_ADD
(Add)

Stack is popped twice. The two popped values
are added, and the result is pushed back onto the
stack. Stack pointer is decremented.

(continued on next page)

B–33

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–10 (Cont.) Operator Commands

Value Command Description

102 ETIR$C_OPR_SUB
(Subtract)

Stack is popped twice. First value popped is
subtracted from the second, and the result is
pushed back onto the stack. Stack pointer is
decremented.

103 ETIR$C_OPR_MUL
(Multiply)

Stack is popped twice. The values are multiplied
and the result is pushed back onto the stack.
Stack pointer is decremented.

104 ETIR$C_OPR_DIV
(Divide)

Stack is popped twice. The second value popped is
divided by the first value popped, and the result
is pushed back onto the stack. Stack pointer is
decremented.

105 ETIR$C_OPR_AND
(Logical AND)

Stack is popped twice. The result is the logical
AND of the two operands. The result is pushed
back onto the stack. Stack pointer is decremented.

106 ETIR$C_OPR_IOR
(Logical Inclusive OR)

Stack is popped twice. The result is the inclusive
OR of the two operands. The result is pushed
back onto the stack. Stack pointer is decremented.

107 ETIR$C_OPR_EOR
(Logical Exclusive OR)

Stack is popped twice. The result is the exclusive
OR of the two operands. The result is pushed
back onto the stack. Stack pointer is decremented.

108 ETIR$C_OPR_NEG
(Negate)

Stack is popped once. The value is negated and
pushed back onto the stack. Stack pointer is
unchanged.

109 ETIR$C_OPR_COM
(Complement)

Stack is popped once. The value is complemented
and pushed back onto the stack. Stack pointer is
unchanged.

110 ETIR$C_OPR_INSV
(Insert Field)

Not supported in structure level 2.

111 ETIR$C_OPR_ASH
(Arithmetic Shift)

Stack is popped twice. The second value popped
specifies the shift count and direction to be applied
to the first value popped. When the shift count is
negative, the bits are shifted right with replication
of the sign bit. When the shift count is positive,
the bits are shifted left with zeros moved into
low-order bits. The result is pushed back onto the
stack. Stack pointer is decremented.

112 ETIR$C_OPR_USH
(Unsigned Shift)

Not supported in structure level 2.

113 ETIR$C_OPR_ROT
(Rotate)

The stack is popped twice. The second value
popped specifies the rotation count and direction
to be applied to first value popped. When the
rotation count is positive, the bits in the first
value popped are rotated left; when negative,
right. The rotation count must have an absolute
value of 0 to 32. The result is pushed back onto
the stack. Stack pointer is decremented.

(continued on next page)

B–34

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–10 (Cont.) Operator Commands

Value Command Description

114 ETIR$C_OPR_SEL
(Select)

Stack is popped two or three times. If the first
value popped evaluates to TRUE (low bit set),
another value is popped, leaving the top value
on the resulting stack unchanged. If the first
value popped evaluates to FALSE (low bit clear),
the stack is popped two more times. The value
popped by the second of the three pops is pushed
back onto the stack, replacing the value removed
by the third pop. In both cases, the stack pointer
is decremented by two.

115 ETIR$C_OPR_REDEF
(Redefine Symbol to
Current Location)

Not supported in structure level 2.

116 ETIR$C_OPR_DFLIT
(Define a Literal)

Not supported in structure level 2.

117–149 Reserved to Digital.

B.4.4 Control Commands
Control commands manipulate the linker’s location counter. Table B–11 lists the
control commands and related values, together with a brief description of each
command.

Table B–11 Control Commands

Value Command Description

150 ETIR$C_CTL_SETRB
(Set Relocation Base)

The stack is popped. The low-order longword of the
value is placed in the image location counter. The
stack pointer is decremented.

151 ETIR$C_CTL_AUGRB
(Augment Relocation
Base)

Argument is a signed longword. The value of this
longword is added to the current image location
counter. Stack pointer is unchanged.

1521 ETIR$C_CTL_DFLOC
(Define Location)

The stack is popped. The low-order longword of the
popped value is used as an index. The value of the
current DST location counter is then saved under
this index.

1531 ETIR$C_CTL_STLOC
(Set Location)

The stack is popped. The low-order longword of the
value is used as an index to locate a DST location
counter saved by a previous DEFINE LOCATION
command. The current DST location counter is
updated with the saved DST location counter. The
stack pointer is decremented.

1541 ETIR$C_CTL_STKDL
(Stack Defined Location)

The stack is popped. The low-order longword of
the popped value is used as an index to locate a
DST location counter saved by a previous DEFINE
LOCATION command. The saved DST location
counter is pushed back on the stack. The stack
pointer is unchanged.

1This command is legal only in debugger information (DBG) and traceback information (TBT) records.
For each object module, a list of debugger indexes is kept. These commands operate on the list for the
object module in which the DBG or TBT record occurs.

(continued on next page)

B–35

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–11 (Cont.) Control Commands

Value Command Description

155–
199

Reserved to Digital.

B.4.5 Conditional Store Commands
There are two types of conditional store commands. The first type declares
conditional linkage, and assigns the linkage a unique index. The second
type enables the linker to replace an instruction in the code stream. If an
instruction is replaced, the linker is able to identify the conditional linkage
that the original instruction relied on and eliminate the relocation that would
otherwise have been generated for it. This is called linkage retirement.
Linkage retirement leaves the storage allocated for the linkage intact but
eliminates the relocations. Linkage retirement is not supported for structure
level 2; the linker unconditionally generates relocations for all linkages.

B.4.5.1 Defining Conditional Linkage with Address-Related Commands
Table B–12 lists the commands for allocating conditional linkage with the
arguments that follow the size field.

The ETIR$C_STC_LP_PSB command is used to pass signature information
associated with the procedure to the linker. The linker propagates this
information to the fix-up section with a special type of fix-up when the
/NONATIVE_ONLY switch is specified. The signature information is used by
the image activator to build jackets at activation time if the routine resides in a
translated image. The signature is opaque to the linker. For more information
about the format of OpenVMS procedure signatures, see the OpenVMS Calling
Standard.

