
OpenVMS Programming Concepts
Manual

December 1995

This manual describes the features that the OpenVMS operating system
provides to programmers.

Revision/Update Information: This manual supersedes the OpenVMS
Programming Concepts Manual,
Version 6.0.

Software Version: OpenVMS Alpha Version 7.0
OpenVMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DECwindows,
Digital, DECdtm, DECforms, DECmigrate, DEC Fortran, IAS, LinkWorks, OpenVMS, RSX–11M,
RSX–11M-Plus, VAX, VAX DOCUMENT, VAXcluster, VAX MACRO, VMS, VMScluster, and the
DIGITAL logo.

The following are third-party trademarks:

All other trademarks and registered trademarks are the property of their respective holders.

5841

This document is available on CD–ROM.

Contents

Preface . xxiii

1 Process Creation

1.1 Process Types . 1–1
1.2 Execution Context of a Process . 1–2
1.3 Modes of Execution of a Process . 1–2
1.4 Creating a Subprocess . 1–3
1.4.1 Using LIB$SPAWN to Create a Spawned Subprocess 1–3
1.4.2 Using PPL$SPAWN to Create a Spawned Subprocess 1–5
1.4.3 Using SYS$CREPRC to Create a Subprocess 1–5
1.4.3.1 Disk and Directory Defaults for Created Processes 1–9
1.4.4 Debugging Within a Subprocess . 1–10
1.5 Creating a Detached Process . 1–10
1.6 Kernel Threads and the Kernel Threads Process Structure (Alpha Only)

. 1–11
1.6.1 Definition and Advantages of Kernel Threads 1–12
1.6.2 Kernel Threads Features . 1–12
1.6.2.1 Multiple Execution Contexts within a Process 1–12
1.6.2.2 Efficient Use of the OpenVMS and DECthreads Schedulers 1–12
1.6.3 Kernel Threads Model and Design Features . 1–13
1.6.3.1 Kernel Threads Model . 1–13
1.6.3.2 Kernel Threads Design Features . 1–13
1.6.3.2.1 Process Structure . 1–13
1.6.3.2.2 Access to Inner Modes . 1–14
1.6.3.2.3 Scheduling . 1–14
1.6.3.2.4 ASTs . 1–14
1.6.3.2.5 Event Flags . 1–14
1.6.3.2.6 Process Control Services . 1–14
1.6.4 Kernel Threads Process Structure . 1–14
1.6.4.1 Process Control Block (PCB) and Process Header (PHD) 1–14
1.6.4.1.1 Effect of a Multithreaded Process on the PCB and PHD 1–15
1.6.4.2 Kernel Thread Block (KTB) . 1–15
1.6.4.3 Floating-Point Registers and Execution Data Block (FRED) 1–16
1.6.4.4 Kernel Threads Region . 1–16
1.6.4.5 Per-Kernel Thread Stacks . 1–16
1.6.4.6 Per-Kernel-Thread Data Cells . 1–16
1.6.4.7 Summary of Process Data Structures . 1–17

iii

2 Process Communication

2.1 Communication Within a Process . 2–1
2.1.1 Using Local Event Flags . 2–2
2.1.2 Using Logical Names . 2–2
2.1.2.1 Using Logical Name Tables . 2–2
2.1.2.2 Using Access Modes . 2–2
2.1.2.3 Creating and Accessing Logical Names . 2–2
2.1.3 Using Command Language Interpreter Symbols 2–5
2.1.3.1 Local and Global Symbols . 2–5
2.1.3.2 Creating and Using Global Symbols . 2–5
2.1.4 Using the Common Area . 2–6
2.1.4.1 Creating the Process Common Area . 2–6
2.1.4.2 Common I/O Routines . 2–6
2.1.4.3 Modifying or Deleting Data in the Common Block 2–6
2.1.4.4 Specifying Other Types of Data . 2–6
2.2 Communication Between Processes . 2–7
2.2.1 Mailboxes . 2–8
2.2.1.1 Creating a Mailbox . 2–9
2.2.1.2 Creating Temporary and Permanent Mailboxes 2–9
2.2.1.3 Assigning an I/O Channel Along with a Mailbox 2–10
2.2.1.4 Reading and Writing Data to a Mailbox . 2–11
2.2.1.5 Using Synchronous Mailbox I/O . 2–12
2.2.1.6 Using Immediate Mailbox I/O . 2–14
2.2.1.7 Using Asynchronous Mailbox I/O . 2–17

3 Process Control

3.1 Using Process Control for Programming Tasks . 3–1
3.1.1 Determining Privileges for Process Creation and Control 3–3
3.1.2 Determining Process Identification . 3–3
3.1.3 Qualifying Process Naming Within Groups . 3–5
3.2 Obtaining Process Information . 3–5
3.2.1 Using the PID to Obtain Information . 3–6
3.2.2 Using the Process Name to Obtain Information 3–6
3.2.3 Using SYS$GETJPI and LIB$GETJPI . 3–9
3.2.3.1 Requesting Information About a Single Process 3–9
3.2.3.2 Requesting Information About All Processes on the Local

System . 3–12
3.2.4 Using SYS$GETJPI with SYS$PROCESS_SCAN 3–14
3.2.4.1 Using SYS$PROCESS_SCAN Item List and Item-Specific

Flags . 3–16
3.2.4.2 Requesting Information About Processes That Match One

Criterion . 3–17
3.2.4.3 Requesting Information About Processes That Match Multiple

Values for One Criterion . 3–20
3.2.4.4 Requesting Information About Processes That Match Multiple

Criteria . 3–20
3.2.5 Specifying a Node as Selection Criterion . 3–21
3.2.5.1 Checking All Nodes on the Cluster for Processes 3–22
3.2.5.2 Checking Specific Nodes on the Cluster for Processes 3–22
3.2.5.3 Conducting Multiple Simultaneous Searches with

SYS$PROCESS_SCAN . 3–23

iv

3.2.6 Programming with SYS$GETJPI . 3–24
3.2.6.1 Using Item Lists Correctly . 3–24
3.2.6.2 Improving Performance by Using Buffered $GETJPI

Operations . 3–24
3.2.6.3 Fulfilling Remote SYS$GETJPI Quota Requirements 3–25
3.2.6.4 Using the SYS$GETJPI Control Flags . 3–26
3.2.7 Using SYS$GETLKI . 3–30
3.2.8 Setting Process Privileges . 3–31
3.3 Changing Process and Kernel Threads Scheduling 3–32
3.4 Using Affinity and Capabilities in CPU Scheduling 3–32
3.4.1 Defining Affinity and Capabilities . 3–33
3.4.1.1 Using Affinity and Capabilities with Caution 3–33
3.4.2 Types of Capabilities . 3–33
3.4.3 Looking at User Capabilities . 3–33
3.4.4 Using the Capabilities System Services . 3–34
3.4.5 Types of Affinity . 3–35
3.4.5.1 Implicit Affinity . 3–35
3.4.5.2 Explicit Affinity . 3–36
3.5 Changing Process Name . 3–36
3.6 Accessing Another Process’s Context . 3–37
3.6.1 Reading and Writing in the Address Space of Another Process (Alpha

Only) . 3–38
3.6.1.1 EXE$READ_PROCESS and EXE$WRITE_PROCESS 3–38

EXE$READ_PROCESS . 3–39
EXE$WRITE_PROCESS . 3–41

3.6.2 Writing an Executive Image (Alpha Only) . 3–44
3.6.2.1 INITIALIZATION_ROUTINE Macro (Alpha Only) 3–46

INITIALIZATION_ROUTINE . 3–46
3.6.2.2 Linking an Executive Image (Alpha Only) 3–48
3.6.2.3 Loading an Executive Image (Alpha Only) 3–49
3.6.2.4 LDR$LOAD_IMAGE (Alpha Only) . 3–50

LDR$LOAD_IMAGE . 3–50
3.6.2.5 LDR$UNLOAD_IMAGE (Alpha Only) . 3–53

LDR$UNLOAD_IMAGE . 3–53
3.7 Synchronizing Programs by Specifying a Time for Program Execution . . . 3–56
3.7.1 Obtaining the System Time . 3–56
3.7.1.1 Executing a Program at a Specified Time 3–57
3.7.1.2 Executing a Program at Timed Intervals . 3–58
3.7.2 Placing Entries in the System Timer Queue . 3–59
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process

Execution . 3–60
3.8.1 Process Hibernation and Suspension . 3–60
3.8.1.1 Using Process Hibernation . 3–63
3.8.1.2 Using Alternative Methods of Hibernation 3–64
3.8.1.3 Using SYS$SUSPND . 3–65
3.8.2 Passing Control to Another Image . 3–65
3.8.2.1 Invoking a Command Image . 3–65
3.8.2.2 Invoking a Noncommand Image . 3–66
3.8.3 Performing Image Exit . 3–66
3.8.3.1 Performing Image Rundown . 3–67
3.8.3.2 Initiating Rundown . 3–67
3.8.3.3 Performing Cleanup and Rundown Operations 3–68
3.8.3.4 Initiating Image Rundown for Another Process 3–68

v

3.8.4 Deleting a Process . 3–70
3.8.4.1 Deleting a Process By Using System Services 3–72
3.8.4.2 Terminating Mailboxes . 3–72

4 Using Asynchronous System Traps

4.1 Overview of AST Routines . 4–3
4.2 Access Modes for AST Execution . 4–5
4.3 ASTs and Process Wait States . 4–6
4.3.1 Event Flag Waits . 4–6
4.3.2 Hibernation . 4–6
4.3.3 Resource Waits and Page Faults . 4–6
4.4 How ASTs Are Declared . 4–6
4.5 The AST Service Routine . 4–7
4.6 AST Delivery . 4–8
4.6.1 Conditions Affecting AST Delivery . 4–9
4.6.2 Kernel Threads AST Delivery . 4–9
4.6.2.1 Outer Mode (User and Supervisor) Non-Serial Delivery of

ASTs . 4–10
4.6.2.2 Inner Mode (Executive and Kernel) AST Delivery 4–11
4.7 Example of Using AST Services . 4–11

5 System Time Operations

5.1 System Time Format . 5–1
5.1.1 Absolute Time Format . 5–1
5.1.2 Delta Time Format . 5–2
5.2 Time Conversion and Date/Time Manipulation . 5–2
5.2.1 Time Conversion Routines . 5–2
5.2.1.1 Calculating and Displaying Time with SYS$GETTIM and

LIB$SUBX . 5–4
5.2.1.2 Obtaining Absolute Time with SYS$ASCTIM and

SYS$BINTIM . 5–6
5.2.1.3 Obtaining Delta Time with SYS$BINTIM 5–6
5.2.1.4 Obtaining Numeric and ASCII Time with SYS$NUMTIM 5–7
5.2.2 Date/Time Manipulation Routines . 5–7
5.3 Timer Routines Used to Obtain and Set Current Time 5–8
5.3.1 Obtaining Current Time and Date with LIB$DATE_TIME 5–9
5.3.2 Obtaining Current Time and Date with SYS$GETTIM 5–10
5.3.3 Setting the Current Time with SYS$SETIME 5–11
5.4 Routines Used for Timer Requests . 5–13
5.4.1 Setting Timer Requests with SYS$SETIMR . 5–14
5.4.2 Canceling a Timer Request with SYS$CANTIM 5–16
5.4.3 Scheduling Wakeups with SYS$WAKE . 5–16
5.4.4 Canceling a Scheduled Wakeup with SYS$CANWAK 5–17
5.4.5 Executing a Program at Timed Intervals . 5–18
5.5 Routines Used for Timer Statistics . 5–18
5.6 Date/Time Formatting Routines . 5–21
5.6.1 Performing Date/Time Logical Initialization . 5–21

vi

5.6.2 Selecting a Format . 5–24
5.6.2.1 Formatting Run-Time Mnemonics . 5–24
5.6.2.2 Specifying Formats at Run Time . 5–25
5.6.2.3 Specifying Input Formats at Run Time . 5–26
5.6.2.4 Specifying Output Formats at Run Time . 5–28
5.6.2.5 Specifying Formats at Compile Time . 5–30
5.6.2.6 Specifying Input Format Mnemonics at Compile Time 5–32
5.6.2.7 Specifying Output Formats at Compile Time 5–33
5.6.3 Converting with the LIB$CONVERT_DATE_STRING Routine 5–33
5.6.4 Retrieving with LIB$GET_DATE_FORMAT Routine 5–34
5.6.4.1 Using User-Defined Output Formats . 5–34
5.7 Coordinated Universal Time Format . 5–36

6 Using Run-Time Library Routines to Access Operating System
Components

6.1 System Service Access Routines . 6–1
6.2 Access to the Command Language Interpreter . 6–2
6.2.1 Obtaining the Command Line . 6–3
6.2.2 Chaining from One Program to Another . 6–5
6.2.3 Executing a CLI Command . 6–7
6.2.4 Using Symbols and Logical Names . 6–8
6.2.5 Disabling and Enabling Control Characters . 6–8
6.2.6 Creating and Connecting to a Subprocess . 6–9
6.3 Access to VAX Machine Instructions . 6–9
6.3.1 Variable-Length Bit Field Instruction Routines 6–10
6.3.2 Integer and Floating-Point Routines . 6–12
6.3.3 Queue Access Routines . 6–12
6.3.4 Character String Routines . 6–14
6.3.5 Miscellaneous Instruction Routines . 6–15
6.4 Processwide Resource Allocation Routines . 6–16
6.4.1 Allocating Logical Unit Numbers . 6–16
6.4.2 Allocating Event Flag Numbers . 6–17
6.5 Performance Measurement Routines . 6–17
6.6 Output Formatting Control Routines . 6–20
6.7 Miscellaneous Interface Routines . 6–21
6.7.1 Indicating Asynchronous System Trap in Progress 6–22
6.7.2 Create a Directory or Subdirectory . 6–22
6.7.3 File Searching Routines . 6–23
6.7.4 Inserting an Entry into a Balanced Binary Tree 6–29

7 Run-Time Library Input/Output Operations

7.1 Choosing I/O Techniques . 7–1
7.2 Using SYS$INPUT and SYS$OUTPUT . 7–3
7.2.1 Default Input and Output Devices . 7–3
7.2.2 Reading and Writing to Alternate Devices and External Files 7–4
7.3 Working with Simple User I/O . 7–4
7.3.1 Default Devices for Simple I/O . 7–4
7.3.2 Getting a Line of Input . 7–4
7.3.3 Getting Several Lines of Input . 7–5
7.3.4 Writing Simple Output . 7–6
7.4 Working with Complex User I/O . 7–7

vii

7.4.1 Pasteboards . 7–9
7.4.1.1 Erasing a Pasteboard . 7–9
7.4.1.2 Deleting a Pasteboard . 7–10
7.4.1.3 Setting Screen Dimensions and Background Color 7–10
7.4.2 Virtual Displays . 7–10
7.4.2.1 Creating a Virtual Display . 7–11
7.4.2.2 Pasting Virtual Displays . 7–11
7.4.2.3 Rearranging Virtual Displays . 7–14
7.4.2.4 Removing Virtual Displays . 7–15
7.4.2.5 Modifying a Virtual Display . 7–16
7.4.2.6 Using Spawned Subprocesses . 7–17
7.4.3 Viewports . 7–18
7.4.4 Writing Text to Virtual Display . 7–18
7.4.4.1 Positioning the Cursor . 7–18
7.4.4.2 Writing Data Character by Character . 7–19
7.4.4.3 Writing Data Line by Line . 7–20
7.4.4.4 Drawing Lines . 7–21
7.4.4.5 Deleting Text . 7–22
7.4.5 Using Menus . 7–22
7.4.6 Reading Data . 7–23
7.4.6.1 Reading from a Display . 7–23
7.4.6.2 Reading from a Virtual Keyboard . 7–24
7.4.6.3 Reading from the Keypad . 7–25
7.4.6.4 Reading Composed Input . 7–28
7.4.7 Controlling Screen Updates . 7–30
7.4.8 Maintaining Modularity . 7–30
7.5 Performing Special Input/Output Actions . 7–32
7.5.1 Using Ctrl/C and Ctrl/Y Interrupts . 7–32
7.5.2 Detecting Unsolicited Input . 7–35
7.5.3 Using the Type-Ahead Buffer . 7–38
7.5.4 Using Echo . 7–39
7.5.5 Using Timeout . 7–40
7.5.6 Converting Lowercase to Uppercase . 7–41
7.5.7 Performing Line Editing and Control Actions 7–41
7.5.8 Using Broadcasts . 7–42
7.5.8.1 Default Handling of Broadcasts . 7–42
7.5.8.2 How to Create Alternate Broadcast Handlers 7–42

8 File Operations

8.1 File Attributes . 8–1
8.1.1 Specifying File Attributes . 8–2
8.2 File Access Strategies . 8–2
8.3 File Protection and Access . 8–2
8.3.1 Read-Only Access . 8–2
8.3.2 Shared Access . 8–3
8.4 File Access and Mapping . 8–4
8.4.1 Using SYS$CRMPSC . 8–4
8.4.1.1 Mapping a File . 8–5
8.4.1.2 Using the User-Open Routine . 8–10
8.4.1.3 Initializing a Mapped Database . 8–11
8.4.1.4 Saving a Mapped File . 8–11
8.5 Opening and Updating a Sequential File . 8–12
8.6 User-Open Routines . 8–15

viii

8.6.1 Opening a File . 8–15
8.6.1.1 Specifying USEROPEN . 8–15
8.6.1.2 Writing the User-Open Routine . 8–16
8.6.1.3 Setting FAB and RAB Fields . 8–17

9 System Service Input/Output Operations

9.1 Overview of OpenVMS QIO Operations . 9–2
9.2 Quotas, Privileges, and Protection . 9–2
9.2.1 Buffered I/O Quota . 9–3
9.2.2 Buffered I/O Byte Count Quota . 9–3
9.2.3 Direct I/O Quota . 9–3
9.2.4 AST Quota . 9–3
9.2.5 Physical I/O Privilege . 9–3
9.2.6 Logical I/O Privilege . 9–4
9.2.7 Mount Privilege . 9–4
9.2.8 Volume Protection . 9–4
9.2.9 Device Protection . 9–5
9.2.10 System Privilege . 9–5
9.2.11 Bypass Privilege . 9–5
9.3 Physical, Logical, and Virtual I/O . 9–5
9.3.1 Physical I/O Operations . 9–5
9.3.2 Logical I/O Operations . 9–6
9.3.3 Virtual I/O Operations . 9–6
9.4 I/O Function Encoding . 9–10
9.4.1 Function Codes . 9–10
9.4.2 Function Modifiers . 9–11
9.5 Assigning Channels . 9–11
9.6 Queuing I/O Requests . 9–12
9.7 Synchronizing Service Completion . 9–13
9.8 Recommended Method for Testing Asynchronous Completion 9–16
9.9 Synchronous and Asynchronous Forms of Input/Output Services 9–18
9.9.1 Reading Operations with SYS$QIOW . 9–18
9.9.2 Reading Operations with SYS$QIO . 9–20
9.9.3 Write Operations with SYS$QIOW . 9–21
9.10 I/O Completion Status . 9–22
9.11 Deassigning I/O Channels . 9–23
9.12 Using Complete Terminal I/O . 9–23
9.13 Canceling I/O Requests . 9–25
9.14 Logical Names and Physical Device Names . 9–25
9.15 Device Name Defaults . 9–26
9.16 Obtaining Information About Physical Devices . 9–27
9.16.1 Checking the Terminal Device . 9–27
9.16.2 Terminal Characteristics . 9–28
9.16.3 Record Terminators . 9–30
9.16.4 File Terminators . 9–30
9.17 Device Allocation . 9–30
9.17.1 Implicit Allocation . 9–32
9.17.2 Deallocation . 9–32
9.18 Mounting, Dismounting, and Initializing Volumes 9–32
9.18.1 Mounting a Volume . 9–32
9.18.1.1 Calling the SYS$MOUNT System Service 9–33
9.18.1.2 Calling the SYS$DISMOU System Service 9–34

ix

9.18.2 Initializing Volumes . 9–35
9.18.2.1 Calling the Initialize Volume System Service 9–35
9.19 Formatting Output Strings . 9–36
9.20 Mailboxes . 9–38
9.20.1 Mailbox Name . 9–41
9.20.2 System Mailboxes . 9–41
9.20.3 Mailboxes for Process Termination Messages . 9–42
9.21 Example of Using I/O Services . 9–43

10 Logical Name Services

10.1 Logical Name System Services . 10–1
10.1.1 Logical Names, Equivalence Names, and Search Lists 10–2
10.1.2 Logical Name Tables . 10–2
10.1.2.1 Logical Name Directory Tables . 10–3
10.1.2.2 Process, Job, Group, and System Default Logical Name Tables . . . 10–3
10.1.2.3 Creating User-Defined Logical Name Tables 10–6
10.1.3 Duplicating Logical Names . 10–7
10.1.4 Defining Privileges . 10–9
10.1.5 Specifying Access Modes . 10–10
10.1.6 Specifying Attributes . 10–10
10.1.7 Establishing Logical Name Table Quotas . 10–11
10.1.7.1 Directory Table Quotas . 10–12
10.1.7.2 Default Logical Name Table Quotas . 10–12
10.1.7.3 Job Logical Name Table Quotas . 10–12
10.1.7.4 User-Defined Logical Name Table Quotas 10–12
10.1.8 Using Logical Name and Equivalence Name Format Conventions 10–13
10.1.9 Specifying the Logical Name Table Search List 10–14
10.2 Creating a Logical Name Using SYS$CRELNM . 10–15
10.3 Creating Logical Name Tables Using SYS$CRELNT 10–16
10.3.1 Creating Shareable Logical Name Tables . 10–17
10.4 Deleting Logical Names Using SYS$DELLNM . 10–17
10.5 Translating Logical Names Using SYS$TRNLNM 10–17
10.6 Example of Using the Logical Name System Services 10–19

11 Distributed Name Service (VAX Only)

11.1 DECdns Clerk System Service . 11–1
11.1.1 Using the DECdns System Service and Run-Time Library

Routines . 11–2
11.1.1.1 Using the SYS$DNS System Service . 11–2
11.1.1.2 Using the Run-Time Library Routines . 11–4
11.2 Using the SYS$DNS System Service Call . 11–4
11.2.1 Creating Objects . 11–4
11.2.2 Modifying Objects and Their Attributes . 11–6
11.2.3 Requesting Information from DECdns . 11–9
11.2.3.1 Using the Distributed File Service (DFS) . 11–9
11.2.3.2 Reading Attributes from DNS . 11–10
11.2.3.3 Enumerating DECdns Names and Attributes 11–13
11.3 Using the DCL Command DEFINE with DECdns Logical Names 11–16

x

12 Using the Distributed Transaction Manager

12.1 Introduction to DECdtm Services . 12–1
12.1.1 Sample Atomic Transaction . 12–1
12.1.2 Transaction Participants . 12–2
12.1.3 DECdtm System Services . 12–2
12.1.4 Default Transactions . 12–3
12.2 Calling DECdtm System Services . 12–3
12.3 Using DECdtm Services: An Example . 12–3

13 Condition-Handling Routines and Services

13.1 Overview of Run-Time Errors . 13–1
13.2 Overview of the OpenVMS Condition Handling facility 13–2
13.2.1 Condition-Handling Terminology . 13–2
13.2.2 Functions of the Condition Handling facility 13–4
13.3 Exception Conditions . 13–6
13.3.1 System Service Exception Conditions . 13–7
13.3.1.1 Conditions Caused by Exceptions . 13–8
13.3.2 Exception Conditions . 13–12
13.3.3 Arithmetic Exceptions . 13–13
13.3.4 Unaligned Access Traps (Alpha Only) . 13–15
13.4 How Run-Time Library Routines Handle Exceptions 13–16
13.4.1 Exception Conditions Signaled from Mathematics Routines (VAX

Only) . 13–16
13.4.1.1 Integer Overflow and Floating-Point Overflow 13–16
13.4.1.2 Floating-Point Underflow . 13–17
13.4.2 System-Defined Arithmetic Condition Handlers 13–17
13.5 Condition Values . 13–19
13.5.1 Return Status Convention . 13–21
13.5.1.1 Testing Returned Condition Values . 13–21
13.5.1.2 Testing SS$_NOPRIV and SS$_EXQUOTA Condition Values 13–21
13.5.2 Modifying Condition Values . 13–23
13.6 Exception Dispatcher . 13–24
13.7 Argument List Passed to a Condition Handler . 13–27
13.8 Signaling . 13–28
13.8.1 Generating Signals with LIB$SIGNAL and LIB$STOP 13–30
13.8.2 Signal Argument Vector . 13–32
13.8.3 VAX Mechanism Argument Vector (VAX Only) 13–35
13.8.4 Alpha Mechanism Argument Vector (Alpha Only) 13–37
13.8.5 Multiple Active Signals . 13–39
13.9 Types of Condition Handlers . 13–41
13.9.1 Default Condition Handlers . 13–42
13.9.2 Interaction Between Default and User-Supplied Handlers 13–44
13.10 Types of Actions Performed by Condition Handlers 13–45
13.10.1 Unwinding the Call Stack . 13–46
13.10.2 GOTO Unwind Operations (Alpha Only) . 13–49
13.11 Displaying Messages . 13–49
13.11.1 Chaining Messages . 13–53
13.11.2 Logging Error Messages to a File . 13–55
13.11.2.1 Creating a Running Log of Messages Using SYS$PUTMSG 13–56
13.11.2.2 Suppressing the Display of Messages in the Running Log 13–56

xi

13.11.3 Using the Message Utility to Signal and Display User-Defined
Messages . 13–57

13.11.3.1 Creating the Message Source File . 13–58
13.11.3.1.1 Specifying the Facility . 13–58
13.11.3.1.2 Specifying the Severity . 13–59
13.11.3.1.3 Specifying Condition Names and Messages 13–59
13.11.3.1.4 Specifying Variables in the Message Text 13–60
13.11.3.1.5 Compiling and Linking the Messages 13–60
13.11.3.1.6 Linking the Message Object Module . 13–60
13.11.3.1.7 Accessing the Message Object Module from Multiple Programs

. 13–60
13.11.3.1.8 Modifying a Message Source Module . 13–61
13.11.3.1.9 Accessing Modified Messages Without Relinking 13–61
13.11.4 Signaling User-Defined Values and Messages with Global and Local

Symbols . 13–61
13.11.4.1 Signaling with Global Symbols . 13–61
13.11.4.2 Signaling with Local Symbols . 13–61
13.11.4.3 Specifying FAO Parameters . 13–62
13.12 Writing a Condition Handler . 13–63
13.12.1 Continuing Execution . 13–64
13.12.2 Resignaling . 13–64
13.12.3 Unwinding the Call Stack . 13–65
13.12.4 Example of Writing a Condition Handler . 13–65
13.12.4.1 Signal Array . 13–65
13.12.4.2 Mechanism Array . 13–65
13.12.4.3 Comparing the Signaled Condition with an Expected Condition

. 13–65
13.12.4.4 Exiting from the Condition Handler . 13–66
13.12.4.5 Returning Control to the Program . 13–67
13.12.5 Example of Condition-Handling Routines . 13–69
13.13 Debugging a Condition Handler . 13–70
13.14 Run-Time Library Condition-Handling Routines . 13–70
13.14.1 Converting a Floating-Point Fault to a Floating-Point Trap (VAX

Only) . 13–70
13.14.2 Changing a Signal to a Return Status . 13–71
13.14.3 Changing a Signal to a Stop . 13–72
13.14.4 Matching Condition Values . 13–72
13.14.5 Correcting a Reserved Operand Condition (VAX Only) 13–73
13.14.6 Decoding the Instruction That Generated a Fault (VAX Only) 13–73
13.15 Exit Handlers . 13–73
13.15.1 Establishing an Exit Handler . 13–74
13.15.2 Writing an Exit Handler . 13–76
13.15.3 Debugging an Exit Handler . 13–76
13.15.4 Example of an Exit Handler . 13–77

14 Synchronizing Data Access and Program Operations

14.1 Overview of Synchronization . 14–1
14.1.1 Threads of Execution . 14–2
14.1.2 Atomicity . 14–3
14.2 Memory Read and Memory Write Operations . 14–3
14.2.1 Alignment . 14–3
14.2.2 Granularity . 14–3
14.2.3 Ordering of Read and Write Operations . 14–4

xii

14.2.4 Memory Reads and Memory Writes . 14–5
14.3 Memory Read-Modify-Write Operations . 14–5
14.3.1 Uniprocessor Operations . 14–5
14.3.2 Multiprocessor Operations . 14–6
14.4 Hardware-Level Synchronization . 14–7
14.4.1 Interrupt Priority Level . 14–7
14.4.2 LDx_L and STx_C Instructions . 14–8
14.4.3 Interlocked Instructions . 14–9
14.4.4 Memory Barriers . 14–10
14.4.5 PALcode Routines . 14–10
14.5 Software-Level Synchronization . 14–10
14.5.1 Synchronization Within a Process . 14–11
14.5.2 Synchronization in Inner Mode . 14–11
14.5.3 Synchronization Using Process Priority . 14–12
14.5.4 Synchronizing Multiprocess Applications . 14–12
14.5.5 Writing Applications for an Operating System Running in a

Multiprocessor Environment . 14–13
14.5.6 Synchronization Using Spin Locks . 14–13
14.5.7 Writable Global Sections . 14–14
14.6 Using Event Flags . 14–14
14.6.1 General Guidelines for Using Event Flags . 14–15
14.6.2 Introducing Local and Common Event Flag Numbers and Event Flag

Clusters . 14–16
14.6.3 Using EFN$C_ENF Local Event Flag . 14–17
14.6.4 Using Local Event Flags . 14–17
14.6.4.1 Example of Event Flag Services . 14–18
14.6.5 Using Common Event Flags . 14–19
14.6.5.1 Using the name Argument with SYS$ASCEFC 14–20
14.6.5.2 Temporary Common Event Flag Clusters 14–21
14.6.5.3 Permanent Common Event Flag Clusters 14–21
14.6.6 Wait Form Services and SYS$SYNCH . 14–23
14.6.7 Event Flag Waits . 14–23
14.6.8 Setting and Clearing Event Flags . 14–24
14.6.9 Example of Using a Common Event Flag Cluster 14–25
14.6.10 Example of Using Event Flag Routines and Services 14–27
14.7 Synchronizing Operations with Parallel Processing Run-Time

Routines . 14–28
14.7.1 Using Subprocesses . 14–28
14.7.2 Using Spin Locks . 14–28
14.7.3 Using Semaphores . 14–29
14.7.4 Using Barrier Synchronization . 14–29
14.8 Synchronizing Operations with Synchronous and Asynchronous System

Services . 14–29

15 Synchronizing Access to Resources

15.1 Synchronizing Operations with the Lock Manager 15–1
15.2 Concepts of Resources and Locks . 15–2
15.2.1 Resource Granularity . 15–3
15.2.2 Resource Domains . 15–4
15.2.3 Resource Names . 15–4
15.2.4 Choosing a Lock Mode . 15–5
15.2.5 Levels of Locking and Compatibility . 15–5
15.2.6 Lock Management Queues . 15–6

xiii

15.2.7 Concepts of Lock Conversion . 15–7
15.2.8 Deadlock Detection . 15–8
15.3 Queuing Lock Requests . 15–8
15.3.1 Example of Requesting a Null Lock . 15–9
15.4 Advanced Locking Techniques . 15–10
15.4.1 Synchronizing Locks . 15–10
15.4.2 Notification of Synchronous Completion . 15–11
15.4.3 Expediting Lock Requests . 15–11
15.4.4 Lock Status Block . 15–11
15.4.5 Blocking ASTs . 15–12
15.4.6 Lock Conversions . 15–12
15.4.7 Forced Queuing of Conversions . 15–13
15.4.8 Parent Locks . 15–14
15.4.9 Lock Value Blocks . 15–15
15.5 Dequeuing Locks . 15–16
15.6 Local Buffer Caching with the Lock Management Services 15–18
15.6.1 Using the Lock Value Block . 15–18
15.6.2 Using Blocking ASTs . 15–18
15.6.2.1 Deferring Buffer Writes . 15–18
15.6.2.2 Buffer Caching . 15–19
15.6.3 Choosing a Buffer-Caching Technique . 15–19
15.7 Example of Using Lock Management Services . 15–19

16 Image Initialization

16.1 Initializing an Image . 16–1
16.2 Initializing an Argument List . 16–5
16.3 Declaring Initialization Routines . 16–6
16.4 Dispatching to Initialization Routines . 16–6
16.5 Initialization Routine Options . 16–7
16.6 Initialization Example . 16–7

17 Shareable Resources

17.1 Sharing Program Code . 17–1
17.1.1 Object Libraries . 17–2
17.1.1.1 System- and User-Defined Default Object Libraries 17–2
17.1.1.2 How the Linker Searches Libraries . 17–2
17.1.1.3 Creating an Object Library . 17–2
17.1.1.4 Managing an Object Library . 17–2
17.1.2 Text and Macro Libraries . 17–3
17.2 Shareable Images . 17–3
17.3 Symbols . 17–3
17.3.1 Defining Symbols . 17–3
17.3.2 Local and Global Symbols . 17–4
17.3.3 Resolving Global Symbols . 17–4
17.3.3.1 Explicitly Named Modules and Libraries . 17–5
17.3.3.2 System Default Libraries . 17–5
17.3.3.3 User Default Libraries . 17–5
17.3.3.4 Making a Library Available for Systemwide Use 17–5
17.3.3.5 Macro Libraries . 17–5

xiv

17.3.4 Sharing Data . 17–6
17.3.4.1 Installed Common Blocks . 17–6
17.3.4.2 Using Global Sections . 17–9
17.3.4.3 Synchronizing Access to Global Sections . 17–13
17.3.4.4 RMS Shared Files . 17–13

18 Creating User-Written System Services

18.1 Overview . 18–1
18.2 Writing a Privileged Routine (User-Written System Service) 18–3
18.3 Creating a Privileged Shareable Image (VAX Only) 18–4
18.3.1 Creating User-Written Dispatch Routines on VAX Systems 18–4
18.3.2 Creating a PLV on VAX Systems . 18–5
18.3.3 Declaring Privileged Routines as Universal Symbols Using Transfer

Vectors on VAX Systems . 18–9
18.4 Creating a User-Written System Service (Alpha Only) 18–9
18.4.1 Creating a PLV on Alpha Systems . 18–9
18.4.2 Declaring Privileged Routines as Universal Symbols Using Symbol

Vectors on Alpha Systems . 18–13

19 Memory Management Services and Routines (VAX Only)

19.1 Virtual Page Size . 19–1
19.2 Virtual Address Space . 19–1
19.3 Extended Addressing Enhancements on Selected VAX Systems 19–3
19.3.1 Page Table Entry for Extended Addresses on VAX Systems 19–5
19.4 Levels of Memory Allocation Routines . 19–5
19.5 Using System Services for Memory Allocation . 19–7
19.5.1 Increasing and Decreasing Virtual Address Space 19–8
19.5.2 Input Address Arrays and Return Address Arrays 19–9
19.5.3 Page Ownership and Protection . 19–10
19.5.4 Working Set Paging . 19–11
19.5.5 Process Swapping . 19–12
19.5.6 Sections . 19–13
19.5.6.1 Creating Sections . 19–14
19.5.6.2 Opening the Disk File . 19–14
19.5.6.3 Defining the Section Extents . 19–15
19.5.6.4 Defining the Section Characteristics . 19–15
19.5.6.5 Defining Global Section Characteristics . 19–16
19.5.6.6 Global Section Name . 19–17
19.5.6.7 Mapping Sections . 19–18
19.5.6.8 Mapping Global Sections . 19–19
19.5.6.9 Global Page-File Sections . 19–20
19.5.6.10 Section Paging . 19–20
19.5.6.11 Reading and Writing Data Sections . 19–22
19.5.6.12 Releasing and Deleting Sections . 19–23
19.5.6.13 Writing Back Sections . 19–23
19.5.6.14 Image Sections . 19–23
19.5.6.15 Page Frame Sections . 19–24
19.5.7 Example of Using Memory Management System Services 19–25

xv

20 Memory Management Services and Routines (Alpha Only)

20.1 Virtual Page Sizes . 20–1
20.2 Virtual Address Space . 20–2
20.3 Levels of Memory Allocation Routines . 20–3
20.4 Using System Services for Memory Allocation . 20–5
20.4.1 Increasing and Decreasing Virtual Address Space 20–6
20.4.2 Input Address Arrays and Return Address Arrays 20–8
20.4.3 Allocating Memory in Existing Virtual Address Space on Alpha

Systems (Alpha Only) . 20–9
20.4.4 Page Ownership and Protection . 20–10
20.4.5 Working Set Paging . 20–10
20.4.6 Process Swapping . 20–12
20.4.7 Sections . 20–12
20.4.7.1 Creating Sections . 20–13
20.4.7.2 Opening the Disk File . 20–14
20.4.7.3 Defining the Section Extents . 20–15
20.4.7.4 Defining the Section Characteristics . 20–15
20.4.7.5 Defining Global Section Characteristics . 20–16
20.4.7.6 Global Section Name . 20–17
20.4.7.7 Mapping Sections . 20–18
20.4.7.8 Mapping Global Sections . 20–20
20.4.7.9 Global Page-File Sections . 20–21
20.4.7.10 Mapping into a Defined Address Range . 20–21
20.4.7.11 Mapping from an Offset into a Section File 20–22
20.4.7.12 Section Paging . 20–22
20.4.7.13 Reading and Writing Data Sections . 20–24
20.4.7.14 Releasing and Deleting Sections . 20–24
20.4.7.15 Writing Back Sections . 20–25
20.4.7.16 Image Sections . 20–25
20.4.7.17 Page Frame Sections . 20–26
20.4.7.18 Partial Sections . 20–26
20.4.8 Example of Using Memory Management System Services 20–27

21 Using Run-Time Routines for Memory Allocation

21.1 Allocating and Freeing Pages . 21–1
21.2 Interactions with Other Run-Time Library Routines 21–3
21.3 Interactions with System Services . 21–4
21.4 Zones . 21–6
21.4.1 Zone Attributes . 21–8
21.4.2 Default Zone . 21–12
21.4.3 Zone Identification . 21–12
21.4.4 Creating a Zone . 21–13
21.4.5 Deleting a Zone . 21–13
21.4.6 Resetting a Zone . 21–13
21.5 Allocating and Freeing Blocks . 21–14
21.6 Allocation Algorithms . 21–14
21.6.1 First Fit Algorithm . 21–15
21.6.2 Quick Fit Algorithm . 21–15
21.6.3 Frequent Sizes Algorithm . 21–16
21.6.4 Fixed Size Algorithm . 21–16
21.7 User-Defined Zones . 21–16
21.8 Debugging Programs That Use Virtual Memory Zones 21–19

xvi

22 Alignment on OpenVMS VAX and Alpha Systems

22.1 Alignment . 22–1
22.1.1 Alignment and Performance . 22–2
22.1.1.1 Alignment on OpenVMS VAX . 22–3
22.1.1.2 Alignment on OpenVMS Alpha . 22–3
22.2 Using Compilers for Alignment . 22–4
22.2.1 The DEC C Compiler (Alpha Only) . 22–4
22.2.1.1 Compiler Example of Memory Structure of VAX C and DEC C . . . 22–5
22.2.2 The BLISS Compiler . 22–5
22.2.3 The DEC Fortran Compiler (Alpha Only) . 22–6
22.2.4 The MACRO-32 Compiler (Alpha Only) . 22–7
22.2.5 The VAX Environment Software Translator—VEST (Alpha Only) 22–8
22.3 Using Tools for Finding Unaligned Data . 22–9
22.3.1 The OpenVMS Debugger . 22–9
22.3.2 The Performance and Coverage Analyzer—PCA 22–10
22.3.3 System Services (Alpha Only) . 22–10

23 System Security Services

23.1 Overview of the Operating System’s Protection Scheme 23–1
23.2 Identifiers . 23–2
23.2.1 Identifier Format . 23–2
23.2.2 General Identifiers . 23–2
23.2.3 System-Defined Identifiers . 23–3
23.2.4 UIC Identifiers . 23–3
23.2.5 Facility Identifiers . 23–4
23.2.6 Identifier Attributes . 23–5
23.3 Rights Database . 23–8
23.3.1 Initializing a Rights Database . 23–9
23.3.2 Using System Services to Affect a Rights Database 23–10
23.3.2.1 Translating Identifier Values and Identifier Names 23–11
23.3.2.2 Adding Identifiers and Holders to the Rights Database 23–12
23.3.2.3 Determining Holders of Identifiers . 23–13
23.3.2.4 Determining Identifiers Held by a Holder 23–13
23.3.2.5 Modifying the Identifier Record . 23–13
23.3.2.6 Modifying a Holder Record . 23–14
23.3.2.7 Removing Identifiers and Holders from the Rights Database 23–16
23.3.3 Search Operations . 23–16
23.3.4 Modifying a Rights List . 23–19
23.4 Managing Object Protection . 23–19
23.4.1 Protected Objects . 23–19
23.4.2 Object Security Profile . 23–20
23.4.2.1 Displaying the Security Profile . 23–20
23.4.2.2 Modifying the Security Profile . 23–21
23.4.3 Types of Access Control Entries . 23–21
23.4.3.1 Design Considerations . 23–21
23.4.3.2 Translating ACEs . 23–22
23.4.3.3 Creating and Maintaining ACEs . 23–22
23.5 Protected Subsystems . 23–23
23.6 Security Auditing . 23–24
23.7 Checking Access Protection . 23–24
23.7.1 Creating a Security Profile . 23–25
23.7.2 SYS$CHKPRO System Sevice . 23–25
23.7.3 SYS$CHECK_ACCESS System Service . 23–25

xvii

23.8 SYS$CHECK_PRIVILEGE . 23–26
23.9 Implementing Site-Specific Security Policies (VAX Only) 23–26
23.9.1 Creating Loadable Security Services . 23–26
23.9.1.1 Preparing and Loading a System Service . 23–27
23.9.1.2 Removing an Executive Loaded Image . 23–28
23.9.2 Installing Filters for Site-Specific Password Policies 23–29
23.9.2.1 Creating a Shareable Image . 23–29
23.9.2.2 Installing a Shareable Image . 23–29

Index

Examples

2–1 Performing an Iterative Calculation with a Spawned Subprocess 2–3
2–2 Opening a Mailbox . 2–12
2–3 Synchronous I/O Using a Mailbox . 2–12
2–4 Immediate I/O Using a Mailbox . 2–15
2–5 Asynchronous I/O Using a Mailbox . 2–18
3–1 Obtaining Different Types of Process Information 3–7
3–2 Using SYS$GETJPI to Obtain Calling Process Information 3–9
3–3 Obtaining the Process Name . 3–11
3–4 Using SYS$GETJPI and the Process Name to Obtain Information

About a Process . 3–12
3–5 Using SYS$GETJPI to Request Information About All Processes on

the Local System . 3–13
3–6 Using SYS$GETJPI and SYS$PROCESS_SCAN to Select Process

Information by User Name . 3–18
3–7 Using SYS$GETJPI and SYS$PROCESS_SCAN with Multiple Values

for One Criterion . 3–20
3–8 Selecting Processes That Match Multiple Criteria 3–21
3–9 Searching the Cluster for Process Information 3–22
3–10 Searching for Process Information on Specific Nodes in the Cluster . . 3–22
3–11 Using a SYS$GETJPI Buffer to Improve Performance 3–25
3–12 Using SYS$GETJPI Control Flags to Avoid Swapping a Process into

the Balance Set . 3–27
3–13 Procedure for Obtaining Process Lock Information 3–30
3–14 Executing a Program Using Delta Time . 3–57
3–15 Executing a Program at Timed Intervals . 3–59
4–1 Calling the SYS$SETIMR System Service . 4–2
5–1 Calculating and Displaying the Time . 5–5
5–2 Setting an Event Flag . 5–14
5–3 Specifying an AST Service Routine . 5–15
5–4 Displaying and Writing Timer Statistics . 5–19
7–1 Reading a Line of Data . 7–5
7–2 Reading a Varying Number of Input Records . 7–5
7–3 Associating a Pasteboard with a Terminal . 7–8
7–4 Creating a Pasteboard . 7–9
7–5 Modifying Screen Dimensions and Background Color 7–10

xviii

7–6 Defining and Pasting a Virtual Display . 7–12
7–7 Scrolling Forward Through a Display . 7–20
7–8 Scrolling Backward Through a Display . 7–20
7–9 Creating a Statistics Display . 7–21
7–10 Reading Data from a Virtual Keyboard . 7–24
7–11 Reading Data from the Keypad . 7–26
7–12 Redefining Keys . 7–28
7–13 Using Interrupts to Perform I/O . 7–34
7–14 Receiving Unsolicited Input from a Virtual Keyboard 7–36
7–15 Trapping Broadcast Messages . 7–43
8–1 Mapping a Data File to the Common Block on a VAX System 8–6
8–2 Mapping a Data File to the Common Block on an Alpha System 8–8
8–3 Using a User-Open Routine . 8–10
8–4 Closing a Mapped File . 8–12
8–5 Creating a Sequential File of Fixed-Length Records 8–13
8–6 Updating a Sequential File . 8–14
9–1 Event Flags . 9–14
9–2 AST Routine . 9–15
9–3 I/O Status Block . 9–16
9–4 Reading Data from the Terminal Synchronously 9–19
9–5 Reading Data from the Terminal Asynchronously 9–20
9–6 Writing Character Data to a Terminal . 9–22
9–7 Using SYS$GETDVIW to Verify the Device Name 9–28
9–8 Disabling the HOSTSYNC Terminal Characteristic 9–29
15–1 Requesting a Null Lock . 15–10
17–1 Interprocess Communication Using Global Sections 17–9
18–1 Sample Dispatching Routine . 18–5
18–2 Assigning Values to a PLV on a VAX System . 18–8
18–3 Creating a PLV on Alpha Systems . 18–12
18–4 Declaring Universal Symbols for Privileged Shareable Image on an

Alpha System . 18–13
21–1 Monitoring Heap Operations with a User-Defined Zone 21–17
22–1 OpenVMS Debugger Output from SET OUTPUT LOG Command 22–9

Figures

3–1 Image Exit and Process Deletion . 3–71
6–1 Format of a Variable-Length Bit Field . 6–11
7–1 Defining and Pasting Virtual Displays . 7–13
7–2 Moving a Virtual Display . 7–14
7–3 Repasting a Virtual Display . 7–15
7–4 Popping a Virtual Display . 7–16
7–5 Statistics Display . 7–21
9–1 Mailbox Protection Fields . 9–4
9–2 Physical I/O Access Checks . 9–7
9–3 Logical I/O Access Checks . 9–8
9–4 Physical, Logical, and Virtual I/O . 9–9

xix

9–5 I/O Function Format . 9–10
9–6 Function Modifier Format . 9–11
9–7 I/O Status Block . 9–23
9–8 SYS$MOUNT Item Descriptor . 9–33
12–1 Participants in a Distributed Transaction . 12–2
13–1 SS$_HPARITH Exception Signal Array . 13–14
13–2 SS$_ALIGN Exception Signal Array . 13–16
13–3 Format of a Condition Value . 13–19
13–4 Searching the Stack for a Condition Handler . 13–26
13–5 Sample Stack Scan for Condition Handlers . 13–30
13–6 Format of the Signal Argument Vector . 13–33
13–7 Signal Argument Vector for the Reserved Operand Error Conditions

. 13–35
13–8 Signal Argument Vector for RTL Mathematics Routine Errors 13–35
13–9 Format of a VAX Mechanism Argument Vector 13–36
13–10 Mechanism Array on Alpha Systems . 13–38
13–11 Stack After Second Exception Condition Is Signaled 13–41
13–12 Interaction Between Handlers and Default Handlers 13–44
13–13 Unwinding the Call Stack . 13–48
13–14 Formats of Message Sequences . 13–52
13–15 Using a Condition Handler to Log an Error Message 13–56
13–16 Structure of an Exit Handler . 13–74
15–1 Model Database . 15–3
15–2 Three Lock Queues . 15–7
15–3 Deadlock . 15–8
15–4 Lock Status Block . 15–11
16–1 Sequence of Events During Image Initialization on VAX Systems 16–4
16–2 Sequence of Events During Image Initialization on Alpha Systems . . . 16–5
18–1 Flow of Control Accessing a Privileged Routine on VAX Systems 18–6
18–2 Components of the Privileged Library Vector on VAX Systems 18–7
18–3 Linkage for a Privileged Routine after Image Activation 18–10
19–1 Virtual Address Overview on VAX Systems . 19–2
19–2 Layout of VAX Process Virtual Address Space 19–3
19–3 Physical Address Space for VAX Systems with XPA 19–4
19–4 Virtual Address Space for VAX Systems with XVA 19–5
19–5 Hierarchy of VAX Memory Management Routines 19–7
20–1 Layout of Alpha Process Virtual Address Space 20–3
20–2 Hierarchy of Alpha Memory Management Routines 20–5
21–1 Memory Fragmentation . 21–3
21–2 Boundary Tags . 21–9
22–1 Aligned and Unaligned Structures . 22–2
22–2 Alignment Using VAX C Compiler . 22–5
22–3 Alignment Using DEC C Compiler . 22–5
23–1 ID Format . 23–3
23–2 UIC Identifier Format . 23–4
23–3 Facility-Specific Identifiers . 23–4
23–4 Format of the Identifier Record . 23–8

xx

23–5 Format of the Holder Record . 23–9
23–6 Format of the holder Argument . 23–13

Tables

1–1 Characteristics of Subprocesses and Detached Processes 1–1
1–2 Comparison of LIB$SPAWN, PPL$SPAWN, and SYS$CREPRC

Context Values . 1–3
3–1 Routines and Commands for Controlling Processes and Kernel

Threads . 3–2
3–2 Process Identification . 3–5
3–3 SYS$GETJPI Kernel Threads Item Codes . 3–15
3–4 SYS$PROCESS_SCAN Kernel Threads Item Codes 3–16
3–5 Item-Specific Flags . 3–16
3–6 Capabilities . 3–33
3–7 Time Manipulation System Services and Routines 3–56
3–8 Process Hibernation and Suspension . 3–62
3–9 System Services and Routines Used for Hibernation and

Suspension . 3–62
4–1 AST System Services . 4–1
4–2 System Services That Use ASTs . 4–2
4–3 AST Arguments for VAX Systems and Alpha Systems 4–7
5–1 Time Conversion Routines and System Services 5–3
5–2 Date/Time Manipulation Routines . 5–8
5–3 Timer RTLs and System Services . 5–8
5–4 Timer System Services . 5–13
5–5 Available Languages for Date/Time Formatting 5–22
5–6 Predefined Output Date Formats . 5–23
5–7 Predefined Output Time Formats . 5–23
5–8 Format Mnemonics . 5–24
5–9 Input String Punctuation and Defaults . 5–28
5–10 Predefined Output Date Formats . 5–29
5–11 Predefined Output Time Formats . 5–30
5–12 Available Components for Specifying Formats at Compile Time 5–32
5–13 Legible Format Mnemonics . 5–32
5–14 Sample Input Format Strings . 5–34
6–1 System Service Access Routines . 6–2
6–2 CLI Access Routines . 6–2
6–3 Variable-Length Bit Field Routines . 6–10
6–4 Integer and Floating-Point Routines . 6–12
6–5 Queue Access Routines . 6–13
6–6 Character String Routines . 6–14
6–7 Miscellaneous Instruction Routines . 6–15
6–8 Processwide Resource Allocation Routines . 6–16
6–9 Performance Measurement Routines . 6–17
6–10 The code Argument in LIB$SHOW_TIMER and

LIB$STAT_TIMER . 6–18

xxi

6–11 Routines for Customizing Output . 6–20
6–12 Miscellaneous Interface Routines . 6–21
7–1 SYS$INPUT and SYS$OUTPUT Values . 7–3
7–2 Setting Video Attributes . 7–17
9–1 Read and Write I/O Functions . 9–10
9–2 Asynchronous Input/Output Services and Their Synchronous Versions

. 9–18
9–3 System Services for Translating Logical Names 9–26
9–4 Default Device Names for I/O Services . 9–27
10–1 Summary of Privileges . 10–9
13–1 Summary of Exception Conditions . 13–8
13–2 Architecture-Specific Hardware Exceptions . 13–12
13–3 Exception Summary Argument Fields . 13–15
13–4 Run-Time Library Condition-Handling Support Routines 13–18
13–5 Fields of a Condition Value . 13–19
13–6 Severity of Error Conditions . 13–20
13–7 Privilege Errors . 13–22
13–8 Quota Errors . 13–22
13–9 $CHFDEF Symbolic Names and Arguments on VAX Systems 13–27
13–10 $CHFDEF2 Symbolic Names and Arguments on Alpha Systems 13–28
13–11 Fields in the Alpha Mechanism Array . 13–39
14–1 Usage Styles of Event Flags . 14–15
14–2 Event Flag Routines and Services . 14–15
14–3 Event Flags . 14–17
15–1 Lock Manager Services . 15–2
15–2 Lock Modes . 15–5
15–3 Compatibility of Lock Modes . 15–6
15–4 Legal QUECVT Conversions . 15–14
15–5 Effect of Lock Conversion on Lock Value Block 15–16
18–1 Components of the VAX Privileged Library Vector 18–7
18–2 Components of the Alpha Privileged Library Vector 18–11
19–1 Sample Virtual Address Arrays on VAX Systems 19–10
19–2 Flag Bits to Set for Specific Section Characteristics on VAX

Systems . 19–16
20–1 Page and Byte Offset Within Pages on Alpha Systems 20–8
20–2 Sample Virtual Address Arrays on Alpha Systems 20–9
20–3 Flag Bits to Set for Specific Section Characteristics on Alpha

Systems . 20–16
21–1 Overhead for Area Control Blocks . 21–10
21–2 Possible Values for the Block Size Attribute . 21–10
21–3 Attribute Values for the Default Zone . 21–12
21–4 Allocation Algorithms . 21–14
22–1 Aligned Data Sizes . 22–2
23–1 Using System Services to Manipulate Elements of the Rights

Database . 23–10
23–2 Returned Records of SYS$IDTOASC, SYS$FIND_HELD, and

SYS$FIND_HOLDER . 23–17

xxii

23–3 Item Code Symbols and Meanings . 23–23

xxiii

Preface

Intended Audience
This manual is intended for system and application programmers. It presumes
that its readers have some familiarity with the OpenVMS programming
environment, derived from the OpenVMS Programming Environment Manual
and OpenVMS high-level language documentation.

Document Structure
This manual’s chapters provide information about the programming features of
the OpenVMS operating system. A list of the chapters and a summary of their
content is as follows:

Chapter 1, Process Creation, defines the two types of processes, what constitutes
the context of a process, and the modes of execution of a process. It also describes
kernel threads and the kernel threads process structure.

Chapter 2, Process Communication, describes communication within a process
and between processes.

Chapter 3, Process Control, describes how to use the creation and control of a
process or kernel thread for programming tasks. It also describes how to gather
information about a process or kernel thread and how to synchronize a program
by using time.

Chapter 4, Using Asynchronous System Traps, describes how to use asynchronous
system traps (ASTs). It describes access modes and service routines for ASTs
and how ASTs are declared and delivered. It also describes the affects of kernel
threads on AST delivery.

Chapter 5, System Time Operations, describes the system time format, and the
manipulation of date/time and time conversion. It further describes how to obtain
and set the current date and time, how to set and cancel timer requests, and how
to schedule and cancel wakeups. The Coordinated Universal Time (UTC) system
is also described.

Chapter 6, Using Run-Time Library Routines to Access Operating System
Components, describes using run-time libraries (RTLs) with system services,
the command language interpreter, and allowing high-level programs to use
VAX machine instructions. Also, this chapter describes using RTLs to allocate
processwide resources to a single process, perform performance evaluation, and
control output formatting.

Chapter 7, Run-Time Library Input/Output Operations, describes using
RTLs for input/output operations within a program, using SYS$INPUT,
and SYS$OUTPUT, as well as LIB$GET_INPUT and LIB$PUT_OUTPUT.
Additionally, this chapter describes using the SMG$ routine for managing
terminal screens, and for managing screen management routines.

xxiii

Chapter 8, File Operations, describes file attributes, strategies to access files, and
file protection techniques.

Chapter 9, System Service Input/Output Operations, describes using the
SYS$QIO and SYS$QIOW system services for establishing quotas, privileges,
and protection. It also describes assigning and deassigning I/O channels, queuing
requests, and synchronizing I/O completions. This chapter describes how to use
logical names and physical device names for I/O operations; how to use device
name defaults; how to obtain information about physical devices; and how to
allocate devices. Functions such as mounting, dismounting, and initializing disk
and tape volumes, along with using mailboxes are explained.

Chapter 10, Logical Name Services, describes how to create and use logical name
services, how to use logical and equivalence names, and how to add and delete
entries to a logical name table.

Chapter 11, Distributed Name Service (VAX Only), describes the use of the
SYS$DNS system service to provide applications with a method to assign
networkwide names to system resources such as printers, files, application
databases, disks, nodes, and servers.

Chapter 12, Using the Distributed Transaction Manager, describes the use of the
DECdtm system services to ensure the integrity and consistency of distributed
transactions by implementing a two-phase commit protocol.

Chapter 13, Condition-Handling Routines and Services, describes the OpenVMS
Condition Handling facility. It describes VAX system and Alpha system
exceptions, arithmetic exceptions, and Alpha system unaligned access traps.
It describes the condition value field, exception dispatcher, signaling, and the
argument list passed to a condition handler. Additionally, types of condition
handlers and various types of action performed by them are presented. This
chapter also describes how to write and debug a condition handler, and how to
use an exit handler.

Chapter 14, Synchronizing Data Access and Program Operations, describes
synchronization concepts and differences between the VAX system and Alpha
system synchronization techniques. It presents methods of synchronization such
as event flags, asynchronous system traps (ASTs), parallel processing RTLs, and
process priorities, and the affects of kernel threads upon synchronization. It also
describes using synchronous and asynchronous system services, and how to write
applications in a multiprocessing environment.

Chapter 15, Synchronizing Access to Resources, describes the use of the lock
manager system services to synchronize access to shared resources. This chapter
presents the concept of resources and locks; it also describes the use of the
SYS$ENQ and SYS$DEQ system services to queue and dequeue locks.

Chapter 16, Image Initialization, describes how to use the LIB$INITIALIZE
routine to initialize an image.

Chapter 17, Shareable Resources, describes how to share data and program code
among programs. It defines shareable images; it also defines and describes how
to use local and global symbols to share images.

Chapter 18, Creating User-Written System Services, describes how to create
user-written system services with privileged shareable images for both VAX
systems and Alpha systems.

xxiv

Chapter 19, Memory Management Services and Routines (VAX Only), describes
the use of system services and RTLs of VAX systems to manage memory. It
describes the page size and layout of virtual address space of VAX systems. This
chapter also describes how to add virtual address space, adjust working sets,
control process swapping, and create and manage sections on VAX systems.

Chapter 20, Memory Management Services and Routines (Alpha Only), describes
the use of system services and RTLs of Alpha systems to manage memory. It
describes the page size and layout of virtual address space of Alpha systems.
This chapter also describes how to add virtual address space, adjust working sets,
control process swapping, and create and manage sections on Alpha systems.

Chapter 21, Using Run-Time Routines for Memory Allocation, describes how to
use RTLs to allocate and free pages and blocks of memory, and how to use RTLs
to create, manage and debug virtual memory zones.

Chapter 22, Alignment on OpenVMS VAX and Alpha Systems, describes the
importance and techniques of instruction and data alignment.

Chapter 23, System Security Services, describes the system services that
establish protection by using identifiers, rights databases, and access control
entries. This chapter also describes how to modify a rights list as well as check
access protection.

OpenVMS Alpha Support for 64-Bit Addresses

Alpha As of Version 7.0, the OpenVMS Alpha operating system provides support for
64-bit virtual memory addresses, which makes the 64-bit virtual address space
defined by the Alpha architecture available to the OpenVMS Alpha operating
system and to application programs. In the 64-bit virtual address space, both
process-private and system virtual address space extend beyond 2 GB. By using
64-bit addressing features, programmers can create images that map and access
data beyond the previous limits of 32-bit virtual addresses.

Many tools and languages supported by OpenVMS Alpha (including the Debugger,
run-time library routines, and DEC C) are enhanced to support 64-bit virtual
addressing. Input and output operations can be performed directly to and from
the 64-bit addressable space by means of RMS services, the $QIO system service,
and most of the device drivers supplied with OpenVMS Alpha systems.

Underlying this are new system services, which allow an application to allocate
and manage the 64-bit virtual address space that is available for process private
use.

Nonprivileged programs may optionally be modified to exploit 64-bit addressing
support. OpenVMS Alpha 64-bit virtual addressing does not affect nonprivileged
programs that are not explicitly modified to exploit 64-bit support. Binary and
source compatibility of existing nonprivileged programs is guaranteed.

For more information about OpenVMS Alpha 64-bit virtual addressing features,
see the OpenVMS Alpha Guide to 64-Bit Addressing. ♦

xxv

Related Documents
For a detailed description of each run-time library and system service routine
mentioned in this manual, see the OpenVMS Run-Time Library documentation
and the OpenVMS System Services Reference Manual.

You can find additional information about calling OpenVMS system services
and Run-Time Library routines in OpenVMS Programming Interfaces: Calling
a System Routine and in your language processor documentation. You may also
find the following documents useful:

• OpenVMS DCL Dictionary

• OpenVMS User’s Manual

• Guide to OpenVMS File Applications

• OpenVMS Guide to System Security

• DECnet for OpenVMS Networking Manual

• OpenVMS Record Management Services documentation

• OpenVMS Utility Routines Manual

• OpenVMS I/O User’s Reference Manual

For additional information on OpenVMS products and services, access the Digital
OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com

Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08

Mail OpenVMS Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

xxvi

Telephone and Direct Mail Orders

DTN: 264−4446

approved distributor

Fax: 603−884−3960

800−267−6215

U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063−1260

809−781−0505

Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

Digital Equipment Caribbean, Inc.

DECdirect

Puerto Rico

800−DIGITAL

3 Digital Plaza, 1st Street, Suite 200

800−344−4825

International

P.O. Box 11038
Metro Office Park

Location

Internal Orders

San Juan, Puerto Rico 00910−2138

603−884−4446

Write

Fax: 613−592−1946

Fax

Canada

Call

Fax: 809−749−8300

Local Digital subsidiary or

U.S.A.

ZK−7654A−GE

Fax: 800−234−2298

Conventions
The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

The following conventions are used to identify information specific to OpenVMS
Alpha or to OpenVMS VAX:

Alpha
The Alpha icon denotes the beginning of information
specific to OpenVMS Alpha.

VAX
The VAX icon denotes the beginning of information
specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
information specific to OpenVMS Alpha or to OpenVMS
VAX.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x or
GOLD x

A sequence such as PF1 x or GOLD x indicates that you must
first press and release the key labeled PF1 or GOLD and then
press and release another key or a pointing device button.

GOLD key sequences can also have a slash (/), dash (–), or
underscore (_) as a delimiter in EVE commands.

xxvii

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xxviii

1
Process Creation

This chapter describes process creation and the different types of processes. It
also describes kernel threads and the kernel threads process structure. This
chapter contains the following sections:

Section 1.1 defines a process and describes the two types of processes.

Section 1.2 describes the execution context of a process.

Section 1.3 describes the modes of execution of a process.

Section 1.4 describes the creation of a subprocess.

Section 1.5 describes the creation of a detached process.

Section 1.6 describes kernel threads and the parts that make up the kernel
threads process.

1.1 Process Types
A process is the environment in which an image executes. Two types of processes
can be created with the operating system: spawned subprocesses or detached
processes.

A spawned subprocess is dependent on the process that created it (its parent),
and receives a portion of its parent process’s resource quotas. The system deletes
the spawned subprocess when the parent process exits.

A detached process is independent of the process that created it. The process
the system creates when you log in is, for example, a detached process. If
you want a created process to continue after the parent exits, or not to share
resources with the parent, use a detached process.

Table 1–1 compares the characteristics of subprocesses and detached processes.

Table 1–1 Characteristics of Subprocesses and Detached Processes

Characteristic Subprocess Detached Process

Privileges Received from creating process Specified by creating process

Quotas and limits Shared with creating process Specified by creating process, but
not shared with creating process

User authorization file Used for information not given
by creating process

Used for most information not given
by creating process

User identification code Received from creating process Specified by creating process

Restrictions Exist as long as creating process
exists

None

(continued on next page)

1–1

Process Creation
1.1 Process Types

Table 1–1 (Cont.) Characteristics of Subprocesses and Detached Processes

Characteristic Subprocess Detached Process

How created SYS$CREPRC, LIB$SPAWN
or PPL$SPAWN from another
process

SYS$CREPRC from another process

When deleted At image exit, or when creating
process exits

At image exit

Command language interpreter
(CLI) present

Usually not if created with
SYS$CREPRC; usually yes if
spawned

Usually not (though interactive
user processes have CLI present,
and they are created with
SYS$CREPRC)

1.2 Execution Context of a Process
The execution context of a process defines a process to the system. It includes the
following:

• Image that the process is executing

• Input and output streams for the image executing in the process

• Disk and directory defaults for the process

• System resource quotas and user privileges available to the process

When the system creates a detached process as the result of a login, it uses
the system user authorization file (SYSUAF.DAT) to determine the process’s
execution context.

For example, the following occurs when you log in to the system:

1. The process created for you executes the image LOGINOUT.

2. The terminal you are using is established as the input, output, and error
stream device for images that the process executes.

3. Your disk and directory defaults are taken from the user authorization file.

4. The resource quotas and privileges you have been granted by the system
manager are associated with the created process.

5. A command language interpreter (CLI) is mapped into the created process.

1.3 Modes of Execution of a Process
A process executes in one of the following modes:

• Interactive—Receives input from a record-oriented device, such as a terminal
or mailbox

• Batch—Is created by the job controller and is not interactive

• Network—Is created by the network ancillary control program (ACP)

• Other—Is not running in any of the other modes (for example, a spawned
subprocess where input is received from a command procedure)

1–2

Process Creation
1.4 Creating a Subprocess

1.4 Creating a Subprocess
You can create a subprocess using the LIB$SPAWN and PPL$SPAWN run-time
library routines or the SYS$CREPRC system service. A subprocess created with
LIB$SPAWN or PPL$SPAWN is called a spawned subprocess.

Table 1–2 lists the context values provided by LIB$SPAWN, PPL$SPAWN, and
SYS$CREPRC for a subprocess when using the default values in the routine
calls.

Table 1–2 Comparison of LIB$SPAWN, PPL$SPAWN, and SYS$CREPRC
Context Values

Context LIB$SPAWN PPL$SPAWN SYS$CREPRC

DCL Yes Yes No1

Default device and
directory

Parent’s Parent’s Parent’s

Symbols Parent’s Parent’s No

Logical names Parent’s2 Parent’s2 No2

Privileges Parent’s Parent’s Parent’s

Priority Parent’s Parent’s 0

1The created subprocess can include DCL by executing the system image
SYS$SYSTEM:LOGINOUT.EXE.
2Plus group and job logical name tables.

1.4.1 Using LIB$SPAWN to Create a Spawned Subprocess
The LIB$SPAWN routine enables you to create a subprocess and to set some
context options for the new subprocess. LIB$SPAWN creates a subprocess with
the same priority as the parent process (generally priority 4). The format for
LIB$SPAWN is:

LIB$SPAWN ([command_string],[input_file],
,[output_file],[flags],[process-name],[process_id],[completion_status]
,[completion_efn],[completion_astadr],[completion_astarg],[prompt],[cli])

For complete information on using each argument, refer to the LIB$SPAWN
routine in OpenVMS RTL Library (LIB$) Manual.

Specifying a Command String
Use the command_string argument to specify a single DCL command to execute
once the subprocess is initiated. You can also use this argument to execute a
command procedure that, in turn, executes several DCL commands (@command_
procedure_name).

Redefining SYS$INPUT and SYS$OUTPUT
Use the input_file and output_file arguments to specify alternate input and
output devices for SYS$INPUT and SYS$OUTPUT. Using alternate values
for SYS$INPUT and SYS$OUTPUT can be particularly useful when you are
synchronizing processes that are executing concurrently.

1–3

Process Creation
1.4 Creating a Subprocess

Passing Parent Process Context Information to the Subprocess
Use the flags argument to specify which characteristics of the parent process are
to be passed on to the subprocess. With this argument, you can reduce the time
required to create a subprocess by passing only a part of the parent’s context. You
can also specify whether the parent process should continue to execute (execute
concurrently) or wait until the subprocess has completed execution (execute in
line).

After the Subprocess Completes Execution
Use the completion_status, completion_efn, and completion_astadr
arguments to specify the action to be taken when the subprocess completes
execution (send a completion status, set a local event flag, or invoke an AST
procedure). For more information about event flags and ASTs, refer to Chapter 4.

The LIB$SPAWN routine and SPAWN command do not return a completion
status code of 0 from a subprocess command procedure.

Specifying an Alternate Prompt String
Use the prompt argument to specify a prompt string for the subprocess.

Specifying an Alternate Command Language Interpreter
Use the cli argument to specify a command language interpreter for the
subprocess.

Examples of Creating Subprocesses
The following example creates a subprocess that executes the commands
in the COMMANDS.COM command procedure, which must be a command
procedure on the current default device in the current default directory. The
created subprocess inherits symbols, logical names (including SYS$INPUT and
SYS$OUTPUT), keypad definitions, and other context information from the
parent. The subprocess executes while the parent process hibernates.

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN (’@COMMANDS’)

The following Fortran program segment creates a subprocess that does not inherit
the parent’s symbols, logical names, or keypad definitions. The subprocess reads
and executes the commands in the COMMANDS.COM command procedure.
(The CLI$symbols are defined in the $CLIDEF module of the system object or in
shareable image library. See Chapter 17 for more information.)

! Mask for LIB$SPAWN
INTEGER MASK
EXTERNAL CLI$M_NOCLISYM,
2 CLI$M_NOLOGNAM,
2 CLI$M_NOKEYPAD
! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

! Set mask and call LIB$SPAWN
MASK = %LOC(CLI$M_NOCLISYM) .OR.
2 %LOC(CLI$M_NOLOGNAM) .OR.
2 %LOC(CLI$M_NOKEYPAD)

STATUS = LIB$SPAWN (’@COMMANDS.COM’,
2 ,,
2 MASK)

1–4

Process Creation
1.4 Creating a Subprocess

The following Fortran program segment creates a subprocess to execute the image
$DISK1:[USER.MATH]CALC.EXE. CALC reads data from DATA84.IN and writes
the results to DATA84.RPT. The subprocess executes concurrently. (CLI$M_
NOWAIT is defined in the $CLIDEF module of the system object or shareable
image library; see Chapter 17.)

! Mask for LIB$SPAWN
EXTERNAL CLI$M_NOWAIT
! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

STATUS = LIB$SPAWN (’RUN $DISK1:[USER.MATH]CALC’, ! Image
2 ’DATA84.IN’, ! Input
2 ’DATA84.RPT’, ! Output
2 %LOC(CLI$M_NOWAIT)) ! Concurrent

1.4.2 Using PPL$SPAWN to Create a Spawned Subprocess
The PPL$SPAWN routine works similarly to LIB$SPAWN in that it creates one
or more subprocesses with the same context as the parent process on the same
node (or system) as the parent process. You can specify the name of an image to
be executed in the subprocess. However, you should limit use of PPL$SPAWN to
creating subprocesses specifically for parallel processing.

Before using PPL$SPAWN, you must set up special PPL$ data structures with
the PPL$INITIALIZE routine; otherwise, unpredictable results may occur. Also,
after you create a process with PPLS$CREATE_PROCESS and the process has
completed its activity, you must explicitly delete it with PPL$STOP.

For more information about using these PPL$ routines, see the OpenVMS RTL
Parallel Processing (PPL$) Manual.

1.4.3 Using SYS$CREPRC to Create a Subprocess
The Create Process (SYS$CREPRC) system service creates both subprocesses
and detached processes. This section discusses creating a subprocess; Section 1.5
describes creating a detached process. When you call the SYS$CREPRC system
service to create a process, you define the context by specifying arguments to
the service. The number of subprocesses a process can create is controlled by
its PQL$_PRCLM subprocess quota, an individual quota description under
the quota argument. The DETACH privilege controls your ability to create a
detached process with a user identification code (UIC) that is different from the
UIC of the creating process.

With SYS$CREPRC, you must usually specify the priority because the default
priority is zero. Though SYS$CREPRC does not set many context values for
the subprocess by default, it does allow you to set many more context values
than LIB$SPAWN. For example, you cannot specify separate privileges for a
subprocess with LIB$SPAWN directly, but you can with SYS$CREPRC.

By default, SYS$CREPRC creates a subprocess rather than a detached process.
The format for SYS$CREPRC is as follows:

SYS$CREPRC ([pidadr],[image],[input],[output],[error],[prvadr],[quota]
,[prcnam], [baspri], [uic] ,[mbxunt],[stsflg])

Ordinarily, when you create a subprocess, you need only assign it an image
to execute and, optionally, the SYS$INPUT, SYS$OUTPUT, and SYS$ERROR
devices. The system provides default values for the process’s privileges, resource
quotas, execution modes, and priority. In some cases, however, you may want
to define these values specifically. The arguments to the SYS$CREPRC system

1–5

Process Creation
1.4 Creating a Subprocess

service that control these characteristics follow. For details, see the descriptions
of arguments to the SYS$CREPRC system service in the OpenVMS System
Services Reference Manual.

The default values passed into the subprocess might not be complete enough for
your use. The following sections describe how to modify these default values with
SYS$CREPRC.

Redefining SYS$INPUT, SYS$OUTPUT, and SYS$ERROR
Use the input, output, and error arguments to specify alternate input, output,
and error devices for SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. Using
alternate values for SYS$INPUT, SYS$OUTPUT, and SYS$ERROR can be
particularly useful when you are synchronizing processes that are executing
concurrently. By providing alternate or equivalent names for the logical names
SYS$INPUT, SYS$OUTPUT, and SYS$ERROR, you can place these logical name
/equivalence name pairs in the process logical name table for the created process.

The following C program segment is an example of defining input, output, and
error devices for a subprocess:

#include <stdio.h>
#include <ssdef.h>
#include <descrip.h>

main() {

unsigned int status;

$DESCRIPTOR(input,"SUB_MAIL_BOX"); /* Descriptor for input stream */
$DESCRIPTOR(output,"COMPUTE_OUT"); /* Descriptor for output and error*/

/* streams */
$DESCRIPTOR(image,"COMPUTE.EXE"); /* Descriptor for image name */

/* Create the subprocess */
status = SYS$CREPRC(0, /* process id */

&image, /* image */
&input, 1 /* input SYS$INPUT device */
&output, 2 /* output SYS$OUTPUT device*/
&output, 3 /* error SYS$ERROR device*/
0,0,0,0,0,0,0);

}

1 The input argument equates the equivalence name SUB_MAIL_BOX to the
logical name SYS$INPUT. This logical name may represent a mailbox that
the calling process previously created with the Create Mailbox and Assign
Channel (SYS$CREMBX) system service. Any input the subprocess reads
from the logical device SYS$INPUT are read from the mailbox.

2 The output argument equates the equivalence name COMPUTE_OUT to the
logical name SYS$OUTPUT. All messages the program writes to the logical
device SYS$OUTPUT are written to this file.

3 The error argument equates the equivalence name COMPUTE_OUT to the
logical name SYS$ERROR. All system-generated error messages are written
into this file. Because this is the same file as that used for program output,
the file effectively contains a complete record of all output produced during
the execution of the program image.

1–6

Process Creation
1.4 Creating a Subprocess

The SYS$CREPRC system service does not provide default equivalence names
for the logical names SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. If none
are specified, any entries in the group or system logical name tables, if any, may
provide equivalences. If, while the subprocess executes, it reads or writes to one
of these logical devices and no equivalence name exists, an error condition results.

In a program that creates a subprocess, you can cause the subprocess to share the
input, output, or error device of the creating process. You must first follow these
steps:

1. Use the Get Device/Volume Information (SYS$GETDVI) system service to
obtain the device name for the logical name SYS$INPUT, SYS$OUTPUT, or
SYS$ERROR.

2. Specify the address of the descriptor returned by the SYS$GETDVI service
when you specify the input, output, or error argument to the SYS$CREPRC
system service.

This procedure is illustrated in the following example:

#include <stdio.h>
#include <ssdef.h>
#include <prcdef.h>
#include <dvidef.h>
#include <descrip.h>

/* Item list to return device name */

struct {
unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;

}itm_lst;

main() {

char term[64];
unsigned int baspri=4, status, *termlen;

/* Descriptors for SYS$GETDVI */
$DESCRIPTOR(lognam,"SYS$INPUT");

/* Descriptors for SYS$CREPRC */
$DESCRIPTOR(image,"SYS$SYSTEM:LOGINOUT.EXE");
$DESCRIPTOR(termdesc, term);

/* Assign values to the item list */

itm_lst.buflen = 64;
itm_lst.item_code = DVI$_DEVNAM;
itm_lst.bufaddr = term;
itm_lst.retlenaddr = &termlen;
itm_lst.terminator = 0;

/* Determine the terminal name */

status = SYS$GETDVI(0, /* efn (event flag) */
0, /* channel */
&lognam, /* devnam */
&itm_lst, /* item list */
0,0,0,0);

if((status & 1) != 1)
LIB$SIGNAL(status);

/* Create the subprocess */

1–7

Process Creation
1.4 Creating a Subprocess

status = SYS$CREPRC(0, &image, /* image to be run */
&termdesc, /* input (SYS$INPUT device) */
&termdesc, /* output (SYS$OUTPUT device) */
&termdesc, /* error (SYS$ERROR device) */
0,0,0,
&baspri, /* base priority */
0,0,0);

if((status & 1) != 1)
LIB$SIGNAL(status);

}

In this example, the subprocess executes, and the logical names SYS$INPUT,
SYS$OUTPUT, and SYS$ERROR are equated to the device name of the creating
process’s logical input device. The subprocess can then do one of the following:

• Use OpenVMS RMS to open the device for reading or writing, or both.

• Use the Assign I/O Channel (SYS$ASSIGN) system service to assign an I/O
channel to the device for input/output operations.

In the following example, the program assigns a channel to the device specified
by the logical name SYS$OUTPUT:

unsigned int status;
unsigned short chan;
$DESCRIPTOR(devnam,"SYS$OUTPUT");

.

.

.
status = SYS$ASSIGN(&devnam, /* Device name */

&chan, /* Channel */
0, 0, 0);

For more information about channel assignment for I/O operations, see Chapter 9.

Setting Privileges
Set different privileges by defining the privilege list for the subprocess using
the prvadr argument. This is particularly useful when you want to dedicate
a subprocess to execute privileged or sensitive code. If you do not specify this
argument, the privileges of the calling process are used. If you specify the
prvadr argument, only the privileges specified in the bit mask are used; the
privileges of the calling process are not used. For example, a creating process
has the user privileges GROUP and TMPMBX. It creates a process, specifying
the user privilege TMPMBX. The created process receives only the user privilege
TMPMBX; it does not have the user privilege GROUP.

If you need to create a process that has a privilege that is not one of your current
process’s privileges, you must have the user privilege SETPRV.

Symbols associated with privileges are defined by the $PRVDEF macro. Each
symbol begins with PRV$V_ and identifies the bit number that must be set to
specify a given privilege. The following example shows the data definition for a
bit mask specifying the GRPNAM and GROUP privileges:

struct {
unsigned int privs = PRV$M_GRPNAM || PRV$M_GROUP;
unsigned int terminator;

}prvmsk;

1–8

Process Creation
1.4 Creating a Subprocess

Setting Process Quotas
Set different process quotas by defining the quota list of system resources for the
subprocess using the quota argument. This option can be useful when managing
a subprocess to limit use of system resources (such as AST usage, I/O, CPU time,
lock requests, and working set size and expansion). If you do not specify this
argument, the system defines default quotas for the subprocess.

Setting the Subprocess Priority
Set the subprocess priority by setting the base execution priority with the baspri
argument. If you do not set the subprocess priority, the priority defaults to 2 for
VAX MACRO and VAX BLISS–32 and to 0 for all other languages. If you want
a subprocess to have a higher priority than its creator, you must have the user
privilege ALTPRI to raise the priority level.

Specifying Additional Processing Options
Enable and disable parent and subprocess wait mode, control process
swapping, control process accounting, control process dump information, control
authorization checks, and control working set adjustments using the stsflg
argument. This argument defines the status flag, a set of bits that control some
execution characteristics of the created process, including resource wait mode and
process swap mode.

Defining an Image for a Subprocess to Execute
When you call the SYS$CREPRC system service, use the image argument
to provide the process with the name of an image to execute. For example,
the following lines of C create a subprocess to execute the image named
CARRIE.EXE:

$DESCRIPTOR(image,"CARRIE");
.
.
.

status = SYS$CREPRC(0, &image, . . .);

In this example, only a file name is specified; the service uses current disk and
directory defaults, performs logical name translation, uses the default file type
.EXE, and locates the most recent version of the image file. When the subprocess
completes execution of the image, the subprocess is deleted. Process deletion is
described in Chapter 3.

1.4.3.1 Disk and Directory Defaults for Created Processes
When you use the SYS$CREPRC system service to create a process to execute
an image, the system locates the image file in the default device and directory of
the created process. Any created process inherits the current default device and
directory of its creator.

If a created process runs an image that is not in its default directory, you must
identify the directory and, if necessary, the device in the file specification of the
image to be run.

There is no way to define a default device or directory for the created process
that is different from that of the creating process in a call to SYS$CREPRC.
The created process can, however, define an equivalence for the logical device
SYS$DISK by calling the Create Logical Name ($CRELNM) system service.

1–9

Process Creation
1.4 Creating a Subprocess

If the process is a subprocess, you, in the creating process, can define an
equivalence name in the group logical name table, job logical name table, or
any logical name table shared by the creating process and the subprocess. The
created process then uses this logical name translation as its default directory.
The created process can also set its own default directory by calling the OpenVMS
RMS default directory system service, SYS$SETDDIR.

A process can create a process with a default directory that is different from its
own by completing the following steps in the creating process:

1. Make a call to SYS$SETDDIR to change its own default directory.

2. Make a call to SYS$CREPRC to create the new process.

3. Make a call to SYS$SETDDIR to change its own default directory back to the
default directory it had before the first call to SYS$SETDDIR.

The creating process now has its original default directory. The new process has
the different default directory that the creating process had when it created the
new process. For details on how to call SYS$SETDDIR, see the OpenVMS System
Services Reference Manual.

1.4.4 Debugging Within a Subprocess
You can allow a program to be debugged within a subprocess. To allow debug
operations, equate the subprocess logical names DBG$INPUT and DBG$OUTPUT
to the terminal. When the subprocess executes the program, which has
been compiled and linked with the debugger, the debugger reads input from
DBG$INPUT and writes output to DBG$OUTPUT.

If you are executing the subprocess concurrently, you should restrict debugging to
the program in the subprocess. The debugger prompt DBG> should enable you
to differentiate between input required by the parent process and input required
by the subprocess. However, each time the debugger displays information, you
must press the Return key to display the DBG> prompt. (By pressing the Return
key, you actually write to the parent process, which has regained control of the
terminal following the subprocess’s writing to the terminal. Writing to the parent
process allows the subprocess to regain control of the terminal.)

1.5 Creating a Detached Process
The creation of a detached process is primarily a task the operating system
performs when you log in. In general, an application creates a detached process
only when a program must continue executing after the parent process exits.
To do this, you should use the SYS$CREPRC system service. You can also
use detached processes to write to another process’s terminal by using the
SYS$BREAKTHRU system service.

The DETACH privilege controls the ability to create a detached process with
a UIC that is different from the UIC of the creating process. You can use the
uic argument to the SYS$CREPRC system service to define whether a process
is a subprocess or a detached process. The uic argument provides the created
process with a user identification code (UIC). If you omit the uic argument, the
SYS$CREPRC system service creates a subprocess that executes under the UIC
of the creating process.

You can also create a detached process with the same UIC as the creating
process by specifying the detach flag in the stsflg argument. You do not need
the DETACH privilege to create a detached process with the same UIC as the
creating process.

1–10

Process Creation
1.5 Creating a Detached Process

Examples of Creating a Detached Process
The following Fortran program segment creates a process that executes the
image SYS$USER:[ACCOUNT]INCTAXES.EXE. INCTAXES reads input from
the file TAXES.DAT and writes output to the file TAXES.RPT. (TAXES.DAT and
TAXES.RPT are in the default directory on the default disk.) The last argument
specifies that the created process is a detached process (the UIC defaults to that
of the parent process). (The symbol PRC$M_DETACH is defined in the $PRCDEF
module of the system macro library.)

EXTERNAL PRC$M_DETACH

! Declare status and system routines
INTEGER STATUS,SYS$CREPRC

.

.

.
STATUS = SYS$CREPRC (,
2 ’SYS$USER:[ACCOUNT]INCTAXES’, ! Image
2 ’TAXES.DAT’, ! SYS$INPUT
2 ’TAXES.RPT’, ! SYS$OUTPUT
2 ,,,,
2 %VAL(4), ! Priority
2 ,,
2 %VAL(%LOC(PRC$M_DETACH))) ! Detached

The following program segment creates a detached process to execute the DCL
commands in the command file SYS$USER:[TEST]COMMANDS.COM. The
system image SYS$SYSTEM:LOGINOUT.EXE is executed to include DCL in the
created process. The DCL commands to be executed are specified in a command
procedure that is passed to SYS$CREPRC as the input file. Output is written to
the file SYS$USER:[TEST]OUTPUT.DAT.

.

.

.
STATUS = SYS$CREPRC (,
2 ’SYS$SYSTEM:LOGINOUT’, ! Image
2 ’SYS$USER:[TEST]COMMANDS.COM’,! SYS$INPUT
2 ’SYS$USER:[TEST]OUTPUT.DAT’, ! SYS$OUTPUT
2 ,,,,
2 %VAL(4), ! Priority
2 ,,
2 %VAL(%LOC(PRC$M_DETACH))) ! Detached

1.6 Kernel Threads and the Kernel Threads Process Structure
(Alpha Only)

Alpha This section defines and describes some advantages of using kernel threads. It
also describes some kernel threads features and type of model, as well as the
design changes made to the OpenVMS operating system.

Note

For information about the concepts and implementation of user threads
with DECthreads, see the Guide to DECthreads.

1–11

Process Creation
1.6 Kernel Threads and the Kernel Threads Process Structure (Alpha Only)

1.6.1 Definition and Advantages of Kernel Threads
A thread is a single, sequential flow of execution within a process’s address
space. A single process contains an address space wherein a single thread or
multiple threads execute concurrently. Programs typically have a single flow of
execution and therefore a single thread, whereas multithreaded programs have
multiple points of execution at any one time.
By using threads as a programming model, you can gain the following
advantages:

• More modular code design

• Simpler application design and maintenance

• The potential to run independent flows of execution in parallel on multiple
CPUs

• The potential to make better use of available CPU resources through parallel
execution

1.6.2 Kernel Threads Features
With kernel threads, the OpenVMS operating system implements the following
two features:

• Multiple execution contexts within a process

• Efficient use of the OpenVMS and DECthreads schedulers

1.6.2.1 Multiple Execution Contexts within a Process
Before the implementation of kernel threads, the scheduling model for the
OpenVMS operating system was per process. The only scheduling context
was the process itself; that is, only one execution context per process. Since a
threaded application could create thousands of threads, many of these threads
could potentially be executing at the same time. But because OpenVMS processes
had only a single execution context, in effect, only one of those application threads
was running at any one time. If this multithreaded application was running on a
multiprocessor system, the application could not make use of more than a single
CPU.

After the implementation of kernel threads, the scheduling model allows for
multiple execution contexts within a process; that is, more than one application
thread can be executing concurrently. These execution contexts are called kernel
threads. Kernel threads allows a multithreaded application to have a thread
executing on every CPU in a multiprocessor system. Kernel threads, therefore,
allow a threaded application to take advantage of multiple CPUs in a symmetric
multiple processing (SMP) system.

1.6.2.2 Efficient Use of the OpenVMS and DECthreads Schedulers
It is the function of the user mode thread manager to schedule individual user
mode application threads. On OpenVMS, DECthreads is the user mode threading
package of choice. Before the implementation of kernel threads, DECthreads
multiplexed user mode threads on the single OpenVMS execution context—the
process. DECthreads implemented parts of its scheduling by using a periodic
timer. When the AST executed and the thread manager gained control, the
thread manager could then select a new application thread for execution. But
because the thread manager could not detect that a thread had entered an
OpenVMS wait state, the entire application blocked until that periodic AST was
delivered. That resulted in a delay until the thread manager regained control and
could schedule another thread. Once the thread manager gained control, it could

1–12

Process Creation
1.6 Kernel Threads and the Kernel Threads Process Structure (Alpha Only)

schedule a previously preempted thread unaware that the thread was in a wait
state. The lack of integration between the OpenVMS and DECthreads schedulers
could result in wasted CPU resources.

After the implementation of kernel threads, the scheduling model provides
for scheduler callbacks. A scheduler callback is an upcall from the OpenVMS
scheduler to the thread manager whenever a thread changes state. This upcall
allows the OpenVMS scheduler to inform the thread manager that the current
thread is stalled and that another thread should be scheduled. Upcalls also
inform the thread manager that an event a thread is waiting on has completed.
With kernel threads, the two schedulers are better integrated, minimizing
application thread scheduling delays.

1.6.3 Kernel Threads Model and Design Features
This section presents the type of kernel threads model that OpenVMS Alpha
implements, and some features of the operating system design that changed to
implement the kernel thread model.

1.6.3.1 Kernel Threads Model
The OpenVMS kernel threads model is one that implements a few kernel threads
to many user threads with integrated schedulers. With this model, there is
a mapping of many user threads to only several execution contexts or kernel
threads. The kernel threads have no knowledge of the individual threads
within an application. The thread manager multiplexes those user threads
on an execution context, though a single process can have multiple execution
contexts. This model also integrates the user mode thread manager scheduler
with the OpenVMS scheduler.

1.6.3.2 Kernel Threads Design Features
Design additions and modifications made to various features of OpenVMS Alpha
are as follows:

• Process Structure

• Access to Inner Modes

• Scheduling

• ASTs

• Event Flags

• Process Control Services

1.6.3.2.1 Process Structure With the implementation of OpenVMS kernel
threads, all processes are a threaded process with at least one kernel thread.
Every kernel thread gets a set of stacks, one for each access mode. Quotas
and limits are maintained and enforced at the process level. The process
virtual address space remains per process and is shared by all threads. The
scheduling entity moves from the process to the kernel thread. In general, ASTs
are delivered directly to the kernel threads. Event flags and locks remain per
process. See Section 1.6.4 for more information.

1–13

Process Creation
1.6 Kernel Threads and the Kernel Threads Process Structure (Alpha Only)

1.6.3.2.2 Access to Inner Modes With the implementation of kernel threads,
a single threaded process continues to function exactly as it has in the past. A
multithreaded process may have multiple threads executing in user mode or in
user mode ASTs, as is also possible for supervisor mode. Except in cases where
an activity in inner mode is considered thread safe, a multithreaded process
may have only a single thread executing in an inner mode at any one time.
Multithreaded processes retain the normal preemption of inner mode by more
inner mode ASTs. A special inner mode semaphore serializes access to inner
mode.

1.6.3.2.3 Scheduling With the implementation of kernel threads, the OpenVMS
scheduler concerns itself with kernel threads, and not processes. At certain
points in the OpenVMS executive at which the scheduler could wait a kernel
thread, it can instead transfer control to the thread manager. This transfer of
control, known as a callback or upcall, allows the thread manager the chance to
reschedule stalled application threads.

1.6.3.2.4 ASTs With the implementation of kernel threads, ASTs are not
delivered to the process. They are delivered to the kernel thread on which the
event was initiated. Inner mode ASTs are generally delivered to the kernel
thread already in inner mode. If no thread is in inner mode, the AST is delivered
to the kernel thread that initiated the event.

1.6.3.2.5 Event Flags With the implementation of kernel threads, event flags
continue to function on a per-process basis, maintaining compatibility with
existing application behavior.

1.6.3.2.6 Process Control Services With the implementation of kernel
threads, many process control services continue to function at the process level.
SYS$SUSPEND and SYS$RESUME system services, for example, continue to
change the scheduling state of the entire process, including all of its threads.
Other services such as SYS$HIBER and SYS$SCHDWK act on individual kernel
threads instead of the entire process.

1.6.4 Kernel Threads Process Structure
This section describes the components that make up a kernel threads process. It
describes the following components:

• Process control block (PCB) and process header (PHD)

• Kernel thread block (KTB)

• Floating-point registers and execution data block (FRED)

• Kernel threads region

• Per-kernel thread stacks

• Per-kernel thread data cells

• Process status bits

1.6.4.1 Process Control Block (PCB) and Process Header (PHD)
Two primary data structures exist in the OpenVMS executive that describe the
context of a process:

• Software process control block (PCB)

• Process header (PHD)

1–14

Process Creation
1.6 Kernel Threads and the Kernel Threads Process Structure (Alpha Only)

The PCB contains fields that identify the process to the system. The PCB
comprises contexts that pertain to quotas and limits, scheduling state, privileges,
AST queues, and identifiers. In general, any information that is required to be
resident at all times is in the PCB. Therefore, the PCB is allocated from nonpaged
pool.

The PHD contains fields that pertain to a process’s virtual address space. The
PHD consists of the working set list, and the process section table. The PHD
also contains the hardware process control block (HWPCB), and a floating-point
register save area. The HWPCB contains the hardware execution context of
the process. The PHD is allocated as part of a balance set slot, and it can be
outswapped.

1.6.4.1.1 Effect of a Multithreaded Process on the PCB and PHD With
multiple execution contexts within the same process, the multiple threads of
execution all share the same address space, but have some independent software
and hardware context. This change to a multithreaded process results in an
impact on the PCB and PHD structures, and on any code that references them.

Before the implementation of kernel threads, the PCB contained much context
that was per-process. Now, with the introduction of multiple threads of execution,
much context becomes per-thread. To accommodate per-thread context, a new
data structure, the kernel thread block (KTB), is created, with the per-thread
context removed from the PCB. However, the PCB continues to contain context
common to all threads, such as quotas and limits. The new per-kernel thread
structure contains the scheduling state, priority, and the AST queues.

The PHD contains the HWPCB which gives a process its single execution context.
The HWPCB remains in the PHD; this HWPCB is used by a process when it is
first created. This execution context is also called the initial thread. A single
threaded process has only this one execution context. A new structure, the
floating-point registers and execution data block (FRED), is created to contain
the hardware context of the newly created kernel threads. Since all threads in a
process share the same address space, the PHD continues to describe the entire
virtual memeory layout of the process.

1.6.4.2 Kernel Thread Block (KTB)
The kernel thread block (KTB) is a new per-kernel-thread data structure. The
KTB contains all per-thread software context moved from the PCB. The KTB is
the basic unit of scheduling, a role previously performed by the PCB, and is the
data structure placed in the scheduling state queues. Since the KTB is the logical
extension of the PCB, the SCHED spinlock synchronizes access to the KTB and
the PCB.

Typically, the number of KTBs a multithreaded process has is the same as the
number of CPUs on the system. Actually, the number of KTBs is limited by the
value of the system parameter MULTITHREAD. If MULTITHREAD is zero, the
OpenVMS kernel support is disabled. With kernel threads disabled, user-level
threading is still possible with DECthreads. The environment is identical to the
OpenVMS environment prior to the OpenVMS V7.0 release. If MULTITHREAD
is non-zero, it represents the maximum number of execution contexts or kernel
threads that a process can own, including the initial one.

The KTB, in reality, is not an independent structure from the PCB. Both the PCB
and KTB are defined as sparse structures. The fields of the PCB that move to the
KTB retain their original PCB offsets in the KTB. In the PCB, these fields are
unused. In effect, if the two structures are overlaid, the result is the PCB as it
currently exists with new fields appended at the end. The PCB and KTB for the

1–15

Process Creation
1.6 Kernel Threads and the Kernel Threads Process Structure (Alpha Only)

initial thread occupy the same block of nonpaged pool; therefore, the KTB address
for the initial thread is the same as for the PCB.

1.6.4.3 Floating-Point Registers and Execution Data Block (FRED)
To allow for multiple execution contexts, not only are additional KTBs required
to maintain the software context, but additional HWPCBs must be created to
maintain the hardware context. Each HWPCB has allocated with it a block of
256 bytes for preserving the contents of the floating-point registers across context
switches. Another 128 bytes is allocated for per-kernel thread data.

The combined structure that contains the HWPCB, floating-point register save
area, and per-kernel thread data is called the floating-point registers and
execution data (FRED) block. These structures reside in the process’s balance
set slot. This allows the FREDs to be outswapped with the process header.

1.6.4.4 Kernel Threads Region
Much process context resides in P1 space, taking the form of data cells and the
process stacks. Some of these data cells need to be per kernel thread, as do the
stacks. During initialization of the multithread environment, a kernel thread
region in P1 space is initialized to contain the per-kernel-thread data cells and
stacks. The region begins at the boundary between P0 and P1 space at address
40000000x, and it grows toward higher addresses and the initial thread’s user
stack. The region is divided into per-kernel-thread areas. Each area contains
pages for data cells and the four stacks.

1.6.4.5 Per-Kernel Thread Stacks
A process is created with four stacks; each access mode has one stack. All four of
these stacks are located in P1 space. Stack sizes are either fixed, determined by
a SYSGEN parameter, or expandable. The parameter KSTACKPAGES controls
the size of the kernel stack. This parameter continues to control all kernel stack
sizes, including those created for new execution contexts of kernel threads. The
executive stack is a fixed size of two pages; with kernel threads implementation,
the executive stack for new execution contexts continues to be two pages in
size. The supervisor stack is a fixed size of four pages; with kernel threads
implementation, the supervisor stack for new execution contexts is reduced to two
pages in size.

For the user stack, a more complex situation exists. OpenVMS allocates P1 space
from high to lower addresses. The user stack is placed after the lowest P1 space
address allocated. This allows the user stack to expand on demand toward P0
space. With the introduction of multiple sets of stacks, the locations of these
stacks impose a limit on the size of each area in which they can reside. With
the implementation of kernel threads, the user stack is no longer boundless. The
initial user stack remains semi-boundless; it still grows toward P0 space, but the
limit is the per-kernel thread region instead of P0 space.

1.6.4.6 Per-Kernel-Thread Data Cells
Several pages in P1 space contain process state in the form of data cells. A
number of these cells must have a per-kernel-thread equivalent. These data cells
do not all reside on pages with the same protection. Because of this, the per-
kernel-thread area reserves two pages for these cells. Each page has a different
page protection; one page protection is user read, user write (URUW); the other is
user read, executive write (UREW).

1–16

Process Creation
1.6 Kernel Threads and the Kernel Threads Process Structure (Alpha Only)

1.6.4.7 Summary of Process Data Structures
Process creation results in a PCB/KTB, a PHD/FRED, and a set of stacks. All
processes have a single kernel thread, the initial thread.

A multithreaded process always begins as a single threaded process. A
multithreaded process contains a PCB/KTB pair and a PHD/FRED pair for
the initial thread; for its other threads, it contains additional KTBs, additional
FREDs, and additional sets of stacks. When the multithreaded application exits,
the process returns to its single threaded state, and all additional KTBs, FREDs,
and stacks are deleted. ♦

1–17

2
Process Communication

This chapter describes communication mechanisms used within a process and
between processes. It contains the following sections:

Section 2.1 describes communication within a process.

Section 2.2 describes communication between processes.

The operating system allows your process to communicate within itself and with
other processes. Processes can be either wholly independent or cooperative.
This chapter presents considerations for developing applications that require
the concurrent execution of many programs, and how you can use process
communication to perform the following functions:

• Synchronize events

• Share data

• Obtain information about events important to the program you are executing

2.1 Communication Within a Process
Communicating within a process, from one program component to another, can be
performed using the following methods:

• Local event flags

• Logical names (in supervisor mode)

• Global symbols (command language interpreter symbols)

• Common area

For passing information among chained images, you can use all four methods
because the image reading the information executes immediately after the image
that deposited it. Only the common area allows you to pass data reliably from
one image to another in the event that another image’s execution intervenes
between the two communicating images.

For communicating within a single image, you can use event flags, logical names,
and symbols. For synchronizing events within a single image, use event flags.
See Chapter 14 for more information about synchronizing events.

Because permanent mailboxes and permanent global sections are not deleted
when the creating image exits, they also can be used to pass information from the
current image to a later executing image. However, Digital recommends that you
use the common area because it uses fewer system resources than the permanent
structures and does not require privilege. (You need the PRMMBX privilege to
create a permanent mailbox and the PRMGBL privilege to create a permanent
global section.)

2–1

Process Communication
2.1 Communication Within a Process

2.1.1 Using Local Event Flags
Event flags are status-posting bits maintained by the operating system for general
programming use. Programs can set, clear, and read event flags. By setting and
clearing event flags at specific points, one program component can signal when an
event has occurred. Other program components can then check the event flag to
determine when the event has been completed. For more information about using
local and common event flags for synchronizing events, refer to Chapter 14.

2.1.2 Using Logical Names
Logical names can store up to 255 bytes of data. When you need to pass
information from one program to another within a process, you can assign
data to a logical name when you create the logical name; then, other programs
can access the contents of the logical name. See Chapter 10 for more information
about logical name system services.

2.1.2.1 Using Logical Name Tables
If both processes are part of the same job, you can place the logical name in
the process logical name table (LNM$PROCESS) or in the job logical name table
(LNM$JOB). If a subprocess is prevented from inheriting the process logical name
table, you must communicate using the job logical name table. If the processes
are in the same group, place the logical name in the group logical name table
LNM$GROUP (requires GRPNAM or SYSPRV privilege). If the processes are
not in the same group, place the logical name in the system logical name table
LNM$SYSTEM (requires SYSNAM or SYSPRV privilege). You can also use
symbols, but only between a parent and a spawned subprocess that has inherited
the parent’s symbols.

2.1.2.2 Using Access Modes
You can create a logical name under three access modes—user, supervisor, or
executive. If you create a process logical name in user mode, it is deleted after
the image exits. If you create a logical name in supervisor or executive mode, it is
retained after the image exits. Therefore, to share data within the process from
one image to the next, use supervisor-mode or executive-mode logical names.

2.1.2.3 Creating and Accessing Logical Names
Perform the following steps to create and access a logical name:

1. Create the logical name and store data in it. Use LIB$SET_LOGICAL to
create a supervisor logical name. No special privileges are required. You can
also use the system service SYS$CRELNM. SYS$CRELNM also allows you
to create a logical name for the system or group table and to create a logical
name in any other mode, assuming you have appropriate privileges.

2. Access the logical name. Use the system service SYS$TRNLNM.
SYS$TRNLNM searches for the logical name and returns information about
it.

3. Once you have finished using the logical name, delete it. Use the routine
LIB$DELETE_LOGICAL or SYS$DELLNM. LIB$DELETE_LOGICAL
deletes the supervisor logical name without requiring any special privileges.
SYS$DELLNM requires special privileges to delete logical names for
privileged modes. However, you can also use this routine to delete logical
name tables or a logical name within a system or group table.

2–2

Process Communication
2.1 Communication Within a Process

Example 2–1 creates a spawned subprocess to perform an iterative calculation.
The logical name REP_NUMBER specifies the number of times that REPEAT, the
program executing in the subprocess, should perform the calculation. Because
both the parent process and the subprocess are part of the same job, REP_
NUMBER is placed in the job logical name table LNM$JOB. (Note that logical
names are case sensitive; specifically, LNM$JOB is a system-defined logical name
that refers to the job logical name table, whereas lnm$job is not.) To satisfy the
references to LNM$_STRING, the example includes the file $LNMDEF.

Example 2–1 Performing an Iterative Calculation with a Spawned Subprocess

PROGRAM CALC

! Status variable and system routines
INTEGER*4 STATUS,
2 SYS$CRELNM,
2 LIB$GET_EF,
2 LIB$SPAWN
! Define itmlst structure
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR
END MAP
MAP
INTEGER*4 END_LIST

END MAP
END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST(2)
! Number to pass to REPEAT.FOR
CHARACTER*3 REPETITIONS_STR
INTEGER REPETITIONS
! Symbols for LIB$SPAWN and SYS$CRELNM
! Include FORSYSDEF symbol definitions:
INCLUDE ’($LNMDEF)’
EXTERNAL CLI$M_NOLOGNAM,
2 CLI$M_NOCLISYM,
2 CLI$M_NOKEYPAD,
2 CLI$M_NOWAIT,
2 LNM$_STRING

.

. ! Set REPETITIONS_STR

.
! Set up and create logical name REP_NUMBER in job table
LNMLIST(1).BUFLEN = 3
LNMLIST(1).CODE = %LOC (LNM$_STRING)
LNMLIST(1).BUFADR = %LOC(REPETITIONS_STR)
LNMLIST(1).RETLENADR = 0
LNMLIST(2).END_LIST = 0
STATUS = SYS$CRELNM (,
2 ’LNM$JOB’, ! Logical name table
2 ’REP_NUMBER’,, ! Logical name
2 LNMLIST) ! List specifying

! equivalence string
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

(continued on next page)

2–3

Process Communication
2.1 Communication Within a Process

Example 2–1 (Cont.) Performing an Iterative Calculation with a Spawned
Subprocess

! Execute REPEAT.FOR in a subprocess
MASK = %LOC (CLI$M_NOLOGNAM) .OR.
2 %LOC (CLI$M_NOCLISYM) .OR.
2 %LOC (CLI$M_NOKEYPAD) .OR.
2 %LOC (CLI$M_NOWAIT)
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$SPAWN (’RUN REPEAT’,,,MASK,,,,FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

.

.

.

REPEAT.FOR
PROGRAM REPEAT
! Repeats a calculation REP_NUMBER of times,
! where REP_NUMBER is a logical name

! Status variables and system routines
INTEGER STATUS,
2 SYS$TRNLNM,
2 SYS$DELLNM

! Number of times to repeat
INTEGER*4 REITERATE,
2 REPEAT_STR_LEN
CHARACTER*3 REPEAT_STR
! Item list for SYS$TRNLNM
! Define itmlst structure
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR
END MAP
MAP
INTEGER*4 END_LIST

END MAP
END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ LNMLIST (2)
! Define item code
EXTERNAL LNM$_STRING
! Set up and translate the logical name REP_NUMBER
LNMLIST(1).BUFLEN = 3
LNMLIST(1).CODE = LNM$_STRING
LNMLIST(1).BUFADR = %LOC(REPEAT_STR)
LNMLIST(1).RETLENADR = %LOC(REPEAT_STR_LEN)
LNMLIST(2).END_LIST = 0
STATUS = SYS$TRNLNM (,
2 ’LNM$JOB’, ! Logical name table
2 ’REP_NUMBER’,, ! Logical name
2 LNMLIST) ! List requesting

! equivalence string
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

(continued on next page)

2–4

Process Communication
2.1 Communication Within a Process

Example 2–1 (Cont.) Performing an Iterative Calculation with a Spawned
Subprocess

! Convert equivalence string to integer
! BN causes spaces to be ignored
READ (UNIT = REPEAT_STR (1:REPEAT_STR_LEN),
2 FMT = ’(BN,I3)’) REITERATE
! Calculations
DO I = 1, REITERATE

.

.

.
END DO
! Delete logical name
STATUS = SYS$DELLNM (’LNM$JOB’, ! Logical name table
2 ’REP_NUMBER’,) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

2.1.3 Using Command Language Interpreter Symbols
The symbols you create and access for process communication are command
language interpreter (CLI) symbols. These symbols are stored in symbol tables
maintained for use within the context of DCL, the default command language
interpreter. They can store up to 255 bytes of information. The use of these
symbols is limited to processes using DCL. If the process is not using DCL, an
error status is returned by the symbol routines.

2.1.3.1 Local and Global Symbols
The two kinds of CLI symbols and their definitions are as follows:

• Local—A local symbol is available to the command level that defined it, any
command procedure executed from that command level, and lower command
levels.

• Global—A global symbol can be accessed from any command level, regardless
of the level at which it was defined.

2.1.3.2 Creating and Using Global Symbols
If you need to pass information from one program to another within a process,
you can assign data to a global symbol when you create the symbol. Then, other
programs can access the contents of the global symbol. You should use global
symbols so the value within the symbol can be accessed by other programs.

To use DCL global symbols, follow this procedure:

1. Create the symbol and assign data to it using the routine LIB$SET_SYMBOL.
Make sure you specify that the symbol will be placed in the global symbol
table in the tbl-ind argument. If you do not specify the global symbol table,
the symbol will be a local symbol.

2. Access the symbol with the LIB$GET_SYMBOL routine. This routine uses
DCL to return the value of the symbol as a string.

3. Once you have finished using the symbol, delete it with the LIB$DELETE_
SYMBOL routine. If you created a global symbol, make sure you specify the
global symbol table in the tbl-ind argument. By default, the system searches
the local symbol table.

2–5

Process Communication
2.1 Communication Within a Process

2.1.4 Using the Common Area
Use the common area to store data from one image to the next. Such data is
unlikely to be corrupted between the time one image deposits it in a common area
and another image reads it from the area. The common area can store 252 bytes
of data. The LIB$PUT_COMMON routine writes information to this common
area; the LIB$GET_COMMON routine reads information from this common area.

2.1.4.1 Creating the Process Common Area
The common area for your process is automatically created for you; no special
declaration is necessary. To pass more than 255 bytes of data, put the data
into a file instead of in the common area and use the common area to pass the
specification.

2.1.4.2 Common I/O Routines
The LIB$PUT_COMMON routine allows a program to copy a string into the
process’s common storage area. This area remains defined during multiple image
activations. LIB$GET_COMMON allows a program to copy a string from the
common area into a destination string. The programs reading and writing the
data in the common area must agree upon its amount and format. The maximum
length of the destination string is defined as follows:

[min(256, the length of the data in the common storage area) - 4]

This maximum length is normally 252.

In BASIC and Fortran, you can use these routines to allow a USEROPEN
routine to pass information back to the routine that called it. A USEROPEN
routine cannot write arguments. However, it can call LIB$PUT_COMMON to put
information into the common area. The calling program can then use LIB$GET_
COMMON to retrieve it.

You can also use these routines to pass information between images run
successively, such as chained images run by LIB$RUN_PROGRAM.

2.1.4.3 Modifying or Deleting Data in the Common Block
You cannot modify or delete data in the process common area unless LIB$PUT_
COMMON is invoked. Therefore, you can execute any number of images between
one image and another, provided that LIB$PUT_COMMON has not been invoked.
Each subsequent image reads the correct data. Invoking LIB$GET_COMMON to
read the common block does not modify the data.

2.1.4.4 Specifying Other Types of Data
Although the descriptions of the LIB$PUT_COMMON and LIB$GET_COMMON
routines in the OpenVMS RTL Library (LIB$) Manual specify a character string
for the argument containing the data written to or read from the common area,
you can specify other types of data. However, you must pass both noncharacter
and character data by descriptor.

The following program segment reads statistics from the terminal and enters
them into a binary file. After all of the statistics are entered into the file, the
program places the name of the file into the per-process common area and exits.

2–6

Process Communication
2.1 Communication Within a Process

.

.

.
! Enter statistics

.

.

.
! Put the name of the stats file into common
STATUS = LIB$PUT_COMMON (FILE_NAME (1:LEN))

.

.

.

The following program segment reads the file name from the per-process common
block and compiles a report using the statistics from that file.

.

.

.
! Read the name of the stats file from common
STATUS = LIB$GET_COMMON (FILE_NAME,
2 LEN)

! Compile the report
.
.
.

2.2 Communication Between Processes
Communication between processes, or interprocess communication, can be
performed in the following ways:

• Shared files

• Common event flags

• Logical names

• Mailboxes

• Global sections

• Lock management system services

Each approach offers different possibilities in terms of the speed at which it
communicates information and the amount of information it can communicate.
For example, shared files offer the possibility of sharing an unlimited amount
of information; however, this approach is the slowest because the disk must be
accessed to share information.

Like shared files, global sections offer the possibility of sharing large amounts of
information. Because sharing information through global sections requires only
memory access, it is the fastest communication method.

Logical names and mailboxes can communicate moderate amounts of information.
Because each method operates through a relatively complex system service, each
is faster than files, but slower than the other communication methods.

The lock management services and common event flag cluster methods can
communicate relatively small amounts of information. With the exception of
global sections, they are the fastest of the interprocess communication methods.

2–7

Process Communication
2.2 Communication Between Processes

Common event flags: Processes executing within the same group can use
common event flags to signal the occurrence or completion of particular activities.
For details about event flags, and an example of how cooperating processes in the
same group use a common event flag, see Chapter 14.

Logical name tables: Processes executing in the same job can use the job
logical name table to provide member processes with equivalence names for
logical names. Processes executing in the same group can use the group logical
name table. A process must have the GRPNAM or SYSPRN privilege to place
names in the group logical name table. All processes in the system can use
the system logical name table. A process must have the SYSNAM or SYSPRV
privilege to place names in the system logical name table. Processes can also
create and use user-defined logical name tables. For details about logical names
and logical name tables, see Chapter 10.

Mailboxes: You can use mailboxes as virtual input/output devices to pass
information, messages, or data among processes. For additional information on
how to create and use mailboxes, see Section 2.2.1. Mailboxes may also be used
to provide a creating process with a way to determine when and under what
conditions a created subprocess was deleted. For an example of a termination
mailbox, see Section 3.8.4.2.

Global sections: Global sections can be either disk files or page-file sections
that contain shareable code or data. Through the use of memory management
services, these files can be mapped to the virtual address space of more than one
process. In the case of a data file on disk, cooperating processes can synchronize
reading and writing the data in physical memory; as data is updated, system
paging results in the updated data being written directly back into the disk file.
Global page-file sections are useful for temporary storage of common data; they
are not mapped to a disk file. Instead, they page only to the system default page
file. Global sections are described in more detail in Chapter 19 and Chapter 20.

Lock management system services: Processes can use the lock management
system services to control access to resources (any entity on the system that
the process can read, write, or execute). In addition to controlling access,
the lock management services provide a mechanism for passing information
among processes that have access to a resource (lock value blocks). Blocking
ASTs can be used to notify a process that other processes are waiting for a
resource. Using lock value blocks is a practical technique for communicating
in cluster environments. With lock value blocks, communication between two
processes from node to node in a distributed environment is an effective way
of implementing cluster communication. For more information about the lock
management system services, see Chapter 15.

While common event flags and lock management services establish
communication, they are most useful for synchronizing events and are discussed
in Chapter 14. Global sections and shared files are best used for sharing data
and are discussed in Chapter 17.

2.2.1 Mailboxes
A mailbox is a virtual device used for communication among processes. You must
call OpenVMS RMS services, language I/O statements, or I/O system services to
perform actual data transfers.

2–8

Process Communication
2.2 Communication Between Processes

2.2.1.1 Creating a Mailbox
To create a mailbox, use the SYS$CREMBX system service. SYS$CREMBX
creates the mailbox and returns the number of the I/O channel assigned to the
mailbox.

The format for the SYS$CREMBX system service is as follows:

SYS$CREMBX ([prmflg], chan, [maxmsg], [bufquo], [promsk], [acmode], [lognam])

When you invoke SYS$CREMBX, you usually specify the following two
arguments:

• Specify a variable to receive the I/O channel number using the chan
argument. This argument is required.

• Specify the logical name to be associated with the mailbox using the lognam
argument. The logical name identifies the mailbox for other processes and for
input/output statements.

The SYS$CREMBX system service also allows you to specify the message size,
buffer size, mailbox protection code, and access mode of the mailbox; however, the
default values for these arguments are usually sufficient. For more information
on SYS$CREMBX, refer to the OpenVMS System Services Reference Manual.

2.2.1.2 Creating Temporary and Permanent Mailboxes
By default, a mailbox is deleted when no I/O channel is assigned to it. Such
a mailbox is called a temporary mailbox. If you have PRMMBX privilege, you
can create a permanent mailbox (specify the prmflg argument as 1 when you
invoke SYS$CREMBX). A permanent mailbox is not deleted until it is marked
for deletion with the SYS$DELMBX system service (requires PRMMBX). Once a
permanent mailbox is marked for deletion, it is like a temporary mailbox; when
the last I/O channel to the mailbox is deassigned, the mailbox is deleted.

The following statement creates a mailbox named MAIL_BOX. The I/O channel
assigned to the mailbox is returned in MBX_CHAN.

! I/O channel
INTEGER*2 MBX_CHAN

! Mailbox name
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)

STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! I/O channel
2 ,,,,
2 MBX_NAME) ! Mailbox name

Note

Do not use MAIL as the logical name for a mailbox or the system will not
execute the proper image in response to the DCL command MAIL.

