
POLYCENTER Software
Installation Utility Developer’s
Guide

December 1995

This guide describes how to package software products using the
POLYCENTER Software Installation utility. It describes the product
description language, product description files, product text files, and
other relevant concepts.

Revision/Update Information: This guide supersedes the
POLYCENTER Software Installation
Utility Developer’s Guide, Version 6.1

Software Version: OpenVMS Alpha Version 7.0
OpenVMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DEC, DEC
Ada, DEC Fortran, DEC Rdb, DECdirect, DECnet, DECprint, DECwindows, Digital, MicroVAX,
OpenVMS, POLYCENTER, Rdb/VMS, RSX, VAX, VAXcluster, VMS, VMScluster, and the DIGITAL
logo.

The following are third-party trademarks:

Hewlett-Packard is a registered trademark of Hewlett-Packard Company.

Motif, OSF, OSF/1, OSF/Motif, and Open Software Foundation are registered trademarks of the
Open Software Foundation, Inc.

NFS is a registered trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

ZK5952

This document is available on CD–ROM.

Contents

Preface . vii

Part I Concepts

1 Overview

1.1 Features for Software Providers . 1–1
1.2 Features for System Managers . 1–1
1.3 Coexistence with VMSINSTAL . 1–2
1.4 Available Interfaces . 1–2
1.5 Packaging a Product . 1–2
1.5.1 Product Files . 1–3
1.5.2 Product Database . 1–3
1.5.3 Format of Software Product Kits . 1–4
1.5.4 Software Product Name Conventions . 1–5
1.5.4.1 Looking at Software Product Name Examples 1–6
1.5.5 Logical Names . 1–7
1.6 Packaging a Platform . 1–7
1.7 Managed Objects . 1–8
1.7.1 Managed Object Conflict . 1–8
1.7.2 Managed Object Replacement and Merging . 1–9
1.7.3 Managed Object Scope and Lifetime . 1–10

2 Creating the Product Description File

2.1 General Guidelines . 2–2
2.2 Defining Your Environment . 2–2
2.3 PDF File Naming Conventions . 2–5
2.4 Structure of a PDF . 2–5
2.4.1 Overview of PDL Statements . 2–6
2.4.2 PDL Statement Syntax . 2–7
2.4.3 PDL Function Syntax and Expressions . 2–8
2.4.4 PDL Data Types and Values . 2–9
2.5 Writing a PDF for a Full Kit . 2–10
2.6 Writing a PDF for a Platform Kit . 2–14
2.7 Writing a PDF for a Transition Kit . 2–14

iii

3 Creating the Product Text File

3.1 PTF File Naming Conventions . 3–1
3.2 Structure of a PTF . 3–2
3.2.1 Specifying the Product Name . 3–2
3.2.2 PTF Modules . 3–2
3.2.3 Including Prompt and Help Text . 3–3

4 Packaging the Kit

4.1 Packaging with the DCL Interface . 4–1
4.2 Product Command Example . 4–4

Part II Product Description Language Statements

account . PDL–3
apply to . PDL–5
bootstrap block . PDL–7
directory . PDL–8
end . PDL–10
error . PDL–11
execute install...remove . PDL–13
execute login . PDL–15
execute postinstall . PDL–16
execute release . PDL–18
execute start...stop . PDL–20
execute test . PDL–22
file . PDL–23
hardware device . PDL–28
hardware processor . PDL–30
if . PDL–31
infer . PDL–33
information . PDL–35
link . PDL–37
loadable image . PDL–39
module . PDL–41
network object . PDL–43
option . PDL–45
part . PDL–48
patch image (VAX only) . PDL–50
patch text . PDL–51
process parameter . PDL–52
process privilege . PDL–54
product . PDL–55
register module . PDL–57
remove . PDL–59
rights identifier . PDL–61
scope . PDL–63
software . PDL–64

iv

system parameter . PDL–67
upgrade . PDL–69

A Migrating from VMSINSTAL to the POLYCENTER Software
Installation Utility

A.1 VMSINSTAL Options and Equivalents . A–1
A.2 VMSINSTAL Callbacks and Equivalents . A–2

B Advanced PDF Concepts

B.1 Defining the Scope of a Managed Object . B–1
B.2 Updating Files . B–2
B.3 Managed Object Lifetimes . B–2

Glossary

Index

Examples

2–1 Checktran Product Description File . 2–10
2–2 UCX Product Description File . 2–11
2–3 Product Description File . 2–14
2–4 FMS Product Description File . 2–15

Figures

1–1 Package Operation . 1–4
1–2 Integrated Platform Example . 1–8

Tables

1–1 Format of tmmnn-ue Version Identification . 1–5
1–2 PDF Kit Types and Values . 1–6
2–1 Base Data Types and Values . 2–9
2–2 String Data Type Constraints . 2–10
4–1 Product Command Format . 4–2
PDL–1 Directory Managed Object Scope and Lifetime PDL–9
PDL–2 File Managed Object Scope and Lifetime . PDL–26
PDL–3 Link Managed Object Scope and Lifetime . PDL–37
PDL–4 Library Types for Module Statement . PDL–41
PDL–5 Library Types for Register Module Statement PDL–57
A–1 VMSINSTAL Options and Equivalents . A–1
A–2 VMSINSTAL Callbacks and Equivalents . A–2

v

Preface

Intended Audience
This guide is intended for individuals who are responsible for packaging software
products.

Document Structure
This guide is organized into two parts, two appendixes, and a glossary as follows:

• Part I contains the chapters that describe the concepts you should be familiar
with to create software kits with the POLYCENTER Software Installation
utility. It also contains instructions on how to write a product description file
and product text file. Part I contains the following chapters:

– Chapter 1 describes utility concepts.

– Chapter 2 describes writing the product description file. It also contains
sample product descriptions.

– Chapter 3 describes writing the product text file. It also contains sample
product text files.

– Chapter 4 describes how to package your product.

• Part II describes product description language statements.

• Appendix A contains information about migrating from the VMSINSTAL
utility to the POLYCENTER Software Installation utility.

• Appendix B describes some advanced concepts such as managed object scope
and lifetime.

• The Glossary lists and defines POLYCENTER Software Installation utility
terminology.

Related Documents
The OpenVMS System Manager’s Manual describes the tasks that system
managers perform using the POLYCENTER Software Installation utility.
It explains operations such as software installation and removal. It also
demonstrates the two POLYCENTER Software Installation user interfaces: the
DIGITAL Command Language (DCL) and DECwindows Motif.

For additional information on OpenVMS products and services, access the Digital
OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

vii

Reader’s Comments
Digital welcomes your comments on this guide.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08

Mail OpenVMS Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063−1260

809−781−0505

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

Conventions
The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

The following conventions are used to identify information specific to OpenVMS
Alpha or to OpenVMS VAX:

Alpha
The Alpha icon denotes the beginning of information
specific to OpenVMS Alpha.

viii

VAX
The VAX icon denotes the beginning of information
specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
information specific to OpenVMS Alpha or to OpenVMS
VAX.

In this guide, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this guide:

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the guide.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

parameters Unless otherwise noted, all parameters that you use with
product description language (PDL) statements are strings
either enclosed in quotation marks or not enclosed in quotation
marks.

ix

Part I
Concepts

Part I describes the concepts you should be familiar with to create software kits.
It also contains instructions for writing product description and text files.

1
Overview

The POLYCENTER Software Installation utility is a complete software
installation and management utility for OpenVMS Alpha or VAX systems. It
can package, install, remove, and manage software products on Alpha or VAX
systems. It can also save information about software products such as system
requirements, installation options, and your answers to questions that are asked
during the installation process.

The POLYCENTER Software Installation utility is intended for use both by those
who create (package) kits for software products, and by system managers who
install and maintain these products.

1.1 Features for Software Providers
For software providers, the POLYCENTER Software Installation utility simplifies
the task of packaging software because:

• Installations require less packaging effort than most conventional installation
methods. This results in performance gains and reduced development time
over conventional installations. The code is also nonprocedural, which means
that you do not need to understand the details of how the utility functions.

• You can include both brief and detailed installation text to guide users
through an installation, resulting in a higher installation success rate.

• All software and documentation can exist on a single piece of distribution
media.

• The utility keeps track of which products (and versions) have been installed
and removed in the execution environment. Using this information, you
can design your installation procedure so that system managers can use the
utility to manage version dependencies.

1.2 Features for System Managers
System managers can use the POLYCENTER Software Installation utility to:

• Install a product

• Extract release notes to a file

• Display the names of product kits found in a specified directory

• Remove an installed product

• Create a product configuration file (PCF) that contains default choices for
installation options

• Modify the configuration choices for an installed product

• Register a product that was previously installed with another tool

1–1

Overview
1.2 Features for System Managers

• Register a change in the volume label for a device that contains installed
products

• Copy product kits to a new location and optionally convert them to another
format

• Display a list of products installed on a system

• Display information about managed objects (for example, files or directories)
created during a software product installation

• Display a log of operations performed on software products

Note that the POLYCENTER Software Installation utility does not perform
license management tasks.

1.3 Coexistence with VMSINSTAL
The POLYCENTER Software Installation utility is integrated into OpenVMS
and coexists with the VMSINSTAL utility. Today, you use the POLYCENTER
Software Installation utility to install the OpenVMS Operating System and some
layered products on Alpha systems, and to install some layered products on
VAX systems. The POLYCENTER Software Installation utility is the preferred
installation mechanism for future layered product and OpenVMS releases.

The POLYCENTER Software Installation utility offers the following features:

• Typically faster installation and upgrade operations

• Removal (deinstallation) of previously installed software products

• A database of information on installed products that has query capabilities on
the database

• Two interfaces to the utility: DCL and DECwindows Motif

• Dependency checking of software products based on product version number

If you currently use VMSINSTAL to package your software product, see
Appendix A for information about migrating from VMSINSTAL to the
POLYCENTER Software Installation utility.

1.4 Available Interfaces
You can perform POLYCENTER Software Installation utility operations from
either the DCL interface or from the DECwindows Motif interface. You might
already be familiar with the main DCL component of the POLYCENTER Software
Installation utility, the PRODUCT command.

When first packaging a software product, you will probably find that the DCL
interface is the most convenient to use. This document uses the DCL interface for
all examples.

1.5 Packaging a Product
Note

This section introduces you to packaging a product. See Chapter 4 for
complete information.

1–2

Overview
1.5 Packaging a Product

You ‘‘package’’ software components to produce a software product kit. To do this,
you use the PRODUCT PACKAGE command in the following format:

$ PRODUCT PACKAGE product_name[,...]
/SOURCE=file-specification
/DESTINATION=device-name[directory-name]
/MATERIAL=path-name

where product_name specifies the name of the software you want to package.
Note that you cannot specify hyphens (-) in the product_name. Table 4–1
describes the PRODUCT PACKAGE command in detail.

1.5.1 Product Files
Before packaging your product using the POLYCENTER Software Installation
utility, you usually create the following components:

• A product description file (PDF). You use Product Description Language
(PDL) statements to convey all of the information the POLYCENTER
Software Installation utility needs for installing either a software product
or a set of software products. In addition to identifying all of the files that
the product provides, PDL statements can specify configuration choices
the product offers, default choices, and product requirements (such as
dependencies on other software products, minimum hardware configurations,
and system parameter values).

• An optional product text file (PTF). It provides information about the
product in brief and detailed formats. The information includes product
identification, copyright notice, configuration choice descriptions, and message
text used primarily during product installation and configuration operations.

• The product material consists of the files associated with the product.

After you create these components, you can perform a package operation. The
package operation creates a ready-to-install version of your product.

In addition, the system manager can create a product configuration file (PCF)
using the PRODUCT CONFIGURE command, or as an output of the PRODUCT
INSTALL command. A PCF contains responses to some or all of the installation
questions for a product. It can provide default or required choices, which may
differ from the default choices provided in the PDF. Creating the PCF file is
described in the OpenVMS System Manager’s Manual.

1.5.2 Product Database
The product database (PDB) is created automatically by the POLYCENTER
Software Installation utility. When products are installed, the files and other
objects that make up the product, such as directories and accounts, are recorded
in the PDB. The configuration choices made during installation are also recorded.
You can use the product database to determine the status of a product, the history
of a product, and what configuration choices were made.

You use the DCL command PRODUCT SHOW to query the product database
to show what products are installed and the dependencies between them, to list
the files and other objects that make up each product, or to show the history of
installation and upgrade activity.

If you remove a product, information about the files and objects associated with
the product are removed from the database. However, the history of the product’s
activity from installation to removal is retained in the database.

1–3

Overview
1.5 Packaging a Product

1.5.3 Format of Software Product Kits
Software product kits can be in one of two formats:

• Sequential copy format. In this form, the PDF, the PTF, and all files that
comprise the product are packaged in a single container file. This container
file can be placed either on a random-access device, such as a compact disc, or
on a sequential access device, such as a magnetic tape. Most layered products
are distributed in sequential copy format.

• Reference copy format. In this form, the PDF, the PTF, and all files that
comprise the product are placed in a directory tree on a random-access device.
OpenVMS is distributed in reference copy format on CD–ROM.

Figure 1–1 shows how the package operation uses the PDF, PTF, and product
material to create a reference or sequential copy.

Figure 1–1 Package Operation

ZK−5240A−GE

Package
Operation

Product
Description

Product

File (PDF)
Text

File (PTF)
Product
Material

Sequential
or

Reference
Copy

Although you provide the PDF and PTF as input to the package operation, they
also exist in modified form in the sequential or reference kit you create.

The package operation changes the format of the output PTF (for more
information, see Section 3.2). The output PDF is in the same format as the input
PDF, but the utility may modify statements in the output PDF. For example, the
package operation adds the size option to file statements in the output PDF.

1–4

Overview
1.5 Packaging a Product

1.5.4 Software Product Name Conventions
A software product kit packaged in sequential copy format has a container file
named in the following format:

producer-base-product-version-kit_type.PCSI

A software product kit packaged in reference copy format has a product
description file in the root directory named in the following format:

producer-base-product-version-kit_type.PCSI$DESCRIPTION

Each subfield in the file name is separated by a hyphen. The length of the file
name string (including all required hyphens) cannot exceed 39 characters. In
addition, the producer-base-product portion of the string must uniquely identify
the software product. The subfields are defined as follows:

• producer is the legal owner of the software product. For Digital software
products this part of the PDF file name is DEC.

• base denotes the hardware and software combination that the product
requires. For OpenVMS Alpha systems use AXPVMS; for OpenVMS VAX
systems use VAXVMS.

• product is the name of the software product.

• version identifies the version of the software product expressed in tmmnn-ue
format, as shown in Table 1–1.

Table 1–1 Format of tmmnn-ue Version Identification

t The type of version (a single uppercase alphabetic character) in the range of A
through Z; W through Z are reserved to Digital.

mm The major version number (decimal integer 01 through 99).

nn The minor version number (decimal integer 00 through 99).

- The hyphen is required in all cases. When both update level (u) and
maintenance edit level (e) are omitted, the version will end with a hyphen
and the file name will have a double hyphen (- -) preceding the kit type.

u The update level (decimal integer 1 through 999). The level is optional.

e The maintenance edit level (one or more alphanumeric characters beginning
with an alphabetic character). This level is optional.

• kit_type identifies a kit type specified as a value from 1 through 7, as shown
in Table 1–2.

1–5

Overview
1.5 Packaging a Product

Table 1–2 PDF Kit Types and Values

Value Type of Kit Description

1 Full Application software (complete kit).

2 Operating system Operating system software (complete kit).

3 Partial An update to currently installed software that
replaces or provides some of the product’s files. The
version is changed.

4 Patch A correction to currently installed software. The
version is not changed.

5 Platform An integrated set of software products.

6 Transition Used to register a product that was not installed
by the POLYCENTER Software Installation utility.
Transition kits include only a product definition
file and (optionally) a product text file; they do not
provide product material.

7 Mandatory update A required correction to currently installed
software. Functionally the same as a patch kit.
The version is not changed.

Reading a Displayed Version
The tmmnn-ue format used in file names is very similar to the format used to
display versions or to enter versions using the /VERSION qualifier. However,
when versions are displayed, leading zeros are omitted in mm and nn, and if
neither u nor e is present, the hyphen (-) is omitted. When you read a displayed
version, keep the following guidelines in mind:

• If a hyphen is present and the first character after the hyphen is a digit, then
the leading digits after the hyphen are the update level. If nondigit characters
are present, the maintenance edit level consists of the first nondigit character
and all following characters. If nondigit characters are not present, the
maintenance edit level is blank.

• If a hyphen is present and the first character after the hyphen is a nondigit
character, the update level is zero (0) and the maintenance edit level consists
of all of the characters after the hyphen.

• If no hyphen is present, the update level is zero and the maintenance edit
level is blank.

1.5.4.1 Looking at Software Product Name Examples
The following examples illustrate product naming conventions:

• A sequential copy format kit for DEC Softwindows for OpenVMS VAX has the
following format:

DEC-VAXVMS-SOFTWIN-V0101--1.PCSI

This format shows that the producer is DEC (Digital), the base is VAXVMS
(OpenVMS VAX), the product is SOFTWIN, and the version is V1.1. The type
of version is V, the major and minor version numbers are each 1. There are
no update or maintenance edit levels, and a double hyphen precedes the kit
type. The kit_type is 1 (full).

1–6

Overview
1.5 Packaging a Product

• A product description file in a reference copy format kit for OpenVMS Alpha
has the following format:

DEC-AXPVMS-VMS-V0602-1H2-2.PCSI$DESCRIPTION

This format shows that the producer is DEC (Digital), the base is AXPVMS
(OpenVMS Alpha), the product is VMS (OpenVMS), and the version is V6.2-
1H2. The type of version is V, the major version number is 6, the minor
version number 2, the update level is 1, and the maintenance edit level is H2.
The kit_type is 2 (operating system).

• A sequential copy format for WXYZ Corporation’s Super Draw product for
OpenVMS Alpha has the following format:

WXYZ-AXPVMS-SUPER_DRAW-T0205-14-1.PCSI

This format shows that the producer is WXYZ, the base is AXPVMS
(OpenVMS Alpha), the product is Super Draw, and the version is V2.5.
The type of version is T, the major version number is 2, and the minor version
number is 5. The update level is 14 and the maintenance edit level is not
specified (blank). The kit_type is 1 (full).

1.5.5 Logical Names
When installing your product, system managers must specify a location where the
software kit resides and a location in which to install the software. Two methods
are available for identifying these locations:

• Defining logical names

• Specifying /SOURCE and /DESTINATION qualifiers on the command line, or
selecting a source and destination when using DECwindows Motif interface.

The system manager can also define logical names, and then override them by
using the /SOURCE and /DESTINATION qualifiers.

PCSI$SOURCE defines the location of the software kits to install. By default, the
user’s default device and directory are used. PCSI$DESTINATION defines the
location in which to install the software.

If the system manager does not define PCSI$DESTINATION or use the
/DESTINATION qualifier, the utility installs the software product in
SYS$SYSDEVICE:[VMS$COMMON] and directories under it. If this is not
appropriate for your product, make sure that your installation instructions
describe how to specify the /DESTINATION qualifier, or how to define the
PCSI$DESTINATION logical name.

For the package operation, the logical names PCSI$SOURCE and
PCSI$DESTINATION are not used. You must use the /SOURCE and
/DESTINATION qualifiers. Note that certain PDL statements define the logical
names PCSI$SOURCE, PCSI$DESTINATION, and PCSI$SCRATCH for use with
command procedures executing in the context of a subprocess.

