
OpenVMS Version 7.0 New
Features Manual
Order Number: AA–QSBFA–TE

December 1995

This manual describes the new features of the OpenVMS VAX Version
7.0 and the OpenVMS Alpha Version 7.0 operating systems.

Revision/Update Information: This is a new manual.

Software Version: OpenVMS Alpha Version 7.0
OpenVMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AlphaServer, AlphaStation,
Bookreader, CI, DEC Ada, DEC Fortran, DEC VTX, DECchip, DECdirect, DECmcc, DECmigrate,
DECnet, DECserver, DECterm, DECthreads, DECwindows, Digital, Digital UNIX, GIGAswitch
HSC, HSJ, HSZ, InfoServer, LAT, MicroVAX, MSCP, OpenVMS, PATHWORKS, POLYCENTER,
StorageWorks, TA, ThinWire, TMSCP, TURBOchannel, ULTRIX, VAX, VAX C, VAXcluster, VMS,
VMScluster, VT, XMI, and the DIGITAL logo.

Motif is a registered trademark of Open Software Foundation, Inc.

NetView is a registered trademark of International Business Machines Corporation.

PostScript is a registered trademark of Adobe Systems Incorporated.

X/Open is a trademark of X/Open Company Limited.

Visual C++, Win32, Windows NT, and Windows 95 are registered trademarks of Microsoft
Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

ZK6457

This document is available on CD–ROM.

Contents

Preface . xv

1 Summary of Version 7.0 New Features

2 General User Features

2.1 DCL Commands . 2–1
2.1.1 New /ALLOCATION Qualifier for CREATE/DIRECTORY

Command . 2–1
2.1.2 New /ON Qualifier for RUN [process] Command 2–1
2.1.3 New Qualifiers for SET PROCESS Command (Alpha Only) 2–1
2.1.3.1 /CAPABILITIES Qualifier . 2–2
2.1.3.2 /AFFINITY Qualifier . 2–2
2.1.4 New /DEFAULT_CAPABILITIES Qualifier for START/CPU Command

. 2–3
2.1.5 New Display for SHOW CPU Command . 2–3
2.2 High-Performance Sort/Merge Utility (Alpha Only) 2–4
2.3 Mail Utility . 2–5
2.3.1 Support for Signature Files . 2–6
2.3.1.1 Displaying Signature File Information . 2–6
2.3.1.2 Including a Signature File by Default . 2–6
2.3.1.3 Disabling the Default Setting . 2–6
2.3.1.4 Overriding the Default Setting . 2–7
2.3.1.5 Using Signature Files . 2–7
2.3.2 /PAGE Qualifier Now Available with Mail Commands 2–8
2.3.3 /NEXT Qualifier Valid with SEARCH Command 2–9
2.4 Easy Internet Access . 2–9
2.4.1 Internet Features Added to OpenVMS Systems 2–10

3 System Management Features

3.1 New and Changed System Parameters . 3–1
3.1.1 System Parameters . 3–1
3.1.1.1 CWCREPRC_ENABLE . 3–1
3.1.1.2 DBGTK_SCRATCH (Alpha Only) . 3–1
3.1.1.3 IO_PREFER_CPUS (Alpha Only) . 3–1
3.1.1.4 MAXBOBMEM (Alpha Only) . 3–2
3.1.1.5 MULTITHREAD (Alpha Only) . 3–2
3.1.2 SPECIAL Parameters . 3–2
3.1.2.1 FAST_PATH (Alpha Only) . 3–2
3.1.3 Changed System Parameters . 3–2
3.1.3.1 ACP_DATACHECK Has Three New Levels 3–2
3.2 LAT New Features . 3–4
3.2.1 Displaying Speeds Greater than 57,600 Kbps 3–5

iii

3.2.2 Using Multiple LAN Adapters . 3–5
3.2.2.1 Multiple LAN Addresses . 3–5
3.2.2.2 Supported Configurations . 3–5
3.2.2.3 Unsupported Configuration . 3–7
3.2.2.4 Creating Logical LAT Links . 3–7
3.2.2.5 Path Discovery . 3–8
3.2.3 Modifying LAT Parameters . 3–9
3.2.4 Managing Large Buffers . 3–9
3.2.5 Controlling Service Announcements . 3–11
3.2.6 Support for User-Written LAT Rating Algorithm 3–11
3.2.7 New SET HOST/LAT Qualifier . 3–12
3.2.8 New LAT Item Codes . 3–12
3.3 Networking Support . 3–12
3.4 New Network Commands . 3–12
3.5 New Logical Names for OPCOM (Operator Communication Manager) . . . 3–12
3.6 Setting Correct Time Zone Information on Your System 3–13
3.6.1 Understanding Time-Setting Concepts . 3–14
3.6.1.1 Coordinated Universal Time . 3–14
3.6.1.2 Time Differential Factor . 3–14
3.6.1.3 Daylight Saving Time and Standard Time 3–15
3.6.1.4 Time Zones . 3–15
3.6.2 Determining Your System’s Time Differential Factor 3–15
3.6.3 Using UTC$TIME_SETUP.COM . 3–17
3.6.3.1 Setting the Time Zone on Your System . 3–17
3.6.3.2 Setting the TDF on Your System . 3–20
3.6.4 Adjusting for Daylight Saving Time and Standard Time 3–21
3.6.5 Setting Time in a VMScluster Environment . 3–22
3.7 System Dump Analyzer (SDA) Features . 3–23
3.7.1 New SET FETCH Command . 3–23
3.7.2 Current Commands with New Features . 3–24
3.7.2.1 SHOW CLUSTER . 3–24
3.7.2.2 SHOW CONNECTIONS . 3–24
3.7.2.3 SHOW LAN . 3–24
3.7.2.4 SHOW LOCK . 3–24
3.7.2.5 SHOW PAGE_TABLE . 3–25
3.7.2.6 SHOW PFN_DATA . 3–25
3.7.2.7 SHOW PROCESS . 3–27
3.7.2.8 SHOW RESOURCE . 3–27
3.7.2.9 SHOW SUMMARY . 3–27
3.7.3 Display Changes . 3–28
3.7.4 Other Command Changes . 3–29
3.7.5 SDA VAX Dump File Process . 3–29
3.8 Warranted and Migration Support for VMScluster System

Configurations . 3–30
3.9 Printing Features . 3–30
3.9.1 1024 Process Identifiers in Print Queuing Requests 3–30
3.9.2 New Qualifier for Print Queues . 3–30

iv

4 Programming Features

4.1 OpenVMS Alpha 64-Bit Addressing Support (Alpha Only) 4–1
4.2 OpenVMS Debugger . 4–1
4.2.1 Debugging Optimized Code (Alpha Only) . 4–1
4.2.2 Internationalization Features . 4–3
4.2.3 SHOW CALLS and SHOW STACK Commands and Null Frame

Procedures (Alpha Only) . 4–4
4.2.4 CALL Command and Floating-Point Parameters 4–4
4.2.5 Customization Features for the DECwindows Motif Interface 4–4
4.2.6 Editor File Menu Items in the DECwindows Motif Interface 4–6
4.2.7 Command/Message View Popup Menu Items in the DECwindows

Motif Interface . 4–6
4.2.8 Documentation Changes . 4–6
4.3 Heap Analyzer Support (Alpha Only) . 4–6
4.4 DECthreads Features . 4–7
4.4.1 DECthreads Implements Final POSIX 1003.1c Standard Style

Interface . 4–7
4.4.2 Thread Independent Services (TIS) Interface . 4–7
4.5 DELTA/XDELTA Support for Debugging Multithreaded Applications

(Alpha Only) . 4–8
4.6 Global Section Limit Increased on OpenVMS Alpha Version 7.0 4–8
4.7 High-Performance Sort/Merge Utility—SOR$ Routines (Alpha Only) 4–8
4.8 Kernel Threads (Alpha Only) . 4–10
4.8.1 Kernel Threads Advantages . 4–10
4.8.2 New Kernel Threads Features . 4–10
4.8.2.1 Multiple Execution Contexts Within a Process 4–10
4.8.2.2 Efficient Use of the OpenVMS and DECthreads Schedulers 4–11
4.9 Linking for Different Architectures . 4–11
4.9.1 /ALPHA Qualifier . 4–12
4.9.2 /VAX Qualifier . 4–13
4.10 New /ALPHA Qualifier for Command Definition, Library, and Message

Utilities . 4–13
4.11 New LAT Item Codes (Alpha Only) . 4–14
4.12 Mail Utility Features . 4–14
4.12.1 Signature File User Profile Entry Field . 4–14
4.12.2 Input Item Codes for the Signature File in the Send Context 4–15
4.12.3 Input Item Codes for the Signature File in the User Context 4–15
4.12.4 Output Item Code for the Signature File in the User Context 4–15
4.12.5 MAIL$SEND_BEGIN Routine Input Item Codes 4–15
4.12.5.1 MAIL$_SEND_SIGFILE and MAIL$_SEND_NO_SIGFILE 4–15
4.12.6 MAIL$USER_BEGIN and MAIL$USER_GET_INFO Routines Output

Item Code . 4–15
4.12.6.1 MAIL$_USER_SIGFILE . 4–16
4.12.7 MAIL$USER_SET_INFO Routine Input Item Codes 4–16
4.12.7.1 MAIL$_USER_SET_SIGFILE and

MAIL$_USER_SET_NO_SIGFILE . 4–16
4.13 New STARLET Definitions for C (Alpha Only) . 4–16
4.14 Spiralog Version 1.0 (Alpha Only) . 4–18
4.15 Dump File Compression Features (Alpha Only) . 4–18
4.15.1 Dump File Style . 4–18
4.15.1.1 Controlling the Size of Page Files and Dump Files 4–20
4.15.1.2 Writing to the System Dump File . 4–20
4.15.1.3 Writing to the System Page File . 4–21

v

4.16 New SMBMSG$V_NO_INITIAL_FF Symbol for
SMBMSG$K_PRINT_CONTROL Message Item Code 4–22

4.17 System Services . 4–22
4.17.1 Fast IO System Services (Alpha Only) . 4–22
4.17.2 New QIO Attribute, ATR$C_FILE_SYSTEM_INFO 4–23
4.17.3 New $CREPRC Argument . 4–23
4.17.4 New System Services to Support CPU Scheduling (Alpha Only) 4–23
4.18 CPU Scheduling (Alpha Only) . 4–24
4.18.1 Capabilities . 4–24
4.18.1.1 User Capabilities . 4–25
4.18.1.2 Scope of User Capabilities . 4–25
4.18.1.3 Capability System Services . 4–26
4.18.1.4 /CAPABILITIES Qualifier . 4–26
4.18.2 Explicit Affinity . 4–27
4.18.2.1 Scope of Explicit Affinity . 4–27
4.18.2.2 Explicit Affinity System Service . 4–28
4.18.2.3 /AFFINITY Qualifier . 4–28
4.18.3 Implicit Affinity . 4–28
4.18.4 Informational Services . 4–29
4.18.4.1 DCL SHOW CPU . 4–29
4.18.4.2 SDA SHOW PROCESS . 4–29
4.18.4.3 $GETSYI - General System Information . 4–29
4.18.4.4 $GETJPI - Kernel Thread Information . 4–30
4.19 Alternative to Local Event Flags . 4–30
4.20 Run-Time Library (RTL) Routines . 4–31
4.20.1 Using LIB$CREATE_DIR to Create Large Directories 4–31
4.21 Wind/U Version 3.0 Run Time on OpenVMS Systems 4–31
4.22 ZIC Utility . 4–31
4.22.1 Format . 4–31
4.22.1.1 Parameters . 4–32
4.22.1.2 Qualifiers . 4–32
4.22.2 Description . 4–32
4.22.2.1 Rule Lines . 4–32
4.22.2.2 Zone Lines . 4–34
4.22.2.3 Link Lines . 4–35
4.22.3 Example . 4–35

5 Optional Features for Improving I/O Performance

5.1 Fast I/O . 5–1
5.1.1 Fast I/O Benefits . 5–2
5.1.2 Using Buffer Objects . 5–2
5.1.3 Differences Between Fast I/O Services and $QIO 5–3
5.1.4 Using Fast I/O Services . 5–4
5.1.4.1 Using Fandles . 5–4
5.1.4.2 Modifying Existing Applications . 5–5
5.1.4.3 I/O Status Area (IOSA) . 5–5
5.1.4.4 $IO_SETUP . 5–6
5.1.4.5 $IO_PERFORM[W] . 5–6
5.1.4.6 $IO_CLEANUP . 5–6
5.1.4.7 Fast I/O FDT Routine (ACP_STD$FASTIO_BLOCK) 5–6
5.1.5 Additional Information . 5–7
5.2 Fast Path . 5–7
5.2.1 Fast Path Features and Benefits . 5–7

vi

5.2.2 Using Fast Path . 5–8
5.2.3 Fast Path Restrictions . 5–9

6 New DECamds Features

6.1 New Fields in the System Overview Window . 6–2
6.2 Single Disk Summary Window . 6–3
6.3 New Cluster Windows . 6–5
6.3.1 Cluster Transition/Overview Summary Window 6–6
6.3.1.1 Data Displayed . 6–7
6.3.1.2 Notes About Data Display . 6–8
6.3.1.3 New Event in Window . 6–8
6.3.1.4 From This Window... 6–9
6.3.2 SCA Summary Window . 6–9
6.3.2.1 Notes About Data Display . 6–11
6.3.2.2 New Event in Window . 6–11
6.3.2.3 From This Window... 6–11
6.3.3 NISCA Summary Window . 6–11
6.3.3.1 Data Displayed . 6–13
6.3.3.2 Notes About Data Display . 6–16

A New OpenVMS System Messages

A.1 List of Messages . A–1

B DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature

B.1 GENCAT . B–2
B.1.1 Format . B–2
B.1.1.1 Parameters . B–2
B.1.1.2 Qualifiers . B–2
B.1.2 Description . B–2
B.1.3 Errors . B–4
B.1.4 Examples . B–4
B.2 ICONV COMPILE . B–6
B.2.1 Format . B–6
B.2.1.1 Parameters . B–6
B.2.1.2 Qualifier . B–6
B.2.2 Description . B–7
B.2.3 Errors . B–10
B.2.4 Example . B–10
B.3 ICONV CONVERT . B–10
B.3.1 Format . B–10
B.3.1.1 Parameters . B–10
B.3.1.2 Qualifiers . B–10
B.3.2 Description . B–11
B.3.3 Example . B–11
B.4 LOCALE COMPILE . B–11
B.4.1 Format . B–11
B.4.1.1 Parameter . B–11
B.4.1.2 Qualifiers . B–12
B.4.2 Description . B–13
B.4.3 Errors . B–13
B.4.4 Example . B–14

vii

B.5 LOCALE LOAD . B–14
B.5.1 Format . B–14
B.5.1.1 Parameter . B–14
B.5.1.2 Qualifiers . B–14
B.5.2 Description . B–15
B.6 LOCALE UNLOAD . B–15
B.6.1 Format . B–15
B.6.1.1 Parameter . B–15
B.6.1.2 Qualifiers . B–15
B.6.2 Description . B–15
B.7 LOCALE SHOW CHARACTER_DEFINITIONS . B–15
B.7.1 Format . B–15
B.7.1.1 Parameters . B–16
B.7.1.2 Qualifiers . B–16
B.7.2 Description . B–16
B.7.3 Example . B–16
B.8 LOCALE SHOW CURRENT . B–16
B.8.1 Format . B–16
B.8.1.1 Parameters . B–16
B.8.1.2 Qualifiers . B–16
B.8.2 Description . B–16
B.8.3 Example . B–17
B.8.4 Errors . B–18
B.9 LOCALE SHOW PUBLIC . B–18
B.9.1 Format . B–18
B.9.1.1 Parameters . B–18
B.9.1.2 Qualifiers . B–18
B.9.2 Description . B–18
B.9.3 Example . B–18
B.10 LOCALE SHOW VALUE . B–18
B.10.1 Format . B–18
B.10.1.1 Parameter . B–19
B.10.1.2 Qualifiers . B–21
B.10.2 Errors . B–21
B.10.3 Description . B–21
B.10.4 Examples . B–21
B.11 Locale File Format . B–22
B.11.1 Locale Categories . B–22
B.11.1.1 Overriding Defaults . B–22
B.11.1.2 Category Source Definitions . B–23
B.11.2 LC_COLLATE Category . B–23
B.11.2.1 The collating-element Statement . B–24
B.11.2.2 The collating-symbol Statement . B–25
B.11.2.3 The order_start Statement . B–25
B.11.3 LC_CTYPE Category . B–27
B.11.4 LC_MESSAGES Category . B–30
B.11.5 LC_MONETARY Category . B–31
B.11.5.1 LC_MONETARY Keywords . B–31
B.11.5.2 Monetary Format Variations . B–34
B.11.6 LC_NUMERIC Category . B–35
B.11.7 LC_TIME Category . B–36
B.11.7.1 Keywords . B–37
B.11.7.2 Field Descriptors . B–39
B.11.7.3 Sample Locale Definition . B–41

viii

B.12 Character Set Description (Charmap) File . B–42
B.12.1 Portable Character Set . B–42
B.12.2 Components of a Charmap File . B–45

C SCSI as a VMScluster Storage Interconnect—OpenVMS Alpha
Version 6.2 Feature

C.1 Conventions Used in This Appendix . C–1
C.1.1 SCSI ANSI Standard . C–2
C.1.2 Symbols Used in Figures . C–2
C.2 Accessing SCSI Storage . C–2
C.2.1 Single-Host SCSI Access in VMScluster Systems C–2
C.2.2 Multiple-Host SCSI Access in VMScluster Systems C–3
C.3 Configuration Requirements and Hardware Support C–4
C.3.1 Configuration Requirements . C–4
C.3.2 Hardware Support . C–5
C.4 SCSI Interconnect Concepts . C–6
C.4.1 Number of Devices . C–6
C.4.2 Performance . C–6
C.4.3 Distance . C–7
C.4.4 Cabling and Termination . C–8
C.5 SCSI VMScluster Hardware Configurations . C–9
C.5.1 Systems Using Add-On SCSI Adapters . C–9
C.5.1.1 Building a Basic System Using Add-On SCSI Adapters C–10
C.5.1.2 Building a System That Allows a Server to Be Removed (Using

DWZZA Converters) . C–11
C.5.1.3 Building a System That Allows Additional Features and

Performance Using an HSZ40 Controller . C–12
C.5.1.4 Building a System with More Enclosures or Greater

Separation . C–14
C.5.2 Building a System Using Internal SCSI Adapters C–18
C.6 Installation . C–19
C.6.1 Step 1: Meet SCSI Grounding Requirements . C–20
C.6.2 Step 2: Configure SCSI Node IDs . C–20
C.6.2.1 Configuring Device IDs on Multiple-Host SCSI Buses C–21
C.6.2.2 Configuring Device IDs on Single-Host SCSI Buses C–22
C.6.3 Step 3: Power Up and Verify SCSI Devices . C–22
C.6.4 Step 4: Show and Set SCSI Console Parameters C–24
C.6.5 Step 5: Install the OpenVMS Operating System C–26
C.6.6 Step 6: Configure Additional Systems . C–26
C.7 Supplementary Information . C–26
C.7.1 Running the CLUSTER_CONFIG Command Procedure C–26
C.7.2 Error Reports and OPCOM Messages in Multiple-Host SCSI

Environments . C–28
C.7.2.1 SCSI Bus Resets . C–28
C.7.2.2 SCSI Timeouts . C–29
C.7.2.3 Mount Verify . C–29
C.7.2.4 Shadow Volume Processing . C–30
C.7.2.5 Expected OPCOM Messages in Multiple-Host SCSI

Environments . C–30
C.7.2.6 Error-Log Basics . C–30
C.7.2.7 Error-Log Entries in Multiple-Host SCSI Environments C–31
C.7.3 Restrictions and Known Problems . C–32

ix

C.7.4 Troubleshooting . C–33
C.7.4.1 Termination Problems . C–33
C.7.4.2 Booting or Mounting Failures Caused by Incorrect

Configurations . C–33
C.7.4.2.1 Bugchecks During the Bootstrap Process C–33
C.7.4.2.2 Mount Failures . C–35
C.7.4.3 Grounding . C–36
C.7.4.4 Interconnect Lengths . C–36
C.7.5 SCSI Arbitration Considerations . C–36
C.7.5.1 Arbitration Issues in Multi-Disk Environments C–36
C.7.5.2 Solutions for Resolving Arbitration Problems C–37
C.7.5.3 Arbitration and Bus Isolators . C–37
C.7.6 Removal and Insertion of SCSI Devices While the VMScluster System

is Operating . C–38
C.7.6.1 Terminology for Describing Hot Plugging . C–38
C.7.6.2 Rules for Hot Plugging . C–39
C.7.6.3 Procedures for Ensuring That a Device or Segment Is Inactive . . . C–41
C.7.6.4 Procedure for Hot Plugging StorageWorks SBB Disks C–42
C.7.6.5 Procedure for Hot Plugging HSZ40s . C–43
C.7.6.6 Procedure for Hot Plugging Host Adapters C–44
C.7.6.7 Procedure for Hot Plugging DWZZAs . C–44
C.7.7 OpenVMS Requirements for Devices Used on Multiple-Host SCSI

VMScluster Systems . C–46
C.7.8 Grounding Requirements . C–47

D VMScluster Systems That Span Multiple Sites—OpenVMS Version
6.2 Feature

D.1 What Is a Multiple-Site VMScluster System? . D–1
D.1.1 ATM, DS3, and FDDI Intersite Links . D–2
D.1.2 Benefits of Multiple-Site VMScluster Systems D–3
D.1.3 General Configuration Guidelines . D–4
D.2 Using FDDI to Configure Multiple-Site VMScluster Systems D–4
D.3 Using WAN services to Configure Multiple-Site VMScluster Systems D–5
D.3.1 The ATM Communications Service . D–5
D.3.2 The DS3 Communications Service . D–6
D.3.3 FDDI-to-WAN Bridges . D–6
D.3.4 Guidelines for Configuring ATM and DS3 in a VMScluster System . . . D–7
D.3.4.1 Requirements . D–7
D.3.4.2 Recommendations . D–8
D.3.5 Availability Considerations . D–10
D.3.6 Specifications . D–10
D.4 Managing VMScluster Systems Across Multiple Sites D–12
D.4.1 Methods and Tools . D–13
D.4.2 Shadowing Data . D–14
D.4.3 Monitoring Performance . D–14

x

E Other OpenVMS Version 6.2 New Features

E.1 VMScluster Systems New Features . E–1
E.1.1 OpenVMS Cluster Client Software . E–1
E.1.2 Support for TMSCP Served SCSI Tapes . E–1
E.1.2.1 No TMSCP Server Support for SCSI Retension Command E–2
E.1.3 Enhanced Support for HSJ, HSC, and HSD Series Controller

Failover . E–2

Index

Examples

C–1 Adding a Node to a SCSI Cluster . C–27

Figures

3–1 Multiple Address LAT Configuration: One LAN with Mixed Version
LAT Nodes . 3–5

3–2 Multiple Address LAT Configuration: Two LANs with Mixed Version
LAT Nodes . 3–6

3–3 Multiple Address LAT Configuration: Two LANs with Version 5.3 LAT
Nodes . 3–7

3–4 Unsupported Multiple Address LAT Configuration 3–7
3–5 LAT FDDI Ring and Large Buffers . 3–10
3–6 Time Differential Factor Map . 3–16
3–7 VMScluster Version Pairings . 3–30
6–1 DECamds Data Window Hierarchy . 6–2
6–2 System Overview Window . 6–3
6–3 Single Disk Summary Window . 6–4
6–4 Cluster Transition/Overview Summary Window 6–6
6–5 SCA Summary Window . 6–10
6–6 NISCA Summary Window . 6–12
C–1 Conventions: Key to Symbols Used in Figures C–2
C–2 Highly Available Servers for Shared SCSI Access C–3
C–3 Maximum Stub Lengths . C–9
C–4 Conceptual View: Basic SCSI System . C–10
C–5 Sample Configuration: Basic SCSI System Using AlphaServer 1000,

KZPAA Adapter, and BA350 Enclosure . C–11
C–6 Conceptual View: SCSI System with Bus Isolator (DWZZA

Converter) . C–12
C–7 Sample Configuration: SCSI System with DWZZA Converter,

AlphaServer 1000 Systems, and BA350 Enclosure C–12
C–8 Conceptual View: System Using Differential Controllers C–13
C–9 Sample Configuration: System Using HSZ40 Controller in an SW300

Enclosure . C–14
C–10 Conceptual View: Using DWZZAs to Allow for Increased Separation

or More Enclosures . C–15

xi

C–11 Sample Configuration: Using DWZZAs to Allow for Increased
Separation or More Enclosures . C–16

C–12 Sample Configuration: Three Hosts on a SCSI Bus C–17
C–13 Conceptual View: SCSI VMScluster System Using Internal

Adapters . C–18
C–14 Sample Configuration: SCSI VMScluster System with AlphaStation

200 Systems Using Internal Adapters . C–19
C–15 Setting Allocation Classes for SCSI Access . C–21
C–16 SCSI Bus Topology . C–39
C–17 Hot Plugging a Bus Isolator . C–41
D–1 Site-to-Site Link Between Philadelphia and Washington D–2
D–2 Multiple-Site VMScluster Configuration with Remote Satellites D–4
D–3 ATM/SONET OC-3 Service . D–6
D–4 DS3 Service . D–6
D–5 Multiple-Site VMScluster Configuration Connected by DS3 D–7

Tables

1–1 Summary of OpenVMS VAX and OpenVMS Alpha Version 7.0
Software Features . 1–1

2–1 High-Performance Sort/Merge: Differences in Behavior 2–5
3–1 LAT$RATING Sources . 3–11
3–2 Time Zone Acronyms . 3–18
3–3 Page Frame Number Information—Line One Fields 3–25
3–4 Page Frame Number Information—Line Two Fields 3–26
3–5 Display Changes . 3–28
4–1 High-Performance Sort/Merge: Differences in SOR$ Routine

Behavior . 4–9
4–2 Logical Names for Cross-Architecture Linking 4–11
4–3 LAT Node Entity Item Codes . 4–14
4–4 LAT Port Entity Item Code . 4–14
4–5 Structures Used by _NEW_STARLET Prototypes 4–17
4–6 DUMPSTYLE Mask . 4–19
4–7 Comparison of Full and Selective Dump Files 4–20
4–8 SMBMSG$V_NO_INITIAL_FF Symbol . 4–22
4–9 $GETSYI item codes for CPU Scheduling . 4–30
4–10 $GETJPI item codes for CPU Scheduling . 4–30
4–11 Day the Rule Becomes Effective . 4–33
4–12 Time of Day the Rule Becomes Effective . 4–33
6–1 New Fields in the System Overview Window . 6–3
6–2 Data Items in the Single Disk Summary Window 6–5
6–3 Data Items in the Summary Panel of the Cluster Transition/Overview

Summary Window . 6–7
6–4 Data Items in the Cluster Members Panel of the Cluster

Transition/Overview Summary Window . 6–8
6–5 Data Items in the SCA Summary Window . 6–10
6–6 Data Items in the Transmit Panel . 6–13
6–7 Data Items in the Receive Panel . 6–13

xii

6–8 Data Items in the Congestion Control Panel . 6–14
6–9 Data Items in the Channel Selection Panel . 6–15
6–10 Data Items in the VC Closures Panel . 6–15
6–11 Data Items in the Packets Discarded Panel . 6–15
B–1 Special Characters . B–4
B–2 Codeset Declarations . B–7
B–3 Locale Categories and Keywords . B–19
B–4 LC_COLLATE Category Keywords . B–24
B–5 LC_CTYPE Category Keywords . B–28
B–6 LC_MESSAGES Category Keywords . B–31
B–7 LC_MONETARY Category Keywords . B–32
B–8 Monetary Format Variations . B–34
B–9 LC_NUMERIC Category Keywords . B–36
B–10 LC_TIME Category Keywords . B–37
B–11 LC_TIME Locale Field Descriptors . B–39
B–12 Portable Character Set . B–42
C–1 Requirements for SCSI VMScluster Configurations C–4
C–2 Supported Hardware for SCSI VMScluster Systems C–5
C–3 Maximum Data Transfer Rates in Megabytes per Second C–7
C–4 Maximum SCSI Interconnect Distances . C–8
C–5 Internal SCSI Cable Lengths . C–19
C–6 Steps for Installing a SCSI VMScluster System C–20
C–7 SCSI Environment Parameters . C–24
C–8 Steps for Installing Additional Nodes . C–26
C–9 Steps for Ensuring Proper Grounding . C–47
D–1 DS3 Protocol Options . D–8
D–2 Bellcore and VMScluster Requirements and Goals Terminology D–11
D–3 VMScluster DS3 & SONET OC3 Error Performance Requirements . . . D–12
E–1 TMSCP_SERVE_ALL System Parameter Settings E–2

xiii

Preface

Intended Audience
This manual is intended for general users, system managers, and programmers
who use the OpenVMS operating system.

This document contains descriptions of the new features for Version 7.0 of the
OpenVMS VAX and OpenVMS Alpha operating systems. For information about
how some of the new features might affect your system, read the OpenVMS
Version 7.0 Release Notes before you install, upgrade, or use Version 7.0.

Document Structure
This manual is organized as follows:

• Chapter 1 contains a summary of the new OpenVMS software features.

• Chapter 2 describes new features of interest to general users of the OpenVMS
VAX and OpenVMS Alpha operating systems.

• Chapter 3 describes new features that are applicable to the tasks performed
by system managers.

• Chapter 4 describes new features that support programming tasks.

• Chapter 5 describes new optional features for improving I/O performance.

• Chapter 6 describes new features of DECamds.

• Appendix A describes new or changed messages from the Help Message
database.

• Appendix B describes the new DEC C XPG4 localization utilities. This is
an OpenVMS Version 6.2 new feature that is not published elsewhere in the
printed documentation.

• Appendix C describes how VMScluster systems support the Small Computer
Systems Interface (SCSI) as a storage interconnect. This is an OpenVMS
Version 6.2 new feature that is not published elsewhere in the printed
documentation.

• Appendix D discusses multiple-site VMScluster configurations, with an
emphasis on the new wide area network ATM and DS3 communications
services. This is an OpenVMS Version 6.2 new feature that is not published
elsewhere in the printed documentation.

• Appendix E describes other OpenVMS Version 6.2 new features that have not
yet been published in the printed documentation.

xv

Related Documents
Refer to the following documents for detailed information about the software
features described in this manual:

• DEC C Run-Time Library Reference Manual for OpenVMS Systems

• OpenVMS DCL Dictionary

• OpenVMS RTL Library (LIB$) Manual

• OpenVMS System Management Utilities Reference Manual

• OpenVMS System Manager’s Manual

• OpenVMS System Messages: Companion Guide for Help Message Users

• OpenVMS System Services Reference Manual

• New OpenVMS Alpha System Services Manual

• OpenVMS User’s Manual

• OpenVMS VAX Version 7.0 Upgrade and Installation Manual

• OpenVMS Version 7.0 Release Notes

• VMScluster Systems for OpenVMS

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063−1260

809−781−0505

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

xvi

For additional information about OpenVMS products and services, access the
Digital OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08

Mail OpenVMS Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

Conventions
In this manual, every use of OpenVMS Alpha means the OpenVMS Alpha
operating system, every use of OpenVMS VAX means the OpenVMS VAX
operating system, and every use of OpenVMS means both the OpenVMS Alpha
operating system and the OpenVMS VAX operating system.

The following conventions are used to identify information specific to OpenVMS
Alpha or to OpenVMS VAX:

Alpha
The Alpha icon denotes the beginning of information
specific to OpenVMS Alpha.

VAX
The VAX icon denotes the beginning of information
specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
information specific to OpenVMS Alpha or to OpenVMS
VAX.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

xvii

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system messages (Internal error number),
in command lines (/PRODUCER=name), and in command
parameters in text (where device-name contains up to five
alphanumeric characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

struct Monospace type in text identifies the following C programming
language elements: keywords, the names of independently
compiled external functions and files, syntax summaries, and
references to variables or identifiers introduced in an example.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xviii

1
Summary of Version 7.0 New Features

Table 1–1 summarizes the new software features supported by OpenVMS Alpha
and OpenVMS VAX Version 7.0.

Table 1–1 Summary of OpenVMS VAX and OpenVMS Alpha Version 7.0 Software Features

General User Features

DCL commands New /ALLOCATION=n qualifier to the CREATE/DIRECTORY
command.

New /NO_INITIAL_FF qualifier to the INITIALIZE/QUEUE, SET
QUEUE, and START QUEUE commands.

New /ON qualifier for RUN [process] command.

New SET PROCESS command qualifiers and new START/CPU
/DEFAULT_CAPABILITIES command (Alpha systems only).

New display for SHOW CPU command (Alpha systems only).

High-performance Sort/Merge
utility

Command interface to the optional high-performance Sort/Merge utility.

Mail utility Support for signature files, /PAGE qualifier, and /NEXT qualifier (with
SEARCH command).

Internet access Support for commercial Internet products and abundant freeware
through an OpenVMS Web server.

(continued on next page)

1–1

Summary of Version 7.0 New Features

Table 1–1 (Cont.) Summary of OpenVMS VAX and OpenVMS Alpha Version 7.0 Software
Features

System Management Features

System parameters New parameters:

• CWCREPRC_ENABLE

• DBGTK_SCRATCH (Alpha systems only)

• IO_PREFER_CPUS

• MAXBOBMEM (Alpha systems only)

• MULTITHREAD (Alpha systems only)

• FAST_PATH (Alpha systems only)

• SCSICLUSTER_P[1-4] (Alpha systems only)

Changed parameter:

• ACP_DATACHECK

LAT software Support for greater terminal speeds, multiple LAN adapters, large
buffers, disabling service announcements, user-written LAT rating
algorithm, and a new SET HOST/LAT qualifier (/FRAME).

Networking support Support for network products, such as DECnet Phase IV, during
installation.

New network commands Allow system managers to view more information about and control
various network services through a revised SHOW NETWORK
command.

Local time zone support Supports the DEC C RTL implementation of its date/time support using
a Universal Coordinated Time (UTC) model.

OPCOM New logicals that regulate the flow of OPCOM messages.

System dump analyzer (SDA) New SDA command and changes to existing commands for this release.

SDA VAX Dump File Process Supports RMS file access for processing dump files.

VMScluster systems migration Support for mixed-version and mixed-architecture VMSclusters.

Printing features Greater print queue support for users with a large number of process
identifiers. Also, provide control over form feed during printing with
the /NO_INITIAL_FF qualifier.

(continued on next page)

1–2

Summary of Version 7.0 New Features

Table 1–1 (Cont.) Summary of OpenVMS VAX and OpenVMS Alpha Version 7.0 Software
Features

Programming Features

OpenVMS Alpha 64-bit virtual
addressing

Allows per-process virtual addressing for accessing dynamically mapped
data beyond 32-bit limits.

Debugger functionality with
optimized code

On OpenVMS Alpha systems, the ability to debug code compiled with
full optimization has been significantly improved.

Debugger internationalization
features

Provide for multibyte characters, Japanese user-defined words and
identifiers, and wide character strings.

Debugger SHOW CALLS
command and null frame
procedures

The display resulting from a SHOW CALLS command includes the
frames of null frame procedures.

Debugger CALL command and
floating-point parameters

The CALL command now allows you to pass floating-point parameters
by value, on OpenVMS Alpha systems as well as OpenVMS VAX
systems.

Debugger customization features
for Motif interface

Improved user customization features are provided by the
VMSDEBUG.DAT resource file and new menu items.

Debugger Editor File menu Two new menu items, Refresh File and Close File, have been added.

Heap Analyzer support The Heap Analyzer, previously available only on OpenVMS VAX
systems, is now available on OpenVMS Alpha systems.

DECthreads Provides an implementation of the final POSIX 1003.1c Standard Style
Interface.

Thread Independent Services
(TIS) interface

DECthreads implements TIS, which provides services that assist with
the development of thread-safe libraries.

DELTA/XDELTA support for
threads (Alpha systems only)

Thread ID displayed at the breakpoint if the process is multithreaded.

Global Section Limit (Alpha
systems only)

Limit is now increased to 65,535.

High-performance Sort/Merge
utility (Alpha systems only)

SOR$ routines callable interface to the optional high-performance Sort
/Merge utility.

Kernel threads (Alpha systems
only)

Process can contain an address space wherein a single thread or
multiple threads execute concurrently.

Linker utility Allows you to create OpenVMS Alpha images on an OpenVMS VAX
system and OpenVMS VAX images on an OpenVMS Alpha system.

Command Definition, Library,
and Message utilities

A new /ALPHA qualifier has been added, and the behavior of the /VAX
qualifier has been changed.

New LAT item codes (Alpha
systems only)

Node and port entities have several new item codes.

Mail utility Provides a new signature file user profile entry field, new item codes to
implement the signature file, new item codes for the Mail utility, and
new item codes for Mail utility routines.

New STARLET definitions for C Provide C function prototype definitions for system services, as well as
new and enhanced data structure definitions.

Spiralog Version 1.0 (Alpha
systems only)

Included in the OpenVMS license, Spiralog is an option that increases
data write performance and provides quicker backup rates.

SDA dump file compression
(Alpha systems only)

OpenVMS Alpha supports dump file compression features.

(continued on next page)

1–3

Summary of Version 7.0 New Features

Table 1–1 (Cont.) Summary of OpenVMS VAX and OpenVMS Alpha Version 7.0 Software
Features

Programming Features

New SMBMSG$V_NO_INITIAL_
FF symbol for SMBMSG$K_
PRINT_CONTROL message item
code of SMB$READ_MESSAGE_
ITEM routine

The SMB$READ_MESSAGE_ITEM routine’s SMBMBG$K_PRINT_
CONTROL message item code has a new SMBMSG$V_NO_INITIAL_
FF symbol.

New QIO attribute, ATR$C_
FILE_SYSTEM_INFO

Checks which file system created a file or directory.

New node argument for
$CREPRC

Allows creation of a detached process on another node.

$CPU_CAPABILITIES system
service (Alpha systems only)

Allows modification of the user capability set for a specified CPU, or for
the global CPU default.

$PROCESS_CAPABILITIES
system service (Alpha systems
only)

Allows modification of the user capability set for a specified process
thread, or for the global process default.

$PROCESS_AFFINITY system
service (Alpha systems only)

Allows modification of the CPU affinity set for a specified process
thread.

$SET_IMPLICIT_AFFINITY
system service (Alpha systems
only)

Controls or retrieves the activation state of the implicit affinity
capability for a specified process thread, or for the global process
default.

New Local Event Flag EFN 128
(ENF$C_ENF)

Used with the wait forms of system services, such as SYS$QIOW,
SYS$ENQW, or SYS$SYNCH. ENF$C_ENF does not need to be
initialized, nor does it need to be reserved or freed.

New initial-allocation argument
for the LIB$CREATE_DIR RTL

Specifies the initial number of blocks to be allocated to the directory.

Wind/U Version 3.0 Run Time OpenVMS 7.0 now includes the Wind/U Version 3.0 run-time binaries.

ZIC utility Time zone compiler to create time zone source files.

Optional Features for Improving I/O Performance

Fast I/O Provides a speedy alternative to the $QIO system service. This new
set of services are intended as a substitute for the subset of $QIO
operations that deal with high-volume read/write requests.

Fast Path Improves overall I/O performance. Fast Path restructures and
optimizes class and port device driver code around high-volume code
paths, which creates a streamlined device path.

DECamds Features

New fields in the System
Overview window

Number of Processes in CPU Queues field, Operating System Version
field, and Hardware Model field.

Single Disk Summary window Provides summary data about each node in the group in which a disk is
available.

Three new cluster windows Cluster Transition/Overview Summary window, System Communication
Summary (SCA) window, and Network Interconnect System
Communication Architecture (NISCA) Summary window.

(continued on next page)

1–4

Summary of Version 7.0 New Features

Table 1–1 (Cont.) Summary of OpenVMS VAX and OpenVMS Alpha Version 7.0 Software
Features

OpenVMS System Messages

New and changed system
messages

New and revised messages for the following utilities:

• System Bugcheck (BUGCHECK)

• LAT facility (LAT)

• Linker utility (LINK)

• NETWRK, SET/SHOW/START/STOP NETWORK commands

• System Dump Analyzer (SDA)

• SET command and utility

• System Services (SYSTEM)

DEC C XPG4 Localization Utilities

GENCAT Merges one or more message text source files into a message catalog
file.

ICONV COMPILE Creates a conversion table file from a conversion table source file.

INCONV CONVERT Converts the characters in a file from one codset to another.

LOCALE COMPILE Converts a locale source file into a binary locale file.

LOCALE LOAD Loads the specified locale name into memory as a shared, read-only
global data item.

LOCALE UNLOAD Unloads the specified locale name from memory.

LOCALE SHOW CHARACTER_
DEFINITIONS

Lists character set description files (charmaps).

LOCALE SHOW CURRENT Displays a summary of the current international environment.

LOCALE SHOW PUBLIC Lists all the public locales on the system.

LOCALE SHOW VALUE Displays the value of one or more keywords from the current
international environment.

Locale File Format Describes the standard, supported locale categories and lists any
overriding defaults and category source definitions.

Character Set Description Lists and describes the components of the character description file
(charmap).

(continued on next page)

1–5

Summary of Version 7.0 New Features

Table 1–1 (Cont.) Summary of OpenVMS VAX and OpenVMS Alpha Version 7.0 Software
Features

SCSI Storage Interconnect Feature

Accessing Storage Access SCSI devices by CI interconnect, Digital Storge System
Interconnect (DSSI), and SCSI adapter.

Configuration Requirements The basic components needed to configure a SCSI system.

SCSI Interconnect Concepts The rules that govern the interactions between initiators and SCSI
targets.

Hardware Configurations Illustrates the various hardware configurations that are available.

Installation How to install a SCSI system.

Supplementary Information Additional technical information such as, how to add nodes and
interpret error reports.

Restrictions List of known probems and restrictions.

Troubleshooting Troubleshooting tips for common problems in a VMScluster system that
uses a SCSI interconnect.

Arbitration Considerations How to control the SCSI bus and achieve the optimum results.

Removal and Insertion of SCSI
Devices

How to remove or insert a SCSI device during system operation.

OpenVMS Requirements The requirements for devices used on a multiple-host SCSI VMScluster
system.

Grounding Requirements The grounding requirements for electrical systems in a SCSI
VMScluster.

Multi-Site VMScluster Systems

Using FDDI The most common method to connect two distant VMScluster sites.

Using WAN How to bridge an FDDI interconnect to the ATM or DS3
communications services and provides guidelines for using these
services to configure multi-site VMScluster systems.

Managing Multi-Site Systems Considerations and system management tools and techniques.

OpenVMS Version 6.2 Features

OpenVMS Cluster client
software

New license type that provides a low-cost cluster client product for
Alpha and VAX workstations.

Support for TMSCP-served SCSI
tapes

Enhanced TMSCP server that makes the following types of tapes locally
connected across a cluster:

• TA series for CI

• TF series for DSSI

• TZ and TLZ tapes for SCSI

Enhanced Support for HSJ,
HSC, and HSD Series Controller
Failover

Connect dual-ported disks to pairs of controllers that are attached to
different star couplers.

1–6

2
General User Features

This chapter provides new features information for all users of the OpenVMS
operating system.

2.1 DCL Commands
This section describes new and updated DCL commands.

2.1.1 New /ALLOCATION Qualifier for CREATE/DIRECTORY Command
The CREATE/DIRECTORY command has a new qualifier, /ALLOCATION=n,
where n specifies the initial number of blocks to be allocated to each of the
specified directories.

This qualifier applies only to Files–11 Level 2 volumes; it is ignored for other
volumes. The default allocation is 1 block.

This qualifier is useful for creating large directories, for example MAIL.DIR;1. It
can improve performance by avoiding the need for later dynamic expansion of the
directory.

2.1.2 New /ON Qualifier for RUN [process] Command
The new RUN [process] command qualifier /ON allows a user to specify on
what VMScluster node a process is to be created. The qualifier value is a 1- to
6-character string containing the SCS node name of that node.

For example, to create a process named BAR on node FOO that runs
MY_PROG.EXE, enter the following command:

$ RUN 10DKB100:[SMITH]MY_PROG.EXE /DETACH /ON="FOO"/PROCESS_NAME="BAR"

Note that the disk containing the image must be mounted on the specified node.
Because the disk might not be mounted on the node on which the command is
entered, the RUN command processor does not check whether the image exists.
Consequently, the command can complete without error even though the created
process aborts immediately because the image file cannot be found.

2.1.3 New Qualifiers for SET PROCESS Command (Alpha Only)

Alpha The following sections describe new qualifiers for the SET PROCESS command.

2–1

General User Features
2.1 DCL Commands

2.1.3.1 /CAPABILITIES Qualifier
SET PROCESS /[NO]CAPABILITIES[/SET=(n)][/CLEAR=(n)][/PERMANENT]

The /CAPABILITIES command qualifier allows bits in the user process capability
mask to be set or cleared individually, in groups, or all at once. This qualifier is
mutually exclusive with the /AFFINITY qualifier described in the next section.

The /NOCAPABILITIES qualifier clears all user capability bits currently set,
based on the setting of the /PERMANENT qualifier. Specifying /CAPABILITIES
itself has no direct effect other than to indicate the target of the operations
specified by the following secondary qualifiers:

/SET=(n,[,...]) Sets all user capabilities defined by the position values n, where n has
the range of 1 to 16.

/CLEAR=(n,[,...]) Clears all user capabilities defined by the position values n, where n
has the range of 1 to 16.

/PERMANENT Forces the operations to be performed on the permanent user mask as
well as the current, effectively making the changes permanent for the
life of the thread or process. (The default behavior is to affect only the
running image copy of the capabilities.)

The secondary qualifiers can all be used at once as long as the set of user
capability bits defined in the /SET and /CLEAR parameters does not overlap.

The privileges required to execute this command match those required by the
$PROCESS_AFFINITY system service. ALTPRI is the base privilege required
to make any modifications, and the only privilege required to modify the current
owner’s process/thread. To make modifications in the same UIC group, GROUP
is required. Otherwise, to make modifications to any unrelated process/thread,
WORLD privilege is required.

As with the other SET PROCESS command qualifiers, the bit operations occur
on the current process if no /IDENTIFICATION qualifier or explicit process name
parameter is specified. Note that the /IDENTIFICATION qualifier allows this
command to affect individual Kernel Thread PIDs; since each KTB is a separate
runnable entity, these commands treat them as discrete entities in terms of
capabilities. Specifying a process name does not imply that all threads associated
with the process are affected; the SET PROCESS command affects only the initial
thread of a multithreaded process.

2.1.3.2 /AFFINITY Qualifier
/[NO]AFFINITY[/SET=(n)][/CLEAR=(n)][/PERMANENT]

The /AFFINITY qualifier allows bits in the affinity mask to be set or cleared
individually, in groups, or all at once. This qualifier is mutually exclusive with
the /CAPABILITIES qualifier.

The /NOAFFINITY qualifier clears all affinity bits currently set, based on the
setting of the /PERMANENT qualifier. Specifying /AFFINITY itself has no direct
effect other than to indicate the target of the operations specified by the following
secondary parameters:

/SET=(n,[,...]) Sets all CPU affinities defined by the position n, where n has a range
of 1 to 32 and is restricted to the set of currently active CPUs.

/CLEAR=(n,[,...]) Clears all CPU affinities defined by the position values n, where n has
a range of 1 to 32 and is restricted to the set of currently active CPUs.

2–2

General User Features
2.1 DCL Commands

/PERMANENT Forces the operations to be performed on the permanent user mask as
well as the current, effectively making the changes permanent for the
life of the thread or process. (The default behavior is to affect only the
running image copy of the affinities.)

The secondary qualifiers can all be used at once as long as the set of affinity bits
defined in the /SET and /CLEAR parameters do not overlap.

The privileges required to execute this command match those required by the
$PROCESS_AFFINITY system service. ALTPRI is the base privilege required
to make any modifications, and the only privilege required to modify the current
owner’s process/thread. To make modifications in the same UIC group, GROUP
is required. Otherwise, to make modifications to any unrelated process/thread,
WORLD privilege is required.

As with the other SET PROCESS command qualifiers, the bit operations occur
on the current process if no /IDENTIFICATION qualifier or explicit process name
parameter is specified. Note that the /IDENTIFICATION qualifier allows this
command to affect individual Kernel Thread PIDs; since each KTB is a separate
runnable entity, these commands treat them as discrete entities in terms of
affinities. Specifying a process name does not imply that all threads associated
with the process are affected; the SET PROCESS command affects only the initial
thread of a multithreaded process.♦

2.1.4 New /DEFAULT_CAPABILITIES Qualifier for START/CPU Command
The new /DEFAULT_CAPABILITIES qualifier for the START/CPU command
eliminates all previous capability (user and system) modifications for the specified
CPU and reinitializes them with the values in the global initialization variable
SCH$GL_DEFAULT_CPU_CAP.

Normally, user capabilities survive CPU shutdowns and restarts (not reboots),
making the downtime as transparent to the user as possible. The CPU user
capability bits are only initialized from SCH$GL_DEFAULT_CPU_CAP at the
first boot of the CPU. (The system capability bits, however, are reinitialized to
their defaults taken from SCH$GL_DEFAULT_CPU_CAP.)

There might be times, however, when the CPU needs to be returned to a known,
consistent state. You can use the /DEFAULT_CAPABILITIES qualifier to mimic
the behavior of the initial bootstrap of the CPU.

2.1.5 New Display for SHOW CPU Command
The display portion of the SHOW CPU command is changed to distinguish
between CPU affinity due to system capabilities, user capabilities, and process
affinity. Since the code currently recognizes the longwords these entities reside
in, the extent of changes is cosmetic. The new code will present the system
and user capabilities for every CPU as well as for every thread that has values
differing from the default process value. When one of these bits is displayed,
the text indicates the appropriate user bit position rather than describing it as
UNKNOWN.

2–3

General User Features
2.1 DCL Commands

The following display shows an example of the additions to the affected output
display portions of a SHOW CPU/FULL command:

CPU 01 is in RUN state
Current Process: VMSADU PID = 00000091
Serial Number: AY24870406
Revision: A200
VAX floating point operations supported.
IEEE floating point operations and data types supported.
PALCODE: Revision Code = 5.48

PALcode Compatibility = 0
Maximum Shared Processors = 2
Memory Space: Physical address = 00000000 00000000

Length = 0
Scratch Space: Physical address = 00000000 00000000

Length = 0
Capabilities of this CPU:

System: QUORUM RUN
User bitmask: 0000000F

Processes which can only execute on this CPU:
VMSADU PID = 00000091 Reason: Affinitized to this CPU ♦

2.2 High-Performance Sort/Merge Utility (Alpha Only)

Alpha A new high-performance Sort/Merge utility takes advantage of the Alpha
architecture to provide better performance for most sort and merge operations.

This section describes use of the high-performance Sort/Merge utility from the
command line. Refer to Section 4.7 for information about the callable interface to
the high-performance Sort/Merge utility by means of SOR$ routines.

Command Line Interface
The high-performance Sort/Merge utility uses the same command line interface
as the SORT/MERGE utility. Many existing sort and merge operations can take
advantage of the high-performance Sort/Merge utility without modification.

See the OpenVMS User’s Manual for general information on using SORT
/MERGE. See the Bookreader version of the OpenVMS Version 7.0 Release Notes
for information related to problems and restrictions associated with this release
of the high-performance Sort/Merge utility.

Selecting the High-Performance Sort/Merge Utility
Use the SORTSHR logical to select the high-performance Sort/Merge utility.
Define SORTSHR to point to the high-performance sort executable in
SYS$LIBRARY, as follows:

$ define sortshr sys$library:hypersort.exe

To return to the SORT/MERGE utility, deassign SORTSHR. The SORT/MERGE
utility is the default if SORTSHR is not defined.

2–4

General User Features
2.2 High-Performance Sort/Merge Utility (Alpha Only)

Using the High-Performance Sort/Merge Utility
The behavior of the high-performance Sort/Merge utility is the same as SORT
/MERGE except as shown in Table 2–1.

Table 2–1 High-Performance Sort/Merge: Differences in Behavior

Feature High-Performance Sort/Merge Behavior

Output file organization Indexed sequential output file organization is not supported.1

Do not specify the /INDEXED_SEQUENTIAL file organization
qualifier. The /FORMAT, /RELATIVE, and /SEQUENTIAL
output qualifiers are supported. The default is /SEQUENTIAL.

Key data types The H-FLOATING and ZONED decimal data types are not
supported.

The size of a BINARY data type key must be 1, 2, 4, or 8 bytes.
A 16-byte binary key is not supported.1

Collating sequences The National Character Set (NCS) collating sequences are
not supported.1 Do not specify the name of an NCS collating
sequence for the /COLLATING_SEQUENCE qualifier. The
ASCII, EBCDIC, and MULTINATIONAL collating sequences
are supported. The default is ASCII.

You cannot define or modify your own collating sequence
through the use of a specification file.1

Specification files Specification files are not supported.1 Do not use the
/SPECIFICATION qualifier.

Internal sorting process Only the record sort process is supported.1 You can specify
/PROCESS=RECORD or omit the /PROCESS qualifier. The
TAG, ADDRESS, and INDEX values for the /PROCESS
qualifier are not supported.

Statistical summary
information

Statistical summary information is not supported.1 Do not use
the /STATISTICS qualifier.

Output file overlay You cannot overlay or write the output file to an existing empty
file. Do not specify the /OVERLAY qualifier.1

1Implementation of this feature is deferred to a future OpenVMS Alpha release.

If you attempt to use an unsupported qualifier or assign an unsupported value to
a qualifier, the high-performance Sort/Merge utility generates an error.♦

2.3 Mail Utility
The following sections describe new features added to the OpenVMS Mail utility.
These features include support for the following:

• Signature files

• /PAGE qualifier

• /NEXT qualifier

Note that all new commands and qualifiers are described in the DCL and Mail
utility Help facilities as well.

2–5

General User Features
2.3 Mail Utility

2.3.1 Support for Signature Files
With this release of the OpenVMS operating system, you can now append text
to the end of a mail message by including a signature file. An example of a
signature file is a text file formatted as a business card, containing the user’s
company name, address, telephone, and Internet address.

You can set the Mail utility to include a signature file automatically (by default)
with every mail message or you can selectively include a signature file only with
particular mail messages. The following sections describe these and related
operations.

2.3.1.1 Displaying Signature File Information
To determine if a signature file is currently set to be appended automatically to
your mail messages, you can enter the SHOW SIGNATURE_FILE command or
SHOW ALL command at the Mail prompt. For example:

MAIL> SHOW ALL
Your mail file directory is MAILD$:[MAILTU7].
Your current mail file is MAILD$:[MAILTU7]MAIL.MAI.
Your current mail folder is MAIL.
The wastebasket folder name is WASTEBASKET.
Mail file MAILD$:[MAILTU7]MAIL.MAI

contains 0 deleted message bytes.

You have 0 new messages.

You have not set a forwarding address.
You have not set a personal name.
Your editor is EDT.
CC prompting is disabled.
Automatic copies to yourself are disabled.
Automatic deleted message purge is enabled.
Your default print queue is SYS$PRINT.
You have not specified a default print form.
Your default signature file is SECTION1.SIG.

If there is no signature file set, the last line in the display states the following:

You have not specified a default signature file.

2.3.1.2 Including a Signature File by Default
To set Mail to automatically include a signature file with every message, use the
SET SIGNATURE_FILE command. For example:

MAIL> SET SIGNATURE_FILE MY_ADDRESS.SIG

Note that if you do not specify a file type, the default is .SIG.

2.3.1.3 Disabling the Default Setting
If you have set Mail to include a signature file with your mail messages
automatically, you can disable that default setting by using the
SET NOSIGNATURE_FILE command. For example:

MAIL> SET NOSIGNATURE_FILE

2–6

General User Features
2.3 Mail Utility

If you want to temporarily disable the signature file setting while sending a
particular mail message, you can use the /NOSIGNATURE_FILE qualifier with
the following commands:

• ANSWER

• FORWARD

• MAIL

• REPLY

• SEND

If you want to temporarily disable the signature file setting from the DCL level,
you can specify the /NOSIGNATURE_FILE qualifier with the DCL command
MAIL.

2.3.1.4 Overriding the Default Setting
If you have set Mail to include a signature file with your mail message
automatically but you want to append a different signature file, you can override
the default setting by specifying the /SIGNATURE_FILE qualifier with the name
of the signature file you want to include. For example:

MAIL> SEND/SIGNATURE_FILE=BUSINESS_CARD.SIG

You can specify the /SIGNATURE_FILE qualifier with the following Mail
commands:

• ANSWER

• FORWARD

• MAIL

• REPLY

• SEND

You can also specify the /SIGNATURE_FILE with the DCL command MAIL.

2.3.1.5 Using Signature Files
When you use signature files, note the following:

• A mail message that includes a signature file requires more temporary disk
space than a conventional message because temporary files are created during
the operation. After the message is sent, those temporary files are deleted.

• If you specify a signature file that does not exist, the system displays an error
message.

• If you do not specify a directory when you use the SET SIGNATURE_FILE
command or /SIGNATURE_FILE qualifier, Mail searches for the file in your
mail directory.

• If you do not specify a file when you use the /SIGNATURE_FILE qualifier,
Mail uses the file specification in your user profile (if set previously with the
SET SIGNATURE_FILE command). If there is no default signature file in the
profile, Mail will send the message without one.

2–7

General User Features
2.3 Mail Utility

2.3.2 /PAGE Qualifier Now Available with Mail Commands
The /PAGE[=keyword] qualifier, which controls the display of information on the
screen, is now valid with the following Mail commands:

• BACK

• CURRENT

• DIRECTORY

• FIRST

• LAST

• NEXT

• READ

You can use the following keywords with the /PAGE qualifier:

CLEAR_SCREEN Clears the screen before each page is displayed.

SCROLL Displays information one line at a time.

SAVE[=n] Enables screen navigation of information, where n is the
number of pages to store.

The /PAGE qualifier allows you to navigate through screens of information,
storing up to 5 screens of up to 255 columns of information. When you use
the /PAGE qualifier, you can use the following keys to navigate through the
information:

Key Sequence Description

Up arrow (�), Ctrl/B Scroll up one line.

Down arrow (�) Scroll down one line.

Left arrow (�) Scroll left one column.

Right arrow (�) Scroll right one column.

Find (E1) Specify a string to find where the information is displayed.

Insert Here (E2) Scroll right one half screen.

Remove (E3) Scroll left one half screen.

Select (E4) Toggle 80/132 column mode.

Prev Screen (E5) Get the previous page of information.

Next Screen (E6),
Return, Enter, Space

Get the next page of information.

F10, Ctrl/Z Exit.

Do (F16) Toggle the display to oldest/newest page.

Ctrl/W Refresh the display.

Note that /NOPAGE is the default.

2–8

General User Features
2.3 Mail Utility

2.3.3 /NEXT Qualifier Valid with SEARCH Command
If you have a large number of messages, you can locate a particular message by
using the SEARCH command to find a specified string. The SEARCH command
selects and displays the first message that contains the specified string.

To continue searching for messages that contain the specified string, you can now
specify the /NEXT qualifier with the SEARCH command. (You can also repeat
the SEARCH command without specifying a parameter to find the next message
containing the previously specified string).

2.4 Easy Internet Access
Since OpenVMS Version 6.2, OpenVMS has included Internet-ready features to
make the Internet more easily accessible to OpenVMS users. OpenVMS Version
7.0 includes features that extend this access to the Internet.

Additionally, an OpenVMS Internet product suite is being launched as a
separately orderable layered product to give VAX and Alpha customers the
ability to launch an OpenVMS Web server using a wide assortment of leadership
commercial Internet products and popular Internet freeware.

The product suite includes the following:

• Clients, including Netscape Navigator; Spyglass Enhanced Mosaic browser;
lynx, a text-based WWW browser (freeware); mxrn, a Motif News reader
(freeware); and a gopher client (freeware).

• Servers, including the Netscape Communications Server and Purveyor Server
for high-performance Internet transactions; the Netscape Commerce Server
for secure Internet transactions; Netscape Proxy Server; IUPOP3 mail server
(freeware); a gopher server (freeware); and the ANU-News server (freeware).

• A firewall—Digital Firewall for OpenVMS (formerly known as Seal).

• Server applications, including a Web interface to VTX, Notes, and Monitor.

• Tools and Utilities ported to OpenVMS, including tcl, pearl, bison (a parser
generator), grep, fgrep, gawk, flex, and sed.