2–9

Process Communication
2.2 Communication Between Processes

The following program segment creates a permanent mailbox, then creates a
subprocess that marks that mailbox for deletion:

INTEGER STATUS,
2 SYS$CREMBX
INTEGER*2 MBX_CHAN

! Create permanent mailbox
STATUS = SYS$CREMBX (%VAL(1), ! Permanence flag
2 MBX_CHAN, ! Channel
2 ,,,,
2 ’MAIL_BOX’) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Create subprocess to delete it
STATUS = LIB$SPAWN (’RUN DELETE_MBX’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

The following program segment executes in the subprocess. Notice that the
subprocess must assign a channel to the mailbox and then use that channel to
delete the mailbox. Any process that deletes a permanent mailbox, unless it is
the creating process, must use this technique. (Use SYS$ASSIGN to assign the
channel to the mailbox to ensure that the mailbox already exists. SYS$CREMBX
system service assigns a channel to a mailbox; however, SYS$CREMBX also
creates the mailbox if it does not already exist.)

INTEGER STATUS,
2 SYS$DELMBX,
2 SYS$ASSIGN
INTEGER*2 MBX_CHAN

! Assign channel to mailbox
STATUS = SYS$ASSIGN (’MAIL_BOX’,
2 MBX_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Delete the mailbox
STATUS = SYS$DELMBX (%VAL(MBX_CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

2.2.1.3 Assigning an I/O Channel Along with a Mailbox
A mailbox is a virtual device used for communication between processes. A
channel is the communication path that a process uses to perform I/O operations
to a particular device. The LIB$ASN_WTH_MBX routine assigns a channel to a
device and associates a mailbox with the device.

Normally, a process calls the SYS$CREMBX system service to create a mailbox
and assign a channel and logical name to it. In the case of a temporary mailbox,
this service places the logical name corresponding to the mailbox in the job logical
name table. This implies that any process running in the same job and using the
same logical name uses the same mailbox.

Sometimes it is not desirable to have more than one process use the same
mailbox. For example, when a program connects explicitly with another process
across a network, the program uses a mailbox to obtain the data confirming the
connection and to store the asynchronous messages from the other process. If
that mailbox is shared with other processes in the same group, there is no way
to determine which messages are intended for which processes; the processes
read each other’s messages, and the original program does not receive the correct
information from the cooperating process across the network link.

2–10

Process Communication
2.2 Communication Between Processes

The LIB$ASN_WTH_MBX routine avoids this situation by associating the
physical mailbox name with the channel assigned to the device. To create
a temporary mailbox for itself and other processes cooperating with it, your
program calls LIB$ASN_WTH_MBX. The run-time library routine assigns
the channel and creates the temporary mailbox by using the system services
$GETDVI, $ASSIGN, and $CREMBX. Instead of a logical name, the mailbox is
identified by a physical device name of the form MBcu. The elements that make
up this device name are as follows:

MB indicates that the device is a mailbox.

c is the controller.

u is the unit number.

The routine returns this device name to the calling program, which then must
pass the mailbox channel to the other programs with which it cooperates. In this
way, the cooperating processes access the mailbox by its physical name instead of
by its jobwide logical name.

The calling program passes the routine a device name, which specifies the device
to which the channel is to be assigned. For this argument (called dev-nam), you
can use a logical name. If you do so, the routine attempts one level of logical
name translation.

The privilege restrictions and process quotas required for using this routine are
those required by the $GETDVI, $CREMBX, and $ASSIGN system services.

2.2.1.4 Reading and Writing Data to a Mailbox
The following list describes the three ways you can read and write to a mailbox:

• Synchronous I/O—Reads or writes to a mailbox and then waits for the
cooperating image to perform the other operation. Use I/O statements for
your programming language. This is the recommended method of addressing
a mailbox.

• Immediate I/O—Queues a read or write operation to a mailbox and continues
program execution after the operation completes. To do this, use the
SYS$QIOW system service.

• Asynchronous I/O—Queues a read or write operation to a mailbox and
continues program execution while the request executes. To do this, use
the SYS$QIO system service. When the read or write operation completes,
the I/O status block (if specified) is filled, the event flag (if specified) is set,
and the AST routine (if specified) is executed.

Chapter 9 describes the SYS$QIO and SYS$QIOW system services and provides
further discussion of mailbox I/O. See the OpenVMS System Services Reference
Manual for more information. Digital Equipment Corporation recommends that
you supply the optional I/O status block parameter when you use these two
system services. The contents of the status block varies depending on the QIO
function code; refer to the function code descriptions in the OpenVMS I/O User’s
Reference Manual for a description of the appropriate status block.

2–11

Process Communication
2.2 Communication Between Processes

2.2.1.5 Using Synchronous Mailbox I/O
Use synchronous I/O when you read or write information to another image and
cannot continue until that image responds.

The program segment shown in Example 2–2 opens a mailbox for the first time.
To open a mailbox for Fortran I/O, use the OPEN statement with the following
specifiers: UNIT, FILE, CARRIAGECONTROL, and STATUS. The value for the
keyword FILE should be the logical name of a mailbox (SYS$CREMBX allows
you to associate a logical name with a mailbox when the mailbox is created). The
value for the keyword CARRIAGECONTROL should be ’LIST’. The value for the
keyword STATUS should be ’NEW’ for the first OPEN statement and ’OLD’ for
subsequent OPEN statements.

Example 2–2 Opening a Mailbox

! Status variable and values
INTEGER STATUS

! Logical unit and name for mailbox
INTEGER MBX_LUN
CHARACTER(*) MBX_NAME
PARAMETER (MBX_NAME = MAIL_BOX)
! Create mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! Channel
2 ,,,,
2 MBX_NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = MBX_LUN,
2 FILE = MBX_NAME,
2 CARRIAGECONTROL = ’LIST’,
2 STATUS = ’NEW’)

In Example 2–3, one image passes device names to a second image. The second
image returns the process name and the terminal associated with the process
that allocated each device. A WRITE statement in the first image does not
complete until the cooperating process issues a READ statement. (The variable
declarations are not shown in the second program because they are very similar
to those in the first program.)

Example 2–3 Synchronous I/O Using a Mailbox

! DEVICE.FOR

PROGRAM PROCESS_DEVICE

! Status variable
INTEGER STATUS

! Name and I/O channel for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX_CHAN
! Logical unit number for FORTRAN I/O
INTEGER MBX_LUN

(continued on next page)

2–12

Process Communication
2.2 Communication Between Processes

Example 2–3 (Cont.) Synchronous I/O Using a Mailbox
! Character string format
CHARACTER*(*) CHAR_FMT
PARAMETER (CHAR_FMT = ’(A50)’)
! Mailbox message
CHARACTER*50 MBX_MESSAGE

.

.

.
! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! Channel
2 ,,,,
2 MBX_NAME) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT = MBX_LUN,
2 FILE = MBX_NAME,
2 CARRIAGECONTROL = ’LIST’,
2 STATUS = ’NEW’)
! Create subprocess to execute GETDEVINF.EXE
STATUS = SYS$CREPRC (,
2 ’GETDEVINF’, ! Image
2 ,,,,,
2 ’GET_DEVICE’, ! Process name
2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Pass device names to GETDEFINF
WRITE (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) ’SYS$DRIVE0’
! Read device information from GETDEFINF
READ (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE

.

.

.
END

GETDEVINF.FOR
.
.
.

! Create mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN, ! I/O channel
2 ,,,,
2 MBX_NAME) ! Mailbox name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get logical unit for mailbox and open mailbox
STATUS = LIB$GET_LUN (MBX_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
OPEN (UNIT=MBX_LUN,
2 FILE=MBX_NAME,
2 CARRIAGECONTROL=’LIST’,
2 STATUS = ’OLD’)
! Read device names from mailbox
READ (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE

(continued on next page)

2–13

Process Communication
2.2 Communication Between Processes

Example 2–3 (Cont.) Synchronous I/O Using a Mailbox
! Use SYS$GETJPI to find process and terminal
! Process name: PROC_NAME (1:P_LEN)
! Terminal name: TERM (1:T_LEN)

.

.

.
MBX_MESSAGE = MBX_MESSAGE//’ ’//
2 PROC_NAME(1:P_LEN)//’ ’//
2 TERM(1:T_LEN)
! Write device information to DEVICE
WRITE (UNIT=MBX_LUN,
2 FMT=CHAR_FMT) MBX_MESSAGE

END

2.2.1.6 Using Immediate Mailbox I/O
Use immediate I/O to read or write to another image without waiting for
a response from that image. To ensure that the other process receives the
information that you write, either do not exit until the other process has a
channel to the mailbox, or use a permanent mailbox.

Queueing an Immmediate I/O Request
To queue an immediate I/O request, invoke the SYS$QIOW system service. See
the OpenVMS System Services Reference Manual for more information.

Reading Data from the Mailbox
Since immediate I/O is asynchronous, a mailbox may contain more than one
message or no message when it is read. If the mailbox contains more than one
message, the read operation retrieves the messages one at a time in the order in
which they were written. If the mailbox contains no message, the read operation
generates an end-of-file error.

To allow a cooperating program to differentiate between an empty mailbox
and the end of the data being transferred, the process writing the messages
should use the IO$_WRITEOF function code to write an end-of-file message to
the mailbox as the last piece of data. When the cooperating program reads an
empty mailbox, the end-of-file message is returned and the second longword of
the I/O status block is 0. When the cooperating program reads an end-of-file
message explicitly written to the mailbox, the end-of-file message is returned and
the second longword of the I/O status block contains the process identification
number of the process that wrote the message to the mailbox.

In Example 2–4, the first program creates a mailbox named MAIL_BOX, writes
data to it, and then indicates the end of the data by writing an end-of-file
message. The second program creates a mailbox with the same logical name,
reads the messages from the mailbox into an array, and stops the read operations
when a read operation generates an end-of-file message and the second longword
of the I/O status block is nonzero, confirming that the writing process sent the
end-of-file message. The processes use common event flag 64 to ensure that
SEND.FOR does not exit until RECEIVE.FOR has established a channel to the
mailbox. (If RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN
cannot find the mailbox.)

2–14

Process Communication
2.2 Communication Between Processes

Example 2–4 Immediate I/O Using a Mailbox

!SEND.FOR

.

.

.

INTEGER*4 STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX_CHAN
! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER LEN
CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE_LEN (255)
INTEGER MAX_MESSAGE
PARAMETER (MAX_MESSAGE = 255)
! I/O function codes and status block
INCLUDE ’($IODEF)’
INTEGER*4 WRITE_CODE
STRUCTURE /STATUS_BLOCK/
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW
! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2 ,,,,
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Fill MESSAGES array

.

.

.
! Write the messages
DO I = 1, MAX_MESSAGE
WRITE_CODE = IO$_WRITEVBLK .OR. IO$M_NOW
MBX_MESSAGE = MESSAGES(I)
LEN = MESSAGE_LEN(I)
STATUS = SYS$QIOW (,

2 %VAL(MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! I/O code
2 IOSTATUS, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)

2 CALL LIB$SIGNAL (%VAL(IOSTATUS.STATUS))
END DO

(continued on next page)

2–15

Process Communication
2.2 Communication Between Processes

Example 2–4 (Cont.) Immediate I/O Using a Mailbox

! Write end-of-file
WRITE_CODE = IO$_WRITEOF .OR. IO$M_NOW
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! End-of-file code
2 IOSTATUS, ! Status block
2 ,,,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

.

.

.
! Make sure cooperating process can read the information
! by waiting for it to assign a channel to the mailbox
STATUS = SYS$ASCEFC (%VAL(64),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

RECEIVE.FOR
INTEGER STATUS

INCLUDE ’($IODEF)’
INCLUDE ’($SSDEF)’

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX_CHAN
! QIO function code
INTEGER READ_CODE
! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER*4 LEN
! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE_LEN (255)
! I/O status block
STRUCTURE /STATUS_BLOCK/
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW

(continued on next page)

2–16

Process Communication
2.2 Communication Between Processes

Example 2–4 (Cont.) Immediate I/O Using a Mailbox
! Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX_NAME,
2 MBX_CHAN,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$ASCEFC (%VAL(64),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Read first message
READ_CODE = IO$_READVBLK .OR. IO$M_NOW
LEN = 80
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTATUS, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.
2 (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN
I = 1
MESSAGES(I) = MBX_MESSAGE
MESSAGE_LEN(I) = IOSTATUS.MSG_LEN

END IF
! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTATUS.IOSTAT .EQ. SS$_ENDOFFILE) .AND.
2 (IOSTATUS.READER_PID .NE. 0)))

STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTATUS, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTATUS.IOSTAT) .AND.

2 (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

ELSE IF (IOSTATUS.IOSTAT .NE. SS$_ENDOFFILE) THEN
I = I + 1
MESSAGES(I) = MBX_MESSAGE
MESSAGE_LEN(I) = IOSTATUS.MSG_LEN

END IF

END DO
.
.
.

2.2.1.7 Using Asynchronous Mailbox I/O
Use asynchronous I/O to queue a read or write request to a mailbox. To ensure
that the other process receives the information you write, either do not exit the
other process until the other process has a channel to the mailbox, or use a
permanent mailbox.

2–17

Process Communication
2.2 Communication Between Processes

To queue an asynchronous I/O request, invoke the SYS$QIO system service;
however, when specifying the function codes, do not specify the IO$M_NOW
modifier. The SYS$QIO system service allows you to specify an AST to be
executed or an event flag to be set when the I/O operation completes.

Example 2–5 calculates gross income and taxes and then uses the results
to calculate net income. INCOME.FOR uses SYS$CREPRC, specifying a
termination mailbox, to create a subprocess to calculate taxes (CALC_TAXES)
while INCOME calculates gross income. INCOME issues an asynchronous read
to the termination mailbox, specifying an event flag to be set when the read
completes. (The read completes when CALC_TAXES completes, terminating the
created process and causing the system to write to the termination mailbox.)
After finishing its own gross income calculations, INCOME.FOR waits for the flag
that indicates CALC_TAXES has completed and then figures net income.

CALC_TAXES.FOR passes the tax information to INCOME.FOR using the
installed common block created from INSTALLED.FOR.

Example 2–5 Asynchronous I/O Using a Mailbox

!INSTALLED.FOR

! Installed common block to be linked with INCOME.FOR and
! CALC_TAXES.FOR.
! Unless the shareable image created from this file is
! in SYS$SHARE, you must define a group logical name
! INSTALLED and equivalence it to the full file specification
! of the shareable image.
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

END

!INCOME.FOR
! Status and system routines

.

.

.
INCLUDE ’($SSDEF)’
INCLUDE ’($IODEF)’
INTEGER STATUS,
2 LIB$GET_LUN,
2 LIB$GET_EF,
2 SYS$CLREF,
2 SYS$CREMBX,
2 SYS$CREPRC,
2 SYS$GETDVIW,
2 SYS$QIO,
2 SYS$WAITFR

(continued on next page)

2–18

Process Communication
2.2 Communication Between Processes

Example 2–5 (Cont.) Asynchronous I/O Using a Mailbox

! Set up for SYS$GETDVI
! Define itmlst structure
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR
END MAP
MAP
INTEGER*4 END_LIST

END MAP
END UNION
END STRUCTURE
! Declare itmlst
RECORD /ITMLST/ DVILIST (2)
INTEGER*4 UNIT_BUF,
2 UNIT_LEN
EXTERNAL DVI$_UNIT
! Name and I/O channel for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX_CHAN
INTEGER*4 MBX_LUN ! Logical unit number for I/O
CHARACTER*84 MBX_MESSAGE ! Mailbox message
INTEGER*4 READ_CODE,
2 LENGTH
! I/O status block
STRUCTURE /STATUS_BLOCK/
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER*4 READER_PID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS
! Declare calculation variables in installed common
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET
! Flag to indicate taxes calculated
INTEGER*4 TAX_DONE
! Get and clear an event flag
STATUS = LIB$GET_EF (TAX_DONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create the mailbox
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2 ,,,,
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

(continued on next page)

2–19

Process Communication
2.2 Communication Between Processes

Example 2–5 (Cont.) Asynchronous I/O Using a Mailbox
! Get unit number of the mailbox
DVILIST(1).BUFLEN = 4
DVILIST(1).CODE = %LOC(DVI$_UNIT)
DVILIST(1).BUFADR = %LOC(UNIT_BUF)
DVILIST(1).RETLENADR = %LOC(UNIT_LEN)
DVILIST(2).END_LIST = 0
STATUS = SYS$GETDVIW (,
2 %VAL(MBX_CHAN), ! Channel
2 MBX_NAME, ! Device
2 DVILIST, ! Item list
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create subprocess to calculate taxes
STATUS = SYS$CREPRC (,
2 ’CALC_TAXES’, ! Image
2 ,,,,,
2 ’CALC_TAXES’, ! Process name
2 %VAL(4), ! Priority
2 ,
2 %VAL(UNIT_BUF),)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Asynchronous read to termination mailbox
! sets flag when tax calculations complete
READ_CODE = IO$_READVBLK
LENGTH = 84
STATUS = SYS$QIO (%VAL(TAX_DONE), ! Indicates read complete
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTATUS,,, ! Status block
2 %REF(MBX_MESSAGE),! P1
2 %VAL(LENGTH),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Calculate incomes

.

.

.
! Wait until taxes are calculated
STATUS = SYS$WAITFR (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check mailbox I/O
IF (.NOT. IOSTATUS.IOSTAT)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.IOSTAT))

! Calculate net income after taxes
.
.
.

END

CALC_TAXES.FOR

! Declare calculation variables in installed common
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

(continued on next page)

2–20

Process Communication
2.2 Communication Between Processes

Example 2–5 (Cont.) Asynchronous I/O Using a Mailbox

! Calculate taxes
.
.
.

END

2–21

3
Process Control

This chapter describes how to use operating system features to control a process
or kernel thread. It contains the following sections:

Section 3.1 describes the control of a process or kernel thread to complete a
programming task.

Section 3.2 describes how to use the operating system’s process information
services to gather information about a process or kernel thread.

Section 3.3 describes how to change a process’s scheduling.

Section 3.4 describes the affinity and capability mechanisms for CPU scheduling.

Section 3.5 describes how to change a process’s name.

Section 3.6 describes how to access another process’s context.

Section 3.7 describes how to synchronize programs by setting specific times for
program execution.

Section 3.8 describes how to suspend, resume, and stop program execution.

3.1 Using Process Control for Programming Tasks
Process control features in the operating system allow you to employ the following
techniques to design your application:

• Modularize application programs so that each process or kernel thread of the
application executes a single task

• Perform parallel processing, in which one process or kernel thread executes
one part of a program while another process or kernel thread executes
another part

• Implement application program control, in which one process manages and
coordinates the activities of several other processes

• Schedule program execution

• Dedicate a process to execute DCL commands

• Isolate code for one or more of the following reasons:

To debug logic errors

To execute privileged code

To execute sensitive code

Among the services and routines the operating system provides to help you
monitor and control the processes or kernel threads involved in your application
are those that perform the following functions:

• Obtaining process information

3–1

Process Control
3.1 Using Process Control for Programming Tasks

• Obtaining kernel thread information

• Setting process privileges

• Setting process name

• Setting process scheduling

• Hibernating or suspending a process or kernel thread

• Deleting a process

• Synchronizing process execution

You can use system routines and DCL commands to accomplish these tasks.
Table 3–1 summarizes which routines and commands to use. You can use
the DCL commands in a command procedure that is executed as soon as the
subprocess (or detached process) is created.

For process synchronization techniques other than specifying a time for program
execution, refer to Chapter 4, Chapter 14, and Chapter 15.

Table 3–1 Routines and Commands for Controlling Processes and Kernel
Threads

Routine DCL Command Task

LIB$GETJPI
SYS$GETJPI
SYS$GETJPIW

SHOW PROCESS Return process or kernel thread
information. SYS$GETJPI(W) can
request process and thread information
from a specific PID or PRCNAM. If no
specific thread is identified, then the
data represents the initial thread.

SYS$SETPRV SET PROCESS Set process privileges.

SYS$SETPRI SET PROCESS Set process or kernel thread priority.
This service affects the base and current
priority of a specified kernel thread and
not the entire process.

SYS$SETSWM SET PROCESS Control swapping of process.

SYS$HIBER
SYS$SUSPND
SYS$RESUME

SET PROCESS Hibernate, suspend and resume a
process or kernel threads. These
services hibernate, suspend, or resume
all kernel threads associated with the
specified process.

SYS$SETPRN SET PROCESS Set process name

SYS$FORCEX
SYS$EXIT

EXIT and STOP Initiate process and image rundown. All
associated kernel threads of a specified
process are run down and deleted.

SYS$DELPRC EXIT and STOP Delete process.

SYS$CANTIM CANCEL Cancel timer for process or kernel
threads. This service finds and cancels
all timers for all threads associated with
the specified process.

SYS$ADJSTK SET PROCESS Adjust or initialize a stack pointer.
Stack adjustments are performed for the
kernel thread requesting the service.

(continued on next page)

3–2

Process Control
3.1 Using Process Control for Programming Tasks

Table 3–1 (Cont.) Routines and Commands for Controlling Processes and
Kernel Threads

Routine DCL Command Task

SYS$PROCESS_SCAN SHOW PROCESS Scans for a process or kernel thread on
the local system, or across the nodes in
a VMScluster system.

SYS$SETSTK None available Allows the current process or kernel
thread to change the size of its stacks.
This service adjusts the size of the
stacks of the kernel thread that invoked
the service.

By default, the routines and commands reference the current process or kernel
thread. To reference another process, you must specify either the process
identification (PID) number or the process name when you call the routine or
with a command qualifier when you enter commands. You must have the GROUP
privilege to reference a process with the same group number and a different
member number in its UIC and WORLD privilege to reference a process with a
different group number in its UIC.

The information presented in this section covers using the routines. If you want
to use the DCL commands in a command procedure, refer to the OpenVMS DCL
Dictionary.

3.1.1 Determining Privileges for Process Creation and Control
There are three levels of process control privilege.

• Processes with the same UIC can always issue process control services for one
another.

• You need the GROUP privilege to issue process control services for other
processes executing in the same group.

• You need the WORLD privilege to issue process control services for any
process in the system.

You need additional privileges to perform some specific functions; for example,
raising the base priority of a process requires ALTPRI privilege.

3.1.2 Determining Process Identification
There are two types of process identification:

• Process identification (PID) number

The system assigns this unique 32-bit number to a process when it is created.
If you provide the pidadr argument to the SYS$CREPRC system service, the
system returns the process identification number at the location specified.
You can then use the process identification number in subsequent process
control services.

• Process name

There are two types of process names:

Process name

3–3

Process Control
3.1 Using Process Control for Programming Tasks

A process name is a 1- to 15-character name string. Each process name
must be unique within its group (processes in different groups can have
the same name). You can assign a name to a process by specifying the
prcnam argument when you create it. You can then use this name to
refer to the process in other system service calls. Note that you cannot
use a process name to specify a process outside the caller’s group; you
must use a process identification (PID) number.

Full process name

The full process name is unique for each process in the cluster. Full
process name strings can be up to 23 characters long and are configured
in the following way:

1–6 characters for the node name
2 characters for the colons (::) that follow the node name
1–15 characters for the local process name

For example, you could call the SYS$CREPRC system service, as follows:

unsigned int orionid=0, status;
$DESCRIPTOR(orion,"ORION");

.

.

.
status = SYS$CREPRC(&orionid, /* pidadr (process id returned) */

&orion, /* prcnam - process name */
. . .);

The service returns the process identification in the longword at ORIONID. You
can now use either the process name (ORION) or the PID (ORIONID) to refer to
this process in other system service calls.

A process can set or change its own name with the Set Process Name ($SETPRN)
system service. For example, a process can set its name to CYGNUS, as follows:

/* Descriptor for process name */
$DESCRIPTOR(cygnus,"CYGNUS");

status = SYS$SETPRN(&cygnus); /* prcnam - process name */

Most of the process control services accept the prcnam or the pidadr argument
or both. However, you should identify a process by its process identification
number for the following reasons:

• The service executes faster because it does not have to search a table of
process names.

• For a process not in your group, you must use the process identification
number (see Section 3.1.3).

If you specify the PID address, the service uses the PID address. If you specify
the process name without a PID address, the sevice uses the process name. If
you specify both—the process name and PID address—the PID address is used
unless the contents of the PID is 0. In that case, the process name is used. If you
specify a PID address of 0 without a process name, then the service is performed
for the calling process.

If you specify neither the process name argument nor the process identification
number argument, the service is performed for the calling process. If the PID
address is specified, the service returns the PID of the target process in it.
Table 3–2 summarizes the possible combinations of these arguments and explains
how the services interpret them.

3–4

Process Control
3.1 Using Process Control for Programming Tasks

Table 3–2 Process Identification

Process
Name
Specified?

PID
Address
Specified?

Contents of
PID

Resultant
Action
by Services

No No – The process identification of the
calling process is used, but is
not returned.

No Yes 0 The process identification of
the calling process is used and
returned.

No Yes PID The process identification is
used and returned.

Yes No – The process name is used. The
process identification is not
returned.

Yes Yes 0 The process name is used and
the process identification is
returned.

Yes Yes PID The process identification is
used and returned; the process
name is ignored.

3.1.3 Qualifying Process Naming Within Groups
Process names are always qualified by their group number. The system maintains
a table of all process names and the UIC associated with each. When you use the
prcnam argument in a process control service, the table is searched for an entry
that contains the specified process name and the group number of the calling
process.

To use process control services on processes within its group, a calling process
must have the GROUP user privilege; this privilege is not required when you
specify a process with the same UIC as the caller.

The search for a process name fails if the specified process name does not have
the same group number as the caller. The search fails even if the calling process
has the WORLD user privilege. To execute a process control service for a process
that is not in the caller’s group, the requesting process must use a process
identification and must have the WORLD user privilege.

3.2 Obtaining Process Information
The operating system’s process information procedures enable you to gather
information about processes and kernel threads. You can obtain information
about one process or a group of processes on the local system or on remote nodes
in a VMScluster system. You can also obtain process lock information. DCL
commands such as SHOW SYSTEM and SHOW PROCESS use the process
information procedures to display information about processes. You can also use
the process information procedures within your programs.

The following are process information procedures:

• Get Job/Process Information (SYS$GETJPI(W))

• Get Job/Process Information (LIB$GETJPI)

• Process Scan (SYS$PROCESS_SCAN)

3–5

Process Control
3.2 Obtaining Process Information

• Get Lock Information (SYS$GETLKI)

The SYS$GETJPI(W) and SYS$PROCESS_SCAN system services can also be
used to get kernel threads information. SYS$GETJPI(W) can request threads
information from a particular process ID or process name. SYS$PROCESS_SCAN
can request information about all threads in a process, or all threads for each
multithreaded process on the system.

For more information about SYS$GETJPI, SYS$PROCESS_SCAN, and
SYS$GETLKI, see the OpenVMS System Services Reference Manual.

The differences among these procedures are as follows:

• SYS$GETJPI operates asynchronously.

• SYS$GETJPIW and LIB$GETJPI operate synchronously.

• SYS$GETJPI and SYS$GETJPIW can obtain one or more pieces of
information about a process or kernel thread in a single call.

• LIB$GETJPI can obtain only one piece of information about a process or
kernel thread in a single call.

• SYS$GETJPI and SYS$GETJPIW can specify an AST to execute at the
completion of the routine.

• SYS$GETJPI and SYS$GETJPIW can use an I/O status block (IOSB) to test
for completion of the routine.

• LIB$GETJPI can return some items either as strings or as numbers. It is
often the easiest to call from a high-level language because the caller is not
required to construct an item list.

• SYS$GETLKI returns information about the lock database.

3.2.1 Using the PID to Obtain Information
The process information procedures return information about processes by using
the process identification (PID) or the process name. The PID is a 32-bit number
that is unique for each process in the cluster. Specify the PID by using the
pidadr argument. All the significant digits of a PID must be specified; only
leading zeros can be omitted.

With kernel threads, the PID continues to identify a process, but can also identify
a kernel thread within that process. In a multithreaded process each kernel
thread has its own PID which is based on the initial threads PID.

3.2.2 Using the Process Name to Obtain Information
To obtain information about a process using the process name, specify the
prcnam argument. Although a PID is unique for each process in the cluster, a
process name is unique (within a UIC group) only for each process on a node.
To locate information about processes on the local node, specify a process name
string of 1 to 15 characters. To locate information about a process on a particular
node, specify the full process name, which can be up to 23 characters long. The
full process name is configured in the following way:

• 1 to 6 characters for the node name

• 2 characters for the colons (::) that follow the node name

• 1 to 15 characters for the local process name

3–6

Process Control
3.2 Obtaining Process Information

Note that a local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a process
named SMITH.

OpenVMS Programming Interfaces: Calling a System Routine and the OpenVMS
System Services Reference Manual describe these routines completely, listing
all items of information that you can request. LIB$GETJPI, SYS$GETJPI, and
SYS$GETJPIW share the same item codes with the following exception: LIB$K_
items can be accessed only by LIB$GETJPI.

In the following example, the string argument rather than the numeric argument
is specified, causing LIB$GETJPI to return the UIC of the current process as a
string:

! Define request codes
INCLUDE ’($JPIDEF)’

! Variables for LIB$GETJPI
CHARACTER*9 UIC
INTEGER LEN

STATUS = LIB$GETJPI (JPI$_UIC,
2 ,,,
2 UIC,
2 LEN)

To specify a list of items for SYS$GETJPI or SYS$GETJPI(W) (even if that
list contains only one item), use a record structure. Example 3–1 uses
SYS$GETJPI(W) to request the process name and user name associated with
the process whose process identification number is in SUBPROCESS_PID.

Example 3–1 Obtaining Different Types of Process Information
.
.
.

! PID of subprocess
INTEGER SUBPROCESS_PID

! Include the request codes
INCLUDE ’($JPIDEF)’

(continued on next page)

3–7

Process Control
3.2 Obtaining Process Information

Example 3–1 (Cont.) Obtaining Different Types of Process Information
! Define itmlst structure
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN
INTEGER*2 CODE
INTEGER*4 BUFADR
INTEGER*4 RETLENADR
END MAP
MAP
INTEGER*4 END_LIST

END MAP
END UNION
END STRUCTURE
! Declare GETJPI itmlst
RECORD /ITMLST/ JPI_LIST(3)
! Declare buffers for information
CHARACTER*15 PROCESS_NAME
CHARACTER*12 USER_NAME
INTEGER*4 PNAME_LEN,
2 UNAME_LEN
! Declare I/O status structure
STRUCTURE /IOSB/
INTEGER*2 STATUS,
2 COUNT
INTEGER*4 %FILL
END STRUCTURE
! Declare I/O status variable
RECORD /IOSB/ JPISTAT
! Declare status and routine
INTEGER*4 STATUS,
2 SYS$GETJPIW

.

. ! Define SUBPROCESS_PID

.
! Set up itmlst
JPI_LIST(1).BUFLEN = 15
JPI_LIST(1).CODE = JPI$_PRCNAM
JPI_LIST(1).BUFADR = %LOC(PROCESS_NAME)
JPI_LIST(1).RETLENADR = %LOC(PNAME_LEN)
JPI_LIST(2).BUFLEN = 12
JPI_LIST(2).CODE = JPI$_USERNAME
JPI_LIST(2).BUFADR = %LOC(USER_NAME)
JPI_LIST(2).RETLENADR = %LOC(UNAME_LEN)
JPI_LIST(3).END_LIST = 0

(continued on next page)

3–8

Process Control
3.2 Obtaining Process Information

Example 3–1 (Cont.) Obtaining Different Types of Process Information

! Request information and wait for it
STATUS = SYS$GETJPIW (,
2 SUBPROCESS_PID,
2 ,
2 JPI_LIST,
2 JPISTAT,
2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Check final return status
IF (.NOT. JPISTAT.STATUS) THEN
CALL LIB$SIGNAL (%VAL(JPISTAT.STATUS))

END IF
.
.
.

3.2.3 Using SYS$GETJPI and LIB$GETJPI
SYS$GETJPI uses the PID or the process name to obtain information about
one process and the �� wildcard as the pidadr to obtain information about
all processes on the local system. If a PID or process name is not specified,
SYS$GETJPI returns information about the calling process. SYS$GETJPI cannot
perform a selective search—it can search for only one process at a time in the
cluster or for all processes on the local system. If you want to perform a selective
search for information or get information about processes across the cluster, use
SYS$GETJPI with SYS$PROCESS_SCAN.

3.2.3.1 Requesting Information About a Single Process
Example 3–2 is a Fortran program that displays the process name and the
PID of the calling program. If you want to get the same information about
each process on the system, specify the initial process identification argument
as �� when you invoke LIB$GETJPI or SYS$GETJPI(W). Call the GETJPI
routine (whichever you choose) repeatedly until it returns a status of SS$_
NOMOREPROC, indicating that all processes on the system have been examined.

Example 3–2 Using SYS$GETJPI to Obtain Calling Process Information

! No process name or PID is specified; $GETJPI returns data on the
! calling process.

PROGRAM CALLING_PROCESS

IMPLICIT NONE ! Implicit none

INCLUDE ’($jpidef) /nolist’ ! Definitions for $GETJPI

INCLUDE ’($ssdef) /nolist’ ! System status codes

STRUCTURE /JPIITMLST/ ! Structure declaration for
UNION ! $GETJPI item lists
MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 RETLENADR

(continued on next page)

3–9

Process Control
3.2 Obtaining Process Information

Example 3–2 (Cont.) Using SYS$GETJPI to Obtain Calling Process Information

END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END_LIST ! an item list
END MAP
END UNION
END STRUCTURE
RECORD /JPIITMLST/ ! Declare the item list for
2 JPILIST(3) ! $GETJPI

INTEGER*4 SYS$GETJPIW ! System service entry points

INTEGER*4 STATUS, ! Status variable
2 PID ! PID from $GETJPI

INTEGER*2 IOSB(4) ! I/O Status Block for $GETJPI

CHARACTER*16
2 PRCNAM ! Process name from $GETJPI
INTEGER*2 PRCNAM_LEN ! Process name length
! Initialize $GETJPI item list

JPILIST(1).BUFLEN = 4
JPILIST(1).CODE = JPI$_PID
JPILIST(1).BUFADR = %LOC(PID)
JPILIST(1).RETLENADR = 0
JPILIST(2).BUFLEN = LEN(PRCNAM)
JPILIST(2).CODE = JPI$_PRCNAM
JPILIST(2).BUFADR = %LOC(PRCNAM)
JPILIST(2).RETLENADR = %LOC(PRCNAM_LEN)
JPILIST(3).END_LIST = 0
! Call $GETJPI to get data for this process

STATUS = SYS$GETJPIW (
2 , ! No event flag
2 , ! No PID
2 , ! No process name
2 JPILIST, ! Item list
2 IOSB, ! Always use IOSB with $GETJPI!
2 , ! No AST
2) ! No AST arg
! Check the status in both STATUS and the IOSB, if
! STATUS is OK then copy IOSB(1) to STATUS

IF (STATUS) STATUS = IOSB(1)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
TYPE 1010, PID, PRCNAM(1:PRCNAM_LEN)

1010 FORMAT (’ ’,Z8.8,’ ’,A)
ELSE

CALL LIB$SIGNAL(%VAL(STATUS))
END IF

END

3–10

Process Control
3.2 Obtaining Process Information

Example 3–3 creates the file PROCNAME.RPT that lists, using LIB$GETJPI, the
process name of each process on the system. If the process running this program
does not have the privilege necessary to access a particular process, the program
writes the words NO PRIVILEGE in place of the process name. If a process
is suspended, LIB$GETJPI cannot access it and the program writes the word
SUSPENDED in place of the process name. Note that, in either of these cases,
the program changes the error value in STATUS to a success value so that the
loop calling LIB$GETJPI continues to execute.

Example 3–3 Obtaining the Process Name
.
.
.

! Status variable and error codes
INTEGER STATUS,
2 STATUS_OK,
2 LIB$GET_LUN,
2 LIB$GETJPI
INCLUDE ’($SSDEF)’
PARAMETER (STATUS_OK = 1)

! Logical unit number and file name
INTEGER*4 LUN
CHARACTER*(*) FILE_NAME
PARAMETER (FILE_NAME = ’PROCNAME.RPT’)
! Define item codes for LIB$GETJPI
INCLUDE ’($JPIDEF)’

! Process name
CHARACTER*15 NAME
INTEGER LEN
! Process identification
INTEGER PID /-1/

.

.

.
! Get logical unit number and open the file
STATUS = LIB$GET_LUN (LUN)
OPEN (UNIT = LUN,
2 FILE = ’PROCNAME.RPT’,
2 STATUS = ’NEW’)
! Get information and write it to file
DO WHILE (STATUS)
STATUS = LIB$GETJPI(JPI$_PRCNAM,

2 PID,
2 ,,
2 NAME,
2 LEN)

(continued on next page)

3–11

Process Control
3.2 Obtaining Process Information

Example 3–3 (Cont.) Obtaining the Process Name
! Extra space in WRITE commands is for
! FORTRAN carriage control
IF (STATUS) THEN
WRITE (UNIT = LUN,

2 FMT = ’(2A)’) ’ ’, NAME(1:LEN)
STATUS = STATUS_OK

ELSE IF (STATUS .EQ. SS$_NOPRIV) THEN
WRITE (UNIT = LUN,

2 FMT = ’(2A)’) ’ ’, ’NO PRIVILEGE’
STATUS = STATUS_OK

ELSE IF (STATUS .EQ. SS$_SUSPENDED) THEN
WRITE (UNIT = LUN,

2 FMT = ’(2A)’) ’ ’, ’SUSPENDED’
STATUS = STATUS_OK

END IF

END DO
! Close file
IF (STATUS .EQ. SS$_NOMOREPROC)
2 CLOSE (UNIT = LUN)

.

.

.

Example 3–4 demonstrates how to use the process name to obtain information
about a process.

Example 3–4 Using SYS$GETJPI and the Process Name to Obtain Information
About a Process

! To find information for a particular process by name,
! substitute this code, which includes a process name,
! to call $GETJPI in Example 3-2

! Call $GETJPI to get data for a named process

STATUS = SYS$GETJPIW (
2 , ! No event flag
2 , ! No PID
2 ’SMITH_1’, ! Process name
2 JPILIST, ! Item list
2 IOSB, ! Always use IOSB with $GETJPI!
2 , ! No AST
2) ! No AST arg

3.2.3.2 Requesting Information About All Processes on the Local System
You can use SYS$GETJPI to perform a wildcard search on all processes on the
local system. When the initial pidadr argument is specified as ��, SYS$GETJPI
returns requested information for each process that the program has privilege
to access. The requested information is returned for one process per call to
SYS$GETJPI.

To perform a wildcard search, call SYS$GETJPI in a loop, testing the return
status.

3–12

Process Control
3.2 Obtaining Process Information

When performing wildcard searches, SYS$GETJPI returns an error status for
processes that are inaccessible. When a program that uses a �� wildcard checks
the status value returned by SYS$GETJPI, it should test for the following status
codes:

Status Explanation

SS$_NOMOREPROC All processes have been returned.

SS$_NOPRIV The caller lacks sufficient privilege to examine a process.

SS$_SUSPENDED The target process is being deleted or is suspended and
cannot return the information.

Example 3–5 is a C program that demonstrates how to use the SYS$GETJPI ��
wildcard to search for all processes on the local system.

Example 3–5 Using SYS$GETJPI to Request Information About All Processes
on the Local System

#include <stdio.h>
#include <jpidef.h>
#include <stdlib.h>
#include <ssdef.h>

/* Item descriptor */

struct {
unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;

}itm_lst;

/* I/O Status Block */

struct {
unsigned short iostat;
unsigned short iolen;
unsigned int device_info;

}iosb;

main() {

unsigned short len;
unsigned int efn=1,pidadr = -1,status, usersize;
char username[12];

/* Initialize the item list */

itm_lst.buflen = 12;
itm_lst.item_code = JPI$_USERNAME;
itm_lst.bufaddr = username;
itm_lst.retlenaddr = &usersize;
itm_lst.terminator = 0;

do{

(continued on next page)

3–13

Process Control
3.2 Obtaining Process Information

Example 3–5 (Cont.) Using SYS$GETJPI to Request Information About All
Processes on the Local System

status = SYS$GETJPIW(0, /* no event flag */
&pidadr, /* process id */
0, /* process name */
&itm_lst, /* item list */
&iosb, /* I/O status block */
0, /* astadr (AST routine) */
0); /* astprm (AST parameter) */

switch(status)
{

case SS$_NOPRIV:
printf("\nError: No privileges for attempted operation");
break;

case SS$_SUSPENDED:
printf("\nError: Process is suspended");
break;

case SS$_NORMAL:
if (iosb.iostat == SS$_NORMAL)

printf("\nUsername: %s",username);
else

printf("\nIOSB condition value %d returned",iosb.iostat);
}

}while(status != SS$_NOMOREPROC);

}

3.2.4 Using SYS$GETJPI with SYS$PROCESS_SCAN
Using the SYS$PROCESS_SCAN system service greatly enhances the power
of SYS$GETJPI. With this combination, you can search for selected groups of
processes or kernel threads on the local system as well as for processes or kernel
threads on remote nodes or across the cluster. When you use SYS$GETJPI alone,
you specify the pidadr or the prcnam argument to locate information about one
process. When you use SYS$GETJPI with SYS$PROCESS_SCAN, the pidctx
argument generated by SYS$PROCESS_SCAN is used as the pidadr argument
to SYS$GETJPI. This context allows SYS$GETJPI to use the selection criteria
set up in the call to SYS$PROCESS_SCAN.

When using SYS$GETJPI with a PRCNAM specified, SYS$GETJPI returns data
for only the initial thread. This parallels the behavior of the DCL commands
SHOW SYSTEM, SHOW PROCESS, and MONITOR PROCESS. If a valid
PIDADR is specified, then the data returned describes only that specific kernel
thread. If a PIDADR of zero is specified, then the data returned describes the
calling kernel thread.

SYS$GETJPI has the flag, JPI$_THREAD, as part of the JPI$_GETJPI_
CONTROL_FLAGS item code. The JPI$_THREAD flag designates that the
service call is requesting data for all of the kernel threads in a multithreaded
process. If the call is made with JPI$_THREAD set, then SYS$GETJPI begins
with the initial thread, and SYS$GETJPI returns SS$_NORMAL. Subsequent
calls to SYS$GETJPI with JPI$_THREAD specified returns data for the next
thread until there are no more threads, at which time the service returns SS$_
NOMORETHREAD.

3–14

Process Control
3.2 Obtaining Process Information

If you specify a wildcard PIDADR �� along with JPI$_THREAD, you cause
SYS$GETJPI to return information for all threads for all processes on the system
on subsequent calls. SYS$GETJPI returns the status SS$_NORMAL until there
are no more processes, at which time it returns SS$_NOMOREPROC. If you
specify a wildcard search, you must request either the JPI$_PROC_INDEX or the
JPI$_INITIAL_THREAD_PID item code to distinguish the transition from the
last thread of a multithreaded process to the next process. The PROC_INDEX
and the INITIAL_THREAD_PID are different for each process on the system.

Table 3–3 shows four item codes of SYS$GETJPI that provide kernel thread
information.

Table 3–3 SYS$GETJPI Kernel Threads Item Codes

Item Code Meaning

JPI$_INITIAL_
THREAD_PID

Returns the PID of the initial thread for the target process.

JPI$_KT_COUNT Returns the current count of kernel threads for the target
process.

JPI$_MULTITHREAD Returns the maximum kernel thread count allowed for the target
process.

JPI$_THREAD_
INDEX

Returns the kernel thread index for the target thread or process.

This wildcard search is initiated by invoking SYS$GETJPI with a �� specified for
the PID, and is only available on the local node. With kernel threads, a search for
all threads in a single process is available, both on the local node and on another
node on the cluster.

In a dual architecture or mixed-version cluster, it is possible that one or more
nodes in the cluster do not support kernel threads. To indicate this condition,
a threads capability bit (CSB$M_CAP_THREADS) exists in the CSB$L_
CAPABILITY cell in the cluster status block. If this bit is set for a node, it
indicates that the node supports kernel threads. This information is passed
around as part of the normal cluster management activity when a node is added
to a cluster. If a SYS$GETJPI request that requires thread support needs to
be passed to another node in the cluster, a check is made on whether the node
supports kernel threads before the request is sent to that node. If the node
supports kernel threads, the request is sent. If the node does not support kernel
threads, the status SS$_INCOMPAT is returned to the caller and the request is
not sent to the other node.

You can use SYS$PROCESS_SCAN only with SYS$GETJPI; you cannot use
it alone. The process context generated by SYS$PROCESS_SCAN is used like
the �� wildcard except that it is initialized by calling the SYS$PROCESS_
SCAN service instead of by a simple assignment statement. However, the
SYS$PROCESS_SCAN context is more powerful and more flexible than the ��
wildcard. SYS$PROCESS_SCAN uses an item list to specify selection criteria to
be used in a search for processes and produces a context longword that describes
a selective search for SYS$GETJPI.

Using SYS$GETJPI with SYS$PROCESS_SCAN to perform a selective search
is a more efficient way to locate information because only information about
the processes you have selected is returned. For example, you can specify a
search for processes owned by one user name, and SYS$GETJPI returns only

3–15

Process Control
3.2 Obtaining Process Information

the processes that match the specified user name. You can specify a search for
all batch processes and SYS$GETJPI returns only information about processes
running as batch jobs. You can specify a search for all batch processes owned by
one user name and SYS$GETJPI returns only information about processes owned
by that user name that are running as batch jobs.

By default, SYS$PROCESS_SCAN sets up a context for only the initial thread of
a multithreaded process. However, if the value PSCAN$_THREAD is specified for
the item code PSCAN$_PSCAN_CONTOL_FLAGS, then threads are included in
the scan. The PSCAN$_THREAD flag takes precedence over the JPI$_THREAD
flag in the SYS$GETJPI call. With PSCAN$_THREAD specified, threads are
included in the entire scan. With PSCAN$_THREAD not specified, threads are
included in the scan for a specific SYS$GETJPI call only if JPI$_THREAD is
specified.

Table 3–4 shows two item codes of SYS$PROCESS_SCAN that provide kernel
thread information.

Table 3–4 SYS$PROCESS_SCAN Kernel Threads Item Codes

Item Code Meaning

PSCAN$_KT_COUNT Uses the current count of kernel threads for the process as a
selection criteria. The valid item-specific flags for this item code
are EQL, GEQ, GTR, LEQ, LSS, NEQ, and OR.

PSCAN$_
MULTITHREAD

Uses the maximum count of kernel threads for the process as a
selection criteria. The valid item-specific flags for this item codes
are EQL, GEQ, GTR, LEQ, LSS, NEQ, and OR.

3.2.4.1 Using SYS$PROCESS_SCAN Item List and Item-Specific Flags
SYS$PROCESS_SCAN uses an item list to specify the selection criteria for the
SYS$GETJPI search.

Each entry in the SYS$PROCESS_SCAN item list contains the following:

• The attribute of the process to be examined

• The value of the attribute or a pointer to the value

• Item-specific flags to control how to interpret the value

Item-specific flags enable you to control selection information. For example,
you can use flags to select only those processes that have attribute values that
correspond to the value in the item list, as shown in Table 3–5.

Table 3–5 Item-Specific Flags

Item-Specific Flag Description

PSCAN$M_OR Match this value or the next value.

PSCAN$M_EQL Match value exactly (the default.)

PSCAN$M_NEQ Match if value is not equal.

PSCAN$M_GEQ Match if value is greater than or equal to.

PSCAN$M_GTR Match if value is greater than.

(continued on next page)

3–16

Process Control
3.2 Obtaining Process Information

Table 3–5 (Cont.) Item-Specific Flags

Item-Specific Flag Description

PSCAN$M_LEQ Match if value is less than or equal to.

PSCAN$M_LSS Match if value is less than.

PSCAN$M_CASE_BLIND Match without regard to case of letters.

PSCAN$M_PREFIX_MATCH Match on the leading substring.

PSCAN$M_WILDCARD Match string is a wildcard pattern.

The PSCAN$M_OR flag is used to connect entries in an item list. For example,
in a program that searches for processes owned by several specified users, each
user name must be specified in a separate item list entry. The item list entries
are connected with the PSCAN$M_OR flag as shown in the following Fortran
example. This example connects all the processes on the local node that belong to
SMITH, JONES, or JOHNSON.

PSCANLIST(1).BUFLEN = LEN(’SMITH’)
PSCANLIST(1).CODE = PSCAN$_USERNAME
PSCANLIST(1).BUFADR = %LOC(’SMITH’)
PSCANLIST(1).ITMFLAGS = PSCAN$M_OR
PSCANLIST(2).BUFLEN = LEN(’JONES’)
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC(’JONES’)
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = LEN(’JOHNSON’)
PSCANLIST(3).CODE = PSCAN$_USERNAME
PSCANLIST(3).BUFADR = %LOC(’JOHNSON’)
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

Use the PSCAN$M_WILDCARD flag to specify that a character string is to be
treated as a wildcard. For example, to find all process names that begin with the
letter A and end with the string ER, use the string A*ER with the PSCAN$M_
WILDCARD flag. If the PSCAN$M_WILDCARD flag is not specified, the search
looks for the 4-character process name A*ER.

The PSCAN$M_PREFIX_MATCH defines a wildcard search to match the initial
characters of a string. For example, to find all process names that start with
the letters AB, use the string AB with the PSCAN$M_PREFIX_MATCH flag. If
you do not specify the PSCAN$M_PREFIX_MATCH flag, the search looks for a
process with the 2-character process name AB.

3.2.4.2 Requesting Information About Processes That Match One Criterion
You can use SYS$GETJPI with SYS$PROCESS_SCAN to search for processes
that match an item list with one criterion. For example, if you specify a search
for processes owned by one user name, SYS$GETJPI returns only those processes
that match the specified user name.

Example 3–6 demonstrates how to perform a SYS$PROCESS_SCAN search on
the local node to select all processes that are owned by user SMITH.

3–17

Process Control
3.2 Obtaining Process Information

Example 3–6 Using SYS$GETJPI and SYS$PROCESS_SCAN to Select Process
Information by User Name

PROGRAM PROCESS_SCAN

IMPLICIT NONE ! Implicit none

INCLUDE ’($jpidef) /nolist’ ! Definitions for $GETJPI
INCLUDE ’($pscandef) /nolist’ ! Definitions for $PROCESS_SCAN
INCLUDE ’($ssdef) /nolist’ ! Definitions for SS$_NAMES

STRUCTURE /JPIITMLST/ ! Structure declaration for
UNION ! $GETJPI item lists
MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 RETLENADR
END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END_LIST ! an item list
END MAP
END UNION
END STRUCTURE
STRUCTURE /PSCANITMLST/ ! Structure declaration for
UNION ! $PROCESS_SCAN item lists
MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 ITMFLAGS
END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END_LIST ! an item list
END MAP
END UNION
END STRUCTURE
RECORD /PSCANITMLST/ ! Declare the item list for
2 PSCANLIST(12) ! $PROCESS_SCAN

RECORD /JPIITMLST/ ! Declare the item list for
2 JPILIST(3) ! $GETJPI

INTEGER*4 SYS$GETJPIW, ! System service entry points
2 SYS$PROCESS_SCAN

INTEGER*4 STATUS, ! Status variable
2 CONTEXT, ! Context from $PROCESS_SCAN
2 PID ! PID from $GETJPI

INTEGER*2 IOSB(4) ! I/O Status Block for $GETJPI

CHARACTER*16
2 PRCNAM ! Process name from $GETJPI
INTEGER*2 PRCNAM_LEN ! Process name length

LOGICAL*4 DONE ! Done with data loop

(continued on next page)

3–18

Process Control
3.2 Obtaining Process Information

Example 3–6 (Cont.) Using SYS$GETJPI and SYS$PROCESS_SCAN to Select
Process Information by User Name

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for processes owned by user SMITH

PSCANLIST(1).BUFLEN = LEN(’SMITH’)
PSCANLIST(1).CODE = PSCAN$_USERNAME
PSCANLIST(1).BUFADR = %LOC(’SMITH’)
PSCANLIST(1).ITMFLAGS = 0
PSCANLIST(2).END_LIST = 0
!**
!* End of item list initialization *
!**

STATUS = SYS$PROCESS_SCAN (! Set up the scan context
2 CONTEXT,
2 PSCANLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Loop calling $GETJPI with the context

DONE = .FALSE.
DO WHILE (.NOT. DONE)

! Initialize $GETJPI item list

JPILIST(1).BUFLEN = 4
JPILIST(1).CODE = JPI$_PID
JPILIST(1).BUFADR = %LOC(PID)
JPILIST(1).RETLENADR = 0
JPILIST(2).BUFLEN = LEN(PRCNAM)
JPILIST(2).CODE = JPI$_PRCNAM
JPILIST(2).BUFADR = %LOC(PRCNAM)
JPILIST(2).RETLENADR = %LOC(PRCNAM_LEN)
JPILIST(3).END_LIST = 0

! Call $GETJPI to get the next SMITH process

STATUS = SYS$GETJPIW (
2 , ! No event flag
2 CONTEXT, ! Process context
2 , ! No process name
2 JPILIST, ! Item list
2 IOSB, ! Always use IOSB with $GETJPI!
2 , ! No AST
2) ! No AST arg

! Check the status in both STATUS and the IOSB, if
! STATUS is OK then copy IOSB(1) to STATUS

IF (STATUS) STATUS = IOSB(1)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
TYPE 1010, PID, PRCNAM(1:PRCNAM_LEN)

1010 FORMAT (’ ’,Z8.8,’ ’,A)
ELSE IF (STATUS .EQ. SS$_NOMOREPROC) THEN

DONE = .TRUE.
ELSE

CALL LIB$SIGNAL(%VAL(STATUS))
END IF

(continued on next page)

3–19

Process Control
3.2 Obtaining Process Information

Example 3–6 (Cont.) Using SYS$GETJPI and SYS$PROCESS_SCAN to Select
Process Information by User Name

END DO

END

3.2.4.3 Requesting Information About Processes That Match Multiple Values for One Criterion
You can use SYS$PROCESS_SCAN to search for processes that match one of
a number of values for a single criterion, such as processes owned by several
specified users.

Each value must be specified in a separate item list entry, and the item
list entries must be connected with the PSCAN$M_OR item-specific flag.
SYS$GETJPI selects each process that matches any of the item values.

For example, to look for processes with user names SMITH, JONES, or
JOHNSON, substitute code such as that shown in Example 3–7 to initialize
the item list in Example 3–6.

Example 3–7 Using SYS$GETJPI and SYS$PROCESS_SCAN with Multiple
Values for One Criterion

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for users SMITH, JONES and JOHNSON

PSCANLIST(1).BUFLEN = LEN(’SMITH’)
PSCANLIST(1).CODE = PSCAN$_USERNAME
PSCANLIST(1).BUFADR = %LOC(’SMITH’)
PSCANLIST(1).ITMFLAGS = PSCAN$M_OR
PSCANLIST(2).BUFLEN = LEN(’JONES’)
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC(’JONES’)
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = LEN(’JOHNSON’)
PSCANLIST(3).CODE = PSCAN$_USERNAME
PSCANLIST(3).BUFADR = %LOC(’JOHNSON’)
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

!**
!* End of item list initialization *
!**

3.2.4.4 Requesting Information About Processes That Match Multiple Criteria
You can use SYS$PROCESS_SCAN to search for processes that match values for
more than one criterion. When multiple criteria are used, a process must match
at least one value for each specified criterion.

Example 3–8 demonstrates how to find any batch process owned by either SMITH
or JONES. The program uses syntax like the following logical expression to
initialize the item list:

3–20

Process Control
3.2 Obtaining Process Information

((username = "SMITH") OR (username = "JONES"))

AND

(MODE = JPI$K_BATCH)

Example 3–8 Selecting Processes That Match Multiple Criteria

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for BATCH jobs owned by users SMITH and JONES

PSCANLIST(1).BUFLEN = LEN(’SMITH’)
PSCANLIST(1).CODE = PSCAN$_USERNAME
PSCANLIST(1).BUFADR = %LOC(’SMITH’)
PSCANLIST(1).ITMFLAGS = PSCAN$M_OR
PSCANLIST(2).BUFLEN = LEN(’JONES’)
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC(’JONES’)
PSCANLIST(2).ITMFLAGS = 0
PSCANLIST(3).BUFLEN = 0
PSCANLIST(3).CODE = PSCAN$_MODE
PSCANLIST(3).BUFADR = JPI$K_BATCH
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).END_LIST = 0

!**
!* End of item list initialization *
!**

See the OpenVMS System Services Reference Manual for more information about
SYS$PROCESS_SCAN item codes and flags.

3.2.5 Specifying a Node as Selection Criterion
Several SYS$PROCESS_SCAN item codes do not refer to attributes of a
process, but to the VMScluster node on which the target process resides. When
SYS$PROCESS_SCAN encounters an item code that refers to a node attribute, it
creates an alphabetized list of node names. SYS$PROCESS_SCAN then directs
SYS$GETJPI to compare the selection criteria against processes on these nodes.

SYS$PROCESS_SCAN ignores a node specification if it is running on a node
that is not part of a VMScluster system. For example, if you request that
SYS$PROCESS_SCAN select all nodes with the hardware model name VAX 6360,
this search returns information about local processes on a nonclustered system,
even if it is a MicroVAX system.

A remote SYS$GETJPI operation currently requires the system to send a message
to the CLUSTER_SERVER process on the remote node. The CLUSTER_SERVER
process then collects the information and returns it to the requesting node. This
has several implications for clusterwide searches:

• All remote SYS$GETJPI operations are asynchronous and must be
synchronized properly. Many applications that are not correctly synchronized
might seem to work on a single node because some SYS$GETJPI operations
are actually synchronous; however, these applications fail if they attempt
to examine processes on remote nodes. For more information on how to
synchronize SYS$GETJPI operations, see Chapter 14.

• The CLUSTER_SERVER process is always a current process, because it is
executing on behalf of SYS$GETJPI.

3–21

Process Control
3.2 Obtaining Process Information

• Attempts by SYS$GETJPI to examine a node do not succeed during a brief
period between the time a node joins the cluster and the time that the
CLUSTER_SERVER process is started. Searches that occur during this
period skip such a node. Searches that specify only such a booting node fail
with a SYS$GETJPI status of SS$_UNREACHABLE.

• SS$_NOMOREPROC is returned after all processes on all specified nodes
have been scanned.

3.2.5.1 Checking All Nodes on the Cluster for Processes
The SYS$PROCESS_SCAN system service can scan the entire cluster for
processes. For example, to scan the cluster for all processes owned by SMITH,
use code like that in Example 3–9 to initialize the item list to find all processes
with a nonzero cluster system identifier (CSID) and a user name of SMITH.

Example 3–9 Searching the Cluster for Process Information

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Search the cluster for jobs owned by SMITH

PSCANLIST(1).BUFLEN = 0
PSCANLIST(1).CODE = PSCAN$_NODE_CSID
PSCANLIST(1).BUFADR = 0
PSCANLIST(1).ITMFLAGS = PSCAN$M_NEQ
PSCANLIST(2).BUFLEN = LEN(’SMITH’)
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC(’SMITH’)
PSCANLIST(2).ITMFLAGS = 0
PSCANLIST(3).END_LIST = 0

!**
!* End of item list initialization *
!**

3.2.5.2 Checking Specific Nodes on the Cluster for Processes
You can specify a list of nodes as well. Example 3–10 demonstrates how to design
an item list to search for batch processes on node TIGNES, VALTHO, or 2ALPES.

Example 3–10 Searching for Process Information on Specific Nodes in the
Cluster

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Search for BATCH jobs on nodes TIGNES, VALTHO and 2ALPES

(continued on next page)

3–22

Process Control
3.2 Obtaining Process Information

Example 3–10 (Cont.) Searching for Process Information on Specific Nodes in
the Cluster

PSCANLIST(1).BUFLEN = LEN(’TIGNES’)
PSCANLIST(1).CODE = PSCAN$_NODENAME
PSCANLIST(1).BUFADR = %LOC(’TIGNES’)
PSCANLIST(1).ITMFLAGS = PSCAN$M_OR
PSCANLIST(2).BUFLEN = LEN(’VALTHO’)
PSCANLIST(2).CODE = PSCAN$_NODENAME
PSCANLIST(2).BUFADR = %LOC(’VALTHO’)
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = LEN(’2ALPES’)
PSCANLIST(3).CODE = PSCAN$_NODENAME
PSCANLIST(3).BUFADR = %LOC(’2ALPES’)
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).BUFLEN = 0
PSCANLIST(4).CODE = PSCAN$_MODE
PSCANLIST(4).BUFADR = JPI$K_BATCH
PSCANLIST(4).ITMFLAGS = 0
PSCANLIST(5).END_LIST = 0

!**
!* End of item list initialization *
!**

3.2.5.3 Conducting Multiple Simultaneous Searches with SYS$PROCESS_SCAN
Only one asynchronous remote SYS$GETJPI request per SYS$PROCESS_SCAN
context is permitted at a time. If you issue a second SYS$GETJPI request using
a context before a previous remote request using the same context has completed,
your process stalls in a resource wait until the previous remote SYS$GETJPI
request completes. This stall in the RWAST state prevents your process from
executing in user mode or receiving user-mode ASTs.

If you want to run remote searches in parallel, create multiple contexts by calling
SYS$PROCESS_SCAN once for each context. For example, you can design a
program that calls SYS$GETSYI in a loop to find the nodes in the VMScluster
system and creates a separate SYS$PROCESS_SCAN context for each remote
node. Each of these separate contexts can run in parallel. The DCL command
SHOW USERS uses this technique to obtain user information more quickly.

Only requests to remote nodes must wait until the previous search using the
same context has completed. If the SYS$PROCESS_SCAN context specifies
the local node, any number of SYS$GETJPI requests using that context can be
executed in parallel (within the limits implied by the process quotas for ASTLM
and BYTLM).

Note

When you use SYS$GETJPI to reference remote processes, you must
properly synchronize all SYS$GETJPI calls. Before the operating system’s
Version 5.2, if you did not follow these synchronization rules, your
programs might have appeared to run correctly. However, if you attempt
to run such improperly synchronized programs using SYS$GETJPI
with SYS$PROCESS_SCAN with a remote process, your program might
attempt to use the data before SYS$GETJPI has returned it.

3–23

Process Control
3.2 Obtaining Process Information

To perform a synchronous search in which the program waits until all requested
information is available, use SYS$GETJPIW with an iosb argument.

See the OpenVMS System Services Reference Manual for more information about
process identification, SYS$GETJPI, and SYS$PROCESS_SCAN.

3.2.6 Programming with SYS$GETJPI
The following sections describe some important considerations for programming
with SYS$GETJPI.

3.2.6.1 Using Item Lists Correctly
When SYS$GETJPI collects data, it makes multiple passes through the item list.
If the item list is self-modifying—that is, if the addresses for the output buffers
in the item list point back at the item list—SYS$GETJPI replaces the item list
information with the returned data. Therefore, incorrect data might be read or
unexpected errors might occur when SYS$GETJPI reads the item list again. To
prevent confusing errors, Digital recommends that you do not use self-modifying
item lists.

The number of passes that SYS$GETJPI needs depends on which item codes
are referenced and the state of the target process. A program that appears to
work normally might fail when a system has processes that are swapped out of
memory, or when a process is on a remote node.

3.2.6.2 Improving Performance by Using Buffered $GETJPI Operations
To request information about a process located on a remote node, SYS$GETJPI
must send a message to the remote node, wait for the response, and then
extract the data from the message received. When you perform a search on a
remote system, the program must repeat this sequence for each process that
SYS$GETJPI locates.

To reduce the overhead of such a remote search, use SYS$PROCESS_SCAN
with the PSCAN$_GETJPI_BUFFER_SIZE item code to specify a buffer size
for SYS$GETJPI. When the buffer size is specified by SYS$PROCESS_SCAN,
SYS$GETJPI packs information for several processes into one buffer and
transmits them in a single message. This reduction in the number of messages
improves performance.

For example, if the SYS$GETJPI item list requests 100 bytes of information,
you might specify a PSCAN$_GETJPI_BUFFER_SIZE of 1000 bytes so that
the service can place information for at least 10 processes in each message.
(SYS$GETJPI does not send fill data in the message buffer; therefore, information
for more than 10 processes can be packed into the buffer.)

The SYS$GETJPI buffer must be large enough to hold the data for at least one
process. If the buffer is too small, the error code SS$_IVBUFLEN is returned
from the SYS$GETJPI call.

You do not have to allocate space for the SYS$GETJPI buffer; buffer space
is allocated by SYS$PROCESS_SCAN as part of the search context that it
creates. Because SYS$GETJPI buffering is transparent to the program that
calls SYS$GETJPI, you do not have to modify the loop that calls SYS$GETJPI.

If you use PSCAN$_GETJPI_BUFFER_SIZE with SYS$PROCESS_SCAN, all
calls to SYS$GETJPI using that context must request the same item code
information. Because SYS$GETJPI collects information for more than one
process at a time within its buffers, you cannot change the item codes or the
lengths of the buffers in the SYS$GETJPI item list between calls. SYS$GETJPI

3–24

Process Control
3.2 Obtaining Process Information

returns the error SS$_BADPARAM if any item code or buffer length changes
between SYS$GETJPI calls. However, you can change the buffer addresses in the
SYS$GETJPI item list from call to call.

The SYS$GETJPI buffered operation is not used for searching the local node.
When a search specifies both multiple nodes and SYS$GETJPI buffering, the
buffering is used on remote nodes but is ignored on the local node. Example 3–11
demonstrates how to use a SYS$GETJPI buffer to improve performance.

Example 3–11 Using a SYS$GETJPI Buffer to Improve Performance

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Search for jobs owned by users SMITH and JONES
! across the cluster with $GETJPI buffering

PSCANLIST(1).BUFLEN = 0
PSCANLIST(1).CODE = PSCAN$_NODE_CSID
PSCANLIST(1).BUFADR = 0
PSCANLIST(1).ITMFLAGS = PSCAN$M_NEQ
PSCANLIST(2).BUFLEN = LEN(’SMITH’)
PSCANLIST(2).CODE = PSCAN$_USERNAME
PSCANLIST(2).BUFADR = %LOC(’SMITH’)
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = LEN(’JONES’)
PSCANLIST(3).CODE = PSCAN$_USERNAME
PSCANLIST(3).BUFADR = %LOC(’JONES’)
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).BUFLEN = 0
PSCANLIST(4).CODE = PSCAN$_GETJPI_BUFFER_SIZE
PSCANLIST(4).BUFADR = 1000
PSCANLIST(4).ITMFLAGS = 0
PSCANLIST(5).END_LIST = 0

!**
!* End of item list initialization *
!**

3.2.6.3 Fulfilling Remote SYS$GETJPI Quota Requirements
A remote SYS$GETJPI request uses system dynamic memory for messages.
System dynamic memory uses the process quota BYTLM. Follow these steps to
determine the number of bytes required by a SYS$GETJPI request:

1. Add the following together:

• The size of the SYS$PROCESS_SCAN item list

• The total size of all reference buffers for SYS$PROCESS_SCAN (the sum
of all buffer length fields in the item list)

• The size of the SYS$GETJPI item list

• The size of the SYS$GETJPI buffer

• The size of the calling process RIGHTSLIST

• Approximately 300 bytes for message overhead

2. Double this total.

The total is doubled because the messages consume system dynamic memory
on both the sending node and the receiving node.

3–25

Process Control
3.2 Obtaining Process Information

This formula for BYTLM quota applies to both buffered and nonbuffered
SYS$GETJPI requests. For buffered requests, use the value specified in the
SYS$PROCESS_SCAN item, PSCAN$_GETJPI_BUFFER_SIZE, as the size of the
buffer. For nonbuffered requests, use the total length of all data buffers specified
in the SYS$GETJPI item list as the size of the buffer.

If the BYTLM quota is insufficient, SYS$GETJPI (not SYS$PROCESS_SCAN)
returns the error SS$_EXBYTLM.

3.2.6.4 Using the SYS$GETJPI Control Flags
The JPI$_GETJPI_CONTROL_FLAGS item code, which is specified in the
SYS$GETJPI item list, provides additional control over SYS$GETJPI. Therefore,
SYS$GETJPI may be unable to retrieve all the data requested in an item list
because JPI$_GETJPI_CONTROL_FLAGS requests that SYS$GETJPI not
perform certain actions that may be necessary to collect the data. For example,
a SYS$GETJPI control flag may instruct the calling program not to retrieve a
process that has been swapped out of the balance set.

If SYS$GETJPI is unable to retrieve any data item because of the restrictions
imposed by the control flags, it returns the data length as 0. To verify that
SYS$GETJPI received a data item, examine the data length to be sure that it
is not 0. To make this verification possible, be sure to specify the return length
for each item in the SYS$GETJPI item list when any of the JPI$_GETJPI_
CONTROL_FLAGS flags is used.

Unlike other SYS$GETJPI item codes, the JPI$_GETJPI_CONTROL_FLAGS
item is an input item. The item list entry should specify a longword buffer. The
desired control flags should be set in this buffer.

Because the JPI$_GETJPI_CONTROL_FLAGS item code tells SYS$GETJPI how
to interpret the item list, it must be the first entry in the SYS$GETJPI item list.
The error code SS$_BADPARAM is returned if it is not the first item in the list.

The following are the SYS$GETJPI control flags.

JPI$M_NO_TARGET_INSWAP
When you specify JPI$M_NO_TARGET_INSWAP, SYS$GETJPI does not retrieve
a process that has been swapped out of the balance set. Use JPI$M_NO_
TARGET_INSWAP to avoid the additional load of swapping processes into a
system. For example, use this flag with SHOW SYSTEM to avoid bringing
processes into memory to display their accumulated CPU time.

If you specify JPI$M_NO_TARGET_INSWAP and request information from a
process that has been swapped out, the following consequences occur:

• Data stored in the virtual address space of the process is not accessible.

• Data stored in the process header (PHD) may not be accessible.

• Data stored in resident data structures, such as the process control block
(PCB) or the job information block (JIB), is accessible.

You must examine the return length of an item to verify that the item was
retrieved. The information may be located in a different data structure in another
release of the operating system.

3–26

Process Control
3.2 Obtaining Process Information

JPI$M_NO_TARGET_AST
When JPI$M_NO_TARGET_AST is specified, SYS$GETJPI does not deliver a
kernel-mode AST to the target process. JPI$M_NO_TARGET_AST is used to
avoid executing a target process in order to retrieve information.

If you specify JPI$M_NO_TARGET_AST and cannot deliver an AST to a target
process, the following consequences occur:

• Data stored in the virtual address space of the process is not accessible.

• Data stored in system data structures, such as the process header (PHD), the
process control block (PCB), or the job information block (JIB), is accessible.

You must examine the return length of an item to verify that the item was
retrieved. The information may be located in a different data structure in another
release of the operating system.

The use of the flag JPI$M_NO_TARGET_AST also implies that SYS$GETJPI
does not swap in a process, because SYS$GETJPI would only bring a process into
memory to deliver an AST to that process.

JPI$M_IGNORE_TARGET_STATUS
When JPI$M_IGNORE_TARGET_STATUS is specified, SYS$GETJPI attempts
to retrieve as much information as possible, even if the process is suspended or
being deleted. JPI$M_IGNORE_TARGET_STATUS is used to retrieve all possible
information from a process. For example, this flag is used with SHOW SYSTEM
to display processes that are suspended, being deleted, or in miscellaneous wait
states.

Example 3–12 demonstrates how to use SYS$GETJPI control flags to avoid
swapping processes during a SYS$GETJPI call.

Example 3–12 Using SYS$GETJPI Control Flags to Avoid Swapping a Process
into the Balance Set

PROGRAM CONTROL_FLAGS

IMPLICIT NONE ! Implicit none

INCLUDE ’($jpidef) /nolist’ ! Definitions for $GETJPI
INCLUDE ’($pscandef) /nolist’ ! Definitions for $PROCESS_SCAN
INCLUDE ’($ssdef) /nolist’ ! Definitions for SS$_ names

(continued on next page)

3–27

Process Control
3.2 Obtaining Process Information

Example 3–12 (Cont.) Using SYS$GETJPI Control Flags to Avoid Swapping a
Process into the Balance Set

STRUCTURE /JPIITMLST/ ! Structure declaration for
UNION ! $GETJPI item lists
MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 RETLENADR
END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END_LIST ! an item list
END MAP
END UNION
END STRUCTURE
STRUCTURE /PSCANITMLST/ ! Structure declaration for
UNION ! $PROCESS_SCAN item lists
MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 ITMFLAGS
END MAP
MAP ! A longword of 0 terminates
INTEGER*4 END_LIST ! an item list
END MAP
END UNION
END STRUCTURE
RECORD /PSCANITMLST/ ! Declare the item list for
2 PSCANLIST(5) ! $PROCESS_SCAN

RECORD /JPIITMLST/ ! Declare the item list for
2 JPILIST(6) ! $GETJPI

INTEGER*4 SYS$GETJPIW, ! System service entry points
2 SYS$PROCESS_SCAN

INTEGER*4 STATUS, ! Status variable
2 CONTEXT, ! Context from $PROCESS_SCAN
2 PID, ! PID from $GETJPI
2 JPIFLAGS ! Flags for $GETJPI

INTEGER*2 IOSB(4) ! I/O Status Block for $GETJPI

CHARACTER*16
2 PRCNAM, ! Process name from $GETJPI
2 NODENAME ! Node name from $GETJPI
INTEGER*2 PRCNAM_LEN, ! Process name length
2 NODENAME_LEN ! Node name length

CHARACTER*80
2 IMAGNAME ! Image name from $GETJPI
INTEGER*2 IMAGNAME_LEN ! Image name length

LOGICAL*4 DONE ! Done with data loop

(continued on next page)

3–28

Process Control
3.2 Obtaining Process Information

Example 3–12 (Cont.) Using SYS$GETJPI Control Flags to Avoid Swapping a
Process into the Balance Set

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for interactive and batch jobs across
! the cluster with $GETJPI buffering

PSCANLIST(1).BUFLEN = 0
PSCANLIST(1).CODE = PSCAN$_NODE_CSID
PSCANLIST(1).BUFADR = 0
PSCANLIST(1).ITMFLAGS = PSCAN$M_NEQ
PSCANLIST(2).BUFLEN = 0
PSCANLIST(2).CODE = PSCAN$_MODE
PSCANLIST(2).BUFADR = JPI$K_INTERACTIVE
PSCANLIST(2).ITMFLAGS = PSCAN$M_OR
PSCANLIST(3).BUFLEN = 0
PSCANLIST(3).CODE = PSCAN$_MODE
PSCANLIST(3).BUFADR = JPI$K_BATCH
PSCANLIST(3).ITMFLAGS = 0
PSCANLIST(4).BUFLEN = 0
PSCANLIST(4).CODE = PSCAN$_GETJPI_BUFFER_SIZE
PSCANLIST(4).BUFADR = 1000
PSCANLIST(4).ITMFLAGS = 0
PSCANLIST(5).END_LIST = 0

!**
!* End of item list initialization *
!**

STATUS = SYS$PROCESS_SCAN (! Set up the scan context
2 CONTEXT,
2 PSCANLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Initialize $GETJPI item list

JPILIST(1).BUFLEN = 4
JPILIST(1).CODE = IAND (’FFFF’X, JPI$_GETJPI_CONTROL_FLAGS)
JPILIST(1).BUFADR = %LOC(JPIFLAGS)
JPILIST(1).RETLENADR = 0
JPILIST(2).BUFLEN = 4
JPILIST(2).CODE = JPI$_PID
JPILIST(2).BUFADR = %LOC(PID)
JPILIST(2).RETLENADR = 0
JPILIST(3).BUFLEN = LEN(PRCNAM)
JPILIST(3).CODE = JPI$_PRCNAM
JPILIST(3).BUFADR = %LOC(PRCNAM)
JPILIST(3).RETLENADR = %LOC(PRCNAM_LEN)
JPILIST(4).BUFLEN = LEN(IMAGNAME)
JPILIST(4).CODE = JPI$_IMAGNAME
JPILIST(4).BUFADR = %LOC(IMAGNAME)
JPILIST(4).RETLENADR = %LOC(IMAGNAME_LEN)
JPILIST(5).BUFLEN = LEN(NODENAME)
JPILIST(5).CODE = JPI$_NODENAME
JPILIST(5).BUFADR = %LOC(NODENAME)
JPILIST(5).RETLENADR = %LOC(NODENAME_LEN)
JPILIST(6).END_LIST = 0
! Loop calling $GETJPI with the context

DONE = .FALSE.
JPIFLAGS = IOR (JPI$M_NO_TARGET_INSWAP, JPI$M_IGNORE_TARGET_STATUS)
DO WHILE (.NOT. DONE)

(continued on next page)

3–29

Process Control
3.2 Obtaining Process Information

Example 3–12 (Cont.) Using SYS$GETJPI Control Flags to Avoid Swapping a
Process into the Balance Set

! Call $GETJPI to get the next process

STATUS = SYS$GETJPIW (
2 , ! No event flag
2 CONTEXT, ! Process context
2 , ! No process name
2 JPILIST, ! Itemlist
2 IOSB, ! Always use IOSB with $GETJPI!
2 , ! No AST
2) ! No AST arg

! Check the status in both STATUS and the IOSB, if
! STATUS is OK then copy IOSB(1) to STATUS

IF (STATUS) STATUS = IOSB(1)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
IF (IMAGNAME_LEN .EQ. 0) THEN

TYPE 1010, PID, NODENAME, PRCNAM
ELSE

TYPE 1020, PID, NODENAME, PRCNAM,
2 IMAGNAME(1:IMAGNAME_LEN)

END IF
ELSE IF (STATUS .EQ. SS$_NOMOREPROC) THEN

DONE = .TRUE.
ELSE

CALL LIB$SIGNAL(%VAL(STATUS))
END IF

END DO

1010 FORMAT (’ ’,Z8.8,’ ’,A6,’:: ’,A,’ (no image)’)
1020 FORMAT (’ ’,Z8.8,’ ’,A6,’:: ’,A,’ ’,A)

END

3.2.7 Using SYS$GETLKI
The SYS$GETLKI system service allows you to obtain process lock information.
Example 3–13 is a C program that illustrates the procedure for obtaining process
lock information for both Alpha and VAX systems. However, to compile on Alpha
systems, you need to supply the /DEFINE=Alpha=1 qualifier.

Example 3–13 Procedure for Obtaining Process Lock Information

#pragma nostandard
#ifdef Alpha
#pragma module LOCK_SCAN
#else /* Alpha */
#module LOCK_SCAN
#endif /* Alpha */
#pragma standard

#include <ssdef.h>
#include <lkidef.h>

(continued on next page)

3–30

Process Control
3.2 Obtaining Process Information

Example 3–13 (Cont.) Procedure for Obtaining Process Lock Information

#pragma nostandard
globalvalue

ss$_normal, ss$_nomorelock;
#pragma standard

struct lock_item_list
{
short int buffer_length;
short int item_code;
void *bufaddress;
void *retaddress;
};

typedef struct lock_item_list lock_item_list_type;

unsigned long lock_id;
long int value_block[4];

#pragma nostandard
static lock_item_list_type
getlki_item_list[] = {
{sizeof(value_block), LKI$_VALBLK, &value_block, 0},
{sizeof(lock_id), LKI$_LOCKID, &lock_id, 0},
{0,0,0,0}

};
globalvalue ss$_normal, ss$_nomorelock;
#pragma standard

main()
{

int status = ss$_normal;
unsigned long lock_context = -1; /* init for wild-card operation */

while (status == ss$_normal) {
status = sys$getlkiw(1, &lock_context, getlki_item_list,0,0,0,0);
/* */
/* Dequeue the lock if the value block contains a 1 */
/* */
if ((status == ss$_normal) & (value_block[0] == 1)){

status = sys$deq(lock_id, 0, 0, 0);
}

}
if (status != ss$_nomorelock){

exit(status);
}

}

3.2.8 Setting Process Privileges
Use the SYS$SETPRV system service to set process privileges. Setting process
privileges allows you to limit executing privileged code to a specific process, to
limit functions within a process, and to limit access from other processes. You can
either enable or disable a set of privileges and assign privileges on a temporary
or permanent basis. To use this service, the creating process must have the
appropriate privileges.

3–31

Process Control
3.3 Changing Process and Kernel Threads Scheduling

3.3 Changing Process and Kernel Threads Scheduling
Prior to kernel threads, the OpenVMS scheduler selected a process to run. With
kernel threads, the OpenVMS scheduler selects a kernel thread to run. All
processes are thread capable processes with at least one kernel thread. A process
may have only one kernel thread, or a process may have a variable number
of kernel threads. A single-threaded process is equivalent to a process before
OpenVMS V7.0.

With kernel threads, all base and current priorities are per-kernel thread. To
alter a thread’s scheduling, you can change the base priority of the thread with
the SYS$SETPRI system service, which affects the specified kernel thread and
not the entire process.

To alter a process’s scheduling, you can lock the process into physical memory so
that it is not swapped out. Processes that have been locked into physical memory
are executed before processes that have been swapped out. For kernel threads,
the thread with the highest priority level is executed first.

If you create a subprocess with the LIB$SPAWN routine, you can set the priority
of the subprocess by executing the DCL command SET PROCESS/PRIORITY as
the first command in a command procedure. You must have the ALTPRI privilege
to increase the base priority above the base priority of the creating process.

If you create a subprocess with the LIB$SPAWN routine, you can inhibit
swapping by executing the DCL command SET PROCESS/NOSWAP as the first
command in a command procedure. Use the SYS$SETSWM system service to
inhibit swapping for any process. A process must have the PSWAPM privilege to
inhibit swapping.

If you alter kernel thread’s scheduling, you must do so with care. Review the
following considerations before you attempt to alter the standard kernel threads
or process scheduling with either SYS$SETPRI or SYS$SETSWM:

• Priority—Increasing a kernel threads’s base priority gives that thread more
processor time at the expense of threads that execute at lower priorities.
Digital does not recommended this unless you have a program that must
respond immediately to events (for example, a real-time program). If you
must increase your base priority, return it to normal as soon as possible. If
the entire image must execute at an increased priority, reset the base priority
before exiting; image termination does not reset the base priority.

• Swapping—Inhibiting swapping keeps your process in physical memory.
Digital does not recommended this unless the effective execution of your
image depends on it (for example, if the image executing in the process is
collecting statistics on processor performance).

3.4 Using Affinity and Capabilities in CPU Scheduling

Alpha The affinity and capabilities mechanism allows CPU scheduling to be adapted
to larger CPU configurations by controlling the distribution of processes, or
threads, throughout the active CPU set. The control of the distribution of
processes throughout the active CPU set becomes more important as higher-
performance server applications, such as databases and real-time, process-control
environments, are implemented. Affinity and capabilities provide the user with
the opportunities to perform the following:

• Create and modify a set of user-defined process capabilities

3–32

Process Control
3.4 Using Affinity and Capabilities in CPU Scheduling

• Create and modify a set of user-defined CPU capabilities to match those in
the process

• Allow a process to apply the affinity mechanisms to a subset of the active
CPU set in a symmetric multiprocessing (SMP) configuration

3.4.1 Defining Affinity and Capabilities
The affinity mechanism allows a process, or each of its kernel threads, to specify
an exact set of CPUs on which it can execute. The capabilities mechanism allows
a process to specify a set of resources that a CPU in the active set must have
defined before it is allowed to contend for the process execution. Today, both of
these mechanisms are present in the OpenVMS scheduling mechanism; both
are used extensively internally and externally to implement parts of the I/O and
timing subsystems. Now, however, the OpenVMS operating system provides user
access to these mechanisms.

3.4.1.1 Using Affinity and Capabilities with Caution
It is important for the user to understand that inappropriate and abusive use
of the affinity and capabilities mechanisms can have a negative impact on the
symmetric aspects of the current multi-CPU scheduling algorithm.

3.4.2 Types of Capabilities
Capabilities are resources assigned to CPUs that a process needs to execute
correctly. There are four defined capabilities. They are restricted to internal
system events or functions that control system states or functions. Table 3–6
describes the four capabilities.

Table 3–6 Capabilities

Capability Description

Primary This capability is owned by only one CPU at a time, since the primary
could possibly migrate from CPU to CPU in the configuration. The
system requires for I/O and timekeeping functions that the process
run on the primary CPU. The process requiring this capability is only
allowed to run on the processor that has it at the time.

Run This capability controls the ability of a CPU to execute any process at
all. Every process requires this resource and if the CPU does not have
it, scheduling for that CPU comes to a halt in a recognized state. The
command STOP/CPU uses this capability when it is trying to make the
CPU quiescent, bringing it to a halted state.

Quorum This capability is used in a clustered environment when a node wants
another node to come to a quiescent state until further notice. Like the
Run capability, Quorum is a required resource for every process and
every CPU for scheduling to occur.

Vector This capability is obsolete on OpenVMS Alpha systems, but is retained
as a compatibility feature with OpenVMS VAX. Like the Primary
capability, it reflects a feature of the CPU; that is, that the CPU has a
vector processing unit directly associated with it.

3.4.3 Looking at User Capabilities
Previously, the use of capabilities was restricted solely to system resources and
control events. It is valuable, however, for user functions to have the ability to
indicate a resource or special CPU function as well as the system.

3–33

Process Control
3.4 Using Affinity and Capabilities in CPU Scheduling

There are 16 user-defined capabilities added to both the process and CPU
structures. Unlike the static definitions of the current system capabilities, the
user capabilities have meaning only in the context of the processes that define
them. Through system service interfaces, processes or individual threads of a
multi-thread process, have the ability to set specific bits in the capability masks
of a CPU to give it a resource, and to set specific bits in the kernel thread’s
capability mask to require that resource as an execution criteria.

The user capability feature is a direct superset of the current capability
functionality. All currently existing capabilities are placed into the system
capability set; they are not available to the process through system service
interfaces. These system service interfaces affect only the 16 bits specifically set
aside for user definition.

The OpenVMS operating system has no direct knowledge of what the defined
capability is being used. All responsibility for the correct definition, use and
management of these bits is determined by the processes that define them. The
system controls the impact of these capabilities through privilege requirements;
but, as with the priority adjustment services, abusive use of the capability bits
could affect the scheduling dynamic and CPU loads in an SMP environment.

3.4.4 Using the Capabilities System Services
The SYS$CPU_CAPABILITIES and SYS$PROCESS_CAPABILITIES system
services provide access to the capability features. By using the SYS$CPU_
CAPABILITIES and SYS$PROCESS_CAPABILITIES services, you can assign
user capabilities to a CPU and specific kernel thread. Assigning a user capability
to a CPU lasts for the life of the system, or until another explicit change is made.
This operation has no direct effect on the scheduling dynamics of the system;
it only indicates that the specified CPU is capable of handling any process, or
thread, that requires that particular resource. If a process does not indicate it
needs that resource, it ignores the CPU’s additional capability and schedules the
process based on other process requirements.

Assigning a user capability requirement to a specific process, or thread, has a
major impact on the scheduling state of that entity. For the process, or thread,
to be scheduled on a CPU in the active set, that CPU must have the capability
assigned prior to the scheduling attempt. If no CPU currently has the correct set
of capability requirements, the process is placed into a wait state until a CPU
becomes available with the right configuration. Like system capabilities, user
process capabilities are additive; that is, for a CPU to schedule the process it
must have the full complement of required capabilities.

These services reference both sets of 16-bit user capabilities by the common
symbolic constant names of CAP$M_USER1 through CAP$M_USER16. These
names reflect the corresponding bit position in the appropriate capability mask;
they are non-zero and self-relative to themselves only.

Both services allow multiple bits to be set or cleared, or both, simultaneously.
Each take as parameters a select and modify mask that define the operation set
to be performed. The service callers are responsible for setting up the select mask
to indicate which of the user capabilities bits are to be affected by the current
call. This select mask is a bit vector of the ORed bit symbolic names which,
when set, states the value in the modify mask is the new value of the bit. Both
masks use the symbolic constants to indicate the same bit, or, if appropriate, the
symbolic constant CAP$K_USER_ALL can be used in the select mask to indicate
that the entire set of capabilities is affected. Likewise, the symbolic constant
CAP$K_USER_ADD or CAP$K_USER_REMOVE can be used in the modify mask

3–34

Process Control
3.4 Using Affinity and Capabilities in CPU Scheduling

to indicate all capabilities specified in the select mask are to be set or cleared
respectively.

For information on using the SYS$CPU_CAPABILITIES and SYS$PROCESS_
CAPABILITIES, see the OpenVMS System Services Reference Manual: A–
GETMSG and OpenVMS System Services Reference Manual: GETQUI–Z.

3.4.5 Types of Affinity
The two types of affinity are implicit and explicit affinity. This section presents a
description of each.

3.4.5.1 Implicit Affinity
Implicit affinity, sometimes known as soft affinity, is a variant form of the original
affinity mechanism used in the OpenVMS scheduling mechanisms. Rather than
require a process to stay on a specific CPU regardless of conditions, implicit
affinity maximizes cache and translation buffer (TB) context by maintaining an
association with the CPU that has the most information about a given process.

Currently, the OpenVMS scheduling mechanism already has a version of implicit
affinity. It keeps track of the last CPU the process ran on and tries to schedule
itself to that CPU, subject to a fairness algorithm. The fairness algorithm makes
sure a process is not skipped too many times when it normally would have been
scheduled elsewhere.

The Alpha architecture lends itself to maintaining cache and TB context that
has significant potential for performance improvement with both the process
and system level. Because this feature contradicts the normal highest priority
process scheduling algorithms in an SMP configuration, implicit affinity cannot
be a system default.

The system service, SYS$SET_IMPLICIT_AFFININTY, provides implicit affinity
support. This service works on an explicitly specified process or kernel thread
block (KTB) through the pidadr and prcnam arguments. The default is the
current process, but if the symbolic constant CAP$K_PROCESS_DEFAULT
is specified in the pidadr, the bit is set in the global default cell SCH$GL_
DEFAULT_PROCESS_CAP. Setting implicit affinity globally is similar to setting
a capability bit in the same mask, because every process creation after the
modification picks up the bit as a default that stays in effect across all image
activations.

The protections required to invoke SYS$SET_IMPLICIT_AFFINITY depend on
the process that is being affected. Because the addition of implicit affinity has
the same potential for affecting the priority scheduling of processes in the COM
queue as that of the SYS$ALTPRI service, ALTPRI protection is required as the
base which all modification forms of the serve must have to invoke SYS$SET_
IMPLICIT_AFFINITY. If the process is the current one, no other privilege is
required. To affect processes in the same UIC group, the GROUP privilege
is required. For any other processes in the system, the WORLD privilege is
required.

3–35

Process Control
3.4 Using Affinity and Capabilities in CPU Scheduling

3.4.5.2 Explicit Affinity
Even though capabilities and affinity have much overlap in their functional
behavior, they are, nonetheless, two discrete scheduling mechanisms. Affinity, the
subsetting of the number of CPUs on which a process can execute, has precedence
over the capability feature and provides an explicit binding operation between
the process and CPU. It forces the scheduling algorithm to consider only the CPU
set it requires, and then applies the capability tests to see if any of them are
appropriate.

Explicit affinity allows database and high-performance applications to segregate
application functions to individual CPUs, providing improved cache and TB
performance, as well as reducing context switching and general scheduling
overhead. During the IPL 8 scheduling pass, the process is investigated to see to
which CPUs it is bound and whether the current CPU is one of those. If it passes
that test, capabilities are also validated to allow the process to context switch.
The number of CPUs that can be supported is 32.

The SYS$PROCESS_AFFINITY system service provides access to the explicit
affinity functionality. SYS$PROCESS_AFFINITY resolves to a specific process,
defaulting to the current one, through the pidadr and prcnam arguments. Like
the other system services, the CPUs that are affected are indicated through
select_mask, and the binding state of each CPU is specified in modify_mask.

Specific CPUs can be referenced in the select_mask and modify_mask using the
symbolic constants CAP$M_CPU0 through CAP$M_CPU31. These constants
are defined to match the bit position of their associated CPU ID. Alternatively,
specifying CAP$K_ALL_ACTIVE_CPUS in select_mask sets or clears explicit
affinity for all CPUs in the current active set.

Explicit affinity, like capabilities, has a permanent process as well as current
image copy. As each completed image is run down, the permanent explicit affinity
values overwrite the running image set, superseding any changes that were made
in the interim. Specifying CAP$M_FLAG_PERMANENT in the flags parameter
indicates that both the current and permanent processes are to be modified
simultaneously. As a result, unless explicitly changed again, this operation has a
scope from the current image through the end of the process life.

For information on using the SYS$SET_IMPLICIT_AFFINITY and
SYS$PROCESS_AFFINITY, see the OpenVMS System Services Reference Manual:
A–GETMSG and OpenVMS System Services Reference Manual: GETQUI–Z. ♦

3.5 Changing Process Name
Use the system service SYS$SETPRN to change the name of your process.
SYS$SETPRN can be used only on the calling process. Changing process names
might be useful when a lengthy image is being executed. You can change names
at significant points in the program; then monitor program execution through
the change in process names. You can obtain a process name by calling a
SYS$GETJPI routine from within a controlling process, by pressing the Ctrl/T
key sequence if the image is currently executing in your process, or by entering
the DCL command SHOW SYSTEM if the program is executing in a detached
process.

The following program segment calculates the tax status for a number of
households, sorts the households according to tax status, and writes the results
to a report file. Since this is a time-consuming process, the program changes the
process name at major points so that progress can be monitored.

3–36

Process Control
3.5 Changing Process Name

.

.

.
! Calculate approximate tax rates
STATUS = SYS$SETPRN (’INCTAXES’)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX_RATES (TOTAL_HOUSES,
2 PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE,
2 TAX_PER_HOUSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Sort
STATUS = SYS$SETPRN (’INCSORT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = TAX_SORT (TOTAL_HOUSES,
2 TAX_PER_HOUSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Write report
STATUS = SYS$SETPRN (’INCREPORT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

.

.

.

3.6 Accessing Another Process’s Context

VAX On OpenVMS VAX systems, a system programmer must sometimes develop
code that performs various actions (such as performance monitoring) on behalf
of a given process, executing in that process’s context. To do so, a programmer
typically creates a routine consisting of position-independent code and data,
allocates sufficient space in nonpaged pool, and copies the routine to it. On
OpenVMS VAX systems, such a routine can execute correctly no matter where it
is loaded into memory. ♦

Alpha On OpenVMS Alpha systems, the practice of moving code in memory is more
difficult and complex. It is not enough to simply copy code from one memory
location to another. On OpenVMS Alpha systems, you must relocate both the
routine and its linkage section, being careful to maintain the relative distance
between them, and then apply all appropriate fixups to the linkage section.

The OpenVMS Alpha system provides two mechanisms to enable one process to
access the context of another:

• Code that must read from or write to another process’s registers or address
space can use the system routines EXE$READ_PROCESS and EXE$WRITE_
PROCESS as described in Section 3.6.1.

• Code that must perform other operations in another process’s context (for
instance, to execute a system service to raise a target process’s quotas) can be
written as an OpenVMS Alpha executive image as described in Section 3.6.2.
♦

3–37

Process Control
3.6 Accessing Another Process’s Context

3.6.1 Reading and Writing in the Address Space of Another Process (Alpha
Only)

Alpha EXE$READ_PROCESS and EXE$WRITE_PROCESS are OpenVMS Alpha
system routines in nonpaged system space. EXE$READ_PROCESS reads data
from a target process’s address space or registers and writes it to a buffer in
the local process’s address space. EXE$WRITE_PROCESS obtains data from a
local process’s address space and transfers it to the target process’s context. Both
routines must be called from kernel mode at IPL 0.

One of the arguments to these procedures specifies whether or not the procedure
is to access memory and registers in the target process. Another argument
specifies the memory address or register number. The contents of these
arguments are symbolic names (beginning with the prefix EACB$) that are
defined by the $PROCESS_READ_WRITE macro in SYS$LIBRARY:LIB.MLB.
(They are also defined in LIB.REQ for BLISS programmers.)

3.6.1.1 EXE$READ_PROCESS and EXE$WRITE_PROCESS
The following are descriptions of the callable interfaces to EXE$READ_PROCESS
and EXE$WRITE_PROCESS.

3–38

Process Control
EXE$READ_PROCESS

EXE$READ_PROCESS

Reads data from a target process’s address space or registers and writes it to a
buffer in the local process’s address space.

Module

PROC_READ_WRITE

Format

status = EXE$READ_PROCESS (ipid, buffer_size, target_address, local_address,
target_address_type, ast_counter_address)

Arguments

ipid
OpenVMS usage ipid
type longword (unsigned)
access read only
mechanism by value

Internal process ID of the target process.

buffer_size
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Number of bytes to transfer. If target_address_type is EACB$K_GENERAL_
REGISTER, the values of target_address and buffer_size together determine
how many 64-bit registers are written, in numeric order, to the buffer. A partial
register is written for any value that is not a multiple of 8.

If you specify buffer_size to be larger than 8, more than one register is written
from the buffer. Registers are written in numeric order, followed by the PC and
PS, starting at the register indicated by target_address.

If target_address_type is EACB$K_GENERAL_REGISTER and the values of
buffer_size and target_address would cause a target process read extending
beyond R31 (the last available register), EXE$READ_PROCESS returns SS$_
ILLSER status.

target_address
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by reference (if address) by value (if constant)

If target_address_type is EACB$K_MEMORY, address in target process at
which the transfer is to start.

If target_address_type is EACB$K_GENERAL_REGISTER, symbolic constant
indicating at which general register the transfer should start. Possible constant
values include EACB$K_R0 through EACB$K_R29, EACB$K_PC, and EACB$K_
PS.

3–39

Process Control
EXE$READ_PROCESS

local_address
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by reference

Address of buffer in local process to which data is to be written.

target_address_type
OpenVMS usage integer
type longword (unsigned)
access read only
mechanism by value

Symbolic constant indicating whether the target_address argument is a memory
address (EACB$K_MEMORY) or a general register (EACB$K_GENERAL_
REGISTER). Floating-point registers are not supported as target addresses.

ast_counter_address
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by reference

Address of a longword used internally as an AST counter by EXE$READ_
PROCESS and EXE$WRITE_PROCESS to detect errors. Supply the same
address in the ast_counter_address argument for every call to these routines.

Returns

OpenVMS usage cond_value
type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Return Values

SS$_ACCVIO Unable to write to the location indicated by
local_address or ast_counter_address.

SS$_ILLSER Routine was called with IPL greater than 0, or
an illegal target_address_type was specified. If
target_address_type is EACB$K_GENERAL_
REGISTER, this status can indicate that the
values of buffer_size and target_address
would cause a target process read extending
beyond R31 (the last available register).

SS$_INSFMEM Insufficient memory available for specified buffer.
SS$_NONEXPR The ipid argument does not correspond to an

existing process.
SS$_NORMAL The interprocess read finished successfully.

3–40

Process Control
EXE$READ_PROCESS

SS$_TIMEOUT The read operation did not finish within a few
seconds.

Context

The caller of EXE$READ_PROCESS must be executing in kernel mode at IPL 0.
Kernel mode ASTs must be enabled.

Description

EXE$READ_PROCESS reads data from a target process’s address space and
writes it to a buffer in the local process’s address space.

EXE$READ_PROCESS allocates nonpaged pool for an AST control block (ACB),
an ACB extension, and a buffer of the specified size. It initializes the extended
ACB with information describing the data transfer and then delivers an AST to
the target process to perform the operation. The data is read in the context of the
target process from its address space or registers into nonpaged pool. An AST is
then queued to the requesting process to complete the read operation by copying
the data from pool to the process’s buffer.

EXE$READ_PROCESS does not return to its caller until the read is completed,
an error is encountered, or it has timed out. (The current timeout value is 3
seconds.)

EXE$WRITE_PROCESS

Reads data from the local process’s address space and writes it to a target
process’s registers or a buffer in a target process’s address space.

Module

PROC_READ_WRITE

Format

status = EXE$WRITE_PROCESS (ipid, buffer_size, local_address, target_address,
target_address_type, ast_counter_address)

Arguments

ipid
OpenVMS usage ipid
type longword (unsigned)
access read only
mechanism by value

Internal process ID of the target process.

buffer_size
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

3–41

Process Control
EXE$WRITE_PROCESS

Number of bytes to transfer. If target_address_type is EACB$K_GENERAL_
REGISTER, the values of target_address and buffer_size together determine
how many 64-bit registers are written, in numeric order, from the buffer. A
partial register is written for any value that is not a multiple of 8.

If you specify buffer_size to be larger than 8, more than one register is written
from the buffer. Registers are written in numeric order, followed by the PC and
PS, starting at the register indicated by target_address.

If target_address_type is EACB$K_GENERAL_REGISTER and the values of
buffer_size and target_address would cause a write extending beyond R31 (the
last available register), EXE$WRITE_PROCESS returns SS$_ILLSER status.

local_address
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by reference

Address in local process from which data is to be transferred.

target_address
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by reference (if address) by value (if constant)

If target_address_type is EACB$K_MEMORY, address in target process at
which the transfer is to start.

If target_address_type is EACB$K_GENERAL_REGISTER, symbolic constant
indicating at which general register the transfer should start. Possible constant
values include EACB$K_R0 through EACB$K_R29, EACB$K_PC, and EACB$K_
PS.

target_address_type
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Symbolic constant indicating whether the target_address argument is a memory
address (EACB$K_MEMORY) or a general register (EACB$K_GENERAL_
REGISTER). Floating-point registers are not supported as target addresses.

ast_counter_address
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by reference

Address of a longword used internally as an AST counter by EXE$READ_
PROCESS and EXE$WRITE_PROCESS to detect errors. Supply the same
address in the ast_counter_address argument for every call to these routines.

3–42

Process Control
EXE$WRITE_PROCESS

Returns

OpenVMS usage cond_value
type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Return Values

SS$_ACCVIO Unable to read from the location indicated by
local_address or write to the location indicated
by ast_counter_address.

SS$_ILLSER Routine was called with IPL greater than 0, an
illegal target_address_type was specified. If
target_address_type is EACB$K_GENERAL_
REGISTER, this status can indicate that the
values of buffer_size and target_address
would cause a process write extending beyond
R31 (the last available register).

SS$_INSFMEM Insufficient memory available for specified buffer.
SS$_NONEXPR The ipid argument does not correspond to an

existing process.
SS$_NORMAL The interprocess write finished successfully.
SS$_TIMEOUT The write operation did not finish within a few

seconds.

Context

The caller of EXE$WRITE_PROCESS must be executing in kernel mode at IPL 0.
Kernel mode ASTs must be enabled.

Description

EXE$WRITE_PROCESS reads data from the local process’s address space and
writes it to a target process’s registers or a buffer in a target process’s address
space.

EXE$WRITE_PROCESS allocates nonpaged pool for an AST control block (ACB),
an ACB extension, and a buffer of the specified size. It initializes the extended
ACB with information describing the data transfer, copies the data to be written
to the target process into the buffer, and then delivers an AST to the target
process to perform the operation.

The AST routine copies the data from pool into the target location and then
queues an AST to the requesting process to complete the write operation.

EXE$WRITE_PROCESS does not return to its caller until the read is completed,
an error is encountered, or it has timed out. (The current timeout value is 3
seconds.)

♦

3–43

Process Control
EXE$WRITE_PROCESS

3.6.2 Writing an Executive Image (Alpha Only)

Alpha An executive image is an image that is mapped into system space as part of the
OpenVMS executive. It contains data, routines, and initialization code specific
to an image’s functions and features. An executive image is implemented as
a form of shareable image. Like any shareable image, it has a global symbol
table, image section descriptors, and an image activator fixup section. Unlike a
shareable image, however, an executive image does not contain a symbol vector.

Universally available procedures and data cells in system-supplied executive
images are accessed through entries provided by the symbol vectors in the system
base images SYS$BASE_IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE.
References to an executive image are resolved through these symbol vectors,
whether from an executive image or from a user executable or shareable image.

Unlike a system-supplied executive image, an executive image that you create
cannot provide universally accessible entry points and symbols in this manner.
Instead, it must establish its own vector of procedure descriptors for its callable
routines and make the address of that vector available systemwide.

The OpenVMS executive loader imposes several requirements on the sections of
any executive image. These requirements include the following:

• An executive image can contain at most one image section of the following
types and no others:

Nonpaged execute section (for code)

Nonpaged read/write section (for read-only and writable data, locations
containing addresses that must be relocated at image activation, and the
linkage section for nonpaged code)

Paged execute section (for code)

Paged read/write section (for read-only and writable data, locations
containing addresses that must be relocated at image activation, and the
linkage section for pageable code)

Initialization section (for initialization procedures and their associated
linkage section and data)

Image activator fixup section

The modules of an executive image define program sections (PSECTS) with
distinct names. The named PSECTS are necessary so that the program
sections can be collected into clusters, by means of the COLLECT= linker
option, during linking. A COLLECT= option specified in the linking of an
executive image generates each of the first five image sections.

The image activator fixup section is created by the linker to enable the
image activator to finally resolve references to SYS$BASE_IMAGE.EXE and
SYS$PUBLIC_VECTORS.EXE with addresses within the loaded executive
image. The OpenVMS executive loader deallocates the memory for both the
fixup section and the initialization section once the executive image has been
initialized.

• In your linker options file, you use the COLLECT= option to collect the
program sections from the modules comprising the executive image and place
them into one of the standard clusters of an executive image, as described
above, marked with the appropriate attributes. If the attributes of a PSECT
being collected into an image section do not match the attributes of that
section, you use the PSECT_ATTR= option to force the attributes to match.

3–44

Process Control
EXE$WRITE_PROCESS

All PSECTS must have the same attributes so that only one image section is
produced from the cluster.

Note that, in OpenVMS Alpha systems, the execute section cannot contain
data. You must collect all data, whether read-only or writable, into one of the
read/write sections.

• You link an executive image as a type of shareable image that can be loaded
into system space by the executive loader. You may link an executive image in
such a way (using the /SECTION_BINDING qualifier to the LINK command)
that the executive loader consolidates its image sections into granularity hint
regions within memory with similar image sections of the executive. This
process yields a tangible performance benefit on OpenVMS Alpha systems.
See the OpenVMS Linker Utility Manual for more information on section
binding.

See Section 3.6.2.2 for a template of a LINK command and linker options file
used to produce an executive image.

An executive image can contain one or more initialization procedures that are
executed when the image is loaded. If the image is listed in SYS$LOADABLE_
IMAGES:VMS$SYSTEM_IMAGES.DAT as created by means of System
Management utility (SYSMAN) commands, initialization procedures can be
run at various stages of system initialization.

An initialization routine performs a variety of functions, some specific to
the features supported by the image and others required by many executive
images. An executive image declares an initialization routine by invoking the
INITIALIZATION_ROUTINE macro (see Section 3.6.2.1).

Because an initialization routine is executed when the executive image is loaded,
it serves as an ideal mechanism for locating the callable routines of an executive
image in memory. One method for accomplishing this involves the following
procedure:

• Establishing a vector table within the executive image. For instance, the
MACRO-32 Compiler for OpenVMS Alpha would compile the following into
the address of a vector table consisting of the procedure values of routines
residing elsewhere in the image:

ROUTINE_VECTOR:
.ADDRESS ROUTINE_A ;address of routine A
.ADDRESS ROUTINE_B ;address of routine B

.

.

.
.ADDRESS ROUTINE_M ;address of routine M

• Declaring an initialization procedure using the INITIALIZATION_ROUTINE
macro.

• Loading the image by calling LDR$LOAD_IMAGE as described in
Section 3.6.2.4, with LDR$V_USER_BUF set in the flags longword that
is the second argument to LDR$LOAD_IMAGE and with the address of a
user buffer in the third argument. The dynamic loader passes the address of
the user buffer to the initialization procedure.

Alternatively, you can use the System Management utility (SYSMAN)
to load the executive image. Using a SYSMAN command to update the
OpenVMS system images file (SYS$LOADABLE_IMAGES:VMS$SYSTEM_

3–45

Process Control
EXE$WRITE_PROCESS

IMAGES.DATA) allows the image to be loaded and initialized at various
phases of system initialization (see Section 3.6.2.3).

• Inserting code in the initialization routine that locates the vector table and
stores it in a place accessible to users of routines in the executive image.

An initialization routine can accomplish this by returning the address of the
vector table to the caller of LDR$LOAD_IMAGE in the specified user buffer.
The caller of LDR$LOAD_IMAGE can take whatever steps necessary to make
the routines accessible to potential callers. One such mechanism is to call the
Create Logical Name ($CRELNM) system service to establish a systemwide
logical name whose equivalence name is the address of the vector table.

For additional information about OpenVMS executive images, see VMS for Alpha
Platforms Internals and Data Structures. ♦

3.6.2.1 INITIALIZATION_ROUTINE Macro (Alpha Only)

Alpha The following describes the invocation format of the INITIALIZATION_ROUTINE
macro. An equivalent macro, $INITIALIZATION_ROUTINE is provided for
BLISS programmers. For C programmers, INIT_RTN_SETUP.H in SYS$LIB_
C.TLB is available.

INITIALIZATION_ROUTINE

Declares a routine to be an initialization routine.

Format

INITIALIZATION_ROUTINE name [,system_rtn=0] [,unload=0] [,priority=0]

Parameters

name
Name of the initialization routine.

[system_rtn=0]
Indicates whether the initialization routine is external to the module invoking the
macro. The default value of 0, indicating that the initialization routine is part of
the current module, is the only option supported on OpenVMS Alpha systems.

[unload=0]
Indicates whether the name argument specifies an unload routine. The default
value of 0, indicating that the argument specifies an initialization routine, is the
only option supported on OpenVMS Alpha systems.

[priority=0]
Indicates the PSECT in which the entry for this initialization routine should be
placed. Routines that specify the priority argument as 0 are placed in the first
PSECT (EXEC$INIT_000); those that specify a value of 1 are placed in the second
(EXEC$INIT_001). The routines in the first PSECT are called before those in the
second.

3–46

Process Control
INITIALIZATION_ROUTINE

Description

The INITIALIZATION_ROUTINE macro declares a routine to be an initialization
routine. It enters a vector for the routine in the initialization routine vector
table, guaranteeing that this routine is called when the image is loaded by the
OpenVMS loader.

♦

3–47

Process Control
INITIALIZATION_ROUTINE

3.6.2.2 Linking an Executive Image (Alpha Only)

Alpha The following template can serve as the basis of a LINK command and linker
options file used to create an OpenVMS executive image. See the OpenVMS
Linker Utility Manual for a full description of most linker qualifiers and options
referenced by this example.

Note

Use of the linker to create executive images (specifically the use of the
/ATTRIBUTES switch on the COLLECT= option) is not documented
elsewhere and is not supported by Digital.

! Replace ’execlet’ with your image name

$ LINK/ALPHA/USERLIB=LNK$LIBRARY/NATIVE_ONLY/BPAGES=14 -
/REPLACE/SECTION/NOTRACEBACK-
/SHARE=EXE$:execlet-
/MAP=MAP$:execlet /FULL /CROSS -
/SYMBOL=EXE$:execlet -
SYS$INPUT/OPTION, -
!
SYMBOL_TABLE=GLOBALS
! Creates .STB for System Dump Analyzer
CLUSTER=execlet,,,- 1
ALPHA$LIBRARY:STARLET/INCLUDE:(SYS$DOINIT) - 2
! Insert executive object code here
ALPHA$LOADABLE_IMAGES:SYS$BASE_IMAGE.EXE/SHAREABLE/SELECTIVE
PSECT_ATTR=EXEC$INIT_LINKAGE,PIC,USR,CON,REL,GBL,NOSHR,EXE,RD,WRT,NOVEC 3
!
COLLECT=NONPAGED_READONLY_PSECTS/ATTRIBUTES=RESIDENT,- 4
nonpaged_code
COLLECT=NONPAGED_READWRITE_PSECTS/ATTRIBUTES=RESIDENT,-
nonpaged_data,-
nonpaged_linkage
COLLECT=PAGED_READONLY_PSECTS,-
paged_code,-
$CODE$
COLLECT=PAGED_READWRITE_PSECTS,-
paged_data,-
paged_linkage,-
$LINK$,-
$PLIT$,-
$INITIAL$,-
$LITERAL$,-
$GLOBAL$,-
OWN,-
$DATA$
COLLECT=INITIALIZATION_PSECTS/ATTRIBUTES=INITIALIZATION_CODE,-
EXEC$INIT_CODE,-
EXEC$INIT_LINKAGE,-
EXEC$INIT_000,-
EXEC$INIT_001,-
EXEC$INIT_002,-
EXEC$INIT_SSTBL_000,-
EXEC$INIT_SSTBL_001,-
EXEC$INIT_SSTBL_002

1 The CLUSTER= option creates the named cluster execlet, specifying the order
in which the linker processes the listed modules.

3–48

Process Control
INITIALIZATION_ROUTINE

2 The object module SYS$DOINIT (in STARLET.OLB) is explicitly linked into
an executive image. This module declares the initialization routine table and
provides routines to drive the actual initialization of an executive image.

3 The image sections in an executive image are generated according to the
attributes assigned to program sections within source modules by the
compilers and linker. Because an executive image can consist only of a certain
number and type of image section, the options file contains PSECT_ATTR=
options to coerce the attributes of various program sections contributing to
the image so that the linker produces only one image section from the cluster.
Correspondingly, the options file consists of a set of COLLECT= options
clauses to collect these program sections into each permitted image section.

4 This series of COLLECT= options is required to create and assign
image section attributes (RESIDENT or INITIALIZATION_CODE) to the
NONPAGED_READONLY_PSECTS, NONPAGED_READWRITE_PSECTS,
and INITIALIZATION_PSECTS image sections of an executive image. Each
COLLECT= option collects a set of program sections with similar attributes
into a cluster that the linker uses to produce one of the permitted image
sections for an executive image. ♦

3.6.2.3 Loading an Executive Image (Alpha Only)

Alpha There are two methods of loading an executive image:

• Calling LDR$LOAD_IMAGE to load the executive image at run time. This
method lets you pass the address of a buffer to the image’s initialization
routine by which the caller and the initialization routine can exchange data.
Section 3.6.2.4 describes LDR$LOAD_IMAGE. Note that you must link the
code that calls LDR$LOAD_IMAGE against the system base image, using the
/SYSEXE qualifier to the LINK command.

• Using the SYSMAN SYS_LOADABLE ADD command and updating the
OpenVMS system images file (SYS$LOADABLE_IMAGES:VMS$SYSTEM_
IMAGES.DATA). This method causes the executive image to be loaded
and initialized during the phases of system initialization. (See VMS for
Alpha Platforms Internals and Data Structures for information about
how an executive image’s initialization routine is invoked during system
initialization.)

To load an executive image with the System Management utility (SYSMAN),
perform the following tasks:

1. Copy the executive image to SYS$LOADABLE_IMAGES.

2. Add an entry for the executive image in the data file
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX, as follows:

SYSMAN SYS_LOADABLE ADD _LOCAL_ executive-image -
/LOAD_STEP = SYSINIT -
/SEVERITY = WARNING -
/MESSAGE = "failure to load executive-image"

3. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file (file name
SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA). During the
bootstrap, the system uses this data file to load the appropriate images.

4. Reboot the system. This causes the new executive image to be loaded into the
system. ♦

3–49

Process Control
INITIALIZATION_ROUTINE

3.6.2.4 LDR$LOAD_IMAGE (Alpha Only)

Alpha The following is a description of the callable interface to LDR$LOAD_IMAGE.

LDR$LOAD_IMAGE

Loads an OpenVMS executive image into the system.

Module

SYSLDR_DYN

Format

LDR$LOAD_IMAGE filename ,flags ,ref_handle ,user_buf

Arguments

filename
OpenVMS usage character string
type character string
access read only
mechanism by descriptor

The longword address of a character string descriptor containing the file name
of the executive image to be loaded. The file name can include a directory
specification and image name, but no device name. If you omit the directory
specification, LDR$LOAD_IMAGE supplies SYS$LOADABLE_IMAGES as the
default.

flags
OpenVMS usage flags
type longword (unsigned)
access read only
mechanism value

A flags longword, containing the following bit fields. (Symbolic names for these
bit fields are defined by the $LDRDEF macro in SYS$LIBRARY:LIB.MLB.)

Bit Field Description

LDR$V_PAG When set, indicates that the image should be loaded
with its pageable sections resident. The flag is generally
based on the value of the bit 0 in the S0_PAGING system
parameter.

LDR$V_UNL When set, indicates that the image may be removed from
memory.

LDR$V_OVR When set, indicates that the image’s read-only sections
should not be overwritten during bugcheck processing.
This flag is unused on OpenVMS Alpha systems.

LDR$V_USER_BUF When set, indicates that the caller has passed the address
of a buffer that should be passed to the initialization
routine.

3–50

Process Control
LDR$LOAD_IMAGE

Bit Field Description

LDR$V_NO_SLICE When set, indicates that the image’s sections should not
be loaded into a granularity hint region.

ref_handle
OpenVMS usage address
type longword (signed)
access write only
mechanism by reference

The longword address of a reference handle, a three-longword buffer to be filled
by LDR$LOAD_IMAGE as follows:

+00 Address of loaded image or zero if image was loaded sliced.
+04 Address of loaded image data block (LDRIMG). See the

$LDRIMGDEF macro definition in SYS$LIBRARY:LIB.MLB and
VMS for Alpha Platforms Internals and Data Structures for a
description of the LDRIMG structure.

+08 Loaded image sequence number.

user_buf
OpenVMS usage address
type longword (signed)
access read only
mechanism by reference

The longword address of a user buffer passed to executive image’s initialization
routine if LDR$V_USER_BUF is set in the flags longword.

Context

LDR$LOAD_IMAGE must be called in executive mode.