1.6 Packaging a Platform
In addition to packaging individual products, the POLYCENTER Software
Installation utility gives you the means to assemble integrated platforms. An
integrated platform is a combination of several products. Functionally, a platform
is the same as a full kit, except that it has the designation ‘‘PLATFORM’’. A
platform is intended to reference other products, but it can also supply files.

1–7

Overview
1.6 Packaging a Platform

Figure 1–2 shows an example of an integrated platform.

Figure 1–2 Integrated Platform Example

ZK−5242A−GE

Product C
Product B

Product A

To package a platform, you create a platform PDF and platform PTF. In
addition to other statements, the platform PDF contains software statements that
specify the products that make up the platform. The individual products have
their own PDFs and PTFs (independent of the platform PDF and PTF). For more
information about platform PDFs, see Section 2.6.

1.7 Managed Objects
Managed objects exist to support the proper functioning of your product. Files,
directories, and accounts are all types of managed objects. An executable image
is an example of a file managed object.

Using PDL statements, you can specify the names and properties of the managed
objects that are necessary for your product. At installation time, the utility uses
your product description file (PDF) to create the managed objects for your product
and records information about these objects in the product database. During
removal of a product, the utility uses the data in the product database to delete
managed objects from the system.

Most PDL statements create corresponding managed objects. For example,
you use the file statement to specify a file managed object. In contrast, utility
directives are PDL statements that do not specify managed objects. Utility
directives affect the operation of the utility but do not affect the execution
environment. For example, the error statement is a utility directive; it displays a
text module to the user and does not affect the execution environment.

1.7.1 Managed Object Conflict
Occasionally, your product will supply a managed object that conflicts with
another managed object (for example, two products supplying files with identical
names that are placed in the same directory). When the utility detects conflict, it
displays an informational message.

The following statements detect managed object conflict and display informational
messages:

• account

1–8

Overview
1.7 Managed Objects

• bootstrap block

• directory

• file

• link

• loadable image

• module

• network object

• patch image

• patch text

• register module

• rights identifier

• software

In some cases, the POLYCENTER Software Installation utility allows you to
anticipate and resolve conflict before it occurs. For example, the generation
option to the file statement lets you resolve managed object conflict. During
installation, if the utility attempts to create a file that already exists, it compares
the generation numbers of the files (if present), preserving the file with the
highest generation number. The following statements provide some level of
conflict resolution:

• directory

• file

• module

• register module

The description of these statements in Part II indicates how each one resolves
managed object conflict.

1.7.2 Managed Object Replacement and Merging
As described in Section 1.7.1, managed objects occasionally have characteristics
that conflict with each other. The POLYCENTER Software Installation utility
handles this situation differently depending on the kit type.

For full, operating system and platform kit types, the utility deletes the existing
object and replaces it with the object and characteristics provided by the new
version of the product. For partial, patch, and mandatory update kit types, the
utility preserves the characteristics of existing objects. For example, the security
environment you establish for your product is preserved when you install a
partial, patch, or mandatory update kit.

If you want to provide new characteristics for a managed object in a partial,
patch, or mandatory update kit, use the remove statement to delete the existing
object and then respecify it with the desired characteristics.

For more information about kit types, see Table 1–2.

1–9

Overview
1.7 Managed Objects

1.7.3 Managed Object Scope and Lifetime
The scope of a managed object defines the degree of sharing that the managed
object permits. For example, some objects are available only to certain processes,
and some can be shared by all processes. The utility usually ensures that
managed objects have the correct scope.

Occasionally, an advanced PDF writer might need to use the scope statement to
give a managed object a scope other than its default. For more information about
specifying the scope of a managed object, see Appendix B.

1–10

2
Creating the Product Description File

The product description file (PDF) is a required component of any software
product kit that you create using the POLYCENTER Software Installation utility.
The PDF

• Specifies all files that comprise the product.

• Identifies configuration options that are presented to the user at installation
time.

• Specifies any dependencies the product may have on other software products.

• Defines various actions that must be performed during installation.

Developing a PDF is analogous to the kitting process as a whole. The following
sequence summarizes the multistep process:

1. Locate all product material that will be included in the software product kit.
These input files can remain in the directories generated by the software
engineering team, you can copy them to one or more staging directories, or
you can copy them to a directory tree (in reference format) as they would
appear after installation.

2. Determine the required characteristics of the execution environment for your
product or platform. For example, you must determine where files will be
placed, if DCL tables or help libraries need to be updated, if system or process
parameters need to be checked, and if you need to provide any command
procedures to perform product specific tasks.

3. From product description language (PDL) statements listed in Part II, write
the PDF using a text editor.

4. Create a product text file (PTF) using a text editor. You must provide a PTF
if your PDF contains any statements that reference text modules to display
product identification, configuration choices, informational text, or error
message text. Creating a PTF is described in Chapter 3.

5. Use the DCL command PRODUCT PACKAGE to create a test kit. This
command will determine if the PDF and PTF are syntactically correct and
verify that all listed product material files can be found.

6. Once a kit has been successfully produced, use the PRODUCT INSTALL,
PRODUCT SHOW, and PRODUCT REMOVE commands to verify the
installation and removal of the product. Check for correct file placement and
protection, review message text, modify configuration options, verify that
execution environment requirements are satisfied, and so forth.

2–1

Creating the Product Description File
2.1 General Guidelines

2.1 General Guidelines
The POLYCENTER Software Installation utility is intended to simplify the job of
system managers, making products quick and easy to install and manage. Use
the following guidelines when writing PDFs:

• Minimize installation activity (such as linking images and building
databases). Instead, include all material required for product execution
on the reference copy.

• Make your products adapt to the target environment at execution time rather
than installation time. This practice keeps products consistent across varying
configurations.

• Avoid requiring system parameter settings on the target system that would
require rebooting the system.

• Minimize configuration choices at installation time.

• Ensure that the PDF expresses all the known requirements that your product
needs to execute. Use the checklist in Section 2.2 to define the requirements
for the target environment.

2.2 Defining Your Environment
To define the environment for your product, use the following checklist. (Part II
of this guide describes each PDL statement.)

Does your product depend on other software?

For example, your product may require a specific version of the operating
system or optional software products. To express these software requirements,
use the software statement or function. Note that software you reference with
a software statement must be registered in the product database to be
recognized by the POLYCENTER Software Installation utility. If you install
a product using a mechanism other than the POLYCENTER Software
Installation utility, the product database does not store information about
the product unless you register a full or transition product description.
For more information about creating transition product descriptions, see
Section 2.7.

If you are creating a platform, what software products comprise the
platform?

If you are creating a platform, you must specify the software products that
make up the platform. To specify the products that comprise your platform,
use the software statement with the component option.

Does your product require specific hardware devices?

For example, your product may require that the system have access to certain
peripheral devices, such as a compact disc drive or printer. To display a
message to users expressing these hardware requirements, use the hardware
device statement.

2–2

Creating the Product Description File
2.2 Defining Your Environment

Does your product run only on specific computer models?

Some products run only on certain computer models. For example, recent
versions of the OpenVMS operating system are no longer supported on the
VAX–11/725 computer. If this is the case with your product, use the hardware
processor statement to display a message to users.

Does your product require specific images, files, or directories?

All the files, images, and directories that your product requires should be
expressed in file or directory statements.

Does your product require a special account on the system?

Some products require a dedicated account on the system. If this is the case
for your product, use the account statement to supply the account.

Does your product require network objects?

Some products require network objects on the system. If this is the case
for your product, use the network object statement to supply the required
network objects.

Do you want to set up rights identifiers?

If you want to set up rights identifiers for your product, use the rights
identifier statement.

Does your product supply an image to the system loadable images
table?

To supply an image to the system loadable images table, use the loadable
image statement.

Does your product have several options that the user can choose?

Although it is a good practice to limit the number of options that the user can
choose, you may need to present the user with options during installation. To
present options to the user, use the option statement.

Do you need to patch an executable image?

To patch an executable image, use the patch image statement (VAX only).

Do you need to patch a text file?

To patch a text file, use the patch text statement.

2–3

Creating the Product Description File
2.2 Defining Your Environment

Does your product have specific security requirements?

If the files and directories for your product require special protection or access
controls, you can express this in the product description. See the descriptions
of the directory statement and the file statement. You can also supply a rights
identifier using the rights identifier statement.

Does your product require certain values for system parameters?

Many software products require that system parameters have certain values
for the product to function properly. Use the system parameter statement to
display system parameter requirements to users.

Does your product require certain values for process parameters?

If your product requires certain values for process parameters, use the process
parameter statement to display these requirements to users.

Does your product require certain values for process privileges?

If your product requires certain process privileges, use the process privilege
statement to display these requirements to users.

Do you want to include a functional test with your product?

If you have a functional test for your product, you can include it in the
product material to verify that your product installed correctly. To execute
the functional test for your product, use the execute test statement.

Are there commands that your installation procedure needs to
execute that are outside the domain of the POLYCENTER Software
Installation utility?

If you have commands that your installation procedure needs to execute
that have no POLYCENTER Software Installation utility equivalent, use the
execute statement.

Does your product have specific pre- or postinstallation tasks?

You can use the POLYCENTER Software Installation utility to automate
these tasks; however, there may be some tasks you want users to perform
that are outside the capabilities of the utility. You can inform users of such
tasks using the information statement. You can also use several of the execute
statements to perform these tasks.

Does your product require command, help, macro, object, or library
modules?

You should express the following types of modules in your PDF:

• DIGITAL Command Language (DCL) command definition modules

• DCL help modules

• Macro modules

2–4

Creating the Product Description File
2.2 Defining Your Environment

• Object modules

• Text modules

You can express these types of modules using the module statement.

What happens to existing product files?

You should make sure that your product’s files are handled correctly during
an installation or upgrade. The POLYCENTER Software Installation utility
deletes obsolete files that are replaced when you install a full, operating
system, or platform kit. In partial, patch, and mandatory update kits,
the existing files are preserved. To remove obsolete files, use the remove
statement and file statement options.

Does your product require documentation?

You may want to include online documentation (such as release notes) with
your product. To express the documentation requirements for your product,
use the release notes option to the file statement.

2.3 PDF File Naming Conventions
You supply the PDF as input to the PRODUCT PACKAGE command. The PDF
can have any valid OpenVMS file name and file type. For example:

TEST.PDF
BLACKJACK-V2.TEXT
ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.DESCRIPTION

The execution of the PRODUCT PACKAGE command creates an output PDF. Its
format is the same as the input PDF, namely a sequential file containing PDL
statements. The contents of the output PDF, however, may differ slightly from
that of the input PDF. For example, the POLYCENTER Software Installation
utility adds the size option to every file statement and supplies the actual size of
the file in disk blocks.

The name of the output PDF consists of the product’s stylized file name and a file
type of .PCSI$DESCRIPTION:

producer-base-product-version-kit_type.PCSI$DESCRIPTION.

For example:

ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$DESCRIPTION

See Section 1.5.4 for a description of the product naming syntax.

2.4 Structure of a PDF
A PDF is a text file that contains a sequence of PDL statements. A PDF must
begin with a product statement and end with an end-product statement. The
product statement uniquely identifies the product and specifies the type of
kit to build (full, partial, patch, and so forth). Each file that is part of the
product material must be specified with a file statement. The following example
shows a complete PDF for a product that places one file named test.exe in
SYS$COMMON:[SYSEXE].

2–5

Creating the Product Description File
2.4 Structure of a PDF

product dec vaxvms test v1.0 full ;
file [sysexe]test.exe ;

end product ;

2.4.1 Overview of PDL Statements
The product description language consists of 43 statements that are defined in
Part II of this manual. As an overview, these statements are listed below in
classes according to their main function.

• Statement groups are defined by a pair of opening and closing statements; by
convention the closing statement is the keyword end followed by the keyword
of the opening statement. Statement groups operate on statements lexically
contained within their begin-end pair. Many statement groups can be nested
within other groups.

The following statement groups are used to conditionally process other
statements:

if and end if (else and else if statements optionally can be used within the
statement group)

option and end option

The following statement groups unconditionally process all statements at
their inner level:

part and end part

product and end product

remove and end remove

scope and end scope

• Statements that create, delete, or modify managed objects include:

account

directory

file

link (create an alias directory entry)

loadable image

module

network object

patch image

patch text

rights identifier

• Statements that enforce software dependencies and hardware requirements
by testing the execution environment and taking appropriate action include:

hardware device

hardware processor

software

upgrade

2–6

Creating the Product Description File
2.4 Structure of a PDF

• Statements whose main purpose is to display a message to the user and in
some cases query the user for a response are as follows:

error

information

process parameter

process privilege

system parameter

• Statements that cause producer-supplied command procedures to execute or
instruct the user to manually perform a task include:

execute install...remove

execute login

execute postinstall

execute release

execute start...stop

execute test

• Miscellaneous statements include:

apply to

bootstrap block

infer

register module

Many software products require only the use of a small subset of these PDL
statements to create their PDF. Commonly used statements are as follows:

• product and end product

• file

• directory

• module

• software

• option and end option

• if and end if

• execute install...remove

• execute test

2.4.2 PDL Statement Syntax
A product description language (PDL) statement consists of:

• A keyword phrase that identifies the statement (required).

• Zero or more parameter values (which may be expressions in certain
contexts).

• Zero or more options each specified as a keyword phrase and value pair.

2–7

Creating the Product Description File
2.4 Structure of a PDF

• A semicolon (;) that terminates the statement (required).

Additional Syntax Rules

• Statements can span multiple lines and whitespace can be used freely to
improve readability or show relationship through indentation levels.

• Case is not significant, except within a quoted string.

• A keyword phrase consists of one or more keywords as defined by the PDL
statement.

• A comment is a sequence of two consecutive hyphens (–) followed by
characters up to and including end-of-line.

When a string containing consecutive hyphens is passed as a parameter or
option value, enclose the string in quotes. For example, ‘‘a--b.dat’’. This
prevents the hyphens from being parsed as the start of a comment.

• Lexical element separators are used to set off keywords, values, expressions,
and so on. They include end-of-line, comment, and the following characters
(except when they appear within a quoted string): space, horizontal tab, form
feed, and vertical tab.

• Delimiters are required syntax in many situations. They consist of the
following characters: semicolon (;), comma (,), left parenthesis ((), right
parenthesis ()), left angle bracket (<), and right angle bracket (>).

When a string contains a delimiter character that is passed as a parameter or
option value, enclose the string in quotes. For example, to pass the numeric
UIC string [1,1] as an option value, use the quoted string form of ‘‘[1,1]’’
because it contains a comma character.

2.4.3 PDL Function Syntax and Expressions
Certain PDL statements have a function form that tests for a condition in the
execution environment and returns a Boolean value of true or false. A function
is syntactically similar to its corresponding statement except that a function is
enclosed in left and right angle brackets (<...>) instead of being terminated by a
semicolon (;).

The following statements have corresponding functions:

• hardware device

• hardware processor

• option

• software

• upgrade

Expressions are used in if statements to produce a Boolean value for the if-
condition test. An expression is delimited by opening and closing parentheses
((...)). It contains one or more functions and, optionally, one or more of the
keywords AND, OR, and NOT, which are used as logical operators.

An expression has one of the following forms, where each term is either another
expression or a function:

• (term)

• (term AND term)

• (term OR term)

2–8

Creating the Product Description File
2.4 Structure of a PDF

• (NOT term)

The following example shows an if statement using a compound expression:

if ((not <hardware device MUA0:>) and
(<software ABC VAXVMS TEST version below 2.0>)) ;
.
.
.

end if ;

2.4.4 PDL Data Types and Values
The PDL has several base data types that you must use when passing parameters
to the PDL statements listed in Part II. Table 2–1 describes the PDL base data
types and their values. PDL statements may restrict the range of values that can
be used as parameters.

Table 2–1 Base Data Types and Values

Data Type Values

Boolean The number 0 (false), the number 1 (true), the keywords false, true, no,
and yes.

String A sequence of 0 to 255 ISO Latin-1 characters. In the context of PDF
language statements,

• abc is an unquoted string.

• ‘‘abc’’ is a quoted string.

• ‘‘‘‘double_quoted_string’’’’ is a quoted string that maintains original
quotation marks.

You must use the quoted string form if the string contains any PDL
delimiters (open/close parenthesis, comma, open/close angle brackets, and
semicolons) or lexical element separators (double hyphen, space, horizontal
tab, form feed, or vertical tab). For example, ‘‘/privilege=(tmpmbx,
netmbx)’’.

Table 2–2 lists the additional constraints on PDL strings.

Signed
integer

Specifies a positive, negative, or zero integral value in the range of
-2147483648 to 2147483647.

Unsigned
integer

Specifies a zero or positive integral value in the range of 0 through
4294967295.

Version
identifier

See the description in Section 1.5.4.

Text module
name

Specifies a unique name for a text module using the printable ISO Latin-1
characters, excluding horizontal tab, space, exclamation point, and comma.
The name can be from 1 to 31 characters in length.

Table 2–2 describes additional constraints on the string data type.

2–9

Creating the Product Description File
2.4 Structure of a PDF

Table 2–2 String Data Type Constraints

String Type Values Examples

Unconstrained None; any character
may appear in any
position.

Access control
entry (ACE)

Specifies an ACE for a
directory or file.

‘‘(IDENTIFIER=[KM],ACCESS=READ)’’

Command Specifies an operating
system command that
you want to execute
during a specific
operation.

@SYS$TEST:PROD$IVP.COM

Device name Specifies the name of a
hardware device.

DUB6:

File name Specifies a file name
(without a device or
directory specification).

STARTUP.DAT

Identifier name Specifies a rights
identifier.

DOC

Module name Specifies the name of a
module in a library.

FMSHELP

Processor model
name

Specifies the model
identification of a
particular computer
system.

7

Relative
directory
specification

Specifies the directory
name and, if necessary,
the directory path,
relative to the root
directory specification.

[MY_PRODUCT]

Relative file
specification

Specifies the directory
path and file name,
relative to the root
directory path.

[MY_PRODUCT]DRIVER.DAT

Root directory
specification

Specifies the directory
name and a trailing
period (.). If you specify
a directory name and
omit the period, it is
inserted. If necessary,
you can add the device
name.

[TEST.]
SYS$SYSDEVICE:[VMS$COMMON.]

2.5 Writing a PDF for a Full Kit
Example 2–1 shows a PDF for Checktran. You can see how the requirements of
the execution environment were translated into statements in the PDF.

Example 2–1 Checktran Product Description File

(continued on next page)

2–10

Creating the Product Description File
2.5 Writing a PDF for a Full Kit

Example 2–1 (Cont.) Checktran Product Description File

$ TYPE CHECKTRAN-TEST.PDF

product DEC VAXVMS CHECKTRAN V4.3 full ; 1
software DEC VAXVMS VMS version minimum V5.0 ; 2
file [SYSEXE]CHECKTRAN.EXE ; 3
module [SYSUPD]CHECKTRAN.CLD type command module CHECK ; 4
module [SYSUPD]CHECKTRAN.HLP type help module HELP ; 5
file [SYSTEST]CHECKTRAN$IVP.COM ; 6
file [SYSEXE]CHECKTRAN.DAT ;
execute test @SYS$TEST:CHECKTRAN$IVP ; 7

end product ; 8

The following list describes the function of the PDL statements in Example 2–1:

1 The product statement identifies the product as DEC VAXVMS CHECKTRAN
Version 4.3. The full option specifies that the kit is a complete software
distribution and not an update or patch.