• HTML tools for converting HLP files to HTML, checking HTML syntax,
removing HTML markup, converting text to HTML, converting HTML to
PostScript, searching and replacing in an HTML file, and converting SDML
to HTML.

The OpenVMS Internet Product Suite Version 1.0, which requires OpenVMS
Version 6.1 and DECwindows Motif Version 1.2-3 or later, will be available as a
CD-only offering in early 1996. The CD purchase price will include the right to
use all freeware. Third-party products as well as the Digital Firewall and Web
Interface to VTX will be separately licensed, although each will have a 60-day
trial offer PAK to let users test drive the software.

2–9

General User Features
2.4 Easy Internet Access

2.4.1 Internet Features Added to OpenVMS Systems
Since OpenVMS Version 6.2, Internet features have been added to make the
Internet more easily accessible to OpenVMS users.

• The following Internet ready features were introduced in OpenVMS Version
6.2:

New DCL commands to allow TCP/IP users to use familiar DCL style
syntax when performing TCP/IP activities such as ftp and telnet. (TCP/IP
is the transport protocol used by the Internet.) These new DCL commands
include COPY/FTP, COPY/RCP, DIRECTORY/FTP, SET HOST/RLOGIN,
SET HOST/TELNET, and SET HOST/TN3270. See TCP/IP Networking
on OpenVMS Systems for more information.

XTI front-end. XTI is a protocol independent network API library that
allows you to develop protocol independent client/server applications.
These applications using XTI can be run across any supported network
transport which, on OpenVMS, includes DECnet and TCP/IP.

Support for clusters in a TCP/IP environment.

• The following Internet ready features are new in OpenVMS Version 7.0:

4.4BSD Sockets. Sockets are the means by which services communicate
between nodes over the Internet. Previously, OpenVMS implemented
4.3BSD Sockets. In OpenVMS Version 7.0, socket support has been
extended to support 4.4BSD and XPG4 V2 routines for users writing
Internet applications using TCP/IP services. See the DEC C Run-Time
Library Reference Manual for OpenVMS Systems for more information.

New C RTL functions to make it easier to port UNIX applications that
contain signals, timezones, string routines, random numbers, directory
services, etc. See the DEC C Run-Time Library Reference Manual for
OpenVMS Systems for more information.

OpenVMS Mail enhancements to:

+ Allow users to append a signature file to a mail message. An example
of a signature file is a text file formatted as if it were a business card
that contains the user’s company name, address, telephone number,
and Internet address. See the section titled "Support for Signature
Files" in the OpenVMS Version 7.0 New Features Manual for more
information.

+ Allow users to more easily use the SMTP protocol—which is part
of the TCP/IP transport protocol used by the Internet—in addition
to DECnet. See the OpenVMS Version 7.0 Release Notes for more
information about specifying mail transports.

Monitor enhancements to support other transports—for example,
TCP/IP—in addition to DECnet. You can now monitor any system
within a cluster whether that cluster is running TCP/IP or DECnet. See
the OpenVMS Version 7.0 Release Notes for more information.

2–10

General User Features
2.4 Easy Internet Access

Integrated network support to provide a common DCL interface to
display information about starting, stopping, and displaying network
services information about DECnet, DECnet/OSI, and TCP/IP Services
for OpenVMS. The new DCL commands to obtain this information are
SHOW NETWORK, START/NETWORK, STOP/NETWORK, and SET
NETWORK. These new commands are described in OpenVMS DCL
Dictionary: N–Z.

• Future releases of OpenVMS will also include support for these additional
Internet-ready features:

DCL pipes that, using UNIX style and syntax, allow you to redirect the
output of one DCL command to another.

PPP, or Point-to-Point Protocol, which provides dial-in and dial-out
support for asynchronous serial lines as well as a utility to configure,
start, and stop PPP on a line-by-line basis.

Kerberos Authentication service, which provides users with a trusted
third-party authentication system. The need for such services helps
to minimize the vulnerability of using unprotected passwords over an
insecure network.

2–11

3
System Management Features

This chapter provides information about new features, changes, and
enhancements for system managers.

3.1 New and Changed System Parameters
The following sections describe the most important new OpenVMS system
parameters in these two categories:

• System parameters, which you can modify

• SPECIAL parameters, which you should modify only if Digital recommends it

Descriptions of additional new system parameters and changes to existing
parameters are in Help and will appear in the next printed version of the
OpenVMS System Management Utilities Reference Manual.

3.1.1 System Parameters
Following is an alphabetical list of important new system parameters. Use the
descriptions as guidelines for deciding whether or not to modify these parameters.

3.1.1.1 CWCREPRC_ENABLE
The CWCREPRC_ENABLE system parameter controls whether an unprivileged
user can create a process on another VMScluster node. The default value of 1
allows an unprivileged user to create a detached process with the same UIC on
another node. A value of 0 requires that a user have DETACH or CMKRNL
privilege to create a process on another node.

3.1.1.2 DBGTK_SCRATCH (Alpha Only)

Alpha (This parameter was renamed from RMTDBG_SCRATCH_PAGES.)

On Alpha systems, the DBGTK_SCRATCH system parameter specifies how many
pages of memory are allocated for the remote debugger. This memory is allocated
only if remote debugging is enabled with the 8000 boot flag. Normally, the default
value is adequate, but if the remote debugger issues an error message, you should
increase this value. See the OpenVMS Alpha Device Support Manual for more
information.♦

3.1.1.3 IO_PREFER_CPUS (Alpha Only)

Alpha On Alpha systems, the IO_PREFER_CPUS system parameter excludes processors
from being used as Preferred CPUs for Fast Path I/O. IO_PREFER_CPUS is
a 32-bit mask; if the value of a bit in the mask is 1, the processor with the
corresponding CPU ID is available to be used as a Preferred CPU.

The default value of IO_PREFER_CPUS, -1, allows all available CPUs to become
Preferred CPUs. The parameter is used only if Fast Path is enabled. See the
FAST_PATH special parameter. ♦

3–1

System Management Features
3.1 New and Changed System Parameters

3.1.1.4 MAXBOBMEM (Alpha Only)

Alpha On Alpha systems, MAXBOBMEM determines the maximum number of pagelets
that can be made into buffer objects system-wide. MAXBOBMEM is a DYNAMIC
parameter.♦

3.1.1.5 MULTITHREAD (Alpha Only)

Alpha On Alpha systems, MULTITHREAD controls the availability of kernel threads
functions. Specify one of the following values:

Value Description

0 Both Thread Manager upcalls and the creation of multiple kernel threads are
disabled.

1 Thread Manager upcalls are enabled; the creation of multiple kernel threads
is disabled.

2-16 Both Thread Manager upcalls and the creation of multiple kernel threads are
enabled. The number specified represents the maximum number of kernel
threads that can be created for a single process.♦

See Section 4.8 for more information about kernel threads.

3.1.2 SPECIAL Parameters
These new parameters are subject to change at any time and should be modified
only if recommended by Digital.

3.1.2.1 FAST_PATH (Alpha Only)

Alpha On Alpha systems, FAST_PATH enables (1) or disables (0) Fast Path I/O on a
system. See the IO_PREFER_CPUS system parameter. In OpenVMS Alpha
Version 7.0, FAST_PATH only supports disk I/O for the CIXCD port.

For more information about how to use FAST_PATH, see Chapter 5. ♦

3.1.3 Changed System Parameters
The following section describes changes to an existing system parameter.

3.1.3.1 ACP_DATACHECK Has Three New Levels
The ACP_DATACHECK system parameter has three new levels for checking
reads and writes of directory blocks. The new default checks reads only.

You can select a level by setting bits 5 and 6 as follows:

To Check That...
Select This
Level...

By Setting Bit 6
to... And Bit 5 to...

The block is a valid directory
block (reads only).

0 (Default) 0 0

The block is a valid directory
block (reads and writes).

1 0 1

The block is a valid directory
block, and that it contains valid
entries (reads and writes).

2 1 0

3–2

System Management Features
3.1 New and Changed System Parameters

To Check That...
Select This
Level...

By Setting Bit 6
to... And Bit 5 to...

The block is a valid directory
block, and that it contains valid
entries in correct alphanumeric
order (reads and writes).

3 1 1

The ACP_DATACHECK system parameter is dynamic; checking starts on the
first read or write after you have selected a level.

When you set the SYSTEM_CHECK system parameter to 1, you enable level 3
checking.

Write errors result in BUGCHECK and crash your system, read errors exit with
error status SS$_BADDIRECTORY.

DUMPSTYLE (A,D)
DUMPSTYLE specifies the method of writing system dumps.

DUMPSTYLE is a 32-bit mask, with the following bits defined. Each bit can be
set independently. The value of the SYSGEN parameter is the sum of the values
of the bits that have been set. Remaining or undefined values are reserved to
Digital.

Bit Value Description

0 0 0 = Full dump (SYSGEN default). The entire contents of
physical memory will be written to the dump file.

1 = Selective dump. The contents of memory will be written
to the dump file selectively to maximize the usefulness
of the dump file while conserving disk space.

1 2 0 = Minimal console output.

1 = Full console output (includes stack dump, register
contents, and so on).

2 (VAX only)1 4 0 = Dump to system disk.

1 = Dump to alternate disk.

3 (Alpha only)2 8 0 = Do not compress.

1 = Compress. (See note below.)

1Alpha systems do not support dumping to an alternate disk.
2VAX systems do not support dump compression.

3–3

System Management Features
3.1 New and Changed System Parameters

Note

Alpha On Alpha systems, system managers can save space on the system disk
and, in the event of a crash, save time recording the system memory,
by using the OpenVMS Alpha dump compression feature. Unless the
system manager overrides the default AUTOGEN calculations (by setting
DUMPSTYLE in MODPARAMS.DAT), AUTOGEN uses the following
algorithm:

• On a system with less than 128 MB of memory, the system sets the
DUMPSTYLE to 1 (a raw selective dump) and sizes the dump file
appropriately.

• On a system with 128 MB of memory or greater, the system sets the
DUMPSTYLE to 9 (a compressed selective dump), and creates the
dump file at two-thirds the value of the corresponding raw dump.♦

Examples

VAX On VAX systems, the value of 4 directs the system to send a full dump, with
minimal console output, to the alternate disk.♦

Alpha On Alpha systems, the value of 9 directs the system to compress a selective
dump.♦

AUTOGEN evaluates mathematical expressions; for example, the expression
DUMPSTYLE = 4 + 2 in MODPARAMS.DAT is evaluated as 6.

3.2 LAT New Features
With Version 7.0 of the OpenVMS operating system, the LAT software has been
upgraded to LAT protocol Version 5.3. Note that because Version 5.3 of the LAT
protocol is compatible with Versions 5.1 and 5.2 of the LAT protocol, you can still
connect to OpenVMS systems that are running those older versions of the LAT
protocol (5.1 or 5.2).

The following sections describe new features associated with Version 5.3 of the
LAT protocol. These features include the following:

• Displaying faster terminal speeds

• Using multiple LAN adapters

• Managing large buffers

• Controlling service announcements

• Using a user-written LAT rating algorithm

• Specifying a new SET HOST/LAT qualifier (/FRAME)

3–4

System Management Features
3.2 LAT New Features

3.2.1 Displaying Speeds Greater than 57,600 Kbps
Data B slot modifications have been made so that terminal input and output
speed can be reported (correctly) when the terminal speed is in excess of a 16-bit
value. If both sides of the LAT connection (including the terminal server) are
running Version 5.3 of the LAT software, you can use the DCL command SHOW
TERMINAL to display speed values greater than 57,600 kbps.

3.2.2 Using Multiple LAN Adapters
With this release, you can now use multiple LAN addresses for one LAT node.
This enables a system manager to configure a system with multiple LAN adapters
connected to the same logical LAN. The LAT software can run over each adapter
simultaneously. The following sections provide more detail about this new
feature.

Note

Nodes running versions of LAT software prior to Version 5.3 of the LAT
protocol (which was included in the OpenVMS operating system beginning
with Version 7.0) may exhibit some differences in behavior. Therefore,
if your configuration includes earlier versions of the LAT software, such
as Version 5.1 or Version 5.2, note the differences and considerations
discussed in this section.

3.2.2.1 Multiple LAN Addresses
It is now possible for a LAT Version 5.3 master node (which accesses services)
and a LAT Version 5.3 node that provides services to both use multiple LAN
addresses. (Nodes running LAT Version 5.2 and Version 5.1 are still restricted to
one LAN address per logical network.)

This new feature allows the LAT software to maintain connections. For example,
when a virtual circuit chooses a primary path and uses it for all LAT message
transmissions, the LAT software now has the ability to continue communications
through another adapter or logical path if that original path becomes blocked.

3.2.2.2 Supported Configurations
Although it is possible to run LAT over multiple LAN adapters, it is still not
possible to route LAT from one logical LAN to another. The following four figures
are examples of supported LAT configurations for nodes running Version 5.3 of
the LAT protocol (including nodes running Version 5.2 and 5.1 as well).

Figure 3–1 Multiple Address LAT Configuration: One LAN with Mixed Version
LAT Nodes

ZK−8170A−GE

A B
Ethernet

OpenVMS LAT
LAT V5.3

DECserver 200
LAT V5.1

This widely used configuration has an OpenVMS system running LAT Version 5.3
over two Ethernet adapters (labeled A and B in the diagram) connected to the
same physical LAN as a DECserver 200.

3–5

System Management Features
3.2 LAT New Features

When a LAT connection is started between the DECserver 200 and the OpenVMS
system, LAT Version 5.3 determines that it is possible to use both adapters A and
B for the LAT virtual circuit. One of the adapters will be chosen as the primary
communications path while the other will be present in the unlikely event that
the primary path fails.

For example, if a user connects to the OpenVMS system from the DECserver 200,
the OpenVMS system determines that there are two paths but chooses adapter B
as the primary communications path. If the user runs a program that generates
a large amount of output from the OpenVMS system and adapter B fails in
some manner during the output, the LAT software will attempt to continue
communications from the OpenVMS system to the DECserver through adapter A.

Figure 3–2 shows two LANs bridged together. However, this configuration will
have the same characteristics as the configuration shown in Figure 3–1.

Figure 3–2 Multiple Address LAT Configuration: Two LANs with Mixed Version
LAT Nodes

ZK−8171A−GE

Ethernet 1

OpenVMS LAT
LAT V5.3

DECserver 200
LAT V5.1

Ethernet 2

A B

LAN Bridge

Note

It is possible for Ethernet 2 in Figure 3–2 to be an FDDI network. The
LAT software regards each adapter as a network path with equal cost,
point-to-point communications and does not treat FDDI controllers any
differently. However, for large buffer support, see Section 3.2.4 for more
details.

3–6

System Management Features
3.2 LAT New Features

In the configuration shown in Figure 3–3, any virtual circuit created between the
two OpenVMS systems will have two paths: through controllers B and C or A
and D. If one path fails, the virtual circuit will continue over the other path. If
both paths fail, the virtual circuit will eventually time out.

Figure 3–3 Multiple Address LAT Configuration: Two LANs with Version 5.3
LAT Nodes

ZK−8173A−GE

Ethernet 1

OpenVMS LAT
LAT V5.3

OpenVMS LAT
LAT V5.3

Ethernet 2

C DA B

3.2.2.3 Unsupported Configuration
When configuring a network to use an OpenVMS system running LAT Version
5.3, avoid the configuration shown in Figure 3–4.

Figure 3–4 Unsupported Multiple Address LAT Configuration

ZK−8172A−GE

Ethernet 1

OpenVMS LAT
LAT V5.3

Any LAT node
LAT V5.1 or V5.2

Ethernet 2

A B

Any configuration similar to this diagram will result in unpredictable results
and may not function. In a network environment, LAT Version 5.1 and Version
5.2 nodes can have only a single logical LAN address. The configuration in
Figure 3–4 violates this rule. The configuration shown in Figure 3–3 is a valid
alternative.

3.2.2.4 Creating Logical LAT Links
The LAT software regards all paths as equal cost, point-to-point communication.
The LAT software can support a maximum of eight LAN adapters simultaneously
(and it is possible to connect all controllers to the same logical LAN).
To get the maximum coverage over possible path failures, each logical
link should be created prior to setting the LAT node state to ON in
SYS$MANAGER:LAT$SYSTARTUP.COM.

3–7

System Management Features
3.2 LAT New Features

For example, if a system has one Ethernet adapter (device ESA0) with two FDDI
adapters (FCA0 and FCB0) and the system manager chooses to run LAT over all
adapters, the LAT$SYSTARTUP.COM file would contain the following commands:

$!
$! Create each logical LAT link with a unique name and
$! unique LAN address (forced with /NODECNET).
$!
$ LCP CREATE LINK ETHERNET /DEVICE=ESA0 /NODECNET
$ LCP CREATE LINK FDDI_1 /DEVICE=FCA0 /NODECNET
$ LCP CREATE LINK FDDI_2 /DEVICE=FCB0 /NODECNET
$!
$! Turn on the LAT protocol.
$!
$ LCP SET NODE /STATE=ON

Caution

If the LATCP command SET NODE /STATE=ON is entered before the
link is created, a random or default LAT$LINK will be created on one of
the LAN adapters. There is no way to predict which LAN adapter will be
chosen (it is dependent on the system configuration). Therefore, all logical
LAT links should be created before LAT is started.

Be sure each logical link is created with the /NODECNET qualifier. It
will prevent the possibility of link creation failure if multiple adapters
attempt to use the DECnet style address. Having more than one LAN
adapter connected to the same logical LAN with the same address violates
LAN conventions and will cause problems with LAT and other protocols.

It is possible to create logical LAT datalinks after the LAT protocol has been
started. Any existing virtual circuit will attempt to find any new paths through
the newly created logical datalink when it is ready for use. However, Digital does
not recommend that you create links at this point because during the time it
takes existing virtual circuits to discover new paths through this newly created
datalink, the virtual circuit may fail before the new paths are discovered.

3.2.2.5 Path Discovery
The OpenVMS LAT software uses a combination of the directory service and
solicitation to obtain paths for each virtual circuit. Digital recommends that a
system with multiple LAN adapters be configured to maintain a LAT service
and node database. This expedites path discovery at virtual circuit startup.
Recommendations for doing this include:

• Enabling outgoing LAT connections

• Using the same group code mask for User Groups and Service Groups

An OpenVMS system running as a LAT node that provides services only (outgoing
connections disabled and no service or node database) is still capable of running
with multiple paths for each virtual circuit. These paths must be discovered
through the LAT solicitation process and will take longer (leaving the possibility
for virtual circuit failure to occur before all paths have been discovered).

3–8

System Management Features
3.2 LAT New Features

3.2.3 Modifying LAT Parameters
In the unlikely event of a path failure, it will take the OpenVMS LAT software
time (which will vary depending on the number of adapters to which the remote
node has access) to locate another working path. Therefore, Digital strongly
recommends that you modify the following LAT parameters on potential LAT
master nodes:

• Retransmit limit - default value is 8. Set to the maximum number of LAN
adapters times 8. For example, if an OpenVMS system on the LAN has 3
adapters, each LAT master node should have their retransmit limit set to 3 *
8 = 24.

• Keepalive timer - default value is 20 seconds. While the default value may be
sufficient in most circumstances, it may be necessary to increase this to 30 or
40 seconds.

Although it is possible to keep virtual circuits running through multiple adapters
to LAT Version 5.1 or LAT Version 5.2 master nodes, there is still a possibility
that the connections to these nodes may fail.

LAT Version 5.2 and LAT Version 5.1 master nodes do not have the ability to
recognize multiple paths to LAT nodes that provide services. They can only
communicate with such nodes through one remote address at a time. Therefore,
if a LAN path failure occurs when a LAT master node running LAT Version 5.1
or Version 5.2 attempts to connect to a remote LAT Version 5.3 node providing
services, the LAT Version 5.3 node might not discover this failure in time and
the LAT master node may time out the connection. You can partially solve this
problem by increasing the retransmit limit to as high a setting as possible.

In addition, if a LAT Version 5.3 node providing services views the virtual circuit
as completely idle during the primary path failure, no attempt will be made to use
any of the alternate paths (because of the previously described LAT Version 5.2
and 5.1 limitation). Therefore, although multiple LAN adapters will work with
older LAT implementations, you might still need to upgrade to the OpenVMS
Version 7.0 operating system (which includes the LAT Version 5.3 protocol) to
correct this type of problem. (Note that this type of problem affects only those
connections that are idle. An example of where this situation could arise is in
an office environment if all users were to leave their systems at the same time,
either at lunchtime or at the end of the workday.)

3.2.4 Managing Large Buffers
The OpenVMS LAT software will attempt to use large buffers over any virtual
circuit that comes in over an FDDI controller. This feature can cause problems if
an alternate virtual circuit path must go through an Ethernet. Figure 3–5 is an
example of the configuration that can cause problems.

In this diagram, it is possible for the two OpenVMS systems to communicate
using large packets through the path described by controllers B and C. Large
packets are those that may exceed 1500 bytes of data (the maximum Ethernet
message can contain 1500 bytes of data). If the path described by controllers
B and C were to fail, it would not be possible for communication to continue
through the path described by A and D.

3–9

System Management Features
3.2 LAT New Features

Figure 3–5 LAT FDDI Ring and Large Buffers

ZK−8169A−GE

FDDI 1

FDDI 2 FDDI 3

A B C D

Ethernet 1

OpenVMS LAT
LAT V5.3

OpenVMS LAT
LAT V5.3

10/100 Ethernet/FDDI
bridge

10/100 Ethernet/FDDI
bridge

The path described by controllers A and D pass through an Ethernet LAN
segment. The messages that are routed through the 10/100 bridges cannot be
larger than the maximum Ethernet message. Problems can occur because the
OpenVMS LAT software cannot always detect this kind of configuration.

There are two ways to prevent problems with the previously described
configuration. The first and easiest option is to create a logical LAT link using an
Ethernet adapter (if either system has an Ethernet LAN adapter). This will force
the message size negotiation to be no larger than the maximum sized Ethernet
message.

If neither system has an Ethernet controller (thus making the first option not
possible), the second option is to override the use of large buffer support (which is
enabled by default) by using the new LATCP command qualifier, /[NO]LARGE_
BUFFER. For example:

$ MCR LATCP SET NODE/NOLARGE_BUFFER

Digital recommends that you use the SET NODE/NOLARGE_BUFFER
command after all logical LAT links have been created and before the LAT
node has been turned on. For example, note the order of the commands in
LAT$SYSTARTUP.COM:

$!
$! Create each logical LAT link with a unique name and
$! unique LAN address (forced with /NODECNET).
$!
$ LCP CREATE LINK FDDI_1 /DEVICE=FCA0 /NODECNET
$ LCP CREATE LINK FDDI_2 /DEVICE=FCB0 /NODECNET
$!
$! Don’t use large buffer support (force packet
$! sizes to be no larger than what Ethernet can
$! support).
$!
$ LCP SET NODE /NOLARGE_BUFFER
$!
$! Turn on the LAT protocol.
$!
$ LCP SET NODE /STATE=ON

3–10

System Management Features
3.2 LAT New Features

3.2.5 Controlling Service Announcements
With this release, you can now use the /[NO]ANNOUNCEMENTS qualifier with
the LATCP command SET NODE to control whether your OpenVMS system
multicasts information to the network. For example:

$ LCP SET NODE /NOANNOUNCEMENTS ! Disabled service announcements

Note that, because remote nodes must rely on the LAT service responder feature
in the LAT protocol Version 5.2 (or higher) to connect to the local node, Digital
recommends that you use this qualifier only in a networking environment
where newer model terminal servers and hosts are present (all LAT hosts,
terminal servers, and PCs are running at least Version 5.2 of the LAT protocol).
Otherwise, systems running versions of the LAT protocol prior to Version 5.2 (for
example, DECserver 100, 200, and 500 systems) will be unable to connect to any
of the systems that have LAT service announcements disabled.)

3.2.6 Support for User-Written LAT Rating Algorithm
The LAT rating algorithm is no longer part of LTDRIVER. Instead, a separate
loadable image (LAT$RATING.EXE) containing the logic for the LAT rating
algorithm is provided in SYS$LOADABLE_IMAGES. This image is loaded by
LAT$CONFIG.COM.

The sources to produce LAT$RATING.EXE and an example command procedure
for compiling and linking those sources are provided in SYS$EXAMPLES. You
need either a VAX C compiler or a DEC C compiler to build LAT$RATING. The
sources in SYS$EXAMPLES contain code for the default LAT rating algorithm.

If you want to modify the LAT rating algorithm to suit a specific configuration,
be sure you examine the source code to understand the relationship between
LAT$RATING and LTDRIVER before you make any modifications.

Caution

To prevent a system crash, only a system programmer experienced with
OpenVMS device drivers should modify the LAT rating image. Inspect
the resulting C compiler listing to ensure that the generated instructions
are legal for an OpenVMS device driver.

Do not call any system services from the LAT rating image. (See the
device driver documentation for additional guidelines.)

Table 3–1 describes the files provided in SYS$EXAMPLES for the LAT$RATING
image contained in the OpenVMS operating system.

Table 3–1 LAT$RATING Sources

File Name Description

LAT$RATING_BUILD.COM Command procedure used to build the LAT$RATING image. The
image itself must be copied into SYS$LOADABLE_IMAGES.

LAT$RATING_CALC.C Source file that houses the LAT rating and load average calculations.

LAT$RATING_DPT.MAR Source file that contains the necessary driver tables and
special routine entry points that cannot be written in C for
LAT$RATING.EXE.

3–11

System Management Features
3.2 LAT New Features

3.2.7 New SET HOST/LAT Qualifier
The new /FRAME=n qualifier allows a user making a LAT connection to a remote
system to specify the number of data bits that the terminal driver expects for
every character that is input or output. The value of n can be from 5 to 8. The
default value depends on the settings for the terminal established by the /PARITY
and /EIGHT_BIT qualifiers. The following example specifies a character frame
size of 7 bits per character:

$ SET HOST/LAT /FRAME=7 DIAL_OUT_SVC

3.2.8 New LAT Item Codes
There are also new programming item codes, described in detail in Section 4.11.

3.3 Networking Support
Beginning with OpenVMS Version 7.0, the following networking products are
integrated into the installation and upgrade procedures for OpenVMS VAX and
OpenVMS Alpha:

• DECnet Phase IV

• DECnet/OSI

• Digital TCP/IP Services for OpenVMS

For OpenVMS VAX Version 7.0 and OpenVMS Alpha Version 7.0, DECnet Phase
IV is the default networking protocol.

For more information about installing these products with the operating system,
see the OpenVMS Alpha Version 7.0 Upgrade and Installation Manual and the
OpenVMS VAX Version 7.0 Upgrade and Installation Manual.

3.4 New Network Commands
It is possible to run more than one network service on an OpenVMS system. A
revised SHOW NETWORK command and three new commands allow the user
to define and display data about the various network services available on a
particular machine, and to start or stop any of those services.

The three new network commands are:

• SET NETWORK

• START NETWORK

• STOP NETWORK

3.5 New Logical Names for OPCOM (Operator Communication
Manager)

The following logical names have been added to the
SYS$MANAGER:SYLOGICALS.COM command procedure. These logical
names allow you to control the flow of OPCOM messages.

• OPC$ALLOW_INBOUND—Allows OPCOM traffic that is inbound to the node
to be turned on or off. By default, this logical name is set to TRUE. If this
logical name is set to FALSE, all OPCOM messages from other nodes in the
cluster will not be received by the node.

3–12

System Management Features
3.5 New Logical Names for OPCOM (Operator Communication Manager)

• OPC$ALLOW_OUTBOUND—Allows OPCOM traffic that is outbound from
the node to be turned on or off. By default, this logical name is set to TRUE.
If this logical name is set to FALSE, all OPCOM messages from the node will
not be sent to other nodes in the cluster.

Caution

Setting these logical names to FALSE severs all OPCOM traffic in the
specified direction. All OPCOM messages, as well as any returned status
messages that might be expected, will not be delivered.

3.6 Setting Correct Time Zone Information on Your System
Beginning with OpenVMS Version 7.0, the DEC C RTL implements its default
date/time support for programs compiled with DEC C Version 5.2 using a model
based on Coordinated Universal Time (UTC), an international standard for
measuring time of day.

Caution

Even if you do not use the DEC C RTL directly, you must set correct time
zone information on your system because other system utilities written in
the DEC C language might require it.

To set the correct time zone information on your system, use the
UTC$TIME_SETUP.COM command procedure to do the following:

1. Set the local time zone for your system.

2. Set the correct time differential factor (TDF) for your system.

Using UTC allows the DEC C RTL to implement ANSI C/POSIX functionality.
In addition, the UTC model makes the DEC C RTL compatible with the Digital
UNIX and POSIX RTL time functions. With a UTC-based system, users can do
the following:

• Compute the time in any time zone

• Correctly compute past and future times, taking daylight saving time into
account

• Use the ANSI C gmtime routine and make use of the tm-isdst field of the tm
structure

The following sections explain these concepts and tasks.

3–13

System Management Features
3.6 Setting Correct Time Zone Information on Your System

Concept or Task Section

Understanding time-setting concepts

• Coordinated Universal Time (UTC)

• Time differential factor (TDF)

• Daylight saving time and standard time

• Time zones

Section 3.6.1

Determining your system’s TDF Section 3.6.2

Using UTC$TIME_SETUP.COM

• Setting the time zone on your system

• Setting the TDF on your system

Section 3.6.3

Adjusting for daylight saving time and standard time Section 3.6.4

Setting time in a VMScluster environment Section 3.6.5

3.6.1 Understanding Time-Setting Concepts
Understanding some time concepts will help you see the importance of setting the
correct time zone and TDF on your system.

3.6.1.1 Coordinated Universal Time
Coordinated Universal Time (UTC) is similar in most respects to Greenwich
Mean Time (GMT). Under the UTC time standard, zero hours occurs when the
Greenwich Meridian is at midnight. Unlike local time, which can go backward
and forward depending on daylight saving time, UTC always increases.

Local times can be up to 12 hours behind Greenwich Mean Time or 13 hours
ahead of it.

Because UTC is independent of time zones, you can use UTC around the world;
for example, it is 2:00 UTC at the same moment in Paris as well as in Tokyo.
You can examine data that is time-stamped with UTC values in Paris and Tokyo
without complicated conversions to deal with local time zones.

3.6.1.2 Time Differential Factor
One of the steps in setting the correct time on your system is to calculate a time
differential factor (TDF) for your time zone.

The TDF associates each local time zone with UTC; it is the difference between
your local system time and UTC. The TDF changes each time your local system
time undergoes a time zone change; the UTC, on the other hand, does not change.

The TDF value is expressed in signed (+ or -) hh:mm format. The Americas have
negative TDFs, while Europe, Africa, Asia, and Australia have positive TDFs.

Section 3.6.2 explains how to select the correct TDF for your time zone.

3–14

System Management Features
3.6 Setting Correct Time Zone Information on Your System

3.6.1.3 Daylight Saving Time and Standard Time
Typically, you make seasonal changes to the local system time (for example, for
daylight saving time and standard time). You usually adjust the local time one
hour forward or backward.

You also need to adjust the TDF to compensate for the new local system time.
You adjust the TDF in the same direction as the local time; that is, when you add
an hour to the local time, you also add an hour to the TDF.

3.6.1.4 Time Zones
Time zones are names for geographical areas that share the same TDF; they also
share the same rule or rules for seasonal changes between standard time and
daylight saving time.

3.6.2 Determining Your System’s Time Differential Factor
You can use the map in Figure 3–6 to determine the TDF for your time zone.
If you prefer, you can use the tables in Appendix B in the OpenVMS System
Manager’s Manual: Tuning, Monitoring, and Complex Systems to determine
the standard or daylight saving time TDF for your time zone. The procedure
described in Section 3.6.3 shows default TDF values for various time zones.

To use the map to determine the TDF of your time zone, follow these steps:

1. Find your location on the map and notice the time zone band at that location.

2. Follow the time zone band to the top of the map, and note the TDF that
corresponds to your time zone. For example, the TDF for California is -8; the
TDF for Italy is +1.

Some time zones do not have full-hour TDFs. In these cases, find the specific
value on the map itself. For example, if you live in Adelaide, Australia, your TDF
is +9:30.

If your time zone has daylight saving time, your TDF for daylight saving time is
typically +1:00 from the standard time. For example, if your standard time TDF
is +2:00, your daylight saving time TDF is +3:00; if your standard time TDF is
-7:00, your daylight saving time TDF is -6:00.

3–15

System Management Features
3.6 Setting Correct Time Zone Information on Your System

Figure 3–6 Time Differential Factor Map

 A
S

IA
A

U
S

T
R

A
L

IA

 S
O

U
TH

 A
M

E
R

IC
A

+7

+7
h

30
m

 +
5h

 3
0m

+6
h

30
m

F
G

H
I

K
X

 W

 V

 U

 T

 S

 R

 −
3

 −
3h

 3
0m

 A
F

R
IC

A

EU
R

O
PE

 A
R

C
TI

C
 O

C
E

A
N

 N
O

R
T

H
 A

M
E

R
IC

A

 N
O

R
TH

 A
TL

A
N

TI
C

 O
C

E
A

N

 S
O

U
TH

 A
TL

A
N

TI
C

 O
C

E
A

N

A
R

C
TI

C
 O

C
E

A
N

IN
D

IA
N

 O
C

E
A

N

A
S

IA

 N
O

R
TH

 P
A

C
IF

IC
 O

C
E

A
N

 1
05

°

P
M

P
M

P
M

P
M

M
ID

N
IG

H
T

A
M

P
M

A
M

A
M

N
O

O
N

P
M

P
M

P
M

P
M

P
M

 8
0°

 6
0°

 4
0°

 2
0°

 0
°

 2
0°

 4
0°

 6
0°

 8
0°

+6
h

30
m

P
O

N
Z

A
B

C
D

E
F

Q

H
al

f h
ou

r
zo

ne

Z
K

−
5

1
9

8
A

−
G

E

C
ou

nt
ri

es
 a

nd
 a

re
as

 th
at

 h
av

e
no

t a
do

pt
ed

zo
n

e
sy

st
em

, o
r

w
h

er
e

tim
e

d
iff

er
s

o
th

er
 th

an
ha

lf
ho

ur
 fr

om
 n

ei
gh

bo
ri

ng
 z

on
es

.

S
O

U
TH

 P
A

C
IF

IC
 O

C
E

A
N

12

0°

 1
35

°
 1

50
°

 1
65

°
 1

80
°

 9
0°

 1

65
°

 1
50

°
 1

35
°

12
0°

 1

05
°

 7
5°

 4

5°

 6
0°

 3

0°

 1
5°

 0

°

 1
5°

 3

0°

 4
5°

 6

0°

 7
5°

 7

5°

 6
0°

 4
0°

 2
0°

 0
°

 2
0°

 4
0°

 6
0°

E
ve

n
nu

m
be

re
d

zo
ne

s
O

dd
 n

um
be

re
d

zo
ne

s

A
M

A
M

A
M

A
M

A
M

A
M

A
M

A
M

TD
F:

+6
:0

0
+7

:0
0

+8
:0

0
+9

:0
0

+1
0:

00
+1

1:
00

+1
2:

00
/

−
12

:0
0

−
11

:0
0

−
10

:0
0

−
9:

00
−

8:
00

−
7:

00
−

6:
00

−
5:

00
−

4:
00

−
3:

00
−

2:
00

−
1:

00
0:

00
+1

:0
0

+2
:0

0
+3

:0
0

+4
:0

0
+5

:0
0

+6
:0

0

M
T

C
:

P
M

 9
0°

P
M

 9
0°

M
TC

 =
 M

ili
ta

ry
 T

im
e

C
od

e
T

D
F

 =
 T

im
e

D
iff

er
en

tia
l F

ac
to

r

+4
h

30
m

+5
h

30
m

+3
h

30
m

+2−
3h

 3
0m

M
Y

L

−
1

D
A

Y
+1

 D
A

Y

+8

+9
h

30
m

3–16

System Management Features
3.6 Setting Correct Time Zone Information on Your System

3.6.3 Using UTC$TIME_SETUP.COM
You can use this command procedure to set your local time zone or your TDF, or
both. You can also use the procedure to modify your system’s local time to adjust
for daylight saving or standard time. Finally, you can use it to display the local
time and TDF for your system.

If you set the time zone and the TDF on one node in a cluster, the values you set
take effect on other nodes in the cluster when those nodes are rebooted.

For your convenience, the instructions for using the command procedure have
been split into two sections:

• Setting the time zone

• Setting the TDF

Beginning the Procedure
To use SYS$MANAGER:UTC$TIME_SETUP.COM, follow these steps:

1. Log in to the SYSTEM account, or enter the following command to enable
LOG_IO and OPER privileges:

$ SET PROCESS/PRIVILEGE=(LOG_IO,OPER)

2. Enter the following command to start UTC$TIME_SETUP.COM:

$ @SYS$MANAGER:UTC$TIME_SETUP.COM

%UTC-I-UPDTIME, updating Time Zone information in SYS$COMMON:[SYSEXE]

3. Press Return to accept the default of BOTH, or enter one of the other choices
in answer to the following question:

Configure which time parameter (TIMEZONE/TDF/BOTH/NONE)? [BOTH]

This question is asked only if you previously configured both the time zone
and TDF. If either one has not been set, the system defaults to BOTH and the
question is not asked.

Note

Digital recommends that you set BOTH the time zone and the TDF. If you
set the TDF without setting the time zone, the procedure cannot provide
default TDF values.

If you answer BOTH or TIMEZONE to the time parameter question in the
command procedure, continue with the next section. If you answer TDF to the
question, skip to Section 3.6.3.2.

3.6.3.1 Setting the Time Zone on Your System
The local time zone is the location you want to consider your default local time
zone. Usually this local time zone is the same as the local time zone in which
your system is located.

You set the local time zone by making choices in a command procedure.

3–17

System Management Features
3.6 Setting Correct Time Zone Information on Your System

The system first displays the following information:

Configuring the Local Time Zone

TIME ZONE SPECIFICATION -- Main Time Zone Menu

1) Australia 11) GMT 21) Mexico 31) Turkey
2) Brazil 12) Greenwich 22) NZ 32) UCT
3) CET 13) Hong Kong 23) NZ-CHAT 33) US
4) Canada 14) Iceland 24) Navajo 34) UTC
5) Chile 15) Iran 25) PRC 35) Universal
6) Cuba 16) Israel 26) Poland 36) W-SU
7) EET 17) Jamaica 27) ROC 37) WET
8) Egypt 18) Japan 28) ROK 38) Zulu
9) Factory 19) Libya 29) Singapore

10) GB-Eire 20) MET 30) SystemV

0) None of the above

Table 3–2 lists and describes the acronyms that appear in the Main Time Zone
Menu.

Table 3–2 Time Zone Acronyms

Time Zone Acronym Description

CET Central European Time

EET Eastern European Time

Factory Specifies no time zone

GB-Eire Great Britain/Ireland

GMT Greenwich Mean Time

NZ New Zealand

NZ-CHAT New Zealand, Chatham Islands

MET Middle European Time

PRC Peoples Republic of China

ROC Republic of China

ROK Republic of Korea

SystemV Specific to System V operating system

UCT Coordinated Universal Time

US United States

UTC Coordinated Universal Time

Universal Coordinated Universal Time

W-SU Middle European Time

WET Western European Time

3–18

System Management Features
3.6 Setting Correct Time Zone Information on Your System

To select a time zone, follow these steps:

1. Enter a number after the following question; for example, 33, for the United
States:

Select the number above that best describes your location: 33

If you enter 0, the system defaults to GMT.

2. If you enter a country that has more than one time zone, the system displays
a message and asks for a confirmation like the following (if not, skip to the
explanation following step 4):

You selected US as your time zone.
Is this correct? (Yes/No) [YES]: Return

3. The system displays areas with different time zones and asks you to select
your area. Enter a number, for example, 6:

US Time Zone Menu

1) Alaska 4) Central 7) Hawaii 10) Mountain
2) Aleutian 5) East-Indiana 8) Indiana-Starke 11) Pacific
3) Arizona 6) Eastern 9) Michigan 12) Samoa

0) None of the above

Select the number above that best describes your location: 6

4. Confirm the displayed information, or enter another number after the
following; for example:

You selected US/Eastern as your time zone.
Is this correct? (Yes/No) [YES]: Return

When you confirm the last statement, the system redefines the following
system logical names:

• sys$localtime

• sys$posixrules

The DEC C RTL uses these logical names to compute the time zone rules for
your applications. The system also saves this information and uses it to reset
sys$localtime and sys$posixrules when you reboot.

The system then displays the TDFs for standard and daylight saving time
that correspond to the time zone you have selected:

Default Time Differential Factor for standard time is -5:00.
*Default Time Differential Factor for daylight saving time is -4:00.

* The system displays daylight saving time only for time zones that use
daylight saving time.

3–19

System Management Features
3.6 Setting Correct Time Zone Information on Your System

3.6.3.2 Setting the TDF on Your System
If you answer TDF or BOTH to the time parameter question at the beginning
of the command procedure, the system displays prompts for the TDF on your
system.

To set the TDF, answer the following questions:

1. Select option 2 to display the TDF the system has calculated for you:

Configuring the Time Differential Factor (TDF)

Enter ? anytime for help

[0] Exit
[1] Set the Time Differential Factor
[2] Display the Time Differential Factor

Please pick an option number [2]: 2

The system displays information like the following:

SYSTEM TIME DIFFERENTIAL FACTOR = -4:00 (-14400 seconds).
LOCAL SYSTEM TIME = 22-SEP-1995 10:49:45.20.

2. Select option 1 to verify the TDF displayed or to enter a new one:

Configuring the Time Differential Factor (TDF)

Enter ? anytime for help

[0] Exit
[1] Set the Time Differential Factor
[2] Display the Time Differential Factor

Please pick an option number [2]: 1

The system then displays the following information:

The Time Differential Factor (TDF) is the difference between your
system time and Coordinated Universal Time (UTC). UTC is similar
in most repects to Greenwich Mean Time (GMT).

The TDF is expressed as hours and minutes, and should be entered
in the hh:mm format. TDFs for the Americas will be negative
(-3:00, -4:00, etc.); TDFs for Europe, Africa, Asia and Australia
will be positive (1:00, 2:00, etc.).

The system displays the following question only if you set the time zone as
well. However, some time zones do not have daylight saving time; if they do
not, the system also does not display this question.

3. Answer Yes or No to the following question:

Is Daylight Savings time in effect? (Yes/No):

4. After the following prompt, either press Return to accept the displayed default
or enter the correct TDF. (If you have not set the time zone, the system does
not display a default TDF value.)

Enter the Time Differential Factor [-4:00]:

The system then explains the need to modify the system time as well for
season time changes:

If this is a seasonal time change, it may also be necessary to
modify the system time. Generally, seasonal time changes result
in adding 1:00 hour, or adding -1:00 hour to the system time.

3–20

System Management Features
3.6 Setting Correct Time Zone Information on Your System

5. To the following question, answer Yes if you need to modify the local system
time or No if you do not:

Do you wish to modify the local system time [N]:

Answer No if you have already adjusted the system time using the SET TIME
command.

If you answer Yes, the system will lead you through a dialogue similar to the
one in Section 3.6.4.

If you answer No, the system next displays the new TDF:

NEW SYSTEM TIME DIFFERENTIAL FACTOR = -4:00.

6. Answer Yes to confirm the displayed TDF or No if it is incorrect:

Is this correct? [Y]:

If you answer No, the system returns to step 1 in this section.

If you answer Yes, the system displays both the TDF and the local system
time.

SYSTEM TIME DIFFERENTIAL FACTOR = -4:00 (-14400 seconds).
LOCAL SYSTEM TIME = 22-SEP-1995 10:52:37.36.

3.6.4 Adjusting for Daylight Saving Time and Standard Time
To adjust the local time to daylight saving or standard time, you can invoke the
command procedure SYS$EXAMPLES:DAYLIGHT_SAVINGS.COM to do both of
the following:

• Adjust the TDF

• Modify the local time

DAYLIGHT_SAVINGS.COM allows you to do either one of the following:

• Make the changes immediately. (Usually, however, you would use
UTC$TIME_SETUP.COM to make changes immediately by answering
Yes to Question 5 in Section 3.6.3.2.)

• Queue a batch job to make the changes at a future time. (This is the most
common use of this command procedure.)

The following example of DAYLIGHT_SAVINGS.COM shows answers that cause
the procedure to queue a batch job, DST_CHANGE, which will execute when the
time changes from standard time to daylight saving time. Many of the questions
are similar to those explained in Section 3.6.3.2.

In the example, the initial TDF value is -5:00. The local date and time are any
time from the date in 1993 when the change to standard time was made, until
23-APR-1995:02:00, when the change to daylight saving time will be made.

$ SYS$EXAMPLES:DAYLIGHT_SAVINGS

This procedure queues a batch job that changes the system time
and system time differential around a daylight saving time
change. Press the question mark (?) key at any time for help;
hit Control-C to exit.

The Time Differential Factor (TDF) is the difference
between your system time and Coordinated Universal Time (UTC).
The difference is expressed in hh:mm format. The Americas
have negative offsets from UTC, while Europe, Africa, Asia
and Australia have positive offsets from UTC.

3–21

System Management Features
3.6 Setting Correct Time Zone Information on Your System

* Enter the Time Differential Factor: -4:00 Return

If this is a seasonal time change, it may also be
necessary to modify the system time. Generally,
seasonal time changes result in adding 1:00 hour,
or adding -1:00 hour to the local time.

* Do you wish to modify the local system time [N]: Y Return

Enter the time value you would like to add to
the local time. The value can be a positive or
a negative (-hh:mm) value.

* Enter the time value: +1:00 Return

The process to modify your time zone offset and local
time (if supplied) can occur now or in the future.
Press Return to run the job now.

* Enter the run time in the DD-MMM-YYYY:HH:MM:SS format: 23-apr-1995:02:00 Return

NEW SYSTEM TIME DIFFERENTIAL FACTOR = -4:00.
ADDING 1:00 TO THE LOCAL TIME.
JOB RUN TIME : 23-APR-1995:02:00

* Continue? [Y]: Y Return

Job DST_CHANGE (queue SYS$BATCH, entry 2) holding until 23-APR-1995 02:00
Batch Job DST_CHANGE scheduled to run at 23-APR-1995:02:00
$
$!!The batch job DST_CHANGE will run on 23-Apr-1995 at 02:00

3.6.5 Setting Time in a VMScluster Environment
The TDF and the local time must be the same on all nodes in a VMScluster
environment. You can use the System Management utility (SYSMAN) DO
command to invoke the command procedure UTC$CONFIGURE_TDF.COM on
one node in a cluster to do the following for one or more nodes in the cluster:

• Display the TDF

• Set or change the TDF

• Modify the local time

Note that UTC$CONFIGURE_TDF.COM is normally run by
UTC$TIME_SETUP.COM when you select the TDF or BOTH option.

You specify the function SET or SHOW, the TDF value, and the local time
modification as command procedure parameters. Note that you must express
the TDF and the change to the local time in minutes format, not in hours and
minutes hh:mm format, as you do if you use the command procedure interactively.
For example, for +2:00, you would enter +120 or 120.

Examples

1. The following example changes the TDF clusterwide by +1:00 to 11:00 and
also moves the local time ahead by 1 hour, as you would do if you were
changing from standard time to daylight saving time. The initial TDF value
is +10:00, and the local date and time are 12-MAR-1995:15:20.

3–22

System Management Features
3.6 Setting Correct Time Zone Information on Your System

$ RUN SYS$SYSTEM:SYSMAN

SYSMAN> SET ENVIRONMENT/CLUSTER

%SYSMAN-I-ENV, Current command environment:
Clusterwide on local cluster
Username SMITH will be used on nonlocal nodes

SYSMAN> DO @SYS$MANAGER:UTC$CONFIGURE_TDF SET +660 +60

2. The following example displays the TDF for each node in the cluster:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> SET ENVIRONMENT/CLUSTER

%SYSMAN-I-ENV, Current command environment:
Clusterwide on local cluster
Username SMITH will be used on nonlocal nodes

SYSMAN> DO @SYS$MANAGER:UTC$CONFIGURE_TDF SHOW

The system will display the TDF and the local time on each node in the
cluster.

3. The following command procedure can be submitted as a batch job to run at a
future time to do the following:

• Change the TDF clusterwide by –1:00, to –4:30. (The initial TDF value is
–3:30.)

• Move the local time back by 1 hour 23-JAN1995.

$! TO_STANDARD_TIME.COM
$! Command procedure to change the TDF by -1:00 and also modify local time
$ RUN SYS$SYSTEM:SYSMAN

SET ENVIRONMENT/CLUSTER
DO @SYS$MANAGER:UTC$CONFIGURE_TDF SET -270 -60
EXIT

Note: Because UTC$CONFIGURE_TDF.COM accepts time in minutes, -4:30
is expressed as -((4 � 60) + 30) or -270; -1:00 is expressed as -60.

The following command submits this command procedure as a batch job to
run at 23-JAN1995:02:00:

$ SUBMIT/AFTER=23-JAN1995:02:00 TO_STANDARD_TIME.COM

3.7 System Dump Analyzer (SDA) Features
The following sections describe a new command, new features to existing
commands, display changes, and other command changes for the System Dump
Analyzer (SDA).

For more information, see the OpenVMS Alpha Guide to Upgrading Privileged-
Code Applications, and the OpenVMS Alpha System Dump Analyzer Utility
Manual.

3.7.1 New SET FETCH Command
The new command SET FETCH sets the default size of data manipulated by the
EXAMINE and EVALUATE commands. It has no qualifiers.

3–23

System Management Features
3.7 System Dump Analyzer (SDA) Features

3.7.2 Current Commands with New Features
The existing commands with new features are as follows:

3.7.2.1 SHOW CLUSTER
The command SHOW CLUSTER has the following new qualifier:

Qualifier Meaning

/NODE=name Displays cluster information on a particular VMScluster member
node specified by its SCS node name.

3.7.2.2 SHOW CONNECTIONS
The command SHOW CONNECTIONS has the following two new qualifiers:

Qualifier Meaning

/SYSAP=name Displays all connection descriptor tables (CDTs) associated with the
specified local SYSAP.

/NODE=name Displays all connection descriptor tables (CDTs) associated with the
specified remote SCS node name.

3.7.2.3 SHOW LAN
The command SHOW LAN has modified descriptions for the following:

Qualifier Meaning

/CLIENT=name Specifies that information be displayed for the specified client. The
/CLIENT, /DEVICE, and /UNIT qualifiers are synonymous and
mutually exclusive.

/DEVICE=name Specifies that information be displayed for the specified device,
unit, or client. The /CLIENT, /DEVICE, and /UNIT qualifiers are
synonymous and mutually exclusive.

/UNIT=name Specifies that information be displayed for the specified unit. The
/CLIENT, /DEVICE, and /UNIT qualifiers are synonymous and
mutually exclusive.

3.7.2.4 SHOW LOCK
The command SHOW LOCK has the following new qualifier:

Qualifier Meaning

/CACHED Displays locks that are no longer valid. Cached locks are not
displayed in the other SHOW LOCK commands.

3–24

System Management Features
3.7 System Dump Analyzer (SDA) Features

3.7.2.5 SHOW PAGE_TABLE
The command SHOW PAGE_TABLE has the following new qualifiers:

Qualifier Meaning

/GPT Specifies the portion of Page Table Space that maps the Global Page
Table as the address range.

/PT Specifies Page Table Space as the address range, as viewed in the
context of the current process, or as viewed from system context if
there is no current process.

/S0S1 Specifies S0 and S1 Space as the address range.

/S2 Specifies S2 Space as the address range.

/SPTW Displays the contents of the System Page Table window. Level
qualifiers are ignored.

3.7.2.6 SHOW PFN_DATA
The command SHOW PFN_DATA has the modified qualifier as follows:

Qualifier Meaning

/ADDRESS=<PFN-
entry-address>

Displays the PFN database entry at the address specified. The
address specified is rounded to the nearest entry address so if you
have an address that points to one of the fields of the entry, the
correct database entry will still be found.

This command has a changed description and page frame number information as
follows:

For each page frame number it displays, the SHOW PFN_DATA command lists
information used in translating physical page addresses to virtual page addresses.
The display has two lines of information. Table 3–3 shows the first line’s fields;
Table 3–4 shows the second line’s fields.

Table 3–3 Page Frame Number Information—Line One Fields

Item Contents

PFN Page frame number.

DB ADDRESS Address of PFN database entry for this page.

PT PFN PFN of the page table page that maps this page.

BAK Place to find information on this page when all links to this PTE
are broken: typically, either an index into a process section table
or the number of a virtual block in the paging file.

FLINK Forward link within PFN database that points to the next
physical page; this longword also acts as the count of the number
of processes that are sharing this global section.

BLINK Backward link within PFN database; also acts as an index into
the working set list.

SWP/BO Either a swap file page number or a buffer object reference
count, depending on a flag set in the page state field.

(continued on next page)

3–25

System Management Features
3.7 System Dump Analyzer (SDA) Features

Table 3–3 (Cont.) Page Frame Number Information—Line One Fields

Item Contents

LOC Location of the page within the system. It is one of the following
eight types:

Location Meaning

ACTIVE Page is in a working set.

MDFYLST Page is in the modified-page list.

FREELST Page is in the free-page list.

BADLST Page is in the bad-page list.

RELPEND Release of the page is pending.

RDERROR Page has had an error during an attempted
read operation.

PAGEOUT Page is being written into a paging file.

PAGEIN Page is being brought into memory from a
paging file.

FLAGS Displays in text form the flags that are set in page state.
Possible flags are:

Flag Meaning

BUFOBJ Set if any buffer objects reference this
page.

COLLISION Empty collision queue when page read is
complete.

BADPAG Bad page.

RPTEVT Report event on I/O completion.

DELCON Delete PFN when REFCNT=0.

MODIFY Dirty page (modified).

UNAVAILABLE PFN is unavailable. Most likely a console
page.

Table 3–4 Page Frame Number Information—Line Two Fields

Item Contents

Blank

PTE ADDRESS Virtual address of the page table entry that describes the virtual
page mapped into this physical page.

Blank

Blank

Blank

Blank

REFCNT Number of references being made to this page.

(continued on next page)

3–26

System Management Features
3.7 System Dump Analyzer (SDA) Features

Table 3–4 (Cont.) Page Frame Number Information—Line Two Fields

Item Contents

PAGETYP Type of physical page. It is one of the following:

Page Type Meaning

PROCESS Page is part of process space.

SYSTEM Page is part of system space.

GLOBAL Page is part of a global section.

PPT(Ln) Page is part of a process page table, where n is
the page table level number.

GPGTBL Page is part of a global page table.

GBLWRT Page is part of a global, writable section.

UNKNOWN Unknown.

Blank

3.7.2.7 SHOW PROCESS
The command SHOW PROCESS has the following new qualifiers:

Qualifier Meaning

/ADDRESS=pcb-
address

Specifies the process control block (PCB) address of a process in
order to display information about the process.

/INDEX=n Displays the software and hardware context of the thread that is
specified by the index of the software PCB into the system’s PCB
vector.

/RDE=id Lists the information contained in the process region table for the
specified region.

/SEMAPHORE Displays the Inner Mode Semaphore for a multithreaded process.

/THREADS Displays the software and hardware context of all the threads
associated with the current process.

/WORKING_SET_
LIST

Displays the working set list for the process.

3.7.2.8 SHOW RESOURCE
The command SHOW RESOURCE has the following new qualifier:

Qualifier Meaning

/CACHED Displays resource blocks that are no longer valid.

3.7.2.9 SHOW SUMMARY
The command SHOW SUMMARY has the following new qualifier:

Qualifier Meaning

/THREAD Displays information on all the current threads associated with the
current process.

3–27

System Management Features
3.7 System Dump Analyzer (SDA) Features

For more detailed information, see the OpenVMS Alpha Guide to Upgrading
Privileged-Code Applications and the Bookreader version of the OpenVMS Alpha
System Dump Analyzer Utility Manual.

3.7.3 Display Changes
The following shows display changes made to the SHOW CRASH and SHOW
PFN_DATA commands.

SHOW CRASH
The SHOW CRASH command’s exception display is changed to use the new 64-
bit signal array. This change was made because the 32-bit signal array is often
misleading when dealing with addresses outside the sign-extended 32-bit address
spaces.

Fields Changed or Eliminated
Table 3–5 lists the displays that are changed to allow the displaying of 64-bit
quantities. The fields for the following displays may have changed names or been
eliminated.

Table 3–5 Display Changes

Display Commands

Page table SHOW PAGE_TABLE and SHOW PROCESS/PAGE_TABLES

Working set SHOW PROCESS/WORKING_SET

Process header SHOW PROCESS/PHD

Section table SHOW PROCESS/PROCESS_SECTION_TABLE

SHOW PFN_DATA
The output of the SHOW PFN_DATA command, the PFN database display, has
been converted to a two line format. This was necessary because of the expansion
of virtual addresses from 32 bits to 64 bits, along with the need to display
additional information.

Some of the fields of the SHOW PFN_DATA command have changed position, and
new pieces of information appear for certain page types. Of particular attention
are pages that formerly displayed PPGTBL in the PAGETYP column of the
display. These pages are now shown as one of the following:

PHD
PPT(L1)
PPT(L2)
PPT(L3)

These correspond to the second column of status fields in the working set list
display produced by the SHOW PROCESS/WORKING_SET_LIST command.

For more detailed information, see the OpenVMS Alpha Guide to Upgrading
Privileged-Code Applications.

3–28

System Management Features
3.7 System Dump Analyzer (SDA) Features

3.7.4 Other Command Changes
Page Table Requests
Certain page table display requests require SDA to traverse very large virtual
address spaces in very small increments looking for valid page table entries.
Particular examples are the SHOW PROCESS/PAGE_TABLES/P2, SHOW PAGE_
TABLES/PT, and SHOW PAGE_TABLES/S2 commands, when used without
parameters.

You may reduce or eliminate the pause by more narrowly specifying the address
ranges of interest. Note also that this condition is more pronounced when
analyzing running systems.

BUGCHECK Usability Changes
Changes have been made to BUGCHECK to attempt to increase the usability
of dumps that were partially written when the system suffered some sort of
catastrophic failure, reducing the number of instances where SDA signals an
incomplete dump file.

This means, however, that dump files may not contain sections that the crash-
time context might suggest they would. For instance, there might be no processes
in the dump even though there were processes running at the time and there was
room for them in the dump file.

BUGCHECK Transition Pages
Formerly, BUGCHECK forced pages of virtual memory that were in transition but
not being read in from disk into validity at the time of a crash dump so that the
pages could be written into the dump. To do this, it set the valid bit in the page
table entries. This alteration was not previously visible. With the new address
space architecture and the necessities it imposes on selective crash dumps, they
are now visible.

To avoid the confusion inherent in having SDA display information that was not
truly representative of the system state at the time of the crash, it was decided to
change BUGCHECK to not alter the page table entries. All transition pages are
treated as holes in address space, inaccessible by SDA.

For more detailed information, see the OpenVMS Alpha Guide to Upgrading
Privileged-Code Applications.

3.7.5 SDA VAX Dump File Process

VAX OpenVMS VAX SDA now uses RMS file access to process the dump file, instead of
mapping the dump file into the working set. Some SDA commands, such as the
SEARCH command, may be visibly slower because of this change.

Another affect of this change is that a value of 16,000 for the system parameter
virtual page count VIRTUALPAGECNT should be sufficient to analyze any dump,
even if a large number of symbols is read in.

For more detailed information, see the OpenVMS Alpha System Dump Analyzer
Utility Manual on Bookreader. ♦

3–29

System Management Features
3.8 Warranted and Migration Support for VMScluster System Configurations

3.8 Warranted and Migration Support for VMScluster System
Configurations

OpenVMS Alpha Version 7.0 and OpenVMS VAX Version 7.0 provide two levels
of support for mixed-version and mixed-architecture VMScluster systems. These
two support types are warranted and migration.

Warranted support means that Digital has fully qualified the two versions
coexisting in a VMScluster and will answer all problems identified by customers
using these configurations.

Migration support is a superset of the Rolling Upgrade support provided in
earlier releases of OpenVMS and is available for mixes that are not warranted.
Migration support means that Digital has qualified the versions for use together
in configurations that are migrating in a staged fashion to a newer version of
OpenVMS VAX or to OpenVMS Alpha. Problem reports submitted against these
configurations will be answered by Digital. However, in exceptional cases Digital
may request that you move to a warranted configuration as part of answering the
problem.

Migration support will help customers move to warranted VMScluster version
mixes with minimal impact on their cluster environments. Figure 3–7 shows the
level of support provided for all possible version pairings.