Returns

OpenVMS usage cond_value
type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Return Values

SS$_ACCVIO Unable to read the character string descriptor
containing the file name of the executive image
to be loaded or to write the reference handle.

LOADER$_BAD_GSD An executive image was loaded containing a
global symbol that is not vectored through either
the SYS$BASE_IMAGE or the SYS$PUBLIC_
VECTORS image.

3–51

Process Control
LDR$LOAD_IMAGE

SS$_BADIMGHDR Image header is larger than two blocks or
was built with a version of the linker that is
incompatible with LDR$LOAD_IMAGE.

LOADER$_BADIMGOFF During a sliced image load request, a relocation
or fixup operation was attempted on an image
offset that has no resultant address within the
image.

LOADER$_DZRO_ISD A load request was made for an executive image
that illegally contains demand zero sections.

SS$_INSFARG Fewer than three arguments were passed to
LDR$LOAD_IMAGE, or, with LDR$V_USER_
BUF set in the flags longword, fewer than four
arguments.

SS$_INSFMEM Insufficient nonpaged pool for the LDRIMG
structure or insufficient physical memory to load
nonpageable portion of an executive image (that
is, an image loaded as nonsliced).

SS$_INSFSPTS Insufficient system page table entries (SPTEs)
to describe the address space required for the
executive image to be loaded as nonsliced.

LOADER$_MULTIPLE_ISDS A load request was made for an image that was
not linked correctly because it contains more
than one each of the following types of sections:

fixup
initialization
nopaged code
nopaged data
paged code
paged data

LOADER$_NO_PAGED_
ISDS

SYSBOOT failed to load the executive image
because it contains either paged code or paged
data sections.

SS$_NOPRIV LDR$LOAD_IMAGE was called from user or
supervisor mode.

LOADER$_NO_SUCH_
IMAGE

A load request was made for an executive image
that was linked against a shareable image that
is not loaded. The only legal shareable images
for executive images are SYS$BASE_IMAGE and
SYS$PUBLIC_VECTORS.

SS$_NORMAL Normal, successful completion.
LOADER$_PAGED_GST_
TOBIG

An executive image has more global symbols
in the fixup data than can fit in the loader’s
internal tables.

LOADER$_PSB_FIXUPS A load request was made for an executive image
that contains LPPSB fixup because it was linked
/NONATIVE_ONLY. Executive images must be
linked /NATIVE_ONLY.

3–52

Process Control
LDR$LOAD_IMAGE

LOADER$_SPF_TOBIG The loader’s internal tables cannot accommodate
all of the executive image fixups that must be
postponed to later in the bootstrap operation.

SS$_SYSVERDIF Image was linked with versions of executive
categories incompatible with those of the running
system.

LOADER$_VEC_TOBIG An attempt to load an executive image failed
because the image’s symbol vector updates
for SYS$BASE_IMAGE and SYS$PUBLC_
VECTORS exceed the size of the loader’s internal
tables.

Other Any RMS error status returned from $OPEN
failures.
Any I/O error status returned from $QIO
failures.

Description

LDR$LOAD_IMAGE loads an executive image into system space and calls its
initialization routine. Optionally, LDR$LOAD_IMAGE returns to its caller
information about the loaded image.

The initialization routine is passed two or three longword arguments, depending
upon the setting of LDR$V_USER_BUF:

• Address of loaded image data block (LDRIMG)

• The flags longword

• The longword address of a user buffer passed to the executive image’s
initialization routine (if LDR$V_USER_BUF is set in the flags longword)

♦

3.6.2.5 LDR$UNLOAD_IMAGE (Alpha Only)

Alpha The following is a description of the callable interface to LDR$UNLOAD_IMAGE.

LDR$UNLOAD_IMAGE

Unloads a removable executive image. This routine is called to unload an execlet.
All resources are returned.

Module

SYSLDR_DYN

Format

LDR$UNLOAD_IMAGE filename ,ref_handle

3–53

Process Control
LDR$UNLOAD_IMAGE

Arguments

filename
OpenVMS usage character string
type character string
access read only
mechanism by descriptor

The longword address of a character string descriptor containing the file name of
the executive image to be unloaded. The file name must be supplied exactly as it
was supplied to LDR$LOAD_IMAGE when the executive image was loaded.

ref_handle
OpenVMS usage address
type longword (signed)
access read only
mechanism by reference

The longword address of the reference handle containing the three-longword block
returned by LDR$LOAD_IMAGE when the executive image was loaded.

Context

LDR$UNLOAD_IMAGE must be called in kernel mode.

Returns

OpenVMS usage cond_value
type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Return Values

SS$_INSFARG LDR$UNLOAD_IMAGE was not called with two
parameters.

SS$_BADPARAMS Reference handle data inconsistent with
LDRIMG block that matches the name in the
first argument.

LOADER$_MARKUNL A call was made to the LDR$UNLOAD_IMAGE
routine to unload a removable executive image
that already has an outstanding unload request
against it.

SS$_NOPRIV LDR$UNLOAD_IMAGE was not called in kernel
mode.

SS$_NORMAL Executive image was successfully removed from
the system.

LOADER$_NOT_UNL A call was made to LDR$UNLOAD_IMAGE to
unload an executive image that is not loaded or
that was not loaded with the LDR$V_UNL flag
bit set.

3–54

Process Control
LDR$UNLOAD_IMAGE

LOADER$_UNL_PEN A call was made to LDR$UNLOAD_IMAGE to
unload an executive image that is in use. The
image is marked to be unloaded later.

Description

LDR$UNLOAD_IMAGE removes an executive image from system space and
returns all memory resources allocated when the image was loaded. Images can
only be removed if they were originally loaded with the bit LDR$V_UNL set in
the input flags to LDR$LOAD_IMAGE.

♦

3–55

Process Control
3.7 Synchronizing Programs by Specifying a Time for Program Execution

3.7 Synchronizing Programs by Specifying a Time for Program
Execution

You can synchronize timed program execution in the following ways:

• Executing a program at a specific time

• Executing a program at timed intervals

3.7.1 Obtaining the System Time
The process control procedures that allow you to synchronize timed program
execution require you to supply a system time value.

You can use either system services or RTL routines for obtaining and reading
time. They are summarized in Table 3–7. With these routines, you can determine
the system time, convert it to an external time, and pass a time back to the
system. The system services use the operating system’s default date format. With
the RTL routines, you can use the default format or specify your own date format.
However, if you are just using the time and date for program synchronization,
using the operating system’s default format is probably sufficient.

When using the RTL routines to change date/time formats, initialization routines
are required. Refer to the OpenVMS RTL Library (LIB$) Manual for more
information.

See Chapter 5 for a further discussion of using timing operations with the
operating system.

Table 3–7 Time Manipulation System Services and Routines

Routine Description

SYS$GETTIM Obtains the current date and time in 64-bit binary format

SYS$NUMTIM Converts system date and time to numeric integer values

SYS$ASCTIM Converts an absolute or delta time from 64-bit system time
format to an ASCII string

SYS$ASCUTC Converts an absolute time from 128-bit Coordinated
Universal Time (UTC) format to an ASCII string

LIB$SYS_ASCTIM Converts binary time to ASCII string

SYS$BINTIM Converts a date and time from ASCII to system format

SYS$BINUTC Converts an ASCII string to an absolute time value in the
128-bit UTC format

SYS$FAO Converts a binary value into an ASCII character string in
decimal, hexadecimal, or octal notation and returns the
character string in an output string

SYS$GETUTC Returns the current time in 128-bit UTC format

SYS$NUMUTC Converts an absolute 128-bit binary time into its numeric
components. The numeric components are returned in local
time

SYS$TIMCON Converts 128-bit UTC to 64-bit system format or 64-bit
system format to 128-bit UTC based on the value of the
convert flag

(continued on next page)

3–56

Process Control
3.7 Synchronizing Programs by Specifying a Time for Program Execution

Table 3–7 (Cont.) Time Manipulation System Services and Routines

Routine Description

LIB$ADD_TIMES Adds two quadword times

LIB$CONVERT_DATE_STRING Converts an input date/time string to an operating system
internal time

LIB$CVT_FROM_INTERNAL_TIME Converts internal time to external time

LIB$CVTF_FROM_INTERNAL_TIME Converts internal time to external time (F-floating value)

LIB$CVT_TO_INTERNAL_TIME Converts external time to internal time

LIB$CVTF_TO_INTERNAL_TIME Converts external time to internal time (F-floating value)

LIB$CVT_VECTIM Converts 7-word vector to internal time

LIB$DAY Obtains offset to current day from base time, in number of
days

LIB$DATE_TIME Obtains the date and time in user-specified format

LIB$FORMAT_DATE_TIME Formats a date and/or time for output

LIB$FREE_DATE_TIME_CONTEXT Frees date/time context

LIB$GET_DATE_FORMAT Returns the user’s specified date/time input format

LIB$GET_MAXIMUM_DATE_LENGTH Returns the maximum possible length of an output date
/time string

LIB$GET_USERS_LANGUAGE Returns the user’s selected langauge

LIB$INIT_DATE_TIME_CONTEXT Initializes the date/time context with a user-specified format

LIB$SUB_TIMES Subtracts two quadword times

3.7.1.1 Executing a Program at a Specified Time
To execute a program at a specified time, use LIB$SPAWN to create a process that
executes a command procedure containing two commands—the DCL command
WAIT and the command that invokes the desired program. Because you do not
want the parent process to remain in hibernation until the process executes,
execute the process concurrently.

You can also use the SYS$CREPRC system service to execute a program at a
specified time. However, because a process created by SYS$CREPRC hibernates
rather than terminates after executing the desired program, Digital recommends
you use the LIB$SPAWN routine unless you need a detached process.

Example 3–14 executes a program at a specified delta time. The parent program
prompts the user for a delta time, equates the delta time to the symbol
EXECUTE_TIME, and then creates a subprocess to execute the command
procedure LATER.COM. LATER.COM uses the symbol EXECUTE_TIME as
the parameter for the WAIT command. (You might also allow the user to enter an
absolute time and have your program change it to a delta time by subtracting the
current time from the specified time. Chapter 5 discusses time manipulation.)

Example 3–14 Executing a Program Using Delta Time

! Delta time
CHARACTER*17 TIME
INTEGER LEN

(continued on next page)

3–57

Process Control
3.7 Synchronizing Programs by Specifying a Time for Program Execution

Example 3–14 (Cont.) Executing a Program Using Delta Time

! Mask for LIB$SPAWN
INTEGER*4 MASK

! Declare status and library routine
INTEGER STATUS, LIB$SPAWN

! Get delta time
STATUS = LIB$GET_INPUT (TIME,
2 ’Time (delta): ’,
2 LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Equate symbol to TIME
STATUS = LIB$SET_SYMBOL (’EXECUTE_TIME’,
2 TIME(1:LEN))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Set the mask and call LIB$SPAWN
MASK = IBSET (MASK,0) ! Execute subprocess concurrently
STATUS = LIB$SPAWN(’@LATER’,
2 ’DATA84.IN’,
2 ’DATA84.RPT’,
2 MASK)

END

LATER.COM

$ WAIT ’EXECUTE_TIME’
$ RUN SYS$DRIVE0:[USER.MATH]CALC
$ DELETE/SYMBOL EXECUTE_TIME

3.7.1.2 Executing a Program at Timed Intervals
To execute a program at timed intervals, you can use either LIB$SPAWN or
SYS$CREPRC.

Using LIB$SPAWN
Using LIB$SPAWN, you can create a subprocess that executes a command
procedure containing three commands: the DCL command WAIT, the command
that invokes the desired program, and a GOTO command that directs control
back to the WAIT command. Because you do not want the parent process to
remain in hibernation until the subprocess executes, execute the subprocess
concurrently. See Section 3.7.1.1 for an example of LIB$SPAWN.

Using SYS$CREPRC
Using SYS$CREPRC, create a detached process to execute a program at timed
intervals as follows:

1. Create and hibernate a process—Use SYS$CREPRC to create a process
that executes the desired program. Set the PRC$V_HIBER bit of the stsflg
argument of the SYS$CREPRC system service to indicate that the created
process should hibernate before executing the program.

2. Schedule a wakeup call for the created subprocess—Use the SYS$SCHDWK
system service to specify the time at which the system should wake up
the subprocess, and a time interval at which the system should repeat the
wakeup call.

3–58

Process Control
3.7 Synchronizing Programs by Specifying a Time for Program Execution

Example 3–15 executes a program at timed intervals. The program creates
a subprocess that immediately hibernates. (The identification number of the
created subprocess is returned to the parent process so that it can be passed
to SYS$SCHDWK.) The system wakes up the subprocess at 6:00 a.m. on the
23rd (month and year default to system month and year) and every 10 minutes
thereafter.

Example 3–15 Executing a Program at Timed Intervals

! SYS$CREPRC options and values
INTEGER OPTIONS
EXTERNAL PRC$V_HIBER
! ID of created subprocess
INTEGER CR_ID
! Binary times
INTEGER TIME(2),
2 INTERVAL(2)

.

.

.
! Set the PRC$V_HIBER bit in the OPTIONS mask and
! create the process
OPTIONS = IBSET (OPTIONS, %LOC(PRC$V_HIBER))
STATUS = SYS$CREPRC (CR_ID, ! PID of created process
2 ’CHECK’, ! Image
2 ,,,,,
2 ’SLEEP’, ! Process name
2 %VAL(4), ! Priority
2 ,,
2 %VAL(OPTIONS)) ! Hibernate
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Translate 6:00 a.m. (absolute time) to binary
STATUS = SYS$BINTIM (’23-- 06:00:00.00’, ! 6:00 a.m.
2 TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Translate 10 minutes (delta time) to binary
STATUS = SYS$BINTIM (’0 :10:00.00’, ! 10 minutes
2 INTERVAL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Schedule wakeup calls
STATUS = SYS$SCHDWK (CR_ID, ! ID of created process
2 ,
2 TIME, ! Initial wakeup time
2 INTERVAL) ! Repeat wakeup time
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

.

.

.

3.7.2 Placing Entries in the System Timer Queue
When you use the system timer queue, you use the timer expiration to signal
when a routine is to be executed. It allows the caller to request a timer that will
activate some time in the future. The timer is requested for the calling kernel
thread. When the timer activates, the event is reported to that thread. It does
not affect any other thread in the process.

For the actual signal, you can use an event flag or AST. With this method, you do
not need a separate process to control program execution. However, you do use
up your process’s quotas for ASTs and timer queue requests.

3–59

Process Control
3.7 Synchronizing Programs by Specifying a Time for Program Execution

Use the system service SYS$SETIMR to place a request in the system timer
queue. The format of this service is as follows:

SYS$SETIMR ([efn],daytim,[astadr],[reqidt])

Specifying the Starting Time
Specify the absolute or delta time at which you want the program to begin
execution using the daytim argument. Use the SYS$BINTIM system service to
convert an ASCII time to the binary system format required for this argument.

Signaling Timer Expiration
Once the system has reached this time, the timer expires. To signal timer
expiration, set an event flag in the efn argument or specify an AST routine
to be executed in the astadr argument. Refer to Section 14.6 and Chapter 4 for
more information about using event flags and ASTs.

How Timer Requests Are Identified
The reqidt argument identifies each system time request uniquely. Then, if you
need to cancel a request, you can refer to each request separately.

To cancel a timer request, use the SYS$CANTIM system service.

3.8 Suspending, Resuming, and Stopping Kernel Threads and
Process Execution

You can control kernel threads and process execution in the following ways:

• Suspending a process—All kernel threads associated with the specified
process are suspended.

• Hibernating a process—Only the calling kernel thread is hibernated.

• Stopping a process—All kernel threads associated with the specified process
are stopped.

• Resuming a process—All kernel threads associated with the specified process
are resumed.

• Exiting an image—All kernel threads associated with the specified process
are exited.

• Deleting a process—All kernel threads associated with the specified process
are deleted, and then the process is deleted.

3.8.1 Process Hibernation and Suspension
There are two ways to halt the execution of a kernel thread or process
temporarily:

• Hibernation—Performed by the Hibernate (SYS$HIBER) system service,
which affects the calling kernel thread.

• Suspension—Performed by the Suspend Process (SYS$SUSPND) system
service, which affects all of the kernel threads associated with the specified
process.

The kernel thread can continue execution normally only after a corresponding
Wake from Hibernation (SYS$WAKE) system service (if it is hibernating), or after
a Resume Process (SYS$RESUME) system service, if it is suspended.

Suspending or hibernating a kernel thread puts it into a dormant state; the
thread is not deleted.

3–60

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

A process in hibernation can control itself; a process in suspension requires
another process to control it. Table 3–8 compares hibernating and suspended
processes.

3–61

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

Table 3–8 Process Hibernation and Suspension

Hibernation Suspension

Can only cause self to hibernate Can suspend self or another process, depending on
privilege; it suspends all threads associated with the
specified process

Reversed by SYS$WAKE
/SYS$SCHDWK system service

Reversed by SYS$RESUME system service

Interruptible; can receive ASTs Noninterruptible; cannot receive ASTs1

Can wake self Cannot cause self to resume

Can schedule wakeup at an
absolute time or at a fixed time
interval

Cannot schedule resumption

1If a process is suspended at kernel mode (a hard suspension), it cannot receive any ASTs. If a process
is suspended at supervisor mode (a soft suspension), it can receive executive or kernel mode ASTs. See
the description of SYS$SUSPND in the OpenVMS System Services Reference Manual: GETQUI–Z.

Table 3–9 summarizes the system services and routines that can place a process
in or remove from hibernation or suspension.

Table 3–9 System Services and Routines Used for Hibernation and Suspension

Routine Function

Hibernating Processes

SYS$HIBER Places the requesting kernel thread in the hibernation state.
An AST can be delivered to the thread while it is hibernating.
The service only puts the calling thread into HIB; no other
thread is affected.

SYS$WAKE Resumes execution of a kernel thread in hibernation. This
service wakes all hibernating kernel threads in a process
regardless of the caller. Any thread that is not hibernating
when the service is called is marked wake pending. Because
of the wake pending, the next call to SYS$HIBER completes
immediately and the thread does not hibernate. Premature
wakeups must be handled in the code.

SYS$SCHDWK Resumes execution of a kernel thread in hibernation at a
specified time. This service schedules a wakeup request for
a thread that is about to call SYS$HIBER. The wakeup only
affects the requesting thread; any other hibernating kernel
threads are not affected.

LIB$WAIT Uses the services SYS$SCHDWK and SYS$HIBER.

SYS$CANWAK Cancels a scheduled wakeup issued by SYS$SCHDWK. Unless
called with a specific timer request ID, this service cancels all
timers for all threads in the process regardless of the calling
thread.

(continued on next page)

3–62

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

Table 3–9 (Cont.) System Services and Routines Used for Hibernation and
Suspension

Routine Function

Suspended Kernel Threads and Processes

SYS$SUSPEND Puts in a suspended state all threads associated with the
specified process

SYS$RESUME Puts in an execution state all threads of the specified process

3.8.1.1 Using Process Hibernation
The hibernate/wake mechanism provides an efficient way to prepare an image for
execution and then to place it in a wait state until it is needed.

If you create a subprocess that must execute the same function repeatedly and
must execute immediately when it is needed, you could use the SYS$HIBER and
SYS$WAKE system services, as shown in the following example:

/* Process TAURUS */

#include <stdio.h>
#include <descrip.h>

main() {

unsigned int status;
$DESCRIPTOR(prcnam,"ORION");
$DESCRIPTOR(image,"COMPUTE.EXE");

/* Create ORION */
status = SYS$CREPRC(0, 1 /* Process id */

&image, /* Image */
0, 0, 0, 0, 0,
&prcnam, /* Process name */
0, 0, 0, 0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

.

.

.
/* Wake ORION */

status = SYS$WAKE(0, &prcnam); 2
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

/* Wake ORION again */
status = SYS$WAKE(0, &prcnam);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

}

/* Process ORION and image COMPUTE */

3–63

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

#include <stdio.h>
#include <ssdef.h>

.

.

.
sleep:

status = SYS$HIBER(); 3
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

goto sleep;
}

1 Process TAURUS creates the process ORION, specifying the descriptor for the
image named COMPUTE.

2 At an appropriate time, TAURUS issues a SYS$WAKE request for ORION.
ORION continues execution following the SYS$HIBER service call. When it
finishes its job, ORION loops back to repeat the SYS$HIBER call and to wait
for another wakeup.

3 The image COMPUTE is initialized, and ORION issues the SYS$HIBER
system service.

The Schedule Wakeup (SYS$SCHDWK) system service, a variation of the
SYS$WAKE system service, schedules a wakeup for a hibernating process at
a fixed time or at an elapsed (delta) time interval. Using the SYS$SCHDWK
service, a process can schedule a wakeup for itself before issuing a SYS$HIBER
call. For an example of how to use the SYS$SCHDWK system service, see
Chapter 5.

Hibernating processes can be interrupted by asynchronous system traps (ASTs),
as long as AST delivery is enabled. The process can call SYS$WAKE on its own
behalf in the AST service routine, and continue execution following the execution
of the AST service routine. For a description of ASTs and how to use them, see
Chapter 4.

3.8.1.2 Using Alternative Methods of Hibernation
You can use two additional methods to cause a process to hibernate:

• Specify the stsflg argument for the SYS$CREPRC system service, setting
the bit that requests SYS$CREPRC to place the created process in a state of
hibernation as soon as it is initialized.

• Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifier to the RUN
command when you execute the image from the command stream.

When you use the SYS$CREPRC system service, the creating process can
control when to wake the created process. When you use the RUN command,
its qualifiers control when to wake the process.

If you use the /INTERVAL qualifier and the image to be executed does not call
the SYS$HIBER system service, the image is placed in a state of hibernation
whenever it issues a return instruction (RET). Each time the image is awakened,
it begins executing at its entry point. If the image does call SYS$HIBER, each
time it is awakened it begins executing at either the point following the call to
SYS$HIBER or at its entry point (if it last issued a RET instruction).

3–64

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

If wakeup requests are scheduled at time intervals, the image can be terminated
with the Delete Process (SYS$DELPRC) or Force Exit (SYS$FORCEX) system
service, or from the command level with the STOP command. The SYS$DELPRC
and SYS$FORCEX system services are described in Section 3.8.3.4 and in
Section 3.8.4. The RUN and STOP commands are described in the OpenVMS
DCL Dictionary.

These methods allow you to write programs that can be executed once, on request,
or cyclically. If an image is executed more than once in this manner, normal
image activation and termination services are not performed on the second and
subsequent calls to the image. Note that the program must ensure both the
integrity of data areas that are modified during its execution and the status of
opened files.

3.8.1.3 Using SYS$SUSPND
Using the Suspend Process (SYS$SUSPND) system service, a process can place
itself or another process into a wait state similar to hibernation. Suspension,
however, is a more pronounced state of hibernation. The operating system
provides no system service to force a process to be swapped out, but the
SYS$SUSPND system service can accomplish the task in the following way.
Suspended processes are the first processes to be selected for swapping. A
suspended process cannot be interrupted by ASTs, and it can resume execution
only after another process calls a Resume Process (SYS$RESUME) system service
on its behalf. If ASTs are queued for the process while it is suspended, they
are delivered when the process resumes execution. This is an effective tool for
blocking delivery of all ASTs.

At the DCL level, you can suspend a process by issuing the SET PROCESS
command with the /SUSPEND qualifier. This command temporarily stops the
process’s activities. The process remains suspended until another process resumes
or deletes it. To allow a suspended process to resume operation, use either the
/NOSUSPEND or /RESUME qualifier.

3.8.2 Passing Control to Another Image
The RTL routines LIB$DO_COMMAND and LIB$RUN_PROGRAM allow you to
invoke the next image from the current image. That is, they allow you to perform
image rundown for the current image and pass control to the next image without
returning to DCL command level. Which routine you use depends on whether the
next image is a command image or a noncommand image.

3.8.2.1 Invoking a Command Image
The following DCL command executes the command image associated with the
DCL command COPY:

$ COPY DATA.TMP APRIL.DAT

To pass control from the current image to a command image, use the run-time
library (RTL) routine LIB$DO_COMMAND. If LIB$DO_COMMAND executes
successfully, control is not returned to the invoking image, and statements
following the LIB$DO_COMMAND statement are not executed. The following
statement causes the current image to exit and executes the DCL command in
the preceding example:

3–65

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

.

.

.
STATUS = LIB$DO_COMMAND (’COPY DATA.TMP APRIL.DAT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

To execute a number of DCL commands, specify a DCL command procedure.
The following statement causes the current image to exit and executes the DCL
command procedure [STATS.TEMP]CLEANUP.COM:

.

.

.
STATUS = LIB$DO_COMMAND (’@[STATS.TEMP]CLEANUP’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

3.8.2.2 Invoking a Noncommand Image
You invoke a noncommand image at DCL command level with the DCL
command RUN. The following command executes the noncommand image
[STATISTICS.TEMP]TEST.EXE:

$ RUN [STATISTICS.TEMP]TEST

To pass control from the current image to a noncommand image, use the run-
time library routine LIB$RUN_PROGRAM. If LIB$RUN_PROGRAM executes
successfully, control is not returned to the invoking image, and statements
following the LIB$RUN_PROGRAM statement are not executed. The following
program segment causes the current image to exit and passes control to the
noncommand image [STATISTICS.TEMP]TEST.EXE on the default disk:

.

.

.
STATUS = LIB$RUN_PROGRAM (’[STATISTICS.TEMP]TEST.EXE’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

3.8.3 Performing Image Exit
When image execution completes normally, the operating system performs a
variety of image rundown functions. If the image is executed by the command
interpreter, image rundown prepares the process for the execution of another
image. If the image is not executed by the command interpreter—for example, if
it is executed by a subprocess—the process is deleted.

Main programs and main routines terminate by executing a return instruction
(RET). This instruction returns control to the caller, which could have been
LIB$INITIALIZE, the debugger, or the command interpreter. The completion
code, SS$_NORMAL, which has the value 1, should be used to indicate normal
successful completion.

Any other condition value can be used to indicate success or failure. The
command language interpreter uses the condition value as the parameter to
the Exit (SYS$EXIT) system service. If the severity field (STS$V_SEVERITY) is
SEVERE or ERROR, the continuation of a batch job or command procedure is
affected.

3–66

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

These exit activities are also initiated when an image completes abnormally as a
result of any of the following conditions:

• Specific error conditions caused by improper specifications when a process
is created. For example, if an invalid device name is specified for the
SYS$INPUT, SYS$OUTPUT, or SYS$ERROR logical name, or if an invalid
or nonexistent image name is specified, the error condition is signaled in the
created process.

• An exception occurring during execution of the image. When an exception
occurs, any user-specified condition handlers receive control to handle the
exception. If there are no user-specified condition handlers, a system-declared
condition handler receives control, and it initiates exit activities for the image.
Condition handling is described in Chapter 13.

• A Force Exit (SYS$FORCEX) system service issued on behalf of the process
by another process.

3.8.3.1 Performing Image Rundown
The operating system performs image rundown functions that release system
resources obtained by a process while it is executing in user mode. These
activities occur in the following order:

1. Any outstanding I/O requests on the I/O channels are canceled, and I/O
channels are deassigned.

2. Memory pages occupied or allocated by the image are deleted, and the
working set size limit of the process is readjusted to its default value.

3. All devices allocated to the process at user mode are deallocated (devices
allocated from the command stream in supervisor mode are not deallocated).

4. Timer-scheduled requests, including wakeup requests, are canceled.

5. Common event flag clusters are disassociated.

6. Locks are dequeued as a part of rundown.

7. User mode ASTs that are queued but have not been delivered are deleted, and
ASTs are enabled for user mode.

8. Exception vectors declared in user mode, compatibility mode handlers, and
change mode to user handlers are reset.

9. System service failure exception mode is disabled.

10. All process private logical names and logical name tables created for user
mode are deleted. Deletion of a logical name table causes all names in that
table to be deleted. Note that names entered in shareable logical name tables,
such as the job or group table, are not deleted at image rundown, regardless
of the access mode for which they were created.

3.8.3.2 Initiating Rundown
To initiate the rundown activities described in Section 3.8.3.1, the system calls
the Exit (SYS$EXIT) system service on behalf of the process. In some cases,
a process can call SYS$EXIT to terminate the image itself (for example, if an
unrecoverable error occurs).

You should not call the SYS$EXIT system service directly from a main program.
By not calling SYS$EXIT directly from a main program, you allow the main
program to be more like ordinary modular routines and therefore usable by other
programmers as callable routines.

3–67

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

The SYS$EXIT system service accepts a status code as an argument. If you use
SYS$EXIT to terminate image execution, you can use this status code argument
to pass information about the completion of the image. If an image returns
without calling SYS$EXIT, the current value in R0 is passed as the status code
when the system calls SYS$EXIT.

This status code is used as follows:

• The command interpreter uses the status code to display optionally an error
message when it receives control following image rundown.

• If the image has declared an exit handler, the status code is written in the
address specified in the exit control block.

• If the process was created by another process, and the creator has specified a
mailbox to receive a termination message, the status code is written into the
termination mailbox when the process is deleted.

3.8.3.3 Performing Cleanup and Rundown Operations
Use exit handlers to perform image-specific cleanup or rundown operations. For
example, if an image uses memory to buffer data, an exit handler can ensure that
the data is not lost when the image exits as the result of an error condition.

To establish an exit-handling routine, you must set up an exit control block and
specify the address of the control block in the call to the Declare Exit Handler
(SYS$DCLEXH) system service. You can call an exit handler by using standard
calling conventions; you can provide arguments to the exit handler in the exit
control block. The first argument in the control block argument list must specify
the address of a longword for the system to write the status code from SYS$EXIT.

If an image declares more than one exit handler, the control blocks are linked
together on a last-in, first-out (LIFO) basis. After an exit handler is called and
returns control, the control block is removed from the list. You can remove
exit control blocks prior to image exit by using the Cancel Exit Handler
(SYS$CANEXH) system service.

Exit handlers can be declared from system routines executing in supervisor or
executive mode. These exit handlers are also linked together in other lists, and
they receive control after exit handlers that are declared from user mode are
executed.

Exit handlers are called as a part of the SYS$EXIT system service. While a call
to the SYS$EXIT system service often precedes image rundown activities, the call
is not a part of image rundown. There is no way to ensure that exit handlers will
be called if an image terminates in a nonstandard way.

3.8.3.4 Initiating Image Rundown for Another Process
The Force Exit (SYS$FORCEX) system service provides a way for a process to
initiate image rundown for another process. For example, the following call to
SYS$FORCEX causes the image executing in the process CYGNUS to exit:

$DESCRIPTOR(prcnam,"CYGNUS");
.
.
.

status = SYS$FORCEX(0, /* pidadr - Process id */
&prcnam, /* prcnam - Process name */

0); /* code - Completion code */

3–68

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

Because the SYS$FORCEX system service calls the SYS$EXIT system service,
any exit handlers declared for the image are executed before image rundown.
Thus, if the process is using the command interpreter, the process is not deleted
and can run another image. Because the SYS$FORCEX system service uses
the AST mechanism, an exit cannot be performed if the process being forced to
exit has disabled the delivery of ASTs. AST delivery and how it is disabled and
reenabled is described in Chapter 4.

The following program segment shows an example of an exit-handling routine:

#include <stdio>
#include <ssdef>

/* Exit control block */

struct {
unsigned int *desblk;
unsigned int (*exh)();
unsigned int argcount;
unsigned int *cond_value; 1

}exitblock = {0, &exitrtn, 1, 0};

main() {

unsigned int status;

/* Declare the exit handler */

status = SYS$DCLEXH(&exitblock); 2
if ((status & 1) != 1)

LIB$SIGNAL(status);
}

int exitrtn (int condition) { 3
if ((status & 1) != 1)
{
/* Clean up */

.

.

.
return 1;

}
else
/* Normal exit */

return 0;

}

1 EXITBLOCK is the exit control block for the exit handler EXITRTN. The
third longword indicates the number of arguments to be passed. In this
example, only one argument is passed: the address of a longword for the
system to store the return status code. This argument must be provided in an
exit control block.

2 The SYS$DCLEXH system service call designates the address of the exit
control block, thus declaring EXITRTN as an exit handler.

3 The EXITRTN exit handler checks the status code. If this is a normal exit,
EXITRTN returns control. Otherwise, it handles the error condition.

3–69

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

3.8.4 Deleting a Process
Process deletion completely removes a process from the system. A process can be
deleted by any of the following events:

• The Delete Process (SYS$DELPRC) system service is called.

• A process that created a subprocess is deleted.

• An interactive process uses the DCL command LOGOUT.

• A batch job reaches the end of its command file.

• An interactive process uses the DCL command STOP/ID=pid or STOP
username.

• A process that contains a single image calls the Exit (SYS$EXIT) system
service.

• The Force Exit (SYS$FORCEX) system service forces image exit on a process
that contains a single image.

When the system is called to delete a process as a result of any of these
conditions, it first locates all subprocesses, and searches hierarchically. No
process can be deleted until all the subprocesses it has created have been deleted.

The lowest subprocess in the hierarchy is a subprocess that has no descendant
subprocesses of its own. When that subprocess is deleted, its parent subprocess
becomes a subprocess that has no descendant subprocesses and it can be deleted
as well. The topmost process in the hierarchy becomes the parent process of all
the other subprocesses.

The system performs each of the following procedures, beginning with the lowest
process in the hierarchy and ending with the topmost process:

• The image executing in the process is run down. The image rundown that
occurs during process deletion is the same as that described in Section 3.8.3.1.
When a process is deleted, however, the rundown releases all system
resources, including those acquired from access modes other than user
mode.

• Resource quotas are released to the creating process, if the process being
deleted is a subprocess.

• If the creating process specifies a termination mailbox, a message indicating
that the process is being deleted is sent to the mailbox. For detached
processes created by the system, the termination message is sent to the
system job controller.

• The control region of the process’s virtual address space is deleted. (The
control region consists of memory allocated and used by the system on behalf
of the process.)

• All system-maintained information about the process is deleted.

Figure 3–1 illustrates the flow of events from image exit through process
deletion.

3–70

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

Figure 3–1 Image Exit and Process Deletion

ZK−0857−GE

No

Yes

Yes

No

Image Exit

No

Yes

?
Mode

Exit Handlers
Any

Control Block
Using Argument List in Exit
Call Them, in LIFO Order,

?
Interpreter

Process Using
Is

?
Mailbox

a Termination
Creator Specify

Did

to Delete the Process
($DELPRC) System Service

Command Interpreter*

Call the Exit Handler

the Next Image
Interpreter to Execute
Return to Command

the Process’s Creator
to the Mailbox Specified by
Send a Termination Message

Complete
Deletion

for User

the Command

Declared by the

*This exit handler is declared from supervisor mode and is
search for exit handlers.located during the normal

Call the Delete Process

3–71

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

3.8.4.1 Deleting a Process By Using System Services
A process can delete itself or another process at any time, depending on the
restrictions outlined in Section 3.1.1. Any one of the following system services
can be used to delete a subprocess or a detached process. Some services terminate
execution of the image in the process; others terminate the process itself.

• SYS$EXIT—Initiates normal exit in the current image. Control returns to the
command language interpreter. If there is no command language interpreter,
the process is terminated. This routine cannot be used to terminate an image
in a detached process.

• SYS$FORCEX—Initiates a normal exit on the image in the specified process.
GROUP or WORLD privilege may be required, depending on the process
specified. An AST is sent to the specified process. The AST calls on the
SYS$EXIT routine to complete the image exit. Because an AST is used, you
cannot use this routine on a suspended process. You can use this routine on a
subprocess or detached process. See Section 3.8.3.4 for an example.

• SYS$DELPRC—Deletes the specified process. GROUP or WORLD privilege
may be required, depending on the process specified. A termination message
is sent to the calling process’s mailbox. You can use this routine on a
subprocess, a detached process, or the current process. For example, if a
process has created a subprocess named CYGNUS, it can delete CYGNUS, as
follows:

$DESCRIPTOR(prcnam,"CYGNUS");
.
.
.

status = SYS$EDLPRC(0, /* Process id */
&prcnam); /* Process name */

Because a subprocess is automatically deleted when the image it is executing
terminates (or when the command stream for the command interpreter
reaches end of file), you normally do not need to call the SYS$DELPRC
system service explicitly.

3.8.4.2 Terminating Mailboxes
A termination mailbox provides a process with a way of determining when, and
under what conditions, a process that it has created was deleted. The Create
Process (SYS$CREPRC) system service accepts the unit number of a mailbox as
an argument. When the process is deleted, the mailbox receives a termination
message.

The first word of the termination message contains the symbolic constant,
MSG$_DELPROC, which indicates that it is a termination message. The second
longword of the termination message contains the final status value of the image.
The remainder of the message contains system accounting information used by
the job controller and is identical to the first part of the accounting record sent
to the system accounting log file. The description of the SYS$CREPRC system
service in the OpenVMS System Services Reference Manual provides the complete
format of the termination message.

If necessary, the creating process can determine the process identification of the
process being deleted from the I/O status block (IOSB) posted when the message
is received in the mailbox. The second longword of the IOSB contains the process
identification of the process being deleted.

3–72

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

A termination mailbox cannot be located in memory shared by multiple
processors.

The following example illustrates a complete sequence of process creation, with a
termination mailbox:

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <msgdef.h>
#include <dvidef.h>
#include <iodef.h>
#include <accdef.h>

unsigned short unitnum;
unsigned int pidadr;

/* Create a buffer to store termination info */

struct accdef exitmsg;

/* Define and initialize the item list for $GETDVI */

static struct { 1
unsigned short buflen,item_code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;

}mbxinfo = { 4, DVI$_UNIT, &unitnum, 0, 0};

/* I/O Status Block for QIO */

struct {
unsigned short iostat, mblen;
unsigned int mbpid;

}mbxiosb;

main() {

void exitast(void);
unsigned short exchan;
unsigned int status,maxmsg=84,bufquo=240,promsk=0;
unsigned int func=IO$_READVBLK;
$DESCRIPTOR(image,"LYRA");

/* Create a mailbox */
status = SYS$CREMBX(0, /* prmflg (permanent or temporary) */ 2

&exchan, /* channel */
maxmsg, /* maximum message size */
bufquo, /* no. of bytes used for buffer */
promsk, /* protection mask */
0,0,0,0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Get the mailbox unit number */
status = SYS$GETDVI(0, /* efn - event flag */ 3

exchan, /* chan - channel */
0, /* devnam - device name */
&mbxinfo, /* item list */
0,0,0,0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

3–73

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

/* Create a subprocess */
status = SYS$CREPRC(&pidadr, /* process id */

&image, /* image to be run */
0,0,0,0,0,0,0,0,
unitnum, /* mailbox unit number */

0); /* options flags */
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Read from mailbox */
status = SYS$QIOW(0, /* efn - event flag */ 4

exchan, /* chan - channel number */
func, /* function modifier */
&mbxiosb, /* iosb - I/O status block */
&exitast, /* astadr - astadr AST routine */

0, /* astprm - astprm AST parameter */
&exitmsg, /* p1 - buffer to receive message*/
ACC$K_TERMLEN, /* p2 - length of buffer */

0,0,0,0); /* p3, p4, p5, p6 */

if ((status & 1) != 1)
LIB$SIGNAL(status);

}

void exitast(void) {

if(mbxiosb.iostat == SS$_NORMAL) 5
{

printf("\nMailbox successfully written...");
if (exitmsg.acc$w_msgtyp == MSG$_DELPROC)
{

printf("\nProcess deleted...");
if (pidadr == mbxiosb.mbpid)
{

printf("\nPIDs are equal...");
if (exitmsg.acc$l_finalsts == SS$_NORMAL)
printf("\nNormal termination...");

else
printf("\nAbnormal termination status: %d",

exitmsg.acc$l_finalsts);
}
else

printf("\nPIDs are not equal");
}
else

printf("\nTermination message not received... status: %d",
exitmsg.acc$w_msgtyp);

}
else

printf("\nMailbox I/O status block: %d",mbxiosb.iostat);

return;
}

1 The item list for the Get Device/Volume Information (SYS$GETDVI) system
service specifies that the unit number of the mailbox is to be returned.

2 The Create Mailbox and Assign Channel (SYS$CREMBX) system service
creates the mailbox and returns the channel number at EXCHAN.

3 The Create Process (SYS$CREPRC) system service creates a process to
execute the image LYRA.EXE and returns the process identification at
LYRAPID. The mbxunt argument refers to the unit number of the mailbox,
obtained from the Get Device/Volume Information (SYS$GETDVI) system
service.

3–74

Process Control
3.8 Suspending, Resuming, and Stopping Kernel Threads and Process Execution

4 The Queue I/O Request (SYS$QIO) system service queues a read request to
the mailbox, specifying both an AST service routine to receive control when
the mailbox receives a message and the address of a buffer to receive the
message. The information in the message can be accessed by the symbolic
offsets defined in the $ACCDEF macro. The process continues executing.

5 When the mailbox receives a message, the AST service routine EXITAST
receives control. Because this mailbox can be used for other interprocess
communication, the AST routine does the following:

• Checks for successful completion of the I/O operation by examining the
first word in the IOSB

• Checks that the message received is a termination message by examining
the message type field in the termination message at the offset ACC$W_
MSGTYPE

• Checks for the process identification of the process that has been deleted
by examining the second longword of the IOSB

• Checks for the completion status of the process by examining the status
field in the termination message at the offset ACC$L_FINALSTS

In this example, the AST service routine performs special action when the
subprocess is deleted.

The Create Mailbox and Assign Channel (SYS$CREMBX), Get Device/Volume
Information (SYS$GETDVI), and Queue I/O Request (SYS$QIO) system services
are described in greater detail in Chapter 9.

3–75

4
Using Asynchronous System Traps

This chapter describes the use of asynchronous system traps (ASTs). It contains
the following sections:

Section 4.1 provides an overview of AST routines.

Section 4.2 describes access modes for ASTs.

Section 4.3 describes ASTs and process wait states.

Section 4.4 describes how ASTs are declared.

Section 4.5 describes the AST service routine.

Section 4.6 describes how ASTs are delivered, and the affects of kernel threads on
AST delivery.

Section 4.7 presents a code example of how to use AST services.

Asynchronous system traps (ASTs) are interrupts that occur asynchronously (out
of sequence) with respect to the process’s execution. The trap provides a transfer
of control to a user-specified procedure that handles the event. For example,
you can use them to signal a program to execute a routine whenever a certain
condition occurs.

Some system services allow a process to request that it be interrupted when
a particular event occurs. Table 4–1 shows the system services that are AST
services.

Table 4–1 AST System Services

System Service Task Performed

SYS$SETAST Set AST Enable

SYS$DCLAST Declare AST

SYS$SETPRA Set Power Recovery AST

The system services that use the AST mechanism accept as an argument the
address of an AST service routine, that is, a routine to be given control when the
event occurs.

Table 4–2 shows some of the services that use ASTs.

4–1

Using Asynchronous System Traps

Table 4–2 System Services That Use ASTs

System Service Task Performed

SYS$DCLAST Declare AST

SYS$ENQ Enqueue Lock Request

SYS$GETDVI Get Device/Volume Information

SYS$GETJPI Get Job/Process Information

SYS$GETSYI Get Systemwide Information

SYS$QIO Queue I/O Request

SYS$SETIMR Set Timer

SYS$SETPRA Set Power Recovery AST

SYS$UPDSEC Update Section File on Disk

For example, if you call the Set Timer (SYS$SETIMR) system service, you can
specify the address of a routine to be executed when a time interval expires or at
a particular time of day. The service schedules the execution of the routine and
returns; the program image continues executing. When the requested timer event
occurs, the system ‘‘delivers’’ an AST by interrupting the process and calling the
specified routine.

Example 4–1 shows a typical program that calls the SYS$SETIMR system service
with a request for an AST when a timer event occurs.

Example 4–1 Calling the SYS$SETIMR System Service

#include <stdio.h>
#include <stdlib.h>
#include <ssdef.h>
#include <descrip.h>

struct {
unsigned int lower, upper;

}daytim;

/* AST routine */
void time_ast(void);

main() {
unsigned int status;
$DESCRIPTOR(timbuf,"0 ::10.00"); /* 10-second delta */

/* Convert ASCII format time to binary format */

status = SYS$BINTIM(&timbuf, /* buffer containing ASCII time */
&daytim); /* timadr (buffer to receive */

/* binary time) */
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Converting time to binary format...\n");

/* Set the timer */

(continued on next page)

4–2

Using Asynchronous System Traps

Example 4–1 (Cont.) Calling the SYS$SETIMR System Service

status = SYS$SETIMR(0, /* efn (event flag) */ 1
&daytim, /* expiration time */
&time_ast, /* astadr (AST routine) */
0, /* reqidt (timer request id) */
0); /* flags */

if ((status & 1) != 1)
LIB$SIGNAL(status);

else
printf("Setting the timer to expire in 10 secs...\n"); 2

/* Hibernate the process until the timer expires */

status = SYS$HIBER();
if ((status & 1) != 1)

LIB$SIGNAL(status);

}

void time_ast (void) {

unsigned int status;

status = SYS$WAKE(0, /* process id */
0); /* process name */

if ((status & 1) != 1)
LIB$SIGNAL(status);

printf("Executing AST routine to perform wake up...\n"); 3

return;
}

1 The call to the SYS$SETIMR system service requests an AST at 10 seconds
from the current time.

The daytim argument refers to the quadword, which must contain the time
in system time (64-bit) format. For details on how this is accomplished, see
Chapter 5. The astadr argument refers to TIME_AST, the address of the
AST service routine.

When the call to the system service completes, the process continues
execution.

2 The timer expires in 10 seconds and notifies the system. The system
interrupts execution of the process and gives control to the AST service
routine.

3 The user routine TIME_AST handles the interrupt. When the AST routine
completes, it issues a RET instruction to return control to the program. The
program resumes execution at the point at which it was interrupted.

The following sections describe in more detail how ASTs work and how to use
them.

4.1 Overview of AST Routines
The routine executed upon delivery of an AST is called an AST routine. It
is coded and referenced like any other subroutine. The differences are that
it is executed only after an AST is received by the program and is called
asynchronously by the operating system, not by the current image.

4–3

Using Asynchronous System Traps
4.1 Overview of AST Routines

When the AST routine is finished, the program that was interrupted resumes
execution from the point of interruption.

To deliver an AST, you use system services that specify the address of the AST
routine. Then, the system delivers the AST (that is, transfers control to your
subprogram) at a particular time or in response to a particular event.

The AST routine must observe the following restrictions:

• Arguments—The queuing mechanism for an AST does not provide for
returning a function value or passing arguments. Therefore, you should write
an AST routine as a subroutine, and use common blocks to pass arguments
between an AST routine and the program that queues it.

In some cases, a system service that queues an AST allows you to specify an
argument for the AST routine (for example, SYS$GETJPI). If you choose to
pass the argument, the AST routine must be written to accept the argument.

• Terminal I/O—If you try to access the terminal with language I/O statements
using SYS$INPUT or SYS$OUTPUT, you may receive a redundant I/O error.
You must establish another channel to the terminal by explicitly opening the
terminal (or by using the SMG$ routines).

• Shared routines—An AST routine might invoke a subprogram that is also
invoked by another program unit in the program. To prevent conflicts, a
program unit should use the SYS$SETAST system service to disable AST
interrupts before calling a routine that might be invoked by an AST. Once the
shared routine has executed, the program unit can use the same service to
reenable AST interrupts.

• Invocation—You should never directly call an AST routine as a subroutine or
a function.

• Iteration—You should never allow an AST routine to be delivered iteratively.

The system service used to queue the AST routine determines whether the AST
is delivered after a specified event or time.

• Event—The following system routines allow you to specify an AST routine to
be delivered when the system routine completes:

LIB$SPAWN—Signals when the subprocess has been created.

SYS$ENQ and SYS$ENQW—Signal when the resource lock is blocking a
request from another process.

SYS$GETDVI and SYS$GETDVIW—Indicate that device information has
been received.

SYS$GETJPI and SYS$GETJPIW—Indicate that process information has
been received.

SYS$GETSYI and SYS$GETSYIW—Indicate that system information has
been received.

SYS$QIO and SYS$QIOW—Signal when the requested I/O is completed.

SYS$UPDSEC—Signals when the section file has been updated.

SYS$ABORT_TRANS and SYS$ABORT_TRANSW—Signal when a
transaction is aborted.

4–4

Using Asynchronous System Traps
4.1 Overview of AST Routines

SYS$AUDIT_EVENT and SYS$AUDIT_EVENTW—Signal when an event
message is appended to the system security audit log file or send an
alarm to a security operator terminal.

SYS$BRKTHRU and SYS$BRKTHRU(W)—Signal when a message is
sent to one or more terminals.

SYS$CHECK_PRIVILEGE and SYS$CHECK_PRIVILEGEW—Signal
when the caller has the specified privileges or identifier.

VAX SYS$DNS and SYS$DNSW—On VAX systems, signal when client
applications are allowed to store resource names and addresses. ♦

SYS$END_TRANS and SYS$END_TRANSW—Signal an end to a
transaction by attempting to commit it.

SYS$GETQUI and SYS$GETQUIW—Signal when information is returned
about queues and the jobs initiated from those queues.

SYS$START_TRANS and SYS$START_TRANSW—Signal the start of a
new transaction.

Alpha SYS$SETCLUEVT and SYS$SETCLUEVTW—On Alpha systems, signal
a request for notification when a VMScluster configuration event occurs.
♦

• Event—The SYS$SETPRA system service allows you to specify an AST to be
delivered when the system detects a power recovery.

• Time—The SYS$SETIMR system service allows you to specify a time for the
AST to be delivered.

• Time—The SYS$DCLAST system service delivers a specified AST
immediately. This makes it an ideal tool for debugging AST routines.

If a program queues an AST and then exits before the AST is delivered, the AST
is deleted from the queue. If a process is hibernating when an AST is delivered,
the AST executes and the process continues hibernating.

If a suspended process receives an AST, the execution of the AST depends on the
AST mode and the mode at which the process was suspended, as follows:

• If the process was suspended from a SYS$SUSPEND call at supervisor mode,
user-mode ASTs are executed as soon as the process is resumed. If more
than one AST is delivered, they are executed in the order in which they were
delivered. Supervisor-, executive-, and kernel-mode ASTs are executed upon
delivery.

• If the process was suspended from a SYS$SUSPEND call at kernel mode, all
ASTs are blocked and are executed as soon as the process is resumed.

Generally, AST routines are used with the SYS$QIO or SYS$QIOW system
service for handling Ctrl/C, Ctrl/Y, and unsolicited input.

4.2 Access Modes for AST Execution
Each request for an AST is associated with the access mode from which the AST
is requested. Thus, if an image executing in user mode requests notification of an
event by means of an AST, the AST service routine executes in user mode.

4–5

Using Asynchronous System Traps
4.2 Access Modes for AST Execution

Because the ASTs you use almost always execute in user mode, you do not need
to be concerned with access modes. However, you should be aware of some
system considerations for AST delivery. These considerations are described in
Section 4.6.

4.3 ASTs and Process Wait States
A process in a wait state can be interrupted for the delivery of an AST and the
execution of an AST service routine. When the AST service routine completes
execution, the process is returned to the wait state, if the condition that caused
the wait is still in effect.

With the exception of suspended waits (SUSP) and suspended outswapped waits
(SUSPO), any wait states can be interrupted.

4.3.1 Event Flag Waits
If a process is waiting for an event flag and is interrupted by an AST, the wait
state is restored following execution of the AST service routine. If the flag is set
at completion of the AST service routine (for example, by completion of an I/O
operation), then the process continues execution when the AST service routine
completes.

Event flags are described in Section 14.6.

4.3.2 Hibernation
A process can place itself in a wait state with the Hibernate (SYS$HIBER) system
service. This wait state can be interrupted for the delivery of an AST. When the
AST service routine completes execution, the process continues hibernation. The
process can, however, ‘‘wake’’ itself in the AST service routine or be awakened by
another process or as the result of a timer-scheduled wakeup request. Then, it
continues execution when the AST service routine completes.

Process suspension is another form of wait; however, a suspended process cannot
be interrupted by an AST. Process hibernation and suspension are described in
Chapter 3.

4.3.3 Resource Waits and Page Faults
When a process is executing an image, the system can place the process in a
wait state until a required resource becomes available, or until a page in its
virtual address space is paged into memory. These waits, which are generally
transparent to the process, can also be interrupted for the delivery of an AST.

4.4 How ASTs Are Declared
Most ASTs occur as the result of the completion of an asynchronous event
initiated by a system service (for example, a SYS$QIO or SYS$SETIMR request)
when the process requests notification by means of an AST.

The Declare AST (SYS$DCLAST) system service creates ASTs. With this service,
a process can declare an AST only for the same or for a less privileged access
mode.

You may find occasional use for the SYS$DCLAST system service in your
programming applications; you may also find the SYS$DCLAST service useful
when you want to test an AST service routine.

4–6

Using Asynchronous System Traps
4.5 The AST Service Routine

4.5 The AST Service Routine
An AST service routine must be a separate procedure. The AST must use the
standard call procedure, and the routine must return using a RET instruction.
If the service routine modifies any registers other than the standard scratch
registers, it must set the appropriate bits in the entry mask so that the contents
of those registers are saved.

Because you cannot know when the AST service routine will begin executing, you
must take care when you write the AST service routine that it does not modify
any data or instructions used by the main procedure (unless, of course, that is its
function).

On entry to the AST service routine, the arguments shown in Table 4–3 are
passed.

Table 4–3 AST Arguments for VAX Systems and Alpha Systems

VAX System Arguments Alpha System Arguments

AST parameter AST parameter

R0 R0

R1 R1

PC PC

PSL PS

Registers R0 and R1, the program counter (PC), and the processor status
longword (PSL) on VAX systems, or processor status (PS) on Alpha systems were
saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so that
it can identify the event that caused the AST. When you call a system service
requesting an AST, or when you call the SYS$DCLAST system service, you
can supply a value for the AST parameter. If you do not specify a value, the
parameter defaults to 0.

The following example illustrates an AST service routine. In this example, the
ASTs are queued by the SYS$DCLAST system service; the ASTs are delivered
to the process immediately so that the service routine is called following each
SYS$DCLAST system service call.

#include <stdio.h>
#include <ssdef.h>

/* Declare the AST routine */

void astrtn (int);

main()
{

unsigned int status, value1=1, value2=2;

4–7

Using Asynchronous System Traps
4.5 The AST Service Routine

status = SYS$DCLAST(&astrtn, /* astadr - AST routine */ 1
value1, /* astprm - AST parameter */
0); /* acmode */

if((status & 1) != 1)
LIB$SIGNAL(status);

.

.

.
status = SYS$DCLAST(&astrtn, value2, 0);
if((status & 1) != 1)

LIB$SIGNAL(status);

}

void astrtn (int value) { 2

/* Evaluate AST parameter */
switch (value)
{

case 1: printf("Executing AST routine with value 1...\n");
goto handler_1;
break;

case 2: printf("Executing AST routine with value 2...\n");
goto handler_2;
break;

default: printf("Error\n");

};

/* Handle first AST */

handler_1:
.
.
.

return;

/* Handle second AST */

handler_2:
.
.
.

return;
}

1 The program CELESTEF calls the SYS$DCLAST AST system service twice to
queue ASTs. Both ASTs specify the AST service routine, ASTRTN. However,
a different parameter is passed for each call.

2 The first action this AST routine takes is to check the AST parameter so
that it can determine if the AST being delivered is the first or second one
declared. The value of the AST parameter determines the flow of execution.
If a number of different values are determining a number of different paths
of execution, Digital recommends that you use the VAX MACRO instruction
CASE.

4.6 AST Delivery
This section describes some conditions affecting AST delivery, and the affect of
kernel threads on AST delivery.

4–8

Using Asynchronous System Traps
4.6 AST Delivery

4.6.1 Conditions Affecting AST Delivery
When a condition causes an AST to be delivered, the system may not be able to
deliver the AST to the process immediately. An AST cannot be delivered under
any of the following conditions:

• An AST service routine is currently executing at the same or at a more
privileged access mode.

Because ASTs are implicitly disabled when an AST service routine executes,
one AST routine cannot be interrupted by another AST routine declared for
the same access mode. It can, however, be interrupted for an AST declared
for a more privileged access mode.

• AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the Set AST Enable
(SYS$SETAST) system service. This service may be useful when a program
is executing a sequence of instructions that should not be interrupted for the
execution of an AST routine.

Alpha On Alpha systems, SYS$SETAST is often used in a main program that shares
data with an AST routine in order to block AST delivery while the program
accesses the shared data. ♦

• The process is executing or waiting at an access mode more privileged than
that for which the AST is declared.

For example, if a user-mode AST is declared as the result of a system service
but the program is currently executing at a higher access mode (because of
another system service call, for example), the AST is not delivered until the
program is once again executing in user mode.

If an AST cannot be delivered when the interrupt occurs, the AST is queued
until the conditions disabling delivery are removed. Queued ASTs are ordered
by the access mode from which they were declared, with those declared from
more privileged access modes at the front of the queue. If more than one AST is
queued for an access mode, the ASTs are delivered in the order in which they are
queued.

4.6.2 Kernel Threads AST Delivery

Alpha With the kernel threads implementation, ASTs are associated with the kernel
thread that initiates them, though it is not required that they execute on
the thread that initiates them. The use of the kernel thread’s PID in the
asynchronous system trap control block (ACB) identifies the initiating thread.
Associating an ACB with its initiating thread is required; the arrival of an AST
is often the event that allows a thread, waiting on a flag or resource, to be made
computable.

An AST, for example, may set a flag or make a resource available, and when
the AST is completed, the thread continues its execution in non-AST mode
and rechecks the wait condition. If the wait condition is satisfied, the thread
continues; if not, the thread goes back into the wait queue.

On the other hand, if an AST executes on a kernel thread other than the one that
initiated it, then when the AST completes, the kernel thread that initiated the
AST must be made computable to ensure that it rechecks a waiting condition that
may now be satisfied.

4–9

Using Asynchronous System Traps
4.6 AST Delivery

The queuing and delivery mechanisms of ASTs makes a distinction between
outer mode ASTs (user and supervisor modes), and inner mode ASTs (executive
and kernel modes). This distinction is necessary because of the requirement to
synchronize inner mode access.

With the kernel threads implementation, the standard process control block
(PCB) AST queues now appear in the kernel thread block (KTB), so that each
kernel thread may receive ASTs independently. These queues receive outer mode
ASTs, which are delivered on the kernel thread that initiates them. The PCB
has a new set of inner mode queues for inner mode ASTs which require the inner
mode semaphore. With the creation of multiple kernel threads, inner mode ASTs
are inserted in the PCB queues, and are delivered on whichever kernel thread
holds the inner mode semaphore. Inner mode ASTs, which are explicitly declared
as thread-safe, are inserted in the KTB queues, and are delivered on the kernel
thread that initiates them.

If a thread manager declares a user AST callback, then user mode ASTs are
delivered to the thread manager. The thread manager then has the responsibilty
of determining in what context the AST should be executed.

4.6.2.1 Outer Mode (User and Supervisor) Non-Serial Delivery of ASTs
Before kernel threads, AST routine code of a given mode has always been able to
assume the following:

• It would be processed serially. It would not be interrupted or executed
concurrently with any other AST of the same mode.

• It would be processed without same-mode, non-AST level code executing
concurrently.

Further, before kernel threads, user mode code could safely access data that it
knows is only used by other user mode, non-AST level routines without needing
any synchronization mechanisms. The underlying assumption is that only one
thread of user mode execution exists. If the current code stream is accessing the
data, then by implication no other code stream can be accessing it.

After kernel threads, this assumed behavior of AST routines and user mode
code is no longer valid. Multiple user-mode, non-AST level code streams can be
executing at the same time. The use of any data that can be accessed by multiple
user-mode code streams must be modified to become synchronized using the load-
locked (LDx_L) and store-conditional (STx_C) instructions, or by using some other
synchronization mechanism.

Kernel threads assumes that multiple threads of execution can be active at one
time and includes outer mode ASTs. Within any given kernel thread, outer
mode ASTs will still be delivered serially. Also, the kernel thread model allows
any combination of multiple outer mode threads, or multiple outer mode ASTs.
However, outer-mode AST routines, as well as non-AST outer-mode code, has to
be aware that any data structure that can be accessed concurrently by outer-
mode code, or by any other outer-mode AST must be protected by some form of
synchronization.

Before kernel threads, same-mode ASTs executed in the order that they were
queued. After kernel threads and within a single kernel thread, that still is true.
However, it is not true process-wide. If two ACBs are queued to two different
KTBs, whichever is scheduled first executes first. There is no attempt to schedule
kernel threads in such a way to correctly order ASTs that have been queued to
them. The ASTs execute in any order and can, in fact, execute concurrently.

4–10

Using Asynchronous System Traps
4.6 AST Delivery

4.6.2.2 Inner Mode (Executive and Kernel) AST Delivery
Before kernel threads, OpenVMS implemented AST preemptions in inner modes
as follows:

• An executive mode AST can preempt non-AST executive mode processing

• A kernel mode AST can preempt non-AST kernel mode processing, or any
executive mode processing

• A special kernel mode AST can preempt a normal kernel mode AST, non-AST
kernel mode, or any executive mode

• No ASTs can be delivered when interrupt priority level (IPL) is raised to 2 or
above. Special kernel mode ASTs execute entirely at IPL 2 or above, which
is what prevents other kernel mode ASTs from executing while the special
kernel mode AST is active.

After kernel threads, in contrast to the preceeding list, kernel threads delivers
any non thread-safe inner mode ASTs to the kernel thread which already owns
the semaphore. If no thread currently owns the semaphore when the AST is
queued, then the semaphore is acquired in SCH$QAST, and the owner is set
to the target kernel thread for that AST. Subsequently queued ASTs see that
thread as the semaphore owner and are delivered to that thread. This allows the
PALcode and the hardware architecture to process all the AST preemption and
ordering rules. ♦

4.7 Example of Using AST Services
The following is an example of a DEC Fortran program that finds the process
identification (PID) number of any user working on a particular disk and delivers
an AST to notify the user that the disk is coming down:

PROGRAM DISK_DOWN
! Implicit none
! Status variable
INTEGER STATUS
STRUCTURE /ITMLST/
UNION
MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 RETLENADR
END MAP

MAP
INTEGER*4 END_LIST
END MAP
END UNION

END STRUCTURE
RECORD /ITMLST/ DVILIST(2),
2 JPILIST(2)
! Information for GETDVI call
INTEGER PID_BUF,
2 PID_LEN
! Information for GETJPI call
CHARACTER*7 TERM_NAME
INTEGER TERM_LEN
EXTERNAL DVI$_PID,
2 JPI$_TERMINAL
! AST routine and flag
INTEGER AST_FLAG

4–11

Using Asynchronous System Traps
4.7 Example of Using AST Services

PARAMETER (AST_FLAG = 2)
EXTERNAL NOTIFY_USER

INTEGER SYS$GETDVIW,
2 SYS$GETJPI,
2 SYS$WAITFR

! Set up for SYS$GETDVI
DVILIST(1).BUFLEN = 4
DVILIST(1).CODE = %LOC(DVI$_PID)
DVILIST(1).BUFADR = %LOC(PID_BUF)
DVILIST(1).RETLENADR = %LOC(PID_LEN)
DVILIST(2).END_LIST = 0
! Find PID number of process using SYS$DRIVE0
STATUS = SYS$GETDVIW (,
2 ,
2 ’_MTA0:’, ! device
2 DVILIST, ! item list
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get terminal name and fire AST
JPILIST(1).CODE = %LOC(JPI$_TERMINAL)
JPILIST(1).BUFLEN = 7
JPILIST(1).BUFADR = %LOC(TERM_NAME)
JPILIST(1).RETLENADR = %LOC(TERM_LEN)
JPILIST(2).END_LIST = 0
STATUS = SYS$GETJPI (,
2 PID_BUF, !process id
2 ,
2 JPILIST, !itemlist
2 ,
2 NOTIFY_USER, !AST
2 TERM_NAME) !AST arg
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Ensure that AST was executed
STATUS = SYS$WAITFR(%VAL(AST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

SUBROUTINE NOTIFY_USER (TERM_STR)
! AST routine that broadcasts a message to TERMINAL
! Dummy argument
CHARACTER*(*) TERM_STR
CHARACTER*8 TERMINAL
INTEGER LENGTH
! Status variable
INTEGER STATUS
CHARACTER*(*) MESSAGE
PARAMETER (MESSAGE =
2 ’SYS$TAPE going down in 10 minutes’)
! Flag to indicate AST executed
INTEGER AST_FLAG

! Declare system routines
INTRINSIC LEN
INTEGER SYS$BRDCST,
2 SYS$SETEF
EXTERNAL SYS$BRDCST,
2 SYS$SETEF,
2 LIB$SIGNAL
! Add underscore to device name
LENGTH = LEN (TERM_STR)
TERMINAL(2:LENGTH+1) = TERM_STR
TERMINAL(1:1) = ’_’

4–12

Using Asynchronous System Traps
4.7 Example of Using AST Services

! Send message
STATUS = SYS$BRDCST(MESSAGE,
2 TERMINAL(1:LENGTH+1))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Set event flag
STATUS = SYS$SETEF (%VAL(AST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

4–13

5
System Time Operations

This chapter describes the types of system time operations performed by the
operating system. It contains the following sections:

Section 5.1 describes the system time format.

Section 5.2 describes time conversion and date/time manipulation.

Section 5.3 describes how to get the current date and time and set the current
time.

Section 5.4 describes how to set and cancel timer requests and how to schedule
and cancel wakeups.

Section 5.5 describes using run-time library (RTL) routines to collect timer
statistics.

Section 5.6 describes using date/time formatting routines.

Section 5.7 describes the Coordinated Universal Time (UTC) system.

5.1 System Time Format
The operating system maintains the current date and time in 64-bit format.
The time value is a binary number in 100-nanosecond (ns) units offset from
the system base date and time, which is 00:00 o’clock, November 17, 1858 (the
Smithsonian base date and time for the astronomic calendar). Time values must
be passed to or returned from system services as the address of a quadword
containing the time in 64-bit format. A time value can be expressed as either of
the following:

• An absolute time that is a specific date or time of day, or both. Absolute times
are always positive values (or 0).

• A delta time that is an offset from the current time to a time or date in the
future. Delta times are always expressed as negative values.

If you specify 0 as the address of a time value, the operating system supplies the
current date and time.

5.1.1 Absolute Time Format
The operating system uses the following format for absolute time. The full date
and time require a character string of 23 characters. The punctuation is required.

dd-MMM-yyyy hh:mm:ss.cc

dd Day of the month (2 characters)

MMM Month (first 3 characters of the month in uppercase)

yyyy Year (4 characters)

5–1

System Time Operations
5.1 System Time Format

hh Hours of the day in 24-hour format (2 characters)

mm Minutes (2 characters)

ss.cc Seconds and hundredths of a second (5 characters)

5.1.2 Delta Time Format
The operating system uses the following format for delta time. The full date and
time require a character string of 16 characters. The punctuation is required.

dddd hh:mm:ss.cc

dddd Day of the month (4 characters)

hh Hour of the day (2 characters)

mm Minutes (2 characters)

ss.cc Seconds and hundredths of a second (5 characters)

A delta time is maintained as an integer value representing an amount of time in
100-ns units.

5.2 Time Conversion and Date/Time Manipulation
This section presents information about time conversion and date/time
manipulation features, and the routines available to implement them.

5.2.1 Time Conversion Routines
Since the timer system services require you to specify the time in a 64-bit format,
you can use time conversion run-time library and system service routines to work
with time in a different format. Run-time library and system services do the
following:

• Obtain the current date and time in an ASCII string or in system format.

• Convert an ASCII string into the system time format.

• Convert a system time value into an ASCII string.

• Convert the time from system format to integer values.

Table 5–1 shows time conversion run-time and system service routines.

5–2

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

Table 5–1 Time Conversion Routines and System Services

Routine Function

Time Conversion Run-Time Library (LIB$) Routines

LIB$CONVERT_DATE_STRING Converts an input date/time string to an
operating system internal time.

LIB$CVT_FROM_INTERNAL_TIME Converts an operating system standard
internal binary time value to an external
integer value. The value is converted
according to a selected unit of time
operation.

LIB$CVTF_FROM_INTERNAL_TIME Converts an operating system standard
internal binary time to an external
F-floating point value. The value is
converted according to a selected unit of
time operation.

LIB$CVT_TO_INTERNAL_TIME Converts an external integer time value
to an operating system standard internal
binary time value. The value is converted
according to a selected unit of time
operation.

LIB$CVTF_TO_INTERNAL_TIME Converts an F-floating-point time value
to an internal binary time value.

LIB$CVT_VECTIM Converts a seven-word array (as returned
by the SYS$NUMTIM system service)
to an operating system standard format
internal time.

LIB$FORMAT_DATE_TIME Allows you to select at run time a specific
output language and format for a date or
time, or both.

LIB$SYS_ASCTIM Provides a simplified interface between
higher-level languages and the $ASCTIM
system service.

(continued on next page)

5–3

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

Table 5–1 (Cont.) Time Conversion Routines and System Services

Routine Function

Time Conversion System Service Routines

SYS$ASCTIM Converts an absolute or delta time from
64-bit binary time format to an ASCII
string.

SYS$ASCUTC Converts an absolute time from 128-
bit Coordinated Universal Time (UTC)
format to an ASCII string.

SYS$BINTIM Converts an ASCII string to an absolute
or delta time value in a binary time
format.

SYS$BINUTC Converts an ASCII string to an absolute
time value in the 128-bit UTC format.

SYS$FAO Converts a binary value into an ASCII
character string in decimal, hexadecimal,
or octal notation and returns the
character string in an output string.

SYS$GETUTC Returns the current time in 128-bit UTC
format.

SYS$NUMTIM Converts an absolute or delta time from
64-bit system time format to binary
integer date and time values.

SYS$NUMUTC Converts an absolute 128-bit binary
time into its numeric components. The
numeric components are returned in local
time.

SYS$TIMCON Converts 128-bit UTC to 64-bit system
format or 64-bit system format to 128-bit
UTC based on the value of the convert
flag.

You can use the SYS$GETTIM system service to get the current time in internal
format, or you can use SYS$BINTIM to convert a formatted time to an internal
time, as shown in Section 5.3.2. You can also use the LIB$DATE_TIME routine to
obtain the time, LIB$CVT_FROM_INTERNAL_TIME to convert an internal time
to an external time, and LIB$CVT_TO_INTERNAL to convert from an external
time to an internal time.

5.2.1.1 Calculating and Displaying Time with SYS$GETTIM and LIB$SUBX
Example 5–1 calculates differences between the current time and a time input
in absolute format, and then displays the result as delta time. If the input time
is later than the current time, the difference is a negative value (delta time) and
can be displayed directly. If the input time is an earlier time, the difference is a
positive value (absolute time) and must be converted to delta time before being
displayed. To change an absolute time to a delta time, negate the time array
by subtracting it from 0 (specified as an integer array) using the LIB$SUBX
routine, which performs subtraction on signed two’s complement integers of
arbitrary length. For the absolute or delta time format, see Section 5.1.1 and
Section 5.1.2.

5–4

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

Example 5–1 Calculating and Displaying the Time
.
.
.

! Internal times
! Input time in absolute format, dd-mmm-yyyy hh:mm:ss.ss
!
INTEGER*4 CURRENT_TIME (2),
2 PAST_TIME (2),
2 TIME_DIFFERENCE (2),
2 ZERO (2)
DATA ZERO /0,0/
! Formatted times
CHARACTER*23 PAST_TIME_F
CHARACTER*16 TIME_DIFFERENCE_F
! Status
INTEGER*4 STATUS
! Integer functions
INTEGER*4 SYS$GETTIM,
2 LIB$GET_INPUT,
2 SYS$BINTIM,
2 LIB$SUBX,
2 SYS$ASCTIM
! Get current time
STATUS = SYS$GETTIM (CURRENT_TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get past time and convert to internal format
STATUS = LIB$GET_INPUT (PAST_TIME_F,
2 ’Past time (in absolute format): ’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SYS$BINTIM (PAST_TIME_F,
2 PAST_TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Subtract past time from current time
STATUS = LIB$SUBX (CURRENT_TIME,
2 PAST_TIME,
2 TIME_DIFFERENCE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! If resultant time is in absolute format (positive value means
! most significant bit is not set), convert it to delta time
IF (.NOT. (BTEST (TIME_DIFFERENCE(2),31))) THEN
STATUS = LIB$SUBX (ZERO,

2 TIME_DIFFERENCE,
2 TIME_DIFFERENCE)
END IF
! Format time difference and display
STATUS = SYS$ASCTIM (, TIME_DIFFERENCE_F,
2 TIME_DIFFERENCE,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, ’Time difference = ’, TIME_DIFFERENCE_F
END

If you are ignoring the time portion of date/time (that is, working just at the date
level), the LIB$DAY routine might simplify your calculations. LIB$DAY returns
to you the number of days from the base system date to a given date.

5–5

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

5.2.1.2 Obtaining Absolute Time with SYS$ASCTIM and SYS$BINTIM
The Convert Binary Time to ASCII String (SYS$ASCTIM)system service is the
converse of the Convert ASCII String to Binary Time (SYS$BINTIM) system
service. You provide the service with the time in the ASCII format shown in
Section 5.3.2. The service then converts the string to a time value in 64-bit
format. You can use this returned value as input to a timer scheduling service.

When you specify the ASCII string buffer, you can omit any of the fields, and
the service uses the current date or time value for the field. Thus, if you want a
timer request to be date independent, you could format the input buffer for the
SYS$BINTIM service as shown in the following example. The two hyphens that
are normally embedded in the date field must be included, and at least one blank
must precede the time field.

#include <stdio.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buff1, buff2;
}binary_noon;

main() {

unsigned int status;
$DESCRIPTOR(ascii_noon,"-- 12:00:00.00"); /* noon (absolute time) */

/* Convert time */
status = SYS$BINTIM(&ascii_noon, /* timbuf - ASCII time */

&binary_noon); /* timadr - binary time */

}

When the SYS$BINTIM service completes, a 64-bit time value representing ‘‘noon
today’’ is returned in the quadword at BINARY_NOON.

5.2.1.3 Obtaining Delta Time with SYS$BINTIM
The SYS$BINTIM system service also converts ASCII strings to delta time values
to be used as input to timer services. The buffer for delta time ASCII strings has
the following format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0 if you are
specifying a delta time for the current day.

The following example shows how to use the SYS$BINTIM service to obtain a
delta time in system format:

#include <stdio.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buff1, buff2;
}btenmin;

main() {

unsigned int status;
$DESCRIPTOR(atenmin,"0 00:10:00.00"); /* 10-min delta */

/* Convert time from ASCII to binary */
status = SYS$BINTIM(&atenmin, /* timbuf - time in ASCII */

&btenmin); /* timadr - binary time */

}

5–6

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

If you are programming in VAX MACRO, you can also specify approximate
delta time values when you assemble a program, using two MACRO .LONG
directives to represent a time value in 100-ns units. The arithmetic is based on
the following formula:

1 second = 10 million * 100 ns

For example, the following statement defines a delta time value of 5 seconds:

FIVESEC: .LONG -10*1000*1000*5,-1 ; Five seconds

The value 10 million is expressed as 10*1000*1000 for readability. Note that the
delta time value is negative.

If you use this notation, however, you are limited to the maximum number of
100-ns units that can be expressed in a longword. In time values this is slightly
more than 7 minutes.

5.2.1.4 Obtaining Numeric and ASCII Time with SYS$NUMTIM
The Convert Binary Time to Numeric Time (SYS$NUMTIM) system service
converts a time in the system format into binary integer values. The service
returns each of the components of the time (year, month, day, hour, and so on)
into a separate word of a 7-word buffer. The SYS$NUMTIM system service and
the format of the information returned are described in the OpenVMS System
Services Reference Manual.

You use the SYS$ASCTIM system service to format the time in ASCII for
inclusion in an output string. The SYS$ASCTIM service accepts as an argument
the address of a quadword that contains the time in system format and returns
the date and time in ASCII format.

If you want to include the date and time in a character string that contains
additional data, you can format the output string with the Formatted ASCII
Output (SYS$FAO) system service. The SYS$FAO system service converts binary
values to ASCII representations, and substitutes the results in character strings
according to directives supplied in an input control string. Among these directives
are !%T and !%D, which convert a quadword time value to an ASCII string and
substitute the result in an output string. For examples of how to do this, see the
discussion of $FAO in the OpenVMS System Services Reference Manual.

5.2.2 Date/Time Manipulation Routines
The run-time LIB$ facility provides several date/time manipulation routines.
These routines let you add, subtract, and multiply dates and times. Use the
LIB$ADDX and LIB$SUBX routines to add and subtract times, since the times
are defined in integer arrays. Use LIB$ADD_TIMES and LIB$SUB_TIMES
to add and subtract two quadword times. When manipulating delta times,
remember that they are stored as negative numbers. For example, to add a delta
time to an absolute time, you must subtract the delta time from the absolute time.
Use LIB$MULT_DELTA_TIME and LIB$MULTF_DELTA_TIME to multiply delta
times by scalar and floating scalar.

Table 5–2 lists all the LIB$ routines that perform date/time manipulation.

5–7

System Time Operations
5.2 Time Conversion and Date/Time Manipulation

Table 5–2 Date/Time Manipulation Routines

Routine Function

LIB$ADD_TIMES Adds two quadword times

LIB$FORMAT_DATE_TIME Formats a date and/or time for output

LIB$FREE_DATE_TIME_CONTEXT Frees the date/time context

LIB$GET_MAXIMUM_DATE_LENGTH Returns the maximum possible length of
an output date/time string

LIB$GET_USERS_LANGUAGE Returns the user’s selected language

LIB$INIT_DATE_TIME_CONTEXT Initializes the date/time context with a
user-specified format

LIB$MULT_DELTA_TIME Multiplies a delta time value by an
integer scalar value

LIB$MULTF_DELTA_TIME Multiplies a delta time value by an
F-floating point scalar value

LIB$SUB_TIMES Subtracts two quadword times

5.3 Timer Routines Used to Obtain and Set Current Time
This section presents information about getting the current date and time, and
setting current time. The run-time library (LIB$) facility provides date/time
utility routines for languages that do not have built-in time and date functions.
These routines return information about the current date and time or a date/time
specified by the user. You can obtain the current time by using the LIB$DATE_
TIME routine or by implementing the SYS$GETTIM system service. To set the
current time, use the SYS$SETTIME system service.

Table 5–3 describes the date/time routines.

Table 5–3 Timer RTLs and System Services

Routine Function

Timer Run-Time Library (LIB$) Routines

LIB$DATE_TIME Returns, using a string descriptor, the
operating system date and time in the
semantics of a string that the user provides.

(continued on next page)

5–8

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

Table 5–3 (Cont.) Timer RTLs and System Services

Routine Function

Timer Run-Time Library (LIB$) Routines

LIB$DAY Returns the number of days since the system
zero date of November 17, 1858. This routine
takes one required argument and two optional
arguments:

• The address of a longword to contain the
number of days since the system zero date
(required)

• A quadword passed by reference
containing a time in system time format
to be used instead of the current system
time (optional)

• A longword integer to contain the number
of 10-millisecond units since midnight
(optional)

LIB$DAY_OF_WEEK Returns the numeric day of the week for an
input time value. If the input time value is 0,
the current day of the week is returned. The
days are numbered 1 through 7: Monday is
day 1 and Sunday is day 7.

System Service Routine

SYS$SETIME Changes the value of or recalibrates the
system time.

5.3.1 Obtaining Current Time and Date with LIB$DATE_TIME
The LIB$DATE_TIME routine returns a character string containing the current
date and time in absolute time format. The full string requires a declaration of 23
characters. If you specify a shorter string, the value is truncated. A declaration of
16 characters obtains only the date. The following example displays the current
date and time:

! Formatted date and time
CHARACTER*23 DATETIME
! Status and library procedures
INTEGER*4 STATUS,
2 LIB$DATE_TIME
EXTERNAL LIB$DATE_TIME
STATUS = LIB$DATE_TIME (DATETIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
TYPE *, DATETIME

5–9

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

5.3.2 Obtaining Current Time and Date with SYS$GETTIM
You can obtain the current date and time in internal format with the
SYS$GETTIM system service. You can convert from internal to character
format with the SYS$ASCTIM system service or a directive to the SYS$FAO
system service and convert back to internal format with the SYS$BINTIM system
service. The Get Time (SYS$GETTIM) system service places the time into a
quadword buffer. For example:

/* Buffer to receive the binary time */
struct {

unsigned int buff1, buff2;
}time;

.

.

.
main() {

unsigned status;

This call to SYS$GETTIM returns the current date and time in system format in
the quadword buffer TIME.

The Convert Binary Time to ASCII String (SYS$ASCTIM) system service converts
a time in system format to an ASCII string and returns the string in a 23-byte
buffer. You call the SYS$ASCTIM system service as follows:

#include <stdio.h>
#include <descrip.h>

struct {
unsigned int buff1, buff2;

}time_value;

main() {

unsigned int status;
char timestr[23];
$DESCRIPTOR(atimenow, timestr);

/* Get binary time */
status = SYS$GETTIM(&time_value);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Convert binary time to ASCII */
status = SYS$ASCTIM(0, /* timlen - Length of ASCII string */

&atimenow, /* timbuf - ASCII time buffer */
&time_value, /* timadr - Binary time */
0); /* cvtflags - Conversion indicator */

if ((status & 1) != 1)
LIB$SIGNAL(status);

}

Because the address of a 64-bit time value is not supplied, the default value, 0, is
used.

The string the service returns has the following format:

dd-MMM-yyyy hh:mm:ss.cc

5–10

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

dd Day of the month

mmm Month (a 3-character alphabetic abbreviation)

yyyy Year

hh:mm:ss.cc Time in hours, minutes, seconds, and hundredths of a second

5.3.3 Setting the Current Time with SYS$SETIME
The Set System Time (SYS$SETIME) system service allows a user with the
operator (OPER) and logical I/O (LOG_IO) privileges to set the current system
time. You can specify a new system time (using the timadr argument), or you
can recalibrate the current system time using the processor’s hardware time-of-
year clock (omitting the timadr argument). If you specify a time, it must be an
absolute time value; a delta time (negative) value is invalid.

The system time is set whenever the system is bootstrapped. Normally you do not
need to change the system time between system bootstrap operations; however, in
certain circumstances you may want to change the system time without rebooting.
For example, you might specify a new system time to synchronize two processors,
or to adjust for changes between standard time and Daylight Savings Time. Also,
you may want to recalibrate the time to ensure that the system time matches the
hardware clock time (the hardware clock is more accurate than the system clock).

The DCL command SET TIME calls the SYS$SETIME system service.

If a process issues a delta time request and then the system time is changed, the
interval remaining for the request does not change; the request executes after the
specified time has elapsed. If a process issues an absolute time request and the
system time is changed, the request executes at the specified time, relative to the
new system time.

The following example shows the effect of changing the system time on an
existing timer request. In this example, two set timer requests are scheduled:
one is to execute after a delta time of 5 minutes and the other specifies an
absolute time of 9:00.

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <stdlib.h>

void gemini (int x);
unsigned int status;

/* Buffers to receive binary times */
struct {

unsigned int buff1, buff2;
}abs_binary, delta_binary;

main() {
$DESCRIPTOR(abs_time,"-- 19:37:00.00"); /* 9 am absolute time */
$DESCRIPTOR(delta_time,"0 :00:30"); /* 5-min delta time */

/* Convert ASCII absolute time to binary format */
status = SYS$BINTIM(&abs_time, /* ASCII absolute time */

&abs_binary); /* Converted to binary */

5–11

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

if (status == SS$_NORMAL)
{

status = SYS$SETIMR(0, /* efn - event flag */
&abs_binary, /* daytim - expiration time */
&gemini, /* astadr - AST routine */
1, /* reqidt - timer request id */
0); /* flags */

if (status == SS$_NORMAL)
printf("Setting system timer A\n");

}
else

LIB$SIGNAL(status);

/* Convert ASCII delta time to binary format */
status = SYS$BINTIM(&delta_time, /* ASCII delta time */

&delta_binary); /* Converted to binary */
if (status == SS$_NORMAL)
{

printf("Converting delta time to binary format\n");
status = SYS$SETIMR(0, /* efn - event flag */

&delta_binary, /* daytim - expiration time */
&gemini, /* astadr - AST routine */
2, /* reqidt - timer request id */
0); /* flags */

if (status == SS$_NORMAL)
printf("Setting system timer B\n");

else
LIB$SIGNAL(status);

}
else

LIB$SIGNAL(status);

status = SYS$HIBER();
}

void gemini (int reqidt) {

unsigned short outlen;
unsigned int cvtflg=1;
char timenow[12];
char fao_str[80];
$DESCRIPTOR(nowdesc, timenow);
$DESCRIPTOR(fao_in, "Request ID !UB answered at !AS");
$DESCRIPTOR(fao_out, fao_str);

/* Returns and converts the current time */
status = SYS$ASCTIM(0, /* timlen - length of ASCII string */

&nowdesc, /* timbuf - receives ASCII string */
0, /* timadr - time value to convert */
cvtflg); /* cvtflg - conversion flags */

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Receives the formatted output string */
status = SYS$FAO(&fao_in, /* srcstr - control FAO string */

&outlen, /* outlen - length in bytes */
&fao_out, /* outbuf - output buffer */
reqidt, /* p1 - param needed for 1st FAO dir */
&nowdesc); /* p2 - param needed for 2nd FAO dir */

if ((status & 1) != 1)
LIB$SIGNAL(status);

status = LIB$PUT_OUTPUT(&fao_out);

return;

}

5–12

System Time Operations
5.3 Timer Routines Used to Obtain and Set Current Time

The following example shows the output received from the preceding program.
Assume the program starts execution at 8:45. Seconds later, the system time is
set to 9:15. The timer request that specified an absolute time of 9:00 executes
immediately, because 9:00 has passed. The request that specified a delta time of
5 minutes times out at 9:20.

$ SHOW TIME
30-DEC-1993 8:45:04.56 +----------------------+

$ RUN SCORPIO | operator sets system |
<---| time to 9:15 |
Request ID number 1 executed at 09:15:00.00 +----------------------+
Request ID number 2 executed at 09:20:00.02
$

5.4 Routines Used for Timer Requests
This section presents information about setting and canceling timer requests,
and scheduling and canceling wakeups. Since many applications require the
scheduling of program activities based on clock time, the operating system allows
an image to schedule events for a specific time of day or after a specified time
interval. For example, you can use timer system services to schedule, convert,
or cancel events. For example, you can use the timer system services to do the
following:

• Schedule the setting of an event flag or the queuing of an asynchronous
system trap (AST) for the current process, or cancel a pending request that
has not yet been processed

• Schedule a wakeup request for a hibernating process, or cancel a pending
wakeup request that has not yet been processed

• Set or recalibrate the current system time, if the caller has the proper user
privileges

Table 5–4 system services that set, cancel, and schedule timer requests.

Table 5–4 Timer System Services

Timer System Service Routine Function

SYS$SETIMR Sets the timer to expire at a specified time. This
service sets a per-thread timer.

SYS$CANTIM Cancels all or a selected subset of the Set Timer
requests previously issued by the current image
executing in a process. This service cancels all
timers associated with the process.

SYS$SCHDWK Schedules the awakening (restarting) of a
kernel thread that has placed itself in a state
of hibernation with the Hibernate (SYS$HIBER)
service.

SYS$CANWAK Removes all scheduled wakeup requests for a
process from the timer queue, including those
made by the caller or by other processes. The
Schedule Wakeup ($SCHDWK) service makes
scheduled wakeup requests.

5–13

System Time Operations
5.4 Routines Used for Timer Requests

5.4.1 Setting Timer Requests with SYS$SETIMR
Timer requests made with the Set Timer (SYS$SETIMR) system service are
queued; that is, they are ordered for processing according to their expiration
times. The quota for timer queue entries (TQELM quota) controls the number of
entries a process can have pending in this timer queue.

When you call the SYS$SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the request
processed, you can specify either or both of the following:

• The number of an event flag to be set when the time expires. If you do not
specify an event flag, the system sets event flag 0.

• The address of an AST service routine to be executed when the time expires.

Optionally, you can specify a request identification for the timer request. You
can use this identification to cancel the request, if necessary. The request
identification is also passed as the AST parameter to the AST service routine, if
one is specified, so that the AST service routine can identify the timer request.

Example 5–2 and Example 5–3 show timer requests using event flags and ASTs,
respectively. Event flags, event flag services, and ASTs are described in more
detail in the Chapter 4.

Example 5–2 Setting an Event Flag

#include <stdio.h>
#include <ssdef.h>
#include <descrip.h>

/* Buffer to receive binary time */
struct {

unsigned int buff1, buff2;
}b30sec;

main() {

unsigned int efn = 4,status;
$DESCRIPTOR(a30sec,"0 00:00:30.00");

/* Convert time to binary format */
status = SYS$BINTIM(&a30sec, /* timbuf - ASCII time */

&b30sec);/* timadr - binary time */
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Converting ASCII to binary time...\n");

/* Set timer to wait */
status = SYS$SETIMR(efn, /* efn - event flag */

&b30sec,/* daytim - binary time */
0, /* astadr - AST routine */
0, /* reqidt - timer request */
0); /* flags */ 1

if ((status & 1) != 1)
LIB$SIGNAL(status);

else
printf("Request event flag be set in 30 seconds...\n");

(continued on next page)

5–14

System Time Operations
5.4 Routines Used for Timer Requests

Example 5–2 (Cont.) Setting an Event Flag

/* Wait 30 seconds */
status = SYS$WAITFR(efn); 2
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Timer expires...\n");

}

1 The call to SYS$SETIMR requests that event flag 4 be set in 30 seconds
(expressed in the quadword B30SEC).

2 The Wait for Single Event Flag (SYS$WAITFR) system service places the
process in a wait state until the event flag is set. When the timer expires, the
flag is set and the process continues execution.

Example 5–3 Specifying an AST Service Routine

#include <stdio.h>
#include <descrip.h>

#define NOON 12

struct {
unsigned int buff1, buff2;

}bnoon;

/* Define the AST routine */

void astserv(int);

main() {
unsigned int status, reqidt=12;
$DESCRIPTOR(anoon,"-- 12:00:00.00");

/* Convert ASCII time to binary */
status = SYS$BINTIM(&anoon, /* timbuf - ASCII time */ 1

&bnoon); /* timadr - binary time buffer */
if((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Converting ASCII to binary...\n");

/* Set timer */
status = SYS$SETIMR(0, /* efn - event flag */ 2

&bnoon, /* daytim - timer expiration */
&astserv, /* astadr - AST routine */
reqidt, /* reqidt - timer request id */
0); /* cvtflg - conversion flags */

if((status & 1) != 1)
LIB$SIGNAL(status);

else
printf("Setting timer expiration...\n");

status = SYS$HIBER();

}

void astserv(int astprm) { 3

(continued on next page)

5–15

System Time Operations
5.4 Routines Used for Timer Requests

Example 5–3 (Cont.) Specifying an AST Service Routine

/* Do something if it’s a "noon" request */
if (astprm == NOON)

printf("This is a noon AST request\n");
else

printf("Handling some other request\n");

status = SYS$SCHDWK(0, /* pidadr - process id */
0);/* prcnam - process name */

return;
}

1 The call to SYS$BINTIM converts the ASCII string representing 12:00
noon to format. The value returned in BNOON is used as input to the
SYS$SETIMR system service.

2 The AST routine specified in the SYS$SETIMR request will be called when
the timer expires, at 12:00 noon. The reqidt argument identifies the timer
request. (This argument is passed as the AST parameter and is stored
at offset 4 in the argument list. See Chapter 4.) The process continues
execution; when the timer expires, it is interrupted by the delivery of the
AST. Note that if the current time of day is past noon, the timer expires
immediately.

3 This AST service routine checks the parameter passed by the reqidt
argument to determine whether it must service the 12:00 noon timer request
or another type of request (identified by a different reqidt value). When the
AST service routine completes, the process continues execution at the point of
interruption.

5.4.2 Canceling a Timer Request with SYS$CANTIM
The Cancel Timer Request (SYS$CANTIM) system service cancels timer requests
that have not been processed. The SYS$CANTIM system service removes the
entries from the timer queue. Cancellation is based on the request identification
given in the timer request. For example, to cancel the request illustrated in
Example 5–3, you would use the following call to SYS$CANTIM:

unsigned int status, reqidt=12;
.
.
.

status = SYS$CANTIM(reqidt, 0);

If you assign the same identification to more than one timer request, all requests
with that identification are canceled. If you do not specify the reqidt argument,
all your requests are canceled.

5.4.3 Scheduling Wakeups with SYS$WAKE
Example 5–2 shows a process placing itself in a wait state using the
SYS$SETIMR and SYS$WAITFR services. A process can also make itself inactive
by hibernating. A process hibernates by issuing the Hibernate (SYS$HIBER)
system service. Hibernation is reversed by a wakeup request, which can be put
into effect immediately with the SYS$WAKE system service or scheduled with the
Schedule Wakeup (SYS$SCHDWK) system service. For more information about
the SYS$HIBER and SYS$WAKE system services, see Chapter 3.

5–16

System Time Operations
5.4 Routines Used for Timer Requests

The following example shows a process scheduling a wakeup for itself prior to
hibernating:

#include <stdio.h>
#include <descrip.h>

struct {
unsigned int buff1, buff2;

}btensec;

main() {

unsigned int status;
$DESCRIPTOR(atensec,"0 00:00:10.00");

/* Convert time */
status = SYS$BINTIM(&atensec, /* timbuf - ASCII time */

&btensec);/* timadr - binary time */
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Schedule wakeup */
status = SYS$SCHDWK(0, /* pidadr - process id */

0, /* prcnam - process name */
&btensec, /* daytim - wake up time */
0); /* reptim - repeat interval */

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Sleep ten seconds */
status = SYS$HIBER();
if ((status & 1) != 1)

LIB$SIGNAL(status);
}

Note that a suitably privileged process can wake or schedule a wakeup request
for another process; thus, cooperating processes can synchronize activity using
hibernation and scheduled wakeups. Moreover, when you use the SYS$SCHDWK
system service in a program, you can specify that the wakeup request be repeated
at fixed time intervals. See Chapter 3 for more information on hibernation and
wakeup.

5.4.4 Canceling a Scheduled Wakeup with SYS$CANWAK
You can cancel scheduled wakeup requests that are pending but have not yet
been processed with the Cancel Wakeup (SYS$CANWAK) system service. This
service cancels a wakeup request for a specific kernel thread, if a process ID is
specified. If a process name is specified, then the initial thread’s wakeup request
is canceled.

The following example shows the scheduling of wakeup requests for the process
CYGNUS and the subsequent cancellation of the wakeups. The SYS$SCHDWK
system service in this example specifies a delta time of 1 minute and an interval
time of 1 minute; the wakeup is repeated every minute until the requests are
canceled.

#include <stdio.h>
#include <descrip.h>

/* Buffer to hold one minute */

struct {
unsigned int buff1, buff2;

}interval;

main() {

5–17

System Time Operations
5.4 Routines Used for Timer Requests

unsigned int status;
$DESCRIPTOR(one_min,"0 00:01:00.00"); /* One minute delta */
$DESCRIPTOR(cygnus, "CYGNUS"); /* Process name */

/* Convert time to binary */
status = SYS$BINTIM(&one_min, /* timbuf - ASCII delta time */

&interval); /* timadr - Buffer to hold binary time */
if((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Converting time to binary format...\n");

/* Schedule wakeup */
status = SYS$SCHDWK(0, /* pidadr - process id */

&cygnus, /* prcnam - process name */
&interval, /* daytim - time to be awakened */
&interval); /* reptim - repeat interval */

if((status & 1) != 1)
LIB$SIGNAL(status);

}
else

printf("Scheduling wakeup...\n");

/* Cancel wakeups */
status = SYS$CANWAK(0, /* pidadr - process id */

&cygnus); /* prcnam - process name */

}

5.4.5 Executing a Program at Timed Intervals
To execute a program at timed intervals, you can use either the LIB$SPAWN
routine or the SYS$CREPRC system service. With LIB$SPAWN, you can create
a subprocess that executes a command procedure containing three commands:
the DCL command WAIT, the command that invokes the desired program, and a
GOTO command that directs control back to the WAIT command. To prevent the
parent process from remaining in hibernation until the subprocess executes, you
should execute the subprocess concurrently; that is, you should specify CLI$M_
NOWAIT.

For more information about using LIB$SPAWN and SYS$CREPRC, see
Chapter 3.

5.5 Routines Used for Timer Statistics
This section presents information about the LIB$INIT_TIMER, LIB$SHOW_
TIMER, LIB$STAT_TIMER, and LIB$FREE_TIMER routines. By calling these
run-time library routines, you can collect the following timer statistics from the
system:

• Elapsed time—Actual time that has passed since setting a timer

• CPU time—CPU time that has passed since setting a timer

• Buffered I/O—Number of buffered I/O operations that have occurred since
setting a timer

• Direct I/O—Number of direct I/O operations that have occurred since setting
a timer

• Page faults—Number of page faults that have occurred since setting a timer

5–18

System Time Operations
5.5 Routines Used for Timer Statistics

Following are descriptions of each routine:

• LIB$INIT_TIMER—Allocates and initializes space for collecting the statistics.
You should specify the handle-adr argument as a variable with a value of 0
to ensure the modularity of your program. When you specify the argument,
the system collects the information in a specially allocated area in dynamic
storage. This prevents conflicts with other timers used by the application.

• LIB$SHOW_TIMER—Obtains one or all of five statistics (elapsed time, CPU
time, buffered I/O, direct I/O, and page faults); the statistics are formatted for
output. The handle-adr argument must be the same value as specified for
LIB$INIT_TIMER (do not modify this variable). Specify the code argument
to obtain one particular statistic rather than all the statistics.

You can let the system write the statistics to SYS$OUTPUT (the default),
or you can process the statistics with a routine of your own. To process
the statistics yourself, specify the name of your routine in the action-rtn
argument. You can pass one argument to your routine by naming it in the
user-arg argument. If you use your own routine, it must be written as an
integer function and return an error code (return a value of 1 for success).
This error code becomes the error code returned by LIB$SHOW_TIMER. Two
arguments are passed to your routine: the first is a passed-length character
string containing the formatted statistics, and the second is the value of the
fourth argument (if any) specified to LIB$SHOW_TIMER.

• LIB$STAT_TIMER—Obtains one of five unformatted statistics. Specify the
statistic you want in the code argument. Specify a storage area for the
statistic in value. The handle-adr argument must be the same value as you
specified for LIB$INIT_TIMER.

• LIB$FREE_TIMER—You should invoke this procedure when you are done
with the timer to ensure the modularity of your program. The value in the
handle-adr argument must be the same as that specified for LIB$INIT_
TIMER.

You must invoke LIB$INIT_TIMER to allocate storage for the timer. You should
invoke LIB$FREE_TIMER before you exit from your program unit. In between,
you can invoke LIB$SHOW_TIMER or LIB$STAT_TIMER, or both, as often as
you want. Example 5–4 invokes LIB$SHOW_TIMER and uses a user-written
subprogram either to display the statistics or to write them to a file.

Example 5–4 Displaying and Writing Timer Statistics
.
.
.

! Timer arguments
INTEGER*4 TIMER_ADDR,
2 TIMER_DATA,
2 TIMER_ROUTINE
EXTERNAL TIMER_ROUTINE
! Declare library procedures as functions
INTEGER*4 LIB$INIT_TIMER,
2 LIB$SHOW_TIMER
EXTERNAL LIB$INIT_TIMER,
2 LIB$SHOW_TIMER

(continued on next page)

5–19

System Time Operations
5.5 Routines Used for Timer Statistics

Example 5–4 (Cont.) Displaying and Writing Timer Statistics
! Work variables
CHARACTER*5 REQUEST
INTEGER*4 STATUS
! User request - either WRITE or FILE
INTEGER*4 WRITE,
2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)
! Get user request
WRITE (UNIT=*, FMT=’($,A)’) ’ Request: ’
ACCEPT *, REQUEST
IF (REQUEST .EQ. ’WRITE’) TIMER_DATA = WRITE
IF (REQUEST .EQ. ’FILE’) TIMER_DATA = FILE
! Set timer
STATUS = LIB$INIT_TIMER (TIMER_ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Get statistics
STATUS = LIB$SHOW_TIMER (TIMER_ADDR,,
2 TIMER_ROUTINE,
2 TIMER_DATA)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Free timer
STATUS = LIB$FREE_TIMER (TIMER_ADDR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
INTEGER FUNCTION TIMER_ROUTINE (STATS,
2 TIMER_DATA)
! Dummy arguments
CHARACTER*(*) STATS
INTEGER TIMER_DATA
! Logical unit number for file
INTEGER STATS_FILE
! User request
INTEGER WRITE,
2 FILE
PARAMETER (WRITE = 1,
2 FILE = 2)
! Return code
INTEGER SUCCESS,
2 FAILURE
PARAMETER (SUCCESS = 1,
2 FAILURE = 0)

(continued on next page)

5–20

System Time Operations
5.5 Routines Used for Timer Statistics

Example 5–4 (Cont.) Displaying and Writing Timer Statistics

! Set return status to success
TIMER_ROUTINE = SUCCESS
! Write statistics or file them in STATS.DAT
IF (TIMER_DATA .EQ. WRITE) THEN
TYPE *, STATS

ELSE IF (TIMER_DATA .EQ. FILE) THEN
CALL LIB$GET_LUN (STATS_FILE)
OPEN (UNIT=STATS_FILE,

2 FILE=’STATS.DAT’)
WRITE (UNIT=STATS_FILE,

2 FMT=’(A)’) STATS
ELSE

TIMER_ROUTINE = FAILURE
END IF
END

You can use the SYS$GETSYI system service to obtain more detailed system
information on boot time, the cluster, processor type, emulated instructions,
nodes, paging files, swapping files, and hardware and software versions. With
SYS$GETQUI and LIB$GETQUI, you can obtain queue information.

5.6 Date/Time Formatting Routines
This section provides information about using date/time formatting routines that
allow you to specify input and output formats other than the standard operating
system format for dates and times. These include international formats with
appropriate language spellings for days and months.

If the desired language is English (the default language) and the desired format
is the standard operating system format, then initialization of logical names is
not required in order to use the date/time input and output routines. However,
if the desired language and format are not the defaults, the system manager (or
any user having CMEXEC, SYSNAM, and SYSPRV privileges) must initialize the
required logical names.

5.6.1 Performing Date/Time Logical Initialization
Note

You must complete the initialization steps outlined in this section
before you can use any of the date/time input and output routines with
languages and formats other than the defaults.

As an alternative to the standard operating system format, the command
procedure SYS$MANAGER:LIB$DT_STARTUP.COM defines several output
formats for dates and times. This command procedure must be executed by the
system manager prior to using any of the run-time library date/time routines for
input or output formats other than the default. Ideally, this command procedure
should be executed from a site-specific startup procedure.

In addition to defining the date/time formats, the LIB$DT_STARTUP.COM
command procedure also defines spellings for date and time elements in
languages other than English. If different language spellings are required,
the system manager must define the logical name SYS$LANGUAGES before

5–21

System Time Operations
5.6 Date/Time Formatting Routines

invoking LIB$DT_STARTUP.COM. The translation of SYS$LANGUAGES is then
used to select which languages are defined.

Table 5–5 shows the available languages and their logical names.

Table 5–5 Available Languages for Date/Time Formatting

Language Logical Name

Austrian AUSTRIAN

Danish DANISH

Dutch DUTCH

Finnish FINNISH

French FRENCH

French Canadian CANADIAN

German GERMAN

Hebrew HEBREW

Italian ITALIAN

Norwegian NORWEGIAN

Portuguese PORTUGUESE

Spanish SPANISH

Swedish SWEDISH

Swiss French SWISS_FRENCH

Swiss German SWISS_GERMAN

For example, if the system manager wants the spellings for French, German,
and Italian languages to be defined, he or she must define SYS$LANGUAGES as
shown, prior to invoking LIB$DT_STARTUP.COM:

$ DEFINE SYS$LANGUAGES FRENCH, GERMAN, ITALIAN

If the user requires an additional language, for example FINNISH, then the
system manager must add FINNISH to the definition of SYS$LANGUAGES and
reexecute the command procedure.

Date/Time Manipulation Option
The Date/Time Manipulation option provides date/time spelling support for
four new languages. Users or application programmers can select the desired
language by defining the logical name SYS$LANGUAGES. The new languages
and their equivalent names are as follows:

Language Equivalent Name

Chinese (simplified character) Hanzi

Chinese (traditional character) Hanyu

Korean Hangul

Thai Thai

5–22

System Time Operations
5.6 Date/Time Formatting Routines

Defining Date/Time Spelling
To define the spelling for Hanzi and Hanyu, define SYS$LANGUAGES as shown
below, prior to invoking LIB$DT_STARTUP.COM:

$ DEFINE SYS$LANGUAGES HANZI, HANYU
$ @SYS$MANAGER:LIB$DT_STARTUP

Predefined Output Formats
Tables 5–6 and 5–7 list the new predefined date and time format logical names,
their formats, and examples of the output generated using those formats.

Table 5–6 Predefined Output Date Formats

Logical Name Format Example

LIB$DATE_FORMAT_042 !Y4a!MNBb!DBc !WAU 1994a3b7c (d)

LIB$DATE_FORMAT_043 !Y4a!MNBb!DBc !WU 1994a3b7c efd

LIB$DATE_FORMAT_044 !Y4a!MNBb!DBc !WAU 1994a3b7c (d)

LIB$DATE_FORMAT_045 !Y4a!MNBb!DBc !WU 1994a3b7c efd

LIB$DATE_FORMAT_046 !Y4 a !MNB b !DB c !WAU 1994 a 3 b 7 c (d)

LIB$DATE_FORMAT_047 !Y4 a !MNB b !DB c !WU 1994 a 3 b 7 c def

Note

LIB$DATE_FORMAT_042 and LIB$DATE_FORMAT_043 support the
DEC Hanzi coded character set.

LIB$DATE_FORMAT_044 and LIB$DATE_FORMAT_045 support the
DEC Hanyu coded character set.

LIB$DATE_FORMAT_046 and LIB$DATE_FORMAT_047 support the
DEC Hangul coded character set.

Table 5–7 Predefined Output Time Formats

Logical Name Format Example

LIB$TIME_FORMAT_021 !MIU!HB2g!MBh!SBi jk3g3h6i

LIB$TIME_FORMAT_022 !MIU!HB2g!MBh!SBi jk3g3h6i

LIB$TIME_FORMAT_023 !MIU !HB2 g !MB h !SB i jk 3 g 3 h 6 i

Note

LIB$TIME_FORMAT_021 supports the DEC Hanzi coded character set.

LIB$TIME_FORMAT_022 supports the DEC Hanyu coded character set.

LIB$TIME_FORMAT_023 supports the DEC Hangul coded character set.

5–23

System Time Operations
5.6 Date/Time Formatting Routines

Thus, to select a particular format for a date or time, or both, you can define the
LIB$DT_FORMAT logical name using the following logicals:

• LIB$DATE_FORMAT_nnn, where nnn can range from 001 to 047

• LIB$TIME_FORMAT_nnn, where nnn can range from 001 to 023

5.6.2 Selecting a Format
There are two methods by which date/time input and output formats can be
selected:

• The language and format are determined at run time through the translation
of the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_
INPUT_FORMAT.

• The language and format are programmable at compile time through the use
of the LIB$INIT_DATE_TIME_CONTEXT routine.

In general, if an application accepts text from a user or formats text for
presentation to a user, the logical name method of specifying language and
format should be used. With this method, the user assigns equivalence names to
the logical names SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_INPUT_
FORMAT, thereby selecting the language and input or output format of the date
and time at run time.

If an application reads text from internal storage or formats text for internal
storage or transmission, the language and format should be specified at compile
time. If this is the case, the routine LIB$INIT_DATE_TIME_CONTEXT is used
to specify the language and format of choice.

5.6.2.1 Formatting Run-Time Mnemonics
The format mnemonics listed in Table 5–8 are used to define both input and
output formats at run time.

Table 5–8 Format Mnemonics

Date Explanation

!D0 Day; zero-filled

!DD Day; no fill

!DB Day; blank-filled

!WU Weekday; uppercase

!WAU Weekday; abbreviated, uppercase

!WC Weekday; capitalized

!WAC Weekday; abbreviated, capitalized

!WL Weekday; lowercase

!WAL Weekday; abbreviated, lowercase

!MAU Month; alphabetic, uppercase

!MAAU Month; alphabetic, abbreviated, uppercase

!MAC Month; alphabetic, capitalized

!MAAC Month; alphabetic, abbreviated, capitalized

(continued on next page)

5–24

System Time Operations
5.6 Date/Time Formatting Routines

Table 5–8 (Cont.) Format Mnemonics

Date Explanation

!MAL Month; alphabetic, lowercase

!MAAL Month; alphabetic, abbreviated, lowercase

!MN0 Month; numeric, zero-filled

!MNM Month; numeric, no fill

!MNB Month; numeric, blank-filled

!Y4 Year; 4 digits

!Y3 Year; 3 digits

!Y2 Year; 2 digits

!Y1 Year; 1 digit

Time Explanation

!H04 Hours; zero-filled, 24-hour clock

!HH4 Hours; no fill, 24-hour clock

!HB4 Hours; blank-filled, 24-hour clock

!H02 Hours; zero-filled, 12-hour clock

!HH2 Hours; no fill, 12-hour clock

!HB2 Hours; blank-filled, 12-hour clock

!M0 Minutes; zero-filled

!MM Minutes; no fill

!MB Minutes; blank-filled

!S0 Seconds; zero-filled

!SS Seconds; no fill

!SB Seconds; blank-filled

!C7 Fractional seconds; 7 digits

!C6 Fractional seconds; 6 digits

!C5 Fractional seconds; 5 digits

!C4 Fractional seconds; 4 digits

!C3 Fractional seconds; 3 digits

!C2 Fractional seconds; 2 digits

!C1 Fractional seconds; 1 digit

!MIU Meridiem indicator; uppercase

!MIC Meridiem indicator; capitalized (mixed case)

!MIL Meridiem indicator; lowercase

5.6.2.2 Specifying Formats at Run Time
If an application accepts text from a user or formats text for presentation to
a user, the logical name method of specifying language and format should be
used. With this method, the user assigns equivalence names to the logical names
SYS$LANGUAGE, LIB$DT_FORMAT, and LIB$DT_INPUT_FORMAT, thereby
selecting the language and format of the date and time at run time. LIB$DT_
INPUT_FORMAT must be defined using the mnemonics listed in Table 5–8. The
possible choices for SYS$LANGUAGE and LIB$DT_FORMAT are defined in the

5–25

System Time Operations
5.6 Date/Time Formatting Routines

SYS$MANAGER:LIB$DT_STARTUP.COM command procedure that is executed
by the system manager prior to using these routines.

The following actions occur when any translation of a logical name fails:

• If the translation of SYS$LANGUAGE or any logical name relating to text
fails, then English is used and a status of LIB$_ENGLUSED is returned.

• If the translation of LIBDT_FORMAT, LIBDT_INPUT_FORMAT, or
any logical name relating to format fails, the operating system standard
(SYS$ASCTIM) representation of the date and time is used, that is, dd-
MMM-yyyy hh:mm:ss.cc, and a status of LIB$_DEFFORUSE is returned.

Since English is the default language and must therefore always be available,
English spellings are not taken from logical name translations, but rather are
looked up in an internal table.

5.6.2.3 Specifying Input Formats at Run Time
Using the logical name LIB$DT_INPUT_FORMAT, the user can define his or her
own input format at run time using the mnemonics listed in Table 5–8. Once an
input format is defined, any dates or times that are input to the application are
parsed against this format. For example:

$ DEFINE LIB$DT_INPUT_FORMAT -
_$ "!MAU !DD, !Y4 !H02:!M0:!S0:!C2 !MIU"

A valid input date string would be as follows:

JUNE 15, 1993 08:45:06:50 PM

If the user has selected a language other than English, then the translation
of SYS$LANGUAGE is used by the parser to recognize alphabetic months and
meridiem indicators in the selected language.

Input Format String
The input format string used to define the input date/time format must contain
at least the first seven of the following eight fields:

• Month (either alphabetic or numeric)

• Day of the month (numeric)

• Year (from 1 to 4 digits)

• Hour (12- or 24-hour clock)

• Minute of the hour

• Second of the minute

• Fractional seconds

• Meridiem indicator (required for 12-hour clock; illegal for 24-hour clock)

If the input format string specifies a 24-hour clock, the string will contain only
the first seven fields in the preceding list. If a 12-hour clock is specified, the
eighth field (the meridiem indicator) is required.

The format string fields must appear in two groups: one for date and one for time
(date and time fields cannot be intermixed within a group). For the input format,
alphabetic case distinctions and abbreviation-specific codes have no significance.
For example, the following format string specifies that the month name will be
uppercase and spelled out in full:

5–26

System Time Operations
5.6 Date/Time Formatting Routines

!MAU !DD, !Y4 !H02:!M0:!S0:!C2 !MIU

If the input string corresponding to this format string contains a month name
that is abbreviated and lowercase, the parse of the input string still works
correctly. For example:

feb 25, 1988 04:39:02:55 am

If this input string is entered, the parse still recognizes ‘‘feb’’ as the month name
and ‘‘am’’ as the meridiem indicator, even though the format string specified both
of these fields as uppercase, and the month name as unabbreviated.

Punctuation in the Format and Input Strings
One important aspect to consider when formatting date/time input strings is
punctuation. The punctuation referred to here is the characters that separate the
various date/time fields or the date and time groups. Punctuation in these strings
is important because it is used as an outline for the parser, allowing the parser to
synchronize the input fields to the format fields.

There are three distinct classes of punctuation:

• None
Although it is common for no punctuation to begin or end an input format
string, you can specify a date/time format that also has no punctuation
between the fields or groups of the format string. If this is the case, the
corresponding input string must not have any punctuation between the
respective fields or groups, although white space (see the next item in this
list) may appear at the beginning or end of the input string.

• White space
White space includes any combination of spaces and tabs. In the
interpretation of the format string, any white space is condensed to a single
space. When parsing an input string, white space is generally noted as
synchronizing punctuation and is skipped; however, white space is significant
in some situations, such as with blank-filled numbers.

• Explicit
Explicit punctuation refers to any string of one or more characters that is
used as punctuation and is not solely comprised of white space. Any white
space appearing within an explicit punctuation string is interpreted literally;
in other words, the white space is not compressed. In the format string, you
can use explicit punctuation to denote a particular format and to guide the
parser in parsing the input string. In the input string, you can use explicit
punctuation to synchronize the parse of the input string against the format
string. The explicit punctuation used should not be a subset of the valid input
of any field that it precedes or follows it.

Punctuation is especially important in providing guidelines for the parser to
translate the input date/time string properly.

Default Date/Time Fields
Punctuation in a date/time string is also useful for specifying which fields you
want to omit in order to accept the default values. That is, you can control the
parsing of the input string by supplying punctuation without the appropriate
field values. If only the punctuation is supplied and a user-supplied default is not
specified, the value of the omitted field defaults according to the following rules:

• For the date group, the default is the current date.

5–27

System Time Operations
5.6 Date/Time Formatting Routines

• For the time group, the default is 00:00:00.00.

Table 5–9 gives some examples of input strings (using punctuation to indicate
defaulted fields) and their full translations (assuming a current date of 25-FEB-
1993 and using the default input format).

Table 5–9 Input String Punctuation and Defaults

Input Full Date/Time Input String

31 31-FEB-1993 00:00:00.00

-MAR 25-MAR-1993 00:00:00.00

-SEPTEMBER 25-SEP-1993 00:00:00.00

-1993 25-FEB-1993 00:00:00.00

23: 25-FEB-1993 23:00:00.00

:45: 25-FEB-1993 00:45:00.00

::23 25-FEB-1993 00:00:23.00

.01 25-FEB-1993 00:00:00.01

Note on the Changing Century
Because the default is the current date for the date group, if you specify a value
of 00 with the !Y2 format, the year is interpreted as 1900. After January 1, 2000,
the value 00 will be interpreted as 2000.

For example, 02/29/00 is interpreted as 29-FEB-1900, which results in LIB$_
INVTIME because 1900 is not a leap year. After the turn of the century (the year
2000), 02/29/00 will be 29-FEB-2000, which is a valid date because 2000 is a leap
year.

5.6.2.4 Specifying Output Formats at Run Time
If the logical name method is used to specify an output format at run time, the
translations of the logical names SYS$LANGUAGE and LIB$DT_FORMAT
specify one or more executive mode logical names which in turn must be
translated to determine the actual format string. These additional logical names
supply such things as the names of the days of the week and the months in the
selected language (as determined by SYS$LANGUAGE). All of these logicals are
predefined, so that a nonprivileged user can select any one of these languages and
formats. In addition, a user can create his or her own languages and formats;
however, the CMEXEC, SYSNAM and SYSPRV privileges are required.