2 The software statement specifies that to run Checktran, the execution
environment must be running at least VMS Version 5.0.

3 The first file statement in the PDF supplies the file
[SYSEXE]CHECKTRAN.EXE.

4 The first module statement in the PDF installs the command module for
Checktran in the default command library [SYSLIB]DCLTABLES.EXE.

5 The second module statement in the PDF installs the help module for
Checktran in the default help library [SYSHLP]HELPLIB.HLB.

6 The next statement installs the DCL command procedure that will be used
for the functional test.

7 The execute test statement executes the functional test for the product.

8 The end product statement closes the group of product statements.

In this example, the PDF for Checktran is relatively brief. Example 2–2 shows a
PDF for DEC TCP/IP Services for OpenVMS, which is more complex.

Example 2–2 UCX Product Description File

$ TYPE UCX.DES

-- "DEC TCP/IP Services for VMS" 1

product DEC VAXVMS UCX V2.0 full ; 2

software DEC VAXVMS VMS version minimum V5.4 ; 3

process parameter ASTLM minimum 24 ; 4
process parameter BIOLM minimum 18 ;
process parameter BYTLM minimum 32768 ;
process parameter DIOLM minimum 18 ;
process parameter ENQLM minimum 200 ;
process parameter FILLM minimum 100 ;

rights identifier UCX$NFS_REMOTE ; 5

execute start "@SYS$STARTUP:UCX$STARTUP.COM" 6
stop "@SYS$STARTUP:UCX$SHUTDOWN.COM" ;

(continued on next page)

2–11

Creating the Product Description File
2.5 Writing a PDF for a Full Kit

Example 2–2 (Cont.) UCX Product Description File

execute test "@SYS$TEST:UCX$IVP.COM" ; 7

information PRE_INSTALL confirm ; 8

information POST_INSTALL phase after ; 9

directory [SYSTEST.UCX] ; 1 0
directory [SYSHLP.EXAMPLES.UCX] ;

module [000000]UCX$TOP_LEVEL_HELP.HLP type help module UCX ; 1 1

module [000000]UCX.CLD type command module UCX ; 1 2

file [SYSEXE]UCX$SERVICE.DAT ; 1 3
file [SYSEXE]UCX$FTPSERVER.COM ;
file [SYSEXE]UCX$SNMP_AGENT.EXE ;
file [SYSEXE]UCX$UCP.EXE ;

.

.

.
file [SYSTEST]UCX$IVP.COM ;
file [SYSTEST.UCX]UCX$INET_IVP.EXE ;
file [SYSUPD]UCX$CLEANUP.COM ;

option EXAMPLES ; 1 4

file [SYSHLP.EXAMPLES.UCX]UCX$IOCTL_ROUTINE.C ;
file [SYSHLP.EXAMPLES.UCX]UCX$TCP_CLIENT_IPC.C ;
.
.
.
file [SYSHLP.EXAMPLES.UCX]UCX_TRACE.EXE ;
file [SYSHLP.EXAMPLES.UCX]TRACEROUTE.EXE ;

end option ;

option NFS ; 1 5

file [SYSEXE]UCX$CONVERT.FDL ;
file [SYSEXE]UCX$CONVERT.COM ;
file [SYSEXE]UCX$SERVER_NFS.EXE ;

file [SYSHLP]UCX$VMS_FILES.DOC ;

file [SYSLIB]UCX$CFS_SHR.EXE ;

end option ;

option APPLICATIONS ; 1 6

module [000000]FTP.CLD type command module FTP ;
module [000000]RLOGIN.CLD type command module RLOGIN ;
module [000000]RSH.CLD type command module (RSH,RSHELL) ;
module [000000]TELNET.CLD type command module TELNET ;
module [000000]UCX$LPQ_CLD.CLD type command module LPQ ;
module [000000]UCX$LPRM_CLD.CLD type command module LPRM ;

file [SYSEXE]UCX$ENCODE.COM ;
file [SYSEXE]UCX$DECODE.COM ;
.
.
.
file [SYSEXE]UCX$LPD_RCV.EXE ;
file [SYSEXE]UCX$LPRSETUP.EXE ;

file [SYSHLP]UCX$FTP_HELP.HLB ;
file [SYSHLP]UCX$TELNET_HELP.HLB ;

(continued on next page)

2–12

Creating the Product Description File
2.5 Writing a PDF for a Full Kit

Example 2–2 (Cont.) UCX Product Description File

file [SYSLIB]UCX$SMTP_MAILSHR.EXE ;
file [SYSLIB]UCX$LPD_SHR.EXE ;

end option ;

end product ; 1 7

The following list describes the function of the PDL statements in the UCX
example:

1 The first line of the PDF is a comment line (identified by two hyphens).

2 The product statement identifies the product as DEC VAXVMS UCX V2.0.
The full option specifies that the kit is a complete software distribution and
not an update or patch.

3 The software statement specifies that to run UCX, the execution environment
must be running at least VMS Version 5.4.

4 The process parameter statements specify the process parameters that the
product requires. The utility will display a message about these requirements
to users when they install UCX.

5 The rights identifier statement causes the utility to create the specified rights
identifier.

6 The first execute statement specifies command procedures for product startup
and shutdown.

7 The second execute statement specifies the functional test for the product.

8 The first information statement displays a message about preinstallation
tasks. The utility prompts the user for confirmation of these tasks.

9 The second information statement displays a message about postinstallation
tasks.

1 0 The directory statements create the directories [SYSTEST.UCX] and
[SYSHLP.EXAMPLES.UCX].

1 1 The first module statement installs the help module for UCX in the default
help library [SYSHLP]HELPLIB.HLB.

1 2 The second module statement installs the command module for UCX in the
default command library [SYSLIB]DCLTABLES.EXE.

1 3 The next file statements install several required files for UCX.

1 4 The EXAMPLES option group contains programming example files that the
user can select.

1 5 The NFS option group contains NFS protocol support files that the user can
select.

1 6 The APPLICATIONS option group contains optional application support files
and modules that the user can select.

1 7 The end product statement closes the group of product statements.

2–13

Creating the Product Description File
2.6 Writing a PDF for a Platform Kit

2.6 Writing a PDF for a Platform Kit
As mentioned in Section 1.6, the POLYCENTER Software Installation utility
gives you the means to create a software kit that is a combination of products (an
integrated platform). To do this, you must create a platform PDF.

A platform PDF is distinguished from other types of PDFs by using the
platform keyword in the product statement. In a platform PDF, you can
use any statements to express the execution environment for the platform. For
example, you can use the component option of the software statement to specify
the software products that make up the platform.

When you package a platform, the PDFs and PTFs of the referenced products do
not need to be present. However, when you copy a platform, products that are
referenced with the component option of the software statement must be present.

Example 2–3 shows a product description file for the office_plat product.

Example 2–3 Product Description File

product DEC VAXVMS OFFICE_PLAT V1.0 platform ;
file [SYSEXE]SOFTWARE.TST ;
software DEC VAXVMS VMS

version minimum V5.5 ;
software DEC VAXVMS PROD_B

version required 4.3 component ;
software DEC VAXVMS PROD_C component ;

end product ;

The PDF in this example is for a platform named OFFICE_PLAT. The software
products PROD_C and PROD_B are components of the platform. VMS Version
5.5 or greater must be present along with Version 4.3 of PROD_B.

2.7 Writing a PDF for a Transition Kit
If you install a product using a mechanism other than the POLYCENTER
Software Installation utility, the product database does not store information
about the product. A transition product description file allows you to register
a product in the product database even if it was installed using a mechanism
other than the POLYCENTER Software Installation utility.

Once users register a product using the POLYCENTER Software Installation
utility, they can perform utility operations on that product (for example,
reconfigure or remove operations). Registering a product also allows you to use
software statements or functions to reference that product.

A transition PDF must use the transition keyword in the product statement. A
transition PDF can reference managed objects such as files, directories, modules,
and so forth. However, none of these objects is created or modified when the
product is registered using the DCL command PRODUCT REGISTER PRODUCT.
In addition, files specified in file statements do not need to be present when a
transition kit is packaged because product material is not included in this type of
kit.

In a transition PDF, the infer statement is useful for testing the target system to
determine if a product or product version is available.

2–14

Creating the Product Description File
2.7 Writing a PDF for a Transition Kit

An alternative to providing a transition kit and having the user register it with
a PRODUCT REGISTER PRODUCT command is to instruct the user to register
the product by using the SYS$UPDATE:PCSI$REGISTER_PRODUCT.COM
procedure. This procedure prompts the user to enter product name, version,
and producer information. Registering a product with minimal information is
sufficient to reference the product with a software statement from another kit.

Example 2–4 shows a transition PDF for the FMS product:

Example 2–4 FMS Product Description File

product DEC AXPVMS FMS V2.4 transition ; 1
infer version from [SYSLIB]FDVSHR.EXE ; 2
file [SYSLIB]FDVSHARE.OPT ; 3
module [SYSUPD]FDV.OBJ type object module FDV ; 4
module [SYSUPD]FDVMSG.OBJ type object module FDVMSG ;
module [SYSUPD]FDVDAT.OBJ type object module FDVDAT ;
module [SYSUPD]FDVERR.OBJ type object module FDVERR ;
module [SYSUPD]FDVTIO.OBJ type object module FDVTIO ;
module [SYSUPD]FDVXFR.OBJ type object module FDVXFR ;
module [SYSUPD]HLL.OBJ type object module HLL ;
module [SYSUPD]HLLDFN.OBJ type object module HLLDFN ;

end product ;

The following list describes the statements in this example:

1 The transition keyword to the product statement indicates that this is a
transition PDF.

2 The infer version statement tests the execution environment to determine
whether the file FDVSHR.EXE is present. If it is, the utility infers the
version that is installed.

3 The file statement indicates that the [SYSLIB]FDVSHARE.OPT file is part of
the FMS kit.

4 The module statements describe object modules in the default object library
[SYSLIB]STARLET.OLB that are part of the FMS kit.

2–15

3
Creating the Product Text File

The product text file (PTF) is an optional component of a software product kit.
However, most kits created using the POLYCENTER Software Installation utility
include a PTF. You must supply a PTF to the kitting process if you want to
use PDF statements that display text to users during product installation. The
following PDF statements have corresponding text modules in the PTF:

• error

• information

• option

• part

• product

For each text module in the PTF you can provide both brief and detailed
descriptions. By default, the brief version of the text module is displayed. The
user requests detailed explanations by including the /HELP qualifier on the
PRODUCT INSTALL command line. If you choose to provide only brief text
for a given text module and the user asks for detailed text, the brief version is
displayed. By providing detailed descriptions and other informational help text,
you should be able to reduce or eliminate hardcopy installation documentation.

3.1 PTF File Naming Conventions
The PTF provided as input to the PRODUCT PACKAGE command must reside in
the same directory as the PDF. Furthermore, it must have the same file name as
the PDF and a file type of .PCSI$TEXT.

The following are examples of valid input PDF and PTF names:

TEST.PDF
TEST.PCSI$TEXT

BLACKJACK-V2.TEXT
BLACKJACK-V2.PCSI$TEXT

ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.DESCRIPTION
ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$TEXT

The execution of the PRODUCT PACKAGE command transforms the input PTF
into an output PTF. The input PTF is a sequential file containing header lines
and text module lines. The output PTF is an OpenVMS library file. Its name
consists of the product’s stylized file name and a file type of .PCSI$TLB:

producer-base-product-version-kit_type.PCSI$TLB

For example:

ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$TLB

3–1

Creating the Product Text File
3.2 Structure of a PTF

3.2 Structure of a PTF
A PTF is a text file that contains packaging directives, module header lines, and
module text. The PTF must begin with the =product directive line that uniquely
identifies the product and specifies the type of kit. The rest of the file contains
one or more text modules. Each text module entry consists of:

• A module header line that identifies the name of the text module.

• An =prompt directive line that includes text for a brief display.

• Zero or more lines of text that are combined with the brief text to form the
detailed display associated with the text module.

The user chooses whether to receive brief or detailed explanations by use of the
/HELP qualifier on the PRODUCT INSTALL command.

Brief text format (the default) is restricted to one line of text; that is, the text in
the =prompt directive line. Detailed or help text can include any number of lines
of text. The formatting of the information is preserved on output, except that the
POLYCENTER Software Installation utility may indent the entire block of text
displaying information about configuration options or software requirements.

Comment lines are not permitted in a PTF.

3.2.1 Specifying the Product Name
You must use the =product directive to specify product information in the PTF.
The information that you specify with the =product directive must match the
information you specify with the product statement in the PDF.

The =product directive has the following format:

=product producer base product version kit_type

See Section 1.5.4 for the naming conventions.

3.2.2 PTF Modules
PTF text modules are text blocks that you want to present to the user. The
POLYCENTER Software Installation utility does not process text blocks
sequentially, so the order of the text modules in the PTF does not matter.

Text modules are identified by a module header line in the following format:

1 module-name

The module header line consists of the number 1, followed by a space or tab and
the name of the module. The module-name must be from 1 to 31 ISO Latin-1
characters, excluding the horizontal tab, space, exclamation point (!), and comma
(,) characters. For example:

1 SAMPLE

The POLYCENTER Software Installation utility uses the name of the module to
associate the text module with a line from the PDF. For example, the SAMPLE
module could correspond to an option in the PDF:

option SAMPLE ;

When a user chooses the SAMPLE option, the utility displays the help text for
the choice. Note that the format of the help text in the PTF (for example, spacing
and blank lines) is preserved when the utility displays it to the user.

3–2

Creating the Product Text File
3.2 Structure of a PTF

The utility also allows you to specify text modules that are not associated with
statements in the PDF. These text modules are preceded by an apostrophe (’).
Use the following module names to specify information about your product:

• The ’LICENSE module specifies licensing information.

• The ’NOTICE module specifies copyright, ownership, and similar legal
information.

• The ’PRODUCER module specifies a brief description of the producer of the
product.

• The ’PRODUCT module specifies a brief functional description of the product.

For example, a product might contain the following modules:

=product DEC VAXVMS C V1.0 full
1 ’PRODUCT
=prompt DEC C++ for OpenVMS
DEC C++ for OpenVMS VAX is a native compiler that implements the C++
programming language and includes:

o A C++ compiler that implements C++ as defined by The Annotated C++
Reference Manual, Ellis & Stroustrup, reprinted with corrections,
May 1991. The compiler implementation includes templates but ex-
cludes exception handling. DEC C++ generates optimized object code
without employing an intermediate translation to C.

o The DEC C++ Class Library, which consists of the following class li-
brary packages: iostream, complex, generic, Objection, Stopwatch,
String, task, messages, and vector.

1 ’NOTICE
=prompt © Digital Equipment Corporation 1992. All rights reserved.
Unpublished rights reserved under the copyright laws of the United States.

This software is proprietary to and embodies the confidential technology of
Digital Equipment Corporation. Possession, use, or copying of this software
and media is authorized only pursuant to a valid written license from Digital
or an authorized sublicensor.

Restricted Rights: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. III,
as applicable.
1 ’LICENSE
=prompt This product uses the PAKs: <xxx> and <xxx-RT>.
This software is furnished under the licensing provisions of Digital
Equipment Corporation’s Standard Terms and Conditions. For more in-
formation about Digital’s licensing terms and policies, contact your
local Digital office.

1 ’PRODUCER
=prompt Digital Equipment Corporation
This software product is sold by Digital Equipment Corporation.

To see how the POLYCENTER Software Installation utility displays this text, see
the POLYCENTER Software Installation Utility User’s Guide.

3.2.3 Including Prompt and Help Text
You can include prompt and help text in your PTF using the =prompt directive.
Prompt text cannot exceed one line of text. Help text is similar to prompt text,
except that it can span multiple lines. The help text follows the =prompt line.
You can also include blank lines in help text.

The following example shows prompt text:

=prompt This option provides files for programming support.

3–3

Creating the Product Text File
3.2 Structure of a PTF

The following example shows a sample product text file. Note the prompt and
help text:

=product DEC VAXVMS UCX V2.0 full
1 ’PRODUCT
=prompt DEC TCP/IP Services for OpenVMS
DEC TCP/IP Services for OpenVMS is an OpenVMS layered software product that
promotes interoperability and resource sharing between OpenVMS systems,
UNIX systems, and other systems that support the TCP/IP and NFS
protocol suites.

The product provides capabilities for file access, remote terminal
access, remote command execution, remote printing, mail, and application
development, including three major functional components:

o The Run-Time component, which is based on the Berkeley Standard
Distribution, brings TCP/IP communications to OpenVMS computer systems.
It also includes a suite of application development tools
(DECrpc, C socket programming interface, and QIO programming
interface).

o The Applications component includes the popular user-oriented protocols
for file transfer, remote processing, remote printing, and mail: File
Transfer Protocol (FTP), Telnet Protocol (Telnet), Berkeley R commands
(rsh, rlogin, rexec), remote printing, and Simple Mail Transfer
Protocol (SMTP).

o The DEC NFS component supports Network File System (NFS) V2.0 proto-
col specifications. NFS is an Application layer protocol that provides
clients with transparent access to remote file services.

1 ’NOTICE
=prompt © Digital Equipment Corporation 1992. All rights reserved.
Unpublished rights reserved under the copyright laws of
the United States.

This software is proprietary to and embodies the confidential technology of
Digital Equipment Corporation. Possession, use, or copying of this software
and media is authorized only pursuant to a valid written license from Digital
or an authorized sublicensor.

Restricted Rights: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of DFARS 252.227-7013, or in FAR 52.227-19 or in FAR 52.227-14 Alt. III, as
applicable.
1 ’LICENSE
=prompt This product uses the PAKs: UCX and UCX-IP-RT.
This product currently has two Product Authorization Keys (PAKs):

Producer PAK Name Version Release Date

DEC UCX 2.0 6-JUL-1992
DEC UCX-IP-RT 2.0 6-JUL-1992

1 ’PRODUCER
=prompt Digital Equipment Corporation
This software product is sold by Digital Equipment Corporation.
1 EXAMPLES
=prompt Example files
The example files include client/server programming examples.
1 NFS
=prompt NFS files

The DEC NFS component supports Network File System (NFS) protocol
specifications. NFS is an Application layer protocol that provides
clients with transparent access to remote file services.

3–4

Creating the Product Text File
3.2 Structure of a PTF

The DEC NFS server promotes data sharing among clients by providing
a central data storage facility for OpenVMS and UNIX files. The DEC NFS
server provides two types of file access for UNIX clients: 1) client
access to OpenVMS files, and 2) client access to files compatible with UNIX
systems.
1 APPLICATIONS
=prompt Applications
The Applications component includes the popular user-oriented protocols
for file transfer, remote processing, remote printing, and mail: File
Transfer Protocol (FTP), Telnet Protocol (Telnet), Berkeley R commands
(rsh, rlogin, rexec), remote printing, and Simple Mail Transfer
Protocol (SMTP).
1 PRE_INSTALL
=prompt Complete preinstallation tasks for DEC TCP/IP Services first.
Before you install DEC VMS UCX, you must complete certain preinstallation
tasks. For more information, refer to the "DEC TCP/IP Services for VMS
Installation and Configuration Guide."
1 POST_INSTALL
=prompt Postinstallation tasks required for DEC TCP/IP Services.
For more information, refer to these associated documents:

- "DEC TCP/IP Services for VMS Installation and Configuration Guide"
- "DEC TCP/IP Services for VMS System Management"

3–5

4
Packaging the Kit

You use the Package command to create a software product kit. This operation
uses a product description file (PDF), an optional product text file (PTF), and
product material files as input to produce a software product kit in either
sequential or reference format.