Table B–12 Summary of Store Conditional Commands for Linkage

Value Command Arguments

200 ETIR$C_STC_LP
(Store Conditional Linkage Pair)

Not supported in structure level 2

201 ETIR$C_STC_LP_PSB
(Store Conditional Linkage Pair Plus Signature)

Linkage Index (longword)
Procedure Name (counted string)
Signature Length (byte, may be 0)
Signature (only if length is positive)

202 ETIR$C_STC_GBL
(Store Conditional Global)

Linkage Index (longword)
Global Name (counted string)

203 ETIR$C_STC_GCA
(Store Conditional Code Address)

Linkage Index (longword)
Procedure Name (counted string)

204 ETIR$C_STC_PS
(Store Conditional Psect Plus Offset)

Linkage Index (longword)
Psect index (longword)
Offset (quadword)

The linkage index argument common to all of these commands is a positive
integer value that must be unique to the module. Each index identifies a
quadword of linkage. The commands used to declare a conditional linkage pair
(ETIR$C_STC_LP and ETIR$C_STC_LP_PSB) reserve two index values. For
example, if the index value 3 is declared, the index value 4 is implicitly declared.
The linkage index is used by subsequent instruction replacement commands to
identify the linkage on which the original instruction was dependent.

B–36

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Linkage that is declared with a conditional linkage command and a nonzero
linkage index can be used only by instructions that are identified by one of the
instruction-related conditional store commands listed in Section B.4.5.2. Linkage
that is declared with a conditional linkage command and a zero linkage index is
not conditional. Improper use of conditional linkage cannot be detected by the
linker and will result in incorrect program execution.

The linker assumes that its image location pointer points to the linkage being
declared when the conditional store command is processed. If the linkage is
needed, the linker will fill it with different values depending on the command
as indicated in Tables B–13 and B–14. (Note that for structure level 2, the
linker always fills in and relocates linkages.) The term symbol vector offset
designates an offset into the symbol vector of the image that defined the symbol.
The type of relocation or fix-up applied to the value in the linkage pair is specified
in parentheses.

Table B–13 Contents of Linkage When Symbol Is Local to the Image

Command First Quadword Second Quadword

ETIR$C_STC_LP Not supported in structure level 2

ETIR$C_STC_LP_PSB Image offset of procedure entry
(Quadword relocation)

Image offset of procedure descriptor
(Quadword relocation)

ETIR$C_STC_GBL Image offset of global data
(Quadword relocation)

Not applicable

ETIR$C_STC_GCA Image offset of procedure entry
(Quadword relocation)

Not applicable

ETIR$C_STC_PS Image offset of (psect + offset)
(Quadword relocation)

Not applicable

Table B–14 Contents of Linkage When Symbol Is External to the Image

Command First Quadword Second Quadword

ETIR$C_STC_LP Not supported in structure level 2

ETIR$C_STC_LP_PSB Symbol vector offset
(Linkage pair with signature
fix-up)

Zero

ETIR$C_STC_GBL1 Symbol vector offset
(Quadword .ADDRESS fix-up)

Not applicable

ETIR$C_STC_GCA1 Symbol vector offset
(Code address fix-up)

Not applicable

ETIR$C_STC_PS1

(Only if psect is
OVR,REL,GBL)

Symbol vector offset
(Quadword .ADDRESS fix-up)

Not applicable

1Not supported for structure level 2.

B–37

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

B.4.5.2 Optimizing Instructions with Instruction-Related Commands
At the direction of the compiler, the linker is able to optimize portions of the
instruction stream. The compiler identifies replacements with one of the
instruction-related commands listed in Table B–15. These commands supply
a reference to the linkage (previously defined with one of the commands listed
in Table B–12), a replacement instruction, and some conditions for the linker to
test.

Figure B–11 shows the offsets used by the linker to test for replacement and
the replacement instructions that are used. The following commands might be
used to replace a sequence of instructions used to call procedure B from inside
procedure A:

• ETIR$C_STC_NOP

• ETIR$C_STC_LDA

• ETIR$C_STC_BSR

The ETIR$C_STC_NOP passes the addresses used to calculate the offset �2.
If �2 can be expressed as a signed 21-bit integer, the linker replaces the first
LDQ instruction with the instruction specified by the command. (For example,
the compiler might specify BIS R31,R31,R31, an instruction that does nothing
and uses very few CPU cycles). The replacement of the first LDQ instruction
anticipates the replacement of the JSR instruction and eliminates a memory
reference, that is, the reference to the linkage pair that contains the address of
the procedure entry for B. If �2 is too large to be expressed as a signed 21-bit
integer, the linker does not do the replacement. The linker cannot delete the
storage that contained the LDQ instruction (instead of replacing it with a NOP
instruction) because the offset � that was calculated by the compiler would no
longer be valid.

The ETIR$C_STC_LDA command passes the addresses used to calculate the
offset �1. If �1 can be expressed as a signed 16-bit integer, the linker replaces
the second LDQ instruction with the LDA instruction supplied by the command
and fills in the 16-bit offset field with �1. This replacement eliminates a memory
reference to the second half of the linkage pair, which contains the address of the
procedure descriptor for B. If �1 is too large to be expressed as a signed 16-bit
integer, the linker does not do the replacement. This replacement can happen
independently of the replacement of the other LDQ and JSR instructions.

Finally, the ETIR$C_STC_BSR command passes the same addresses as ETIR$C_
STC_NOP (so that they will fail or succeed together), and the same test is done
again. If the test succeeds, the linker replaces the JSR instruction with the BSR
instruction supplied by the command and fills in the 21-bit offset field with �2.

Table B–15 lists the commands for optimizing the instruction stream. The default
instruction stream must be placed in memory (typically with an ETIR$C_STO_
IMM command) before the instruction-related commands are issued. The linker
cannot detect attempts to optimize instructions that have not previously been
placed in memory. Each command in the table has the following arguments
(excluding the ETIR$C_STC_NBH_PS and ETIR$C_STC_NBH_GBL commands,
which are not supported in structure level 2). The argument abbreviations are
used by the commands in Table B–15 to describe the operation of the command.