To select a particular format for a date or time, or both, you must define the
LIB$DT_FORMAT logical name using the following:

• LIB$DATE_FORMAT_nnn, where nnn ranges from 001 to 040

• LIB$TIME_FORMAT_nnn, where nnn ranges from 001 to 020

The order in which these logical names appear in the definition of LIB$DT_
FORMAT determines the order in which they are output. A single space is
inserted into the output string between the two elements, if the definition
specifies that both are output. For example:

$ DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_006, LIB$TIME_FORMAT_012

5–28

System Time Operations
5.6 Date/Time Formatting Routines

This definition causes the date to be output in the specified format, followed by a
space and the time in the specified format, as follows:

13 JAN 93 9:13 AM

Table 5–10 lists all predefined date format logical names, their formats, and
examples of the output generated using those formats. (The mnemonics used to
specify the formats are listed in Table 5–8.)

Table 5–10 Predefined Output Date Formats

Date Format Logical Name Format Example

LIB$DATE_FORMAT_001 !DB-!MAAU-!Y4 13-JAN-1993

LIB$DATE_FORMAT_002 !DB !MAU !Y4 13 JANUARY 1993

LIB$DATE_FORMAT_003 !DB.!MAU !Y4 13.JANUARY 1993

LIB$DATE_FORMAT_004 !DB.!MAU.!Y4 13.JANUARY.1993

LIB$DATE_FORMAT_005 !DB !MAU !Y2 13 JANUARY 93

LIB$DATE_FORMAT_006 !DB !MAAU !Y2 13 JAN 93

LIB$DATE_FORMAT_007 !DB.!MAAU !Y2 13.JAN 93

LIB$DATE_FORMAT_008 !DB.!MAAU.!Y2 13.JAN.93

LIB$DATE_FORMAT_009 !DB !MAAU !Y4 13 JAN 1993

LIB$DATE_FORMAT_010 !DB.!MAAU !Y4 13.JAN 1993

LIB$DATE_FORMAT_011 !DB.!MAAU.!Y4 13.JAN.1993

LIB$DATE_FORMAT_012 !MAU !DD, !Y4 JANUARY 13, 1993

LIB$DATE_FORMAT_013 !MN0/!D0/!Y2 01/13/93

LIB$DATE_FORMAT_014 !MN0-!D0-!Y2 01-13-93

LIB$DATE_FORMAT_015 !MN0.!D0.!Y2 01.13.93

LIB$DATE_FORMAT_016 !MN0 !D0 !Y2 01 13 93

LIB$DATE_FORMAT_017 !D0/!MN0/!Y2 13/01/93

LIB$DATE_FORMAT_018 !D0/!MN0-!Y2 13/01-93

LIB$DATE_FORMAT_019 !D0-!MN0-!Y2 13-01-93

LIB$DATE_FORMAT_020 !D0.!MN0.!Y2 13.01.93

LIB$DATE_FORMAT_021 !D0 !MN0 !Y2 13 01 93

LIB$DATE_FORMAT_022 !Y2/!MN0/!D0 93/01/13

LIB$DATE_FORMAT_023 !Y2-!MN0-!D0 93-01-13

LIB$DATE_FORMAT_024 !Y2.!MN0.!D0 93.01.13

LIB$DATE_FORMAT_025 !Y2 !MN0 !D0 93 01 13

LIB$DATE_FORMAT_026 !Y2!MN0!D0 930113

LIB$DATE_FORMAT_027 /!Y2.!MN0.!D0 /93.01.13

LIB$DATE_FORMAT_028 !MN0/!D0/!Y4 01/13/1993

LIB$DATE_FORMAT_029 !MN0-!D0-!Y4 01-13-1993

LIB$DATE_FORMAT_030 !MN0.!D0.!Y4 01.13.1993

LIB$DATE_FORMAT_031 !MN0 !D0 !Y4 01 13 1993

LIB$DATE_FORMAT_032 !D0/!MN0/!Y4 13/01/1993

(continued on next page)

5–29

System Time Operations
5.6 Date/Time Formatting Routines

Table 5–10 (Cont.) Predefined Output Date Formats

Date Format Logical Name Format Example

LIB$DATE_FORMAT_033 !D0-!MN0-!Y4 13-01-1993

LIB$DATE_FORMAT_034 !D0.!MN0.!Y4 13.01.1993

LIB$DATE_FORMAT_035 !D0 !MN0 !Y4 13 01 1993

LIB$DATE_FORMAT_036 !Y4/!MN0/!D0 1993/01/13

LIB$DATE_FORMAT_037 !Y4-!MN0-!D0 1993-01-13

LIB$DATE_FORMAT_038 !Y4.!MN0.!D0 1993.01.13

LIB$DATE_FORMAT_039 !Y4 !MN0 !D0 1993 01 13

LIB$DATE_FORMAT_040 !Y4!MN0!D0 19930113

Table 5–11 lists all predefined time format logical names, their formats, and
examples of the output generated using those formats.

Table 5–11 Predefined Output Time Formats

Time Format Logical Format Example

LIB$TIME_FORMAT_001 !H04:!M0:!S0.!C2 09:13:25.14

LIB$TIME_FORMAT_002 !H04:!M0:!S0 09:13:25

LIB$TIME_FORMAT_003 !H04.!M0.!S0 09.13.25

LIB$TIME_FORMAT_004 !H04 !M0 !S0 09 13 25

LIB$TIME_FORMAT_005 !H04:!M0 09:13

LIB$TIME_FORMAT_006 !H04.!M0 09.13

LIB$TIME_FORMAT_007 !H04 !M0 09 13

LIB$TIME_FORMAT_008 !HH4:!M0 9:13

LIB$TIME_FORMAT_009 !HH4.!M0 9.13

LIB$TIME_FORMAT_010 !HH4 !M0 9 13

LIB$TIME_FORMAT_011 !H02:!M0 !MIU 09:13 AM

LIB$TIME_FORMAT_012 !HH2:!M0 !MIU 9:13 AM

LIB$TIME_FORMAT_013 !H04!M0 0913

LIB$TIME_FORMAT_014 !H04H!M0m 09H13m

LIB$TIME_FORMAT_015 kl !H04.!M0 kl 09.13

LIB$TIME_FORMAT_016 !H04H!M0’ 09H13’

LIB$TIME_FORMAT_017 !H04.!M0 h 09.13 h

LIB$TIME_FORMAT_018 h !H04.!M0 h 09.13

LIB$TIME_FORMAT_019 !HH4 h !MM 9 h 13

LIB$TIME_FORMAT_020 !HH4 h !MM min !SS s 9 h 13 min 25 s

5.6.2.5 Specifying Formats at Compile Time
If an application reads text from internal storage or formats text for internal
storage or transmission, the language and format should be specified at compile
time. The routine LIB$INIT_DATE_TIME_CONTEXT allows the user to specify
the language and format at compile time by initializing the context area used by
LIB$FORMAT_DATE_TIME for output or LIB$CONVERT_DATE_STRING for
input with specific strings, instead of through logical name translations. Note

5–30

System Time Operations
5.6 Date/Time Formatting Routines

that when the text will be parsed by another program, LIB$INIT_DATE_TIME_
CONTEXT expects all required context information (including spellings) to be
specified. For applications where the context specifies a user’s preferred format
style, the spellings can be looked up from the logical name tables.

Only one context component can be initialized per call to LIB$INIT_DATE_
TIME_CONTEXT. Table 5–12 lists the available components and their number
of elements. (_ABB indicates an abbreviated version of the month and weekday
names.)

5–31

System Time Operations
5.6 Date/Time Formatting Routines

Table 5–12 Available Components for Specifying Formats at Compile Time

Available Component Number of Elements

LIB$K_MONTH_NAME 12

LIB$K_MONTH_NAME_ABB 12

LIB$K_FORMAT_MNEMONICS 9

LIB$K_WEEKDAY_NAME 7

LIB$K_WEEKDAY_NAME_ABB 7

LIB$K_RELATIVE_DAY_NAME 3

LIB$K_MERIDIEM_INDICATOR 2

LIB$K_OUTPUT_FORMAT 2

LIB$K_INPUT_FORMAT 1

LIB$K_LANGUAGE 1

To specify the actual values for these elements, you must use an initialization
string in the following format:

"[delim][string-1][delim][string-2][delim]...[delim][string-n][delim]"

In this format, [-] is a delimiting character that is not in any of the strings, and
[string-n] is the spelling of the nth instance of the component.

For example, a string passed to this routine to specify the English spellings of the
abbreviated month names might be as follows:

" | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | "

The string must contain the exact number of elements for the associated
component; otherwise the error LIB$_NUMELEMENTS is returned. Note that
the string begins and ends with a delimiter. Thus, there is one more delimiter
than the number of string elements in the initialization string.

5.6.2.6 Specifying Input Format Mnemonics at Compile Time
To specify the input format mnemonics at compile time, the user must initialize
the component LIB$K_FORMAT_MNEMONICS with the appropriate values.
Table 5–13 lists the nine fields that must be initialized, in the appropriate order,
along with their default (English) values.

Table 5–13 Legible Format Mnemonics

Order Format Field Legible Mnemonic (Default)

1 Year YYYY

2 Numeric month MM

3 Numeric day DD

4 Hours (12- or 24-hour) HH

5 Minutes MM

6 Seconds SS

7 Fractional seconds CC

(continued on next page)

5–32

System Time Operations
5.6 Date/Time Formatting Routines

Table 5–13 (Cont.) Legible Format Mnemonics

Order Format Field Legible Mnemonic (Default)

8 Meridiem indicator AM/PM

9 Alphabetic month MONTH

For example, the following is a valid definition of the component LIB$K_
FORMAT_MNEMONICS, using English as the natural language:

|YYYY|MM|DD|HH|MM|SS|CC|AM/PM|MONTH|

If the user were entering the same string using Austrian as the natural language,
the definition of the component LIB$K_FORMAT_MNEMONICS would be as
follows:

|JJJJ|MM|TT|SS|MM|SS|HH| |MONAT|

5.6.2.7 Specifying Output Formats at Compile Time
To specify an output format at compile time, the user must preinitialize the
component LIB$K_OUTPUT_FORMAT. Two elements are associated with this
output format string. One describes the date format fields, the other the time
format fields. The order in which they appear in the string determines the order
in which they are output. A single space is inserted into the output stream
between the two elements, if the call to LIB$FORMAT_DATE_TIME specifies
that both be output. For example:

" | !DB-!MAAU-!Y4 | !H04:!M0:!S0.!C2 | "

(These mnemonics are listed in Table 5–8.) This format string represents the
format used by the $ASCTIM system service for outputting times. Note that the
middle delimiter is replaced by a space in the resultant output.

13-JAN-1993 14:54:09:24

5.6.3 Converting with the LIB$CONVERT_DATE_STRING Routine
The LIB$CONVERT_DATE_STRING routine converts an absolute date/time
string into an operating system internal format date/time quadword. You can
optionally specify which fields of the input string can be defaulted (using the
input-flags argument), and what the default values should be (using the
defaults argument). By default, the time fields can be defaulted but the date
fields cannot. Table 5–9 gives some examples of these default values.

The optional defaulted-fields argument to LIB$CONVERT_DATE_STRING
can be used to determine which input fields were defaulted. That is, the
defaulted-fields argument is a bit mask in which each set bit indicates that
the corresponding field was defaulted in the input date/time string.

If you want to use LIB$CONVERT_DATE_STRING to return the current time as
well as the current date, you can call the $NUMTIM system service and pass the
timbuf argument, which contains the current date and time, to LIB$CONVERT_
DATE_STRING as the defaults argument. This tells the LIB$CONVERT_
DATE_STRING routine to take the default values for the date and time fields
from the 7-word array returned by $NUMTIM.

5–33

System Time Operations
5.6 Date/Time Formatting Routines

5.6.4 Retrieving with LIB$GET_DATE_FORMAT Routine
The LIB$GET_DATE_FORMAT routine enables you to retrieve information about
the currently selected input format. The string returned by LIB$GET_DATE_
FORMAT parallels the currently defined input format string, consisting of the
format punctuation (with most white space compressed) and legible mnemonics
representing the various format fields.

Based on the currently defined input date/time format, LIB$GET_DATE_
FORMAT returns a string comprised of the mnemonics that represent the current
format. These mnemonics are listed in Table 5–13.

Table 5–14 gives some examples of input format strings and their resultant
mnemonic strings (using English as the default language).

Table 5–14 Sample Input Format Strings

Sample Format String LIB$GET_DATE_FORMAT Value

!MAU !DD, !Y4 !H04:!M0:!S0:!C2 MONTH DD, YYYY4 HH:MM:SS:CC2

!MN0-!D0-!Y2 !H04:!M0:!S0.!C2 MM-DD-YYYY2 HH:MM:SS.CC2

!MN0/!D0/!Y2 !H02:!M0:!S0.!C2 !MIU MM/DD/YYYY2 HH:MM:SS.CC2 AM/PM

5.6.4.1 Using User-Defined Output Formats
In addition to the 40 date output formats and 20 time output formats provided,
users can define their own date and time output formats using the logical names
LIB$DATE_FORMAT_nnn and LIB$TIME_FORMAT_nnn, where nnn ranges
from 501 to 999. (That is, values of nnn from 001 to 500 are reserved for use by
Digital Equipment Corporation.) The mnemonics used to define output formats
are listed in Table 5–8.

User-defined output formats must be defined as executive-mode logicals, and
they must be defined in the table LNM$DT_FORMAT_TABLE. These formats
are normally defined from the site-specific startup command procedure. The
following example illustrates the steps required of the system manager to create
a particular output format using French as the language:

$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE LIB$DATE_FORMAT_501 -
_$ "!WL, le !DD !MAL !Y4"
$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE LIB$TIME_FORMAT_501 -
_$ "!H04 heures et !M0 minutes"

After the system manager defines the desired formats, the user can access them
by using the following commands:

$ DEFINE SYS$LANGUAGE FRENCH
$ DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_501, LIB$TIME_FORMAT_501

After completing these steps, a program outputting the date and time provides
the following results:

mardi, le 20 janvier 1993 13 heures et 50 minutes

In addition to creating their own date and time formats, users can also define
their own language tables (provided they have the SYSNAM, SYSPRV and
CMEXEC privileges). To create a language table, a user must define all the
logical names required.

5–34

System Time Operations
5.6 Date/Time Formatting Routines

The following example defines a portion of the Dutch language table. This table
is included in its entirety in the set of predefined languages provided with the
international date/time formatting routines.

$ CREATE/NAME/PARENT=LNM$SYSTEM_DIRECTORY/EXEC/PROT=(S:RWED,G:R,W:R) -
_$ LNM$LANGUAGE_DUTCH
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$WEEKDAYS_L -
_$ "maandag", "dinsdag", "woensdag", "donderdag", "vrijdag", -
_$ "zaterdag", "zondag"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$WEEKDAY_ABBREVIATIONS_L -
_$ "maa", "din", "woe", "don", "vri", "zat", "zon"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$MONTHS_L "januari", -
_$ "februari", "maart", "april", "mei", "juni", "juli", "augustus", -
_$ "september", "oktober", "november", "december"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_DUTCH LIB$MONTH_ABBREVIATIONS_L -
_$ "jan", "feb", "mrt", "apr", "mei", "jun", "jul", "aug", "sep", -
_$ "okt", "nov", "dec"
$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_AUSTRIAN LIB$RELATIVE_DAYS_L -
_$ "gisteren", "vandaag", "morgen"

All logical names that are used to build a language are as follows:

LIB$WEEKDAYS_[U | L | C]
These logical names supply the names of the weekdays, spelled out in full
(uppercase, lowercase, or mixed case). Weekdays must be defined in order,
starting with Monday.

LIB$WEEKDAY_ABBREVIATIONS_[U | L | C]
These logical names supply the abbreviated names of the weekdays (uppercase,
lowercase, or mixed case). Weekday abbreviations must be defined in order,
starting with Monday.

LIB$MONTHS_[U | L | C]
These logical names supply the names of the months, spelled out in full
(uppercase, lowercase, or mixed case). Months must be defined in order, starting
with January.

LIB$MONTH_ABBREVIATIONS_[U | L | C]
These logical names supply the abbreviated names of the months (uppercase,
lowercase, or mixed case). Month abbreviations must be defined in order, starting
with January.

LIB$MI_[U | L | C]
These logical names supply the spellings for the meridiem indicators (uppercase,
lowercase, or mixed case). Meridiem indicators must be defined in order; the first
indicator represents the hours 0:00:0.0 to 11:59:59.99, and the second indicator
represents the hours 12:00:00.00 to 23:59:59.99.

LIB$RELATIVE_DAYS_[U | L | C]
These logical names supply the spellings for the relative days (uppercase,
lowercase, or mixed case). Relative days must be defined in order: yesterday,
today, and tomorrow, respectively.

LIB$FORMAT_MNEMONICS
This logical name supplies the abbreviations for the appropriate format
mnemonics. That is, the information supplied in this logical name is used
to specify a desired input format in the user-defined language. The format
mnemonics, along with their English values, are listed in the order in which they
must be defined.

5–35

System Time Operations
5.6 Date/Time Formatting Routines

1. Year (YYYY)

2. Numeric month (MM)

3. Day of the month (DD)

4. Hour of the day (HH)

5. Minutes of the hour (MM)

6. Seconds of the minute (SS)

7. Parts of the second (CC)

8. Meridiem indicator (AM/PM)

9. Alphabetic month (MONTH)

The English definition of LIB$FORMAT_MNEMONIC is therefore as follows:

$ DEFINE/EXEC/TABLE=LNM$LANGUAGE_ENGLISH LIB$FORMAT_MNEMONICS -
_$ "YYYY", "MM", "DD", "HH", "MM", "SS", "CC", "AM/PM ", "MONTH"

5.7 Coordinated Universal Time Format
This section provides information about VAX systems that supply system base
date and time format other than the Smithsonian base date and time system.
The other base date and time format system is the Coordinated Universal Time
(UTC) system. UTC time is determined by a network of atomic clocks that are
maintained by standard bodies in several countries. Formerly, applications that
spanned time zones often used Greenwich Mean Time (GMT) as a time reference.

UTC binary timestamps are opaque octawords of 128-bits that contain several
fields. Important fields of the UTC format are an absolute time value, a time
differential factor (TDF) that contains the offset of the host node’s clock from
UTC, and an inaccuracy, or tolerance, that can be applied to the absolute time
value. Unlike UTC, the operating system binary date and timestamps in the
Smithsonian base date and time format represent only the local time of the host
node; they do not contain TDF values or inaccuracy values.

The UTC system services allow applications to gain the benefits of a Coordinated
Universal Time reference. The UTC system services enable applications to
reference a common time standard independent of the host’s location and local
date and time value.

By calling the UTC system services, applications can perform the following
functions:

• Obtain binary representations of UTC in the binary UTC format

• Convert the binary operating system format date and time to binary
UTC-format date and time

• Convert binary UTC-format date and time to the binary operating system
date and time

• Convert ASCII-format date and time to binary UTC-format date and time

• Convert binary UTC-format date and time to ASCII-format date and time

System services that implement the UTC-format date and time are:

• SYS$ASCUTC—Convert UTC to ASCII

• SYS$BINUTC—Convert ASCII String to UTC Binary Time

5–36

System Time Operations
5.7 Coordinated Universal Time Format

• SYS$GETUTC—Get UTC Time

• SYS$NUMUTC—Convert UTC Time to Numeric Components

• SYS$TIMCON—Time Converter

For specific implementation information about the UTC system services, see the
OpenVMS System Services Reference Manual.

5–37

6
Using Run-Time Library Routines to Access

Operating System Components

This chapter describes the run-time library (RTL) routines that allow access to
various operating system components. It contains the following sections:

Section 6.1 describes how to use RTL routines to make system services return
different types of strings.

Section 6.2 describes how to use RTL routines to provide access to the command
language interpreter.

Section 6.3 describes how to use RTL routines to allow high-level language
programs to use most VAX machine instructions or their Alpha equivalent.

Section 6.4 describes how to use RTL routines to allocate processwide resources
to a single operating system process.

Section 6.5 describes how to use RTL routines to measure performance.

Section 6.6 describes how to use RTL routines to control output formatting.

Section 6.7 describes how to use RTL routines for miscellaneous interface
routines.

Run-time library routines allow access to the following operating system
components:

• System services

• Command language interpreter

• Some VAX machine instructions

6.1 System Service Access Routines
You can usually call the OpenVMS system services directly from your program.
However, system services return only fixed-length strings. In some applications,
you may want the result of a system service to be returned as a character array,
dynamic string, or variable-length string. For this reason, the RTL provides
jacket routines for the system services that return strings.

You call jacket routines exactly as you would the corresponding system service,
but you can pass an output argument of any valid string class. The routines write
the output string using the semantics (fixed, varying, or dynamic) associated with
the string’s descriptor.

The jacket routines follow the conventions established for all RTL routines, except
that the arguments are listed in the order of the arguments for the corresponding
system service. Thus, they may not be listed in the standard RTL order (read,
modify, write).

6–1

Using Run-Time Library Routines to Access Operating System Components
6.1 System Service Access Routines

For example, the LIB$SYS_ASCTIM routine calls the SYS$ASCTIM system
service to convert a binary date and time value to ASCII text. It returns the
resulting string using the semantics that the calling program specifies in the
destination string argument.

For further information about the operations of the system services, see the
OpenVMS System Services Reference Manual.

The RTL routines provide access to only the system services that produce output
strings, which are listed in Table 6–1. The corresponding RTL routines recognize
all VAX string classes.

The RTL does not provide jacket routines for all the system services that accept
strings as input. Your program should pass only fixed-length or dynamic input
strings to all system services and RTL jacket routines.

Table 6–1 System Service Access Routines

Entry Point System Service Function

LIB$SYS_ASCTIM $ASCTIM Converts system time in binary form
to ASCII text

LIB$SYS_FAO $FAO Converts a binary value to ASCII text

LIB$SYS_FAOL $FAOL Converts a binary value to ASCII text,
using a list argument

LIB$SYS_GETMSG $GETMSG Obtains a system or user-defined
message text

LIB$SYS_TRNLOG $TRNLOG Returns the translation of the specified
logical name

6.2 Access to the Command Language Interpreter
Two command language interpreters (CLIs) are available on the operating
system: DCL and MCR. The run-time library provides several routines that
provide access to the CLI callback facility. These routines allow your program to
call the current CLI. In most cases, these routines are called from programs that
execute as part of a command procedure. They allow the command procedure and
the CLI to exchange information.

These routines call the CLI associated with the current process to perform the
specified function. In some cases, however, a CLI is not present. For example,
the program may be running directly as a subprocess or as a detached process. If
a CLI is not present, these routines return the status LIB$_NOCLI. Therefore,
you should be sure that these routines are called when a CLI is active. Table 6–2
lists the RTL routines that access the CLI.

Table 6–2 CLI Access Routines

Entry Point Function

LIB$GET_FOREIGN Gets a command line

LIB$DO_COMMAND Executes a command line after exiting the current
program

(continued on next page)

6–2

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

Table 6–2 (Cont.) CLI Access Routines

Entry Point Function

LIB$RUN_PROGRAM Runs another program after exiting the current program
(chain)

LIB$GET_SYMBOL Returns the value of a CLI symbol as a string

LIB$DELETE_SYMBOL Deletes a CLI symbol

LIB$SET_SYMBOL Defines or redefines a CLI symbol

LIB$DELETE_LOGICAL Deletes a supervisor-mode process logical name

LIB$SET_LOGICAL Defines or redefines a supervisor-mode process logical
name

LIB$DISABLE_CTRL Disables CLI interception of control characters

LIB$ENABLE_CTRL Enables CLI interception of control characters

LIB$ATTACH Attaches a terminal to another process

LIB$SPAWN Creates a subprocess of the current process

The following routines execute only when the current CLI is DCL:

LIB$GET_SYMBOL
LIB$SET_SYMBOL
LIB$DELETE_SYMBOL
LIB$DISABLE_CTRL
LIB$ENABLE_CTRL
LIB$SPAWN
LIB$ATTACH

6.2.1 Obtaining the Command Line
The LIB$GET_FOREIGN routine returns the contents of the command line that
you use to activate an image. It can be used to give your program access to the
qualifiers of a foreign command or to prompt for further command line text.

A foreign command is a command that you can define and then use as if it
were a DCL or MCR command in order to run a program. When you use the
foreign command at command level, the CLI parses the foreign command only
and activates the image. It ignores any options or qualifiers that you have defined
for the foreign command. Once the CLI has activated the image, the program can
call LIB$GET_FOREIGN to obtain and parse the remainder of the command line
(after the command itself) for whatever options it may contain.

The OpenVMS DCL Dictionary describes how to define a foreign command.

The action of LIB$GET_FOREIGN depends on the environment in which the
image is activated:

• If you use a foreign command to invoke the image, you can call LIB$GET_
FOREIGN to obtain the command qualifiers following the foreign command.
You can also use LIB$GET_FOREIGN to prompt repeatedly for more
qualifiers after the command. This technique is illustrated in the following
example.

• If the image is in the SYS$SYSTEM: directory, the image can be invoked
by the DCL command MCR or by the MCR CLI. In this case, LIB$GET_
FOREIGN returns the command line text following the image name.

6–3

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

• If the image is invoked by the DCL command RUN, you can use LIB$GET_
FOREIGN to prompt for additional text.

• If the image is not invoked by a foreign command or by MCR, or if there is no
information remaining on the command line, and the user-supplied prompt
is present, LIB$GET_INPUT is called to prompt for a command line. If the
prompt is not present, LIB$GET_FOREIGN returns a zero-length string.

Example
The following PL/I example illustrates the use of the optional force-prompt
argument to permit repeated calls to LIB$GET_FOREIGN. The command line
text is retrieved on the first pass only; after this, the program prompts from
SYS$INPUT.

EXAMPLE: ROUTINE OPTIONS (MAIN);

%INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND_LINE CHARACTER(80) VARYING,
PROMPT_FLAG FIXED BINARY(31) INIT(0),
LIB$GET_FOREIGN ENTRY (CHARACTER(*) VARYING,

CHARACTER(*) VARYING,
FIXED BINARY(15),
FIXED BINARY(31))

OPTIONS(VARIABLE) RETURNS (FIXED BINARY(31)),
RMS$_EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Call LIB$GET_FOREIGN repeatedly to obtain and print
subcommand text. Exit when end-of-file is found. */

DO WHILE (’1’B); /* Do while TRUE */
STS$VALUE = LIB$GET_FOREIGN

(COMMAND_LINE,’Input: ’,,
PROMPT_FLAG);

IF STS$SUCCESS THEN
PUT LIST (’ Command was ’,COMMAND_LINE);

ELSE DO;
IF STS$VALUE ^= RMS$_EOF THEN
PUT LIST (’Error encountered’);

RETURN;
END;

PUT SKIP; /* Skip to next line */
END; /* End of DO WHILE loop */

END;

Assuming that this program is present as SYS$SYSTEM:EXAMPLE.EXE, you
can define the foreign command EXAMPLE to invoke it, as follows:

$ EXAM*PLE :== $EXAMPLE

Note the optional use of the asterisk in the symbol name to denote an abbreviated
command name. This permits the command name to be abbreviated as EXAM,
EXAMP, EXAMPL or to be specified fully as EXAMPLE. See the OpenVMS DCL
Dictionary for information about abbreviated command names.

Note that the use of the dollar sign ($) before the image name is required in
foreign commands.

6–4

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

Now assume that a user runs the image by typing the foreign command and
giving ‘‘subcommands’’ that the program displays:

$ EXAMP Subcommand 1
Command was SUBCOMMAND 1

Input: Subcommand 2
Command was SUBCOMMAND 2

Input: ^Z
$

In this example, Subcommand 1 was obtained from the command line; the
program prompts the user for the second subcommand. The program terminated
when the user pressed the Ctrl/Z key sequence (displayed as ^Z) to indicate
end-of-file.

6.2.2 Chaining from One Program to Another
The LIB$RUN_PROGRAM routine causes the current image to exit at the point
of the call and directs the CLI, if present, to start running another program.
If LIB$RUN_PROGRAM executes successfully, control passes to the second
program; if not, control passes to the CLI. The calling program cannot regain
control. This technique is called chaining.

This routine is provided primarily for compatibility with PDP–11 systems, on
which chaining is used to extend the address space of a system. Chaining may
also be useful in an operating system environment where address space is
severely limited and large images are not possible. For example, you can use
chaining to perform system generation on a small virtual address space because
disk space is lacking.

With LIB$RUN_PROGRAM, the calling program can pass arguments to the next
program in the chain only by using the common storage area. One way to do
this is to direct the calling program to call LIB$PUT_COMMON in order to pass
the information into the common area. The called program then calls LIB$GET_
COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way
to specify the order and type of arguments passed into the common area, so
programs that pass arguments in this way must know about the format of the
data before it is passed. Fortran COMMON or BASIC MAP/COMMON areas
are global OWN storage. When you use this type of storage, it is very difficult
to keep your program modular and AST reentrant. Further, you cannot use
LIB$RUN_PROGRAM if a CLI is present, as with image subprocesses and
detached subprocesses.

Examples
The following PL/I example illustrates the use of LIB$RUN_PROGRAM. It
prompts the user for the name of a program to run and calls the RTL routine to
execute the specified program.

6–5

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

CHAIN: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));
DECLARE LIB$RUN_PROGRAM ENTRY (CHARACTER (*)) /* Address of string

/* descriptor */
RETURNS (FIXED BINARY (31)); /* Return status */

%INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE COMMAND CHARACTER (80);

GET LIST (COMMAND) OPTIONS (PROMPT(’Program to run: ’));
STS$VALUE = LIB$RUN_PROGRAM (COMMAND);

/*
If the function call is successful, the program will terminate
here. Otherwise, return the error status to command level.

*/
RETURN (STS$VALUE);

END CHAIN;

The following COBOL program also demonstrates the use of LIB$RUN_
PROGRAM. When you compile and link these two programs, the first calls
LIB$RUN_PROGRAM, which activates the executable image of the second. This
call results in the following screen display:

THIS MESSAGE DISPLAYED BY PROGRAM PROG2

WHICH WAS RUN BY PROGRAM PROG1

USING LIB$RUN_PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 PROG-NAME PIC X(9) VALUE "PROG2.EXE".
01 STAT PIC 9(9) COMP.

88 SUCCESSFUL VALUE 1.

ROUTINE DIVISION.

001-MAIN.
CALL "LIB$RUN_PROGRAM"

USING BY DESCRIPTOR PROG-NAME
GIVING STAT.

IF NOT SUCCESSFUL
DISPLAY "ATTEMPT TO CHAIN UNSUCCESSFUL"
STOP RUN.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG2.

ENVIRONMENT DIVISION.

DATA DIVISION.

ROUTINE DIVISION.

001-MAIN.
DISPLAY " ".
DISPLAY "THIS MESSAGE DISPLAYED BY PROGRAM PROG2".
DISPLAY " ".
DISPLAY "WHICH WAS RUN BY PROGRAM PROG1".
DISPLAY " ".
DISPLAY "USING LIB$RUN_PROGRAM".
STOP RUN.

6–6

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

6.2.3 Executing a CLI Command
The LIB$DO_COMMAND routine stops program execution and directs the CLI to
execute a command. The routine’s argument is the text of the command line that
you want to execute.

This routine is especially useful when you want to execute a CLI command after
your program has finished executing. For example, you could set up a series of
conditions, each associated with a different command. You could also use the
routine to execute a SUBMIT or PRINT command to handle a file that your
program creates.

Because of the following restrictions on LIB$DO_COMMAND, you should be
careful when you incorporate it in your program.

• After the call to LIB$DO_COMMAND, the current image exits, and control
cannot return to it.

• The text of the command is passed to the current CLI. Because you can define
your own CLI in addition to DCL and MCR, you must make sure that the
command is handled by the intended CLI.

• If the routine is called from a subprocess and a CLI is not associated with
that subprocess, the routine executes correctly.

You can also use LIB$DO_COMMAND to execute a DCL command file. To do
this, include the at sign (@) along with a command file specification as the input
argument to the routine.

Some DCL CLI$ routines perform the functions of LIB$DO_COMMAND. See the
OpenVMS DCL Dictionary for more information.

Example
The following PL/I example prompts the user for a DCL command to execute after
the program exits:

EXECUTE: ROUTINE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

DECLARE LIB$DO_COMMAND ENTRY (CHARACTER (*)) /* Pass DCL command */
/* by descriptor */

RETURNS (FIXED BINARY (31)); /* Return status */
%INCLUDE $STSDEF; /* Include definition of return status values */

DECLARE COMMAND CHARACTER (80);

GET LIST (COMMAND) OPTIONS (PROMPT(’DCL command to execute: ’));
STS$VALUE = LIB$DO_COMMAND (COMMAND);

/*
If the call to LIB$DO_COMMAND is successful, the program will terminate
here. Otherwise, it will return the error status to command level.

*/

RETURN (STS$VALUE);

END EXECUTE;

This example displays the following prompt:

DCL command to execute:

6–7

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

What you type after this prompt determines the action of LIB$DO_COMMAND.
LIB$DO_COMMAND executes any command that is entered as a valid string
according to the syntax of PL/I. If the command you enter is incomplete, you
are prompted for the rest of the command. For example, if you enter the SHOW
command, you receive the following prompt:

$_Show what?:

6.2.4 Using Symbols and Logical Names
The RTL provides seven routines that give you access to the CLI callback facility.
These routines allow a program to ‘‘call back’’ to the CLI to perform functions that
normally are performed by CLI commands. These routines perform the following
functions:

LIB$GET_SYMBOL Returns the value of a CLI symbol as a string.

Optionally, this routine also returns the length of the
returned value and a value indicating whether the symbol
was found in the local or global symbol table. This routine
executes only when the current CLI is DCL.

LIB$SET_SYMBOL Causes the CLI to define or redefine a CLI symbol.

The optional argument specifies whether the symbol is to
be defined in the local or global symbol table; the default
is local. This routine executes only when the current CLI
is DCL.

LIB$DELETE_SYMBOL Causes the CLI to delete a symbol.

An optional argument specifies the local or global symbol
table. If the argument is omitted, the symbol is deleted
from the local symbol table. This routine executes only
when the current CLI is DCL.

LIB$SET_LOGICAL Defines or redefines a supervisor-mode process logical
name.

Supervisor-mode logical names are not deleted when
an image exits. This routine is equivalent to the DCL
command DEFINE. LIB$SET_LOGICAL allows the
calling program to define a supervisor-mode process
logical name without itself executing in supervisor mode.

LIB$DELETE_LOGICAL Deletes a supervisor-mode process logical name.

This routine is equivalent to the DCL command
DEASSIGN. LIB$DELETE_LOGICAL does not require
the calling program to be executing in supervisor mode to
delete a supervisor-mode logical name.

For information about using logical names, see Chapter 10.

6.2.5 Disabling and Enabling Control Characters
Two run-time library routines, LIB$ENABLE_CTRL and LIB$DISABLE_CTRL,
allow you to call the CLI to enable or disable control characters. These routines
take a longword bit mask argument that specifies the control characters to be
disabled or enabled. Acceptable values for this argument are LIB$M_CLI_CTRLY
and LIB$M_CLI_CTRLT.

6–8

Using Run-Time Library Routines to Access Operating System Components
6.2 Access to the Command Language Interpreter

LIB$DISABLE_CTRL Disables CLI interception of control characters.

This routine performs the same function as the DCL
command SET NOCONTROL=n, where n is T or Y.

It prevents the currently active CLI from intercepting the
control character specified during an interactive session.

For example, you might use LIB$DISABLE_CTRL to
disable CLI interception of Ctrl/Y. Normally, Ctrl/Y
interrupts the current command, command procedure,
or image. If LIB$DISABLE_CTRL is called with LIB$M_
CLI_CTRLY specified as the control character to be
disabled, Ctrl/Y is treated like Ctrl/U followed by a
carriage return.

LIB$ENABLE_CTRL Enables CLI interception of control characters.

This routine performs the same function as the DCL
command SET CONTROL=n, where n is T or Y.

LIB$ENABLE_CTRL restores the normal operation of
Ctrl/Y or Ctrl/T.

6.2.6 Creating and Connecting to a Subprocess
You can use LIB$SPAWN and LIB$ATTACH together to spawn a subprocess and
attach the terminal to that subprocess. These routines will execute correctly only
if the current CLI is DCL. For more information on the SPAWN and ATTACH
commands, see the OpenVMS DCL Dictionary. For more information on creating
processes, see Chapter 1.

LIB$SPAWN Spawns a subprocess.

This routine is equivalent to the DCL command SPAWN. It requests
the CLI to spawn a subprocess for executing CLI commands.

LIB$ATTACH Attaches the terminal to another process.

This routine is equivalent to the DCL command ATTACH. It requests
the CLI to detach the terminal from the current process and reattach it
to a different process.

6.3 Access to VAX Machine Instructions
The VAX instruction set was designed for efficient use by high-level languages
and, therefore, contains many functions that are directly useful in your programs.
However, some of these functions cannot be used directly by high-level languages.

The run-time library provides routines that allow your high-level language
program to use most VAX machine instructions that are otherwise unavailable.
On Alpha machines, these routines execute a series of Alpha instructions that
emulate the operation of the VAX instructions. In most cases, these routines
simply execute the instruction, using the arguments you provide. Some routines
that accept string arguments, however, provide some additional functions that
make them easier to use.

These routines fall into the following categories:

• Variable-length bit field instruction routines (Section 6.3.1)

• Integer and floating-point instructions (Section 6.3.2)

• Queue instructions (Section 6.3.3)

• Character string instructions (Section 6.3.4)

6–9

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

• Routine call instructions (Section 6.3.5)

• Cyclic redundancy check (CRC) instruction (Section 6.3.5)

The VAX Architecture Reference Manual describes the VAX instruction set in
detail.

6.3.1 Variable-Length Bit Field Instruction Routines
The variable-length bit field is a VAX data type used to store small integers
packed together in a larger data structure. It is often used to store single flag
bits.

The run-time library contains five routines for performing operations on variable-
length bit fields. These routines give higher-level languages that do not have the
inherent ability to manipulate bit fields direct access to the bit field instructions
in the VAX instruction set. Further, if a program calls a routine written in a
different language to perform some function that also involves bit manipulation,
the called routine can include a call to the run-time library to perform the bit
manipulation.

Table 6–3 lists the run-time library variable-length bit field routines.

Table 6–3 Variable-Length Bit Field Routines

Entry Point Function

LIB$EXTV Extracts a field from the specified variable-length bit field and returns
it in sign-extended longword form.

LIB$EXTZV Extracts a field from the specified variable-length bit field and returns
it in zero-extended longword form.

LIB$FFC Searches the specified field for the first clear bit. If it finds one, it
returns SS$_NORMAL and the bit position (find-pos argument) of
the clear bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

LIB$FFS Searches the specified field for the first set bit. If it finds one, it
returns SS$_NORMAL and the bit position (find-pos argument) of
the set bit. If not, it returns a failure status and sets the find-pos
argument to the start position plus the size.

LIB$INSV Replaces the specified field with bits 0 through [size -1] of the source
(src argument). If the size argument is 0, nothing is inserted.

Three scalar attributes define a variable bit field:

• Base address—The address of the byte in memory that serves as a reference
point for locating the bit field.

• Bit position—The signed longword containing the displacement of the least
significant bit of the field with respect to bit 0 of the base address.

• Size—A byte integer indicating the size of the bit field in bits (in the range
0 <= size <= 32). That is, a bit field can be no more than one longword in
length.

Figure 6–1 shows the format of a variable-length bit field. The shaded area
indicates the field.

6–10

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

Figure 6–1 Format of a Variable-Length Bit Field

P+S−1

S = Size of Field in Bits

ZK−1981−GE

 from Bit 0 of Address A
P = Bit Displacement of Field

:A

0P 8 7

. . . .

Bit fields are zero-origin, which means that the routine regards the first bit in
the field as being the zero position. For more detailed information about VAX bit
numbering and data formats, see the VAX Architecture Reference Manual.

The attributes of the bit field are passed to an RTL routine in the form of three
arguments in the following order:

pos

Operating system usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position relative to the base address. The pos argument is the address of a
signed longword integer that contains this bit position.

size

Operating system usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field. The size argument is the address of an unsigned byte that
contains this size.

base

Operating system usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Base address. The base argument contains the address of the base address.

Example
The following BASIC example illustrates three RTL routines. It opens the
terminal as a file and specifies HEX> as the prompt. This prompt allows you to
get input from the terminal without the question mark that VAX BASIC normally
adds to the prompt in an INPUT statement. The program calls OTS$CVT_TZ_L
to convert the character string input to a longword. It then calls LIB$EXTZV
once for each position in the longword to extract the bit in that position. Because
LIB$EXTVZ is called with a function reference within the PRINT statement, the
bits are displayed.

6–11

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

10 EXTERNAL LONG FUNCTION
OTS$CVT_TZ_L, ! Convert hex text to LONG
LIB$EXTZV ! Extract zero-ended bit field

20 OPEN "TT:" FOR INPUT AS FILE #1% ! Open terminal as a file
INPUT #1%, "HEX>"; HEXIN$! Prompt for input
STAT%=OTS$CVT_TZ_L(HEXIN$, BINARY%) ! Convert to longword
IF (STAT% AND 1%) <> 1% ! Failed?
THEN

PRINT "Conversion failed, decimal status ";STAT%
GO TO 20 ! Try again

ELSE
PRINT HEXIN$,
PRINT STR$(LIB$EXTZV(N%, 1%, BINARY%));

FOR N%=31% to 0% STEP -1%

6.3.2 Integer and Floating-Point Routines
Integer and floating-point routines give a high-level language program access
to the corresponding machine instructions. For a complete description of these
instructions, see the VAX Architecture Reference Manual. Table 6–4 lists the
integer and floating-point routines once up front.

Table 6–4 Integer and Floating-Point Routines

Entry Point Function

LIB$EMUL Multiplies integers with extended precision

LIB$EDIV Divides integers with extended precision

6.3.3 Queue Access Routines
A queue is a doubly linked list. A run-time library routine specifies a queue entry
by its address. Two longwords, a forward link and a backward link, define the
location of the entry in relation to the preceding and succeeding entries. A self-
relative queue is a queue in which the links between entries are displacements;
the two longwords represent the displacements of the current entry’s predecessor
and successor. The VAX instructions INSQHI, INSQTI, REMQHI, and REMQTI
allow you to insert and remove an entry at the head or tail of a self-relative
queue. Each queue instruction has a corresponding RTL routine.

The self-relative queue instructions are interlocked and cannot be interrupted,
so that other processes cannot insert or remove queue entries while the current
program is doing so. Because the operation requires changing two pointers at the
same time, a high-level language cannot perform this operation without calling
the RTL queue access routines.

When you use these routines, cooperating processes can communicate without
further synchronization and without danger of being interrupted, either on a
single processor or in a multiprocessor environment. The queue access routines
are also useful in an AST environment; they allow you to add or remove an entry
from a queue without being interrupted by an asynchronous system trap.

The remove queue instructions (REMQHI or REMQTI), return the address of the
removed entry. Some languages, such as BASIC, COBOL, and Fortran, do not
provide a mechanism for accessing an address returned from a routine. Further,
BASIC and COBOL do not allow routines to be arguments.

6–12

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

Table 6–5 lists the queue access routines.

Table 6–5 Queue Access Routines

Entry Point Function

LIB$INSQHI Inserts queue entry at head

LIB$INSQTI Inserts queue entry at tail

LIB$REMQHI Removes queue entry at head

LIB$REMQTI Removes queue entry at tail

Examples
LIB$INSQHI
In BASIC and Fortran, queues can be quadword aligned in a named COMMON
block by using a linker option file to specify alignment of program sections. The
LIB$GET_VM routine returns memory that is quadword aligned. Therefore,
you should use LIB$GET_VM to allocate the virtual memory for a queue. For
instance, to create a COMMON block called QUEUES, use the LINK command
with the FILE/OPTIONS qualifier, where FILE.OPT is a linker option file
containing the line:

PSECT = QUEUES, QUAD

A Fortran application using processor-shared memory follows:

INTEGER*4 FUNCTION INSERT_Q (QENTRY)
COMMON/QUEUES/QHEADER
INTEGER*4 QENTRY(10), QHEADER(2)
INSERT_Q = LIB$INSQHI (QENTRY, QHEADER)
RETURN
END

A BASIC application using processor-shared memory follows:

COM (QUEUES) QENTRY%(9), QHEADER%(1)
EXTERNAL INTEGER FUNCTION LIB$INSQHI
IF LIB$INSQHI (QENTRY%() BY REF, QHEADER%() BY REF) AND 1%

THEN GOTO 1000
.
.
.

1000 REM INSERTED OK

LIB$REMQHI
In Fortran, the address of the removed queue entry can be passed to another
routine as an array using the %VAL built-in function.

6–13

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

In the following example, queue entries are 10 longwords, including the two
longword pointers at the beginning of each entry:

COMMON/QUEUES/QHEADER
INTEGER*4 QHEADER(2), ISTAT
ISTAT = LIB$REMQHI (QHEADER, ADDR)
IF (ISTAT) THEN

CALL PROC (%VAL (ADDR)) ! Process removed entry
GO TO ...

ELSE IF (ISTAT .EQ. %LOC(LIB$_QUEWASEMP)) THEN
GO TO ... ! Queue was empty
ELSE IF

... ! Secondary interlock failed
END IF

.

.

.
END
SUBROUTINE PROC (QENTRY)
INTEGER*4 QENTRY(10)

.

.

.
RETURN
END

6.3.4 Character String Routines
The character string routines listed in Table 6–6 give a high-level language
program access to the corresponding VAX machine instructions. For a complete
description of these instructions, see the VAX Architecture Reference Manual. For
each instruction, the VAX Architecture Reference Manual specifies the contents of
all the registers after the instruction executes. The corresponding RTL routines
do not make the contents of all the registers available to the calling program.

Table 6–6 lists the LIB$ character string routines and their functions.

Table 6–6 Character String Routines

Entry Point Function

LIB$LOCC Locates a character in a string

LIB$MATCHC Returns the relative position of a substring

LIB$SCANC Scans characters

LIB$SKPC Skips characters

LIB$SPANC Spans characters

LIB$MOVC3 Moves characters

LIB$MOVC5 Moves characters and fills

LIB$MOVTC Moves translated characters

LIB$MOVTUC Move translated characters until specified character is found

The OpenVMS RTL String Manipulation (STR$) Manual describes STR$ string
manipulation routines.

6–14

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

Example
This COBOL program uses LIB$LOCC to return the position of a given letter of
the alphabet.

IDENTIFICATION DIVISION.
PROGRAM-ID. LIBLOC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SEARCH-STRING PIC X(26)
VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

01 SEARCH-CHAR PIC X.
01 IND-POS PIC 9(9) USAGE IS COMP.
01 DISP-IND PIC 9(9).

ROUTINE DIVISION.

001-MAIN.
MOVE SPACE TO SEARCH-CHAR.
DISPLAY " ".
DISPLAY "ENTER SEARCH CHARACTER: " WITH NO ADVANCING.
ACCEPT SEARCH-CHAR.
CALL "LIB$LOCC"

USING BY DESCRIPTOR SEARCH-CHAR, SEARCH-STRING
GIVING IND-POS.

IF IND-POS = ZERO
DISPLAY

"CHAR ENTERED (" SEARCH-CHAR ") NOT A VALID SEARCH CHAR"
STOP RUN.

MOVE IND-POS TO DISP-IND.
DISPLAY

"SEARCH CHAR (" SEARCH-CHAR ") WAS FOUND IN POSITION "
DISP-IND.

GO TO 001-MAIN.

6.3.5 Miscellaneous Instruction Routines
Table 6–7 lists additional routines that you can use.

Table 6–7 Miscellaneous Instruction Routines

Entry Point Function

LIB$CALLG Calls a routine using an array argument list

LIB$CRC Computes a cyclic redundancy check

LIB$CRC_TABLE Constructs a table for a cyclic redundancy check

LIB$CALLG
The LIB$CALLG routine gives your program access to the CALLG instruction.
This instruction calls a routine using an argument list stored as an array in
memory, as opposed to the CALLS instruction, in which the argument list is
pushed on the stack.

6–15

Using Run-Time Library Routines to Access Operating System Components
6.3 Access to VAX Machine Instructions

LIB$CRC
The LIB$CRC routine allows your high-level language program to use the CRC
instruction, which calculates the cyclic redundancy check. This instruction checks
the integrity of a data stream by comparing its state at the sending point and the
receiving point. Each character in the data stream is used to generate a value
based on a polynomial. The values for each character are then added together.
This operation is performed at both ends of the data transmission, and the two
result values are compared. If the results disagree, then an error occurred during
the transmission.

LIB$CRC_TABLE
The LIB$CRC_TABLE routine takes a polynomial as its input and builds the
table that LIB$CRC uses to calculate the CRC. You must specify the polynomial
to be used.

For more details, see the VAX Architecture Reference Manual.

6.4 Processwide Resource Allocation Routines
This section discusses routines that allocate processwide resources to a single
operating system process. The processwide resources discussed here are:

• Local event flags

• BASIC and Fortran logical unit numbers (LUNs)

The resource allocation routines are provided so that user routines can use the
processwide resources without conflicting with one another.

In general, you must use run-time library resource allocation routines when your
program needs processwide resources. This allows RTL routines, Digital-supplied
routines, and user routines that you write to perform together within a process.

If your called routine includes a call to any RTL routine that frees a processwide
resource, and that called routine fails to execute normally, the resource will not
be freed. Thus, your routine should establish a condition handler that frees
the allocated resource before resignaling or unwinding. For information about
condition handling, see Chapter 13.

Table 6–8 list routines that perform processwide resource allocation.

Table 6–8 Processwide Resource Allocation Routines

Entry Point Function

LIB$FREE_LUN Deallocates a specific logical unit number

LIB$GET_LUN Allocates next arbitrary logical unit number

LIB$FREE_EF Frees a local event flag

LIB$GET_EF Allocates a local event flag

LIB$RESERVE_EF Reserves a local event flag

6.4.1 Allocating Logical Unit Numbers
BASIC and Fortran use a logical unit number (LUN) to define the file or device
a program uses to perform input and output. For a routine to be modular, it
does not need to know the LUNs being used by other routines that are running
at the same time. For this reason, logical units are allocated and deallocated at
run time. You can use LIB$GET_LUN and LIB$FREE_LUN to obtain the next

6–16

Using Run-Time Library Routines to Access Operating System Components
6.4 Processwide Resource Allocation Routines

available number. This ensures that your BASIC or Fortran routine does not
use a logical unit that is already being used by a calling program. Therefore,
you should use this routine whenever your program calls or is called by another
program that also allocates LUNs. Logical unit numbers 100 to 119 are available
to modular routines through these entry points.

To allocate an LUN, call LIB$GET_LUN and use the value returned as the LUN
for your I/O statements. If no LUNs are available, an error status is returned
and the logical unit is set to ��. When the program unit exits, it should use
LIB$FREE_LUN to free any LUNs that have been allocated by LIB$GET_LUN.
If it does not free any LUNs, the available pool of numbers is freed for use.

If your called routine contains a call to LIB$FREE_LUN to free the LUNs upon
exit, and your routine fails to execute normally, the LUNs will not be freed.
For this reason, you should make sure to establish a condition handler to call
LIB$FREE_LUN before resignaling or unwinding. Otherwise, the allocated LUN
is lost until the image exits.

6.4.2 Allocating Event Flag Numbers
The LIB$GET_EF and LIB$FREE_EF routines operate in a similar way to
LIB$GET_LUN and LIB$FREE_LUN. They cause local event flags to be allocated
and deallocated at run time, so that your routine remains independent of other
routines executing in the same process.

Local event flags numbered 32 to 63 are available to your program. These event
flags allow routines to communicate and synchronize their operations. If you
use a specific event flag in your routine, another routine may attempt to use the
same flag, and the flag will no longer function as expected. Therefore, you should
call LIB$GET_EF to obtain the next arbitrary event flag and LIB$FREE_EF
to return it to the storage pool. You can obtain a specific event flag number by
calling LIB$RESERVE_EF. This routine takes as its argument the event flag
number to be allocated.

For information about using event flags, see Chapter 2 and Chapter 14.

6.5 Performance Measurement Routines
The run-time library timing facility consists of four routines to store count and
timing information, display the requested information, and deallocate the storage.
Table 6–9 lists these routines and their functions.

Table 6–9 Performance Measurement Routines

Entry Point Function

LIB$INIT_TIMER Stores the values of the specified times and counts in units of
static or heap storage, depending on the value of the routine’s
argument

LIB$SHOW_TIMER Gets and formats for output the specified times and counts
that are accumulated since the last call to LIB$INIT_TIMER

LIB$STAT_TIMER Gets one of the times and counts since the last call to
LIB$INIT_TIMER and returns it as an unsigned quadword
or longword

LIB$FREE_TIMER Frees the storage allocated by LIB$INIT_TIMER

6–17

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

Using these routines, you can access the following statistics:

• Elapsed time

• CPU time

• Buffered I/O count

• Direct I/O count

• Page faults

The LIB$SHOW_TIMER and LIB$STAT_TIMER routine are relatively simple
tools for testing the performance of a new application. To obtain more detailed
information, use the system services SYS$GETTIM (Get Time) and SYS$GETJPI
(Get Job/Process Information).

The simplest way to use the run-time library routines is to call LIB$INIT_TIMER
with no arguments at the beginning of the portion of code to be monitored. This
causes the statistics to be placed in OWN storage. To get the statistics from OWN
storage, call LIB$SHOW_TIMER (with no arguments) at the end of the portion of
code to be monitored.

If you want a particular statistic, you must include a code argument with a call
to LIB$SHOW_TIMER or LIB$STAT_TIMER. LIB$SHOW_TIMER returns the
specified statistic(s) in formatted form and sends them to SYS$OUTPUT. On
each call, LIB$STAT_TIMER returns one statistic to the calling program as an
unsigned longword or quadword value.

Table 6–10 shows the code argument in LIB$SHOW_TIMER or LIB$STAT_
TIMER.

Table 6–10 The code Argument in LIB$SHOW_TIMER and LIB$STAT_TIMER

Argument
Value Meaning

LIB$SHOW_TIMER
Format

LIB$STAT_TIMER
Format

1 Elapsed real time dddd hh:mm:ss.cc Quadword, in
system time
format

2 Elapsed CPU time hhhh:mm:ss.cc Longword, in
10-millisecond
increments

3 Number of buffered I/O
operations

nnnn Longword

4 Number of direct I/O
operations

nnnn Longword

5 Number of page faults nnnn Longword

When you call LIB$INIT_TIMER, you must use the optional handler argument
only if you want to keep several sets of statistics simultaneously. This argument
points to a block in heap storage where the statistics are to be stored. You need to
call LIB$FREE_TIMER only if you have specified handler in LIB$INIT_TIMER
and you want to deallocate all heap storage resources. In most cases, the implicit
deallocation when the image exits is sufficient.

6–18

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

The LIB$STAT_TIMER routine returns only one of the five statistics for each call,
and it returns that statistic in the form of an unsigned quadword or longword.
LIB$SHOW_TIMER returns the virtual address of the stored information,
which BASIC cannot directly access. Therefore, a BASIC program must call
LIB$STAT_TIMER and format the returned statistics, as the following example
demonstrates.

Example
The following BASIC example uses the run-time library performance analysis
routines to obtain timing statistics. It then calls the $ASCTIM system service to
translate the 64-bit binary value returned by LIB$STAT_TIMER into an ASCII
text string.

100 EXTERNAL INTEGER FUNCTION LIB$INIT_TIMER
EXTERNAL INTEGER FUNCTION LIB$STAT_TIMER
EXTERNAL INTEGER FUNCTION LIB$FREE_TIMER
EXTERNAL INTEGER CONSTANT SS$_NORMAL

200 DECLARE LONG COND_VALUE, RANDOM_SLEEP
DECLARE LONG CODE, HANDLE
DECLARE STRING TIME_BUFFER
HANDLE = 0
TIME_BUFFER = SPACE$(50%)

300 MAP (TIMER) LONG ELAPSED_TIME, FILL
MAP (TIMER) LONG CPU_TIME
MAP (TIMER) LONG BUFIO
MAP (TIMER) LONG DIRIO
MAP (TIMER) LONG PAGE_FAULTS

400 PRINT "This program returns information about:"
PRINT "Elapsed time (1)"
PRINT "CPU time (2)"
PRINT "Buffered I/O (3)"
PRINT "Direct I/O (4)"
PRINT "Page faults (5)"
PRINT "Enter zero to exit program"
PRINT "Enter a number from one to"
PRINT "five for performance information"
INPUT "One, two, three, four, or five"; CODE
PRINT

450 GOTO 32766 IF CODE = 0

500 COND_VALUE = LIB$INIT_TIMER(HANDLE)

550 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @
"Error in initialization"

GOTO 32767

650 A = 0 !
FOR I = 1 to 100000 ! This code merely uses some CPU time
A = A + 1 !
NEXT I !

700 COND_VALUE = LIB$STAT_TIMER(CODE, ELAPSED_TIME, HANDLE)

750 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @
"Error in statistics routine"

GOTO 32767

800 GOTO 810 IF CODE <> 1%
CALL SYS$ASCTIM (, TIME_BUFFER, ELAPSED_TIME, 1% BY VALUE)
PRINT "Elapsed time: "; TIME_BUFFER

6–19

Using Run-Time Library Routines to Access Operating System Components
6.5 Performance Measurement Routines

810 PRINT "CPU time in seconds: "; .01 * CPU_TIME IF CODE = 2%
PRINT "Buffered I/O: ";BUFIO IF CODE = 3%
PRINT "Direct I/O: ";DIRIO IF CODE = 4%
PRINT "Page faults: ";PAGE_FAULTS IF CODE = 5%
PRINT

900 GOTO 400

32765 COND_VALUE = LIB$FREE_TIMER(HANDLE)
32766 IF (COND_VALUE <> SS$_NORMAL) THEN PRINT @

"Error in LIB$FREE_TIMER"
GOTO 32767

32767 END

For information about using system time, see Chapter 5.

6.6 Output Formatting Control Routines
Table 6–11 lists the run-time library routines that customize output.

Table 6–11 Routines for Customizing Output

Entry Point Function

LIB$CURRENCY Defines the default currency symbol for process

LIB$DIGIT_SEP Defines the default digit separator for process

LIB$LP_LINES Defines the process default size for a printed page

LIB$RADIX_POINT Defines the process default radix point character

The LIB$CURRENCY, LIB$DIGIT_SEP, LIB$LP_LINES, and LIB$RADIX_
POINT routines allow you to customize output. Using them, you can define
the logical names SYS$CURRENCY, SYS$DIGIT_SEP, SYS$LP_LINES, and
SYS$RADIX_POINT to specify your own currency symbol, digit separator, radix
point, or number of lines per printed page. Each routine works by attempting
to translate the associated logical name as a process, group, or system logical
name. If you have redefined a logical name for a specific local application, then
the translation succeeds, and the routine returns the value that corresponds to
the option you have chosen. If the translation fails, the routine returns a default
value provided by the run-time library, as follows:

$ SYS$CURRENCY

, SYS$DIGIT_SEP

. SYS$RADIX_POINT

66 SYS$LP_LINES

For example, if you want to use the British pound sign (£) as the currency symbol
within your process, but you want to leave the dollar sign ($) as the system
default, define SYS$CURRENCY to be in your process logical name table. Then,
any calls to LIB$CURRENCY within your process return ‘‘£’’, while any calls
outside your process return ‘‘$’’.

You can use LIB$LP_LINES to monitor the current default length of the line
printer page. You can also supply your own default length for the current process.
United States standard paper size permits 66 lines on each physical page.

6–20

Using Run-Time Library Routines to Access Operating System Components
6.6 Output Formatting Control Routines

If you are writing programs for a utility that formats a listing file to be printed
on a line printer, you can use LIB$LP_LINES to make your utility independent
of the default page length. Your program can use LIB$LP_LINES to obtain the
current length of the page. It can then calculate the number of lines of text per
page by subtracting the lines used for margins and headings.

The following is one suggested format:

• Three lines for the top margin

• Three lines for the bottom margin

• Three lines for listing heading information, consisting of:

Language-processor identification line

Source program identification line

One blank line

6.7 Miscellaneous Interface Routines
There are several other RTL routines that permit high-level access to components
of the operating system. Table 6–12 lists these routines and their functions. The
sections that follow give further details about some of these routines.

Table 6–12 Miscellaneous Interface Routines

Entry Point Function

LIB$AST_IN_PROG Indicates whether an asynchronous system trap is in
progress

LIB$ASN_WTH_MBX Assigns an I/O channel and associates it with a
mailbox

LIB$CREATE_DIR Creates a directory or subdirectory

LIB$FIND_IMAGE_SYMBOL Reads a global symbol from the shareable image file
and dynamically activates a shareable image into the
P0 address space of a process

LIB$ADDX Performs addition on signed two’s complement
integers of arbitrary length (multiple-precision
addition)

LIB$SUBX Performs subtraction on signed two’s complement
integers of arbitrary length (multiple-precision
subtraction)

LIB$FILE_SCAN Finds file names given OpenVMS RMS file access
block (FAB)

LIB$FILE_SCAN_END End-of-file scan

LIB$FIND_FILE Finds file names given string

LIB$FIND_FILE_END End-of-find file

(continued on next page)

6–21

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

Table 6–12 (Cont.) Miscellaneous Interface Routines

Entry Point Function

LIB$INSERT_TREE Inserts an element in a binary tree

LIB$LOOKUP_TREE Finds an element in a binary tree

LIB$TRAVERSE_TREE Traverses a binary tree

LIB$GET_COMMON Gets a record from the process’s COMMON storage
area

LIB$PUT_COMMON Puts a record to the process’s COMMON storage area

6.7.1 Indicating Asynchronous System Trap in Progress
An asynchronous system trap (AST) is a mechanism for providing a software
interrupt when an external event occurs, such as when a user presses the Ctrl/C
key sequence. When an external event occurs, the operating system interrupts
the execution of the current process and calls a routine that you supply. While
that routine is active, the AST is said to be in progress, and the process is said to
be executing at AST level. When your AST routine returns control to the original
process, the AST is no longer active and execution continues where it left off.

The LIB$AST_IN_PROG routine indicates to the calling program whether an
AST is currently in progress. Your program can call LIB$AST_IN_PROG to
determine whether it is executing at AST level, and then take appropriate action.
This routine is useful if you are writing AST-reentrant code.

For information about using ASTs, see Chapter 4.

6.7.2 Create a Directory or Subdirectory
The LIB$CREATE_DIR routine creates a directory or a subdirectory. The calling
program must specify the directory specification in standard OpenVMS RMS
format. This directory specification may also contain a disk specification.

In addition to the required directory specification argument, LIB$CREATE_DIR
takes the following five optional arguments:

• The user identification code (UIC) of the owner of the created directory or
subdirectory

• The protection enable mask

• The protection value mask

• The maximum number of versions allowed for files created in this directory or
subdirectory

• The relative volume number within the volume set on which the directory or
subdirectory is created

See the OpenVMS RTL Library (LIB$) Manual for a complete description of
LIB$CREATE_DIR.

6–22

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

6.7.3 File Searching Routines
The run-time library provides two routines that your program can call to search
for a file and two routines that your program can call to end a search sequence.

• When you call LIB$FILE_SCAN with a wildcard file specification and an
action routine, the routine calls the action routine for each file or error, or
both, found in the wildcard sequence. LIB$FILE_SCAN allows the search
sequence to continue even though certain errors are present.

• When you call LIB$FIND_FILE with a wildcard file specification, it finds the
next file specification that matches the wildcard specification.

In addition to the wildcard file specification, which is a required argument,
LIB$FIND_FILE takes the following four optional arguments:

• The default specification.

• The related specification.

• The OpenVMS RMS secondary status value from a failing RMS operation.

• A longword containing two flag bits. If bit 1 is set, LIB$FIND_FILE performs
temporary defaulting for multiple input files and the related specification
argument is ignored. See the OpenVMS RTL Library (LIB$) Manual for a
complete description of LIB$FIND_FILE in template format.

The LIB$FIND_FILE_END routine is called once after each call to LIB$FIND_
FILE in interactive use. LIB$FIND_FILE_END prevents the temporary default
values retained by the previous call to LIB$FIND_FILE from affecting the next
file specification.

The LIB$FILE_SCAN routine uses an optional context argument to perform
temporary defaulting for multiple input files. For example, a command such as
the following would specify A, B, and C in successive calls, retaining context, so
that portions of one file specification would affect the next file specification:

$ COPY [smith]A,B,C *

The LIB$FILE_SCAN_END routine is called once after each sequence of calls to
LIB$FILE_SCAN. LIB$FILE_SCAN_END performs a parse of the null string to
deallocate saved OpenVMS RMS context and to prevent the temporary default
values retained by the previous call to LIB$FILE_SCAN from affecting the next
file specification. For instance, in the previous example, LIB$FILE_SCAN_END
should be called after the C file specification is parsed, so that specifications from
the $COPY files do not affect file specifications in subsequent commands.

The following BLISS example illustrates the use of LIB$FIND_FILE. It prompts
for a file specification and default specification. The default specification indicates
the default information for the file for which you are searching. Once the routine
has searched for one file, the resulting file specification determines both the
related file specification and the default file specification for the next search.
LIB$FIND_FILE_END is called at the end of the following BLISS program to
deallocate the virtual memory used by LIB$FIND_FILE.

%TITLE ’FILE_EXAMPLE1 - Sample program using LIB$FIND_FILE’
MODULE FILE_EXAMPLE1(! Sample program using LIB$FIND_FILE

IDENT = ’1-001’,
MAIN = EXAMPLE_START
) =

BEGIN

6–23

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

%SBTTL ’Declarations’
!+
! SWITCHES:
!-

SWITCHES ADDRESSING_MODE (EXTERNAL = GENERAL, NONEXTERNAL = WORD_RELATIVE);

!+
! TABLE OF CONTENTS:
!-

FORWARD ROUTINE
EXAMPLE_START; ! Main program

!+
! INCLUDE FILES:
!-

LIBRARY ’SYS$LIBRARY:STARLET.L32’; ! System symbols

!+
! Define facility-specific messages from shared system messages.
!-
$SHR_MSGDEF(CLI,3,LOCAL,

(PARSEFAIL,WARNING));
!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET_INPUT, ! Read from SYS$INPUT
LIB$FIND_FILE, ! Wildcard scanning routine
LIB$FIND_FILE_END, ! End find file
LIB$PUT_OUTPUT, ! Write to SYS$OUTPUT
STR$COPY_DX; ! String copier

LITERAL
TRUE = 1, ! Success
FALSE = 0; ! Failure

%SBTTL ’EXAMPLE_START - Sample program main routine’;
ROUTINE EXAMPLE_START =
BEGIN
!+
! This program reads a file specification and default file
! specification from SYS$INPUT. It then prints all the files that
! match that specification and prompts for another file specification.
! After the first file specification no default specification is requested,
! and the previous resulting file specification becomes the related
! file specification.
!-
LOCAL

LINEDESC : $BBLOCK[DSC$C_S_BLN], ! String desc. for input line
RESULT_DESC : $BBLOCK[DSC$C_S_BLN], ! String desc. for result file
CONTEXT, ! LIB$FIND_FILE context pointer
DEFAULT_DESC : $BBLOCK[DSC$C_S_BLN], ! String desc. for default spec
RELATED_DESC : $BBLOCK[DSC$C_S_BLN], ! String desc. for related spec
HAVE_DEFAULT,
STATUS;

!+
! Make all string descriptors dynamic.
!-
CH$FILL(0,DSC$C_S_BLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
CH$MOVE(DSC$C_S_BLN,LINEDESC,RESULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,DEFAULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,RELATED_DESC);
HAVE_DEFAULT = FALSE;
CONTEXT = 0;

6–24

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

!+
! Read file specification, default file specification, and
! related file specification.
!-

WHILE (STATUS = LIB$GET_INPUT(LINEDESC,
$DESCRIPTOR(’FILE SPECIFICATION: ’))) NEQ RMS$_EOF

DO BEGIN
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
!+
! If default file specification was not obtained, do so now.
!-
IF NOT .HAVE_DEFAULT
THEN BEGIN

STATUS = LIB$GET_INPUT(DEFAULT_DESC,
$DESCRIPTOR(’DEFAULT FILE SPECIFICATION: ’));

IF NOT .STATUS
THEN SIGNAL_STOP(.STATUS);

HAVE_DEFAULT = TRUE;
END;

!+
! CALL LIB$FIND_FILE until RMS$_NMF (no more files) is returned.
! If an error other than RMS$_NMF is returned, it is signaled.
! Print out the file specification if the call is successful.
!-
WHILE (STATUS = LIB$FIND_FILE(LINEDESC,RESULT_DESC,CONTEXT,

DEFAULT_DESC,RELATED_DESC)) NEQ RMS$_NMF
DO IF NOT .STATUS

THEN SIGNAL(CLI$_PARSEFAIL,1,RESULT_DESC,.STATUS)
ELSE LIB$PUT_OUTPUT(RESULT_DESC);

!+
! Make this resultant file specification the related file
! specification for next file.
!-
STR$COPY_DX(RELATED_DESC,LINEDESC);
END; ! End of loop

! reading file specification

!+
! Call LIB$FIND_FILE_END to deallocate the virtual memory used by LIB$FIND_FILE.
! Note that we do this outside of the loop. Since the MULTIPLE bit of the
! optional user flags argument to LIB$FIND_FILE wasn’t used, it is not
! necessary to call LIB$FIND_FILE_END after each call to LIB$FIND_FILE.
! (The MULTIPLE bit would have caused temporary defaulting for multiple input
! files.)
!-
STATUS = LIB$FIND_FILE_END (CONTEXT);

IF NOT .STATUS
THEN SIGNAL_STOP (.STATUS);

RETURN TRUE
END; ! End of main program
END ! End of module

ELUDOM

The following BLISS example illustrates the use of LIB$FILE_SCAN and
LIB$FILE_SCAN_END.

6–25

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

%TITLE ’FILE_EXAMPLE2 - Sample program using LIB$FILE_SCAN’
MODULE FILE_EXAMPLE1(! Sample program using LIB$FILE_SCAN

IDENT = ’1-001’,
MAIN = EXAMPLE_START
) =

BEGIN

%SBTTL ’Declarations’
!+
! SWITCHES:
!-

SWITCHES ADDRESSING_MODE (EXTERNAL = GENERAL,
NONEXTERNAL = WORD_RELATIVE);

!+
! TABLE OF CONTENTS:
!-

FORWARD ROUTINE
EXAMPLE_START, ! Main program
SUCCESS_RTN, ! Success action routine
ERROR_RTN; ! Error action routine

!+
! INCLUDE FILES:
!-

LIBRARY ’SYS$LIBRARY:STARLET.L32’; ! System symbols

!+
! Define VMS block structures (BLOCK[,BYTE]).
!-
STRUCTURE

BBLOCK [O, P, S, E; N] =
[N]
(BBLOCK + O) <P, S, E>;

!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET_INPUT, ! Read from SYS$INPUT
LIB$FILE_SCAN, ! Wildcard scanning routine
LIB$FILE_SCAN_END, ! End of file scan
LIB$PUT_OUTPUT; ! Write to SYS$OUTPUT

6–26

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

%SBTTL ’EXAMPLE_START - Sample program main routine’;
ROUTINE EXAMPLE_START =
BEGIN
!+
! This program reads the file specification, default file specification,
! and related file specification from SYS$INPUT and then displays on
! SYS$OUTPUT all files which match the specification.
!-
LOCAL

RESULT_BUFFER : VECTOR[NAM$C_MAXRSS,BYTE], !Buffer for resultant
! name string

EXPAND_BUFFER : VECTOR[NAM$C_MAXRSS,BYTE], !Buffer for expanded
! name string

LINEDESC : BBLOCK[DSC$C_S_BLN], !String descriptor
! for input line

RESULT_DESC : BBLOCK[DSC$C_S_BLN], !String descriptor
! for result file

DEFAULT_DESC : BBLOCK[DSC$C_S_BLN], !String descriptor
! for default specification

RELATED_DESC : BBLOCK[DSC$C_S_BLN], !String descriptor
! for related specification

IFAB : $FAB_DECL, !FAB for file_scan
INAM : $NAM_DECL, ! and a NAM block
RELNAM : $NAM_DECL, ! and a related NAM block
STATUS;

!+
! Make all descriptors dynamic.
!-
CH$FILL(0,DSC$C_S_BLN,LINEDESC);
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D;
CH$MOVE(DSC$C_S_BLN,LINEDESC,RESULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,DEFAULT_DESC);
CH$MOVE(DSC$C_S_BLN,LINEDESC,RELATED_DESC);
!+
! Read file specification, default file specification, and related
! file specification
!-
STATUS = LIB$GET_INPUT(LINEDESC,

$DESCRIPTOR(’File specification: ’));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
STATUS = LIB$GET_INPUT(DEFAULT_DESC,

$DESCRIPTOR(’Default file specification: ’));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
STATUS = LIB$GET_INPUT(RELATED_DESC,

$DESCRIPTOR(’Related file specification: ’));
IF NOT .STATUS

THEN SIGNAL_STOP(.STATUS);
!+
! Initialize the FAB, NAM, and related NAM blocks.
!-
$FAB_INIT(FAB=IFAB,

FNS=.LINEDESC[DSC$W_LENGTH],
FNA=.LINEDESC[DSC$A_POINTER],
DNS=.DEFAULT_DESC[DSC$W_LENGTH],
DNA=.DEFAULT_DESC[DSC$A_POINTER],
NAM=INAM);

$NAM_INIT(NAM=INAM,
RSS=NAM$C_MAXRSS,
RSA=RESULT_BUFFER,
ESS=NAM$C_MAXRSS,
ESA=EXPAND_BUFFER,
RLF=RELNAM);

6–27

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

$NAM_INIT(NAM=RELNAM);
RELNAM[NAM$B_RSL] = .RELATED_DESC[DSC$W_LENGTH];
RELNAM[NAM$L_RSA] = .RELATED_DESC[DSC$A_POINTER];
!+
! Call LIB$FILE_SCAN. Note that errors need not be checked
! here because LIB$FILE_SCAN calls error_rtn for all errors.
!-
LIB$FILE_SCAN(IFAB,SUCCESS_RTN,ERROR_RTN);

!+
! Call LIB$FILE_SCAN_END to deallocate virtual memory used for
! file scan structures.
!-
STATUS = LIB$FILE_SCAN_END (IFAB);

IF NOT .STATUS
THEN SIGNAL_STOP (.STATUS);

RETURN 1
END; ! End of main program

ROUTINE SUCCESS_RTN (IFAB : REF BBLOCK) =
BEGIN
!+
! This routine is called by LIB$FILE_SCAN for each file that it
! successfully finds in the search sequence.
!
! Inputs:
!
! IFAB Address of a fab
!
! Outputs:
!
! file specification printed on SYS$OUTPUT
!-
LOCAL

DESC : BBLOCK[DSC$C_S_BLN]; ! A local string descriptor
BIND

INAM = .IFAB[FAB$L_NAM] : BBLOCK; ! Find NAM block
! from pointer in FAB

CH$FILL(0,DSC$C_S_BLN,DESC); ! Make static
! string descriptor

DESC[DSC$W_LENGTH] = .INAM[NAM$B_RSL]; ! Get string length
! from NAM block

DESC[DSC$A_POINTER] = .INAM[NAM$L_RSA]; ! Get pointer to the string
RETURN LIB$PUT_OUTPUT(DESC) ! Print name on SYS$OUTPUT

! and return
END;

ROUTINE ERROR_RTN (IFAB : REF BBLOCK) =
BEGIN
!+
! This routine is called by LIB$FILE_SCAN for each file specification that
! produces an error.
!
! Inputs:
!
! ifab Address of a fab
!
! Outputs:
!
! Error message is signaled
!-
LOCAL

DESC : BBLOCK[DSC$C_S_BLN]; ! A local string descriptor

6–28

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

BIND
INAM = .IFAB[FAB$L_NAM] : BBLOCK; ! Get NAM block pointer

! from FAB

CH$FILL(0,DSC$C_S_BLN,DESC); ! Create static
! string descriptor

DESC[DSC$W_LENGTH] = .INAM[NAM$B_RSL];
DESC[DSC$A_POINTER] = .INAM[NAM$L_RSA];
!+
! Signal the error using the shared message PARSEFAIL
! and the CLI facility code. The second part of the SIGNAL
! is the RMS STS and STV error codes.
!-
RETURN SIGNAL((SHR$_PARSEFAIL+3^16),1,DESC,

.IFAB[FAB$L_STS],.IFAB[FAB$L_STV])

END;
END ! End of module

ELUDOM

6.7.4 Inserting an Entry into a Balanced Binary Tree
Three routines allow you to manipulate the contents of a balanced binary tree:

• LIB$INSERT_TREE adds an entry to a balanced binary tree.

• LIB$LOOKUP_TREE looks up an entry in a balanced binary tree.

• LIB$TRAVERSE_TREE calls an action routine for each node in the tree.

Example
The following BLISS example illustrates all three routines. The program prompts
for input from SYS$INPUT and stores each data line as an entry in a binary
tree. When the user enters the end-of-file character (Ctrl/Z), the tree is printed in
sorted order. The program includes three subroutines:

• The first subroutine allocates virtual memory for a node.

• The second subroutine routine compares a key with a node.

• The third subroutine is called during the tree traversal. It prints out the left
and right subtree pointers, the current node balance, and the name of the
node.

%TITLE ’TREE_EXAMPLE - Sample program using binary tree routines’
MODULE TREE_EXAMPLE(! Sample program using trees

IDENT = ’1-001’,
MAIN = TREE_START
) =

BEGIN

%SBTTL ’Declarations’
!+
! SWITCHES:
!-
SWITCHES ADDRESSING_MODE (EXTERNAL = GENERAL, NONEXTERNAL = WORD_RELATIVE);

!+
! LINKAGES:
!
! NONE
!
! TABLE OF CONTENTS:
!-

6–29

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

FORWARD ROUTINE
TREE_START, ! Main program
ALLOC_NODE, ! Allocate memory for a node
COMPARE_NODE, ! Compare two nodes
PRINT_NODE; ! Print a node (action routine

! for LIB$TRAVERSE_TREE)

!+
! INCLUDE FILES:
!-

LIBRARY ’SYS$LIBRARY:STARLET.L32’; ! System symbols

!+
! Define VMS block structures (BLOCK[,BYTE]).
!-
STRUCTURE

BBLOCK [O, P, S, E; N] =
[N]
(BBLOCK + O) <P, S, E>;

!+
! MACROS:
!-
MACRO

NODE$L_LEFT = 0,0,32,0%, ! Left subtree pointer in node
NODE$L_RIGHT = 4,0,32,0%, ! Right subtree pointer
NODE$W_BAL = 8,0,16,0%, ! Balance this node
NODE$B_NAMLNG = 10,0,8,0%, ! Length of name in this node
NODE$T_NAME = 11,0,0,0%; ! Start of name (variable length)

LITERAL
NODE$C_LENGTH = 11; ! Length of fixed part of node

!+
! EXTERNAL REFERENCES:
!-

EXTERNAL ROUTINE
LIB$GET_INPUT, ! Read from SYS$INPUT
LIB$GET_VM, ! Allocate virtual memory
LIB$INSERT_TREE, ! Insert into binary tree
LIB$LOOKUP_TREE, ! Lookup in binary tree
LIB$PUT_OUTPUT, ! Write to SYS$OUTPUT
LIB$TRAVERSE_TREE, ! Traverse a binary tree
STR$UPCASE, ! Convert string to all uppercase
SYS$FAO; ! Formatted ASCII output routine

%SBTTL ’TREE_START - Sample program main routine’;
ROUTINE TREE_START =
BEGIN
!+
! This program reads from SYS$INPUT and stores each data line
! as an entry in a binary tree. When end-of-file character (CTRL/Z)
! is entered, the tree will be printed in sorted order.
!-
LOCAL

NODE : REF BBLOCK, ! Address of allocated node
TREEHEAD, ! List head of binary tree
LINEDESC : BBLOCK[DSC$C_S_BLN], ! String descriptor for input line
STATUS;

6–30

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

TREEHEAD = 0; ! Zero binary tree head
CH$FILL(0,DSC$C_S_BLN,LINEDESC); ! Make a dynamic descriptor
LINEDESC[DSC$B_CLASS] = DSC$K_CLASS_D; ! ...
!+
! Read input lines until end of file seen.
!-
WHILE (STATUS = LIB$GET_INPUT(LINEDESC, ! Read input line

$DESCRIPTOR(’Text: ’))) ! with this prompt
NEQ RMS$_EOF

DO IF NOT .STATUS ! Report any errors found
THEN SIGNAL(.STATUS)
ELSE BEGIN

STR$UPCASE(LINEDESC,LINEDESC); ! Convert string
! to uppercase

IF NOT (STATUS = LIB$INSERT_TREE(
TREEHEAD, ! Insert good data into the tree
LINEDESC, ! Data to insert
%REF(1), ! Insert duplicate entries
COMPARE_NODE, ! Addr. of compare routine
ALLOC_NODE, ! Addr. of node allocation routine
NODE, ! Return addr. of
0)) ! allocated node here

THEN SIGNAL(.STATUS);
END;

!+
! End of file character encountered. Print the whole tree and exit.
!-
IF NOT (STATUS = LIB$TRAVERSE_TREE(

TREEHEAD, ! Listhead of tree
PRINT_NODE, ! Action routine to print a node
0))

THEN SIGNAL(.STATUS);

RETURN SS$_NORMAL
END; ! End of routine tree_start

ROUTINE ALLOC_NODE (KEYDESC,RETDESC,CONTEXT) =
BEGIN
!+
! This routine allocates virtual memory for a node.
!
! INPUTS:
!
! KEYDESC Address of string descriptor for key
! (this is the linedesc argument passed
! to LIB$INSERT_TREE)
! RETDESC Address of location to return address of
! allocated memory
! CONTEXT Address of user context argument passed
! to LIB$INSERT_TREE (not used in this
! example)
!
! OUTPUTS:
!
! Memory address returned in longword pointed to by retdesc
!-
MAP

KEYDESC : REF BBLOCK,
RETDESC : REF VECTOR[,LONG];

LOCAL
NODE : REF BBLOCK,
STATUS;

6–31

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

STATUS = LIB$GET_VM(%REF(NODE$C_LENGTH+.KEYDESC[DSC$W_LENGTH]),NODE);
IF NOT .STATUS

THEN RETURN .STATUS
ELSE BEGIN

NODE[NODE$B_NAMLNG] = .KEYDESC[DSC$W_LENGTH]; ! Set name length
CH$MOVE(.KEYDESC[DSC$W_LENGTH], ! Copy in the name

.KEYDESC[DSC$A_POINTER],
NODE[NODE$T_NAME]);

RETDESC[0] = .NODE; ! Return address to caller
END;

RETURN .STATUS

END;

ROUTINE COMPARE_NODE (KEYDESC,NODE,CONTEXT) =
BEGIN
!+
! This routine compares a key with a node.
!
! INPUTS:
!
! KEYDESC Address of string descriptor for new key
! (This is the linedesc argument passed to
! LIB$INSERT_TREE)
! NODE Address of current node
! CONTEXT User context data (Not used in this example)
!-
MAP

KEYDESC : REF BBLOCK,
NODE : REF BBLOCK;

RETURN CH$COMPARE(.KEYDESC[DSC$W_LENGTH], ! Compare key with
! current node

.KEYDESC[DSC$A_POINTER],

.NODE[NODE$B_NAMLNG],
NODE[NODE$T_NAME])

END;

ROUTINE PRINT_NODE (NODE,CONTEXT) =
BEGIN
!+
! This routine is called during the tree traversal. It
! prints out the left and right subtree pointers, the
! current node balance, and the name of the node.
!-
MAP

NODE : REF BBLOCK;

6–32

Using Run-Time Library Routines to Access Operating System Components
6.7 Miscellaneous Interface Routines

LOCAL
OUTBUF : BBLOCK[512], ! FAO output buffer
OUTDESC : BBLOCK[DSC$C_S_BLN], ! Output buffer descriptor
STATUS;

CH$FILL(0,DSC$C_S_BLN,OUTDESC); ! Zero descriptor
OUTDESC[DSC$W_LENGTH] = 512;
OUTDESC[DSC$A_POINTER] = OUTBUF;
IF NOT (STATUS = SYS$FAO($DESCRIPTOR(’!XL !XL !XL !XW !AC’),

OUTDESC,OUTDESC,
.NODE,.NODE[NODE$L_LEFT],
.NODE[NODE$L_RIGHT],
.NODE[NODE$W_BAL],
NODE[NODE$B_NAMLNG]))

THEN SIGNAL(.STATUS)
ELSE BEGIN

STATUS = LIB$PUT_OUTPUT(OUTDESC); ! Output the line
IF NOT .STATUS

THEN SIGNAL(.STATUS);
END;

RETURN SS$_NORMAL

END;
END ! End of module TREE_EXAMPLE

ELUDOM

6–33

7
Run-Time Library Input/Output Operations

This chapter describes the different I/O programming capabilities provided by the
run-time library and illustrates these capabilities with examples of common I/O
tasks. This chapter contains the following sections:

Section 7.1 describes the input and output operations within a program.

Section 7.2 describes using SYS$INPUT and SYS$OUTPUT.

Section 7.3 describes using LIB$GET_INPUT and LIB$PUT_OUTPUT for simple
user I/O.

Section 7.4 describes using the SMG$ run-time library routines for managing the
appearance of terminal screens.

Section 7.5 describes using screen management input routines and the SYS$QIO
and SYS$QIOW system services to perform special actions.

7.1 Choosing I/O Techniques
The operating system and its compilers provide the following methods for
completing input and output operations within a program:

• DEC Text Processing Utility

• DECforms software

• Program language I/O statements

• OpenVMS Record Management Services (RMS) and Run-Time Library (RTL)
routines

• SYS$QIO and SYS$QIOW system services

• Non-Digital-supplied device drivers to control the I/O to the device itself

The DEC Text Processing Utility (DECTPU) is a text processor that can be used
to create text editing interfaces. DECTPU has the following features:

• High-level procedure language with several data types, relational operators,
error interception, looping, case language statements, and built-in procedures

• Compiler for the DECTPU procedure language

• Interpreter for the DECTPU procedure language

• Extensible Versatile Editor (EVE) editing interface which, in addition to the
EVE keypad, provides EDT, VT100, WPS, and numeric keypad emulation

In addition, DECTPU offers the following special features:

• Multiple buffers

• Multiple windows

• Multiple subprocesses

7–1

Run-Time Library Input/Output Operations
7.1 Choosing I/O Techniques

• Text processing in batch mode

• Insert or overstrike text entry

• Free or bound cursor motion

• Learn sequences

• Pattern matching

• Key definition

The method you select for I/O operations depends on the task you want to
accomplish, ease of use, speed, and level of control you want.

The DECforms software is a forms management product for transaction
processing. DECforms integrates text and graphics into forms and menus
that application programs use as an interface to users. DECforms software offers
application developers software development tools and a run-time environment
for implementing interfaces.

DECforms software integrates with the Application Control and Management
System (ACMS), a transaction process (TP) monitor that works with other Digital
commercial applications to provide complete customizable development and
run-time environments for TP applications. An asynchronous call interface to
ACMS allows a single DECforms run-time process to control multiple terminals
simultaneously in a multithreaded way, resulting in an efficient use of memory.
By using the ACMS Remote Access Option, DECforms software can be distributed
to remote CPUs. This technique allows the host CPU to offload forms processing
and distribute it as closely as possible to the end user.

In contrast to OpenVMS RMS, RTLs, SYS$QIOs, and device driver I/O, program
language I/O statements have the slowest speed and lowest level of control, but
they are the easiest to use and are highly portable.

OpenVMS RMS and RTL routines can perform most I/O operations for a high-
level or assembly language program. For information about OpenVMS RMS, see
the OpenVMS Record Management Services Reference Manual.

System services can complete any I/O operation and can access devices not
supported within OpenVMS RMS. See Chapter 9 for a description of using I/O
system services.

Writing a device driver provides the most control over I/O operations, but can
be more complex to implement. For information about device drivers for VAX
systems, see the OpenVMS VAX Device Support Manual.

Several types of I/O operations can be performed within a program, including the
following:

• RTL routines allow you to read simple input from a user or send simple
output to a user. One RTL routine allows you to specify a string to prompt
for input from the current input device, defined by SYS$INPUT. Another RTL
routine allows you to write a string to the current output device, defined by
SYS$OUTPUT. See Section 7.2 and Section 7.3 for more information.

• RTL routines allow you to read complex input from a user or to send complex
output to a user. By providing an extensive number of screen management
(SMG$) routines, the RTL allows you to read multiple lines of input from
users or to send complex output to users. The SMG$ routines also allow
you to create and modify complicated displays that accept input and produce
output. See Section 7.4 for more information.

7–2

Run-Time Library Input/Output Operations
7.1 Choosing I/O Techniques

• RTL routines allow you to use programming language I/O statements to send
data to and receive data from files. Program language I/O statements call
OpenVMS RMS routines to complete most file I/O. You can also use OpenVMS
RMS directly in your programs for accomplishing file I/O. See Chapter 8 for
more information.

• The SYS$QIO and SYS$QIOW system services allow you to send data to
and from devices with the most flexibility and control. You can use system
services to access devices not supported by your programming language or by
OpenVMS RMS.

You can perform other special I/O actions, such as interrupts, controlling
echo, handling unsolicited input, using the type-ahead buffer, using case
conversion, and sending sytem broadcast messges, by using SMG$ routines
or, for example, by using SYS$BRKTHRU system service to broadcast
messages. See Section 7.5 for more information.

7.2 Using SYS$INPUT and SYS$OUTPUT
Typically, you set up your program so that the user is the invoker. The user
starts the program by entering a DCL command associated with the program or
by using the RUN command.

7.2.1 Default Input and Output Devices
The user’s input and output devices are defined by the logical names SYS$INPUT
and SYS$OUTPUT, which are initially set to the values listed in Table 7–1.

Table 7–1 SYS$INPUT and SYS$OUTPUT Values

Logical Name User Mode Equivalence Device or File

SYS$INPUT Interactive Terminal at which the user is logged in

Batch job Data lines following the invocation of the
program

Command procedure Data lines following the invocation of the
program

SYS$OUTPUT Interactive Terminal at which the user is logged in

Batch job Batch log file

Command procedure Terminal at which the user is logged in

Generally, use of SYS$INPUT and SYS$OUTPUT as the primary input and
output devices is recommended. A user of the program can redefine SYS$INPUT
and SYS$OUTPUT to redirect input and output as desired. For example, the
interactive user might redefine SYS$OUTPUT as a file name to save output in a
file rather than display it on the terminal.

7–3

Run-Time Library Input/Output Operations
7.2 Using SYS$INPUT and SYS$OUTPUT

7.2.2 Reading and Writing to Alternate Devices and External Files
Alternatively, you can design your program to read input from and write output
to a file or a device other than the user’s terminal. Files may be useful for writing
large amounts of data, for writing data that the user might want to save, and for
writing data that can be reused as input. If you use files or devices other than
SYS$INPUT and SYS$OUTPUT, you should provide the names of the files or
devices (best form is to use logical names) and any conventions for their use. You
can specify such information by having the program write it to the terminal, by
creating a help file, or by providing user documentation.

7.3 Working with Simple User I/O
Usually, you can request information from or provide information to the user
with little regard for formatting. For such simple I/O, use LIB$GET_INPUT and
LIB$PUT_OUTPUT or the I/O statements for your programming language.

To provide complex screen displays for input or output, use the screen
management facility described in Section 7.4.

7.3.1 Default Devices for Simple I/O
The LIB$GET_INPUT and LIB$PUT_OUTPUT routines read from SYS$INPUT
and write to SYS$OUTPUT, respectively. The logical names SYS$INPUT and
SYS$OUTPUT are implicit to the routines, because you need only call the
routine to access the I/O unit (device or file) associated with SYS$INPUT and
SYS$OUTPUT. You cannot use these routines to access an I/O unit other than
the one associated with SYS$INPUT or SYS$OUTPUT.

7.3.2 Getting a Line of Input
A read operation transfers one record from the input unit to a variable or
variables of your choice. At a terminal, the user ends a record by pressing a
terminator. The terminators are the ASCII characters NUL through US (0
through 31) except for LF, VT, FF, TAB, and BS. The usual terminator is CR
(carriage return), which is generated by pressing the Return key.

If you are reading character data, LIB$GET_INPUT is a simple way of prompting
for and reading the data. If you are reading noncharacter data, programming
language I/O statements are preferable since they allow you to translate the data
to a format of your choice.

For example, Fortran offers the ACCEPT statement, which reads data from
SYS$INPUT, and the READ statement, which reads data from an I/O unit of your
choice.

Make sure the variables that you specify can hold the largest number of
characters the user of your program might enter, unless you want to truncate the
input deliberately. Overflowing the input variable using LIB$GET_INPUT causes
the fatal error LIB$_INPSTRTRU (defined in $LIBDEF); overflowing the input
variable using language I/O statements may not cause an error but does truncate
your data.

LIB$GET_INPUT places the characters read in a variable of your choice. You
must define the variable type as a character. Optionally, LIB$GET_INPUT places
the number of characters read in another variable of your choice. For input at a
terminal, LIB$GET_INPUT optionally writes a prompt before reading the input.
The prompt is suppressed automatically for an operation not taking place at a
terminal.

7–4

Run-Time Library Input/Output Operations
7.3 Working with Simple User I/O

Example 7–1 uses LIB$GET_INPUT to read a line of input.

Example 7–1 Reading a Line of Data

INTEGER*4 STATUS,
2 LIB$GET_INPUT
INTEGER*2 INPUT_SIZE
CHARACTER*512 INPUT
STATUS = LIB$GET_INPUT (INPUT, ! Input value
2 ’Input value: ’, ! Prompt (optional)
2 INPUT_SIZE) ! Input size (optional)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.3.3 Getting Several Lines of Input
The usual technique for getting a variable number of input records—either values
for which you are prompting or data records from a file—is to read and process
records until the end-of-file. End-of-file means one of the following:

• Terminal—The user has pressed Ctrl/Z. To ensure that the convention is
followed, you might first write a message telling the user to press Ctrl/Z to
terminate the input sequence.

• Command procedure—The end of a sequence of data lines has been reached.
That is, a sequence of data lines ends at the next DCL command (a line in
the procedure beginning with a dollar sign [$]) or at the end of the command
procedure file.

• File—The end of an actual file has been reached.

Process the records in a loop (one record per iteration) and terminate the loop
on end-of-file. LIB$GET_INPUT returns the error RMS$_EOF (defined in
$RMSDEF) when end-of-file occurs.

Example 7–2 uses a Fortran READ statement in a loop to read a sequence of
integers from SYS$INPUT.

Example 7–2 Reading a Varying Number of Input Records

! Return status and error codes
INTEGER STATUS,
2 IOSTAT,
3 STATUS_OK,
4 IOSTAT_OK
PARAMETER (STATUS_OK = 1,
2 IO_OK = 0)
INCLUDE ’($FORDEF)’
! Data record read on each iteration
INTEGER INPUT_NUMBER
! Accumulated data records
INTEGER STORAGE_COUNT,
2 STORAGE_MAX
PARAMETER (STORAGE_MAX = 255)
INTEGER STORAGE_NUMBER (STORAGE_MAX)

(continued on next page)

7–5

Run-Time Library Input/Output Operations
7.3 Working with Simple User I/O

Example 7–2 (Cont.) Reading a Varying Number of Input Records
! Write instructions to interactive user
TYPE *,
2 ’Enter values below. Press CTRL/Z when done.’
! Get first input value
WRITE (UNIT=*,
2 FMT=’(A,$)’) ’ Input value: ’
READ (UNIT=*,
2 IOSTAT=IOSTAT,
2 FMT=’(BN,I)’) INPUT_NUMBER
IF (IOSTAT .EQ. IO_OK) THEN
STATUS = STATUS_OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
! Process each input value until end-of-file
DO WHILE ((STATUS .NE. FOR$_ENDDURREA) .AND.

(STORAGE_COUNT .LT. STORAGE_MAX))
! Keep repeating on conversion error
DO WHILE (STATUS .EQ. FOR$_INPCONERR)
WRITE (UNIT=*,

2 FMT=’(A,$)’) ’ Try again: ’
READ (UNIT=*,

2 IOSTAT=IOSTAT,
2 FMT=’(BN,I)’) INPUT_NUMBER

IF (IOSTAT .EQ. IO_OK) THEN
STATUS = STATUS_OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
END DO
! Continue if end-of-file not entered
IF (STATUS .NE. FOR$_ENDDURREA) THEN
! Status check on last read
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Store input numbers in input array
STORAGE_COUNT = STORAGE_COUNT + 1
STORAGE_NUMBER (STORAGE_COUNT) = INPUT_NUMBER
! Get next input value
WRITE (UNIT=*,

2 FMT=’(A,$)’) ’ Input value: ’
READ (UNIT=*,

2 IOSTAT=IOSTAT,
2 FMT=’(BN,I)’) INPUT_NUMBER

IF (IOSTAT .EQ. IO_OK) THEN
STATUS = STATUS_OK

ELSE
CALL ERRSNS (,,,,STATUS)

END IF
END IF

END DO

7.3.4 Writing Simple Output
You can use LIB$PUT_OUTPUT to write character data. If you are writing
noncharacter data, programming language I/O statements are preferable because
they allow you to translate the data to a format of your choice.

7–6

Run-Time Library Input/Output Operations
7.3 Working with Simple User I/O

LIB$PUT_OUTPUT writes one record of output to SYS$OUTPUT. Typically,
you should avoid writing records that exceed the device width. The width of
a terminal is 80 or 132 characters, depending on the setting of the physical
characteristics of the device. The width of a line printer is 132 characters. If your
output record exceeds the width of the device, the excess characters are either
truncated or wrapped to the next line, depending on the setting of the physical
characteristics.

You must define a value (a variable, constant, or expression) to be written. The
value must be expressed in characters. You should specify the exact number of
characters being written and not include the trailing portion of a variable.

The following example writes a character expression to SYS$OUTPUT:

INTEGER*4 STATUS,
2 LIB$PUT_OUTPUT
CHARACTER*40 ANSWER
INTEGER*4 ANSWER_SIZE

.

.

.
STATUS = LIB$PUT_OUTPUT (’Answer: ’ // ANSWER (1:ANSWER_SIZE))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4 Working with Complex User I/O
DECwindows Motif for OpenVMS (DECwindows Motif), and the SMG$ run-
time library routines enable complex screen display I/O. The DECwindows
Motif environment provides a consistent user interface for developing software
applications. It also includes an extensive set of programming libraries and tools.
The following DECwindows Motif software allows you to build a graphical user
interface:

• Toolkit composed on graphical user interface objects, such as widgets and
gadgets. Widgets provide advanced programming capabilities that permit you
to create graphic applications easily; gadgets, similar to widgets, require less
memory to create labels, buttons, and separators.

• Language to describe visual aspects of objects, such as menus, labels, and
forms, and to specify changes resulting from user interaction.

• OSF/Motif Window Manager to allow you to customize the interface.

DECwindows Motif environment also makes available the LinkWorks services
for creating, managing, and traversing informational links between different
application-specific data. Along with the LinkWorks Manager application,
LinkWorks services help organize information into a hyperinformation
environment. LinkWorks Developer’s Tools provide a development environment
for creating, modifying, and maintaining hyperapplications.

For information about using OpenVMS DECwindows Motif, see the Overview of
DECwindows Motif for OpenVMS Documentation and the DECwindows Motif
Guide to Application Programming.

The SMG$ run-time library routines provide a simple, device-independent
interface for managing the appearance of the terminal screen. The SMG$
routines are primarily for use with video terminals; however, they can be used
with files or hardcopy terminals.

7–7

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

To use the screen management facility for output, do the following:

1. Create a pasteboard—A pasteboard is a logical, two-dimensional area on
which you place virtual displays. Use the SMG$CREATE_PASTEBOARD
routine to create a pasteboard, and associate it with a physical device. When
you refer to the pasteboard, SMG performs the necessary I/O operation to the
device.

2. Create a virtual display—A virtual display is a logical, two-dimensional area
in which you place the information to be displayed. Use the SMG$CREATE_
VIRTUAL_DISPLAY routine to create a virtual display.

3. Paste virtual displays to the pasteboard—To make a virtual display visible,
map (or paste) it to the pasteboard using the SMG$PASTE_VIRTUAL_
DISPLAY routine. You can reference a virtual display regardless of whether
that display is currently pasted to a pasteboard.

4. Create a viewport for a virtual display—A viewport is a rectangular viewing
area that can be moved around on a buffer to view different pieces of the
buffer. The viewport is associated with a virtual display.

Example 7–3 associates a pasteboard with the terminal, creates a virtual display
the size of the terminal screen, and pastes the display to the pasteboard. When
text is written to the virtual display, the text appears on the terminal screen.

Example 7–3 Associating a Pasteboard with a Terminal
.
.
.

! Screen management control structures
INTEGER*4 PBID, ! Pasteboard ID
2 VDID, ! Virtual display ID
2 ROWS, ! Rows on screen
2 COLS ! Columns on screen
! Status variable and routines called as functions
INTEGER*4 STATUS,
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$PASTE_VIRTUAL_DISPLAY
! Set up SYS$OUTPUT for screen management
! and get the number of rows and columns on the screen
STATUS = SMG$CREATE_PASTEBOARD (PBID, ! Return value
2 ’SYS$OUTPUT’,
2 ROWS, ! Return value
2 COLUMNS) ! Return value
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Create virtual display that pastes to the full screen size
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,
2 COLUMNS,
2 VDID) ! Return value
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

7–8

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Example 7–3 (Cont.) Associating a Pasteboard with a Terminal

! Paste virtual display to pasteboard
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 1, ! Starting at row 1 and
2 1) ! column 1 of the screen
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.

To use the SMG$ routines for input, you associate a virtual keyboard with a
physical device or file using the SMG$CREATE_VIRTUAL_KEYBOARD routine.
The SMG$ input routines can be used alone or with the output routines. This
section assumes that you are using the input routines with the output routines.
Section 7.5 describes how to use the input routines without the output routines.

The screen management facility keeps an internal representation of the screen
contents; therefore, it is important that you do not mix SMG$ routines with
other forms of terminal I/O. The following subsections contain guidelines for
using most of the SMG$ routines; for more details, see the OpenVMS RTL Screen
Management (SMG$) Manual.

7.4.1 Pasteboards
Use the SMG$CREATE_PASTEBOARD routine to create a pasteboard and
associate it with a physical device. SMG$CREATE_PASTEBOARD returns
a unique pasteboard identification number; use that number to refer to the
pasteboard in subsequent calls to SMG$ routines. After associating a pasteboard
with a device, your program references only the pasteboard. The screen
management facility performs all necessary operations between the pasteboard
and the physical device. Example 7–4 creates a pasteboard.

Example 7–4 Creating a Pasteboard

STATUS = SMG$CREATE_PASTEBOARD (PBID, ROWS, COLUMNS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4.1.1 Erasing a Pasteboard
When you create a pasteboard, the screen management facility clears the screen
by default. To clear the screen yourself, invoke the SMG$ERASE_PASTEBOARD
routine. Any virtual displays associated with the pasteboard are removed from
the screen, but their contents in memory are not affected. The following example
erases the screen:

STATUS = SMG$ERASE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7–9

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

7.4.1.2 Deleting a Pasteboard
Invoking the SMG$DELETE_PASTEBOARD routine deletes a pasteboard,
making the screen unavailable for further pasting. The optional second argument
of the SMG$DELETE_PASTEBOARD routine allows you to indicate whether the
routine clears the screen (the default) or leaves it as is. The following example
deletes a pasteboard and clears the screen:

STATUS = SMG$DELETE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

By default, the screen is erased when you create a pasteboard. Generally, you
should erase the screen at the end of a session.

7.4.1.3 Setting Screen Dimensions and Background Color
The SMG$CHANGE_PBD_CHARACTERISTICS routine sets the dimensions of
the screen and its background color. You can also use this routine to retrieve
dimensions and background color. To get more detailed information about the
physical device, use the SMG$GET_PASTEBOARD_ATTRIBUTES routine.
Example 7–5 changes the screen width to 132 and the background to white, then
restores the original width and background before exiting.

Example 7–5 Modifying Screen Dimensions and Background Color
.
.
.

INTEGER*4 WIDTH,
2 COLOR
INCLUDE ’($SMGDEF)’
! Get current width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,,
2 WIDTH,,,,
2 COLOR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Change width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,
2 132,,,,
2 SMG$C_COLOR_WHITE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Restore width and background color
STATUS = SMG$CHANGE_PBD_CHARACTERISTICS (PBID,
2 WIDTH,,,,
2 COLOR)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4.2 Virtual Displays
You write to virtual displays, which are logically configured as rectangles, by
using the SMG$ routines. The dimensions of a virtual display are designated
vertically as rows and horizontally as columns. A position in a virtual display is
designated by naming a row and a column. Row and column numbers begin at 1.

7–10

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

7.4.2.1 Creating a Virtual Display
Use the SMG$CREATE_VIRTUAL_DISPLAY routine to create a virtual
display. SMG$CREATE_VIRTUAL_DISPLAY returns a unique virtual display
identification number; use that number to refer to the virtual display.

Optionally, you can use the fifth argument of SMG$CREATE_VIRTUAL_
DISPLAY to specify one or more of the following video attributes: blinking,
bolding, reversing background, and underlining. All characters written to that
display will have the specified attribute unless you indicate otherwise when
writing text to the display. The following example makes everything written to
the display HEADER_VDID appear bold by default:

INCLUDE ’($SMGDEF)’
.
.
.

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (1, ! Rows
2 80, ! Columns
2 HEADER_VDID,,
2 SMG$M_BOLD)

You can border a virtual display by specifying the fourth argument when you
invoke SMG$CREATE_VIRTUAL_DISPLAY. You can label the border with the
routine SMG$LABEL_BORDER. If you use a border, you must leave room for it:
a border requires two rows and two columns more than the size of the display.
The following example places a labeled border around the STATS_VDID display.
As pasted, the border occupies rows 2 and 13 and columns 1 and 57.

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10, ! Rows
2 55, ! Columns
2 STATS_VDID,
2 SMG$M_BORDER)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$LABEL_BORDER (STATS_VDID,
2 ’statistics’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 3, ! Row
2 2) ! Column

7.4.2.2 Pasting Virtual Displays
To make a virtual display visible, paste it to a pasteboard using the
SMG$PASTE_VIRTUAL_DISPLAY routine. You position the virtual display
by specifying which row and column of the pasteboard should contain the upper
left corner of the display. Example 7–6 defines two virtual displays and pastes
them to one pasteboard.

7–11

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Example 7–6 Defining and Pasting a Virtual Display
.
.
.

INCLUDE ’($SMGDEF)’
INTEGER*4 PBID,
2 HEADER_VDID,
2 STATS_VDID
INTEGER*4 STATUS,
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$PASTE_VIRTUAL_DISPLAY
! Create pasteboard for SYS$OUTPUT
STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Header pastes to first rows of screen
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (3, ! Rows
2 78, ! Columns
2 HEADER_VDID, ! Name
2 SMG$M_BORDER) ! Border
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (HEADER_VDID,
2 PBID,
2 2, ! Row
2 2) ! Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Statistics area pastes to rows 5 through 15,
! columns 2 through 56
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10, ! Rows
2 55, ! Columns
2 STATS_VDID, ! Name
2 SMG$M_BORDER) ! Border
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 5, ! Row
2 2) ! Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.

7–12

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Figure 7–1 shows the screen that results from Example 7–6.

Figure 7–1 Defining and Pasting Virtual Displays

ZK−2044−GE

You can paste a single display to any number of pasteboards. Any time you
change the display, all pasteboards containing the display are automatically
updated.

A pasteboard can hold any number of virtual displays. You can paste virtual
displays over one another to any depth, occluding the displays underneath. The
displays underneath are only occluded to the extent that they are covered; that
is, the parts not occluded remain visible on the screen. (In Figure 7–2, displays 1
and 2 are partially occluded.) When you unpaste a virtual display that occludes
another virtual display, the occluded part of the display underneath becomes
visible again.

You can find out whether a display is occluded by using the SMG$CHECK_FOR_
OCCLUSION routine. The following example pastes a two-row summary display
over the last two rows of the statistics display, if the statistics display is not
already occluded. If the statistics display is occluded, the example assumes that
it is occluded by the summary display and unpastes the summary display, making
the last two rows of the statistics display visible again.

STATUS = SMG$CHECK_FOR_OCCLUSION (STATS_VDID,
2 PBID,
2 OCCLUDE_STATE)
! OCCLUDE_STATE must be defined as INTEGER*4
IF (OCCLUDE_STATE) THEN
STATUS = SMG$UNPASTE_VIRTUAL_DISPLAY (SUM_VDID,

2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

ELSE
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (SUM_VDID,

2 PBID,
2 11,
2 2)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
END IF

7–13

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

7.4.2.3 Rearranging Virtual Displays
Pasted displays can be rearranged by moving or repasting.

• Moving—To move a display, use the SMG$MOVE_VIRTUAL_DISPLAY
routine. The following example moves display 2. Figure 7–2 shows the screen
before and after the statement executes.

STATUS = SMG$MOVE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 5,
2 10)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Figure 7–2 Moving a Virtual Display

1

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

3

bbbbbbbb

Before Moving Display 2 After Moving Display 2

ZK−2045−GE

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

3

ccccccccc
ccccccccc

ccccccccc
ccccccccc
ccccccccc

• Repasting—To repaste a display, use the SMG$REPASTE_VIRTUAL_
DISPLAY routine. The following example repastes display 2. Figure 7–3
shows the screen before and after the statement executes.

STATUS = SMG$REPASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 4,
2 4)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

7–14

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Figure 7–3 Repasting a Virtual Display

1

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

3

bbbbbbbb

Before Repasting Display 2 After Repasting Display 2

ZK−2046−GE

3

ccccccccc
ccccccccc

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

cc
cc
cc

You can obtain the pasting order of the virtual displays using SMG$LIST_
PASTING_ORDER. This routine returns the identifiers of all the virtual displays
pasted to a specified pasteboard.

7.4.2.4 Removing Virtual Displays
You can remove a virtual display from a pasteboard in a number of different
ways:

• Erase a virtual display—Invoking SMG$UNPASTE_VIRTUAL_DISPLAY
erases a virtual display from the screen but retains its contents in memory.
The following example erases the statistics display:

STATUS = SMG$UNPASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Delete a virtual display—Invoking SMG$DELETE_VIRTUAL_DISPLAY
removes a virtual display from the screen and removes its contents from
memory. The following example deletes the statistics display:

STATUS = SMG$DELETE_VIRTUAL_DISPLAY (STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Delete several virtual displays—Invoking SMG$POP_VIRTUAL_DISPLAY
removes a specified virtual display and any virtual displays pasted after
that display from the screen and removes the contents of those displays
from memory. The following example ‘‘pops’’ display 2. Figure 7–4 shows the
screen before and after popping. (Note that display 3 is deleted because it
was pasted after display 2, and not because it is occluding display 2.)

STATUS = SMG$POP_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7–15

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Figure 7–4 Popping a Virtual Display

1

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

bbbbbbbb
bbbbbbbb
bbbbbbbb
bbbbbbbb

2

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

1

ccccccccc
ccccccccc
ccccccccc
ccccccccc
ccccccccc

3

bbbbbbbb

Before Popping Display 2 After Popping Display 2

ZK−2047−GE

7.4.2.5 Modifying a Virtual Display
The screen management facility provides several routines for modifying the
characteristics of an existing virtual display:

• SMG$CHANGE_VIRTUAL_DISPLAY—Changes the size, video attributes, or
border of a display

• SMG$CHANGE_RENDITION—Changes the video attributes of a portion of a
display

• SMG$MOVE_TEXT—Moves text from one virtual display to another

The following example uses SMG$CHANGE_VIRTUAL_DISPLAY to change the
size of the WHOOPS display to five rows and seven columns and to turn off all of
the display’s default video attributes. If you decrease the size of a display that is
on the screen, any characters in the excess area are removed from the screen.

STATUS = SMG$CHANGE_VIRTUAL_DISPLAY (WHOOPS_VDID,
2 5, ! Rows
2 7,, ! Columns
2 0) ! Video attributes off

The following example uses SMG$CHANGE_RENDITION to direct attention to
the first 20 columns of the statistics display by setting the reverse video attribute
to the complement of the display’s default setting for that attribute:

STATUS = SMG$CHANGE_RENDITION (STATS_VDID,
2 1, ! Row
2 1, ! Column
2 10, ! Number of rows
2 20, ! Number of columns
2 , ! Video-set argument
2 SMG$M_REVERSE) ! Video-comp argument
2

7–16

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

SMG$CHANGE_RENDITION uses three sets of video attributes to determine the
attributes to apply to the specified portion of the display: (1) the display’s default
video attributes, (2) the attributes specified by the rendition-set argument of
SMG$CHANGE_RENDITION, and (3) the attributes specified by the rendition-
complement argument of SMG$CHANGE_RENDITION. Table 7–2 shows the
result of each possible combination.

Table 7–2 Setting Video Attributes

rendition-set rendition-complement Result

off off Uses display default

on off Sets attribute

off on Uses the complement of display
default

on on Clears attribute

In the preceding example, the reverse video attribute is set in the rendition-
complement argument but not in the rendition-set argument, thus specifying
that SMG$CHANGE_RENDITION use the complement of the display’s default
setting to ensure that the selected portion of the display is easily seen.

Note that the resulting attributes are based on the display’s default attributes,
not its current attributes. If you use SMG$ routines that explicitly set video
attributes, the current attributes of the display may not match its default
attributes.

7.4.2.6 Using Spawned Subprocesses
You can create a spawned subprocess directly with an SMG$ routine to
allow execution of a DCL command from an application. Only one spawned
subprocess is allowed per virtual display. Use the following routines to work with
subprocesses:

• SMG$CREATE_SUBPROCESS—Creates a DCL spawned subprocess and
associates it with a virtual display.

• SMG$EXECUTE_COMMAND—Allows execution of a specified command in
the created spawned subprocess by using mailboxes. Some restrictions apply
to specifying the following commands:

SPAWN, GOTO, or LOGOUT cannot be used and will result in
unpredictable results.

Single-character commands such as Ctrl/C have no effect. You can
signal an end-of-file (that is, press Ctrl/Z) command by setting the flags
argument.

A dollar sign ($) must be specified as the first character of any DCL
command.

• SMG$DELETE_SUBPROCESS—Deletes the subprocess created by
SMG$CREATE_SUBPROCESS.

7–17

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

7.4.3 Viewports
Viewports allow you to view different pieces of a virtual display by moving a
rectangular area around on the virtual display. Only one viewport is allowed for
each virtual display. Once you have associated a viewport with a virtual display,
the only part of the virtual display that is viewable is contained in the viewport.

The SMG$ routines for working with viewports include the following:

• SMG$CREATE_VIEWPORT—Creates a viewport and associates it with
a virtual display. You must create the virtual display first. To view the
viewport, you must paste the virtual display first with SMG$PASTE_
VIRTUAL_DISPLAY.

• SMG$SCROLL_VIEWPORT—Scrolls the viewport within the virtual display.
If you try to move the viewport outside of the virtual display, the viewport is
truncated to stay within the virtual display. This routine allows you to specify
the direction and extent of the scroll.

• SMG$CHANGE_VIEWPORT—Moves the viewport to a new starting location
and changes the size of the viewport.

• SMG$DELETE_VIEWPORT—Deletes the viewport and dissociates it from the
virtual display. The viewport is automatically unpasted. The virtual display
associated with the viewport remains intact. You can unpaste a viewport
without deleting it by using SMG$UNPASTE_VIRTUAL_DISPLAY.

7.4.4 Writing Text to Virtual Display
The SMG$ output routines allow you to write text to displays and to delete or
modify the existing text of a display. Remember that changes to a virtual display
are visible only if the virtual display is pasted to a pasteboard.

7.4.4.1 Positioning the Cursor
Each virtual display has its own logical cursor position. You can control the
position of the cursor in a virtual display with the following routines:

• SMG$HOME_CURSOR—Moves the cursor to a corner of the virtual display.
The default corner is the upper left corner, that is, row 1, column 1 of the
display.

• SMG$SET_CURSOR_ABS—Moves the cursor to a specified row and column.

• SMG$SET_CURSOR_REL—Moves the cursor to offsets from the current
cursor position. A negative value means up (rows) or left (columns). A value
of 0 means no movement.

In addition, many routines permit you to specify a starting location other than
the current cursor position for the operation.

The SMG$RETURN_CURSOR_POS routine returns the row and column of the
current cursor position within a virtual display. You do not have to write special
code to track the cursor position.

Typically, the physical cursor is at the logical cursor position of the most recently
written-to display. If necessary, you can use the SMG$SET_PHYSICAL_CURSOR
routine to set the physical cursor location.

7–18

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

7.4.4.2 Writing Data Character by Character
If you are writing character by character (see Section 7.4.4.3 for line-oriented
output), you can use three routines:

• SMG$DRAW_CHAR—Puts one line-drawing character on the screen at a
specified position. It does not change the cursor position.

• SMG$PUT_CHARS—Puts one or more characters on the screen at a specified
position, with the option of one video attribute.

• SMG$PUT_CHARS_MULTI—Puts several characters on the screen at a
specified position, with multiple video attributes.

These routines are simple and precise. They place exactly the specified characters
on the screen, starting at a specified position in a virtual display. Anything
currently in the positions written-to is overwritten; no other positions on the
screen are affected. Convert numeric data to character data with language I/O
statements before invoking SMG$PUT_CHARS.