When you package your product, it takes one of the following forms:

• Sequential copy format. In this form, the PDF, the PTF, and all files that
comprise the product are packaged in a single container file. This container
file can be placed either on a random-access device, such as a compact disc, or
on a sequential access device, such as a magnetic tape. Most layered products
are distributed in sequential copy format.

• Reference copy format. In this form the PDF, the PTF, and all files that
comprise the product are placed in a directory tree on a random-access device.
OpenVMS is distributed in reference copy format on CD–ROM.

Note

Although the Package commands described in this section are for use
with the DCL interface, the POLYCENTER Software Installation Utility
also provides a Motif interface, which is available on a workstation or an
X terminal running DECwindows Motif for OpenVMS.

4.1 Packaging with the DCL Interface
You can enter the DIGITAL Command Language (DCL) command PRODUCT
PACKAGE in the following format:

$ PRODUCT PACKAGE product-name[,...]
/SOURCE=file-specification
/DESTINATION=device-name[directory-name]
/MATERIAL=path-name

where product_name specifies the name of the software you want to package.
Note that you cannot specify hyphens (-) in the product_name. Table 4–1
describes the PRODUCT PACKAGE command in detail.

4–1

Packaging the Kit
4.1 Packaging with the DCL Interface

Table 4–1 Product Command Format

Qualifier Description

/BASE_SYSTEM=base-
system-name

Performs the operation only on software products that
apply to the named base system. The default value is the
platform (that is, the hardware and software combination)
on which the POLYCENTER Software Installation utility
is executed. The default is AXPVMS when you run the
utility on OpenVMS Alpha and VAXVMS when you run
the utility on OpenVMS VAX.

/COPY(default)
/NOCOPY

Specifies whether you want the product material files and
associated directories included in the product kit. The
/NOCOPY qualifier can save file processing time when
you are debugging a PDF and do not need to produce a
complete product kit.

The use of /NOCOPY with /FORMAT=SEQUENTIAL is
not supported and produces undefined results.

/DESTINATION=device-
name:[directory-name]

If /FORMAT=SEQUENTIAL is specified, /DESTINATION
specifies the directory where the utility creates the
sequential kit. A sequential kit is a container file that
includes the PDF, PTF, and all of the images and other
material that make up the product. The file type of the
sequential kit file is .PCSI.

If /FORMAT=REFERENCE is specified (or defaulted),
/DESTINATION specifies the directory where the utility
creates the output PDF and optional PTF. The file types
of the PDF and PTF files are .PCSI$DESCRIPTION and
.PCSI$TLB, respectively. The images and other materials
that make up the product are placed in a directory tree
under this directory.

If the device-name is not provided, it defaults to the
user’s default device. If the directory-name is omitted, it
defaults to the user’s default directory.

This is a required qualifier for the PRODUCT
PACKAGE command. The logical name
PCSI$DESTINATION is not used.

/FORMAT=keyword Specifies the output format of the product kit. Keywords
are:

• REFERENCE — Reference format in which product
files are placed in a directory tree.

The default is /FORMAT=REFERENCE.

• SEQUENTIAL — Sequential format in which
product files are placed in full-product-name.PCSI, a
container file.

/LOG
/NOLOG (default)

Displays informational messages as the POLYCENTER
Software Installation utility performs the operation.

(continued on next page)

4–2

Packaging the Kit
4.1 Packaging with the DCL Interface

Table 4–1 (Cont.) Product Command Format

Qualifier Description

/MATERIAL=path-name
/MATERIAL=(path-name[,...])

Specifies one or more locations in which the utility can
search for product material files to include in the software
product kit. Material files represent the output of the
producer’s software engineering process, that is, all files
that make up the software product excluding the PDF and
PTF.

The format for path-name is: device-name:[directory-
name]

You can specify path-name as:

• A specific directory — Only one directory is searched.

• A root directory — A period (.) following the directory
name denotes a root directory specification. For
example, TEST$:[ABC.FT2.] limits the search path to
subdirectories of [ABC.FT2].

• A wildcard directory — The directory name includes
one or more of the wildcard characters; asterisk (*),
percent sign (%), or ellipsis (...). All directories that
satisfy the wildcard specification are searched.

Note that when you use either a wildcard directory or a
list of path names, if files in different directories have the
same name, only the first file found in the search path is
used.

When either a specific directory or a wildcard directory is
used, the relative file specification on the file statement
in the PDF is not used to locate the file. However, when
a root directory is used, the utility appends the relative
file specification from the file statement in the PDF to the
root directory in the material search path to locate files.

This is a required qualifier for the PRODUCT PACKAGE
command. Parentheses (()) are optional only when you
specify a single path name. They are required when you
specify multiple path names.

/OWNER_UIC=uic Specifies the owner user identification code (UIC) for files
created during a copy operation. (This operation requires
SYSPRV if the UIC is not your own.) By default, the user
executing the operation owns the software product files.
For example, if you are logged in to your own account, you
can use this qualifier during a copy operation to assign
ownership of the product files to SYSTEM rather than
to your own account. Specify the UIC in alphanumeric
format (in the form [name]) or in octal group-member
format (in the form [g,m]). UIC formats are described in
the OpenVMS User’s Manual.

/PRODUCER=producer-name Performs the operation only on software products that are
produced by the specified manufacturer. By default, the
operation is performed for all producers.

(continued on next page)

4–3

Packaging the Kit
4.1 Packaging with the DCL Interface

Table 4–1 (Cont.) Product Command Format

Qualifier Description

/SOURCE=file-specification Specifies the location of the input PDF. If the device-name
is omitted, it defaults to the user’s default device. If the
directory-name is omitted, it defaults to the user’s default
directory. If the file name and file type components of
the file-specification are not provided, they default to
full-product-name.PCSI$DESCRIPTION.

The optional PTF, if used, must be in the same directory
and have the same file name as the PDF with a
.PCSI$TEXT file type.

This is a required qualifier for the PRODUCT
PACKAGE command. The logical name
PCSI$SOURCE is not used.

/VERSION=version-number Performs the operation only on software products that
have the specified version. By default, the operation is
performed for all versions.

4.2 Product Command Example
$ PRODUCT PACKAGE VIEWER /FORMAT=SEQUENTIAL -
_$ /SOURCE=[JAMES.TEST.PDF] -
_$ /DESTINATION=DKA200:[PCSI_KITS] -
_$ /MATERIAL=BUILD$:[VIEWER0201.RESULT...]

This command produces the following sample display, to which you respond to
prompts.

1 - ABC AXPVMS VIEWER V2.1
2 - ABC VAXVMS VIEWER V2.2
3 - ABC VAXVMS VIEWER V2.1
4 - All products listed above
5 - Exit

Desired Product(s): 3

The following product has been selected:
ABC VAXVMS VIEWER V2.1

Do you want to continue [YES] y
%PCSI-I-SUCCESS, operation completed successfully

The command in this example creates a sequential kit for product VIEWER
named DKA200:[PCSI_KITS]ABC-VAXVMS-VIEWER-0201–1.PCSI. The input
PDF named
[JAMES.TEST.PDF]ABC-VAXVMS-VIEWER-0201–1.PCSI$DESCRIPTION
in the user’s default directory and product material files from the
BUILD$:[VIEWER0201.RESULT...] directory tree are used to create the kit.
Since more than one PDF matching the selection criteria is present in the source
directory, the user is asked to select which to use.

4–4

Part II
Product Description Language Statements

Part II contains descriptions of individual product description language
statements.

account

account

The account statement uses a command procedure to create a system account.

Syntax

account name with (parameters,...) ;

Parameters

name
Specifies the user name of the account as a 1- to 12-character string. The user
name is passed to the command procedure as P1.

with (parameters,...)
Specifies the list of parameters that are passed to the command procedure that
creates the account. Each parameter must be a single unquoted or quoted string
that specifies P2 through P8, in order. Refer to the Description section for the
meaning of the parameters.

Description

The account statement uses a command procedure
(SYS$UPDATE:PCSI$CREATE_ACCOUNT.COM) to create an account. The
parameters that you pass to the command procedure that creates the accounts
are:

• P1 specifies the user name of the account (using the name parameter).

• P2 specifies general AUTHORIZE qualifiers. If there are no qualifiers to pass,
specify a null string ‘‘ ’’

• P3 specifies a comma-separated list of rights identifiers to grant to the user
name. These identifers must already exist, or be created with a separate
rights identifier statement.

• P4 through P8 specify other general AUTHORIZE qualifiers.

When you remove a product that created accounts, the POLYCENTER Software
Installation utility uses a command procedure (SYS$UPDATE:PCSI$DELETE_
ACCOUNT.COM) to delete accounts associated with your product.

Note

In a future version, the POLYCENTER Software Installation utility
may create and delete these managed objects directly without the use of
command procedures. If this is the case, these statements will continue to
function, but the command procedures may not be maintained or shipped
with future versions of the utility.

The account statement specifies an account managed object that has the following
characteristics:

• Its name is the value of the name parameter. The name must be unique
among all account names.

• It has operating lifetime.

PDL–3

account

• Managed object conflict is not recoverable.

See Also

rights identifier

Example
account test with ("/priv=(tmpmbx, netmbx)",1

"PCSI_TEST",2
"/account=PCSI",3
"/astlm=500/biolm=200/bytlm=96000",
"wsdefault=4000",
"/flags=(nodisuser,genpwd)",
"/pwdminimum=8");

In this example, the account statement creates the TEST account.

1 Parameter P2 specifies the TMPMBX and NETMBX privileges to be assigned
to the TEST account.

2 Parameter P3 is a rights identifier. This name must exist on the system prior
to executing the account statement. It can be created with a rights identifier
statement.

3 Parameters P4 to P8 assign certain values to the TEST account.

PDL–4

apply to

apply to

The apply to statement specifies a product that you want to update with a
mandatory update or patch product description.

You must include an apply to statement in a mandatory update or patch PDF to
identify the product that is being patched or updated. This statement is not valid
in other types of PDFs.

Syntax

apply to producer base name

����
���
�

version below version
version maximum version
version minimum version

�

version required version

����
��	 ;

Parameters

producer
Specifies the legal owner of the software product.

base
Specifies the base on which the product executes. The parameter must be a single
quoted or unquoted string.

name
Specifies the product name. The combination of producer name and product name
must be unique.

Options

version below version
Specifies the smallest invalid product version. Use this option to specify that
the product version must be less than (but not equal to) the specified version.
You cannot use this option with either the version minimum or version required
options. By default, there is no smallest invalid version.

version maximum version
Specifies a maximum product version that must be available. Use this option
to specify that the product version must be less than or equal to the specified
version. You cannot use this option with the version below option. By default,
there is no maximum version.

version minimum version
Specifies a minimum product version that must be available. Use this option to
specify that the product version must be greater than or equal to the specified
version. By default, there is no minimum version.

version required version
Specifies a required product version that must be available. Use this option to
specify that a specific product version must be present. You cannot use this option
with either the version below, version maximum, or version minimum options. By
default, there is no required version.

PDL–5

apply to

Description

The apply to statement specifies which versions of another product must be
available for a valid installation operation. You can use options to this statement
to define below, maximum, minimum, and required versions.

If your product references another product with an apply to statement, the
referenced product will be installed earlier than, and removed later than, your
product. If two products reference each other (creating an infinite loop), the
utility issues an error message.

The apply to statement is a utility directive and does not specify a managed
object.

See Also

product
upgrade
software

Example

product DEC VAXVMS CSCPAT57 V1.0 patch ;
apply to DEC VAXVMS FORTRAN version required V2.0 ;
patch image [SYSEXE]FORTRAN.EXE with [000000]CSCPAT57.PAT ;

end product ;

This example shows part of the product description for a patch to DEC Fortran.
As shown in the apply to statement, you must have DEC Fortran Version 2.0
installed to apply this patch.

PDL–6

bootstrap block

bootstrap block

The bootstrap block statement specifies the file that the bootstrap block
references.

Syntax

bootstrap block name image source ;

Parameters

name
Specifies the bootstrap file specification. You must define the file you specify in
the same product description (with a file statement). You must also ensure that
the file has bootstrap scope and product or assembly lifetime (using the scope
statement).

image source
Specifies the file specification of the file that contains the bootstrap block image.
The referenced file must be defined in the same product description (with a file
statement), and it must also have product scope and product lifetime.

Description

The bootstrap block statement specifies the file that the bootstrap block
references. You specify the name of the file as the name parameter.

The bootstrap block statement also specifies a bootstrap block managed object
that has the following characteristics:

• It is unnamed and unique within the bootstrap scope.

• It has operating lifetime and bootstrap scope.

• Managed object conflict is not recoverable.

See Also

scope

Example

bootstrap block [sysexe]vmb.exe image [sysexe]bootblock.exe ;

This example uses the bootstrap block statement to point the bootstrap block to
the bootstrap file ([SYSEXE]VMB.EXE).

PDL–7

directory

directory

The directory statement creates the specified directory if it does not already exist.

Syntax

directory name

�������

[no] access control (access_control...)
owner name

protection

 execute
private
public

�

[no] version limit maximum

�
�������

;

Parameter

name
Specifies the directory name.

Options

[no] access control (access_control...)
Specifies the minimum access control entries (ACEs) that the directory will have.
You must specify the ACEs as a quoted string. By default, directories have no
added ACEs.

owner name
Specifies the account name that owns the directory. By default, the directory is
owned by the SYSTEM account. If you specify a numeric value for name, you
must enclose the string in quotation marks; for example "[11,7]".

protection execute
Sets the directory protection so that users have execute access.

protection private
Sets the directory protection so that users have no access.

protection public
Sets the directory protection so that users have read and execute access. This is
the default option.

[no] version limit maximum
Specifies the maximum number of file versions in the directory as an unsigned
integer from 1 through 32767.

The default is no version limit.

Description

The directory statement creates the specified directory if it does not already exist.

The directory statement specifies the name of a directory managed object. Check
the other statements in your PDF to make sure the name you specify is unique
among all directory, file, and link managed objects in all scopes.

PDL–8

directory

The scope and lifetime of the directory managed object depend on whether it is
lexically contained in a scope, end scope pair, as shown in Table PDL–1.

Table PDL–1 Directory Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

If you use the access control option, the directory statement specifies one access
control entry (ACE) managed object that references the directory managed object
for each entry specified with the access control option. The ACE managed object
has the following characteristics:

• It is unnamed.

• It has operating lifetime.

• It has the same scope as the directory.

See Also

scope

Example

directory [SYSHLP.EXAMPLES.FMS.MESSAGE] protection private
access control ("(IDENTIFIER=[FMS], ACCESS=READ)");

This example specifies the directory [SYSHLP.EXAMPLES.FMS.MESSAGE]. The
protection private option specifies that no users have access to this directory. The
access control option grants the user FMS read access to the directory.

PDL–9

end

end

Ends a group of statements. For more information, see the corresponding opening
statement.

Syntax

end if ;

end option ;

end part ;

end product ;

end remove ;

end scope ;

PDL–10

error

error

The error statement displays an error message during an installation or
reconfiguration operation. The text is from a PTF text module.

Syntax

error name ;

Parameter

name
Specifies, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

Description

The error statement specifies a text module you want to display during
an installation or reconfiguration operation. The error statement must be
immediately contained within an if group.

The POLYCENTER Software Installation utility processes error statements in
lexical order. The utility displays prompt and help text during the validation
phase (which follows the configuration phase).

After receiving an error, the utility prompts the user to continue or terminate the
operation. If the operation is not executed interactively, it terminates. Each error
statement results in a separate prompt.

The error statement is a utility directive and does not specify a managed object.

You must supply text in the associated product text module. The module must
contain a =prompt directive line.

See Also

if

Example

Suppose the product description file contains the following lines:

if (<hardware processor model 7>) ;
error UNSPROC ;

end if ;

The corresponding module in the PTF could contain the following lines:

1 UNSPROC
=prompt Not supported on MicroVAX I.
This product is not supported on the MicroVAX I processor.

PDL–11

error

If the processor model is 7, the system displays the following message:

Not supported on MicroVAX I.

This product is not supported on the MicroVAX I processor.
Terminating is strongly recommended. Do you want to terminate? [YES]

PDL–12

execute install...remove

execute install...remove

The execute install statement specifies commands that you want to execute
when the product is installed. The remove part of the statement indicates
commands you want to execute when the product is removed from the execution
environment.

Syntax

execute install (command,...) remove (command,...) [uses (file,...)] ;

Parameter

(command,...)
Specifies the command that the POLYCENTER Software Installation utility
passes to the command interpreter in the execution environment.

Option

uses (file,...)
Specifies the files required to execute the commands you specified in the
command parameter. Specify the list of required files with the uses option.
By default, this statement does not require files.

Description

The execute install...remove statement specifies commands that you want
to execute when the product is installed. The remove part of the command
indicates commands that execute when the product is removed from the execution
environment. You specify actions by entering a command line, which the utility
passes to the DIGITAL Command Language (DCL) interpreter running in a
subprocess.

The scope statement controls the execution of the commands; the commands
execute once in each scope.

If you need files for the execute install...remove statement, specify the uses
option. Each file you specify with the uses option must be present in the product
material.

The execute install...remove statement causes the utility to define logical names
for use by the subprocess that executes the specified commands. The commands
should use these logical names to reference files, as follows:

• PCSI$SOURCE is a directory specification that points to the location of a
sequential kit or to the root directory of a kit in reference copy format.

• PCSI$DESTINATION is a root directory specification that points to root
directory for the current scope where product material will be placed.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space.

The execute install...remove statement is a utility directive and does not specify a
managed object.

PDL–13

execute install...remove

See Also

file (assemble execute option)
file (release execute option)

Example

execute
install "@pcsi$source:[sysupd]load_loadable_image.com"
remove "@pcsi$source:[sysupd]unload_loadable_image.com"
uses ([sysupd]load_loadable_image.com,

[sysupd]unload_loadable_image.com) ;

In this example, the execute install...remove statement sets up command
procedures to run when the product is installed and removed. The uses option
specifies the file names of the command procedures for installation and removal.

PDL–14

execute login

execute login

The execute login statement displays a message to users that they should execute
the specified commands when the product is made available to a process.

Syntax

execute login (command,...) ;

Parameter

(command,...)
Specifies the command that the POLYCENTER Software Installation utility
displays in a message to the user.

Description

The execute login statement displays a message to users that they should execute
the specified commands when the product is made available to a process. You can
use this statement to advise users of commands they should add to their login
files.

The execute login statement does not specify a managed object.

See Also

file (assemble execute option)
file (release execute option)

Example

execute login "$ @USER_START" ;

In this example, the execute login statement displays a message to users about
adding a line to their LOGIN.COM file.

PDL–15

execute postinstall

execute postinstall

The execute postinstall statement specifies commands that execute after the
product is made available to the system.

Syntax

execute postinstall (command,...) [uses (file,...)] ;

Parameter

(command,...)
Specifies the command that the POLYCENTER Software Installation utility
passes to the command interpreter in the execution environment.

Option

uses (file,...)
Specifies the files required to execute the commands you specified in the
command parameter. Specify the list of required files with the uses option.
By default, this statement does not require files.

Description

The execute postinstall statement specifies commands that execute after the
product is made available to the system. You specify actions by entering a
command line, which the utility passes to the DIGITAL Command Language
(DCL) interpreter running in a subprocess.

The scope statement controls the execution of the commands; the commands
execute once in each scope.