B–38

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Figure B–11 Optimization of a Standard Call

Linkage
for
M1

ZK−5296A−GE

Linkage
for
M2

Code
for
M1

Code
for
M2

.address (entry point of A)

Entry Point for Procedure A

.address (entry point of B)

.address (procedure descriptor of B)

.address (entry point of B)

Entry Point for Procedure B

Linkage Pair for call to B

Procedure Descriptor, B

MOV R27, R3

LDA R27, (R3) ;

LDQ R26, (R3) NOP ;

LDQ R27, +8 (R3)

BSR R26, ;JSR R26, R26

Procedure Descriptor, A
(Value of R27 When A is called)

Δ1

Δ2

δ

Δ2

Δ1

Δ1

Δ2

δ

δ

Δ2

Argument Abbreviation Size

Linkage Index LI Longword

Psect Index 1 PS1 Longword

Offset 1 OFF1 Quadword

Replacement instruction REPINS Longword

Psect Index 2 PS2 Longword

Offset 2 OFF2 Quadword

Global Name
(_GBL commands only)

GNAM Counted String

Psect Index 3
(_PS commands only)

PS3 Longword

Offset 3
(_PS commands only)

OFF3 Quadword

The Linkage Index argument must be nonzero and point to the linkage
declared with an address-related conditional store command. The PS1 and
OFF1 arguments are used to calculate the location of the instruction that needs
to be replaced. For the commands that deal with NOP and BSR instructions, the
PS2 and OFF2 arguments point to the base of the calculation, typically, ��� � �.
The commands for replacing the LDA instruction use PS2 and OFF2 to point
to the base of the linkage section. The PS3 and OFF3 arguments point to the

B–39

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

procedure entry point for the NOP and BSR commands and to the procedure
descriptor for the LDA commands.

B–40

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–15 Summary of Store Conditional Commands for Instruction Replacement

Value Command Description

205 ETIR$C_STC_NOP_GBL
(Store Conditional NOP at Global Address)

Store a NOP (specified in REPINS) at
(PS1 + OFF1) if the longword displacement
from (PS2 + OFF2) to the procedure entry
associated with GNAM can be expressed as
a signed 21-bit integer.

206 ETIR$C_STC_NOP_PS
(Store Conditional NOP at Psect Plus Offset)

Store a NOP (specified in REPINS) at (PS1
+ OFF1) if the longword displacement from
(PS2 + OFF2) to (PS3 + OFF3) can be
expressed as a signed 21-bit integer.

207 ETIR$C_STC_BSR_GBL
(Store Conditional BSR at Global Address)

If the longword displacement from (PS2 +
OFF2) to the procedure entry associated
with GNAM can be expressed as a signed
21-bit integer, then insert the displacement
into the low-order 21 bits of the BSR
(specified in REPINS) and store it at (PS1 +
OFF1).

208 ETIR$C_STC_BSR_PS
(Store Conditional BSR at Psect Plus Offset)

If the longword displacement from (PS2 +
OFF2) to (PS3 + OFF3) can be expressed
as a signed 21-bit integer, then insert the
displacement into the low-order 21 bits of
the BSR (specified in REPINS) and store it
at (PS1 + OFF1).

209 ETIR$C_STC_LDA_GBL
(Store Conditional LDA at Global Address)

If the byte displacement from (PS2 + OFF2)
to the procedure descriptor associated with
GNAM can be expressed as a signed 16-bit
integer, then insert the displacement into
the low-order 16 bits of the LDA instruction
(specified in REPINS) and store it at (PS1 +
OFF1).

210 ETIR$C_STC_LDA_PS
(Store Conditional LDA at Psect Plus Offset)

If the byte displacement from (PS2 + OFF2)
to (PS3 + OFF3) can be expressed as
a signed 16-bit integer, then insert the
displacement into the low-order 16 bits of
the LDA instruction (specified in REPINS)
and store it at (PS1 + OFF1).

211 ETIR$C_STC_BOH_GBL
(Store Conditional BSR or Hint at Global
Address)

If the longword displacement from (PS2 +
OFF2) to the procedure entry associated
with GNAM can be expressed as a signed
21-bit integer, then insert the displacement
into the low-order bits of the instruction
specified in REPINS and store it at (PS1 +
OFF1). If the displacement is too large or
the global name is defined by a shareable
image, insert a hint into the low-order 14
bits of the instruction at (PS1 + OFF1).

(continued on next page)

B–41

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Table B–15 (Cont.) Summary of Store Conditional Commands for Instruction Replacement

Value Command Description

212 ETIR$C_STC_BOH_PS
(Store Conditional BSR or Hint at Psect Plus
Offset)

If the longword displacement from (PS2 +
OFF2) to (PS3 + OFF3) can be expressed
as a signed 21-bit integer, then insert the
displacement into the low-order bits of the
instruction specified in REPINS and store
it at (PS1 + OFF1). If the displacement is
too large, insert a hint into the low-order 14
bits of the instruction at (PS1 + OFF1).

213 ETIR$C_STC_NBH_GBL
(Store Conditional (NOP and BSR) or Hint at
Global Address)

Not supported in structure level 2.

214 ETIR$C_STC_NBH_PS
(Store Conditional (NOP and BSR) or Hint at
Psect Plus Offset)

Not supported in structure level 2.

Instruction replacement will fail when any of the following conditions occur:

• The linker qualifier /NOREPLACE is specified.

• The displacement cannot be expressed in the number of bits specified for each
command listed in Table B–15.

• The linker qualifier /SECTION_BINDING=CODE is specified and the call and
the destination are in different image sections.

• A command with the _GBL suffix is used and the global name is defined by a
shareable image.

B.4.5.2.1 Calculating JSR Hints When the conditions for replacement cannot
be met, the ETIR$C_STC_BOH_PS and ETIR$C_STC_BOH_GBL commands
calculate hints and insert them into the low-order 14 bits of the instruction in the
default instruction stream.

The hint field in the JSR instruction is used to index the instruction cache.
The hint is correct if the low-order 16 bits of the result of ��� � � �
�� ����	
 �� � � �� is equal to the low-order 16 bits of the address of the
destination routine’s entry point. Program execution is not affected by a wrong
hint, but performance may be. Even given a correct hint, the instruction cache
may not contain the desired instructions, which may then have to be fetched from
memory or disk.

Hints to shareable images may no longer be correct at run time if the shareable
image is relinked after the main image is created. Hints to shareable images
installed with the /RESIDENT qualifier will still be correct because the position
of the procedure entry relative to the beginning of a page boundary will not have
changed. Hints generated for calls to the system executive, for example, calls to
SYS$BASE_IMAGE.EXE or SYS$PUBLIC_VECTORS.EXE, will not be correct.
The image offsets contained in their global symbol tables cannot be converted at
link time into the real page offsets of the procedures in the loaded execlets.