The following example converts an integer to a character string and places it at a
designated position in a virtual display:

CHARACTER*4 HOUSE_NO_STRING
INTEGER*4 HOUSE_NO,
2 LINE_NO,
2 STATS_VDID

.

.

.
WRITE (UNIT=HOUSE_NO_STRING,
2 FMT=’(I4)’) HOUSE_NO
STATUS = SMG$PUT_CHARS (STATS_VDID,
2 HOUSE_NO_STRING,
2 LINE_NO, ! Row
2 1) ! Column

Note that the converted integer is right-justified from column 4 because the
format specification is I4 and the full character string is written. To left-justify
a converted number, you must locate the first nonblank character and write a
substring starting with that character and ending with the last character.

Inserting and Overwriting Text
To insert characters rather than overwrite the current contents of the screen, use
the routine SMG$INSERT_CHARS. Existing characters at the location written to
are shifted to the right. Characters pushed out of the display are truncated; no
wrapping occurs and the cursor remains at the end of the last character inserted.

Specifying Double-Size Characters
In addition to the preceding routines, you can use SMG$PUT_CHARS_WIDE to
write characters to the screen in double width or SMG$PUT_CHARS_HIGHWIDE
to write characters to the screen in double height and double width. When you
use these routines, you must allot two spaces for each double-width character on
the line and two lines for each line of double-height characters. You cannot mix
single-and double-size characters on a line.

All the character routines provide rendition-set and rendition-complement
arguments, which allow you to specify special video attributes for the characters
being written. SMG$PUT_CHARS_MULTI allows you to specify more than one
video attribute at a time. The explanation of the SMG$CHANGE_RENDITION
routine in Section 7.4.2.5 discusses how to use rendition-set and rendition-
complement arguments.

7–19

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

7.4.4.3 Writing Data Line by Line
The SMG$PUT_LINE and SMG$PUT_LINE_MULTI routines write lines to
virtual displays one line after another. If the display area is full, it is scrolled.
You do not have to keep track of which line you are on. All routines permit you to
scroll forward (up); SMG$PUT_LINE and SMG$PUT_LINE_MULTI permit you
to scroll backward (down) as well. SMG$PUT_LINE permits spacing other than
single spacing.

Example 7–7 writes lines from a buffer to a display area. The output is scrolled
forward if the buffer contains more lines than the display area.

Example 7–7 Scrolling Forward Through a Display

INTEGER*4 BUFF_COUNT,
2 BUFF_SIZE (4096)
CHARACTER*512 BUFF (4096)

.

.

.
DO I = 1, BUFF_COUNT
STATUS = SMG$PUT_LINE (VDID,

2 BUFF (I) (1:BUFF_SIZE (I)))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

Example 7–8 scrolls the output backward.

Example 7–8 Scrolling Backward Through a Display

DO I = BUFF_COUNT, 1, -1
STATUS = SMG$PUT_LINE (VDID,

2 BUFF (I) (1:BUFF_SIZE (I)),
2 SMG$M_DOWN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

Cursor Movement and Scrolling
To maintain precise control over cursor movement and scrolling, you can write
with SMG$PUT_CHARS and scroll explicitly with SMG$SCROLL_DISPLAY_
AREA. SMG$PUT_CHARS leaves the cursor after the last character written
and does not force scrolling; SMG$SCROLL_DISPLAY_AREA scrolls the current
contents of the display forward, backward, or sideways without writing to the
display. To restrict the scrolling region to a portion of the display area, use the
SMG$SET_DISPLAY_SCROLL_REGION routine.

Inserting and Overwriting Text
To insert text rather than overwrite the current contents of the screen, use the
SMG$INSERT_LINE routine. Existing lines are shifted up or down to open space
for the new text. If the text is longer than a single line, you can specify whether
or not you want the excess characters to be truncated or wrapped.

Using Double-Width Characters
In addition, you can use SMG$PUT_LINE_WIDE to write a line of text to the
screen using double-width characters. You must allot two spaces for each double-
width character on the line. You cannot mix single- and double-width characters
on a line.

7–20

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Specifying Special Video Attributes
All line routines provide rendition-set and rendition-complement arguments,
which allow you to specify special video attributes for the text being written.
SMG$PUT_LINE_MULTI allows you to specify more than one video attribute
for the text. The explanation of the SMG$CHANGE_RENDITION routine
in Section 7.4.2.5 discusses how to use the rendition-set and rendition-
complement arguments.

7.4.4.4 Drawing Lines
The routine SMG$DRAW_LINE draws solid lines on the screen. Appropriate
corner and crossing marks are drawn when lines join or intersect. The routine
SMG$DRAW_CHARACTER draws a single character. You can also use the
routine SMG$DRAW_RECTANGLE to draw a solid rectangle. Suppose that you
want to draw an object such as that shown in Figure 7–5 in the statistics display
area (an area of 10 rows by 55 columns).

Figure 7–5 Statistics Display

ZK−2048−GE

Example 7–9 shows how you can create a statistics display using SMG$DRAW_
LINE and SMG$DRAW_RECTANGLE.

Example 7–9 Creating a Statistics Display

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (10,
2 55,
2 STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Draw rectangle with upper left corner at row 1 column 1
! and lower right corner at row 10 column 55
STATUS =SMG$DRAW_RECTANGLE (STATS_VDID,
2 1, 1,
2 10, 55)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Draw vertical lines at columns 11, 21, and 31
DO I = 11, 31, 10
STATUS = SMG$DRAW_LINE (STATS_VDID,

2 1, I,
2 10, I)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

(continued on next page)

7–21

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Example 7–9 (Cont.) Creating a Statistics Display

! Draw horizontal line at row 3
STATUS = SMG$DRAW_LINE (STATS_VDID,
2 3, 1,
2 3, 55)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (STATS_VDID,
2 PBID,
2 3,
2 2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4.4.5 Deleting Text
The following routines erase specified characters, leaving the rest of the screen
intact:

• SMG$ERASE_CHARS—Erases specified characters on one line.

• SMG$ERASE_LINE—Erases the characters on one line starting from a
specified position.

• SMG$ERASE_DISPLAY—Erases specified characters on one or more lines.

• SMG$ERASE_COLUMN—Erases a column from the specified row to the end
of the column from the virtual display.

The following routines perform delete operations. In a delete operation,
characters following the deleted characters are shifted into the empty space.

• SMG$DELETE_CHARS—Deletes specified characters on one line. Any
characters to the right of the deleted characters are shifted left.

• SMG$DELETE_LINE—Deletes one or more full lines. Any remaining lines in
the display are scrolled up to fill the empty space.

The following example erases the remaining characters on the line whose line
number is specified by LINE_NO, starting at the column specified by COLUMN_
NO:

STATUS = SMG$ERASE_LINE (STATS_VDID,
2 LINE_NO,
2 COLUMN_NO)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.4.5 Using Menus
You can use SMG$ routines to set up menus to read user input. The type of
menus you can create include the following:

• Block menu—Selections are in matrix format. This is the type of menu often
used.

• Vertical menu—Each selection is on its own line.

• Horizontal menu—All selections are on one line.

Menus are associated with a virtual display, and only one menu can be used for
each virtual display.

7–22

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

The menu routines include the following:

• SMG$CREATE_MENU—Creates a menu associated with a virtual display.
This routine allows you to specify the type of menu, the position in which
the menu is displayed, the format of the menu (single or double spaced), and
video attributes.

• SMG$SELECT_FROM_MENU—Sets up menu selection capability. You can
specify a default menu selection (which is shown in reverse video), whether
online help is available, a maximum time limit for making a menu selection,
a key indicating read termination, whether to send the text of the menu item
selected to a string, and a video attribute.

• SMG$DELETE_MENU—Discontinues access to the menu and erases it.

When you are using menus, no other output should be sent to the menu area;
otherwise, unpredictable results may occur.

The default SMG$SELECT_FROM_MENU allows specific operations, such as
use of the arrow keys to move up and down the menu selections, keys to make a
menu selection, ability to select more than one item at a time, ability to reselect
an item already selected, and the key sequence to invoke online help. By using
the flags argument to modify this operation, you have the option of disallowing
reselection of a menu item and of allowing any key pressed to select an item.

7.4.6 Reading Data
You can read text from a virtual display (SMG$READ_FROM_DISPLAY) or from
a virtual keyboard (SMG$READ_STRING, SMG$READ_COMPOSED_LINE, or
SMG$READ_KEYSTROKE). The three routines for virtual keyboard input are
known as the SMG$ input routines. SMG$READ_FROM_DISPLAY is not a true
input routine because it reads text from the virtual display rather than from a
user.

The SMG$ input routines can be used alone or with the SMG$ output routines.
This section assumes that you are using the input routines with the output
routines. Section 7.5 describes how to use the input routines without the output
routines.

When you use the SMG$ input routines with the SMG$ output routines, always
specify the optional vdid argument of the input routine, which specifies the
virtual display in which the input is to occur. The specified virtual display must
be pasted to the device associated with the virtual keyboard that is specified as
the first argument of the input routine. The display must be pasted in column 1,
cannot be occluded, and cannot have any other display to its right; input begins
at the current cursor position, but the cursor must be in column 1.

7.4.6.1 Reading from a Display
You can read the contents of the display using the routine SMG$READ_
FROM_DISPLAY. By default, the read operation reads all of the characters
from the current cursor position to the end of that line. The row argument of
SMG$READ_FROM_DISPLAY allows you to choose the starting point of the read
operation, that is, the contents of the specified row to the rightmost column in
that row.

If the terminator-string argument is specified, SMG$READ_FROM_DISPLAY
searches backward from the current cursor position and reads the line beginning
at the first terminator encountered (or at the beginning of the line). A

7–23

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

terminator is a character string. You must calculate the length of the character
string read operation yourself.

The following example reads the current contents of the first line in the STATS_
VDID display:

CHARACTER*4 STRING
INTEGER*4 SIZE

.

.

.
STATUS = SMG$HOME_CURSOR (STATS_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SMG$READ_FROM_DISPLAY (STATS_VDID,
2 STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
SIZE = 55
DO WHILE ((STRING (SIZE:SIZE) .EQ. ’ ’) .AND.
2 (SIZE .GT. 1))
SIZE = SIZE - 1

END DO

7.4.6.2 Reading from a Virtual Keyboard
The SMG$CREATE_VIRTUAL_KEYBOARD routine establishes a device for input
operations; the default device is the user’s terminal. The routine SMG$READ_
STRING reads characters typed on the screen until the user types a terminator
or until the maximum size (which defaults to 512 characters) is exceeded.
(The terminator is usually a carriage return; see the routine description in
the OpenVMS RTL Screen Management (SMG$) Manual for a complete list of
terminators.) The current cursor location for the display determines where the
read operation begins.

The operating system’s terminal driver processes carriage returns differently
than the SMG$ routines. Therefore, in order to scroll input accurately, you must
keep track of your vertical position in the display area. Explicitly set the cursor
position and scroll the display. If a read operation takes place on a row other
than the last row of the display, advance the cursor to the beginning of the next
row before the next operation. If a read operation takes place on the last row of
the display, scroll the display with SMG$SCROLL_DISPLAY_AREA and then set
the cursor to the beginning of the row. Modify the read operation with TRM$M_
TM_NOTRMECHO to ensure that no extraneous scrolling occurs.

Example 7–10 reads input until Ctrl/Z is pressed.

Example 7–10 Reading Data from a Virtual Keyboard
.
.
.

! Read first record
STATUS = SMG$HOME_CURSOR (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (KBID,
2 TEXT,
2 ’Prompt: ’,
2 4,
2 TRM$M_TM_TRMNOECHO,,,
2 TEXT_SIZE,,
2 VDID)

(continued on next page)

7–24

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Example 7–10 (Cont.) Reading Data from a Virtual Keyboard

! Read remaining records until CTRL/Z
DO WHILE (STATUS .NE. SMG$_EOF)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Process record
.
.
.
! Set up screen for next read
! Display area contains four rows
STATUS = SMG$RETURN_CURSOR_POS (VDID, ROW, COL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (ROW .EQ. 4) THEN
STATUS = SMG$SCROLL_DISPLAY_AREA (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_CURSOR_ABS (VDID, 4, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

ELSE
STATUS = SMG$SET_CURSOR_ABS (VDID,, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_CURSOR_REL (VDID, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Read next record
STATUS = SMG$READ_STRING (KBID,

2 TEXT,
2 ’Prompt: ’,
2 4,
2 TRM$M_TM_TRMNOECHO,,,
2 TEXT_SIZE,,
2 VDID)
END DO

Note

Because you are controlling the scrolling, SMG$PUT_LINE and
SMG$PUT_LINE_MULTI might not scroll as expected. When scrolling a
mix of input and output, you can prevent problems by using SMG$PUT_
CHARS.

7.4.6.3 Reading from the Keypad
To read from the keypad in keypad mode (that is, pressing a keypad character to
perform some special action rather than entering data), modify the read operation
with TRM$M_TM_ESCAPE and TRM$M_TM_NOECHO. Examine the terminator
to determine which key was pressed.

Example 7–11 moves the cursor on the screen in response to the user’s pressing
the keys surrounding the keypad 5 key. The keypad 8 key moves the cursor north
(up); the keypad 9 key moves the cursor northeast; the keypad 6 key moves the
cursor east (right); and so on. The SMG$SET_CURSOR_REL routine is called,
instead of being invoked as a function, because you do not want to abort the
program on an error. (The error attempts to move the cursor out of the display
area and, if this error occurs, you do not want the cursor to move.) The read
operation is also modified with TRM$M_TM_PURGE to prevent the user from
getting ahead of the cursor.

7–25

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

See Section 7.4.6.1 for the guidelines for reading from the display.

Example 7–11 Reading Data from the Keypad
.
.
.

INTEGER STATUS,
2 PBID,
2 ROWS,
2 COLUMNS,
2 VDID, ! Virtual display ID
2 KID, ! Keyboard ID
2 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_DISPLAY,
2 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$PASTE_VIRTUAL_DISPLAY,
2 SMG$HOME_CURSOR,
2 SMG$SET_CURSOR_REL,
2 SMG$READ_STRING,
2 SMG$ERASE_PASTEBOARD,
2 SMG$PUT_CHARS,
2 SMG$READ_FROM_DISPLAY
CHARACTER*31 INPUT_STRING,
2 MENU_STRING
INTEGER*2 TERMINATOR
INTEGER*4 MODIFIERS
INCLUDE ’($SMGDEF)’
INCLUDE ’($TRMDEF)’
! Set up screen and keyboard
STATUS = SMG$CREATE_PASTEBOARD (PBID,
2 ’SYS$OUTPUT’,
2 ROWS,
2 COLUMNS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (ROWS,
2 COLUMNS,
2 VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PUT_CHARS (VDID,
2 ’__ MENU CHOICE ONE’,
2 10,30)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PUT_CHARS (VDID,
2 ’__ MENU CHOICE TWO’,
2 15,30)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (KID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 1,
2 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Put cursor in NW corner
STATUS = SMG$HOME_CURSOR (VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

7–26

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Example 7–11 (Cont.) Reading Data from the Keypad
! Read character from keyboard
MODIFIERS = TRM$M_TM_ESCAPE .OR.
2 TRM$M_TM_NOECHO .OR.
2 TRM$M_TM_PURGE
STATUS = SMG$READ_STRING (KID,
2 INPUT_STRING,
2 ,
2 6,
2 MODIFIERS,
2 ,
2 ,
2 ,
2 TERMINATOR)
DO WHILE ((STATUS) .AND.
2 (TERMINATOR .NE. SMG$K_TRM_CR))
! Check status of last read
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! North
IF (TERMINATOR .EQ. SMG$K_TRM_KP8) THEN
CALL SMG$SET_CURSOR_REL (VDID, -1, 0)

! Northeast
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP9) THEN
CALL SMG$SET_CURSOR_REL (VDID, -1, 1)

! Northwest
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP7) THEN
CALL SMG$SET_CURSOR_REL (VDID, -1, -1)

! South
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP2) THEN
CALL SMG$SET_CURSOR_REL (VDID, 1, 0)

! Southeast
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP3) THEN
CALL SMG$SET_CURSOR_REL (VDID, 1, 1)

! Southwest
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP1) THEN
CALL SMG$SET_CURSOR_REL (VDID, 1, -1)

! East
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP6) THEN
CALL SMG$SET_CURSOR_REL (VDID, 0, 1)

! West
ELSE IF (TERMINATOR .EQ. SMG$K_TRM_KP4) THEN
CALL SMG$SET_CURSOR_REL (VDID, 0, -1)

END IF
! Read another character
STATUS = SMG$READ_STRING (KID,

2 INPUT_STRING,
2 ,
2 6,
2 MODIFIERS,
2 ,
2 ,
2 ,
2 TERMINATOR)
END DO

(continued on next page)

7–27

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Example 7–11 (Cont.) Reading Data from the Keypad

! Read menu entry and process
!
STATUS = SMG$READ_FROM_DISPLAY (VDID,
2 MENU_STRING)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Clear screen
STATUS = SMG$ERASE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

7.4.6.4 Reading Composed Input
The SMG$CREATE_KEY_TABLE routine creates a table that equates keys
to character strings. When you read input using the routine SMG$READ_
COMPOSED_LINE and the user presses a defined key, the corresponding
character string in the table is substituted for the key. The SMG$ADD_KEY_
DEF routine can be used to load the table. Composed input also permits the
following:

• If states—You can define the same key to mean different things in different
states. You can define a key to cause a change in state. The change in state
can be temporary (until after the next defined key is pressed) or permanent
(until a key that changes states is pressed).

• Input termination—You can define the key to cause termination of the input
transmission (as if the Return key were pressed after the character string). If
the key is not defined to cause termination of the input, the user must press
a terminator or another key that does cause termination.

Example 7–12 defines keypad keys 1 through 9 and permits the user to change
state temporarily by pressing the PF1 key. Pressing the keypad 1 key is
equivalent to typing 1000 and pressing the Return key. Pressing PF1 key and
then the keypad 1 key is equivalent to typing 10000 and pressing the Return
key.

Example 7–12 Redefining Keys

INTEGER*4 TABLEID
.
.
.

! Create table for key definitions
STATUS = SMG$CREATE_KEY_TABLE (TABLEID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Load table
! If user presses PF1, the state changes to BYTEN
! The BYTEN state is in effect only for the very next key
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’PF1’,
2 ,,,’BYTEN’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

7–28

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Example 7–12 (Cont.) Redefining Keys
! Pressing KP1 through Kp9 in the null state is like typing
! 1000 through 9000 and pressing return
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP1’,
2 ,
2 SMG$M_KEY_TERMINATE,
2 ’1000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP2’,
2 ,
2 SMG$M_KEY_TERMINATE,
2 ’2000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP9’,
2 ,
2 SMG$M_KEY_TERMINATE,
2 ’9000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Pressing KP1 through KP9 in the BYTEN state is like
! typing 10000 through 90000 and pressing return
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP1’,
2 ’BYTEN’,
2 SMG$M_KEY_TERMINATE,
2 ’10000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP2’,
2 ’BYTEN’,
2 SMG$M_KEY_TERMINATE,
2 ’20000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
STATUS = SMG$ADD_KEY_DEF (TABLEID,
2 ’KP9’,
2 ’BYTEN’,
2 SMG$M_KEY_TERMINATE,
2 ’90000’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

(continued on next page)

7–29

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

Example 7–12 (Cont.) Redefining Keys

! End loading key definition table
.
.
.

! Read input which substitutes key definitions where appropriate
STATUS = SMG$READ_COMPOSED_LINE (KBID,
2 TABLEID,
2 STRING,
2 SIZE,
2 VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.

Use the SMG$DELETE_KEY_DEF routine to delete a key definition; use the
SMG$GET_KEY_DEF routine to examine a key definition. You can also load
key definition tables with the SMG$DEFINE_KEY and SMG$LOAD_KEY_DEFS
routines; use the DCL command DEFINE/KEY to specify input to these routines.

To use keypad keys 0 through 9, the keypad must be in application mode.
For details, see SMG$SET_KEYPAD_MODE in the OpenVMS RTL Screen
Management (SMG$) Manual.

7.4.7 Controlling Screen Updates
If your program needs to make a number of changes to a virtual display, you can
use SMG$ routines to make all of the changes before updating the display. The
SMG$BEGIN_DISPLAY_UPDATE routine causes output operations to a pasted
display to be reflected only in the display’s buffers. The SMG$END_DISPLAY_
UPDATE routine writes the display’s buffer to the pasteboard.

The SMG$BEGIN_DISPLAY_UPDATE and SMG$END_DISPLAY_UPDATE
routines increment and decrement a counter. When this counter’s value is
0, output to the virtual display is sent to the pasteboard immediately. The
counter mechanism allows a subroutine to request and turn off batching without
disturbing the batching state of the calling program.

A second set of routines, SMG$BEGIN_PASTEBOARD_UPDATE and
SMG$END_PASTEBOARD_UPDATE, allow you to buffer output to a pasteboard
in a similar manner.

7.4.8 Maintaining Modularity
When using the SMG$ routines, you must take care not to corrupt the mapping
between the screen appearance and the internal representation of the screen.
Therefore, observe the following guidelines:

• Mixing SMG I/O and other forms of I/O

In general, do not use any other form of terminal I/O while the terminal is
active as a pasteboard. If you do use I/O other than SMG I/O (for example,
if you invoke a subprogram that may perform non-SMG terminal I/O), first
invoke the SMG$SAVE_PHYSICAL_SCREEN routine and when the non-SMG
I/O completes, invoke the SMG$RESTORE_PHYSICAL_SCREEN routine, as
demonstrated in the following example:

7–30

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

STATUS = SMG$SAVE_PHYSICAL_SCREEN (PBID,
2 SAVE_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CALL GET_EXTRA_INFO (INFO_ARRAY)
STATUS = SMG$RESTORE_PHYSICAL_SCREEN (PBID,
2 SAVE_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

• Sharing the pasteboard

A routine using the terminal screen without consideration for its current
contents must use the existing pasteboard ID associated with the terminal
and delete any virtual displays it creates before returning control to the
high-level code. This guideline also applies to the program unit that invokes
a subprogram that also performs screen I/O. The safest way to clean up your
virtual displays is to call the SMG$POP_VIRTUAL_DISPLAY routine and
name the first virtual display you created. The following example invokes a
subprogram that uses the terminal screen:

Invoking Program Unit
CALL GET_EXTRA_INFO (PBID,
2 INFO_ARRAY)

.

.

.
CALL STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Subprogram
SUBROUTINE GET_EXTRA_INFO (PBID,
2 INFO_ARRAY)

.

.

.
! Start executable code
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (4,
2 40,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID, 1, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
STATUS = SMG$POP_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

• Sharing virtual displays

To share a virtual display created by high-level code, the low-level code must
use the virtual display ID created by the high-level code; an invoking program
unit must pass the virtual display ID to the subprogram. To share a virtual
display created by low-level code, the high-level code must use the virtual
display ID created by the low-level code; a subprogram must return the
virtual display ID to the invoking program.

7–31

Run-Time Library Input/Output Operations
7.4 Working with Complex User I/O

The following example permits a subprogram to use a virtual display created
by the invoking program unit:

Invoking Program Unit
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (4,
2 40,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (INSTR_VDID,
2 PBID, 1, 1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CALL GET_EXTRA_INFO (PBID,
2 INSTR_VDID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Subprogram
SUBROUTINE GET_EXTRA_INFO (PBID,
2 INSTR_VDID)

7.5 Performing Special Input/Output Actions
Screen management input routines and the SYS$QIO and SYS$QIOW system
services allow you to perform I/O operations otherwise unavailable to high-level
languages. For example, you can allow a user to interrupt normal program
execution by typing a character and by providing a mechanism for reading that
character. You can also control such things as echoing, time allowed for input,
and whether data is read from the type-ahead buffer.

Some of the operations described in the following sections require the use of
the SYS$QIO or SYS$QIOW system services. For more information about the
QIO system services, see the OpenVMS System Services Reference Manual and
Chapter 9.

Other operations, described in the following sections, can be performed by calling
the SMG$ input routines. The SMG$ input routines can be used alone or with
the SMG$ output routines. Section 7.4 describes how to use the input routines
with the output routines. This section assumes that you are using the input
routines alone. To use the SMG$ input routines, do the following:

1. Call SMG$CREATE_VIRTUAL_KEYBOARD to associate a logical keyboard
with a device or file specification (SYS$INPUT by default). SMG$CREATE_
VIRTUAL_KEYBOARD returns a keyboard identification number; use that
number to identify the device or file to the SMG$ input routines.

2. Call an SMG$ input routine (SMG$READ_STRING or SMG$READ_
COMPOSED_LINE) to read data typed at the device associated with the
virtual keyboard.

When using the SMG$ input routines without the SMG$ output routines, do not
specify the optional VDID argument of the input routine.

7.5.1 Using Ctrl/C and Ctrl/Y Interrupts
The QIO system services enable you to detect a Ctrl/C or Ctrl/Y interrupt at a
user terminal, even if you have not issued a read to the terminal. To do so, you
must take the following steps:

1. Queue an asynchronous system trap (AST)—Issue the SYS$QIO or
SYS$QIOW system service with a function code of IO$_SETMODE modified
by either IO$M_CTRLCAST (for Ctrl/C interrupts) or
IO$M_CTRLYAST (for Ctrl/Y interrupts). For the P1 argument, provide the

7–32

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

name of a subroutine to be executed when the interrupt occurs. For the P2
argument, you can optionally identify one longword argument to pass to the
AST subroutine.

2. Write an AST subroutine—Write the subroutine identified in the P1 argument
of the QIO system service and link the subroutine into your program. Your
subroutine can take one longword dummy argument to be associated with the
P2 argument in the QIO system service. You must define common areas to
access any other data in your program from the AST routine.

If you press Ctrl/C or Ctrl/Y after your program queues the appropriate AST, the
system interrupts your program and transfers control to your AST subroutine
(this action is called delivering the AST). After your AST subroutine executes,
the system returns control to your program at the point of interruption (unless
your AST subroutine causes the program to exit, or unless another AST has been
queued). Note the following guidelines for using Ctrl/C and Ctrl/Y ASTs:

• ASTs are asynchronous—Since your AST subroutine does not know exactly
where you are in your program when the interrupt occurs, you should avoid
manipulating data or performing other mainline activities. In general, the
AST subroutine should either notify the mainline code (for example, by
setting a flag) that the interrupt occurred, or clean up and exit from the
program (if that is what you want to do).

• ASTs need new channels to the terminal—If you try to access the terminal
with language I/O statements using SYS$INPUT or SYS$OUTPUT, you may
receive a redundant I/O error. You must establish another channel to the
terminal by explicitly opening the terminal.

• Ctrl/C and Ctrl/Y ASTs are one-time ASTs—After a Ctrl/C or Ctrl/Y AST is
delivered, it is dequeued. You must reissue the QIO system service if you
wish to trap another interrupt.

• Many ASTs can be queued—You can queue multiple ASTs (for the same or
different AST subroutines, on the same or different channels) by issuing the
appropriate number of QIO system services. The system delivers the ASTs on
a last-in, first-out (LIFO) basis.

• Unhandled Ctrl/Cs turn into Ctrl/Ys—If the user enters Ctrl/C and you do
not have an AST queued to handle the interrupt, the system turns the Ctrl/C
interrupt into a Ctrl/Y interrupt.

• DCL handles Ctrl/Y interrupts—DCL handles Ctrl/Y interrupts by returning
the user to DCL command level, where the user has the option of continuing
or exiting from your program. DCL takes precedence over your AST
subroutine for Ctrl/Y interrupts. Your Ctrl/Y AST subroutine is executed
only under the following circumstances:

If Ctrl/Y interrupts are disabled at DCL level (SET NOCONTROL_Y)
before your program is executed

If your program disables DCL Ctrl/Y interrupts with LIB$DISABLE_
CTRL

If the user elects to continue your program after DCL interrupts it

• You can dequeue Ctrl/C and Ctrl/Y ASTs—You can dequeue all Ctrl/C or
Ctrl/Y ASTs on a channel by issuing the appropriate QIO system service
with a value of 0 for the P1 argument (passed by immediate value). You can
dequeue all Ctrl/C ASTs on a channel by issuing the SYS$CANCEL system

7–33

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

service for the appropriate channel. You can dequeue all Ctrl/Y ASTs on a
channel by issuing the SYS$DASSGN system service for the appropriate
channel.

• You can use SMG$ routines—You can connect to the terminal using the SMG$
routines from either AST level or mainline code. Do not attempt to connect to
the terminal from AST level if you do so in your mainline code.

Example 7–13 permits the terminal user to interrupt a display to see how many
lines have been typed up to that point.

Example 7–13 Using Interrupts to Perform I/O

!Main Program
.
.
.

INTEGER STATUS
! Accumulated data records
CHARACTER*132 STORAGE (255)
INTEGER*4 STORAGE_SIZE (255),
2 STORAGE_COUNT
! QIOW and QIO structures
INTEGER*2 INPUT_CHAN
INTEGER*4 CODE
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT
BYTE TRANSMIT,

2 RECEIVE,
2 CRFILL,
2 LFFILL,
2 PARITY,
2 ZERO
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Flag to notify program of CTRL/C interrupt
LOGICAL*4 CTRLC_CALLED
! AST subroutine to handle CTRL/C interrupt
EXTERNAL CTRLC_AST
! Subroutines
INTEGER SYS$ASSIGN,
2 SYS$QIOW
! Symbols used for I/O operations
INCLUDE ’($IODEF)’
! Put values into array
CALL LOAD_STORAGE (STORAGE,
2 STORAGE_SIZE,
2 STORAGE_COUNT)
! Assign channel and set up QIOW structures
STATUS = SYS$ASSIGN (’SYS$INPUT’,
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
CODE = IO$_SETMODE .OR. IO$M_CTRLCAST

(continued on next page)

7–34

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

Example 7–13 (Cont.) Using Interrupts to Perform I/O
! Queue an AST to handle CTRL/C interrupt
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2 ,,
2 CTRLC_AST, ! Name of AST routine
2 CTRLC_CALLED, ! Argument for AST routine
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT)
2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Display STORAGE array, one element per line
DO I = 1, STORAGE_COUNT
TYPE *, STORAGE (I) (1:STORAGE_SIZE (I))

! Additional actions if user types CTRL/C
IF (CTRLC_CALLED) THEN
CTRLC_CALLED = .FALSE.
! Show user number of lines displayed so far
TYPE *, ’Number of lines: ’, I
! Requeue AST
STATUS = SYS$QIOW (,

2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2 ,,
2 CTRLC_AST,
2 CTRLC_CALLED,
2 ,,,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT)

2 CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
END IF

END DO

END

AST Routine

! AST routine
! Notifies program that user typed CTRL/C
SUBROUTINE CTRLC_AST (CTRLC_CALLED)
LOGICAL*4 CTRLC_CALLED
CTRLC_CALLED = .TRUE.

END

7.5.2 Detecting Unsolicited Input
You can detect input from the terminal even if you have not called SMG$READ_
COMPOSED_LINE or SMG$READ_STRING by using SMG$ENABLE_
UNSOLICITED_INPUT. This routine uses the AST mechanism to transfer
control to a subprogram of your choice each time the user types at the terminal;
the AST subprogram is responsible for reading any input. When the subprogram
completes, control returns to the point in your mainline code where it was
interrupted.

7–35

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

The SMG$ENABLE_UNSOLICITED_INPUT routine is not an SMG$ input
routine. Before invoking SMG$ENABLE_UNSOLICITED_INPUT, you must
invoke SMG$CREATE_PASTEBOARD to associate a pasteboard with the
terminal and SMG$CREATE_VIRTUAL_KEYBOARD to associate a virtual
keyboard with the same terminal.

SMG$ENABLE_UNSOLICITED_INPUT accepts the following arguments:

• The pasteboard identification number (use the value returned by
SMG$CREATE_PASTEBOARD)

• The name of an AST subprogram

• An argument to be passed to the AST subprogram

When SMG$ENABLE_UNSOLICITED_INPUT invokes the AST subprogram, it
passes two arguments to the subprogram: the pasteboard identification number
and the argument that you specified. Typically, you write the AST subprogram
to read the unsolicited input with SMG$READ_STRING. Since SMG$READ_
STRING requires that you specify the virtual keyboard at which the input was
typed, specify the virtual keyboard identification number as the second argument
to pass to the AST subprogram.

Example 7–14 permits the terminal user to interrupt the display of a series of
arrays, and either to go on to the next array (by typing input beginning with
an uppercase N) or to exit from the program (by typing input beginning with
anything else).

Example 7–14 Receiving Unsolicited Input from a Virtual Keyboard

! Main Program
! The main program calls DISPLAY_ARRAY once for each array.
! DISPLAY_ARRAY displays the array in a DO loop.
! If the user enters input from the terminal, the loop is
! interrupted and the AST routine takes over.
! If the user types anything beginning with an N, the AST
! sets DO_NEXT and resumes execution -- DISPLAY_ARRAY drops
! out of the loop processing the array (because DO_NEXT is
! set -- and the main program calls DISPLAY_ARRAY for the
! next array.
! If the user types anything not beginning with an N,
! the program exits.

.

.

.
INTEGER*4 STATUS,
2 VKID, ! Virtual keyboard ID
2 PBID ! Pasteboard ID
! Storage arrays
INTEGER*4 ARRAY1 (256),
2 ARRAY2 (256),
2 ARRAY3 (256)
! System routines
INTEGER*4 SMG$CREATE_PASTEBOARD,
2 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$ENABLE_UNSOLICITED_INPUT
! AST routine
EXTERNAL AST_ROUTINE

(continued on next page)

7–36

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

Example 7–14 (Cont.) Receiving Unsolicited Input from a Virtual Keyboard

! Create a pasteboard
STATUS = SMG$CREATE_PASTEBOARD (PBID, ! Pasteboard ID
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Create a keyboard for the same device
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Enable unsolicited input
STATUS = SMG$ENABLE_UNSOLICITED_INPUT (PBID, ! Pasteboard ID
2 AST_ROUTINE,
2 VKID) ! Pass keyboard

! ID to AST
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
! Call display subroutine once for each array
CALL DISPLAY_ARRAY (ARRAY1)
CALL DISPLAY_ARRAY (ARRAY2)
CALL DISPLAY_ARRAY (ARRAY3)

END

Array Display Routine

! Subroutine to display one array
SUBROUTINE DISPLAY_ARRAY (ARRAY)
! Dummy argument
INTEGER*4 ARRAY (256)
! Status
INTEGER*4 STATUS
! Flag for doing next array
LOGICAL*4 DO_NEXT
COMMON /DO_NEXT/ DO_NEXT
! If AST has been delivered, reset
IF (DO_NEXT) DO_NEXT = .FALSE.
! Initialize control variable
I = 1
! Display entire array unless interrupted by user
! If interrupted by user (DO_NEXT is set), drop out of loop
DO WHILE ((I .LE. 256) .AND. (.NOT. DO_NEXT))
TYPE *, ARRAY (I)
I = I + 1

END DO

END

(continued on next page)

7–37

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

Example 7–14 (Cont.) Receiving Unsolicited Input from a Virtual Keyboard

AST Routine

! Subroutine to read unsolicited input
SUBROUTINE AST_ROUTINE (PBID,
2 VKID)
! dummy arguments
INTEGER*4 PBID, ! Pasteboard ID
2 VKID ! Keyboard ID
! Status
INTEGER*4 STATUS
! Flag for doing next array
LOGICAL*4 DO_NEXT
COMMON /DO_NEXT/ DO_NEXT
! Input string
CHARACTER*4 INPUT
! Routines
INTEGER*4 SMG$READ_STRING
! Read input
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! If user types anything beginning with N, set DO_NEXT
! otherwise, exit from program
IF (INPUT (1:1) .EQ. ’N’) THEN
DO_NEXT = .TRUE.

ELSE
CALL EXIT

END IF

END

7.5.3 Using the Type-Ahead Buffer
Normally, if the user types at the terminal before your application is able to
read from that device, the input is saved in a special data structure maintained
by the system called the type-ahead buffer. When your application is ready to
read from the terminal, the input is transferred from the type-ahead buffer to
your input buffer. The type-ahead buffer is preset at a size of 78 bytes. If the
HOSTSYNC characteristic is on (the usual condition), input to the type-ahead
buffer is stopped (the keyboard locks) when the buffer is within 8 bytes of being
full. If the HOSTSYNC characteristic is off, the bell rings when the type-ahead
buffer is within 8 bytes of being full; if you overflow the buffer, the excess data
is lost. The TTY_ALTALARM system parameter determines the point at which
either input is stopped or the bell rings.

You can clear the type-ahead buffer by reading from the terminal with
SMG$READ_STRING and by specifying TRM$M_TM_PURGE in the modifiers
argument. Clearing the type-ahead buffer has the effect of reading only what the
user types on the terminal after the read operation is invoked. Any characters
in the type-ahead buffer are lost. The following example illustrates how to purge
the type-ahead buffer:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE

7–38

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

CHARACTER*512 INPUT
INCLUDE ’($TRMDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID,
2 ’SYS$INPUT’) ! I/O device
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 TRM$M_TM_PURGE,
2 ,,
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also clear the type-ahead buffer with a QIO read operation modified by
IO$M_PURGE (defined in $IODEF). You can turn off the type-ahead buffer for
further read operations with a QIO set mode operation that specifies TT$M_
NOTYPEAHD as a basic terminal characteristic.

You can examine the type-ahead buffer by issuing a QIO sense mode operation
modified by IO$M_TYPEAHDCNT. The number of characters in the type-ahead
buffer and the value of the first character are returned to the P1 argument.

The size of the type-ahead buffer is determined by the TTY_TYPAHDSZ system
parameter. You can specify an alternative type-ahead buffer by turning on the
ALTYPEAHD terminal characteristic; the size of the alternative type-ahead
buffer is determined by the TTY_ALTYPAHD system parameter.

7.5.4 Using Echo
Normally, the system writes back to the terminal any printable characters that
the user types at that terminal. The system also writes highlighted words in
response to certain control characters; for example, the system writes EXIT if the
user enters Ctrl/Z. If the user types ahead of your read, the characters are not
echoed until you read them from the type-ahead buffer.

You can turn off echoing when you invoke a read operation by reading from the
terminal with SMG$READ_STRING and by specifying TRM$M_TM_NOECHO
in the modifiers argument. You can turn off echoing for control characters only
by modifying the read operation with TRM$M_TM_TRMNOECHO. The following
example turns off all echoing for the read operation:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE ’($TRMDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 ’SYS$INPUT’) ! I/O device
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 TRM$M_TM_NOECHO,
2 ,,
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7–39

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

You can also turn off echoing with a QIO read operation modified by IO$M_
NOECHO (defined in $IODEF). You can turn off echoing for further read
operations with a QIO set mode operation that specifies TT$M_NOECHO as
a basic terminal characteristic.

7.5.5 Using Timeout
Using SMG$READ_STRING, you can restrict the user to a certain amount of
time in which to respond to a read command. If your application reads data
from the terminal using SMG$READ_STRING, you can modify the timeout
characteristic by specifying, in the timeout argument, the number of seconds the
user has to respond. If the user fails to type a character in the allotted time, the
error condition SS$_TIMEOUT (defined in $SSDEF) is returned. The following
example restricts the user to 8 seconds in which to respond to a read command:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE ’($SSDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID,
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 ,
2 8,
2 ,
2 INPUT_SIZE)
IF (.NOT. STATUS) THEN
IF (STATUS .EQ. SS$_TIMEOUT) CALL NO_RESPONSE ()

ELSE
CALL LIB$SIGNAL (%VAL (STATUS))

END IF

You can cause a QIO read operation to time out after a certain number of seconds
by modifying the operation with IO$M_TIMED and by specifying the number of
seconds in the P3 argument. A message broadcast to a terminal resets a timer
that is set for a timed read operation (regardless of whether the operation was
initiated with QIO or SMG).

Note that the timed read operations work on a character-by-character basis. To
set a time limit on an input record rather than an input character, you must use
the SYS$SETIMR system service. The SYS$SETIMR executes an AST routine at
a specified time. The specified time is the input time limit. When the specified
time is reached, the AST routine cancels any outstanding I/O on the channel that
is assigned to the user’s terminal.

7–40

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

7.5.6 Converting Lowercase to Uppercase
You can automatically convert lowercase user input to uppercase by reading from
the terminal with the SMG$READ_STRING routine and by specifying TRM$M_
TM_CVTLOW in the modifiers argument, as shown in the following example:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE ’($TRMDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 TRM$M_TM_CVTLOW,
2 ,,
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also convert lowercase characters to uppercase with a QIO read operation
modified by IO$M_CVTLOW (defined in $IODEF).

7.5.7 Performing Line Editing and Control Actions
Normally, the user can edit input as explained in the OpenVMS I/O User’s
Reference Manual. You can inhibit line editing on the read operation by reading
from the terminal with SMG$READ_STRING and by specifying TRM$M_TM_
NOFILTR in the modifiers argument. The following example shows how you can
inhibit line editing:

INTEGER*4 SMG$CREATE_VIRTUAL_KEYBOARD,
2 SMG$READ_STRING,
2 STATUS,
2 VKID, ! Virtual keyboard ID
2 INPUT_SIZE
CHARACTER*512 INPUT
INCLUDE ’($TRMDEF)’
STATUS = SMG$CREATE_VIRTUAL_KEYBOARD (VKID, ! Keyboard ID
2 ’SYS$INPUT’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$READ_STRING (VKID, ! Keyboard ID
2 INPUT, ! Data read
2 ’Prompt> ’,
2 512,
2 TRM$M_TM_NOFILTR,
2 ,,
2 INPUT_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

You can also inhibit line editing with a QIO read operation modified by IO$M_
NOFILTR (defined in $IODEF).

7–41

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

7.5.8 Using Broadcasts
You can write, or broadcast, to any interactive terminal by using the
SYS$BRKTHRU system service. The following example broadcasts a message to
all terminals at which users are currently logged in. Use of SYS$BRKTHRU to
write to a terminal allocated to a process other than your own requires the OPER
privilege.

INTEGER*4 STATUS,
2 SYS$BRKTHRUW
INTEGER*2 B_STATUS (4)
INCLUDE ’($BRKDEF)’
STATUS = SYS$BRKTHRUW (,
2 ’Accounting system started’,,
2 %VAL (BRK$C_ALLUSERS),
2 B_STATUS,,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

7.5.8.1 Default Handling of Broadcasts
If the terminal user has taken no action to handle broadcasts, a broadcast is
written to the terminal screen at the current position (after a carriage return and
line feed). If a write operation is in progress, the broadcast occurs after the write
ends. If a read operation is in progress, the broadcast occurs immediately; after
the broadcast, any echoed user input to the aborted read operation is written to
the screen (same effect as pressing Ctrl/R).

7.5.8.2 How to Create Alternate Broadcast Handlers
You can handle broadcasts to the terminal on which your program is running with
SMG$SET_BROADCAST_TRAPPING. This routine uses the AST mechanism to
transfer control to a subprogram of your choice each time a broadcast message is
sent to the terminal; when the subprogram completes, control returns to the point
in your mainline code where it was interrupted.

The SMG$SET_BROADCAST_TRAPPING routine is not an SMG$ input
routine. Before invoking SMG$SET_BROADCAST_TRAPPING, you must invoke
SMG$CREATE_PASTEBOARD to associate a pasteboard with the terminal.
SMG$CREATE_PASTEBOARD returns a pasteboard identification number; pass
that number to SMG$SET_BROADCAST_TRAPPING to identify the terminal
in question. Read the contents of the broadcast with SMG$GET_BROADCAST_
MESSAGE.

Example 7–15 demonstrates how you might trap a broadcast and write it at the
bottom of the screen. For more information about the use of SMG$ pasteboards
and virtual displays, see Section 7.4.

7–42

Run-Time Library Input/Output Operations
7.5 Performing Special Input/Output Actions

Example 7–15 Trapping Broadcast Messages
.
.
.

INTEGER*4 STATUS,
2 PBID, ! Pasteboard ID
2 VDID, ! Virtual display ID
2 SMG$CREATE_PASTEBOARD,
2 SMG$SET_BROADCAST_TRAPPING
2 SMG$PASTE_VIRTUAL_DISPLAY
COMMON /ID/ PBID,
2 VDID
INTEGER*2 B_STATUS (4)
INCLUDE ’($SMGDEF)’
INCLUDE ’($BRKDEF)’
EXTERNAL BRKTHRU_ROUTINE
STATUS = SMG$CREATE_PASTEBOARD (PBID)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$CREATE_VIRTUAL_DISPLAY (3, ! Height
2 80, ! Width
2 VDID,, ! Display ID
2 SMG$M_REVERSE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SMG$SET_BROADCAST_TRAPPING (PBID, ! Pasteboard ID
2 BRKTHRU_ROUTINE) ! AST
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.

SUBROUTINE BRKTHRU_ROUTINE ()
INTEGER*4 STATUS,
2 PBID, ! Pasteboard ID
2 VDID, ! Virtual display ID
2 SMG$GET_BROADCAST_MESSAGE,
2 SMG$PUT_CHARS,
2 SMG$PASTE_VIRTUAL_DISPLAY
COMMON /ID/ PBID,
2 VDID
CHARACTER*240 MESSAGE
INTEGER*2 MESSAGE_SIZE
! Read the message
STATUS = SMG$GET_BROADCAST_MESSAGE (PBID,
2 MESSAGE,
2 MESSAGE_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Write the message to the virtual display
STATUS = SMG$PUT_CHARS (VDID,
2 MESSAGE (1:MESSAGE_SIZE),
2 1, ! Line
2 1) ! Column
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Make the display visble by pasting it to the pasteboard
STATUS = SMG$PASTE_VIRTUAL_DISPLAY (VDID,
2 PBID,
2 22, ! Row
2 1) ! Column

END

7–43

8
File Operations

This chapter describes file operations that support file input/output (I/O) and
file I/O instructions of the operating system’s high-level languages. This chapter
contains the following sections:

Section 8.1 describes file attributes.

Section 8.2 describes strategies to access files.

Section 8.3 describes protection and access of files.

Section 8.4 describes file mapping.

Section 8.5 describes how to open and update a sequential file.

Section 8.6 describes using the Fortran user-open routines.

I/O statements transfer data between records in files and variables in your
program. The I/O statement determines the operation to be performed; the
I/O control list specifies the file, record, and format attributes; and the I/O list
contains the variables to be acted upon.

Note

Some confusion might arise between records in a file and record variables.
Where this chapter refers to a record variable, the term record variable is
used; otherwise, record refers to a record in a file.

8.1 File Attributes
Before writing a program that accesses a data file, you must know the attributes
of the file and the order of the data. To determine this information, see your
language-specific programming manual.

File attributes (organization, record structure, and so on) determine how data is
stored and accessed. Typically, the attributes are specified by keywords when you
open the data file.

Ordering of the data within a file is not important mechanically. However, if you
attempt to read data without knowing how it is ordered within the file, you are
likely to read the wrong data; if you attempt to write data without knowing how
it is ordered within the file, you are likely to corrupt existing data.

8–1

File Operations
8.1 File Attributes

8.1.1 Specifying File Attributes
Large sets of attributes can be specified using the File Definition Language utility
(FDL). All of the file attributes can be specified using OpenVMS RMS in a user-
open routine (see Section 8.6). Typically, you need only programming language
file specifiers. Use FDL only when language specifiers are unavailable.

Refer to the appropriate programming language reference manual for information
about the use of language specifiers.

For complete information about how to use FDL, see the OpenVMS Record
Management Utilities Reference Manual.

8.2 File Access Strategies
When determining the file attributes and order of your data file, consider how you
plan to access that data. File access strategies fall into the following categories:

• Complete access

If your program processes all or most of the data in the file and especially if
many references are made to the data, you should read the entire file into
memory. Put each record in its own variable or set of variables.

If your program is larger than the amount of virtual memory available
(including the additional memory you get by using memory allocation
routines), you must declare fewer variables and process your file in pieces. To
determine the size of your program, add the number of bytes in each program
section. The DCL command LINK/MAP produces a listing that includes the
length of each program section (PSECT).

• Record-by-record access

If your program accesses records one after another, or if you cannot fit the
entire file into memory, you should read one record into memory at a time.

• Discrete records access

If your program processes only a selection of the file’s records, you should
read only the necessary records into memory.

• Sequential and indexed file access

If your program demands speed and needs to conserve disk space, use an
unformatted sequential file. Use indexed files to process selected sets of
records or to access records directly. Use a sequential file with fixed-length
records, a relative file, or an indexed file to access records directly.

8.3 File Protection and Access
Files are owned by the process that creates them and receive the default
protection of the creating process. To create a file with ownership and protection
other than the default, use the File Definition Language (FDL) attributes
OWNER and PROTECTION in the file.

8.3.1 Read-Only Access
By default, the user of your program must have write access to a file in order
for your program to open that file. However, if you specify use of the Fortran
READONLY specifier when opening the file, the user needs only read access to
the file in order to open it. The READONLY specifier does not set the protection
on a file. The user cannot write to a file opened with the READONLY specifier.

8–2

File Operations
8.3 File Protection and Access

8.3.2 Shared Access
The Fortran specifier READONLY and the SHARED specifier allow multiple
processes to open the same file simultaneously, provided that each process uses
one of these specifiers when opening the file. The READONLY specifier allows
the process read access to the file; the SHARED specifier allows other processes
read and write access to the file. If a process opens the file without specifying
READONLY or SHARED, no other process can open that file even by specifying
READONLY or SHARED.

In the following Fortran segment, if the read operation indicates that the record
is locked, the read operation is repeated. You should not attempt to read a locked
record without providing a delay (in this example, the call to ERRSNS) to allow
the other process time to complete its operation and unlock the record.

! Status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE ’($FORDEF)’
! Logical unit number
INTEGER LUN /1/
! Record variables
INTEGER LEN
CHARACTER*80 RECORD

.

.

.
READ (UNIT = LUN,
2 FMT = ’(Q,A)’
2 IOSTAT = IOSTAT) LEN, RECORD (1:LEN)
IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .EQ. FOR$_SPERECLOC) THEN
DO WHILE (STATUS .EQ. FOR$_SPERECLOC)
READ (UNIT = LUN,

2 FMT = ’(Q,A)’
2 IOSTAT = IOSTAT) LEN, RECORD(1:LEN)

IF (IOSTAT .NE. IO_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_SPERECLOC) THEN

CALL LIB$SIGNAL(%VAL(STATUS))
END IF

END IF
END DO

ELSE
CALL LIB$SIGNAL (%VAL(STATUS))
END IF

END IF
.
.
.

In Fortran, each time you access a record in a shared file, that record is
automatically locked until you perform another I/O operation on the same logical
unit, or until you explicitly unlock the record using the UNLOCK statement. If
you plan to modify a record, you should do so before unlocking it; otherwise, you
should unlock the record as soon as possible.

8–3

File Operations
8.4 File Access and Mapping

8.4 File Access and Mapping
To copy an entire data file from the disk to program variables and back again,
either use language I/O statements to read and write the data or use the Create
and Map Section (SYS$CRMPSC) system service to map the data. Oten times,
mapping the file is faster than reading it. However, a mapped file usually uses
more virtual memory than one that is read using language I/O statements. Using
I/O statements, you have to store only the data that you have entered. Using
SYS$CRMPSC, you have to initialize the database and store the entire structure
in virtual memory including the parts that do not yet contain data.

8.4.1 Using SYS$CRMPSC
Mapping a file means associating each byte of the file with a byte of program
storage. You access data in a mapped file by referencing the program storage;
your program does not use I/O statements.

Note

Files created using OpenVMS RMS typically contain control information.
Unless you are familiar with the structure of these files, do not attempt
to map one. The best practice is to map only those files that have been
created as the result of mapping.

To map a file, perform the following operations:

1. Place the program variables for the data in a common block. Page align
the common block at link time by specifying an options file containing the
following link option for VAX and Alpha systems:

VAX For VAX systems, specify the following:

PSECT_ATTR = name, PAGE ♦

Alpha For Alpha systems, specify the following:

PSECT_ATTR = name, solitary ♦

The variable name is the name of the common block.

Within the common block, you should specify the data in order from most
complex to least complex (high to low rank), with character data last. This
naturally aligns the data, thus preventing troublesome page breaks in virtual
memory.

2. Open the data file using a user-open routine. The user-open routine must
open the file for user I/O (as opposed to OpenVMS RMS I/O) and return the
channel number on which the file is opened.

3. Map the data file to the common block.

4. Process the records using the program variables in the common block.

5. Free the memory used by the common block, forcing modified data to be
written back to the disk file.

Do not initialize variables in a common block that you plan to map; the initial
values will be lost when SYS$CRMPSC maps the common block.

8–4

File Operations
8.4 File Access and Mapping

8.4.1.1 Mapping a File
The format for SYS$CRMPSC is as follows:

SYS$CRMPSC ([inadr],[retadr],[acmode],[flags],[gsdnam],[ident],[relpag],
[chan], [pagcnt],[vbn],[prot],[pfc])

For a complete description of the SYS$CRMPSC system service, see the
OpenVMS System Services Reference Manual.

Starting and Ending Addresses of the Mapped Section

VAX On VAX systems, specify the location of the first variable in the common block as
the value of the first array element of the array passed by the inadr argument.
Specify the location of the last variable in the common block as the value of the
second array element. ♦

Alpha On Alpha systems, specify the location of the first variable in the common block
as the value of the first array element of the array passed by the inadr argument;
the second array element must be the address of the last variable in the common
block, which is derived by performing a logical OR with the value of the size of a
memory page minus 1. The size of the memory page can be retrieved by a call to
the SYS$GETSYI system service. ♦

If the first variable in the common block is an array or string, the first variable in
the common block is the first element of that array or string. If the last variable
in the common block is an array or string, the last variable in the common block
is the last element in that array or string.

Returning the Location of the Mapped Section

VAX SYS$CRMPSC returns the location of the first and last elements mapped in the
retadr argument. The value returned as the starting virtual address should
be the same as the starting address passed to the inadr argument. The value
returned as the ending virtual address should be equal to or slightly more than
(within 512 bytes, or 1 block) the value of the ending virtual address passed to
the inadr argument. ♦

Alpha SYS$CRMPSC returns the location of the first and last elements mapped in the
retadr argument. The value returned as the starting virtual address should
be the same as the starting address passed to the inadr argument. The value
returned as the ending virtual address should be equal to or slightly less than
(within a single page size) the value of the ending virtual address passed to the
inadr argument. ♦

If the first element is in error, you probably forgot to page-align the common block
containing the mapped data.

If the second element is in error, you were probably creating a new data file and
forgot to specify the size of the file in your program (see Section 8.4.1.3).

Using Private Sections
Specify SEC$M_WRT for the flags to indicate that the section is writable. If
the file is new, also specify SEC$M_DZRO to indicate that the section should be
initialized to zero.

Obtaining the Channel Number
You must use a user-open routine to get the channel number (see Section 8.4.1.2).
Pass the channel number to the chan argument.

8–5

File Operations
8.4 File Access and Mapping

VAX Example 8–1 maps a data file consisting of one longword and three real arrays
to the INC_DATA common block. The options file INCOME.OPT page-aligns the
INC_DATA common block.

If SYS$CRMPSC returns a status of SS$_IVSECFLG and you have correctly
specified the flags in the mask argument, check to see if you are passing a
channel number of 0.

Example 8–1 Mapping a Data File to the Common Block on a VAX System

!INCOME.OPT

PSECT_ATTR = INC_DATA, PAGE

INCOME.FOR
! Declare variables to hold statistics
REAL PERSONS_HOUSE (2048),
2 ADULTS_HOUSE (2048),
2 INCOME_HOUSE (2048)
INTEGER TOTAL_HOUSES
! Declare section information
! Data area
COMMON /INC_DATA/ PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE,
2 TOTAL_HOUSES
! Addresses
INTEGER ADDR(2),
2 RET_ADDR(2)
! Section length
INTEGER SEC_LEN
! Channel
INTEGER*2 CHAN,
2 GARBAGE
COMMON /CHANNEL/ CHAN,
2 GARBAGE
! Mask values
INTEGER MASK
INCLUDE ’($SECDEF)’
! User-open routines
INTEGER UFO_OPEN,
2 UFO_CREATE
EXTERNAL UFO_OPEN,
2 UFO_CREATE
! Declare logical unit number
INTEGER STATS_LUN
! Declare status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE ’($FORDEF)’
EXTERNAL INCOME_BADMAP
! Declare logical for INQUIRE statement
LOGICAL EXIST
! Declare subprograms invoked as functions
INTEGER LIB$GET_LUN,
2 SYS$CRMPSC,
2 SYS$DELTVA,
2 SYS$DASSGN
! Get logical unit number for STATS.SAV
STATUS = LIB$GET_LUN (STATS_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
INQUIRE (FILE = ’STATS.SAV’,
2 EXIST = EXIST)

(continued on next page)

8–6

File Operations
8.4 File Access and Mapping

Example 8–1 (Cont.) Mapping a Data File to the Common Block on a VAX
System

IF (EXIST) THEN
OPEN (UNIT=STATS_LUN,

2 FILE=’STATS.SAV’,
2 STATUS=’OLD’,
2 USEROPEN = UFO_OPEN)
MASK = SEC$M_WRT

ELSE
! If STATS.SAV does not exist, create new database
MASK = SEC$M_WRT .OR. SEC$M_DZRO
SEC_LEN =

! (address of last - address of first + size of last + 511)/512
2 ((%LOC(TOTAL_HOUSES) - %LOC(PERSONS_HOUSE(1)) + 4 + 511)/512)
OPEN (UNIT=STATS_LUN,

2 FILE=’STATS.SAV’,
2 STATUS=’NEW’,
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
END IF
! Free logical unit number and map section
CLOSE (STATS_LUN)
! ********
! MAP DATA
! ********
! Specify first and last address of section
ADDR(1) = %LOC(PERSONS_HOUSE(1))
ADDR(2) = %LOC(TOTAL_HOUSES)
! Map the section
STATUS = SYS$CRMPSC (ADDR,
2 RET_ADDR,
2 ,
2 %VAL(MASK),
2 ,,,
2 %VAL(CHAN),
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check for correct mapping
IF (ADDR(1) .NE. RET_ADDR (1))

2 CALL LIB$SIGNAL (%VAL (%LOC(INCOME_BADMAP)))
.
.
.

! Reference data using the
! data structures listed
! in the common block

.

.

.
! Close and update STATS.SAV
STATUS = SYS$DELTVA (RET_ADDR,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$DASSGN (%VAL(CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

END ♦

8–7

File Operations
8.4 File Access and Mapping

Alpha Example 8–2 shows the code for performing the same functions as Example 8–1
but in an Alpha system’s environment.

Example 8–2 Mapping a Data File to the Common Block on an Alpha System

!INCOME.OPT

PSECT_ATTR = INC_DATA, SOLITARY, SHR, WRT

INCOME.FOR
! Declare variables to hold statistics
REAL PERSONS_HOUSE (2048),
2 ADULTS_HOUSE (2048),
2 INCOME_HOUSE (2048)
INTEGER TOTAL_HOUSES, STATUS
! Declare section information
! Data area
COMMON /INC_DATA/ PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE,
2 TOTAL_HOUSES
! Addresses
INTEGER ADDR(2),
2 RET_ADDR(2)
! Section length
INTEGER SEC_LEN
! Channel
INTEGER*2 CHAN,
2 GARBAGE
COMMON /CHANNEL/ CHAN,
2 GARBAGE
! Mask values
INTEGER MASK
INCLUDE ’($SECDEF)’
! User-open routines
INTEGER UFO_OPEN,
2 UFO_CREATE
EXTERNAL UFO_OPEN,
2 UFO_CREATE
! Declare logical unit number
INTEGER STATS_LUN
! Declare status variables and values
INTEGER STATUS,
2 IOSTAT,
2 IO_OK
PARAMETER (IO_OK = 0)
INCLUDE ’($FORDEF)’
EXTERNAL INCOME_BADMAP
! Declare logical for INQUIRE statement
LOGICAL EXIST
! Declare subprograms invoked as functions
INTEGER LIB$GET_LUN,
2 SYS$CRMPSC,
2 SYS$DELTVA,
2 SYS$DASSGN
! Get logical unit number for STATS.SAV
STATUS = LIB$GET_LUN (STATS_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
INQUIRE (FILE = ’STATS.SAV’,
2 EXIST = EXIST)

(continued on next page)

8–8

File Operations
8.4 File Access and Mapping

Example 8–2 (Cont.) Mapping a Data File to the Common Block on an Alpha
System

IF (EXIST) THEN
OPEN (UNIT=STATS_LUN,

2 FILE=’STATS.SAV’,
2 STATUS=’OLD’,
2 USEROPEN = UFO_OPEN)
MASK = SEC$M_WRT

ELSE
! If STATS.SAV does not exist, create new database
MASK = SEC$M_WRT .OR. SEC$M_DZRO
SEC_LEN =

! (address of last - address of first + size of last + 511)/512
2 ((%LOC(TOTAL_HOUSES) - %LOC(PERSONS_HOUSE(1)) + 4 + 511)/512)
OPEN (UNIT=STATS_LUN,

2 FILE=’STATS.SAV’,
2 STATUS=’NEW’,
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
END IF
! Free logical unit number and map section
CLOSE (STATS_LUN)
! ********
! MAP DATA
! ********
STATUS = LIB$GETSYI(SYI$_PAGE_SIZE, PAGE_MAX,,,,)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL (STATUS))
! Specify first and last address of section
ADDR(1) = %LOC(PERSONS_HOUSE(1))
! Section will always be smaller than page_max bytes
ADDR(2) = ADDR(1) + PAGE_MAX -1
! Map the section
STATUS = SYS$CRMPSC (ADDR,
2 RET_ADDR,
2 ,
2 %VAL(MASK),
2 ,,,
2 %VAL(CHAN),
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Check for correct mapping
IF (ADDR(1) .NE. RET_ADDR (1))

2 CALL LIB$SIGNAL (%VAL (%LOC(INCOME_BADMAP)))
.
.
.

! Reference data using the
! data structures listed
! in the common block

.

.

.
! Close and update STATS.SAV
STATUS = SYS$DELTVA (RET_ADDR,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$DASSGN (%VAL(CHAN))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

END ♦

8–9

File Operations
8.4 File Access and Mapping

8.4.1.2 Using the User-Open Routine
When you open a file for mapping in Fortran, for example, you must specify
a user-open routine (Section 8.6 discusses user-open routines) to perform the
following operations:

1. Set the user-file open bit (FAB$V_UFO) in the file access block (FAB) options
mask.

2. Open the file using SYS$OPEN for an existing file or SYS$CREATE for a new
file. (Do not invoke SYS$CONNECT if you have set the user-file open bit.)

3. Return the channel number to the program unit that started the OPEN
operation. The channel number is in the additional status longword of the
FAB (FAB$L_STV) and must be returned in a common block.

4. Return the status of the open operation (SYS$OPEN or SYS$CREATE) as the
value of the user-open routine.

After setting the user-file open bit in the FAB options mask, you cannot use
language I/O statements to access data in that file. Therefore, you should free the
logical unit number associated with the file. The file is still open. You access the
file with the channel number.

Example 8–3 shows a user-open routine invoked by the sample program in
Section 8.4.1.1 if the file STATS.SAV exists. (If STATS.SAV does not exist, the
user-open routine must invoke SYS$CREATE rather than SYS$OPEN.)

Example 8–3 Using a User-Open Routine

!UFO_OPEN.FOR

INTEGER FUNCTION UFO_OPEN (FAB,
2 RAB,
2 LUN)

! Include Open VMS RMS definitions
INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN
! Declare channel
INTEGER*4 CHAN
COMMON /CHANNEL/ CHAN
! Declare status variable
INTEGER STATUS
! Declare system procedures
INTEGER SYS$OPEN
! Set useropen bit in the FAB options longword
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_UFO
! Open file
STATUS = SYS$OPEN (FAB)
! Read channel from FAB status word
CHAN = FAB.FAB$L_STV

! Return status of open operation
UFO_OPEN = STATUS

END

8–10

File Operations
8.4 File Access and Mapping

8.4.1.3 Initializing a Mapped Database
The first time you map a file you must perform the following operations in
addition to those listed at the beginning of Section 8.4.1:

1. Specify the size of the file—SYS$CRMPSC maps data based on the size of the
file. Therefore, when creating a file that is to be mapped, you must specify in
your program a file large enough to contain all of the expected data. Figure
the size of your database as follows:

• Find the size of the common block (in bytes)—Subtract the location of the
first variable in the common block from the location of the last variable in
the common block and then add the size of the last element.

• Find the number of blocks in the common block—Add 511 to the size and
divide the result by 512 (512 bytes = 1 block).

2. Initialize the file when you map it—The blocks allocated to a file might not be
initialized and therefore contain random data. When you first map the file,
you should initialize the mapped area to zeros by setting the SEC$V_DZRO
bit in the mask argument of SYS$CRMPSC.

The user-open routine for creating a file is the same as the user-open routine for
opening a file except that SYS$OPEN is replaced by SYS$CREATE.

8.4.1.4 Saving a Mapped File
To close a data file that was opened for user I/O, you must deassign the I/O
channel assigned to that file. Before you can deassign a channel assigned to a
mapped file, you must delete the virtual memory associated with the file (the
memory used by the common block). When you delete the virtual memory used
by a mapped file, any changes made while the file was mapped are written back
to the disk file. Use the Delete Virtual Address Space (SYS$DELTVA) system
service to delete the virtual memory used by a mapped file. Use the Deassign I/O
Channel (SYS$DASSGN) system service to deassign the I/O channel assigned to
a file.

The program segment shown in Example 8–4 closes a mapped file, automatically
writing any modifications back to the disk. To ensure that the proper locations
are deleted, pass SYS$DELTVA the addresses returned to your program by
SYS$CRMPSC rather than the addresses you passed to SYS$CRMPSC. If you
want to save modifications made to the mapped section without closing the
file, use the Update Section File on Disk (SYS$UPDSEC) system service. To
ensure that the proper locations are updated, pass SYS$UPDSEC the addresses
returned to your program by SYS$CRMPSC rather than the addresses you
passed to SYS$CRMPSC. Typically, you want to wait until the update operation
completes before continuing program execution. Therefore, use the efn argument
of SYS$UPDSEC to specify an event flag to be set when the update is complete,
and wait for the system service to complete before continuing. For a complete
description of the SYS$DELTVA, SYS$DASSGN, and SYS$UPDSEC system
services, see the OpenVMS System Services Reference Manual.

8–11

File Operations
8.4 File Access and Mapping

Example 8–4 Closing a Mapped File

! Section address
INTEGER*4 ADDR(2),
2 RET_ADDR(2)
! Event flag
INTEGER*4 FLAG
! Status block
STRUCTURE /IO_BLOCK/
INTEGER*2 IOSTAT,

2 HARDWARE
INTEGER*4 BAD_PAGE

END STRUCTURE
RECORD /IO_BLOCK/ IOSTATUS

.

.

.
! Get an event flag
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Update the section
STATUS = SYS$UPDSEC (RET_ADDR,
2 ,,,
2 %VAL(FLAG)
2 ,
2 IOSTATUS,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Wait for section to be updated
STATUS = SYS$SYNCH (%VAL(FLAG),
2 IOSTATUS)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

.

.

.

8.5 Opening and Updating a Sequential File
This section provides an example, written in DEC Fortran, of how to open and
update a sequential file on a VAX system. A sequential file consists of records
arranged one after the other in the order in which they are written to the file.
Records can only be added to the end of the file. Typically, sequential files are
accessed sequentially.

Creating a Sequential File
To create a sequential file, use the OPEN statement and specify the following
keywords and keyword values:

• STATUS =’NEW’

• ACCESS = ’SEQUENTIAL’

• ORGANIZATION = ’SEQUENTIAL’

The file structure keyword ORGANIZATION also accepts the value ’INDEXED’

or ’RELATIVE’.

8–12

File Operations
8.5 Opening and Updating a Sequential File

Example 8–5 creates a sequential file of fixed-length records.

Example 8–5 Creating a Sequential File of Fixed-Length Records
.
.
.

INTEGER STATUS,
2 LUN,
2 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 STR$UPCASE
INTEGER*2 FN_SIZE,
2 REC_SIZE
CHARACTER*256 FILENAME
CHARACTER*80 RECORD
! Get file name
STATUS = LIB$GET_INPUT (FILENAME,
2 ’File name: ’,
2 FN_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get free unit number
STATUS = LIB$GET_LUN (LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the file
OPEN (UNIT = LUN,
2 FILE = FILENAME (1:FN_SIZE),
2 ORGANIZATION = ’SEQUENTIAL’,
2 ACCESS = ’SEQUENTIAL’,
2 RECORDTYPE = ’FIXED’,
2 FORM = ’UNFORMATTED’,
2 RECL = 20,
2 STATUS = ’NEW’)
! Get the record input
STATUS = LIB$GET_INPUT (RECORD,
2 ’Input: ’,
2 REC_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
DO WHILE (REC_SIZE .NE. 0)

! Convert to uppercase
STATUS = STR$UPCASE (RECORD,RECORD)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

WRITE (UNIT=LUN) RECORD(1:REC_SIZE)
! Get more record input
STATUS = LIB$GET_INPUT (RECORD,

2 ’Input: ’,
2 REC_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END DO

END

Updating a Sequential File
To update a sequential file, read each record from the file, update it, and write it
to a new sequential file. Updated records cannot be written back as replacement
records for the same sequential file from which they were read.

Example 8–6 updates a sequential file, giving the user the option of modifying
a record before writing it to the new file. The same file name is used for both
files; because the new update file was opened after the old file, the new file has a
higher version number.

8–13

File Operations
8.5 Opening and Updating a Sequential File

Example 8–6 Updating a Sequential File
.
.
.

INTEGER STATUS,
2 LUN1,
2 LUN2,
2 IOSTAT
INTEGER*2 FN_SIZE
CHARACTER*256 FILENAME
CHARACTER*80 RECORD
CHARACTER*80 NEW_RECORD
INCLUDE ’($FORDEF)’
INTEGER*4 LIB$GET_INPUT,
2 LIB$GET_LUN,
2 STR$UPCASE
! Get file name
STATUS = LIB$GET_INPUT (FILENAME,
2 ’File name: ’,
2 FN_SIZE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get free unit number
STATUS = LIB$GET_LUN (LUN1)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the old file
OPEN (UNIT=LUN1,
2 FILE=FILENAME (1:FN_SIZE),
2 ORGANIZATION=’SEQUENTIAL’,
2 ACCESS=’SEQUENTIAL’,
2 RECORDTYPE=’FIXED’,
2 FORM=’UNFORMATTED’,
2 RECL=20,
2 STATUS=’OLD’)
! Get free unit number
STATUS = LIB$GET_LUN (LUN2)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Open the new file
OPEN (UNIT=LUN2,
2 FILE=FILENAME (1:FN_SIZE),
2 ORGANIZATION=’SEQUENTIAL’,
2 ACCESS=’SEQUENTIAL’,
2 RECORDTYPE=’FIXED’,
2 FORM=’UNFORMATTED’,
2 RECL=20,
2 STATUS=’NEW’)
! Read a record from the old file
READ (UNIT=LUN1,
2 IOSTAT=IOSTAT) RECORD
IF (IOSTAT .NE. IOSTAT_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN
CALL LIB$SIGNAL (%VAL(STATUS))

END IF
END IF

DO WHILE (STATUS .NE. FOR$_ENDDURREA)

TYPE *, RECORD

(continued on next page)

8–14

File Operations
8.5 Opening and Updating a Sequential File

Example 8–6 (Cont.) Updating a Sequential File

! Get record update
STATUS = LIB$GET_INPUT (NEW_RECORD,

2 ’Update: ’)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Convert to uppercase
STATUS = STR$UPCASE (NEW_RECORD,

2 NEW_RECORD)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

! Write unchanged record or updated record
IF (NEW_RECORD .EQ. ’ ’) THEN
WRITE (UNIT=LUN2) RECORD

ELSE
WRITE (UNIT=LUN2) NEW_RECORD

END IF

! Read the next record
READ (UNIT=LUN1,

2 IOSTAT=IOSTAT) RECORD
IF (IOSTAT .NE. IOSTAT_OK) THEN
CALL ERRSNS (,,,,STATUS)
IF (STATUS .NE. FOR$_ENDDURREA) THEN
CALL LIB$SIGNAL (%VAL(STATUS))

END IF
END IF

END DO

END

8.6 User-Open Routines
A user-open routine in Fortran, for example, gives you direct access to the
file access block (FAB) and record access block (RAB) (the OpenVMS RMS
structures that define file characteristics). Use a user-open routine to specify file
characteristics that are otherwise unavailable from your programming language.

When you specify a user-open routine, you open the file rather than allow the
program to open the file for you. Before passing the FAB and RAB to your
user-open routine, any default file characteristics and characteristics that can
be specified by keywords in the programming language are set. Your user-open
routine should not set or modify such file characteristics because the language
might not be aware that you have set the characteristics and might not perform
as expected.

8.6.1 Opening a File
Section 8.4.1.2 provides guidelines on opening a file with a user-open routine.
This section provides an example of a Fortran user-open routine.

8.6.1.1 Specifying USEROPEN
To open a file with a user-open routine, include the USEROPEN specifier in the
Fortran OPEN statement. The value of the USEROPEN specifier is the name
of the routine (not a character string containing the name). Declare the user-
open routine as an INTEGER*4 function. Because the user-open routine name is
specified as an argument, it must be declared in an EXTERNAL statement.

8–15

File Operations
8.6 User-Open Routines

The following statement instructs Fortran to open SECTION.DAT using the
routine UFO_OPEN:

! Logical unit number
INTEGER LUN

! Declare user-open routine
INTEGER UFO_OPEN
EXTERNAL UFO_OPEN

.

.

.
OPEN (UNIT = LUN,
2 FILE = ’SECTION.DAT’,
2 STATUS = ’OLD’,
2 USEROPEN = UFO_OPEN)

.

.

.

8.6.1.2 Writing the User-Open Routine
Write a user-open routine as an INTEGER function that accepts three dummy
arguments:

• FAB address—Declare this argument as a RECORD variable. Use
the record structure FABDEF defined in the $FABDEF module of
SYS$LIBRARY:FORSYSDEF.TLB.

• RAB address—Declare this argument as a RECORD variable. Use
the record structure RABDEF defined in the $RABDEF module of
SYS$LIBRARY:FORSYSDEF.TLB.

• Logical unit number—Declare this argument as an INTEGER.

A user-open routine must perform at least the following operations. In addition,
before opening the file, a user-open routine usually adjusts one or more fields in
the FAB or the RAB or in both.

• Opens the file—To open the file, invoke the SYS$OPEN system service if the
file already exists, or the SYS$CREATE system service if the file is being
created.

• Connects the file—Invoke the SYS$CONNECT system service to establish a
record stream for I/O.

• Returns the status—To return the status, equate the return status of the
SYS$OPEN or SYS$CREATE system service to the function value of the
user-open routine.

The following user-open routine opens an existing file. The file to be opened is
specified in the OPEN statement of the invoking program unit.

UFO_OPEN.FOR
INTEGER FUNCTION UFO_OPEN (FAB,
2 RAB,
2 LUN)

! Include Open VMS RMS definitions
INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN

8–16

File Operations
8.6 User-Open Routines

! Declare status variable
INTEGER STATUS
! Declare system routines
INTEGER SYS$CREATE,
2 SYS$OPEN,
2 SYS$CONNECT
! Optional FAB and/or RAB modifications

.

.

.
! Open file
STATUS = SYS$OPEN (FAB)
IF (STATUS)
2 STATUS = SYS$CONNECT (RAB)

! Return status of $OPEN or $CONNECT
UFO_OPEN = STATUS

END

8.6.1.3 Setting FAB and RAB Fields
Each field in the FAB and RAB is identified by a symbolic name, such as FAB$L_
FOP. Where separate bits in a field represent different attributes, each bit offset
is identified by a similar symbolic name, such as FAB$V_CTG. The first three
letters identify the structure containing the field. The letter following the dollar
sign indicates either the length of the field (B for byte, W for word, or L for
longword) or that the name is a bit offset (V for bit) rather than a field. The
letters following the underscore identify the attribute associated with the field or
bit. The symbol FAB$L_FOP identifies the FAB options field, which is a longword
in length; the symbol FAB$V_CTG identifies the contiguity bit within the options
field.

The STRUCTURE definitions for the FAB and RAB are in the $FABDEF and
$RABDEF modules of the library SYS$LIBRARY:FORSYSDEF.TLB. To use these
definitions, do the following:

1. Include the modules in your program unit.

2. Declare RECORD variables for the FAB and the RAB.

3. Reference the various fields of the FAB and RAB using the symbolic name of
the field.

The following user-open routine specifies that the blocks allocated for the file
must be contiguous. To specify contiguity, you clear the best-try-contiguous bit
(FAB$V_CBT) of the FAB$L_FOP field and set the contiguous bit (FAB$V_CTG)
of the same field.

UFO_CONTIG.FOR
INTEGER FUNCTION UFO_CONTIG (FAB,
2 RAB,
2 LUN)

! Include Open VMS RMS definitions
INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN
! Declare status variable
INTEGER STATUS

8–17

File Operations
8.6 User-Open Routines

! Declare system procedures
INTEGER SYS$CREATE,
2 SYS$CONNECT
! Clear contiguous-best-try bit and
! set contiguous bit in FAB options
FAB.FAB$L_FOP = IBCLR (FAB.FAB$L_FOP, FAB$V_CBT)
FAB.FAB$L_FOP = IBSET (FAB.FAB$L_FOP, FAB$V_CTG)
! Open file
STATUS = SYS$CREATE (FAB)
IF (STATUS) STATUS = SYS$CONNECT (RAB)

! Return status of open or connect
UFO_CONTIG = STATUS

END

8–18

9
System Service Input/Output Operations

This chapter describes how to use system services to perform input and output
operations. It contains the following sections:

Section 9.1 describes the QIO operation.

Section 9.2 describes the use of quotas, privileges, and protection.

Section 9.3 describes device addressing modes.

Section 9.4 describes I/O function encoding.

Section 9.5 describes how to assign channels.

Section 9.6 describes how to queue I/O requests.

Section 9.7 describes how to synchronize I/O completions.

Section 9.8 describes the routine to use to wait for completion of an asynchronous
event.

Section 9.9 describes executing I/O services synchronously or asynchronously.

Section 9.10 describes the completion status of an I/O operation.

Section 9.11 describes how to deassign I/O channels.

Section 9.12 presents a progam example of a complete input and output
operation.

Section 9.13 describes how to cancel I/O requests.

Section 9.14 describes how to use logical names and physical device names for I/O
operations.

Section 9.15 describes how to use device name defaults.

Section 9.16 describes how to obtain information about physical devices.

Section 9.17 describes device allocation.

Section 9.18 describes how to mount, dismount, and initialize disk and tape
volumes.

Section 9.19 describes format output strings.

Section 9.20 describes how to use mailboxes for I/O operations.

Section 9.21 provides a program example of using I/O system services.

Examples are provided to show you how to use the I/O services for simple
functions, such as terminal input and output operations. If you plan to write
device-dependent I/O routines, see the OpenVMS I/O User’s Reference Manual.

9–1

System Service Input/Output Operations

VAX If you want to write your own device driver or connect to a device interrupt
vector, see the OpenVMS VAX Device Support Reference Manual. ♦

Besides using I/O system services, you can use OpenVMS Record Management
Services (RMS). OpenVMS RMS provides a set of routines for general-purpose,
device-independent functions such as data storage, retrieval, and modification.

Unlike RMS services, I/O system services permit you to use the I/O resources of
the operating system directly in a device-dependent manner. I/O services also
provide some specialized functions not available in OpenVMS RMS. Using I/O
services requires more programming knowledge than using OpenVMS RMS, but
can result in more efficient input/output operations.

9.1 Overview of OpenVMS QIO Operations
The OpenVMS operating system provides QIO operations that perform three
basic I/O functions: read, write, and set mode. The read function transfers data
from a device to a user-specified buffer. The write function transfers data in the
opposite direction—from a user-specified buffer to the device. For example, in
a read QIO function to a terminal device, a user-specified buffer is filled with
characters received from the terminal. In a write QIO function to the terminal,
the data in a user-specified buffer is transferred to the terminal where it is
displayed.

The set mode QIO function is used to control or describe the characteristics and
operation of a device. For example, a set mode QIO function to a line printer can
specify either uppercase or lowercase character format. Not all QIO functions are
applicable to all types of devices. The line printer, for example, cannot perform a
read QIO function.

9.2 Quotas, Privileges, and Protection
To preserve the integrity of the operating system, the I/O operations are
performed under the constraints of quotas, privileges, and protection.

Quotas limit the number and type of I/O operations that a process can perform
concurrently and the total size of outstanding transfers. They ensure that all
users have an equitable share of system resources and usage.

Privileges are granted to a user to allow the performance of certain I/O-related
operations, for example, creating a mailbox and performing logical I/O to a
file-structured device. Restrictions on user privileges protect the integrity and
performance of both the operating system and the services provided to other
users.

Protection controls access to files and devices. Device protection is provided in
much the same way as file protection: shareable and nonshareable devices are
protected by protection masks.

The Set Resource Wait Mode (SYS$SETRWM) system service allows a process
to select either of two modes when an attempt to exceed a quota occurs. In the
enabled (default) mode, the process waits until the required resource is available
before continuing. In the disabled mode, the process is notified immediately by
a system service status return that an attempt to exceed a quota has occurred.
Waiting for resources is transparent to the process when resource wait mode is
enabled; the process takes no explicit action when a wait is necessary.

The different types of I/O-related quotas, privilege, and protection are described
in the following sections.

9–2

System Service Input/Output Operations
9.2 Quotas, Privileges, and Protection

9.2.1 Buffered I/O Quota
The buffered I/O limit quota (BIOLM) specifies the maximum number of
concurrent buffered I/O operations that can be active in a process. In a buffered
I/O operation, the user’s data is buffered in system dynamic memory. The driver
deals with the system buffer and not the user buffer. Buffered I/O is used
for terminal, line printer, card reader, network, mailbox, and console medium
transfers and file system operations. For a buffered I/O operation, the system
does not have to lock the user’s buffer in memory.

The system manager, or the person who creates the process, establishes the
buffered I/O quota value in the user authorization file. If you use the Set
Resource Wait Mode (SYS$SETRWM) system service to enable resource wait
mode for the process, the process enters resource wait mode if it attempts to
exceed its direct I/O quota.

9.2.2 Buffered I/O Byte Count Quota
The buffered I/O byte count quota (BYTELM) specifies the maximum amount of
buffer space that can be consumed from system dynamic memory for buffering
I/O requests. All buffered I/O requests require system dynamic memory in which
the actual I/O operation takes place.

The system manager, or the person who creates the process, establishes the
buffered I/O byte count quota in the user authorization file. If you use the
SYS$SETRWM system service to enable resource wait mode for the process, the
process enters resource wait mode if it attempts to exceed its direct I/O quota.

9.2.3 Direct I/O Quota
The direct I/O limit quota (DIOLM) specifies the maximum number of concurrent
direct (unbuffered) I/O operations that a process can have active. In a direct I/O
operation, data is moved directly to or from the user buffer. Direct I/O is used
for disk, magnetic tape, most direct memory access (DMA) real-time devices, and
nonnetwork transfers, such as DMC11/DMR11 write transfers. For direct I/O, the
user’s buffer must be locked in memory during the transfer.

The system manager, or the person who creates the process, establishes the direct
I/O quota value in the user authorization file. If you use the SYS$SETRWM
system service to enable resource wait mode for the process, the process enters
resource wait mode if it attempts to exceed its direct I/O quota.

9.2.4 AST Quota
The AST quota specifies the maximum number of outstanding asynchronous
system traps that a process can have. The system manager, or the person who
creates the process, establishes the quota value in the user authorization file.
There is never an implied wait for that resource.

9.2.5 Physical I/O Privilege
Physical I/O privilege (PHY_IO) allows a process to perform physical I/O
operations on a device. Physical I/O privilege also allows a process to perform
logical I/O operations on a device.

9–3

System Service Input/Output Operations
9.2 Quotas, Privileges, and Protection

9.2.6 Logical I/O Privilege
Logical I/O privilege (LOG_IO) allows a process to perform logical I/O operations
on a device. A process can also perform physical operations on a device if the
process has logical I/O privilege, the volume is mounted foreign, and the volume
protection mask allows access to the device. (A foreign volume is one volume that
contains no standard file structure understood by any of the operating system
software.) See Section 9.3.2 for a further information about logical I/O privilege.

9.2.7 Mount Privilege
Mount privilege (MOUNT) allows a process to use the IO$_MOUNT function to
perform mount operations on disk and magnetic tape devices. The IO$_MOUNT
function is used in ancillary control processs (ACP) interface operations.

9.2.8 Volume Protection
Volume protection protects the integrity of mailboxes and both foreign and
Files–11 On-Disk Structure Level 2 structured volumes. Volume protection for
a foreign volume is established when the volume is mounted. Volume protection
for a Files–11 structured volume is established when the volume is initialized. (If
the process mounting the volume has the override volume protection privilege,
VOLPRO, protection can be overridden when the volume is mounted.)

The SYS$CREMBX system service protection mask argument establishes mailbox
protection.

Set Protection QIO requests allow you to set volume protection on a mailbox. You
must either be the owner of the mailbox or have the BYPASS privilege.

Protection for structured volumes and mailboxes is provided by a volume
protection mask that contains four 4-bit fields. These fields correspond to the
four classes of user permitted to access the volume. (User classes are based on
the volume owner’s UIC.)

The 4-bit fields are interpreted differently for volumes that are mounted as
structured (that is, volumes serviced by an ACP), volumes that are mounted as
foreign, and mailboxes (both temporary and permanent).

Figure 9–1 shows the 4-bit protection fields for mailboxes. Usually, volume
protection is meaningful only for read and write operations.

Figure 9–1 Mailbox Protection Fields

11 10 9 8

Logical I/O Write

ZK−0624−GE*Not Used

* Read

9–4

System Service Input/Output Operations
9.2 Quotas, Privileges, and Protection

9.2.9 Device Protection
Device protection protects the allocation of nonshareable devices, such as
terminals and card readers.

Protection is provided by a device protection mask similar to that of volume
protection. The difference is that only the bit corresponding to read access is
checked, and that bit determines whether the process can allocate or assign a
channel to the device.

You establish device protection with the DCL command SET PROTECTION
/DEVICE. This command sets both the protection mask and the device owner
UIC.

9.2.10 System Privilege
System UIC privilege (SYSPRV) allows a process to be eligible for the volume or
device protection specified for the system protection class, even if the process does
not have a UIC in one of the system groups.

9.2.11 Bypass Privilege
Bypass privilege (BYPASS) allows a process to bypass volume and device
protection completely.

9.3 Physical, Logical, and Virtual I/O
I/O data transfers can occur in any one of three device addressing modes:
physical, logical, or virtual. Any process with device access allowed by the volume
protection mask can perform logical I/O on a device that is mounted foreign;
physical I/O requires privileges. Virtual I/O does not require privileges; however,
intervention by an ACP to control user access might be necessary if the device
is under ACP control. (ACP functions are described in the OpenVMS I/O User’s
Reference Manual.)

9.3.1 Physical I/O Operations
In physical I/O operations, data is read from and written to the actual, physically
addressable units accepted by the hardware (for example, sectors on a disk or
binary characters on a terminal in the PASSALL mode). This mode allows direct
access to all device-level I/O operations.

Physical I/O requires that one of the following conditions be met:

• The issuing process has physical I/O privilege (PHY_IO).

• The issuing process has all of the following characteristics:

The issuing process has logical I/O privilege (LOG_IO).

The device is mounted foreign.

The volume protection mask allows physical access to the device.

If neither of these conditions is met, the physical I/O operation is rejected by the
SYS$QIO system service, which returns a condition value of SS$_NOPRIV (no
privilege). Figure 9–2 illustrates the physical I/O access checks in greater detail.

The inhibit error-logging function modifier (IO$M_INHERLOG) can be specified
for all physical I/O functions. The IO$M_INHERLOG function modifier inhibits
the logging of any error that occurs during the I/O operation.

9–5

System Service Input/Output Operations
9.3 Physical, Logical, and Virtual I/O

9.3.2 Logical I/O Operations
In logical I/O operations, data is read from and written to logically addressable
units of the device. Logical operations can be performed on both block-
addressable and record-oriented devices. For block-addressable devices (such
as disks), the addressable units are 512-byte blocks. They are numbered from
0 to n��, where n is the number of blocks on the device. For record-oriented or
non-block-structured devices (such as terminals), logical addressable units are
not pertinent and are ignored. Logical I/O requires that one of the following
conditions be met:

• The issuing process has physical I/O privilege (PHY_IO).

• The issuing process has logical I/O privilege (LOG_IO).

• The volume is mounted foreign and the volume protection mask allows access
to the device.

If none of these conditions is met, the logical I/O operation is rejected by the
SYS$QIO system service, which returns a condition value of SS$_NOPRIV (no
privilege). Figure 9–3 illustrates the logical I/O access checks in greater detail.

9.3.3 Virtual I/O Operations
You can perform virtual I/O operations on both record-oriented (non-file-
structured) and block-addressable (file-structured) devices. For record-oriented
devices (such as terminals), the virtual function is the same as a logical function;
the virtual addressable units of the devices are ignored.

For block-addressable devices (such as disks), data is read from and written
to open files. The addressable units in the file are 512-byte blocks. They are
numbered starting at 1 and are relative to a file rather than to a device. Block-
addressable devices must be mounted and structured and must contain a file that
was previously accessed on the I/O channel.

Virtual I/O operations also require that the volume protection mask allow
access to the device (a process having either physical or logical I/O privilege can
override the volume protection mask). If these conditions are not met, the virtual
I/O operation is rejected by the QIO system service, which returns one of the
following condition values:

Condition Value Meaning

SS$_NOPRIV No privilege

SS$_DEVNOTMOUNT Device not mounted

SS$_DEVFOREIGN Volume mounted foreign

Figure 9–4 shows the relationship of physical, logical, and virtual I/O to the
driver.

9–6

System Service Input/Output Operations
9.3 Physical, Logical, and Virtual I/O

Figure 9–2 Physical I/O Access Checks

Physical
I/O

Privilege
?

Logical
I/O

Privilege
?

File
Device

?

Device
Mounted

?

Start

?
Foreign
Mounted

?
Permitted*
Physical I/O

Access
Deny

Access
Allow

Yes

No

ZK−0625−GE

?
Device

Shareable

No

Yes

No

No

No

Yes

Yes

Yes

Yes

No

Yes

No

*Volume protection mask allows access.

9–7

System Service Input/Output Operations
9.3 Physical, Logical, and Virtual I/O

Figure 9–3 Logical I/O Access Checks

Physical
I/O

Privilege
?

Device
Mounted

?

Start

?
Foreign
Mounted

Access
Deny

Access
Allow

Yes

ZK−0626−GE

?
Device

Shareable

No

No

No

No

Yes

Yes

Yes

No

Yes

No

?
Device

File

Yes

No

Yes

?
Privilege

I/O
LogicalYes No

Spooled
Device

?

?
Permitted*
Logical I/O

* Volume protection mask allows access.

9–8

System Service Input/Output Operations
9.3 Physical, Logical, and Virtual I/O

Figure 9–4 Physical, Logical, and Virtual I/O

Yes

ZK−0627−GE

No

No

Yes

Yes

No

Request
QIO

?
Request

I/O
Logical

Block Address
to Physical

Block Address
Translate Logical

?
Request

I/O
Virtual

No

Yes

Error

?
Request

I/O
Physical

Block Address
Address to Logical
Map Virtual Block

Driver
I/O

?
Intervention*

ACP

Window
Change Mapping

Wake ACP to

*Needed to map virtual address to logical address.

ACP
Go to

9–9

System Service Input/Output Operations
9.4 I/O Function Encoding

9.4 I/O Function Encoding
I/O functions fall into three groups that correspond to the three I/O device
addressing modes (physical, logical, and virtual) described in Section 9.3.
Depending on the device to which it is directed, an I/O function can be expressed
in one, two, or all three modes.

I/O functions are described by 16-bit, symbolically expressed values that specify
the particular I/O operation to be performed and any optional function modifiers.
Figure 9–5 shows the format of the 16-bit function value.

Symbolic names for I/O function codes are defined by the $IODEF macro.

Figure 9–5 I/O Function Format

15 6 5 0

Function Modifiers Code

ZK−0628−GE

9.4.1 Function Codes
The low-order 6 bits of the function value are a code that specifies the particular
operation to be performed. For example, the code for read logical block is
expressed as IO$_READLBLK. Table 9–1 lists the symbolic values for read and
write I/O functions in the three transfer modes.

Table 9–1 Read and Write I/O Functions

Physical I/O Logical I/O Virtual I/O

IO$_READPBLK IO$_READLBLK IO$_READVBLK

IO$_WRITEPBLK IO$_WRITELBLK IO$_WRITEVBLK

The set mode I/O function has a symbolic value of IO$_SETMODE.

Function codes are defined for all supported devices. Although some of the
function codes (for example, IO$_READVBLK and IO$_WRITEVBLK) are used
with several types of devices, most are device dependent; that is, they perform
functions specific to particular types of devices. For example, IO$_CREATE is a
device-dependent function code; it is used only with file-structured devices such
as disks and magnetic tapes. The I/O user’s reference documentation provides
complete descriptions of the functions and function codes.

Note

You should determine the device class before performing any QIO
function, because the requested function might be incompatible with some
devices. For example, the SYS$INPUT device could be a terminal, a disk,
or some other device. Unless this device is a terminal, an IO$_SETMODE
request that enables a Ctrl/C AST is not performed.

9–10

System Service Input/Output Operations
9.4 I/O Function Encoding

9.4.2 Function Modifiers
The high-order 10 bits of the function value are function modifiers. These are
individual bits that alter the basic operation to be performed. For example,
you can specify the function modifier IO$M_NOECHO with the function IO$_
READLBLK to a terminal. When used together, the two values are written in
VAX MACRO as IO$_READLBLK!IO$M_NOECHO. This causes data typed at
the terminal keyboard to be entered into the user buffer but not echoed to the
terminal. Figure 9–6 shows the format of function modifiers.

Figure 9–6 Function Modifier Format

15 6 0

ZK−0629−GE

Independent
Device/Function

Dependent
Device/Function

13 12

As shown in Figure 9–6, bits <15:13> are device- or function-independent bits,
and bits <12:6> are device- or function-dependent bits. Device- or function-
dependent bits have the same meaning, whenever possible, for different device
classes. For example, the function modifier IO$M_ACCESS is used with both disk
and magnetic tape devices to cause a file to be accessed during a create operation.
Device- or function-dependent bits always have the same function within the
same device class.

There are two device- or function-independent modifier bits: IO$M_INHRETRY
and IO$M_DATACHECK (a third bit is reserved). IO$M_INHRETRY is used to
inhibit all error recovery. If any error occurs and this modifier bit is specified, the
operation is terminated immediately and a failure status is returned in the I/O
status block (see Section 9.10). Use IO$M_DATACHECK to compare the data in
memory with that on a disk or magnetic tape.

9.5 Assigning Channels
Before any input or output operation can be performed on a physical device, you
must assign a channel to the device to provide a path between the process and
the device. The Assign I/O Channel (SYS$ASSIGN) system service establishes
this path.

When you write a call to the SYS$ASSIGN service, you must supply the name
of the device, which can be a physical device name or a logical name, and the
address of a word to receive the channel number. The service returns a channel
number, and you use this channel number when you write an input or output
request.

For example, the following lines assign an I/O channel to the device TTA2. The
channel number is returned in the word at TTCHAN.

9–11

System Service Input/Output Operations
9.5 Assigning Channels

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

main() {
unsigned int status;
unsigned short ttchan;
$DESCRIPTOR(ttname,"TTA2:");

/* Assign a channel to a device */
status = SYS$ASSIGN(&ttname, /* devnam - device name */

&ttchan, /* chan - channel number */
0, /* acmode - access mode */
0, /* mbxnam - logical name for mailbox */
0); /* flags */

if((status & 1) != 1)
LIB$SIGNAL(status);

}

To assign a channel to the current default input or output device, use the logical
name SYS$INPUT or SYS$OUTPUT.

For more details on how SYS$ASSIGN and other I/O services handle logical
names, see Section 9.2.5.

9.6 Queuing I/O Requests
All input and output operations in the operating system are initiated with the
Queue I/O Request (SYS$QIO) system service. The SYS$QIO system service
permits direct interaction with the system’s terminal driver. SYS$QIOs permit
some operations that cannot be performed with language I/O statements and
RTL routines; calls to SYS$QIO reduce overhead and permit asynchronous I/O
operations. However, calls to SYS$QIO are device dependent. The SYS$QIO
service queues the request and returns immediately to the caller. While the
operating system processes the request, the program that issued the request can
continue execution.

The format for SYS$QIO is as follows:

SYS$QIO([efn],chan,func[,iosb][,astadr][,astprm][,p1][,p2][,p3][,p4][,p5][,p6]

Required arguments to the SYS$QIO service include the channel number
assigned to the device on which the I/O is to be performed, and a function code
(expressed symbolically) that indicates the specific operation to be performed.
Depending on the function code, one to six additional parameters may be
required.

For example, the IO$_WRITEVBLK and IO$_READVBLK function codes are
device-independent codes used to read and write single records or virtual
blocks. These function codes are suitable for simple terminal I/O. They require
parameters indicating the address of an input or output buffer and the buffer
length. A call to SYS$QIO to write a line to a terminal may look like the
following:

9–12

System Service Input/Output Operations
9.6 Queuing I/O Requests

unsigned int status, func=IO$_WRITEVBLK;
.
.
.

status = SYS$QIO(0, /* efn - event flag */
ttchan, /* chan - channel number */
func, /* func - function modifier */
0, /* iosb - I/O status block */
0, /* astadr - AST routine */
0, /* astprm - AST parameter */
buffadr, /* p1 - output buffer */
buflen); /* p2 - length of message */

Function codes are defined for all supported device types, and most of the codes
are device dependent; that is, they perform functions specific to a particular
device. The $IODEF macro defines symbolic names for these function codes.
For information about how to obtain a listing of these symbolic names, see the
OpenVMS Programming Interfaces: Calling a System Routine. For details about
all function codes and an explanation of the parameters required by each, see the
OpenVMS I/O User’s Reference Manual.

To read from or write to a terminal with the SYS$QIO or SYS$QIOW system
service, you must first associate the terminal name with an I/O channel by
calling the SYS$ASSIGN system service, then use the assigned channel in the
SYS$QIO or SYS$QIOW system service. To read from SYS$INPUT or write to
SYS$OUTPUT, specify the appropriate logical name as the terminal name in
the SYS$ASSIGN system service. In general, use SYS$QIO for asynchronous
operations, and use SYS$QIOW for all other operations.

9.7 Synchronizing Service Completion
The SYS$QIO system service returns control to the calling program as soon
as a request is queued; the status code returned in R0 indicates whether the
request was queued successfully. To ensure proper synchronization of the queuing
operation with respect to the program, the program must do the following:

• Test whether the operation was queued successfully.

• Test whether the operation itself completed successfully.

Optional arguments to the SYS$QIO service provide techniques for synchronizing
I/O completion. There are three methods you can use to test for the completion of
an I/O request:

• Specify the number of an event flag to be set when the operation completes.

• Specify the address of an AST routine to be executed when the operation
completes.

• Specify the address of an I/O status block in which the system can place the
return status when the operation completes.

I/O status blocks are explained in Section 9.10.

The use of these three techniques is shown in the examples that follow.
Example 9–1 shows specifying event flags.

9–13

System Service Input/Output Operations
9.7 Synchronizing Service Completion

Example 9–1 Event Flags

unsigned int status, efn=0, efn1=1, efn=2;
.
.
.

status = SYS$QIO(efn1, . . .); /* Issue 1st I/O request */
if ((status & 1)) != 1)
LIB$SIGNAL(status); /* Queued successfully? */ 1

.

.

.
status = SYS$QIO(efn2, . . .); /* Issue second I/O request */ 2
if ((status & 1)) != 1) /* Queued successfully? */

LIB$SIGNAL(status);
.
.
. 3

status = SYS$WFLAND(efn, / *Wait until both are done */
&mask, . . . 4
.
.
.

1 When you specify an event flag number as an argument, SYS$QIO clears the
event flag when it queues the I/O request. When the I/O completes, the flag
is set.

2 In this example, the program issues two Queue I/O requests. A different
event flag is specified for each request.

3 The Wait for Logical AND of Event Flags (SYS$WFLAND) system service
places the process in a wait state until both I/O operations are complete. The
efn argument indicates that the event flags are both in cluster 0; the mask
argument indicates the flags for which the process is to wait.

4 Note that the SYS$WFLAND system service (and the other wait system
services) wait for the event flag to be set; they do not wait for the I/O
operation to complete. If some other event were to set the required event
flags, the wait for event flag would complete too soon. You must coordinate
the use of event flags carefully. (See Section 9.8 for a discussion of the
recommended method for testing I/O completion.)

9–14

System Service Input/Output Operations
9.7 Synchronizing Service Completion

Example 9–2 shows specifying an AST routine.

Example 9–2 AST Routine

unsigned int status, astprm=1;
.
.
.

status = SYS$QIO(. . . &ttast, /* I/O request with AST */ 1
astprm . . .);

if ((status & 1) != 1) /* Queued successfully? */
LIB$SIGNAL(status);

.

.

.
}

void ttast (int astprm) { /* AST service routine */ 2

/* Handle I/O completion */
.
.
.

return;
} /* End of AST routine */

1 When you specify the astadr argument to the SYS$QIO system service, the
system interrupts the process when the I/O completes and passes control to
the specified AST service routine.

The SYS$QIO system service call specifies the address of the AST routine,
TTAST, and a parameter to pass as an argument to the AST service routine.
When $QIO returns control, the process continues execution.

2 When the I/O completes, the AST routine TTAST is called, and it responds to
the I/O completion. By examining the AST parameter, TTAST can determine
the origin of the I/O request.

When this routine is finished executing, control returns to the process at the
point at which it was interrupted. If you specify the astadr argument in your
call to SYS$QIO, you should also specify the iosb argument so that the AST
routine can evaluate whether the I/O completed successfully.

9–15

System Service Input/Output Operations
9.7 Synchronizing Service Completion

Example 9–3 shows specifying an I/O status block.

Example 9–3 I/O Status Block

#include <stdio.h>
#include <ssdef.h>

.

.

.
/* I/O status block */

struct {
unsigned short iostat, iolen;
unsigned int dev_info;

}ttiosb; 1

unsigned int status;
.
.
.

status = SYS$QIO(, . . . , &ttiosb, . . .); 2
if ((status & 1) != 1) /* Queued successfully? */

LIB$SIGNAL(status);
.
.
.

while(ttiosb.iostat == 0) {
/* Loop until done */ 3

}

if(ttiosb.iostat != SS$_NORMAL) {
/* Perform error handling */

.

.

.
}

1 An I/O status block is a quadword structure that the system uses to post
the status of an I/O operation. You must define the quadword area in your
program. TTIOSB defines the I/O status block for this I/O operation. The
iosb argument in the SYS$QIO system service refers to this quadword.

2 Instead of polling the low-order word of the I/O status block for the completion
status, the program uses the preferred method of using an event flag and
calling SYS$SYNCH to determine I/O completion.

3 The process polls the I/O status block. If the low-order word still contains
zero, the I/O operation has not yet completed. In this example, the program
loops until the request is complete.

9.8 Recommended Method for Testing Asynchronous Completion
Digital recommends that you use the Synchronize (SYS$SYNCH) system service
to wait for completion of an asynchronous event. The SYS$SYNCH service
correctly waits for the actual completion of an asynchronous event, even if some
other event sets the event flag.

9–16

System Service Input/Output Operations
9.8 Recommended Method for Testing Asynchronous Completion

To use the SYS$SYNCH service to wait for the completion of an asynchronous
event, you must specify both an event flag number and the address of an
I/O status block (IOSB) in your call to the asynchronous system service. The
asynchronous service queues the request and returns control to your program.
When the asynchronous service completes, it sets the event flag and places the
final status of the request in the IOSB.

In your call to SYS$SYNCH, you must specify the same efn and I/O status block
that you specified in your call to the asynchronous service. The SYS$SYNCH
service waits for the event flag to be set by means of the SYS$WAITFR system
service. When the specified event flag is set, SYS$SYNCH checks the specified
I/O status block. If the I/O status block is nonzero, the system service has
completed and SYS$SYNCH returns control to your program. If the I/O status
block is zero, SYS$SYNCH clears the event flag by means of the SYS$CLREF
service and calls the $WAITFR service to wait for the event flag to be set.

The SYS$SYNCH service sets the event flag before returning control to your
program. This ensures that the call to SYS$SYNCH does not interfere
with testing for completion of another asynchronous event that completes at
approximately the same time and uses the same event flag to signal completion.

The following call to the Queue I/O Request (SYS$QIO) system service
demonstrates how the SYS$SYNCH service is used:

.

.

.
unsigned int status, event_flag = 1;
struct {

short int iostat, iolen;
unsigned int dev_info;

}ttiosb;
.
.
.

/* Request I/O */
status = SYS$QIO (event_flag, . . . , &ttiosb . . .);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

/* Wait until I/O completes */
status = SYS$SYNCH (event_flag, &ttiosb);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

Note

The SYS$QIOW service provides a combination of SYS$QIO and
SYS$SYNCH.

9–17

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

9.9 Synchronous and Asynchronous Forms of Input/Output
Services

You can execute some input/output services either synchronously or
asynchronously. A ‘‘W’’ at the end of a system service name indicates the
synchronous version of the system service.

The synchronous version of a system service combines the functions of the
asynchronous version of the service and the Synchronize (SYS$SYNCH)
system service. The synchronous version acts exactly as if you had used the
asynchronous version of the system service followed immediately by a call to
SYS$SYNCH; it queues the I/O request, and then places the program in a wait
state until the I/O request completes. The synchronous version takes the same
arguments as the asynchronous version.

Table 9–2 lists the asynchronous and synchronous names of input/output services
that have synchronous versions.

Table 9–2 Asynchronous Input/Output Services and Their Synchronous
Versions

Asynchronous Name Synchronous Name Description

$BRKTHRU $BRKTHRUW Breakthrough

$GETDVI $GETDVIW Get Device/Volume Information

$GETJPI $GETJPIW Get Job/Process Information

$GETLKI $GETLKIW Get Lock Information

$GETQUI $GETQUIW Get Queue Information

$GETSYI $GETSYIW Get Systemwide Information

$QIO $QIOW Queue I/O Request

$SNDJBC $SNDJBCW Send to Job Controller

$UPDSEC $UPDSECW Update Section File on Disk

9.9.1 Reading Operations with SYS$QIOW
The SYS$QIO and SYS$QIOW system services move one record of data from
a terminal to a variable. For synchronous I/O, use SYS$QIOW. Complete
information about the SYS$QIO and SYS$QIOW system services is presented in
the OpenVMS System Services Reference Manual.

Note

Do not use the SYS$QIO and SYS$QIOW system services for input from
a file or nonterminal device.

The SYS$QIO and SYS$QIOW system services place the data read in the variable
specified in the 1 argument. The second word of the status block contains the
offset from the beginning of the buffer to the terminator—hence, it equals the size
of the data read. Always reference the data as a substring, using the offset to the
terminator as the position of the last character (that is, the size of the substring).
If you reference the entire buffer, your data will include the terminator for
the operation (for example, the CR character) and any excess characters from

9–18

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

a previous operation using the buffer. (The only exception to the substring
guideline is if you deliberately overflow the buffer to terminate the I/O operation.)

Example 9–4 shows use of the SYS$QIOW system service and reads a line of data
from the terminal and waits for the I/O to complete.

Example 9–4 Reading Data from the Terminal Synchronously
.
.
.

INTEGER STATUS
! QIOW structures
INTEGER*2 INPUT_CHAN ! I/O channel
INTEGER CODE, ! Type of I/O operation
2 INPUT_BUFF_SIZE, ! Size of input buffer
2 PROMPT_SIZE, ! Size of prompt
2 INPUT_SIZE ! Size of input line as read
PARAMETER (PROMPT_SIZE = 13,
2 INPUT_BUFF_SIZE = 132)
CHARACTER*132 INPUT
CHARACTER*(*) PROMPT
PARAMETER (PROMPT = ’Input value: ’)
! Define symbols used in I/O operations
INCLUDE ’($IODEF)’
! Status block for QIOW
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT, ! Return status

2 TERM_OFFSET, ! Location of line terminator
2 TERMINATOR, ! Value of terminator
2 TERM_SIZE ! Size of terminator
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Subprograms
INTEGER*4 SYS$ASSIGN,
2 SYS$QIOW

.

.

.
! Assign an I/O channel to SYS$INPUT
STATUS = SYS$ASSIGN (’SYS$INPUT’,
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read with prompt
CODE = IO$_READPROMPT
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2 ,,
2 %REF (INPUT),
2 %VAL (INPUT_BUFF_SIZE),
2 ,,
2 %REF (PROMPT),
2 %VAL (PROMPT_SIZE))

(continued on next page)

9–19

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 9–4 (Cont.) Reading Data from the Terminal Synchronously

! Check QIOW status
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string
INPUT_SIZE = IOSB.TERM_OFFSET

.

.

.

9.9.2 Reading Operations with SYS$QIO
To perform an asynchronous read operation, use the SYS$QIO system service
and specify an event flag (the first argument, which must be passed by value).
Your program continues while the I/O is taking place. When you need the input
from the I/O operation, invoke the SYS$SYNCH system service to wait for the
event flag and status block specified in the SYS$QIO system service. If the I/O
is not complete, your program pauses until it is. In this manner, you can overlap
processing within your program. Naturally, you must take care not to assume
data has been returned by the I/O operation before you call SYS$SYNCH and it
returns successfully. Example 9–5 demonstrates an asynchronous read operation.

Example 9–5 Reading Data from the Terminal Asynchronously
.
.
.

INTEGER STATUS
! QIO structures
INTEGER*2 INPUT_CHAN ! I/O channel
INTEGER CODE, ! Type of I/O operation
2 INPUT_BUFF_SIZE, ! Size of input buffer
2 PROMPT_SIZE, ! Size of prompt
2 INPUT_SIZE ! Size of input line as read
PARAMETER (INPUT_BUFF_SIZE = 132,
2 PROMPT = 13)
CHARACTER*132 INPUT
CHARACTER*(*) PROMPT
PARAMETER (PROMPT = ’Input value: ’)
INCLUDE ’($IODEF)’ ! Symbols used in I/O operations
! Status block for QIO
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT, ! Return status

2 TERM_OFFSET, ! Location of line terminator
2 TERMINATOR, ! Value of terminator
2 TERM_SIZE ! Size of terminator
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB

(continued on next page)

9–20

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 9–5 (Cont.) Reading Data from the Terminal Asynchronously
! Event flag for I/O
INTEGER INPUT_EF
! Subprograms
INTEGER*4 SYS$ASSIGN,
2 SYS$QIO,
2 SYS$SYNCH,
2 LIB$GET_EF

.

.

.
! Assign an I/O channel to SYS$INPUT
STATUS = SYS$ASSIGN (’SYS$INPUT’,
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get an event flag
STATUS = LIB$GET_EF (INPUT_EF)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Read with prompt
CODE = IO$_READPROMPT
STATUS = SYS$QIO (%VAL (INPUT_EF),
2 %VAL (INPUT_CHAN),
2 %VAL (CODE),
2 IOSB,
2 ,,
2 %REF (INPUT),
2 %VAL (INPUT_BUFF_SIZE),
2 ,,
2 %REF (PROMPT),
2 %VAL (PROMPT_SIZE))
! Check status of QIO
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

.

.

.
STATUS = SYS$SYNCH (%VAL (INPUT_EF),
2 IOSB)
! Check status of SYNCH
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Check status of I/O operation
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Set size of input string
INPUT_SIZE = IOSB.TERM_OFFSET

.

.

.

Be sure to check the status of the I/O operation as returned in the I/O status
block. In an asynchronous operation, you can check this status only after the I/O
operation is complete (that is, after the call to SYS$SYNCH).

9.9.3 Write Operations with SYS$QIOW
The SYS$QIO and SYS$QIOW system services move one record of data from a
character value to the terminal. Do not use these system services, as described
here, for output to a file or nonterminal device.

For synchronous I/O, use SYS$QIOW and omit the first argument (the event flag
number). For complete information about SYS$QIO and SYS$QIOW, refer to the
OpenVMS System Services Reference Manual.

9–21

System Service Input/Output Operations
9.9 Synchronous and Asynchronous Forms of Input/Output Services

Example 9–6 writes a line of character data to the terminal.

Example 9–6 Writing Character Data to a Terminal

INTEGER STATUS,
2 ANSWER_SIZE
CHARACTER*31 ANSWER
INTEGER*2 OUT_CHAN
! Status block for QIO
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT,

2 BYTE_COUNT,
2 LINES_OUTPUT
BYTE COLUMN,

2 LINE
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Routines
INTEGER SYS$ASSIGN,
2 SYS$QIOW
! IO$ symbol definitions
INCLUDE ’($IODEF)’

.

.

.
STATUS = SYS$ASSIGN (’SYS$OUTPUT’,
2 OUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
STATUS = SYS$QIOW (,
2 %VAL (OUT_CHAN),
2 %VAL (IO$_WRITEVBLK),
2 IOSB,
2 ,
2 ,
2 %REF (’Answer: ’//ANSWER(1:ANSWER_SIZE)),
2 %VAL (8+ANSWER_SIZE),
2 ,
2 %VAL (32),,) ! Single spacing
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
END

9.10 I/O Completion Status
When an I/O operation completes, the system posts the completion status in the
I/O status block, if one is specified. The completion status indicates whether the
operation completed successfully, the number of bytes that were transferred, and
additional device-dependent return information.

Figure 9–7 illustrates the format for the SYS$QIO system service of the
information written in the IOSB.

The first word contains a system status code indicating the success or failure of
the operation. The status codes used are the same as for all returns from system
services; for example, SS$_NORMAL indicates successful completion.

9–22

System Service Input/Output Operations
9.10 I/O Completion Status

Figure 9–7 I/O Status Block

16

Condition valueCount

ZK−0856−GE

Device−dependent information

31 015

The second word contains the number of bytes actually transferred in the I/O
operation. Note that for some devices this word contains only the low-order word
of the count. For information about specific devices, see the OpenVMS I/O User’s
Reference Manual.

The second longword contains device-dependent return information.

System services other than SYS$QIO use the quadword I/O status block, but the
format is different. See the description of each system service in the OpenVMS
System Services Reference Manual for the format of the information written in
the IOSB for that service.

To ensure successful I/O completion and the integrity of data transfers, you
should check the IOSB following I/O requests, particularly for device-dependent
I/O functions. For complete details about how to use the I/O status block, see the
OpenVMS I/O User’s Reference Manual.

9.11 Deassigning I/O Channels
When a process no longer needs access to an I/O device, it should release
the channel assigned to the device by calling the Deassign I/O Channel
(SYS$DASSGN) system service:

$DASSGN_S CHAN=TTCHAN

This service call releases the terminal channel assignment acquired in the
SYS$ASSIGN example shown in Section 9.5. The system automatically deassigns
channels for a process when the image that assigned the channel exits.

9.12 Using Complete Terminal I/O
The following example shows a complete sequence of input and output
operations using the $QIOW macro to read and write lines to the current
default SYS$INPUT device. Because the input/output of this program must be to
the current terminal, it functions correctly only if you execute it interactively.

#include <stdio.h>
#include <ssdef.h>
#include <descrip.h>
#include <string.h>
#include <iodef.h>

/* I/O status block */
struct { 1

unsigned short iostat, ttiolen;
unsigned int dev_info;

}ttiosb;

9–23

System Service Input/Output Operations
9.12 Using Complete Terminal I/O

main() {
unsigned int status ,outlen, inlen;
unsigned short ttchan;
char buffer[80]; 2
$DESCRIPTOR(ttname,"SYS$INPUT"); 3

/* Assign a channel */
status = SYS$ASSIGN(&ttname, /* devnam - device number */ 4

&ttchan, /* chan - channel number */
0, 0, 0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Request I/O */
inlen = strlen(buffer);
status = SYS$QIOW(0, /* efn - event flag */

ttchan, /* chan - channel number */
IO$_READVBLK, /* func - function modifier */
&ttiosb, /* iosb - I/O status block */
0, /* astadr - AST routine */
0, /* astprm - AST parameter */
buffer, /* p1 - buffer */
inlen, /* p2 - length of buffer */
0, 0, 0, 0); 5

if ((status & 1) != 1) 6
LIB$SIGNAL(status);

/* Get length from IOSB */
outlen = ttiosb.ttiolen; 7

status = SYS$QIOW(0, ttchan, IO$_WRITEVBLK, &ttiosb, 0, 0, buffer, outlen,
0, 0, 0, 0);

if ((status & 1) != 1)
LIB$SIGNAL(status); 8

/* Deassign the channel */
status = SYS$DASSGN(ttchan); /* chan - channel */ 9
if ((status & 1) != 1)

LIB$SIGNAL(status);

}

1 The IOSB for the I/O operations is structured so that the program can easily
check for the completion status (in the first word) and the length of the input
string returned (in the second word).