Figure 3–7 VMScluster Version Pairings

Alpha Version 6.2

Migration

VAX Version 6.2 VAX Version 7.0 Alpha Version 7.0

VAX Version 7.0

Alpha Version 7.0

ZK−7496A−GE

Migration

Migration

Migration

Warranted

Warranted

Note that Digital does not support the use of Version 7.0 with Version 6.1 (or
earlier versions) in a VMScluster at a time. In many cases, mixing Version 7.0
with versions prior to Version 6.2 will successfully operate, but Digital cannot
commit to resolving problems experienced with such configurations.

3.9 Printing Features
3.9.1 1024 Process Identifiers in Print Queuing Requests

Beginning with OpenVMS Version 6.2, users were allowed to have a maximum
of 1024 identifiers associated with a process. However, users with more than
512 process identifiers could not use the queue system to print a file directly. In
OpenVMS Version 7.0, the 512 identifier limit is increased to 1024 for the Version
7.0 queue system.

3.9.2 New Qualifier for Print Queues
By default, the print queues give an initial form feed to insure the paper is at the
top of the page before printing begins.

In this release of OpenVMS, a new qualifier, /NO_INITIAL_FF, was added to
the DCL commands INITIALIZE/QUEUE, SET QUEUE, and START/QUEUE to
control the initial form feed that is sent to the print queue. Using this qualifier
suppresses the form feed.

For more information, see OpenVMS DCL Dictionary: N–Z.

3–30

4
Programming Features

This chapter describes new features relating to application and system
programming on this version of the OpenVMS operating system.

4.1 OpenVMS Alpha 64-Bit Addressing Support (Alpha Only)

Alpha OpenVMS Alpha Version 7.0 provides support for 64-bit virtual addressing,
which makes the 64-bit virtual address space defined by the Alpha architecture
available to the OpenVMS Alpha operating system and to application programs.
The 64-bit addressing features allow processes to map and access data beyond
the limits of 32-bit virtual addresses. Both process-private and system virtual
address space now extend beyond 2 GB.

In addition to the dramatic increase in virtual address space, OpenVMS Alpha
7.0 significantly increases the amount of physical memory that can be used by
individual processes.

Many tools and languages supported by OpenVMS Alpha (including the Debugger,
run-time library routines, and DEC C) are enhanced to support 64-bit virtual
addressing. Input and output operations are performed directly to and from the
64-bit addressable space by means of RMS services, the $QIO system service, and
most of the device drivers supplied with OpenVMS Alpha systems.

Underlying this are new system services, which allow an application to allocate
and manage the 64-bit virtual address space that is available for process private
use.

Nonprivileged programs may optionally be modified to exploit 64-bit addressing
support. OpenVMS Alpha 64-bit virtual addressing does not affect nonprivileged
programs that are not explicitly modified to exploit 64-bit support. Binary and
source compatibility of existing nonprivileged programs is guaranteed.

For more information about OpenVMS Alpha 64-bit virtual addressing features,
see the OpenVMS Alpha Guide to 64-Bit Addressing. ♦

4.2 OpenVMS Debugger
The following sections describe new features for the OpenVMS Debugger.

4.2.1 Debugging Optimized Code (Alpha Only)

Alpha The ability to debug code compiled with full optimization has been significantly
improved on OpenVMS Alpha systems. You can compile your program with the
/DEBUG and /OPTIMIZE qualifiers and debug the resulting executable file.

In order to take advantage of the new features that improve the ability to debug
optimized code, you will need a new version of your language compiler. For
definitive information about the necessary version of your compiler, please see
your compiler release notes or other compiler documentation.

4–1

Programming Features
4.2 OpenVMS Debugger

Two areas of support for debugging optimized code have been implemented:

• Split-lifetime support

• A new semantic stepping mode

Note that about one-third more disk space is needed for debugging optimized
code, to accommodate the increased image size.

Split-Lifetime Variables
In compiling with optimization, the compiler sometimes performs split-lifetime
analysis on a variable, "splitting" it into several independent subvariables that
can be independently allocated. The effect is that the original variable can be
thought to reside in different locations at different points in time — sometimes in
a register, sometimes in memory, and sometimes nowhere. It is even possible for
the different subvariables to be simultaneously active.

Previously on Alpha, the debugger only reported the first subvariable of a split-
lifetime variable, and then only when that instance was in scope. With this
version, the debugger now can report all subvariables of a split-lifetime variable
automatically by means of the EXAMINE command.

Split-lifetime analysis applies only to scalar variables and parameters. It does
not apply to arrays, records, structures, or other aggregates.

EXAMINE/DEFINITIONS Command
For a split-lifetime variable, the EXAMINE command on Alpha systems not only
displays the value of the active lifetime, it also displays the lifetime’s definition
points. The definition points are places where the lifetime could have received
an initial value (if there is only one definition point, then that is the only place.)
The /DEFINITIONS qualifier enables you to customize the number of definition
points displayed. This is useful for determining where a variable obtained an
inappropriate value.

Semantic Events
One of the problems of stepping through optimized code is that the apparent
source program location "bounces" back and forth with the same line often
appearing again and again. Indeed, sometimes the forward progress in STEP
LINE mode averages barely more than one instruction per STEP command.

This problem is addressed through annotating instructions that are semantic
events. Semantic events are important for two reasons:

• They represent the points in the program where the "effects" of the program
actually happen.

• These effects tend to happen in an order that remains close to the source
order of events in the program.

A semantic event is one of the following:

• Data event — An assignment to a user variable

• Control event — A control flow decision, with a conditional or unconditional
transfer of control, other than a call

• Call event — A call (to a routine that is not stepped over) or a return from a
call

4–2

Programming Features
4.2 OpenVMS Debugger

It is important to understand that not every assignment, transfer of control, or
call is necessarily a semantic event. The major exceptions are as follows:

• When two instructions are required to assign to a complex or X_floating value,
only the first instruction is treated as an event point.

• When there are multiple branches that are part of a single higher-level
construct, such as a decision tree of branches that implement a case or select
construct, then only the first is treated as an event point.

• When a call is made to a routine that is a compiler-specific helper routine,
such as a call to OTS$MOVE, which handles certain kinds of string or storage
copy operations, the call is not considered an event point and control will not
stop at the call.

• When there is more than one semantic event in a row with the same line
number, then only the first is used.

SET STEP SEMANTIC_EVENT Command
The SET STEP SEMANTIC_EVENT command establishes the default stepping
mode as semantic.

STEP/SEMANTIC_EVENT Command
STEP/SEMANTIC_EVENT, or simply STEP when semantic mode is in effect,
causes a breakpoint to be set at the next semantic event. Execution proceeds
to that next event. Parts of any number of different lines/statements may be
executed along the way, without interfering with progress. When the semantic
event is reached (that is, when the instruction associated with that event is
reached but not yet executed), execution is suspended (similarly to reaching the
next line when STEP/LINE is used).♦

4.2.2 Internationalization Features
For Asian users, the DECwindows Motif interface to the debugger as well as
the command line and screen mode interfaces to the debugger can be used with
multibyte characters.

Logical Names for Internationalization
If you use the screen (character-cell) mode, you enable country-specific features
by defining logical names, as follows:

• DBG$SMGSHR — For specifying the Screen Management (SMG) shareable
image. The debugger uses the SMG shareable image in its implementation of
screen mode. Asian variants of the SMG shareable image handle multibyte
characters. Hence, if an Asian variant of SMG is used by the debugger, the
screen mode interface to the debugger will be able to display and manipulate
multibyte characters.

Define the DBG$SMGSHR logical name as follows:

$ DEFINE/JOB DBG$SMGSHR <name_of_Asian_SMG>

<name_of_Asian_SMG> varies according to the variants of Asian OpenVMS.
For example, the name of the Asian SMG in Japanese OpenVMS is
JSY$SMGSHR.EXE.

• SMG$DEFAULT_CHARACTER_SET — For the Asian SMG and multibyte
characters. This logical need only be defined if DBG$SMGSHR has been
defined. Please refer to the User’s Guide to Asian or Japanese Screen
Management Routines for details on how to define this logical.

4–3

Programming Features
4.2 OpenVMS Debugger

You can modify your resource file, VMSDEBUG.DAT, so that characters other
than those in the ISO Latin-1 character set can be displayed in the DECwindows
Motif interface. For information, see Section 4.2.5.

4.2.3 SHOW CALLS and SHOW STACK Commands and Null Frame
Procedures (Alpha Only)

Alpha The OpenVMS Debugger Version 7.0 provides an improved display in response
to the debugger SHOW CALLS and SHOW STACK commands. The display now
includes the frames of null frame procedures. (Null frame procedures do not
establish their own context on the stack, but rather, use the context of the routine
that called them.)

For more information on null frame procedures, see the OpenVMS Calling
Standard.♦

4.2.4 CALL Command and Floating-Point Parameters
The CALL command now allows you to pass floating-point parameters by value.
They are passed in F_floating format.

The CALL command assumes that the floating-point value being passed is in F_
floating format. Passing a floating-point value in a format other than F_floating
is not supported, and has unpredictable consequences.

This feature, previously supported on OpenVMS VAX systems, is now also
supported on OpenVMS Alpha systems.

4.2.5 Customization Features for the DECwindows Motif Interface
The OpenVMS Debugger Version 7.0 provides improved user customization
features for the DECwindows Motif interface:

• New version of the resource file, VMSDEBUG.DAT

• Customization-related new items in the Source View menu bar Options
pulldown menu

• Customizable font definitions in all but the Heap Analyzer windows

Resource File
The new version of the resource file, VMSDEBUG.DAT, includes statements for
customizing the following interface features:

• Source, Control, and Instruction view geometry

• Editor and Source Browser window geometry

• Line Number and Address display in the Source and Instruction views

• Heights of all window panes in both the Source and Control views

• User-defined push button definitions and labels or pixmaps

• Fonts for most windows, with the option of specifying a DebugDefault.Font
resource to use a single font for all views (when you comment out the view-
specific font resources), or commenting out all font resource specifications to
use the system default font

• Startup initial state (visible or iconified) for most windows

• Colors for elements of the Source and Instruction views and Editor

• User-defined keypad definitions

4–4

Programming Features
4.2 OpenVMS Debugger

• Command echo

• Title bar label format

VMSDEBUG.DAT now contains extensive comments regarding each category
of customization and a default style that illustrates most of the customizable
features.

VMSDEBUG.DAT is installed in the DECW$SYSTEM_DEFAULTS directory,
and, if you permit, in your own DECW$USER_DEFAULTS directory (typically
SYS$LOGIN). When you invoke the Motif interface, the debugger identifies any
old resource file formats, and requests that you upgrade to the new format by
executing a Save Options or Restore Default Options command from the Options
menu.

The debugger does not force you to upgrade because some users have previously
customized their resource files and may not wish to supersede them. However, it
is recommended that the features in the new version be tried. The debugger will
not purge older resource file versions, and you can merge previous customizations
into the new resource file or fall back to your previous resource file version by
simply deleting the newer file.

System managers can modify the system default resource file (DECW$SYSTEM_
DEFAULTS:VMSDEBUG.DAT), which can propagate common features or styles
to all end users.

Note

Do not alter the "DebugVersion" statement, as the interface has hard-
coded version expectations.

Menu Items
The new Source View Options menu items are as follows:

• Save Options—Stores the current geometry of visible windows and
various interface states in the user’s resource file (DECW$USER_
DEFAULTS:VMSDEBUG.DAT). It does not purge older resource file versions.
You can easily fall back to a previous version by simply deleting the newer
file. The format of the saved resource file is a terse collection of statements
with no comments. If you want to retain comments or customizations in your
previous resource file version, you should review and merge it with the newly
saved VMSDEBUG.DAT.

• Restore Default Options—Supersedes the user-specific resource
file with the system default resource file, copied from
DECW$SYSTEM_DEFAULTS:VMSDEBUG.DAT to DECW$USER_
DEFAULTS:VMSDEBUG.DAT. The new version of the file becomes active
the next time you invoke the debugger’s DECwindows Motif interface. This is
the simplest way to upgrade to the newer resource file. Previous resource file
versions are not purged, and you can review and merge features of the new
and previous resource files, or return to your previous style by simply deleting
the newer file.

• Edit Options File—Loads and displays your resource file (DECW$USER_
DEFAULTS:VMSDEBUG.DAT) in the Debug Editor. Then you can easily
review and customize the interface style. If you do not have a DECW$USER_
DEFAULTS:VMSDEBUG.DAT file, and you select EDIT OPTIONS FILE, you
will get an empty editor with a message saying the file was not found.

4–5

Programming Features
4.2 OpenVMS Debugger

Customizing Fonts
You can modify your resource file, DECW$USER_DEFAULTS:VMSDEBUG.DAT,
to use the system’s default fonts by commenting out all font resource lines in the
file. You can edit the resource file from within the debugger using the new Edit
Options File command from the Options menu, or you can edit the file using a
separate editor. The system default font will be used the next time you start the
debugger.

4.2.6 Editor File Menu Items in the DECwindows Motif Interface
The new Editor File menu items are as follows:

• Refresh File—Loads and displays the latest version of the file that is currently
in the selected editor buffer. This feature is convenient for reviewing results
files during debugging.

• Close File—Removes the currently selected edit buffer from the display and
menu, closes the file, and frees the associated memory resources. If the edit
buffer has been modified, the user is prompted to save or ignore changes
before closing the file.

4.2.7 Command/Message View Popup Menu Items in the DECwindows Motif
Interface

The new Command/Message View Popup menu items are as follows:

• Clear Command Window—Clears the entire Command/Message View, leaving
only the current command line prompt.

• Clear Command Line—Clears the current command line in the Command
/Message View.

4.2.8 Documentation Changes
The OpenVMS Debugger Manual has been revised for Version 7.0. Complete
reference information on debugger commands, formerly available only in online
help, has been added to the manual as a command dictionary. In addition,
information about the new debugger features has been added.

The command dictionary is also available in printable form in the following file:

SYS$HELP:DBG$HELP.PS

The .TXT format of this file is no longer provided.

4.3 Heap Analyzer Support (Alpha Only)

Alpha The Heap Analyzer provides a graphical representation of memory use in real
time. By studying this representation, you can quickly identify areas in your
application where memory usage and performance can be improved. For example,
you might notice allocations that are made too often, memory blocks that are too
large, evidence of fragmentation, or memory leaks.

Once you have located an area of interest, you can request an enlarged, more
detailed, or altered view. If you choose, you can see traceback or statistical
information associated with an allocation. You can then display the source
code associated with a particular allocation, and correlate memory events with
application code.

4–6

Programming Features
4.3 Heap Analyzer Support (Alpha Only)

You can invoke the Heap Analyzer in one of the following ways:

• From the DECwindows Motif Kept Debugger (GUI):

Choose the Run Image or Rerun Same items from the File menu on the
Command/Message View. When a dialog box appears, indicate the program
you wish to execute and click the Heap Analyzer toggle button.

• From the DECwindows Motif Kept Debugger (Command Entry) or a DECterm
emulating a terminal screen:

At the DBG> prompt within the DECwindows Motif Kept Debugger, issue the
RUN or RERUN command with the /HEAP_ANALYZER qualifier.

• From the DCL command line in a DECterm window:

At the DCL prompt ($), issue the following command, and then execute your
program with the RUN/NODEBUG command:

$ DEFINE/USER LIBRTL SYS$LIBRARY:LIBRTL_INSTRUMENTED

Note that the Heap Analyzer does not work on programs linked with the
/NODEBUG qualifier on OpenVMS Alpha systems. (On OpenVMS VAX systems,
the Heap Analyzer does work on programs linked with the /NODEBUG qualifier,
although the traceback information displayed will be minimal.)

The Heap Analyzer, previously documented for OpenVMS VAX systems, is now
also supported on OpenVMS Alpha Version 7.0. For a complete description of the
feature, see the OpenVMS Debugger Manual. ♦

4.4 DECthreads Features
The following sections describe new DECthreads features.

4.4.1 DECthreads Implements Final POSIX 1003.1c Standard Style Interface
As of this release, the DECthreads library (PTHREAD$RTL.EXE) provides
an implementation of the POSIX 1003.1c standard as approved by the IEEE
standards board in June 1995 (IEEE Std 1003.1c-1995, POSIX System
Application Program Interface). The new POSIX (pthread) style interface
supported with DECthreads is the most portable, efficient, and powerful
programming interface for a multithreaded environment. These interfaces
are defined by <pthread.h>. For more detailed information, see the Guide to
DECthreads.

4.4.2 Thread Independent Services (TIS) Interface
This release introduces the Thread Independent Services (TIS) application
programming interface (CMA$TIS_SHR.EXE). TIS provides services that assist
with the development of thread-safe libraries.

Thread synchronization may involve significant run-time cost, which is
undesirable in the absence of threads. TIS enables thread-safe libraries to
be built that are both efficient in the nonthreaded environment, yet provide the
necessary synchronization in the threaded environment.

When DECthreads is not active within the process, TIS executes only the
minimum steps necessary: code running in a nonthreaded environment is not
burdened by the run-time synchronization that is necessary when the same
code is run in a threaded environment. When DECthreads is active, the TIS
functions provide the necessary thread-safe synchronization. For more detailed
information, see the Guide to DECthreads.

4–7

Programming Features
4.5 DELTA/XDELTA Support for Debugging Multithreaded Applications (Alpha Only)

4.5 DELTA/XDELTA Support for Debugging Multithreaded
Applications (Alpha Only)

Alpha To support the debugging of multithreaded applications, the capability of
displaying a thread ID at a breakpoint has been added to DELTA. When you
reach a breakpoint in a multithreaded application, DELTA displays the thread ID
and stops the execution of all other threads. When you reach a breakpoint in a
single-threaded application, the display and behavior is the same as in the past;
DELTA displays the address and stops program execution.

In the following example, a breakpoint is set with 30000;B and is followed by the
;P (Proceed from Breakpoint) command. The breakpoint is taken. Because it is a
multithreaded application, the thread ID is included in the display.

30000;B ;P
Brk 1 at 30000 on Thread 12
00030000! LDA SP,#XFF80(SP)♦

4.6 Global Section Limit Increased on OpenVMS Alpha Version 7.0

Alpha In OpenVMS Alpha Version 7.0, the global section limit has been increased from
3,276 to 65,535. ♦

VAX On OpenVMS VAX Version 7.0, the global section limit remains 4,095. ♦

4.7 High-Performance Sort/Merge Utility—SOR$ Routines (Alpha
Only)

Alpha An optional high-performance Sort/Merge utility takes advantage of the Alpha
architecture to provide better performance for most sort and merge operations.
Currently, the high-performance Sort/Merge utility supports a subset of the
SORT/MERGE SOR$ routines.

This section describes the callable interface to the high-performance Sort/Merge
utility by way of the SOR$ routines. See the Bookreader version of the OpenVMS
Utility Routines Manual for information about the SOR$ routines. Refer to
Section 2.2 for information about using the high-performance Sort/Merge utility
from the command line.

See the OpenVMS Version 7.0 Release Notes for information related to problems
and restrictions associated with this release of the high-performance Sort/Merge
utility.

Selecting High-Performance Sort
Use the SORTSHR logical to select the high-performance Sort/Merge utility.
Define SORTSHR to point to the high-performance sort executable image in
SYS$LIBRARY, as follows:

$ define sortshr sys$library:hypersort.exe

To return to the Sort/Merge utility, deassign SORTSHR. The Sort/Merge utility is
the default if SORTSHR is not defined.

4–8

Programming Features
4.7 High-Performance Sort/Merge Utility—SOR$ Routines (Alpha Only)

SOR$ Routine Behavior
The behavior of the SOR$ routines for the high-performance Sort/Merge utility is
the same as for SORT/MERGE except as shown in Table 4–1.

Table 4–1 High-Performance Sort/Merge: Differences in SOR$ Routine
Behavior

Feature High-Performance Sort/Merge Behavior

Output file organization Indexed sequential output file organization is not
supported.1 Do not specify the SOR$PASS_FILES
routine org argument as FAB$C_IDX or the rfm
argument as FAB$C_VFC.

Work files Permissible values of the SOR$BEGIN_SORT work_
files argument range from 1 through 255. By default,
the high-performance Sort/Merge utility creates one
temporary work file.

Input file size If you do not specify an input file size in the
SOR$BEGIN_SORT file_alloc argument, the high-
performance Sort/Merge utility determines a default
based on the size of the input file, or if input is not
from files, on available memory.

Specification files The SOR$SPEC_FILE routine is not supported.1

Key data types DSCK_DTYPE_O, DSCK_DTYPE_OU, DSC$K_
DTYPE_H, and DSC$K_DTYPE_NZ are not valid
key data types in the SOR$BEGIN_MERGE or
SOR$BEGIN_SORT key_buffer argument.1

Key data types not normally
supported by SORT/MERGE

The SOR$DTYPE routine is not supported.1 Data
types that would otherwise be specified using
SOR$DTYPE include extended data types and the
National Character Set (NCS) collating sequences.

Internal sorting processes Only the record sort process is supported. You
can specify the SOR$BEGIN_SORT routine sort_
process argument as SOR$GK_RECORD or omit the
argument. The SORGK_TAG, SORGK_ADDRESS,
and SOR$GK_INDEX values are not supported for the
sort_process argument.1

Statistical summary information The SOR$STAT routine is not supported.1

User-supplied action routines The following user-supplied action routines are
not supported for either SOR$BEGIN_MERGE or
SOR$BEGIN_SORT.1 You must provide a placeholder
comma (,) in the argument list if other arguments
follow the customary position of the user_compare or
user_equal argument.

user_compare Compares records to determine
their sort or merge order.

user_equal Resolves the sort or merge order
when records have duplicate keys.

1Implementation of this feature is deferred to a future OpenVMS Alpha release.

4–9

Programming Features
4.7 High-Performance Sort/Merge Utility—SOR$ Routines (Alpha Only)

If you attempt to use an unsupported capability, the high-performance Sort/Merge
utility generates an error. High-performance Sort/Merge adds the following
condition value to those listed for SORT/MERGE:

SOR$_NYI Attempt to use a feature that is not yet implemented.♦

4.8 Kernel Threads (Alpha Only)

Alpha With the implementation of kernel threads, OpenVMS Alpha V7.0 provides new
advantages and some changed features to the operating system.

The following sections present this information.

4.8.1 Kernel Threads Advantages
Kernel threads on OpenVMS Alpha enables multiple execution contexts within
a process, allowing more than one application thread to be executing at the
same time. These execution contexts are called kernel threads. Kernel threads
allows a multithreaded application to have a thread executing on every CPU in a
multiprocessor system. Kernel threads also allows a threaded application to take
advantage of multiple CPUs in a symmetric multiple processing (SMP) system.

By using kernel threads as a programming model, the application programmer
can gain the following advantages in a program:

• More modular code

• Simpler application design and maintenance

• Independent flows of execution in parallel on multiple CPUs

• Better use of available CPU resources through parallel execution

4.8.2 New Kernel Threads Features
The OpenVMS Alpha operating system implements two new outstanding features:

• Multiple execution contexts within a process

• Efficient use of the OpenVMS and DECthreads schedulers

4.8.2.1 Multiple Execution Contexts Within a Process
Before the implementation of kernel threads, the scheduling model for OpenVMS
was per process. The only scheduling context was the process itself; that is, only
one execution context per process. Since a threaded application could create
thousands of threads, many of these threads could potentially be executing at
the same time. But because OpenVMS processes had only a single execution
context, in effect only one of those application threads was running at any one
time. If this multithreaded application was running on a multiprocessor system,
the application could not make use of more than a single CPU.

After the implementation of kernel threads, the scheduling model allows for
multiple execution contexts within a process; that is, more than one application
thread can be executing concurrently. These execution contexts are called kernel
threads. Kernel threads allows a multithreaded application to have a thread
executing on every CPU in a multiprocessor system. Kernel threads also allows a
threaded application to take advantage of multiple CPUs in a symmetric multiple
processing (SMP) system.

4–10

Programming Features
4.8 Kernel Threads (Alpha Only)

4.8.2.2 Efficient Use of the OpenVMS and DECthreads Schedulers
It is the function of the user mode thread manager to schedule individual user
mode application threads. On OpenVMS, DECthreads is the user mode threading
package of choice. Before the implementation of kernel threads, DECthreads
multiplexed user mode threads on the single OpenVMS execution context—the
process. DECthreads implemented parts of its scheduling by using a periodic
timer. If the AST executed and the thread manager gained control, the thread
manager could then select a new application thread for execution. But because
the thread manager could not detect that a thread had entered an OpenVMS wait
state, the entire application blocked until that periodic AST was delivered. That
resulted in a delay until the thread manager regained control and could schedule
another thread. Once the thread manager gained control, it could schedule a
previously pre-empted thread unaware that the thread was in a wait state. The
lack of integration between the OpenVMS and DECthreads schedulers could
result in wasted CPU resources.

After the implementation of kernel threads, the scheduling model provides
for scheduler callbacks. A scheduler callback is an upcall from the OpenVMS
scheduler to the thread manager whenever a thread changes state. This upcall
allows the OpenVMS scheduler to inform the thread manager that the current
thread is stalled and that another thread should be scheduled. Upcalls also
inform the thread manager that an event a thread is waiting on has completed.
With kernel threads, the two schedulers are better integrated, minimizing
application thread scheduling delays.

For more detailed information about kernel threads, see the OpenVMS Alpha
Guide to Upgrading Privileged-Code Applications. ♦

4.9 Linking for Different Architectures
It is possible to create OpenVMS Alpha images on an OpenVMS VAX system
and to create OpenVMS VAX images on an OpenVMS Alpha system. To do this,
you must mount a system disk of the target architecture and make it accessible
on the system where the link is to occur. Also, you must assign several logical
names to point to portions of the target architecture disk.

Table 4–2 lists the logical names and the conditions of their use.

Table 4–2 Logical Names for Cross-Architecture Linking

Logical Name Description

ALPHA$LIBRARY The linker uses this logical name when creating an OpenVMS
Alpha image to locate the target system’s shareable images
and system libraries.

VAX$LIBRARY The linker uses this logical name when creating an OpenVMS
VAX image on an OpenVMS Alpha computer to locate the
target system’s shareable images and system libraries.

SYS$LIBRARY The linker uses this logical name when creating an OpenVMS
VAX image on an OpenVMS VAX computer to locate the target
system’s shareable images and system libraries.

(continued on next page)

4–11

Programming Features
4.9 Linking for Different Architectures

Table 4–2 (Cont.) Logical Names for Cross-Architecture Linking

Logical Name Description

ALPHA$LOADABLE_
IMAGES

The linker uses this logical when creating an OpenVMS Alpha
image to locate the target system’s base image SYS$BASE_
IMAGE.EXE when the /SYSEXE qualifier is in the link
command line.

The /ALPHA and /VAX qualifiers control which architecture an image is built for:

• When you specify /ALPHA, the linker creates an OpenVMS Alpha
image using the OpenVMS Alpha libraries and OpenVMS Alpha images
from the target system disk that the logicals ALPHA$LIBRARY and
ALPHA$LOADABLE_IMAGES point to. When you link on an OpenVMS
Alpha system, these logical names initially point to the current system’s
libraries and images. The qualifier /ALPHA is the default on OpenVMS
Alpha systems.

• When you specify /VAX on an OpenVMS Alpha system, the linker creates an
OpenVMS VAX image using the OpenVMS VAX libraries and OpenVMS VAX
images from the target system disk that the logical VAX$LIBRARY points to.
On an OpenVMS VAX system, you create VAX images by using the OpenVMS
VAX libraries and OpenVMS VAX images that the logical SYS$LIBRARY
points to. The qualifier /VAX is the default on OpenVMS VAX systems.

The next two sections provide reference information about the LINK command
qualifiers /ALPHA and /VAX.

4.9.1 /ALPHA Qualifier
The /ALPHA qualifier directs the linker to produce an OpenVMS Alpha image.
The default action, when neither /ALPHA nor /VAX is specified, is to create an
OpenVMS VAX image on an OpenVMS VAX system and to create an OpenVMS
Alpha image on an OpenVMS Alpha system.

Format
/ALPHA

Qualifier Values
None.

Description
This qualifier is used to instruct the linker to accept OpenVMS Alpha object files
and library files to produce an OpenVMS Alpha image.

You must inform the linker where OpenVMS Alpha system libraries and
shareable images are located with the logical names ALPHA$LOADABLE_
IMAGES and ALPHA$LIBRARY. On an OpenVMS Alpha system, these logicals
are already defined to point to the correct directories on the current system disk.
On OpenVMS VAX, you must define these logical names so that they translate to
the location of an OpenVMS Alpha system disk residing on the system where the
Alpha linking is to occur.

4–12

Programming Features
4.9 Linking for Different Architectures

Example

$ DEFINE ALPHA$LIBRARY DKB100:[VMS$COMMON.SYSLIB]
$ DEFINE ALPHA$LOADABLE_IMAGES DKB100:[VMS$COMMON.SYS$LDR]
$ LINK/ALPHA ALPHA.OBJ

This example, which is performed on an OpenVMS VAX system, shows the
definition of logical names to point to the appropriate areas on an OpenVMS
Alpha system disk mounted on device DKB100. The qualifier /ALPHA tells the
linker to expect the object file, ALPHA.OBJ, to be an OpenVMS Alpha object
file and to link it using the OpenVMS Alpha libraries and images on DKB100, if
necessary.

4.9.2 /VAX Qualifier
The /VAX qualifier directs the linker to produce an OpenVMS VAX image. The
default action, when neither /ALPHA nor /VAX is specified, is to create an
OpenVMS VAX image on an OpenVMS VAX system and to create an OpenVMS
Alpha image on an OpenVMS Alpha system.

Format
/VAX

Qualifier Values
None.

Description
This qualifier is used to instruct the linker to accept OpenVMS VAX object files
and library files to produce an OpenVMS VAX image.

You must inform the linker where OpenVMS VAX system libraries and shareable
images are located. On an OpenVMS VAX system, you use the logical name
SYS$LIBRARY to do this. On an OpenVMS Alpha system, you use the logical
name VAX$LIBRARY to do this. Therefore, if the link is to occur on an OpenVMS
Alpha system, you must define the logical VAX$LIBRARY so that it translates to
the location of an OpenVMS VAX system disk residing on the system where the
VAX linking is to occur.

Example

$ DEFINE VAX$LIBRARY DKB200:[VMS$COMMON.SYSLIB]
$ LINK/VAX VAX.OBJ

This example, performed on an OpenVMS Alpha system, shows the definition
of the logical name VAX$LIBRARY to point to an OpenVMS VAX system disk
mounted on device DKB200 in the appropriate area. The qualifier tells the linker
to expect the object file, VAX.OBJ, to be an OpenVMS VAX object file and to link
it using the OpenVMS VAX libraries and images on DKB200, if necessary.

4.10 New /ALPHA Qualifier for Command Definition, Library, and
Message Utilities

A new /ALPHA qualifier has been added to the Command Definition, Library,
and Message utilities. In addition, the behavior of the /VAX qualifier has been
modified in each of these utilities. For related information, see Section 4.9.

For detailed information about the new /ALPHA qualifier and changes to the
/VAX qualifier, see the OpenVMS Command Definition, Librarian, and Message
Utilities Manual.

4–13

Programming Features
4.11 New LAT Item Codes (Alpha Only)

4.11 New LAT Item Codes (Alpha Only)

Alpha Table 4–3 shows the LAT node entity item codes.

Table 4–3 LAT Node Entity Item Codes

Item Code Meaning

LAT$_ITM_LARGE_
BUFFERS

Boolean used to indicate whether or not the LAT software
is using large packet support by default.

LAT$_ITM_
ANNOUNCEMENTS

Boolean used to indicate whether or not the LAT software
is transmitting LAT service advertisement messages.

Table 4–4 shows the LAT port entity item code.

Table 4–4 LAT Port Entity Item Code

Item Code Meaning

LAT$_ITM_PORT_STATE Current port state. Possible values are:

LAT$C_PT_STATE_
INACTIVE

Port is inactive.

LAT$C_PT_STATE_
CONNECTING

Port connection in progress
but not complete.

LAT$C_PT_STATE_ACTIVE Port has active LAT
connection.

LAT$C_PT_STATE_
DISCONNECTING

Port LAT connection in
process of terminating.

For more detailed information, see the Bookreader version of the OpenVMS I/O
User’s Reference Manual. ♦

4.12 Mail Utility Features
This section describes the following new features for the Mail utility:

• The signature file user profile entry field

• Item codes to implement the signature file

• Mail routines that use these item codes

4.12.1 Signature File User Profile Entry Field
The Mail utility maintains an indexed data file VMSMAIL_PROFILE.DATA
that serves as a systemwide database of user profile entries. A user profile
entry is a record that contains data describing a Mail user’s default processing
characteristics and whose primary key is the user name. The following table
shows information about the new user profile entry field:

Field Function

Signature file Text file that is automatically appended to the end of the
body of a mail message

4–14

Programming Features
4.12 Mail Utility Features

4.12.2 Input Item Codes for the Signature File in the Send Context
The new input item codes for the send context are as follows:

Item Code Function

MAIL$_SEND_SIGFILE Specifies a full OpenVMS file specification of the
signature file to be used in the message.

MAIL$_SEND_NO_SIGFILE Specifies that no signature file be used.

4.12.3 Input Item Codes for the Signature File in the User Context
The new input item codes for the user context are as follows:

Item Code Function

MAIL$_USER_SET_SIGFILE Specifies a signature file specification for the
specified user.

MAIL$_USER_SET_NO_SIGFILE Clears a signature file field for the specified
user.

4.12.4 Output Item Code for the Signature File in the User Context
The new output item code for the user context is as follows:

Item Code Function

MAIL$_USER_SIGFILE Returns the default signature file specification.

4.12.5 MAIL$SEND_BEGIN Routine Input Item Codes
The following sections describe input item codes for the Mail routine
MAIL$SEND_BEGIN.

4.12.5.1 MAIL$_SEND_SIGFILE and MAIL$_SEND_NO_SIGFILE
Note that you must specify only one of these item codes. An error is generated if
you specify both item codes. MAIL$_SEND_SIGFILE specifies the full OpenVMS
file specification of the signature file to be used in the message. The default file
specification used for a signature file is the user mail directory specification and
.SIG as the file type. The buffer address field of the item descriptor points to a
buffer that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_SEND_NO_SIGFILE specifies that no signature
file be used during message construction.

4.12.6 MAIL$USER_BEGIN and MAIL$USER_GET_INFO Routines Output Item
Code

The following is an output item code for the Mail routine MAIL$USER_BEGIN
and MAIL$USER_GET_INFO.

4–15

Programming Features
4.12 Mail Utility Features

4.12.6.1 MAIL$_USER_SIGFILE
When you specify MAIL$_USER_SIGFILE, MAIL$USER_BEGIN returns
the default signature file specification. The buffer address field of the item
descriptor points to a buffer that receives a character string 0 to 255 characters
long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

4.12.7 MAIL$USER_SET_INFO Routine Input Item Codes
The following are input item codes for the Mail routine MAIL$USER_SET_INFO.

4.12.7.1 MAIL$_USER_SET_SIGFILE and MAIL$_USER_SET_NO_SIGFILE
MAIL$_USER_SET_SIGFILE specifies a signature file specification for the
specified user. The buffer address field of the item descriptor points to a buffer
that contains a character string 0 to 255 characters long.

Specify a value from 0 to 255 in the buffer length field of the item descriptor.

The Boolean item code MAIL$_USER_SET_NO_SIGFILE clears the signature file
field for the specified user.

Specify the value 0 in the buffer length and buffer address fields of the item
descriptor.

4.13 New STARLET Definitions for C (Alpha Only)

Alpha As of OpenVMS Alpha Version 7.0, SYS$LIBRARY:SYS$STARLET_C.TLB (or
STARLET) provides C function prototypes for system services, as well as new
and enhanced data structure definitions. The new definitions are more consistent
with the OpenVMS C language coding conventions and definitions (typedefs) used
in SYS$LIBRARY:SYS$LIB_C.TLB.

In order to maintain source compatibility for existing users of STARLET.H, the
‘‘old style’’ function declarations and definitions are still provided by default.
To take advantage of the new system service function prototypes and type
definitions, you must explicitly enable them.

You can define the _NEW_STARLET symbol with a DEC C command line
qualifier or include the definition directly in your source program. For example:

• Define the _NEW_STARLET symbol with the DEC C command line qualifier
as follows:

/DEFINE=(__NEW_STARLET=1)

or

• Define the _NEW_STARLET symbol in your C source program before
including the SYS$STARLET_C.TLB header files:

#define __NEW_STARLET 1

#include <starlet.h>
#include <vadef.h>

The system service function prototypes will be documented in a future release
of OpenVMS Alpha. To see the currently available system service function
prototypes in STARLET.H, you can use the Librarian utility as shown in the
following example:

$ LIBRARY/OUTPUT=STARLET.H SYS$LIBRARY:SYS$STARLET_C.TLB/EXTRACT=STARLET

4–16

Programming Features
4.13 New STARLET Definitions for C (Alpha Only)

The following example shows a new system service function prototype as it is
defined in STARLET.H:

#pragma __required_pointer_size __long

int sys$expreg_64(
struct _generic_64 *region_id_64,
unsigned __int64 length_64,
unsigned int acmode,
unsigned int flags,
void *(*(return_va_64)),
unsigned __int64 *return_length_64);

#pragma __required_pointer_size __short

For more information about DEC C pointer size pragmas, see the DEC C User’s
Guide for OpenVMS Systems.

The following source code example shows the sys$expreg_64 function prototype
referenced in a program.

#define __NEW_STARLET 1 /* Enable "New Starlet" features */

#include <starlet.h> /* Declare prototypes for system services */
#include <gen64def.h> /* Define GENERIC_64 type */
#include <vadef.h> /* Define VA$ constants */

#include <ints.h> /* Define 64-bit integer types */
#include <far_pointers.h> /* Define 64-bit pointer types */

{
int status; /* Ubiquitous VMS status value */
GENERIC_64 region = { VA$C_P2 }; /* Expand in "default" P2 region */
VOID_PQ p2_va; /* Returned VA in P2 space */
uint64 length; /* Allocated size in bytes */
extern uint64 page_size; /* Page size in bytes */

status = sys$expreg_64(®ion, request_size, 0, 0, &p2_va, &length);
...

}

Table 4–5 lists the data structures that are used by the new function prototypes.

Table 4–5 Structures Used by _NEW_STARLET Prototypes

Structure Used by
Prototype

Defined by
Header File

Common Prefix for
Structure Member
Names Description

struct _cluevthndl cluevtdef.h cluevthndl$ Cluster event handle

struct _fabdef fabdef.h fab$ File Access Block

struct _generic_64 gen64def.h gen64$ Generic quadword structure

struct _ieee ieeedef.h ieee$ IEEE floating-point control
structure

struct _ile2 1 iledef.h ile2$ Item List Entry 2

struct _ile3 1 iledef.h ile3$ Item List Entry 3

struct _iosa iosadef.h iosa$ I/O status area

1Use of this structure type is not required by the function prototypes in starlet.h. This structure type is provided as a
convenience and can be used where it is appropriate.

(continued on next page)

4–17

Programming Features
4.13 New STARLET Definitions for C (Alpha Only)

Table 4–5 (Cont.) Structures Used by _NEW_STARLET Prototypes

Structure Used by
Prototype

Defined by
Header File

Common Prefix for
Structure Member
Names Description

struct _iosb iosbdef.h iosb$ I/O Status Block

struct _lksb lksbdef.h lksb$ Lock Status Block

struct _rabdef rabdef.h rab$ RMS Record Access Block

struct _secid seciddef.h secid$ Global section identifier

struct _va_range va_rangedef.h va_range$ 32-bit virtual address range♦

4.14 Spiralog Version 1.0 (Alpha Only)

Alpha The Spiralog file system, supported on OpenVMS Alpha Version 7.0, increases
data write performance, ensures high availability, and provides rapid backup
rates for VMSclusters and single computers. It is innovative technology, coupled
with tight integration with Digital’s PATHWORKS networking software and
brings high-performance file services to diverse client systems.

The Spiralog file system is an option on OpenVMS Alpha and is fully compatible
with the existing file system, Files–11. Both Spiralog and Files–11 volumes work
simultaneously on the same system or within the same cluster. Data migration
is simple: simply initialize a Spiralog volume and copy your Files–11 data to
it. Your existing Files–11 applications run immediately without changes on the
Spiralog file system.

Spiralog Version 1.0 is intended as an early developers kit for leading edge
technology users. No separate license fee is required to run Spiralog; Spiralog
license rights are included in the OpenVMS Alpha operating system license.

The Spiralog media will be available early in 1996 through the OpenVMS
Software Products Library service or as a separate CD–ROM.

For more information about Spiralog, refer to the Spiralog documentation set. ♦

4.15 Dump File Compression Features (Alpha Only)

Alpha The following dump file compression features are now available on the System
Dump Analyzer utility (SDA).

4.15.1 Dump File Style
There are two types of dump files—a physical memory dump (also known as a
full dump), and a dump of selected virtual addresses (also known as a selective
dump). Both full and selective dumps may be produced in either compressed or
uncompressed form. Compressed dumps save disk space and time taken writing
the dump at the expense of a slight increase in time to access the dump with
SDA. The SDA commands COPY/COMPRESS and COPY/DECOMPRESS can be
used to convert an existing dump.

DUMPSTYLE, which specifies the method of writing system dumps, is a 32-
bit mask. Table 4–6 shows how the bits are defined. Each bit can be set
independently. The value of the SYSGEN parameter is the sum of the values
of the bits that have been set. Remaining or undefined values are reserved to
Digital.

4–18

Programming Features
4.15 Dump File Compression Features (Alpha Only)

Table 4–6 DUMPSTYLE Mask

Bit Value Description

0 0 0= Full dump (SYSGEN default). The entire contents of physical
memory will be written to the dump file.

1= Selective dump. The contents of memory will be written to the
dump file selectively to maximize the usefulness of the dump file while
conserving disk space.

1 2 0= Minimal console output.

1= Full console output (includes stack dump, register contents, and so
on.)

2 4 This bit is ignored on Alpha systems.

3 8 0= Do not compress.

1= Compress.

In a physical memory dump, the DUMPSTYLE system parameter can be set
to 0, 2, 8, or 10. Each value provides a full dump. The value of 0 yields an
uncompressed dump with minimal console output; the value of 2 provides
an uncompressed dump with full console output; the value of 8 provides a
compressed dump with minimal console output; and the value of 10 provides a
compressed dump with full console output. A physical memory dump requires
that all physical memory be written to the dump file. This ensures the presence
of all the page table pages required for SDA to emulate translation of system
virtual addresses. These table pages include the level 1 page table of the current
process, the shared level 2 page table that maps the system page table (SPT), and
the level 3 page table pages that constitute the SPT.

In certain system configurations, it may be impossible to preserve the entire
contents of memory in a disk file. For instance, a large memory system or a
system with small disk capacity may not be able to supply enough disk space for
a full memory dump. If the system dump file cannot accommodate all of memory,
information essential to determining the cause of the system failure may be lost.

To preserve those portions of memory that contain information most useful in
determining the causes of system failures, a system manager sets the value
of the DUMPSTYLE system parameter to 1, 3, 9, or 11 to specify a dump of
selected virtual address spaces. Each value provides a selective dump. The value
of 1 yields an uncompressed dump with minimal console output; the value of 3
provides an uncompressed dump with full console output; the value of 9 provides
a compressed dump with minimal console output; and the value of 11 provides
a compressed dump with full console output. In a selective dump, related pages
of virtual address space are written to the dump file as a unit called a logical
memory block (LMB). For example, one LMB consists of the system and global
page tables; another is the address space of a particular process. Those LMBs
most likely to be useful in crash dump analysis are written first.

Table 4–7 compares full and selective style dump files.

4–19

Programming Features
4.15 Dump File Compression Features (Alpha Only)

Table 4–7 Comparison of Full and Selective Dump Files

Item Full Selective

Available
Information

Complete contents of physical
memory in use, stored in order
of increasing physical address.

System page table, global page table, system
space memory, and process and control regions
(plus global pages) for all saved processes.

Unavailable
Information

Contents of paged-out memory
at the time of the system failure.

Contents of paged-out memory at the time of the
system failure, process and control regions of
unsaved processes, L1 page tables, and memory
not mapped by a page table.

SDA Command
Limitations

None. The following commands are not useful
for unsaved processes: SHOW PROCESS
/CHANNELS, SHOW PROCESS/IMAGE, SHOW
PROCESS/RMS, SHOW STACK, and SHOW
SUMMARY/IMAGE.

4.15.1.1 Controlling the Size of Page Files and Dump Files
You can adjust the size of the system page file and dump file using AUTOGEN
(the recommended method) or by using SYSGEN.

AUTOGEN automatically calculates the appropriate sizes for page and dump
files. AUTOGEN invokes the System Generation utility (SYSGEN) to create
or change the files. However, you can control sizes calculated by AUTOGEN
by defining symbols in the MODPARAMS.DAT file. The file sizes specified in
MODPARAMS.DAT are copied into the PARAMS.DAT file during AUTOGEN’s
GETDATA phase. AUTOGEN then makes appropriate adjustments in its
calculations.

Although Digital recommends using AUTOGEN to create and modify page and
dump file sizes, you can use SYSGEN to directly create and change the sizes of
those files.

The sections that follow discuss how you can calculate the size of a dump file.

See the Bookreader version of the OpenVMS System Manager’s Manual for
detailed information about using AUTOGEN and SYSGEN to create and modify
page and dump file sizes.

4.15.1.2 Writing to the System Dump File
OpenVMS Alpha writes the contents of the error-log buffers, processor registers,
and memory into the system dump file, overwriting its previous contents. If the
system dump file is too small, OpenVMS Alpha cannot copy all memory to the file
when a system failure occurs.

SYS$SYSTEM:SYSDUMP.DMP (SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP)
is furnished as an empty file in the OpenVMS Alpha software distribution kit.
To successfully store a crash dump, SYS$SYSTEM:SYSDUMP.DMP must be
enlarged to hold all of the page tables required for SDA to emulate system virtual
address translation.

To calculate the correct size for a physical memory dump to
SYS$SYSTEM:SYSDUMP.DMP, use the following formula:

size-in-blocks(SYS$SYSTEM:SYSDUMP.DMP)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ size-in-pages(physical-memory)/512
+ 2

4–20

Programming Features
4.15 Dump File Compression Features (Alpha Only)

Use the DCL command SHOW MEMORY to determine the total size of physical
memory on your system. There is a variable number of error log buffers in
any given system, depending on the setting of the ERRORLOGBUFFERS
system parameter. The size of each buffer depends on the setting of the
ERLBUFFERPAGES parameter. (See the Bookreader version of the OpenVMS
System Manager’s Manual for additional information about these parameters.)

To calculate the correct size for a compressed physical dump to
SYS$SYSTEM:SYSDUMP.DMP, use two-thirds of the size calculated for an
uncompressed dump.

Digital recommends using AUTOGEN to create and modify dump sizes for
selective dumps. For a compressed selective dump, AUTOGEN will size the file
at two-thirds the size on an uncompressed dump.

4.15.1.3 Writing to the System Page File
If SYS$SYSTEM:SYSDUMP.DMP does not exist, the operating system writes
the dump of physical memory into SYS$SYSTEM:PAGEFILE.SYS, the primary
system page file, overwriting the contents of that file.

If the SAVEDUMP system parameter is set, the dump file is retained in
PAGEFILE.SYS when the system is booted after a system failure. If the
SAVEDUMP parameter is not set (clear), which is the default, OpenVMS Alpha
uses the entire page file for paging and any dump written to the page file is
lost. (To examine or change the value of the SAVEDUMP parameter, consult the
OpenVMS System Manager’s Manual.)

To calculate the minimum size for a physical memory dump to
SYS$SYSTEM:PAGEFILE.SYS, use the following formula:

size-in-blocks(SYS$SYSTEM:PAGEFILE.SYS)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ size-in-pages(physical_memory)/512
+ 2
+ value of the system parameter RSRVPAGCNT

Note that this formula calculates the minimum size requirement for saving a
physical dump in the system’s page file. Digital recommends that the page file
be a bit larger than this minimum to avoid hanging the system. Also note that
you can only write the dump of physical memory into the primary page file
(SYS$SYSTEM:PAGEFILE.SYS). Secondary page files cannot be used to save
dump file information.

To calculate the correct size for a compressed physical dump to
SYS$SYSTEM:PAGEFILE.SYS, use two-thirds of the size calculated for an
uncompressed dump before system parameter RSRVPAGCNT is added in, and
then add in the value of RSRVPAGCNT.

It is not recommended to use a selective dump (DUMPSTYLE=1) style with
PAGEFILE.SYS. If the PAGEFILE.SYS is used for a selective dump, and if the
PAGEFILE.SYS is not large enough to contain all the logical memory blocks, the
dump fills the entire page file and the system may hang on reboot. When selective
dumping is set up, all available space is used to write out the logical memory
blocks. If the page file is large enough to contain all of physical memory, there
is no reason to use selective dumping. A full memory dump (DUMPSTYLE=0)
should be used.

4–21

Programming Features
4.15 Dump File Compression Features (Alpha Only)

Writing crash dumps to SYS$SYSTEM:PAGEFILE.SYS presumes that you will
later free the space occupied by the dump for use by the pager. Otherwise, your
system may hang during the startup procedure. To free this space, you can do
one of the following:

• Include SDA commands that free dump space in the site-specific startup
command procedure.)

• Use the SDA COPY command to copy the dump from
SYS$SYSTEM:PAGEFILE.SYS to another file. Use the SDA COPY command
instead of the DCL COPY command because the SDA COPY command causes
the pages occupied by the dump to be freed from the system’s page file.

• If you do not need to copy the dump elsewhere, issue an ANALYZE
/CRASH_DUMP/RELEASE command. When you issue this command, SDA
immediately releases the pages to be used for system paging, effectively
deleting the dump. Note that this command does not allow you to analyze the
dump before deleting it. ♦

4.16 New SMBMSG$V_NO_INITIAL_FF Symbol for
SMBMSG$K_PRINT_CONTROL Message Item Code

The SMB$READ_MESSAGE_ITEM routine of the Symbiont/Job Controller
Interface (SMB) has a new symbol, SMBMSG$V_NO_INITIAL_FF, for the
SMBMSG$K_PRINT_CONTROL message item code.

Table 4–8 defines the SMBMSG$V_NO_INITIAL_FF symbol.

Table 4–8 SMBMSG$V_NO_INITIAL_FF Symbol

Symbol Description

SMBMSG$V_NO_INITIAL_FF The symbiont suppresses the initial formfeed if this bit
is turned ON.

For more information, see the Bookreader version of the OpenVMS Utility
Routines Manual.

4.17 System Services
The following sections describe new system services features.

4.17.1 Fast IO System Services (Alpha Only)

Alpha Fast IO refers to a suite of new system services that provide an alternative to the
$QIO system service.

For more information about Fast IO, see Chapter 5. ♦

4–22

Programming Features
4.17 System Services

4.17.2 New QIO Attribute, ATR$C_FILE_SYSTEM_INFO
Use the new QIO attribute, ATR$C_FILE_SYSTEM_INFO, to check which file
system created a file or directory.

The attribute is read-only and can have the following values:

High Byte Low Byte File System

1 1 Files–11 A (ODS-1)1

2 1 Files–11 B (ODS-2)

0 0 Files–11 C (ISO9660) or Files–11 D (High Sierra)

1VAX only

4.17.3 New $CREPRC Argument
The new node argument for the $CREPRC system service allows an application
to specify that a detached process is to be created on another VMScluster node.
The argument is the address of a character string descriptor pointing to a 1- to
6-character SCS node name. For detailed information about creating a process on
another node, see the OpenVMS System Services manuals.

4.17.4 New System Services to Support CPU Scheduling (Alpha Only)

Alpha OpenVMS Version 7.0 contains new system services to allow you to do the
following:

• Create and modify a set of user-defined process capabilities

• Create and modify a set of user-defined CPU capabilities to match those in
the process

• Allow a process to share affinity with a subset of the active CPU set in an
SMP configuration

Service Description

$CPU_CAPABILITIES Allows modification of the user capability set for a
specified CPU, or for the global CPU default.

$PROCESS_CAPABILITIES Allows modification of the user capability set for a
specified process thread, or for the global process default.

$PROCESS_AFFINITY Allows modification of the CPU affinity set for a specified
process thread.

$SET_IMPLICIT_AFFINITY Controls or retrieves the activation state of the implicit
affinity capability for a specified process thread, or for the
global process default.

For detailed information about these services, see the OpenVMS System Services
manuals.♦

4–23

Programming Features
4.18 CPU Scheduling (Alpha Only)

4.18 CPU Scheduling (Alpha Only)

Alpha The algorithms used by OpenVMS Alpha scheduling to select the next active
Kernel thread follow symmetric rules in a multiprocessing configuration. Each
processor is responsible for using the standard priority and preemption rules
to determine whether its active process thread requires a state change, and,
with minor exceptions, each processor behaves as if it is alone in a single-
processor configuration. This behavior has benefits in predictability and
consistency—particularly in the real-time priority ranges.

However, application performance on the Alpha architecture is sensitive to the
existence of the Kernel thread’s context in the processor’s cache and translation
buffer (TB). Maximizing this context by binding a running thread to specific
processor often shows a throughput improvement that can outweigh the benefits
of the symmetric scheduling model. Particularly in larger CPU configurations
and higher-performance server applications, the ability to control the distribution
of Kernel threads throughout the active CPU set has become increasingly
important.

The OpenVMS scheduling mechanisms have always required some CPU
scheduling functions for its internal operations. To provide this functionality to
the application level, a new set of features have been added to the system service
and command interfaces. These changes have been made in three areas:

• Capabilities

Specify a set of "resources" that a CPU in the active set must have defined
before it is allowed to contend for a Kernel thread’s execution.

• Explicit Affinity

Allow a Kernel thread to specify an exact set of CPUs on which it can execute.

• Implicit Affinity

Allow a Kernel thread to participate in a relaxed scheduling mode where
processor biasing and load balancing are employed to maximize its cache and
TB context.

4.18.1 Capabilities
Capabilities can be thought of as resources assigned to CPUs that a process
thread needs to execute correctly. There are currently four system capabilities
used to control system states or functions:

• PRIMARY - requires that the process run on the primary CPU. This is used
primarily for I/O and timekeeping functions. Because the functions of the
primary capability theoretically could migrate from CPU to CPU in the
configuration, this capability is owned by only one of them at a time. The
Kernel thread requiring this capability is only allowed to run on the processor
that has it at the time.

• RUN - controls the ability of a CPU to execute any process at all. Every
process requires this attribute and if the CPU does not have it, scheduling
for that CPU comes to a halt in a recognized state. STOP/CPU uses this
capability when it is trying to quiesce the CPU and remove it from the active
set.

4–24

Programming Features
4.18 CPU Scheduling (Alpha Only)

• QUORUM - used in a clustered environment when another node wants this
one to come to a quiescent state until a cluster event has complete. Like the
RUN capability, this is a required attribute for every Kernel thread and CPU
for scheduling to occur.

• VECTOR - used to indicate that a vector processor is associated with this
CPU. This is obsolete on Alpha systems, but is retained as a compatibility
feature with OpenVMS VAX.

4.18.1.1 User Capabilities
OpenVMS Alpha has added new support for 16 user capabilities. This provides
the same type of resource control as system capabilities, but the definition of the
individual user capabilities are left up to external consumers.

Unlike the static definitions of system capabilities, user capabilities will have
meaning only in the context of the Kernel threads that define them. Through
system service interfaces and DCL commands, an execution thread will be able
to set specific bits in the capability masks of a CPU to give it a "resource", and to
set specific bits in the Kernel thread capability masks to require that resource as
an execution criteria.

Both the system and user capability types will affect the OpenVMS scheduling
mechanisms in the same way, but only the user set can be changed through the
new user interfaces. Access to system capabilities will continue to be through the
defined privileged internal interfaces.

The assignment of a user capability to a CPU has no direct effect on the
scheduling dynamics of the system; it only indicates that the specified CPU is
capable of handling any Kernel thread that requires that particular resource. If a
Kernel thread does not require that resource, the scheduling mechanism ignores
the CPU’s additional capability and schedules the thread based on other criteria.

Assigning a user capability to a specific Kernel thread does have an impact on the
scheduling state of that entity. For the Kernel thread to be scheduled on a CPU in
the active set, that CPU must have the capability assigned prior to the scheduling
attempt. If no CPU currently has the correct set of capability requirements, the
process is placed into a wait state until a CPU becomes available with the right
configuration. As with system capabilities, user process capabilities are additive;
for a CPU to schedule the process it must have the full complement of required
capabilities.

4.18.1.2 Scope of User Capabilities
User capabilities, once given to a CPU, do not change until specifically modified
by another system service or until a reboot. These values will be retained even
across a processor shutdown and restart sequence using the STOP/CPU and
START/CPU command.

Process user capabilities, however, survive in two forms over the life of the Kernel
thread. The thread maintains a permanent capability mask that reinitializes the
current capability mask value at every image rundown. The current values exist
only as long as the image is active; changes to them disappear along with the
image unless the modified capabilities are changed in the permanent mask as
well.

All user interfaces to the process user capability features allow either current or
permanent masks to be modified; however, changes to the permanent mask are
automatically applied to the current mask as well.

4–25

Programming Features
4.18 CPU Scheduling (Alpha Only)

4.18.1.3 Capability System Services
Access to the process and CPU user capability features from an application is
through a new set of system services:

• $CPU_CAPABILITIES

• $PROCESS_CAPABILITIES

For a complete description of the service call interfaces, see the appropriate
sections in the OpenVMS System Services Reference Manual: A–GETMSG and
OpenVMS System Services Reference Manual: GETQUI–Z.

An additional feature of these services is that they can be used to modify the
system global defaults for both processor activation and image initialization.

As a CPU is booted or brought into the active set for the first time, the capability
values placed in its database are taken from default values in the global cell
SCH$GL_DEFAULT_CPU_CAP. The $CPU_CAPABILITIES service provides
a way to modify the default cell, instead of a specific CPU, which affects any
processor initialization that follows the service call.

Permanent Kernel thread user capabilities are initialized at process creation from
the values in a global cell SCH$GL_DEFAULT_PROCESS_CAP. The permanent
mask is then used to initialize the current capabilities mask on the first image
activation and every subsequent rundown. The $PROCESS_CAPABILITIES
service provides a means to modify the default cell instead of a specific Kernel
thread, which affects any process that is created following the service call.

4.18.1.4 /CAPABILITIES Qualifier
SET PROCESS /[NO]CAPABILITIES[/SET=(n)][/CLEAR=(n)][/PERMANENT]

The /CAPABILITIES command qualifier allows bits in the user process capability
mask to be set or cleared individually, in groups, or all at once. This qualifier is
mutually exclusive with the /AFFINITY qualifier.

The /NOCAPABILITIES qualifier clears all user capability bits currently set,
based on the setting of the /PERMANENT qualifier. Specifying /CAPABILITIES
itself has no direct effect other than to indicate the target of the operations
specified by the following secondary qualifiers:

/SET=(n,[,...]) Sets all user capabilities defined by the position values n, where n has
the range of 1 to 16.

/CLEAR=(n,[,...]) Clears all user capabilities defined by the position values n, where n
has the range of 1 to 16.

/PERMANENT Forces the operations to be performed on the permanent user mask as
well as the current, effectively making the changes permanent for the
life of the thread or process. (The default behavior is to affect only the
running image copy of the capabilities.)

The secondary qualifiers can all be used at once as long as the set of user
capability bits defined in the /SET and /CLEAR parameters does not overlap.

The privileges required to execute this command match those required by the
$PROCESS_AFFINITY system service. ALTPRI is the base privilege required
to make any modifications, and the only privilege required to modify the current
owner’s process/thread. To make modifications in the same UIC group, GROUP
is required. Otherwise, to make modifications to any unrelated process/thread,
WORLD privilege is required.

4–26

Programming Features
4.18 CPU Scheduling (Alpha Only)

As with the other SET PROCESS command qualifiers, the bit operations occur
on the current process if no /IDENTIFICATION qualifier or explicit process name
parameter is specified. Note that the /IDENTIFICATION qualifier allows this
command to affect individual Kernel Thread PIDs; since each KTB is a separate
runnable entity, these commands treat them as discrete entities in terms of
capabilities. Specifying a process name does not imply that all threads associated
with the process are affected; the SET PROCESS command affects only the initial
thread of a multithreaded process.

4.18.2 Explicit Affinity
While capabilities and explicit affinity overlap in their functional behavior,
they are two discrete scheduling mechanisms. Explicit affinity - subsetting the
number of CPUs on which a process can execute - has precedence over capability
and provides an explicit binding operation between a Kernel thread and a CPU.
Explicit affinity forces the OpenVMS scheduling mechanisms to consider only the
CPU set it allows, and then applies the capability scheduling criteria to see if
they are appropriate.