B–42

Alpha Object Language
B.4 Text Information and Relocation Records (EOBJ$C_ETIR)

Figure B–12 Calculating a Hint to a Shareable Image

JSR Rx, disp (Rx)

offset_1

offset_2

Routine Entry

end of page containing JSR

ZK−5295A−GE

Page boundary in
shareable image

If the destination routine is inside the image being linked, the linker calculates
the hint as the longword displacement between ��� � � and the procedure entry
point. If the displacement is negative, the algorithm still works; the low-order 16
bits of �������� ����	
 �� � � �� is still equal to the low-order 16 bits of the
address of the destination routine. It is irrelevant that the high-order 16 bits of
the result may not equal the high-order 16 bits of the destination routine.

If the destination routine is outside the image, the linker adds the byte
displacement from the JSR instruction to the end of the current page (offset_
1) to the byte displacement of the destination routine from the beginning of the
page (offset_2), as shown in Figure B–12. The low-order 16 bits of the result are
shifted right two bits to generate the hint. The linker uses the EGST$L_LP_1
field in the definition of the destination routine (from the global symbol table) and
the image page size (from the image header) to determine the offset into the page
of the procedure entry.

B.5 End-of-Module Record (EOBJ$C_EEOM)
The end-of-module (EOBJ$C_EEOM) record declares the end of the module. It
must be the last record in the object module.

If the module does not contain a program section that contains the transfer
address, the end-of-module (EOM) record is 10 bytes long, consisting of only the
RECORD TYPE, RECORD SIZE, LINKAGE COUNT, and COMPLETION CODE
fields.

If the module does contain a program section that contains the transfer address,
the EOM record is 24 bytes long. A full EOM record is shown in Figure B–13.

B–43

Alpha Object Language
B.5 End-of-Module Record (EOBJ$C_EEOM)

Figure B–13 End-of-Module Record

Number of Bytes in EEOM EOBJ$C_EEOM EOBJ$W_RECTYP, EOBJ$W_SIZE

EEOM$L_TOTAL_LPS

31 0

0 EEOM$W_COMCOD, EEOM$B_TFRFLG,

EEOM$L_PSINDX

EEOM$L_TFRADR

ZK−5279A−GE

(Highest Linkage Index, Rounded to Multiple of 2) /2

Completion Code

Index of Psect Containing Main Entry Point

Offset into Psect of Main Entry Point

0

EEOM$B_TEMP
0

The fields in an EEOM record are described in the following list.

RECORD TYPE Name: EEOM$W_RECTYP

Length: 2 bytes

The field EEOM$W_RECTYP redefines EOBJ$W_RECTYP. It must contain the
value EOBJ$C_EEOM.

RECORD SIZE Name: EEOM$W_SIZE

Length: 2 bytes

The field EEOM$W_SIZE redefines EOBJ$W_SIZE. It is the size of the entire
record, including the preceding record type field.

TOTAL LINKAGE Name: EEOM$L_TOTAL_LPS

Length: 4 bytes

This field contains the highest linkage index, rounded up to an even number, and
divided by two. It is used by the linker to allocate table space after Pass 1 and
to check the range of linkage indexes passed in TIR commands processed in Pass
2. The linker does not detect improper use of the highest index when rounding
occurs. For example, if the highest linkage declared was 9 (yielding a value of
5 for the EEOM$L_TOTAL_LPS field), and a TIR command specifies a linkage
index of 10 (which appears to be in range), unpredictable results will occur.

COMPLETION CODE Name: EEOM$B_COMCOD

Length: 1 byte

This field contains completion codes, which are generated by the language
processor. This field may contain a value from 0 to 3, where each number
corresponds to a completion code. Values from 4 to 255 are reserved by Digital.
The following table lists the name, corresponding value, and meaning of each of
the four completion codes.

B–44

Alpha Object Language
B.5 End-of-Module Record (EOBJ$C_EEOM)

Value Name Meaning

0 EEOM$C_SUCCESS Successful compilation or assembly; no errors
detected.

1 EEOM$C_WARNING Language processor generated warning
messages. The linker issues a warning message
and proceeds with the linking operation.

2 EEOM$C_ERROR Language processor generated severe errors.
The linker issues an error message, proceeds
with the linking operation, but does not produce
an output image file.

3 EEOM$C_ABORT Language processor generated fatal errors. The
linker aborts the linking operation.

4–255 Reserved to Digital.

When the linker is creating a shareable image, it performs a logical OR on the
completion codes from all of the modules and shareable images that contributed
to it. The result is then propagated to the COMPLETION CODE field of the
end-of-module record of the resulting image’s global symbol table. If any module
or shareable image specified a completion code other than EEOM$C_SUCCESS,
any programmer who links against the resulting image will receive a warning.

TRANSFER FLAGS Name: EEOM$B_TFRFLG

Length: 1 byte

This field is a 1-byte bit mask that contains information about the transfer
address. When the EEOM$V_WKTFR bit is set, a weak transfer address is
indicated; when clear, a strong transfer address is indicated. If bit EEOM$V_
WKTFR is set and a transfer address has already been defined, no error results.
Bits 1 to 7 are reserved and must contain zeros. Note that this field may be
present only if the module contains a program section that contains the transfer
address.

ALIGNMENT BYTE Name: EEOM$B_TEMP

Length: 1 byte

Alignment byte, must be 0.

PSECT INDEX Name: EEOM$L_PSINDX

Length: 4 bytes

This field contains the program section index of the program section within the
module that contains the transfer address. Note that this field is present only if
the module contains a program section that contains a transfer address.

TRANSFER ADDRESS Name: EEOM$L_TFRADR

Length: 4 bytes

This field contains the location of the transfer address. The location is expressed
as an offset from the base of this module’s contribution to the program section
that contains the transfer address. Note that this field is present only if the
module contains a program section that contains the transfer address.

B–45

Alpha Object Language
B.6 Debugger Information Records (EOBJ$C_EDBG)

B.6 Debugger Information Records (EOBJ$C_EDBG)
The purpose of debugger information records is to allow the language processors
to pass compilation information, such as descriptions of local variables, to the
debugger. The transmission of this information may make use of all the functions
(commands) available in the TIR command set, except for the instruction-related
conditional store commands described in Section B.4.5.2.

The command stream in DBG records generates a debugger symbol table (DST).
The DST immediately follows the binary of the user image, and the image header
contains a descriptor of where in the file such data is written. The production of
the DST in memory makes use of a separate location counter within the linker.
Note that the linker does not produce an image section descriptor for the DST
and that the DST is not mapped into the user’s address space by the image
activator. The debugger must read and map the DST.