If you need files for the execute postinstall statement, specify the uses option.
Each file you specify with the uses option must be present in the product
material.

The execute postinstall statement causes the utility to define logical names for use
by the subprocess that executes the specified commands. The commands should
use these logical names to reference files, as follows:

• PCSI$SOURCE is a directory specification that points to the location of a
sequential kit or to the root directory of a kit in reference copy format.

• PCSI$DESTINATION is a root directory specification that points to root
directory for the current scope where product material will be placed.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space.

The execute postinstall statement is a utility directive and does not specify a
managed object.

See Also

file (assemble execute option)
file (release execute option)

PDL–16

execute postinstall

Example

execute
postinstall "@pcsi$source:[sysupd]product_cleanup.com"
uses [sysupd]product_cleanup ;

In this example, the execute postinstall statement sets up a command procedure
to run after the product is installed. The uses option specifies the file name of
the command procedure.

PDL–17

execute release

execute release

The execute release statement specifies commands to execute when the existing
product version is replaced with a later version.

Syntax

execute release (command,...) [uses (file,...)] ;

Parameter

(command,...)
Specifies the commands the POLYCENTER Software Installation utility passes to
the command interpreter in the execution environment.

Option

uses (file,...)
Specifies the files required to execute the commands you specified in the
command parameter. Specify the list of required files with the uses option.
By default, this statement does not require files.

Description

The execute release statement specifies commands that execute when the existing
product version is replaced with a later version. You specify actions by entering
a command line, which the utility passes to the DIGITAL Command Language
(DCL) interpreter running in a subprocess.

If you need files for the execute release statement, specify the uses option. Each
file you specify with the uses option must be present in the product material.

The execute release statement causes the utility to define logical names for use by
the subprocess that executes the specified commands. The commands should use
these logical names to reference files, as follows:

• PCSI$SOURCE is a directory specification that points to the location of a
sequential kit or to the root directory of a kit in reference copy format.

• PCSI$DESTINATION is a root directory specification that points to root
directory for the current scope where product material will be placed.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space.

The execute release statement is a utility directive and does not specify a managed
object.

See Also

file (assemble execute option)
file (release execute option)

PDL–18

execute release

Example

execute release "@pcsi$source:[sysupd]config" uses [sysupd]config.com ;

In this example, the execute release statement sets up a command procedure to
run when the product is upgraded. The uses option specifies the file name of the
command procedure.

PDL–19

execute start...stop

execute start...stop

The execute start statement displays a message to users indicating commands
they should execute when the product is made available on the processor to which
it is bound. On installation or upgrade of the product, these commands are also
executed. The stop part of the statement indicates commands they should execute
when the product is made unavailable on the processor to which it is bound.
On removal of the product, or when it is upgraded, these commands are also
executed.

Syntax

execute start (command,...) stop (command,...) ;

Parameter

(command,...)
Specifies the command that the POLYCENTER Software Installation utility
displays in a message to the user and also passes to the command interpreter in
the execution environment.

Description

The execute start statement displays a message to users indicating commands
they should execute when the product is made available on the processor to which
it is bound. On installation or upgrade of the product, these commands are also
executed. The stop part of the statement indicates commands they should execute
when the product is made unavailable on the processor to which it is bound.
On removal of the product, or when it is upgraded, these commands are also
executed.

(Note that the stop part of the command is required even if there are no
commands that you want to execute when the product is made unavailable.)

If you need files for the execute start...stop statement, you must provide them with
the file statement.

The execute start...stop statement is a utility directive and does not specify a
managed object.

See Also

file (assemble execute option)
file (release execute option)

Examples

1. execute
start "@sys$startup:product_startup.com"
stop "@sys$startup:product_shutdown.com" ;

In this example, the execute start...stop statement displays a message to users
about command procedures they should run to start and stop the product.

PDL–20

execute start...stop

2. execute
start "@sys$startup:abs_startup.com"
stop "" ;

In this example, the execute start...stop statement displays a message to users
about command procedures they should run to start the product. Note that
there are no commands executed when the product is stopped.

PDL–21

execute test

execute test

The execute test statement specifies commands that execute during the functional
test of the product.

Syntax

execute test (command,...) ;

Parameter

(command,...)
Specifies the command that the POLYCENTER Software Installation utility
passes to the command interpreter in the execution environment.

Description

The execute test statement specifies commands that execute during the functional
test of the product. You specify actions by entering a command line, which the
utility passes to the DIGITAL Command Language (DCL) interpreter running in
a subprocess.

If you need files for the execute test statement, you must provide them with the
file statement.

The execute test statement is a utility directive and does not specify a managed
object.

See Also

file (assemble execute option)
file (release execute option)

Example

execute
test "@sys$test:prod$ivp.com" ;

In this example, the execute test statement runs a command procedure to perform
a functional test of the product.

PDL–22

file

file

The file statement creates a file in the execution environment. If a file of the
same name already exists, the POLYCENTER Software Installation utility might
replace the file, depending on the options specified.

Syntax

file name

�����������������������������������

[no] access control (access_control...)
[no] archive

assemble

 copy
execute (command,...) [assemble uses (file,...)]
requires file (file,...)

�

[no] generation generation
image library
image module module_name
owner owner

protection

 execute
private
public

�

release execute (command,...) [release uses (file,...)]�
release merge
release replace

�
release notes
size size
source source
[no] write

�
�����������������������������������

;

Parameter

name
Specifies the relative file specification of the file.

Options

[no] access control (access_control...)
Specifies the minimum access control entries (ACEs) that the file will have. By
default, files have no added ACEs (no access control).

[no] archive
Allows you to preserve existing files during an upgrade. The utility appends
_OLD to the end of the file type. For example, if you archived an existing file
named STARTUP_TEMPLATE.SYS, the utility would rename it STARTUP_
TEMPLATE.SYS_OLD. If there are several versions of the existing file, the utility
purges the files before renaming the file type. By default, the POLYCENTER
Software Installation utility does not preserve existing file versions (no archive).
You cannot use this option with the release merge or write options.

assemble copy
Establishes the contents of the file by duplicating a file in the reference copy.
This is the default.

PDL–23

file

assemble execute (command,...)
Establishes the contents of the file by executing the specified commands. Specify
the command lines as quoted or unquoted strings.

assemble uses (file,...)
Specifies a list of additional files required by the assemble execute option. Specify
the relative file specification. By default, the assemble execute option does not
require additional files.

assemble requires file (file,...)
Specifies a list of files that you must assemble before the commands specified by
the assemble execute option can execute. Specify the relative file specification.
By default, the assemble execute option does not require additional files.

Note that required files are assembled before the file that requires them.
For example, you can use this option to specify a main image that requires a
shareable image.

[no] generation generation
Specifies that the file has an explicit generation number. Specify the number as
an unsigned integer in the range 0 through 4294967295. Refer to the Description
section for the meaning of this value. By default, the file does not have an explicit
generation number (no generation), which is equivalent to 0.

image library
Specifies that the file’s symbols are inserted into the system shareable image
symbol table library. The file must be a shareable image.

image module module_name
Specifies the name of the module being inserted into the system shareable image
symbol table library. If you do not specify this option, the module name is the
same as the file name. This option has no effect unless specified with the image
library option.

owner owner
Specifies the account name that owns the file. By default, the file is owned by the
SYSTEM account. If you specify a numeric value for name, you must enclose the
string in quotation marks; for example "[11,7]".

protection execute
Sets the file protection, giving general users execute access.

protection private
Sets the file protection, giving general users no access.

protection public
Sets the file protection, giving general users read and execute access. This is the
default.

release execute (command,...)
Specifies command lines (as quoted or unquoted strings) that execute to convert
the file during a version upgrade. You cannot use this option with the release
merge or release replace options.

PDL–24

file

release uses (file,...)
Specifies a list of additional files required by the release execute option. Specify
the file specifications of the files. By default, the release execute option does not
require additional files.

release merge
Specifies that library modules propagate during a version upgrade. If modules
are present in the existing library but not in the new library, they are propagated
to the new library. The file you specify with the name parameter must be a
library. You cannot use this option with the archive, release execute, release
replace, or write options.

release replace
Specifies that previous versions of the file are replaced during a version upgrade.
You cannot use this option with the release execute or release merge options.

release notes
Specifies that the file is a release notes file. Users can extract the release notes
to a file using the DCL command PRODUCT EXTRACT RELEASE_NOTES. The
release notes are created in the file DEFAULT.PCSI$RELEASE_NOTES in the
current directory.

size size
Do not specify this option in your PDF. When you package your product, the
utility calculates the size (in blocks) of the files you specify and provides this
option in the output PDF.

source source
Specifies the relative file specification of the file in the reference copy as a
single quoted or unquoted string. Use this option when you want to give a file a
different name in the execution environment. When users install your product,
the utility uses this source file in the reference copy to create the file you specify
with the name parameter. By default, the file in the reference copy and the file
created in the execution environment have the same file specification.

[no] write
Specifies that you expect that users will modify the file during system operation.
If you specify this option, during a version upgrade if the file already exists, it
remains the active version. The default is no write. You cannot use this option
with the archive or release merge options.

Description

The file statement creates a file in the execution environment. If a file of the
same name already exists, the utility determines which file to preserve by
comparing the generation numbers of the files.

If both files have generation numbers, the utility preserves the file with the
higher generation number. If one file does not have a generation number or has
a generation number of zero, the utility preserves the file that has a nonzero
generation number. If both files have the same nonzero generation number, they
are considered to be equivalent and either one may be used. Finally, if neither
file has a nonzero generation number, a file conflict error is reported to the user.

The file statement specifies a file managed object. You specify the name of the file
managed object using the name parameter. The name is a multicomponent name
qualified by the relative directory path.

PDL–25

file

The bootstrap block, link, and loadable image statements can also specify
references to a file managed object.

The file specified by the source option, if present, or otherwise by the name
parameter, must be supplied as product material if the assemble copy option is in
effect.

The assemble execute option causes the utility to define logical names for use by
the subprocess that executes the specified commands. The commands should use
these logical names to reference files, as follows:

• PCSI$SOURCE is a directory specification that points to the location of a
sequential kit or to the root directory of a kit in reference copy format.

• PCSI$DESTINATION is a root directory specification under the user’s login
directory used as a staging area. The commands specified in the assemble
execute option are responsible for creating a file in this directory tree whose
name matches the one specified in the file name parameter. After the
commands are executed, the utility moves the file to the product’s destination
directory for the current scope.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space.

Each file specified by the assemble uses option must be supplied as product
material if the assemble execute option is in effect.

The scope and lifetime of the file managed object depend on whether it is
contained within a scope, end scope pair as shown in Table PDL–2.

Table PDL–2 File Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product1 Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

1If the assemble option is not assemble copy, the file managed object has assembly lifetime and
product scope.

If you specify the access control option, the file statement specifies one access
control entry (ACE) managed object that references the file managed object for
each entry specified with the access control option. The ACE managed object has
the following characteristics:

• It is unnamed.

• It has operating lifetime. It has the same scope as the file managed object.

• The system resolves managed object conflict by managed object collection.

If the image library option is in effect, it specifies an image library module
managed object that references the file managed object. The image library
module managed object has the following characteristics:

• It must be unique within the global scope.

PDL–26

file

• It has assembly lifetime and global scope.

• Managed object conflict is not recoverable.

See Also

bootstrap block
directory
link
loadable image
scope

Examples

1. file [SYSLIB]FDVSHR.EXE image library ;

The file statement in this example specifies that the symbols for the shareable
image [SYSLIB]FDVSHR.EXE are inserted into the system shareable image
symbol table library.

2. file [SYSMGR]DECW$STARTUP.COM protection public ;

The file statement in this example creates the file
[SYSMGR]DECW$STARTUP.COM, giving users read and execute access.

3. file [SYSMGR]DECW$SYLOGIN.COM protection public
source [SYSMGR]DECW$SYLOGIN.TEMPLATE ;

The file statement in this example creates the file
[SYSMGR]DECW$SYLOGIN.COM in the execution environment using
the contents of the file [SYSMGR]DECW$SYLOGIN.TEMPLATE from the
reference copy.

4. file [SYSMGR]DECW$SYSTARTUP.COM generation 56 archive write ;

The file statement in this example creates the file
[SYSMGR]DECW$SYSTARTUP.COM, preserving the existing copy. It also
assigns a generation number to the file for conflict resolution. For example,
if a version of the file already exists with a generation number of 60, the
utility will preserve the copy with generation number 60 and will not create a
new one. The write option indicates that users can modify this file and that,
during a version upgrade, the existing version should remain the active one.

5.
file [SYSTEM]CALIBRATE.EXE

assemble execute "@PCSI$SOURCE:[TEMP]CALIBRATE_LINK.COM"
assemble uses ("[TEMP]CALIBRATE.OBJ",

"[TEMP]CALIBRATE_LINK.COM") ;

The file statement in this example creates the file
[SYSTEM]CALIBRATE.EXE in the execution environment by executing
a command procedure to link the image. The link command procedure
and object file are obtained from product material packaged in the kit.
The link command in CALIBRATE_LINK.COM uses the link qualifier
/EXECUTABLE=PCSI$DESTINATION:[SYSTEM]CALIBRATE.EXE to create
the image file.

PDL–27

hardware device

hardware device

The hardware device statement specifies that a required hardware device must
be present in the execution environment. If the device is not available, the
POLYCENTER Software Installation utility prompts the user to continue or to
terminate the operation.

Statement Syntax

hardware device name ;

Function Syntax

< hardware device name >

Parameter

name
Specifies the device name of the hardware device. You must include the colon (:)
at the end of the device name.

Description

Statement
The hardware device statement specifies a required hardware device. If the
device is not available, the utility prompts interactive users to continue or to
terminate the operation. Each failed hardware device statement results in a
separate prompt.

If the operation is not executed in interactive mode, it is terminated.

Function
The hardware device function tests whether a specified device is present. The
value is true if the device is present; otherwise, the value is false. If the function
value is true, a reference to the device is created. Otherwise, no reference is
created.

The name of the referenced device is the value of the name parameter.

While the reference exists, the utility does not permit an operation that makes
the specified conditions false.

Examples

1. hardware device LPA0: ;

The hardware device statement in this example specifies that if the device
named LPA0: is not present in the execution environment, the utility displays
a message prompting the user to continue or to terminate the operation.

PDL–28

hardware device

2. if (<hardware device GAA0:>) ;
file [SYSEXE]SMFDRIVER.EXE ;

end if ;

The hardware device function in this example provides the file
[SYSEXE]SMFDRIVER.EXE if the device GAA0: is present.

PDL–29

hardware processor

hardware processor

The hardware processor statement indicates specific system processor models that
must be present. If none of the specified system processor models is present, the
POLYCENTER Software Installation utility prompts the user to continue or to
terminate the operation.

Statement Syntax

hardware processor model (model,...) ;

Function Syntax

< hardware processor model (model,...) >

Parameter

model (model,...)
Specifies processor model identifiers.

Description

Statement
The hardware processor statement indicates specific system processor models. If
none of the specified models is present, the utility prompts interactive users to
continue or to terminate the operation. Each failed hardware processor statement
results in a separate prompt.

If the operation is not executed in interactive mode, it is terminated.

Function
The hardware processor function tests whether a specified system processor model
is present. The value is true if the model is present; otherwise, the value is false.
If the function value is true, a reference to the system processor model is created.
Otherwise, no reference is created.

The referenced system processor model is unnamed. While the reference exists,
the utility does not permit an operation that makes the specified conditions false.

Example

Suppose the PDF contains the following lines:

if (<hardware processor model 7>) ;
error UNSPROC ;

end if ;

You would have an UNSPROC module in the PTF similar to the following:

1 UNSPROC
=prompt Not supported on MicroVAX I.
This product is not supported on the MicroVAX I processor.

If the processor model is 7, the system displays a message indicating that the
product is not supported on the MicroVAX I computer and prompts the user to
continue or terminate the operation.

PDL–30

if

if

The if statement allows you to conditionally process a group of statements. The
if, else, else if, and end if statements are used together to form an if group.

Syntax

if expression ;

PDL-statements

end if ;

if expression ;

PDL-statements

else ;

PDL-statements

end if ;

if expression ;

PDL-statements

else if expression ;

PDL-statements
.
.
.

else if expression ;

PDL-statements

else ;

PDL-statements

end if ;

Parameter

expression
Specifies the condition you want to test. See Section 2.4.3 for the definition of an
expression.

Required Terminator

end if ;

PDL–31

if

Description

The if group allows you to conditionally process a group of statements. The utility
executes the statements contained in the if group up to the first occurrence of an
else statement, else if statement (if present), or end if statement if the expression
evaluates to true.

else if
The else if statement is valid only if it is immediately contained in an if group
and is not lexically preceded by an else statement.

The utility executes the statements lexically contained in the if group between
the else if statement and the next occurrence of an else, else if, or end if statement
if all of the following conditions exist:

• The result of evaluating the expression in the if statement is false.

• The result of evaluating the expression in all lexically preceding else if
statements in the same if group (if present) is false.

• The result of evaluating the else if expression is true.

If any of these conditions are not satisfied, the utility also does not execute
statements lexically contained in the if group between the else if statement and
the next occurrence of an else, else if, or end if statement.

else
The else statement is valid only if it is immediately contained in an if group and
is the only else statement in the if group. The utility executes the statements
following the else statement (in the same if group) if both of the following
conditions exist:

• The result of evaluating the expression in the if statement is false.

• The result of evaluating the expression in all lexically preceding else if
statements in the same if group (if present) is false.

If either of these conditions is not satisfied, the utility does not execute
statements lexically contained in the if group between the else statement and
the end if statement.

Example

if (<software DEC VAXVMS DECWINDOWS>) ;
file [SYSEXE]PRO$DW_SUPPORT.EXE ;

else if (<software DEC VAXVMS MOTIF>) ;
file [SYSEXE]PRO$MOTIF_SUPPORT.EXE ;

else ;
file [SYSEXE]PRO$CC_SUPPORT.EXE ;

end if ;

This example uses the if statement in conjunction with the software function to
determine which file to provide, as follows:

1. If DECwindows is present, the utility provides the file [SYSEXE]PRO$DW_
SUPPORT.EXE.

2. If DECwindows is not present and DECwindows Motif is present, the utility
provides the file [SYSEXE]PRO$MOTIF_SUPPORT.EXE.

3. If neither DECwindows nor DECwindows Motif is present, the utility provides
the file [SYSEXE]PRO$CC_SUPPORT.EXE.

PDL–32

infer

infer

The infer statement tests the target system to determine if a product or product
version is available.

Note

The infer statement is valid only in a transition PDF.

Syntax

infer available from install file ;

infer available from logical name logical_name ;

infer version from file ;

Parameters

file
Specifies the relative file specification of the file you want to test.

logical_name
Specifies the logical name you want to test.

Description

The infer statement tests the target system to determine if a product or product
version is available. This statement is valid only in a transition PDF.

There are several types of infer statements:

• The infer available statement tests the target system to determine if the
product named in the =product directive of the transition PDF is available.
If no infer available statement is present, the product is inferred to be
available.

The infer available from install statement tests whether the product is
available only if the specified file is installed as a known image. The scope
statement controls execution of this statement; the test executes in the
specified scope.

The infer available from logical name statement tests whether the product
is available only if the logical name you specify has a translation.

• The infer version statement tests the target system to determine the presence
and active version of the product named in the =product directive of the
transition PDF. The product is inferred to be present if the specified file is
present on the system and absent otherwise. If the product is present, the
active version is inferred to be the internal version number of the specified
file. The scope statement controls execution of this statement; the test
executes in the specified scope.