OpenVMS has always allowed explicit affinity for a specific Kernel thread, but
until now the mechanism for manipulating the feature was through an internal,
privileged interface. The ability to restrict the availability of the active CPU set
through user system service and DCL command interfaces is a new feature with
this release.

Explicit affinity is not in effect at Kernel thread creation; standard OpenVMS
symmetric scheduling rules apply to select the next processor on which the
thread will execute. However, once explicit affinity is enabled through the user
interfaces, it is in effect until all bindings are manually removed, automatically
disabling the feature and reasserting the default scheduling rules. While enabled,
the explicit affinity settings for a thread can be modified to include any or all of
the active processors currently in the SMP system configuration.

Like user capability, explicit affinity has performance benefits from maximizing
a Kernel thread’s cache and TB context on specific processors. Instead of
dealing with user-defined generic resources, however, explicit affinity improves
performance by directly controlling the underlying configuration layout. Although
both mechanisms achieve the same functional effect, explicit affinity is applied
before user capability in the scheduling critera; for some applications this may
provide a greater degree of control.

4.18.2.1 Scope of Explicit Affinity
Explicit affinity survives in two forms over the life of a Kernel thread. In the
same manner as capabilities, the thread maintains a permanent mask that
reinitializes the current affinity mask at every image rundown. The current
bindings exist only as long as the image is active; changes to the current mask
disappear along with the image unless the bindings are made in the permanent
mask as well.

All user interfaces to the explicit affinity features allow either current or
permanent masks to be modified; however, changes to the permanent mask
are automatically applied to the current mask as well.

4–27

Programming Features
4.18 CPU Scheduling (Alpha Only)

4.18.2.2 Explicit Affinity System Service
Application control of explicit affinity is through the new system service:

$PROCESS_AFFINITY

For a complete description of the service call interface, see the appropriate section
in the OpenVMS System Services Reference Manual: GETQUI–Z.

4.18.2.3 /AFFINITY Qualifier
The /AFFINITY qualifier allows bits in the affinity mask to be set or cleared
individually, in groups, or all at once. This qualifier is mutually exclusive with
the /CAPABILITIES qualifier.

The /NOAFFINITY qualifier clears all affinity bits currently set, based on the
setting of the /PERMANENT qualifier. Specifying /AFFINITY itself has no direct
effect other than to indicate the target of the operations specified by the following
secondary parameters:

/SET=(n,[,...]) Sets all CPU affinities defined by the position n, where n has a range
of 1 to 32 and is restricted to the set of currently active CPUs.

/CLEAR=(n,[,...]) Clears all CPU affinities defined by the position values n, where n has
a range of 1 to 32 and is restricted to the set of currently active CPUs.

/PERMANENT Forces the operations to be performed on the permanent user mask as
well as the current, effectively making the changes permanent for the
life of the thread or process. (The default behavior is to affect only the
running image copy of the affinities.)

The secondary qualifiers can all be used at once as long as the set of affinity bits
defined in the /SET and /CLEAR parameters do not overlap.

The privileges required to execute this command match those required by the
$PROCESS_AFFINITY system service. ALTPRI is the base privilege required
to make any modifications, and the only privilege required to modify the current
owner’s process/thread. To make modifications in the same UIC group, GROUP
is required. Otherwise, to make modifications to any unrelated process/thread,
WORLD privilege is required.

As with the other SET PROCESS command qualifiers, the bit operations occur
on the current process if no /IDENTIFICATION qualifier or explicit process name
parameter is specified. Note that the /IDENTIFICATION qualifier allows this
command to affect individual Kernel Thread PIDs; since each KTB is a separate
runnable entity, these commands treat them as discrete entities in terms of
affinities. Specifying a process name does not imply that all threads associated
with the process are affected; the SET PROCESS command affects only the initial
thread of a multithreaded process.

4.18.3 Implicit Affinity
Implicit affinity is a third mechanism that can be used by a specific process
thread to improve its performance. Unlike explicit affinity and user capabilities,
implicit affinity is a system-directed load balancing mechanism used to maximize
the thread’s cache and TB context.

With implicit affinity enabled, a Kernel thread is subject to relaxed scheduling
rules in determining on which available processor it will next execute. Instead
of immediately scheduling on another CPU that fits the normal priority and
preemption rules, the thread may be biased towards the last CPU on which it
was active.

4–28

Programming Features
4.18 CPU Scheduling (Alpha Only)

The assumption in this feature is that there is enough cache context remaining
from the previous association to outweigh the benefit of an immediate scheduling
switch to another processor. On the Alpha architecture it has been shown that
maintaining cache and TB context has a significant potential for performance
improvement on both the Kernel thread and system level. If sufficient context is
still available on the previous CPU, the tradeoff with the scheduling delay can be
very worthwhile.

However, because this concept contradicts the OpenVMS scheduling algorithms
in their most literal sense, implicit affinity cannot be a system default. Care
must be taken to identify which Kernel threads can benefit most from the relaxed
scheduling and dynamic load balancing rules.

Implicit affinity fits into the lower end of the other CPU scheduling mechanisms;
both explicit affinity and user capabilities take precedence in determining which
CPUs are available for implicit affinity selection. The actual scheduling rules
are no different with the other two mechanisms in effect, but the set of available
CPUs to choose from may be restricted by them.

The only access to the implicit affinity feature is through the new system service:

$SET_IMPLICIT_AFFINITY

This service provides an interface to enable or disable implicit affinity for a
specific Kernel thread, or, through the global system default, for all newly-created
processes. The service also provides a means to read the current state of the
feature for a specific Kernel thread.

For a complete description of the service call interface, see the appropriate section
in the OpenVMS System Services Reference Manual: GETQUI–Z.

4.18.4 Informational Services
Other changes have been made to the DCL command set and the informational
system services, providing additional configuration and control context to the
user and application interfaces. The following sections describe features that are
complementary to the primary CPU Scheduling functions.

4.18.4.1 DCL SHOW CPU
The SHOW CPU command has been changed to display thread bindings due
to explicit affinity. It will also display threads with user capabilities that have
differing values from the default process creation value.

4.18.4.2 SDA SHOW PROCESS
The SDA display for SHOW PROCESS has been changed to display the user
capability and permanent explicit affinity masks for all threads in the process.
The required capabilities header has been eliminated from the first page display
and the additional context displayed on each thread’s display page.

4.18.4.3 $GETSYI - General System Information
The following item codes listed in Table 4–9 were added to the $GETSYI system
service to return configuration information in an SMP environment.

4–29

Programming Features
4.18 CPU Scheduling (Alpha Only)

Table 4–9 $GETSYI item codes for CPU Scheduling

Item code Description

SYI$_ACTIVE_CPU_MASK $GETSYI returns a mask of the CPUs actively
participating in the current boot of the SMP system.
The service returns this information for the local node
only.

SYI$_AVAIL_CPU_MASK $GETSYI returns a mask of the present and available
CPUs participating in the current boot of the SMP
system. The service returns this information for the
local node only.

SYI$_PRIMARY_CPUID $GETSYI returns the ID of the primary CPU in the
current boot of the SMP system. The service returns
this information for the local node only.

SYI$_MAX_CPUS $GETSYI returns the maximum number of CPUs that
can exist in the current configuration of the SMP
system. The service returns this information for the
local node only.

SYI$_CPUCAP_MASK $GETSYI returns an array of quadword user capability
masks for all CPUs in the system. This array is indexed
by CPU ID and contains as many elements as is space
specified by the buffer length field in the item descriptor.
To minimize wasted space, a prior call to $GETSYI with
SYI$_MAX_CPUS will provide the number of CPUs that
need to be retrieved. Multiplying that value by 8 bytes
for each quadword will provide the value to be written
in the buffer length field of the item descriptor. The
service returns this information for the local node only.

4.18.4.4 $GETJPI - Kernel Thread Information
The following item codes listed in Table 4–10 are added to return information
about user capabilities and explicit affinity for a specified Kernel thread in an
SMP configuration.

Table 4–10 $GETJPI item codes for CPU Scheduling

Item code Description

JPI$_CURRENT_USERCAP_MASK $GETJPI returns the current user capability
mask for the associated Kernel thread.

JPI$_PERMANENT_USERCAP_MASK $GETJPI returns the permanent user capability
mask for the associated Kernel thread.

JPI$_CURRENT_AFFINITY_MASK $GETJPI returns the current explicit affinity
mask for the associated Kernel thread.

JPI$_PERMANENT_AFFINITY_MASK $GETJPI returns the permanent explicit affinity
mask for the associated Kernel thread.♦

4.19 Alternative to Local Event Flags
With OpenVMS Version 7.0, event flags are divided into five clusters. The new
special local cluster 4 supports only EFN 128. The EFN 128, symbolically,
EFN$C_ENF, is intended for use with the wait forms of services, such as
SYS$QIOW or SYS$ENQW, or SYS$SYNCH system service. ENF$C_ENF does
not need to be initialized, nor does it need to be reserved or freed. Multiple
threads of execution may concurrently use EFN$C_ENF without interference.

4–30

Programming Features
4.19 Alternative to Local Event Flags

If EFN$C_ENF is used with system services, such as SYS$SETEF, SYS$READ,
and SYS$CLREF, it performs as if always set. EFN$C_ENF can be used to
eliminate the chance for event flag overlap. It can also be used when you don’t
care about the event flag, for example, using SYS$QIO with an AST completion.

For more information, see the Bookreader version of the OpenVMS Programming
Concepts Manual.

4.20 Run-Time Library (RTL) Routines
This section describes new features for the run-time library (RTL) routines.

4.20.1 Using LIB$CREATE_DIR to Create Large Directories
The LIB$CREATE_DIR routine has a new optional argument, initial-allocation,
that you can use to specify the initial number of blocks to be allocated to the
directory.

This argument is useful for creating large directories, for example MAIL.DIR;1.
It can improve performance by avoiding the need for later dynamic expansion of
the directory.

See the OpenVMS RTL Library (LIB$) Manual for more information.

4.21 Wind/U Version 3.0 Run Time on OpenVMS Systems
For this release, the OpenVMS Version 7.0 CD–ROM distribution kit will include
Wind/U Version 3.0 run-time binaries.

Wind/U is a product that supports the Win32 API and enables Windows
applications to run on OpenVMS platforms. It is a library of callable routines
that translate Win32 API calls into the appropriate OpenVMS system services.

To run Windows applications under OpenVMS, users need to recompile and relink
their applications. Wind/U Version 3.0 provides tight integration with Visual
C++ including Microsoft Foundation Class 4 and supports other Windows NT
and Windows 95 features, such as the Component Object Model (COM), Object
Linking and Embedding (OLE), Visual Editing, OLE Automation, and Drag and
Drop.

For licensing information and additional information on the developer’s kit,
contact Bristol Technology at:

241 Ethan Allen Highway, Ridgefield, CT 06877 USA
203 438-6969
email:info@bristol.com
http://www.bristol.com

4.22 ZIC Utility
The zic command allows the zic compiler to create binary time zone conversion
information files from a time zone source file.

4.22.1 Format
zic [–v] ["–L" leapseconds] [–d directory] [–y yearistype] [filename]

4–31

Programming Features
4.22 ZIC Utility

4.22.1.1 Parameters
–v

Flags if a year that appears in a data file is outside the range of years
representable by time values.

"–L"

Reads leap second information from the file with the given name. If this option is
not used, no leap second information appears in the output files.

–d

Creates time conversion information files in the named directory rather than in
the standard directory.

–y

Uses the given command file rather than yearistype when checking year types.

filename

Source file from which zic reads its input.

4.22.1.2 Qualifiers
None

4.22.2 Description
The zic command allows the zic compiler to read text from the file(s) named
on the command line, and then creates the time conversion information files
specified with this input. If a file name is �, then the standard input is read.

Input lines consist of fields. Any number of white space characters separate
the fields from each other. Leading and trailing white spaces on input lines
are ignored. An unquoted number sign #, the sharp character, in the input line
introduces a comment that extends to the end of the line where this sign appears.
White space characters and sharp characters can be enclosed in double marks, "
", if they are to be used as part of a field. Any line that is blank after comment
stripping is ignored. Non-blank lines are expected to be one of three types:

• rule lines

• zone lines

• link lines

4.22.2.1 Rule Lines
A rule line has the following form:

Rule NAME FROM TO TYPE IN ON AT SAVE LETTER/S

An example is as follows:

Rule USA 1969 1973 - Apr lastSun 2:00 1:00 D

The rule line consists of the following fields:

NAME
Gives the arbitrary name of the set of rules that this rule is part of.

4–32

Programming Features
4.22 ZIC Utility

FROM
Gives the first year in which the rule applies. The word minimum, or an
abbreviation, means the minimum year with a representable time value.
The word maximum, or an abbreviation, means the maximum year with a
representable time value.

TO
Gives the final year in which the rule applies. In addition to minimum and
maximum as defined in FROM, minimum or maximum (or an abbreviation) only
may be used to repeat the value of the FROM field.

TYPE
Gives the type of year in which the rule applies. If TYPE is a �, then the rule
applies in all years between FROM and TO inclusively. Zic executes the following
command to check the type of year:

yearistype year type

An exit status of 1 means that the year is of the given type; an exit status of 5
means that the year is not of the given type.

Gives the month in which the rule takes effect. Month names may be
abbreviated.

ON
Gives the day on which the rule takes effect. Table 4–11 shows the recognized
forms.

Table 4–11 Day the Rule Becomes Effective

Form Meaning

5 The fifth of the month

lastSun The last Sunday in the month

lastMon The last Monday in the month

Sun>=8 First Sunday on or after the eighth

Sun<=25 Last Sunday on or before the 25th

Names of days of the week may be abbreviated or spelled out in full. Note that
there must be no spaces within the ON field.

AT
Gives the time of day on which the rule takes effect. Table 4–12 shows the
recognized forms:

Table 4–12 Time of Day the Rule Becomes Effective

Form Meaning

2 Time in hours

2:00 Time in hours and minutes

15:00 24-hour format time (for times after noon)

1:28:14 Time in hours, minutes, and seconds

4–33

Programming Features
4.22 ZIC Utility

Any of these forms may be followed by the letter w if the given time is local wall
clock time, or the letter s if the time is local standard time. In the absence of
either the letter w, or the letter s, wall clock time is assumed.

SAVE
Gives the amount of time to be added to local standard time when the rule is in
effect. This field has the same format as the AT field, although, of course, the
letter w and w suffixes are not used.

LETTER/S
Gives the variable part of time zone abbreviations to be used when this rule is in
effect; as for example, the S or D in EST or EDT. If this field is �, the variable
part is null.

4.22.2.2 Zone Lines
A zone line has the following form:

"Zone NAME GMTOFF RULES/SAVE FORMAT UNTIL]"

An example is as follows:

Zone Australia/South-west 9:30 Aus CST 1987 Mar 15 2:00

The zone line consists of the following fields:

NAME
Gives the name of the time zone. This name is used in creating the time
conversion information file for the zone.

GMTOFF
Gives the amount of time to add to GMT to get standard time in this zone. This
field has the same format as the AT and SAVE fields of rule lines. If time must
be subtracted from GMT, begin the field with a minus sign.

RULES/SAVE
Gives the name of the rule(s) that apply in the time zone, or alternately, an
amount of time to add to local standard time. If this field is �, standard time
always applies in the time zone.

FORMAT
Gives the format for time zone abbreviations in this time zone. The pair
of characters %s is used to show where the variable part of the time zone
abbreviation goes.

UNTIL
Gives the time at which the GMT offset, or the rule(s) change for a location. It is
specified as the following:

A year
A month
A day
A time of day

If UNTIL is specified, the time zone information is generated from the given GMT
offset and rule change until the time specified.

The next line must be a continuation line. The continuation line has the same
form as the zone line except that the string Zone and the name are omitted,
for the continuation line places information starting at the time specified
in the UNTIL field in the previous line in the file used by the previous line.

4–34

Programming Features
4.22 ZIC Utility

Continuation lines may contain an UNTIL field, just as zone lines do, indicating
that the next line is a further continuation.

4.22.2.3 Link Lines
A link line has the following form:

"Link LINK-FROM LINK-TO"

An example is as follows:

Link US/Eastern EST5EDT

In the OpenVMS implementation, Link is interpreted as a copy. Thus the above
line copies the information from US/Eastern to EST5EDT.

The LINK-FROM field should appear as the NAME field in some zone line. The
LINK-TO field is used as an alternate name for that zone.

Except for continuation lines, lines may appear in any order in the input.

Note

For areas with more than two types of local time, you may need to use
local standard time in the AT field of the earliest transition time’s rule to
ensure that the earliest transition time recorded in the compiled file is
correct.

4.22.3 Example
The following is a zic command line example:

$ zic -v "-L" leapseco -d [-] myafrica

This example causes zic to compile the time zone source file myafrica. Based on
the parameters selected it:

1. Flags years outside the representable range

2. Builds an output file with leapsecond corrections applied

3. Puts the result in the current directory

For more information about date/time functions, see the DEC C Run-Time Library
Reference Manual for OpenVMS Systems.

4–35

5
Optional Features for Improving I/O

Performance

Alpha OpenVMS Alpha Version 7.0 includes two new features for providing dramatically
improved I/O performance: Fast I/O and Fast Path. These features are designed
to promote OpenVMS as a leading platform for database systems. Performance
improvement results from reducing the CPU cost per I/O request and improving
SMP scaling of I/O operations. The CPU cost per I/O is reduced by optimizing
code for high-volume I/O and by using better SMP CPU memory cache. SMP
scaling of I/O is increased by reducing the number of spinlocks taken per I/O and
by substituting finer-granularity spinlocks for global spinlocks.

The improvements follow a natural division that already exists between the
device-independent and device-dependent layers in the OpenVMS I/O subsystem.
The device-independent overhead is addressed by Fast I/O, which is a set of
lean system services that can substitute for certain $QIO operations. Using
these services requires some coding changes in existing applications, but the
changes are usually modest and well-contained. The device-dependent overhead
is addressed by Fast Path, which is an optional performance feature that creates
a ‘‘fast path’’ to the device. It requires no application changes.

Fast I/O and Fast Path can be used independently. However, together they can
provide on the order of a 45% reduction in CPU cost per I/O on uniprocessor
systems and a 52% reduction on multiprocessor systems.

5.1 Fast I/O
Fast I/O is a set of three new system services that were developed as a $QIO
alternate built for speed. These services are not a $QIO replacement; $QIO is
unchanged, and $QIO interoperation with these new services is fully supported.
Rather, the new services substitute for a subset of $QIO operations, namely, only
the high-volume read/write I/O requests.

The Fast I/O services support 64-bit addresses for data transfers to and from disk
and tape devices.

While Fast I/O services are available on OpenVMS VAX, the performance
advantage applies only to OpenVMS Alpha. OpenVMS VAX has an RTL
compatibility package that translates the new Fast I/O service requests to $QIO
system service requests, so that one set of source code can be used on both VAX
and Alpha systems.

5–1

Optional Features for Improving I/O Performance
5.1 Fast I/O

5.1.1 Fast I/O Benefits
The performance benefits of Fast I/O result from streamlining high-volume I/O
requests. The Fast I/O system service interfaces are optimized to avoid the
overhead of general-purpose services. For example, IRPs are now permanently
allocated and used repeatedly for I/O rather than allocated and deallocated anew
for each I/O.

The greatest benefits stem from having user data buffers and user I/O status
structures permanently locked down and mapped using system space. This
allows Fast I/O to do the following:

• For direct I/O, avoid per-I/O buffer lockdown or unlocking.

• For buffered I/O, avoid allocation and deallocation of a separate system buffer,
since the user buffer is always addressable.

• Complete Fast I/O operations at IPL 8, thereby avoiding the interrupt
chaining usually required by the more general-purpose $QIO system service.
For each I/O, this eliminates the IPL 4 IOPOST interrupt and a kernel AST.

In total, Fast I/O services eliminate four spinlock acquisitions per I/O (two for the
MMG spinlock and two for the SCHED spinlock). The reduction in CPU cost per
I/O is 20% for uniprocessor systems and 10% for multiprocessor systems.

5.1.2 Using Buffer Objects
The lockdown of user-process data structures is accomplished by buffer objects.
A ‘‘buffer object’’ is process memory whose physical pages have been locked in
memory and double-mapped into system space. After creating a buffer object, the
process remains fully pageable and swappable and the process retains normal
virtual memory access to its pages in the buffer object.

If the buffer object contains process data structures to be passed to an OpenVMS
system service, then the OpenVMS system can use the buffer object to avoid any
probing, lockdown, and unlocking overhead associated with these process data
structures. Additionally, double-mapping into system space allows the OpenVMS
system direct access to the process memory from system context.

To date, only the $QIO system service and the new Fast I/O services have
been changed to accept buffer objects. For example, a buffer object allows a
programmer to eliminate I/O memory management overhead. On each I/O, each
page of a user data buffer is probed and then locked down on I/O initiation and
unlocked on I/O completion. Instead of incurring this overhead for each I/O, it can
be done once at buffer object creation time. Subsequent I/O operations involving
the buffer object can completely avoid this memory management overhead.

Two system services can be used to create and delete buffer objects, respectively,
and can be called from any access mode. To create a buffer object, the $CREATE_
BUFOBJ system service is called. This service expects as inputs an existing
process memory range and returns a buffer handle for the buffer object. The
buffer handle is an opaque identifier used to identify the buffer object on future
I/O requests. The $DELETE_BUFOBJ system service is used to delete the buffer
object and accepts as input the buffer handle. Although image rundown deletes
all existing buffer objects, it is good form for the application to clean up properly.

A new 64-bit equivalent version of the $CREATE_BUFOBJ system service
($CREATE_BUFOBJ_64) can be used to create buffer objects from the new 64-bit
P2 or S2 regions. The $DELETE_BUFOBJ system service can be used to delete
32-bit or 64-bit buffer objects.

5–2

Optional Features for Improving I/O Performance
5.1 Fast I/O

Buffer objects require system management. Because buffer objects tie up physical
memory, extensive use of buffer objects require system management planning.
All the bytes of memory in the buffer object are deducted from a new systemwide
SYSGEN parameter called MAXBOBMEM (maximum buffer object memory).
System managers must set this parameter correctly for the application loads that
run on their systems.

The MAXBOBMEM parameter defaults to 100 Alpha pages, but for applications
with large buffer pools it will likely be set much larger. To prevent user-mode
code from tying up excessive physical memory, user-mode callers of $CREATE_
BUFOBJ must have a new system identifier, VMS$BUFFER_OBJECT_USER,
assigned. This new identifier is automatically created in an OpenVMS Version
7.0 upgrade if the file SYS$SYSTEM:RIGHTSLIST.DAT is present. The system
manager can assign this identifier with the DCL command SET ACL command to
a protected subsystem or application that creates buffer objects from user mode.
It may also be appropriate to grant the identifier to a particular user with the
Authorize utility command GRANT/IDENTIFIER (for example, to a programmer
who is working on a development system).

There is currently a restriction on the type of process memory that can be used
for buffer objects. Global section memory cannot be made into a buffer object.

5.1.3 Differences Between Fast I/O Services and $QIO
The precise definition of high-volume I/O operations optimized by Fast I/O
services is important. I/O that does not comply with this definition either is not
possible with the Fast I/O services or is not optimized. The characteristics of the
high-volume I/O optimized by Fast I/O services can be seen by contrasting the
operation of Fast I/O system services to the $QIO system service as follows:

• The $QIO system service I/O status block (IOSB) is replaced by an I/O status
area (IOSA) that is larger and quadword aligned. The transfer byte count
returned in IOSA is 64 bits, and the field is aligned on a quadword boundary.
Unlike the IOSB, which is optional, the IOSA is required.

• User data buffers must be aligned to a 512-byte boundary.

• All user process structures passed to the Fast I/O system services must reside
in buffer objects. This includes the user data buffer and the IOSA.

• Only transfers that are multiples of 512 bytes are supported.

• Only the following function codes are supported: IO$_READVBLK, IO$_
READLBLK, IO$_WRITEVBLK, and IO$_WRITELBLK.

• Only I/O to disk and tape devices is optimized for performance.

• No event flags are used with Fast I/O services. If application code must
use an event flag in relation to a specific I/O, then the Event No Flag EFN
(EFN$C_ENF) can be used. This event flag is a no-overhead EFN that can be
used in situations when an EFN is required by a system service interface but
has no meaning to an application.

For example, Fast I/O services do not use EFNs, so the application cannot
specify a valid EFN associated with the I/O to the $SYNCH system service
with which to synchronize I/O completion. To resolve this issue, the
application can call the $SYNCH system service passing as arguments:
EFN$C_ENF and the address of the appropriate IOSA. Specifying EFN$C_
ENF signifies to $SYNCH that no EFN is involved in the synchronization
of the I/O. Once the IOSA has been written with a status and byte count,

5–3

Optional Features for Improving I/O Performance
5.1 Fast I/O

return from the $SYNCH call occurs. The IOSA is now the central point
of synchronization for a given Fast I/O (and is the only way to determine
whether the asynchronous I/O is complete). For more information about
EFN$C_ENF, see Section 4.19.

• To minimize argument passing overhead to these services, the $QIO
parameters P3 through P6 are replaced by a single argument that is passed
directly by the Fast I/O system services to device drivers. For disk-like
devices, this argument is the media address (VBN or LBN) of the transfer.
For drivers with complex parameters, this argument is the address of a
descriptor or of a buffer specific to the device and function.

• Segmented transfers are supported by Fast I/O but are not fully optimized.
There are two major causes of segmented transfers. The first is disk
fragmenting. While this can be an issue, it is assumed that sites seeking
maximum performance have eliminated the overhead of segmenting I/O due
to fragmentation.

A second cause of segmenting is issuing an I/O that exceeds the port’s
maximum limit for a single transfer. Transfers beyond the port maximum
limit are segmented into several smaller transfers. Some ports limit transfers
to 64K bytes. If the application limits its transfers to less than 64K bytes,
then this type of segmentation should not be a concern.

5.1.4 Using Fast I/O Services
The three Fast I/O system services are:

• $IO_SETUP—Sets up an I/O.

• $IO_PERFORM[W]—Performs an I/O request.

• $IO_CLEANUP–Cleans up an I/O request.

5.1.4.1 Using Fandles
A key concept behind the operation of the new Fast I/O services is the file handle
or fandle. A fandle is an opaque token that represents a ‘‘setup’’ I/O. A fandle is
needed for each I/O outstanding from a process.

All possible setup, probing, and validation of arguments is performed off the
mainline code path during application startup with calls to the $IO_SETUP
system service. The I/O function, the AST address, the buffer object for the data
buffer, and the IOSA buffer object are specified on input to $IO_SETUP service,
and a fandle representing this setup is returned to the application.

To perform an I/O, the $IO_PERFORM system service is called, specifying the
fandle, the channel, the data buffer address, the IOSA address, the length of the
transfer, and the media address (VBN or LBN) of the transfer.

If the asynchronous version of this system service, $IO_PERFORM, is used to
issue the I/O, then the application can wait for I/O completion using a $SYNCH
specifying EFN$C_ENF and the appropriate IOSA. The synchronous form of
the system service, $IO_PERFORMW, is used to issue an I/O and wait for
it to complete. Optimum performance comes when the application uses AST
completion; that is, the application does not issue an explicit wait for I/O
completion.

To clean up a fandle, the fandle can be passed to the $IO_CLEANUP system
service.

5–4

Optional Features for Improving I/O Performance
5.1 Fast I/O

5.1.4.2 Modifying Existing Applications
Modifying an application to use the new Fast I/O services requires a few source-
code changes. For example:

1. A programmer adds code to create buffer objects for the IOSAs and data
buffers.

2. The programmer changes the application to use the new Fast I/O services.
Not all $QIOs need to be converted. Only high-volume read/write I/O requests
should be changed.

A simple example is a ‘‘database writer’’ program, which writes modified pages
back to the database. Suppose the writer can handle up to 16 simultaneous
writes. At application startup, the programmer would add code to create 16
fandles by 16 $IO_SETUP system service calls.

3. In the main processing loop within the database writer, the programmer
replaces the $QIO calls with $IO_PERFORM calls. Each $IO_PERFORM call
uses one of the 16 available fandles. While the I/O is in progress, the selected
fandle is unavailable for use with other I/O requests. The database writer is
probably using AST completion and recycling fandle, data buffer, and IOSA
once the completion AST arrives.

If the database writer routine cannot return until all dirty buffers are written
(that is, it must wait for all I/O completions), then $IO_PERFORMW can be
used. Alternatively $IO_PERFORM calls can be followed by $SYNCH system
service calls passing the EFN$C_ENF argument to await I/O completions.

The database writer will run faster and scale better because I/O requests now
use less CPU time.

4. When the application exits, a $IO_CLEANUP system service call is done for
each fandle returned by a prior $IO_SETUP system service call. Then the
buffer objects are deleted. Image rundown performs fandle and buffer object
cleanup on behalf of the application, but it is good form for the application to
clean up properly.

5.1.4.3 I/O Status Area (IOSA)
The central point of synchronization for a given Fast I/O is its IOSA. The IOSA
replaces the $QIO system service’s IOSB argument and is larger. The byte count
field in the IOSA is 64 bits and quadword aligned. Unlike the $QIO system
service, Fast I/O services require the caller to supply an IOSA and require the
IOSA to be part of a buffer object.

The IOSA context field can be used in place of the $QIO system service ASTPRM
argument. The $QIO ASTPRM argument is typically used to pass a pointer back
to the application on the completion AST to locate the user context needed for
resuming a stalled user-thread. However, for the $IO_PERFORM system service,
the ASTPRM on the completion AST is always the IOSA. Since there is no user-
settable ASTPRM, an application can store a pointer to the user thread context
for this I/O in the IOSA context field and retrieve the pointer from the IOSA in
the completion AST.

5–5

Optional Features for Improving I/O Performance
5.1 Fast I/O

5.1.4.4 $IO_SETUP
The $IO_SETUP system service performs the setup of an I/O and returns a
unique identifier for this setup I/O, called a fandle, to be used on future I/Os. The
$IO_SETUP arguments used to create a given fandle remain fixed throughout
the life of the fandle. This has implications for the number of fandles needed in
an application. For example, a single fandle can be used only for reads or only
for writes. If an application module has up to 16 simultaneous reads or writes
pending, then potentially 32 fandles are needed to avoid any $IO_SETUP calls
during mainline processing.

The $IO_SETUP system service supports an expedite flag, which is available to
boost the priority of an I/O among the other I/O requests that have been handed
off to the controller. Unrestrained use of this argument is useless, because if
all I/O is expedited, nothing is expedited. Note that this flag requires the use of
ALTPRI and PHY_IO privilege.

5.1.4.5 $IO_PERFORM[W]
The $IO_PERFORM[W] system service accepts a fandle and five other variable
I/O parameters for the high-performance I/O operation. The fandle remains in
use to the application until the $IO_PERFORMW returns or if $IO_PERFORM is
used until a completion AST arrives.

The CHAN argument to the fandle contains the data channel returned to the
application by a previous file operation. This argument allows the application
the flexibility of using the same fandle for different open files on successive I/Os.
However, if the fandle is used repeatedly for the same file or channel, then an
internal optimization with $IO_PERFORM is taken.

Note that $IO_PERFORM was designed to have no more than six arguments to
take advantage of the OpenMS Calling Standard, which specifies that calls with
up to six arguments can be passed entirely in registers.

5.1.4.6 $IO_CLEANUP
A fandle can be cleaned up by passing the fandle to the $IO_CLEANUP system
service.

5.1.4.7 Fast I/O FDT Routine (ACP_STD$FASTIO_BLOCK)
Since $IO_PERFORM supports only four function codes, this system service does
not use the generalized FDT dispatching that is contained in the $QIO system
service. Instead, $IO_PERFORM uses a single vector in the driver dispatch table
called DDT$PS_FAST_FDT for all the four supported functions. The DDT$PS_
FAST_FDT field is a FDT routine vector that indicates whether the device driver
called by $IO_PERFORM is set up to handle Fast I/O operations. A nonzero
value for this field indicates that the device driver supports Fast I/O operations
and that the I/O can be fully optimized.

If the DDT$PS_FAST_FDT field is zero, then the driver is not set up to handle
Fast I/O operations. The $IO_PERFORM system service tolerates such device
drivers, but the I/O is only slightly optimized in this circumstance.

The OpenVMS disk and tape drivers that ship as part of OpenVMS Version 7.0
have added the following line to their driver dispatch table (DDTAB) macro:

FAST_FDT=ACP_STD$FASTIO_BLOCK,- ; Fast-IO FDT routine

This line initializes the DDT$PS_FAST_FDT field to the address of the standard
Fast I/O FDT routine, ACP_STD$FASTIO_BLOCK.

5–6

Optional Features for Improving I/O Performance
5.1 Fast I/O

If you have a disk or tape device driver that can handle Fast I/O operations,
then you can add this DDTAB macro line to your driver. If you cannot use
the standard Fast I/O FDT routine, ACP_STD$FASTIO_BLOCK, then you can
develop your own based on the model presented in this routine.

5.1.5 Additional Information
For complete information about the following Fast I/O system services, see the
OpenVMS System Services Reference Manual: A–GETMSG and OpenVMS System
Services Reference Manual: GETQUI–Z.

$CREATE_BUFOBJ
$DELETE_BUFOBJ
$CREATE_BUFOBJ_64
$IO_SETUP
$IO_PERFORM
$IO_CLEANUP

To see an example program that demonstrates the use of buffer objects and
the new Fast I/O system services, refer to the IO_PERFORM.C program in the
SYS$EXAMPLES directory.

5.2 Fast Path
Fast Path is an optional, high-performance feature designed to improve I/O
performance. By restructuring and optimizing class and port device driver
code around high-volume I/O code paths, Fast Path creates a streamlined path
to the device. Fast Path is of interest to any application where enhanced I/O
performance is desirable. Two examples are database systems and real-time
applications, where the speed of transferring data to disk is often a vital concern.

Using Fast Path features does not require source-code changes. Minor interface
changes are available for expert programmers who want to maximize Fast Path
benefits.

In OpenVMS Alpha Version 7.0, Fast Path only supports disk I/O for the CIXCD
port. This port provides access to CI storage for XMI based systems.

Fast Path is not currently available on the OpenVMS VAX operating system.

5.2.1 Fast Path Features and Benefits
Fast Path achieves dramatic performance gains by reducing CPU time for I/O
requests on both uniprocessor and SMP systems. These savings are on the
order of 25% less CPU cost per I/O request on a uniprocessor and 35% less on a
multiprocessor system. The performance benefits are produced by:

• Reducing code paths through streamlining for the case of high-volume I/O

• Substituting port-specific spinlocks for global I/O subsystem spinlocks

• Affinitizing an I/O request for a given port to a specific CPU

The performance improvement can best be seen by contrasting the current
OpenVMS I/O scheme to the new Fast Path scheme. While transparent to an
OpenVMS user, each disk and tape device is tied to a specific port interconnect.
All I/O for a device is sent out over its assigned port. Under the current
OpenVMS I/O scheme, a multiprocessor I/O can be initiated on any CPU, but
I/O completion must occur on the primary CPU. Under Fast Path, all I/O for
a given port is affinitized to a specific CPU, eliminating the requirement for
completing the I/O on the primary CPU. This means that the entire I/O can

5–7

Optional Features for Improving I/O Performance
5.2 Fast Path

be initiated and completed on a single CPU. Since I/O operations are no longer
split among different CPUs, performance increases as memory cache thrashing
between CPUs decreases.

Fast Path also removes a possible SMP bottleneck on the primary CPU. If
the primary CPU must be involved in all I/O, then once this CPU becomes
saturated, no further increase in I/O throughput is possible. Spreading the I/O
load evenly among CPUs in a multiprocessor system provides greater maximum
I/O throughput on a multiprocessor system.

With most of the I/O code path executing under port-specific spinlocks and with
each port assigned to a specific CPU, a scalable SMP model of parallel operation
exists. Given multiple port and CPUs, I/O can be issued in parallel to a large
degree.

5.2.2 Using Fast Path
This section describes how to use the FAST_PATH SYSGEN parameter to use
Fast Path.

FAST_PATH
FAST_PATH is a SYSGEN parameter that enables (1) or disables (0) Fast Path
performance features for all Fast Path capable ports. Fast Path is disabled by
default.

Preferred CPU
Each Fast Path capable port is affinitized to a specific CPU called the preferred
CPU. All I/O for all devices serviced by this port initiates and completes on the
preferred CPU.

Processes issuing I/O to a port on the port’s preferred CPU have an inherent
advantage in that the overhead to affinitize the I/O to the preferred CPU can
be avoided. An application process can use the $PROCESS_AFFINITY system
service to affinitize itself to the preferred CPU of the device to which the majority
of its I/O is sent. With proper attention to affinity, a process’s execution need
never leave the preferred CPU. This presents a scalable process and I/O scheme
for maximizing multiprocessor system operation. Like most RISC systems, Alpha
system performance is highly dependent on the performance of CPU memory
caches. Process affinity and preferred CPU affinity are two keys to minimizing
the memory stalls in the application and in the operating system, thereby
maximizing multiprocessor system throughput.

IO_PREFER_CPUS
IO_PREFER_CPUS is a CPU bit mask that controls the initial assignment of
Fast Path capable ports to CPUs. Assigning a Fast Path port to a CPU means
that the CPU cannot be stopped with the STOP/CPU command. If you want
to preserve the ability to stop certain CPUs even when Fast Path is enabled,
use IO_PREFER_CPUS. IO_PREFER_CPUS specifies the CPUs that can serve
as preferred CPUs and that can be assigned a Fast Path port by the default
assignment algorithm. CPUs whose bit is clear in the IO_PREFER_CPUS bit
mask are not assigned a Fast Path port and can be stopped. IO_PREFER_CPUS
defaults to -1, which specifies that all CPUs are able to be assigned Fast Path
ports.

The initial assignment spreads Fast Path ports evenly among available CPUs
in a round-robin fashion, making sure that the primary CPU is the last CPU to
receive a port. The primary CPU is slightly offloaded because it might be busy
processing non-Fast Path I/O.

5–8

Optional Features for Improving I/O Performance
5.2 Fast Path

$QIO IO$_SETPRFPATH ! IO$M_PREFERRED_CPU
You can change the assignment of a Fast Path port to a CPU by issuing a $QIO
IO$_SETPRFPATH (Set Preferred Path) to the port device, for example, PNA0.
The IO$M_PREFERRED_CPU modifier must be set, and the $QIO argument P1
must be set to a 32-bit CPU bit mask with a bit set indicating the new preferred
CPU. On return from the I/O, the port and its associated devices are all affinitized
to a new preferred CPU. Note that explicitly setting the preferred CPU overrides
any default assignment of Fast Path ports to CPUs. This interface allows you
the flexibility to load balance I/O activity over multiple CPUs in an SMP system.
This is important because I/O activity can change over the course of a day or
week.

$GETDVI DVI$_PREFERRED_CPU & SDA SHOW DEVICE
For an application seeking optimal Fast Path benefits, you can code each
application process to run on the preferred CPU where the majority of the
process’s I/O activity occurs. To identify the preferred CPU for any Fast Path-
capable device when Fast Path is enabled, use the SDA command SHOW
DEVICE to display the preferred CPU ID for a port or disk device.

Alternatively, the $GETDVI system service or the DCL F$GETDVI lexical
function will return the preferred CPU for a given device or file. The $GETDVI
system service item code is DVI$_PREFERRED_CPU and the F$GETDVI item
code string argument is PREFERRED_CPU. The return argument is a 32-bit
CPU bit mask with a bit set indicating the preferred CPU. A return argument
containing a bit mask of zero indicates that no preferred CPU exists, either
because Fast Path is disabled or the device is not a Fast Path capable device.
The return argument is designed to serve as a CPU bit mask input argument
to the $PROCESS_AFFINITY system service that can be used to affinitize an
application process to the optimal preferred CPU.

A high-availability feature of VMSclusters is that dual-pathed devices
automatically fail over to a secondary path, if the primary path becomes
inoperable. Because a Fast Path device could fail over to another path or port,
and thereby, to another preferred CPU, an application can occasionally reissue
the $GETDVI in a timer thread to check that process affinity is optimal.

5.2.3 Fast Path Restrictions
Fast Path restrictions include the following:

• Only high-volume I/Os are optimized.

Fast Path streamlines the operation of high-volume I/O. I/O that does not
meet the definition of high-volume is not optimized. A high-volume Fast Path
I/O is characterized as follows:

1. A virtual, logical, or physical read or write I/O without special I/O
modifiers.

2. An I/O request that is less than 64K bytes in size.

3. An I/O issued when all I/O resources exist that needed to perform the
I/O.

• Send credits resource must be managed.

Applications seeking maximum performance must ensure the availability of
sufficient I/O resources.

5–9

Optional Features for Improving I/O Performance
5.2 Fast Path

The only I/O resource that a Fast Path user needs to be concerned about is
send credits. Send credits are extended by DSA controllers to host systems
and represent the maximum number of I/Os that can be outstanding at
any given point in time. If an application sends an unlimited number of
simultaneous I/Os to a controller, it is likely that some I/O will back up
waiting for send credits. You can tell whether the send-credit limit is being
exceeded by using the DCL command SHOW CLUSTER/CONTINUOUS,
followed by an ADD CONNECTIONS, CR_WAIT command. Rapidly
increasing credit-wait counts for the disk-class driver connections (a LOC_
PROC_NAME name of VMS$DISK_CL_DRVR) is a sign that an application
may be incurring send-credit waits.

To ensure sufficient send credits, some controllers, like the HSC and HSJ,
allow the number of send credits to vary. However, not all controllers have
this flexibility, and different controllers have different send-credit limits. The
best workaround is to know your application access patterns and look for
send credit waits. If the number of send credits is being exhausted on one
node, then add another controller to spread the load over multiple controllers.
An alternative is to rework the application to load balance controller activity
throughout the cluster, spreading a given controller’s disk load over multiple
nodes and allowing an application to exceed the send credits allotted to one
node.♦

5–10

6
New DECamds Features

This chapter contains sections that explain the following new features of
DECamds:

• New fields in the System Overview window: Number of Processes in CPU
Queues, Operating System Version, Hardware Model

• New Single Disk Summary window: provides summary data about each node
in the group in which a disk is available

• New cluster windows:

Cluster Transition/Overview Summary window: provides summary
information about each node’s membership in a VMScluster

System Communication Summary (SCA Summary) window: provides
System Communication Architecture (SCA) information about a selected
node’s connection or connections to other nodes in a cluster

NISCA Summary window: provides summary information about the
Network Interconnect System Communication Architecture (NISCA)
protocol, which is responsible for carrying messages to other nodes in the
cluster

These new features are documented in the Bookreader version of the Version 7.0
of the DECamds User’s Guide.

6–1

New DECamds Features

Figure 6–1 shows where the new windows fit into the hierarchy of DECamds data
windows.

Figure 6–1 DECamds Data Window Hierarchy

Memory

Event
Log

System
Overview

CPU
Summary

System

Single
Process

Communication

* Available for individual nodes
and groups of nodes.

** Available for groups only.

Disk Disk
Volume*Status*

Page/Swap
File*

Node
Summary

ZK−7970A−GE

SCA
Summary

Cluster

Overview
Transition/

NISCA
Summary

Lock
Contention**

Single

Summary
Disk

Summary

CPU
Modes

Process
I/O

Summary Summary Summary Summary

SummarySummary Architecture

Summary

Summary
Summary

6.1 New Fields in the System Overview Window
Three new fields have been added to the System Overview window, which is
described in Section 2.2 of the Bookreader version of the DECamds User’s Guide.

The screen in Figure 6–2 includes the new fields in the System Overview window.
This window shows the nodes that DECamds can currently reach and monitor.

6–2

New DECamds Features
6.1 New Fields in the System Overview Window

Figure 6–2 System Overview Window

ZK−8543A−GE

Control Customize Collect Help

System Overview

dir

ViewFile

Table 6–1 describes the new fields in the System Overview window.

Table 6–1 New Fields in the System Overview Window

Field Description

procs in CPU Qs (number of
processes in CPU queues)

Represents the number of processes the Node
Summary data collection found in the COM, COMO,
MWAIT, and PWAIT CPU queues.

O.S. Version (version of the
operating system)

Lists the currently loaded version of OpenVMS on
the node being monitored (not the node doing the
monitoring).

Hardware Model Lists the hardware model of the node.

6.2 Single Disk Summary Window
The description of this new window follows Sections 3.3 and 3.4 in the Bookreader
version of the DECamds User’s Guide. These sections describe, respectively, the
Disk Status Summary window and the Disk Volume Summary window. You
can access the Single Disk Summary window from either window, as shown in
Figure 6–1.

6–3

New DECamds Features
6.2 Single Disk Summary Window

The Single Disk Summary window shown in Figure 6–3 displays summary data
about each node in the group in which a disk is available. This window is a
node-by-node display of the data that is summarized in the Group Disk Status
and Volume Summary windows. The values displayed are those you would see
if you displayed Disk Status Summary or Disk Volume Summary for each node
within the group.

You can use this display to determine both of the following:

• Which node in the group has a disk with high I/O rates

Determining which node has a high I/O rate to the disk is useful because you
can sort by Direct I/O rate and learn which process or processes are causing
the high I/O rates to the disk.

• If a disk is in a state inconsistent with other nodes

Determining which node or nodes might be in an abnormal state is useful
because you can then discover if, for some reason, one node believes that the
disk is in the MntVerify or CluTran state, thus holding up processing in the
cluster in which the node resides.

Figure 6–3 Single Disk Summary Window

ZK−8544A−GE

HelpFile Edit Fix Customize

64DUA208(V15SNAPSHOTS) Single Disk Summary for EVMS

To open a Single Disk Summary window, follow these steps:

1. In the System Overview window, click MB3 on a group or node name.

The system displays a pop-up menu.

2. Choose Display from the menu and Disk Status Summary (or Disk Volume
Summary) from the submenu.

The system displays the Disk Status Summary window (or Disk Volume
Summary window).

6–4

New DECamds Features
6.2 Single Disk Summary Window

3. In the Disk Status Summary window (or Disk Volume Summary window),
click MB3 on a device name.

The system displays a pop-up menu.

4. Choose Display Disk.

The system displays the Single Disk Summary window.

Table 6–2 lists the Single Disk Summary Window data fields.

Table 6–2 Data Items in the Single Disk Summary Window

Data Item Description

Node Name of the node

Status Status of the disk: mounted, online, offline, and so on

Errors Number of errors on the disk

Trans Number of currently-in-progress file system operations on the disk
(number of open files on the volume)

Rwait Indication of an I/O stalled on the disk

Free Count of free disk blocks on the volume

An (M) after the free block count indicates this node holds the lock on
the volume that DECamds uses to obtain the true free block count on
the volume. Other nodes might not have accessed the disk, so their
free block count might not be up to date.

QLen Average number of operations in the I/O queue for the volume

OpRate Count of rate of change to operations on the volume

Note

When you click on an item, DECamds temporarily stops updating the
window for 15 seconds or until you choose an item from a menu.

From the Single Disk Summary window, you can display the Process I/O
Summary window. To do so, follow these steps:

1. Click MB3 anywhere on a node line.

The system displays a pop-up menu.

2. Choose Display Process I/O Summary.

The system displays the Process I/O Summary window.

See the DECamds User’s Guide for information about the Process I/O Summary
window.

6.3 New Cluster Windows
The descriptions of the three new cluster windows shown in the diagram in
Figure 6–1 follow the last window described in Chapter 3 of the Bookreader
version of the DECamds User’s Guide.

For conceptual information about cluster data displayed in the windows, refer to
VMScluster Systems for OpenVMS.

6–5

New DECamds Features
6.3 New Cluster Windows

6.3.1 Cluster Transition/Overview Summary Window
The Cluster Transition/Overview Summary window shown in Figure 6–4 displays
information about each node in a VMScluster. This window is very similar to
System Overview window; however, this window lists only one cluster for each set
of nodes in a cluster, while the System Overview window lists all the nodes and
the user-defined groups these nodes are in.

Figure 6–4 Cluster Transition/Overview Summary Window

ZK−8545A−GE

HelpFile View Fix Customize

Cluster Transition/Overview Summary

6–6

New DECamds Features
6.3 New Cluster Windows

The window displays summary information as well as information about
individual nodes: System Communication Services (SCS) name, SCS ID, Cluster
System ID, Votes, Lock Directory Weight value, cluster status, and last transition
time.

The data items shown in the window correspond to data that the Show Cluster
utility displays for the SYSTEM and MEMBERS classes. A status field display of
"unknown" usually indicates that DECamds is not communicating with the node.

To open a Cluster Transition/Overview Summary window, follow these steps:

1. In the System Overview window, click MB3 on a node line.

The system displays a pop-up menu.

2. Choose Display from the menu and Cluster Transition Summary from the
submenu.

The system displays the Cluster Transition/Overview Summary window.

Note

The Cluster Transition Summary menu option is not available for nodes
that are not in the cluster, nor is it available from group lines in the
display.

6.3.1.1 Data Displayed
The Cluster Transition/Overview window has two panel displays:

• Summary (top) panel: displays VMScluster summary information.

• Cluster Members (bottom) panel: lists each node in the cluster.

Table 6–3 describes the Summary panel data fields.

Table 6–3 Data Items in the Summary Panel of the Cluster Transition/Overview
Summary Window

Data Item Description

Formed Date and time the VMScluster was formed.

Last Trans Date and time of the most recent VMScluster state transition.

Votes Total number of quorum votes being contributed by all cluster members
and quorum disk.

Expected Votes Number of votes expected to be contributed by all members of the
cluster as determined by the connection manager. This value is based
on the maximum of EXPECTED_VOTES and the maximized value of
VOTES.

Failover Step Current failover step index.

Members In Number of members of the cluster DECamds has a connection to.

Members Out Number of members of the cluster DECamds either has no connection
to or has lost connection to.

Quorum Number of votes required to keep cluster above quorum.

(continued on next page)

6–7

New DECamds Features
6.3 New Cluster Windows

Table 6–3 (Cont.) Data Items in the Summary Panel of the Cluster Transition
/Overview Summary Window

Data Item Description

QD Votes Number of votes given to Quorum Disk. A value of 65535 means there
is no Quorum Disk.

Failover ID Failover Instance Identification.

Table 6–4 describes the Cluster Members panel data fields.

Table 6–4 Data Items in the Cluster Members Panel of the Cluster Transition
/Overview Summary Window

Data Item Description

SCS Name System Communication Services name for the node (system parameter
SCSNODE)

SCS Id System Communication Services identification for the node (system
parameter SCSYSTEMID)

CSID Cluster System Identification

Votes Number of votes the member contributes

Expect Expected votes to be contributed as set by the EXPECTED_VOTES

Quorum Recommended quorum value derived from the expected votes

LckDirWt Lock Manager distributed directory weight as determined by the
LCKDIRWT system parameter

Status Current cluster member status: MEMBER, UNKNOWN, or BRK_NON
(break_non-member)

Transition Time Time cluster member had last transition

6.3.1.2 Notes About Data Display
The following are notes about the display of data in the window:

• No highlighting conventions are used in the window; all data items are
displayed in bright mode.

• You cannot filter out any data.

• The data items in the window are sorted on an "as-found" basis. You cannot
change the sort criteria.

• When you click on an item, DECamds temporarily stops updating the window
for 15 seconds or until you choose an item from a menu.

• You can change collection intervals.

6.3.1.3 New Event in Window
The following new event has been created for the display in this window:

LOVOTE, ’node’ VOTES count is close to or below QUORUM

DECamds signals this event when the difference between the cluster’s QUORUM
and VOTES values is less than the threshold for the event. The default threshold
for the event is 1.

6–8

New DECamds Features
6.3 New Cluster Windows

6.3.1.4 From This Window...
From this window, you can do the following:

• Double-click MB1 on a line to open a Node Summary display.

• Highlight a node and select a menu option to display either of the following:

Node Summary display of nodes that DECamds recognizes. DECamds
ignores nodes that are unknown or break_non-member.

SCA Summary display of nodes that DECamds recognizes. DECamds
ignores nodes that are unknown or break_non-member.

• Perform the Cluster Quorum Adjustment fix.

This fix forces a cluster quorum adjustment on the entire OpenVMS cluster
on which the fix is run.

To perform the fix, first select the Fix option on the menu bar. Then the
Quorum option on the menu displayed. DECamds moves through the cluster
membership to find the first member node it can communicate with and
performs a Quorum Adjustment fix on that node.

6.3.2 SCA Summary Window
The System Communication Architecture Summary (SCA Summary) window
shown in Figure 6–5 displays information about a selected node’s virtual circuits
and connections to other nodes in a cluster. (The display represents the view
one node has of other nodes in the cluster.) More than one type of virtual circuit
indicates that more than one path to the remote node exists.

Each line in the window shows either a summary of all system applications
(SysApps) using the virtual circuit communication or the communication on the
connection between a local and a remote SysApp. The data displayed in the
window is similar to the information that the Show Cluster utility displays for
the CIRCUITS, CONNECTIONS, and COUNTERS classes. Unlike Show Cluster,
however, this display shows only SCA connections to other OpenVMS nodes; it
does not show SCA connections to the Disk Storage Architecture (DSA) or to
devices such as FDDI or DSSI disk controllers.

By clicking MB3 on a node name and choosing View SysApps from the pop-up
menu, you can display the system applications that are using virtual circuits.
This option expands the list below a virtual circuit to all the system applications
that contribute to that virtual circuit. (The SysApp lines are dimmed and
right-justified.)

To hide the display of system applications, you can click MB3 and choose Hide
SysApps from the pop-up menu.

6–9

New DECamds Features
6.3 New Cluster Windows

Figure 6–5 SCA Summary Window

ZK−8546A−GE

File View Fix Customize

DFODIL System Communication Architecture Summary

Help

You can click MB3 on the data to the right of "State" to display a menu allowing
you to toggle between Raw and Rate data.

To open an SCA Summary window, follow these steps:

1. In the Cluster Transition/Overview Summary window, click MB3 on an SCS
name.

The system displays a pop-up menu.

2. Choose Display SCA Summary.

The system displays the System Communication Architecture (SCA)
Summary window.

Table 6–5 describes the SCA Summary window data fields.

Table 6–5 Data Items in the SCA Summary Window

Data Item Description

NodeName SCS name of the remotely connected node.

VC(Type) The virtual circuit being used and its type.

State The state of the virtual circuit connection.

Messages Relatively small data packets sent and received between nodes for
control information.

Block Transfer Fields listing the count of the number of block data transfers and
requests initiated.

(continued on next page)

6–10

New DECamds Features
6.3 New Cluster Windows

Table 6–5 (Cont.) Data Items in the SCA Summary Window

Data Item Description

KB Mapped Field listing the number of kilobytes mapped for block data transfer.
Note: This field is available in RAW format only.

Block Data (KB) Fields listing in kilobytes the data transferred via block data transfer.

Datagrams Number of unacknowledged messages sent between virtual circuits.

Credit Wait Number of times the connection had to wait for a send credit.

BDT Wait Number of times the connection had to wait for a buffer descriptor.

Local SysApp Name of the local system application using the virtual circuit.

Remote SysApp Name of the remote system application being communicated to.

6.3.2.1 Notes About Data Display
The following are notes about the display of data in the window:

• The window does not follow highlighting conventions: virtual circuit lines
are displayed brightly and are left-aligned; SysApp lines are dimmed and are
indented by a column.

• You cannot filter out any data.

• The data items in the window are sorted on an "as-found" basis. You cannot
change sort criteria at this time.

• For messages, the default is the display of rate data; raw data is the default
for all other types of data.

• You can change collection intervals.

6.3.2.2 New Event in Window
The following new event has been created for the display in this window:

LOSTVC, <node> lost virtual circuit (<string>) to node <node>

DECamds signals this event when a virtual circuit between two nodes has
been lost. This loss might be due either to a cluster node crashing or to cluster
problems that caused the virtual circuit to close.

6.3.2.3 From This Window...
From this window, you can display the Network Interconnect System
Communication Architecture (NISCA) Summary window. DECamds displays
one window per virtual circuit provided the virtual circuit is running over a
PEA0: device. See Section 6.3.3 for instructions.

6.3.3 NISCA Summary Window
The Network Interconnect System Communication Architecture (NISCA) is the
transport protocol responsible for carrying messages such as disk I/Os and lock
messages across Ethernet and FDDI LANs to other nodes in the cluster. More
detailed information about the protocol is in VMScluster Systems for OpenVMS in
the OpenVMS documentation set.

The NISCA Summary window shown in Figure 6–6 displays detailed information
about the LAN (Ethernet or FDDI) connection between two nodes. DECamds
displays one window per virtual circuit provided the virtual circuit is running
over a PEA0: device.

6–11

New DECamds Features
6.3 New Cluster Windows

This window is designed to view statistics in real time and to troubleshoot
problems found in the NISCA protocol. The window is intended primarily as
an aid to diagnosing LAN-related problems. Section F.4 in Appendix F of the
VMScluster Systems for OpenVMS describes the parameters shown in this
window and tells how to use them to diagose LAN-related cluster problems.

The window provides the same information as the OpenVMS System Dump
Analyzer (SDA) command SHOW PORTS/VC=VC_nodex. (Nodex is a node in the
cluster; the system defines VC-nodex after a SHOW PORTS command is issued
from SDA.)

Figure 6–6 NISCA Summary Window

ZK−8547A−GE

DFODIL NISCA Connection to MACHU

HelpFile View Fix Customize

To open an NISCA Summary window, follow these steps:

1. In the SCA Summary window, click MB3 on a row with the PEA0: Virtual
Circuit.

The system displays a pop-up menu.

2. Choose View SysApps.

6–12

New DECamds Features
6.3 New Cluster Windows

The system displays an expanded list below the node name.

3. Click MB3 on a SysApps node.

The system displays a pop-up menu.

4. Choose Display NISCA.

The system displays the NISCA Summary window.

Note

If the Display NISCA option is dimmed, the NISCA protocol is not
running for that system application.

6.3.3.1 Data Displayed
Panels in the NISCA Summary window contain the data described in the
following tables.

Table 6–6 lists data items displayed in the Transmit Panel, which contains data
packet transmission information.

Table 6–6 Data Items in the Transmit Panel

Data Item Description

Packets Number of packets transmitted through the virtual circuit to the
remote node, including both sequenced and unsequenced (channel
control) messages, and lone acknowledgments.

Unsequenced (DG) Count and rate of the number of unsequenced datagram packages
transmitted.

Sequenced Count and rate of the number of sequenced packages transmitted.
Sequenced messages are used for application data.

Lone ACK Count and rate of the number of lone acknowledgments.

ReXmt Count Number of packets retransmitted. Retransmission occurs when the
local node does not receive an acknowledgment for a transmitted
packet within a predetermined timeout interval.

ReXmt Timeout Number of retransmission timeouts that have occurred.

ReXmt Ratio Ratio of ReXmt Count current and past to the current and past
number of sequenced messages sent.

Bytes Count and rate of the number of bytes transmitted through the
virtual circuit.

Table 6–7 describes data items displayed in the Receive Panel, which contains
data packet reception information.

Table 6–7 Data Items in the Receive Panel

Data Item Description

Packets Number of packets transmitted through the virtual circuit to the
remote node, including both sequenced and unsequenced (channel
control) messages, and lone acknowledgments.

(continued on next page)

6–13

New DECamds Features
6.3 New Cluster Windows

Table 6–7 (Cont.) Data Items in the Receive Panel

Data Item Description

Unsequenced (DG) Count and rate of the number of unsequenced packages received.

Sequenced Count and rate of the number of sequenced packages received.
Sequenced messages are used for application data.

Lone ACK Count and rate of the number of lone acknowledgments.

Duplicate Number of redundant packets received by this system.

Out of Order Number of packets received out of order by this system.

Illegal Ack Number of illegal acknowledgments received.

Bytes Count and rate of the number of bytes received through the virtual
circuit.

Table 6–8 describes data items displayed in the Congestion Control Panel, which
contains transmit congestion control information.

The values in the panel list the number of messages that can be sent to the
remote node before receiving an acknowledgment and the retransmission timeout.

The system parameter PEDRIVER varies the pipe quota and the timeout value to
control the amount of network congestion.

Table 6–8 Data Items in the Congestion Control Panel

Data Item Description

Transmit Window
Current

Current value of the pipe quota (transmit window). After a timeout,
the pipe quota is reset to 1 to decrease congestion and is allowed to
increase quickly as acknowledgments are received.

Transmit Window
Grow

The slow growth threshold: size at which the rate of increase is
slowed to avoid congestion on the network again.