The linker uses ETIR$C_EDBG and ETIR$C_ETBT records to produce a DST
if the image is linked with the /DEBUG qualifier. If the image is only linked
with the /TRACEBACK qualifier (the default), then the linker skips the ETIR$C_
EDBG records and builds a DST using only the ETIR$C_ETBT records. The
linker will not process the ETIR$C_EDBG records and will skip the ETIR$C_
ETBT records; if you specify /DEBUG/NOTRACEBACK, the linker ignores the
/NOTRACEBACK qualifier.

B.7 Traceback Information Records (EOBJ$C_ETBT)
Traceback information records are the means by which language processors pass
information to the facility that produces a traceback of the call stack. From the
point of view of the linker and its processing of these records, they are identical
to DBG records. That is, they may be mixed with DBG records, and all data
generated goes into the DST as if they were DBG records.

The purpose of separating the information contained in DBG records is to
allow inclusion of a DST containing only traceback data when no debugging is
requested at link time. If the production of traceback information is disabled at
link time, these records are ignored. ♦

B–46

Index

A
ABS program section name

definition, B–16
.ADDRESS directive

count in image map file, 5–4
image activator’s processing of, 3–24
linker’s processing of, 3–24

Address ranges
aligning on page boundaries, 3–23

Address-related commands
Alpha object language, B–36

Alias names
specifying for universal symbols, 4–11,

LINK–67
Alignment

See Data alignment
Allocating

virtual memory for images, 3–17
Alpha

images
creating, 1–20
specifying in link operations, LINK–5

ALPHA$LIBRARY logical name, 1–9, 1–20
ALPHA$LOADABLE_IMAGES logical name,

1–21, 2–19, LINK–35
Alpha object language, B–1

address-related commands, B–36
conditional store commands, B–36, B–40
control commands, B–35
data structures, B–2
debugger information record format, B–46
end-of-module record format, B–43
instruction-related commands, B–38
operator commands, B–33
stack commands, B–29
store commands, B–30
text information and relocation records, B–27
traceback information record format, B–46

/ALPHA qualifier, 1–21, LINK–5
ANALYZE/IMAGE command

examining image files, 1–12
listing the image sections in an image, 3–20

ANALYZE/OBJECT command
examining object modules, 1–6

Architectures
linker options, 1–20

ASSIGN command
defining the LNK$LIBRARY logical name,

LINK–41
/ATTRIBUTES qualifier, LINK–50

B
BASE= option, LINK–45
Base addresses

defaults for images, LINK–45
specifying using the CLUSTER= option,

LINK–49
system image, LINK–39

Based images
creation of, LINK–45
memory allocation for, LINK–45
processing of, 3–9

Based shareable images
creating, 4–8

/BPAGE qualifier, LINK–6
Brief image map files, LINK–7
/BRIEF qualifier, LINK–7
BSR instruction

substituting for the JSR instruction, 1–15,
LINK–26

BSS program section name
definition, B–16

C
Case sensitivity

in options file, LINK–47
CASE_SENSITIVE= option, LINK–47
CLUSTER= option, LINK–49

basing images, LINK–45
controlling image section creation, 3–22
controlling the order of input file processing,

2–18
fixing position of transfer vector in image, 4–7

Clustering of input files
controlling image section creation, 3–22
effect on image creation, 3–9
in a based image, LINK–45
processing based images, 3–9
using the COLLECT= option, LINK–50

Index–1

Clusters
See Clustering of input files

$CODE$ program section name
definition, B–16

COLLECT= option, LINK–50
controlling image section creation, 3–22
controlling the order of input file processing,

2–18
Conditional store commands

Alpha object language, B–36, B–40
/CONTIGUOUS qualifier, LINK–8
Control commands

Alpha object language, B–35
VAX object language, A–30

$CRMPSC system service
See SYS$CRMPSC system service

Cross-architecture
linking, 1–20, 1–21

logical names, 1–20
Cross-reference section of image map files,

LINK–9
format, 5–8

/CROSS_REFERENCE qualifier, LINK–9

D
$DATA$ program section name

definition, B–16
Data alignment

specifying alignment of program sections, 3–4
Debugger information records

Alpha object language, B–46
VAX object language, A–33

Debugging
Alpha object language records, B–46
enabling at link time, LINK–10
including debugger information in an image,

3–24
including global symbols in a symbol table file,

LINK–66
including traceback information, LINK–40
object language record format, B–46
specifying a user-written debugger, LINK–10
VAX object language records, A–33

/DEBUG qualifier, LINK–10
Debug symbol file

See also /DSF qualifier
creating, LINK–13

Debug symbol files
creating, 1–15

DEFINE command
defining the LNK$LIBRARY logical name,

LINK–41
Demand-zero compression, 3–25

controlling, 3–25, LINK–52

Demand-zero image sections
creating, 3–25, LINK–11, LINK–52
definition, LINK–52
disabling creation of, LINK–11
maximum number of, LINK–59

/DEMAND_ZERO qualifier, LINK–11
DSF files

See Debug symbol files
/DSF qualifier, LINK–13
DZRO_MIN= option, LINK–52

controlling demand-zero compression, 3–25

E
End-of-module record format

Alpha object language, B–43
VAX object language, A–31

Executable images
creating, 1–13
definition, 1–1
specifying a base address, LINK–45

/EXECUTABLE qualifier, LINK–14
Executive images

linking against, LINK–35

F
Fix-ups

creation of, 3–24
definition, 1–3

Full image map files
creating, LINK–15

/FULL qualifier, LINK–15

G
GBL program section attribute

effect on image creation, 3–9
implicit setting by linker, 2–18

GHRs (granularity hint regions)
improving the performance of shareable images,

1–16
Global sections

linker-assigned names of, 5–6
Global symbol directories

See GSDs
Global symbols

declaring as universal symbols, 4–1
defining with the SYMBOL= option, LINK–65
definition, 2–1
determining the address of, 3–18
implemented as overlaid program sections, 2–1
including in a symbol table file, LINK–66
object module reference specification record,