PDL–33

infer

See Also

scope

Examples

1. infer available from logical name DOC$ROOT ;

The infer available statement in this example determines if the product is
available by checking to see if there is a translation for the logical name
DOC$ROOT. The name of the product that the statement is testing for is
contained in the =product directive in the transition PDF.

2. infer version from [SYSEXE]FORTRAN.EXE

The infer version statement in this example determines the active version of
the product by checking to see if the file [SYSEXE]FORTRAN.EXE is present.

PDL–34

information

information

The information statement displays text from a specified text module in the PTF
either before or after the execution of a POLYCENTER Software Installation
utility operation.

Syntax

information name

� [no] confirm

phase
�

after
before

� �
� ;

Parameter

name
Specifies, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

Options

[no] confirm
Displays the contents of the text module and prompts the user for a response.
The user can continue or terminate the operation. The confirm option does not
have any effect in batch mode. The default is no confirm.

phase after
Displays the contents of the text module after the POLYCENTER Software
Installation utility operation finishes. This option cannot be used with the phase
before option.

phase before
Displays the contents of the text module during the configuration phase. This
option is the default and cannot be used with the phase after option.

Description

The information statement displays text from a specified text module in the PTF
either before or after the execution of a POLYCENTER Software Installation
utility operation.

The POLYCENTER Software Installation utility processes information
statements in lexical order. The utility displays prompt text and help text (if
the user requests it).

You must supply product text in the associated product text module. The module
must contain a =prompt directive.

Information statements that specify the phase after option do not display text if
they are lexically contained in an option group that is not selected.

If you have information statements that specify the phase before option and they
are lexically contained in a group with configuration choices, they are processed
in lexical order and may be nested.

The information statement declares a name; it is not a variable.

PDL–35

information

The confirm option to the information statement causes the utility to prompt the
user to continue or terminate the operation.

Example

Suppose the product text file for DEC Rdb for OpenVMS software contains the
following lines:

1 RELEASE_NOTES
=prompt Release notes for Rdb/VMS available.
The release notes for Rdb/VMS are available in the file
SYS$HELP:RDBVMSV4.RELEASE_NOTES.
1 STOP_RDB_VMS_MONITOR
=prompt The Rdb/VMS monitor must be stopped before installation
The Rdb/VMS monitor must be stopped before Rdb/VMS may be installed.
Perform the following operation:
$ @SYS$MANAGER:RMONSTOP

The product description file could contain the following information statements:

information RELEASE_NOTES phase after ;
information STOP_RDB_VMS_MONITOR phase before confirm ;

If the user requests help, the first information statement displays the following
text after the operation finishes:

Release notes for Rdb/VMS available.
The release notes for Rdb/VMS are available in the file
SYS$HELP:RDBVMSV4.RELEASE_NOTES.

If the user requests help, the first information statement displays the prompt text
after the operation finishes:

Release notes for Rdb/VMS available.

If the user requests help, the second information statement displays the following
text for the user during the configuration phase:

The Rdb/VMS monitor must be stopped before installation
The Rdb/VMS monitor must be stopped before Rdb/VMS may be installed.
Perform the following operation:
$ @SYS$MANAGER:RMONSTOP
Do you want to continue [YES]?

If the user does not request help, the utility displays the prompt text during the
configuration phase:

The Rdb/VMS monitor must be stopped before installation

Do you want to continue [YES]?

Regardless of whether the help display option is set, the confirm option in the
second statement forces the user to respond to the prompt before continuing.

PDL–36

link

link

The link statement specifies a second directory entry for a file or directory.

Syntax

link name from source [type hard] ;

Parameters

name
Specifies the file specification of the second directory entry.

from source
Specifies the file specification of an existing directory entry for the file or directory.
The parameter string must be a single quoted or unquoted string. The referenced
file or directory must be defined by a directory or file statement in the same
product description.

Options

type hard
Specifies that a hard link be created. This is the default.

Description

The link statement specifies a second directory entry for a file or directory.

The scope and lifetime of the link managed object depend on whether it is
contained in a scope group, as shown in Table PDL–3.

Table PDL–3 Link Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

If the link statement is not contained in a scope, end scope pair or is contained in
a scope product group, the link managed object has product lifetime and product
scope.

Managed object conflict is unrecoverable.

See Also

directory
file
scope

PDL–37

link

Example

link [SYSEXE]FMS.EXE from [SYS$EXE]FMS.EXE ;

The statement in this example specifies that the file [SYSEXE]FMS.EXE is linked
to the file [SYS$EXE]FMS.EXE.

PDL–38

loadable image

loadable image

The loadable image statement places an image into the system loadable images
table, SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA, and also into
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX for compatibility with the System
Management utility (SYSMAN).

Syntax

loadable image image product product

����������

step
�

init
sysinit

�
message text

severity

��
�

fatal
success
warning

��
	

�
����������

;

Parameters

image
Specifies the file name of the system loadable image. The name you specify must
be defined in the same product description and must have bootstrap scope and
product or assembly lifetime.

product product
Specifies the product mnemonic (as a single quoted or unquoted string of 1 to 8
characters) that uniquely identifies the loadable image. For user-written images,
this should typically contain the string _LOCAL_.

Options

step init
Specifies that the system load the image during the INIT step of the booting
process.

step sysinit
Specifies that the system load the image during the SYSINIT step of the booting
process. This is the default.

message text
Specifies the message you want displayed using the severity option. The message
must be a single quoted or unquoted string. Case is significant. By default, the
severity option displays the message ‘‘system image load failed.’’

severity fatal
Specifies that if an error occurs while the image is being loaded, the system
displays the message and bugchecks; if no error occurs, processing continues.

severity success
Specifies that the system continue processing and not display a message
regardless of whether an error occurs while the image is being loaded.

PDL–39

loadable image

severity warning
Specifies that if an error occurs while the image is being loaded, the system
displays the message and continues; if no error occurs, the system continues and
does not display the message. This is the default.

Description

The loadable image statement places an image into the system loadable images
table, SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA, and also into
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX for compatibility with the System
Management utility (SYSMAN).

The loadable image statement specifies a loadable image module managed object
that has the following characteristics:

• It must be unique within the global scope.

• It has assembly lifetime and global scope.

• Managed object conflict is not recoverable.

The loadable image statement also refers to a file managed object specified using
the image parameter.

See Also

file

Example

loadable image DDIF$RMS_EXTENSION product _LOCAL_
message "DDIF Extension not loaded"
severity warning ;

The statement in this example places the user-written image DDIF$RMS_
EXTENSION in the system loadable images table. If an error occurs while
loading this image, the system displays the error message ‘‘DDIF Extension not
loaded.’’

PDL–40

module

module

The module statement creates one or more modules in a command, help, macro,
object, or text library.

Syntax

module file type type module module_name

����

[no] generation generation
[no] globals
library library
[no] selective search
size size

�
���� ;

Parameters

file
Specifies the relative file specification of the file that contains the modules.

type type
The library type. Table PDL–4 lists the keywords you can specify with this
parameter.

Table PDL–4 Library Types for Module Statement

Keyword Library Type Default

Command Command definition library [SYSLIB]DCLTABLES.EXE
Help Help library [SYSHLP]HELPLIB.HLB
Macro Macro library [SYSLIB]STARLET.MLB
Object Object library [SYSLIB]STARLET.OLB
Text Text library [SYSLIB]STARLETSD.TLB

module module_name
Specifies the list of module names you are specifying.

Options

[no] generation generation
Specifies that the file has an explicit generation number. Specify the number
as an unsigned integer in the range of 0 through 4294967295. Refer to the
Description section for the meaning of this value. By default, the file does not
have an explicit generation number (no generation), which is equivalent to zero.

[no] globals
Specifies whether the global symbol names of the modules you are inserting
into an object library are included in the global symbol table. You can use this
option with object libraries only. By default, the global symbols of the module are
inserted into the global symbol table.

library library
Specifies the relative file specification of the library. The file you specify must be
a library of the type you specified with the type parameter.

PDL–41

module

[no] selective search
Specifies whether the input modules being inserted into the library are
available for selective searches by the linker (by default they are not). For
more information about selective searches, see the OpenVMS Linker Utility
Manual.

size size
Specifies the size of the file as an unquoted string that specifies an unsigned
integer. The utility supplies this option during a package operation; the utility
ignores it if it is supplied as input to a package operation.

Description

The module statement creates one or more modules in a command, help, macro,
object, or text library.

The name of a module managed object is specified using the module option.

The module managed object has assembly lifetime, and its scope is the same as
the library.

If a module of the same name already exists, the utility determines which module
to preserve using the generation numbers. If both modules have generation
numbers, the utility preserves the module with the higher generation number. If
one module does not have a generation number or has a generation number of
zero, the utility preserves the module that has a nonzero generation number. If
the generation numbers are equal or not present, an error is returned.

Examples

1. module [SYSUPD]CDD.CLD type command module CDD ;

The statement in this example creates the command module CDD in
the default command library [SYSLIB]DCLTABLES.EXE using the file
[SYSUPD]CDD.CLD.

2. module [SYSUPD]HELP.HLP type help module FOO_HELP ;

The statement in this example creates the help module FOO_HELP
in the default help library [SYSHLP]HELPLIB.HLB using the file
[SYSUPD]HELP.HLP.

3. module [SYSUPD]SPI$CONNECT.MAR type macro
library [SYSLIB]LIB.MLB module TEST ;

The statement in this example creates the macro module TEST in the macro
library [SYSLIB]LIB.MLB using the file [SYSUPD]SPI$CONNECT.MAR.

4. module [SYSUPD]COBRTL.OBJ type object module TEST2;

The statement in this example creates the object module TEST2 in the default
object library [SYSLIB]STARLET.OLB using the file [SYSUPD]COBRTL.OBS.

5. module [SYSUPD]PROTOTYPE_BOOK.TXT type text
library [SYSLIB]LPS$FONT_METRICS.TLB module FONT;

The statement in this example creates the text module FONT in
the text library [SYSLIB]LPS$FONT_METRICS.TLB using the file
[SYSUPD]PROTOTYPE_BOOK.TXT.

PDL–42

network object

network object

The network object statement uses a command procedure to create a DECnet
network object.

Syntax

network object name with (parameters,...) ;

Parameters

name
Specifies the name of the network object. The network object name is passed to
the command procedure as P1.

with (parameters,...)
Specifies the list of parameters that are passed to the command procedure that
creates the network object. Each parameter must be a single unquoted or quoted
string that specifies P2 through P5, in order. Refer to the Description section for
the meaning of the parameters.

Description

The network object statement uses a command procedure
(SYS$UPDATE:PCSI$CREATE_NETWORK_OBJECT.COM) to create network
objects. The command procedure determines whether DECnet Phase IV or
DECnet Phase V is running on the system. If Phase IV is being used, the
command procedure runs the Network Control Program (NCP) utility to create
the network object. Otherwise, it runs the Network Control Language (NCL)
utility. PCSI passes the following parameters to the command procedure:

• P1 specifies the name of the network object (using the name parameter).

• P2 specifies the object number (for DECnet Phase IV systems only).

• P3 specifies the user name associated with the object (for DECnet Phase IV
systems only). If you specify a user name, it must already exist.

• P4 specifies optional parameters to use with the NCP command DEFINE
OBJECT for DECnet Phase IV objects.

• P5 specifies optional parameters to use with the NCL command
CREATE SESSION CONTROL APPLICATION for DECnet Phase V objects.

When you remove a product that created network objects, the
POLYCENTER Software Installation utility uses a command procedure
(SYS$UPDATE:PCSI$DELETE_NETWORK_OBJECT.COM) to delete network
objects associated with your product.

Note

In a future version, the POLYCENTER Software Installation utility
may create and delete these managed objects directly without the use of
command procedures. If this is the case, these statements will continue to
function, but the command procedures may not be maintained or shipped
with future versions of the utility.

PDL–43

network object

The network object statement specifies a network object managed object that has
the following characteristics:

• Its name is the value of the name parameter. The name must be unique with
respect to all network object names in the processor scope.

• It has operating lifetime and processor scope.

• Managed object conflict is not recoverable.

Example

network object k$test with ("number 107", "user KRYPTON") ;

In this example, the network object statement creates a network DECnet Phase
IV object named k$test. Its object number is 107 and it will execute as user
[KRYPTON].

PDL–44

option

option

The option statement is a utility directive that specifies a group of elements that
the user can choose to make either all present or all not present. This statement
allows you to present options to the user.

Statement Syntax

option name [default value] ;

PDL-statements

end option ;

Function Syntax

< option name [default value]>

Parameter

name
Specifies, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

Option

default value
Specifies the default value for the variable. The value must be either 1(true),
0(false), yes, no, true, or false; the default is 1 (true).

If you specify an option statement with the default value 0, and it contains other
option statements, any defaults in the contained option statements apply only
when the top-level option statement is selected.

Required Terminator

end option ;

Description

Statement
The option statement specifies a group of elements that the user can choose to
make either all present or all not present.

You can nest option groups. The POLYCENTER Software Installation utility
processes nested options in lexical order. An option group containing option
statements must be selected and processed before you can select any of the
options it contains.

The prompt text is a string that describes the option. The utility displays this
text to the user when prompting for a value. If the user sets the session’s help
display option, the utility displays the accompanying text, which should describe
each option in as much detail as necessary.

PDL–45

option

The utility gets the default value for an option from either:

• The option statement in the PDF (if you use the default option).

• The product database (if you use the /PRODUCER=CURRENT qualifier to
the PRODUCT command). This qualifier causes the utility to use the default
values for the current version of the product.

• The product configuration file (PCF), if you created one.

You must supply text in the associated product text module. The module must
contain a =prompt directive.

Function
The option function returns true if the user selects the option and false if the user
does not select the option. The user can select options during the configuration
phase. All option functions default to 1 (true).

See Also

part

Examples

1. option NET ;
file [SYSEXE]NETSERVER.COM ;
file [SYSEXE]NETSERVER.EXE ;
file [SYSHLP]NCPHELP.HLB ;
option NET_A default 0 ;

file [SYSEXE]FAL.COM ;
file [SYSEXE]FAL.EXE ;
end option ;

option NET_B ;
file [SYSEXE]REMACP.EXE ;
file [SYSMGR]RTTLOAD.COM ;
file [SYS$LDR]CTDRIVER.EXE ;
file [SYS$LDR]RTTDRIVER.EXE ;
end option ;

end option ;

If the product description file contains the lines above, the product text file
contains the corresponding text:

1 NET
=prompt network support
This option allows you to participate in a DECnet network.
1 NET_A
=prompt incoming remote file access
This option allows file access from other nodes in a DECnet network.
1 NET_B
=prompt incoming remote terminal access
This option allows users on other nodes in a DECnet network to log
in.

The user must select option NET before NET_A or NET_B are available for
selection. Therefore, NET is processed before NET_A or NET_B.

PDL–46

option

2. if (<option A>) ;
file [SYSEXE]A.EXE ;

else ;
file [SYSEXE]B.EXE ;

end if ;

The product text file contains the corresponding text:

1 A
=prompt the X capability
This feature provides the A capability, but you will not get the B
capability.

In this example, if the user selected the A option, the utility provides the file
[SYSEXE]A.EXE. Otherwise, the utility provides the file [SYSEXE]B.EXE.

PDL–47

part

part

The part statement allows you to specify a message about a group of elements
that you want to display to users.

Syntax

part name ;

PDL-statements

end part ;

Parameter

name
Specifies, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

Required Terminator

end part ;

Description

The part statement allows you to specify a message about a group of elements
that you want to display to users. For example, you can display a message about
a group of software products that you are providing as part of a platform.

You can nest part groups. The POLYCENTER Software Installation utility
processes nested parts in lexical order.

If the user requests help, the utility displays the accompanying text, which
describes each part in detail. The prompt text is a string that describes the part.
The utility displays this text to the user.

You must supply text in the associated product text module. The module must
contain a =prompt directive.

See Also

option

Example

Suppose the product description file contains the following lines:

part DESKTOP ;
software DEC AXPVMS DECPRINT

version required V4.0 component ;
software DEC AXPVMS DOCUMENT

version required V2.0 component ;
software DEC AXPVMS LSE

version required V3.0 component ;
end part;

PDL–48

part

The product text file contains the corresponding text:

1 DESKTOP
=prompt Desktop Publishing Tools
This product provides the following desktop publishing products:
DECprint Printing Services software, VAX DOCUMENT software, and the VAX
Language Sensitive Editor (LSE) software are the required products that
comprise this platform.

This example shows how to use the part statement to display a message about
the required software products that the desktop platform provides.

PDL–49

patch image (VAX only)

patch image (VAX only)

The patch image statement updates an executable image.

Syntax

patch image name with source ;

Parameters

name
Specifies the relative file specification of the executable image you want to update.

with source
Specifies the file specification of the file containing the update commands. The
file that contains the update commands should contain OpenVMS Image File
Patch Utility (PATCH) commands.

Description

The patch image statement updates an executable image. Use this statement
when it is inconvenient to provide a new image.

You must supply the file containing the update commands as part of the product
material.

The patch image statement specifies a maintenance managed object that has the
following characteristics:

• Its name is the same as the name parameter of the product group in which
the statement is lexically contained; it is a multicomponent name qualified
by the relative file specification of the file that is being updated. It must be
unique with respect to all maintenance managed objects in all scopes.

• It has assembly lifetime, and its scope is the same as that of the file being
updated.

• Managed object conflict is unrecoverable.

Example

patch image [SYS$LDR]SYS.EXE with [SYSUPD]VERSION_PATCH.PAT ;

This statement provides a file, [SYSUPD]VERSION_PATCH.PAT, to patch the
image [SYS$LDR]SYS.EXE.

PDL–50

patch text

patch text

The patch text statement updates a text file.

Syntax

patch text name with source ;

Parameters

name
Specifies the relative file specification of the text file you want to update.

with source
Specifies the file specification of the file containing the update commands (as a
single quoted or unquoted string). The file that contains the update commands
should contain SUMSLP commands.

Description

The patch text statement updates a text file. Use this statement when it is
inconvenient to provide a new file.

You must supply the file containing the update commands as part of the product
material. You must also supply the file that you want to update, but this file is
not propagated to the reference copy. The POLYCENTER Software Installation
utility uses it to calculate the input and output checksum values.

The patch text statement creates a temporary directory, identified by the logical
name PCSI$SCRATCH, to compute a checksum value. The PCSI$SCRATCH
directory is created as a subdirectory of SYS$SCRATCH.

The patch text statement specifies a maintenance managed object that has the
following characteristics:

• Its name is the same as the name parameter of the product group in which
the statement is lexically contained; it is a multicomponent name qualified
by the relative file specification of the file that is being updated. It must be
unique with respect to all maintenance managed objects in all scopes.

• It has assembly lifetime, and its scope is the same as that of the file being
updated.

• Managed object conflict is unrecoverable.

Example

patch text [SYSUPD]VMSINSTAL.COM with [SYSUPD]VMSINSTAL.SLP ;

This statement provides a file, [SYSUPD]VMSINSTAL.SLP, to patch the text file
[SYSUPD]VMSINSTAL.COM.

PDL–51

process parameter

process parameter

The process parameter statement displays a message to users about process
parameter requirements. Note that the POLYCENTER Software Installation
utility does not adjust process parameters.

Syntax

process parameter name

����
���

consume value
require value�

maximum value
minimum value

�
����
��	 ;

Parameter

name
Specifies the process parameter name. The name you specify must be valid on
the system where the product executes.