Transmit Window
Max

Maximum value of pipe quota currently allowed for the virtual
circuit based on channel limitations.

Transmit Window
Reached

Number of times the entire transmit window was full. If this
number is small as compared with the number of sequenced
messages transmitted, the local node is not sending large bursts
of data to the remote node.

Roundtrip uSec Average roundtrip time for a packet to be sent and acknowledged.
The value is displayed in microseconds.

Roundtrip
Deviation uSec

Average deviation of the roundtrip time. The value is displayed in
microseconds

Retransmit
Timeout uSec

Value used to determine packet retransmission timeout. If a packet
has not received either an acknowledging or responding packet, it is
assumed that the sent packet is lost and it will be resent.

UnAcked Messages Number of unacknowledged messages.

CMD Queue
Length

Current length of all command queues.

CMD Queue Max Maximum number of commands in queues so far.

Table 6–9 describes data items displayed in the Channel Selection Panel, which
contains channel selection information.

6–14

New DECamds Features
6.3 New Cluster Windows

Table 6–9 Data Items in the Channel Selection Panel

Data Item Description

Buffer Size Maximum PPC data buffer size for this virtual circuit

Channel Count Number of channels connected to this virtual circuit

Channel Selections Number of channel selections performed

Protocol NISCA Protocol version

Local Device Name of the local device that the channel uses to send and receive
packets

Local LAN Address Address of the local LAN device that performs sends and receives

Remote Device Name of the remote device that the channel uses to send and
receive packets

Remote LAN
Address

Address of the remote LAN device performing the sends and
receives

Table 6–10 describes data items displayed in the VC Closures Panel, which
contains information about the number of times a virtual circuit has closed for a
particular reason.

Table 6–10 Data Items in the VC Closures Panel

Data Item Description

SeqMsg TMO Number of sequence transmit timeouts

CC DFQ Empty Number of times the channel control DFQ was empty

Topology Change Number of times PEDRIVER performed a failover from FDDI to
Ethernet, necessitating the closing and reopening of the virtual
circuit

NPAGEDYN Low Number of times the virtual circuit was lost because of a pool
allocation failure on the local node

Table 6–11 lists data items displayed in the Packets Discarded Panel, which
contains information about the number of times packets were discarded for a
particular reason.

Table 6–11 Data Items in the Packets Discarded Panel

Data Item Description

No Xmt Chan Number of times there was no transmit channel

Ill Seq Msg Number of times an illegal sequenced message was received

TR DFQ Empty Number of times the Transmit DFQ was empty

CC MFQ Empty Number of times the Channel Control MFQ was empty

Rcv Short Msg Number of times a short transport message was received

Bad Checksum Number of times there was a checksum failure

TR MFQ Empty Number of times the Transmit MFQ was empty

Cache Miss Number of messages that could not be placed in the cache

6–15

New DECamds Features
6.3 New Cluster Windows

6.3.3.2 Notes About Data Display
The following are notes about the display of data in the window:

• No highlighting conventions are used within the NISCA Summary window.

• You cannot sort or filter the data displayed in this window.

• You can change collection intervals.

6–16

A
New OpenVMS System Messages

This release includes new or changed messages for the following OpenVMS
facilities:

• BUGCHECK, System Bugcheck

• LAT, LAT Facility

• LINK, Linker Utility

• NETWRK, SET/SHOW/START/STOP NETWORK Commands

• SDA, System Dump Analyzer

• SET, SET Command, and SET Utility

• SYSTEM, System Services

A.1 List of Messages
This section alphabetically lists and describes messages that have been added
or changed for this release. You can access online descriptions of these and
other OpenVMS system messages by using the online Help Message utility. For
information about the HELP/MESSAGE command and qualifiers, see DCL help
(type HELP HELP/MESSAGE at the DCL prompt) or refer to OpenVMS System
Messages: Companion Guide for Help Message Users.

Bookreader Version Only

To access the system messages, click on the Topic button.

ABORT, fatal error encountered; operation terminated
Facility: NETWRK, SET/SHOW/START/STOP NETWORK Commands
Explanation: The fatal error reported in an accompanying message caused
the command to fail.
User Action: Correct the problem and retry the operation.

ALRDYCOMP, data in this dump file is already compressed; performing regular
copy
Facility: SDA, System Dump Analyzer
Explanation: You specified /COMPRESS, but data in this dump file is
already compressed. SDA is performing a regular copy.
User Action: None.

A–1

New OpenVMS System Messages
A.1 List of Messages

ALRDYDCMP, data in this dump file is already decompressed; performing
regular copy
Facility: SDA, System Dump Analyzer
Explanation: You specified /DECOMPRESS, but data in this dump file is
already decompressed. SDA is performing a regular copy.
User Action: None.

ARG_GTR_32_BITS, argument is not 32-bit sign-extended value
Facility: SYSTEM, System Services
Explanation: An attempt was made to pass a 64-bit virtual address to a
service that is equipped to handle only 32-bit virtual addresses.
User Action: Ensure that all service arguments are 32-bit, sign-extended,
virtual addresses. No P2 space addresses are allowed.

BADFANDLE, invalid fandle
Facility: SYSTEM, System Services
Explanation: The application has supplied an illegal fandle (Fast-I/O
handle) to the system.
User Action: If possible, correct the error in the application program.

BADIOSADR, IOSA is not within buffer object
Facility: SYSTEM, System Services
Explanation: The application has supplied an illegal I/O Status Area (IOSA)
address.
User Action: If possible, correct the error in the application program.

BITMAPERR, virtual address range %X’starting-address’ to %X’ending-
address’ writes outside demand zero bitmap address range %X’starting-
address’ to %X’ending-address’
Facility: LINK, Linker Utility
Explanation: This is an internal error. The linker has written to what it
perceives is a portion of the image binary proper but it did not allocate the
address range (displayed in hexadecimal radix in the message) within the
demand zero bitmap.
User Action: Contact a Digital support representative.

CANTOPEN, cannot open file ’file-name’
Facility: NETWRK, SHOW NETWORK Command
Explanation: An error was encountered while attempting to open the
specified file for output.
User Action: Ensure that the file exists in the current directory and that
you correctly specify the file name.

CHANVIO, the specified channel is not assigned or was assigned from a more
privileged access mode
Facility: SYSTEM, System Services
Explanation: The specified channel is not assigned or has already been
assigned to a more privileged access mode.
User Action: Ensure that the correct channel is specified to the system
service.

A–2

New OpenVMS System Messages
A.1 List of Messages

COMPRESSFAIL, unable to compress/decompress the data in this dump file
(internal error)
Facility: SDA, System Dump Analyzer
Explanation: An internal consistency check failed while processing an SDA
COPY/COMPRESS or COPY/DECOMPRESS command.
User Action: Contact a Digital support representative and provide a copy of
the dump file you were copying.

DEFLATE, copying dump data in compressed format
Facility: SDA, System Dump Analyzer
Explanation: As requested, SDA is copying the dump data in compressed
format.
User Action: None.

DUPLICATE, specified network already exists
Facility: NETWRK, SET NETWORK Command
Explanation: The specified product is already registered.
User Action: You need not register this product again. If you wish to modify
the product information, use the SET NETWORK/UPDATE command.

EMULATED, an instruction not implemented on this processor was emulated at
PC=’location’, PS=’xxxxxxxx’
Facility: SYSTEM, System Services
Explanation: When an image that was compiled for use with a new
processor was executed on an older processor, the processor did not recognize
a new instruction. The unrecognized instruction (located at the PC address)
has been emulated in the software. The emulator is slow, so the image is not
running at its best speed. The instruction emulator issues this message the
first five times this condition occurs.
User Action: Contact the program’s supplier for the version that runs most
efficiently on your processor. If the code includes instructions designed for
new processors, it will execute fastest on a new processor. If you have an
old processor, it is best to have code containing new instructions compiled
specifically for the old processor. The slowest alternative is to run a new
instruction that must be emulated on an old processor.

FANDLEBUSY, fandle is already in use
Facility: SYSTEM, System Services
Explanation: An application has attempted to use one fandle for two
Fast-I/O operations.
User Action: If possible, correct the error in the application program.

FULL, cannot add; number of network services is at capacity
Facility: NETWRK, SET NETWORK Command
Explanation: The maximum of 128 network services is already registered.
User Action: Before you can register more network services, you must
remove one or more network services using the SET NETWORK/REMOVE
command.

A–3

New OpenVMS System Messages
A.1 List of Messages

GBLSEC_MISMATCH, global section type does not match service called
Facility: SYSTEM, System Services
Explanation: A global section type of this name already exists and it does
not match the type of section to be mapped.
User Action: Ensure that the correct global section name is specified.

HWRPB_SUSPECT, HWRPB checksum incorrect; continuing anyway
Facility: SDA, System Dump Analyzer
Explanation: While analyzing a full memory dump, SDA detected an
incorrect checksum in the hardware restart parameter block (HWRPB).
User Action: None. SDA will attempt to continue reading the dump file. If
this is a common occurrence, contact a Digital support representative and
supply a copy of the dump being analyzed.

ILLBUFOBJ, buffer object handle is not valid
Facility: SYSTEM, System Services
Explanation: An application has passed an illegal buffer object handle to a
system service that requires a valid buffer object handle.
User Action: If possible, correct the error in the application program.

ILLMODIFIER, I/O function modifier is not permitted
Facility: SYSTEM, System Services
Explanation: An application has requested an unsupported function code
modifier with an otherwise valid Fast-I/O function. Each device driver
supports only a few, if any, I/O function code modifiers for Fast-I/O.
User Action: If possible, correct the error in the application program.
Alternatively, move the data to be accessed to a device whose driver supports
the function code modifier for Fast-I/O.

ILLRELPAG, invalid relative page argument specified
Facility: SYSTEM, System Services
Explanation: The specified relative page argument is either larger than the
highest page number within the section or is not a valid 32-bit physical page
frame number.
User Action: Ensure that the correct relative page argument is associated
with the specified page section.

INCONSISTENT, logical names structure left in inconsistent state
Facility: NETWRK, SET NETWORK Command
Explanation: An error that occurred while registering new services has
disrupted the logical names structure and caused data to become corrupted.
User Action: Deregister all network services using the DCL command SET
NETWORK/REMOVE. Then reregister the network services by executing the
SYS$STARTUP:SYS$NET_SERVICES.COM command.

INFLATE, copying dump data in decompressed format
Facility: SDA, System Dump Analyzer
Explanation: As requested, SDA is copying the dump data in decompressed
format.
User Action: None.

A–4

New OpenVMS System Messages
A.1 List of Messages

INVNODEUID, invalid node UID
Facility: LAT, LAT Facility
Explanation: A LAT connection was attempted, but the remote node
returned a unique node identifier that was different than expected.
User Action: Retry the connection. If this error persists, look for multiple
nodes on the network having the same LAT node name and change one of the
names to a different unique node name.

INVREGID, no region matches the supplied ID
Facility: SDA, System Dump Analyzer
Explanation: No region matches the ID you specified in a SHOW PROCESS
/RDE or SHOW PROCESS/PAGE/RDE command.
User Action: Correct the ID and retry the command.

IVACMODE, invalid access mode specified
Facility: SYSTEM, System Services
Explanation: The specified access mode is not of high enough privilege to
create address space in the specified region.
User Action: Ensure that the correct access mode is associated with the
specified region.

IVPORT, invalid port name
Facility: LAT, LAT Facility
Explanation: An attempt was made in LATCP to change a port
characteristic. However, the specified port is not a LAT device.
User Action: Retry the command using a valid LAT device name.

IVREGFLG, invalid region flag specified
Facility: SYSTEM, System Services
Explanation: Either an invalid combination of flags was specified or
reserved bits in the flags argument were set.
User Action: Check the flags argument and ensure that only legal flags are
set in a valid combination.

IVREGID, invalid region id specified
Facility: SYSTEM, System Services
Explanation: The specified region does not exist.
User Action: Ensure that a proper region identification is passed to the
system service.

IVREGPROT, invalid region protection specified
Facility: SYSTEM, System Services
Explanation: An invalid protection was specified to the region creation
system service.
User Action: Ensure that the correct protection argument is passed to the
service.

A–5

New OpenVMS System Messages
A.1 List of Messages

IVVAFLG, invalid virtual address flag specified
Facility: SYSTEM, System Services
Explanation: Either an invalid combination of flags was specified or
reserved bits in the flags argument were set.
User Action: Check the flags argument and ensure that only legal flags are
set in a valid combination.

LEN_NOTBLKMULT, specified length is not a multiple of virtual disk blocks
Facility: SYSTEM, System Services
Explanation: The specified length is not an even multiple of virtual disk
blocks.
User Action: Ensure that the length passed to the system service is an even
multiple of disk blocks.

LEN_NOTPAGMULT, specified length is not a multiple of CPU-specific pages
Facility: SYSTEM, System Services
Explanation: The specified length is not an even multiple of CPU-specific
pages.
User Action: Ensure that the length passed to the system service is an even
multiple of CPU-specific pages.

NOACCESS, process not accessible (swapped out or suspended)
Facility: SDA, System Dump Analyzer
Explanation: The process specified in a SHOW PROCESS or SET PROCESS
command is inaccessible either because it was swapped out of the balance
set or suspended (when using the ANALYZE/SYSTEM command) or it was
swapped out of the balance set when the system failed (when using the
ANALYZE/CRASH command).
User Action: None.

NOAVAILABLE, network service information is unavailable at this time
Facility: NETWRK, SHOW NETWORK Command
Explanation: No network services are registered.
User Action: Have the system manager verify that the
SYS$STARTUP:SYS$NET_SERVICES.COM command is called from the
SYS$STARTUP:SYSTARTUP_VMS.COM command procedure.

NOBUFOBJID, requires rights identifier VMS$BUFFER_OBJECT_USER
Facility: SYSTEM, System Services
Explanation: The program attempted to create a buffer object from user
mode without having the VMS$BUFFER_OBJECT_USER identifier required
for this privileged operation.
User Action: Either write the application to create buffer objects from an
inner mode, or enable the VMS$BUFFER_OBJECT_USER identifier for the
process.

If you have been granted the VMS$BUFFER_OBJECT_USER identifier, you
may need to use this DCL command to enable it:

$ SET RIGHTS_LIST /ENABLE VMS$BUFFER_OBJECT_USER

A–6

New OpenVMS System Messages
A.1 List of Messages

If you have not been granted the VMS$BUFFER_OBJECT_USER identifier,
this command will fail and you must see your system manager. If the system
manager chooses to grant you the identifier, he or she can do so by entering
this AUTHORIZE command:

UAF> GRANT/IDENT/ATTR=DYNAMIC VMS$BUFFER_OBJECT_USER username

Once the system manager has granted you the identifier, you must log out
and then log back in to pick up the identifier. For more information about
Authorize utility commands, see the OpenVMS System Manager’s Manual.

NOCBMAP, compression block map unreadable for compressed dump data
Facility: SDA, System Dump Analyzer
Explanation: The header of the dump file specified in the ANALYZE
/CRASH command indicates that the dump file contains compressed data,
but SDA was unable to locate a compression block map for decoding the data.
Therefore, the dump is unreadable.
User Action: None.

NOCCBBUFFOBJ, unable to lock down CCB into buffer object
Facility: SYSTEM, System Services
Explanation: The Fast-I/O system services are unable to make a buffer
object out of certain sections of the caller’s P1 space.
User Action: The application has encountered a problem in the user
environment. Execute the DCL command SHOW MEMORY/BUFFER_
OBJECT and retain the output. Obtain the application source code, if
possible, and contact a Digital support representative.

NOCONTROL, control characters are not permitted
Facility: NETWRK, SET NETWORK Command
Explanation: A control character was included in the text strings.
User Action: Remove all control characters from the text strings.

NOIMSEM, Process is not multithreaded; no semaphore present
Facility: SDA, System Dump Analyzer
Explanation: The specified process is not a multithreaded process; therefore,
it does not have any process-specific inner mode semaphore data.
User Action: None.

NOMOREREG, no more regions found
Facility: SYSTEM, System Services
Explanation: No region was found at an address higher than that specified
in the starting virtual address argument specified in conjunction with the
VA$_NEXT_REGSUM_BY_VA wildcard function code.
User Action: None. This return code signals the end of the wildcard region
search.

A–7

New OpenVMS System Messages
A.1 List of Messages

NORATINGIMAGE, LAT rating image not loaded
Facility: LAT, LAT Facility
Explanation: An attempt was made to start the LAT ancillary control
process (LATACP), but the LAT$RATING image was not loaded.
User Action: Be sure to start LAT by executing the LAT$STARTUP
command procedure to access the support startup files supplied by Digital.
The LAT$STARTUP command procedure executes other command procedures,
including LAT$CONFIG, which loads the LAT$RATING image.

NORDACC, read access denied
Facility: SYSTEM, System Services
Explanation: The application has attempted to read a file or device to which
only write access is allowed.
User Action: If possible, correct the error in the application program.

NOSAVEDUMP, SAVEDUMP not set; dump written to PAGEFILE.SYS not
saved
Facility: SDA, System Dump Analyzer
Explanation: A system dump was written to PAGEFILE.SYS because
there is no SYSDUMP.DMP file. However, because the SYSGEN parameter
SAVEDUMP is set to zero, the pagefile space used to hold the dump was
released when the system booted; therefore, SDA cannot access the dump.
User Action: Create a SYSDUMP.DMP system dump file or set the SYSGEN
parameter SAVEDUMP to 1. To make this change permanent, modify the
MODPARAMS.DAT file and run AUTOGEN. For more information about
making the permanent change, refer to the OpenVMS System Manager’s
Manual.

NOSUCHPAG, specified page does not exist
Facility: SYSTEM, System Services
Explanation: The specified page does not exist.
User Action: Ensure that the proper virtual address is passed to the system
service.

NOT64DEVFUNC, 64-bit address not supported by device for this function
Facility: SYSTEM, System Services
Explanation: This fatal error can be returned under several conditions:

• The $QIO and $QIOW system services return this error under either of
the following circumstances:

The caller has specified a 64-bit virtual address in the P1 device-
dependent parameter but the device driver does not support 64-bit
addresses with the requested I/O function.

The caller has specified a 64-bit address for a diagnostic buffer but the
device driver does not support 64-bit addresses for diagnostic buffers.

• Some device drivers might return this condition value when 64-bit buffer
addresses are passed using the P2 through P6 parameters and the driver
does not support a 64-bit address with the requested I/O function.

A–8

New OpenVMS System Messages
A.1 List of Messages

• In the case of RMS service calls, the buffer used for the QIO request is
generally an RMS intermediate buffer rather than a user buffer. There
are two exceptions when the QIO transfer is made directly to or from the
user buffer specified in the RAB:

Record I/O: RMS service $PUT to a unit record device (user’s RBF
buffer)

Block I/O: RMS service $READ (user’s UBF buffer) and RMS service
$WRITE (user’s RBF buffer)

In either of these cases, if a 64-bit virtual address is specified for the
user’s buffer but the device driver does not support 64-bit addresses with
the requested I/O function, RMS returns RMS-F-SYS (QIO system service
request failed) as the RMS error status (STS) in the RAB, with the system
error status (NOT64DEVFUNC) returned as the status value (STV) in the
RAB.

User Action: Consult the specific device driver documentation or the
OpenVMS Alpha Guide to 64-Bit Addressing to determine which I/O functions
and device drivers can support a 64-bit buffer address. If the combination of
the device driver and I/O function that you are using does not permit a 64-bit
buffer address, use a buffer within a 32-bit virtual address space for the $QIO
and copy the data to or from the buffer that is in the 64-bit address space.

If this error is returned by an RMS service, a 32-bit virtual address should be
specified in the RAB for the user buffer associated with the operation.

NOTF64, /CACHING qualifier supported only on a Files-64 disk
Facility: SET, SET Command, and SET Utility
Explanation: One of the files or directories listed on the SET FILE command
is not in a Spiralog volume. You can use the /CACHING qualifier only for
Spiralog files and directories.
User Action: Make sure that all the files and directories listed on the SET
FILE command are in Spiralog volumes.

To check whether a volume is a Spiralog volume, use the DCL command
SHOW DEVICES/FULL. The first line displayed by this command shows a
device type of Files_64 for a Spiralog volume.

NOTFOUND, network ’name’ was not found
Facility: NETWRK, SHOW NETWORK Command
Explanation: The specified network service is not recognized.
User Action: Check the network name and retry the operation.

NOTNOCNVRT, device does not do LBN addressing
Facility: SYSTEM, System Services
Explanation: Certain Fast-I/O operations require disk drivers to access data
at the logical block number (LBN) level. This is the norm for contemporary
disks. This error indicates the disk driver does not support this feature.
User Action: Move the data to be accessed to a disk that supports LBN
addressing.

A–9

New OpenVMS System Messages
A.1 List of Messages

NOT_PROCESS_VA, specified virtual address is not a process space address
Facility: SYSTEM, System Services
Explanation: An attempt was made to modify a virtual address that is not a
process space virtual address.
User Action: Ensure that the proper virtual address is passed to the system
service.

NOTPERMITTED, qualifier ’qualifier-name’ is not permitted
Facility: NETWRK, SET NETWORK Command
Explanation: The specified qualifier is invalid for this command.
User Action: Specify a valid qualifier and retry the operation.

NOWRTACC, write access denied
Facility: SYSTEM, System Services
Explanation: The application attempted to write a global section, file, or
device to which only read access is allowed.
User Action: If possible, correct the error in the application program.

OFF_NOTBLKALGN, specified offset is not virtual disk block aligned
Facility: SYSTEM, System Services
Explanation: The specified virtual block offset is not disk block aligned.
User Action: Ensure that the virtual offset passed to the system service is
disk-block aligned.

OFF_NOTPAGALGN, specified offset is not CPU-specific page aligned
Facility: SYSTEM, System Services
Explanation: The specified page offset is not CPU-specific page aligned.
User Action: Ensure that the page offset passed to the system service is
CPU-specific page aligned.

OFFSET_TOO_BIG, specified offset is too large for global section being mapped
Facility: SYSTEM, System Services
Explanation: The specified offset is larger than the actual size of the global
section being mapped.
User Action: Ensure that the correct section offset is passed to the system
service.

OPENOUT, error opening ’file-name’ as output
Facility: SDA, System Dump Analyzer
Explanation: An error occurred when SDA attempted to create the output
file for a COPY operation.
User Action: Correct the problem identified in the accompanying RMS error
message and retry the operation.

PAGNOTINREG, page in the specified range is not within the specified region
Facility: SYSTEM, System Services
Explanation: The specified range of pages does not exist within the specified
region.
User Action: Ensure that the correct range is passed to the system service.

A–10

New OpenVMS System Messages
A.1 List of Messages

PAGNOTWRITE, specified page cannot be written
Facility: SYSTEM, System Services
Explanation: The specified page cannot be written.
User Action: Ensure that the correct virtual address is passed to the service.

PAGTYPVIO, operation not supported on specified page type
Facility: SYSTEM, System Services
Explanation: The attempted operation is not supported for the specified
page type.
User Action: Ensure that the operation to be performed is legal for the
specified page type.

PROTVIO, file protection prohibits the type of access requested
Facility: SYSTEM, System Services
Explanation: The type of access requested is not possible because of file
protection.
User Action: Ensure that the correct file protection argument is passed to
the system service.

QUALMISSING, required qualifier ’qualifier-name’ is missing
Facility: NETWRK, SET NETWORK Command
Explanation: The qualifier specified in this message is required for this
operation.
User Action: Reenter the command and include the required qualifier.

RATINGNOTINIT, LAT rating image has not been initialized
Facility: LAT, LAT Facility
Explanation: During LATACP startup, the LAT$RATING image was found
to be loaded but not initialized.
User Action: Be sure to start LAT by executing the LAT$STARTUP
command procedure to access the support startup files supplied by Digital.
The LAT$STARTUP command procedure executes other command procedures,
including LAT$CONFIG, which loads the LAT$RATING image. If you make
changes to the LAT$RATING image, be sure that the initialization entry
points are still called by LTDRIVER when LTDRIVER is loaded.

REGISFULL, specified region is full
Facility: SYSTEM, System Services
Explanation: The specified region is full.
User Action: If possible, delete some address space from the region, or
create a new region.

REGNOTAVAIL, register not available when using System Code Debugger
Facility: SDA, System Dump Analyzer
Explanation: You cannot access the specified register when SDA is invoked
from within the system code debugger.
User Action: None.

A–11

New OpenVMS System Messages
A.1 List of Messages

REGOWNVIO, region is owned by a more privileged access mode
Facility: SYSTEM, System Services
Explanation: The specified region is owned by a more privileged access
mode.
User Action: Ensure that the correct access mode and/or region arguments
are passed to the system service.

RESIGNAL_64, resignal condition to next handler
Facility: SYSTEM, System Services
Explanation: A condition handler completed without terminating or
continuing the image. This message is associated with an exit status code
used by 64-bit condition handling routines to indicate that the exception
dispatcher continued its search for handlers.
User Action: None.

SHADZEROMBR, SHADOWING detects a zero member set
Facility: BUGCHECK, System Bugcheck
Explanation: Due to a synchronization problem, shadowing has detected
a mounted virtual unit with no source members. This is an illegal state;
to preserve data integrity, shadowing has crashed the node on which this
condition was detected.
User Action: Document and report any events that occurred on other nodes
in the VMScluster that also have the shadow set mounted. Reboot the node
that crashed and remount all shadow sets.

SUPPRESSED, network-specific information suppressed due to output
redirection
Facility: NETWRK, SHOW NETWORK Command
Explanation: A secondary command directed to this network service is not
being executed because the /OUTPUT qualifier was specified to redirect the
output.
User Action: If you wish to execute a secondary command, do not specify the
/OUTPUT qualifier.

TIMEDOUT, operation timed out
Facility: NETWRK, SET/SHOW/START/STOP NETWORK Commands
Explanation: The operation timed out because another user was using the
required resources.
User Action: Try the operation again later.

TIRLNGTH, object command data record length illegal ’number’
record ’number’ in module ’module_name’ file ’file_name’
Facility: LINK, Linker Utility
Explanation: The object record length for the record is not valid. The
specified length is either too large or too small for the expected data.
User Action: Contact a Digital support representative about the appropriate
language processor.

A–12

New OpenVMS System Messages
A.1 List of Messages

TOO_MANY_ARGS, routine called with too many arguments
Facility: SYSTEM, System Services
Explanation: A system service was called with too many arguments.
User Action: Ensure that the correct number of arguments is passed to the
system service.

TOOLONG, value specified is greater than 255 characters
Facility: NETWRK, SET NETWORK Command
Explanation: The value you entered exceeds 255 characters.
User Action: Enter a value consisting of 255 or fewer characters.

UNALIGNED, IOSA or data buffer not aligned
Facility: SYSTEM, System Services
Explanation: An application has supplied one of the following:

• An I/O Status Area that is not quadword aligned

• A data buffer that is not 512-byte aligned

User Action: If possible, correct the error in the application program.

VA_NOTPAGALGN, specified virtual address is not CPU-specific page aligned
Facility: SYSTEM, System Services
Explanation: The specified virtual address is not a CPU-specific, page-
aligned address.
User Action: Ensure that the virtual address passed to the system service is
a CPU-specific, page-aligned address.

WAIT, operation blocked by another user; please wait
Facility: NETWRK, SET/SHOW/START/STOP NETWORK Commands
Explanation: The operation cannot be performed because another user is
modifying the network service information.
User Action: If you get the TIMEDOUT message, retry the operation again
later.

WRITEERR, error occurred writing to output file
Facility: NETWRK, SHOW NETWORK Command
Explanation: An error was encountered while writing to the output file.
User Action: Take action based on the accompanying RMS message.

A–13

B
DEC C XPG4 Localization Utilities—OpenVMS

Version 6.2 Feature

OpenVMS Version 6.2 provides XPG4-compliant utilities for managing
localization data for international software applications or layered products.
Localization data is defined separately from the application and is bound to it
only at run time.

Note

The addition of the DEC C XPG4 code to OpenVMS Version 6.2 means
that developers who link their code on OpenVMS VAX Version 6.2 will not
be able to run it on OpenVMS VAX Version 6.1.

The following localization utilities are described in this appendix:

• GENCAT

• ICONV COMPILE

• ICONV CONVERT

• LOCALE COMPILE

• LOCALE LOAD

• LOCALE UNLOAD

• LOCALE SHOW CHARACTER_DEFINITIONS

• LOCALE SHOW CURRENT

• LOCALE SHOW PUBLIC

• LOCALE SHOW VALUE

These utilities are provided only on CD–ROM.

Because these utilities support the XPG4 model of internationalization, they
are only useful for localizing applications written to that model. See the user
documentation for each application or layered product to see if it supports XPG4
internationalization.

This appendix also describes the locale file format and the character set
description (charmap) file.

B–1

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.1 GENCAT

B.1 GENCAT
The GENCAT command merges one or more message text source files into a
message catalog file.

B.1.1 Format
GENCAT msgfile[,...] catfile

B.1.1.1 Parameters
msgfile

The file specification of a message text source file. The default file type for a
message text source file is .MSGX.

catfile

The file specification of the message catalog file that is created. If catfile already
exists, a new version is created that includes the messages in the existing catalog.
The file type for a message catalog file is .CAT.

B.1.1.2 Qualifiers
None.

B.1.2 Description
The GENCAT command creates new message catalogs from one or more input
source files and an existing catalog file (if there is one). A message catalog
is a binary file containing the messages for an application. This includes all
messages that the application issues, such as error messages, screen displays,
and prompts. Applications retrieve messages from a message catalog using the
catopen, catgets, and catclose C run-time library routines. See the DEC C
Run-Time Library Reference Manual for OpenVMS Systems for details of these
routines.

A message text source file is a text file that you create to hold messages printed
by your program. You can use any text editor to enter messages into the text
source file. Messages can be grouped into sets, usually to represent functional
subsets of your program. Each message has a numeric identifier, which must be
unique within its set. The message text source file can also contain commands
recognized by GENCAT for manipulating sets and individual messages.

If a message catalog with the name catfile exists, GENCAT creates a new version
of the file that includes the contents of the older version and then modifies it. If
the catalog does not exist, GENCAT creates the catalog with the name catfile.

You can specify any number of message text source files. The GENCAT command
processes multiple source files one after the other in the sequence that you specify
them. Each successive source file modifies the catalog.

B–2

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.1 GENCAT

The catfile can contain the following commands:

message_number text

Inserts text as a message with the identifier message_number. Follow these
guidelines:

• Numbers must be ascending within each set. You can skip a number,
but you cannot go back to add a missing number or replace an existing
number during a GENCAT session.

• If the message text is empty and a space or tab field separator is present,
an empty string is stored in the message catalog.

• If a message source line has a message number but neither a field
separator nor message text, the existing message with that number (if
any) is deleted from the catalog.

$delset set_number

Deletes the set of messages indicated by set_number.

$quote character

Sets the quote character to character. See the Examples section for more
information.

$set set_number

Indicates that all messages entered after this command are placed in the set
indicated by set_number. You can change the set by entering another $set
command. However, set numbers must be entered in ascending order; you
cannot go back to a lower numbered set during the GENCAT session. If the
command is not used, the default set number is 1.

Each initial keyword or number must be followed by white space. The GENCAT
utility ignores any line that begins with a space, a tab, or a dollar sign ($)
character followed by a space, a tab, or a newline character. Therefore, you
can use these sequences to start comments in your catfile. Blank lines are also
ignored. Finally, you can place comments on the same line after the $delset,
$quote, or $set commands because GENCAT ignores anything that follows these
commands.

A line beginning with a digit marks a message to be included in the catalog.
You can specify any amount of white space between the message ID number and
the message text; however, when the message text is not delimited by quotation
marks, one space or tab character is recommended. When message text is not in
quotation marks, GENCAT treats additional white space as part of the message.
When message text is enclosed in quotation marks, GENCAT ignores all spaces
or tabs between the message ID and the first quotation character.

Escape sequences like those recognized by the C language can be used in text.
The escape character (\), a backslash, can be used to insert special characters in
the message text. See Table B–1.

B–3

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.1 GENCAT

Table B–1 Special Characters

Escape
Sequence Character

\n New Line

\t Horizontal Tab

\v Vertical Tab

\b Backspace

\r Carriage Return

\f Form Feed

\\ Backslash Character (\). Use to continue message text on the
following line.

\ddd The single-byte character associated with the octal value ddd. You
can specify one, two, or three octal digits. However, you must include
leading zeros if the characters following the octal digits are also valid
octal digits; for example, the octal value for $ (dollar sign) is 44. To
insert $5.00 into a message, use \0445.00, not \445.00; otherwise the
5 is parsed as part of the octal value.

Notes

GENCAT conforms to X/Open specifications. In an X/Open conforming
application, the set numbers must be integers in the range of 1 to
NL_SETMAX, inclusive; message numbers must be integers in the
range of 1 to NL_MSGMAX, inclusive. NL_SETMAX and NL_MSGMAX
are defined in the <limits.h> header file that comes with DEC C and
DEC C++. For OpenVMS Version 6.2, each of these limits is 65535.

The value of LC_CTYPE from the LOCALE SHOW CURRENT command
determines the interpretation of message text in the message source files
msgfile....

B.1.3 Errors
When GENCAT reports an error, no action is taken on any commands and an
existing catalog is left unchanged.

B.1.4 Examples

1.

$set 10 Communication Error Messages

This example uses the $set command in a source file to assign a set number
to a group of messages.

The message set number is 10. All messages after the $set command and
up to the next $set command are assigned a message set number of 10.
(Set numbers must be assigned in ascending order but they need not be
contiguous.) You can include a comment in the $set command.

2.

$delset 10 Communication Error Messages

This example uses the $delset command to remove from a catalog all
messages belonging to the specified message set (10, in this case).

B–4

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.1 GENCAT

The $delset command must be placed in the proper set number order with
respect to any $set commands in the same source file. You can include a
comment in the $delset command.

3.

12 "file removed"

This example shows how to enter the message text and assign a message ID
number to it. In this case, a message ID of 12 is assigned to the text that
follows it.

You must leave at least one space or tab character between the message ID
number and the message text but you can include more spaces or tabs if
you prefer. If you do include more spaces or tabs, they are ignored when the
message text is in quotation marks and they are considered part of the text
when the message text is not in quotation marks.

Message numbers must be in ascending order within a single message set but
they need not be contiguous.

All text following the message number and up to the end of the line is
included as message text. If you place the escape character (\), a backslash,
as the last character on the line, the message text continues on the following
line. Consider the following example:

This is the text associated with \
message number 5.

The two lines in the example define the following single-line message:

This is the text associated with message number 5.

4.

$quote " Use a double quote to delimit message text
$set 10 Message Facility - Quote command messages
1 "Use the $quote command to define a character \
\n for delimiting message text" \n
2 "You can include the \"quote\" character in a message \n \
by placing a \\ (backslash) in front of it" \n
3 You can include the "quote" character in a message \n \
by having another character as the first nonspace \
\n character after the message ID number \n
$quote
4 You can disable the quote mechanism by \n \
using the $quote command without \n a character \
after it \n

This example shows the effect of a quote character.

The $quote command defines the double quote (") as the quote character.
The quote character must be the first nonspace character after the message
number. Any text following the next occurrence of the quote character is
ignored.

This example also shows two ways to include the quote character in the
message text:

• Place a \ in front of the quote character.

• Use another character as the first nonspace character after the message
number. This disables the quote character for that message only.

B–5

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.1 GENCAT

This example also shows the following:

• A \ is still required to split a quoted message across lines.

• To display a \ in a message, you must place another \ in front of it.

• You can format your message with a new-line character by using \n.

• If you use the $quote command with no character argument, you disable
the quote mechanism.

B.2 ICONV COMPILE
The ICONV COMPILE command creates a conversion table file from a conversion
source file. The conversion table file is used by the ICONV CONVERT command
to convert characters in a file from one codeset to another.

B.2.1 Format
ICONV COMPILE sourcefile tablefile

B.2.1.1 Parameters
sourcefile

The file specification of the conversion source file. The default file type is .ISRC.
The file naming convention Digital uses for conversion source files is:

fromcodeset_tocodeset.isrc

tablefile

The file specification of the conversion table file to be created. The default file
type is .ICONV. The file naming convention for conversion table files is:

fromcodeset_tocodeset.iconv

You must follow this convention for naming conversion table files for the ICONV
CONVERT command to recognize them.

Public conversion table files are in the directory defined by the logical name
SYS$I18N_ICONV. Put new conversion table files in the same directory if you
want to make them available systemwide.

B.2.1.2 Qualifier
/LISTING[=listfile]

Directs ICONV COMPILE to produce a listing file, which contains the source file
listing and any error messages generated during compilation. If the file name is
omitted from the qualifier, the default listing file name is sourcefile.LIS.

B–6

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.2 ICONV COMPILE

B.2.2 Description
The ICONV commands support any 1- to 4-byte codesets that are state
independent. They do not support state-dependent codesets.

Note

There is an implementation restriction in the tocodeset encodings in this
implementation. The characters in tocodeset must not use 0XFF in the
fourth byte.

The conversion source file contains the character conversion rules for a specific
conversion.

The format of a codeset conversion source file is defined as follows:

<fromcodeset_mb_cur_max> value
<fromcodeset_mb_cur_min> value
<tocodeset_mb_cur_max> value
<tocodeset_mb_cur_min> value
<fallback_code> value
<escape_char> value
<comment_char> value
<fromcodeset_range> value...value;value...value;...;value...value
ICONV_TABLE
fromvalue tovalue
fromvalue tovalue

. .

. .

. .
fromvalue tovalue
END ICONV_TABLE

where the <...> symbols and their associated values are codeset declarations, and
the fromvalue/tovalue pairs are character conversion rules.

Codeset Declarations
The codeset declarations must precede the character conversion rules. Each
declaration consists of a symbol, starting in column 1 and including the
surrounding brackets, followed by one or more blanks (tabs or spaces), followed
by the value to be assigned to the symbol. See Table B–2.

Table B–2 Codeset Declarations

Symbol Value

<fromcodeset_mb_cur_max> The maximum number of bytes in a character in the
fromcodeset. This value defaults to 1.

<fromcodeset_mb_cur_min> The minimum number of bytes in a character in the
fromcodeset. This value must be less than or equal
to fromcodeset_mb_cur_max. If this value is not
specified, it defaults to the value of fromcodeset_mb_
cur_max.

<tocodeset_mb_cur_max> The maximum number of bytes in a character in the
tocodeset. This value defaults to 1.

(continued on next page)

B–7

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.2 ICONV COMPILE

Table B–2 (Cont.) Codeset Declarations

Symbol Value

<tocodeset_mb_cur_min> The minimum number of bytes in a character in the
tocodeset. This value must be less than or equal to
tocodeset_mb_cur_max. If this value is not specified, it
defaults to the value of tocodeset_mb_cur_max.

<fallback_code> The tovalues for the fromvalues that appear in the
<fromcodeset_range> but are not specified between
ICONV_TABLE and END ICONV_TABLE. Specify one
of three kinds of values:

• SAME — specifies that the tovalues are the same
as the fromvalues.

• ERROR — specifies that the conversion from the
fromvalue to a tovalue is not supported. ICONV
CONVERT issues a warning and ignores the rest
of the record read. The DEC C run-time library
routine iconv returns to the caller with an "illegal
character" error.

• User-defined tovalue — the fromvalues are
converted to the specified user-defined tovalue.

The user-defined tovalue can represent a multibyte
character with the restriction that 0xff cannot be
used as the value in the fourth byte. The settings
for user-defined tovalues for <fallback_code>
are the same as the settings for character
conversion rule values. You can use octal, decimal,
or hexadecimal digits. If the <fallback_code> is
not specified, it defaults to SAME.

<escape_char> The escape character used to indicate that subsequent
characters are interpreted in a special way. The escape
character defaults to backslash (\).

<comment_char> The character that, when placed in column 1 of a line,
indicates that the line will be ignored. The default
comment character is the number sign (#).

<fromokcodeset_range> The fromcodeset encoding ranges. Specify this
declaration if the fromcodeset is a multibyte codeset. If
the fromcodeset is omitted, it defaults to a single-byte
codeset and the table created by ICONV COMPILE
will support only single-byte fromcodeset conversions.

When specifying codeset encoding ranges for the fromcodeset, every zone of
characters must be specified. If any zones of characters are missing from the
<fromcodeset_range> specification, the codeset conversion might be incorrect.
It is very important to specify the codeset encoding ranges correctly for the
fromcodesets supported by the rest of the DEC C run-time library (RTL). If this
is not done, the codeset support for iconv and the rest of the DEC C RTL will not
be consistent.

For example, the fromcodeset ranges for EUCJP are specified as:

<fromcodeset_range> \x0...\x7f;\x8e\xa1...\x8e\xfe;
\xa1\xa1...\xfe\xfe;\x8f\xa1\xa1...\x8f\xfe\xfe

B–8

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.2 ICONV COMPILE

The settings for <fromcodeset_range> values are the same as the settings for
character conversion rule values. You can use octal, decimal, or hexadecimal
digits.

Character Conversion Rules
The character conversion rules are all the lines between the string
ICONV_TABLE starting in column 1 and END ICONV_TABLE starting in
column 1.

Character conversion rules must begin in column 1.

Empty lines and lines containing a comment_char in the first column are ignored.
Comments are optional.

Character conversion rules can have one of two forms:

fromvalue tovalue

fromvalue...fromvalue tovalue

Place one or more blanks (tabs or spaces) between fromvalue and tovalue.

Use the first format to define a single-character conversion rule. For example:

\d32 \d101
\d37 \d106

Use the second format to define a range of character conversion rules. In this
format, the ending fromvalue must be equal to or greater than the starting
fromvalue. The subsequent fromvalues defined by the range are converted to
tovalues in increasing order.

For example, consider the following line:

\d223\d32...\d223\d35 \d129\d254

This line is interpreted as:

\d223\d32 \d129\d254
\d223\d33 \d129\d255
\d223\d34 \d130\d0
\d223\d35 \d130\d1

For settings of fromvalue and tovalue:

• A decimal constant is defined as one, two, or three decimal digits preceded by
the escape character and lowercase d. For example: \d42.

• An octal constant is defined as one, two, or three octal digits preceded by the
escape character. For example: \141.

• A hexadecimal constant is defined as one or two hexadecimal digits preceded
by the escape character and a lowercase x. For example: \x6a.

Each constant represents a single-byte value. You can represent multibyte values
by concatenating two or more decimal, octal, or hexadecimal constants.

Note

When constants are concatenated for multibyte values, they must have
the same radix (decimal, octal, or hexadecimal). Only characters in the
Portable Character Set can be used to construct conversion source files.

Also see the ICONV CONVERT command.

B–9

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.2 ICONV COMPILE

B.2.3 Errors
If an error is encountered during processing, ICONV COMPILE does not generate
an output tablefile. If a warning is encountered, a valid table file is created.
However, because a warning can indicate a user error, you should check the
returned warning messages.

Some ICONV COMPILE error messages and their descriptions follow.

%ICONV-E-INVFCSRNG, syntax error in <fromcodeset_range> definition

This error occurs when the definition of the <fromcodeset_range> symbol does
not conform to the required syntax. The <fromcodeset_range> symbol defines
encoding ranges and is required for multibyte codesets.

%ICONV-E-INVSYNTAX, invalid file syntax

This error occurs when a line in the source does not conform to the required
syntax.

%ICONV-E-BADTABLE, bad table caused by invalid value for <fromcodeset_range>
definition

This error occurs when an invalid value is specified for the codeset encoding
ranges. The encoding ranges are defined by the <fromcodeset_range> symbol.

B.2.4 Example
$ ICONV COMPILE/LISTING EUCTW_DECHANYU.ISRC EUCTW_DECHANYU.ICONV

This example shows how to create a conversion table file to convert the EUCTW
codeset to the DECHANYU codeset. The listing file, EUCTW_DECHANYU.LIS,
contains a listing of the source file and any error messages generated by the
compiler.

B.3 ICONV CONVERT
The ICONV CONVERT command converts characters in a file from one codeset
to another codeset. The converted characters are written to an output file.

B.3.1 Format
ICONV CONVERT infile outfile

B.3.1.1 Parameters
infile

The file specification of the file that contains the characters to be converted. The
/FROMCODE qualifier specifies the codeset of the characters in this file.

outfile

The file specification of the file created by ICONV CONVERT. The /TOCODE
qualifier specifies the codeset of the characters in this file.

B.3.1.2 Qualifiers
/FROMCODE=fromcodeset

A required qualifier that specifies the codeset of the characters in the input file
infile.

/TOCODE=tocodeset

A required qualifier that specifies the codeset of the characters in the output file
outfile.

B–10

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.3 ICONV CONVERT

B.3.2 Description
The ICONV CONVERT command converts the characters in infile from the
codeset identified by the /FROMCODE qualifier to the codeset identified by the
/TOCODE qualifier. The converted file is written to outfile.

The conversion is done in one of two ways:

• Using a conversion table file to look up the converted characters. This is
the default method. Conversion table files are created by the DCL command
ICONV COMPILE.

• Using a shareable image file that implements the required conversion. This
method can be used whenever the implementation of a converter by table is
either not convenient, for example, huge virtual address space versus small
space by algorithm, or not possible, for example, for state dependent encoding
like ISO2022.

The converter’s file naming convention is:

fromcodeset_tocodeset.iconv

This naming convention is valid for both table or image file type of
implementations.

Note that if you add conversion files to your system, they must use the same
file-naming convention. Otherwise, the ICONV CONVERT does not recognize
them.

ICONV CONVERT searches your current directory for a converter file. If it
cannot find the file, it then searches the system directory defined by the logical
name SYS$I18N_ICONV.

B.3.3 Example
$ ICONV CONVERT/FROMCODE=EUCTW/TOCODE=DECHANYU FROMFILE.DAT TOFILE.DAT

This example shows a conversion from EUCTW characters to DECHANYU
characters. The EUCTW characters in the file FROMFILE.DAT are converted to
the corresponding DECHANYU characters. The converted characters are stored
in the file TOFILE.DAT.

B.4 LOCALE COMPILE
The LOCALE COMPILE command converts a locale source file into a binary
locale file. The binary locale file is used by those utilities and C routines that are
dependent on the setting of the international environment logical names.

B.4.1 Format
LOCALE COMPILE sourcefile

B.4.1.1 Parameter
sourcefile

The file specification of the locale source file. This file defines each category of the
locale. The default file type for the source file is .LSRC. For the definition of the
locale source file format, see Section B.11.

B–11

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.4 LOCALE COMPILE

B.4.1.2 Qualifiers
/CHARACTER_DEFINITIONS=filename
/NOCHARACTER_DEFINITIONS (default)

Specifies a character-set description file (charmap) for the locale. This file maps
characters to their actual character encodings. If a charmap is not specified,
no symbolic names (other than collating symbols defined in a collating symbol
keyword) are allowed in the locale source file. For definition of the charmap file
format, see Section B.12. The default file type for a charmap is .CMAP.

/DISPLAY[=[NO]HOLE]

Used with certain Chinese locales and terminals to specify that 4-byte characters
occupy four printing positions (columns) on the terminal display. The default
value (/DISPLAY=NOHOLE) specifies that 4-byte characters occupy two printing
positions.

/IGNORE=WARNINGS
/NOIGNORE (default)

Generates an output file even if LOCALE COMPILE issues warning messages.
Use the /IGNORE keyword cautiously because the warnings could indicate user
errors that you might want to correct before using the resulting locale file.

/LISTING [=filename] (batch default)
/NOLISTING (interactive default)

Specifies the name of the listing file. The /SHOW qualifier controls the
information included in the listing file. If the file name is omitted, the default is
sourcefile.LIS.

/OUTPUT=[filename]
/NOOUTPUT

Specifies the name of the output file. If the /OUTPUT qualifier is omitted, the
default output file name is sourcefile.LOCALE. Public locales are stored in the
directory defined by the logical name SYS$I18N_LOCALE. If the output file is in
any other location, the locale is private.

If /NOOUTPUT is specified, the compiler does not create an output file, even if
the compilation is successful.

/SHOW[=(keyword[,...])]

Use /SHOW together with /LIST to control the information included in the listing
file. You can specify the following keywords:

Keyword Description

ALL Include all information.

BRIEF Include a summary of the symbol table.

[NO]CHARACTER_
DEFINITIONS

Include or omit the charmap file.

NONE Do not print any information. If NONE is specified, the listing
file only contains the error messages generated.

[NO]SOURCE Include or omit a listing of the source file.

[NO]STATISTICS Include or omit compiler performance information.

B–12

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.4 LOCALE COMPILE

Keyword Description

[NO]SYMBOLS Include or omit a listing of the charmap symbol table.

[NO]TERMINAL Display compiler messages at the terminal.

The default is /SHOW=(SOURCE,TERMINAL).

B.4.2 Description
Use the LOCALE COMPILE command to add new locales to your system in
addition to those supplied by Digital. To compile a locale, LOCALE COMPILE
requires two files:

• A charmap file that defines the character set for the locale. If you do not
specify a charmap file, symbolic names cannot be specified in the locale source
file. If this happens, LOCALE COMPILE issues an error or warning message,
depending on the category processed, and no output file is produced. (Also see
the /IGNORE qualifier.)

• A locale source file. This file describes one or more of the locale
categories: LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, and LC_TIME.

B.4.3 Errors
Some LOCALE COMPILE error messages and their descriptions follow.

%LOCALE-E-CASEALRDY, case conversion already exists for ’character’

Where ‘character‘ is a character from the codeset. This error can occur when the
locale compiler is processing the LC_CTYPE category. It indicates that more than
one case conversion is specified for ‘character‘.

%LOCALE-E-PREOFCMAP, premature end of file in charmap file

This error occurs if there is no END CHARMAP statement in the charmap file.

%LOCALE-E-PREEOFSRC, premature end of file in source file

This error occurs if there is an error with the END statements in the locale
source file.

%LOCALE-F-NOADDSYM, failed to add symbol to symbol table

This error can occur when there is insufficient memory to finish the compilation.
Check the amount of memory available to your process.

%LOCALE-F-NOINITSYM, failed to initialize symbol table

This error can occur if there is insufficient memory to finish the compilation.
Check the amount of memory available to your process.

B–13

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.4 LOCALE COMPILE

B.4.4 Example
$ LOCALE COMPILE EN_GB_ISO8859-1/CHARACTER_DEFINITIONS=ISO8859-1 -
/LIST/SHOW=(CHARACTER_DEFINITIONS,SYMBOLS,STATISTICS)

This example shows how to generate a locale file named EN_GB_ISO8859-
1.LOCALE from the source file EN_GB_ISO8859-1.LSRC, using the charmap
file ISO8859-1.CMAP. To use this locale file, copy it to the SYS$I18N_LOCALE
directory and set the LANG logical to "EN_GB.ISO8859-1". The listing file
contains a listing of the charmap file, the symbol table, performance information,
and any error messages generated by the compiler.

B.5 LOCALE LOAD
This command loads the specified locale name into the system’s memory as
shared, read-only global data.

B.5.1 Format
LOCALE LOAD name

B.5.1.1 Parameter
name

A character string that identifies the locale to be loaded. This can be one of the
following:

• The name of the public locale

Specifies the public locale. The format of the name is:

language_country.codeset[@modifier]

LOCALE LOAD searches for the public locale binary file in the location
defined by the logical name SYS$I18N_LOCALE. The file type defaults to
.LOCALE. The period (.) and at-sign (@) characters in the name specified
are replaced by underscore (_) characters.

For example, if the name specified is "zh_CN.dechanzi@radical", LOCALE
LOAD searches for the following binary locale file:

SYS$I18N_LOCALE:ZH_CN_DECHANZI_RADICAL.LOCALE

• A file specification

Specifies the binary locale file. This can be any valid file specification. If
either the device or directory is not specified, LOCALE LOAD first applies
the current caller’s device and directory as defaults. If the file is not found,
the device and directory defined by the SYS$I18N_LOCALE logical name are
used as defaults. The file type defaults to .LOCALE.

Wildcards are not allowed. The binary locale file cannot reside on a remote
node.

B.5.1.2 Qualifiers
None.

B–14

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.5 LOCALE LOAD

B.5.2 Description
This command loads the specified locale name into the system’s memory as
several shared, read-only global sections. All processes that access the loaded
locale then use this one copy of the locale, thereby reducing overall demand on
system memory.

LOCALE LOAD is a privileged OpenVMS command, typically issued by the
system manager. The following privileges are required:

• SYSGBL

• PRMGBL

B.6 LOCALE UNLOAD
This command unloads the specified locale name from the system’s memory.

B.6.1 Format
LOCALE UNLOAD name

B.6.1.1 Parameter
name

A character string that identifies the locale to be unloaded. See the LOCALE
LOAD command for acceptable formats for this parameter.

B.6.1.2 Qualifiers
None.

B.6.2 Description
This command unloads the specified locale name from the system’s memory. If a
process is accessing the locale when the UNLOAD command is entered, the global
sections are deleted after the process deaccesses the locale.

LOCALE UNLOAD is a privileged OpenVMS command, typically issued by the
system manager. The following privileges are required:

• SYSGBL

• PRMGBL

Note

Only locale files loaded by the LOCALE LOAD command can be unloaded.

B.7 LOCALE SHOW CHARACTER_DEFINITIONS
This command lists character set description files (charmaps).

B.7.1 Format
LOCALE SHOW CHARACTER_DEFINITIONS

B–15

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.7 LOCALE SHOW CHARACTER_DEFINITIONS

B.7.1.1 Parameters
None.

B.7.1.2 Qualifiers
None.

B.7.2 Description
This command lists all the character set description files (charmaps) in the public
directory defined by the logical name SYS$I18N_LOCALE. A charmap defines the
symbolic names and values of characters in a coded character set. Charmaps are
used by the LOCALE COMPILE command when compiling a locale. A charmap
file has the file type .CMAP.

B.7.3 Example
$ LOCALE SHOW CHARACTER_DEFINITIONS
[SYS$I18N.LOCALES.SYSTEM]DECHANYU
[SYS$I18N.LOCALES.SYSTEM]DECHANZI
[SYS$I18N.LOCALES.SYSTEM]DECKANJI
[SYS$I18N.LOCALES.SYSTEM]DECKOREAN
[SYS$I18N.LOCALES.SYSTEM]EUCJP
[SYS$I18N.LOCALES.SYSTEM]EUCTW
[SYS$I18N.LOCALES.SYSTEM]ISO8859-1
[SYS$I18N.LOCALES.SYSTEM]ISO8859-2
[SYS$I18N.LOCALES.SYSTEM]ISO8859-3
[SYS$I18N.LOCALES.SYSTEM]ISO8859-4
[SYS$I18N.LOCALES.SYSTEM]ISO8859-5
[SYS$I18N.LOCALES.SYSTEM]ISO8859-7
[SYS$I18N.LOCALES.SYSTEM]ISO8859-8
[SYS$I18N.LOCALES.SYSTEM]ISO8859-9
[SYS$I18N.LOCALES.SYSTEM]MITACTELEX
[SYS$I18N.LOCALES.SYSTEM]SDECKANJI
[SYS$I18N.LOCALES.SYSTEM]SJIS

This example shows a system with several charmap files in the SYS$I18N_
LOCALE directory.

B.8 LOCALE SHOW CURRENT
This command displays a summary of the current international environment as
defined by several international environment logical names.

B.8.1 Format
LOCALE SHOW [CURRENT]

B.8.1.1 Parameters
None.

B.8.1.2 Qualifiers
None.

B.8.2 Description
The LOCALE SHOW CURRENT command lists the settings for each locale
category and the values of the environment variables LC_ALL and LANG.
The CURRENT keyword is the default and is, therefore, optional. The logical
name that defines a category has the same name as the category. For example,
the LC_MESSAGES logical name defines the setting for the LC_MESSAGES
category. The locale categories are:

B–16

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.8 LOCALE SHOW CURRENT

Category Description

LC_COLLATE Information about collating sequences.

LC_CTYPE Character classification information.

LC_MESSAGES Information about the language of program messages and the
format of yes/no prompts.

LC_MONETARY Monetary formatting information.

LC_NUMERIC Information about formatting numbers.

LC_TIME Time and date information.

Each locale category is defined by scanning the following logical names in the
order shown, until a logical name is found. If the logical name found does not
represent a valid locale file, then LOCALE SHOW displays the string "C" for all
the categories.

1. LC_ALL

2. Logical names corresponding to the categories specified in the table (for
example, if LC_NUMERIC is specified as a valid locale category, the LOCALE
SHOW CURRENT command displays the name of the category and the locale
name it defines).

3. LANG

4. SYS$LC_ALL

5. The system default for the locale categories as specified by the SYS$* logical
names. For example, the default for the category LC_NUMERIC is defined by
the SYS$LC_NUMERIC logical name.

6. SYS$LANG

The system manager can choose to define SYS$* logicals in the site-specific
system startup files to set the default locale. If no definition is provided,
programs operate using the built-in "C" locale, in which case the LOCALE SHOW
CURRENT command displays the string "C" for the current locale categories.

B.8.3 Example
$ DEFINE LC_COLLATE EN_US.ISO8859-1 ! NOTE: the collate category in unquoted
$ DEFINE LANG EN_GB_ISO8859-1
$ DEFINE LC_MESSAGES PRIVATE$DISK:[APPL.LOCALES]SPECIAL.LOCALE
$ LOCALE SHOW CURRENT
LANG="EN_GB_ISO8859-1"
LC_CTYPE="EN_GB_ISO8859-1"
LC_COLLATE=EN_US_ISO8859-1
LC_TIME="EN_GB_ISO8859-1"
LC_NUMERIC="EN_GB_ISO8859-1"
LC_MONETARY="EN_GB_ISO8859-1"
LC_MESSAGES=PRIVATE$DISK:[APPL.LOCALES]SPECIAL.LOCALE;1
LC_ALL=

This example shows a process where all locale categories except LC_COLLATE
and LC_MESSAGES have defaulted to the same locale, EN_GB.ISO8859-1. A
setting enclosed in double quotes indicates that the setting is implied by the
setting of one of the following logical names: LANG, LC_ALL, SYS$LC_ALL, or
SYS$LANG. A setting not enclosed by double quotes indicates that the logical
name for that category defines the international environment. This example also
shows that if a locale category is specified by a complete file specification, then
the complete file specification is displayed.

B–17

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.8 LOCALE SHOW CURRENT

B.8.4 Errors
If any logical names that define the environment are improperly defined, no
warning message is issued. However, the actual international environment is
listed exactly as it would be seen by an application that uses the DEC C run-
time library routine setlocale (for instance, if in the previous example the
SPECIAL.LOCALE file does not exist, then the display for the LC_MESSAGES
category would show LC_MESSAGES="C").

B.9 LOCALE SHOW PUBLIC
This command lists all the public locales on the system.

B.9.1 Format
LOCALE SHOW PUBLIC

B.9.1.1 Parameters
None.

B.9.1.2 Qualifiers
None.

B.9.2 Description
This command lists all the public locales on the system. The set of public locales
contains all the locales that reside in the directory defined by the logical name
SYS$I18N_LOCALE as well as the system’s built-in locales supplied with the
DEC C run-time library.

B.9.3 Example
$ LOCALE SHOW PUBLIC

C (Built-in)
POSIX (Built-in)
[SYS$I18N.LOCALES.SYSTEM]EN_GB_ISO8859_1
[SYS$I18N.LOCALES.SYSTEM]EN_US_ISO8859_1
[SYS$I18N.LOCALES.SYSTEM]FR_CA_ISO8859_1
[SYS$I18N.LOCALES.SYSTEM]GRBAGE_LOCALE (bad file header checksum)
[SYS$I18N.LOCALES.SYSTEM]JA_JP_DECKANJI (Permanently Loaded)

This example shows a system with three locale files in the SYS$I18N_LOCALE
directory. The C and POSIX locales are built in with the system and, therefore,
cannot be found in the SYS$I18N_LOCALE directory.

This example also shows the effect of having a bad file or a nonlocale file in the
public directory and the effect of having a locale file loaded into the system’s
memory by the LOCALE LOAD command.

B.10 LOCALE SHOW VALUE
This command displays the value of one or more keywords from the current
international environment.

B.10.1 Format
LOCALE SHOW VALUE name[,...]

B–18

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.10 LOCALE SHOW VALUE

B.10.1.1 Parameter
name[,...]

The name of a keyword or category. If you specify a keyword, the value of that
keyword in the current locale is displayed. If you specify a category, the values of
the keywords in that category are displayed. For integer keywords that have no
value assigned, the value CHAR_MAX (127) is displayed. When a keyword value
includes semicolons, double quotes, backslashes, or control characters, they are
preceded by an escape character (usually a backslash).