A–11
object module specification format, B–23

version mask, B–27
object module specification subrecord, B–16

Index–2

Global symbols
object module specification subrecord (cont’d)

version mask, B–27
strong reference to, 2–20
weak reference to, 2–20

Global symbol tables
See GSTs

Granularity hint regions
See GHRs

GSDs (global symbol directories)
entity-ident-consistency-check subrecord, A–16,

B–24
entry-point-and-mask-definition subrecord,

A–12
entry-point-definition-with-version-mask

subrecord, A–21
entry-point-definition-with-word-psect

subrecord, A–16
environment-definition/reference subrecord,

A–18
in object modules, 2–1
module-local entry-point definition subrecord,

A–19
module-local procedure definition subrecord,

A–20
module-local symbol definition subrecord, A–19
module-local symbol reference subrecord, A–19
procedure-definition-with-version-mask

subrecord, A–21
procedure-definition-with-word-psect subrecord,

A–16
procedure-with-formal-argument-definition

subrecord, A–13
program-section-definition-in-shareable-image

subrecord, A–20, B–14
program section definition subrecords, B–11
record format in object module, A–6, B–10
symbol definition subrecord format, A–10,

B–17
symbol-definition-with-version-mask subrecord,

A–21, B–27
symbol-definition-with-word-psect subrecord,

A–16
symbol reference subrecord, B–23
symbol specification subrecords, A–10, B–16
text information and relocation records, A–21
universal symbol definition record, B–20
vectored-entry-point-definition subrecord, A–20
vectored-procedure-definition subrecord, A–21
vectored-symbol-definition subrecord, A–20,

B–26
GSMATCH= option, LINK–54
/GST qualifier, LINK–16

creating run-time kits with, 4–10
GSTs (global symbol tables)

controlling contents of, 4–10, LINK–16,
LINK–68

GSTs (global symbol tables) (cont’d)
creating, 4–8
definition, 2–1
deleting entries in, 4–10

H
/HEADER qualifier, LINK–17
Hints

calculating JSR hints, B–42

I
IDENTIFICATION= option, LINK–57
Image activator

description, 1–4
GSMATCH processing, LINK–55
performing image optimizations, 4–11
shareable image ID processing, LINK–55

Image I/O segments, LINK–58
IMAGELIB.OLB file, 2–13, LINK–15

included in image map files, LINK–9
order of processing, 2–19
processing by linker, LINK–37, LINK–38

Image map files
brief, 5–2, LINK–7
components of, 5–2
creating, 1–14, 5–1, LINK–21
default, 5–2
full, 5–2, LINK–15
image section synopsis, 3–20, 5–4
image synopsis, 5–10
linker’s writing of, 3–24
link run statistics, 5–11
listing symbols by name, 5–8
listing symbols by value, 5–9
naming, LINK–21
object module synopsis, 5–3

verifying order of processing, 2–18
program section synopsis, 5–6
symbol characterization codes, 5–9
symbol cross-reference section, LINK–9
symbols cross-reference section, 5–8

Images
See also Executable images; Shareable images
activation of, LINK–54
allocating memory for, 3–17
base address of, in map, 5–10
building for Alpha and VAX architectures, 1–21
creating an image map file, LINK–15,

LINK–21
creating resident images, LINK–27
default page size, LINK–6
enhancing performance of installed images,

1–16
I/O segment, LINK–58
initializing, 1–2, 3–23
length of, in map, 5–10

Index–3

Images (cont’d)
naming, LINK–14
operating with translated VAX images,

LINK–22
optimizing performance, 1–3, 1–15, LINK–26

Alpha object language commands, B–38
calculating JSR hints, B–42

reducing the size of, 3–25, LINK–11
resident, 1–16
specifying Alpha in link operations, LINK–5
specifying identification character string,

LINK–57
specifying stack size, LINK–64
specifying value of name field in image header,

LINK–60
specifying VAX in link operations, LINK–43
storing in contiguous disk blocks, LINK–8
synopsis of in image map file, 5–10
using ANALYZE/IMAGE command to examine,

1–12
Image sections

attributes, 3–18
demand-zero attribute, 3–18
determined by program section attributes,

3–12
binding address to, LINK–28
controlling creation of, 3–21
creating, 3–9
creating from program sections, 3–10
demand-zero, LINK–11, LINK–52
determining the address of, 3–18
determining the program sections in, 3–16
examining with the ANALYZE/IMAGE utility,

3–20
filling with binary information, 3–23
fix-up, 3–24
listed in map file, 3–15, 3–20, 5–4
maximum number of, LINK–59
order, in cluster, 3–13
protection of, LINK–61
specifying the base address of, LINK–49
type designations, 3–19
using CLUSTER= option to control, 3–22

IMGIOCNT system parameter
overriding at link time, LINK–58

/INCLUDE qualifier, LINK–18
effect on symbol resolution processing, 2–13
specified with the /LIBRARY qualifier, 2–13
specifying libraries as linker input, 1–9

/INFORMATIONALS qualifier, LINK–19
Initializing images, 1–2, 3–23
Input files

types of, 1–4
Installing images

enhancing performance of, 1–16
link-time considerations, 1–16
resident images, LINK–27

Installing shareable images, 1–8
creating resident shareable images, 1–16
enhancing performance of, 4–11

Instruction-related commands
Alpha object language, B–38

IOSEGMENT= option, LINK–58
ISD_MAX= option, LINK–59

controlling demand-zero compression, 3–25

J
Jacket routines

link-time considerations, LINK–22
JMP instruction

in transfer vectors, 4–6
JSR instruction

calculating hints for, 1–16, LINK–26, B–42
replacing with the BSR instruction, 1–15,

LINK–26

K
Kitting shareable images, LINK–16

controlling universal symbol declarations, 4–10

L
Library files

containing object modules, 1–8
containing shareable images, 1–8
creating, 1–8
default system libraries

order of processing, 2–19
processing, 2–13, LINK–37, LINK–38

examining contents of, 1–8
name table, 2–21
processing during symbol resolution, 2–11
selective processing of, 2–15
specifying as linker input, 1–9, LINK–18,

LINK–20
specifying default user libraries, 2–13,

LINK–41
types of libraries accepted as linker input, 1–8

/LIBRARY qualifier, LINK–20
effect on symbol resolution processing, 2–12
specified with the /INCLUDE qualifier, 2–13
specifying libraries as linker input, 1–9

$LINK$ program section name
definition, B–16

LINK command
clustering of input files, 2–16, 2–18, LINK–49
in command procedure, 1–12
invoking, LINK–3
qualifiers, 1–17
specifying input files, LINK–3
specifying library files, LINK–20