Options

consume value
Specifies that the process parameter must be increased by the specified value.
The value must be a single unquoted string that specifies an unsigned integer
value. This option is valid if the data type of the value is signed integer or
unsigned integer. Use this option when the product consumes a resource that is
controlled by the process parameter.

maximum value
Specifies that the process parameter must have a value less than or equal to the
specified value. The value must be a single unquoted string that specifies an
integer value. This option is valid if the data type of the value is signed integer
or unsigned integer.

minimum value
Specifies that the process parameter must have a value greater than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value. This option is valid if the data type of the value is signed integer
or unsigned integer.

require value
Specifies that the process parameter must have the specified value. The value
must be a single string that specifies a value of the parameter’s type. This option
is valid for any parameter data type.

Description

The process parameter statement displays a message to users after the
installation about process parameter requirements. Note that the utility does not
adjust process parameters.

PDL–52

process parameter

Example

process parameter ASTLM minimum 6;
process parameter BYTLM require 32768;
process parameter PRCLM maximum 2;
process parameter FILLM maximum 40;

These statements display a message to users that a process that executes the
product must have the following process parameters:

ASTLM greater than or equal to 6
BYTLM set to 32768
PRCLM less than or equal to 2
FILLM less than or equal to 40

PDL–53

process privilege

process privilege

The process privilege statement displays a message to users about process
privilege requirements. Note that the POLYCENTER Software Installation
utility does not adjust process privileges.

Syntax

process privilege (name[,...]) ;

Parameter

name
Specifies the process privilege names as a list. The privileges you specify must be
valid on the system where the product executes.

Description

The process privilege statement displays a message to users after the installation
about process privilege requirements. Note that the utility does not adjust
process privileges.

Example

process privilege (group, oper, tmpmbx, sysnam) ;

The statement in this example displays a message to the user that processes
using the product must have the GROUP, OPER, TMPMBX, and SYSNAM
privileges.

PDL–54

product

product

The product group statement specifies the product identification and other
descriptive information about the product.

Syntax

product producer base name version type ;

PDL-statements

end product ;

Parameters

producer
Specifies the legal owner of the software product.

base
Specifies the base on which the product executes. Possible values are AXPVMS
and VAXVMS.

name
Specifies the product name or in the case of a patch or mandatory update kit, the
name of the kit. Specify the product name with an apply to statement for patch
and mandatory update kits. The combination of product name, producer, and
base must be unique.

version
Specifies the product version.

type
Specifies the description type as one of the following keywords:

• full. A complete description that specifies application software that can be
made available on a system (in addition to the operating system) to produce
fully functional software.

• operating system. A complete description that can be made available on a
system to produce fully functional software. Exactly one product that specifies
this type must be available on a system.

• partial. A partial description that can update an existing version of the same
product on a system to produce functionally updated software. The active
version number of the product changes.

• patch. A partial description that can update an existing version of the same
product on a system to produce functionally updated software. The active
version number of the product does not change.

• platform. A complete description of a software system containing multiple
separate products.

• transition. A partial description that supplies information about product
versions that predate conversion to the POLYCENTER Software Installation
utility or to another technology that can interoperate with the utility.

PDL–55

product

• mandatory update. A partial description that can update an existing
version of the same product on a system to produce functionally updated
software. The active version number of the product does not change. A
product description of the mandatory update description type must contain an
apply to statement to identify the product to which the update applies.

Option

operating system
Specifies a transition kit for an operating system. This option is valid only for
transition kit types.

Required Terminator

end product ;

Description

The product group statement is a utility directive that specifies the product
identification and other descriptive information about the product. It does not
specify a managed object.

Examples

1. product DEC AXPVMS FMS V2.4 full ;
file [sysmsg]fdvshr.exe image library ;
file [sysmsg]fmsmsg.exe ;
file [sysexe]fmsfed.exe ;
file [sysexe]fmsfaa.exe ;
file [sysexe]fmsfte.exe ;
directory [systest.fms] ;
file [systest.fms]ivp.exe ;
file [systest.fms]samp.flb ;

end product ;

The product statement in this example specifies information about the FMS
product.

2. product DEC VAXVMS VMS V6.2 transition operating system ;

The product statement in this example specifies information about the
OpenVMS VAX operating system. The operating system option identifies the
software as an operating system transition kit.

PDL–56

register module

register module

The register module statement registers in the product database one or more
existing modules in a command, help, macro, object, or text library.

Syntax

register module type type module (module_name,...)�
[no] generation generation
library library

�
;

Parameters

type type
Specifies the library type. Table PDL–5 lists the keywords you can specify with
this parameter.

Table PDL–5 Library Types for Register Module Statement

Keyword Library Type Default

Command Command
definition
library

[SYSLIB]DCLTABLES.EXE

Help Help library [SYSHLP]HELPLIB.HLB
Macro Macro library [SYSLIB]STARLET.MLB
Object Object library [SYSLIB]STARLET.OLB
Text Text library [SYSLIB]STARLETSD.TLB

module module_name
Specifies the names of the modules contained within the library. If you are
registering a text module, you can specify only one module name.

Options

[no] generation generation
Specifies that the module has an explicit generation number. Specify the number
as an unsigned integer in the range of 0 through 4294967295. Refer to the
Description section of the module statement for the meaning of this value. By
default, the module does not have an explicit generation number (no generation),
which is equivalent to zero.

library library
Specifies the file specification of the library. The file you specify must be a library
of the type you specified with the type parameter.

Description

The register module statement registers in the product database one or more
existing modules in a command, help, macro, object, or text library. Registering
these modules in the product database allows the utility to detect conflicts with
other modules.

PDL–57

register module

Examples

1. register module type help generation 5
module (":=","=","@",ACCOUNTING,ALLOCATE,ANALYZE,APPEND,...) ;

In this example, the register module statement registers several help modules.
The generation option allows the utility to perform conflict resolution with
these help modules.

2. register module type object generation 1
module (BAS$$CB,BAS$$COPY_FD,BAS$$DISPATCH_T,...) ;

In this example, the register module statement registers several object
modules. The generation option allows the utility to perform conflict
resolution with these object modules.

PDL–58

remove

remove

The remove statement removes managed objects from the product database and
the system.

Note

You cannot use the remove statement in a transition PDF.

Syntax

remove ;

PDL-statements

end remove ;

Required Terminator

end remove ;

Description

The remove statement allows you to remove managed objects from the product
database and from the system. Statements that normally provide managed
objects (for example, the file statement) remove managed objects when contained
within remove, end remove.

By using the remove statement in a partial, patch, or mandatory update kit, you
can eliminate obsolete files from a previous version of your product. By using the
remove statement in a full kit, you can eliminate objects provided by a previous
installation mechanism (for example, VMSINSTAL).

Statements that do not provide managed objects function normally within remove,
end remove.

You can nest remove, end remove within scope, end scope, if necessary.

Examples

1. remove ;
directory [SYSHLP.EXAMPLES.FOO] ;
file [SYSHLP.EXAMPLES.FOO]SMLUS.COM ;
file [SYSHLP.EXAMPLES.FOO]SMLUT.COM ;
file [SYSHLP.EXAMPLES.FOO]SMLUU.COM ;

end remove ;

The statements in this example remove some files and a directory (if they
exist) from the product database and the running system.

PDL–59

remove

2. scope bootstrap ;
remove ;
file [SYSEXE]PROD_PROC.EXE ;
end remove ;
file [SYSEXE]PROD_PROC_V2.EXE ;

end scope ;

The statements in this example remove a file in the bootstrap scope and then
provide a new file.

PDL–60

rights identifier

rights identifier

The rights identifier statement uses a command procedure to create a rights
identifier.

Syntax

rights identifier name with (parameters,...) ;

Parameters

name
Specifies the name of the rights identifier. The rights identifier name is passed to
the command procedure as P1.

with (parameters,...)
Specifies the list of parameters that are passed to the command procedure that
creates the rights identifier. Each parameter must be a single unquoted or quoted
string that specifies P2 and P3, in order. Refer to the Description section for the
meaning of the parameters.

Description

The rights identifier statement invokes a command procedure
(SYS$UPDATE:PCSI$CREATE_RIGHTS_IDENTIFIER.COM) to create rights
identifiers. This command procedure runs the Authorize utility to perform the
function. PCSI passes the following parameters to the command procedure:

• P1 specifies the name of the rights identifier (using the name parameter).

• P2 specifies the optional qualifiers to use with the Authorize command ADD
/IDENTIFIER.

• P3 specifies the /VALUE qualifier to use with AUTHORIZE command ADD
/IDENTIFIER. You can specify this parameter only if the identifier does not
already exist on the system.

When you remove a product that created rights identifiers, the
POLYCENTER Software Installation utility uses a command procedure
(SYS$UPDATE:PCSI$DELETE_RIGHTS_IDENTIFIER.COM) to delete rights
identifiers associated with your product.

Note

In a future version, the POLYCENTER Software Installation utility
may create and delete these managed objects directly without the use of
command procedures. If this is the case, these statements will continue to
function, but the command procedures may not be maintained or shipped
with future versions of the utility.

The rights identifier statement specifies a rights identifier managed object that
has the following characteristics:

• Its name is the value of the name parameter. The name must be unique with
respect to all rights identifier names in the operating scope.

PDL–61

rights identifier

• It has operating lifetime.

• Managed object conflict is not recoverable.

Example

rights identifier PCSI_TEST
with ("/attributes=DYNAMIC",

"/value=IDENTIFIER:14600926") ;

In this example, the rights identifier statement creates a rights identifier named
PCSI_TEST with a value of 14600926.

PDL–62

scope

scope

The scope statement specifies for certain managed objects a scope and lifetime
other than its defaults.

Syntax

scope

���
��

bootstrap
global
processor
product

���
�	;

PDL-statements

end scope ;

Required Terminator

end scope ;

Description

The scope statement specifies for a managed object a scope and lifetime other
than its defaults. You can nest scope statements. For more information about the
scope and lifetime of managed objects, see Appendix B.

See Also

directory
execute install...remove
execute release
file
infer
link

Example

scope bootstrap ;
file [SYSEXE]SYSBOOT.EXE ;
file [SYSEXE]VMB.EXE ;
bootstrap block [SYSEXE]VMB.EXE image [SYSEXE]BOOTBLOCK.EXE ;

end scope;

The statements in this example specify that the files VMB.EXE and
SYSBOOT.EXE must be placed on every bootstrap disk.

PDL–63

software

software

The software statement specifies a software product that must be available. The
software function tests for the presence of a second product. You can also specify
the version of the product that must be present.

Statement Syntax

software producer base name

�������

[no] component����
���
�

version below version
version maximum version
version minimum version

�

version required version

����
��	

�
�������

;

Function Syntax

< software producer base name

����
���
�

version below version
version maximum version
version minimum version

�

version required version

����
��	 >

Parameters

producer
Specifies the legal owner of the software product.

base
Specifies the base on which the product executes. Possible values are AXPVMS
and VAXVMS.

name
Specifies the product name. The combination of producer name, base, and product
name must be unique.

Options

[no] component
Specifies that if the product is copied (using a copy operation) or packaged (using
a package operation), the component products will be copied or packaged along
with the product. The default is no component (the product does not need to be
present during a copy or package operation).

version below version
Specifies the smallest invalid product version. Use this option to specify that
the product version must be less than (but not equal to) the specified version.
You cannot use this option with either the version minimum or version required
options. By default, there is no smallest invalid version.

version maximum version
Specifies a maximum product version. The version must be a single quoted or
unquoted string that specifies a version identifier. The version of the product
that is available must be less than or equal to the specified version. You cannot

PDL–64

software

use this option with the version below option. By default, there is no maximum
version.

version minimum version
Specifies a minimum product version. The version must be a single quoted or
unquoted string that specifies a version identifier. The version of the product that
is available must be greater than or equal to the specified version. By default,
there is no minimum version.

version required version
Specifies a required product version. The version must be a single quoted or
unquoted string that specifies a version identifier. The version of the product that
is available must be equal to the specified version. You cannot use this option
with either the version below, version maximum, or version minimum options. By
default, there is no required version.

Description

Statement
The software statement specifies a software product that must be available in the
execution environment. You can also specify a specific version of a product.

If you use the component option, the POLYCENTER Software Installation utility
creates a copy of the referenced product when you copy your product.

If you reference a product that is not available or one that does not fit the
constraints you specified, the utility prompts the user to continue or to terminate
the operation.

If the operation executes in batch mode and a referenced product is not available,
the operation terminates.

Note

If a referenced product is not available, Digital recommends that users
accept the default prompt and terminate the operation.

If your product references another product with a software statement, the
referenced product will be installed earlier than, and removed later than, your
product. If two products reference each other (creating an infinite loop), the
utility issues an error message.

Function
The software function tests for the presence of a second product. You can also
specify a specific version of a product. The software function tests the state the
system will be in when the operation finishes, not when the operation begins.

The function value is true if the following conditions exist; otherwise, the value is
false:

• The product specified by the producer, base, and name parameters is
available.

• The version option is omitted, or the available version satisfies the specified
constraints.

PDL–65

software

If the function value is true, the utility creates a reference to the product. While
the reference exists, the utility does not permit an operation that makes the
specified conditions false. If the function value is false, the utility does not create
a reference.

See Also

apply to
product
software

Examples

1. software DEC VAXVMS FORTRAN
version minimum V3.0 version maximum V5.0 ;

The software statement in this example specifies that this product requires
DEC Fortran software. The version must be between 3.0 and 5.0.

2. software DEC VAXVMS FORTRAN version below V5.0 ;

The software statement in this example specifies that this product requires
DEC Fortran software. The version must be less than (but not equal to) 5.0.

PDL–66

system parameter

system parameter

The system parameter statement allows you to display a message to users that
expresses system parameter requirements for your product. Note that the
POLYCENTER Software Installation utility does not change system parameters.

Syntax

system parameter name

����
���

consume value�
maximum value
minimum value

�
require value

����
��	 ;

Parameter

name
Specifies the name of the system parameter. The parameter you specify must be
valid on the system where the product executes.

Options

consume value
Specifies that the value of the system parameter must be increased by the
specified value. Use this option when the product consumes a resource that is
controlled by the system parameter. The value must be a single unquoted string
that specifies an unsigned integer value. This option is valid if the data type of
the value is signed integer or unsigned integer. If you specify this value, you
cannot specify the minimum, maximum, or require option.

maximum value
Specifies that the system parameter must have a value less than or equal to the
specified value. The value must be a single unquoted string that specifies an
integer value. This option is valid if the data type of the value is signed integer
or unsigned integer.

minimum value
Specifies that the system parameter must have a value greater than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value. This option is valid if the data type of the value is signed integer
or unsigned integer.

require value
Specifies that the system parameter must have the specified value. The value
must be a single string that specifies a value of the parameter’s type.

Description

The system parameter statement displays a message to users after the
installation about system parameter requirements for your product. Note
that the POLYCENTER Software Installation utility does not adjust system
parameters.

PDL–67

system parameter

Example

system parameter vaxcluster require 1 ;
system parameter tty_classname require "TT" ;
system parameter pagedyn consume 200 ;

The statements in this example display the following messages:

This product requires the following system parameters
parameter VAXCLUSTER require 1

This product requires the following system parameters
parameter TTY_CLASSNAME require TT

This product requires the following system parameters
parameter PAGEDYN consume 200

PDL–68

upgrade

upgrade

The upgrade statement specifies product versions that must be available for a
successful product upgrade. The upgrade function tests whether a version of the
product is available.

Syntax

upgrade

����
���
�

version below version
version maximum version
version minimum version

�

version required version

����
��	 ;

Function Syntax

< upgrade

����
���
�

version below version
version maximum version
version minimum version

�

version required version

����
��	 >

Options

version below version
Specifies the smallest invalid product version. Use this option to specify that
the product version must be less than (but not equal to) the specified version.
You cannot use this option with either the version minimum or version required
options. By default, there is no smallest invalid version.

version maximum version
Specifies a maximum product version that must be available. Use this option to
specify that the product version must be less than or equal to the version you
specify. You cannot use this option with the version below option. By default,
there is no maximum version.

version minimum version
Specifies a minimum product version that must be available. Use this option to
specify that the product version must be greater than or equal to the version you
specify. By default, there is no minimum version.

version required version
Specifies a required product version that must be available. Use this option to
specify that a specific product version must be present. You cannot use this option
with either the version below, version maximum, or version minimum options. By
default, there is no required version.

PDL–69

upgrade

Description

Statement
In a full, operating system, or platform PDF, the upgrade statement specifies
which product versions must be available for a successful product upgrade.
If there is no available version of the product, the POLYCENTER Software
Installation utility ignores the upgrade statement and performs a new
installation.

In a partial PDF, the upgrade statement is required to specify which product
versions must be available in order for the partial kit to be applied successfully.

If the upgrade statement is not present, there is no constraint on the available
version of the product.

Function
The upgrade function tests whether a version of the product is available. If a
version of the product is available, the function returns true. If a version of the
product is not available, the function returns false.

See Also

apply to
product
software

Examples

1. product DEC VAXVMS VMS V5.5-2 partial ;
upgrade version minimum V5.5 version maximum V5.5-2 ;

.

.

.
end product;

The upgrade statement in this example specifies that to install VMS Version
5.5–2, your system must be running at least VMS Version 5.5 and no higher
than VMS Version 5.5–2.

PDL–70

A
Migrating from VMSINSTAL to the

POLYCENTER Software Installation Utility

VMSINSTAL is an installation mechanism supplied by Digital. This appendix
contains information about VMSINSTAL options and callbacks and their
POLYCENTER Software Installation utility equivalents.

A.1 VMSINSTAL Options and Equivalents
Table A–1 lists some tasks that you may need to perform, the corresponding
VMSINSTAL option, and the POLYCENTER Software Installation utility
equivalent. Note that some VMSINSTAL options do not have an equivalent. In
many cases, this is because the design of the POLYCENTER Software Installation
utility eliminates the need for an equivalent.

Table A–1 VMSINSTAL Options and Equivalents

Task
VMSINSTAL
Option

POLYCENTER Software Installation Utility
Equivalent

Creating a file that specifies
answers to installation questions

OPTIONS A Create a product configuration file (PCF). This is
similar to an auto-answer file in VMSINSTAL.

Specifying a temporary work
directory

OPTIONS AWD Specify the /WORK qualifier to the PRODUCT
command.

Startup OPTIONS B1 No equivalent.

Tracing callbacks during
installation

OPTIONS C2 Use the /LOG and /TRACE qualifiers to the
PRODUCT command. You can also use the
/NOCOPY qualifier when debugging a product
description file (PDF) to prevent the product
material from being copied into the reference copy.

Manipulating product kits OPTIONS G Use the COPY/FORMAT=REFERENCE and
COPY/FORMAT=SEQUENTIAL commands to
manipulate product kits (see Chapter 4).

Suppressing VMSINSTAL
prompts

OPTIONS I2 No equivalent.

Debugging a kit OPTIONS K2 Use the /LOG and /TRACE qualifiers to assist in
debugging a PDF.

Providing a log of installation
operations

OPTIONS L Use the /LOG and /TRACE qualifiers. This
provides more information than OPTIONS L
with VMSINSTAL.