2 The string will be read into the buffer BUFFER; the longword OUTLEN will
contain the length of the string for the output operation.

3 The TTNAME label is a character string descriptor for the logical device
SYS$INPUT, and TTCHAN is a word to receive the channel number assigned
to it.

4 The $ASSIGN service assigns a channel and writes the channel number at
TTCHAN.

5 If the $ASSIGN service completes successfully, the $QIOW macro reads a line
from the terminal, and requests that the completion status be posted in the
I/O status block defined at TTIOSB.

6 The process waits until the I/O is complete, then checks the first word in the
I/O status block for a successful return. If unsuccessful, the program takes an
error path.

9–24

System Service Input/Output Operations
9.12 Using Complete Terminal I/O

7 The length of the string read is moved into the longword at OUTLEN, because
the $QIOW macro requires a longword argument. However, the length field
of the I/O status block is only 1 word long. The $QIOW macro writes the line
just read to the terminal.

8 The program performs error checks. First, it ensures that the $OUTPUT
macro successfully queued the I/O request; then, when the request is
completed, it ensures that the I/O was successful.

9 When all I/O operations on the channel are finished, the channel is
deassigned.

9.13 Canceling I/O Requests
If a process must cancel I/O requests that have been queued but not yet
completed, it can issue the Cancel I/O On Channel (SYS$CANCEL) system
service. All pending I/O requests issued by the process on that channel are
canceled; you cannot specify a particular I/O request.

The SYS$CANCEL system service performs an asynchronous cancel operation.
This means that the application must wait for each I/O operation issued to the
driver to complete before checking the status for that operation.

For example, you can call the SYS$CANCEL system service as follows:

unsigned int status, efn1=3, efn2=4;
.
.
.

status = SYS$QIO(efn1, ttchan, &iosb1, . . .);
status = SYS$QIO(efn2, ttchan, &iosb2, . . .);

.

.

.
status = SYS$CANCEL(ttchan);
status = SYS$SYNCH(efn1, &iosb1);
status = SYS$SYNCH(efn2, &iosb2);

In this example, the SYS$CANCEL system service initiates the cancellation of all
pending I/O requests to the channel whose number is located at TTCHAN.

The SYS$CANCEL system service returns after initiating the cancellation of the
I/O requests. If the call to SYS$QIO specified an event flag, AST service routine,
or I/O status block, the system sets the flag, delivers the AST, or posts the I/O
status block as appropriate when the cancellation is completed.

9.14 Logical Names and Physical Device Names
When you specify a device name as input to an I/O system service, it can be a
physical device name or a logical name. If the device name contains a colon (:),
the colon and the characters after it are ignored. When an underscore character
(_) precedes a device name string, it indicates that the string is a physical device
name string, for example, _TTB3:.

Any string that does not begin with an underscore is considered a logical name,
even though it may be a physical device name. Table 9–3 lists system services
that translate a logical name iteratively until a physical device name is returned,
or until the system default number of translations have been performed.

9–25

System Service Input/Output Operations
9.14 Logical Names and Physical Device Names

Table 9–3 System Services for Translating Logical Names

System Service Definition

SYS$ALLOC Allocate Device

SYS$ASSIGN Assign I/O Channel

SYS$BRDCST Broadcast

SYS$DALLOC Deallocate Device

SYS$DISMOU Dismount Volume

SYS$GETDEV Get I/O Device Information

SYS$GETDVI Get Device/Volume Information

SYS$MOUNT Mount Volume

In each translation, the logical name tables defined by the logical name
LNM$FILE_DEV are searched in order. These tables, listed in search order,
are normally LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM. If
a physical device name is located, the I/O request is performed for that device.

If the services do not locate an entry for the logical name, the I/O service treats
the name specified as a physical device name. When you specify the name of an
actual physical device in a call to one of these services, include the underscore
character to bypass the logical name translation.

When the SYS$ALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is prefixed
with an underscore character. When this name is used for the subsequent
SYS$ASSIGN system service, the SYS$ASSIGN service does not attempt to
translate the device name.

If you use logical names in I/O service calls, you must be sure to establish a valid
device name equivalence before program execution. You can do this by issuing
a DEFINE command from the command stream, or by having the program
establish the equivalence name before the I/O service call with the Create Logical
Name (SYS$CRELNM) system service.

For details about how to create and use logical names, see Chapter 10.

9.15 Device Name Defaults
If, after logical name translation, a device name string in an I/O system service
call does not fully specify the device name (that is, device, controller, and unit),
the service either provides default values for nonspecified fields, or provides
values based on device availability.

The following rules apply:

• The SYS$ASSIGN and SYS$DALLOC system services apply default values,
as shown in Table 9–4.

• The SYS$ALLOC system service treats the device name as a generic device
name and attempts to find a device that satisfies the components of the device
name specified, as shown in Table 9–4.

9–26

System Service Input/Output Operations
9.15 Device Name Defaults

Table 9–4 Default Device Names for I/O Services

Device Device Name1 Generic Device

dd: ddA0: (unit 0 on controller
A)

ddxy: (any available device of the specified
type)

ddc: ddc0: (unit 0 on controller
specified)

ddcy: (any available unit on the specified
controller)

ddu: ddAu: (unit specified on
controller A)

ddxu: (device of specified type and unit on any
available controller)

ddcu: ddcu: (unit and controller
specified)

ddcu: (unit and controller specified)

1See the OpenVMS User’s Manual for a summary of the device names.
Key

dd—Specified device type (capital letters indicate a specific controller; numbers indicate a specific
unit)
c—Specified controller
x—Any controller
u—Specified unit number
y—Any unit number

9.16 Obtaining Information About Physical Devices
The Get Device/Volume Information (SYS$GETDVI) system service returns
information about devices. The information returned is specified by an item list
created before the call to SYS$GETDVI.

When you call the SYS$GETDVI system service, you must provide the address
of an item list that specifies the information to be returned. The format of the
item list is described in the description of SYS$GETDVI in the OpenVMS System
Services Reference Manual. The OpenVMS I/O User’s Reference Manual contains
details on the device-specific information these services return.

In cases where a generic (that is, nonspecific) device name is used in an I/O
service, a program may need to find out what device has been used. To do this,
the program should provide SYS$GETDVI with the number of the channel to
the device and request the name of the device with the DVI$_DEVNAM item
identifier.

The operating system also supports a device called the null device for program
development. The mnemonic for the null device is NL. Its characteristics are as
follows:

• A read from NL returns an end-of-file error (SS$_ENDOFFILE).

• A write to NL immediately returns a success message (SS$_NORMAL).

The null device functions as a virtual device to which you can direct output but
from which the data does not return.

9.16.1 Checking the Terminal Device
You are restricted to a terminal device if you use any of the special functions
described in this section. If the user of your program redirects SYS$INPUT
or SYS$OUTPUT to a file or nonterminal device, an error occurs. You can use
the SYS$GETDVIW system service to make sure the logical name is associated
with a terminal, as shown in Example 9–7. SYS$GETDVIW returns a status of
SS$_IVDEVNAM if the logical name is defined as a file or otherwise does not

9–27

System Service Input/Output Operations
9.16 Obtaining Information About Physical Devices

equate to a device name. The type of device is the response associated with the
DVI$_DEVCLASS request code and should be DC$_TERM for a terminal.

Example 9–7 Using SYS$GETDVIW to Verify the Device Name

RECORD /ITMLST/ DVI_LIST
LOGICAL*4 STATUS
! GETDVI buffers
INTEGER CLASS, ! Response buffer
2 CLASS_LEN ! Response length
! GETDVI symbols
INCLUDE ’($DCDEF)’
INCLUDE ’($SSDEF)’
INCLUDE ’($DVIDEF)’
! Define subprograms
INTEGER SYS$GETDVIW
! Find out the device class of SYS$INPUT
DVI_LIST.BUFLEN = 4
DVI_LIST.CODE = DVI$_DEVCLASS
DVI_LIST.BUFADR = %LOC (CLASS)
DVI_LIST.RETLENADR = %LOC (CLASS_LEN)
STATUS = SYS$GETDVIW (,,’SYS$INPUT’,
2 DVI_LIST,,,,,)
IF ((.NOT. STATUS) .AND. (STATUS .NE. SS$_IVDEVNAM)) THEN
CALL LIB$SIGNAL (%VAL (STATUS))

END IF
! Make sure device is a terminal
IF ((STATUS .NE. SS$_IVDEVNAM) .AND. (CLASS .EQ. DC$_TERM)) THEN

.

.

.
ELSE

TYPE *, ’Input device not a terminal’
END IF

9.16.2 Terminal Characteristics
The OpenVMS I/O User’s Reference Manual describes device-specific
characteristics associated with terminals. To examine a characteristic, issue
a call to SYS$QIO or SYS$QIOW system service with the IO$_SENSEMODE
function and examine the appropriate bit in the structure returned to the P1
argument. To change a characteristic:

1. Issue a call to SYS$QIO or SYS$QIOW system service with the IO$_
SENSEMODE function.

2. Set or clear the appropriate bit in the structure returned to the P1 argument.

3. Issue a call to SYS$QIO or SYS$QIOW system service with the IO$_
SETMODE function passing, as the P1 argument, to modify the structure you
obtained from the sense mode operation.

Example 9–8 turns off the HOSTSYNC terminal characteristic. To check whether
NOHOSTSYNC has been set, enter the SHOW TERMINAL command.

9–28

System Service Input/Output Operations
9.16 Obtaining Information About Physical Devices

Example 9–8 Disabling the HOSTSYNC Terminal Characteristic
.
.
.

INTEGER*4 STATUS
! I/O channel
INTEGER*2 INPUT_CHAN
! I/O status block
STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT
BYTE TRANSMIT,

2 RECEIVE,
2 CRFILL,
2 LFFILL,
2 PARITY,
2 ZERO
END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB
! Characteristics buffer
! Note: basic characteristics are first three
! bytes of second longword -- length is
! last byte
STRUCTURE /CHARACTERISTICS/
BYTE CLASS,

2 TYPE
INTEGER*2 WIDTH
UNION
MAP
INTEGER*4 BASIC

END MAP
MAP
BYTE LENGTH(4)

END MAP
END UNION
INTEGER*4 EXTENDED

END STRUCTURE
RECORD /CHARACTERISTICS/ CHARBUF
! Define symbols used for I/O and terminal operations
INCLUDE ’($IODEF)’
INCLUDE ’($TTDEF)’
! Subroutines
INTEGER*4 SYS$ASSIGN,
2 SYS$QIOW
! Assign channel to terminal
STATUS = SYS$ASSIGN (’SYS$INPUT’,
2 INPUT_CHAN,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Get current characteristics
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (IO$_SENSEMODE),
2 IOSB,,,
2 CHARBUF, ! Buffer
2 %VAL (12),,,,) ! Buffer size
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))
! Turn off hostsync
CHARBUF.BASIC = IBCLR (CHARBUF.BASIC, TT$V_HOSTSYNC)

(continued on next page)

9–29

System Service Input/Output Operations
9.16 Obtaining Information About Physical Devices

Example 9–8 (Cont.) Disabling the HOSTSYNC Terminal Characteristic

! Set new characteristics
STATUS = SYS$QIOW (,
2 %VAL (INPUT_CHAN),
2 %VAL (IO$_SETMODE),
2 IOSB,,,
2 CHARBUF,
2 %VAL (12),,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
IF (.NOT. IOSB.IOSTAT) CALL LIB$SIGNAL (%VAL (IOSB.IOSTAT))

END

If you modify terminal characteristics with set mode QIO operations, you should
save the characteristics buffer that you obtain on the first sense mode operation,
and restore those characteristics with a set mode operation before exiting.
(Resetting is not necessary if you just use modifiers on each read operation.) To
ensure that the restoration is performed if the program aborts (for example, if
the user presses Ctrl/Y), you should restore the user’s environment in an exit
handler. See Chapter 13 for a description of exit handlers.

9.16.3 Record Terminators
A QIO read operation ends when the user enters a terminator or when the input
buffer fills, whichever occurs first. The standard set of terminators applies unless
you specify the 4 argument in the read QIO operation. You can examine the
terminator that ended the read operation by examining the input buffer starting
at the terminator offset (second word of the I/O status block). The length, in
bytes, of the terminator is specified by the high-order word of the I/O status
block. The third word of the I/O status block contains the value of the first
character of the terminator.

Examining the terminator enables you to read escape sequences from the
terminal, provided that you modify the QIO read operation with the IO$M_
ESCAPE modifier (or the ESCAPE terminal characteristic is set). The first
character of the terminator will be the ESC character (an ASCII value of 27). The
remaining characters will contain the value of the escape sequence.

9.16.4 File Terminators
You must examine the terminator to detect end-of-file (Ctrl/Z) on the terminal.
No error condition is generated at the QIO level. If the user presses Ctrl/Z, the
terminator will be the SUB character (an ASCII value of 26).

9.17 Device Allocation
Many I/O devices are shareable; that is, more than one process at a time can
access the device. By calling the Assign I/O Channel (SYS$ASSIGN) system
service, a process is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a device so that data is not
affected by other processes. To reserve a device for exclusive use, you must
allocate it.

Device allocation is normally accomplished with the DCL command ALLOCATE.
A process can also allocate a device by calling the Allocate Device (SYS$ALLOC)
system service. When a device has been allocated by a process, only the process

9–30

System Service Input/Output Operations
9.17 Device Allocation

that allocated the device and any subprocesses it creates can assign channels to
the device.

When you call the SYS$ALLOC system service, you must provide a device name.
The device name specified can be any of the following:

• A physical device name; for example, the tape drive MTB3:

• A logical name; for example, TAPE

• A generic device name; for example, MT:

If you specify a physical device name, SYS$ALLOC attempts to allocate the
specified device.

If you specify a logical name, SYS$ALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical name.

If you specify a generic device name (that is, if you specify a device type but
do not specify a controller or unit number, or both), SYS$ALLOC attempts to
allocate any device available of the specified type. For more information about
the allocation of devices by generic names, see Section 9.15.

When you specify generic device names, you must provide fields for the
SYS$ALLOC system service to return the name and the length of the physical
device that is actually allocated so that you can provide this name as input to the
SYS$ASSIGN system service.

The following example illustrates the allocation of a tape device specified by the
logical name TAPE:

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

main() {
unsigned int status;
char devstr[64];
unsigned short phylen, tapechan;

$DESCRIPTOR(logdev,"TAPE"); /* Descriptor for logical name */
$DESCRIPTOR(devdesc,devstr); /* Descriptor for physical name */

/* Allocate a device */
status = SYS$ALLOC(&logdev, /* devnam - device name */ 1

&phylen, /* phylen - length device name string */
&devdesc, /* phybuf - buffer for devnam string */
0, 0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Assign a channel to the device */
status = SYS$ASSIGN(&devdesc, /* devnam - device name */ 2

&tapechan, /* chan - channel number */
0, 0, 0);

if ((status & 1) != 1)
LIB$SIGNAL(status);

/* Deassign the channel */
status = SYS$DASSGN(tapechan); /* chan - channel number */3
if ((status & 1) != 1)

LIB$SIGNAL(status);

9–31

System Service Input/Output Operations
9.17 Device Allocation

/* Deallocate the device */
status = SYS$DALLOC(&devdesc, /* devnam - device name */

0); /* acmode - access mode */
if ((status & 1) != 1)

LIB$SIGNAL(status);

}

1 The SYS$ALLOC system service call requests allocation of a device
corresponding to the logical name TAPE, defined by the character string
descriptor LOGDEV. The argument DEVDESC refers to the buffer provided
to receive the physical device name of the device that is allocated and the
length of the name string. The SYS$ALLOC service translates the logical
name TAPE and returns the equivalence name string of the device actually
allocated into the buffer at DEVDESC. It writes the length of the string in
the first word of DEVDESC.

2 The SYS$ASSIGN command uses the character string returned by the
SYS$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN.

3 When I/O operations are completed, the SYS$DASSGN system service
deassigns the channel, and the SYS$DALLOC system service deallocates the
device. The channel must be deassigned before the device can be deallocated.

9.17.1 Implicit Allocation
Devices that cannot be shared by more than one process (for example, terminals
and line printers) do not have to be explicitly allocated. Because they are
nonshareable, they are implicitly allocated by the SYS$ASSIGN system service
when SYS$ASSIGN is called to assign a channel to the device.

9.17.2 Deallocation
When the program has finished using an allocated device, it should release the
device with the Deallocate Device (SYS$DALLOC) system service to make it
available for other processes.

At image exit, the system automatically deallocates devices allocated by the
image.

9.18 Mounting, Dismounting, and Initializing Volumes
This section introduces you to using system services to mount, dismount, and
initialize disk and tape volumes.

9.18.1 Mounting a Volume
Mounting a volume establishes a link between a volume, a device, and a process.
A volume, or volume set, must be mounted before I/O operations can be performed
on the volume. You interactively mount or dismount a volume from the DCL
command stream with the MOUNT or DISMOUNT command. A process can also
mount or dismount a volume or volume set programmatically using the Mount
Volume (SYS$MOUNT) or the Dismount Volume (SYS$DISMOU) system service,
respectively.

Mounting a volume involves two operations:

1. Place the volume on the device and start the device (by pressing the START
or LOAD button).

2. Mount the volume with the $MOUNT system service.

9–32

System Service Input/Output Operations
9.18 Mounting, Dismounting, and Initializing Volumes

9.18.1.1 Calling the SYS$MOUNT System Service
The Mount Volume (SYS$MOUNT) system service allows a process to mount a
single volume or a volume set. When you call the SYS$MOUNT system service,
you must specify a device name.

The SYS$MOUNT system service has a single argument, which is the address of
a list of item descriptors. The list is terminated by a longword of binary zeros.
Figure 9–8 shows the format of an item descriptor.

Figure 9–8 SYS$MOUNT Item Descriptor

ZK−1705−GE

Return length address

Buffer address

Item code Buffer length

31 015

Most item descriptors do not have to be in any order. To mount volume sets,
you must specify one item descriptor per device and one item descriptor per
volume; you must specify the descriptors for the volumes in the same order as the
descriptors for the devices on which the volumes are loaded.

For item descriptors other than device and volume names, if you specify the same
item descriptor more than once, the last occurrence of the descriptor is used.

The following example illustrates a call to SYS$MOUNT. The call is equivalent to
the DCL command that precedes the example.

$ MOUNT/SYSTEM/NOQUOTA DRA4:,DRA5: USER01,USER02 USERD$

#include <stdio.h>
#include <descrip.h>
#include <mntdef.h>

.

.

.

struct {
unsigned short buflen, item_code;
void *bufaddr;
int *retlenaddr;

}itm;

struct {
struct itm itm[6];
unsigned int terminator;

}itm_lst ;

main() {
.
.
.

unsigned int status, flags;

9–33

System Service Input/Output Operations
9.18 Mounting, Dismounting, and Initializing Volumes

$DESCRIPTOR(dev1,"DRA4:");
$DESCRIPTOR(vol1,"USER01:");
$DESCRIPTOR(dev2,"DRA5:");
$DESCRIPTOR(vol2,"USER02:");
$DESCRIPTOR(log,"USERD$:");

flags = MNT$M_SYSTEM | MNT$M_NODISKQ;

itm_lst.itm[0].buflen = 4;
itm_lst.itm[0].item_code = MNT$_FLAGS;
itm_lst.itm[0].bufaddr = flags;
itm_lst.itm[0].retlenaddr = 0;

itm_lst.itm[1].buflen = 5;
itm_lst.itm[1].item_code = MNT$_DEVNAM;
itm_lst.itm[1].bufaddr = dev1;
itm_lst.itm[1].retlenaddr = 0;

itm_lst.itm[2].buflen = 6;
itm_lst.itm[2].item_code = MNT$_VOLNAM;
itm_lst.itm[2].bufaddr = vol1;
itm_lst.itm[2].retlenaddr = 0;

itm_lst.itm[3].buflen = 5;
itm_lst.itm[3].item_code = MNT$_DEVNAM;
itm_lst.itm[3].bufaddr = dev2;
itm_lst.itm[3].retlenaddr = 0;

itm_lst.itm[4].buflen = 6;
itm_lst.itm[4].item_code = MNT$_VOLNAM;
itm_lst.itm[4].bufaddr = vol2;
itm_lst.itm[4].retlenaddr = 0;

itm_lst.itm[5].buflen = 6;
itm_lst.itm[5].item_code = MNT$_LOGNAM;
itm_lst.itm[5].bufaddr = log;
itm_lst.itm[5].retlenaddr = 0;

itm_lst.terminator = 0;
.
.
.

status = SYS$MOUNT (&itm_lst);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

}

9.18.1.2 Calling the SYS$DISMOU System Service
The SYS$DISMOU system service allows a process to dismount a volume or
volume set. When you call SYS$DISMOU, you must specify a device name. If the
volume mounted on the device is part of a fully mounted volume set, and you do
not specify flags, the whole volume set is dismounted.

The following example illustrates a call to SYS$DISMOU. The call dismounts the
volume set mounted in the previous example.

$DESCRIPTOR(dev1_desc,"DRA4:");
.
.
.

status = SYS$DISMOU(&dev1_desc); /* devnam - device */
.
.
.

9–34

System Service Input/Output Operations
9.18 Mounting, Dismounting, and Initializing Volumes

9.18.2 Initializing Volumes
Initializing a volume writes a label on the volume, sets protection and ownership
for the volume, formats the volume (depending on the device type), and overwrites
data already on the volume.

You interactively initialize a volume from the DCL command stream using the
INITIALIZE command. A process can programmatically initialize a volume using
the Initialize Volume (SYS$INIT_VOL) system service.

9.18.2.1 Calling the Initialize Volume System Service
You must specify a device name and a new volume name when you call the
SYS$INIT_VOL system service. You can also use the itmlst argument of $INIT_
VOL to specify options for the initialization. For example, you can specify that
data compaction should be performed by specifying the INIT$_COMPACTION
item code. See the OpenVMS System Services Reference Manual for more
information on initialization options.

Before initializing the volume with SYS$INIT_VOL, be sure you have placed the
volume on the device and started the device (by pressing the START or LOAD
button).

The default format for files on disk volumes is called Files–11 On-Disk Structure
Level 2. Files–11 On-Disk Structure Level 1 format, available on VAX systems, is
used by other Digital operating systems, including RSX–11M, RSX–11M–PLUS,
RSX–11D, and IAS, but is not supported on Alpha systems. For more information,
see the OpenVMS System Manager’s Manual.

Here are two examples of calling SYS$INIT_VOL programmatically: one from a
C program and one from a BASIC program.

The following example illustrates a call to SYS$INIT_VOL from DEC C:

#include <descrip.h>
#include <initdef.h>

struct item_descrip_3
{

unsigned short buffer_size;
unsigned short item_code;
void *buffer_address;
unsigned short *return_length;

};

main ()
{

unsigned long
density_code,
status;

$DESCRIPTOR(drive_dsc, "MUA0:");
$DESCRIPTOR(label_dsc, "USER01");
struct
{

struct item_descrip_3 density_item;
long terminator;

} init_itmlst;

/*
** Initialize the input item list.
*/

9–35

System Service Input/Output Operations
9.18 Mounting, Dismounting, and Initializing Volumes

density_code = INIT$K_DENSITY_6250_BPI;
init_itmlst.density_item.buffer_size = 4;
init_itmlst.density_item.item_code = INIT$_DENSITY;
init_itmlst.density_item.buffer_address = &density_code;

init_itmlst.terminator = 0;

/*
** Initialize the volume.
*/

status = SYS$INIT_VOL (&drive_dsc, &label_dsc, &init_itmlst);

/*
** Report an error if one occurred.
*/

if ((status & 1) != 1)
LIB$STOP (status);

}

The following example illustrates a call to SYS$INIT_VOL from VAX BASIC:

OPTION TYPE = EXPLICIT

%INCLUDE ’$INITDEF’ %FROM %LIBRARY

EXTERNAL LONG FUNCTION SYS$INIT_VOL

RECORD ITEM_DESC
VARIANT
CASE

WORD BUFLEN
WORD ITMCOD
LONG BUFADR
LONG LENADR

CASE
LONG TERMINATOR

END VARIANT
END RECORD

DECLARE LONG RET_STATUS, &
ITEM_DESC INIT_ITMLST(2)

! Initialize the input item list.

INIT_ITMLST(0)::ITMCOD = INIT$_READCHECK
INIT_ITMLST(1)::TERMINATOR = 0

! Initialize the volume.

RET_STATUS = SYS$INIT_VOL ("DJA21:" BY DESC, "USERVOLUME" BY DESC,
INIT_ITMLST() BY REF)

9.19 Formatting Output Strings
When you are preparing output strings for a program, you may need to insert
variable information into a string prior to output, or you may need to convert
a numeric value to an ASCII string. The Formatted ASCII Output (SYS$FAO)
system service performs these functions.

Input to the SYS$FAO system service consists of the following:

• A control string that contains the fixed text portion of the output and
formatting directives. The directives indicate the position within the string
where substitutions are to be made, and describe the data type and length of
the input values that are to be substituted or converted.

9–36

System Service Input/Output Operations
9.19 Formatting Output Strings

• An output buffer to contain the string after conversions and substitutions
have been made.

• An optional argument indicating a word to receive the final length of the
formatted output string.

• Parameters that provide arguments for the formatting directives.

The following example shows a call to the SYS$FAO system service to format an
output string for a SYS$QIOW macro. Complete details on how to use SYS$FAO,
with additional examples, are provided in the description of the SYS$FAO system
service in the OpenVMS System Services Reference Manual.

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

main() {

unsigned int status, faolen;
char faobuf[80];
$DESCRIPTOR(faostr,"FILE !AS DOES NOT EXIST"); 1
$DESCRIPTOR(outbuf, faobuf); 2
$DESCRIPTOR(filespec,"DISK$USER:MYFILE.DAT"); 3

status = SYS$FAO(&faostr, &outlen, &outbuf, &filespec); 4
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

status = SYS$QIOW(. . . faobuf, outlen, . . .); 5
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

}

1 FAOSTR provides the FAO control string. !AS is an example of an FAO
directive: it requires an input parameter that specifies the address of a
character string descriptor. When SYS$FAO is called to format this control
string, !AS will be substituted with the string whose descriptor address is
specified.

2 FAODESC is a character string descriptor for the output buffer; SYS$FAO
will write the string into the buffer, and will write the length of the final
formatted string in the low-order word of FAOLEN. (A longword is reserved
so that it can be used for an input argument to the SYS$QIOW macro.)

3 FILESPEC is a character string descriptor defining an input string for the
FAO directive !AS.

4 The call to SYS$FAO specifies the control string, the output buffer and length
fields, and the parameter P1, which is the address of the string descriptor for
the string to be substituted.

5 When SYS$FAO completes successfully, SYS$QIOW writes the following
output string:

FILE DISK$USER:MYFILE.DAT DOES NOT EXIST

9–37

System Service Input/Output Operations
9.20 Mailboxes

9.20 Mailboxes
Mailboxes are virtual devices that can be used for communication among
processes. You accomplish actual data transfer by using OpenVMS RMS or I/O
services. When the Create Mailbox and Assign Channel (SYS$CREMBX) system
service creates a mailbox, it also assigns a channel to it for use by the creating
process. Other processes can then assign channels to the mailbox using either
the SYS$CREMBX or SYS$ASSIGN system service.

The SYS$CREMBX system service creates the mailbox. The SYS$CREMBX
system service identifies a mailbox by a user-specified logical name and assigns
it an equivalence name. The equivalence name is a physical device name in the
format MBAn, where n is a unit number. The equivalence name has the terminal
attribute.

When another process assigns a channel to the mailbox with the SYS$CREMBX
or SYS$ASSIGN system service, it can identify the mailbox by its logical name.
The service automatically translates the logical name. The process can obtain the
MBAn name by translating the logical name (with the SYS$TRNLNM system
service), or it can call the Get Device/Volume Information (SYS$GETDVI) system
service to obtain the unit number and the physical device name.

VAX On VAX systems, channels assigned to mailboxes can be either bidirectional or
unidirectional. Bidirectional channels (read/write) allow both SYS$QIO read and
SYS$QIO write requests to be issued to the channel. Unidirectional channels
(read-only or write-only) allow only a read request or a write request to the
channel. The unidirectional channels and unidirectional $QIO function modifiers
provide for greater synchronization between users of the mailbox.

The Create Mailbox and Assign Channel (SYS$CREMBX) and Assign I/O
Channel (SYS$ASSIGN) system services use the flags argument to enable
unidirectional channels. If the flags argument is not specified or is zero, then
the channel assigned to the mailbox is bidirectional (read/write). For more
information, see the discussion and programming examples in the mailbox driver
chapter in the OpenVMS I/O User’s Reference Manual. Chapter 2 of this manual
also discusses the use of mailboxes. ♦

Mailboxes are either temporary or permanent. You need the user privileges
TMPMBX and PRMMBX to create temporary and permanent mailboxes,
respectively.

For a temporary mailbox, the SYS$CREMBX service enters the logical name and
equivalence name in the logical name table LNM$TEMPORARY_MAILBOX. This
logical name table name usually specifies the LNM$JOB logical name table name.
The system deletes a temporary mailbox when no more channels are assigned to
it.

For a permanent mailbox, the SYS$CREMBX service enters the logical name and
equivalence name in the logical name table LNM$PERMANENT_MAILBOX. This
logical name table name usually specifies the LNM$SYSTEM logical name table
name. Permanent mailboxes continue to exist until they are specifically marked
for deletion with the Delete Mailbox (SYS$DELMBX) system service.

The following example shows how processes can communicate by means of a
mailbox:

9–38

System Service Input/Output Operations
9.20 Mailboxes

/* Process ORION */

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <iodef.h>

/* I/O status block */
struct {

unsigned short iostat, iolen;
unsigned int remainder;

}mbxiosb;

main() {
void *p1, mbxast();
char mbuffer[128], prmflg=0;
unsigned short mbxchan, mbxiosb;
unsigned int status, mbuflen=128, bufquo=384, promsk=0, outlen;
$DESCRIPTOR(mblognam,"GROUP100_MAILBOX");

/* Create a mailbox */
status = SYS$CREMBX(prmflg, /* Permanent or temporary */ 1

&mbxchan, /* chan - channel number */
mbuflen, /* maxmsg - buffer length */
bufquo, /* bufquo - quota */
promsk, /* promsk - protection mask */
0, /* acmode - access mode */
&mblognam, /* lognam - mailbox logical name */
0); /* flags - options */

if ((status & 1) != 1)
LIB$SIGNAL(status);

.

.

.
/* Request I/O */

status = SYS$QIO(0, /* efn - event flag */ 2
mbxchan, /* chan - channel number */
IO$_READVBLK, /* func - function modifier */
&mbxiosb, /* iosb - I/O status block */
&mbxast, /* astadr - AST routine */
&mbuffer, /* p1 - output buffer */
mbuflen); /* p2 - length of buffer */

if ((status & 1) != 1)
LIB$SIGNAL(status);

.

.

.

}

void mbxast(void) { 3

if (mbxiosb.iostat != SS$_NORMAL)

status = SYS$QIOW(. . . , &mbuffer, &outlen, . . .)
if ((status & 1) != 1)

LIB$SIGNAL(status);

return;
}

/* Process Cygnus */

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <iodef.h>

9–39

System Service Input/Output Operations
9.20 Mailboxes

main() {

unsigned short int mailchan;
unsigned int status, outlen;
char outbuf[128];
$DESCRIPTOR(mailbox,"GROUP100_MAILBOX");

status = SYS$ASSIGN(&mailbox, &mailchan, 0, 0, 0); 4
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

status = SYS$QIOW(0, mailchan, 0, 0, 0, 0, &outbuf, outlen, 0, 0, 0, 0)
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

}

1 Process ORION creates the mailbox and receives the channel number at
MBXCHAN.

The prmflg argument indicates that the mailbox is a temporary mailbox.
The logical name is entered in the LNM$TEMPORARY_MAILBOX logical
name table.

The maxmsg argument limits the size of messages that the mailbox can
receive. Note that the size indicated in this example is the same size as the
buffer (MBUFFER) provided for the SYS$QIO request. A buffer for mailbox
I/O must be at least as large as the size specified in the maxmsg argument.

When a process creates a temporary mailbox, the amount of system memory
allocated for buffering messages is subtracted from the process’s buffer quota.
Use the bufquo argument to specify how much of the process quota should
be used for mailbox message buffering.

Mailboxes are protected devices. By specifying a protection mask with the
promsk argument, you can restrict access to the mailbox. (In this example,
all bits in the mask are clear, indicating unlimited read and write access.)

2 After creating the mailbox, process ORION calls the SYS$QIO system service,
requesting that it be notified when I/O completes (that is, when the mailbox
receives a message) by means of an AST interrupt. The process can continue
executing, but the AST service routine at MBXAST will interrupt and begin
executing when a message is received.

3 When a message is sent to the mailbox (by CYGNUS), the AST is delivered
and ORION responds to the message. Process ORION gets the length of the
message from the first word of the I/O status block at MBXIOSB and places it
in the longword OUTLEN so it can pass the length to SYS$QIOW_S.

4 Process CYGNUS assigns a channel to the mailbox, specifying the logical
name the process ORION gave the mailbox. The SYS$QIOW system service
writes a message from the output buffer provided at OUTBUF.

Note that on a write operation to a mailbox, the I/O is not complete until
the message is read, unless you specify the IO$M_NOW function modifier.
Therefore, if SYS$QIOW (without the IO$M_NOW function modifier) is used
to write the message, the process will not continue executing until another
process reads the message.

9–40

System Service Input/Output Operations
9.20 Mailboxes

9.20.1 Mailbox Name
The lognam argument to the SYS$CREMBX service specifies a descriptor that
points to a character string for the mailbox name.

Translation of the lognam argument proceeds as follows:

1. The current name string is prefixed with MBX$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3. The MBX$ prefix is stripped from the current name string that could not be
translated. This current string is made a logical name with an equivalence
name MBAn (n is a number assigned by the system).

For example, assume that you have made the following logical name assignment:

$ DEFINE MBX$CHKPNT CHKPNT_001

Assume also that your program contains the following statements:

$DESCRIPTOR(mbxdesc,"CHKPNT");
.
.
.

status = SYS$CREMBX(. . . ,&mbxdesc, . . .);

The following logical name translation takes place:

1. MBX$ is prefixed to CHKPNT.

2. MBX$CHKPNT is translated to CHKPNT_001.

Because further translation is unsuccessful, the logical name CHKPNT_001 is
created with the equivalence name MBAn (n is a number assigned by the system).

There are two exceptions to the logical name translation method discussed in this
section:

• If the name string starts with an underscore (_), the operating system strips
the underscore and considers the resultant string to be the actual name (that
is, further translation is not performed).

• If the name string is the result of a logical name translation, then the name
string is checked to see whether it has the terminal attribute. If the name
string is marked with the terminal attribute, the operating system considers
the resultant string to be the actual name (that is, further translation is not
performed).

9.20.2 System Mailboxes
The system uses mailboxes for communication among system processes. All
system mailbox messages contain, in the first word of the message, a constant
that identifies the sender of the message. These constants have symbolic names
(defined in the $MSGDEF macro) in the following format:

MSG$_sender

9–41

System Service Input/Output Operations
9.20 Mailboxes

The symbolic names included in the $MSGDEF macro and their meanings are as
follows:

Symbolic Name Meaning

MSG$_TRMUNSOLIC Unsolicited terminal data

MSG$_CRUNSOLIC Unsolicited card reader data

MSG$_ABORT Network partner aborted link

MSG$_CONFIRM Network connect confirm

MSG$_CONNECT Network inbound connect initiate

MSG$_DISCON Network partner disconnected

MSG$_EXIT Network partner exited prematurely

MSG$_INTMSG Network interrupt message; unsolicited data

MSG$_PATHLOST Network path lost to partner

MSG$_PROTOCOL Network protocol error

MSG$_REJECT Network connect reject

MSG$_THIRDPARTY Network third-party disconnect

MSG$_TIMEOUT Network connect timeout

MSG$_NETSHUT Network shutting down

MSG$_NODEACC Node has become accessible

MSG$_NODEINACC Node has become inaccessible

MSG$_EVTAVL Events available to DECnet Event Logger

MSG$_EVTRCVCHG Event receiver database change

MSG$_INCDAT Unsolicited incoming data available

MSG$_RESET Request to reset the virtual circuit

MSG$_LINUP PVC line up

MSG$_LINDWN PVC line down

MSG$_EVTXMTCHG Event transmitter database change

The remainder of the message contains variable information, depending on the
system component that is sending the message.

The format of the variable information for each message type is documented with
the system function that uses the mailbox.

9.20.3 Mailboxes for Process Termination Messages
When a process creates another process, it can specify the unit number of a
mailbox as an argument to the Create Process ($CREPRC) system service. When
you delete the created process, the system sends a message to the specified
termination mailbox.

You cannot use a mailbox in memory shared by multiple processors as a process
termination mailbox.

9–42

System Service Input/Output Operations
9.21 Example of Using I/O Services

9.21 Example of Using I/O Services
In the following Fortran example, the first program, SEND.FOR, creates a
mailbox named MAIL_BOX, writes data to it, and then indicates the end of the
data by writing an end-of-file message.

The second program, RECEIVE.FOR, creates a mailbox with the same logical
name, MAIL_BOX. It reads the messages from the mailbox into an array. It stops
the read operations when a read operation generates an end-of-file message and
the second longword of the I/O status block is nonzero. By checking that the I/O
status block is nonzero, the second program confirms that the writing process
sent the end-of-file message.

The processes use common event flag number 64 to ensure that SEND.FOR
does not exit until RECEIVE.FOR has established a channel to the mailbox. (If
RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN cannot find
the mailbox.)

SEND.FOR
INTEGER STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX_CHAN

! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER LEN

CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE_LEN (255)
INTEGER MAX_MESSAGE
PARAMETER (MAX_MESSAGE = 255)

! I/O function codes and status block
INCLUDE ’($IODEF)’
INTEGER*4 WRITE_CODE
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

! System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW

! Create the mailbox.
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2 ,,,,
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Fill MESSAGES array
.
.
.

9–43

System Service Input/Output Operations
9.21 Example of Using I/O Services

! Write the messages.
DO I = 1, MAX_MESSAGE
WRITE_CODE = IO$_WRITEVBLK .OR. IO$M_NOW
MBX_MESSAGE = MESSAGES(I)
LEN = MESSAGE_LEN(I)
STATUS = SYS$QIOW (,

2 %VAL(MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! I/O code
2 IOSTAT, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(STATUS))

END DO

! Write end of file
WRITE_CODE = IO$_WRITEOF .OR. IO$M_NOW
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(WRITE_CODE), ! End of file code
2 IOSTAT, ! Status block
2 ,,,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(IOSTAT))

.

.

.
! Make sure cooperating process can read the information
! by waiting for it to assign a channel to the mailbox.

STATUS = SYS$ASCEFC (%VAL(64),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

RECEIVE.FOR
INTEGER STATUS

INCLUDE ’($IODEF)’
INCLUDE ’($SSDEF)’

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = ’MAIL_BOX’)
INTEGER*2 MBX_CHAN

! QIO function code
INTEGER READ_CODE

! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER*4 LEN

! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE_LEN (255)

! I/O status block
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

9–44

System Service Input/Output Operations
9.21 Example of Using I/O Services

! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW

! Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX_NAME,
2 MBX_CHAN,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$ASCEFC (%VAL(64),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Read first message
READ_CODE = IO$_READVBLK .OR. IO$M_NOW
LEN = 80
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTAT, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.
2 (IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTAT))

ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN
I = 1
MESSAGES(I) = MBX_MESSAGE
MESSAGE_LEN(I) = MSG_LEN

END IF

! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTAT .EQ. SS$_ENDOFFILE) .AND.
2 (READER_PID .NE. 0)))

STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), ! Channel
2 %VAL(READ_CODE), ! Function code
2 IOSTAT, ! Status block
2 ,,
2 %REF(MBX_MESSAGE), ! P1
2 %VAL(LEN),,,,) ! P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.

2 (IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTAT))

ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN
I = I + 1
MESSAGES(I) = MBX_MESSAGE
MESSAGE_LEN(I) = MSG_LEN
END IF

END DO
.
.
.

9–45

10
Logical Name Services

This chapter describes how to create and use logical names. It contains the
following sections:

Section 10.1 describes how to use logical name system services, how to use logical
and equivalence names, and how to use logical name tables.

Section 10.2 describes how to create logical names.

Section 10.3 describes how to use SYS$CRELNT system service to create a logical
name table.

Section 10.4 describes how to delete entries in a logical name table.

Section 10.5 describes how to translate a logical name to its equivalence string.

Section 10.6 shows a Fortran program that uses the logical name system services.

10.1 Logical Name System Services
This section describes how to use system services to establish logical names
for general application purposes. The system performs special logical name
translation procedures for names associated with I/O services and with services
that can deal with facilities located in shared (multiport) memory. For further
information, see the following chapters:

• Mailbox names and device names for I/O services: Chapter 9

• Common event flag cluster names: Chapter 14

• Global section names: Chapter 19

The operating system’s logical name services provide a technique for
manipulating and substituting character-string names. Logical names are
commonly used to specify devices or files for input or output operations. You can
use logical names to communicate information between processes by creating a
logical name in one process in a shared logical name table and translating the
logical name in another process. The operating system’s logical name services are
as follows:

• Create Logical Name (SYS$CRELNM)

• Create Logical Name Table (SYS$CRELNT)

• Delete Logical Name (SYS$DELLNM)

• Translate Logical Name (SYS$TRNLNM)

As the names of the logical name system services imply, when you use the logical
name system services, you are concerned with creating, deleting, and translating
logical names and with creating and deleting logical name tables.
The following sections describe various concepts you should be aware of when you
use the logical name system services. For further discussion of logical names, see

10–1

Logical Name Services
10.1 Logical Name System Services

the OpenVMS User’s Manual.

10.1.1 Logical Names, Equivalence Names, and Search Lists
A logical name is a user-specified character string that can represent a
file specification, device name, logical name table name, application-specific
information, or another logical name. Typically, for process-private purposes, you
specify logical names that are easy to use and to remember. System managers
and privileged users choose mnemonics for files, system devices, and search lists
that are frequently accessed by all users.

An equivalence string, or an equivalence name, is a character string that
denotes the actual file specification, device name, or character string. An
equivalence name can also be a logical name. In this case, further translation is
necessary to reveal the actual equivalence name, if permitted.

A multivalued logical name, commonly called a search list, is a logical name
that has more than one equivalence string. Each equivalence string in the search
list is assigned an index number starting at zero.

Logical names and their equivalence strings are stored in logical name tables.
Logical names can have a maximum length of 255 characters. Equivalence
strings can have a maximum of 255 characters. You can establish logical name
and equivalence string pairs as follows:

• At the command level, with the DCL commands ALLOCATE, ASSIGN,
DEFINE, or MOUNT

• In a program, with the Create Logical Name (SYS$CRELNM), Create Mailbox
and Assign Channel (SYS$CREMBX), or Mount Volume (SYS$MOUNT)
system service

For example, you could use the symbolic name TERMINAL to refer to an output
terminal in a program. For a particular run of the program, you could use the
DEFINE command to establish the equivalence name TTA2.

To perform an assignment in a program, you must define character-string
descriptors for the name strings. In addition, you must call the system service
through an external function declaration within your program, depending on the
programming language.

10.1.2 Logical Name Tables
A logical name table contains logical name and equivalence string pairs. Each
table is an independent name space. Logical name tables are referenced by
logical names.

Logical name tables can be created in process space or in system space. Tables
created in process space are accessible only by that process. Tables created in
system space are potentially shareable among many processes. Certain logical
name tables have predefined logical names that provide the environment for
creating, deleting, and translating user-specified logical names. These predefined
logical names begin with the prefix LNM$. Logical name and equivalence name
pairs are maintained in three types of logical name tables:

• Directory tables

• Default tables

• User-defined name tables

10–2

Logical Name Services
10.1 Logical Name System Services

When the process is created, the logical name directory tables and the default
logical name tables are created for each new process.

10.1.2.1 Logical Name Directory Tables
Because the names of logical name tables are logical names, table names must
reside in logical name tables. Two special tables called directories exist for this
purpose. Table names are translated from these logical name directory tables.
Logical name and equivalence name pairs for logical name tables are maintained
in the following two directory tables:

• Process directory table (LNM$PROCESS_DIRECTORY)

• System directory table (LNM$SYSTEM_DIRECTORY)

The process directory table contains the names of all process-private user-defined
logical name tables created through the SYS$CRELNT system service. In
addition, the process directory table contains system-assigned logical name table
names, the name of the process logical name table LNM$PROCESS_TABLE, and
the default logical name table search list.

The system directory table contains the names of potentially shareable logical
name tables and system-assigned logical name table names. You must have the
SYSPRV privilege to create a logical name in the system directory table. For a
discussion of privileges, see Section 10.1.4.

Logical names other than logical name table names can exist within these tables.
The length of the logical names created in either of these tables must not exceed
31 characters. Logical names created in the directory tables must consist of
alphanumeric characters, dollar signs ($), and underscores (_). Equivalence
strings must not exceed 255 characters.

10.1.2.2 Process, Job, Group, and System Default Logical Name Tables
Certain logical name tables are created for or assigned to a process at process
creation. These tables are called the default logical name tables. The newly
created process is provided with these tables by default. Logical name and
equivalence name pairs are maintained in the default logical name tables.

Each default logical name table has a logical name associated with it. To place
an entry in a logical name table, specify a logical name table name. The default
logical name table names and the common logical names used to refer to them
are as follows:

Table Name Logical Name

Process LNM$PROCESS_TABLE LNM$PROCESS

Job LNM$JOB_xxxxxxxx LNM$JOB

Group LNM$GROUP_gggggg LNM$GROUP

System LNM$SYSTEM_TABLE LNM$SYSTEM

The letter x represents a numeral in an 8-digit hexadecimal number that uniquely
identifies the job logical name table. The letter g represents a numeral in a
6-digit octal number that contains the user’s group number.

The length of the logical names created in these tables must not exceed 255
characters, with no restriction on the types of characters used. Equivalence
strings must not exceed 255 characters.

10–3

Logical Name Services
10.1 Logical Name System Services

Process Logical Name Table
The process logical name table LNM$PROCESS_TABLE contains names used
exclusively by the process. A process logical name table exists for each process in
the system. Some entries in the process logical name table are made by system
programs executing at more privileged access modes; these entries are qualified
by the access mode from which the entry was made. The process logical name
table contains the following process-permanent logical names:

Logical Name Meaning

SYS$INPUT Default input stream

SYS$OUTPUT Default output stream

SYS$COMMAND Original first-level (SYS$INPUT) input stream

SYS$ERROR Default device to which the system writes error messages

SYS$COMMAND is created only for processes that execute LOGINOUT.

Process-Private Logical Name Creation and Image Rundown
Usually, you create logical names only in your process logical name table. Most
entries in the process logical name table are made in user or supervisor mode.
The following example shows how process-private logical names can be created in
user mode by an image:

#include <stdio.h>
#include <lnmdef.h>
#include <ssdef.h>
#include <descrip.h>

/* Define an item descriptor */
struct lst {

unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;

};

/* Declare an item list */
struct {

struct lst items[2];
unsigned int terminator;

}item_lst;

/* Equivalence name strings */

static char eqvnam1[] = "XYZ";
static char eqvnam2[] = "DEF";

main() {

unsigned int status;
$DESCRIPTOR(logdesc,"ABC");
$DESCRIPTOR(tabdesc,"LNM$PROCESS");

item_lst.items[0].buflen = strlen(eqvnam1);
item_lst.items[0].item_code = LNM$_STRING;
item_lst.items[0].bufaddr = eqvnam1;
item_lst.items[0].retlenaddr = 0;

item_lst.items[1].buflen = strlen(eqvnam2);
item_lst.items[1].item_code = LNM$_STRING;
item_lst.items[1].bufaddr = eqvnam2;
item_lst.items[1].retlenaddr = 0;
item_lst.terminator = 0;

10–4

Logical Name Services
10.1 Logical Name System Services

/* Create a logical name */
status = SYS$CRELNM(0, /* attr - attributes of logical name */

&tabdesc, /* tabnam - name of logical name table */
&logdesc, /* lognam - name of logical name */
0, /* acmode - access mode 0 means use the */

/* access mode of the caller=user mode */
&item_lst); /* itm_lst - item list */

if((status & 1) != 1)
LIB$SIGNAL(status);

}

In the preceding example, logical name ABC was created and represents a search
list with two equivalence strings, XYZ and DEF. Each time the LNM$_STRING
item code of the itmlst argument is invoked, an index value is assigned to the
next equivalence string. The newly created logical name and its equivalence
string are contained in the process logical name table LNM$PROCESS_TABLE.

The following example illustrates the creation of a logical name in supervisor
mode through DCL:

$ DEFINE/SUPERVISOR_MODE/TABLE=LNM$PROCESS ABC XYZ,DEF

In the preceeding example, supervisor mode and /TABLE=LNM$PROCESS are
the defaults (default mode and default table) for the DEFINE command.

Process logical names that are created in user mode are deleted whenever the
creating process runs an image down. The following DCL commands illustrate
this behavior:

$ DEFINE/USER ABC XYZ
$ SHOW TRANSLATION ABC
ABC = XYZ

$ DIRECTORY
$ SHOW LOGICAL ABC
ABC = (undefined)

The DCL command DIRECTORY performs image rundown when it is finished
operating. At that time, all user-mode process-private logical names are deleted,
including the logical name ABC.

Job Logical Name Table
The job logical name table is a shareable table accessible by all processes within
the same job tree. Whenever a detached process is created, a job logical name
table is created for this process and all of its potential subprocesses. At the
same time, the process-private logical name LNM$JOB is created in the process
directory logical name table LNM$PROCESS_DIRECTORY. The logical name
LNM$JOB translates to the name of the job logical name table.

Because the job logical name table already exists for the main process, only the
process-private logical name LNM$JOB is created when a subprocess is created.

The job logical name table contains the following three process-permanent logical
names for processes that execute LOGINOUT:

Logical Names Meaning

SYS$LOGIN Original default device and directory

10–5

Logical Name Services
10.1 Logical Name System Services

Logical Names Meaning

SYS$LOGIN_DEVICE Original default device

SYS$SCRATCH Default device and directory to which temporary files are
written

Thus, instead of creating these logical names within the process logical name
table LNM$PROCESS_TABLE for every process within a job tree, LOGINOUT
creates these logical names once when it is executed for the process at the root of
the job tree.

Additionally, the job logical name table contains the following logical names:

• The logical name optionally specified and associated with a newly created
temporary mailbox

• The logical name optionally specified and associated with a privately mounted
volume

You do not need special privileges to modify the job logical name table. For a
discussion of privileges, see Section 10.1.4.

Group Logical Name Table
The group logical name table contains names that cooperating processes in
the same group can use. You need the GRPNAM privilege to add or delete a
logical name in the group logical name table. For a discussion of privileges, see
Section 10.1.4.

Group logical name tables are created as needed. However, the logical name
LNM$GROUP exists in each process’s process directory LNM$PROCESS_
DIRECTORY. This logical name translates into the name of the group logical
name table.

System Logical Name Table
The system logical name table LNM$SYSTEM_TABLE contains names that all
processes in the system can access. This table includes the default names for all
system-assigned logical names. You need the SYSNAM or SYSPRV privilege to
add or delete a logical name in the system logical name table. For a discussion of
privileges, see Section 10.1.4.

10.1.2.3 Creating User-Defined Logical Name Tables
You can create process-private tables and shareable tables by calling the
SYS$CRELNT system service in a program. However, you must have SYSPRV
privilege to create a shareable table. For a discussion of privileges, see
Section 10.1.4. Processes other than the creating process cannot use logical
names contained in process-private tables.

Logical name tables are created through the SYS$CRELNT system service either
with the DCL command CREATE/NAME_TABLE or by calling SYS$CRELNT in
a program. If granted access, processes other than the creating process can use
shareable tables.

The length of logical names created in user-defined logical name tables must not
exceed 255 characters. Equivalence strings must not exceed 255 characters.

10–6

Logical Name Services
10.1 Logical Name System Services

10.1.3 Duplicating Logical Names
A logical name table can contain entries for the same logical name at different
access modes. Different logical name tables can contain entries for the same
logical name. In all other cases, only one entry can exist for a particular logical
name in a logical name table.

Because identical logical names can exist in more than one logical name table, the
logical name that the system uses depends on the order in which it searches the
logical name tables. For example, when the system attempts to translate a logical
name to identify the location of a file, it uses the logical name LNM$FILE_DEV
to provide the list of tables in which to look for the name. The order in which the
tables are listed is also the order in which they are searched.

By default, the precedence order defined by LNM$FILE_DEV is:

1. Process table

2. Job table

3. Group table

4. System table

If, for example, a logical name exists in both the process and the group logical
name tables, the logical name within the process table is used.

By default, the DEFINE and DEASSIGN commands place names in, and delete
names from, your process table. However, you can request a different table with
the /TABLE qualifier, as shown in the following example:

$ DEFINE/TABLE=LNM$SYSTEM REVIEWERS DISK3:[PUBLIC]REVIEWERS.DIS

Any number of logical names can have the same equivalence name. Consider the
following examples of the logical name TERMINAL defined in several tables. The
logical name TERMINAL translates differently depending on the table specified.

Process Logical Name Table for Process A
The following process logical name table equates the logical name TERMINAL
to the specific terminal TTA2. The INFILE and OUTFILE logical names are
equated to disk specifications. The logical names were created from supervisor
mode.

Logical Name Equivalence Name Access Mode

INFILE DM1:[HIGGINS]TEST.DAT Supervisor

OUTFILE DM1:[HIGGINS]TEST.OUT Supervisor

TERMINAL TTA2: Supervisor

. . .

. . .

. . .

To determine the equivalence string for the logical name TERMINAL in the
preceding table, enter the following command:

$ SHOW LOGICAL TERMINAL

The system returns the equivalence string TTA2:.

10–7

Logical Name Services
10.1 Logical Name System Services

Job Logical Name Table
The portion of the following job logical name table assigns the logical name
TERMINAL to a virtual terminal VTA14. The logical name SYS$LOGIN is the
device and directory for the process when you log in. The SYS$LOGIN logical
name is defined in executive mode.

Logical Name Equivalence Name Access Mode

SYS$LOGIN DBA9:[HIGGINS] Executive

TERMINAL VTA14: User

. . .

. . .

. . .

To determine the equivalence string of the logical name TERMINAL defined in
the preceding table, enter the following command:

$ SHOW LOGICAL/JOB TERMINAL

The system returns the equivalence string VTA14: as the translation.

User-Defined Logical Name Table
The following user-defined logical name table (called LOG_TBL for purposes
of this discussion) contains a definition of TERMINAL as the mailbox device
MBA407. The multivalued logical name (search list) XYZ has two translations:
DISK1 and DISK3.

Logical Name Equivalence Name Access Mode

TERMINAL MBA407: Supervisor

XYZ DISK1: Supervisor

DISK3:

. . .

. . .

. . .

To determine the equivalence string for the logical name TERMINAL in the
preceding user-defined table, enter the following command:

$ SHOW LOGICAL/TABLE=LOG_TBL TERMINAL

The system returns the equivalence string MBA407. In order to use this
definition of TERMINAL as a device or file specification, you must redefine
the logical name LNM$FILE_DEV to reference the user-defined table, as follows:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV LOG_TBL, -
_$ LNM$PROCESS_TABLE,LNM$JOB,LNM$GROUP,LNM$SYSTEM_TABLE

In this example, the DCL command DEFINE is used to redefine the default
search list LNM$FILE_DEV. The /TABLE qualifier specifies the table
LNM$PROCESS_DIRECTORY that is to contain the redefined search list.
The system searches the tables defined by LNM$FILE_DEV in the following
order: LOG_TBL, LNM$PROCESS_TABLE, LNM$JOB, LNM$GROUP, and
LNM$SYSTEM_TABLE.

10–8

Logical Name Services
10.1 Logical Name System Services

System Logical Name Table
The following system logical table contains system-assigned logical names
accessible to all processes in the system. For example, the logical names
SYS$LIBRARY and SYS$SYSTEM provide logical names that all users can
access to use the device and directory that contain system files.

Logical Name Equivalence Name

SYS$LIBRARY SYS$SYSROOT:[SYSLIB]

SYS$SYSTEM SYS$SYSROOT:[SYSEXE]

. .

. .

. .

The Logical Names section of the OpenVMS User’s Manual contains a list of these
system-assigned logical names.

Logical Name Supersession
If the logical name TERMINAL is equated to TTA2 in the process table, as shown
in the previous examples, and the process subsequently equates the logical name
TERMINAL to TTA3, the equivalence of TERMINAL TTA2 is replaced by the new
equivalence name. The successful return status code SS$_SUPERSEDE indicates
that a new entry replaced an old one.

The definitions of TERMINAL in the job table and in the user-defined table LOG_
TBL are unaffected.

10.1.4 Defining Privileges
Certain functions of the logical name system services are restricted to users with
specific privileges. The system checks the privileges in the user authorization
file (UAF) granted to you when your system manager sets up your account. The
system also checks for read, write, and delete accessibility. Privileges allow users
to perform the functions shown in Table 10–1.

Table 10–1 Summary of Privileges

Privilege Function

GRPNAM Creates or deletes a logical name in your group logical name table.

GRPPRV Creates or deletes a logical name in your group logical name table.

SYSNAM Creates executive- or kernel-mode logical names. Deletes a logical name
or table at an inner access mode.

SYSPRV Creates or deletes a logical name in your group logical name table.
Creates a shareable table.

All users can create, delete, and translate their own process-private logical names
and process-private logical name tables.

10–9

Logical Name Services
10.1 Logical Name System Services

10.1.5 Specifying Access Modes
You can specify the access mode of a logical name when you define the logical
name. If you do not specify an access mode, then the access mode defaults
to that of the caller of the SYS$CRELNM system service. If you specify the
acmode argument and the process has SYSNAM privilege, the logical name
is created with the specified access mode. Otherwise, the access mode can be
no more privileged than the caller. For information about access modes, see
OpenVMS Programming Interfaces: Calling a System Routine and the discussion
of SYS$CRELNM in the OpenVMS System Services Reference Manual.

A logical name table can contain multiple definitions of the same logical name
with different access modes. If a request to translate such a logical name specifies
the acmode argument, then the SYS$TRNLNM system service ignores all names
defined at a less privileged mode. A request to delete a logical name includes the
access mode of the logical name. Unless the process has the SYSNAM privilege,
the mode specified can be no more privileged than the caller.

The command interpreter places entries made from the command stream into the
process-private logical name table; these are supervisor-mode entries and are not
deleted at image exit (except for the logical names defined by the DCL commands
ASSIGN/USER and DEFINE/USER). During certain system operations, such
as the activation of an image installed with privilege, only executive- and
kernel-mode logical names are used.

Logical names or logical name table names, which either an image running
in user mode or the DCL commands ASSIGN/USER and DEFINE/USER have
placed in a process-private logical name table, are automatically deleted at
image exit. Shareable user-mode names, however, survive image exit and process
deletion.

10.1.6 Specifying Attributes
Generally, attributes specified through the logical name system services perform
two functions: they affect the creation of logical names or govern how the system
service operates, and they affect the translation of logical names and equivalence
strings.

Attributes that affect the creation of the logical names are specified optionally in
the attr argument of a system service call.

You can specify any of the following attributes:

• LNM$M_CONCEALED—Specifies that the equivalence string for the logical
name is an OpenVMS RMS concealed device name.

• LNM$M_CONFINE—Prevents process-private logical names from being
copied to subprocesses. Subprocesses are created by the DCL command
SPAWN or by the run-time library LIB$SPAWN routine. This attribute is
specified only in a SYS$CRELNM or SYS$CRELNT system service call.

• LNM$M_NO_ALIAS—Prevents creation of a duplicate logical name in the
specified logical name table at an outer access mode. If another logical name
already exists in the table at an outer access mode, that name is deleted.

If specified in a SYS$CRELNT system service call, this attribute prevents
creation of a logical name table at an outer access mode in a directory table if
the table name already exists in the directory table.

This attribute is specified only in a SYS$CRELNM or SYS$CRELNT system
service call.

10–10

Logical Name Services
10.1 Logical Name System Services

• LNM$M_CREATE_IF—Prevents creation of a logical name table if the
specified table already exists at the specified access mode in the appropriate
directory table. This attribute is specified only in a SYS$CRELNT system
service call.

• LNM$M_CASE_BLIND—Governs the translation process and causes
SYS$TRNLNM to ignore uppercase and lowercase differences in letters
when searching for logical names. This attribute is specified only in a
SYS$TRNLNM system service call.

• LNM$M_TERMINAL—Prevents further translation of equivalence strings by
the logical name services.

The translation attributes LNM$M_CONCEALED and LNM$M_TERMINAL
associated with logical names and equivalence strings are specified optionally
through the LNM$_ATTRIBUTES item code in the itmlst argument of the
SYS$CRELNM system service call. When the item code LNM$_ATTRIBUTES
is specified through SYS$TRNLNM, the system returns the current attributes
associated with the logical name and equivalence string at the current index
value. Since a logical name can have more than one equivalence name, each
equivalence name is identified by an index value. The item code LNM$_INDEX
of SYS$TRNLNM searches for an equivalence name that has the specified index
value.

The following attributes may be returned:

• LNM$M_CONCEALED—Indicates that the equivalence string at the current
index value for the logical name is an OpenVMS RMS concealed device name.

• LNM$M_CONFINE—Indicates that the logical name cannot be used by
spawned subprocesses. Subprocesses are created by the DCL command
SPAWN or by the run-time library LIB$SPAWN routine.

• LNM$M_CRELOG—Indicates that the logical name was created by the
SYS$CRELOG system service.

• LNM$M_EXISTS—Indicates that the equivalence string at the specified index
value exists.

• LNM$M_NO_ALIAS—Indicates that if the logical name already exists in the
table, it cannot be created in that table at an outer access mode.

• LNM$M_TABLE—Indicates that the logical name is the name of a logical
name table.

• LNM$M_TERMINAL—Indicates that the equivalence strings cannot be
translated further.

The attributes of multiple equivalence strings do not have to match. For more
information about attributes, refer to the appropriate system service in the
OpenVMS System Services Reference Manual.

10.1.7 Establishing Logical Name Table Quotas
A logical name table quota is the number of bytes allocated in memory for
logical names contained in a logical name table. Logical name table quotas are
established in the following instances:

• When the system is initialized

• When a process is created

10–11

Logical Name Services
10.1 Logical Name System Services

• When logical name tables are created

Each logical name table has a quota associated with it that limits the number of
bytes of memory (either process pool or system paged pool) that can be occupied
by the names defined in the table. The quota for a table is established when the
table is created.

If no quota is specified, the newly created table has unlimited quota. Note that
this table can expand to consume all available process or system memory, and
all users with write access to such a shareable table can cause the unlimited
consumption of system paged pool.

10.1.7.1 Directory Table Quotas
When the system is initialized, unlimited quota is automatically established for
the system directory table LNM$SYSTEM_DIRECTORY.

When you log in to the system, unlimited quota is automatically established for
the process directory table LNM$PROCESS_DIRECTORY.

10.1.7.2 Default Logical Name Table Quotas
The process, group, and system logical name tables have unlimited quota.

10.1.7.3 Job Logical Name Table Quotas
Because the job logical name table is a shareable table, and because you do not
need special privileges to create logical names within it, the quota allocated
to this logical name table is constrained at the time the table is created. The
following three mechanisms exist to specify the quota for the job logical name
table at the time of its creation:

• For all processes that activate LOGINOUT, the quota for the job logical name
table is obtained from the system authorization file. This allows the quota for
the job to be specified on a user-by-user basis. You can modify the job logical
name table quota by specifying a value with the DCL command AUTHORIZE
/JTQUOTA.

• For all processes that do not activate LOGINOUT, the quota for the job logical
name table can be specified as a quota list item (PQL$_JTQUOTA) in the call
to the Create Process (SYS$CREPRC) system service. If a detached process is
to be created by means of the DCL command RUN/DETACHED, then you can
use the /JOB_TABLE_QUOTA qualifier to specify the SYS$CREPRC quota
list item.

• For all processes that do not activate LOGINOUT and do not specify a PQL$_
JTQUOTA quota list item in their call to SYS$CREPRC, the quota for the
job logical name table is taken from the dynamic System Generation utility
(SYSGEN) parameter PQL$_DJTQUOTA. You can use SYSGEN to display
both PQL$_DJTQUOTA and PQL$_MJTQUOTA, the default and minimum
job logical name table quotas, respectively.

10.1.7.4 User-Defined Logical Name Table Quotas
User-defined logical name tables can be created with either an explicit limited
quota or no quota limit.

The presence of user-defined logical name table quotas eliminates the need for a
privilege (for example, SYSNAM or GRPNAM) to control consumption of paged
pool when you create logical names in a shareable table.

10–12

Logical Name Services
10.1 Logical Name System Services

10.1.8 Using Logical Name and Equivalence Name Format Conventions
The operating system uses special conventions for assigning logical names to
equivalence names and for translating logical names. These conventions are
generally transparent to user programs; however, you should be aware of the
programming considerations involved.

If a logical name string presented in I/O services is preceded by an underscore
(_), the I/O services bypass logical name translation, drop the underscore, and
treat the logical name as a physical device name.

When you log in, the system creates default logical name table entries for
process-permanent files. The equivalence names for these entries (for example,
SYS$INPUT and SYS$OUTPUT) are preceded by a 4-byte header that contains
the following information:

Byte Contents

0 ^X1B (escape character)

1 ^X00

2–3 OpenVMS RMS Internal File Identifier (IFI)

This header is followed by the equivalence name string. If any of your program
applications must translate system-assigned logical names, you must prepare the
program to check for the existence of this header and to use only the desired part
of the equivalence string. The following program demonstrates how to do this:

#include <stdio.h>
#include <lnmdef.h>
#include <ssdef.h>
#include <descrip.h>
#include <ctype.h>
#include <string.h>

#define HEADER 4

/* Define an item descriptor */
struct {

unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;
unsigned int terminator;

}item_lst;

main() {

unsigned int status,len,i;
char resstring[LNM$C_NAMLENGTH];
$DESCRIPTOR(tabdesc,"LNM$FILE_DEV");
$DESCRIPTOR(logdesc,"SYS$OUTPUT");

item_lst.buflen = LNM$C_NAMLENGTH;
item_lst.item_code = LNM$_STRING;
item_lst.bufaddr = resstring;
item_lst.retlenaddr = 0;
item_lst.terminator = 0;

10–13

Logical Name Services
10.1 Logical Name System Services

/* Translate the logical name */
status = SYS$TRNLNM(0, /* attr - attributes of the logical name */

&tabdesc, /* tabnam - logical name table */
&logdesc, /* lognam - logical name */
0, /* acmode - accessm mode */
&item_lst); /* itmlst - item list */

if((status & 1) != 1)
LIB$SIGNAL(status);

/*
Examine 4-byte header
Is first character an escape char?
If so, dump the header

*/
if(resstring[0] == 0x1B) {

printf("\nDumping the header...\n");
for(i = 0; i < HEADER; i++)

printf(" Byte %d: %X\n",i,resstring[i]);

printf("\nEquivalence string: %s\n",(resstring + HEADER));
}
else

printf("Header not found\n");

}

10.1.9 Specifying the Logical Name Table Search List
Logical names exist as entries within logical name tables. When a logical name
is to be created, deleted, or translated, you must specify or take the default name
that designates the logical name table that contains the logical name. This name
possesses one or more of the following characteristics:

• It is the name of a logical name table.

• It is a logical name that iteratively translates in the process or system
directory table to the name of a logical name table.

• It is a multivalued logical name (search list) that iteratively translates to
the names of several logical name tables. The tables are used in the order in
which they appear.

As mentioned in Section 10.1.2, predefined logical names exist for certain logical
name tables. These predefined names begin with the prefix LNM$. You can
redefine these names to modify the search order or the tables used.

Instead of a fixed set of logical name tables and a rigidly defined order (process,
job, group, system) for searching those tables, you can specify which tables are
to be searched and the order in which they are to be searched. Logical names in
the directory tables are used to specify this searching order. By convention, each
class of logical name (for example, device or file specification) uses a particular
predefined name for this purpose.

For example, LNM$FILE_DEV is the logical name that defines the list of logical
name tables used whenever file specifications or device names are translated
by OpenVMS RMS or the I/O services. LNM$FILE_DEV is the default for file
specifications and device names. This name must translate to a list of one or
more logical name table names that specify the tables to be searched when
translating file specifications.

By default, LNM$FILE_DEV specifies that the process, job, group, and system
tables are all searched, in that order, and that the first match found is returned.

10–14

Logical Name Services
10.1 Logical Name System Services

Logical name table names are translated from two tables: the process logical
name directory table LNM$PROCESS_DIRECTORY and the system logical name
directory table LNM$SYSTEM_DIRECTORY. The LNM$FILE_DEV logical name
table must be defined in one of these tables.

Thus, if identical logical names exist in the process and group tables, the process
table entry is found first, and the job and group tables are not searched. When
the process logical name table is searched, the entries are searched in order
of access mode, with user-mode entries matched first, supervisor-mode entries
second, and so on.

If you want to change the list of tables used for device and file specifications, you
can redefine LNM$FILE_DEV in the process directory table LNM$PROCESS_
DIRECTORY.

10.2 Creating a Logical Name Using SYS$CRELNM
To perform an assignment in a program, you must provide character-string
descriptors for the name strings, select the table to contain the logical name,
and use the SYS$CRELNM system service as shown in the following example.
In either case, the result is the same: the logical name DISK is equated to the
physical device name DUA2 in table LNM$JOB.

#include <stdio.h>
#include <lnmdef.h>
#include <descrip.h>
#include <string.h>
#include <ssdef.h>

/* Define an item descriptor */

struct itm {
unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;

};

/* Declare an item list */

struct {
struct itm items[2];
unsigned int terminator;

}itm_lst;

main() {

static char eqvnam[] = "DUA2:";
unsigned int status, lnmattr;
$DESCRIPTOR(logdesc,"DISK");
$DESCRIPTOR(tabdesc,"LNM$JOB");

lnmattr = LNM$M_TERMINAL;

/* Initialize the item list */

itm_lst.items[0].buflen = 4;
itm_lst.items[0].item_code = LNM$_ATTRIBUTES;
itm_lst.items[0].bufaddr = &lnmattr;
itm_lst.items[0].retlenaddr = 0;

itm_lst.items[1].buflen = strlen(eqvnam);
itm_lst.items[1].item_code = LNM$_STRING;
itm_lst.items[1].bufaddr = eqvnam;
itm_lst.items[1].retlenaddr = 0;
itm_lst.terminator = 0;

10–15

Logical Name Services
10.2 Creating a Logical Name Using SYS$CRELNM

/* Create the logical name */
status = SYS$CRELNM(0, /* attr - attributes */

&tabdesc, /* tabnam - logical table name */
&logdesc, /* lognam - logical name */
0, /* acmode - access mode */
&itm_lst); /* itmlst - item list */

if((status & 1) != 1)
LIB$SIGNAL(status);

}

Note that the translation attribute is specified as terminal. This attribute
indicates that iterative translation of the logical name DISK ends when the
equivalence string DUA2 is returned. In addition, because the acmode argument
was not specified, the access mode of the logical name DISK is the access mode of
the calling image.

10.3 Creating Logical Name Tables Using SYS$CRELNT
The Create Logical Name Table (SYS$CRELNT) system service creates logical
name tables. Logical name tables can be created in any access mode depending
on the privileges of the calling process. A user-specified logical name that
identifies the newly created logical name table is stored in the process directory
table LNM$PROCESS_DIRECTORY.

The following example illustrates a call to the SYS$CRELNT system service:

#include <stdio.h>
#include <ssdef.h>
#include <lnmdef.h>
#include <descrip.h>

main() {

unsigned int status, tab_attr=LNM$M_CONFINE, tab_quota=5000;
$DESCRIPTOR(tabdesc,"LOG_TABLE");
$DESCRIPTOR(pardesc,"LNM$PROCESS_TABLE");

/* Create the logical name table */
status = SYS$CRELNT(&tab_attr, /* attr - table attributes */

0, /* resnam - logical table name */
0, /* reslen - length of table name */
&tab_quota, /* quota - max no. of bytes allocated */

/* for names in this table */
0, /* promsk - protection mask */
&tabdesc, /* tabnam - name of new table */
&pardesc, /* partab - name of parent table */
0); /* acmode - access mode */

if((status & 1) != 1) {
LIB$SIGNAL(status);

}

In this example, a user-defined table LOG_TABLE is created with an explicit
quota of 5000 bytes. The name of the newly created table is an entry in the
process-private directory LNM$PROCESS_DIRECTORY. The quota of 5000
bytes is deducted from the parent table LNM$PROCESS_TABLE. Because the
CONFINE attribute is associated with the logical name table, the table cannot be
copied from the process to its spawned processes.

10–16

Logical Name Services
10.3 Creating Logical Name Tables Using SYS$CRELNT

10.3.1 Creating Shareable Logical Name Tables
If you have SYSPRV privilege, you can create shareable logical name tables.
You can assign protection to these tables through the promsk argument of the
SYS$CRELNT system service. The promsk argument allows you to specify the
type of access for system, owner, group, and world users, as follows:

• Read privileges allow access to names in the logical name table.

• Write privileges allow creation and deletion of names within the logical name
table.

• Delete privileges allow deletion of the logical name table.

Note

The E protection bit is reserved by Digital Equipment Corporation.

If the promsk argument is omitted, complete access is granted to system and
owner, and no access is granted to group and world.

10.4 Deleting Logical Names Using SYS$DELLNM
The Delete Logical Name (SYS$DELLNM) system service deletes entries from a
logical name table. When you write a call to the SYS$DELLNM system service,
you can specify a single logical name to delete, or you can specify that you want
to delete all logical names from a particular table. For example, the following call
deletes the process logical name TERMINAL from the job logical name table:

#include <stdio.h>
#include <lnmdef.h>
#include <ssdef.h>
#include <descrip.h>

main() {

unsigned int status;
$DESCRIPTOR(logdesc,"DISK");
$DESCRIPTOR(tabdesc,"LNM$JOB");

/* Delete the logical name */
status = SYS$DELLNM(&tabdesc, /* tabnam - logical table name */

&logdesc, /* lognam - logical name */
0); /* acmode - access mode */

if ((status & 1) != 1)
LIB$SIGNAL(status);

}

For information about access modes and the deletion of logical names, see
OpenVMS Programming Interfaces: Calling a System Routine.

10.5 Translating Logical Names Using SYS$TRNLNM
The Translate Logical Name (SYS$TRNLNM) system service translates a logical
name to its equivalence string. In addition, SYS$TRNLNM returns information
about the logical name and equivalence string.

The system service call to SYS$TRNLNM specifies the tables to search for the
logical name. The tabnam argument can be either the name of a logical name
table or a logical name that translates to a list of one or more logical name tables.

10–17

Logical Name Services
10.5 Translating Logical Names Using SYS$TRNLNM

Because logical names can have many equivalence strings, you can specify which
equivalence string you want to receive.

A number of system services that require a device name accept a logical name
and translate the logical name iteratively until a physical device name is found
(or until the system default number of logical name translations has been
performed, typically 10). These services implicitly specify the logical name table
name LNM$FILE_DEV. For more information about LNM$FILE_DEV, refer to
Section 10.1.9.

The following system services perform iterative logical name translation
automatically:

• Allocate Device (SYS$ALLOC)

• Assign I/O Channel (SYS$ASSIGN)

• Broadcast (SYS$BRDCST)

• Create Mailbox (SYS$CREMBX)

• Deallocate Device (SYS$DALLOC)

• Dismount Volume (SYS$DISMOU)

• Get Device/Volume Information (SYS$GETDVI)

• Mount Volume (SYS$MOUNT)

In many cases, however, a program must perform the logical name translation
to obtain the equivalence name for a logical name outside the context of a
device name or file specification. In that case, you must supply the name of
the table or tables to be searched. The SYS$TRNLNM system service searches
the user-specified logical name tables for a specified logical name and returns
the equivalence name. In addition, SYS$TRNLNM returns attributes that are
specified optionally for the logical name and equivalence string.

The following example shows a call to the SYS$TRNLNM system service to
translate the logical name ABC:

#include <stdio.h>
#include <lnmdef.h>
#include <descrip.h>
#include <ssdef.h>

/* Define an item descriptor */

struct itm {
unsigned short buflen, item_code;
void *bufaddr;
void *retlenaddr;

};

/* Declare an item list */
struct {

struct itm items[2];
unsigned int terminator;

}trnlst;

main() {

char eqvbuf1[LNM$C_NAMLENGTH], eqvbuf2[LNM$C_NAMLENGTH];
unsigned int status, trnattr=LNM$M_CASE_BLIND;
unsigned int eqvdesc1, eqvdesc2;
$DESCRIPTOR(logdesc,"ABC");
$DESCRIPTOR(tabdesc,"LNM$FILE_DEV");

10–18

Logical Name Services
10.5 Translating Logical Names Using SYS$TRNLNM

/* Assign values to the item list */

trnlst.items[0].buflen = LNM$C_NAMLENGTH;
trnlst.items[0].item_code = LNM$_STRING;
trnlst.items[0].bufaddr = eqvbuf1;
trnlst.items[0].retlenaddr = &eqvdesc1;

trnlst.items[1].buflen = LNM$C_NAMLENGTH;
trnlst.items[1].item_code = LNM$_STRING;
trnlst.items[1].bufaddr = eqvbuf2;
trnlst.items[1].retlenaddr = &eqvdesc2;
trnlst.terminator = 0;

/* Translate the logical name */
status = SYS$TRNLNM(&trnattr, /* attr - attributes */

&tabdesc, /* tabnam - table name */
&logdesc, /* lognam - logical name */
0, /* acmode - access mode */
&trnlst); /* itmlst - item list */

if((status & 1) != 1)
LIB$SIGNAL(status);

}

This call to the SYS$TRNLNM system service results in the translation of the
logical name ABC. In addition, LNM$FILE_DEV is specified in the tabnam
argument as the search list that SYS$TRNLNM is to use to find the logical name
ABC. The logical name ABC was assigned two equivalence strings. The LNM$_
STRING item code in the itmlst argument directs SYS$TRNLNM to look for
an equivalence string at the current index value. Note that the LNM$_STRING
item code is invoked twice. The equivalence strings are placed in the two output
buffers, EQVBUF1 and EQVBUF2, described by TRNLIST.

The attribute LNM$M_CASE_BLIND governs the translation process. The
SYS$TRNLNM system service searches for the equivalence strings without
regard to uppercase or lowercase letters. The SYS$TRNLNM system service
matches any of the following character strings: ABC, aBC, AbC, abc, and so forth.

The output equivalence name string length is written into the first word of the
character string descriptor. This descriptor can then be used as input to another
system service.

10.6 Example of Using the Logical Name System Services
In the following example, the Fortran program CALC.FOR creates a spawned
subprocess to perform an iterative calculation. The logical name REP_NUMBER
specifies the number of times that REPEAT should perform the calculation.
Because the two processes are part of the same job, REP_NUMBER is placed
in the job logical name table LNM$JOB. (Note that logical name table names
are case sensitive. Specifically, LNM$JOB is a system-defined logical name that
refers to the job logical name table; lnm$job is not.)

PROGRAM CALC

! Status variable and system routines

INCLUDE ’($LNMDEF)’
INCLUDE ’($SYSSRVNAM)’
INTEGER*4 STATUS

10–19

Logical Name Services
10.6 Example of Using the Logical Name System Services

INTEGER*2 NAME_LEN,
2 NAME_CODE
INTEGER*4 NAME_ADDR,

2 RET_ADDR /0/,
2 END_LIST /0/

COMMON /LIST/ NAME_LEN,
2 NAME_CODE,
2 NAME_ADDR,
2 RET_ADDR,
2 END_LIST

CHARACTER*3 REPETITIONS_STR
INTEGER REPETITIONS

EXTERNAL CLI$M_NOLOGNAM,
2 CLI$M_NOCLISYM,
2 CLI$M_NOKEYPAD,
2 CLI$M_NOWAIT

NAME_LEN = 3
NAME_CODE = (LNM$_STRING)
NAME_ADDR = %LOC(REPETITIONS_STR)
STATUS = SYS$CRELNM (,’LNM$JOB’,’REP_NUMBER’,,NAME_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

MASK = %LOC (CLI$M_NOLOGNAM) .OR.
2 %LOC (CLI$M_NOCLISYM) .OR.
2 %LOC (CLI$M_NOKEYPAD) .OR.
2 %LOC (CLI$M_NOWAIT)
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = LIB$SPAWN (’RUN REPEAT’,,,MASK,,,,FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

PROGRAM REPEAT
INTEGER STATUS,

2 SYS$TRNLNM,SYS$DELLNM
INTEGER*4 REITERATE,

2 REPEAT_STR_LEN
CHARACTER*3 REPEAT_STR

! Item list for SYS$TRNLNM
INTEGER*2 NAME_LEN,

2 NAME_CODE
INTEGER*4 NAME_ADDR,

2 RET_ADDR,
2 END_LIST /0/
COMMON /LIST/ NAME_LEN,

2 NAME_CODE,
2 NAME_ADDR,
2 RET_ADDR,
2 END_LIST

NAME_LEN = 3
NAME_CODE = (LNM$_STRING)
NAME_ADDR = %LOC(REPEAT_STR)
RET_ADDR = %LOC(REPEAT_STR_LEN)
STATUS = SYS$TRNLNM (,

2 ’LNM$JOB’, ! Logical name table
2 ’REP_NUMBER’,, ! Logical name
2 NAME_LEN) ! List requesting equivalence string
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

READ (UNIT = REPEAT_STR,
2 FMT = ’(I3)’) REITERATE

10–20

Logical Name Services
10.6 Example of Using the Logical Name System Services

DO I = 1, REITERATE
END DO

STATUS = SYS$DELLNM (’LNM$JOB’, ! Logical name table
2 ’REP_NUMBER’,) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

10–21

11
Distributed Name Service (VAX Only)

This chapter describes the Digital Distributed Name Service (DECdns) Clerk by
introducing the functions of the DECdns (SYS$DNS) system service and various
run-time library routines. It is divided into the following sections:

Section 11.1 describes how to use the portable application programming interface
and the operating system’s system service and run-time library interface.

Section 11.2 describes how to use the SYS$DNS system service.

Section 11.3 describes how to use the DCL command DEFINE.

11.1 DECdns Clerk System Service
The DECdns Clerk (SYS$DNS) system service provides applications with a
means of assigning networkwide names to system resources. Applications can
use DECdns to name such resources as printers, files, disks, nodes, servers, and
application databases. Once an application has named a resource using DECdns,
the name is available for all users of the application.

The SYS$DNS system service supports two programming interfaces:

• Portable application programming interface

• System service and run-time library (RTL)

Portable Application Interface
Application designers should select an interface for their application based on
programming language, application base, and specific requirements of their
application.

The portable interface provides support for applications written in the C
programming language, and it provides a high-level interface with easy-to-use
methods of creating and maintaining DECdns names. Use the portable interface
for applications that must be portable between VAX systems and the Digital
UNIX operating system.

The portable interface is documented in the Guide to Programming with DECdns.

VAX System Services and RTL Routines
The VAX system services and run-time library routines can be used by
applications written in the high-level and midlevel languages listed in the preface
of this document. However, applications that use these interfaces are limited to
the VAX system environment. Use the system service when an application meets
any of the following requirements:

• The application needs the full capabilities, flexibility, and functions of
asynchronous support.

• The application will run as part of a privileged shareable image on the
operating system.

11–1

Distributed Name Service (VAX Only)
11.1 DECdns Clerk System Service

• The application is not written in the C programming language.

The SYS$DNS system service is documented in the OpenVMS System Services
Reference Manual. Before using this system service, familiarize yourself with
the basic operating principles, terms, and definitions used by DECdns. You can
gain a working knowledge of DECdns by reading about the following topics in the
Guide to Programming with DECdns:

• DECdns component operation

• Namespace directories, objects, soft links, groups, and clearinghouses

• DECdns name syntax

• Attributes

• Clerk caching

• Setting confidence and timeouts

• Recommendations for DECdns application programmers

By understanding these topics, you can proceed more easily with this chapter,
which provides an introduction to the DECdns system service and run-time
library routines and discusses the following topics:

• Functions provided by the service and routines

• How to use the SYS$DNS system service

11.1.1 Using the DECdns System Service and Run-Time Library Routines
You can use the SYS$DNS system service and run-time library routines together
to assign, maintain, and retrieve DECdns names. This section describes the
capabilities of each interface.

11.1.1.1 Using the SYS$DNS System Service
DECdns provides a single system service call (SYS$DNS) to create, delete, modify,
and retrieve DECdns names from a namespace. The SYS$DNS system service
completes asynchronously; that is, it returns to the client immediately after
making a name service call. The status returned to the client indicates whether a
request was queued successfully to the name service.

The SYS$DNSW system service is the synchronous equivalent of SYS$DNS. The
SYS$DNSW call is identical to SYS$DNS in every way except that SYS$DNSW
returns to the caller after the operation completes.

The SYS$DNS call has two main parameters:

• A function code that identifies the particular service to perform

• An item list that specifies all the parameters for the required function

The system service provides the following functions:

• Create and delete DECdns names in the namespace

• Enumerate DECdns names in a particular directory

• Add, read, remove, and test attributes and attribute values

• Add, create, remove, restore, and update directories

• Create, remove, and resolve soft links

• Create and remove groups

11–2

Distributed Name Service (VAX Only)
11.1 DECdns Clerk System Service

• Add, remove, and test members in a group

• Parse names to convert string format names to DECdns opaque format names
and back to string

You specify item codes as either input or output parameters in the item list.
Input parameters modify functions, set context, or describe the information to be
returned. Output parameters return the requested information.

You can specify the following in input item codes:

• An attribute name and type

• The class of a DECdns name and, optionally, a class filter

• The class version of a DECdns name

• A confidence setting to indicate whether the request should be serviced from
the clerk’s cache or from a server

• An indication that the application will repeat a read call, which forces caching
of recently read data

• A name or timestamp that sets the context from which to begin or restart
enumerating or reading

• The name and type of an object, directory, group, member, clearinghouse, or
soft link, and the ability to suppress the namespace nickname from the full
name

• A simple or full name in opaque or string format

• A request to search subgroups for a member

• An operation, either adding or deleting an attribute

• A value for an attribute

• A pointer to the address of the next character in a full or simple name

• A timeout period to wait for a call to complete

• An expiration time and extension time for soft links

The output item codes return the following information:

• A creation timestamp for an object

• A set of child directories, soft links, attribute names, attribute values, or
object names

• An opaque simple or full name

• A string name and length

• A resolved soft link

• A name or timestamp context variable that indicates the last directory, object,
soft link, or attribute that was enumerated or read

11–3

Distributed Name Service (VAX Only)
11.1 DECdns Clerk System Service

11.1.1.2 Using the Run-Time Library Routines
You can use the DECdns run-time library routines to manipulate output from the
SYS$DNS system service. The routines provide the following functions:

• Remove a value from a set returned by an enumeration or read system service
function

• Compare, append, concatenate, and count opaque names that were created
with the system service

• Convert addresses

To read a single attribute value using the system service and run-time library
routines, use the following routines:

• DNS$_ENUMERATE_OBJECTS function code to enumerate objects

• DNS$REMOVE_FIRST_SET_VALUE run-time library routine to remove the
first set value

• DNS$_READ_ATTRIBUTE function code to read the first set value

You can also use the system service and run-time library routines together to add
an opaque simple name to a full name by performing the following steps:

1. Obtain a string full name from a user.

2. Use the system service DNS$_PARSE_FULLNAME_STRING function code to
convert the string name to opaque format.

3. Use the DNS$_APPEND_SIMPLE_TO_RIGHT run-time library routine to
add an opaque simple name to the end of the full name.

11.2 Using the SYS$DNS System Service Call
The following sections describe how to create and modify an object, and then how
to read attributes and enumerate names and attributes in the namespace.

Each section contains a code example. These code examples are all contained
in the sample program that resides on your distribution medium under the file
name SYS$EXAMPLES:SYS$DNS_SAMPLE.C.

11.2.1 Creating Objects
Applications that use DECdns can create an object in the namespace for
each resource used by the application. You can create objects using either
the SYS$DNS or the SYS$DNSW system service.

A DECdns object consists of a name and its associated attributes. When you
create the object, you must assign a class and a class version. You can modify
the object to hold additional attributes, such as class-specific attributes, on an
as-needed basis.

Note that applications can use objects that are created by other applications.

To create an object in the namespace with SYS$DNS:

1. Prompt the user for a name.

The name that an application assigns to an object should come from a
user, a configuration file, a system logical name, or some other source. The
application never assigns an object’s name because the namespace structure
is uncertain. The name the application receives from the user is in string
format.

11–4

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

2. Use the SYS$DNS parse function to convert the full name string into an
opaque format. Specify the DNS$_NEXTCHAR_PTR item code to obtain the
length of the opaque name.

3. Optionally, reserve an event flag so you can check for completion of the
service.

4. Build an item list that contains the following elements:

• The opaque name for the object (resulting from the translation in step 2)

• The class name given by the application, which should contain the facility
code

• The class version assigned by the application

• An optional timeout value that specifies when the call expires

5. Optionally, provide the address of the DECdns status block to receive status
information from the name service.

6. Optionally, provide the address of the asynchronous system trap (AST) service
routine. AST routines allow a program to continue execution while waiting
for parts of the program to complete.

7. Optionally, supply a parameter to pass to the AST routine.

8. Call the create object function and provide all the parameters supplied in
steps 1 through 7.

If a clerk call is not complete when timeout occurs, then the call completes with
an error. The error is returned in the DECdns status block.

An application should check for errors that are returned; it is not enough to check
the return of the SYS$DNS call itself. You need to check the DECdns status
block to be sure no errors are returned by the DECdns server.

The following routine, written in C, shows how to create an object in the
namespace with the synchronous service SYS$DNSW. The routine demonstrates
how to construct an item list.

#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* class_name = address of the opaque simple name of the class
* to assign to the object
* class_len = length (in bytes) of the class opaque simple name
* object_name= address of opaque full name of the object
* to create in the namespace.
* object_len = length (in bytes) of the opaque full name of the
* object to create
*/

create_object(class_name, class_len, object_name, object_len)
unsigned char *class_name; /*Format is a DECdns opaque simple name*\
unsigned short class_len;
unsigned char *object_name; /*Format is a DECdns opaque simple name*\
unsigned short object_len;
{

struct $dnsitmdef createitem[4]; /* Item list used by system service */
struct $dnscversdef version; /* Version assigned to the object */
struct $dnsb iosb; /* Used to determine DECdns server status */
int status; /* Status return from system service */

11–5

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

/*
* Construct the item list that creates the object:
*/
createitem[0].dns$w_itm_size = class_len; 1
createitem[0].dns$w_itm_code = dns$_class;
createitem[0].dns$a_itm_address = class_name;

createitem[1].dns$w_itm_size = object_len; 2
createitem[1].dns$w_itm_code = dns$_objectname;
createitem[1].dns$a_itm_address = object_name;

version.dns$b_c_major = 1; 3
version.dns$b_c_minor = 0;

createitem[2].dns$w_itm_size = sizeof(struct $dnscversdef); 4
createitem[2].dns$w_itm_code = dns$_version;
createitem[2].dns$a_itm_address = &version;

*((int *)&createitem[3]) = 0; 5

status = sys$dnsw(0, dns$_create_object, &createitem, &iosb, 0, 0); 6

if(status == SS$_NORMAL)
{

status = iosb.dns$l_dnsb_status; 7
}

return(status);
}

1 The first entry in the item list is the address of the opaque simple name that
represents the class of the object.

2 The second entry is the address of the opaque full name for the object.

3 The next step is to build a version structure, which will indicate the version
of the object. In this case, the object is version 1.0.

4 The third entry is the address of the version structure that was just built.

5 A value of 0 terminates the item list.

6 The next step is to call the system service to create the object.

7 Check to see that both the system service and DECdns were able to perform
the operation without error.

11.2.2 Modifying Objects and Their Attributes
After you create objects that identify resources, you can add or modify attributes
that describe properties of the object. There is no limit imposed on the number of
attributes an object can have.

You modify an object whenever you need to add an attribute or attribute value,
change an attribute value, or delete an attribute or attribute value. When you
modify an attribute, DECdns updates the timestamp contained in the DNS$UTS
attribute for that attribute.

To modify an attribute or attribute value, use the DNS$_MODIFY_ATTRIBUTE
function code. Specify the attribute name in the input item code along with the
following required input item codes:

• DNS$_ATTRIBUTETYPE to specify a set-valued (DNS$K_SET) or single-
valued (DNS$K_SINGLE) attribute

• DNS$_MODOPERATION to specify that the value is being added (DNS$K_
PRESENT) or deleted (DNS$K_ABSENT)

11–6

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

Use the DNS$_MODVALUE item code to specify the value of the attribute. Note
that the DNS$_MODVALUE item code must be specified to add a single-valued
attribute. You can specify a null value for a set-valued attribute. DECdns
modifies attribute values in the following way:

• If the attribute exists and you specify an attribute value, the attribute value
is removed from a set-valued attribute. All other values are unaffected. For a
single-valued attribute, DECdns removes the attribute and its value from the
name.

• If you do not specify an attribute value, DECdns removes the attribute and
all values of the attribute for both set-valued and single-valued attributes.

To delete an attribute, use the DNS$_MODOPERATION item code.

The following is an example of how to use the DNS$_MODIFY_ATTRIBUTE
function code to add a new member to a group object. To do this, you add the new
member to the DNS$Members attribute of the group object. Use the following
function codes:

• Specify the group object (DNS$_ENTRY) and type (DNS$_LOOKINGFOR).
The type should be specified as object (DNS$K_OBJECT).

• Use DNS$_MODOPERATION to add a member to the DNS$Members
attribute (DNS$_ATTRIBUTENAME), which is a set-valued attribute (DNS$_
ATTRIBUTETYPE).

• Specify the new member object name in DNS$_MODVALUE.

• Use another DNS$_MODIFY_ATTRIBUTE call to assign access rights for the
new member to the DNS$ACS attribute of the member object.

Perform the following steps to modify an object with SYS$DNSW:

1. Build an item list that contains the following elements:

• Opaque name of the object you are modifying

• Type of object

• Operation to perform

• Type of attribute you are modifying

• Attribute name

• Value being added to the attribute

2. Supply any of the optional parameters described in Section 11.2.1.

3. Call the modify attribute function, supplying the parameters established in
steps 1 and 2.

11–7

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

The following example, written in C, shows how to add a set-valued attribute and
a value to an object:

#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* obj_name = address of opaque full name of object
* obj_len = length of opaque full name of object
* att_name = address of opaque simple name of attribute to create
* att_len = length of opaque simple name of attribute
* att_value= value to associate with the attribute
* val_len = length of added value (in bytes)
*/

add_attribute(obj_name, obj_len, att_name, att_len, att_value, val_len)
unsigned char *obj_name;
unsigned short obj_len;
unsigned char *att_name;
unsigned short att_len;
unsigned char *att_value;
unsigned short val_len;

main() {
struct $dnsitmdef moditem[7]; /* Item list for $DNSW */
unsigned char objtype = dns$k_object; /* Using objects */
unsigned char opertype = dns$k_present; /* Adding an object */
unsigned char attype = dns$k_set; /* Attribute will be type set */
struct $dnsb iosb; /* Used to determine DECdns status */
int status; /* Status of system service */

/*
* Construct the item list to add an attribute to an object.
*/
moditem[0].dns$w_itm_size = obj_len;
moditem[0].dns$w_itm_code = dns$_entry;
moditem[0].dns$a_itm_address = obj_name; 1

moditem[1].dns$w_itm_size = sizeof(char);
moditem[1].dns$w_itm_code = dns$_lookingfor;
moditem[1].dns$a_itm_address = &objtype; 2

moditem[2].dns$w_itm_size = sizeof(char);
moditem[2].dns$w_itm_code = dns$_modoperation;
moditem[2].dns$a_itm_address = &opertype; 3

moditem[3].dns$w_itm_size = sizeof(char);
moditem[3].dns$w_itm_code = dns$_attributetype;
moditem[3].dns$a_itm_address = &attype; 4

moditem[4].dns$w_itm_size = att_len;
moditem[4].dns$w_itm_code = dns$_attributename;
moditem[4].dns$a_itm_address = att_name; 5

moditem[5].dns$w_itm_size = val_len;
moditem[5].dns$w_itm_code = dns$_modvalue;
moditem[5].dns$a_itm_address = att_value; 6

*((int *)&moditem[6]) = 0; 7

/*
* Call $DNSW to add the attribute to the object.
*/
status = sys$dnsw(0, dns$_modify_attribute, &moditem, &iosb, 0, 0);8

11–8

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

if(status == SS$_NORMAL)
{
status = iosb.dns$l_dnsb_status; 9
}

return(status);
}

1 The first entry in the item list is the address of the opaque full name of the
object.

2 The second entry shows that this is an object, not a soft link or child directory
pointer.

3 The third entry is the operation to perform. The program adds an attribute
with its value to the object.

4 The fourth entry is the attribute type. The attribute has a set of values
rather than a single value.

5 The fifth entry is the opaque simple name of the attribute being added.

6 The sixth entry is the value associated with the attribute.

7 A value of 0 terminates the item list.

8 A call is made to the SYS$DNSW system service to perform the operation.

9 A check is made to see that both the system service and DECdns performed
the operation without error.

11.2.3 Requesting Information from DECdns
Once an application adds its objects to the namespace and modifies the names to
contain all necessary attributes, the application is ready to use the namespace.
An application can request that the DECdns Clerk either read attribute
information stored with an object or list all the application’s objects that are
stored in a particular directory. An application might also need to resolve all soft
links in a name in order to identify a target.

To request information from DECdns, use the read or enumerate function codes,
as follows:

• The DNS$_READ_ATTRIBUTE function reads and returns a set whose
members are the values of the specified attribute.

• The DNS$_ENUMERATE functions return a list of names for attributes,
child directories, objects, and soft links.

11.2.3.1 Using the Distributed File Service (DFS)
The VAX Distributed File Service (DFS) uses DECdns for resource naming.
This section gives an example of the DNS$_READ_ATTRIBUTE call as used by
DFS. The DFS application uses DECdns to give the operating system’s users
the ability to use remote operating system disks as if the disks were attached
to their local VAX system. The DFS application creates DECdns names for the
operating system’s directory structures (a directory and all of its subdirectories).
Each DFS object in the namespace references a particular file access point. DFS
creates each object with a class attribute of DFS$ACCESSPOINT and modifies
the address attribute (DNS$Address) of each object to hold the DECnet node
address where the directory structures reside. As a final step in registering its
resources, DFS creates a database that maps DECdns names to the appropriate
operating system directory structures.

11–9

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

Whenever the DFS application receives the following mount request, DFS sends a
request for information to the DECdns Clerk:

MOUNT ACCESS_POINT dns-name vms-logical-name

To read the address attribute of the access point object, the DFS application
performs the following steps:

1. Translates the DECdns name that is supplied through the user to opaque
format using the SYS$DNS parse function

2. Reads the class attribute of the object with the $DNS read attribute function,
indicating that there is a second call to read other attributes of the object

3. Makes a second call to the SYS$DNS read attribute function to read the
address attribute of the object

4. Sends the DECdns name to the DFS server, which looks up the disk on which
the access point is located

5. Verifies that the DECdns name is valid on the DFS server

The DFS client and DFS server now can communicate to complete the mount
function.

11.2.3.2 Reading Attributes from DNS
When requesting information from DNS, an application always takes an object
name from the user, translates the name into opaque format, and passes it in an
item list to the DECdns Clerk.

Each read request returns a set of attribute values. The DNS$_READ_
ATTRIBUTE service uses a context item code called DNS$_CONTEXTVARTIME
to maintain context when reading the attribute values. The context item code
saves the last member that is read from the set. When the next read call is
issued, the item code sets the context to the next member in the set, reads it, and
returns it. The context item code treats single-valued attributes as though they
were a set of one.

If an enumeration call returns DNS$_MOREDATA, not all matching names or
attributes have been enumerated. If you receive this message, you should make
further calls, setting DNS$_CONTEXTVARTIME to the last value returned until
the procedure returns SS$_NORMAL.

The following program, written in C, shows how an application reads an object
attribute. The SYS$DNSW service uses an item list to return a set of objects.
Then the application calls a run-time library routine to read each value in the
set.

#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* opaque_objname = address of opaque full name for the object
* containing the attribute to be read
* obj_len = length of opaque full name of the object
* opaque_attname = address of the opaque simple name of the
* attribute to be read
* attname_len = length of opaque simple name of attribute
*/

11–10

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

read_attribute(opaque_objname, obj_len, opaque_attname, attname_len)
unsigned char *opaque_objname;
unsigned short obj_len;
unsigned char *opaque_attname;
unsigned short attname_len;
{

struct $dnsb iosb; /* Used to determine DECdns status */
char objtype = dns$k_object; /* Using objects */

struct $dnsitmdef readitem[6]; /* Item list for system service */
struct dsc$descriptor set_dsc, value_dsc, newset_dsc, cts_dsc;

unsigned char attvalbuf[dns$k_maxattribute]; /* To hold the attribute */
/* values returned from extraction routine. */

unsigned char attsetbuf[dns$k_maxattribute]; /* To hold the set of */
/* attribute values after the return from $DNSW. */

unsigned char ctsbuf[dns$k_cts_length]; /* Needed for context of multiple reads */

int read_status; /* Status of read attribute routine */
int set_status; /* Status of remove value routine */
int xx; /* General variable used by print routine */

unsigned short setlen; /* Contains current length of set structure */
unsigned short val_len; /* Contains length of value extracted from set */
unsigned short cts_len; /* Contains length of CTS extracted from set */

/* Construct an item list to read values of the attribute. */ 1
readitem[0].dns$w_itm_code = dns$_entry;
readitem[0].dns$w_itm_size = obj_len;
readitem[0].dns$a_itm_address = opaque_objname;

readitem[1].dns$w_itm_code = dns$_lookingfor;
readitem[1].dns$w_itm_size = sizeof(char);
readitem[1].dns$a_itm_address = &objtype;

readitem[2].dns$w_itm_code = dns$_attributename;
readitem[2].dns$a_itm_address = opaque_attname;
readitem[2].dns$w_itm_size = attname_len;

readitem[3].dns$w_itm_code = dns$_outvalset;
readitem[3].dns$a_itm_ret_length = &setlen;
readitem[3].dns$w_itm_size = dns$k_maxattribute;
readitem[3].dns$a_itm_address = attsetbuf;

*((int *)&readitem[4]) = 0;

do 2
{

read_status = sys$dnsw(0, dns$_read_attribute, &readitem, &iosb, 0, 0);

if(read_status == SS$_NORMAL)
{

read_status = iosb.dns$l_dnsb_status;
}

if((read_status == SS$_NORMAL) || (read_status == DNS$_MOREDATA))
{

do
{

set_dsc.dsc$w_length = setlen;
set_dsc.dsc$a_pointer = attsetbuf; /* Address of set */

value_dsc.dsc$w_length = dns$k_simplenamemax;
value_dsc.dsc$a_pointer = attvalbuf; /* Buffer to hold */

/* attribute value */

cts_dsc.dsc$w_length = dns$k_cts_length;
cts_dsc.dsc$a_pointer = ctsbuf; /* Buffer to hold value’s CTS*/

11–11

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

newset_dsc.dsc$w_length = dns$k_maxattribute;
newset_dsc.dsc$a_pointer = attsetbuf; /* Same buffer for */

/* each call */

set_status = dns$remove_first_set_value(&set_dsc, &value_dsc,
3 &val_len, &cts_dsc,

&cts_len, &newset_dsc,
&setlen);

if(set_status == SS$_NORMAL)
{ 4

readitem[4].dns$w_itm_code = dns$_contextvartime;
readitem[4].dns$w_itm_size = cts_len;
readitem[4].dns$a_itm_address = ctsbuf;

*((int *)&readitem[5]) = 0;

printf("\tValue: "); 5
for(xx = 0; xx < val_len; xx++)

printf("%x ", attvalbuf[xx]);
printf("\n");

}
else if (set_status != 0)
{

printf("Error %d returned when removing value from set\n",
set_status);

exit(set_status);
}

} while(set_status == SS$_NORMAL);
}
else
{

printf("Error reading attribute = %d\n", read_status);
exit(read_status);

}
} while(read_status == DNS$_MOREDATA);

}

1 The item list contains five entries:

• Opaque full name of the object with the attribute the program wants to
read

• Type of object to access

• Opaque simple name of the attribute to read

• Address of the buffer containing the set of values returned by the read
operation

• A value of 0 to terminate the item list

2 The loop repeatedly calls the SYS$DNSW service to read the values of the
attribute because the first call might not return all the values. The loop
executes until $DNSW returns something other than DNS$_MOREDATA.

3 The DNS$REMOVE_FIRST_SET_VALUE routine extracts a value from the
set.

4 This attribute name may be the context the routine uses to read additional
attributes. The attribute’s creation timestamp (CTS), not its value, provides
the context.

5 Finally, display the value in hexadecimal format. (You could also take the
attribute name and convert it to a printable format before displaying the
result.)

11–12

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

See the discussion about setting confidence in the Guide to Programming with
DECdns for information about obtaining up-to-date data on read requests.

11.2.3.3 Enumerating DECdns Names and Attributes
The enumerate functions return DECdns names for objects, child directories, soft
links, groups, or attributes in a specific directory. Use either the asterisk (*) or
question mark (?) wildcard to screen enumerated items. DECdns matches any
single character against the specified wildcard.

Enumeration calls return a set of simple names or attributes. If an enumeration
call returns DNS$_MOREDATA, not all matching names or attributes have been
enumerated. If you receive this message, use the context-setting conventions
that are described for the DNS$_READ_ATTRIBUTE call. You should make
further calls, setting DNS$_CONTEXTVARNAME to the last value returned until
the procedure returns SS$_NORMAL. For more information, see the SYS$DNS
system service in the OpenVMS System Services Reference Manual: A–GETMSG.

The following program, written in C, shows how an application can read the
objects in a directory with the SYS$DNS system service. The values that
DECdns returns from read and enumerate functions are in different structures.
For example, an enumeration of objects returns different structures than an
enumeration of child directories. To clarify how to use this data, the sample
program demonstrates how to parse any set that the enumerate objects function
returns with a run-time library routine in order to remove the first value from
the set. The example also demonstrates how the program takes each value from
the set.

#include <dnsdef.h>
#include <dnsmsg.h>
/*
* Parameters:
* fname_p : opaque full name of the directory to enumerate
* fname_len : length of full name of the directory
*/

struct $dnsitmdef enumitem[4]; /* Item list for enumeration */
unsigned char setbuf[100]; /* Values from enumeration */
struct $dnsb enum_iosb; /* DECdns status information */
int synch_event; /* Used for synchronous AST threads */
unsigned short setlen; /* Length of output in setbuf */

enumerate_objects(fname_p, fname_len)
unsigned char *fname_p;
unsigned short fname_len;
{

int enumerate_objects_ast();

int status; /* General routine status */
int enum_status; /* Status of enumeration routine */

/* Set up item list */

enumitem[0].dns$w_itm_code = dns$_directory; /* Opaque directory name */
enumitem[0].dns$w_itm_size = fname_len;
enumitem[0].dns$a_itm_address = fname_p;

enumitem[1].dns$w_itm_code = dns$_outobjects; /* output buffer */
enumitem[1].dns$a_itm_ret_length = &setlen;
enumitem[1].dns$w_itm_size = 100;
enumitem[1].dns$a_itm_address = setbuf;

*((int *)&enumitem[2]) = 0; /* Zero terminate item list */

status = lib$get_ef(&synch_event); 1

11–13

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

if(status != SS$_NORMAL)
{

printf("Could not get event flag to synch AST threads\n");
exit(status);

}

enum_status = sys$dns(0, dns$_enumerate_objects, &enumitem,
2 &enum_iosb, enumerate_objects_ast, setbuf);

if(enum_status != SS$_NORMAL) 3
{

printf("Error enumerating objects = %d\n", enum_status);
exit(enum_status);

}
status = sys$synch(synch_event, &enum_iosb); 4

if(status != SS$_NORMAL)
{

printf("Synchronization with AST threads failed\n");
exit(status);

}
}

/* AST routine parameter: */
/* outbuf : address of buffer that contains enumerated names. */

5
unsigned char objnamebuf[dns$k_simplenamemax]; /* Opaque object name */

enumerate_objects_ast(outbuf)
unsigned char *outbuf;
{

struct $dnsitmdef cvtitem[3]; /* Item list for class name */
struct $dnsb iosb; /* Used for name service status information */
struct dsc$descriptor set_dsc, value_dsc, newset_dsc;

unsigned char simplebuf[dns$k_simplestrmax]; /* Object name string */

int enum_status; /* The status of the enumeration itself */
int status; /* Used for checking immediate status returns */
int set_status; /* Status of remove value routine */

unsigned short val_len; /* Length of set value */
unsigned short sname_len; /* Length of object name */

enum_status = enum_iosb.dns$l_dnsb_status; /* Check status */
if((enum_status != SS$_NORMAL) && (enum_status != DNS$_MOREDATA))
{

printf("Error enumerating objects = %d\n", enum_status);
sys$setef(synch_event);
exit(enum_status);

}

do
{

/*
* Extract object names from output buffer one
* value at a time. Set up descriptors for the extraction.
*/
set_dsc.dsc$w_length = setlen; /* Contains address of */
set_dsc.dsc$a_pointer = setbuf; /* the set whose values */

/* are to be extracted */

value_dsc.dsc$w_length = dns$k_simplenamemax;
value_dsc.dsc$a_pointer = objnamebuf; /* To contain the */

/* name of an object */
/* after the extraction */

newset_dsc.dsc$w_length = 100; /* To contain a new */
newset_dsc.dsc$a_pointer = setbuf; /* set structure after */

/* the extraction. */

11–14

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

/* Call yRTL routine to extract the value from the set */
set_status = dns$remove_first_set_value(&set_dsc, &value_dsc, &val_len,

0, 0, &newset_dsc, &setlen);

if(set_status == SS$_NORMAL)
{ 6

cvtitem[0].dns$w_itm_code = dns$_fromsimplename;
cvtitem[0].dns$w_itm_size = val_len;
cvtitem[0].dns$a_itm_address = objnamebuf;

cvtitem[1].dns$w_itm_code = dns$_tostringname;
cvtitem[1].dns$w_itm_size = dns$k_simplestrmax;
cvtitem[1].dns$a_itm_address = simplebuf;
cvtitem[1].dns$a_itm_ret_length = &sname_len;

*((int *)&cvtitem[2]) = 0;

status = sys$dnsw(0, dns$_simple_opaque_to_string, &cvtitem,
&iosb, 0, 0);

if(status == SS$_NORMAL)
status = iosb.dns$l_dnsb_status; /* Check for errors */

if(status != SS$_NORMAL) /* If error, terminate processing */
{

printf("Converting object name to string returned %d\n",
status);

exit(status);
}
else
{

printf("%.*s\n", sname_len,simplebuf);
}

enumitem[2].dns$w_itm_code = dns$_contextvarname; 7
enumitem[2].dns$w_itm_size = val_len;
enumitem[2].dns$a_itm_address = objnamebuf;

*((int *)&enumitem[3]) = 0;
}
else if (set_status != 0)
{

printf("Error %d returned when removing value from set\n",
set_status);

exit(set_status);
}

} while(set_status == SS$_NORMAL);

if(enum_status == DNS$_MOREDATA)
{ 8

enum_status = sys$dns(0, dns$_enumerate_objects, &enumitem,
&enum_iosb, enumerate_objects_ast, setbuf);

if(enum_status != SS$_NORMAL) /* Check status of $DNS */
{

printf("Error enumerating objects = %d\n", enum_status);
sys$setef(synch_event);

}
}
else
{ 9

sys$setef(synch_event);
}

}

1 Get an event flag to synchronize the execution of AST threads.

2 Use the system service to enumerate the object names.

3 Check the status of the system service itself before waiting for threads.

11–15

Distributed Name Service (VAX Only)
11.2 Using the SYS$DNS System Service Call

4 Use the SYS$SYNCH call to make sure the DECdns Clerk has completed and
that all threads have finished executing.

5 After enumerating objects, SYS$DNS calls an AST routine. The routine
shows how DNS$REMOVE_FIRST_SET_VALUE extracts object names from
the set returned by the DNS$_ENUMERATE_OBJECTS function.

6 Use an item list to convert the opaque simple name to a string name so you
can display it to the user. The item list contains the following entries:

• Address of the opaque simple name to be converted

• Address of the buffer that will hold the string name

• A value of 0 to terminate the item list

7 This object name may provide the context for continuing the enumeration.
Append the context variable to the item list so the enumeration can continue
from this name if there is more data.

8 Use the system service to enumerate the object names as long as there is
more data.

9 Set the event flag to indicate that all AST threads have completed and that
the program can terminate.

11.3 Using the DCL Command DEFINE with DECdns Logical Names
When the DECdns Clerk is started on the operating system, the VAX system
creates a unique logical name table for DECdns to use in translating full names.
This logical name table, called DNS$SYSTEM, prevents unintended interaction
with other system logical names.

To define systemwide logical names for DECdns objects, you must have the
appropriate privileges to use the DCL command DEFINE. Use the DEFINE
command to create the logical RESEARCH.PROJECT_DISK, for example, by
entering the following DCL command:

$ DEFINE/TABLE=DNS$SYSTEM RESEARCH "ENG.RESEARCH"

When parsing a name, the SYS$DNS service specifies the logical name
DNS$LOGICAL as the table it uses to translate a simple name into a full name.
This name translates to DNS$SYSTEM (by default) to access the systemwide
DECdns logical name table.

To define process or job logical names for SYS$DNS, you must create a process
or job table and redefine DNS$LOGICAL as a search list, as in the following
example (note that elevated privileges are required to create a job table):

$ CREATE /NAME_TABLE DNS_PROCESS_TABLE
$ DEFINE /TABLE=LNM$PROCESS_DIRECTORY DNS$LOGICAL -
_$DNS_PROCESS_TABLE,DNS$SYSTEM

Once you have created the process or job table and redefined DNS$LOGICAL,
you can create job-specific logical names for DECdns by using the DCL command
DEFINE, as follows:

$ DEFINE /TABLE=DNS_PROCESS_TABLE RESEARCH "ENG.RESEARCH.MYGROUP"

11–16

12
Using the Distributed Transaction Manager

This chapter describes how to use the distributed transaction manager. It shows
you how to use DECdtm services to bind together operations on several databases
or files into a single transaction. To use DECdtm services, the resource managers
taking part in the transaction must support DECdtm. DEC Rdb for OpenVMS
Alpha, DEC Rdb for OpenVMS VAX, DEC DBMS for OpenVMS Alpha, DEC
DBMS for OpenVMS VAX, and OpenVMS RMS Journaling support DECdtm.

This chapter is divided into the following sections:

Section 12.1 gives an introduction to DECdtm services.

Section 12.2 discusses how to call DECdtm services.

Section 12.3 gives an example that shows how to use DECdtm services.

12.1 Introduction to DECdtm Services
A transaction performs operations on resources. Examples of resources are
databases and files. A transaction often needs to use more than one resource on
one or more nodes. This type of transaction is called a distributed transaction.

Maintaining the integrity and consistency of the resources used by a distributed
transaction can be complex. To help with this, DECdtm manages distributed
transactions and reduces the amount of coding required in your applications.

DECdtm uses an optimized version of the standard two-phase commit protocol.
This ensures that transactions are atomic. If a transaction is atomic, either all
the transaction operations take effect (the transaction is committed), or none of
the operations take effect (the transaction is aborted).

The two-phase commit protocol makes sure that all the operations can take effect
before the transaction is committed. If any operation cannot take effect, for
example if a network link is lost, then the transaction is aborted, and none of the
operations take effect.

12.1.1 Sample Atomic Transaction
Edward Jessup, an employee of a computer company in Italy, is transferring to
a subsidiary of the company in Japan. An application must remove his personal
information from an Italian DBMS database and add them to a Japanese Rdb
database. Both of these operations must happen, otherwise Edward may either
end up ‘‘in limbo’’ (the application might remove him from the Italian database
but then lose a network link while trying to add him to the Japanese database),
or find that he is in both databases at the same time. Either way, the two
databases would be out of step.

If the application used DECdtm to execute both operations as an atomic
transaction, then this error could never happen; DECdtm would automatically
detect the network link failure and abort the transaction. Neither of the
databases would be updated, and the application could then try again.

12–1

Using the Distributed Transaction Manager
12.1 Introduction to DECdtm Services

12.1.2 Transaction Participants
A DECdtm transaction involves the following participants:

• Application: Defines the operations that the transaction will perform.

• Resource manager: Performs the operations on the resources. A resource
manager must support DECdtm. Examples of those that do are Rdb, DBMS,
and OpenVMS RMS Journaling.

• Transaction manager: Coordinates the actions of the resource managers on
its node. Transaction managers are provided by DECdtm.

Figure 12–1 shows the participants in the distributed transaction discussed in
Section 12.1.1. The application is on node ITALY.