Index–4

Linker utility (linker)
how to invoke, 1–3

Link operations
obtaining statistical information about, 5–11

$LITERAL$ program section name
definition, B–16

LNK$LIBRARY logical name, LINK–42
processing of, 2–14

LNK$OPEN_LIB logical name
open systems library processing, 2–14

M
Major ID

specifying value of, LINK–54
Map files

See Image map files
Mapping virtual memory

using SOLITARY program section attribute,
3–23

/MAP qualifier, LINK–21
Memory allocation

absolute program section, 3–4
for based images, LINK–45
for images, 1–2
information about, in map, 5–10
relocatable program section, 3–4

Memory resident databases
implementing as shareable image, 1–7

$MGBLSC system service
See SYS$MGBLSC system service

Minor ID
specifying value of, LINK–54

N
NAME= option, LINK–60
Naming images, LINK–14
Naming shareable images, LINK–31
NAS (Network Application Support)

open systems library processing, 2–14
/NATIVE_ONLY qualifier, LINK–22
Network Application Support

See NAS
NOMOD program section attribute

resolving conflicts, 3–25

O
Object languages

Alpha object language, B–1
VAX object language, A–1

Object modules
as linker input file, 1–5
end-of-module records, A–31
end-of-module-with-psect record, A–32

Object modules (cont’d)
entity-ident-consistency-check subrecord, A–16,

B–24
entry-point-definition-with-version-mask

subrecord, A–21
entry-point-definition-with-word-psect

subrecord, A–16
entry-point-symbol-and-mask-definition

subrecord, A–12
environment-definition/reference subrecord,

A–18
global symbol definition subrecord, B–17
global symbol directory records, A–6, B–10
global symbol reference subrecord, B–23
global symbol specification subrecord, A–10,

B–16
including in a link operation from a library,

LINK–18, LINK–20
in libraries, 1–8
in symbol resolution processing, 2–6
language processor name header record, A–5,

B–8
listed in map file, 5–3
main module header record, A–4, B–6
module header records, A–3, B–5
module-local entry-point definition subrecord,

A–19
module-local procedure definition subrecord,

A–20
module-local symbol definition subrecord, A–19
module-local symbol reference subrecord, A–19
normal program section definition subrecord

format, B–11
order of records in, A–1, B–2
procedure-definition-with-version-mask

subrecord, A–21
procedure-definition-with-word-psect subrecord,

A–16
procedure-with-formal-argument-definition

subrecord, A–13
program-section-definition-in-shareable-image

subrecord, A–20, B–14
program section definition record format, A–8,

B–11
in shareable image, B–14

source files header record, A–5, B–8
symbol definition subrecord format, A–10
symbol-definition-with-version-mask subrecord,

A–21, B–27
symbol-definition-with-word-psect subrecord,

A–16
symbol reference GSD subrecord, A–11
text information and relocation records, A–21
title text header record, A–6, B–9
universal symbol definition subrecord, B–20
using ANALYZE/OBJECT utility to examine,

1–6
vectored-entry-point-definition subrecord, A–20

Index–5

Object modules (cont’d)
vectored-procedure-definition subrecord, A–21
vectored-symbol-definition subrecord, A–20,

B–26
vectored symbol specification subrecords, B–26

Open systems library
support for NAS in linker, 2–14

OpenVMS Alpha System-Code Debugger
creating debug symbol file for, LINK–13

Operator commands
Alpha object language, B–33
VAX object language, A–28

Optimizing images
Alpha object language commands, B–38
calcuating JSR hints, B–42

Optimizing performance, 1–3, 1–15
Options

case sensitivity of option arguments, LINK–47
summary of linker options, 1–19
use of radix operators, LINK–44

Options files
as linker input, 1–10
case sensitivity of option arguments, LINK–47
creating, 1–11
specifying in a link operation, 1–11, LINK–23
specifying on the command line, 1–11

/OPTIONS qualifier, LINK–23

P
/P0IMAGE qualifier, LINK–24
Page faults

specifying page fault clusters, LINK–49
Page sizes

specifying in link operations, LINK–6
Performance

optimizing, 1–3, 1–15
PFCDEFAULT system parameter

overriding default value, LINK–49
PLV (privileged library vector), 4–11
Privileged library vector

See PLV
Privileged shareable images

declaring universal symbols in, 4–11
protecting, LINK–25
protecting image sections in, LINK–61

Procedure signature blocks
See PSBs

Program sections
absolute, 3–4
alignment of, 3–4
as universal symbols, 4–4
attributes, 3–3

conflicting, 3–25
determining image section attributes, 3–12
effects on image section creation, 3–11
modifying, 3–22

Program sections (cont’d)
collecting into image sections, 3–10, 3–22,

LINK–50
concatenated, 3–17
creation of, 3–3
declaring as universal symbols, 4–9
determining image section location, 3–16
determining the address of, 3–18
implicit setting of GBL attribute by linker,

2–18
in ANALYZE/OBJECT listing, 3–6
in shareable images

object module format, B–14
isolating in an image section, 3–23
listed in map file, 3–16, 5–6
modifying program section attributes, 3–22
NOMOD attribute

resolving conflicts, 3–25
object module definition format, A–8, B–11
overlaid, 2–1, 3–17, 4–4
relocatable, 3–4
SHR attribute, 4–4
significant attributes of, 3–13
SOLITARY attribute, 3–23
sorting by attributes, 3–11
specifying values of attributes, LINK–62
standard program section names (Alpha

systems only), B–16
PROTECT= option, LINK–61
Protecting image sections

using the PROTECT= option, LINK–61
Protecting shareable images, LINK–25
/PROTECT qualifier, LINK–25
PSBs (procedure signature blocks), LINK–22
PSECT_ATTR= option, LINK–62

controlling image section creation, 3–22

R
Radix operators

used with linker options, LINK–44
$READONLY$ program section name

definition, B–16
Relocating symbols

definition, 1–2
/REPLACE qualifier, LINK–26

effect on debugging, 1–16
Resident images

creating, 1–16, LINK–27
effect on data image sections, LINK–27
effect on image map file, 5–5
link-time considerations, 1–16