1OpenVMS startup use only
2Developer’s use only

(continued on next page)

A–1

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.1 VMSINSTAL Options and Equivalents

Table A–1 (Cont.) VMSINSTAL Options and Equivalents

Task
VMSINSTAL
Option

POLYCENTER Software Installation Utility
Equivalent

Displaying or printing release
notes

OPTIONS N Use the release notes option to the file statement
and the PRODUCT EXTRACT RELEASE_NOTES
command. The release notes are created in the
file DEFAULT.PCSI$RELEASE_NOTES in the
current directory.

Performing an installation in
test mode

OPTIONS Q2 No equivalent.

Installing a product in an
alternate root

OPTIONS R Use the /DESTINATION qualifier.

Pausing the installation at
various points

OPTIONS RSP2 No equivalent.

Compiling information about the
installation

OPTIONS S2 Use the /LOG and /TRACE qualifiers to the
PRODUCT command.

2Developer’s use only

A.2 VMSINSTAL Callbacks and Equivalents
To install a product using VMSINSTAL, you create a command procedure named
KITINSTAL.COM that makes callbacks to VMSINSTAL. If you are migrating
from VMSINSTAL to the POLYCENTER Software Installation utility, refer to
Table A–2, which lists the VMSINSTAL callbacks and their equivalents.

Table A–2 VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Adding an identifier to the
rights database

ADD_IDENTIFIER Use the rights identifier
statement.

Prompting the installer for
information

ASK To confirm the completion
of preinstallation tasks,
use the confirm option to
the information statement.
The product text file (PTF)
contains the prompt and
help text.

Not recording responses to
installation questions

A No equivalent.

Forcing a Boolean answer B No equivalent.

Preceding prompt with blank
line

D No equivalent.

Disabling terminal echo E No equivalent.

Displaying help text before
the prompt

H The information statement.

Answer must be an integer I No equivalent.

(continued on next page)

A–2

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Returning input in lowercase L No equivalent.

Returning input in the same
case

M No equivalent.

Indicating a null response is
acceptable

N No equivalent.

Ringing the terminal bell
before the prompt

R No equivalent.

Indicating the response can
be a string

S No equivalent.

Returning input in uppercase U No equivalent.

Indicating the response can
be Ctrl/Z

A No equivalent.

Determining whether a
license for the product is
installed on the system

CHECK_LICENSE No equivalent. License
management is outside the
domain of the utility.

Determining whether the
network is running

CHECK_NETWORK No equivalent. If you use a
statement that references
the DECnet network, the
utility ensures that the
network is available.

Determining whether there
is sufficient disk space on the
target device

CHECK_NET_
UTILIZATION

No equivalent. The utility
ensures that sufficient disk
space is available.

Determining whether a
minimum version of software
is present in the execution
environment

CHECK_PRODUCT_
VERSION

Use the version minimum
option to the software
statement.

Limiting an installation
to specified versions of the
OpenVMS operating system

CHECK_VMS_
VERSION

Use the version minimum
and version maximum
options to the software
statement, specifying DEC
as the producer name,
VAXVMS or AXPVMS as
the base, and VMS as the
product name.

Determining which is the
most recent version of an
image

COMPARE_IMAGE You can manage file
versions using the
generation option to the
file statement.

Determining whether
the user has loaded the
license for the product being
installed on the system

CONFIRM_LICENSE No equivalent. License
management is outside the
domain of the utility.

Providing for orderly exit
from an installation

CONTROL_Y No equivalent necessary;
the utility provides this
automatically.

(continued on next page)

A–3

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Creating an account on the
system

CREATE_ACCOUNT Use the account statement.

Deleting obsolete files from a
previous installation

DELETE_FILE In full and operating system
kits, the utility deletes files
that are replaced during
an upgrade. However, in a
partial kit, you can remove
obsolete files using the
remove statement.

Locating files FIND_FILE If you want to determine
whether an optional
software product is
available, use the software
function. You do not need
to determine whether a file
is present before performing
an operation that references
it; the utility does this
automatically.

Generating structure
definition language (SDL)
definition files

GENERATE_SDL No equivalent.

Extracting the image file
identification string for a file

GET_IMAGE_ID If you want to determine
the available version of
a software product, use
the software statement or
function.

Obtaining a password for an
account

GET_PASSWORD No equivalent necessary;
the utility provides this
function.

Placing requirements on
system parameters

GET_SYSTEM_
PARAMETER

Use the system parameter
statement.

Displaying messages to the
user

MESSAGE Use the information
statement to display
information about pre- and
postinstallation tasks. You
do not need to provide error
messages and progress
information; the utility does
this automatically.

Patching an image as part of
the installation

PATCH_IMAGE Use the patch image
statement.

Moving a shareable image’s
symbol table to the system
shareable image library when
the patch is complete

I No equivalent necessary.
The image library option to
the file statement controls
its replacement in the
image library.

Creating a journal file of
patches

J No equivalent.

(continued on next page)

A–4

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Saving old versions of the
image file

K No equivalent necessary.
The utility deletes existing
versions.

Moving the file to the
SYS$SPECIFIC directory

O No equivalent necessary.
The placement of the file
statement that originally
described the image within
a scope group determines
its placement.

Reinstalling the image when
the patch is complete

R No equivalent necessary;
the utility does this
automatically.

Queuing a print job to
SYS$PRINT

PRINT_FILE No equivalent.

Invoking a command
procedure of product-specific
callbacks

PRODUCT No equivalent.

Adding a command to the
system DCL table

PROVIDE_DCL_
COMMAND

Use the module statement
with the type command
parameter. You do not
need to reinstall the system
command table as a known
image; the utility does this
automatically.

Adding help to the DCL help
library

PROVIDE_DCL_HELP Use the module statement
with the type help
parameter.

Adding a new file to the
system

PROVIDE_FILE Use the file statement.

Placing the file in more than
one location

C No equivalent necessary.

Preserving old versions K No equivalent necessary.
The utility deletes existing
versions.

Adding the file to the
SYS$SPECIFIC directory

O Enclose the file statement
in a scope processor group.

Specifying an input file that
contains a list of logical
names for the source files and
their respective destinations

T No equivalent necessary.
Use one file statement for
each file.

Adding a new image to the
system

PROVIDE_IMAGE Use the file statement.
The utility can distinguish
whether a file is a valid
executable image.

Placing the file in more than
one location

C No equivalent necessary.

(continued on next page)

A–5

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Dynamically patching ECOs
into the new image file

E No equivalent necessary.
You should package the
file with the correct ECO
numbers already set.

Moving a shareable image’s
symbol table to the system
shareable image library

I Use the image library
option to the file statement.

Preserving old versions K No equivalent necessary.
The utility deletes existing
versions.

Moving the file to the
SYS$SPECIFIC directory

O Enclose the file statement
in a scope processor group.

Specifying an input file that
contains a list of logical
names for the source image
files and their respective
destinations

T No equivalent necessary.
Use one file statement for
each file.

Changing the file name and
file type of all versions of a
file

RENAME_FILE Use the archive option
of the file statement to
preserve an existing version
of a file during an upgrade.

Restoring save sets of a
product that is divided among
several save sets

RESTORE_SAVESET No equivalent necessary.

Running an image during
installation

RUN_IMAGE Use the execute statement
or the assemble execute or
release execute option to
the file statement.

Specifying a UIC or
protection code for product
files

SECURE_FILE Use the owner and
protection options to
the directory and file
statements.

Modifying the access control
list (ACL) of a device,
directory, or file

SET ACL Use the access control
option of the file, hardware
device and directory
statements.

Determining the default case
(upper or lower) in which text
from the installer is returned
to the installation procedure

SET ASK_CASE No equivalent.

Running an installation
verification procedure (IVP)

SET IVP No equivalent necessary.
You can specify the execute
test statement and invoke
the functional test for a
product with the /TEST
qualifier to the PRODUCT
command.

(continued on next page)

A–6

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Calling a product’s
installation procedure after
files have been moved to their
target directories

SET POSTINSTALL Depending on your
application, you can use
the execute postinstall
statement.

Purging files replaced by an
installation

SET PURGE No equivalent necessary.
The utility deletes existing
versions.

Rebooting the system after
the installation

SET REBOOT No equivalent.

Ensuring a high level of
installation success

SET SAFETY No equivalent necessary.
The utility provides the
necessary disk management
and reliability features.

Rebooting the system after
the installation

SET SHUTDOWN No equivalent.

Specifying a product-specific
startup command procedure

SET STARTUP Use the execute start
statement.

Editing text files SUMSLP_TEXT Use the patch text
statement.

Identifying installation
peculiarities

TELL_QA No equivalent necessary.

Exiting the installation
procedure

UNWIND No equivalent necessary.
The utility controls the flow
of the installation.

Updating an existing user
account

UPDATE_ACCOUNT Use the account statement
to modify existing user
accounts.

Making a file available for
updating by copying it to a
working directory

UPDATE_FILE No equivalent necessary.

Modifying an identifier in the
rights database

UPDATE_IDENTIFIER Use the rights identifier
statement to modify an
existing rights identifier.

Updating a library UPDATE_LIBRARY Use the module statement
with the appropriate
parameter for the type
of library you are updating.
To update the shareable
image library, use the
image library option to
the file statement. No
equivalent exists to update
RSX libraries.

A–7

B
Advanced PDF Concepts

This appendix contains information about some advanced PDF concepts such as
managed object scope and lifetime.

B.1 Defining the Scope of a Managed Object
The scope of a managed object defines the degree of sharing that the managed
object permits. For example, some objects are available only to certain processes,
and some can be shared by all processes. The POLYCENTER Software
Installation utility usually ensures that managed objects have the correct
scope.

You might need to give a managed object a scope other than its default. Using
the scope statement, you can ensure that the managed object is placed in the
correct area on the system and that processes that need to can access it.

This section describes the different scopes that managed objects have:

• Global scope is the largest scope in which a single POLYCENTER Software
Installation utility operation can have an effect. A single file that must be
shared by every process in the computing facility must exist in global scope.
Modules in system object libraries are examples of managed objects that must
be in global scope. Writable databases might be in global scope.

Global scope managed objects have the following characteristics:

They exist in every process in the computing facility (as established by an
initial system load).

They are always stored together.

They are usually used by operating system products.

• Bootstrap scope managed objects function during system bootstrap when
operating system facilities are unable to locate and use larger scopes. Drivers
and loadable images that must be present before startup executes are
examples of files that should be in the bootstrap scope.

Bootstrap scope should be used for products that use device drivers, especially
those drivers that must be read by the primitive file system. Because files in
bootstrap scope are read by the primitive file system, they are read when not
synchronized with the file system on other cluster members that might access
the same disk.

Therefore, those files must retain stable positions as long as the disk is in use
from any system and must not be manipulated by online disk defragmentation
operations, including those that use the MOVEFILE primitive.

Bootstrap scope managed objects have the following characteristics:

They support specific computers and usually exist on the same disk
volume as processor scope managed objects.

B–1

Advanced PDF Concepts
B.1 Defining the Scope of a Managed Object

A computing facility can have several bootstrap scopes, and multiple
computers can share the same bootstrap scope.

They are usually used by operating system products.

• Product scope managed objects are product specific. Most managed objects
for a product reside in product scope. Product scope is the default scope for
most objects; therefore, it is generally unnecessary to specify product scope.
Product scope managed objects for different products can be stored together
or separately.

• Processor scope managed objects exist in all processes executing on a single
computer. For example, a logical name might exist in processor scope.

B.2 Updating Files
When you update your product with a partial, patch, or mandatory update kit,
you can either explicitly state the scope of the file managed objects you are
updating or let the utility determine the scope of the file managed objects:

• You can use the scope statement to ensure that the utility looks in a specific
scope for the file managed object you want to update.

• If you do not use the scope statement, the utility searches the execution
environment for a file managed object with the same name. If the utility finds
the object, it replaces the object; if the utility does not find the file managed
object, it provides a new file in product scope.

If you use the patch statement, the object you are updating must have been
provided by your product. If you use the module statement, the object you are
updating either must have been provided by your product or must be in global or
bootstrap scope.

B.3 Managed Object Lifetimes
The lifetime of a managed object defines the duration or time period in which
the managed object exists. For example, some managed objects are created each
time a product is started; others are created before the product starts.

This section lists the lifetimes that a managed object receives as a result of its
scope:

• Product lifetime managed objects are part of the product material. You
create them when you package the product, and they exist in all reference
and sequential copies. The POLYCENTER Software Installation utility
does not create these managed objects, but it may copy or delete them. For
example, an executable image is usually a product lifetime managed object.

• Assembly lifetime managed objects are created before the product is
started. They do not need to be created each time the product is started and
are identical in every execution environment. For example, a module in a
system object library is an assembly lifetime managed object.

• Operating lifetime managed objects are created in the execution
environment, before the product is started. They do not need to be created
each time the product is started. For example, a user account is an operating
lifetime managed object.

B–2

Advanced PDF Concepts
B.3 Managed Object Lifetimes

• Dynamic lifetime managed objects are created each time the product is
started. For example, a server process that runs continuously to handle
inbound network connections is a dynamic lifetime managed object.

B–3

Glossary

This glossary lists and defines the terms used in this guide.

integrated platform

A strategic combination of software products that is targeted toward a specific
market or a set of applications that a company has standardized for internal use.

managed object

An entity that exists to support the proper functioning of a product. Files,
directories, and accounts are all examples of types of managed objects.

package operation

A POLYCENTER Software Installation utility operation that uses the PDF, PTF,
and product material to create a reference or sequential copy.

patch

A minor update to a software product that does not change the version level of
the product.

PCF

See product configuration file.

PDB

See product database.

PDF

See product description file.

PDL

See product description language.

POLYCENTER Software Installation utility

A software product that allows you to create software kits and manage software
(for example, installation, removal, configuration).

product configuration file (PCF)

A text file that specifies configuration choices for the POLYCENTER Software
Installation utility to use in subsequent operations. For example, you can use
a PCF to avoid specifying the same answers to installation questions when you
have multiple installations to perform.

Glossary–1

product database (PDB)

The repository in which the POLYCENTER Software Installation utility records
information about events such as product installation and removal. Users can
query the PDB to find out information about their environment.

product description file (PDF)

A text file that specifies the execution environment for your product.

product description language (PDL)

The set of statements that you use to write a PDF. See also product description
file.

product material

The files associated with the product, excluding the PDF and PTF. Product
material files are the output of the software engineering process.

product text file (PTF)

A text file that contains all the product-specific text that the POLYCENTER
Software Installation utility can display during product manipulation (for
example, description of options, informational text, copyright notice, and so forth).

PTF

See product text file.

reference copy

Format of a software product kit. In this form, the PDF, PTF, and all files that
comprise the product are placed in a directory tree on a random-access device.
OpenVMS is distributed in reference copy format on CD–ROM.

removal

An operation opposite to installation that reverses the effect of an installation.
Product files are deleted and the PDB is updated.

sequential copy

Format of a software product kit. In this form, the PDF, PTF, and all files that
comprise the product are packaged in a single container file. This container file
can be placed either on a random-access device, such as a compact disc, or on
a sequential access device, such as a magnetic tape. Most layered products are
distributed in sequential copy format.

transition product description file (PDF)

A type of PDF that allows you to reference products not converted to the
POLYCENTER Software Installation utility and to migrate products to the
POLYCENTER Software Installation utility.

utility directive

A PDL statement that does not specify managed objects. Utility directives affect
the operation of the POLYCENTER Software Installation utility but do not affect
the execution environment.

Glossary–2

Index

A
Account statement, 2–3, PDL–3
Apply to statement, PDL–5

B
Bootstrap block statement, PDL–7

D
Databases

of software products, 1–3
Data types

Base data types and values, 2–9
Boolean, 2–9
Signed integer, 2–9
String, 2–9
String data type constraints, 2–9
Text module name, 2–9
Unsigned integer, 2–9
Version identifier, 2–9

DCL (DIGITAL Command Language) interface
using to package software, 4–1

Directory statement, 2–3, 2–4, PDL–8

E
End statement, PDL–10
Error statement, PDL–11
Execute install statement, PDL–13
Execute login statement, PDL–15
Execute postinstall statement, PDL–16
Execute release statement, PDL–18
Execute remove statement, PDL–13
Execute start statement, PDL–20
Execute statement, 2–4
Execute stop statement, PDL–20
Execute test statement, 2–4, PDL–22

F
File statement, PDL–23

uses, 2–3, 2–4, 2–5

H
Hardware device statement, 2–2, PDL–28
Hardware processor statement, 2–3, PDL–30
Help text, displaying for users, 3–3

I
If statement, PDL–31
Infer statement, PDL–33
Information statement, 2–4, PDL–35
Integrated platforms, 1–7

packaging, 1–8

L
Link statement, PDL–37
Loadable image statement, 2–3, PDL–39
Logical name

PCSI$DESTINATION, PDL–13, PDL–16,
PDL–18, PDL–26

PCSI$SCRATCH, PDL–13, PDL–16, PDL–18,
PDL–26

PCSI$SOURCE, PDL–13, PDL–16, PDL–18,
PDL–26

Logical names, 1–7

M
Managed objects

definition, 1–8
scopes, B–1, B–2

Module statement, 2–5, PDL–41

N
Network object statement, 2–3, PDL–43

O
Option statement, 2–3, PDL–45

Index–1

P
Package operations, 1–2
Part statement, PDL–48
Patch image statement, 2–3, PDL–50
Patch text statement, 2–3, PDL–51
PCSI$DESTINATION logical name, 1–7, PDL–13,

PDL–16, PDL–18, PDL–26
PCSI$SCRATCH logical name, PDL–13, PDL–16,

PDL–18, PDL–26
PCSI$SOURCE logical name, 1–7, PDL–13,

PDL–16, PDL–18, PDL–26
PDF (product description file), 1–3

creating, 2–1
example, 2–10, 2–11
file name format, 2–5
guidelines for creating, 2–2
product requirements checklist, 2–2

Platform PDF, 1–8, 2–14
Platforms

See Integrated platforms
POLYCENTER Software Installation utility

benefits of using, 1–1
compared to VMSINSTAL, A–1
creating the PDF, 2–1
databases, 1–3
guidelines for using, 2–2
package operations, 1–2
product configuration files, 1–3

Process parameter statement, 2–4, PDL–52
Process privilege statement, PDL–54
Product database

definition of, 1–3
Product description file

See PDF, Platform PDF, and Transition PDF
=Product directive, 3–2

syntax, 3–2
Product formats, 4–1
Product name

specifying in the PTF, 3–2
PRODUCT PACKAGE command

format, 1–3, 4–1
Product statement, PDL–55
Product text file

See PTF
=Prompt directive, 3–3

Prompt text
including in the PTF, 3–3

PTF (product text file), 1–3, 3–1
example, 3–4
file format, 3–2
file name format, 3–1
including prompt text, 3–3
sample file names, 3–1
specifying the product name, 3–2

R
Reference copy, 1–4, 4–1
Register module statement, PDL–57
Remove statement, 2–5, PDL–59
Rights identifier statement, 2–3, PDL–61

S
Scope statement, PDL–63
Sequential copy, 1–4, 4–1
Software statement, 1–8, 2–2, PDL–64
String data type constraints, 2–9

Access control entry, 2–9
Command, 2–9
Device name, 2–9
File name, 2–9
Identifier name, 2–9
Module name, 2–9
Processor model name, 2–9
Relative directory specification, 2–9
Relative file specification, 2–9
Root directory specification, 2–9
Unconstrained, 2–9

System parameter statement, 2–4, PDL–67

T
Transition PDF, 2–14

definition, 2–14
example, 2–15

U
Upgrade statement, PDL–69
Utility directives

definition, 1–8
example, 1–8

V
VMSINSTAL, migrating from, A–1

Index–2