Figure 12–1 Participants in a Distributed Transaction

node ITALY

ZK−4771A−GE

Application

node JAPAN

Resource
Manager

(Rdb/VMS)

Transaction
Manager

Transaction
Manager

Resource
Manager
(DBMS)

ResourceResource

12.1.3 DECdtm System Services
The DECdtm system services are:

• SYS$START_TRANSW: Starts a new transaction and returns the transaction
identifier.

• SYS$END_TRANSW: Ends a transaction by attempting to commit it. Returns
the outcome of the transaction (either commit or abort).

• SYS$ABORT_TRANSW: Aborts a transaction.

These are all synchronous system service calls. There are also asynchronous
versions (SYS$START_TRANS, SYS$END_TRANS, and SYS$ABORT_TRANS).
For a full description of all the DECdtm system services, see the OpenVMS
System Services Reference Manual.

12–2

Using the Distributed Transaction Manager
12.1 Introduction to DECdtm Services

12.1.4 Default Transactions
Some resource managers (such as OpenVMS RMS Journaling) support the
concept of default transactions. This means that the application does not need
to specify the transaction identifier when executing transaction operations. The
resource manager checks whether the calling process has a default transaction;
if it has, the resource manager assumes that the operation is part of the default
transaction.

12.2 Calling DECdtm System Services
An application using the DECdtm system services follows these steps:

1. Calls SYS$START_TRANSW. This starts a new transaction and returns the
transaction identifier.

2. Instructs the resource managers to perform the required operations on their
resources.

3. Ends the transaction in one of two ways:

• Commit: To attempt to perform, or commit, the transaction, the
application calls SYS$END_TRANSW. This checks whether all the
participants can commit their operations. If any participant cannot
commit an operation, the transaction is aborted.

When SYS$END_TRANSW returns, the application finds out the outcome
of the transaction by reading the completion status in the I/O status
block.

• Abort: To abort the transaction, the application calls
SYS$ABORT_TRANSW. Typically, an application aborts a transaction
if a resource manager returns an error or if the user enters invalid
information during the transaction.

12.3 Using DECdtm Services: An Example
The following is a sample Fortran application that uses DECdtm system services.
It can be found in SYS$EXAMPLES:DECDTM$EXAMPLE1.

The application opens two files, sets a counter, then enters a loop to perform the
following steps:

• Increments the counter by 1

• Calls SYS$START_TRANSW to start a new transaction

• Writes the counter value to the two files

• Either calls SYS$END_TRANSW to attempt to commit the transaction, or
calls SYS$ABORT_TRANSW to abort the transaction.

The application repeats these steps until either an error occurs or the user
requests an interrupt. Because DECdtm services are used, the two files will
always be in step with each other. If DECdtm services were not used, one file
could have been updated while the other was not. This would result in the files’
being out of step.

12–3

Using the Distributed Transaction Manager
12.3 Using DECdtm Services: An Example

This example contains numbered callouts, which are explained after the program
listing.

C
C This program assumes that the files DECDTM$EXAMPLE1.FILE_1 and
C DECDTM$EXAMPLE1.FILE_2 are created and marked for recovery unit
C journaling using the command file SYS$EXAMPLES:DECDTM$EXAMPLE1.COM
C
C To run this example, enter the following:
C $ FORTRAN SYS$EXAMPLES:DECDTM$EXAMPLE1
C $ LINK DECDTM$EXAMPLE1
C $ @SYS$EXAMPLES:DECDTM$EXAMPLE1
C $ RUN DECDTM$EXAMPLE1
C
C SYS$EXAMPLES also contains an example C application, DECDTM$EXAMPLE2.C
C The C application performs the same operations as this Fortran example.
C

IMPLICIT NONE

INCLUDE ’($SSDEF)’
INCLUDE ’($FORIOSDEF)’

CHARACTER*12 STRING
INTEGER*2 IOSB(4)
INTEGER*4 STATUS,COUNT,TID(4)
INTEGER*4 SYS$START_TRANSW,SYS$END_TRANSW,SYS$ABORT_TRANSW
EXTERNAL SYS$START_TRANSW,SYS$END_TRANSW,SYS$ABORT_TRANSW
EXTERNAL JOURNAL_OPEN

C
C Open the two files
C

1 OPEN (UNIT = 10, FILE = ’DECDTM$EXAMPLE1.FILE_1’, STATUS = ’OLD’,
1 ACCESS = ’DIRECT’, RECL = 3, USEROPEN = JOURNAL_OPEN)
OPEN (UNIT = 11, FILE = ’DECDTM$EXAMPLE1.FILE_2’, STATUS = ’OLD’,
1 ACCESS = ’DIRECT’, RECL = 3, USEROPEN = JOURNAL_OPEN)

COUNT = 0

TYPE *, ’Running DECdtm example program’
TYPE *, ’Press CTRL-Y to interrupt’

C
C Loop forever, updating both files under transaction control
C

DO WHILE (.TRUE.)
C
C Update the count and convert it to ASCII
C

2 COUNT = COUNT + 1
ENCODE (12,8000,STRING) COUNT

8000 FORMAT (I12)
C
C Start the transaction
C

3 STATUS = SYS$START_TRANSW (%VAL(1),,IOSB,,,TID)
IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9040

C
C Update the record in each file
C

4 WRITE (UNIT = 10, REC = 1, ERR = 9000, IOSTAT = STATUS) STRING
WRITE (UNIT = 11, REC = 1, ERR = 9010, IOSTAT = STATUS) STRING

C
C Attempt to commit the transaction
C

5 STATUS = SYS$END_TRANSW (%VAL(1),,IOSB,,,TID)
IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9050

12–4

Using the Distributed Transaction Manager
12.3 Using DECdtm Services: An Example

END DO
C
C Errors that should cause the transaction to abort
C

6
9000 TYPE *, ’Failed to update DECDTM$EXAMPLE1.FILE_1’

GO TO 9020

9010 TYPE *, ’Failed to update DECDTM$EXAMPLE1.FILE_2’
9020 STATUS = SYS$ABORT_TRANSW (%VAL(1),,IOSB,,,TID)

IF (STATUS .NE. SS$_NORMAL .OR. IOSB(1) .NE. SS$_NORMAL) GO TO 9060
STOP

C
C Errors from DECdtm system services
C
9040 TYPE *, ’Unable to start a transaction’

GO TO 9070
9050 TYPE *, ’Failed to commit the transaction’

GO TO 9070
9060 TYPE *, ’Failed to abort the transaction’
9070 TYPE *, ’Status = ’, STATUS, ’ IOSB = ’, IOSB(1)

END
C
C Switch off TRUNCATE access and PUT with truncate on OPEN for RU Journaling
C

INTEGER FUNCTION JOURNAL_OPEN (FAB, RAB, LUN)

INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
INCLUDE ’($SYSSRVNAM)’

RECORD /FABDEF/ FAB, /RABDEF/ RAB

FAB.FAB$B_FAC = FAB.FAB$B_FAC .AND. .NOT. FAB$M_TRN
RAB.RAB$L_ROP = RAB.RAB$L_ROP .AND. .NOT. RAB$M_TPT

JOURNAL_OPEN = SYS$OPEN (FAB)
IF (.NOT. JOURNAL_OPEN) RETURN
JOURNAL_OPEN = SYS$CONNECT (RAB)

RETURN
END

1 The application opens DECDTM$EXAMPLE1.FILE1 and
DECDTM$EXAMPLE1.FILE2 for writing. It then zeroes the variable
COUNT and enters an infinite loop.

2 The application increments the count by one and converts it to an ASCII
string.

3 The application calls SYS$START_TRANSW to start a transaction. The
application checks the immediate return status and service completion status
to see whether they signify an error.

4 The application attempts to write the string to the two files. If it cannot,
the application aborts the transaction. Because the files are OpenVMS RMS
journaled files, the default transaction is assumed.

5 The application calls SYS$END_TRANSW to attempt to commit the
transaction. It checks the immediate return status and service completion
status to see whether they signify an error. If they do, the application reports
the error and exits. If there are no errors, the transaction is committed and
the application continues with the loop.

12–5

Using the Distributed Transaction Manager
12.3 Using DECdtm Services: An Example

6 If either of the two files could not be updated, the application calls
SYS$ABORT_TRANSW to abort the transaction. It checks the immediate
return status and service completion status to see whether they signify an
error. If they do, the application reports the error and exits.

12–6

13
Condition-Handling Routines and Services

This chapter describes the OpenVMS Condition Handling facility. It contains the
following sections:

Section 13.1 gives an overview of run-time errors.

Section 13.2 gives an overview of the OpenVMS Condition Handling facility,
presenting condition-handling terminology and functionality.

Section 13.3 describes VAX system and Alpha system exceptions, arithmetic
exceptions, and unaligned access traps on Alpha systems.

Section 13.4 describes how run-time library routines handle exceptions.

Section 13.5 describes the condition value field and the testing and modifying of
values.

Section 13.6 describes the exception dispatcher.

Section 13.7 describes the argument list that is passed to a condition handler.

Section 13.8 describes signaling.

Section 13.9 describes types of condition handlers.

Section 13.10 describes types of actions performed by condition handlers.

Section 13.11 describes messages and how to use them.

Section 13.12 describes how to write a condition handler.

Section 13.13 describes how to debug a condition handler.

Section 13.14 describes several run-time library routines that can be established
as condition handlers.

Section 13.15 describes how to establish, write, and debug an exit handler.

13.1 Overview of Run-Time Errors
Run-time errors are hardware- or software-detected events, usually errors, that
alter normal program execution. Examples of run-time errors are as follows:

• System errors—for example, specifying an invalid argument to a system-
defined procedure

• Language-specific errors—for example, in Fortran, a data type conversion
error during an I/O operation

• Application-specific errors—for example, attempting to use invalid data

13–1

Condition-Handling Routines and Services
13.1 Overview of Run-Time Errors

When an error occurs, the operating system either returns a condition code or
value identifying the error to your program or signals the condition code. If
the operating system signals the condition code, typically an error message is
displayed, and program execution continues or terminates, depending on the
severity of the error. See Section 13.5 for details about condition values.

When unexpected errors occur, your program should display a message identifying
the error and then either continue or stop, depending on the severity of the error.
If you know that certain run-time errors might occur, you should provide special
actions in your program to handle those errors.

Both an error message and its associated condition code identify an error by
the name of the facility that generated it and an abbreviation of the message
text. Therefore, if your program displays an error message, you can identify
the condition code that was signaled. For example, if your program displays the
following error message, you know that the condition code SS$_NOPRIV was
signaled:

%SYSTEM-F-NOPRIV, no privilege for attempted operation

13.2 Overview of the OpenVMS Condition Handling facility
The operating system provides a set of signaling and condition-handling routines
and related system services to handle exception conditions. This set of services is
called the OpenVMS Condition Handling facility (CHF). The OpenVMS Condition
Handling Facility is a part of the common run-time environment of OpenVMS,
which includes run-time library (RTL) routines and other components of the
operating system.

The OpenVMS Condition Handling facility provides a single, unified method to
enable condition handlers, signal conditions, print error messages, change the
error behavior from the system default, and enable or disable detection of certain
hardware errors. The RTL and all layered products of the operating sytem use
the CHF for condition handling.

See the OpenVMS Calling Standard for a detailed description of OpenVMS
condition handling.

13.2.1 Condition-Handling Terminology
This section defines terms used to describe condition handling.

exception
An event detected by the hardware or software that changes the normal flow
of instruction execution. An exception is a synchronous event caused by the
execution of an instruction and often means something generated by hardware.
When an exception occurs, the processor transfers control by forcing a change
in the flow of control from that explicitly indicated in the currently executing
process.

Some exceptions are relevant primarily to the current process and normally
invoke software in the context of the current process. An integer overflow
exception detected by the hardware is an example of an event that is reported to
the process. Other exceptions, such as page faults, are handled by the operating
system and are transparent to the user.

An exception may also be signaled by a routine (software signaling) by calling the
RTL routines LIB$SIGNAL or LIB$STOP.

13–2

Condition-Handling Routines and Services
13.2 Overview of the OpenVMS Condition Handling facility

condition
An informational state that exists when an exception occurs. Condition is a more
general term than exception; a condition implies either a hardware exception or a
software-raised condition. Often, the term condition is preferred because the term
exception implies an error. Section 13.3.1 and Section 13.3.1.1 further define the
differences between exceptions and conditions.

condition handling
When a condition is detected during the execution of a routine, a signal can be
raised by the routine. The routine is then permitted to respond to the condition.
The routine’s response is called handling the condition.

VAX On VAX systems, an address of 0 in the first longword of a procedure call frame
or in an exception vector indicates that a condition handler does not exist for that
call frame or vector. ♦

Alpha On Alpha systems, the handler valid flag bit in the procedure descriptor is cleared
to indicate that a condition handler does not exist. ♦

The condition handlers are themselves routines; they have their own call frames.
Because they are routines, condition handlers can have condition handlers of
their own. This allows condition handlers to field exceptions that might occur
within themselves in a modular fashion.

VAX On VAX systems, a routine can enable a condition handler by placing the address
of the condition handler in the first longword of its stack frame. ♦

Alpha On Alpha systems, the association of a handler with a procedure is static and
must be specified at the time a procedure is compiled (or assembled). Some
languages that lack their own exception-handling syntax, however, may support
emulation of dynamic specified handlers by means of built-in routines. ♦

If you determine that a program needs to be informed of particular exceptions so
it can take corrective action, you can write and specify a condition handler. This
condition handler, which receives control when any exception occurs, can test for
specific exceptions.

If an exception occurs and you have not specified a condition handler, the default
condition handler established by the operating system is given control. If the
exception is a fatal error, the default condition handler issues a descriptive
message and causes the image that incurred the exception to exit.

To declare or enable a condition handler, use the following system services:

• Set Exception Vector (SYS$SETEXV)

• Set System Service Failure Exception Mode (SYS$SETSFM)

• Unwind from Condition Handler Frame (SYS$UNWIND)

• Declare Change Mode or Compatibility Mode Handler (SYS$DCLCMH)

Parallel mechanisms exist for uniform dispatching of hardware and software
exception conditions. Exceptions that are detected and signaled by hardware
transfer control to an exception service routine in the executive. Software-
detected exception conditions are generated by calling the run-time library
routines LIB$SIGNAL or LIB$STOP. Hardware- and software-detected exceptions
eventually execute the same exception dispatching code. Therefore, a condition
handler may handle an exception condition generated by hardware or by software
identically.

13–3

Condition-Handling Routines and Services
13.2 Overview of the OpenVMS Condition Handling facility

The Set Exception Vector (SYS$SETEXV) system service allows you to specify
addresses for a primary exception handler, a secondary exception handler, and
a last-chance exception handler. You can specify handlers for each access mode.
The primary exception vector is reserved for the debugger. In general, you should
avoid using these vectored handlers unless absolutely necessary. If you use a
vectored handler, it must be prepared for all exceptions occurring in that access
mode.

13.2.2 Functions of the Condition Handling facility
The OpenVMS Condition Handling facility and the related run-time library
routines and system services perform the following functions:

• Establish and call condition-handler routines

You can establish condition handlers to receive control in the event of an
exception in one of the following ways:

VAX On VAX systems, by specifying the address of a condition handler in the
first longword of a procedure call frame. ♦

Alpha On Alpha systems, the method for establishing a dynamic (that is,
nonvectored) condition handler is specified by the language. ♦

By establishing exception handlers with the Set Exception Vector
(SYS$SETEXV) system service.

The first of these methods is the preferred way to specify a condition handler
for a particular image. The use of dynamic handlers is also the most efficient
way in terms of declaration. Vectored handlers should be used for special
purposes, such as writing debuggers.

The VAX MACRO programmer can use the following single-move address
instruction to place the address of the condition handler in the longword
pointed to by the current frame pointer (FP):

MOVAB HANDLER,(FP)

You can associate a condition handler for the currently executing routine by
specifying an address pointing to the handler, either in the routine’s stack
frame on VAX systems or in one of the exception vectors. (The MACRO-32
compiler for OpenVMS Alpha systems generates the appropriate Alpha code
from this VAX instruction to establish a dynamic condition handler.)

VAX On VAX systems, the high-level language programmer can call the common
run-time library routine LIB$ESTABLISH (see the OpenVMS RTL
Library (LIB$) Manual), using the name of the handler as an argument.
LIB$ESTABLISH returns as a function value the address of the former
handler established for the routine or 0 if no handler existed.

The new condition handler remains in effect for your routine until
you call LIB$REVERT or control returns to the caller of the caller of
LIB$ESTABLISH. Once this happens, you must call LIB$ESTABLISH
again if the same (or a new) condition handler is to be associated with the
caller of LIB$ESTABLISH.

Some languages provide access to condition handling as part of the language.
The ON ERROR GOTO statement in BASIC and the ON statement in PL/I
can be used to define condition handlers. If you are using a language that
does provide access to condition handling, use its language mechanism rather
than LIB$ESTABLISH. Each procedure can declare a condition handler. ♦

13–4

Condition-Handling Routines and Services
13.2 Overview of the OpenVMS Condition Handling facility

When the routine signals an exception, the OpenVMS Condition Handling
facility calls the condition handler associated with the routine. See
Section 13.8 for more information about exception vectors. Figure 13–5
shows a sample stack scan for a condition handler.

The following DEC Fortran program segment establishes the condition
handler ERRLOG. Because the condition handler is used as an actual
argument, it must be declared in an EXTERNAL statement.

INTEGER*4 OLD_HANDLER
EXTERNAL ERRLOG

.

.

.
OLD_HANDLER = LIB$ESTABLISH (ERRLOG)

As its function value, LIB$ESTABLISH returns the address of the previous
handler. If only part of a program unit requires a special condition handler,
you can reestablish the original handler by invoking LIB$ESTABLISH and
specifying the saved handler address as follows:

CALL LIB$ESTABLISH (OLD_HANDLER)

The run-time library provides several condition handlers and routines that
a condition handler can call. These routines take care of several common
exception conditions. Section 13.14 describes these routines.

Alpha On Alpha systems, LIB$ESTABLISH and LIB$REVERT are not supported,
though a high-level language may support them for compatibility. (Table 13–4
lists other run-time library routines supported and not supported on Alpha
systems.) ♦

VAX • Remove an established condition-handler routine

Using LIB$REVERT, you can remove a condition handler from a routine’s
stack frame by setting the frame’s handler address to 0. If your high-level
language provides condition-handling statements, you should use them rather
than LIB$REVERT.

• Enable or disable the detection of arithmetic hardware exceptions

Using run-time library routines, you can enable or disable the signaling of
floating point underflow, integer overflow, and decimal overflow, which are
detected by the VAX hardware. ♦

• Signal a condition

When the hardware detects an exception, such as an integer overflow, a
signal is raised at that instruction. A routine may also raise a signal by
calling LIB$SIGNAL or LIB$STOP. Signals raised by LIB$SIGNAL allow
the condition handler either to terminate or to resume the normal flow of the
routine. Signals raised by LIB$STOP require termination of the operation
that raises the condition. The condition handler will not be allowed to
continue from the point of call to LIB$STOP.

• Display an informational message

The system establishes default condition handlers before it calls the main
program. Because these default condition handlers provide access to the
system’s standard error messages, the standard method for displaying a
message is by signaling the severity of the condition: informational, warning,
or error. See Section 13.5 for the definition of the severity field of a condition
vector. The system default condition handlers resume execution of the

13–5

Condition-Handling Routines and Services
13.2 Overview of the OpenVMS Condition Handling facility

instruction after displaying the messages associated with the signal. If the
condition value indicates a severe condition, then the image exits after the
message is displayed.

• Display a stack traceback on errors

The default operations of the LINK and RUN commands provide a system-
supplied handler (the traceback handler) to print a symbolic stack traceback.
The traceback shows the state of the routine stack at the point where the
condition occurred. The traceback information is displayed along with the
messages associated with the signaled condition.

• Compile customer-defined messages

The Message utility allows you to define your own exception conditions and
the associated messages. Message source files contain the condition values
and their associated messages. See Section 13.11.3 for a complete description
of how to define your own messages.

• Unwind the stack

A condition handler can cause a signal to be dismissed and the stack to
be unwound to the establisher or caller of the establisher of the condition
handler when it returns control to the OpenVMS Condition Handling
facility (CHF). During the unwinding operation, the CHF scans the stack.
If a condition handler is associated with a frame, the system calls that
handler before removing the frame. Calling the condition handlers during
the unwind allows a routine to perform cleanup operations specific to a
particular application, such as recovering from noncontinuable errors or
deallocating resources that were allocated by the routine (such as virtual
memory, event flags, and so forth). See Section 13.12.3 for a description of the
SYS$UNWIND system service.

• Log error messages to a file

The Put Message (SYS$PUTMSG) system service permits any user-written
handler to include a message in a listing file. Such message logging can be
separate from the default messages the user receives. See Section 13.11 for a
detailed description of the SYS$PUTMSG system service.

13.3 Exception Conditions
Exceptions can be generated by any of the following:

• Hardware

• Software

• System service failures

Hardware-generated exceptions always result in conditions that require special
action if program execution is to continue.

Software-generated exceptions may result in error or warning conditions. These
conditions and their message descriptions are documented in the online Help
Message utility and in the OpenVMS system messages documentation. To access
online message descriptions, use the HELP/MESSAGE command.

More information on using the Help Message utility is available in OpenVMS
System Messages: Companion Guide for Help Message Users. That document
describes only those messages that occur when the system is not fully operational
and you cannot access Help Message.

13–6

Condition-Handling Routines and Services
13.3 Exception Conditions

Some examples of exception conditions are as follows:

• Arithmetic exception condition in a user-written program detected and
signaled by hardware (for example, floating-point overflow)

• Error in a user argument to a run-time library routine detected by software
and signaled by calling LIB$STOP (for example, a negative square root)

• Error in a run-time library language-support routine, such as an I/O error or
an error in a data-type conversion

• RMS success condition stating that the record is already locked

• RMS success condition stating that the created file superseded an existing
version

There are two standard methods for a Digital- or user-written routine to indicate
that an exception condition has occurred:

• Return a completion code to the calling program using the function value
mechanism

Most general-purpose run-time library routines indicate exception conditions
by returning a condition value in R0. The calling program then tests bit 0 of
R0 for success or failure. This method allows better programming structure,
because the flow of control can be changed explicitly after the return from
each call. If the actual function value returned is greater than 32 bits, then
use both R0 and R1.

Alpha On Alpha systems, if the actual function returned is a floating-point value,
the floating-point value is returned in F0, or F0 and F1. ♦

• Signal the exception condition

A condition can be signaled by calling the RTL routine LIB$SIGNAL or
LIB$STOP. Any condition handlers that were enabled are then called by the
CHF. See Figure 13–5 for the order in which CHF invokes condition handlers.

Exception conditions raised by hardware or software are signaled to the
routine identically.

For more details, see Section 13.8 and Section 13.8.1.

13.3.1 System Service Exception Conditions
System service failure exceptions occur when an error or severe error status is
returned from a call to a system service. You can choose to handle error returns
from system services by using the condition-handling mechanism rather than
other error-checking methods. If you want to handle exceptions generated by
service failures, you must enable system service failure exception mode with the
Set System Service Failure Mode (SYS$SETSFM) system service. For example:

$SETSFM_S ENBFLG=#1

System service failure exception mode is initially disabled, and it can be enabled
or disabled at any time during the execution of an image.

13–7

Condition-Handling Routines and Services
13.3 Exception Conditions

13.3.1.1 Conditions Caused by Exceptions
Table 13–1 summarizes common conditions caused by exceptions. The condition
names are listed in the first column. The second column explains each condition
more fully by giving information about the type, meaning, and arguments relating
to the condition. The condition type is either trap or fault. For more information
about traps and faults, refer to the VAX Architecture Reference Manual and Alpha
Architecture Reference Manual. The meaning of the exception condition is a short
description of each condition. The arguments for the condition handler are listed
where applicable; they give specific information about the condition.

Table 13–1 Summary of Exception Conditions

Condition Name Explanation

SS$_ACCVIO Type:

Description:

Arguments:

Fault.

Access violation.

1. Reason for access violation. This is a mask with the
following format:

Bit <0> = type of access violation

Bit <0> = page table entry protection code did
not permit intended access
† Bit <1> = P0LR, P1LR, or SLR length
violation

Bit <1> = page table entry reference

Bit <0> = specified virtual address not
accessible
Bit <1> = associated page table entry not
accessible

Bit <2> = intended access

Bit <0> = read
Bit <1> = modify

2. Virtual address to which access was attempted or, on
some processors, virtual address within the page to
which access was attempted.

†SS$_ARTRES Type:

Description:

Arguments:

Trap.

Reserved arithmetic trap.

None.

†On VAX systems, this condition is generated by hardware.

(continued on next page)

13–8

Condition-Handling Routines and Services
13.3 Exception Conditions

Table 13–1 (Cont.) Summary of Exception Conditions

Condition Name Explanation

SS$_ASTFLT Type:

Description:

Arguments:

Trap.

Stack invalid during attempt to deliver an AST.

1. Stack pointer value when fault occurred.

2. AST parameter of failed AST.

3. Program counter (PC) at AST delivery interrupt.

4. Processor status longword (PSL) for VAX or processor
status (PS) for Alpha at AST delivery interrupt.1 For
PS, it is the low-order 32 bits.

5. Program counter (PC) to which AST would have been
delivered.1

6. Processor status longword (PSL) for VAX or processor
status (PS) for Alpha to which AST would have been
delivered.1 For PS, it is the low-order 32 bits.

SS$_BREAK Type:

Description:

Arguments:

Fault.

Breakpoint instruction encountered.

None.

SS$_CMODSUPR Type:

Description:

Arguments:

Trap.

Change mode to supervisor instruction encountered.2

Change mode code. The possible values are –32,768 through
32,767.

SS$_CMODUSER Type:

Description:

Arguments:

Trap.

Change mode to user instruction encountered.2

Change mode code. The possible values are –32,768 through
32,767.

1The PC and PSL (or PS) normally included in the signal array are not included in this argument list. The stack pointer
of the access mode receiving this exception is reset to its initial value.
2If a change mode handler has been declared for user or supervisor mode with the Declare Change Mode or Compatibility
Mode Handler (SYS$DCLCMH) system service, that routine receives control when the associated trap occurs.

(continued on next page)

13–9

Condition-Handling Routines and Services
13.3 Exception Conditions

Table 13–1 (Cont.) Summary of Exception Conditions

Condition Name Explanation

†SS$_COMPAT Type:

Description:

Arguments:

Fault.

Compatibility-mode exception. This exception condition can
occur only when executing in compatibility mode.3

Type of compatibility exception. The possible values are as
follows:

0 = Reserved instruction execution

1 = BPT instruction executed

2 = IOT instruction executed

3 = EMT instruction executed

4 = TRAP instruction executed

5 = Illegal instruction executed

6 = Odd address fault

7 = TBIT trap.

†‡SS$_DECOVF Type:

Description:

Arguments:

Trap.

Decimal overflow.

None.

†‡SS$_FLTDIV Type:

Description:

Arguments:

Trap.

Floating/decimal divide-by-zero.

None.

†SS$_FLTDIV_F Type:

Description:

Arguments:

Fault.

Floating divide-by-zero.

None.

†‡SS$_FLTOVF Type:

Description:

Arguments:

Trap.

Floating-point overflow.

None.

†SS$_FLTOVF_F Type:

Description:

Arguments:

Fault.

Floating-point overflow fault.

None.

†‡SS$_FLTUND Type:

Description:

Arguments:

Trap.

Floating-point underflow.

None.

†SS$_FLTUND_F Type:

Description:

Arguments:

Fault.

Floating-point underflow fault.

None.

†‡SS$_INTDIV Type:

Description:

Arguments:

Trap.

Integer divide-by-zero.

None.

3If a compatibility-mode handler has been declared with the Declare Change Mode or Compatibility Mode Handler
(SYS$DCLCMH) system service, that routine receives control when this fault occurs.
†On VAX systems, this condition is generated by hardware.
‡On Alpha systems, this condition is generated by software.

(continued on next page)

13–10

Condition-Handling Routines and Services
13.3 Exception Conditions

Table 13–1 (Cont.) Summary of Exception Conditions

Condition Name Explanation

†‡SS$_INTOVF Type:

Description:

Arguments:

Trap.

Integer overflow.

None.

†SS$_OPCCUS Type:

Description:

Arguments:

Fault.

Opcode reserved for customer fault.

None.

SS$_OPCDEC Type:

Description:

Arguments:

Fault.

Opcode reserved for Digital fault.

None.

SS$_PAGRDERR Type:

Description:

Arguments:

Fault.

Read error occurred during an attempt to read a faulted
page from disk.

1. Translation not valid reason. This is a mask with the
following format:

Bit <0> = 0
Bit <1> = page table entry reference

Bit <0> = specified virtual address not valid
Bit <1> = associated page table entry not valid

Bit <2> = intended access

Bit <0> = read
Bit <1> = modify

2. Virtual address of referenced page.

†SS$_RADRMOD Type:

Description:

Arguments:

Fault.

Attempt to use a reserved addressing mode.

None.

SS$_ROPRAND Type:

Description:

Arguments:

Fault.

Attempt to use a reserved operand.

None.

SS$_SSFAIL Type:

Description:

Arguments:

Fault.

System service failure (when system service failure exception
mode is enabled).

Status return from system service (R0). (The same value is
in R0 of the mechanism array.)

†‡SS$_SUBRNG Type:

Description:

Arguments:

Trap.

Subscript range trap.

None.

†On VAX systems, this condition is generated by hardware.
‡On Alpha systems, this condition is generated by software.

(continued on next page)

13–11

Condition-Handling Routines and Services
13.3 Exception Conditions

Table 13–1 (Cont.) Summary of Exception Conditions

Condition Name Explanation

†SS$_TBIT Type:

Description:

Arguments:

Fault.

Trace bit is pending following an instruction.

None.

†On VAX systems, this condition is generated by hardware.

Change-Mode and Compatibility-Mode Handlers
Two types of hardware exception can be handled in a way different from the
normal condition-handling mechanism described in this chapter. The two types of
hardware exception are as follows:

• Traps caused by change-mode-to-user or change-mode-to-supervisor
instructions

VAX • Compatibility mode faults ♦

You can use the Declare Change Mode or Compatibility Mode Handler
(SYS$DCLCMH) system service to establish procedures to receive control when
one of these conditions occurs. The SYS$DCLCMH system service is described in
the OpenVMS System Services Reference Manual.

13.3.2 Exception Conditions

Alpha On Alpha systems, the condition values that your condition-handling routine
expects to receive on VAX systems may no longer be meaningful, even though
the format of the 32-bit condition value and its location in the signal array are
the same as they are on VAX systems. Because of architectural differences, some
exception conditions that are returned on VAX systems are not supported on
Alpha systems.

Because hardware exceptions are more architecture specific than software
exceptions, only a subset of the hardware exceptions supported on VAX systems
are also supported on Alpha systems. In addition, the Alpha architecture defines
several additional exceptions that are not supported on VAX systems. ♦

Table 13–2 lists the Alpha exceptions that are not supported on VAX systems and
VAX hardware exceptions that are not supported on Alpha systems.

Table 13–2 Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

New Alpha Exceptions

SS$_HPARITH–High-performance arithmetic
exception

Generated for all Alpha arithmetic
exceptions (see Section 13.3.3)

SS$_ALIGN–Data alignment trap No VAX equivalent

13–12

Condition-Handling Routines and Services
13.3 Exception Conditions

Exception Condition Code Comment

VAX-Specific Hardware Exceptions

SS$_ARTRES–Reserved arithmetic trap No Alpha system equivalent

SS$_COMPAT–Compatibility fault No Alpha system equivalent

‡SS$_DECOVF–Decimal overflow Replaced by SS$_HPARITH
(see Section 13.3.3)

‡SS$_FLTDIV–Float divide-by-zero (trap) Replaced by SS$_HPARITH
(see Section 13.3.3)

SS$_FLTDIV_F–Float divide-by-zero (fault) Replaced by SS$_HPARITH
(see Section 13.3.3)

‡SS$_FLTOVF–Float overflow (trap) Replaced by SS$_HPARITH
(see Section 13.3.3)

SS$_FLTOVF_F–Float overflow (fault) Replaced by SS$_HPARITH
(see Section 13.3.3)

‡SS$_FLTUND–Float underflow (trap) Replaced by SS$_HPARITH
(see Section 13.3.3)

SS$_FLTUND_F–Float underflow (fault) Replaced by SS$_HPARITH
(see Section 13.3.3)

‡SS$_INTDIV–Integer divide-by-zero Replaced by SS$_HPARITH
(see Section 13.3.3)

‡SS$_INTOVF–Integer overflow Replaced by SS$_HPARITH
(see Section 13.3.3)

SS$_TBIT–Trace pending No Alpha system equivalent

SS$_OPCCUS–Opcode reserved to customer No Alpha system equivalent

SS$_RADMOD–Reserved addressing mode No Alpha system equivalent

SS$_SUBRNG–INDEX subscript range check No Alpha system equivalent

‡On Alpha systems, this condition may be generated by software.

13.3.3 Arithmetic Exceptions

VAX On VAX systems, the architecture ensures that arithmetic exceptions are reported
synchronously; that is, a VAX arithmetic instruction that causes an exception
(such as an overflow) enters any exception handlers immediately, and subsequent
instructions are not executed. The program counter (PC) reported to the exception
handler is that of the failing arithmetic instruction. This allows application
programs, for example, to resume the main sequence, with the failing operation
being emulated or replaced by some equivalent or alternative set of operations. ♦

Alpha On Alpha systems, arithmetic exceptions are reported asynchronously; that is,
implementations of the architecture can allow a number of instructions (including
branches and jumps) to execute beyond that which caused the exception. These
instructions may overwrite the original operands used by the failing instruction,
thus causing the loss of information that is integral to interpreting or rectifying
the exception. The program counter (PC) reported to the exception handler is not
that of the failing instruction, but rather is that of some subsequent instruction.
When the exception is reported to an application’s exception handler, it may be
impossible for the handler to fix up the input data and restart the instruction.

13–13

Condition-Handling Routines and Services
13.3 Exception Conditions

Because of this fundamental difference in arithmetic exception reporting, Alpha
systems define a new, single condition code, SS$_HPARITH, to indicate all
arithmetic exceptions. Thus, if your application contains a condition-handling
routine that performs processing when an integer overflow exception occurs,
on VAX systems the application expects to receive the SS$_INTOVF condition
code. On Alpha systems, this exception is indicated by the condition code
SS$_HPARITH. In this way, condition-handling routines in VAX applications
cannot mistake an Alpha system arithmetic exception for the corresponding
VAX exception. This is important because the processing performed by the VAX
application assumes that the exception is reported synchronously, which is not
the case on Alpha systems.

Figure 13–1 shows the format of the SS$_HPARITH exception signal array.

Figure 13–1 SS$_HPARITH Exception Signal Array

Argument Count

Condition Code (SS$_HPARITH)

Integer Register Write Mask

Floating Register Write Mask

Exception PC

Exception PS

31 0

ZK−5206A−GE

This signal array contains three arguments that are specific to the SS$_HPARITH
exception: the integer register write mask, floating register write mask,
and exception summary arguments of the exception pc and exception
ps. The integer register write mask and floating register write mask
arguments indicate the registers that were targets of instructions that set bits in
the exception summary argument. Each bit in the mask represents a register.
The exception summary argument indicates the type of exceptions that are
being signaled by setting flags in the first 7 bits. Table 13–3 lists the meaning of
each of these bits when set.

13–14

Condition-Handling Routines and Services
13.3 Exception Conditions

Table 13–3 Exception Summary Argument Fields

Bit Meaning When Set

0 Software completion.

1 Invalid floating arithmetic, conversion, or comparison operation.

2 Invalid attempt to perform a floating divide operation with a divisor of zero.
Note that integer divide-by-zero is not reported.

3 Floating arithmetic or conversion operation overflowed the destination
exponent.

4 Floating arithmetic or conversion operation underflowed the destination
exponent.

5 Floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

6 Integer arithmetic or conversion operation from floating point to integer
overflowed the destination precision.

For more information and recommendations about using arithmetic exceptions
on Alpha systems, see Migrating to an OpenVMS AXP System: Recompiling and
Relinking Applications. ♦

13.3.4 Unaligned Access Traps (Alpha Only)

Alpha On Alpha systems, an unaligned access trap is generated when an attempt is
made to load or store a longword or quadword to or from a register using an
address that does not have the natural alignment of the particular data reference
and not using an Alpha instruction that takes an unaligned address as an
operand (LDQ_U). For more information about data alignment, see Section 13.4.2.

Alpha compilers typically avoid triggering alignment faults by:

• Aligning static data on natural boundaries by default. (This default behavior
can be overridden by using a compiler qualifier.)

• Generating special inline code sequences for data that is known to be
unnaturally aligned at compile time.

Note, however, that compilers cannot align dynamically defined data. Thus,
alignment faults may be triggered.

An alignment exception is identified by the condition code SS$_ALIGN.
Figure 13–2 illustrates the elements of the signal array returned by the SS$_
ALIGN exception.

13–15

Condition-Handling Routines and Services
13.3 Exception Conditions

Figure 13–2 SS$_ALIGN Exception Signal Array

Argument Count

Condition Code (SS$_ALIGN)

Virtual Address

Register Number

Exception PC

Exception PS

31 0

ZK−5205A−GE

This signal array contains two arguments specific to the SS$_ALIGN exception:
the virtual address argument and the register number argument. The
virtual address argument contains the address of the unaligned data being
accessed. The register number argument identifies the target register of the
operation. ♦

13.4 How Run-Time Library Routines Handle Exceptions
Most general-purpose run-time library routines handle errors by returning a
status in R0. In some cases, however, exceptions that occur during the execution
of a run-time library routine are signaled. This section tells how run-time library
routines signal exception conditions.

Some calls to the run-time library do not or cannot specify an action to be taken.
In this case, the run-time library signals the proper exception condition by using
the operating system’s signaling mechanism.

In order to maintain modularity, the run-time library does not use exception
vectors, which are processwide data locations. Thus, the run-time library itself
does not establish handlers by using the primary, secondary, or last-chance
exception vectors.

13.4.1 Exception Conditions Signaled from Mathematics Routines (VAX Only)

VAX On VAX systems, mathematics routines return function values in register R0
or registers R0 and R1, unless the return values are larger than 64 bits. For
this reason, mathematics routines cannot use R0 to return a completion status
and must signal all errors. In addition, all mathematics routines signal an error
specific to the MTH$ facility rather than a general hardware error.

13.4.1.1 Integer Overflow and Floating-Point Overflow
Although the hardware normally detects integer overflow and floating-point
overflow errors, run-time library mathematics routines are programmed with a
software check to trap these conditions before the hardware signaling process can
occur. This means that they call LIB$SIGNAL instead of allowing the hardware
to initiate signaling.

13–16

Condition-Handling Routines and Services
13.4 How Run-Time Library Routines Handle Exceptions

The software check is needed because JSB routines cannot set up condition
handlers. The check permits the JSB mathematics routines to add an extra
stack frame so that the error message and stack traceback appear as if a CALL
instruction had been performed. Because of the software check, JSB routines
do not cause a hardware exception condition even when the calling program
has enabled the detection of integer overflow. On the other hand, detection of
floating-point overflow is always enabled and cannot be disabled.

If an integer or floating-point overflow occurs during a CALL or a JSB routine,
the routine signals a mathematics-specific error such as MTH$_FLOOVEMAT
(Floating Overflow in Math Library) by calling LIB$SIGNAL explicitly.

13.4.1.2 Floating-Point Underflow
All mathematics routines are programmed to avoid floating-point underflow
conditions. Software checks are made to determine if a floating-point underflow
condition would occur. If so, the software makes an additional check:

• If the immediate calling program (CALL or JSB) has enabled floating-point
underflow traps, a mathematics-specific error condition is signaled.

• Otherwise, the result is corrected to zero and execution continues with no
error condition.

The user can enable or disable detection of floating-point underflow at run time
by calling the routine LIB$FLT_UNDER. ♦

13.4.2 System-Defined Arithmetic Condition Handlers

VAX On VAX systems, you can use the following run-time library routines as
arithmetic condition handlers to enable or disable the signaling of decimal
overflow, floating-point underflow, and integer overflow:

• LIB$DEC_OVER—Enables or disables the signaling of a decimal overflow. By
default, signaling is disabled.

• LIB$FLT_UNDER—Enables or disables the signaling of a floating-point
underflow. By default, signaling is disabled.

• LIB$INT_OVER—Enables or disables the signaling of an integer overflow. By
default, signaling is enabled.

You can establish these handlers in one of two ways:

• Invoke the appropriate handler as a function specifying the first argument as
1 to enable signaling.

• Invoke the handler with command qualifiers when you compile your program.
(Refer to your program language manuals.)

You cannot disable the signaling of integer divide-by-zero, floating-point overflow,
and floating-point or decimal divide-by-zero.

When the signaling of a hardware condition is enabled, the occurrence of the
exception condition causes the operating system to signal the condition as
a severe error. When the signaling of a hardware condition is disabled, the
occurrence of the condition is ignored, and the processor executes the next
instruction in the sequence.

13–17

Condition-Handling Routines and Services
13.4 How Run-Time Library Routines Handle Exceptions

The signaling of overflow and underflow detection is enabled independently for
activation of each routine, because the call instruction saves the state of the
calling program’s hardware enable operations in the stack and then initializes the
enable operations for the called routine. A return instruction restores the calling
program’s enable operations.

These run-time library routines are intended primarily for high-level languages,
because you can achieve the same effect in MACRO with the single Bit Set PSW
(BISPSW) or Bit Clear PSW (BICPSW) VAX instructions.

These routines allow you to enable and disable detection of decimal overflow,
floating-point underflow, and integer overflow for a portion of your routine’s
execution. Note that the VAX BASIC and DEC Fortran compilers provide a
compile-time qualifier that permits you to enable or disable integer overflow for
your entire routine. ♦

Alpha On Alpha systems, certain RTL routines that process conditions do not exist
because the exception conditions defined by the Alpha architecture differ
somewhat from those defined by the VAX architecture. Table 13–4 lists the
run-time library condition-handling support routines available on VAX systems
and indicates which are supported on Alpha systems. ♦

Table 13–4 Run-Time Library Condition-Handling Support Routines

Routine
Availability on Alpha
Systems

Arithmetic Exception Support Routines

LIB$DEC_OVER–Enables or disables signaling of decimal
overflow

Not supported

LIB$FIXUP_FLT–Changes floating-point reserved operand to a
specified value

Not supported

LIB$FLT_UNDER–Enables or disables signaling of floating-
point underflow

Not supported

LIB$INT_OVER–Enables or disables signaling of integer
overflow

Not supported

General Condition-Handling Support Routines

LIB$DECODE_FAULT–Analyzes instruction context for fault Not supported

LIB$ESTABLISH–Establishes a condition handler Not supported
(languages may support
for compatibility)

LIB$MATCH_COND–Matches condition value Supported

LIB$REVERT-Deletes a condition handler Not supported
(languages may support
for compatibility)

LIB$SIG_TO_STOP–Converts a signaled condition to a
condition that cannot be continued

Supported

LIB$SIG_TO_RET–Converts a signal to a return status Supported

LIB$SIM_TRAP–Simulates a floating-point trap Not supported

LIB$SIGNAL–Signals an exception condition Supported

LIB$STOP–Stops execution by using signaling Supported

13–18

Condition-Handling Routines and Services
13.5 Condition Values

13.5 Condition Values
Error conditions are identified by integer values called condition codes or
condition values. The operating system defines condition values to identify
errors that might occur during execution of system-defined procedures. Each
exception condition has associated with it a unique, 32-bit condition value
that identifies the exception condition, and each condition value has a unique,
systemwide symbol and an associated message. The condition value is used in
both methods of indicating exception conditions, returning a status and signaling.

From a condition value you can determine whether an error has occurred, which
error has occurred, and the severity of the error. Table 13–5 describes the fields
of a condition value.

Table 13–5 Fields of a Condition Value

Field Bits Meaning

FAC_NO <27:16> Indicates the system facility in which the
condition occurred

MSG_NO <15:3> Indicates the condition that occurred

SEVERITY <2:0> Indicates whether the condition is a success (bit
<0> = 1) or a failure (bit <0> = 0) as well as the
severity of the error, if any

Figure 13–3 shows the format of a condition value.

Figure 13–3 Format of a Condition Value

ZK−1795−GE

Message numberFacility number

27 31516

2 01

Control Severity

31 28 27 3 2 0

*S

*S = Success

Condition identification

Condition Value Fields
severity
The severity of the error condition. Bit <0> indicates success (logical true) when
set and failure (logical false) when clear. Bits <1> and <2> distinguish degrees
of success or failure. The three bits, when taken as an unsigned integer, are
interpreted as described in Table 13–6. The symbolic names are defined in
module $STSDEF.

13–19

Condition-Handling Routines and Services
13.5 Condition Values

Table 13–6 Severity of Error Conditions

Value Symbol Severity Response

0 STS$K_WARNING Warning Execution continues,
unpredictable results

1 STS$K_SUCCESS Success Execution continues, expected
results

2 STS$K_ERROR Error Execution continues, erroneous
results

3 STS$K_INFO Information Execution continues,
informational message
displayed

4 STS$K_SEVERE Severe error Execution terminates, no
output

5 Reserved for Digital

6 Reserved for Digital

7 Reserved for Digital

condition identification
Identifies the condition uniquely on a systemwide basis.

control
Four control bits. Bit <28> inhibits the message associated with the condition
value from being printed by the SYS$EXIT system service. After using the
SYS$PUTMSG system service to display an error message, the system default
handler sets this bit. It is also set in the condition value returned by a routine
as a function value, if the routine has also signaled the condition, so that the
condition has been either printed or suppressed. Bits <29:31> must be zero; they
are reserved for Digital.

When a software component completes execution, it returns a condition value in
this format. When a severity value of warning, error, or severe error has been
generated, the status value returned describes the nature of the problem. Your
program can test this value to change the flow of control or to generate a message.
Your program can also generate condition values to be examined by other routines
and by the command language interpreter. Condition values defined by customers
must set bits <27> and <15> so that these values do not conflict with values
defined by Digital.

message number
The number identifying the message associated with the error condition. It is a
status identification, that is, a description of the hardware exception condition
that occurred or a software-defined value. Message numbers with bit <15> set are
specific to a single facility. Message numbers with bit <15> clear are systemwide
status values.

facility number
Identifies the software component generating the condition value. Bit <27> is set
for user facilities and clear for Digital facilities.

13–20

Condition-Handling Routines and Services
13.5 Condition Values

13.5.1 Return Status Convention
Most system-defined procedures are functions of longwords, where the function
value is equated to a condition value. In this capacity, the condition value is
referred to as a return status. You can write your own routines to follow this
convention. See Section 13.14.2 for information about how to change a signal
to a return status. Each routine description in the OpenVMS System Services
Reference Manual, OpenVMS RTL Library (LIB$) Manual, OpenVMS Record
Management Utilities Reference Manual, and OpenVMS Utility Routines Manual
lists the condition values that can be returned by that procedure.

13.5.1.1 Testing Returned Condition Values
When a function returns a condition value to your program unit, you should
always examine the returned condition value. To check for a failure condition
(warning, error, or severe error), test the returned condition value for a logical
value of false. The following program segment invokes the run-time library
procedure LIB$DATE_TIME, checks the returned condition value (returned in
the variable STATUS), and, if an error has occurred, signals the condition value
by calling the run-time library procedure LIB$SIGNAL (Section 13.8 describes
signaling):

INTEGER*4 STATUS,
2 LIB$DATE_TIME
CHARACTER*23 DATE

STATUS = LIB$DATE_TIME (DATE)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

To check for a specific error, test the return status for a particular condition value.
For example, LIB$DATE_TIME returns a success value (LIB$_STRTRU) when it
truncates the string. If you want to take special action when truncation occurs,
specify the condition as shown in the following example (the special action would
follow the IF statement):

INTEGER*4 STATUS,
2 LIB$DATE_TIME
CHARACTER*23 DATE

INCLUDE ’($LIBDEF)’
.
.
.

STATUS = LIB$DATE_TIME (DATE)
IF (STATUS .EQ. LIB$_STRTRU) THEN

.

.

.

13.5.1.2 Testing SS$_NOPRIV and SS$_EXQUOTA Condition Values
The SS$_NOPRIV and SS$_EXQUOTA condition values returned by a number
of system service procedures require special checking. Any system service that
is listed as returning SS$_NOPRIV or SS$_EXQUOTA can instead return a
more specific condition value that indicates the privilege or quota in question.
Table 13–7 list the specific privilege errors, and Table 13–8 lists the quota errors.

13–21

Condition-Handling Routines and Services
13.5 Condition Values

Table 13–7 Privilege Errors

SS$_NOACNT SS$_NOALLSPOOL SS$_NOALTPRI

SS$_NOBUGCHK SS$_NOBYPASS SS$_NOCMEXEC

SS$_NOCMKRNL SS$_NODETACH SS$_NODIAGNOSE

SS$_NODOWNGRADE SS$_NOEXQUOTA SS$_NOGROUP

SS$_NOGRPNAM SS$_NOGRPPRV SS$_NOLOGIO

SS$_NOMOUNT SS$_NONETMBX SS$_NOOPER

SS$_NOPFNMAP SS$_NOPHYIO SS$_NOPRMCEB

SS$_NOPRMGBL SS$_NOPRMMBX SS$_NOPSWAPM

SS$_NOREADALL SS$_NOSECURITY SS$_NOSETPRV

SS$_NOSHARE SS$_NOSHMEM SS$_NOSYSGBL

SS$_NOSYSLCK SS$_NOSYSNAM SS$_NOSYSPRV

SS$_NOTMPMBX SS$_NOUPGRADE SS$_NOVOLPRO

SS$_NOWORLD

Table 13–8 Quota Errors

SS$_EXASTLM SS$_EXBIOLM SS$_EXBYTLM

SS$_EXDIOLM SS$_EXENQLM SS$_EXFILLM

SS$_EXPGFLQUOTA SS$_EXPRCLM SS$_EXTQELM

Because either a general or a specific value can be returned, your program must
test for both. The following four symbols provide a starting and ending point with
which you can compare the returned condition value:

• SS$_NOPRIVSTRT—First specific value for SS$_NOPRIV

• SS$_NOPRIVEND—Last specific value for SS$_NOPRIV

• SS$_NOQUOTASTRT—First specific value for SS$_EXQUOTA

• SS$_NOQUOTAEND—Last specific value for SS$_EXQUOTA

The following DEC Fortran example tests for a privilege error by comparing
STATUS (the returned condition value) with the specific condition value SS$_
NOPRIV and the range provided by SS$_NOPRIVSTRT and
SS$_NOPRIVEND. You would test for SS$_NOEXQUOTA in a similar fashion.

13–22

Condition-Handling Routines and Services
13.5 Condition Values

.

.

.
! Declare status and status values
INTEGER STATUS
INCLUDE ’($SSDEF)’

.

.

.
IF (.NOT. STATUS) THEN
IF ((STATUS .EQ. SS$_NOPRIV) .OR.

2 ((STATUS .GE. SS$_NOPRIVSTRT) .AND.
2 (STATUS .LE. SS$_NOPRIVEND))) THEN

.

.

.
ELSE
CALL LIB$SIGNAL (%VAL(STATUS))

END IF
END IF

13.5.2 Modifying Condition Values
To modify a condition value, copy a series of bits from one longword to another
longword. For example, the following statement copies the first three bits
(bits <2:0>) of STS$K_INFO to the first three bits of the signaled condition
code, which is in the second element of the signal array named SIGARGS. As
shown in Table 13–6, STS$K_INFO contains the symbolic severity code for an
informational message.

! Declare STS$K_ symbols
INCLUDE ’($STSDEF)’

.

.

.
! Change the severity of the condition code
! in SIGARGS(2) to informational
CALL MVBITS (STS$K_INFO,
2 0,
2 3,
2 SIGARGS(2),
2 0)

Once you modify the condition value, you can resignal the condition value and
either let the default condition handler display the associated message or use the
SYS$PUTMSG system service to display the message. If your condition handler
displays the message, do not resignal the condition value, or the default condition
handler will display the message a second time.

In the following example, the condition handler verifies that the signaled
condition value is LIB$_NOSUCHSYM. If it is, the handler changes its severity
from error to informational and then resignals the modified condition value. As
a result of the handler’s actions, the program displays an informational message
indicating that the specified symbol does not exist, and then continues executing.

INTEGER FUNCTION SYMBOL (SIGARGS,
2 MECHARGS)
! Changes LIB$_NOSUCHSYM to an informational message

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
! Declare index variable for LIB$MATCH_COND
INTEGER INDEX

13–23

Condition-Handling Routines and Services
13.5 Condition Values

! Declare condition codes
INCLUDE ’($LIBDEF)’
INCLUDE ’($STSDEF)’
INCLUDE ’($SSDEF)’
! Declare library procedures
INTEGER LIB$MATCH_COND
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 LIB$NO_SUCHSYM)
! If the signaled condition code is LIB$NO_SUCHSYM,
! change its severity to informational.
IF (INDEX .GT. 0)
2 CALL MVBITS (STS$K_INFO,
2 0,
2 3,
2 SIGARGS(2),
2 0)

SYMBOL = SS$_RESIGNAL

END

13.6 Exception Dispatcher
When an exception occurs, control is passed to the operating system’s exception-
dispatching routine. The exception dispatcher searches for a condition-handling
routine invoking the first handler it finds and passes the information to the
handler about the condition code and the state of the program when the condition
code was signaled. If the handler resignals, the operating system searches for
another handler; otherwise, the search for a condition handler ends.

The operating system searches for condition handlers in the following sequence:

1. Primary exception vectors—Four vectors (lists) of one or more condition
handlers; each vector is associated with an access mode. By default, all of the
primary exception vectors are empty. Exception vectors are used primarily for
system programming, not application programming. The debugger uses the
primary exception vector associated with user mode.

When an exception occurs, the operating system searches the primary
exception associated with the access mode at which the exception occurred.
To enter or cancel a condition handler in an exception vector, use the
SYS$SETEXV system service. Condition handlers that are entered into the
exception vectors associated with kernel, executive, and supervisor modes
remain in effect until they are canceled or until you log out. Condition
handlers that are entered into the exception vector associated with user mode
remain in effect until they are canceled or until the image that entered them
exits.

2. Secondary exception vectors—A set of exception vectors with the same
structure as the primary exception vectors. Exception vectors are primarily
used for system programming, not application programming. By default, all
of the secondary exception vectors are empty.

3. Call frame condition handlers—Each program unit can establish one condition
handler (the address of the handler is placed in the call frame of the program
unit). The operating system searches for condition handlers established
by your program, beginning with the current program unit. If the current
program unit has not established a condition handler, the operating system
searches for a handler that was established by the program unit that invoked
the current program unit, and so on back to the main program.

13–24

Condition-Handling Routines and Services
13.6 Exception Dispatcher

4. Traceback handler—If you do not establish any condition handlers and link
your program with the /TRACEBACK qualifier of the LINK command (the
default), the operating system finds and invokes the traceback handler.

5. Catchall handler—If you do not establish any condition handlers and you link
your program with the /NOTRACEBACK qualifier to the LINK command, the
operating system finds and invokes the catchall handler. The catchall handler
is at the bottom of the user stack and in the last-chance exception vector.

6. Last-chance exception vectors—A set of exception vectors with the same
structure as the primary and secondary exception vectors. Exception vectors
are used primarily for system programming, not application programming.
By default, the user- and supervisor-mode last-chance exception vectors are
empty. The executive- and kernel-mode last-chance exception vectors contain
procedures that cause a bugcheck (a nonfatal bugcheck results in an error log
entry; a fatal bugcheck results in a system shutdown). The debugger uses the
user-mode last-chance exception vector, and DCL uses the supervisor-mode
last-chance exception vector.

The search is terminated when the dispatcher finds a condition handler. If the
dispatcher cannot find a user-specified condition handler, it calls the condition
handler whose address is stored in the last-chance exception vector. If the image
was activated by the command language interpreter, the last-chance vector points
to the catchall condition handler. The catchall handler issues a message and
either continues program execution or causes the image to exit, depending on
whether the condition was a warning or an error condition, respectively.

You can call the catchall handler in two ways:

• If the last-chance exception vector returns to the dispatcher or if the last-
chance exception vector is empty, the last-chance exception vector calls
the catchall condition handler and exits with the return status code SS$_
NOHANDLER.

• If the exception dispatcher detects an access violation, it calls the catchall
condition handler and exits with the return status code SS$_ACCVIO.

Figure 13–4 illustrates the exception dispatcher’s search of the call stack for a
condition handler.

13–25

Condition-Handling Routines and Services
13.6 Exception Dispatcher

Figure 13–4 Searching the Stack for a Condition Handler

B Calls C

FP

Handler A

X Calls A

ZK−0858−GE

Incurs Condition
C Runs and

Occurs
Condition

and Calls B
A Writes (FP)

Handler Found
Condition

FP

FP

0

0

The dispatcher locates and gives control to handler A.

3

4

2

After checking for a condition handler declared in the exception vectors

1

(assume that none has been specified for the process), the dispatcher

An exception occurs while procedure C is executing. The exception

looks at the first longword of procedure C’s call frame. A value of 0

dispatcher searches for a condition handler.

The illustration of the call stack indicates the calling sequence:

indicates that no condition handler has been specified. The dispatcher

Procedure A calls procedure B, and procedure B calls procedure C.

locates the call frame for procedure B by using the frame pointer (FP)

Procedure A establishes a condition handler.

in procedure C’s call frame. Again, it finds no condition handler, and
locates procedure A’s call frame.

13–26

Condition-Handling Routines and Services
13.6 Exception Dispatcher

In cases where the default condition handling is insufficient, you can establish
your own handler by one of the mechanisms described in Section 13.2.1.
Typically, you need condition handlers only if your program must perform one of
the following operations:

• Respond to condition values that are signaled rather than returned, such
as an integer overflow error. (Section 13.14.2 describes the system-defined
handler LIB$SIG_TO_RET that allows you to treat signals as return values;
Section 13.4.2 describes other useful system-defined handlers for arithmetic
errors.)

• Modify part of a condition code, such as the severity. See Section 13.5.2 for
more information. If you want to change the severity of any condition code to
a severe error, you can use the run-time library procedure LIB$STOP instead
of writing your own condition handler.

• Add messages to the one associated with the originally signaled condition
code or log the messages associated with the originally signaled condition
code.

13.7 Argument List Passed to a Condition Handler

VAX On VAX systems, the argument list passed to the condition handler is constructed
on the stack and consists of the addresses of two argument arrays, signal and
mechanism, as illustrated in Section 13.8.2 and Section 13.8.3. ♦

Alpha On Alpha systems, the arrays are set up on the stack, but any argument is
passed in registers. ♦

VAX On VAX systems, you can use the $CHFDEF macro instruction to define the
symbolic names to refer to the arguments listed in Table 13–9.

Table 13–9 $CHFDEF Symbolic Names and Arguments on VAX Systems

Symbolic Name Related Argument

CHF$L_SIGARGLST Address of signal array

CHF$L_MCHARGLST Address of mechanism array

CHF$L_SIG_ARGS Number of signal arguments

CHF$L_SIG_NAME Condition name

CHF$L_SIG_ARG1 First signal-specific argument

CHF$L_MCH_ARGS Number of mechanism arguments

CHF$L_MCH_FRAME Establisher frame address

CHF$L_MCH_DEPTH Frame depth of establisher

CHF$L_MCH_SAVR0 Saved register R0

CHF$L_MCH_SAVR1 Saved register R1 ♦

Alpha On Alpha systems, you can use the $CHFDEF2 macro instruction to define the
symbolic names to refer to the arguments listed in Table 13–10.

13–27

Condition-Handling Routines and Services
13.7 Argument List Passed to a Condition Handler

Table 13–10 $CHFDEF2 Symbolic Names and Arguments on Alpha Systems

Symbolic Name Related Argument

CHF$L_SIGARGLST Address of signal array

CHF$L_MCHARGLST Address of mechanism array

CHF$IS_SIG_ARGS Number of signal arguments

CHF$IS_SIG_NAME Condition name

CHF$IS_SIG_ARG1 First signal-specific argument

CHF$IS_MCH_ARGS Number of mechanism arguments

CHF$IS_MCH_FLAGS Flag bits <63:0> for related argument mechanism
information

CHF$PH_MCH_FRAME Establisher frame address

CHF$IS_MCH_DEPTH Frame depth of establisher

CHF$PH_MCH_DADDR Address of the handler data quadword if the exception
handler data field is present

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame

CHF$PH_MCH_SIG_ADDR Address of the signal array

CHF$IH_MCH_SAVRnn Contains a copy of the saved integer registers at the
time of the exception

CHF$FH_MCH_SAVFnn Contains a copy of the saved floating-point registers at
the time of the exception ♦

13.8 Signaling
Signaling can be initiated when hardware or software detects an exception
condition. In either case, the exception condition is said to be signaled by the
routine in which it occurred. If hardware detects the error, it passes control
to a condition dispatcher. If software detects the error, it calls one of the run-
time library signal-generating routines: LIB$SIGNAL or LIB$STOP. The RTL
signal-generating routines pass control to the same condition dispatcher. When
LIB$STOP is called, the severity code is forced to severe, and control cannot
return to the routine that signaled the condition. See Section 13.12.1 for a
description of how a signal can be dismissed and how normal execution from the
point of the exception condition can be continued.

When a routine signals, it passes to the OpenVMS Condition Handling facility
(CHF) the condition value associated with the exception condition, as well as
optional arguments that can be passed to a condition handler. The CHF uses
these arguments to build two data structures on the stack:

• The signal argument vector. This vector contains the information describing
the nature of the exception condition.

• The mechanism argument vector. This vector describes the state of the
process at the time the exception condition occurred.

These two vectors become the arguments that the CHF passes to condition
handlers.

These argument vectors are described in detail in Section 13.8.2 and
Section 13.8.3.

13–28

Condition-Handling Routines and Services
13.8 Signaling

After the signal and mechanism argument vectors are set up, the CHF searches
for enabled condition handlers. A condition handler is a separate routine that
has been associated with a routine in order to take a specific action when an
exception condition occurs. The CHF searches for condition handlers to handle
the exception condition, beginning with the primary exception vector of the
access mode in which the exception condition occurred. If this vector contains
the address of a handler, that handler is called. If the address is 0 or if the
handler resignals, then the CHF repeats the process with the secondary exception
vector. Enabling vectored handlers is discussed in detail in the OpenVMS Calling
Standard. Because the exception vectors are allocated in static storage, they are
not generally used by modular routines.

If neither the primary nor secondary vectored handlers handle the exception
condition by continuing program execution, then the CHF looks for stack frame
condition handlers. It looks for the address of a condition handler in the first
longword of the routine stack frame on VAX systems, or in the procedure
descriptor (in which the handler valid bit is set) for the routine stack frame on
Alpha systems where the exception condition occurred. At this point, several
actions are possible, depending on the results of this search:

• If this routine has not set up a condition handler, the CHF continues the
stack scan by moving to the previous stack frame (that is, the stack frame of
the calling routine).

• If a condition handler is present, the CHF then calls this handler, which may
resignal, continue, or unwind. See Section 13.10.

The OpenVMS Condition Handling facility searches for and calls condition
handlers from each frame on the stack until the frame pointer is zero (indicating
the end of the call sequence). At that point, the CHF calls the vectored catchall
handler, which displays an error message and causes the program to exit. Note
that, normally, the frame containing the stack catchall handler is at the end
of the calling sequence or at the bottom of the stack. Section 13.9 explains the
possible actions of default and user condition handlers in more detail.

Figure 13–5 illustrates a stack scan for condition handlers in which the main
program calls procedure A, which then calls procedure B. A stack scan is
initiated when a hardware exception condition occurs or when a call is made to
LIB$SIGNAL or LIB$STOP.

13–29

Condition-Handling Routines and Services
13.8 Signaling

Figure 13–5 Sample Stack Scan for Condition Handlers

Stack Scan

Primary Exception Vector

Secondary Exception Vector

Process Statically
Allocated Storage

Handler
Last−Chance

Handler
Traceback

Main
Program

Stack Frame

Routine A

Bottom of Stack

0

Stack Frame

Top of Stack
:SP

Catchall Vector

:FP

User
Handler

Routine B

Last−Chance Vector

Stack Frame

0

ZK−1935−GE

13.8.1 Generating Signals with LIB$SIGNAL and LIB$STOP
When software detects an exception condition, the software normally calls one of
the run-time library signal-generating routines, LIB$SIGNAL or LIB$STOP, to
initiate the signaling mechanism. This call indicates to the calling program that
the exception condition has occurred. Your program can also call one of these
routines explicitly to indicate an exception condition.

13–30

Condition-Handling Routines and Services
13.8 Signaling

You can signal a condition code by invoking the run-time library procedure
LIB$SIGNAL and passing the condition code as the first argument. (The
OpenVMS RTL Library (LIB$) Manual contains the complete specifications for
LIB$SIGNAL.) The following statement signals the condition code contained in
the variable STATUS:

CALL LIB$SIGNAL (%VAL(STATUS))

When an error occurs in a subprogram, the subprogram can signal the
appropriate condition code rather than return the condition code to the invoking
program unit. In addition, some statements also signal condition codes; for
example, an assignment statement that attempts to divide by zero signals the
condition code SS$_INTDIV.

When your program wants to issue a message and allow execution to continue
after handling the condition, it calls the standard routine, LIB$SIGNAL. The
calling sequence for LIB$SIGNAL is the following:

LIB$SIGNAL condition-value1 [,number1] [,FAO-arg1...,FAO-argn1]
[,condition-value2] [,number2] [,FAO-arg2...,FAO-argn2]

Only the condition-value1 argument must be specified; other arguments are
optional. The number1 argument, if specified, contains the number of FAO
(formatted ASCII output) arguments that are associated with condition-value1.
The condition-value2 argument may be specified with or without the number2
or FAO-arg2 argument. The number2 argument, if specified, contains the
number of FAO arguments that are associated with condition-value2. You may
specify condition-value3, condition-value4, condition-value5, and so on,
along with their corresponding number and FAO arguments.

condition-value

Operating system
usage:

cond_value

type: longword (unsigned)

access: read only

mechanism: by value

A VAX 32-bit condition value. The condition-value argument is an unsigned
longword that contains this condition value. Section 13.5 explains the format of a
VAX condition value.

number1

Operating system
usage:

longword_signed

type: longword integer (signed)

access: read only

mechanism: by value

The number of FAO arguments associated with the condition value. The number
argument is a signed longword integer that contains this number. If you omit the
number argument or specify it as zero, no FAO arguments follow.

The maximum number of FAO arguments specified must not exceed 253. See
Section 13.11 and Section 13.11.3 for more information about FAO arguments.

13–31

Condition-Handling Routines and Services
13.8 Signaling

FAO-arg

Operating system
usage:

varying_arg

type: unspecified

access: read only

mechanism: by value

Additional FAO (formatted ASCII output) arguments that are associated with
the specified condition value. The FAO-arg argument is the address of either a
signed longword integer or a character string that contains these additional FAO
arguments. Section 13.11 explains the message format.

When your program wants to issue a message and stop execution unconditionally,
it calls LIB$STOP. The calling sequence for LIB$STOP is as follows:

LIB$STOP condition-value1 [,number1] [,FAO-arg1...,FAO-argn1]
[,condition-value2] [,number2] [,FAO-arg2...,FAO-argn2]

Only the condition-value1 argument must be specified; other arguments are
optional. The number1 argument, if specified, contains the number of FAO
arguments that are associated with condition-value1. The condition-value2
argument can be specified with or without the number2 or FAO-arg2 argument.
The number2 argument, if specified, contains the number of FAO arguments
that are associated with condition-value2. You can specify condition-value3,
condition-value4, condition-value5, and so on, along with their corresponding
number and FAO-arg arguments.

In both cases, condition-value indicates the condition that is being signaled.
However, LIB$STOP always sets the severity of condition-value to severe before
proceeding with the stack-scanning operation.

The FAO arguments describes the details of the exception condition. These are
the same arguments that are passed to the OpenVMS Condition Handling facility
as part of the signal argument vector. The system default condition handlers pass
them to SYS$PUTMSG, which uses them to issue a system message.

Unlike most routines, LIB$SIGNAL and LIB$STOP preserve R0 and R1 as well
as the other registers. Therefore, a call to LIB$SIGNAL allows the debugger to
display the entire state of the process at the time of the exception condition. This
is useful for debugging checks and gathering statistics.

The behavior of LIB$SIGNAL is the same as that of the exception dispatcher that
performs the stack scan after hardware detects an exception condition. That is,
the system scans the stack in the same way, and the same arguments are passed
to each condition handler. This allows a user to write a single condition handler
to detect both hardware and software conditions.

13.8.2 Signal Argument Vector
Signaling a condition value causes both VAX and Alpha systems to pass control
to a special subprogram called a condition handler. The operating system invokes
a default condition handler unless you have established your own. The default
condition handler displays the associated error message and continues or, if the
error is a severe error, terminates program execution.

The signal argument vector contains information describing the nature of the
hardware or software condition. Figure 13–6 illustrates the open-ended structure
of the signal argument vector, which can be from 3 to 257 longwords in length.

13–32

Condition-Handling Routines and Services
13.8 Signaling

The format of the signal argument array and the data it returns is the same on
VAX systems and Alpha systems, with the exception of the processor status (PS)
returned on Alpha systems and the processor status longword (PSL) returned on
VAX systems. On Alpha systems, it is the low-order 32 bits of the PS.

Alpha On Alpha systems, CHF$IS_SIG_ARGS and CHF$IS_SIG_NAME are aliases for
CHF$L_SIG_ARGS and CHF$L_SIG_NAME, as shown in Figure 13–6, and the
PSL field for VAX systems is the processor status (PS) field for Alpha
systems. ♦

Figure 13–6 Format of the Signal Argument Vector

n = Additional Longwords

Condition Value

PC

PSL

MACRO and BLISS High−Level Languages

CHF$L_SIG_ARGS

CHF$L_SIG_NAME

SIGARGS(1)

SIGARGS(2)

SIGARGS(n)

SIGARGS(n + 1)

ZK−1963−GE

Optional Additional
Arguments Making Up One
or More Message Sequences

Fields of the Signal Argument Vector
SIGARGS(1)
An unsigned integer (n) designating the number of longwords that follow in the
vector, not counting the first, including PC and PSL. (On Alpha systems, the
value used for the PSL is the low-order half of the Alpha processor status [PS]
register.) For example, the first entry of a 4-longword vector would contain a 3.

SIGARGS(2)
On both VAX systems and Alpha systems, this argument is a 32-bit value that
uniquely identifies a hardware or software exception condition. The format of
the condition code, which is the same for both VAX systems and Alpha systems,
is shown and described in Figure 13–3. However, Alpha systems do not support
every condition returned on VAX systems, and Alpha systems define several new
conditions that cannot be returned on VAX systems. Table 13–2 lists VAX system
condition codes that cannot be returned on Alpha systems.

If more than one message is associated with the error, this is the condition value
of the first message. Handlers should always check whether the condition is the
one that they expect by examining the STS$V_COND_ID field of the condition
value (bits <27:3>). Bits <2:0> are the severity field. Bits <31:28> are control
bits; they may have been changed by an intervening handler and so should not
be included in the comparison. You can use the RTL routine LIB$MATCH_COND
to match the correct fields. If the condition is not expected, the handler should
resignal by returning false (bit <0> = 0). The possible exception conditions and
their symbolic definitions are listed in Table 13–1.

13–33

Condition-Handling Routines and Services
13.8 Signaling

SIGARGS(3 to n –1)
Optional arguments that provide additional information about the condition.
These arguments consist of one or more message sequences. The format of the
message description varies depending on the type of message being signaled. For
more information, see the SYS$PUTMSG description in the OpenVMS System
Services Reference Manual. The format of a message sequence is described in
Section 13.11.

SIGARGS(n)
The program counter (PC) of the next instruction to be executed if any
handler (including the system-supplied handlers) returns with the status SS$_
CONTINUE. For hardware faults, the PC is that of the instruction that caused
the fault. For hardware traps, the PC is that of the instruction following the
one that caused the trap. The error generated by LIB$SIGNAL is a trap. For
conditions signaled by calling LIB$SIGNAL or LIB$STOP, the PC is the location
following the CALLS or CALLG instruction. See the VAX Architecture Reference
Manual or Alpha Architecture Reference Manual for a detailed description of
faults and traps.

SIGARGS(n+1)
On VAX systems the processor status longword (PSL), or on Alpha systems the
processor status (PS) register, of the program at the time that the condition was
signaled.

For information about the PSL on VAX systems, and the PS on Alpha systems,
see the VAX Architecture Reference Manual and the Alpha Architecture Reference
Manual.

Note

LIB$SIGNAL and LIB$STOP copy the variable-length argument list
passed by the caller. Then, before calling a condition handler, they append
the PC and PSL, or on Alpha systems the processor status (PS) register,
entries to the end of the list.

The formats for some conditions signaled by the operating system and the run-
time library are shown in Figure 13–7 and Figure 13–8. These formats are
the same on VAX systems and Alpha systems, except for the PSL, or on Alpha
systems, the PS register.

13–34

Condition-Handling Routines and Services
13.8 Signaling

Figure 13–7 Signal Argument Vector for the Reserved Operand Error
Conditions

PC

PSL

ZK−1964−GE

SS$_ROPRAND

3

Condition Value

Additional Longwords

PC of Instruction Causing Fault

Figure 13–8 Signal Argument Vector for RTL Mathematics Routine Errors

5

MTH$_abcmnoxyz

PC

PSL

Additional Longwords

Math Condition Value

ZK−1965−GE

1

Caller’s PC

Number of FAO Arguments

PC Following JSB or CALL

PC Following Call to LIB$SIGNAL

The caller’s PC is the PC following the calling program’s JSB or CALL to the
mathematics routine that detected the error. The PC is that following the call to
LIB$SIGNAL.

13.8.3 VAX Mechanism Argument Vector (VAX Only)

VAX On VAX systems, the mechanism argument vector is a 5-longword vector that
contains all of the information describing the state of the process at the time of
the hardware or software signaled condition. Figure 13–9 illustrates a mechanism
argument vector for VAX systems.

13–35

Condition-Handling Routines and Services
13.8 Signaling

Figure 13–9 Format of a VAX Mechanism Argument Vector

4 = Additional Longwords

Saved R0

Saved R1

ZK−1966−GE

CHF$L_MCH_FRAME MCHARGS(2)

MCHARGS(1)CHF$L_MCH_ARGS

MACRO and BLISS High−Level Languages

Frame

Depth CHF$L_MCH_DEPTH

CHF$L_MCH_SAVR0

CHF$L_MCH_SAVR1

MCHARGS(3)

MCHARGS(4)

MCHARGS(5)

Fields of the VAX Mechanism Argument Vector
MCHARGS(1)
An unsigned integer indicating the number of longwords that follow, not counting
the first, in the vector. Currently, this number is always 4.

MCHARGS(2)
The address of the stack frame of the routine that established the handler being
called. This address can be used as a base from which to reference the local
stack-allocated storage of the establisher, as long as the restrictions on the
handler’s use of storage are observed. For example, if the call stack is as shown
in Figure 13–4, this argument points to the call frame for procedure A.

This value can be used to display local variables in the procedure that established
the condition handler if the variables are at known offsets from the frame pointer
(FP) of the procedure.

MCHARGS(3)
The stack depth, which is the number of stack frames between the establisher
of the condition handler and the frame in which the condition was signaled. To
ensure that calls to LIB$SIGNAL and LIB$STOP appear as similar as possible
to hardware exception conditions, the call to LIB$SIGNAL or LIB$STOP is not
included in the depth.

If the routine that contained the hardware exception condition or that called
LIB$SIGNAL or LIB$STOP also handled the exception condition, then the depth
is zero; if the exception condition occurred in a called routine and its caller
handled the exception condition, then the depth is 1. If a system service signals
an exception condition, a handler established by the immediate caller is also
entered with a depth of 1.

The following table shows the stack depths for the establishers of condition
handlers:

Depth Meaning

–3 Condition handler was established in the last-chance exception vector.

–2 Condition handler was established in the primary exception vector.

–1 Condition handler was established in the secondary exception vector.

13–36

Condition-Handling Routines and Services
13.8 Signaling

Depth Meaning

0 Condition handler was established by the frame that was active when the
exception occurred.

1 Condition handler was established by the caller of the frame that was active
when the exception occurred.

2 Condition handler was established by the caller of the caller of the frame that
was active when the exception occurred.

.

.

.

For example, if the call stack is as shown in Figure 13–4, the depth argument
passed to handler a would have a value of 2.

The condition handler can use this argument to determine whether to handle the
condition. For example, the handler might not want to handle the condition if the
exception that caused the condition did not occur in the establisher frame.

MCHARGS(4) and MCHARGS(5)
Copies of the contents of registers R0 and R1 at the time of the exception
condition or the call to LIB$SIGNAL or LIB$STOP. When execution continues or
a stack unwind occurs, these values are restored to R0 and R1. Thus, a handler
can modify these values to change the function value returned to a caller. ♦

13.8.4 Alpha Mechanism Argument Vector (Alpha Only)

Alpha On Alpha systems, the mechanism array returns much the same data as it does
on VAX systems, though its format is changed. The mechanism array returned on
Alpha systems preserves the contents of a larger set of integer scratch registers
as well as the Alpha floating-point scratch registers. In addition, because Alpha
registers are 64 bits long, the mechanism array is constructed of quadwords (64
bits), not longwords (32 bits) as it is on VAX systems. Figure 13–10 shows the
format of the mechanism array on Alpha systems.

13–37

Condition-Handling Routines and Services
13.8 Signaling

Figure 13–10 Mechanism Array on Alpha Systems

mechanism_args quadword aligned

MCH_ARGS

MCH_FLAGS

MCH_FRAME

MCH_DEPTH

MCH_RESVD1

MCH_DADDR

MCH_ESF_ADDR

MCH_SIG_ADDR

MCH_SAVR0_HIGH

MCH_SAVR1_HIGH

:0

:4

:8

:16

:20

:24

:32

:40

:48

:56

:64

MCH_SAVR0_LOW

MCH_SAVR0

MCH_SAVR1

MCH_SAVR1_LOW

ZK−4645A−GE

Integer registers 17−27

Floating registers 11−29

:160

:168

:176

:184

:344

CHF$S_CHFDEF2 = 352

MCH_SAVR16

MCH_SAVR28

MCH_SAVF0

MCH_SAVF1

MCH_SAVF30

MCH_SAVF10

13–38

Condition-Handling Routines and Services
13.8 Signaling

Table 13–11 describes the arguments in the mechanism array.

Table 13–11 Fields in the Alpha Mechanism Array

Argument Description

CHF$IS_MCH_ARGS Represents the number of quadwords in the mechanism
array, not counting the argument count quadword. (The
value contained in this argument is always 43.)

CHF$IS_MCH_FLAGS Flag bits <63:0> for related argument mechanism
information defined as follows for CHF$V_FPREGS:

Bit <0>: When set, the process has already performed a
floating-point operation and the floating-point registers
stored in this structure are valid.

If this bit is clear, the process has not yet performed any
floating-point operations, and the values in the floating-
point register slots in this structure are unpredictable.

CHF$PH_MCH_FRAME Contains the frame pointer (FP) in the procedure context
of the establisher.

CHF$IS_MCH_DEPTH Positive count of the number of procedure activation stack
frames between the frame in which the exception occurred
and the frame depth that established the handler being
called.

CHF$PS_MCH_DADDR Address of the handler data quadword if the exception
handler data field is present (as indicated by
PDSC.FLAGS.HANDLER_DATA_VALID); otherwise,
contains zero.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame (see the Alpha
Architecture Reference Manual).

CHF$PH_MCH_SIG_ADDR Address of the signal array. The signal array is a 32-bit
(longword) array.

CHF$IH_MCH_SAVRnn Contains a copy of the saved integer registers at the time
of the exception. The following registers are saved: R0,
R1, and R16–R28. Registers R2–R15 are implicitly saved
in the call chain.

CHF$FM_MCH_SAVFnn Contains a copy of the saved floating-point registers at the
time of the exception or may have unpredictable data as
described in CHF$IS_MCH_FLAGS. If the floating-point
register fields are valid, the following registers are saved:
F0, F1, and F10–F30. Registers F2–F9 are implicitly
saved in the call chain.

For more information and recommendations about using the mechanism
argument vector on Alpha systems, see Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications. ♦

13.8.5 Multiple Active Signals
A signal is said to be active until the routine that signaled regains control or
until the stack is unwound or the image exits. A second signal can occur while
a condition handler or a routine it has called is executing. This situation is
called multiple active signals or multiple exception conditions. When
this situation occurs, the stack scan is not performed in the usual way. Instead,
the frames that were searched while processing all of the previous exception
conditions are skipped when the current exception condition is processed. This is
done in order to avoid recursively reentering a routine that is not reentrant. For
example, Fortran code typically is not recursively reentrant. If a Fortran handler

13–39

Condition-Handling Routines and Services
13.8 Signaling

were called while another activation of that handler was still going, the results
would be unpredictable.

A second exception may occur while a condition handler or a procedure that it
has called is still executing. In this case, when the exception dispatcher searches
for a condition handler, it skips the frames that were searched to locate the first
handler.

The search for a second handler terminates in the same manner as the initial
search, as described in Section 13.6.

If the SYS$UNWIND system service is issued by the second active condition
handler, the depth of the unwind is determined according to the same rules
followed in the exception dispatcher’s search of the stack: all frames that were
searched for the first condition handler are skipped.

Primary and secondary vectored handlers, on the other hand, are always entered
when an exception occurs.

If an exception occurs during the execution of a handler that was established
in the primary or secondary exception vector, that handler must handle the
additional condition. Failure to do so correctly might result in a recursive
exception loop in which the vectored handler is repeatedly called until the user
stack is exhausted.

The modified search routine is best illustrated with an example. Assume the
following calling sequence:

1. Routine A calls routine B, which calls routine C.

2. Routine C signals an exception condition (signal S), and the handler for
routine C (CH) resignals.

3. Control passes to BH, the handler for routine B. The call frame for handler
BH is located on top of the signal and mechanism arrays for signal S. The
saved frame pointer in the call frame for BH points to the frame for routine
C.

4. BH calls routine X; routine X calls routine Y.

5. Routine Y signals a second exception condition (signal T). Figure 13–11
illustrates the stack contents after the second exception condition is signaled.

13–40

Condition-Handling Routines and Services
13.8 Signaling

Figure 13–11 Stack After Second Exception Condition Is Signaled

< Signal T >

Y

X

BH

< Signal S >

C

B

A

ZK−1968−GE

Normally, the OpenVMS Condition Handling facility (CHF) searches all
currently active frames for condition handlers, including B and C. If this
happens, however, BH is called again. At this point, you skip the condition
handlers that have already been called. Thus, the search for condition
handlers should proceed in the following order:

YH
XH
BHH (the handler for routine B’s handler)
AH

6. The search now continues in its usual fashion. The CHF examines the
primary and secondary exception vectors, then frames Y, X, and BH. Thus,
handlers YH, XH, and BHH are called. Assume that these handlers resignal.

7. The CHF now skips the frames that have already been searched and resumes
the search for condition handlers in routine A’s frame. The depths that are
passed to handlers as a result of this modified search are 0 for YH, 1 for XH,
2 for BHH, and 3 for AH.

Because of the possibility of multiple active signals, you should be careful if you
use an exception vector to establish a condition handler. Vectored handlers are
called, not skipped, each time an exception occurs.

13.9 Types of Condition Handlers

VAX On VAX systems, when a routine is activated, the first longword in its stack
frame is set to 0. This longword is reserved to contain an address pointing to
another routine called the condition handler. If an exception condition is signaled
during the execution of the routine, the OpenVMS Condition Handling Facility
uses the address in the first longword of the frame to call the associated condition
handler. ♦

Alpha On Alpha systems, each procedure, other than a null frame procedure, can have
a condition handler potentially associated with it, identified by the HANDLER_
VALID, STACK_HANDLER, or REG_HANDLER field of the associated procedure
descriptor. You establish a handler by including the procedure value of the
handler procedure in that field. ♦

The arguments passed to the condition-handling routine are the signal and
mechanism argument vectors, described in Section 13.8.2, Section 13.8.3, and
Section 13.8.4.

13–41

Condition-Handling Routines and Services
13.9 Types of Condition Handlers

Various types of condition handlers can be called for a given routine:

• User-supplied condition handlers

You can write your own condition handler and set up its address in the stack
frame of your routine using the run-time library routine LIB$ESTABLISH or
the mechanism supplied by your language.

Alpha On Alpha systems, LIB$ESTABLISH is not supported, though high-level
languages may support it for compatibility. ♦

• Language-supplied condition handlers

Many high-level languages provide a means for setting up handlers that are
global to a single routine. If your language provides a condition-handling
mechanism, you should always use it. If you also try to establish a condition
handler using LIB$ESTABLISH, the two methods of handling exception
conditions conflict, and the results are unpredictable.

• System default condition handlers

The operating system provides a set of default condition handlers. These take
over if there are no other condition handler addresses on the stack, or if all
the previous condition handlers have passed on (resignaled) the indication of
the exception condition.

13.9.1 Default Condition Handlers
The operating system establishes the following default condition handlers each
time a new image is started. The default handlers are shown in the order they
are encountered when the operating system processes a signal. These three
handlers are the only handlers that output error messages.

• Traceback handler

The traceback handler is established on the stack after the catchall handler.
This enables the traceback handler to get control first. This handler performs
three functions in the following order:

1. Outputs an error message using the Put Message (SYS$PUTMSG) system
service. SYS$PUTMSG formats the message using the Formatted ASCII
Output (SYS$FAO) system service and sends the message to the devices
SYS$ERROR and SYS$OUTPUT (if it differs from SYS$ERROR). That
is, it displays the message associated with the signaled condition code,
the traceback message, the program unit name and line number of the
statement that signaled the condition code, and the relative and absolute
program counter values. (On a warning or error, the number of the next
statement to be executed is displayed.)

2. Issues a symbolic traceback, which shows the state of the routine stack
at the time of the exception condition. That is, it displays the names of
the program units in the calling hierarchy and the line numbers of the
invocation statements.

13–42

Condition-Handling Routines and Services
13.9 Types of Condition Handlers

3. Decides whether to continue executing the image or to force an exit based
on the severity field of the condition value:

Severity Error Type Action

1 Success Continue

3 Information Continue

0 Warning Continue

2 Error Continue

4 Severe Exit

The traceback handler is in effect if you link your program with the
/TRACEBACK qualifier of the LINK command (the default). Once you
have completed program development, you generally link your program
with the /NOTRACEBACK qualifier and use the catchall handler.

• Catchall handler

The operating system establishes the catchall handler in the first stack
frame and thus calls it last. This handler performs the same functions as the
traceback handler except for the stack traceback. That is, it issues an error
message and decides whether to continue execution. The catchall is called
only if you link with the /NOTRACEBACK qualifier. It displays the message
associated with the condition code and then continues program execution or,
if the error is severe, terminates execution.

• Last-chance handler

The operating system establishes the last-chance handler with a system
exception vector. In most cases, this vector contains the address of the
catchall handler, so that these two handlers are actually the same. The
last-chance handler is called only if the stack is invalid or all the handlers
on the stack have resignaled. If the debugger is present, the debugger’s own
last-chance handler replaces the system last-chance handler.

Displays the message associated with the condition code and then continues
program execution or, if the error is severe, terminates execution. The catchall
handler is not invoked if the traceback handler is enabled.

In the following example, if the condition code INCOME_LINELOST is signaled
at line 496 of GET_STATS, regardless of which default handler is in effect, the
following message is displayed:

%INCOME-W-LINELOST, Statistics on last line lost due to CTRL/Z

If the traceback handler is in effect, the following text is also displayed:

%TRACE-W-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

GET_STATS GET_STATS 497 00000306 00008DA2
INCOME INCOME 148 0000015A 0000875A

0000A5BC 0000A5BC
00009BDB 00009BDB
0000A599 0000A599

Because INCOME_LINELOST is a warning, the line number of the next
statement to be executed (497), rather than the line number of the statement
that signaled the condition code, is displayed. Line 148 of the program unit
INCOME invoked GET_STATS.

13–43

Condition-Handling Routines and Services
13.9 Types of Condition Handlers

13.9.2 Interaction Between Default and User-Supplied Handlers
Several results are possible after a routine signals, depending on a number of
factors, such as the severity of the error, the method of generating the signal, and
the action of the condition handlers you have defined and the default handlers.
Given the severity of the condition and the method of signaling, Figure 13–12
lists all combinations of interaction between user condition handlers and default
condition handlers.

Figure 13–12 Interaction Between Handlers and Default Handlers

RETURN UNWIND

SEVERE RETURN UNWIND

Exception Condition Is Signaled by a Call to LIB$STOP

UNWIND

ZK−4257−GE

Severity
of

Condition

User
Handler
Specifies

CONTINUE

User
Handler
Specifies
UNWIND

Default
Handler

Gets
Control

No Handler
Found

(Bad Stack)

Exception Condition Is Signaled by a Call to LIB$SIGNAL or
Detected by Hardware

WARNING,
INFO, or
ERROR

Issue
Condition
Message

RETURN

Call Last−
Chance
Handler

EXIT

Issue
Condition
Message

EXIT

Call Last−
Chance
Handler

EXIT

LIB$STOP
Forces
Severity
to
SEVERE

Message:
"Attempt to
continue
from stop"
EXIT

Issue
Condition
Message

EXIT

Call Last−
Chance
Handler

EXIT

13–44

Condition-Handling Routines and Services
13.10 Types of Actions Performed by Condition Handlers

13.10 Types of Actions Performed by Condition Handlers
When a condition handler returns control to the OpenVMS Condition Handling
facility (CHF), the facility takes one of the following types of actions, depending
on the value returned by the condition handler:

• Signal a condition

Signaling a condition initiates the search for an established condition handler.

• Continue
The condition handler may or may not be able to fix the problem, but the
program can attempt to continue execution. The handler places the return
status value SS$_CONTINUE in R0 and issues a RET instruction to return
control to the dispatcher. If the exception was a fault, the instruction that
caused it is reexecuted; if the exception was a trap, control is returned at
the instruction following the one that caused it. A condition handler cannot
continue if the exception condition was signaled by calling LIB$STOP.
Section 13.12.1 contains more information about continuing.

• Resignal
The handler cannot fix the problem, or this condition is one that it does not
handle. It places the return status value SS$_RESIGNAL in R0 and issues a
RET instruction to return control to the exception dispatcher. The dispatcher
resumes its search for a condition handler. If it finds another condition
handler, it passes control to that routine. A handler can alter the severity of
the signal before resignaling.
Section 13.12.2 contains more information about resignaling

• Unwind
The condition handler cannot fix the problem, and execution cannot continue
while using the current flow. The handler issues the Unwind Call Stack
(SYS$UNWIND) system service to unwind the call stack. Call frames can
then be removed from the stack and the flow of execution modified, depending
on the arguments to the SYS$UNWIND service.
When a condition handler has already called SYS$UNWIND, any return
status from the condition handler is ignored by the CHF. The CHF now
unwinds the stack.
Unwinding the routine call stack removes call frames, starting with the frame
in which the condition occurred, and returns control to an earlier routine
in the calling sequence. You can unwind the stack whether the condition
was detected by hardware or signaled using LIB$SIGNAL or LIB$STOP.
Unwinding is the only way to continue execution after a call to LIB$STOP.
Section 13.12.3 describes how to write a condition handler that unwinds the
call stack.

Alpha • Perform a nonlocal GOTO unwind
On Alpha systems, a GOTO unwind operation is a transfer of control that
leaves one procedure invocation and continues execution in a prior (currently
active) procedure. This unified GOTO operation gives unterminated procedure
invocations the opportunity to clean up in an orderly way. See Section 13.10.2
for more information about GOTO unwind operations. ♦

13–45

Condition-Handling Routines and Services
13.10 Types of Actions Performed by Condition Handlers

13.10.1 Unwinding the Call Stack
One type of action a condition handler can take is to unwind the procedure call
stack. The unwind operation is complex and should be used only when control
must be restored to an earlier procedure in the calling sequence. Moreover, use
of the SYS$UNWIND system service requires the calling condition handler to be
aware of the calling sequence and of the exact point to which control is to return.

SYS$UNWIND accepts two optional arguments:

• The depth to which the unwind is to occur. If the depth is 1, the call stack
is unwound to the caller of the procedure that incurred the exception. If the
depth is 2, the call stack is unwound to the caller’s caller, and so on. By
specifying the depth in the mechanism array, the handler can unwind to the
procedure that established the handler.

• The address of a location to receive control when the unwind operation is
complete, that is, a PC to replace the current PC in the call frame of the
procedure that will receive control when all specified frames have been
removed from the stack.

If no argument is supplied to SYS$UNWIND, the unwind is performed to the
caller of the procedure that established the condition handler that is issuing the
SYS$UNWIND service. Control is returned to the address specified in the return
PC for that procedure. Note that this is the default and the normal case for
unwinding.

Another common case of unwinding is to unwind to the procedure that declared
the handler. On VAX systems, this is done by using the depth value from the
exception mechanism array (CHF$L_MCH_DEPTH) as the depth argument to
SYS$UNWIND. On Alpha systems, this is done by using the depth value from
the exception mechanism array (CHF$IS_MCH_DEPTH) as the depth argument
to SYS$UNWIND.

Therefore, it follows that the default unwind (no depth specified) is equivalent to
specifying CHF$L_MCH_DEPTH plus 1 on VAX systems. On Alpha systems, the
default unwind (no depth specified) is equivalent to specifying CHF$IS_MCH_
DEPTH plus 1. In certain instances of nested exceptions, however, this is not the
case. Digital recommends that you omit the depth argument when unwinding to
the caller of the routine that established the condition handler.

Figure 13–13 illustrates an unwind situation and describes some of the possible
results.

The unwind operation consists of two parts:

1. In the call to SYS$UNWIND, the return PCs saved in the stack are modified
to point into a routine within the SYS$UNWIND service, but the entire stack
remains present.

2. When the handler returns, control is directed to this routine by the modified
PCs. It proceeds to return to itself, removing the modified stack frames, until
the stack has been unwound to the proper depth.

For this reason, the stack is in an intermediate state directly after calling
SYS$UNWIND. Handlers should, in general, return immediately after calling
SYS$UNWIND.

13–46

Condition-Handling Routines and Services
13.10 Types of Actions Performed by Condition Handlers

During the actual unwinding of the call stack, the unwind routine examines each
frame in the call stack to see whether a condition handler has been declared. If a
handler has been declared, the unwind routine calls the handler with the status
value SS$_UNWIND (indicating that the call stack is being unwound) in the
condition name argument of the signal array. When a condition handler is called
with this status value, it can perform any procedure-specific cleanup operations
required. For example, the handler should deallocate any processwide resources
that have been allocated. Then, the handler returns control to the OpenVMS
Condition Handling facility. After the handler returns, the call frame is removed
from the stack.

When a condition handler is called during the unwinding operation, the
condition handler must not generate a new signal. A new signal would result in
unpredictable behavior.

Thus, in Figure 13–13, handler B can be called a second time, during the unwind
operation. Note that handler B does not have to be able to interpret the SS$_
UNWIND status value specifically; the RET instruction merely returns control to
the unwind procedure, which does not check any status values.

Handlers established by the primary, secondary, or last-chance vector are not
called, because they are not removed during an unwind operation.

While it is unwinding the stack, the OpenVMS Condition Handling facility
ignores any function value returned by a condition handler. For this reason, a
handler cannot both resignal and unwind. Thus, the only way for a handler to
both issue a message and perform an unwind is to call LIB$SIGNAL and then
call $UNWIND. If your program calls $UNWIND before calling LIB$SIGNAL, the
result is unpredictable.

When the OpenVMS Condition Handling facility calls the condition handler
that was established for each frame during unwind, the call is of the standard
form, described in Section 13.2. The arguments passed to the condition handler
(the signal and mechanism argument vectors) are shown in Section 13.8.2,
Section 13.8.3, and Section 13.8.4.

VAX On VAX systems, if the handler is to specify the function value of the last function
to be unwound, it should modify the saved copies of R0 and R1 (CHF$L_MCH_
SAVR0 and CHF$L_MCH_SAVR1) in the mechanism argument vector. ♦

Alpha On Alpha systems, the handler should modify the saved copies of R0 and R1
(CHF$IH_MCH_SAVRnn). ♦

R0 and R1 are restored from the mechanism argument vector at the end of the
unwind.

13–47

Condition-Handling Routines and Services
13.10 Types of Actions Performed by Condition Handlers

Figure 13–13 Unwinding the Call Stack

ZK−0860−GE

1

2

The procedure call stack is as shown. Assume that no exception vectors are

3

declared for the process and that the exception occurs during the execution of

Because neither procedure D nor procedure C has established a condition

procedure D.

If handler B issues the $UNWIND system service with no arguments, the

handler, handler B receives control.

call frames for B, C, and D are removed from the stack (along with the call
frame for handler B itself), and control returns to procedure A. Procedure
A receives control at the point following its call to procedure B.

4

C Calls D

If handler B issues the $UNWIND system service specitying a depth of 2,

FP

call frames for C and D are removed, and control returns to procedure B.

A Calls B

Incurs Condition
D Runs and

and Calls C
B Writes (FP)

FP

FP

FP

X Calls A

0

0

0

Handler B

13–48

Condition-Handling Routines and Services
13.10 Types of Actions Performed by Condition Handlers

13.10.2 GOTO Unwind Operations (Alpha Only)

Alpha A current procedure invocation is one in whose context the thread of execution is
currently executing. At any instant, a thread of execution has exactly one current
procedure. If code in the current procedure calls another procedure, then the
called procedure becomes the current procedure. As each stack frame or register
frame procedure is called, its invocation context is recorded in a procedure frame.
The invocation context is mainly a snapshot of process registers at procedure
invocation. It is used during return from the called procedure to restore the
calling procedure’s state. The chain of all procedure frames starting with the
current procedure and going all the way back to the first procedure invocation for
the thread is called the call chain. While a procedure is part of the call chain, it
is called an active procedure.

When a current procedure returns to its calling procedure, the most recent
procedure frame is removed from the call chain and used to restore the now
current procedure’s state. As each current procedure returns to its calling
procedure, its associated procedure frame is removed from the call chain. This is
the normal unwind process of a call chain.

You can bypass the normal return path by forcibly unwinding the call chain.
The Unwind Call Chain (SYS$UNWIND) system service allows a condition
handler to transfer control from a series of nested procedure invocations to a
previous point of execution, bypassing the normal return path. The Goto Unwind
(SYS$GOTO_UNWIND) system service allows any procedure to achieve the same
effect. SYS$GOTO_UNWIND restores saved register context for each nested
procedure invocation, calling the condition handler, if any, for each procedure
frame that it unwinds. Restoring saved register context from each procedure
frame from the most recent one to the target procedure frame ensures that the
register context is correct when the target procedure gains control. Also, each
condition handler called during unwind can release any resources acquired by its
establishing procedure.

For information about the GOTO unwind operations and how to use the
SYS$GOTO_UNWIND system service, see the OpenVMS Calling Standard
and the OpenVMS System Services Reference Manual. ♦

13.11 Displaying Messages
The standard format for a message is as follows:

%facility-l-ident, message-text

facility Abbreviated name of the software component that issued the
message

l Indicator showing the severity level of the exception condition that
caused the message

ident Symbol of up to nine characters representing the message

message-text Brief definition of the cause of the message

The message can also include up to 255 formatted ASCII output (FAO)
arguments. These arguments can be used to display variable information
about the condition that caused the message. In the following examples, the file
specification is an FAO argument:

%TYPE-W-OPENIN, error opening _DB0:[FOSTER]AUTHOR.DAT; as input

For information about specifying FAO parameters, see Section 13.11.4.3.

13–49

Condition-Handling Routines and Services
13.11 Displaying Messages

Signaling
Signaling provides a consistent and unified method for displaying messages. This
section describes how the OpenVMS Condition Handling facility translates the
original signal into intelligible messages.

Signaling is used to signal exception conditions generated by Digital software.
When software detects an exception condition, it signals the exception condition
to the user by calling LIB$SIGNAL or LIB$STOP. The signaling routine passes a
signal argument list to these run-time library routines. This signal argument list
is made up of the condition value and a set of optional arguments that provide
information to condition handlers.

You can use the signaling mechanism to signal messages that are specific to your
application. Further, you can chain your own message to a system message. For
more information, see Section 13.11.3.

LIB$SIGNAL and LIB$STOP copy the signal argument list and use it to create
the signal argument vector. The signal argument vector serves as part of the
input to the user-established handlers and the system default handlers.

If all intervening handlers have resignaled, the system default handlers take
control. The system-supplied default handlers are the only handlers that should
actually issue messages, whether the exception conditions are signaled by Digital
software or your own programs. That is, a routine should signal exception
conditions rather than issue its own messages. In this way, other applications can
call the routine and override its signal in order to change the messages. Further,
this technique decides formatting details, and it also keeps wording centralized
and consistent.

The system default handlers pass the signal argument vector to the Put Message
(SYS$PUTMSG) system service. SYS$PUTMSG formats and displays the
information in the signal argument vector.

SYS$PUTMSG performs the following steps:

1. Interprets the signal argument vector as a series of one or more message
sequences. Each message sequence starts with a 32-bit, systemwide condition
value that identifies a message in the system message file. SYS$PUTMSG
interprets the message sequences according to type defined by the facility of
the condition.

2. Obtains the text of the message using the Get Message (SYS$GETMSG)
system service. The message text definition is actually a SYS$FAO control
string. It may contain embedded FAO directives. These directives determine
how the FAO arguments in the signal argument vector are formatted.
(For more information about SYS$FAO, see the OpenVMS System Services
Reference Manual.)

3. Calls SYS$FAO to format the message, substituting the values from the
signal argument list.

4. Issues the message on device SYS$OUTPUT. If SYS$ERROR is different from
SYS$OUTPUT, and the severity field in the condition value is not success,
$PUTMSG also issues the message on device SYS$ERROR.

13–50

Condition-Handling Routines and Services
13.11 Displaying Messages

You can use the signal array that the operating system passes to the condition
handler as the first argument of the SYS$PUTMSG system service. The signal
array contains the condition code, the number of required FAO arguments
for each condition code, and the FAO arguments (see Figure 13–14). The
OpenVMS System Services Reference Manual contains complete specifications
for SYS$PUTMSG.

See Section 13.11.2 for information about how to create and suppress messages
on a running log using SYS$PUTMSG.

The last two array elements, the PC and PSL, are not FAO arguments and
should be deleted before the array is passed to SYS$PUTMSG. Because the first
element of the signal array contains the number of longwords in the array, you
can effectively delete the last two elements of the array by subtracting 2 from the
value in the first element. Before exiting from the condition handler, you should
restore the last two elements of the array by adding 2 to the first element in case
other handlers reference the array.

In the following example, the condition handler uses the SYS$PUTMSG system
service and then returns a value of SS$_CONTINUE so that the default handler
is not executed.

INTEGER*4 FUNCTION SYMBOL (SIGARGS,
2 MECHARGS)

.

.

.
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 LIB$_NOSUCHSYM)
IF (INDEX .GT. 0) THEN
! If condition code is LIB$_NOSUCHSYM,
! change the severity to informational
CALL MVBITS (STS$K_INFO,

2 0,
2 3,
2 SIGARGS(2),
2 0)

! Display the message
SIGARGS(1) = SIGARGS(1) - 2 ! Subtract last two elements
CALL SYS$PUTMSG (SIGARGS,,,)
SIGARGS(1) = SIGARGS(1) + 2 ! Restore last two elements

! Continue program execution;
SYMBOL = SS$_CONTINUE

ELSE
! Otherwise, resignal the condition
SYMBOL = SS$_RESIGNAL

END IF

END

Each message sequence in the signal argument list produces one line of output.
Figure 13–14 illustrates the three possible message sequence formats.

13–51

Condition-Handling Routines and Services
13.11 Displaying Messages

Figure 13–14 Formats of Message Sequences

No FAO (Formatted ASCII Output) Arguments

Condition Value

Variable Number of FAO Arguments

Condition Value

FAO_count

FAO arg1

FAO arg2

FAO argn

VAX−11 RMS Error with STV (Status Value)

VAX−11 RMS Condition Value (STS)

Associated Status Value (STV)

Note that a condition value of
 zero results in no message.

Condition Value

Number of FAO Arguments

Condition Value

One FAO Argument or

ZK−1967−GE

 SS$_... Condition Value

OpenVMS RMS system services return two related completion values: the
completion code and the associated status value. The completion code is returned
in R0 using the function value mechanism. The same value is also placed in the
Completion Status Code field of the RMS file access block (FAB) or record access
block (RAB) associated with the file (FAB$L_STS or RAB$L_STS). The status
value is returned in the Status Value field of the same FAB or RAB (FAB$L_
STV or RAB$L_STV). The meaning of this secondary value is based on the
corresponding STS (Completion Status Code) value. Its meaning could be any of
the following:

• An operating system condition value of the form SS$_ . . .

• An RMS value, such as the size of a record that exceeds the buffer size

• Zero

Rather than have each calling program determine the meaning of the STV value,
SYS$PUTMSG performs the necessary processing. Therefore, this STV value
must always be passed in place of the FAO argument count. In other words, an
RMS message sequence always consists of two arguments (passed by immediate
value): an STS value and an STV value.

13–52

Condition-Handling Routines and Services
13.11 Displaying Messages

13.11.1 Chaining Messages
You can use a condition handler to add condition values to an originally signaled
condition code. For example, if your program calculates the standard deviation
of a series of numbers and the user only enters one value, the operating system
signals the condition code SS$_INTDIV when the program attempts to divide
by zero. (In calculating the standard deviation, the divisor is the number of
values entered minus 1.) You could use a condition handler to add a user-defined
message to the original message to indicate that only one value was entered.

To display multiple messages, pass the condition values associated with the
messages to the RTL routine LIB$SIGNAL. To display the message associated
with an additional condition code, the handler must pass LIB$SIGNAL the
condition code, the number of FAO arguments used, and the FAO arguments. To
display the message associated with the originally signaled condition codes, the
handler must pass LIB$SIGNAL each element of the signal array as a separate
argument. Because the signal array is a variable-length array and LIB$SIGNAL
cannot accept a variable number of arguments, when you write your handler
you must pass LIB$SIGNAL more arguments than you think will be required.
Then, during execution of the handler, zero the arguments that you do not need
(LIB$SIGNAL ignores zero values), as described in the following steps:

1. Declare an array with one element for each argument that you plan to pass
LIB$SIGNAL. Fifteen elements are usually sufficient.

INTEGER*4 NEWSIGARGS(15)

2. Transfer the condition values and FAO information from the signal array to
your new array. The first element and the last two elements of the signal
array do not contain FAO information and should not be transferred.

3. Fill any remaining elements of your new array with zeros.

The following example demonstrates steps 2 and 3:

DO I = 1, 15

IF (I .LE. SIGARGS(1) - 2) THEN
NEWSIGARGS(I) = SIGARGS(I+1) ! Start with SIGARGS(2)
ELSE
NEWSIGARGS(I) = 0 ! Pad with zeros

END IF

END DO

Because the new array is a known-length array, you can specify each element as
an argument to LIB$SIGNAL.

The following condition handler ensures that the signaled condition code is SS$_
INTDIV. If it is, the user-defined message ONE_VALUE is added to SS$_INTDIV,
and both messages are displayed.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER SIGARGS(*),
2 MECHARGS(*)
! Declare new array for SIGARGS
INTEGER NEWSIGARGS (15)
! Declare index variable for LIB$MATCH_COND
INTEGER INDEX
! Declare procedures
INTEGER LIB$MATCH_COND

13–53

Condition-Handling Routines and Services
13.11 Displaying Messages

! Declare condition codes
EXTERNAL ONE_VALUE
INCLUDE ’($SSDEF)’
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 SS$_INTDIV)
IF (INDEX .GT. 0) THEN

DO I=1,15
IF (I .LE. SIGARGS(1) - 2) THEN
NEWSIGARGS(I) = SIGARGS(I+1) ! Start with SIGARGS(2)

ELSE
NEWSIGARGS(I) = 0 ! Pad with zeros

END IF
END DO

! Signal messages
CALL LIB$SIGNAL (%VAL(NEWSIGARGS(1)),

2 %VAL(NEWSIGARGS(2)),
2 %VAL(NEWSIGARGS(3)),
2 %VAL(NEWSIGARGS(4)),
2 %VAL(NEWSIGARGS(5)),
2 %VAL(NEWSIGARGS(6)),
2 %VAL(NEWSIGARGS(7)),
2 %VAL(NEWSIGARGS(8)),
2 %VAL(NEWSIGARGS(9)),
2 %VAL(NEWSIGARGS(10)),
2 %VAL(NEWSIGARGS(11)),
2 %VAL(NEWSIGARGS(12)),
2 %VAL(NEWSIGARGS(13)),
2 %VAL(NEWSIGARGS(14)),
2 %VAL(NEWSIGARGS(15)),
2 %VAL(%LOC(ONE_VALUE)),
2 %VAL(0))

HANDLER = SS$_CONTINUE
ELSE

HANDLER = SS$_RESIGNAL

END IF

END

A signal argument list may contain one or more condition values and FAO
arguments. Each condition value and its FAO arguments is ‘‘chained’’ to the next
condition value and its FAO arguments. You can use chained messages to provide
more specific information about the exception condition being signaled, along with
a general message.

The following message source file defines the exception condition
PROG_ _FAIGETMEM:

.FACILITY PROG,1 /PREFIX=PROG__

.SEVERITY FATAL

.BASE 100

FAIGETMEM <failed to get !UL bytes of memory>/FAO_COUNT=1

.END

This source file sets up the exception message as follows:

• The .FACILITY directive specifies the facility, PROG, and its number, 1. It
also adds the /PREFIX qualifier to determine the prefix to be used in the
message.

13–54

Condition-Handling Routines and Services
13.11 Displaying Messages

• The .SEVERITY directive specifies that PROG_ _FAIGETMEM is a fatal
exception condition. That is, the SEVERITY field in the condition value for
PROG_ _FAIGETMEM is set to severe (bits <0:3> = 4).

• The BASE directive specifies that the condition identification numbers in the
PROG facility will begin with 100.

• FAIGETMEM is the symbol name. This name is combined with the prefix
defined in the facility definition to make the message symbol. The message
symbol becomes the symbolic name for the condition value.

• The text in angle brackets is the message text. This is actually a SYS$FAO
control string. When $PUTMSG calls the $FAO system service to format the
message, $FAO includes the FAO argument from the signal argument vector
and formats the argument according to the embedded FAO directive (!UL).

• The .END statement terminates the list of messages for the PROG facility.

13.11.2 Logging Error Messages to a File
You can write a condition handler to obtain a copy of a system error message text
and write the message into an auxiliary file, such as a listing file. In this way,
you can receive identical messages at the terminal (or batch log file) and in the
auxiliary file.

To log messages, you must write a condition handler and an action subroutine.
Your handler calls the Put Message (SYS$PUTMSG) system service explicitly.
The operation of SYS$PUTMSG is described in Section 13.11. The handler
passes to SYS$PUTMSG the signal argument vector and the address of the action
subroutine. SYS$PUTMSG passes to the action subroutine the address of a string
descriptor that contains the length and address of the formatted message. The
action subroutine can scan the message or copy it into a log file, or both.

It is important to keep the display messages centralized and consistent. Thus,
you should use only SYS$PUTMSG to display or log system error messages.
Further, because the system default handlers call SYS$PUTMSG to display error
messages, your handlers should avoid displaying the error messages. You can do
this in two ways:

• Your handler should not call SYS$PUTMSG directly to display an error
message. Instead, your handler should resignal the error. This allows other
calling routines to change or suppress the message or to recover from the
error. The system default condition handlers display the message.

• If the action subroutine that you supply to SYS$PUTMSG returns a success
code, SYS$PUTMSG displays the error message on SYS$OUTPUT or
SYS$ERROR, or both. When a program executes interactively or from within
a command procedure, the logical names SYS$OUTPUT and SYS$ERROR
are both equated to the user’s terminal by default. Thus, your action
routine should process the message and then return a failure code so that
SYS$PUTMSG does not display the message at this point.

To write the error messages displayed by your program to a file as well as
to the terminal, equate SYS$ERROR to a file specification. When a program
executes as a batch job, the logical names SYS$OUTPUT and SYS$ERROR
are both equated to the batch log by default. To write error messages to the
log file and a second file, equate SYS$ERROR to the second file.

13–55

Condition-Handling Routines and Services
13.11 Displaying Messages

Figure 13–15 shows the sequence of events involved in calling SYS$PUTMSG to
log an error message to a file.

Figure 13–15 Using a Condition Handler to Log an Error Message

CALL

Procedure A calls procedure B.

RETURN

$PUTMSG returns to handler B.

Handler A

Procedure A

Handler B

Procedure B

$PUTMSG

ZK−1934−GE

User’s
Action

Subroutine

Handler B resignals the error. The CHF continues the

An exception occurs during procedure B. CHF calls

stack scan by calling the handler established for pro−

Action subroutine returns FAILURE status to
$PUTMSG. No error message is displayed.

cedure A. The error messages are displayed by the

handler B.

default handlers.

$PUTMSG obtains error message text and passes one
line at a time to action subroutine.

Action subroutine logs the line of message text to a
file.

Handler B calls $PUTMSG and passes signal argument
vector and address of action subroutine.

13.11.2.1 Creating a Running Log of Messages Using SYS$PUTMSG
To keep a running log (that is, a log that is resumed each time your program
is invoked) of the messages displayed by your program, use SYS$PUTMSG.
Create a condition handler that invokes SYS$PUTMSG regardless of the
signaled condition code. When you invoke SYS$PUTMSG, specify a function that
writes the formatted message to your log file and then returns with a function
value of 0. Have the condition handler resignal the condition code. One of the
arguments of SYS$PUTMSG allows you to specify a user-defined function that
SYS$PUTMSG invokes after formatting the message and before displaying the
message. SYS$PUTMSG passes the specified function the formatted message. If
the function returns with a function value of 0, SYS$PUTMSG does not display
the message; if the function returns with a value of 1, SYS$PUTMSG displays
the message. The OpenVMS System Services Reference Manual contains complete
specifications for SYS$PUTMSG.

13.11.2.2 Suppressing the Display of Messages in the Running Log
To keep a running log of messages, you might have your main program open a
file for the error log, write the date, and then establish a condition handler to
write all signaled messages to the error log. Each time a condition is signaled, a
condition handler like the one in the following example invokes SYS$PUTMSG
and specifies a function that writes the message to the log file and returns with
a function value of 0. SYS$PUTMSG writes the message to the log file but does
not display the message. After SYS$PUTMSG writes the message to the log file,
the condition handler resignals to continue program execution. (The condition
handler uses LIB$GET_COMMON to read the unit number of the file from the
per-process common block.)

13–56

Condition-Handling Routines and Services
13.11 Displaying Messages

ERR.FOR
INTEGER FUNCTION ERRLOG (SIGARGS,
2 MECHARGS)
! Writes the message to file opened on the
! logical unit named in the per-process common block
! Define the dummy arguments
INTEGER SIGARGS(*),
2 MECHARGS(*)
INCLUDE ’($SSDEF)’

EXTERNAL PUT_LINE
INTEGER PUT_LINE
! Pass signal array and PUT_LINE routine to SYS$PUTMSG
SIGARGS(1) = SIGARGS(1) - 2 ! Subtract PC/PSL from signal array
CALL SYS$PUTMSG (SIGARGS,
2 PUT_LINE,)
SIGARGS(1) = SIGARGS(1) + 2 ! Replace PC/PSL

ERRLOG = SS$_RESIGNAL

END

PUT_LINE.FOR
INTEGER FUNCTION PUT_LINE (LINE)
! Writes the formatted message in LINE to
! the file opened on the logical unit named
! in the per-process common block
! Dummy argument
CHARACTER*(*) LINE
! Logical unit number
CHARACTER*4 LOGICAL_UNIT
INTEGER UNIT_NUM
! Indicates that SYS$PUTMSG is not to display the message
PUT_LINE = 0
! Get logical unit number and change to integer
STATUS = LIB$GET_COMMON (LOGICAL_UNIT)
READ (UNIT = LOGICAL_UNIT,
2 FMT = ’(I4)’) UNIT_NUMBER
! The main program opens the error log
WRITE (UNIT = UNIT_NUMBER,
2 FMT = ’(A)’) LINE

END

13.11.3 Using the Message Utility to Signal and Display User-Defined
Messages

Section 13.11 explains how the OpenVMS Condition Handling facility displays
messages. The signal argument list passed to LIB$SIGNAL or LIB$STOP can
be seen as one or more message sequences. Each message sequence consists of
a condition value; an FAO count, which specifies the number of FAO arguments
to come; and the FAO arguments themselves. (The FAO count is omitted in the
case of system and RMS messages.) The message text definition itself is actually
a SYS$FAO control string, which may contain embedded $FAO directives. The
OpenVMS System Services Reference Manual describes the Formatted ASCII
Output (SYS$FAO) system service in detail.

The Message utility is provided for compiling message sequences specific to your
application. When you have defined an exception condition and used the Message
utility to associate a message with that exception condition, your program can
call LIB$SIGNAL or LIB$STOP to signal the exception condition. You signal
a message that is defined in a message source file by calling LIB$SIGNAL or
LIB$STOP, as for any software-detected exception condition. Then the system

13–57

Condition-Handling Routines and Services
13.11 Displaying Messages

default condition handlers display your error message in the standard operating
system format.