RMS_RELATED_CONTEXT option, LINK–63
Run-time kitting

creating shareable images for, LINK–16

Index–6

S
SDA (System Dump Analyzer utility)

using with symbol table files, 1–10, LINK–33
/SECTION_BINDING qualifier, LINK–27

creating resident shareable images, 1–16
improving the performance of installed

shareable images, 4–11
Selective searches

specifying the /SELECTIVE_SEARCH qualifier,
LINK–29

/SELECTIVE_SEARCH qualifier, 2–15
Shareable images

activating, LINK–54
as linker input files, 1–6
benefits of, 1–6
creating, 1–13, 4–1, LINK–31
creating a based shareable image, 4–8
creating a run-time kit, 4–10, LINK–16
creating resident shareable images, 1–16
debugging, LINK–10
declaring alias names for universal symbols,

4–11
declaring universal symbols on Alpha systems,

LINK–67
declaring universal symbols on VAX systems,

4–2
default base address, LINK–45
definition, 1–1
enhancing performance of, 1–16
ensuring upward compatibility, LINK–55

deleting universal symbols, 4–10
guidelines, 4–6
on Alpha systems, 4–9
on VAX systems, 4–4

implicit processing of, 2–11
improving the performance of, 4–11
in libraries, 1–8

default location, 1–9
specifying as linker input, LINK–18,

LINK–20
installing, 1–7, 1–8
naming, LINK–31
privileged, 4–11
protecting, LINK–25, LINK–61
resident images

effect on image map file, 5–5
specifying as linker input, 1–7, LINK–31

in libraries, LINK–20
specifying identification numbers, LINK–54
symbol vector program section, 3–3
use of GSMATCH= option, LINK–55

/SHAREABLE qualifier, LINK–31
creating shareable images, 4–1

STACK= option, LINK–64

Stack commands
Alpha object language, B–29
VAX object language, A–23

STARLET.OLB file, 2–13, LINK–15
included in image map files, LINK–9
order of processing, 2–19
processing by linker, LINK–37

Store commands
Alpha object language, B–30
VAX object language, A–25

Strong symbol
definition, 2–20
reference, 2–20

SYMBOL= option, LINK–65
Symbol resolution processing

definition, 1–2
description, 2–2
handling undefined symbols, 2–5
of object modules, 2–6
ordering of input files, 2–16
overview, 2–1
processing default libraries, 2–13
processing files selectively, 2–15
specifying selective processing, LINK–29
types of input files included, 2–5

Symbols
See also Global symbols; Symbol resolution

processing; Universal symbols
cross-referenced in image map file, 5–8
declaring universal symbols on Alpha systems,

4–8
declaring universal symbols on VAX systems,

4–2
global, 2–1

determining the address of, 3–18
implemented as overlaid program sections, 2–1
listed by name in image map file, 5–8
listed by value in image map file, 5–9
local, 2–1
strong, 2–1, 2–20
strong definition of, 2–21
symbol resolution processing, 2–2
types of, 2–1
universal, 2–1
vectored symbol definition subrecords, B–26
weak, 2–1, 2–20
weak definition of, 2–21

Symbol table files
as linker input files, 1–10
controlling the contents of, LINK–66
creating, 1–14, LINK–33
naming, LINK–33
using with SDA utility, 1–10, LINK–33

Symbol vectors
creating, 4–8, LINK–67
declaring alias names for universal symbols,

4–11

Index–7

Symbol vectors (cont’d)
ensuring upward compatibility on Alpha

systems, 4–9
guidelines, 4–9
in program section, 3–3
run-time flow of control, 4–9

SYMBOL_TABLE= option, LINK–66
/SYMBOL_TABLE qualifier, LINK–33
SYMBOL_VECTOR= option, LINK–67

declaring universal symbols, 4–8
$SYMVECT program section, 3–3
SYS$BASE_IMAGE.EXE file

linking against, 2–19
order of processing, 2–19, LINK–35

SYS$CRMPSC system service
using SOLITARY program section attribute

with, 3–23
SYS$LIBRARY logical name, 1–9, 1–21, 2–13
SYS$MGBLSC system service

using SOLITARY program section attribute
with, 3–23

SYS$PUBLIC_VECTORS.EXE file
order of processing, 2–19, LINK–35
processing, 2–14, LINK–37

SYS.STB file
linking against, 2–19

/SYSEXE qualifier, LINK–35
linking against the executive image, 2–19

/SYSLIB qualifier, LINK–37
effect on default library processing, 2–19

/SYSSHR qualifier, LINK–38
effect on default library processing, 2–19

System Dump Analyzer utility
See SDA

System images
creating, 1–13, LINK–39
creating a header for, LINK–17
default base address, LINK–45
definition, 1–1
naming, LINK–39

System library files
including in image map files, LINK–9,

LINK–15
linker processing of, 2–13, LINK–37

order of processing, 2–19
open systems support library, 2–14

/SYSTEM qualifier, LINK–39
System services

resolving references to, 2–14, 2–19, LINK–35,
LINK–37

user-written, 4–11

T
Text information and relocation (TIR) records

Alpha object language, B–27
VAX object language, A–21

Traceback facility
link-time considerations, LINK–40

Traceback information records
Alpha object language, B–46
VAX object language, A–33

/TRACEBACK qualifier, LINK–40
Transfer vectors

comparison to UNIVERSAL= option, 4–4
creating, 4–5
ensuring upward compatibility, 4–6
example program, 4–6
including data in, 4–5
including in a link operation, 4–7
providing upward compatibility, 4–4

U
UNIVERSAL= option, LINK–69

comparison to transfer vectors, 4–4
declaring universal symbols, 4–2
specifying, 4–8

Universal alias names
specifying, 4–11, LINK–67

Universal symbols
declaring alias names for, 4–11
declaring on Alpha systems, 4–8
declaring on VAX systems, 4–2, LINK–69
definition, 2–1
for symbols that represent data, 4–5
for symbols that represent procedures, 4–4
object module definition format, B–20

User library files
limiting scope of linker processing, LINK–41
linker’s search of, LINK–42
specifying, 2–13, LINK–41

/USERLIBRARY qualifier, LINK–41
User-written system services

implemented as privileged shareable images,
4–11

V
VAX

images
creating, 1–20
specifying in link operations, LINK–43

VAX$LIBRARY logical name, 1–20
VAX object language, A–1

control commands, A–30
debugger information record format, A–33
operator commands, A–28
stack commands, A–23

Index–8

VAX object language (cont’d)
store commands, A–25
traceback information record format, A–33

/VAX qualifier, 1–21, LINK–43
Virtual memory

allocating for images, 1–2, 3–17

W
Weak symbol

definition, 2–20
reference, 2–20

Index–9