Table B–3 lists the categories and keywords you can specify for name.

Table B–3 Locale Categories and Keywords

Category Keyword Keyword Description

LC_CTYPE Character classification names

LC_TIME DAY Full weekday names

ABDAY Abbreviated weekday names

MON Full month names

ABMON Abbreviated month names

D_T_FMT Date and time format

D_FMT Date format

T_FMT Time format

T_FMT_AMPM Time format in the 12-hour clock

AM_PM Defines how the ante meridiem (a.m.) and post
meridiem (p.m.) strings are represented

ERA Defines how years are counted and displayed for
eras in a locale

ERA_D_FMT Era date format

ERA_D_T_FMT Era date and time format

ERA_T_FMT Era time format

ALT_DIGITS String defining alternative symbols for digits

LC_NUMERIC DECIMAL_POINT Character used as a decimal delimiter

THOUSANDS_SEP Character used to group digits to the left of the
decimal delimiter

GROUPING Defines how characters to the left of the decimal
delimiter are grouped

LC_MONETARY INT_CURR_SYMBOL Character string representing the international
currency symbol

CURRENCY_SYMBOL String used as the local currency symbol

MON_DECIMAL_POINT Character used as a decimal delimiter when
formatting monetary quantities

MON_THOUSANDS_SEP Character used as a separator for groups of
digits to the left of the decimal delimiter

POSITIVE_SIGN String used to represent positive monetary
quantities

(continued on next page)

B–19

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.10 LOCALE SHOW VALUE

Table B–3 (Cont.) Locale Categories and Keywords

Category Keyword Keyword Description

NEGATIVE_SIGN String used to represent negative monetary
quantities

INT_FRAC_DIGITS Number of digits displayed to the right of the
decimal delimiter when formatting monetary
quantities using the international currency
symbol

FRAC_DIGITS Number of digits displayed to the right of the
decimal delimiter when formatting monetary
quantities using the local currency symbol

P_CS_PRECEDES For positive monetary values, this is set to 1 if
the local currency symbol precedes the number
and 0 if the symbol follows the number

N_CS_PRECEDES For negative monetary values, this is set to 1 if
the local currency symbol precedes the number
and 0 if the symbol follows the number

P_SEP_BY_SPACE For positive monetary values, this is set to 0 if
there is no space between the currency symbol
and the value, 1 if there is a space, and 2 if
there is a space between the symbol and the sign
string

N_SEP_BY_SPACE For negative monetary values, this is set to 0 if
there is no space between the currency symbol
and the value, 1 if there is a space, and 2 if
there is a space between the symbol and the sign
string

P_SIGN_POSN Integer used to indicate where the
POSITIVE_SIGN string should be placed

N_SIGN_POSN Integer used to indicate where the
NEGATIVE_SIGN string should be placed

MON_GROUPING Defines how digits are grouped when formatting
monetary values

LC_MESSAGES YESSTR String representing YES in the current locale

NOSTR String representing NO in the current locale

YESEXPR Expression representing an affirmative response
in the current locale

NOEXPR Expression representing a negative response in
the current locale

Note

When an environment variable that affects the setting of the current
locale points to an invalid locale, then the "C" locale is set.

Other valid keywords that are not displayed by default as part of any category
include:

• CHARMAP — displays the file specification of the charmap used when the
locale was created.

• CODE_SET_NAME — defines the name of the coded character set for which
the charmap file is defined.

B–20

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.10 LOCALE SHOW VALUE

• MB_CUR_MAX — defines the maximum number of bytes in a multibyte
character.

• MB_CUR_MIN — defines the minimum number of bytes in a character in the
coded character set.

B.10.1.2 Qualifiers
/CATEGORY

Displays the category name before each keyword. If /CATEGORY is not specified,
the category name is not displayed.

/KEYWORD

Displays the keyword name before the value of a keyword. If /KEYWORD is not
specified, the value of the keyword is displayed, but not its name.

B.10.2 Errors
%LOCALE-E-NOKEYFND, no keyword keyword-name found

The keyword-name is not a valid keyword. Specify only the keywords listed in
Table B–3.

B.10.3 Description
This command displays the value of one or more keywords from the current
international environment.

B.10.4 Examples

1.

$ LOCALE SHOW VALUE NOEXPR
"^[nN][[:alpha:]]*"

Issuing LOCALE SHOW VALUE without qualifiers displays the value of the
NOEXPR string.

2.

$ LOCALE SHOW VALUE/CATEGORY NOEXPR
LC_MESSAGES
"^[nN][[:alpha:]]*"

Specifying /CATEGORY displays the category name (LC_MESSAGES) before
the value of the NOEXPR string.

3.

$ LOCALE SHOW VALUE/KEYWORD NOEXPR
noexpr= "^[nN][[:alpha:]]*"

Specifying /KEYWORD displays the keyword name before its value.

4.

$ LOCALE SHOW VALUE/KEYWORD/CATEGORY NOEXPR
LC_MESSAGES
noexpr= "^[nN][[:alpha:]]*"

Specifying /KEYWORD and /CATEGORY displays the category and keyword
name before the keyword value.

B–21

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

B.11 Locale File Format
A locale definition source file contains one or more categories that describe a
locale. You can convert a locale definition source file into a locale by using the
LOCALE COMPILE command. Locales can be modified only by editing a locale
definition source file and then using the LOCALE COMPILE command again on
the new source file. Each locale source file section defines a category of locale
data. A source file cannot contain more than one section for the same category.

B.11.1 Locale Categories
The following standard locale categories are supported:

• LC_COLLATE — Defines character or string collation information

• LC_CTYPE — Defines character classification, case conversion, and other
character attributes

• LC_MESSAGES — Defines the format for affirmative and negative responses

• LC_MONETARY — Defines rules and symbols for formatting monetary
numeric information

• LC_NUMERIC — Defines a list of rules and symbols for formatting
nonmonetary numeric information

• LC_TIME — Defines a list of rules and symbols for formatting time and date
information

B.11.1.1 Overriding Defaults
You can include optional declarations at the beginning of your locale source file
to override the default comment and escape characters used in locale category
definitions:

• Escape character

The escape character is used in decimal or hexadecimal constants when they
are specified in the locale file. The default escape character is the backslash
(\). To define another escape character, include a line with the following
format:

escape_char <char_symbol>

• Comment character

The comment character is the first character of any comment entries in the
locale file. The default comment character is the number sign (#). To define
another comment character, use the following format:

comment_char <char_symbol>

In the preceding formats, <char_symbol> is the character’s symbolic name as
defined in the charmap file used to build the locale’s codeset. One or more blank
characters (spaces or tabs) must separate escape_char or comment_char from
<char_symbol>.

B–22

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

B.11.1.2 Category Source Definitions
Each category source definition consists of the following:

• The category header (category_name)

• The associated keyword or value pairs that comprise the category body

• The category trailer (END category_name)

For example:

LC_CTYPE
<source for LC_CTYPE category>
END LC_CTYPE

The source for all of the categories is specified using keywords, strings, character
literals, and character symbols. Each keyword identifies either a definition or
a rule. The remainder of the statement containing the keyword contains the
operands to the keyword. Operands are separated from the keyword by one or
more blank characters (spaces or tabs). A statement may be continued on the
next line by placing a backslash (\) as the last character before the new-line
character that terminates the line. Lines containing the comment character (#)
in the first column are treated as comment lines.

A symbolic name begins with the left angle-bracket character (<) and ends with
the right angle-bracket character (>). The characters between the < and the >
can be any characters from the Portable Character Set, except for the control
and space characters. For example, <A-diaeresis> could be a symbolic name for a
character. Any symbolic name referenced in the locale source file must be defined
via the Portable Character Set or in the character set description (charmap) file
for that locale.

A character literal is the character itself, or a decimal, hexadecimal, or octal
constant. A decimal constant contains two or three decimal digits and has the
following form, where n is any decimal digit:

\dnn or \dnnn

A hexadecimal constant contains two hexadecimal digits and has the following
form, where n is any hexadecimal digit:

\xnn

An octal constant contains two or three octal digits and has the following form,
where n is any octal digit:

\nn or \nnn

The explicit definition of each category in a locale definition source file is not
required. When a category is undefined in a locale definition source file, the
LOCALE COMPILE command will not store any data value for this category in
the resulting locale file.

B.11.2 LC_COLLATE Category
The LC_COLLATE category defines the relative order between collation items.
This category begins with the LC_COLLATE header and ends with the END
LC_COLLATE trailer.

B–23

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

A collation item is the unit of comparison for collation. A collation item may be a
character or a sequence of characters. Every collation item in the locale has a set
of weights, which determine if the collation item collates before, equal to, or after
the other collation items in the locale. Each collation item is assigned collation
weights by the LOCALE COMPILE command when the locale definition source
file is compiled. These collation weights are then used by applications programs
that compare strings.

String comparison is performed by comparing the collation weights of each
character in the string until either a difference is found or the strings are
determined to be equal. This comparison may be performed several times if the
locale defines multiple collation orders. For example, in the French locale, the
strings are compared using a primary set of collation weights. If they are equal
on the basis of this comparison, they are compared again using a secondary set of
collation weights. A collation item has a set of collation weights associated with
it that is equal to the number of collation sort rules defined for the locale.

Every character defined in the charmap file (or every character in the Portable
Character Set if no charmap file is specified) is itself a collation item. Additional
collation items can be defined using the collating-element statement (see the
description that follows).

Table B–4 lists the statement keywords recognized in the LC_COLLATE
category.

Table B–4 LC_COLLATE Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the
definition of this category. If you specify a copy statement,
you need not specify any other keywords in this category.

collating-element Specifies multicharacter collation items.

collating-symbol Specifies collation symbols for use in collation sequence
statements.

order_start Specifies collation order statements that assign collation
weights to collation items.

The collating-element, collating-symbol, and order_start statements are
further described in the following sections.

B.11.2.1 The collating-element Statement
The collating-element statement specifies multicharacter collation items.

Syntax:

collating-element <character_symbol> from <string>

The character_symbol argument defines a collation item that is a string of one
or more characters as a single collation item. The character_symbol cannot
duplicate any symbolic name in the current charmap file or any other symbolic
name defined in this collation definition.

B–24

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

The string argument specifies a string of two or more characters that define the
character_symbol argument. The following are examples of the syntax for the
collating-element statement:

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <11> from "<1><1>"

A character_symbol argument defined by the collating-element statement is
recognized only within the LC_COLLATE category.

B.11.2.2 The collating-symbol Statement
The collating-symbol statement specifies collation symbols for use in collation
sequence statements.

Syntax:

collating-symbol <collating_symbol>

The collating_symbol argument cannot duplicate any symbolic name in the
current charmap file or any other symbolic name defined in this collation
definition. The following are examples of collating-symbol statements:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

An argument defined by the collating_symbol statement is recognized only
within the LC_COLLATE category.

B.11.2.3 The order_start Statement
The order_start statement is followed by one or more collation order statements
that assign collation weights to collation items and the order_end keyword. The
order_start statement is a required statement.

Syntax:

order_start sort_rules;sort_rules;...;sort_rules
collation_order_statements
order_end

Sort Rules
The sort_rules directives have the following syntax:

keyword, keyword,...,keyword

where keyword is FORWARD, BACKWARD, or POSITION.

The sort_rules directives are optional. If specified, they define the rules to apply
during string comparison. The number of specified sort_rules directives defines
the number of weights each collation item is assigned (that is, the directives
define the number of collation orders in the locale). If no sort_rules directives
are specified, one forward directive is assumed and comparisons are made on a
character basis rather than a string basis.

B–25

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

If sort_rules directives are present, the first one applies when comparing strings
that use the primary weight, the second when comparing strings that use the
secondary weight, and so on. Each set of sort_rules directives is separated by a
semicolon (;). A sort_rules directive consists of one or more keywords separated
by commas. The following keywords are supported:

FORWARD — Specifies that collation weight comparisons proceed from the
beginning of a string to the end of the string.

BACKWARD — Specifies that collation weight comparisons proceed from the
end of a string to the beginning of the string.

POSITION — Specifies that collation weight comparisons consider the
relative position of nonignored elements in the string (that is, if strings
compare as equal, the element with the shortest distance from the starting
point of the comparison collates first).

The forward and backward keywords are mutually exclusive.

Here is an example of a sort_rules directive:

order_start forward;backward

Collation Order Statements
The following syntax rules apply to the collation order statements:

• Each collation order statement consists of a <character_symbol> specification
followed by white space and a set of collation orders.

• Characters in the character set can be explicitly specified in the collation
order statements or implicitly specified using the ellipsis symbol (...).

• A collation order statement that begins with the UNDEFINED special symbol
specifies any characters that are in the character set but not explicitly or
implicitly specified by other collation order statements.

The optional operands for each collation item are used to define the primary,
secondary, or subsequent weights for the collation item. The special symbol
IGNORE is used to indicate a collation item that is to be ignored when strings
are compared.

An ellipsis keyword appearing in place of a collating_element_list indicates
the weights are to be assigned, for the characters in the identified range, in
numerically increasing order from the weight for the character symbol on the left
side of the preceding statement.

The use of the ellipsis keyword results in a locale that may collate differently
when compiled with different character set description (charmap) source files.

The UNDEFINED special symbol includes all coded character set values not
specified explicitly or with an ellipsis symbol. These characters are inserted in
the character collation order at the point indicated by the UNDEFINED special
symbol and are all assigned the same weight. If no UNDEFINED special symbol
exists and the collation order does not specify all collation items from the coded
character set, a warning is issued and all undefined characters are placed at the
end of the character collation order.

B–26

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Example
The following is an example of a collation order statement section in the
LC_COLLATE locale definition source file category:

order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW>
<space> <LOW>;<space>
... <LOW>;...
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
<s> <s>;<s>
<ss> <s><s>;<s><s>
<eszet> <s><s>;<eszet><eszet>
... <HIGH>;...
<HIGH>
order_end

This example is interpreted as follows:

• The UNDEFINED special symbol indicates that all characters not specified
in the definition (either explicitly or by the ellipsis symbol) are ignored for
collation purposes.

• All collation items between <space> and <a> have the same primary
equivalence class and individual secondary weights based on their coded
character-set values.

• All versions of the letter a (uppercase and lowercase, and with or without
diacriticals) belong to the same primary collation class.

• The <c><h> multicharacter collation item is represented by the <ch> collating
symbol and belongs to the same primary equivalence class as the <C><h>
multicharacter collation item.

• The <eszet> character is collated as an <s><s> string (that is, one <eszet>
character is expanded to two characters before comparing).

B.11.3 LC_CTYPE Category
The LC_CTYPE category defines character classification, case conversion, and
other character attributes. This category begins with the LC_CTYPE header and
ends with the END LC_CTYPE trailer.

All operands for LC_CTYPE category statements are defined as lists of
characters. Each list consists of one or more characters or symbolic character
names separated by semicolons. An ellipsis (...) can represent a series of
characters; for example, <a>;...;<z> represents the characters in the range a
through z.

Table B–5 lists the statement keywords recognized in the LC_CTYPE category.
In the keyword descriptions, the phrase "automatically included" means that
an error does not occur if the referenced characters are included or omitted; the
characters are provided if they are missing, and are accepted if they are present.

B–27

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–5 LC_CTYPE Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the definition for this
category.

If you specify a copy statement, you cannot specify any other keyword.

upper Defines uppercase letter characters.

Do not specify any character defined by the cntrl, digit, punct, or space
keyword. The uppercase letters A through Z are automatically included in
this set.

lower Defines lowercase letter characters.

Do not specify any character defined by the cntrl, digit, punct, or space
keyword. The lowercase letters a through z are automatically included in
this set.

alpha Defines all letter characters.

Do not specify any character defined by the cntrl, digit, punct, or
space keyword. Characters defined by the upper and lower keywords are
automatically included in this character class.

digit Defines numeric digit characters.

Only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be specified. The digits 0
through 9 are automatically included in this set.

space Defines white-space characters.

Do not specify any character defined by the upper, lower, alpha, digit,
graph, or xdigit keyword. The space, form-feed, new-line, carriage-return,
tab, and vertical tab characters are automatically included in this set.

cntrl Defines control characters.

Do not specify any character defined by the upper, lower, alpha, digit,
punct, graph, print, or xdigit keyword.

punct Defines punctuation characters.

Do not specify the space character or any character defined by the upper,
lower, alpha, digit, cntrl, or xdigit keywords.

graph Defines printable characters, excluding the space character.

Do not specify any character defined by the cntrl keyword. The characters
defined by the upper, lower, alpha, digit, xdigit, and punct keywords
are automatically included in this character class.

print Defines printable characters, including the space character.

Do not specify any character defined by the cntrl keyword. The space
character and characters defined by the upper, lower, alpha, digit,
xdigit, and punct keywords are automatically included in this character
class.

xdigit Defines hexadecimal digit characters.

Only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be specified. Any character,
however, can be specified for the hexadecimal values for 10 to 15. These
alternate hexadecimal digits are not used by standard conversion routines
when converting digit strings from hexadecimal to numeric quantities.
The numbers 0 through 9 and the letters A through F and a through f are
automatically included in this set.

(continued on next page)

B–28

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–5 (Cont.) LC_CTYPE Category Keywords

Keyword Description

blank Defines blank characters.

The space and horizontal tab characters are included in this character class.
Any characters defined by this statement are automatically included in the
space class.

toupper Defines the mapping of lowercase characters to uppercase characters.

Operands for this keyword consist of character pairs separated by commas.
Each character pair is enclosed in parentheses () and separated from the
next pair by a semicolon (;). The first character in each pair is considered
a lowercase character; the second character is considered an uppercase
character. Only characters defined by the lower and upper keywords can
be specified. If toupper is not specified, a through z is mapped to A through
Z by default.

tolower Defines the mapping of uppercase characters to lowercase characters.

Operands for this keyword consist of character pairs separated by commas.
Each character pair is enclosed in parentheses () and separated from the
next pair by a semicolon (;). The first character in each pair is considered
an uppercase character; the second character is considered a lowercase
character. Only characters defined by the lower and upper keywords can
be specified.

If tolower is not specified, the mapping defaults to the reverse mapping of
the toupper keyword, if specified. If the toupper and tolower keywords
are both omitted, the mapping for each defaults to that of the C locale.

Additional keywords can be provided to define new character classifications. For
example:

charclass vowel
vowel <a>;<e>;<i>;<o>;<u>;<y>

The LC_CTYPE category does not support multicharacter elements (for example,
the German Eszet character is traditionally classified as a lowercase letter). In
proper capitalization of German text, the Eszet character is replaced by the two
characters SS; there is no corresponding uppercase letter. This kind of conversion
is outside the scope of the toupper and tolower keywords.

B–29

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

The following is an example of a possible LC_CTYPE category listed in a locale
definition source file:

LC_CTYPE
#"alpha" is by default "upper" and "lower"
#"alnum" is by definition "alpha" and "digit"
#"print" is by default "alnum", "punct" and the space character
#"graph" is by default "alnum" and "punct"
#"tolower" is by default the reverse mapping of "toupper"
#
upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\

<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\

<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\

<carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\

<form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;\
<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;<SI>;<DLE>;<DC1>;<DC2>;\
<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;<CAN>;;<SUB>;\
<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;

#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\

<dollar-sign>;<percent-sign>;<ampersand>;<asterisk>;\
<apostrophe>;<left-parenthesis>;<right-parenthesis>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<circumflex>;\
<right-square-bracket>;<underline>;<grave-accent>;\
<left-curly-bracket>;<vertical-line>;<tilde>;\
<right-curly-bracket>

#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;\
<a>;;<c>;<d>;<e>;<f>

#
blank <space>;<tab>
#
toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);\
(<z>,<Z>)

#
END LC_CTYPE

B.11.4 LC_MESSAGES Category
The LC_MESSAGES category defines the format for affirmative and negative
system responses. This category begins with the LC_MESSAGES header and
ends with the END LC_MESSAGES trailer.

All operands for the LC_MESSAGES category are defined as strings or extended
regular expressions bounded by double quotation marks ("). These operands are
separated from the keyword they define by one or more blank characters (spaces
or tabs). Two adjacent double quotation marks ("") indicate an undefined value.

B–30

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–6 lists the statement keywords recognized in the LC_MESSAGES
category.

Table B–6 LC_MESSAGES Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the definition of this
category.

If you specify a copy statement, you cannot specify any other keyword.

yesexpr Specifies an extended regular expression that describes the acceptable
affirmative response to a question expecting an affirmative or negative
response.

noexpr Specifies an extended regular expression that describes the acceptable
negative response to a question expecting an affirmative or negative
response.

yesstr Specifies the locale’s equivalent of an acceptable affirmative response.

This string is accessible to applications through the nl_langinfo
subroutine as nl_langinfo (YESSTR). Note that yesstr is likely to
be withdrawn from the XPG4 standard; yesexpr is the recommended
alternative.

nostr Specifies the locale’s equivalent of an acceptable negative response.

This string is accessible to applications through the nl_langinfo
subroutine as nl_langinfo (NOSTR). Note that nostr is likely to
be withdrawn from the XPG4 standard; noexpr is the recommended
alternative.

The following is an example of a possible LC_MESSAGES category listed in a
locale definition source file:

LC_MESSAGES
#
yesexpr "<circumflex><left-square-bracket><y><Y>\
<right-square-bracket>"
noexpr "<circumflex><left-square-bracket><n><N>\
<right-square-bracket>"
yesstr "<y><e><s>"
nostr "<n><o>"
#
END LC_MESSAGES

B.11.5 LC_MONETARY Category
The LC_MONETARY category defines rules and symbols for formatting monetary
numeric information. This category begins with the LC_MONETARY header and
ends with an END LC_MONETARY trailer.

B.11.5.1 LC_MONETARY Keywords
All operands for the LC_MONETARY category keywords are defined as string
or integer values. String values are bounded by double quotation marks (").
All values are separated from the keyword they define by one or more blank
characters (spaces or tabs). Two adjacent double quotation marks ("") indicate an
undefined string value. A negative one (–1) indicates an undefined integer value.

Table B–7 lists the statement keywords recognized in the LC_MONETARY
category.

B–31

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–7 LC_MONETARY Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the
definition of this category.

If you specify a copy statement, you cannot specify any other
keyword.

int_curr_symbol Specifies the string used for the international currency symbol.

The operand for this keyword is a 4-character string†. The first
three characters contain the alphabetic international currency
symbol. The fourth character defines a character separator
for insertion between the international currency symbol and a
monetary quantity.

currency_symbol Specifies the string used for the local currency symbol.

mon_decimal_point Specifies the decimal delimiter string used for formatting
monetary quantities.

mon_thousands_sep Specifies the character separator used for grouping digits to the
left of the decimal delimiter in formatted monetary quantities.

mon_grouping Specifies a string that defines the size of each group of digits in
formatted monetary quantities.

The operand for this keyword consists of a sequence of integers
separated by semicolons. Each integer specifies the number of
digits in a group. The first integer defines the size of the group
immediately to the left of the decimal delimiter. Subsequent
integers define succeeding groups to the left of the previous
group. If the last integer is not –1, it is used to group any
remaining digits. If the last integer is –1, no further grouping
is performed.

A sample interpretation of the mon_grouping statement
follows. Assuming a value of 123456789 to be formatted and a
mon_thousands_sep operand of ’ (single quotation mark), the
following results occur:

mon_grouping Formatted Value

3;-1 123456’789

3 123’456’789

3;2;-1 1234’56’789

3;2 12’34’56’789

positive_sign Specifies the string used to indicate a nonnegative formatted
monetary quantity.

negative_sign Specifies the string used to indicate a negative formatted
monetary quantity.

int_frac_digits Specifies an integer value representing the number of
fractional digits (those after the decimal delimiter) to be
displayed in a formatted monetary quantity using the
int_curr_symbol value.

†The current implementation of DEC C RTL allows more than four characters to be specified.
However, the user should not rely on this fact and use it exactly as specified. The 4-character limit
will be implemented in a future version of DEC C RTL.

(continued on next page)

B–32

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–7 (Cont.) LC_MONETARY Category Keywords

Keyword Description

frac_digits Specifies an integer value representing the number of
fractional digits (those after the decimal delimiter) to be
displayed in a formatted monetary quantity using the
currency_symbol value.

p_cs_precedes Specifies an integer value indicating whether the
int_curr_symbol or currency_symbol string precedes
or follows the value for a nonnegative-formatted monetary
quantity.

The following integer values are recognized:

0 The currency symbol follows the monetary quantity.

1 The currency symbol precedes the monetary quantity.

p_sep_by_space Specifies an integer value indicating whether the
int_curr_symbol or currency_symbol string is separated
by a space from a nonnegative-formatted monetary quantity.

The following integer values are recognized:

0 No space separates the currency symbol from the
monetary quantity.

1 A space separates the currency symbol from the
monetary quantity.

2 A space separates the currency symbol and the
positive_sign string, if adjacent.

n_cs_precedes Specifies an integer value indicating whether the
int_curr_symbol or currency_symbol string precedes or
follows the value for a negative-formatted monetary quantity.

The following integer values are recognized:

0 The currency symbol follows the monetary quantity.

1 The currency symbol precedes the monetary quantity.

n_sep_by_space Specifies an integer value indicating whether the
int_curr_symbol or currency_symbol string is separated
by a space from a negative-formatted monetary quantity.

The following integer values are recognized:

0 No space separates the currency symbol from the
monetary quantity.

1 A space separates the currency symbol from the
monetary quantity.

2 A space separates the currency symbol and the
negative_sign string, if adjacent.

(continued on next page)

B–33

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–7 (Cont.) LC_MONETARY Category Keywords

Keyword Description

p_sign_posn Specifies an integer value indicating the positioning of the
positive_sign string for a nonnegative-formatted monetary
quantity.

The following integer values are recognized:

0 A left_parenthesis and right_parenthesis symbol enclose
both the monetary quantity and the int_curr_symbol
or currency_symbol string.

1 The positive_sign string precedes the quantity and
the int_curr_symbol or currency_symbol string.

2 The positive_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3 The positive_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4 The positive_sign string immediately follows the
int_curr_symbol or currency_symbol string.

n_sign_posn Specifies an integer value indicating the positioning of the
negative_sign string for a negative-formatted monetary
quantity.

The following integer values are recognized:

0 A left_parenthesis and right_parenthesis symbol enclose
both the monetary quantity and the int_curr_symbol
or currency_symbol string.

1 The negative_sign string precedes the quantity and
the int_curr_symbol or currency_symbol string.

2 The negative_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3 The negative_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4 The negative_sign string immediately follows the
int_curr_symbol or currency_symbol string.

B.11.5.2 Monetary Format Variations
You can produce a unique customized monetary format by changing the value of a
single statement. Table B–8 shows the results of using all combinations of defined
values for the p_cs_precedes, p_sep_by_space, and p_sign_posn statements.

Table B–8 Monetary Format Variations

p_sep_by_space = 2 1 0

p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($ 1.25) ($1.25)

p_sign_posn = 1 + $1.25 +$ 1.25 +$1.25

p_sign_posn = 2 $1.25 + $ 1.25+ $1.25+

p_sign_posn = 3 + $1.25 +$ 1.25 +$1.25

p_sign_posn = 4 $ +1.25 $+ 1.25 $+1.25

(continued on next page)

B–34

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–8 (Cont.) Monetary Format Variations

p_sep_by_space = 2 1 0

p_cs_precedes = 0 p_sign_posn = 0 (1.25 $) (1.25 $) (1.25$)

p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$

p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+

p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$

p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+

The following is a sample LC_MONETARY category specified in a locale definition
source file:

LC_MONETARY
#
int_curr_symbol "<U><S><D><space>"
currency_symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping 3
positive_sign "<plus-sign>"
negative_sign "<hyphen>"
int_frac_digits 2
frac_digits 2
p_cs_precedes 1
p_sep_by_space 2
n_cs_precedes 1
n_sep_by_space 2
p_sign_posn 3
n_sign_posn 3
#
END LC_MONETARY

B.11.6 LC_NUMERIC Category
The LC_NUMERIC category defines rules and symbols for formatting
nonmonetary numeric information. This category begins with the LC_NUMERIC
header and ends with the END LC_NUMERIC trailer.

All operands for the LC_NUMERIC category keywords are defined as string
or integer values. String values are bounded by double quotation marks (").
All values are separated from the keyword they define by one or more blank
characters (spaces or tabs). Two adjacent double quotation characters ("")
indicate an undefined string value. A negative one (–1) indicates an undefined
integer value.

Table B–9 lists the statement keywords recognized in the LC_NUMERIC
category.

B–35

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–9 LC_NUMERIC Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the definition
of this category.

If you specify a copy statement, you cannot specify any other
keyword.

decimal_point Specifies the decimal delimiter string used to format nonmonetary
numeric quantities.

This keyword cannot be omitted and cannot be set to the undefined
string value.

thousands_sep Specifies the string separator used for grouping digits to the left of
the decimal delimiter in formatted nonmonetary numeric quantities.

grouping Defines the size of each group of digits in formatted monetary
quantities.

The operand for the grouping keyword consists of a sequence
of integers separated by semicolons. Each integer specifies the
number of digits in a group. The first integer defines the size of the
group immediately to the left of the decimal delimiter. Subsequent
integers define succeeding groups to the left of the previous group.
Grouping is performed for each integer specified for the grouping
keyword. If the last integer is not –1, it is used repeatedly to group
any remaining digits. If the last integer is –1, no more grouping is
performed.

A sample interpretation of the grouping statement follows.
Assuming a value of 123456789 to be formatted and a
thousands_sep operand of ’ (single quotation mark), the following
results occur:

grouping Formatted Value

3;-1 123456’789

3 123’456’789

3;2;-1 1234’56’789

3;2 12’34’56’789

The following is a sample LC_NUMERIC category specified in a locale definition
source file:

LC_NUMERIC
#
decimal_point "<period>"
thousands_sep "<comma>"
grouping <3>
#
END LC_NUMERIC

B.11.7 LC_TIME Category
The LC_TIME category defines rules and symbols for formatting time and date
information. This category begins with the LC_TIME category header and ends
with the END LC_TIME trailer.

B–36

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

All operands for the LC_TIME category keywords are defined as string or integer
values. String values are bounded by double quotation marks ("). All values
are separated from the keyword they define by one or more blank characters
(spaces or tabs). Two adjacent double quotation characters ("") indicate an
undefined string value. Field descriptors, described later in this section, are used
by commands and subroutines that query the LC_TIME category to represent
elements of time and date formats.

B.11.7.1 Keywords
Table B–10 lists the statement keywords recognized in the LC_TIME category.

Table B–10 LC_TIME Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the definition of
this category.

If you specify a copy statement, you cannot specify any other keyword.

abday Defines the abbreviated weekday names corresponding to the %a field
descriptor.

Recognized values consist of seven strings separated by semicolons. The
first string corresponds to the abbreviated name for the first day of the
week (Sun), the second to the abbreviated name for the second day of the
week, and so on.

day Defines the full spelling of the weekday names corresponding to the %A
field descriptor.

Recognized values consist of seven strings separated by semicolons. The
first string corresponds to the full spelling of the name of the first day
of the week (Sunday), the second to the name of the second day of the
week, and so on.

abmon Defines the abbreviated month names corresponding to the %b field
descriptor.

Recognized values consist of 12 strings separated by semicolons. The
first string corresponds to the abbreviated name for the first month of
the year (Jan), the second to the abbreviated name for the second month
of the year, and so on.

mon Defines the full spelling of the month names corresponding to the %B
field descriptor.

Recognized values consist of 12 strings separated by semicolons. The
first string corresponds to the full spelling of the name for the first
month of the year (January), the second to the full spelling of the name
for the second month of the year, and so on.

d_t_fmt Defines the string used for the standard date-and-time format
corresponding to the %c field descriptor. The string can contain any
combination of characters and field descriptors.

d_fmt Defines the string used for the standard date format corresponding to the
%x field descriptor. The string can contain any combination of characters
and field descriptors.

t_fmt Defines the string used for the standard time format corresponding
to the %X field descriptor. The string can contain any combination of
characters and field descriptors.

(continued on next page)

B–37

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–10 (Cont.) LC_TIME Category Keywords

Keyword Description

am_pm Defines the strings used to represent a.m. (before noon) and p.m.
(afternoon) corresponding to the %p field descriptor.

Recognized values consist of two strings separated by semicolons. The
first string corresponds to the a.m. designation, the second string
corresponds to the p.m. designation.

t_fmt_ampm Defines the string used for the standard 12-hour time format that
includes an am_pm value (%p field descriptor).

This statement corresponds to the %r field descriptor. The string can
contain any combination of characters and field descriptors. If the string
is empty, the 12-hour format is not supported by the locale.

era Defines how the years are counted and displayed for each era in a locale,
corresponding to the %E field descriptor modifier.

For each era, there must be one string in the following format:

direction:offset:start_date:end_date:name:format

The variables for the era string format are defined as follows:

• direction — Specifies a minus (-) or a plus (+) character.

The minus character (-) indicates that years count in the negative
direction when moving from the start date to the end date. The plus
character (+) indicates that years count in the positive direction
when moving from the start date to the end date.

• offset — Specifies a number representing the first year of the era
corresponding to the %Ey field descriptor.

• start_date — Specifies the starting date of the era in yyyy/mm/dd
format, where yyyy, mm, and dd are the year, month, and day,
respectively, on the Gregorian calendar.

Years prior to the year A.D. 1 are represented as negative numbers.
For example, an era beginning March 5 in the year 100 B.C. would
be represented as -100/03/05.

• end_date — Specifies the ending date of the era in the same form
used for the start_date variable or one of the two special values -*
or +*.

A -* value indicates that the ending date of the era extends
backward to the beginning of time. A +* value indicates that the
ending date of the era extends forward to the end of time. Therefore,
the ending date can be chronologically before or after the starting
date of the era. For example, the strings for the Christian eras A.D.
and B.C. would be entered, respectively, in the following way:

+:0:0000/01/01:+*:AD:%Ey %EC
+:1:-0001/12/31:-*:BC:%Ey %EC

• name — Specifies a string representing the name of the era that is
substituted for the %EC field descriptor.

• format — Specifies a strftime, strptime, and wcsftime format
string to use when formatting the %EY field descriptor.

This string can contain any strftime, strptime, and wcsftime
format control characters (except %EY) and locale-dependent
multibyte characters.

(continued on next page)

B–38

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–10 (Cont.) LC_TIME Category Keywords

Keyword Description

An era value consists of one string (enclosed in quotes) for each era.
If more than one era is specified, each era string is separated by a
semicolon (;).

era_d_fmt Defines the string used to represent the date in alternate-era format
corresponding to the %Ex field descriptor. The string can contain any
combination of characters and field descriptors.

era_t_fmt Defines the locale’s alternative time format as represented by the %EX
field descriptor for strftime, strptime, and wcsftime.

era_d_t_fmt Defines the locale’s alternative date-and-time format as represented by
the %Ec field descriptor for strftime, strptime, and wcsftime.

alt_digits Defines alternate strings for digits corresponding to the %O field
descriptor.

Recognized values consist of a group of strings separated by semicolons.
The first string represents the alternate string for 0 (zero), the second
string represents the alternate string for 1, and so on. You can specify a
maximum of 100 alternate strings.

B.11.7.2 Field Descriptors
The LC_TIME locale definition source file uses field descriptors to represent
elements of time and date formats. You can combine these field descriptors to
create other field descriptors or to create time and date format strings. When
used in format strings that contain field descriptors and other characters, field
descriptors are replaced by their current values. All other characters are copied
without change. Table B–11 lists the field descriptors used by commands and
subroutines that query the LC_TIME category for time formatting.

Table B–11 LC_TIME Locale Field Descriptors

Field
Descriptor Meaning

%a Represents the abbreviated weekday name (for example, Sun) defined by the
abday statement.

%A Represents the full weekday name (for example, Sunday) defined by the day
statement.

%b Represents the abbreviated month name (for example, Jan) defined by the
abmon statement.

%B Represents the full month name (for example, January) defined by the
month statement.

%c Represents the date-and-time format defined by the d_t_fmt statement.

%C Represents the century as a decimal number (00 to 99).

%d Represents the day of the month as a decimal number (01 to 31).

%D Represents the date in %m/%d/%y format (for example, 01/31/91).

%e Represents the day of the month as a decimal number (1 to 31).

If the day of the month is not a 2-digit number, the leading digit is filled
with a space character.

(continued on next page)

B–39

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–11 (Cont.) LC_TIME Locale Field Descriptors

Field
Descriptor Meaning

%Ec Specifies the alternate date-and-time representation for the locale.

%EC Specifies the name of the base year (period) in the locale’s alternate
representation.

%Ex Specifies the alternate date representation for the locale.

%Ey Specifies the offset from %EC (year only) in the locale’s alternate
representation.

%EY Specifies the full alternate year representation.

%h Represents the abbreviated month name (for example, Jan) defined by
the abmon statement. This field descriptor is a synonym for the %b field
descriptor.

%H Represents the 24-hour clock hour as a decimal number (00 to 23).

%I Represents the 12-hour clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Specifies a new-line character.

%Od Specifies the day of the month by using the locale’s alternate numeric
symbols.

%Oe Specifies the day of the month by using the locale’s alternate numeric
symbols.

%OH Specifies the hour (24-hour clock) by using the locale’s alternate numeric
symbols.

%OI Specifies the hour (12-hour clock) by using the locale’s alternate numeric
symbols.

%Om Specifies the month by using the locale’s alternate numeric symbols.

%OM Specifies the minutes by using the locale’s alternate numeric symbols.

%OS Specifies the seconds by using the locale’s alternate numeric symbols.

%OU Specifies the week number of the year (with Sunday as the first day of the
week) by using the locale’s alternate numeric symbols.

%Ow Specifies the weekday as a number in the locale’s alternate representation
(Sunday = 0).

%OW Specifies the week number of the year (with Monday as the first day of the
week) by using the locale’s alternate numeric symbols.

%Oy Specifies the year (offset from %C) using the locale’s alternate numeric
symbols.

%p Represents the a.m. or p.m. string defined by the am_pm statement.

%r Represents the 12-hour clock time with a.m./p.m. notation as defined by the
t_fmt_ampm statement.

%S Represents the seconds of the minute as a decimal number (00 to 59).

%t Specifies a tab character.

%T Represents 24-hour clock time in the format %H:%M:%S (for example,
16:55:15).

(continued on next page)

B–40

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

Table B–11 (Cont.) LC_TIME Locale Field Descriptors

Field
Descriptor Meaning

%U Represents the week of the year as a decimal number (00 to 53).

Sunday, or its equivalent as defined by the day statement, is considered the
first day of the week for calculating the value of this field descriptor.

%w Represents the day of the week as a decimal number (0 to 6).

Sunday, or its equivalent as defined by the day statement, is considered to
be 0 (zero) for calculating the value of this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53).

Monday, or its equivalent as defined by the day statement, is considered the
first day of the week for calculating the value of this field descriptor.

%x Represents the date format defined by the d_fmt statement.

%X Represents the time format defined by the t_fmt statement.

%y Represents the year of the century (00 to 99).

%Y Represents the year as a decimal number (for example, 1989).

%% Specifies a % (percent sign) character.

B.11.7.3 Sample Locale Definition
The following is a sample LC_TIME category specified in a locale definition source
file:

LC_TIME
#
#Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\

"<T><h><u>";"<F><r><i>";"<S><a><t>"

#Full weekday names (%A)
day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\

"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
<S><a><t><u><r><d><a><y>"

#Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e>";"<M><a><r>";"<A><p><r>";\

"<M><a><y>";"<J><u><n>";"<J><u><l>";"<A><u><g>";\
<S><e><p>";"<O><c><t>";"<N><o><v>";"<D><e><c>"

#Full month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\

"<M><a><r><c><h>";"<A><p><r><i><l>";"<M><a><y>";\
<J><u><n><e>";"<J><u><l><y>";"<A><u><g><u><s><t>";\
"<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\
<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"

#Date-and-time format (%c)
#Note that for improved readability, this section uses actual
#characters, rather than symbolic names, and is inconsistent with
#the other sections in this example. This is bad form.
#In practice, symbolic names should be used.
d_t_fmt "%a %b %d %H:%M:%S %Y"
#
#Date format (%x)
d_fmt "%m/%d/%y"
#
#Time format (%X)
t_fmt "%H:%M:%S"

B–41

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.11 Locale File Format

#
#Equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"
#
#12-hour time format (%r)
#Note that for improved readability, this section uses actual
#characters, rather than symbolic names, and is inconsistent with
#the other sections in this example. This is bad form.
#In practice, symbolic names should be used.
t_fmt_ampm "%I:%M:%S %p"
#
era "+:0:0000/01/01:+*:AD:%Ey %EC";\
"+:1:-0001/12/31:-*:BC:%Ey %EC"

era_d_fmt ""
alt_digits "<0><t><h>";"<1><s><t>";"<2><n><d>";"<3><r><d>";\

"<4><t><h>";"<5><t><h>";"<6><t><h>";"<7><t><h>";\
"<8><t><h>";"<9><t><h>";"<1><0><t><h>"

#
END LC_TIME

B.12 Character Set Description (Charmap) File
This section describes the character set description file, or charmap file. The
charmap file defines character symbols as character encodings and is the source
file for a coded character set, or codeset.

B.12.1 Portable Character Set
All supported codesets have the Portable Character Set (PCS) as a proper subset.
The PCS consists of the following character symbols (listed by their standardized
symbolic names) and their hexadecimal encodings. See Table B–12.

Table B–12 Portable Character Set

Symbol Name Hexadecimal Encoding

<NUL> \x00

<alert> \x07

<backspace> \x08

<tab> \x09

<newline> \x0A

<vertical-tab> \x0B

<form-feed> \x0C

<carriage-return> \x0D

<space> \x20

<exclamation-mark> \x21

<quotation-mark> \x22

<number-sign> \x23

<dollar-sign> \x24

<percent> \x25

<ampersand> \x26

(continued on next page)

B–42

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.12 Character Set Description (Charmap) File

Table B–12 (Cont.) Portable Character Set

Symbol Name Hexadecimal Encoding

<apostrophe> \x27

<left-parenthesis> \x28

<right-parenthesis> \x29

<asterisk> \x2A

<plus-sign> \x2B

<comma> \x2C

<hyphen> \x2D

<period> \x2E

<slash> \x2F

<zero> \x30

<one> \x31

<two> \x32

<three> \x33

<four> \x34

<five> \x35

<six> \x36

<seven> \x37

<eight> \x38

<nine> \x39

<colon> \x3A

<semi-colon> \x3B

<less-than> \x3C

<equal-sign> \x3D

<greater-than> \x3E

<question-mark> \x3F

<commercial-at> \x40

<A> \x41

 \x42

<C> \x43

<D> \x44

<E> \x45

<F> \x46

<G> \x47

<H> \x48

<I> \x49

<J> \x4A

<K> \x4B

<L> \x4C

(continued on next page)

B–43

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.12 Character Set Description (Charmap) File

Table B–12 (Cont.) Portable Character Set

Symbol Name Hexadecimal Encoding

<M> \x4D

<N> \x4E

<O> \x4F

<P> \x50

<Q> \x51

<R> \x52

<S> \x53

<T> \x54

<U> \x55

<V> \x56

<W> \x57

<X> \x58

<Y> \x59

<Z> \x5A

<left-bracket> \x5B

<backslash> \x5C

<right-bracket> \x5D

<circumflex> \x5E

<underscore> \x5F

<grave-accent> \x60

<a> \x61

 \x62

<c> \x63

<d> \x64

<e> \x65

<f> \x66

<g> \x67

<h> \x68

<i> \x69

<j> \x6A

<k> \x6B

<l> \x6C

<m> \x6D

<n> \x6E

<o> \x6F

<p> \x70

<q> \x71

<r> \x72

(continued on next page)

B–44

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.12 Character Set Description (Charmap) File

Table B–12 (Cont.) Portable Character Set

Symbol Name Hexadecimal Encoding

<s> \x73

<t> \x74

<u> \x75

<v> \x76

<w> \x77

<x> \x78

<y> \x79

<z> \x7A

<left-brace> \x7B

<vertical-line> \x7C

<right-brace> \x7D

<tilde> \x7E

B.12.2 Components of a Charmap File
A charmap file has the following components:

• An optional special symbolic name declarations section

Each declaration in this section consists of a special symbolic name, followed
by one or more space or tab characters, and a value. The following list
describes the special symbolic names that you can include in the declarations
section:

<code_set_name>

Specifies the name of the codeset for which the charmap file is defined.
This value determines the value returned by the nl_langinfo (CODESET)
subroutine. If <code_set_name> is not declared, the name for the Portable
Character Set is used.

<mb_cur_max>

Specifies the maximum number of bytes in a character for the codeset.
Valid values are 1 to 4. The default value is 1.

<mb_cur_min>

Specifies the minimum number of bytes in a character for the codeset.
Since all supported codesets have the Portable Character Set as a proper
subset, this value must be 1.

<escape_char>

Specifies the escape character that indicates encodings in hexadecimal or
octal notation. The default value is a backslash (\).

<comment_char>

Specifies the character used to indicate a comment within a charmap file.
The default value is the number sign (#).

• The CHARMAP section header

B–45

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.12 Character Set Description (Charmap) File

This header marks the beginning of the section that associates character
symbols with encodings.

• Mapping statements for characters in the codeset

Each statement specifies a symbolic name for a character and the associated
encoding for that character. A mapping statement has the following format:

<char_symbol> encoding

A symbolic name begins with the left angle-bracket (<) character and ends
with the right angle-bracket (>) character. For char_symbol (the name
between < and >), you can use any characters from the Portable Character
Set, except for control and space characters. You can use a > in char_symbol;
if you do, precede all > characters except the last one with the escape
character (as specified by the <escape_char> special symbolic name).

An encoding is specified as one or more character constants, with the
maximum number of character constants specified by the <mb_cur_max>
special symbolic name. The encoding may be specified as decimal, octal, or
hexadecimal constants with the following formats:

• Decimal constant: \dnn or \dnnn, where n is any decimal digit

• Octal constant: \nn or \nnn, where n is any octal digit

• Hexadecimal constant: \xnn, where n is any hexadecimal digit

The following are sample character symbol definitions:

<A> \d65 #decimal constant
 \x42 #hexadecimal constant
<j10101> \x81\xA1 #multiple hexadecimal constants

You can also define a range of symbolic names and corresponding encoded
values, where the nonnumeric prefix for each symbolic name is common, and
the numeric portion of the second symbolic name is equal to or greater than
the numeric portion of the first symbolic name. In this format, a symbolic
name value consists of zero or more nonnumeric characters followed by an
integer of one or more decimal digits. This format defines a series of symbolic
names. For example, the string <j0101>...<j0104> is interpreted as the
symbolic names <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

In statements defining ranges of symbolic names, the specified encoded value
is the value for the first symbolic name in the range. Subsequent symbolic
names have encoded values in increasing order. Consider the following
sample statement:

<j0101>...<j0104> \d129\d254

This sample statement is interpreted as follows:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

You cannot assign multiple encodings to one symbolic name, but you can
create multiple names for one encoded value because some characters have
several common names. For example, the . character is called a period in
some parts of the world, and a full stop in others. You can specify both names
in the charmap. For example:

B–46

DEC C XPG4 Localization Utilities—OpenVMS Version 6.2 Feature
B.12 Character Set Description (Charmap) File

<period> \x2e
<full-stop> \x2e

Any comments must begin with the character specified by the <comment_char>
special symbolic name. When an entire line is a comment, you must specify
the <comment_char> in the first column of the line.

• The END CHARMAP section trailer

This trailer indicates the end of character map statements.

The following is a portion of a sample charmap file:

CHARMAP
<code_set_name> "ISO8859-1"
<mb_cur_max> 1
<mb_cur_min> 1
<escape_char> \
<comment_char> #

<NUL> \x00
<SOH> \x01
<STX> \x02
<ETX> \x03
<EOT> \x04
<ENQ> \x05
<ACK> \x06
<alert> \x07
<backspace> \x08
<tab> \x09
<newline> \x0a
<vertical-tab> \x0b
<form-feed> \x0c
<carriage-return> \x0d
END CHARMAP

B–47

C
SCSI as a VMScluster Storage

Interconnect—OpenVMS Alpha Version 6.2
Feature

One of the benefits of VMScluster systems is that multiple computers can
simultaneously access storage devices connected to a VMScluster storage
interconnect. Together, these systems provide high performance and highly
available access to storage.

This appendix describes how VMScluster systems support the Small Computer
Systems Interface (SCSI) as a storage interconnect. Multiple Alpha computers,
also referred to as hosts or nodes, can simultaneously access SCSI disks
over a SCSI interconnect. A SCSI interconnect, also called a SCSI bus, is an
industry-standard interconnect that supports one or more computers, peripheral
devices, and interconnecting components.

The discussions in this chapter assume that you already understand the concept
of sharing storage resources in a VMScluster environment. VMScluster concepts
and configuration requirements are described in the following VMScluster
documentation:

• Guidelines for VMScluster Configurations

• VMScluster Systems for OpenVMS

• OpenVMS Cluster Software Software Product Description (SPD 29.78.xx)

This appendix includes two primary parts:

• Section C.1 through Section C.6.6 describe the fundamental procedures and
concepts that you would need to plan and implement a SCSI VMScluster
system.

• Section C.7 and its subsections provide additional technical detail and
concepts; these sections can be seen as containing supplementary information
about SCSI VMScluster systems that would typically be located in an
appendix.

C.1 Conventions Used in This Appendix
Certain conventions are used throughout this appendix to identify the ANSI
Standard and for elements in figures.

C–1

C.1.1 SCSI ANSI Standard
VMScluster systems configured with the SCSI interconnect must use standard
SCSI–2 components. The SCSI–2 components supported must be compliant with
the architecture defined in the American National Standards Institute (ANSI)
Standard SCSI–2. This standard defines extensions to the SCSI–1 standard. For
ease of discussion, this appendix uses the term SCSI or SCSI–2 to refer to the
SCSI–2 implementation as specified in the ANSI Standard SCSI–2 document
X3T9.2, Rev. 10L.

C.1.2 Symbols Used in Figures
Figure C–1 is a key to the symbols used in figures throughout this appendix.

Figure C–1 Conventions: Key to Symbols Used in Figures

= Terminator

= Disabled Terminator

= Internal Adapter

T

T

A

A

Ctrlr

= Disk

= Tape

= Bus Isolator (for example DWZZA)

= Strorage Controller (for example HSZ40)

= Add−on Adapter

= Single−ended SCSI Bus

= Differential SCSI Bus

ZK−7759A−GE

C.2 Accessing SCSI Storage
In VMScluster configurations, multiple VAX and Alpha hosts can directly access
SCSI devices in any of the following ways:

• CI interconnect with HSJ or HSC controllers

• Digital Storage Systems Interconnect (DSSI) with HSD controller

• SCSI adapters directly connected to VAX or Alpha systems

You can also access SCSI devices indirectly using the OpenVMS MSCP server.

The following sections describe single-host and multiple-host access to SCSI
storage devices.

C.2.1 Single-Host SCSI Access in VMScluster Systems
Prior to OpenVMS Version 6.2, VMScluster systems provided support for SCSI
storage devices connected to a single host using an embedded SCSI adapter, an
optional external SCSI adapter, or a special-purpose RAID (redundant array of
independent disks) controller. Only one host could be connected to a SCSI bus.

C–2

C.2.2 Multiple-Host SCSI Access in VMScluster Systems
Beginning with OpenVMS Alpha Version 6.2, multiple Alpha hosts in a
VMScluster system can be connected to a single SCSI bus to share access to
SCSI storage devices directly. This capability allows you to build highly available
servers using shared access to SCSI storage.

Figure C–2 shows a VMScluster configuration that uses a SCSI interconnect
for shared access to SCSI devices. Note that another interconnect (for example,
a local area network [LAN]) is required for host-to-host VMScluster (System
Communications Architecture [SCA]) communications.

Figure C–2 Highly Available Servers for Shared SCSI Access

SCSI bus

LAN

ZK−7479A−GE

T T

Shared SCSI Storage

Client

Server Server

Client Client

T = Terminator

You can build a three-node VMScluster system using the shared SCSI bus as
the storage interconnect, or you can include shared SCSI buses within a larger
VMScluster configuration. A quorum disk can be used on the SCSI bus to
improve the availability of two- or three-node configurations. Host-based RAID
(including host-based shadowing) and the MSCP server are supported for shared
SCSI storage devices.

C–3

C.3 Configuration Requirements and Hardware Support
This section lists the configuration requirements and supported hardware for
SCSI VMScluster systems for OpenVMS Version 7.0.

C.3.1 Configuration Requirements
Table C–1 shows the requirements and capabilities of the basic software and
hardware components you can configure in a SCSI VMScluster system.

Table C–1 Requirements for SCSI VMScluster Configurations

Requirement Description

Software All Alpha hosts sharing access to storage on a SCSI interconnect must be
running:

• OpenVMS Alpha Version 6.2 or later

• VMScluster Software for OpenVMS Alpha Version 6.2 or later

Hardware Table C–2 lists the supported hardware components for SCSI VMScluster
systems. See also Section C.7.7 for information about other hardware devices
that might be used in a SCSI VMScluster configuration.

SCSI tape, floppies,
and CD–ROM drives

You cannot configure SCSI tape drives, floppy drives, or CD–ROM drives on
multiple-host SCSI interconnects. If your configuration requires SCSI tape,
floppy, or CD–ROM drives, configure them on single-host SCSI interconnects.
Note that SCSI tape, floppy, or CD–ROM drives may be MSCP or TMSCP
served to other hosts in the VMScluster configuration.

Maximum hosts on a
SCSI bus

You can connect up to three hosts on a multiple-host SCSI bus. You can
configure any mix of the hosts listed in Table C–2 on the same shared SCSI
interconnect.

Maximum SCSI
buses per host

You can connect each host to a maximum of three multiple-host SCSI buses.
The number of nonshared (single-host) SCSI buses that can be configured is
limited only by the number of available slots on the host bus.

Host-to-host
communication

All members of the cluster must be connected by an interconnect that can be
used for host-to-host (SCA) communication; for example, DSSI, CI, Ethernet,
or FDDI.

Host-based RAID
(including host-based
shadowing)

Supported in SCSI VMScluster configurations.

SCSI device naming The name of each SCSI device must be unique throughout the VMScluster
system. When configuring devices on systems that include a multiple-host
SCSI bus, adhere to the following requirements:

• A host can have, at most, one controller attached to a particular SCSI
interconnect.

• All host controllers attached to a given SCSI interconnect must have the
same OpenVMS device name (for example, PKA0).

• Each system attached to a SCSI interconnect must have the same
nonzero allocation class. Each disk device name (for example, DKB100),
whether or not on a shared SCSI bus, must be unique within an
allocation class. Refer to Section C.6.2 for more information.

C–4

C.3.2 Hardware Support
Table C–2 shows the supported hardware components for SCSI VMScluster
systems; it also lists the minimum required revision for these hardware
components. That is, for any component, you must use either the version
listed in Table C–2 or a subsequent version.

The SCSI interconnect configuration and all devices on the SCSI interconnect
must meet the requirements defined in the ANSI Standard SCSI–2 document
and the requirements described in this appendix.)

See also Section C.7.7 for information about other hardware devices that might
be used in a SCSI VMScluster configuration.

Table C–2 Supported Hardware for SCSI VMScluster Systems

Component Supported Item
Minimum Version
or H/W Revision How to Find Your Version

Hosts AlphaServer 400 See footnote1 Console SHOW VERSION
command

AlphaServer 1000 See footnote1

AlphaServer 2000 See footnote1

AlphaServer 2100 See footnote1

AlphaStation 200 See footnote1

AlphaStation 250 See footnote1

AlphaStation 400 See footnote1

AlphaStation 600 See footnote1

Disks3 RZ26 n/a Console SHOW DEVICE
command

RZ26L 442D

RZ26N n/a

RZ28 442D

RZ28B 0006

RZ28M n/a

RZ29B 0006

Controller HSZ40–B 2.5 Console SHOW DEVICE
command

Bus Isolators DWZZA–AA E01 Examine product sticker

DWZZA–VA F01

1The minimum revision of this component for SCSI VMScluster configurations is the version included
in the Version 3.2 Firmware Kit, on the May, 1995 CD–ROM. The revision number is listed in the
Firmware Release Notes Overview that accompanies that Firmware Kit.
3Both wide and narrow variants have been qualified. However, the KZPAA is a narrow-mode adapter
and does not enable wide-mode operation.

(continued on next page)

C–5

Table C–2 (Cont.) Supported Hardware for SCSI VMScluster Systems

Component Supported Item
Minimum Version
or H/W Revision How to Find Your Version

Adapters2 Integral system adapter N/A

KZPAA (PCI to SCSI)

2You can configure other types of SCSI adapters in a system for single-host access to local storage.

C.4 SCSI Interconnect Concepts
The SCSI standard defines a set of rules governing the interactions between
initiators (typically, host systems) and SCSI targets (typically, peripheral devices).
This standard allows the host to communicate with SCSI devices (such as disk
drives, tape drives, printers, and optical media devices) without having to manage
the device-specific characteristics.

The following sections describe the SCSI standard and the default modes of
operation. The discussions also describe some optional mechanisms you can
implement to enhance the default SCSI capabilities in areas such as capacity,
performance, availability, and distance.

C.4.1 Number of Devices
The SCSI bus is an I/O interconnect that can support up to eight devices. The
devices can include host adapters, peripheral controllers, and discrete peripheral
devices such as disk or tape drives. The devices are addressed by a unique
ID number from 0 through 7. You assign the device IDs by entering console
commands, or by setting jumpers or switches.

To increase the number of devices on the SCSI interconnect, some devices
implement a second level of device addressing using logical unit numbers (LUNs).
For each device ID, up to eight LUNs (0–7) can be used to address a single SCSI
device as multiple units. The maximum number of LUNs per device ID is eight.

Note

When connecting devices to a SCSI interconnect, each device on the
interconnect must have a unique device ID. You may need to change
a device’s default device ID to make it unique. For information about
setting a device’s ID, refer to the owner’s guide for the device.

C.4.2 Performance
The default mode of operation for all SCSI devices is 8-bit asynchronous mode.
This mode, sometimes referred to as narrow mode, transfers 8 bits of data from
one device to another. Each data transfer is acknowledged by the device receiving
the data. Because the performance of the default mode is limited, the SCSI
standard defines optional mechanisms to enhance performance. The following list
describes two optional methods for achieving higher performance:

• Increase the amount of data that is transferred in parallel on the
interconnect. The 16-bit and 32-bit wide options allow a doubling or
quadrupling of the data rate, respectively. Because the 32-bit option is
seldom implemented, this appendix discusses only 16-bit operation and refers
to it using the term wide.

C–6

• Use synchronous data transfer. In synchronous mode, multiple data transfers
can occur in succession, followed by an acknowledgment from the device
receiving the data. The standard defines a Slow Mode (also called Standard
Mode) and a Fast Mode for synchronous data transfers:

In Standard Mode, the interconnect achieves up to 5 million transfers per
second.

In Fast Mode, the interconnect achieves up to 10 million transfers per
second.

Because all communications on a SCSI interconnect occur between two devices
at a time, each pair of devices must negotiate to determine which of the optional
features they will use. Most, if not all, SCSI devices implement one or more of
these options.

Table C–3 shows data rates when using 8- and 16-bit transfers with Standard
and Fast synchronous modes.

Table C–3 Maximum Data Transfer Rates in Megabytes per Second

Mode Narrow (8-Bit) Wide (16-Bit)

Standard 5 10

Fast 10 20

C.4.3 Distance
The maximum length of the SCSI interconnect is determined by the signaling
method used in the configuration and, in some cases, by the data transfer rate.
There are two types of electrical signaling for SCSI interconnects:

• Single-ended signaling

The single-ended method is the most common and the least expensive. It
can operate in either Standard or Fast Mode. The mode used determines the
length of the interconnect, as follows:

When standard transfers are in use, the interconnect can be up to 6
meters in length 1

When fast transfers are in use, the interconnect can be up to 3 meters in
length

• Differential signaling

This method provides higher signal integrity, thereby allowing a SCSI bus to
span distances of up to 25 meters. Differential signaling allows both standard
and fast data transfers regardless of the length of the SCSI bus.

When considering cable distance issues, be sure to include both internal and
external cabling in your calculations. Table C–5 lists the internal cable lengths
for various configurations.

1 See the note following Table C–4 for information about the maximum length
recommended by Digital.

C–7

Table C–4 summarizes how the type of signaling method affects SCSI
interconnect distances.

Table C–4 Maximum SCSI Interconnect Distances

Signaling Technique Rate of Data Transfer Maximum Cable Length

Single ended Standard 6 meters†

Single ended Fast 3 meters

Differential Standard or Fast 25 meters

†The SCSI standard specifies a maximum length of 6 meters for this type of interconnect. However,
Digital recommends that, where possible, you limit the cable length to 4 meters to ensure the highest
level of data integrity.

A DWZZA converter is a single-ended to differential converter that you can
use to connect single-ended and differential SCSI interconnect segments. The
differential segments are useful for the following:

• Overcoming the distance limitations of the single-ended interconnect

• Allowing communication between single-ended and differential devices

Because the DWZZA is strictly a signal converter, you do not need to assign a
SCSI device ID to it. You can configure a maximum of two DWZZA converters in
the path between any two hosts.

C.4.4 Cabling and Termination
Each single-ended and differential SCSI interconnect must have two terminators,
one at each end. The specified maximum interconnect lengths are measured from
terminator to terminator.

The interconnect terminators are powered from the SCSI interconnect line called
TERMPWR. Each Digital host adapter and enclosure supplies the TERMPWR
interconnect line, so that as long as one host or enclosure is powered on, the
interconnect remains terminated.

Devices attach to the interconnect by short cables (or etch), called stubs. Stubs
must be short in order to maintain the signal integrity of the interconnect. The
maximum stub lengths allowed are determined by the type of signaling used by
the interconnect, as follows:

• For single-ended interconnects, the maximum stub length is .1 meters

• For differential interconnects, the maximum stub length is .2 meters

Additionally, the minimum distance between stubs on a single-ended interconnect
is .3 meters. Refer to Figure C–3 for an example of this configuration.

Note

Terminate single-ended and differential buses individually, even when
using DWZZA converters.

When you are extending the SCSI bus beyond an existing terminator, it is
necessary to disable or remove that terminator.

C–8

Figure C–3 Maximum Stub Lengths

ZK−7480A−GE

.1 m
maximum minimum

.2 m
maximum

25 m maximum3 m maximum, if fast
6 m maximum, if slow

DifferentialSingle−ended

T T

T = Terminator

T T

.3 m

= Bus Isolator (single ended to differential version is shown)

When using the host system’s internal SCSI adapter, you must configure the
system at the end of the single-ended SCSI segment. This is because the internal
SCSI cable lengths exceed the allowable SCSI stub length. However, host systems
are not required to be configured at the ends of the bus segment when an add-on
SCSI adapter is used.

See Table C–5 for information about internal SCSI cable lengths.

C.5 SCSI VMScluster Hardware Configurations
The hardware configuration that you choose depends on a combination of factors:

• Your computing needs—for example, continuous availability, or the ability to
disconnect or remove a system from your SCSI VMScluster system

• Your environment—for example, the physical attributes of your computing
facility

• Your resources—for example, your capital equipment or the available PCI
slots

You can connect up to three hosts on a shared SCSI interconnect. Each host can
be connected to one, two, or three shared SCSI interconnects. The number of
nonshared SCSI buses that can be configured is limited only by the number of
available slots on the host bus.

The following sections provide guidelines for building SCSI configurations and
describe potential configurations that might be suitable for various sites.

C.5.1 Systems Using Add-On SCSI Adapters
Shared SCSI bus configurations may use optional add-on KZPAA adapters. These
adapters are generally easier to configure than internal adapters because they do
not consume any SCSI cable length. Additionally, when you configure systems
using KZPAA adapters for the shared SCSI bus, the internal adapter is available
for connecting devices that cannot be shared (for example, SCSI tape, floppy, and
CD–ROM drives).

When using KZPAA adapters, storage is configured using BA350, BA353, or
HSZ40 StorageWorks enclosures. These enclosures are suitable for all data disks,
and for shared VMScluster system and quorum disks. By using StorageWorks
enclosures, it is possible to shut down individual systems without losing access to
the disks.

C–9

The following sections describe some SCSI VMScluster configurations that take
advantage of add-on adapters.

C.5.1.1 Building a Basic System Using Add-On SCSI Adapters
Figure C–4 shows a logical representation of a basic configuration using SCSI
adapters and a StorageWorks enclosure. This configuration has the advantage of
being relatively simple, while still allowing the use of tapes, floppies, CD–ROMs,
and disks with nonshared files (for example, page files and swap files) on internal
buses. Figure C–5 shows this type of configuration using AlphaServer 1000
systems and a BA350 enclosure.

The BA350 enclosure uses 0.9 meters of SCSI cabling, and this configuration
typically uses two 1-meter SCSI cables. (A BA353 enclosure also uses 0.9 meters,
with the same total cable length.) The resulting total cable length of 2.9 meters
allows Fast SCSI Mode operation.

Although the shared BA350 storage enclosure is theoretically a single point
of failure, this basic system is a very reliable SCSI VMScluster configuration.
When the quorum disk is located in the BA350, you can shut down either of
the AlphaStation systems independently while retaining access to the VMScluster
system. However, you cannot physically remove the AlphaStation system, because
that would leave an unterminated SCSI bus.

If you need the ability to remove a system while your VMScluster system
remains operational, build your system using DWZZA converters, as described in
Section C.5.1.2. If you need continuous access to data if a SCSI interconnect fails,
you should do both of the following:

• Add a redundant SCSI interconnect with another BA350 shelf.

• Shadow the data.

In Figure C–4 and the other logical configuration diagrams in this appendix, the
required network interconnect is not shown. (See Figure C–1 for the key to the
symbols used in the following figures.)

Figure C–4 Conceptual View: Basic SCSI System

ZK−7501A−GE

T

A

T
A

T

T

A

T
A

T T

System
Enclosure

StorageWorks
Enclosure

System
Enclosure

C–10

Figure C–5 Sample Configuration: Basic SCSI System Using AlphaServer 1000, KZPAA
Adapter, and BA350 Enclosure

ZK−7449A−GE

0

1

2

3

4

5

BN21H−01BN21H−01

BA350

KZPAA−AA KZPAA−AA

6

Network
Interconnect

C.5.1.2 Building a System That Allows a Server to Be Removed (Using DWZZA Converters)
The capability of removing an individual system from your SCSI VMScluster
configuration (for maintenance or repair) while the other systems in the cluster
remain active gives you an especially high level of availability. To have this
capability, use a configuration that includes a DWZZA converter (a SCSI bus
isolator). DWZZA converters provide additional SCSI bus length capabilities,
because the DWZZA allows you to connect a single-ended device to a bus that
uses differential signaling. As described in Section C.4.3, SCSI bus configurations
that use differential signaling may span distances up to 25 meters, whereas
single-ended configurations can span only 3 meters when Fast Mode data transfer
is used.

DWZZA converters are available as standalone, desktop components or as
StorageWorks compatible building blocks. DWZZA converters can be used with
the internal SCSI adapter or the optional KZPAA adapters.

Figure C–6 shows a logical view of a configuration that uses internal SCSI
adapters and a pair of bus isolators, and Figure C–7 shows a physical view of the
same configuration using two AlphaServer 1000 systems. In configurations such
as those shown in Figure C–6 and Figure C–7, you can also remove either of the
AlphaServer enclosures, because the SCSI bus remains terminated.

In each of these figures, note that a single-ended SCSI bus is used to connect
a DWZZA to the AlphaServer systems, and another single-ended bus is used to
connect the second DWZZA to the disks. The two DWZZAs are connected to each
other by a differential bus. The differential signaling is necessary because the
cabling between the DWZZA and the AlphaServer systems consumes virtually
all of the 3 meters of single-ended cabling that is allowed for Fast Mode data
transfer.

(See Figure C–1 for the key to the symbols used in the following figures.)

C–11

Figure C–6 Conceptual View: SCSI System with Bus Isolator (DWZZA Converter)

ZK−7481A−GE

T

A

A

T

A

A

T T

System
Enclosure

System
Enclosure

T

TT

T

T

T T

StorageWorks
Enclosure

T

TT

T

Figure C–7 Sample Configuration: SCSI System with DWZZA Converter, AlphaServer 1000
Systems, and BA350 Enclosure

BA350

DWZZA−AA

0

1

2

3

4

5

Network
Interface

H879

BN23F−0B

BN21L−0E

BN23F−0B

BN21L−0E

BN21P−0B

DWZZA−AA

H879

ZK−7775A−GE

BN21K
or

BN21L

DWZZA−VA
with
H885
and

H879

C.5.1.3 Building a System That Allows Additional Features and Performance Using an HSZ40
Controller

The HSZ40 is a high-performance differential SCSI controller that can be
connected to a differential SCSI bus, and supports up to 42 SCSI devices. An
HSZ40 may be configured on a shared SCSI bus that includes DWZZA single-
ended to differential converters. Disk devices configured on HSZ40 controllers
can be combined into RAID sets to further enhance performance and provide high
availability.

C–12

Figure C–8 shows a logical view of a configuration that uses differential SCSI
controllers, and Figure C–9 shows a physical example of the same configuration
using an HSZ40 in an SW300 enclosure. Note that the DWZZA is not needed in
the StorageWorks enclosure in this type of configuration, because the HSZ40 is
compatible with differential signaling.

(See Figure C–1 for the key to the symbols used in the following figures.)

Figure C–8 Conceptual View: System Using Differential Controllers

ZK−7510A−GE

T

A

A

T

A

A

T T

System
Enclosure

System
Enclosure

T

TT

T

T T

Ctrlr

T

T

T

StorageWorks
Enclosure

C–13

Figure C–9 Sample Configuration: System Using HSZ40 Controller in an SW300 Enclosure

DWZZA−AA

DWZZA−AA

ZK−7776A−GE

BN21K−01

H885
and

H879

SW300
with

 HSZ40

Network

BN23F−0B

BN21L−0E

BN23F−0B

BN21L−0E

BN21P−0B

FR−PCXAR−WJ

KAPAA−AA

FR−PCXAR−WJ

KAPAA−AA

Interconnect

or
BN21L−01

C.5.1.4 Building a System with More Enclosures or Greater Separation
If you need additional enclosures, or if the needs of your site require a greater
physical separation between systems, you can use a configuration in which
DWZZAs are placed between systems with single-ended signaling and a
differential-cabled SCSI bus.

Figure C–10 shows a logical view of a configuration that uses additional
DWZZAs to increase the potential physical separation (or to allow for
additional enclosures), and Figure C–11 shows a sample representation of this
configuration.

C–14

Figure C–10 Conceptual View: Using DWZZAs to Allow for Increased Separation or More
Enclosures

ZK−7482A−GE

T

A

A

T

A

A

T T

System
Enclosure

System
Enclosure

T

TT

T

StorageWorks
Enclosure

Ctrlr

TT

T

T

StorageWorks
Enclosure

T

T T

T

T

T

C–15

Figure C–11 Sample Configuration: Using DWZZAs to Allow for Increased
Separation or More Enclosures

KZPAA−AA

ZK−7762A−GE

DWZZA−AA

KZPAA−AA

DWZZA−AA

BN23G−01

H885

AlphaServer

AlphaServer

and
H879

BN23G−01
or

BN21R−02

H885
and

H879

Network
Interconnect

SW300

BA350

BN21K−01
or

BN21L−01 0

1

2

3

4

5

6

or
BN21R−02

DWZZA−VA
with
H885

HSZ40 in

In OpenVMS Version 7.0, you can connect up to three hosts on a multiple-host
SCSI bus. Figure C–12 shows how a three-host SCSI VMScluster system might
be configured.

C–16

Figure C–12 Sample Configuration: Three Hosts on a SCSI Bus

KZPAA−AA

ZK−7499A−GE

DWZZA−AA

KZPAA−AA

KZPAA−AA

DWZZA−AA

DWZZA−AA

BN23G−01

H885

AlphaServer

AlphaServer

AlphaServer

and
H879

BN23G−01
or

BN21R−02

BN23G−01
or

BN21R−02
BN21K−01

or
BN21L−01

H885

H885
and

H879

Network
Interconnect

SW300

or
BN21R−02

HSZ40 in

BN21K−02
or

BN21L−02

BN21K−01
or

BN21L−01

C–17

C.5.2 Building a System Using Internal SCSI Adapters
You can build a multiple-host SCSI VMScluster configuration with two systems
using internal adapters that are joined by a single SCSI cable. This type of
configuration is relatively inexpensive, and it provides some of the benefits of
multiple-host SCSI VMScluster systems that use external adapters (for example,
fully-shared disks and twice the serving performance of a single system). This
system configuration can also be expanded to provide improved performance,
availability, and scaling.

However, a multiple-host SCSI VMScluster system that uses only internal SCSI
adapters has the following limitations:

• On most systems, the internal cabling lengths exceeds 3 meters and therefore
precludes the use of Fast Mode data transfer (see Table C–5).

• You cannot remove either of the AlphaServer systems for maintenance or
repair while the remaining cluster systems stay active (because the bus would
be unterminated).

• If these are the only members of the cluster, then quorum is lost when one (or
either, depending on how the votes are allocated) of the enclosures goes down.

• You cannot use tape or CD–ROM drives.

Some of the limitations associated with the internal adapter can be removed by
using DWZZAs, additional SCSI adapters, and additional storage enclosures.

Figure C–13 shows a conceptual view of a SCSI system using internal adapters,
and Figure C–14 shows a sample configuration of such a system. (See Figure C–1
for the key to the symbols used in these figures.)

Figure C–13 Conceptual View: SCSI VMScluster System Using Internal
Adapters

ZK−7760A−GE

A

T

System
Enclosure

T

A

T

System
Enclosure

T

C–18

Figure C–14 Sample Configuration: SCSI VMScluster System with
AlphaStation 200 Systems Using Internal Adapters

ZK−7927A−GE

Network
Interconnect

BN21H−0E

Table C–5 Internal SCSI Cable Lengths

System Type Internal Cable Length

AlphaServer 1000 rackmount 1.6 meters

AlphaServer 1000 pedestal with an internal
StorageWorks shelf in a dual-bus configuration1

2.0 meters

AlphaServer 2000 pedestal with the internal
StorageWorks shelf that is not connected

1.7 meters

AlphaServer 2100 rackmount 2.0 meters

AlphaServer 2100 pedestal with the internal
StorageWorks shelf that is not connected

1.6 meters

AlphaStation 200 1.2 meters

AlphaStation 400 1.4 meters

1See your hardware manual for an explanation of single-bus and dual-bus configurations, and how to
switch from one to the other.

C.6 Installation
This section describes the steps required to set up and install the hardware
in a SCSI VMScluster system. The assumption in this section is that a new
VMScluster system, based on a shared SCSI bus, is being created. If, on the
other hand, you are adding a shared SCSI bus to an existing VMScluster
configuration, then you should integrate the procedures in this section with
those described in VMScluster Systems for OpenVMS to formulate your overall
installation plan.

C–19

Table C–6 lists the steps required to set up and install the hardware in a SCSI
VMScluster system.

Table C–6 Steps for Installing a SCSI VMScluster System

Description Reference

1 Ensure proper grounding between enclosures. Section C.6.1 and Section C.7.8

2 Configure SCSI host IDs. Section C.6.2

3 Power up the system and verify devices. Section C.6.3

4 Set SCSI console parameters. Section C.6.4

5 Install the OpenVMS operating system. Section C.6.5

6 Configure additional systems. Section C.6.6

C.6.1 Step 1: Meet SCSI Grounding Requirements
You must ensure that your electrical power distribution systems meet local
requirements (for example, electrical codes) prior to installing your VMScluster
system. If your configuration consists of two or more enclosures connected by a
common SCSI interconnect, you must also ensure that the enclosures are properly
grounded. Proper grounding is important for safety reasons and to ensure the
proper functioning of the SCSI interconnect.

Electrical work should be done by a qualified professional. Section C.7.8 includes
details of the grounding requirements for SCSI systems.

C.6.2 Step 2: Configure SCSI Node IDs
This section describes how to configure SCSI node and device IDs. SCSI IDs must
be assigned separately for multiple-host SCSI buses and single-host SCSI buses.

Figure C–15 shows two hosts; each one is configured with a single-host SCSI bus
and shares a multiple-host SCSI bus. (See Figure C–1 for the key to the symbols
used in this figure.)

C–20

Figure C–15 Setting Allocation Classes for SCSI Access

ZK−7483A−GE

4DKA200 4DKA300

T T

T

Device
Name

4DKB200$4$DKB0 4DKB100

Host

Adapter = DKB

Alloclass
= 4

Adapter = DKA

Host

SCSI
Bus

Adapter = DKB

Alloclass
= 4

Adapter = DKA

SCSI Bus SCSI
ID = 6

SCSI
ID = 0

SCSI
ID = 1

SCSI
ID = 2

T

SCSI
ID = 7

SCSI
ID = 7

SCSI
ID = 7

T T

Device
Name

SCSI
Bus

SCSI
ID = 2

SCSI
ID = 3

The following sections describe how IDs are assigned in this type of multiple-
host SCSI configuration. For more information about this topic, see VMScluster
Systems for OpenVMS.

C.6.2.1 Configuring Device IDs on Multiple-Host SCSI Buses
When configuring multiple-host SCSI buses, adhere to the following rules:

• Set each host adapter on the multiple-host bus to a different ID. Start by
assigning ID 7, then ID 6, and so on, using decreasing ID numbers.

If a host has two multiple-host SCSI buses, allocate an ID to each SCSI
adapter separately. There is no requirement that you set the adapters
to the same ID, although using the same ID may simplify configuration
management. (Section C.6.4 describes how to set host IDs for the internal
adapter using SCSI console parameters.)

• When assigning IDs to devices and storage controllers connected to multiple-
host SCSI buses, Digital recommends starting at ID 0 (zero), assigning the
highest ID numbers to the disks that require the fastest I/O response time.

• Devices connected to a multiple-host SCSI bus must have the same name as
viewed from each host. To achieve this, ensure that:

All hosts connected to a multiple-host SCSI bus are set to the same
allocation class

All host adapters connected to a multiple-host SCSI bus have the same
controller letter

C–21

C.6.2.2 Configuring Device IDs on Single-Host SCSI Buses
The following discussion applies to hosts that include both a single-host SCSI bus
and a multiple-host SCSI bus.

In multiple-host SCSI configurations, device names generated by OpenVMS
use the format $allocation_class$DKA300. You set the allocation class using
the ALLOCLASS system parameter. OpenVMS generates the controller letter
(for example, A, B, C, and so forth) at boot time by allocating a letter to each
controller. The unit number (for example, 0, 100, 200, 300, and so forth) is
derived from the SCSI device ID.

When configuring devices on single-host SCSI buses that are part of a multiple-
host SCSI configuration, take care to ensure that the disks connected to the
single-host SCSI buses have unique device names. Do this by assigning different
IDs to devices connected to single-host SCSI buses with the same controller letter
on systems that use the same allocation class. Note that the device names must
be different, even though the bus is not shared.

For example, in Figure C–15, the two disks at the bottom of the picture are
located on SCSI bus A of two systems that use the same allocation class.
Therefore, they have been allocated different device IDs (in this case 2 and
3).

For a given allocation class, SCSI device type, and controller letter (in this
example, ‘‘4DKA’’), there can be up to 8 devices in the cluster, one for each
SCSI bus ID. To use all 8 IDs, it is necessary to configure a disk on one SCSI bus
at the same ID as a processor on another bus. See Section C.7.5 for a discussion
of the possible performance impact this can have.)

SCSI bus IDs can be effectively ‘‘doubled up’’ by configuring different SCSI device
types at the same SCSI ID on different SCSI buses. For example, device types
‘‘DK’’ and ‘‘MK’’ could produce ‘‘4DKA100’’ and ‘‘4MKA100’’.

C.6.3 Step 3: Power Up and Verify SCSI Devices
After connecting the SCSI cables, power up the system. Enter a console SHOW
DEVICE command to verify that all devices are visible on the SCSI interconnect.

If there is a SCSI ID conflict, the display may omit devices that are present,
or it may include nonexistent devices. If the display is incorrect, then check
the SCSI ID jumpers on devices, the automatic ID assignments provided by
the StorageWorks shelves, and the console settings for host adapter and HSZ40
controller IDs. If changes are made, type INIT, then SHOW DEVICE again. If
problems persist, check the SCSI cable lengths and termination.

The following is a sample output from a console SHOW DEVICE command.
This system has one host SCSI adapter on a private SCSI bus (pka0), and two
additional SCSI adapters (pkb0 and pkc0), each on separate, shared SCSI buses.

C–22

>>>SHOW DEVICE
dka0.0.0.6.0 DKA0 1 RZ26L 442D
dka400.4.0.6.0 DKA400 RRD43 2893
dkb100.1.0.11.0 DKB100 RZ26 392A
dkb200.2.0.11.0 DKB200 RZ26L 442D
dkc400.4.0.12.0 DKC400 HSZ40 V25
dkc401.4.0.12.0 DKC401 2 HSZ40 V25
dkc500.5.0.12.0 DKC500 HSZ40 V25
dkc501.5.0.12.0 DKC501 HSZ40 V25
dkc506.5.0.12.0 DKC506 HSZ40 V25
dva0.0.0.0.1 DVA0
jkb700.7.0.11.0 JKB700 3 OpenVMS V62
jkc700.7.0.12.0 JKC700 OpenVMS V62
mka300.3.0.6.0 MKA300 4 TLZ06 0389
era0.0.0.2.1 ERA0 08-00-2B-3F-3A-B9
pka0.7.0.6.0 PKA0 5 SCSI Bus ID 7
pkb0.6.0.11.0 PKB0 SCSI Bus ID 6
pkc0.6.0.12.0 PKC0 SCSI Bus ID 6

The following list describes the device names in the preceding example:

1 DK devices represent SCSI disks. Disks connected to the SCSI bus controlled
by adapter PKA are given device names starting with the letters DKA. Disks
on additional buses are named according to the host adapter name in a
similar manner (DKB devices on adapter PKB, and so on).

The next character in the device name (0 in this case) represents the device’s
SCSI ID. Make sure that the SCSI ID for each device is unique for the SCSI
bus to which it is connected.

2 The last digit in the DK device name (1 in this case) represents the LUN
number. The HSZ40 virtual DK device in this example is at SCSI ID 4, LUN
1. Note that some systems do not display devices that have nonzero LUNs.

3 JK devices represent non-disk or non-tape devices on the SCSI interconnect.
In this example, JK devices represent other processors on the SCSI
interconnect that are running the OpenVMS operating system. If the other
system is not running, these JK devices do not appear in the display. From
this example, we can see that the other processor’s adapters are at SCSI ID
7.

4 MK devices represent SCSI tapes. The third character in this device’s name
is A, indicating that it is attached to adapter pka0, the private SCSI bus.

5 PK devices represent the local SCSI adapters. The information in the
rightmost column indicates this adapter’s SCSI ID. Make sure this is different
from the IDs used by other devices and host adapters on its bus.

The third character in the device name (in this example, a) is assigned by the
system so that each adapter has a unique name on that system. The fourth
character is always zero.

Note

Make sure that all host adapters attached to a SCSI interconnect have
the same name; that is, the third character in the device names must
be the same. OpenVMS configures the internal SCSI adapter as DKA,
the first KZPAA adapter as DKB, and so on. For example, to ensure that
device names are consistent on a shared SCSI bus, do not connect the
internal adapter in one system and a KZPAA adapter in a second system
to the same bus. For more information, see Section C.7.4.2.1.

C–23

C.6.4 Step 4: Show and Set SCSI Console Parameters
When creating a SCSI VMScluster system, you need to verify the settings of the
console environment parameters shown in Table C–7 and, if necessary, reset their
values according to your configuration requirements.

Table C–7 provides a brief description of SCSI console parameters. Refer to your
system-specific documentation for complete information about setting these and
other system parameters.

Note

If you need to modify any parameters, first change the parameter (using
the appropriate console SET command), and then enter a console INIT
command or press the Reset button to make the change effective.

Table C–7 SCSI Environment Parameters

Parameter Description

bootdef_dev device_name Specifies the default boot device to the system.

boot_osflags root_
number,bootflag

The boot_osflags variable contains information that is used by
the operating system to determine optional aspects of a system
bootstrap (for example, conversational bootstrap).

pk*0_disconnect Allows the target to disconnect from the SCSI bus while the
target acts on a command. When this parameter is set to 1,
the target is allowed to disconnect from the SCSI bus while
processing a command. When the parameter is set to 0, the
target retains control of the SCSI bus while acting on a command.

pk*0_fast Enables SCSI adapters to perform in Fast SCSI Mode. When this
parameter is set to 1, the default speed is set to Fast Mode; when
the parameter is 0, the default speed is Standard Mode.

pk*0_host_id Sets the SCSI device ID of host adapters to a value between 0
and 7.

scsi_poll Enables console polling on all SCSI interconnects when the
system is halted.

control_scsi_term Enables and disables the terminator on the integral SCSI
interconnect at the system bulkhead (for some systems).

Before setting boot parameters, display the current settings of these parameters,
as shown in the following examples:

Examples

1. >>>SHOW *BOOT*

boot_osflags 10,0
boot_reset OFF
bootdef_dev dka200.2.0.6.0
>>>

The first number in the boot_osflags parameter specifies the system root. (In
this example, the first number is 10.) The boot_reset parameter controls the
boot process. The default boot device is the device from which the OpenVMS
operating system is loaded. Refer to the documentation for your specific
system for additional booting information.

C–24

Note that you can identify multiple boot devices to the system. By doing so,
you cause the system to search for a bootable device from the list of devices
that you specify. The system then automatically boots from the first device
on which it finds bootable system software. In addition, you can override
the default boot device by specifying an alternative device name on the boot
command line.

Typically, the default boot flags suit your environment. You can override the
default boot flags by specifying boot flags dynamically on the boot command
line with the -flags option.

2. >>>SHOW *PK*

pka0_disconnect 1
pka0_fast 1
pka0_host_id 7

The pk*0_disconnect parameter determines whether or not a target is allowed
to disconnect from the SCSI bus while it acts on a command. On a multiple-
host SCSI bus, the pk*0_disconnect parameter must be set to 1, so that
disconnects can occur.

The pk*0_fast parameter controls whether Fast SCSI devices on a SCSI
controller perform in Standard or Fast Mode. When the parameter is set to
0, the default speed is set to standard mode; when the pk*0_fast parameter
is set to 1, the default speed is set to Fast SCSI Mode. In this example,
devices on SCSI controller pka0 are set to Fast SCSI Mode. This means
that both Standard and Fast SCSI devices connected to this controller will
automatically perform at the appropriate speed for the device (that is, in
either Fast or Standard Mode).

The pk*0_host_id parameter assigns a bus node ID for the specified host
adapter. In this example, pka0 is assigned a SCSI device ID of 7.

3. >>>SHOW *POLL*
scsi_poll ON

Enables or disables polling of SCSI devices while in console mode.

Set polling ON or OFF depending on the needs and environment of your
site. When polling is enabled, the output of the SHOW DEVICE is always
up-to-date. However, because polling can consume SCSI bus bandwidth
(proportional to number of unused SCSI IDs), you might want to disable
polling if one system on a multiple-host SCSI bus will be in console mode for
an extended period of time.

Polling must be disabled during any hot plugging operations. For information
on hot plugging in a SCSI VMScluster environment, see Section C.7.6.

4. >>>SHOW *TERM*
control_scsi_term external

Used on some systems (such as the AlphaStation 400) to enable or disable
the SCSI terminator next to the external connector. Set the control_scsi_term
parameter to external if a cable is attached to the bulkhead. Otherwise, set
the parameter to internal.

C–25

C.6.5 Step 5: Install the OpenVMS Operating System
Refer to the OpenVMS Alpha or VAX upgrade and installation manual for
information about installing the OpenVMS operating system. Perform the
installation once for each system disk in the VMScluster system. In most
configurations, there is a single system disk. Therefore, you need to perform this
step once, using any system.

During the installation, when you are asked if the system is to be a cluster
member, answer Yes. Then, complete the installation according to the guidelines
provided in VMScluster Systems for OpenVMS.

C.6.6 Step 6: Configure Additional Systems
Use the CLUSTER_CONFIG command procedure to configure additional systems.
Execute this procedure once for the second host that you have configured on the
SCSI bus. (See Section C.7.1 for more information.)

C.7 Supplementary Information
The following sections provide supplementary technical detail and concepts about
SCSI VMScluster systems.

C.7.1 Running the CLUSTER_CONFIG Command Procedure
You execute the CLUSTER_CONFIG.COM command procedure to set up and
configure nodes in your VMScluster system.† Typically, the first computer is set
up as a VMScluster system during the initial OpenVMS installation procedure
(see Section C.6.5). The CLUSTER_CONFIG procedure is then used to configure
additional nodes. However, if you originally installed OpenVMS without enabling
clustering, the first time you run CLUSTER_CONFIG, the procedure converts the
standalone system to a cluster system.

To configure additional nodes in a SCSI cluster, execute
CLUSTER_CONFIG.COM for each additional node. Table C–8 describes the
steps to configure additional SCSI nodes.

Table C–8 Steps for Installing Additional Nodes

Procedure

1 From the first node, run the CLUSTER_CONFIG.COM procedure and select the default option
[1] for ADD.

2 Answer Yes when CLUSTER_CONFIG.COM asks if you want to proceed.

3 Supply the DECnet name and address of the node that you are adding to the existing single-
node cluster.

4 Confirm that this will be a node with a shared SCSI interconnect.

5 Answer No when the procedure asks if this node will be a satellite.

6 Configure the node to be a disk server if it will serve disks to other cluster members.

7 Place the new node’s system root on the default device offered.

(continued on next page)

† In OpenVMS Version 6.2, sites that choose to boot their VMScluster systems using the
LANCP Utility rather than DECnet use the CLUSTER_CONFIG_LAN.COM procedure.
See OpenVMS Version 6.2 New Features Manual for information about the use of this
alternative procedure.

C–26

Table C–8 (Cont.) Steps for Installing Additional Nodes

Procedure

8 Select a system root for the new node. The first node uses SYS0. Take the default (SYS10 for
the first additional node), or choose your own root numbering scheme. You can choose from
SYS1 to SYSn, where n is hexadecimal FFFF.

9 Select the default disk allocation class so that the new node in the cluster will use the same
ALLOCLASS as the first node.

1 0 Confirm whether or not there is a quorum disk.

1 1 Answer the questions about the sizes of the page file and swap file.

1 2 When CLUSTER_CONFIG.COM completes, boot the new node from the new system root. For
example, for SYSFF on disk DKA200, enter the following command:

BOOT -FL FF,0 DKA200

On the BOOT command, you can use the following flags:

• -FL indicates boot flags

• FF is the new system root

• 0 means there are no special boot requirements, such as conversational boot

Example C–1 shows how to run the CLUSTER_CONFIG.COM procedure to set
up an additional node in a SCSI cluster.

Example C–1 Adding a Node to a SCSI Cluster

$ @SYS$MANAGER:CLUSTER_CONFIG

Cluster Configuration Procedure

Use CLUSTER_CONFIG.COM to set up or change a VMScluster configuration.
To ensure that you have the required privileges, invoke this procedure
from the system manager’s account.

Enter ? for help at any prompt.

1. ADD a node to a cluster.
2. REMOVE a node from the cluster.
3. CHANGE a cluster member’s characteristics.
4. CREATE a duplicate system disk for CLU21.
5. EXIT from this procedure.

Enter choice [1]:

The ADD function adds a new node to a cluster.

If the node being added is a voting member, EXPECTED_VOTES in
every cluster member’s MODPARAMS.DAT must be adjusted, and the
cluster must be rebooted.

WARNING - If this cluster is running with multiple system disks and
if common system files will be used, please, do not
proceed unless you have defined appropriate logical
names for cluster common files in SYLOGICALS.COM.
For instructions, refer to the VMScluster Systems for
OpenVMS manual.

Do you want to continue [N]? y

(continued on next page)

C–27

Example C–1 (Cont.) Adding a Node to a SCSI Cluster

If the new node is a satellite, the network databases on CLU21 are
updated. The network databases on all other cluster members must be
updated.

For instructions, refer to the VMScluster Systems for OpenVMS manual.

What is the node’s DECnet node name? SATURN
What is the node’s DECnet node address? 7.77
Is SATURN to be a clustered node with a shared SCSI bus (Y/N)? y
Will SATURN be a satellite [Y]? N
Will SATURN be a boot server [Y]?

This procedure will now ask you for the device name of SATURN’s system root.
The default device name (DISK$BIG_X5T5:) is the logical volume name of
SYS$SYSDEVICE:.

What is the device name for SATURN’s system root [DISK$BIG_X5T5:]?
What is the name of SATURN’s system root [SYS10]? SYS2

Creating directory tree SYS2 ...
System root SYS2 created

NOTE:
All nodes on the same SCSI bus must be members of the same cluster
and must all have the same non-zero disk allocation class or each
will have a different name for the same disk and data corruption
will result.

Enter a value for SATURN’s ALLOCLASS parameter [7]:
Does this cluster contain a quorum disk [N]?
Updating network database...
Size of pagefile for SATURN [10000 blocks]?

.

.

.

C.7.2 Error Reports and OPCOM Messages in Multiple-Host SCSI
Environments

Certain common operations, such as booting or shutting down a host on a
multiple-host SCSI bus, can cause other hosts on the SCSI bus to experience
errors. In addition, certain errors that are unusual in a single-host SCSI
configuration may occur more frequently on a multiple-host SCSI bus.

These errors are transient errors that OpenVMS detects, reports, and recovers
from without losing data or affecting applications that are running. This section
describes the conditions that generate these errors and the messages that are
displayed on the operator console and entered into the error log.

C.7.2.1 SCSI Bus Resets
When a host connected to a SCSI bus first starts, either by being turned on or by
rebooting, it does not know the state of the SCSI bus and the devices on it. The
ANSI SCSI–2 Standard provides a method called BUS RESET to force the bus
and its devices into a known state. A host typically asserts a RESET signal one
or more times on each of its SCSI buses when it first starts up and when it shuts
down. While this is a normal action on the part of the host asserting RESET,
other hosts consider this RESET signal an error, because RESET requires that
the hosts abort and restart all I/O operations that are in progress.

C–28

A host may also reset the bus in the midst of normal operation if it detects
a problem that it cannot correct in any other way. These kinds of resets are
uncommon but occur most frequently when something on the bus is disturbed.
For example, an attempt to hot plug a SCSI device while the device is still active
(see Section C.7.6) or halting one of the hosts with CTRL/P can cause a condition
that forces one or more hosts to issue a bus reset.

C.7.2.2 SCSI Timeouts
When a host exchanges data with a device on the SCSI bus, there are several
different points where the host must wait for the device or the SCSI adapter to
react. In an OpenVMS system, the host is allowed to do other work while it is
waiting, but a timer is started to make sure that it does not wait too long. If the
timer expires without a response from the SCSI device or adapter, this is called a
timeout.

There are three kinds of timeouts:

• Disconnect timeout—The device accepted a command from the host and
disconnected from the bus while it processed the command but never
reconnected to the bus to finish the transaction. This error happens most
frequently when the bus is very busy. See Section C.7.5 for more information.
The disconnect timeout period varies with the device, but for most disks, it is
about 20 seconds.

• Selection timeout—The host tried to send a command to a device on the
SCSI bus, but the device did not respond. This condition might happen if the
device did not exist, or if it were removed from the bus or powered down, for
example. (This failure is not more likely with a multi-initiator system; it is
mentioned here for completeness.) The selection timeout period is about 0.25
seconds.

• Interrupt timeout—The host expected the adapter to respond for any other
reason, but it did not respond. This error is usually an indication of a busy
SCSI bus. It is more common if you have initiator unit numbers set low (0 or
1) rather than high (6 or 7). The interrupt timeout period is about 4 seconds.

Timeout errors are not inevitable on SCSI VMScluster systems. However, they
are more frequent on SCSI buses with heavy traffic and those with two initiators.
They do not necessarily indicate a hardware or software problem. If they are
logged frequently, you should consider ways to reduce the load on the SCSI bus
(for example adding an additional bus).

C.7.2.3 Mount Verify
Mount verify is a condition declared by a host about a device. The host declares
this condition in response to a number of possible transient errors, including
bus resets and timeouts. When a device is in the mount verify state, the host
suspends normal I/O to it until the host can determine that the correct device
is there, and that the device is accessible. Mount verify processing then retries
outstanding I/Os in a way that insures that the correct data is written or read.
Application programs are unaware that a mount verify condition has occurred as
long as the mount verify completes.

If the host cannot access the correct device within a certain amount of time,
it declares a mount verify timeout, and application programs are notified that
the device is unavailable. Manual intervention is required to restore a device
to service after the host has declared a mount verify timeout. A mount verify
timeout usually means that the error is not transient. The system manager can
choose the timeout period for mount verify; the default is one hour.

C–29

C.7.2.4 Shadow Volume Processing
Shadow volume processing is a process similar to mount verify, but it is for
shadow set members. An error on one member of a shadow set places the set into
the volume processing state, which blocks I/O while OpenVMS attempts to regain
access to the member. If access is regained before shadow volume processing
times out, then the outstanding I/Os are reissued and the shadow set returns
to normal operation. If a timeout occurs, then the failed member is removed
from the set. The system manager can select one timeout value for the system
disk shadow set, and one for application shadow sets. The default value for both
timeouts is 20 seconds.

Note

The SCSI disconnect timeout and the default shadow volume processing
timeout are the same. If the SCSI bus is heavily utilized so that
disconnect timeouts may occur, it may be desirable to increase the value
of the shadow volume processing timeout. (A recommended value is 60
seconds.) This may prevent shadow set members from being expelled
when they experience disconnect timeout errors.

C.7.2.5 Expected OPCOM Messages in Multiple-Host SCSI Environments
When a bus reset occurs, an OPCOM message is displayed as each mounted disk
enters and exits mount verification or shadow volume processing.

When an I/O to a drive experiences a timeout error, an OPCOM message is
displayed as that drive enters and exits mount verification or shadow volume
processing.

If a quorum disk on the shared SCSI bus experiences either of these errors, then
additional OPCOM messages may appear, indicating that the connection to the
quorum disk has been lost and regained.

C.7.2.6 Error-Log Basics
In the OpenVMS system, the Error Log utility allows device drivers to save
information about unusual conditions that they encounter. In the past, most of
these unusual conditions have happened as a result of errors such as hardware
failures, software failures, or transient conditions (like loose cables, for example).

If you type the DCL command SHOW ERROR, the system displays a summary
of the errors that have been logged since the last time the system booted. For
example:

$ SHOW ERROR

Device Error Count
SALT$PKB0: 6
1DKB500: 10
PEA0: 1
SALT$PKA0: 9
1DKA0: 0

In this case, 6 errors have been logged against host SALT’s SCSI port B (PKB0),
10 have been logged against disk 1DKB500, and so forth.

C–30

To see the details of these errors, you can use the command ANALYZE/ERROR
/SINCE=DD-MMM-YYYY:HH:MM:SS at the DCL prompt. The output from
this command displays a list of error-log entries with information similar to the
following:

******************************* ENTRY 2337. *******************************
ERROR SEQUENCE 6. LOGGED ON: CPU_TYPE 00000002
DATE/TIME 29-MAY-1995 16:31:19.79 SYS_TYPE 0000000D

<identification information>

ERROR TYPE 03
COMMAND TRANSMISSION FAILURE

SCSI ID 01
SCSI ID = 1.

SCSI LUN 00
SCSI LUN = 0.

SCSI SUBLUN 00
SCSI SUBLUN = 0.

PORT STATUS 00000E32
%SYSTEM-E-RETRY, RETRY OPERATION

<additional information>

For this discussion, the key elements are the ‘‘ERROR TYPE’’ and, in some
instances, the ‘‘PORT STATUS’’ fields. In this example, the ERROR TYPE is ‘‘03,
COMMAND TRANSMISSION FAILURE’’, and the PORT STATUS is ‘‘00000E32,
SYSTEM-E-RETRY’’.

C.7.2.7 Error-Log Entries in Multiple-Host SCSI Environments
The error-log entries listed in this section are likely to be logged in a multiple-
host SCSI configuration, and you usually do not need to be concerned about them.
You should, however, examine any error-log entries for messages other than those
listed in this section.

• ERROR TYPE 0007, BUS RESET DETECTED

Occurs when the other system asserts the SCSI bus reset signal. This
happens when a:

• System’s power-up self-test runs

• Console INIT command is executed

• EISA Configuration utility (ECU) is run

• Console BOOT command is executed (several resets occur in this case)

• System shutdown completes

• System detects a problem with an adapter or a SCSI bus (for example, an
interrupt timeout)

This error causes all mounted disks to enter mount verification.

• ERROR TYPE 05, EXTENDED SENSE DATA RECEIVED

When a SCSI bus is reset, an initiator must get ‘‘sense data’’ from each
device. When the initiator gets this data, an ‘‘EXTENDED SENSE DATA
RECEIVED’’ error is logged. This is expected behavior.

• ERROR TYPE 03, COMMAND TRANSMISSION FAILURE
PORT STATUS E32, SYSTEM-E-RETRY

C–31

Occasionally, one host may send a command to a disk while the disk is
exchanging error information with the other host. Many disks respond with
a SCSI ‘‘BUSY’’ code. The OpenVMS system responds to a SCSI BUSY code
by logging this error and retrying the operation. You are most likely to see
this error when the bus has been reset recently. This error does not always
happen near resets, but when it does, the error is expected and unavoidable.

• ERROR TYPE 204, TIMEOUT

An interrupt timeout has occurred (see Section C.7.2.2). The disk is put into
mount verify when this error occurs.

• ERROR TYPE 104, TIMEOUT

A selection timeout has occurred (see Section C.7.2.2). The disk is put into
mount verify when this error occurs.

C.7.3 Restrictions and Known Problems
The current release of VMSclusters has the following restrictions when multiple
hosts are configured on the same SCSI bus:

1. A node’s access to a disk will not failover from a direct SCSI path to an MSCP
served path. This is not expected to be a significant limitation, since most of
the failures that cause a SCSI disk to become inaccessible to one node on the
SCSI bus impacts all the nodes on the SCSI bus. Thus, when a failure occurs,
the served path to the disk tends to fail at the same time that the direct path
fails.

Conversely, a node’s access to a disk will not failover from an MSCP
served path to a direct SCSI path. Normally, this type of failover is not a
consideration, because when OpenVMS discovers both a direct and a served
path, it chooses the direct path permanently. It is necessary, however, to
avoid situations in which the MSCP served path becomes available first, and
is selected by OpenVMS before the direct path becomes available. You must
avoid this by observing the following rules:

• A node that has a direct path to a SCSI system disk must boot the disk
directly from the SCSI port, not over the LAN.

• If a node is running the MSCP server, then a SCSI disk must not
be added to the multiple-host SCSI bus after the node boots. This is
necessary to prevent the second node on the SCSI bus from seeing the
served path to the new disk and configuring it, thereby precluding the
second node from configuring its direct path.

2. The SYS$DEVICE_SCAN system service (and the F$DEVICE lexical function
that calls it) can be executed repeatedly to obtain a list of devices on the
system. If this is done on a system with a multiple-host SCSI bus, and the
other system is running the MSCP server, then each device on the multiple-
host SCSI bus is reported twice by SYS$DEVICE_SCAN (or F$DEVICE).

The reason for this is that each device on the multiple-host SCSI bus has two
UCBs, one for the direct SCSI path, and one for the MSCP served path. (The
MSCP served path is not used.)

Programs that use SYS$DEVICE_SCAN or F$DEVICE to search the IO
database may need to be modified to check for, and ignore, duplicate device
names.

C–32

3. If a system on a multiple-host SCSI bus boots a disk that is served to it over
the LAN, and the other system on the SCSI bus is running the MSCP server,
then each device on the multiple-host SCSI bus is reported twice by the DCL
SHOW DEVICE command. This not known to result in any other adverse
effects.

4. Abruptly halting a system on a multiple-host SCSI bus (by typing CTRL/P
on the console, for example) may leave the SCSI adapter in a state that can
interfere with the operation of the other host on the bus. It is recommended
that you either initialize, boot, or continue an abruptly halted system as soon
as possible after it has been halted.

5. All I/O to a disk drive must be stopped while its microcode is updated. This
typically requires more precautions in a multiple-host environment than
are needed in a single-host environment. Refer to Section C.7.6.3 for the
necessary procedures.

6. The EISA Configuration Utility (ECU) causes a large number of SCSI bus
resets. These resets cause the other system on the SCSI bus to pause while
its I/O subsystem recovers. It is suggested (though not required) that both
systems on a shared SCSI bus be shut down when the ECU is run.

The current release of VMSclusters also places one new restriction on the SCSI
quorum disk, whether the disk is located on a single-host SCSI bus or a multiple-
host SCSI bus: the SCSI quorum disk must support Tagged Command Queueing.
This is required because of the special handling that quorum I/O receives in the
OpenVMS SCSI drivers.

This restriction is not expected to be significant, because all disks on a multiple-
host SCSI bus must support Tagged Command Queueing (see Section C.7.7), and
because quorum disks are normally not used on single-host buses.

C.7.4 Troubleshooting
The following sections describe troubleshooting tips for solving common problems
in a VMScluster system using a SCSI interconnect.

C.7.4.1 Termination Problems
Verify that two terminators are on every SCSI interconnect (one at each end of
the interconnect). The BA350 enclosure, the DWZZA, and the KZPAA adapter
have internal terminators that are not visible externally (see Section C.4.4.)

C.7.4.2 Booting or Mounting Failures Caused by Incorrect Configurations
OpenVMS automatically detects configuration errors described in this section
and prevents the possibility of data loss that could result from such configuration
errors, either by bugchecking or by refusing to mount a disk.

C.7.4.2.1 Bugchecks During the Bootstrap Process There are three types
of configuration error that can cause a bugcheck (the bugcheck code is:
‘‘VAXCLUSTER, Error detected by VMScluster software’’ during booting. These
are described in this section.

When OpenVMS boots, it determines which devices are present on the SCSI bus
by sending an inquiry command to every SCSI ID. When a device receives the
inquiry, it indicates its presence by returning data that indicates whether it is a
disk, tape, or processor.

C–33

Some processor devices (host adapters) answer the inquiry without assistance
from the operating system; others require that the operating system be running.
The adapters supported in VMScluster systems require the operating system
to be running. These adapters, with the aid of OpenVMS, pass information in
their response to the inquiry that allows the recipient to detect the following
configuration errors:

• Different controller device names on the same SCSI bus

The OpenVMS device name of each adapter on the SCSI bus must be identical
(all named pkc0, for example), or the VMScluster software cannot coordinate
the host’s accesses to storage (see Section C.6.2 and Section C.6.3).

OpenVMS can check this automatically, because it sends the controller letter
in the inquiry response. A booting system receives this response, and it
compares the remote controller letter with the local controller letter. If a
mismatch is detected, then an OPCOM message is printed, and the system
stops with an VAXCLUSTER bugcheck to prevent the possibility of data loss.
See the description of the NOMATCH error in either the Help Message utility
or in the OpenVMS Version 6.2 New Features Manual. (To use the Help
Message utility for NOMATCH, enter HELP/MESSAGE NOMATCH at the
DCL prompt.)

• Different, or zero allocation class values.

Each host on the SCSI bus must have the same non-zero disk allocation class
value, or the VMScluster software cannot coordinate the host’s accesses to
storage (see Section C.6.2 and Section C.6.3. The disk allocation class value is
controlled by the ALLOCLASS SYSGEN parameter.

OpenVMS is able to automatically check this, because it sends the
ALLOCLASS value in the inquiry response. A booting system receives
this response, and compares the remote ALLOCLASS value with the local
ALLOCLASS value. If a mismatch or a zero value is detected, then an
OPCOM message is printed, and the system stops with a VAXCLUSTER
bugcheck, in order to prevent the possibility of data loss. See the description
of the ALLODIFF and ALLOZERO errors in either the Help Message utility
or in the OpenVMS Version 6.2 New Features Manual.

• Unsupported processors

Finally, there may be processors on the SCSI bus that are not running
OpenVMS or that do not return the controller name or allocation class
information needed to validate the configuration. If a booting system receives
an inquiry response and the response does not contain the special OpenVMS
configuration information, then an OPCOM message is printed and an
VAXCLUSTER bugcheck occurs. See the description of the CPUNOTSUP
error in either the Help Message utility or in the OpenVMS Version 6.2 New
Features Manual.

(If your system requires the presence of a VMScluster processor device on a
SCSI bus, then refer to the CPUNOTSUP message description in either the
Help Message utility or in the OpenVMS Version 6.2 New Features Manual
for instructions on the use of a special SYSGEN parameter for this purpose.)

C–34

Hint

The OPCOM error code that is printed for each of the failures described
above is preserved in R8 of the VAXCLUSTER bugcheck. You can
examine register R8 to quickly determine the cause of the error. For
example:

$ ANAL/CRASH SYSDUMP.DMP
SDA> examine @r8;50
2D462D47 49464E4F 43415453 250A0D4B K..%STACONFIG-F- 00020430
4C412065 6854202C 46464944 4F4C4C41 ALLODIFF, The AL 00020440
6574656D 61726170 20535341 4C434F4C LOCLASS paramete 00020450
20656874 20726F66 2065756C 61762072 r value for the 00020460
00000000 6E6F2072 6F737365 636F7270 processor on.... 00020470

C.7.4.2.2 Mount Failures There are two types of configuration error that can
cause a disk to fail to mount. These are described in this section.

First, when a system boots from a disk on the shared SCSI bus, it may fail to
mount the system disk. This happens if there is another system on the SCSI
bus that is already booted, and the other system is using a different device name
for the system disk. (Two systems will disagree about the name of a device on
the shared bus if their controller names or allocation classes are mis-configured,
as described in the previous section.) If the system does not execute one of the
bugchecks described in the previous section first, then the following error message
is displayed on the console:

%SYSINIT-E- error when mounting system device, retrying..., status = 007280B4

The decoded representation of this status is:

VOLALRMNT, another volume of same label already mounted

This error indicates that the system disk is already mounted in what appears to
be another drive in the VMScluster system, so it is not mounted again. Solve this
problem by checking the controller letters and allocation class values for each
node on the shared SCSI bus.

Second, SCSI disks on a shared SCSI bus will fail to mount on both systems
unless the disk supports Tagged Command Queueing (TCQ). This is because TCQ
provides a command ordering guarantee that is required during VMScluster state
transitions.

OpenVMS determines that another processor is present on the SCSI bus during
autoconfiguration, using the mechanism described in Section C.7.4.2.1. The
existence of another host on a SCSI bus is recorded and preserved until the
system reboots.

This information is used whenever an attempt is made to mount a non-TCQ
device. If the device is on a multiple-host bus, the mount attempt fails and
returns the following message:

%MOUNT-F-DRVERR, fatal drive error.

If the drive is intended to be mounted by multiple hosts on the same SCSI bus,
then it must be replaced with one that supports TCQ.

C–35

Note that the first processor to boot on a multiple-host SCSI bus does not receive
an inquiry response from the other hosts, because the other hosts are not yet
running OpenVMS. Thus, the first system to boot is unaware that the bus has
multiple hosts, and it allows non-TCQ drives to be mounted. The other hosts
on the SCSI bus detect the first host, however, and they are prevented from
mounting the device. If two processors boot simultaneously, it is possible that
they will detect each other, in which case neither is allowed to mount non-TCQ
drives on the shared bus.

C.7.4.3 Grounding
Having excessive ground offset voltages or exceeding the maximum SCSI
interconnect length can cause system failures or degradation in performance.
See Section C.7.8 for more information about SCSI grounding requirements.

C.7.4.4 Interconnect Lengths
Adequate signal integrity depends on strict adherence to SCSI bus lengths.
Failure to follow the bus length recommendations can result in problems (for
example, intermittent errors) that are difficult to diagnose. See Section C.4.3 for
information on SCSI bus lengths.

C.7.5 SCSI Arbitration Considerations
Only one initiator (typically, a host system) or target (typically, a peripheral
device) can control the SCSI bus at any one time. In a computing environment
where multiple targets frequently contend for access to the SCSI bus, you could
experience throughput issues for some of these targets. This section discusses
control of the SCSI bus, how that control can affect your computing environment,
and what you can do to achieve the most desirable results.

Control of the SCSI bus changes continually. When an initiator gives a command
(such as READ) to a SCSI target, the target typically disconnects from the SCSI
bus while it acts on the command, allowing other targets or initiators to use the
bus. When the target is ready to respond to the command, it must regain control
of the SCSI bus. Similarly, when an initiator wishes to send a command to a
target, it must gain control of the SCSI bus.

If multiple targets and initiators want control of the bus simultaneously, bus
ownership is determined by a process called arbitration, defined by the SCSI
Standard. The default arbitration rule is simple: control of the bus is given to
the requesting initiator or target that has the highest unit number.

The following sections discuss some of the implications of arbitration and how you
can respond to arbitration situations that affect your environment.

C.7.5.1 Arbitration Issues in Multi-Disk Environments
When the bus is not very busy, and bus contention is uncommon, the simple
arbitration scheme is adequate to perform I/O requests for all devices on the
system. However, as initiators make more and more frequent I/O requests,
contention for the bus becomes more and more common. Consequently, targets
with lower ID numbers begin to perform poorly, because they are frequently
blocked from completing their I/O requests by other users of the bus (in
particular, targets with the highest ID numbers). If the bus is sufficiently busy,
low-numbered targets may never complete their requests. This situation is most
likely to occur on systems with more than one initiator, because more commands
can be outstanding at the same time.

C–36

The OpenVMS system attempts to prevent low-numbered targets from being
completely blocked by monitoring the amount of time an I/O request takes.
If the request is not completed within a certain period, the OpenVMS system
stops sending new requests until the tardy I/Os complete. While this algorithm
does not ensure that all targets get equal access to the bus, it does prevent
low-numbered targets from being totally blocked.

C.7.5.2 Solutions for Resolving Arbitration Problems
If you find that some of your disks are not being serviced quickly enough during
periods of heavy I/O, try some or all of the following, as appropriate for your site:

• Assign the highest ID numbers to those disks that require the fastest
response time.

• Spread disks across more SCSI buses.

• Keep disks that need to be accessed only by a single host (for example, page
and swap disks) on a nonshared SCSI bus.

Another method that might provide for more equal servicing of lower and higher
ID disks is to set the host IDs to the lowest numbers (0 and 1) rather than the
highest. When you use this method, the host cannot gain control of the bus to
send new commands as long as any disk, including those with the lowest IDs,
need the bus. Although this option is available to improve fairness under some
circumstances, Digital considers this configuration to be less desirable in most
instances, for the following reasons:

• It can result in lower total throughput.

• It can result in timeout conditions if a command cannot be sent within a few
seconds.

• It can cause physical configuration difficulties. For example, StorageWorks
shelves such as the BA350 have no slot to hold a disk with ID 7, but they do
have a slot for a disk with ID 0. If you change the host to ID 0, you must
remove a disk from slot 0 in the BA350, but you cannot move the disk to ID
7. If you have two hosts with IDs 0 and 1, you cannot use slot 0 or 1 in the
BA350. (Note, however, that you can have a disk with ID 7 in a BA353.)

C.7.5.3 Arbitration and Bus Isolators
Any active device, such as a DWZZA, that connects bus segments introduces small
delays as signals pass through the device from one segment to another. Under
some circumstances, these delays can be another cause of unfair arbitration. For
example, consider the following configuration, which could result in disk servicing
problems (starvation) under heavy work loads:

ZK−7913A−GE

A

TT T

A

TT T

Disks 0−4 Disk 5

Although disk 5 has the highest ID number, there are some circumstances under
which disk 5 has the lowest access to the bus. This can occur after one of the
lower-numbered disks has gained control of the bus and then completed the
operation for which control of the bus was needed. At this point, disk 5 does not
recognize that the bus is free and might wait before trying to arbitrate for control

C–37

of the bus. As a result, one of the lower-numbered disks, having become aware
of the free bus and then submitting a request for the bus, will gain control of the
bus.

If you see this type of problem, the following suggestions can help you reduce its
severity:

• Try to place all disks on the same bus segment.

• If placing all disks on the same bus segment is not possible (for example if
you have both some RZ28 disks by themselves and an HSZ40), try to use a
configuration that has only one isolator between any pair of disks.

• If your configuration requires two isolators between a pair of disks (for
example, to meet distance requirements), try to balance the number of disks
on each bus segment.

• Follow the suggestions in Section C.7.5.2 to reduce the total traffic on the
logical bus.

C.7.6 Removal and Insertion of SCSI Devices While the VMScluster System is
Operating

With proper procedures, certain SCSI devices can be removed from or inserted
onto an active SCSI bus without disrupting the on-going operation of the bus.
This capability is referred to as hot plugging. Hot plugging can allow a suitably
configured VMScluster system to continue to run while a failed component is
replaced. Without hot plugging, it is necessary to make the SCSI bus inactive
and remove power from all the devices on the SCSI bus before any device is
removed from it or inserted onto it.

In a SCSI VMScluster system, hot plugging requires that all devices on the
bus have certain electrical characteristics and be configured appropriately on
the SCSI bus. Successful hot plugging also depends on strict adherence to
the procedures described in this section. These procedures ensure that the
hot-plugged device is inactive and that active bus signals are not disturbed.

Hot Plugging for SCSI Buses Behind a Storage Controller

This section describes hot-plugging procedures for devices that are on the
same SCSI bus as the host that is running OpenVMS. The procedures are
different for SCSI buses that are behind a storage controller, such as the
HSZ40. Refer to the storage controller documentation for the procedures
to hot plug devices that they control.

C.7.6.1 Terminology for Describing Hot Plugging
The terms shown in bold in this section are used in the discussion of hot plugging
rules and procedures.

• A SCSI bus segment consists of two terminators, the electrical path forming
continuity between them, and possibly, some attached stubs. Bus segments
may be connected together by bus isolators (for example, DWZZA), to form a
logical SCSI bus or just SCSI bus.

• There are two types of connections on a segment: bussing connections,
which break the path between two terminators, and stubbing connections,
which disconnect all or part of a stub.

C–38

• A device is active on the SCSI bus when it is asserting one or more of the
bus signals. A device is inactive when it is not asserting any bus signals.

The segment attached to a bus isolator is inactive when all devices on that
segment, except possibly the bus isolator, are inactive.

• A port on a bus isolator has proper termination when it is attached to a
segment that is terminated at both ends and has TERMPWR in compliance
with SCSI–2 requirements.

C.7.6.2 Rules for Hot Plugging
The following rules must be followed when planning for and performing hot
plugging:

• The device to be hot plugged, and all other devices on the same segment, shall
meet the electrical requirements described in Annex A, Section A.4, of the
SCSI-3 Parallel Interface (SPI) Standard, working draft X3T10/855D.1 The
SPI document places requirements on the receivers and terminators on the
segment where the hot plugging is being performed, and on the transceivers,
TERMPWR, termination, and power/ground/signal sequencing, of the device
that is being hot plugged.

All the devices in Table C–2 meet these requirements, except the DWZZA.
The DWZZA’s transceivers do not meet the requirements for glitch-free
power on/off. The rules and procedures in this section have been adjusted to
compensate for this fact.

• Hot plugging shall occur only at a stubbing connection.

This implies that a hot-plugged device shall make only one connection to the
SCSI bus, the device shall not provide termination for the SCSI bus, and
the device’s connection shall not exceed the maximum stub length, as shown
in Figure C–3. An example of a SCSI bus topology showing the valid hot
plugging connections is illustrated in Figure C–16.

Figure C–16 SCSI Bus Topology

Differential

Isolator Isolator Differential
Node. . .

. . .

Single Ended
Node...

Single Ended
Node...

Single

Bus T T

TTTT

Denotes a hot pluggable
stubbing connection
Denotes a SCSI TerminatorT

Ended
Buses

1 Reference to this draft standard is necessary because the SCSI–2 standard does not
adequately specify the requirements for hot plugging.

C–39

• Precautions shall be used to ensure that Electrostatic Discharge (ESD)
does not damage devices or disrupt active signals on the SCSI bus. These
precautions shall be taken during the process of disconnecting and connecting,
as well as during the time that SCSI bus conductors are exposed.

• Precautions shall be used to ensure that ground offset voltages do not pose
a safety hazard and will not interfere with SCSI bus signaling, especially in
single-ended configurations. The procedures for measuring and eliminating
ground offset voltages are described in Section C.7.8.

• The device that is hot plugged shall be inactive during the disconnection and
connection operations. Otherwise, the SCSI bus may become hung.1

Note

Ideally, a device will also be inactive whenever its power is removed, for
the same reason.

The procedures for ensuring that a device is inactive are described in
Section C.7.6.3.

• A quorum disk shall not be hot plugged. This is because there is no
mechanism for stopping the I/O to a quorum disk and because the
replacement disk will not contain the correct quorum file.

The VMScluster system must be reconfigured to remove a device as a
quorum disk before that device is removed from the bus. The procedure
for accomplishing this is described in VMScluster Systems for OpenVMS
(Section 8.3.3 in the OpenVMS Version 6.1 edition).

An alternate method for increasing the availability of the quorum disk is
to use an HSZ40 mirror set as the quorum disk. This would allow a failed
member to be replaced while maintaining the quorum disk functionality.

• Disks shall be logically dismounted before removing or replacing them in a
hot-plug operation. This is required to ensure that the disk is inactive and to
ensure the integrity of the file system.

• The DWZZA shall be powered up when it is inserted onto an active SCSI bus.
The DWZZA should remain powered up at all times while it is attached to the
active SCSI bus. This is because the DWZZA can disrupt the operation of the
attached segments when it is powering up or down.

• The segment attached to a bus isolator shall be maintained in the inactive
state whenever the other port on the bus isolator is improperly terminated.
This is required because an improperly terminated bus isolator port may pass
erroneous signals to the other port.

Thus, for a particular hot-plugging operation, one of the segments attached to
a bus isolator shall be designated as the (potentially) active segment, and the
other shall be maintained in the inactive state, as illustrated in Figure C–17.
The procedures for ensuring that a segment is inactive are described in
Section C.7.6.3.

1 OpenVMS will eventually detect a hung bus and reset it, but this may be temporarily
disruptive to VMScluster operations.

C–40

Figure C–17 Hot Plugging a Bus Isolator

Isolator

Hot plugging connection.
T T

Active SCSI bus segment.

T T

Inactive SCSI bus segment.

Note that although a bus isolator may have more than one stubbing
connection and thus be capable of hot plugging on each of them, only one
segment can be the active segment for any particular hot-plugging operation.

• Precautions shall be taken to ensure that the only electrical conductor that
contacts a connector pin is its mate. These precautions must be taken during
the process of disconnecting and connecting as well as during the time the
connector is disconnected.

• Devices shall be replaced with devices of the same type. That is, if any system
in the VMScluster configures a SCSI ID as a ‘‘DK’’ or ‘‘MK’’ device, then that
SCSI ID shall contain only ‘‘DK’’ or ‘‘MK’’ devices, respectively, for as long as
that VMScluster member is running.

Different implementations of the same device type may be substituted (for
example, an RZ26L may be replaced with an RZ28B). Note that the system
will not recognize the change in device type until an attempt is made to
mount the new device. Also, note that host-based shadowing continues to
require that all members of a shadow set be the same device type.

• SCSI IDs that are empty when a system boots shall remain empty as long as
that system is running. This rule only applies if there are multiple processors
on the SCSI bus and the MSCP server is loaded on any of them. (The MSCP
server is loaded when the system parameter MSCP_LOAD equals 1).

This is required to ensure that nodes on the SCSI bus use their direct path to
the disk, rather than the served path. When the new device is configured on
a system (using SYSMAN IO commands), that system serves it to the second
system on the shared SCSI bus. The second system automatically configures
the new device via the MSCP served path. Once this occurs, the second
system will be unable to use its direct SCSI path to the new device, because
failover from an MSCP served path to a direct SCSI path is not implemented.

C.7.6.3 Procedures for Ensuring That a Device or Segment Is Inactive
Use the following procedures to ensure that a device or a segment is inactive:

• To ensure that a disk is inactive:

1. Dismount the disk on all members of the VMScluster system.

2. Ensure that any I/O that can occur to a dismounted disk is stopped, for
example:

Disable the disk as a quorum disk

C–41

Allocate the disk (using the DCL ALLOCATE command) to block
further mount or initialization attempts

Disable console polling by all halted hosts on the logical SCSI bus
(by setting the console variable SCSI_POLL to OFF, and entering the
INIT command)

Ensure that no host on the logical SCSI bus is executing power-up or
initialization self-tests, booting, or configuring the SCSI bus (using
SYSMAN IO commands).

• To ensure that an HSZ40 controller is inactive:

1. Dismount all of the HSZ40 virtual disks on all members of the
VMScluster system.

2. Shut down the controller, following the procedures in the HS Family of
Array Controllers User’s Guide.

3. Power down the HSZ40, if desired.

• To ensure that a host adapter is inactive:

1. Halt the system.

2. Power down the system, or set the console variable SCSI_POLL to OFF
and then enter the INIT command on the halted system. This ensures
that the system will not poll, or respond to polls.

• To ensure that a segment is inactive, follow the procedure described above for
every device on the segment.

C.7.6.4 Procedure for Hot Plugging StorageWorks SBB Disks
To remove an SBB disk from an active SCSI bus, use the following procedure:

1. Use an ESD grounding strap that is attached either to a grounding stud or
to unpainted metal on one of the cabinets in the system. Refer to the system
installation procedures for guidance.

2. Follow the procedure in Section C.7.6.3 to make the disk inactive.

3. Squeeze the clips on the side of the SBB, and slide the disk out of the
StorageWorks shelf.

To insert an SBB disk onto an active SCSI bus, use the following procedure:

1. Use an ESD grounding strap that is attached either to a grounding stud or
to unpainted metal on one of the cabinets in the system. Refer to the system
installation procedures for guidance.

2. Ensure that the SCSI ID associated with the device (either by jumpers or by
the slot in the StorageWorks shelf) conforms to the following:

• The SCSI ID is unique for the logical SCSI bus

• The SCSI ID is already configured as a ‘‘DK’’ device on all of the
following:

Any member of the VMScluster system that already has that ID
configured

Any OpenVMS processor on the same SCSI bus that is running the
MSCP server

C–42

3. Slide the SBB into the StorageWorks shelf.

4. Configure the disk on VMScluster members, if required, using SYSMAN IO
commands.

C.7.6.5 Procedure for Hot Plugging HSZ40s
To remove an HSZ40 controller from an active SCSI bus:

1. Use an ESD grounding strap that is attached either to a grounding stud or
to unpainted metal on one of the cabinets in the system. Refer to the system
installation procedures for guidance.

2. Follow the procedure in Section C.7.6.3 to make the HSZ40 inactive.

3. The HSZ40 can be powered down, but it must remain plugged-in to the power
distribution system, to maintain grounding.

4. Unscrew and remove the differential tri-link from the HSZ40.

5. Protect all exposed connector pins from ESD and from contacting any
electrical conductor while they are disconnected.

To insert an HSZ40 controller onto an active SCSI bus:

1. Use an ESD grounding strap that is attached either to a grounding stud or
to unpainted metal on one of the cabinets in the system. Refer to the system
installation procedures for guidance. Also, ensure that the ground offset
voltages between the HSZ40 and all components that will be attached to it
are within the limits specified in Section C.7.8.

2. Protect all exposed connector pins from ESD and from contacting any
electrical conductor while they are disconnected.

3. Power up the HSZ40 and ensure that the disk units associated with the
HSZ40 conform to the following:

• The disk units are unique for the logical SCSI bus

• The disk units are already configured as ‘‘DK’’ devices on the following:

Any member of the VMScluster system that already has that ID
configured

Any OpenVMS processor on the same SCSI bus that is running the
MSCP server

4. Ensure that the HSZ40 will make a legal stubbing connection to the active
segment. (The connection is legal when the tri-connector is attached directly
to the HSZ40 controller module, with no intervening cable.)

5. Attach the differential tri-link to the HSZ40, using care to ensure that it is
properly aligned. Tighten the screws.

6. Configure the HSZ40 virtual disks on VMScluster members, as required,
using SYSMAN IO commands.

C–43

C.7.6.6 Procedure for Hot Plugging Host Adapters
To remove a host adapter from an active SCSI bus:

1. Use an ESD grounding strap that is attached either to a grounding stud or
to unpainted metal on one of the cabinets in the system. Refer to the system
installation procedures for guidance.

2. Verify that the connection to be broken is a stubbing connection. If not, then
hot plugging must not be performed.

3. Follow the procedure in Section C.7.6.3 to make the host adapter inactive.

4. The system can be powered down, but it must remain plugged-in to the power
distribution system, to maintain grounding.

5. Remove the ‘‘Y’’ cable from the host adapter’s single-ended connector.

6. Protect all exposed connector pins from ESD and from contacting any
electrical conductor while they are disconnected.

7. Do not unplug the adapter from the host’s internal bus while the host remains
powered up.

At this point, the adapter has disconnected from the SCSI bus. To remove
the adapter from the host, power down the host first, and then remove the
adapter from the host’s internal bus.

To insert a host adapter onto an active SCSI bus:

1. Use an ESD grounding strap that is attached either to a grounding stud or
to unpainted metal on one of the cabinets in the system. Refer to the system
installation procedures for guidance. Also, ensure that the ground offset
voltages between the host and all components that will be attached to it are
within the limits specified in Section C.7.8.

2. Protect all exposed connector pins from ESD and from contacting any
electrical conductor while they are disconnected.

3. Ensure that the host adapter will make a legal stubbing connection to the
active segment (the stub length must be within allowed limits, and the host
adapter must not provide termination to the active segment).

4. Plug the adapter into the host (if it is unplugged).

5. Plug the system into the power distribution system, to ensure proper
grounding. Power up if desired.

6. Attach the ‘‘Y’’ cable to the host adapter, using care to ensure that it is
properly aligned.

C.7.6.7 Procedure for Hot Plugging DWZZAs
Use the following procedure to remove a DWZZA from an active SCSI bus:

1. Use an ESD grounding strap that is attached either to a grounding stud or
to unpainted metal on one of the cabinets in the system. Refer to the system
installation procedures for guidance.

2. Verify that the connection to be broken is a stubbing connection. If not, then
hot plugging must not be performed.

3. Do not power down the DWZZA. This can disrupt the operation of the
attached SCSI bus segments.

C–44

4. Determine which SCSI bus segment will remain active after the
disconnection. Follow the procedure in Section C.7.6.3 to make the other
segment inactive.

When the DWZZA is removed from the active segment, the inactive segment
must remain inactive until the DWZZA is also removed from the inactive
segment, or proper termination is restored to the DWZZA port that was
disconnected from the active segment.

5. The next step depends on the type of DWZZA and the segment that is being
hot plugged, as follows:

DWZZA Type Condition Action

DWZZA-VA Single-ended segment
will remain active

Squeeze the clips on the side of the
SBB, and slide the DWZZA-VA out of
the StorageWorks shelf.

DWZZA-VA Differential segment will
remain active

Unscrew and remove the differential
tri-link from the DWZZA-VA.

DWZZA-AA Single-ended segment
will remain active

Remove the ‘‘Y’’ cable from the DWZZA-
AA’s single-ended connector.

DWZZA-AA Differential segment will
remain active

Unscrew and remove the differential
tri-link from the DWZZA-AA.

6. Protect all exposed connector pins from ESD and from contacting any
electrical conductor while they are disconnected.

To insert a DWZZA onto an active SCSI bus:

1. Use an ESD grounding strap that is attached either to a grounding stud or
to unpainted metal on one of the cabinets in the system. Refer to the system
installation procedures for guidance. Also, ensure that the ground offset
voltages between the DWZZA-AA and all components that will be attached to
it are within the limits specified in Section C.7.8.

2. Protect all exposed connector pins from ESD and from contacting any
electrical conductor while they are disconnected.

3. Ensure that the DWZZA will make a legal stubbing connection to the active
segment (the stub length must be within allowed limits, and the DWZZA
must not provide termination to the active segment).

4. The DWZZA must be powered up. The SCSI segment that is being added
must be attached and properly terminated. All devices on this segment must
be inactive.

5. The next step depends on the type of DWZZA, and which segment is being
hot plugged, as follows:

DWZZA Type Condition Action

DWZZA-VA Single-ended segment is
being hot plugged

Slide the DWZZA-VA into the
StorageWorks shelf.

DWZZA-VA Differential segment is
being hot plugged

Attach the differential tri-link to the
DWZZA-VA, using care to ensure that
it is properly aligned. Tighten the
screws.

C–45

DWZZA Type Condition Action

DWZZA-AA Single-ended segment is
being hot plugged

Attach the ‘‘Y’’ cable to the DWZZA-AA,
using care to ensure that it is properly
aligned.

DWZZA-AA Differential segment is
being hot plugged

Attach the differential tri-link to the
DWZZA-VA, using care to ensure that
it is properly aligned. Tighten the
screws.

6. If the newly attached segment has storage devices on it, then configure them
on VMScluster members, if required, using SYSMAN IO commands.

C.7.7 OpenVMS Requirements for Devices Used on Multiple-Host SCSI
VMScluster Systems

At this time, the only devices approved for use on multiple-host SCSI VMScluster
systems are those listed in Table C–2. While not specifically approved for use,
other disk devices might be used in a multiple-host VMScluster system when
they conform to the following requirements:

• Support for concurrent multi-initiator I/O.

• Proper management for the following states or conditions on a per-initiator
basis:

Synchronous negotiated state and speed

Width negotiated state

Contingent Allegiance and Unit Attention conditions

• Tagged Command Queuing. This is needed to provide an ordering guarantee
used in VMScluster systems to ensure that I/O has been flushed. The drive
must implement queuing that complies with Section 7.8.2 of the SCSI–2
Standard, which says (in part):

‘‘...All commands received with a simple queue tag message prior to a
command received with an ordered queue tag message, regardless of
initiator, shall be executed before that command with the ordered queue
tag message.’’ (Emphasis added.)

• Support for command disconnect.

• A reselection timeout procedure compliant with Option b of Section 6.1.4.2 of
the SCSI–2 Standard. Furthermore, the device shall implement a reselection
retry algorithm that limits the amount of bus-time spent attempting to
reselect a non-responsive initiator.

• Automatic read reallocation enabled (ARRE) and automatic write reallocation
enabled (AWRE), (that is, drive-based bad block revectoring), to prevent
multiple hosts from unnecessarily revectoring the same block. To avoid data
corruption, it is essential that the drive comply with Section 9.3.3.6 of the
SCSI–2 Standard, which says (in part):

‘‘...The automatic reallocation shall then be performed only if the target
successfully recovers the data.’’ (Emphasis added.)

• Storage devices should not supply TERMPWR. If they do, then it is necessary
to apply configuration rules to ensure that there are no more than four
sources of TERMPWR on a segment.

C–46

Finally, if the device or any other device on the same segment will be hot
plugged, then the device must meet the electrical requirements described in
Section C.7.6.2.

C.7.8 Grounding Requirements
This section describes the grounding requirements for electrical systems in a
SCSI VMScluster system.

Improper grounding can result in voltage differentials, called ground offset
voltages, between the enclosures in the configuration. Even small ground offset
voltages across the SCSI interconnect (as shown in Step 3 in Table C–9) can
disrupt the configuration, and the user may experience performance degradation
or data corruption.

Table C–9 describes important considerations to ensure proper grounding.

Table C–9 Steps for Ensuring Proper Grounding

Description

1 Ensure that site power distribution meets all local electrical codes.

2 Inspect the entire site power distribution system to ensure that:

• All outlets have power ground connections

• A grounding prong is present on all computer equipment power cables

• Power outlet neutral connections are not actual ground connections

• All grounds for the power outlets are connected to the same power distribution panel

• All devices that are connected to the same circuit breaker as the computer equipment are
UL or IEC approved

3 If you have difficulty verifying these conditions, you can use a hand-held multimeter to measure
the ground offset voltage between any two cabinets. To measure the voltage, connect the
multimeter leads to unpainted metal on each enclosure. Then, determine whether the voltage
exceeds the following allowable ground offset limits:

SCSI Signaling Method Maximum Allowable Offset

Single-ended 50 millivolts

Differential 800 millivolts

The multimeter method provides data for only the moment it is measured. The ground offset
values may change over time as additional devices are activated or plugged into the same power
source. To ensure that the ground offsets remain within acceptable limits over time, Digital
recommends that you have a power survey performed by a qualified electrician.

4 If you are uncertain about the grounding situation or if the measured offset exceeds the allowed
limit, Digital recommends that a qualified electrician correct the problem. It may be necessary to
install grounding cables between enclosures to reduce the measured offset.

5 If an unacceptable offset voltage was measured and a ground cable was installed, then measure
the voltage again to ensure it is less than the allowed limits. If not, an electrician must
determine the source of the ground offset voltage and reduce or eliminate it.

C–47

D
VMScluster Systems That Span Multiple

Sites—OpenVMS Version 6.2 Feature

This appendix discusses multiple-site VMScluster configurations, with an
emphasis on the new wide area network ATM and DS3 communications services.
It provides configuration guidelines and system management suggestions for
VMScluster systems in which multiple nodes are located at sites separated by
relatively long distances.

The information in this appendix supersedes the Multiple-Site VMScluster
Systems addendum manual, and it supplements current multiple-site VMScluster
information in the following VMScluster manuals:

• VMScluster Systems for OpenVMS

• Guidelines for VMScluster Configurations

The sections that follow describe multiple-site VMScluster configurations and
some of the benefits you can derive from them.

D.1 What Is a Multiple-Site VMScluster System?
A multiple-site VMScluster system is a VMScluster system in which the
member nodes are located in geographically separate sites. When an organization
has geographically disperse sites, a multiple-site VMScluster system allows the
organization to realize the benefits of VMScluster systems (for example, sharing
data among sites while managing data center operations at a single, centralized
location).

Figure D–1 illustrates the concept of a multiple-site VMScluster system for a
company with a manufacturing site located in Washington, D.C. and corporate
headquarters in Philadelphia. This configuration spans a geographical distance
of approximately 130 miles (210 km).

D–1

Figure D–1 Site-to-Site Link Between Philadelphia and Washington

ZK−7419A−GE

Philadelphia, PA

Washington, D.C.

Site−to−Site Link

The Fiber Distributed Data Interface (FDDI) has been in general use since VMS
Version 5.4–3 to carry out cluster communications over distances of approximately
25 miles (approximately 40 km).1

D.1.1 ATM, DS3, and FDDI Intersite Links
The following link technologies between sites are approved for OpenVMS VAX
and OpenVMS AXP systems:

• Asynchronous Transfer Mode (ATM)

• DS3

• FDDI

High-performance local area network (LAN) technology combined with the
ATM, DS3, and FDDI interconnects allows you to utilize wide area network
(WAN) communication services in your VMScluster configuration. VMScluster
systems configured with the GIGAswitch crossbar switch and ATM, DS3, or FDDI
interconnects approve the use of nodes located miles apart.2 Section D.3 describes
VMScluster systems and the WAN communications services in more detail.

Note

To gain the benefits of disaster tolerance across a multiple-site
VMScluster, use the Business Recovery Server combined with Volume
Shadowing for OpenVMS.

Consult your Digital Services Group or see the Software Product
Descriptions (SPDs) for complete and up-to-date details about these
products.

1 The cable route distance between sites.
2 The actual distance between any two sites is determined by the physical intersite

cable-route distance, and not the straight-line distance between the sites.

D–2

D.1.2 Benefits of Multiple-Site VMScluster Systems
Some of the benefits you can realize with a multiple-site VMScluster system
include the following:

Benefit Description

Remote satellites and
nodes

A few systems can be remotely located at a secondary site and can benefit
from centralized system management and other resources at the primary
site, as shown in Figure D–2. For example, a main office data center could
be linked to a warehouse or a small manufacturing site that could have a
few local nodes with directly attached site-specific devices. Alternatively,
some engineering workstations could be installed in an office park across
the city from the primary business site.

Data center
management
consolidation

A single management team can manage nodes located in data centers at
multiple sites.

Physical resource
sharing

Multiple sites can readily share devices such as high-capacity computers,
tape libraries, disk archives, or phototypesetters.

Remote archiving Backups can be made to archival media at any site in the cluster. A
common example would be to use disk or tape at a single site to back
up the data for all sites in the multiple-site VMScluster. Backups of
data from remote sites can be made transparently (that is, without any
intervention required at the remote site).

Increased availability In general, a multiple-site VMScluster provides all of the availability
advantages of a LAN VMScluster. (See VMScluster Systems for OpenVMS
for information about LANs.) Additionally, by connecting multiple,
geographically separate sites, multiple-site VMScluster configurations
can increase the availability of a system or elements of a system in a
variety of ways:

• Logical volume/data availability—Volume shadowing or redundant
arrays of independent disks (RAID) can be used to create logical
volumes with members at both sites. If one of the sites becomes
unavailable, data can remain available at the other site.

• Site failover—By adjusting the VOTES system parameter, you can
select a preferred site to continue automatically if the other site fails
or if communications with the other site are lost.

• Disaster tolerance—When combined with the software, services, and
management procedures provided by the Business Recovery Server
and Volume Shadowing for OpenVMS products, you can achieve a
high level of disaster tolerance. The Software Product Descriptions
(SPDs) for these products provide further information.

D–3

Figure D–2 shows a VMScluster system with satellites accessible from a remote site.

Figure D–2 Multiple-Site VMScluster Configuration with Remote Satellites

DS3

FDDI

FDDI

DS3

FDDI

FDDI

VAX
GIGAswitch

WAN
Card

AXPVAX

GIGAswitch

WAN
Card

Site A: Philadelphia, PA Site B: Washington, D.C.
DS3 Link
Between

Sites

Multiple−Site VMScluster

ZK−7235A−GE

D.1.3 General Configuration Guidelines
The same configuration rules that apply to VMScluster systems on a LAN also
apply to a multiple-site VMScluster configuration that includes ATM, DS3, or
FDDI intersite interconnect. General LAN configuration rules are stated in the
following documents:

• OpenVMS Cluster Software Software Product Description, Version 6.2 (SPD
29.78.xx)

• Guidelines for VMScluster Configurations

Some configuration guidelines are unique to multi-site VMSclusters, and these
guidelines are described in Section D.3.4.

D.2 Using FDDI to Configure Multiple-Site VMScluster Systems
Since VMS Version 5.4–3, FDDI has been the most common method to connect
two distant VMScluster sites. Using high-speed FDDI fiber-optic cables, you can
connect sites with an intersite cable-route distance of up to 25 miles 40 km.

You can connect sites using these FDDI methods:

• To obtain maximum performance, use a full-duplex FDDI link at 100 Mb/s
both ways between GIGAswitch/FDDI bridges at each site for maximum
intersite bandwidth.

• To obtain maximum availability, use a dual FDDI ring at 100 Mb/s between
dual attachment stations (DAS) ports of wiring concentrators or GIGAswitch
/FDDI bridges for maximum link availability.

• For maximum performance and availability, use two disjoint FDDI LANs,
each with dedicated host adapters and full-duplex FDDI intersite links
connected to GIGAswitch/FDDI bridges at each site.

D–4

Refer to the GIGAswitch/FDDI ATM Linecard Reference Manual for
configuration information. Additional VMScluster configuration guidelines
and system management information can be found in Guidelines for VMScluster
Configurations and VMScluster Systems for OpenVMS. See the Overview of
OpenVMS Documentation for information about ordering the current version of
these manuals.

The inherent flexibility of VMScluster systems and improved VMScluster LAN
protocols also allow you to connect multiple VMScluster sites using the ATM
and/or DS3 communications services.

D.3 Using WAN services to Configure Multiple-Site VMScluster
Systems

This section provides an overview of the ATM and DS3 wide area network (WAN)
services, describes how you can bridge an FDDI interconnect to the ATM and/or
DS3 communications services, and provides guidelines for using these services to
configure multiple-site VMScluster systems.

The ATM and DS3 services provide long-distance, point-to-point communications
that you can configure into your VMScluster system to gain WAN connectivity.
The ATM and DS3 services are available from most common telephone service
carriers and other sources.

Note

DS3 is not available in Europe and some other locations. Also, ATM is a
new and evolving standard, and ATM services might not be available in
all localities.

ATM and DS3 services are approved for use with the following OpenVMS
versions:

Service Approved Versions of OpenVMS

ATM OpenVMS Version 6.2 or later

DS3 OpenVMS Version 6.1 or later

The following sections describe the ATM and DS3 communication services and
how to configure these services into multiple-site VMScluster systems.

D.3.1 The ATM Communications Service
The ATM communications service that uses the SONET physical layer (ATM
/SONET) provides full-duplex communications (that is, the bit rate is available
simultaneously in both directions as shown in Figure D–3). ATM/SONET is
compatible with multiple standard bit rates. The SONET OC-3 service at 155
Mb/s full-duplex rate is the best match to FDDI’s 100 Mb/s bit rate. ATM/SONET
OC-3 is a standard service available in most parts of the world. In Europe,
ATM/SONET is a high performance alternative to the older E3 standard.

D–5

Figure D–3 ATM/SONET OC-3 Service

ATM/SONET

<= 1ms/100 miles route distance
DELAY:

155Mb/s
155Mb/s

ZK−7614A−GE

To transmit data, ATM frames (packets) are broken into cells for transmission
by the ATM service. Each cell has 53 bytes, of which 5 bytes are reserved for
header information and 48 bytes are available for data. At the destination of the
transmission, the cells are reassembled into ATM frames. The use of cells permits
ATM suppliers to multiplex and demultiplex multiple data streams efficiently at
differing bit rates. This conversion of frames into cells and back is transparent to
higher layers.

D.3.2 The DS3 Communications Service
The DS3 communications service provides full-duplex communications as shown
in Figure D–4. DS3 (also known as T3) provides the T3 standard bit rate of 45
Mb/s. T3 is the standard service available in North America and many other
parts of the world.

Figure D–4 DS3 Service

DS3

<= 1ms/100 miles route distance
DELAY:

45Mb/s
45Mb/s

ZK−7615A−GE

D.3.3 FDDI-to-WAN Bridges
You can use FDDI-to-WAN (for example, FDDI-to-ATM and/or FDDI-to-DS3)
bridges to configure a VMScluster with nodes in geographically separate sites,
such as the one shown in Figure D–5. In this figure, the VMScluster nodes
at each site communicate as though the two sites are connected by FDDI. The
FDDI-to-WAN bridges make the existence of ATM and DS3 transparent to the
VMScluster software.

D–6

Figure D–5 Multiple-Site VMScluster Configuration Connected by DS3

DS3

FDDI

FDDI

DS3

DS3 Link
Between

Sites

VAX
GIGAswitch

WAN
Card

AXPVAX

GIGAswitch

WAN
Card

Site A: Philadelphia, PA Site B: Washington, D.C.

VAX

FDDI

AXPVAX

FDDI

ZK−7234A−GE

Multiple−Site VMScluster

In Figure D–5, the FDDI-to-DS3 bridges and DS3 operate as follows:

1. The local FDDI-to-DS3 bridge receives FDDI packets addressed to nodes at
the other site.

2. The bridge converts the FDDI packets into DS3 packets and sends the
packets to the other site via the DS3 link.

3. The receiving FDDI-to-DS3 bridge converts the DS3 packets into FDDI
packets and transmits them on an FDDI ring at that site.

Digital recommends using the GIGAswitch/FDDI system to construct FDDI-to-
WAN bridges. Digital used the GIGAswitch/FDDI, combined with the DEFGT
WAN T3/SONET option card, during qualification testing of the ATM and DS3
communications services in multi-site VMScluster systems.

D.3.4 Guidelines for Configuring ATM and DS3 in a VMScluster System
When configuring a multiple-site VMScluster configuration, you must ensure that
the intersite link’s delay, bandwidth, availability, and bit error rate characteristics
meet application needs. This section describes the requirements and provides
recommendations for meeting those requirements.

D.3.4.1 Requirements
To be a configuration approved by Digital, a multiple-site VMScluster must
comply with the following rules:

Maximum intersite link route distance The total intersite link cable route distance
between members of a multiple-site
VMScluster cannot exceed 150 miles (242 km).
You can obtain exact distance measurements
from your ATM or DS3 supplier.

This distance restriction may be exceeded by
Business Recovery Server configurations that
meet Business Recovery Server configuration
rules.

D–7

Maximum intersite link utilization Average intersite link utilization in either
direction must be less than 80% of the link’s
bandwidth in that direction for any 10-second
interval. Exceeding this utilization is likely to
result in intolerable queuing delays or packet
loss.

Intersite link specifications The intersite link must meet the VMScluster
requirements specified in Table D–3.

VMScluster LAN configuration rules Apply the configuration rules for VMScluster
systems on a LAN to a configuration.
Documents describing configuration rules
are referenced in Section D.1.3.

D.3.4.2 Recommendations
When configuring the DS3 interconnect, apply the configuration guidelines
for VMScluster systems interconnected by LAN that are stated in the cluster
Software Product Descriptions (SPDs) and in the Guidelines for VMScluster
Configurations manual. VMScluster members at each site can include any mix of
satellites, systems, and other interconnects such as CI and DSSI.

This section provides additional recommendations for configuring a multiple-site
VMScluster system.

DS3 link capacity/protocols
The GIGAswitch with the WAN T3/SONET option card provides a full-duplex
155 Mb/s ATM/SONET link. The entire bandwidth of the link is dedicated to the
WAN option card. However, The GIGAswitch/FDDI’s internal design is based
upon full duplex extensions to FDDI. Thus the GIGAswitch/FDDI’s design limits
the ATM/SONET link’s capacity to 100 Mb/s in each direction.

The GIGAswitch with the WAN T3/SONET option card provides several protocol
options that can be used over a DS3 link. Use the DS3 link in clear channel
mode, which dedicates its entire bandwidth to the WAN option card. The
DS3 link capacity varies with the protocol option selected. Protocol options
are described in Table D–1.

Table D–1 DS3 Protocol Options

Protocol Option Link Capacity

ATM1 AAL–52 mode with PLCP3 disabled. 39 Mb/s

ATM AAL–5 mode with PLCP enabled. 33 Mb/s

HDLC4 mode (not currently available). 43 Mb/s

1Asynchronous Transfer Mode
2ATM Adaptation Layer
3Physical Layer Convergence Protocol
4High-Speed Datalink Control

For maximum link capacity, Digital recommends configuring the WAN T3/SONET
option card to use ATM AAL–5 mode with PLCP disabled.

D–8

Intersite bandwidth
The intersite bandwidth can limit application locking and I/O performance
(including volume shadowing or RAID set copy times) and the performance of the
lock manager.

To promote reasonable response time, Digital recommends that average traffic in
either direction over an intersite link not exceed 60% of the link’s bandwidth in
that direction for any 10-second interval. Otherwise, queuing delays within the
FDDI-to-WAN bridges can adversely affect application performance.

Remember to account for both VMScluster communications (such as locking and
I/O) and network communications (such as TCP/IP, LAT, and DECnet) when
calculating link utilization.

Intersite delay
An intersite link introduces a one-way delay of up to 1 ms per 100 miles of
intersite cable route distance plus the delays through the FDDI-to-WAN bridges
at each end. Digital recommends that you consider the effects of intersite delays
on application response time and throughput.

For example, intersite link one-way path delays have the following components:

• Cable route one-way delays of 1 ms/100 miles (0.01 ms/mile) for both ATM
and DS3.

• FDDI-to-WAN bridge delays (approximately 0.5 ms per bridge, and 2 bridges
per one-way trip)

Calculate the delays for a round trip as follows:

��� ����� ��	
 ���� �

�� � � ����� � ���� �� ��� ���� � � � ��� �� ��� ���	 ���� ������ �

An I/O write operation that is MSCP served requires a minimum of two round-
trip packet exchanges:

��� 	�� ����� ����� � ����� ��� � ���� �����

Thus, an I/O write over a 100-mile WAN link takes at least 8 ms longer than the
same I/O write over a short, local FDDI.

Similarly, a lock operation typically requires a round trip exchange of packets:

��� ��!" �������� ����� � ��� ��� � ���� �����

An I/O operation with N locks to synchronize it incurs the following delay due to
WAN:

��� ��!"�� 	� �������� ����� � �� � ��� ��!" �������� ������ � ��� 	�� �����

Bit error ratio
The bit error ratio (BER) parameter is an important measure of the frequency
that bit errors are likely to occur on the intersite link. You should consider
the effects of bit errors on application throughput and responsiveness when
configuring a multiple-site VMScluster. Intersite link bit errors can result in
packets being lost and retransmitted with consequent delays in application I/O
response time (see Section D.3.6). You can expect application delays ranging from
a few hundred milliseconds to a few seconds each time a bit error causes a packet
to be lost.

D–9

Intersite link availability
Interruptions of intersite link service can result in the resources at one or more
sites becoming unavailable until connectivity is restored (see Section D.3.5).

System disks
Sites with nodes contributing quorum votes should have a local system disk or
disks for those nodes.

System management
A large, multiple-site VMScluster requires a system management staff trained to
support an environment that consists of a large number of diverse systems that
are used by many people performing varied tasks.

Microwave DS3 links
You can provide portions of a DS3 link with microwave radio equipment. The
specifications in Section D.3.6 apply to any DS3 link. The BER and availability
of microwave radio portions of a DS3 link are affected by local weather and
the length of the microwave portion of the link. Consider working with a
microwave consultant who is familiar with your local environment if you plan
to use microwaves as portions of a DS3 link.

D.3.5 Availability Considerations
If the FDDI-to-WAN bridges and the link that connects multiple sites become
temporarily unavailable, the following events could occur:

• Intersite link failures can result in the resources at one or more sites
becoming unavailable until intersite connectivity is restored.

• Intersite link bit errors (and ATM cell losses) and unavailability can affect:

System responsiveness

System throughput (or bandwidth)

Virtual circuit (VC) closure rate

VMScluster transition and site failover time

Many communication service carriers offer availability-enhancing options, such
as path diversity, protective switching, and other options that can significantly
increase the intersite link’s availability.

D.3.6 Specifications
This section describes the requirements for successful communications and
performance with the WAN communications services.

To assist you in communicating your requirements to a WAN service supplier, this
section uses WAN specification terminology and definitions commonly used by
telecommunications service providers. These requirements and goals are derived
from a combination of Bellcore Communications Research specifications and a
Digital analysis of error effects on VMSclusters.

Table D–2 describes terminology that will help you understand the Bellcore and
VMScluster requirements and goals used in Table D–3.

Use the Bellcore and VMScluster requirements for ATM/SONET - OC3 and DS3
service error performance (quality) specified in Table D–3 to help you assess
the impact of the service supplier’s service quality, availability, down time, and
service-interruption frequency goals on the system.

D–10

Note

To ensure that the VMScluster system meets your application response-
time requirements, you might need to establish WAN requirements that
exceed the Bellcore and VMScluster requirements and goals stated in
Table D–3.

Table D–2 Bellcore and VMScluster Requirements and Goals Terminology

Specification Requirements Goals

Bellcore
Communications
Research

Bellcore specifications are the recommended ‘‘generic error
performance requirements and objectives’’ documented in the
Bellcore Technical Reference TR–TSY–000499 TSGR: Common
Requirements. These specifications are adopted by WAN suppliers
as their service guarantees. The FCC has also adopted them
for tariffed services between common carriers. However,
some suppliers will contract to provide higher service-quality
guarantees at customer request.

Other countries have equivalents to the Bellcore specifications
and parameters.

These are the recommended
minimum values. Bellcore calls
these goals their ‘‘objectives’’
in the TSGR: Common
Requirements document.

VMScluster In order for Digital to approve a configuration, parameters must
meet or exceed the values shown in the VMScluster Requirements
column in Table D–3.

IF... THEN...

These values
are not met

VMScluster performance will probably be
unsatisfactory because of interconnect
errors/error recovery delays, and VC
closures that may produce VMScluster state
transitions and/or site failover.

These values
are met or
exceeded

Interconnect bit error–related recovery
delays will not significantly degrade average
VMScluster throughput. VMScluster response
time should be generally satisfactory.

Note that if the requirements are only being
met, there may be several application pauses
per hour. 1

For optimal VMScluster
operation, all parameters should
meet or exceed the VMScluster
Goal values.

Note that if these values are met
or exceeded, then interconnect
bit errors and bit error recovery
delays should not significantly
degrade average VMScluster
throughput.

VMScluster response time
should be generally satisfactory,
although there may be brief
application pauses a few times
per day.2

1Pauses are due to a virtual circuit retransmit timeout resulting from a lost packet on one or more NISCA transport
virtual circuits. Each pause might last from a few hundred milliseconds to a few seconds.
2Application pauses may occur every hour or so (similar to what is described under VMScluster Requirements) because of
packet loss caused by bit error.

D–11

Table D–3 VMScluster DS3 & SONET OC3 Error Performance Requirements

Parameter
Bellcore
Requirement

Bellcore
Goal

VMScluster
Requirement1

VMScluster
Goal1 Units

Errored seconds (% ES) <1.0% <0.4% <1.0% <0.028% % ES/24 hr

The ES parameter can also be expressed as a count of errored seconds, as follows:

<864 <345 <864 <24 ES per 24-hr period

Burst errored seconds
(BES)2

�4 – �4 Bellcore Goal BES/day

Bit error ratio (BER)3
�� ��

�9
�� ��

�10
�� ��

�9
�� ��

�12 Errored bits/bit

DS3 Channel
unavailability

None �97 @
250 miles,
linearly
decreasing
to 24 @ �25
miles

None Bellcore Goal Min/yr

SONET Channel
unavailability

None �105 @
250 miles,
linearly
decreasing
to 21 @ �50
miles

None Bellcore Goal Min/yr

Channel unavailable
event4

None None None 1 to 2 Events/year

1Application requirements might need to be more rigorous than those shown in the VMScluster Requirements column.
2Averaged over many days.
3Does not include any burst errored seconds occurring in the measurement period.
4The average number of channel downtime periods occurring during a year. This parameter is useful for specifying how
often a channel might become unavailable.
Table Key

• Availability—The long-term fraction or percentage of time that a transmission channel performs as intended.
Availability is frequently expressed in terms of unavailability or down time.

• BER (bit error ratio)—‘‘The BER is the ratio of the number of bits in error to the total number of bits transmitted
during a measurement period, excluding all burst errored seconds (defined below) in the measurement period. During
a burst errored second, neither the number of bit errors nor the number of bits is counted.’’

• BES (burst errored second)—‘‘A burst errored second is any errored second containing at least 100 errors.’’
• Channel—The term for a link that is used in the Bellcore TSGR: Common Requirements document for a SONET or

DS3 link.
• Down time—The long-term average amount of time (for example, minutes) that a transmission channel is not available

during a specified period of time (for example, 1 year).

‘‘...unavailability or downtime of a channel begins when the first of 10 [or more] consecutive Severely Errored Seconds
(SESs) occurs, and ends when the first of 10 consecutive non-SESs occurs.’’

The unavailable time is counted from the first SES in the 10–SES sequence.

‘‘The time for the end of unavailable time is counted from the first fault-free second in the [non-SES] sequence.’’
• ES (errored second)—‘‘An errored second is any one-second interval containing at least one error.’’
• SES (severely errored second)—‘‘...an SES is a second in which the BER is greater than ��

�3.’’

D.4 Managing VMScluster Systems Across Multiple Sites
In general, you manage a multiple-site VMScluster using the same tools and
techniques that you would use for any VMScluster interconnected by a LAN. The
following sections describe some additional considerations and recommends some
system management tools and techniques.

D–12

The following table lists system management considerations specific to multiple-
site VMScluster systems.

Problem Possible Solution

Multiple-site configurations present an
increased probability of the following
failure modes:

• VMScluster quorum loss resulting
from site-to-site communication link
failure.

• Site loss resulting from power failure
or other breakdown can affect all
systems at that site.

Assign votes so that one preferred site
has sufficient votes to maintain quorum
and to continue operation if the site-to-site
communication link fails or if the other site
is unavailable. Select the site with the most
critical applications as the primary site. Sites
with a few noncritical systems or satellites
probably should not have sufficient votes to
continue.

Users expect that the local resources will
either continue to be available or will
rapidly become available after such a
failure. This might not always be the
case.

Consider some of the following options for
setting user expectations:

• Set management and user expectations
regarding the likely effects of failures,
and consider training remote users in the
procedures to be followed at a remote site
when the system becomes unresponsive
because of quorum loss or other problems.

• Develop management policies and
procedures for what actions will be
taken to identify and handle these failure
modes. These procedures may include
manually adjusting quorum to allow a site
to continue.

D.4.1 Methods and Tools
You can use the following system management methods and tools to manage both
remote and local nodes:

• There are two options for remote-site console access when you use an intersite
link through a DECserver in reverse LAT mode.

• Use the following tools to connect remote consoles:

SET HOST/LAT command

POLYCENTER Console Manager

VMScluster Console System (VCS)

Business Recovery Server Operations Management Station (includes
VCS)

• Use a modem to dial up the remote system consoles.

• An alternative to remote-site console access is to have a system manager at
each site.

• To enable device and processor control commands to take effect across
all nodes in a VMScluster system, use the System Management utility
(SYSMAN) that is supplied with the OpenVMS operating system.

D–13

D.4.2 Shadowing Data
Volume Shadowing for OpenVMS allows you to shadow data volumes across
multiple sites. System disks can be members of a volume shadowing or RAID
set within a site; however, use caution when configuring system disk shadow
set members in multiple sites. This is because it may be necessary to boot off a
remote system disk shadow set member after a failure. If your system does not
support FDDI booting, it will not be possible to do this.

See the Software Product Descriptions (SPDs) for complete and up-to-date details
about Volume Shadowing for OpenVMS and StorageWorks RAID for OpenVMS.

D.4.3 Monitoring Performance
Monitor performance for multiple-site VMScluster systems as follows:

• Monitor the virtual circuit (VC) packet-loss count and round-trip time values
using the System Dump Analyzer (SDA). The procedures for doing this are
documented in VMScluster Systems for OpenVMS.

• Monitor the intersite link bit error ratio (BER) and packet loss using network
management tools. You can use tools such as POLYCENTER NetView
or DECmcc to access the GIGAswitch and WAN T3/SONET option card’s
management information and to set alarm thresholds. See the GIGAswitch,
WAN T3/SONET card, POLYCENTER, and DECmcc documentation, as
appropriate.

D–14

E
Other OpenVMS Version 6.2 New Features

This appendix contains descriptions of OpenVMS Version 6.2 new features not
otherwise documented in the printed manuals for OpenVMS Version 6.2 or 7.0.

E.1 VMScluster Systems New Features
In OpenVMS Version 6.2, VMScluster systems included the following new
features:

• OpenVMS Cluster Client Software

• Support for TMSCP served SCSI tapes

• Enhanced support for HSJ, HSC, and HSD series controller failover

These features further enhanced the performance, availability, and functionality
of VMScluster systems. The following sections describe these features in more
detail.

E.1.1 OpenVMS Cluster Client Software
OpenVMS Version 6.2 introduces a new license type for OpenVMS cluster
software, called OpenVMS Cluster Client software. The new license provides a
low-cost cluster client product for Alpha and VAX workstations.

The OpenVMS Cluster Client software provides fully functional OpenVMS
Cluster software with two exceptions:

• Clients cannot provide VOTES to the VMScluster configurations

• Clients cannot MSCP serve disks or TMSCP serve tapes

OpenVMS Cluster Client software is available for VAX and Alpha systems.
The software uses a License Management Facility (LMF) license name of
VMSCLUSTER-CLIENT. OpenVMS Cluster Client software is included in the
NAS 150 package. Refer to the OpenVMS Cluster Software Product Description
for ordering information.

E.1.2 Support for TMSCP Served SCSI Tapes
VMScluster Systems for OpenVMS has been enhanced to allow the TMSCP server
to serve SCSI tapes. The TMSCP server makes locally connected tapes of the
following types available across a cluster:

• TA series tapes for CI

• TF series tapes for DSSI

• TZ and TLZ tapes for SCSI

E–1

The TMSCP server is controlled by the TMSCP_LOAD and TMSCP_SERVE_ALL
system parameters.

• The TMSCP_LOAD parameter controls whether the TMSCP server is loaded.
By default, the value of the TMSCP_LOAD parameter is set to zero so that
the TMSCP server is not loaded. Refer to VMScluster Systems for OpenVMS
for information about setting this parameter.

• The TMSCP_SERVE_ALL system parameter is new with this release.
This parameter specifies TMSCP tape-serving functions when the TMSCP
server is loaded. If TMSCP_LOAD is set to zero, the TMSCP_SERVE_
ALL parameter is ignored. Table E–1 describes the TMSCP_SERVE_ALL
parameter settings.

Table E–1 TMSCP_SERVE_ALL System Parameter Settings

Value Description

0 Serve no tapes. This is the default value.

1 Serve all available tapes.

2 Serve only locally connected tapes.

E.1.2.1 No TMSCP Server Support for SCSI Retension Command
The SCSI retension command modifier is not supported by the TMSCP server.
Retension operations should be performed from the node serving the tape.

E.1.3 Enhanced Support for HSJ, HSC, and HSD Series Controller Failover
In previous releases of VMScluster software, dual porting of disks between pairs
of HSJ and HSC series controllers was supported when the controllers were
attached to a common star coupler. Beginning with OpenVMS Version 6.2, you
can connect dual-ported disks to pairs of HSJ and HSC series controllers that are
attached to different star couplers. This feature enhances availability because
failure of a CI adapter need not cause both controllers to become unreachable.

This feature is available for HSJ and HSC series CI controllers and for HSD30
DSSI controllers. It permits HSD30 controllers to be configured across different
DSSI buses.

E–2

Index

A
Adapters

add on SCSI, C–9
integral SCSI, C–18

Affinity
explicit, 4–27
implicit, 4–28

Allocation classes
setting for SCSI configurations, C–4, C–20,

C–22
ALPHA$LIBRARY logical name, 4–11
ALPHA$LOADABLE_IMAGES logical name,

4–11
/ALPHA qualifier, 4–12
Arbitration rules, for control of SCSI bus, C–36

modifying the effect of, C–36
Architectures

linker options, 4–11
ATM communications service, D–5

system management, D–12
ATM Intersite Link Specifications, D–10

B
64-Bit System Services, 4–1
64-Bit Virtual Addressing, 4–1
Buffers

using in a LAT environment, 3–9

C
Capabilities

system, 4–24
user, 4–25

Character set description (charmap) file
components, B–45
descriptions of, B–42 to B–47

Communications services
ATM, D–5
DS3, D–5

Configurations
building SCSI VMScluster systems with

DWZZA converters, C–11
building with add on SCSI adapters, C–9
building with an HSZ40 controller, C–12

Configurations (cont’d)
building with BA350/BA353 StorageWorks

enclosures, C–9
building with internal SCSI adapters, C–18
installing SCSI VMScluster systems, C–19
multiple-host SCSI access on VMScluster

system, C–3
SCSI concepts, C–6
SCSI hardware, C–9
SCSI interconnect requirements, C–4
SCSI VMScluster systems, C–1
single-ended and differential SCSI signaling,

C–7
single-host SCSI access on VMScluster system,

C–2
troubleshooting SCSI VMScluster systems,

C–33
unique SCSI device IDs, C–6
using CLUSTER_CONFIG for SCSI VMScluster

systems, C–26
WANs, D–2

Controllers
HSZ40 controllers, C–12

Converters
using DWZZA in SCSI VMScluster systems,

C–11
COPY command, 4–22
CPU scheduling, 4–24
$CPU_CABILITIES service, 4–26
CREATE command, 4–21
CREATE/DIRECTORY command

/ALLOCATION qualifier, 2–1
Creating large directories, 2–1
$CREPRC system service

new node argument, 4–23
Cross-architecture

linking, 4–11, 4–12
logical names, 4–11

CWCREPRC_ENABLE system parameter, 3–1

D
DBGTK_SCRATCH system parameter, 3–1
DCL commands

RUN [process] command
/ON qualifier, 2–1

Index–1

Debugger
CALL command and floating-point parameters,

4–4
Close File menu item, 4–6
customization features, 4–4
customizing fonts, 4–6
Editor File menu, 4–6
EXAMINE/DEFINITIONS command, 4–2
internationalization, 4–3

customizing fonts, 4–6
null frame procedures, 4–4
Refresh File menu item, 4–6
SHOW CALLS command, 4–4
SHOW STACK command, 4–4
with optimized programs, 4–1

semantic events, 4–2
SET STEP SEMANTIC_EVENT command,

4–3
split-lifetime variables, 4–2
STEP/SEMANTIC_EVENT command, 4–3

Debugger, 4–6
DECamds

New Cluster Windows, 6–5
Single Disk Summary Window, 6–3
summary of features, 6–1
System Overview Window, 6–2

DECnet, 3–12
DECnet/OSI, 3–12
DECthreads, 4–11

POSIX 1003.1c standard, 4–7
Thread Independent Services (TIS), 4–7

Delta/XDelta Debugger (DELTA/XDELTA)
debugging multithreaded applications, 4–8

Device IDs
configuring for SCSI, C–21

Differential signaling
for SCSI, C–7

Digital TCP/IP, 3–12
Directory blocks

controlling read/write checking of, 3–2
Disks

accessing SCSI, C–2
SCSI, C–1
SCSI concepts, C–6
SCSI configuration requirements, C–4

Display changes, 3–28
DS3 communications service, D–5

system management, D–12
DS3 Intersite Link Specifications, D–10
Dump file compression, 4–18
DUMPSTYLE parameter, 4–19
DUMP subset, 4–19

E
EFN$C_ENF event flag, 4–30
EFN 128, 4–30
Error-handling requirements, D–10
ERRORLOGBUFFERS system parameter, 4–21
Error messages, A–1
Event flag 128, 4–30

F
Fast IO system services, 4–22
Fast Path, 5–7
FAST_PATH system parameter, 3–2
FDDI

multiple-site VMSclusters, D–4
File compression

of dump files, 4–18
File systems

Spiralog, 4–18

G
GENCAT command, B–2
$GETJPI service, 4–30
$GETSYI service, 4–29
Grounding

SCSI requirements, C–20
troubleshooting, C–36

H
Hardware

add on SCSI adapters, C–9
BA350/BA353 StorageWorks enclosures, C–9
DWZZA converters, C–11
HSZ40 controllers, C–12
in SCSI VMScluster systems, C–9
integral SCSI adapters, C–18

Heap Analyzer, 4–6
Host-based RAID

support for, C–4
Host-based shadowing

support for, C–4
Host IDs

configuring for SCSI, C–20
Hosts

in a VMScluster system, C–1
Hot plugging (SCSI devices), C–38
HSC series controller failover, E–2
HSD series controller failover, E–2
HSJ series controller failover, E–2

Index–2

I
ICONV commands

COMPILE, B–6
CONVERT, B–10

Images
building for Alpha and VAX architectures, 4–12
specifying VAX in link operations, 4–13

Installation
configuring SCSI node IDs, C–20
SCSI VMScluster systems, C–19

Interconnects
accessing SCSI storage over, C–2
ATM, D–5
DS3, D–5
FDDI, D–4
SCSI, C–1
troubleshooting SCSI, C–33

Internationalization of debugger, 4–3
Internet

accessing, 2–9
IO_PREFER_CPUS system parameter, 3–1
Item codes, 4–15, 4–29, 4–30

user context, 4–15

K
Kernel Threads, 4–10

L
LANs

multiple-site VMScluster, D–3
using multiple LAN adapters for LAT node,

3–5
LAT Control Program (LATCP) utility

/[NO]ANNOUNCEMENTS qualifier, 3–11
/[NO]LARGE_BUFFER qualifier, 3–10

LAT item codes, 4–14
LAT software

disabling service announcements, 3–11
rating algorithm, 3–11
SET HOST/LAT command

/FRAME qualifier, 3–12
terminal speed, 3–5
using large buffers, 3–9
using multiple LAN adapters, 3–5

LC_COLLATE locale category, B–23
LC_CTYPE locale category, B–27
LC_MESSAGES locale category, B–30
LC_MONETARY locale category, B–31
LC_NUMERIC locale category, B–35
LC_TIME locale category, B–36
Licenses

VMScluster client software, E–1

LOCALE commands
COMPILE, B–11
LOAD, B–14
SHOW CHARACTER_DEFINITIONS, B–15
SHOW CURRENT, B–16
SHOW PUBLIC, B–18
SHOW VALUE, B–18
UNLOAD, B–15

Locale file format
descriptions of, B–22 to B–42
locale categories, B–22, B–23

M
MAIL$SEND_BEGIN routine, 4–15
MAIL$USER_BEGIN routine, 4–15
MAIL$USER_GET_INFO routine, 4–15
MAIL$USER_SET_INFO routine, 4–16
MAIL$_SEND_NO_SIGFILE item code, 4–15
MAIL$_SEND_SIGFILE item code, 4–15
MAIL$_USER_SET_NO_SIGFILE item code,

4–15
MAIL$_USER_SET_SIGFILE item code, 4–15
MAIL$_USER_SIGFILE item code, 4–15
MAIL command

using /SIGNATURE_FILE qualifier, 2–7
Mail utility

SEARCH command, 2–9
using /PAGE qualifier, 2–8
using signature files, 2–6

Managing multiple sites, D–13
MAXBOBMEM system parameter, 3–2
MERGE command

high-performance Sort/Merge utility, 2–4
Messages, A–1
Multiple execution contexts, 4–10
Multithreaded applications

debugging with DELTA/XDELTA, 4–8
MULTITHREAD system parameter, 3–2

N
/NEXT qualifier

with SEARCH command (Mail), 2–9
Nodes

in a VMScluster system, C–1
/NO_INITIAL_FF qualifier, 3–30

O
OPCOM (Operator Communication Manager)

OPC$ALLOW_INBOUND logical name, 3–12
OPC$ALLOW_OUTBOUND logical name, 3–12

OpenVMS cluster client software, E–1
Optimization and debugging, 4–1
Other command changes, 3–29

Index–3

P
/PAGE=SAVE qualifier navigation keys, 2–8
/PAGE qualifier

using with Mail utility, 2–8
Parameters

setting SCSI, C–24
Performance

data transfer rates, C–7
SCSI storage, C–6

Performance requirements, D–10
Portable Character Set, B–42
Print queues, 3–30
1024 Process Identifiers, 3–30
$PROCESS_AFFINITY service, 4–28
$PROCESS_CAPABILITIES service, 4–26

R
RAID (redundant arrays of independent disks),

C–2
Read and write checking

of directory blocks, 3–2
Redundant arrays of independent disks

See RAID
Requirements

Bellcore Communications Research, D–11
VMScluster, D–11

Run-time library (RTL) routines
LIB$CREATE_DIR, 4–31

S
SAVEDUMP system parameter, 4–21
Schedulers

callback, 4–11
DECthreads, 4–11
OpenVMS, 4–11

SCSI bus
arbitration rules, C–36
control of, C–36

SCSI disks
accessing, C–2
configurations requirements, C–4
modes of operation, C–6
unique device IDs, C–6

SCSI interconnect, C–1
ANSI standard, C–1
cabling and termination, C–8
concepts, C–6
configuration requirements, C–4
configurations using add on SCSI adapters,

C–9
configurations using an HSZ40 controller, C–12
configurations using BA350/BA353

StorageWorks enclosures, C–9
configurations using DWZZA converters, C–11

SCSI interconnect (cont’d)
configurations using integral SCSI adapters,

C–18
configuring device IDs, C–21
configuring SCSI node IDs, C–20
configuring with CLUSTER_CONFIG.COM,

C–26
connected to a single host, C–2
connected to multiple hosts, C–3
data transfer rates, C–7
grounding requirements, C–20
hardware configurations, C–9
hot plugging devices with, C–38
installation, C–19
maximum distances, C–8
maximum length, C–7
number of devices supported, C–6
performance, C–6
power up and verify, C–22
show and set console parameters, C–24
TERMPWR line, C–8
troubleshooting, C–33

SCSI tapes
no support for SCSI retension, E–2
support in a VMScluster system, E–1

SEARCH command
/NEXT qualifier, 2–9

SET FETCH
SDA command, 3–23

SET HOST/LAT command
/FRAME qualifier, 3–12

$SET_IMPLICIT_AFFINITY service, 4–29
Shadowing

support for, C–4
SHOW CLUSTER

SDA command, 3–24
SHOW CONNECTIONS

SDA command, 3–24
SHOW CPU command, 4–29
SHOW LAN

SDA command, 3–24
SHOW LOCK

SDA command, 3–24
SHOW MEMORY command, 4–21
SHOW PAGE_TABLE

SDA command, 3–25
SHOW PFN_DATA

SDA command, 3–25
SHOW PROCESS

SDA command, 3–27
SHOW PROCESS command, 4–29
SHOW RESOURCE

SDA command, 3–27
SHOW SUMMARY

SDA command, 3–27
Signature file, 4–14

Index–4

Signature file item codes, 4–14
Signature files

using with Mail utility, 2–6
Single-ended signaling

for SCSI, C–7
Site-specific startup command procedure

releasing page file blocks, 4–22
Small Computer Systems Interface

See SCSI
SMB$READ_MESSAGE_ITEM routine, 4–22
SMBMSG$K_PRINT_CONTROL message item

code, 4–22
SMBMSG$V_NO_INITIAL_FF symbol, 4–22
SONET OC-3 Intersite Link Specifications, D–10
SOR$ routines

high-performance Sort/Merge utility, 4–8
SORT command

high-performance Sort/Merge utility, 2–4
Sort/Merge utility (SORT/MERGE)

high-performance Sort/Merge utility, 2–4, 4–8
Specifications

ATM Intersite Link, D–10
DS3 Intersite Link, D–10
T3 Intersite Link, D–10
WAN Intersite Link, D–10

Spiralog file system, 4–18
SPT (system page table)

in system dump file, 4–20
StorageWorks

BA350/BA353 enclosures, C–9
Symbiont/Job Controller Routines, 4–22
SYS$LIBRARY logical name, 4–11
SYS$MANAGER:SYLOGICALS.COM command

procedure
OPCOM logical names, 3–12

SYS$SYSTEM:PAGEFILE.SYS file, 4–21
SYS$SYSTEM:SYSDUMP.DMP file, 4–20
System capabilities, 4–24
System Dump Analyzer (SDA)

new and changed commands, 3–23
System dump files, 4–18 to 4–22
System management

ATM multisite, D–12
DS3, D–12
methods and tools, D–13
multisite, D–12
WAN multisite, D–12

System messages, A–1
System page file

as dump file, 4–21
System parameters

ACP_DATACHECK, 3–2
new, 3–1
SYSTEM_CHECK, 3–2

System services
SYS$CPU_CAPABILITIES, 4–23
SYS$CREPRC node argument, 4–23

System services (cont’d)
SYS$PROCESS_AFFINITY, 4–23
SYS$PROCESS_CAPABILITIES, 4–23
SYS$SET_IMPLICIT_AFFINITY, 4–23

T
T3 Intersite Link Specifications, D–10
Tapes

no support for SCSI retension, E–2
SCSI, E–1
TMSCP served, E–2

TDF (time differential factor)
map for determining, 3–15

Terminators
for SCSI, C–8

Thread manager, 4–11
TMSCP servers

controlled by TMSCP_LOAD, E–2
controlled by TMSCP_SERVE_ALL, E–2
SCSI tapes in a VMScluster system, E–1

TMSCP_LOAD system parameter, E–2
TMSCP_SERVE_ALL system parameter, E–2
Troubleshooting

SCSI configurations, C–33

U
Upcall, 4–11
User capabilities, 4–25
User profile entry

Signature file, 4–14

V
VAX

images
specifying in link operations, 4–13

VAX$LIBRARY logical name, 4–11
/VAX qualifier, 4–12, 4–13
VMScluster systems

ATM communications service, D–5
ATM multisite system management, D–12
client software licensing, E–1
CLUSTER_CONFIG.COM, C–26
DS3 communications service, D–5
DS3 system management, D–12
hosts, nodes, and computers, C–1
HSC series controller failover, E–2
HSD series controller failover, E–2
HSJ series controller failover, E–2
installing SCSI, C–19
mixed-architecture support, 3–30
mixed-version support, 3–30
SCSI configuration requirements, C–4
SCSI hardware configurations, C–9
SCSI performance, C–6
SCSI storage connected to a single-host, C–2

Index–5

VMScluster systems (cont’d)
SCSI storage connected to multiple-hosts, C–3
SCSI storage interconnect, C–1
serving SCSI tapes, E–1
shared SCSI storage concepts, C–6
using FDDI, D–4
WAN multisite system management, D–12
warranted and migration support, 3–30

W
WAN communications service

system management, D–12
WAN Intersite Link Specifications, D–10
WANs

utilizing in a VMScluster, D–2
Wide area networks

See WANs
Wind/U Version 3.0, 4–31

X
XPG4 localization utilities, B–1

character map (charmap) file, B–42 to B–47

GENCAT command, B–2
ICONV commands

COMPILE, B–6
CONVERT, B–10

LOCALE commands
COMPILE, B–11
LOAD, B–14
SHOW CHARACTER_DEFINITIONS,

B–15
SHOW CURRENT, B–16
SHOW PUBLIC, B–18
SHOW VALUE, B–18
UNLOAD, B–15

locale file format, B–22 to B–42
ZIC command, 4–31

Z
ZIC command, 4–31
ZIC Link Lines, 4–35
ZIC parameters, 4–32
ZIC Rule Lines, 4–32 to 4–34
ZIC Zone Lines, 4–34 to 4–35

Index–6