To use the Message utility, follow these steps:

1. Create a source file that specifies the information used in messages, message
codes, and message symbols.

2. Use the MESSAGE command to compile this source file.

3. Link the resulting object module, either by itself or with another object
module containing a program.

4. Run your program so that the messages are accessed, either directly or
through the use of pointers.

See also the description of the Message utility in the OpenVMS Command
Definition, Librarian, and Message Utilities Manual.

13.11.3.1 Creating the Message Source File
A message source file contains definition statements and directives. The following
source message file defines the error messages generated by the sample INCOME
program:

INCMSG.MSG
.FACILITY INCOME, 1 /PREFIX=INCOME__

.SEVERITY WARNING
LINELOST "Statistics on last line lost due to Ctrl/Z"

.SEVERITY SEVERE
BADFIXVAL "Bad value on /FIX"
CTRLZ "Ctrl/Z entered on terminal"
FORIOERR "Fortran I/O error"
INSFIXVAL "Insufficient values on /FIX"
MAXSTATS "Maximum number of statistics already entered"
NOACTION "No action qualifier specified"
NOHOUSE "No such house number"
NOSTATS "No statistics to report"

.END

The default file type of a message source file is .MSG. For a complete description
of the Message utility, see the OpenVMS Command Definition, Librarian, and
Message Utilities Manual.

13.11.3.1.1 Specifying the Facility To specify the name and number of the
facility for which you are defining the error messages, use the .FACILITY
directive. For instance, the following .FACILITY directive specifies the facility
(program) INCOME and a facility number of 1:

.FACILITY INCOME, 1

In addition to identifying the program associated with the error messages, the
.FACILITY directive specifies the facility prefix that is added to each condition
name to create the symbolic name used to reference the message. By default,
the prefix is the facility name followed by an underscore. For example, a
condition name BADFIXVAL defined following the previous .FACILITY directive
is referenced as INCOME_BADFIXVAL. You can specify a prefix other than the
specified program name by specifying the /PREFIX qualifier of the .FACILITY
directive.

13–58

Condition-Handling Routines and Services
13.11 Displaying Messages

By convention, system-defined condition values are identified by the facility
name, followed by a dollar sign ($), an underscore (_), and the condition name.
User-defined condition values are identified by the facility name, followed by two
underscores (_ _), and the condition name. To include two underscores in the
symbolic name, use the /PREFIX qualifier to specify the prefix:

.FACILITY INCOME, 1 /PREFIX=INCOME__

A condition name BADFIXVAL defined following this .FACILITY directive is
referenced as INCOME_ _BADFIXVAL.

The facility number, which must be between 1 and 2047, is part of the condition
code that identifies the error message. To prevent different programs from
generating the same condition values, the facility number must be unique. A
good way to ensure uniqueness is to have the system manager keep a list of
programs and their facility numbers in a file.

All messages defined after a .FACILITY directive are associated with the specified
program. Specify either an .END directive or another .FACILITY directive to end
the list of messages for that program. Digital recommends that you have one
.FACILITY directive per message file.

13.11.3.1.2 Specifying the Severity Use the .SEVERITY directive and one of
the following keywords to specify the severity of one or more condition values:

Success
Informational
Warning
Error
Severe or fatal

All condition values defined after a .SEVERITY directive have the specified
severity (unless you use the /SEVERITY qualifier with the message definition
statement to change the severity of one particular condition code). Specify an
.END directive or another .SEVERITY directive to end the group of errors with
the specified severity. Note that when the .END directive is used to end the list
of messages for a .SEVERITY directive, it also ends the list of messages for the
previous .FACILITY directive. The following example defines one condition code
with a severity of warning and two condition values with a severity of severe.
The optional spacing between the lines and at the beginning of the lines is used
for clarity.

.SEVERITY WARNING
LINELOST "Statistics on last line lost due to Ctrl/Z"

.SEVERITY SEVERE
BADFIXVAL "Bad value on /FIX"
INSFIXVAL "Insufficient values on /FIX"

.END

13.11.3.1.3 Specifying Condition Names and Messages To define a condition
code and message, specify the condition name and the message text. The
condition name, when combined with the facility prefix, can contain up to 31
characters. The message text can be up to 255 characters but only one line
long. Use quotation marks (" ") or angle brackets (<>) to enclose the text of
the message. For example, the following line from INCMSG.MSG defines the
condition code INCOME_ _BADFIXVAL:

BADFIXVAL "Bad value on /FIX"

13–59

Condition-Handling Routines and Services
13.11 Displaying Messages

13.11.3.1.4 Specifying Variables in the Message Text To include variables in
the message text, specify formatted ASCII output (FAO) directives. For details,
see the description of the Message utility in the OpenVMS Command Definition,
Librarian, and Message Utilities Manual. Specify the /FAO_COUNT qualifier
after either the condition name or the message text to indicate the number of
FAO directives that you used. The following example includes an integer variable
in the message text:

NONUMBER <No such house number: !UL. Try again.>/FAO_COUNT=1

The FAO directive !UL converts a longword to decimal notation. To include a
character string variable in the message, you could use the FAO directive !AS, as
shown in the following example:

NOFILE <No such file: !AS. Try again.>/FAO_COUNT=1

If the message text contains FAO directives, you must specify the appropriate
variables when you signal the condition code (see Section 13.11.4).

13.11.3.1.5 Compiling and Linking the Messages Use the DCL command
MESSAGE to compile a message source file into an object module. The following
command compiles the message source file INCMSG.MSG into an object module
named INCMSG in the file INCMSG.OBJ:

$ MESSAGE INCMSG

To specify an object file name that is different from the source file name, use
the /OBJECT qualifier of the MESSAGE command. To specify an object module
name that is different from the source file name, use the .TITLE directive in the
message source file.

13.11.3.1.6 Linking the Message Object Module The message object module
must be linked with your program so the system can reference the messages. To
simplify linking a program with the message object module, include the message
object module in the program’s object library. For example, to include the message
module in INCOME’s object library, enter the following:

$ LIBRARY INCOME.OLB INCMSG.OBJ

13.11.3.1.7 Accessing the Message Object Module from Multiple Programs
Including the message module in the program’s object library does not allow other
programs-access to the module’s condition values and messages. To allow several
programs access to a message module, create a default message library as follows:

1. Create the message library—Create an object module library and enter all of
the message object modules into it.

2. Make the message library a default library—Equate the complete
file specification of the object module library with the logical name
LNK$LIBRARY. (If LNK$LIBRARY is already assigned a library name,
you can create LNK$LIBRARY_1, LNK$LIBRARY_2, and so on.) By default,
the linker searches any libraries equated with the LNK$LIBRARY logical
names.

The following example creates the message library MESSAGLIB.OLB, enters the
message object module INCMSG.OBJ into it, and makes MESSAGLIB.OLB a
default library:

$ LIBRARY/CREATE MESSAGLIB
$ LIBRARY/INSERT MESSAGLIB INCMSG
$ DEFINE LNK$LIBRARY SYS$DISK:MESSAGLIB

13–60

Condition-Handling Routines and Services
13.11 Displaying Messages

13.11.3.1.8 Modifying a Message Source Module To modify a message in the
message library, modify and recompile the message source file, and then replace
the module in the object module library. To access the modified messages, a
program must relink against the object module library (or the message object
module). The following command enters the module INCMSG into the message
library MESSAGLIB; if MESSAGLIB already contains an INCMSG module, it is
replaced:

$ LIBRARY/REPLACE MESSAGLIB INCMSG

13.11.3.1.9 Accessing Modified Messages Without Relinking To allow a
program to access modified messages without relinking, create a message pointer
file. Message pointer files are useful if you need to provide messages in more
than one language or frequently change the text of existing messages. See
the description of the Message utility in the OpenVMS Command Definition,
Librarian, and Message Utilities Manual.

13.11.4 Signaling User-Defined Values and Messages with Global and Local
Symbols

To signal a user-defined condition value, you use the symbol formed by the
facility prefix and the condition name (for example, INCOME_ _BADFIXVAL).
Typically, you reference a condition value as a global symbol; however, you
can create an include file (similar to the modules in the system library
SYS$LIBRARY:FORSTSDEF.TLB) to define the condition values as local symbols.
If the message text contains FAO arguments, you must specify parameters for
those arguments when you signal the condition value.

13.11.4.1 Signaling with Global Symbols
To signal a user-defined condition value using a global symbol, declare the
appropriate condition value in the appropriate section of the program unit,
and then invoke the RTL routine LIB$SIGNAL to signal the condition value. The
following statements signal the condition value INCOME_ _NOHOUSE when the
value of FIX_HOUSE_NO is less than 1 or greater than the value of TOTAL_
HOUSES:

EXTERNAL INCOME__NOHOUSE
.
.
.

IF ((FIX_HOUSE_NO .GT. TOTAL_HOUSES) .OR.
2 FIX_HOUSE_NO .LT. 1)) THEN
CALL LIB$SIGNAL (%VAL (%LOC (INCOME__NOHOUSE)))
END IF

13.11.4.2 Signaling with Local Symbols
To signal a user-defined condition value using a local symbol, you must first
create a file containing PARAMETER statements that equate each condition
value with its user-defined condition value. To create such a file, do the following:

1. Create a listing file—Compile the message source file with the /LIST qualifier
to the MESSAGE command. The /LIST qualifier produces a listing file with
the same name as the source file and a file type of .LIS. The following line
might appear in a listing file:

08018020 11 NOHOUSE "No such house number"

13–61

Condition-Handling Routines and Services
13.11 Displaying Messages

The hexadecimal value in the left column is the value of the condition value,
the decimal number in the second column is the line number, the text in the
third column is the condition name, and the text in quotation marks is the
message text.

2. Edit the listing file—For each condition name, define the matching condition
value as a longword variable, and use a language statement to equate the
condition value to its hexadecimal condition value.

Assuming a prefix of INCOME_ _, editing the previous statement results in
the following statements:

INTEGER INCOME__NOHOUSE
PARAMETER (INCOME__NOHOUSE = ’08018020’X)

3. Rename the listing file—Name the edited listing file using the same name as
the source file and a file type for your programming language (for example,
.FOR for DEC Fortran).

In the definition section of your program unit, declare the local symbol definitions
by naming your edited listing file in an INCLUDE statement. (You must still link
the message object file with your program.) Invoke the RTL routine LIB$SIGNAL
to signal the condition code. The following statements signal the condition code
INCOME_ _NOHOUSE when the value of FIX_HOUSE_NO is less than 1 or
greater than the value of TOTAL_HOUSES:

! Specify the full file specification
INCLUDE ’$DISK1:[DEV.INCOME]INCMSG.FOR’

.

.

.
IF ((FIX_HOUSE_NO .GT. TOTAL_HOUSES) .OR.
2 FIX_HOUSE_NO .LT. 1)) THEN
CALL LIB$SIGNAL (%VAL (INCOME__NOHOUSE))

END IF

13.11.4.3 Specifying FAO Parameters
If the message contains FAO arguments, you must specify the number of FAO
arguments as the second argument of LIB$SIGNAL, the first FAO argument as
the third argument, the second FAO argument as the fourth argument, and so on.
Pass string FAO arguments by descriptor (the default). For example, to signal
the condition code INCOME_ _NONUMBER, where FIX_HOUSE_NO contains
the erroneous house number, specify the following:

EXTERNAL INCOME__NONUMBER
.
.
.

IF ((FIX_HOUSE_NO .GT. TOTAL_HOUSES) .OR.
2 FIX_HOUSE_NO .LT. 1)) THEN
CALL LIB$SIGNAL (%VAL (%LOC (INCOME__NONUMBER)),

2 %VAL (1),
2 %VAL (FIX_HOUSE_NO))
END IF

13–62

Condition-Handling Routines and Services
13.11 Displaying Messages

To signal the condition code NOFILE, where FILE_NAME contains the invalid
file specification, specify the following:

EXTERNAL INCOME__NOFILE
.
.
.

IF (IOSTAT .EQ. FOR$IOS_FILNOTFOU)
2 CALL LIB$SIGNAL (%VAL (%LOC (INCOME__NOFILE)),
2 %VAL (1),
2 FILE_NAME)

Both of the previous examples use global symbols for the condition values.
Alternatively, you could use local symbols, as described in Section 13.11.4.2.

13.12 Writing a Condition Handler
When you write a condition handler into your program, the process involves one
or more of the following actions:

• Establish the handler in the stack frame of your routine.

• Write a condition-handling routine, or choose one of the run-time library
routines that handles exception conditions.

• Include a call to a run-time library signal-generating routine.

• Use the Message utility to define your own exception conditions.

• Include a call to the SYS$PUTMSG system service to modify or log the
system error message.

You can write a condition handler to take action when an exception condition is
signaled. When the exception condition occurs, the OpenVMS Condition Handling
facility sets up the signal argument vector and mechanism argument vector and
begins the search for a condition handler. Therefore, your condition-handling
routine must declare variables to contain the two argument vectors. Further, the
handler must indicate the action to be taken when it returns to the OpenVMS
Condition Handling facility. The handler uses its function value to do this. Thus,
the calling sequence for your condition handler has the following format:

handler signal-args ,mechanism-args

signal-args
The address of a vector of longwords indicating the nature of the condition. See
Section 13.8.2 for a detailed description.

mechanism-args
The address of a vector of longwords that indicates the state of the process at the
time of the signal. See Section 13.8.3 and Section 13.8.4 for more details.

result
A condition value. Success (bit <0> = 1) causes execution to continue at the
PC; failure (bit <0> = 0) causes the condition to be resignaled. That is, the
system resumes the search for other handlers. If the handler calls the Unwind
(SYS$UNWIND) system service, the return value is ignored and the stack is
unwound. (See Section 13.12.3.)

Handlers can modify the contents of either the signal-args vector or the
mechanism-args vector.

13–63

Condition-Handling Routines and Services
13.12 Writing a Condition Handler

In order to protect compiler optimization, a condition handler and any routines
that it calls can reference only arguments that are explicitly passed to handlers.
They cannot reference COMMON or other external storage, and they cannot
reference local storage in the routine that established the handler unless the
compiler considers the storage to be volatile. Compilers that do not adhere to this
rule must ensure that any variables referenced by the handler are always kept in
memory, not in a register.

As mentioned previously, a condition handler can take one of three actions:

• Continue execution

• Resignal the exception condition and resume the stack scanning operation

• Call SYS$UNWIND to unwind the call stack to an earlier frame

The sections that follow describe how to write condition handlers to perform these
three operations.

13.12.1 Continuing Execution
To continue execution from the instruction following the signal, with no error
messages or traceback, the handler returns with the function value SS$_
CONTINUE (bit <0> = 1). If, however, the condition was signaled with a call
to LIB$STOP, the SS$_CONTINUE return status causes an error message
(Attempt To Continue From Stop), and the image exits. The only way to continue
from a call to LIB$STOP is for the condition handler to request a stack unwind.

If execution is to continue after a hardware fault (such as a reserved operand
fault), the condition handler must correct the cause of the condition before
returning the function value SS$_CONTINUE or requesting a stack unwind.
Otherwise, the instruction that caused the fault executed again.

VAX Note

On most VAX systems, hardware floating-point traps have been changed
to hardware faults. If you still want floating-point exception conditions
to be treated as traps, use LIB$SIM_TRAP to simulate the action of
floating-point traps. ♦

Alpha On Alpha systems, LIB$SIM_TRAP is not supported. Table 13–4 lists the run-
time library routines that are supported and not supported on Alpha systems. ♦

13.12.2 Resignaling
Condition handlers check for specific errors. If the signaled condition is not one
of the expected errors, the handler resignals. That is, it returns control to the
OpenVMS Condition Handling facility with the function value SS$_RESIGNAL
(with bit <0> clear). To alter the severity of the signal, the handler modifies the
low-order 3 bits of the condition value and resignals.

For an example of resignaling, see Section 13.8.5.

13–64

Condition-Handling Routines and Services
13.12 Writing a Condition Handler

13.12.3 Unwinding the Call Stack
A condition handler can dismiss the signal by calling the system service
SYS$UNWIND. The stack unwind is initiated when a condition handler that
has called SYS$UNWIND returns to OpenVMS Condition Handling facility.
For an explanation of unwinding, see Section 13.10.1; for an example of using
SYS$UNWIND to return control to the program, see Section 13.12.4.5.

13.12.4 Example of Writing a Condition Handler
The operating system passes two arrays to a condition handler. Any condition
handler that you write should declare two dummy arguments as variable-length
arrays, as in the following:

INTEGER*4 FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

.

.

.

13.12.4.1 Signal Array
The first dummy argument, the signal array, describes the signaled condition
codes that indicate which error occurred and the state of the process when
the condition code was signaled. For the structure of the signal array, see
Section 13.8.2.

13.12.4.2 Mechanism Array
The second dummy argument, the mechanism array, describes the state of the
process when the condition code was signaled. Typically, a condition handler
references only the call depth and the saved function value. Currently, the
mechanism array contains exactly five elements; however, because its length is
subject to change, you should declare the dummy argument as a variable-length
array. For the structure of the mechanism array, see Section 13.8.3.

Usually you write a condition handler in anticipation of a particular set of
condition values. Because a handler is invoked in response to any signaled
condition code, begin your handler by comparing the condition code passed to
the handler (element 2 of the signal array) against the condition codes expected
by the handler. If the signaled condition code is not one of the expected codes,
resignal the condition code by equating the function value of the handler to the
global symbol SS$_RESIGNAL.

13.12.4.3 Comparing the Signaled Condition with an Expected Condition
You can use the RTL routine LIB$MATCH_COND to compare the signaled
condition code to a list of expected condition values. The first argument passed
to LIB$MATCH_COND is the signaled condition code, the second element of the
signal array. The rest of the arguments passed to LIB$MATCH_COND are the
expected condition values. LIB$MATCH_COND compares the first argument
with each of the remaining arguments and returns the number of the argument
that matches the first one. For example, if the second argument matches the first
argument, LIB$MATCH_COND returns a value of 1. If the first argument does
not match any of the other arguments, LIB$MATCH_COND returns 0.

13–65

Condition-Handling Routines and Services
13.12 Writing a Condition Handler

The following condition handler determines whether the signaled condition code
is one of four DEC Fortran I/O errors. If it is not, the condition handler resignals
the condition code. Note that, when a DEC Fortran I/O error is signaled, the
signal array describes operating system’s condition code, not the DEC Fortran
error code.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE ’($FORDEF)’ ! Declare the FOR$_ symbols
INCLUDE ’($SSDEF)’ ! Declare the SS$_ symbols
INTEGER INDEX
! Declare procedures
INTEGER LIB$MATCH_COND
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 FOR$_FILNOTFOU,
2 FOR$_OPEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)
IF (INDEX .EQ. 0) THEN
! Not an expected condition code, resignal
HANDLER = SS$_RESIGNAL

ELSE IF (INDEX .GT. 0) THEN
! Expected condition code, handle it
.
.
.

END IF

END

13.12.4.4 Exiting from the Condition Handler
You can exit from a condition handler in one of three ways:

• Continue execution of the program—If you equate the function value of the
condition handler to SS$_CONTINUE, the condition handler returns control
to the program at the statement that signaled the condition (fault) or the
statement following the one that signaled the condition (trap). The RTL
routine LIB$SIGNAL generates a trap so that control is returned to the
statement following the call to LIB$SIGNAL.

In the following example, if the condition code is one of the expected codes,
the condition handler displays a message and then returns the value SS$_
CONTINUE to resume program execution. (Section 13.11 describes how to
display a message.)

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE ’($FORDEF)’
INCLUDE ’($SSDEF)’
INTEGER*4 INDEX,
2 LIB$MATCH_COND
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 FOR$_FILNOTFOU,
2 FOR$_OPEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)

13–66

Condition-Handling Routines and Services
13.12 Writing a Condition Handler

IF (INDEX .GT. 0) THEN
.
.
.

! Display the message
.
.
.
HANDLER = SS$_CONTINUE

END IF

• Resignal the condition code—If you equate the function value of the condition
handler to SS$_RESIGNAL or do not specify a function value (function
value of 0), the handler allows the operating system to execute the next
condition handler. If you modify the signal array or mechanism array before
resignaling, the modified arrays are passed to the next condition handler.

In the following example, if the condition code is not one of the expected
codes, the handler resignals:

INDEX = LIB$MATCH_COND (SIGARGS(2),
2 FOR$_FILNOTFOU,
2 FOR$_OPEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)

IF (INDEX .EQ. 0) THEN
HANDLER = SS$_RESIGNAL

END IF

• Continue execution of the program at a previous location—If you call the
SYS$UNWIND system service, the condition handler can return control to
any point in the program unit that incurred the exception, the program unit
that invoked the program unit that incurred the exception, and so on back to
the program unit that established the condition handler.

13.12.4.5 Returning Control to the Program
Your handlers should return control either to the program unit that established
the handler or to the program unit that invoked the program unit that established
the handler.

To return control to the program unit that established the handler, invoke
SYS$UNWIND and pass the call depth (third element of the mechanism array)
as the first argument with no second argument.

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

.

.

.
CALL SYS$UNWIND (MECHARGS(3),)

To return control to the caller of the program unit that established the handler,
invoke SYS$UNWIND without passing any arguments.

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)

.

.

.
CALL SYS$UNWIND (,)

13–67

Condition-Handling Routines and Services
13.12 Writing a Condition Handler

The first argument SYS$UNWIND specifies the number of program units to
unwind (remove from the stack). If you specify this argument at all, you should
do so as shown in the previous example. (MECHARGS(3) contains the number of
program units that must be unwound to reach the program unit that established
the handler that invoked SYS$UNWIND.) The second argument SYS$UNWIND
contains the location of the next statement to be executed. Typically, you omit
the second argument to indicate that the program should resume execution at
the statement following the last statement executed in the program unit that is
regaining control.

Each time SYS$UNWIND removes a program unit from the stack, it invokes
any condition handler established by that program unit and passes the condition
handler the SS$_UNWIND condition code. To prevent the condition handler from
resignaling the SS$_UNWIND condition code (and so complicating the unwind
operation), include SS$_UNWIND as an expected condition code when you invoke
LIB$MATCH_COND. When the condition code is SS$_UNWIND, your condition
handler might perform necessary cleanup operations or do nothing.

In the following example, if the condition code is SS$_UNWIND, no action is
performed. If the condition code is another of the expected codes, the handler
displays the message and then returns control to the program unit that called the
program unit that established the condition handler.

INTEGER FUNCTION HANDLER (SIGARGS,
2 MECHARGS)

! Declare dummy arguments
INTEGER*4 SIGARGS(*),
2 MECHARGS(*)
INCLUDE ’($FORDEF)’
INCLUDE ’($SSDEF)’
INTEGER*4 INDEX,
2 LIB$MATCH_COND
INDEX = LIB$MATCH_COND (SIGARGS(2),
2 SS$_UNWIND,
2 FOR$_FILNOTFOU,
2 FOR$_OPEFAI,
2 FOR$_NO_SUCDEV,
2 FOR$_FILNAMSPE)
IF (INDEX .EQ. 0) THEN
! Unexpected condition, resignal
HANDLER = SS$_RESIGNAL

ELSE IF (INDEX .EQ. 1) THEN
! Unwinding, do nothing

ELSE IF (INDEX .GT. 1) THEN
.
.
.

! Display the message
.
.
.
CALL SYS$UNWIND (,)

END IF

13–68

Condition-Handling Routines and Services
13.12 Writing a Condition Handler

13.12.5 Example of Condition-Handling Routines
The following example shows two procedures, A and B, that have declared
condition handlers. The notes describe the sequence of events that would occur if
a call to a system service failed during the execution of procedure B.

/* PGMA */

#include <stdio.h>
#include <ssdef.h>

unsigned int sigargs[],mechargs[];

main() {
unsigned int status, vector=0, old_handler;

old_handler = LIB$ESTABLISH(handlera); 1

status = pgmb (arglst); 2
.
.
.

}

/* PGMB */

#include <stdio.h>
#include <ssdef.h>

main() {

old_handler = LIB$ESTABLISH(handlerb); 3
.
.
.

} 4

/* Handler A */ 5

int handlera(sigargs, mechargs) {

/* Compare condition value signalled with expected value */
6

if (sigargs[2] != SS$_SSFAIL)
goto no_fail;

.

.

.
/* Signal to continue */

return SS$_CONTINUE;

/* Signal to resignal */
no_fail:

return SS$_RESIGNAL;

}

/* Handler B */

int handlerb(sigargs, mechargs) {

/* Compare condition value signalled with expected value */
if (sigargs[2] != SS$_BREAK) 7

goto no_fail;
.
.
.

return SS$_CONTINUE;

13–69

Condition-Handling Routines and Services
13.12 Writing a Condition Handler

no_fail:
return SS$_RESIGNAL;

}

1 Procedure A executes and establishes condition handler HANDLERA.
HANDLERA is set up to respond to exceptions caused by failures in system
service calls.

2 During its execution, procedure A calls procedure B.

3 Procedure B establishes condition handler HANDLERB. HANDLERB is set
up to respond to breakpoint faults.

4 While procedure B is executing, an exception occurs caused by a system
service failure.

5 The dispatcher returns control to procedure B, and execution of procedure B
resumes at the instruction following the system service failure.

6 The exception dispatcher resumes its search for a condition handler and calls
HANDLERA.

7 HANDLERA handles the system service failure exception, corrects the
condition, places the return value SS$_CONTINUE in R0, and returns control
to the exception dispatcher.

13.13 Debugging a Condition Handler
You can debug a condition handler as you would any subprogram, except that
you cannot use the DEBUG command STEP/INTO to enter a condition handler.
You must set a breakpoint in the handler and wait for the debugger to invoke the
handler.

Typically, to trace execution of a condition handler, you set breakpoints at the
statement in your program that should signal the condition code, at the statement
following the one that should signal, and at the first executable statement in your
condition handler.

13.14 Run-Time Library Condition-Handling Routines
The run-time library provides several routines that can be established as
condition handlers or called from a condition handler to handle signaled exception
conditions. This section shows how to use these routines.

13.14.1 Converting a Floating-Point Fault to a Floating-Point Trap (VAX Only)

VAX On VAX systems, a trap is an exception condition that is signaled after the
instruction that caused it has finished executing. A fault is an exception condition
that is signaled during the execution of the instruction. When a trap is signaled,
the program counter (PC) in the signal argument vector points to the next
instruction after the one that caused the exception condition. When a fault is
signaled, the PC in the signal argument vector points to the instruction that
caused the exception condition. See the VAX Architecture Reference Manual for
more information about faults and traps.

13–70

Condition-Handling Routines and Services
13.14 Run-Time Library Condition-Handling Routines

LIB$SIM_TRAP can be established as a condition handler or be called from
a condition handler to convert a floating-point fault to a floating-point trap.
After LIB$SIM_TRAP is called, the PC points to the instruction after the
one that caused the exception condition. Thus, your program can continue
execution without fixing up the original condition. LIB$SIM_TRAP intercepts
only floating-point overflow, floating-point underflow, and divide-by-zero faults. ♦

13.14.2 Changing a Signal to a Return Status
When it is preferable to detect errors by signaling but the calling routine expects
a returned status, LIB$SIG_TO_RET can be used by the routine that signals.
For instance, if you expect a particular condition code to be signaled, you can
prevent the operating system from invoking the default condition handler by
establishing a different condition handler. LIB$SIG_TO_RET is a condition
handler that converts any signaled condition to a return status. The status is
returned to the caller of the routine that established LIB$SIG_TO_RET. You may
establish LIB$SIG_TO_RET as a condition handler by specifying it in a call to
LIB$ESTABLISH.

Alpha On Alpha systems, LIB$ESTABLISH is not supported, though high-level
languages may support it for compatibility. ♦

LIB$SIG_TO_RET can also be called from another condition handler. If
LIB$SIG_TO_RET is called from a condition handler, the signaled condition
is returned as a function value to the caller of the establisher of that handler
when the handler returns to the OpenVMS Condition Handling facility. When a
signaled exception condition occurs, LIB$SIG_TO_RET routine does the following:

• Places the signaled condition value in the image of R0 that is saved as part of
the mechanism argument vector.

• Calls the Unwind (SYS$UNWIND) system service with the default
arguments. After returning from LIB$SIG_TO_RET (when it is established
as a condition handler) or after returning from the condition handler that
called LIB$SIG_TO_RET (when LIB$SIG_TO_RET is called from a condition
handler), the stack unwinds to the caller of the routine that established the
handler.

Your calling routine can now test R0, as if the called routine had returned a
status, and specify an error recovery action.

The following paragraphs describe how to establish and use the system-defined
condition handler LIB$SIG_TO_RET, which changes a signal to a return status
that your program can examine.

To change a signal to a return status, you must put any code that might signal
a condition code into a function where the function value is a return status. The
function containing the code must perform the following operations:

• Declare LIB$SIG_TO_RET—Declare the condition handler
LIB$SIG_TO_RET.

• Establish LIB$SIG_TO_RET—Invoke the run-time library procedure
LIB$ESTABLISH to establish a condition handler for the current program
unit. Specify the name of the condition handler LIB$SIG_TO_RET as the
only argument.

• Initialize the function value—Initialize the function value to
SS$_NORMAL so that, if no condition code is signaled, the function returns a
success status to the invoking program unit.

13–71

Condition-Handling Routines and Services
13.14 Run-Time Library Condition-Handling Routines

• Declare necessary dummy arguments—If any statement that might signal
a condition code is a subprogram that requires dummy arguments, pass the
necessary arguments to the function. In the function, declare each dummy
argument exactly as it is declared in the subprogram that requires it and
specify the dummy arguments in the subprogram invocation.

If the program unit GET_1_STAT in the following function signals a condition
code, LIB$SIG_TO_RET changes the signal to the return status of the
INTERCEPT_SIGNAL function and returns control to the program unit that
invoked INTERCEPT_SIGNAL. (If GET_1_STAT has a condition handler
established, the operating system invokes that handler before invoking LIB$SIG_
TO_RET.)

FUNCTION INTERCEPT_SIGNAL (STAT,
2 ROW,
2 COLUMN)

! Dummy arguments for GET_1_STAT
INTEGER STAT,
2 ROW,
2 COLUMN
! Declare SS$_NORMAL
INCLUDE ’($SSDEF)’
! Declare condition handler
EXTERNAL LIB$SIG_TO_RET
! Declare user routine
INTEGER GET_1_STAT
! Establish LIB$SIG_TO_RET
CALL LIB$ESTABLISH (LIB$SIG_TO_RET)
! Set return status to success
INTERCEPT_SIGNAL = SS$_NORMAL
! Statements and/or subprograms that
! signal expected error condition codes
STAT = GET_1_STAT (ROW,
2 COLUMN)

END

When the program unit that invoked INTERCEPT_SIGNAL regains control, it
should check the return status (as shown in Section 13.5.1) to determine which
condition code, if any, was signaled during execution of INTERCEPT_SIGNAL.

13.14.3 Changing a Signal to a Stop
LIB$SIG_TO_STOP causes a signal to appear as though it had been signaled by
a call to LIB$STOP.

LIB$SIG_TO_STOP can be enabled as a condition handler for a routine or be
called from a condition handler. When a signal is generated by LIB$STOP, the
severity code is forced to severe, and control cannot return to the routine that
signaled the condition. See Section 13.12.1 for a description of continuing normal
execution after a signal.

13.14.4 Matching Condition Values
LIB$MATCH_COND checks for a match between two condition values to allow
a program to branch according to the condition found. If no match is found, the
routine returns zero. The routine matches only the condition identification field
(STS$V_COND_ID) of the condition value; it ignores the control bits and the
severity field. If the facility-specific bit (STS$V_FAC_SP = bit <15>) is clear in
cond-val (meaning that the condition value is systemwide), LIB$MATCH_COND
ignores the facility code field (STS$V_FAC_NO = bits <27:17>) and compares only
the STS$V_MSG_ID fields (bits <15:3>).

13–72

Condition-Handling Routines and Services
13.14 Run-Time Library Condition-Handling Routines

13.14.5 Correcting a Reserved Operand Condition (VAX Only)

VAX On VAX systems, after a signal of SS$_ROPRAND during a floating-point
instruction, LIB$FIXUP_FLT finds the operand and changes it from –0.0 to a new
value or to +0.0. ♦

13.14.6 Decoding the Instruction That Generated a Fault (VAX Only)

VAX On VAX systems, LIB$DECODE_FAULT locates the operands for an instruction
that caused a fault and passes the information to a user action routine. When
called from a condition handler, LIB$DECODE_FAULT locates all the operands
and calls an action routine that you supply. Your action routine performs
the steps necessary to handle the exception condition and returns control to
LIB$DECODE_FAULT. LIB$DECODE_FAULT then restores the operands and
the environment, as modified by the action routine, and continues execution of
the instruction. ♦

13.15 Exit Handlers
When an image exits, the operating system performs the following operations:

• Invokes any user-defined exit handlers.

• Invokes the system-defined default exit handler, which closes any files that
were left open by the program or by user-defined exit handlers.

• Executes a number of cleanup operations collectively known as image
rundown. The following is a list of some of these cleanup operations:

Canceling outstanding ASTs and timer requests.

Deassigning any channel assigned by your program and not already
deassigned by your program or the system.

Deallocating devices allocated by the program.

Dissociating common event flag clusters associated with the program.

Deleting user-mode logical names created by the program. (Unless you
specify otherwise, logical names created by SYS$CRELNM are user-mode
logical names.)

Restoring internal storage (for example, stacks or mapped sections) to its
original state.

If any exit handler exits using the EXIT (SYS$EXIT) system service, none of
the remaining handlers is executed. In addition, if an image is aborted by the
DCL command STOP (the user presses Ctrl/Y and then enters STOP), the system
performs image rundown and does not invoke any exit handlers. Like the DCL
STOP/ID, SYS$DELPRC bypasses all exit handlers, except the rundown specified
in the privileged library vector (PLV) privileged shareable images, and deletes
the process. (The DCL command EXIT invokes the exit handlers before running
down the image.)

A hang-up to a terminal line causes DCL to delete the master process’s
subprocesses. However, if the subprocesses’s exit handler is in a main image
installed with privilege, then that exit handler is run even with the DCL
command STOP. Also, if the subprocess was spawned NOWAIT, then the
spawning process’s exit handler is run as well.

13–73

Condition-Handling Routines and Services
13.15 Exit Handlers

Use exit handlers to perform any cleanup that your program requires in addition
to the normal rundown operations performed by the operating system. In
particular, if your program must perform some final action regardless of whether
it exits normally or is aborted, you should write and establish an exit handler to
perform that action.

13.15.1 Establishing an Exit Handler
To establish an exit handler, use the SYS$DCLEXH system service. The
SYS$DCLEXH system service requires one argument—a variable-length data
structure that describes the exit handler. Figure 13–16 illustrates the structure
of an exit handler.

Figure 13–16 Structure of an Exit Handler

Returned; Address of Next Exit Handler

Address of Exit Handler

ZK−2053−GE

Exit Status of the Image

31 8 7

0 n

as the first argument.
the exit handler; the exit status counts
The number of arguments being passed ton =

0

Other Arguments Being Passed

The first longword of the structure contains the address of the next handler.
The operating system uses this argument to keep track of the established exit
handlers; do not modify this value. The second longword of the structure contains
the address of the exit handler being established. The low-order byte of the third
longword contains the number of arguments to be passed to the exit handler.
Each of the remaining longwords contains the address of an argument.

The first argument passed to an exit handler is an integer value containing the
final status of the exiting program. The status argument is mandatory. However,
do not supply the final status value; when the operating system invokes an exit
handler, it passes the handler the final status value of the exiting program.

To pass an argument with a numeric data type, use programming language
statements to assign the address of a numeric variable to one of the longwords in
the exit-handler data structure. To pass an argument with a character data type,
create a descriptor of the following form:

13–74

Condition-Handling Routines and Services
13.15 Exit Handlers

31

ZK−2054−GE

Address

Number of Characters

0

Use the language statements to assign the address of the descriptor to one of the
longwords in the exit-handler data structure.

The following program segment establishes an exit handler with two arguments,
the mandatory status argument and a character argument:

.

.

.
! Arguments for exit handler
INTEGER EXIT_STATUS ! Status
CHARACTER*12 STRING ! String
STRUCTURE /DESCRIPTOR/
INTEGER SIZE,

2 ADDRESS
END STRUCTURE
RECORD /DESCRIPTOR/ EXIT_STRING
! Setup for exit handler
STRUCTURE /EXIT_DESCRIPTOR/
INTEGER LINK,
2 ADDR,
2 ARGS /2/,
2 STATUS_ADDR,
2 STRING_ADDR
END STRUCTURE
RECORD /EXIT_DESCRIPTOR/ HANDLER
! Exit handler
EXTERNAL EXIT_HANDLER

.

.

.
! Set up descriptor
EXIT_STRING.SIZE = 12 ! Pass entire string
EXIT_STRING.ADDRESS = %LOC (STRING)
! Enter the handler and argument addresses
! into the exit handler description
HANDLER.ADDR = %LOC(EXIT_HANDLER)
HANDLER.STATUS_ADDR = %LOC(EXIT_STATUS)
HANDLER.STRING_ADDR = %LOC(EXIT_STRING)
! Establish the exit handler
CALL SYS$DCLEXH (HANDLER)

.

.

.

An exit handler can be established at any time during your program and remains
in effect until it is canceled (with SYS$CANEXH) or executed. If you establish
more than one handler, the handlers are executed in reverse order: the handler
established last is executed first; the handler established first is executed last.

13–75

Condition-Handling Routines and Services
13.15 Exit Handlers

13.15.2 Writing an Exit Handler
Write an exit handler as a subroutine, because no function value can be returned.
The dummy arguments of the exit subroutine should agree in number, order, and
data type with the arguments you specified in the call to SYS$DCLEXH.

In the following example, assume that two or more programs are cooperating
with each other. To keep track of which programs are executing, each has been
assigned a common event flag (the common event flag cluster is named ALIVE).
When a program begins, it sets its flag; when the program terminates, it clears
its flag. Because it is important that each program clear its flag before exiting,
you create an exit handler to perform the action. The exit handler accepts two
arguments, the final status of the program and the number of the event flag
to be cleared. In this example, since the cleanup operation is to be performed
regardless of whether the program completes successfully, the final status is not
examined in the exit routine. (This subroutine would not be used with the exit
handler declaration in the previous example.)

CLEAR_FLAG.FOR
SUBROUTINE CLEAR_FLAG (EXIT_STATUS,
2 FLAG)
! Exit handler clears the event flag

! Declare dummy argument
INTEGER EXIT_STATUS,
2 FLAG
! Declare status variable and system routine
INTEGER STATUS,
2 SYS$ASCEFC,
2 SYS$CLREF
! Associate with the common event flag
! cluster and clear the flag
STATUS = SYS$ASCEFC (%VAL(FLAG),
2 ’ALIVE’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

END

If for any reason you must perform terminal I/O from an exit handler, use
appropriate RTL routines. Trying to access the terminal from an exit handler
using language I/O statements may cause a redundant I/O error.

13.15.3 Debugging an Exit Handler
To debug an exit handler, you must set a breakpoint in the handler and wait
for the operating system to invoke that handler; you cannot use the DEBUG
command STEP/INTO to enter an exit handler. In addition, when the debugger
is invoked, it establishes an exit handler that exits using the SYS$EXIT system
service. If you invoke the debugger when you invoke your image, the debugger’s
exit handler does not affect your program’s handlers because the debugger’s
handler is established first and so executes last. However, if you invoke the
debugger after your program begins executing (the user presses Ctrl/Y and then
types DEBUG), the debugger’s handler may affect the execution of your program’s
exit handlers, because one or more of your handlers may have been established
before the debugger’s handler and so is not executed.

13–76

Condition-Handling Routines and Services
13.15 Exit Handlers

13.15.4 Example of an Exit Handler
As in the example in Section 13.15.2, write the exit handler as a subroutine
because no function value can be returned. The dummy arguments of the exit
subroutine should agree in number, order, and data type with the arguments you
specify in the call to SYS$DCLEXH.

In the following example, assume that two or more programs are cooperating. To
keep track of which programs are executing, each has been assigned a common
event flag (the common event flag cluster is named ALIVE). When a program
begins, it sets its flag; when the program terminates, it clears its flag. Because
each program must clear its flag before exiting, you create an exit handler to
perform the action. The exit handler accepts two arguments: the final status of
the program and the number of the event flag to be cleared.

In the following example, because the cleanup operation is to be performed
regardless of whether the program completes successfully, the final status is not
examined in the exit routine.

! Arguments for exit handler
INTEGER*4 EXIT_STATUS ! Status
INTEGER*4 FLAG /64/
! Setup for exit handler
STRUCTURE /EXIT_DESCRIPTOR/
INTEGER LINK,
2 ADDR,
2 ARGS /2/,
2 STATUS_ADDR,
2 FLAG_ADDR
END STRUCTURE
RECORD /EXIT_DESCRIPTOR/ HANDLER

! Exit handler
EXTERNAL EXIT_HANDLER

INTEGER*4 STATUS,
2 SYS$ASCEFC,
2 SYS$SETEF

! Associate with the common event flag
! cluster and set the flag.
STATUS = SYS$ASCEFC (%VAL(FLAG),
2 ’ALIVE’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))
! Do not exit until cooperating program has a chance to
! associate with the common event flag cluster.

! Enter the handler and argument addresses
! into the exit handler description.
HANDLER.ADDR = %LOC(EXIT_HANDLER)
HANDLER.STATUS_ADDR = %LOC(EXIT_STATUS)
HANDLER.FLAG_ADDR = %LOC(FLAG)
! Establish the exit handler.
CALL SYS$DCLEXH (HANDLER)

! Continue with program
.
.
.

END

! Exit Subroutine

13–77

Condition-Handling Routines and Services
13.15 Exit Handlers

SUBROUTINE CLEAR_FLAG (EXIT_STATUS,
2 FLAG)
! Exit handler clears the event flag

! Declare dummy argument
INTEGER EXIT_STATUS,
2 FLAG

! Declare status variable and system routine
INTEGER STATUS,
2 SYS$ASCEFC,
2 SYS$CLREF

! Associate with the common event flag
! cluster and clear the flag
STATUS = SYS$ASCEFC (%VAL(FLAG),
2 ’ALIVE’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

13–78

14
Synchronizing Data Access and Program

Operations

This chapter describes the operating system’s synchronization features. It focuses
on how the operating system synchronizes the sequencing of events to perform
memory operations. Memory access synchronization techniques are based on
synchronization techniques that other types of storage use, whether to share
hardware resources or data in files.

This chapter contains the following sections:

Section 14.1 describes synchronization, execution of threads, and atomicity.

Section 14.2 describes alignment, granularity, ordering of read and write
operations, and performing memory read and write operations on VAX and Alpha
systems in uniprocessor and multiprocessor environments.

Section 14.3 describes how to perform memory read-modify-write operations on
VAX and Alpha systems in uniprocessor and multiprocessor environments.

Section 14.4 describes hardware-level synchronization methods, such as interrupt
priority level, load-locked/store-conditional and interlocked instructions, memory
barriers, and PALcode routines.

Section 14.5 describes software-level synchronization methods, such as process-
private synchronization techniques, process priority, and spin locks. It also
describes how to write applications for a multiprocessor environment using
higher-level synchronization methods and how to write to global sections.

Section 14.6 describes how to use local and common event flags for
synchronization.

Section 14.7 describes how to use the PPL$ routines for synchronization in a
multiprocessor configuration.

Section 14.8 describes how to use SYS$SYNCH system service for
synchronization.

14.1 Overview of Synchronization
Software synchronization refers to the coordination of events in such a way that
only one event happens at a time. This kind of synchronization is a serialization
or sequencing of events. Serialized events are assigned an order and processed
one at a time in that order. While a serialized event is being processed, no other
event in the series is allowed to disrupt it.

By imposing order on events, synchronization allows reading and writing of
several data items indivisibly, or atomically, in order to obtain a consistent set of
data. For example, all of process A’s writes to shared data must happen before
or after process B’s writes or reads, but not during process B’s writes or reads.
In this case, all of process A’s writes must happen indivisibly for the operation to

14–1

Synchronizing Data Access and Program Operations
14.1 Overview of Synchronization

be correct. This includes process A’s updates—reading of a data item, modifying
it, and writing it back (read-modify-write sequence). Other synchronization
techniques are used to ensure the completion of an asynchronous system service
before the caller tries to use the results of the service.

14.1.1 Threads of Execution
Code threads that can execute within a process include the following:

• Mainline code in an image being executed by a kernel thread, or multiple
threads

• Asynchronous system traps (ASTs) that interrupt the image

• Condition handlers established by the image and that run after exceptions
occur

• Inner access-mode threads of execution that run as a result of system service,
OpenVMS Record Management Services (RMS), and command language
interpreter (CLI) callback requests

Process-based threads of execution can share any data in the P0 and P1 address
space and must synchronize access to any data they share. A thread of execution
can incur an exception, which results in passing of control to a condition handler.
Alternatively, the thread can receive an AST, which results in passing of control
to an AST procedure. Further, an AST procedure can incur an exception, and a
condition handler’s execution can be interrupted by an AST delivery. If a thread
of execution requests a system service or RMS service, control passes to an inner
access-mode thread of execution. Code that executes in the inner mode can also
incur exceptions, receive ASTs, and request services.

Multiple processes, each with its own set of threads of execution, can execute
concurrently. Although each process has private P0 and P1 address space,
processes can share data in a global section mapped into each process’s address
spaces. You need to synchronize access to global section data because a thread
of execution accessing the data in one process can be rescheduled, allowing a
thread of execution in another process to access the same data before the first
process completes its work. Although processes access the same system address
space, the protection on system space pages usually prevents outer mode access.
However, process-based code threads running in inner access modes can access
data concurrently in system space and must synchronize access to it.

Interrupt service routines access only system space. They must synchronize
access to shared system space data among themselves and with process-based
threads of execution.

A CPU-based thread of execution and an I/O processor must synchronize access
to shared data structures, such as structures that contain descriptions of I/O
operations to be performed.

Multiprocessor execution increases synchronization requirements when the
threads that must synchronize can run concurrently on different processors.
Because a process executes on only one processor at a time, synchronization
of threads of execution within a process is unaffected by whether the process
runs on a uniprocessor or on a symmetric multiprocessing (SMP) system.
However, multiple processes can execute simultaneously on different processors.
Because of this, processes sharing data in a global section can require additional
synchronization for SMP system execution. Further, process-based inner mode
and interrupt-based threads can execute simultaneously on different processors

14–2

Synchronizing Data Access and Program Operations
14.1 Overview of Synchronization

and can require synchronization of access to system space beyond what is
sufficient on a uniprocessor.

14.1.2 Atomicity
Atomicity is a type of serialization that refers to the indivisibility of a small
number of actions, such as those occurring during the execution of a single
instruction or a small number of instructions. With more than one action, no
single action can occur by itself. If one action occurs, then all the actions occur.
Atomicity must be qualified by the viewpoint from which the actions appear
indivisible: an operation that is atomic for threads running on the same processor
can appear as multiple actions to a thread of execution running on a different
processor.

An atomic memory reference results in one indivisible read or write of a data
item in memory. No other access to any part of that data can occur during the
course of the atomic reference. Atomic memory references are important for
synchronizing access to a data item that is shared by multiple writers or by one
writer and multiple readers. References need not be atomic to a data item that is
not shared or to one that is shared but is only read.

14.2 Memory Read and Memory Write Operations
This section presents the important concepts of alignment and granularity and
how they affect the access of shared data on VAX and Alpha systems. It also
discusses the importance of the order of reads and writes are completed on VAX
and Alpha systems, and how VAX and Alpha system perform memory reads and
writes.

14.2.1 Alignment
The term alignment refers to the placement of a data item in memory. For a
data item to be naturally aligned, its lowest-addressed byte must reside at an
address that is a multiple of the size of the data item in bytes. For example,
a naturally aligned longword has an address that is a multiple of 4. The term
naturally aligned is usually shortened to ‘‘aligned.’’

VAX On VAX systems, a thread on a VAX uniprocessor or multiprocessor can read
and write aligned byte, word, and longword data atomically with respect to other
threads of execution accessing the same data. ♦

Alpha On Alpha systems, in contrast to the variety of memory accesses allowed on VAX
systems, an Alpha processor allows atomic access only to an aligned longword
or an aligned quadword. Reading or writing an aligned longword or quadword
of memory is atomic with respect to any other thread of execution on the same
processor or on other processors. ♦

14.2.2 Granularity
VAX and Alpha systems differ in granularity of data access. The phrase
granularity of data access refers to the size of neighboring units of memory
that can be written independently and atomically by multiple processors.
Regardless of the order in which the two units are written, the results must
be identical.

14–3

Synchronizing Data Access and Program Operations
14.2 Memory Read and Memory Write Operations

VAX VAX systems have byte granularity: individual adjacent or neighboring bytes
within the same longword can be written by multiple threads of execution on one
or more processors, as can aligned words and longwords.

VAX systems provide instructions that can manipulate byte-sized and aligned
word-sized memory data in a single, noninterruptible operation. On VAX
systems, a byte-sized or word-sized data item that is shared can be manipulated
individually. ♦

Alpha Alpha systems have longword and quadword granularity. That is, only adjacent
aligned longwords or quadwords can be written independently. Because Alpha
systems support only instructions that load or store longword-sized and
quadword-sized memory data, the manipulation of byte-sized and word-sized
data on Alpha systems requires that the entire longword or quadword that
contain the byte- or word-sized item to be manipulated. Thus, simply because of
its proximity to an explicitly shared data item, neighboring data might become
shared unintentionally. Manipulation of byte-sized and word-sized data on Alpha
systems requires multiple instructions that:

1. Fetch the longword or quadword that contains the byte or word

2. Mask the nontargeted bytes

3. Manipulate the target byte or word

4. Store the entire longword or quadword

Because this sequence is interruptible, operations on byte and word data are not
atomic on Alpha sytems. Also, this change in the granularity of memory access
can affect the determination of which data is actually shared when a byte or word
is accessed.

The absence of byte and word granularity on Alpha systems has important
implications for access to shared data. In effect, any memory write of a data
item other than an aligned longword or quadword must be done as a multiple-
instruction read-modify-write sequence. Also, because the amount of data read
and written is an entire longword or quadword, programmers must ensure that
all accesses to fields within the longword or quadword are synchronized with each
other. ♦

14.2.3 Ordering of Read and Write Operations
On VAX uniprocessor and multiprocessor systems, write operations and read
operations appear to occur in the same order in which you specify them from
the viewpoint of all types of external threads of execution. Alpha uniprocessor
systems also guarantee that read and write operations appear ordered for
multiple threads of execution running within a single process or within multiple
processes running on a uniprocessor.

Alpha On Alpha multiprocessor systems, you must order reads and writes explicitly
to ensure that they occur in a specific order from the viewpoint of threads
of execution on other processors. To provide the necessary operating system
primitives and compatibility with VAX systems, Alpha systems support
instructions that impose an order on read and write operations. ♦

14–4

Synchronizing Data Access and Program Operations
14.2 Memory Read and Memory Write Operations

14.2.4 Memory Reads and Memory Writes

VAX On VAX systems, most instructions that read or write memory are
noninterruptible. A memory write done with a noninterruptible instruction
is atomic from the viewpoint of other threads on the same CPU.

On a uniprocessor system, reads and writes of bytes, words, longwords, and
quadwords are atomic with respect to any thread on the processor. On a
multiprocessor, not all of those accesses are atomic with respect to any thread
on any processor; only reads and writes of bytes, aligned words, and aligned
longwords are atomic. Accessing unaligned data can require multiple operations.
As a result, even though an unaligned longword is written with a noninterruptible
instruction, if it requires multiple memory accesses, a thread on another CPU
might see memory in an intermediate state. VAX systems do not guarantee
multiprocessor atomic access to quadwords. ♦

Alpha On Alpha systems, there is no instruction that performs multiple memory
accesses. Each load or store instruction performs a maximum of one load from
or one store to memory. A load can occur only from an aligned longword or
quadword. A store can occur only to an aligned longword or quadword.

Although reads and writes from one thread appear to occur ordered from the
viewpoint of other threads on the same processor, there is no implicit ordering of
reads and writes as seen by threads on other processors. ♦

14.3 Memory Read-Modify-Write Operations
A fundamental synchronization primitive for accessing shared data is an atomic
read-modify-write operation. This operation consists of reading the contents of
a memory location and replacing them with new contents based on the old. Any
intermediate memory state is not visible to other threads. Both VAX systems and
Alpha systems provide this synchronization primitive, but they implement it in
significantly different ways.

14.3.1 Uniprocessor Operations

VAX On VAX systems, many instructions are capable of performing a read-modify-
write operation in a single, noninterruptible (atomic) sequence from the viewpoint
of multiple application threads executing on a single processor. VAX systems
provide synchronization among multiple threads of execution running on a
uniprocessor system.

On VAX systems, the implicit dependence on the atomicity of VAX instructions is
not recommended. Because of the optimizations they perform, the VAX compilers
do not guarantee that a certain type of program statement, such as an increment
operation (x=x+1), is implemented using a VAX atomic instruction, even if one
exists. ♦

Alpha On Alpha systems, there is no single instruction that performs an atomic read-
modify-write operation. As a result, even uniprocessing applications in which
processes access shared data must provide explicit synchronization of these
accesses, usually through compiler semantics.

Read-modify-write operations that can be performed atomically on VAX systems
require a sequence of instructions on Alpha systems. Because this sequence can
be interrupted, the data may be left in an unstable state. For example, the VAX
increment long (INCL) instruction fetches the contents of a specified longword,
increments its value, and stores the value back in the longword, performing
the operations without interruption. On Alpha systems, each step—fetching,

14–5

Synchronizing Data Access and Program Operations
14.3 Memory Read-Modify-Write Operations

incrementing, storing—must be explicitly performed by a separate instruction.
Therefore, another thread in the process (for example, an AST routine) could
execute before the sequence completes. However, because atomic updates are the
basis of synchronization, and to provide compatibility with VAX systems, Alpha
systems provide the following mechanisms to enable atomic read-modify-write
updates:

• Privileged architecture library (PALcode) routines perform queue insertions
and removals.

• Load-locked and store-conditional instructions create a sequence of
instructions that implement an atomic update.

Note

The load-locked and store-conditional instructions also create a sequence
of instructions that are atomic in a multiprocessor system. In contrast, a
VAX INCL instruction is atomic only in a uniprocessor environment. ♦

14.3.2 Multiprocessor Operations
On multiprocessor systems, you must use special methods to ensure that a
read-modify-write sequence is atomic. On VAX systems, interlocked instructions
provide synchronization; on Alpha systems, load-locked and store-conditional
instructions provide synchronization.

VAX On VAX systems, a number of uninterruptible instructions are provided that
both read and write memory with one instruction. When used with an operand
type that is accessible in a single memory operation, each instruction provides
an atomic read-modify-write sequence. The sequence is atomic with respect to
threads of execution on the same VAX processor, but it is not atomic to threads
on other processors. For instance, when a VAX CPU executes the instruction
INCL x, it issues two separate commands to memory: a read, followed by a write
of the incremented value. Another thread of execution running concurrently on
another processor could issue a command to memory that reads or writes location
x between the INCL’s read and write. Section 14.4.3 describes read-modify-write
sequences that are atomic with respect to threads on all VAX CPUs in an SMP
system.

On a VAX multiprocessor system, an atomic update requires an interlock
at the level of the memory subsystem. To perform that interlock, the VAX
architecture provides a set of interlocked instructions that include Add Aligned
Word Interlocked (ADAWI), Remove from Queue Head Interlocked (REMQHI),
and Branch on Bit Set and Set Interlocked (BBSSI).

If you code in VAX MACRO, you use the assembler to generate whatever
instructions you tell it. If you code in a high-level language, you cannot assume
that the compiler will compile a particular language statement into a specific code
sequence. That is, you must tell the compiler explicitly to generate an atomic
update. For further information, see the documentation for your high-level
language. ♦

14–6

Synchronizing Data Access and Program Operations
14.3 Memory Read-Modify-Write Operations

Alpha On Alpha systems, there is no single instruction that performs an atomic read-
modify-write operation. An atomic read-modify-write operation is only possible
through a sequence that includes load-locked and store-conditional instructions,
(see Section 14.4.2). Use of these instructions provides a read-modify-write
operation on data within one aligned longword or quadword that is atomic with
respect to threads on all Alpha CPUs in an SMP system. ♦

14.4 Hardware-Level Synchronization

VAX On VAX systems, the following features assist with synchronization at the
hardware level:

• Atomic memory references

• Noninterruptible instructions

• Interrupt priority level (IPL)

• Interlocked memory accesses

On VAX systems, many read-modify-write instructions, including queue
manipulation instructions, are noninterruptible. These instructions provide
an atomic update capability on a uniprocessor. A kernel-mode code thread can
block interrupt and process-based threads of execution by raising the IPL. Hence,
it can execute a sequence of instructions atomically with respect to the blocked
threads on a uniprocessor. Threads of execution that run on multiple processors
of an SMP system synchronize access to shared data with read-modify-write
instructions that interlock memory. ♦

Alpha On Alpha systems, some of these mechanisms are present, while others have
been implemented in PALcode routines.

Alpha processors provide several features to assist with synchronization. Even
though all instructions that access memory are noninterruptible, no single one
performs an atomic read-modify-write. A kernel-mode thread of execution can
raise the IPL in order to block other threads on that processor while it performs
a read-modify-write sequence or while it executes any other group of instructions.
Code that runs in any access mode can execute a sequence of instructions that
contains load-locked (LDx_L) and store-conditional (STx_C) instructions to
perform a read-modify-write sequence that appears atomic to other threads of
execution. Memory barrier instructions order a CPU’s memory reads and writes
from the viewpoint of other CPUs and I/O processors. Other synchronization
mechanisms are provided by PALcode routines. ♦

The sections that follow describe the features of interrupt priority level, load-
locked (LDx_L) and store-conditional (STx_C) instructions, memory barriers,
interlocked instructions, and PALcode routines.

14.4.1 Interrupt Priority Level
The operating system in a uniprocessor system synchronizes access to systemwide
data structures by requiring that all threads sharing data run at the highest-
priority IPL of the highest-priority interrupt that causes any of them to execute.
Thus, a thread’s accessing of data cannot be interrupted by any other thread that
accesses the same data.

The IPL is a processor-specific mechanism. Raising the IPL on one processor
has no effect on another processor. You must use a different synchronization
technique on SMP systems where code threads run concurrently on different
CPUs that must have synchronized access to shared system data.

14–7

Synchronizing Data Access and Program Operations
14.4 Hardware-Level Synchronization

VAX On VAX systems, the code threads that run concurrently on different processors
synchronize through instructions that interlock memory in addition to raising
the IPL. Memory interlocks also synchronize access to data shared by an I/O
processor and a code thread. ♦

Alpha On Alpha systems, access to a data structure that is shared either by executive
code running concurrently on different CPUs or by an I/O processor and a code
thread must be synchronized through a load-locked/store-conditional sequence. ♦

14.4.2 LDx_L and STx_C Instructions

Alpha Because Alpha systems do not provide a single instruction that both reads and
writes memory or mechanism to interlock memory against other interlocked
accesses, you must use other synchronization techniques. Alpha systems
provide the load-locked/store-conditional mechanism that allows a sequence
of instructions to perform an atomic read-modify-write operation.

Load-locked (LDx_L) and store-conditional (STx_C) instructions guarantee
atomicity that is functionally equivalent to that of VAX systems. The LDx_L and
STx_C instructions can be used only on aligned longwords or aligned quadwords.
The LDx_L and STx_C instructions do not provide atomicity by blocking access to
shared data by competing threads. Instead, when the LDx_L instruction executes,
a CPU-specific lock bit is set. Before the data can be stored, the CPU uses the
STx_C instruction to check the lock bit. If another thread has accessed the data
item in the time since the load operation began, the lock bit is cleared and the
store is not performed. Clearing the lock bit signals the code thread to retry the
load operation. That is, a load-locked/store-conditional sequence tests the lock bit
to see whether the store succeeded. If it did not succeed, the sequence branches
back to the beginning to start over. This loop repeats until the data is untouched
by other threads during the operation.

By using the LDx_L and STx_C instructions together, you can construct a code
sequence that performs an atomic read-modify-write operation to an aligned
longword or quadword. Rather than blocking other threads’ modifications of the
target memory, the code sequence determines whether the memory locked by
the LDx_L instruction could have been written by another thread during the
sequence. If it is written, the sequence is repeated. If it is not written, the store
is performed. If the store succeeds, the sequence is atomic with respect to other
threads on the same processor and on other processors. The LDx_L and STx_C
instructions can execute in any access mode.

Traditional VAX usage is for interlocked instructions to be used for multiprocessor
synchronization. On Alpha systems, LDx_L and STx_C instructions implement
interlocks and can be used for uniprocessor synchronization. To achieve protection
similar to the VAX interlock protection, you need to use memory barriers along
with the load-locked and store-conditional instructions.

Some Alpha system compilers make the LDx_L and STx_C instruction mechanism
explicitly available as language built-in functions. For example, DEC C on Alpha
systems includes a set of built-in functions that provide for atomic addition
and for logical AND and OR operations. Also, Alpha system compilers make
the mechanism available implicitly, because they use the LDx_L and STx_C
instructions to access declared data as requiring atomic accesses in a language-
specific way. ♦

14–8

Synchronizing Data Access and Program Operations
14.4 Hardware-Level Synchronization

14.4.3 Interlocked Instructions

VAX On VAX systems, seven instructions interlock memory. A memory interlock
enables a VAX CPU or I/O processor to make an atomic read-modify-write
operation to a location in memory that is shared by multiple processors. The
memory interlock is implemented at the level of the memory controller. On a VAX
multiprocessor system, an interlocked instruction is the only way to perform an
atomic read-modify-write on a shared piece of data. The seven interlock memory
instructions are as follows:

• ADAWI—Add aligned word, interlocked

• BBCCI—Branch on bit clear and clear, interlocked

• BBSSI—Branch on bit set and set, interlocked

• INSQHI—Insert entry into queue at head, interlocked

• INSQTI—Insert entry into queue at tail, interlocked

• REMQHI—Remove entry from queue at head, interlocked

• REMQTI—Remove entry from queue at tail, interlocked

The VAX architecture interlock memory instructions are described in detail in the
VAX Architecture Reference Manual.

The following description of the interlocked instruction mechanism assumes that
the interlock is implemented by the memory controller and that the memory
contents are fresh.

When a VAX CPU executes an interlocked instruction, it issues an interlock-read
command to the memory controller. The memory controller sets an internal
flag and responds with the requested data. While the flag is set, the memory
controller stalls any subsequent interlock-read commands for the same aligned
longword from other CPUs and I/O processors, even though it continues to process
ordinary reads and writes. Because interlocked instructions are noninterruptible,
they are atomic with respect to threads of execution on the same processor.

When the VAX processor that is executing the interlocked instruction issues a
write-unlock command, the memory controller writes the modified data back and
clears its internal flag. The memory interlock exists for the duration of only one
instruction. Execution of an interlocked instruction includes paired interlock-read
and write-unlock memory controller commands.

When you synchronize data with interlocks, you must make sure that all
accessors of that data use them. This means that memory references of an
interlocked instruction are atomic only with respect to other interlocked memory
references.

On VAX systems, the granularity of the interlock depends on the type of VAX
system. A given VAX implementation is free to implement a larger interlock
granularity than that which is required by the set of interlocked instructions
listed above. On some processors, for example, while an interlocked access to a
location is in progress, interlocked access to any other location in memory is not
allowed. ♦

14–9

Synchronizing Data Access and Program Operations
14.4 Hardware-Level Synchronization

14.4.4 Memory Barriers

Alpha On Alpha systems, there are no implied memory barriers except those performed
by the PALcode routines that emulate the interlocked queue instructions.
Wherever necessary, you must insert explicit memory barriers into your code to
impose an order on memory references. Memory barriers are required to ensure
both the order in which other members of an SMP system or an I/O processor see
writes to shared data and the order in which reads of shared data complete.

There are two types of memory barrier:

• The MB instruction

• The instruction memory barrier (IMB) PALcode routine

The MB instruction guarantees that all subsequent loads and stores do not access
memory until after all previous loads and stores have accessed memory from the
viewpoint of multiple threads of execution. Even in a multiprocessor system,
all of the instruction’s reads of one processor always return the data from the
most recent writes by that processor, assuming no other processor has written to
the location. Alpha compilers provide semantics for generating memory barriers
when needed for specific operations on data items.

The instruction memory barrier (IMB) PALcode routine must be used after
a modification to the instruction stream to flush prefetched instructions. In
addition, it also provides the same ordering effects as the MB instruction.

Code that modifies the instruction stream must be changed to synchronize the old
and new instruction streams properly. Use of an REI instruction to accomplish
this does not work on OpenVMS Alpha systems.

If a kernel mode code sequence changes the expected instruction stream, it must
issue an IMB instruction after changing the instruction stream and before the
time the change is executed. For example, if a device driver stores an instruction
sequence in an extension to the unit control block (UCB) and then transfers
control there, it must issue an IMB instruction after storing the data in the UCB
but before transferring control to the UCB data.

The MACRO-32 compiler for OpenVMS Alpha provides the EVAX_IMB built-in to
insert explicitly an IMB instruction in the instruction stream. ♦

14.4.5 PALcode Routines

Alpha Privileged architecture library (PALcode) routines include Alpha instructions that
emulate VAX queue and interlocked queue instructions. PALcode executes
in a special environment with interrupts blocked. This feature results in
noninterruptible updates. A PALcode routine can perform the multiple memory
reads and memory writes that insert or remove a queue element without
interruption. ♦

14.5 Software-Level Synchronization
The operating system uses the synchronization primitives provided by the
hardware as the basis for several different synchronization techniques. The
following sections summarize the operating system’s synchronization techniques
available to application software.

14–10

Synchronizing Data Access and Program Operations
14.5 Software-Level Synchronization

14.5.1 Synchronization Within a Process

Alpha On Alpha systems without kernel threads, only one thread of execution can
execute within a process at a time, so synchronizaton of threads that execute
simultaneously is not a concern. However, a delivery of an AST or the occurrence
of an exception can intervene in a sequence of instructions in one thread of
execution. Because these conditions can occur, application design must take
into account the need for synchronization with condition handlers and AST
procedures.

On Alpha systems, writing bytes or words or performing a read-modify-write
operation requires a sequence of Alpha instructions. If the sequence incurs an
exception or is interrupted by AST delivery or an exception, another process code
thread can run. If that thread accesses the same data, it can read incompletely
written data or cause data corruption. Aligning data on natural boundaries and
unpacking word and byte data reduce this risk.

An application written in a language other than VAX MACRO must identify to
the compiler data accessed by any combination of mainline code, AST procedures,
and condition handlers to ensure that the compiler generates code that is atomic
with respect to other threads. Also, data shared with other processes must be
identified. ♦

With process-private data accessed from both AST and non-AST threads of
execution, the non-AST thread can block AST delivery by using the Set AST
Enable (SYS$SETAST) system service. If the code is running in kernel mode,
it can also raise IPL to block AST delivery. The Guide to Creating OpenVMS
Modular Procedures describes the concept of AST reentrancy.

On a uniprocessor or in a symmetric multiprocessing (SMP) system, access to
multiple locations with a read or write instructions or with a read-modify-write
sequence is not atomic on VAX and Alpha systems. Additional synchronization
methods are required to control access to the data. See Section 14.5.4 and the
sections following it, which describe the use of higher-level synchronization
techniques.

14.5.2 Synchronization in Inner Mode

Alpha With kernel threads, the system allows multiple execution contexts, or threads
within a process, that all share the same address space to run simultaneously.
The synchronization provided by the SCHED spinlock continues to allow thread
safe access to process data structures such as the process control block (PCB).
However, access to process address space and any structures currently not
explicitly synchronized with spin locks are no longer guaranteed exclusive access
solely by access mode. In the multithreaded environment, a new process level
synchronization mechanism is required.

Because spin locks operate on a systemwide level and do not offer the
process level granularity required for inner mode access synchronization in a
multithreaded environment, a process level semaphore is necessary to serialize
inner mode (kernel and executive) access. User and supervisor mode threads are
allowed to run without any required synchronization.

The process level semaphore for inner mode synchronization is the inner mode
(IM) semaphore. The IM semaphore is created in the first floating-point registers
and execution data block (FRED) page in the balance set slot process for each
process. In a multithreaded environment, a thread requiring inner mode access
must acquire ownership of the IM semaphore. That is, two threads associated
with the same process cannot execute in inner mode simultaneously. If the

14–11

Synchronizing Data Access and Program Operations
14.5 Software-Level Synchronization

semaphore is owned by another thread, then the requesting thread spins until
inner mode access becomes available, or until some specified timeout value has
expired. ♦

14.5.3 Synchronization Using Process Priority
In some applications (usually real-time applications), a number of processes
perform a series of tasks. In such applications, the sequence in which a process
executes can be controlled or synchronized by means of process priority. The basic
method of synchronization by priority involves executing the process with the
highest priority while preventing all other processes from executing.

If you use process priority for synchronization, be aware that if the higher-priority
process is blocked, either explicitly or implicitly (for example, when doing an I/O),
the lower-priority process can run, resulting in corruption on the data of the
higher process’s activities.

Because each processor in a multiprocessor system, when idle, schedules its own
work load, it is impossible to prevent all other processes in the system from
executing. Moreover, because the scheduler guarantees only that the highest-
priority and computable process is scheduled at any given time, it is impossible to
prevent another process in an application from executing.

Thus, application programs that synchronize by process priority must be modified
to use a different serialization method to run correctly in a multiprocessor system.

14.5.4 Synchronizing Multiprocess Applications
The operating system provides the following techniques to synchronize
multiprocess applications:

• Common event flags

• Lock management system services

• Parallel processing (PPL$) run-time library procedures

The operating system provides basic event synchronization through event flags.
Common event flags can be shared among cooperating processes running on a
uniprocessor or in an SMP system, though the processes must be in the same
user identification code (UIC) group. Thus, if you have developed an application
that requires the concurrent execution of several processes, you can use event
flags to establish communication among them and to synchronize their activity.
A shared, or common, event flag can represent any event that is detectable and
agreed upon by the cooperating processes. See Section 14.6 for information about
using event flags.

The lock management system services—Enqueue Lock Request (SYS$ENQ),
and Dequeue Lock Request (SYS$DEQ)—provide multiprocess synchronization
tools that can be requested from all access modes. For details about using lock
management system services, see Chapter 15.

The parallel processing run-time library procedures provide support for a number
of different synchronization techniques suitable for user access-mode applications.
These techniques include the following:

• Mutual exclusion implemented through an application-created semaphore or
spin lock

• Event synchronization, in which one or more processes can wait for the
occurrence of a user-defined event that is triggered by another process

14–12

Synchronizing Data Access and Program Operations
14.5 Software-Level Synchronization

• Barrier synchronization, in which multiple processes wait until a specified
number of them have all reached a designated point in their execution

Section 14.7 describes the various PPL$ routines. The OpenVMS RTL Parallel
Processing (PPL$) Manual provides more information.

Synchronization of access to shared data by a multiprocess application should be
designed to support processes that execute concurrently on different members of
an SMP system. Applications that share a global section can use VAX MACRO
interlocked instructions or the equivalent in other languages to synchronize
access to data in the global section. These applications can also use the lock
management system services for synchronization.

14.5.5 Writing Applications for an Operating System Running in a
Multiprocessor Environment

Most application programs that run on an operating system in a uniprocessor
system also run without modification in a multiprocessor system. However,
applications that access writable global sections or that rely on process priority
for synchronizing tasks should be reexamined and modified according to the
information contained in this section.

In addition, some applications may execute more efficiently on a multiprocessor
if they are specifically adapted to a multiprocessing environment. Application
programmers may want to decompose an application into several processes and
coordinate their activities by means of event flags or a shared region in memory.
See the OpenVMS RTL Parallel Processing (PPL$) Manual for more information
about performing these tasks.

14.5.6 Synchronization Using Spin Locks
A spin lock is a device used by a processor to synchronize access to data that is
shared by members of a symmetric multiprocessing (SMP) system. A spin lock
enables a set of processors to serialize their access to shared data. The basic form
of a spin lock is a bit that indicates the state of a particular set of shared data.
When the bit is set, it shows that a processor is accessing the data. A bit is either
tested and set or tested and cleared; it is atomic with respect to other threads of
execution on the same or other processors.

A processor that needs access to some shared data tests and sets the spin lock
associated with that data. To test and set the spin lock, the processor uses an
interlocked bit-test-and-set instruction. If the bit is clear, the processor can have
access to the data. This is called locking or acquiring the spin lock. If the bit is
set, the processor must wait because another processor is already accessing the
data.

Essentially, a waiting processor spins in a tight loop; it executes repeated bit test
instructions to test the state of the spin lock. The term spin lock derives from
this spinning. When the spin lock is in a loop, repeatedly testing the state of the
spin lock, the spin lock is said to be in a state of busy wait. The busy wait ends
when the processor accessing the data clears the bit with an interlocked operation
to indicate that it is done. When the bit is cleared, the spin lock is said to be
unlocked or released.

Spin locks are used by the operating system executive, along with the interrupt
priority level (IPL), to control access to system data structures in a multiprocessor
system.

See Section 14.7 for descriptions of how to use spin locks in your applications.

14–13

Synchronizing Data Access and Program Operations
14.5 Software-Level Synchronization

14.5.7 Writable Global Sections
A writable global section is an area of memory that can be accessed (read and
modified) by more than one process. On uniprocessor or SMP systems, access to
a single global section with an appropriate read or write instruction is atomic on
VAX and Alpha systems. Therefore, no other synchronization is required.

An appropriate read or write on VAX systems is an instruction that is a naturally
aligned byte, word, or longword, such as a MOVx instruction, where x is a B for a
byte, W for a word, or L for a longword. On Alpha systems, an appropriate read
or write instruction is a naturally aligned longword or quadword, for instance, an
LDx or write STx instruction where x is an L for an aligned longword or Q for an
aligned quadword.

On both VAX and Alpha multiprocessor systems, for a read-modify-write sequence
on a multiprocessor system, two or more processes can execute concurrently, one
on each processor. As a result, it is possible that concurrently executing processes
can access the same locations simultaneously in a writable global section. If
this happens, only partial updates may occur, or data could be corrupted or lost,
because the operation is not atomic. Unless proper interlocked instructions are
used on VAX systems or load-locked/store-conditional instructions are used on
Alpha systems, invalid data may result. You must use interlocked or load-locked
/store-conditional instructions or other synchronizing techniques, such as locks or
event flags.

On a uniprocessor or SMP system, access to multiple locations within a global
section with read or write instructions or a read-modify-write sequence is not
atomic on VAX and Alpha systems. On a uniprocessor system, an interrupt can
occur that causes process preemption, allowing another process to run and access
the data before the first process completes its work. On a multiprocessor system,
two processes can access the global section simultaneously on different processors.
You must use a synchronization technique such as a spin lock or event flags to
avoid these problems.

Check existing programs that use writable global sections to ensure that proper
synchronization techniques are in place. Review the program code itself; do not
rely on testing alone, because an instance of simultaneous access by more than
one process to a location in a writable global section is rare.

If an application must use queue instructions to control access to writable global
sections, ensure that it uses interlocked queue instructions.

14.6 Using Event Flags
Event flags are maintained by the operating system for general programming use
in coordinating thread execution with asynchronous events. Programs can use
event flags to perform a variety of signaling functions. Event flag services clear,
set, and read event flags. They also place a thread in a wait state pending the
setting of an event flag or flags.

Table 14–1 shows the two usage styles of event flags:

14–14

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

Table 14–1 Usage Styles of Event Flags

Style Meaning

Explicit Uses SET, CLEAR, and READ functions that are commonly used when
one thread deals with multiple asynchronous events.

Implicit Uses the SYS$SYNCH and wait form of system services when one or
more threads wish to wait for a particular event. For multithreaded
applications, only the implicit use of event flags is recommended.

The wait form of system services is a variant of asynchronous services; there
is a service request and then a wait for the completion of the request. Digital
recommends that an I/O status block (IOSB) be used with WAIT services. The
IOSB prevents the service from completing prematurely, and also provides status
information.

14.6.1 General Guidelines for Using Event Flags
Explicit use of event flags follows these general steps:

1. Allocate or choose local event flags or associate common event flags for your
use.

2. Set or clear the event flag.

3. Read the event flag.

4. Suspend thread execution until an event flag is set.

5. Deallocate the local event flags or dissociate common event flags when they
are no longer needed.

Implicit use of event flags may involve only step 4, or steps 1, 4, and 5.

Use run-time library routines and system services to accomplish these event flag
tasks. Table 14–2 summarizes the event flag routines and services.

Table 14–2 Event Flag Routines and Services

Routine or Service Task

LIB$FREE_EF Deallocate a local event flag

LIB$GET_EF Allocate any local event flag

LIB$RESERVE_EF Allocate a specific local event flag

SYS$ASCEFC Associate a common event flag cluster

SYS$CLREF Clear a local or common event flag

SYS$DACEFC Dissociate a common event flag cluster

SYS$DLCEFC Delete common event flag cluster

SYS$READEF Read a local or common event flag

SYS$SETEF Set a local or common event flag

SYS$SYNCH Wait for a local or common event flag to be set and for nonzero
I/O status block—recommended to be used with threads

SYS$WAITFR Wait for a specific local or common event flag to be set—not
recommended to be used with threads

(continued on next page)

14–15

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

Table 14–2 (Cont.) Event Flag Routines and Services

Routine or Service Task

SYS$WFLAND Wait for several local or common event flags to be set—logical
AND of event flags

SYS$WFLOR Wait for one of several local or common event flags to be
set—logical OR of event flags

Some system services set an event flag to indicate the completion or the
occurrence of an event; the calling program can test the flag. Other system
services use event flags to signal events to the calling process, such as
SYS$ENQ(W), SYS$QIO(W), or SYS$SETIMR.

14.6.2 Introducing Local and Common Event Flag Numbers and Event Flag
Clusters

Each event flag has a unique number; event flag arguments in system service
calls refer to these numbers. For example, if you specify event flag 1 in a call
to the SYS$QIO system service, then event flag 1 is set when the I/O operation
completes.

To allow manipulation of groups of event flags, the flags are ordered in clusters
of 32 numbers corresponding to bits 0 through 31 (<31:0>) in a longword.
The clusters are also numbered from 0 to 4. The range of event flag numbers
encompasses the flags in all clusters: event flag 0 is the first flag in cluster 0,
event flag 32 is the first flag in cluster 1, and so on.

Event flags are divided into five clusters: two for local event flags and two for
common event flags. There is also a special local cluster 4 that supports EFN
128.

• A local event flag cluster is process specific and is used to synchronize events
within a process.

• A common event flag cluster can be shared by cooperating processes’ UIC. A
common event flag cluster is identified by name and is specific to a UIC group
and VMScluster node. Before a process can use a common event flag cluster,
it must explicitly ‘‘associate’’ with the cluster. (Association is described in
Section 14.6.5.) Use them to synchronize events among images executing in
different processes.

• A special local cluster 4 supports only EFN 128, symbolically EFN$C_ENF.
EFN$C_ENF is intended for use with wait form services, such as SYS$QIOW
and SYS$ENQW, or SYS$SYNCH system service. There is no need to reserve
or free this event flag. Multiple threads of execution may concurrently use
EFN$C_ENF without interference. With explicit event flag services, EFN$C_
ENF behaves as if always set.

Table 14–3 summarizes the ranges of event flag numbers and the clusters to
which they belong.

The same system services manipulate flags in either local and common event flag
clusters. Because the event flag number implies the cluster number, you need not
specify the cluster number when you call a system service that refers to an event
flag.

14–16

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

When a system service requires an event flag cluster number as an argument,
you need only specify the number of any event flag in the cluster. Thus, to read
the event flags in cluster 1, you could specify any number in the range 32 through
63.

Table 14–3 Event Flags

Cluster Number Flag Number Type Usage

0 0 Local Default flag used by system
routines.

0 1 to 23 Local May be used in system routines.
When an event flag is requested,
it is not returned unless it has
been previously and specifically
freed by calls to LIB$FREE_EF.

0 24 to 31 Local Reserved for Digital use only.

1 32 to 63 Local Available for general use.

2 64 to 95 Common Available for general use.

3 96 to 127 Common Available for general use.

4 128 Local Available for general use
without explicit allocation.

14.6.3 Using EFN$C_ENF Local Event Flag
It is intended that EFN$C_ENF be used with the wait form of system services, or
with SYS$SYNCH system service. EFN$C_ENF does not need to be initialized,
nor does it need to be reserved or freed. Multiple threads of execution may
concurrently use EFN$C_ENF without interference. When EFN$C_ENF is
used with explicit event flag system services, it performs as if always set. It is
recommended that ERN$C_ENF be used to eliminate the chance for event flag
overlap.

14.6.4 Using Local Event Flags
Local event flags are automatically available to each program. They are not
automatically initialized. However, if an event flag is passed to a system service
such as SYS$GETJPI, the service initializes the flag before using it.

When using local event flags, use the event flag routines as follows:

1. To ensure that the event flag you are using is not accessed and changed by
other users, allocate and deallocate local event flags. The OpenVMS RTL
Library (LIB$) Manual describes routines you can use to allocate an arbitrary
event flag (LIB$GET_EF), to allocate a particular event flag (LIB$RESERVE_
EF), and to deallocate an event flag (LIB$FREE_EF) from the processwide
pool of available local event flags. Similar routines do not exist for common
event flags. If free, these routines return an event flag number.

The LIB$GET_EF routine by default allocates flags from event flag cluster 1
(event flags 32 through 63). Event flags 1 through 32 (in event flag cluster
0) can also optionally be allocated by calls to LIB$GET_EF. To maintain
compatibility with older application software that used event flags 1 through
23 in an uncoordinated fashion, these event flags must be initially marked as
free by application calls to the LIB$FREE_EF routine before these flags can
be allocated by subsequent calls to the LIB$GET_EF routine.

14–17

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

2. Before using the event flag, initialize it using the SYS$CLREF system service,
unless you pass the event flag to a routine that clears it for you.

3. When an event that is relevant to other program components is completed,
set the event flag with the SYS$SETEF system service.

4. A program component can read the event flag to determine what has
happened and act accordingly. Use the SYS$READEF system service to
read the event flag.

5. The program components that evaluate event flag status can be placed in a
wait state. Then, when the event flag is set, execution is resumed. Use the
SYS$WAITFR, SYS$WFLOR, SYS$WFLAND, or SYS$SYNCH routine to
accomplish this task.

6. When the event flag is no longer required, free it by using the LIB$FREE_EF
routine.

The following Fortran example uses LIB$GET_EF to choose a local event flag and
then uses SYS$CLREF to set the event flag to 0 (clear the event flag). (Note that
run-time library routines require an event flag number to be passed by reference,
and system services require an event flag number to be passed by value.)

INTEGER FLAG,
2 STATUS,
2 LIB$GET_EF,
2 SYS$CLREF

STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

14.6.4.1 Example of Event Flag Services
Local event flags are used most commonly in conjunction with other system
services. For example, you can use the Set Timer (SYS$SETIMR) system service
to request that an event flag be set at a specific time of day or after a specific
interval of time has passed. If you want to place a process in a wait state for
a specified period of time, specify an event flag number for the SYS$SETIMR
service and then use the Wait for Single Event Flag (SYS$WAITFR) system
service, as shown in the C example that follows:

.

.

.
main() {

unsigned int status, daytim[1], efn=3;

/* Set the timer */
status = SYS$SETIMR(efn, /* efn - event flag */

&daytim, /* daytim - expiration time */
0, /* astadr - AST routine */
0, /* reqidt - timer request id */
0); /* flags */

if ((status & 1) != 1)
LIB$SIGNAL(status);

.

.

.

14–18

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

/* Wait until timer expires */
status = SYS$WAITFR(efn);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

}

In this example, the daytim argument refers to a 64-bit time value. For details
about how to obtain a time value in the proper format for input to this service,
see Chapter 5.

14.6.5 Using Common Event Flags
Common event flags are manipulated like local event flags. However, before
a process can use event flags in a common event flag cluster, the cluster must
be created. The Associate Common Event Flag Cluster (SYS$ASCEFC) system
service creates a common event flag cluster. When this common event flag cluster
is created, it must be identified by a name string. (Section 14.6.5.1 explains the
format of this string.) By calling SYS$ASCEFC, other processes in the same
group can establish their association with the cluster so they can access flags in
it. Each process that associates with the cluster must use the same name to refer
to it; the SYS$ASCEFC system service establishes correspondence between the
cluster name, and the cluster number that a process assigns to the cluster.

The first program to name a common event flag cluster creates it; all flags in a
newly created cluster are clear. Other processes on the same OpenVMS cluster
node that have the same UIC group number as the creator of the cluster can
reference the cluster by invoking SYS$ASCEFC and specifying the cluster name.

Different processes may associate the same name with different common event
flag numbers; as long as the name and UIC group, or node are the same, the
processes reference the same cluster. It is the bit offset within the cluster rather
than the number of the bit that is used to identify the flag.

Common event flags act as a communication mechanism between images
executing in different processes in the same group on the same OpenVMS
cluster node. Common event flags are often used as a synchronization tool for
other, more complicated communication techniques, such as logical names and
global sections. For more information about using event flags to synchronize
communication between processes, see Chapter 2.

If every cooperating process that is going to use a common event flag cluster has
the necessary privilege or quota to create a cluster, the first process to call the
SYS$ASCEFC system service creates the cluster.

The following example shows how a process might create a common event flag
cluster named COMMON_CLUSTER and assign it a cluster number of 2:

14–19

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

.

.

.
#include <descrip.h>

.

.

.
unsigned int status, efn=65;
$DESCRIPTOR(name,"COMMON_CLUSTER"); /* Cluster name */

.

.

.
/* Create cluster 2 */

status = SYS$ASCEFC(efn, &name, 0, 0);

Other processes in the same group can now associate with this cluster. Those
processes must use the same character string name to refer to the cluster;
however, the cluster numbers they assign do not have to be the same.

14.6.5.1 Using the name Argument with SYS$ASCEFC
The name argument to the Associate Common Event Flag Cluster
(SYS$ASCEFC) system service identifies the cluster that the process is creating
or associating with. The name argument specifies a descriptor pointing to a
character string.

Translation of the name argument proceeds in the following manner:

1. CEF$ is prefixed to the current name string, and the result is subjected to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3. The CEF$ prefix is stripped from the current name string that could not be
translated. This current string is the cluster name.

For example, assume that you have made the following logical name assignment:

$ DEFINE CEF$CLUS_RT CLUS_RT_001

Assume also that your program contains the following statements:

#include <ssdef.h>
#include <descrip.h>

.

.

.
unsigned int status;
$DESCRIPTOR(name,"CLUS_RT"); /* Logical name of cluster */

.

.

.
status = SYS$ASCEFC(. . . ,&name, . . .);

The following logical name translation takes place:

1. CEF$ is prefixed to CLUS_RT.

14–20

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

2. CEF$CLUS_RT is translated to CLUS_RT_001. (Further translation is
unsuccessful. When logical name translation fails, the string is passed to the
service.)

There are two exceptions to the logical name translation method discussed in this
section:

• If the name string starts with an underscore (_), the operating system strips
the underscore and considers the resultant string to be the actual name (that
is, further translation is not performed).

• If the name string is the result of a logical name translation, the name
string is checked to see whether it has the terminal attribute. If it does, the
operating system considers the resultant string to be the actual name (that is,
further translation is not performed).

14.6.5.2 Temporary Common Event Flag Clusters
Common event flag clusters are either temporary or permanent. The perm
argument to the SYS$ASCEFC system service defines whether the cluster is
temporary or permanent.

Temporary clusters require an element of the creating process’s quota for timer
queue entries (TQELM quota). They are deleted when all processes associated
with the cluster have disassociated. When the last image associated with a
cluster is dissociated, the common event flag cluster is deleted. Clusters that
are deleted after all images are dissociated are called temporary clusters.
Dissociation can be performed explicitly with the Disassociate Common Event
Flag Cluster (SYS$DACEFC) system service, or implicitly when the image that
called SYS$ASCEFC exits.

14.6.5.3 Permanent Common Event Flag Clusters
If you have the PRMCEB privilege, you can create a permanent common event
flag cluster (set the perm argument to 1 when you invoke SYS$ASCEFC). A
permanent event flag cluster continues to exist until it is marked explicitly for
deletion with the Delete Common Event Flag Cluster (SYS$DLCEFC) system
service (requires the PRMCEB privilege). Once a permanent cluster is marked
for deletion, it is like a temporary cluster; when the last image associated with
the cluster is dissociated, the cluster is deleted.

In the following examples, the first program segment associates common event
flag cluster 3 with the name CLUSTER and then clears the second event flag in
the cluster. The second program segment associates common event flag cluster 2
with the name CLUSTER then sets the second event flag in the cluster (the flag
cleared by the first program segment).

Example 1
STATUS = SYS$ASCEFC (%VAL(96),
2 ’CLUSTER’,,)
STATUS = SYS$CLREF (%VAL(98))

Example 2
STATUS = SYS$ASCEFC (%VAL(64),
2 ’CLUSTER’,,)
STATUS = SYS$SETEF (%VAL(66))

14–21

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

For clearer code, rather than using a specific event flag number, use one variable
to contain the bit offset you need and one variable to contain the number of the
first bit in the common event flag cluster that you are using. To reference the
common event flag, add the offset to the number of the first bit. The following
examples accomplish the same result as the preceding two examples:

Example 1
INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 96)

OFFSET=2
STATUS = SYS$ASCEFC (%VAL(BASE),
2 ’CLUSTER’,,)
STATUS = SYS$CLREF (%VAL(BASE+OFFSET))

Example 2
INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64)

OFFSET=2
STATUS = SYS$ASCEFC (%VAL(BASE),
2 ’CLUSTER’,,)
STATUS = SYS$SETEF (%VAL(BASE+OFFSET))

Common event flags are often used for communicating between a parent process
and a created subprocess. The following parent process associates the name
CLUSTER with a common event flag cluster, creates a subprocess, and then waits
for the subprocess to set event flag 64:

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64,
2 OFFSET = 0)

.

.

.
! Associate common event flag cluster with name
STATUS = SYS$ASCEFC (%VAL(BASE),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Create subprocess to execute concurrently
MASK = IBSET (MASK,0)
STATUS = LIB$SPAWN (’RUN REPORTSUB’, ! Image
2 ’INPUT.DAT’, ! SYS$INPUT
2 ’OUTPUT.DAT’, ! SYS$OUTPUT
2 MASK)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Wait for response from subprocess
STATUS = SYS$WAITFR (%VAL(BASE+OFFSET))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

.

.

.

REPORTSUB, the program executing in the subprocess, associates the name
CLUSTER with a common event flag cluster, performs some set of operations,
sets event flag 64 (allowing the parent to continue execution), and continues
executing:

14–22

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

INTEGER*4 BASE,
2 OFFSET
PARAMETER (BASE = 64,
2 OFFSET = 0)

.

.

.
! Do operations necessary for
! continuation of parent process

.

.

.
! Associate common event flag cluster with name
STATUS = SYS$ASCEFC (%VAL(BASE),
2 ’CLUSTER’,,)
IF (.NOT. STATUS)
2 CALL LIB$SIGNAL (%VAL(STATUS))

! Set flag for parent process to resume
STATUS = SYS$SETEF (%VAL(BASE+OFFSET))

.

.

.

14.6.6 Wait Form Services and SYS$SYNCH
Wait Form system services are a variant of asynchronous services in which
there is a service request and then a wait for the completion of the request. The
SYS$SYNCH system service checks the completion status of a system service
that completes asynchronously. The service whose completion status is to be
checked must have been called with the efn and iosb arguments specified. The
SYS$SYNCH service uses the event flag and I/O status block of the service to be
checked.

Digital recommends that only EFN$C_ENF be used for concurrent use of event
flags.

14.6.7 Event Flag Waits
The following three system services place the process or thread in a wait state
until an event flag or a group of event flags is set:

• The Wait for Single Event Flag (SYS$WAITFR) system service places the
process or thread in a wait state until a single flag has been set.

• The Wait for Logical OR of Event Flags (SYS$WFLOR) system service places
the process or thread in a wait state until any one of a specified group of
event flags has been set.

• The Wait for Logical AND of Event Flags (SYS$WFLAND) system service
places the process or thread in a wait state until all of a specified group of
event flags have been set.

Another system service that accepts an event flag number as an argument is the
Queue I/O Request (SYS$QIO) system service. The following example shows a
program segment that issues two SYS$QIO system service calls and uses the
SYS$WFLAND system service to wait until both I/O operations complete before it
continues execution:

14–23

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

.

.

.
unsigned int status, efn1=1, efn2=2, mask;

.

.

.

/* Issue first I/O request and check for error */
status = SYS$QIO(efn1, . . .)
if ((status & 1) != 1) 1

LIB$SIGNAL(status);

/* Issue second I/O request and check for error */
status = SYS$QIO(efn2, . . .)
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Wait until both complete and check for error */ 2
mask = efn1 || efn2;
status = SYS$WFLAND(efn1, mask); 3
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

1 The event flag argument is specified in each SYS$QIO request. Both of these
event flags are in cluster 0.

2 After both I/O requests are queued successfully, the program calls the
SYS$WFLAND system service to wait until the I/O operations complete.
In this service call, the efn argument can specify any event flag number in
the cluster containing the event flags to be waited for. The mask argument
specifies to wait for flags 1 and 2.

3 Note that the SYS$WFLAND system service (and the other wait system
services) waits for the event flag to be set; it does not wait for the I/O
operation to complete. If some other event were to set the required event
flags, the wait for event flag would complete prematurely. Use of event flags
must be coordinated carefully.

14.6.8 Setting and Clearing Event Flags
System services that use event flags clear the event flag specified in the system
service call before they queue the timer or I/O request. This ensures that the
process knows the state of the event flag. If you are using event flags in local
clusters for other purposes, be sure the flag’s initial value is what you want before
you use it.

The Set Event Flag (SYS$SETEF) and Clear Event Flag (SYS$CLREF) system
services set and clear specific event flags. For example, the following system
service call clears event flag 32:

$CLREF_S EFN=#32

The SYS$SETEF and SYS$CLREF services return successful status codes that
indicate whether the specified flag was set or cleared when the service was called.
The caller can thus determine the previous state of the flag, if necessary. The
codes returned are SS$_WASSET and SS$_WASCLR.

All event flags in a common event flag cluster are initially clear when the cluster
is created. Section 14.6.9 describes the creation of common event flag clusters.

14–24

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

14.6.9 Example of Using a Common Event Flag Cluster
The following example shows four cooperating processes that share a common
event flag cluster. The processes named ORION, CYGNUS, LYRA, and PEGASUS
are in the same group.

/* **** Process ORION **** */

.

.

.
unsigned int status, efn=64;
$DESCRIPTOR(name,"TITUS");

.

.

.
/* Create a common cluster */

1
status = SYS$ASCEFC(efn, &name, . . .); 2
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

mask = efn1 || efn2 || efn3;

/* Wait for flags 1, 2, and 3 */

status = SYS$WFLAND(efn, mask); 3
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

/* Dissociated cluster */

status = SYS$DACEFC(efn); 4

/* **** Process CYGNUS **** */

.

.

.
unsigned int status, efn1=64,efn2=64;
$DESCRIPTOR(name,"TITUS");

.

.

.
status = SYS$ASCEFC(efn1,&name, . . .); 5
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Set event flag 1 and check for error */
status = SYS$SETEF(efn2);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

status = SYS$DACEFC(efn1);

/* **** Process LYRA **** */
$DESCRIPTOR(name,"TITUS");

. . .

14–25

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

/* Associate with cluster 3 */
status = SYS$ASCEFC(efn, &name); 6
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Set event flag 3 and check for error */
status = SYS$SETEF(efn2);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

status = SYS$DACEFC(efn1);

/* **** Process PEGASUS **** */

/* Associate with cluster */
status = SYS$ASCEFC(efn, &name); 7
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Wait for flag 1 and check for error */
status = SYS$WAITFR(efn2);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Set event flag 2 and check for error */
status = SYS$SETEF(efn2);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

status = SYS$DACEFC(efn1);

1 Assume that ORION is the first process to issue the SYS$ASCEFC system
service and, therefore, is the creator of the cluster. Because this is a newly
created cluster, all event flags in it are clear.

2 The argument name in the SYS$ASCEFC system service call is a pointer
to the descriptor CNAME for the name to be assigned to the cluster; in this
example, the cluster is named TITUS. This service call associates this name
with cluster 2 of process ORION and contains event flags 64 through 95.
Cooperating processes CYGNUS, LYRA, and PEGASUS must use the same
character string name to refer to this cluster.

3 The continuation of process ORION depends on work done by processes
CYGNUS, LYRA, and PEGASUS. The SYS$WFLAND system service call
specifies a mask indicating the event flags that must be set before process
ORION can continue. The mask in this example (^B1110) indicates that the
second, third, and fourth flags in the cluster must be set.

4 When all three event flags are set, process ORION continues execution and
calls the SYS$DACEFC system service. Because ORION did not specify the
perm argument when it created the cluster, TITUS is deleted.

5 Process CYGNUS executes, associates with the cluster, sets event flag 65 (flag
1 in the cluster), and dissociates.

6 Process LYRA associates with the cluster, but instead of referring to it as
cluster 2, it refers to it as cluster 3 (with event flags in the range 96 through
127). Thus, when process LYRA sets flag 99, it sets flag 3 in TITUS.

14–26

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

7 Process PEGASUS associates with the cluster, waits for an event flag set by
process CYGNUS, and sets an event flag itself.

14.6.10 Example of Using Event Flag Routines and Services
This section contains an example of how to use event flag services.

Common event flags are often used for communicating between a parent process
and a created subprocess. In the following example, REPORT.FOR creates a
subprocess to execute REPORTSUB.FOR, which performs a number of operations.

After REPORTSUB.FOR performs its first operation, the two processes can
perform in parallel. REPORT.FOR and REPORTSUB.FOR use the common event
flag cluster named JESSIER to communicate.

REPORT.FOR associates the cluster name with a common event flag cluster,
creates a subprocess to execute REPORTSUB.FOR and then waits for
REPORTSUB.FOR to set the first event flag in the cluster. REPORTSUB.FOR
performs its first operation, associates the cluster name JESSIER with a common
event flag cluster, and sets the first flag. From then on, the processes execute
concurrently.

REPORT.FOR
.
.
.
! Associate common event flag cluster
STATUS = SYS$ASCEFC (%VAL(64),
2 ’JESSIER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Create subprocess to execute concurrently
MASK = IBSET (MASK,0)
STATUS = LIB$SPAWN (’RUN REPORTSUB’, ! Image
2 ’INPUT.DAT’, ! SYS$INPUT
2 ’OUTPUT.DAT’, ! SYS$OUTPUT
2 MASK
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Wait for response from subprocess.
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
.
.
.

REPORTSUB.FOR
.
.
.
! Do operations necessary for
! continuation of parent process.
.
.
.
! Associate common event flag cluster
STATUS = SYS$ASCEFC (%VAL(64),
2 ’JESSIER’,,)
IF (.NOT. STATUS)
2 CALL LIB$SIGNAL (%VAL(STATUS))

14–27

Synchronizing Data Access and Program Operations
14.6 Using Event Flags

! Set flag for parent process to resume
STATUS = SYS$SETEF (%VAL(64))
.
.
.

14.7 Synchronizing Operations with Parallel Processing Run-Time
Routines

The Parallel Processing facility (PPL$) consists of routines for synchronizing
program processing in a synchronous multiprocessing configuration. The routines
provide for the following capabilities:

• Creating subprocesses

• Synchronizing program execution using spin locks

• Synchronizing program execution using semaphores

• Synchronizing program execution using barriers

• Setting up global sections of memory for shared use

To use the PPL$ routines, you must call the PPL$ initialization routine
(PPL$INITIALIZE) that sets up data structures and memory areas required
for parallel processing run-time routines. Then, when use of the PPL$ routines is
no longer required, you must free those data structures and memory areas with
PPL$TERMINATE before exiting from the program.

Refer to the OpenVMS RTL Parallel Processing (PPL$) Manual for more
information.

14.7.1 Using Subprocesses
Once you have initialized the parallel processing environment, you can create one
or more subprocesses to execute images. You may execute the same or different
images within each subprocess. Even though you can create a subprocess with
PPL$SPAWN that will run outside of a parallel processing environment, you
should limit its use to subprocesses within a parallel processing environment.

To delete one or more subprocesses created with PPL$SPAWN, use PPL$STOP.

14.7.2 Using Spin Locks
To ensure that only one process at a time can access a critical region or physical
resource of a parallel task, you can use spin locks. A spin lock is a lock on a
critical region where the lock constantly tests to determine whether access to
that region is available. Because of the constant testing, this technique is CPU
intensive. An alternative technique to ensure single access is to use semaphores.
Refer to Section 14.7.3 for more information on using semaphores.

The three spinlock routines are as follows:

• PPL$CREATE_SPIN_LOCK—Creates and initializes a simple lock. An
identifier is returned for subsequent reference to this spin lock.

• PPL$SEIZE_SPIN_LOCK—Acquires a spin lock that has been created with
PPL$CREATE_SPIN_LOCK. Use the identifier returned by PPL$CREATE_
SPIN_LOCK to refer to the lock you want to acquire.

14–28

Synchronizing Data Access and Program Operations
14.7 Synchronizing Operations with Parallel Processing Run-Time Routines

• PPL$RELEASE_SPIN_LOCK—Releases a spin lock. Use the identifier
returned by PPL$CREATE_SPIN_LOCK to refer to the lock you want to
release. Once this routine has freed the lock, another process can acquire the
lock.

14.7.3 Using Semaphores
Semaphores also synchronize access to a critical region or physical device by
controlling the number of processes that have access. Unlike spin locks, using
semaphores is not CPU intensive.

There are two type of semaphores: binary and counting. A binary semaphore
has a value of 0 or 1 and allows only one process to access a resource. A process
can access the resource when the semaphore value is 1. A process waits for the
resource when the semaphore value is 0. A counting semaphore can have any
positive value, thereby allowing you to control access to multiple resources.

The semaphore routines are as follows:

• PPL$CREATE_SEMAPHORE—Creates and initializes a semaphore and
creates a waiting queue that keeps track of processes waiting for the
semaphore.

• PPL$DECREMENT_SEMAPHORE—Decrements the value of a semaphore.
If the value of the semaphore is 0, the process requesting the semaphore can
be placed in a wait state until the semaphore value increases.

• PPL$INCREMENT_SEMAPHORE—Increments the value of a semaphore
to indicate that the resource can be accessed. If a process is waiting for the
semaphore, PPL$INCREMENT_SEMAPHORE wakes up the process and
removes it from the wait queue.

• PPL$READ_SEMAPHORE—Returns the value of the requested semaphore.

14.7.4 Using Barrier Synchronization
Barrier synchronization specifies a point in a program that all parallel paths
must reach before any are allowed to continue. Only one barrier can be set up
within a program.

The barrier routines are as follows:

• PPL$CREATE_BARRIER—Specifies the point that all paths must reach
before continuation.

• PPL$WAIT_AT_BARRIER—Suspends execution of the program path until all
program paths have reached the specified barrier.

Once you specify a barrier point, all program paths must call PPL$WAIT_AT_
BARRIER in order to be included in the barrier synchronization.

14.8 Synchronizing Operations with Synchronous and
Asynchronous System Services

A number of system services can be executed either synchronously or
asynchronously such as the following:

• SYS$GETJPI and SYS$GETJPIW

• SYS$QIO and SYS$QIOW

The W at the end of the system service name indicates the synchronous version
of the service.

14–29

Synchronizing Data Access and Program Operations
14.8 Synchronizing Operations with Synchronous and Asynchronous System Services

The asynchronous version of a system service queues a request and immediately
returns control to your program pending the completion of the request. You
can perform other operations while the system service executes. To avoid data
corruptions, you should not attempt any read or write access to any of the buffers
or itemlists referenced by the system service call prior to the completion of the
asynchronous portion of the system service call. Further, no self-referential or
self-modifying itemlists should be used.

Typically, you pass an event flag and an I/O status block to an asynchronous
system service. When the system service completes, it sets the event flag
and places the final status of the request in the I/O status block. Use the
SYS$SYNCH system service to ensure that the system service has completed.
You pass to SYS$SYNCH the event flag and I/O status block that you passed to
the asynchronous system service; SYS$SYNCH waits for the event flag to be set
and then examines the I/O status block to be sure that the system service rather
than some other program set the event flag. If the I/O status block is still 0,
SYS$SYNCH waits until the I/O status block is filled.

The following example show the use of the SYS$GETJPI system service:

! Data structure for SYS$GETJPI
.
.
.

INTEGER*4 STATUS,
2 FLAG,
2 PID_VALUE
! I/O status block
STRUCTURE /STATUS_BLOCK/
INTEGER*2 JPISTATUS,
2 LEN
INTEGER*4 ZERO /0/
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS

.

.

.
! Call SYS$GETJPI and wait for information
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$GETJPI (%VAL(FLAG),
2 PID_VALUE,
2 ,
2 NAME_BUF_LEN,
2 IOSTATUS,
2 ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

.

.

.
STATUS = SYS$SYNCH (%VAL(FLAG),
2 IOSTATUS)
IF (.NOT. IOSTATUS.JPISTATUS) THEN
CALL LIB$SIGNAL (%VAL(IOSTATUS.JPISTATUS))

END IF

END

The synchronous version of a system service acts as if you had used the
asynchronous version followed immediately by a call to SYS$SYNCH; however,
it behaves this way only if you specify a status block. If you omit the I/O status
block, the result is as though you called the asynchronous version followed
by a call to SYS$WAITFR. Regardless of whether you use the synchronous or

14–30

Synchronizing Data Access and Program Operations
14.8 Synchronizing Operations with Synchronous and Asynchronous System Services

asynchronous version of a system service, if you omit the efn argument, the
service uses event flag 0.

14–31

15
Synchronizing Access to Resources

This chapter describes the use of the lock manager to synchronize access to
shared resources. It contains the following sections:

Section 15.1 describes how the lock manager synchronizes processes to a specified
resource.

Section 15.2 describes the concepts of resources and locks.

Section 15.3 describes how to use the SYS$ENQ and SYS$ENQW system services
to queue lock requests.

Section 15.4 describes specialized features of locking techniques.

Section 15.5 describes how to use the SYS$DEQ system service to dequeue the
lock.

Section 15.6 describes how applications can perform local buffer caching.

Section 15.7 presents a code example of how to use lock management services.

15.1 Synchronizing Operations with the Lock Manager
Cooperating processes can use the lock manager to synchronize access to a
shared resource (for example, a file, program, or device). This synchronization
is accomplished by allowing processes to establish locks on named resources.
All processes that access the shared resources must use the lock management
services; otherwise, the resources are not effective.

Note

The use of the term resource throughout this chapter means shared
resource.

To synchronize access to resources, the lock management services provide a
mechanism that allows processes to wait in a queue until a particular resource is
available.

The lock manager does not ensure proper access to the resource; rather, the
programs must respect the rules for using the lock manager. The rules required
for proper synchronization to the resource are as follows:

• The resource must always be referred to by an agreed-upon name.

• Access to the resource is always accomplished by queuing a lock request with
the SYS$ENQ or SYS$ENQW system service.

• All lock requests that are placed in a wait queue must wait for access to the
resource.

15–1

Synchronizing Access to Resources
15.1 Synchronizing Operations with the Lock Manager

A process can choose to lock a resource and then create a subprocess to operate on
this resource. In this case, the program that created the subprocess (the parent
program) should not exit until the subprocess has exited. To ensure that the
parent program does not exit before the subprocess, specify an event flag to be set
when the subprocess exits (use the completion-efn argument of LIB$SPAWN).
Before exiting from the parent program, use SYS$WAITFR to ensure that the
event flag is set. (You can suppress the logout message from the subprocess
by using the SYS$DELPRC system service to delete the subprocess instead of
allowing the subprocess to exit.)

Table 15–1 summarizes the lock manager services.

Table 15–1 Lock Manager Services

Routine Description

SYS$ENQ(W) Queues a new lock or lock conversion on a resource

SYS$DEQ Releases locks and cancel lock requests

SYS$GETLKI(W) Gets information about the lock database

15.2 Concepts of Resources and Locks
A resource can be any entity on the operating system (for example, files, data
structures, databases, executable routines). When two or more processes access
the same resource, you often need to control their access to the resource. You
do not want to have one process reading the resource while another process
writes new data, because a writer can quickly invalidate anything being read by
a reader. The lock management system services allow processes to associate a
name with a resource and request access to that resource. Lock modes enable
processes to indicate how they want to share access with other processes.

To use the lock management system services, a process must request access to
a resource (request a lock) using the Enqueue Lock Request (SYS$ENQ) system
service. Three arguments are required to the SYS$ENQ system service for new
locks:

• Resource name—The lock management services use the resource name to
look for other lock requests that use the same name.

• Lock mode to be associated with the requested lock—The lock mode indicates
how the process wants to share the resource with other processes.

• Address of a lock status block—The lock status block receives the completion
status for a lock request and the lock identification. The lock identification is
used to refer to a lock request after it has been queued.

The lock management services compare the lock mode of the newly requested lock
to the mode of other locks with the same resource name. New locks are granted
in the following instances:

• If no other process has a lock on the resource.

• If another process has a lock on the resource and the mode of the new request
is compatible with the existing lock.

15–2

Synchronizing Access to Resources
15.2 Concepts of Resources and Locks

• If another process already has a lock on the resource and the mode of the
new request is not compatible with the lock mode of the existing lock, the
new request is placed in a queue, where it waits until the resource becomes
available. When the resource becomes available, the process is notified that
the lock has been granted.

Processes can also use the SYS$ENQ system service to change the lock mode of a
lock. This is called a lock conversion.

15.2.1 Resource Granularity
Many resources can be divided into smaller parts. As long as a part of a resource
can be identified by a resource name, the part can be locked. The term resource
granularity describes the part of the resource being locked.

Figure 15–1 depicts a model of a database. The database is divided into areas,
such as a file, which in turn are subdivided into records. The records are further
divided into items.

Figure 15–1 Model Database

Volume

File

ZK−0373−GE

File

Record

Item ItemItem

Record

Item Item

Record

Item Item

Record

Item Item

Record

Item ItemItem

The processes that request locks on the database shown in Figure 15–1 may lock
the whole database, an area in the database, a record, or a single item. Locking
the entire database is considered locking at a coarse granularity; locking a
single item is considered locking at a fine granularity.

In this example, overall access to the database can be represented by a root
resource name. Access to areas in the database or records within areas can be
represented by sublocks.

Root resources consist of the following:

• Resource domain

• Resource name

• Access mode

Subresources consist of the following:

• Parent resource

• Resource name

• Access mode

15–3

Synchronizing Access to Resources
15.2 Concepts of Resources and Locks

15.2.2 Resource Domains
Because resource names are arbitrary names chosen by applications, one
application may interfere (either intentionally or unintentionally) with another
application. Unintentional interference can be easily avoided by careful design,
such as using a registered facility name as a prefix for all root resource names
used by an application.

Intentional interference can be prevented by using resource domains. A
resource domain is a namespace for root resource names and is identified by
a number. Resource domain 0 is used as a system resource domain. Usually,
other resource domains are used by the UIC group corresponding to the domain
number.

By using the SYS$SET_RESOURCE_DOMAIN system service, a process can gain
access to any resource domain subject to normal operating system access control.
By default, each resource domain allows read, write, and lock access by members
of the corresponding UIC group. See the OpenVMS Guide to System Security for
more information about access control.

15.2.3 Resource Names
The lock management system services refer to each resource by a name composed
of the following four parts:

• A name specified by the caller

• The caller’s access mode

• The caller’s UIC group number (unless the resource is systemwide)

• The identification of the lock’s parent (optional)

For two resources to be considered the same, these four parts must be identical
for each resource.

The name specified by the process represents the resource being locked. Other
processes that need to access the resource must refer to it using the same name.
The correlation between the name and the resource is a convention agreed upon
by the cooperating processes.

The access mode is determined by the caller’s access mode unless a less privileged
mode is specified in the call to the SYS$ENQ system service. Access modes, their
numeric values, and their symbolic names are discussed in the OpenVMS Calling
Standard.

The default resource domain is selected by the UIC group number for the process.
The system domain can be accessed by setting the LCK$M_SYSTEM when you
request a new root lock. Other domains can be accessed using the optional
RSDM_ID parameter to SYS$ENQ. You need the SYSLCK user privilege to
request systemwide locks from user or supervisor mode. No additional privilege
is required to request systemwide locks from executive or kernel mode.

When a lock request is queued, it can specify the identification of a parent lock,
at which point it becomes a sublock (see Section 15.4.8). However, the parent lock
must be granted, or the lock request is not accepted. This enables a process to
lock a resource at different degrees of granularity.

15–4

Synchronizing Access to Resources
15.2 Concepts of Resources and Locks

15.2.4 Choosing a Lock Mode
The mode of a lock determines whether the resource can be shared with other
lock requests. Table 15–2 describes the six lock modes.

Table 15–2 Lock Modes

Mode Name Meaning

LCK$K_NLMODE Null mode. This mode grants no access to the resource. The null
mode is typically used as an indicator of interest in the resource
or as a placeholder for future lock conversions.

LCK$K_CRMODE Concurrent read. This mode grants read access to the resource
and allows sharing of the resource with other readers. The
concurrent read mode is generally used when additional locking
is being performed at a finer granularity with sublocks or to
read data from a resource in an ‘‘unprotected’’ fashion (allowing
simultaneous writes to the resource).

LCK$K_CWMODE Concurrent write. This mode grants write access to the resource
and allows sharing of the resource with other writers. The
concurrent write mode is typically used to perform additional
locking at a finer granularity, or to write in an ‘‘unprotected’’
fashion.

LCK$K_PRMODE Protected read. This mode grants read access to the resource
and allows sharing of the resource with other readers. No
writers are allowed access to the resource. This is the traditional
‘‘share lock.’’

LCK$K_PWMODE Protected write. This mode grants write access to the resource
and allows sharing of the resource with users at concurrent read
mode. No other writers are allowed access to the resource. This
is the traditional ‘‘update lock.’’

LCK$K_EXMODE Exclusive. The exclusive mode grants write access to the
resource and prevents the sharing of the resource with any
other readers or writers. This is the traditional ‘‘exclusive lock.’’

15.2.5 Levels of Locking and Compatibility
Locks that allow the process to share a resource are called low-level locks;
locks that allow the process almost exclusive access to a resource are called
high-level locks. Null and concurrent read mode locks are considered low-level
locks; protected write and exclusive mode locks are considered high-level. The
lock modes, from lowest- to highest-level access, are:

• Null

• Concurrent read

• Concurrent write

Protected read

• Protected write

• Exclusive

Note that the concurrent write and protected read modes are considered to be of
equal level.

15–5

Synchronizing Access to Resources
15.2 Concepts of Resources and Locks

Locks that can be shared with other locks are said to have compatible lock
modes. High-level lock modes are less compatible with other lock modes than are
low-level lock modes. Table 15–3 shows the compatibility of the lock modes.

Table 15–3 Compatibility of Lock Modes

Mode of Mode of Currently Granted Locks

Requested
Lock NL CR CW PR PW EX

NL Yes Yes Yes Yes Yes Yes

CR Yes Yes Yes Yes Yes No

CW Yes Yes Yes No No No

PR Yes Yes No Yes No No

PW Yes Yes No No No No

EX Yes No No No No No

Key to Lock Modes:

NL—Null
CR—Concurrent read
CW—Concurrent write
PR—Protected read
PW—Protected write
EX—Exclusive

15.2.6 Lock Management Queues
A lock on a resource can be in one of the following three states:

• Granted—The lock request has been granted.

• Waiting—The lock request is waiting to be granted.

• Conversion—The lock request has been granted at one mode and is waiting to
be granted a high-level lock mode.

A queue is associated with each of the three states (see Figure 15–2).

When you request a new lock, the lock management services first determine
whether the resource is currently known (that is, if any other processes have
locks on that resource). If the resource is new (that is, if no other locks exist on
the resource), the lock management services create an entry for the new resource
and the requested lock. If the resource is already known, the lock management
services determine whether any other locks are waiting in either the conversion
or the waiting queue. If other locks are waiting in either queue, the new lock
request is queued at the end of the waiting queue. If both the conversion and
waiting queues are empty, the lock management services determine whether
the new lock is compatible with the other granted locks. If the lock request is
compatible, the lock is granted; if it is not compatible, it is placed in the waiting
queue. You can use a flag bit to direct the lock management services not to queue
a lock request if one cannot be granted immediately.

15–6

Synchronizing Access to Resources
15.2 Concepts of Resources and Locks

Figure 15–2 Three Lock Queues

GRANTED

CONVERSION

WAITING

New Lock Queued

ZK−0374−GE

Conversions
Compatible

Conversions
IncompatibleGranted

Conversions

Waiting Locks
GrantedNew

Lock
Granted

15.2.7 Concepts of Lock Conversion
Lock conversions allow processes to change the level of locks. For example, a
process can maintain a low-level lock on a resource until it limits access to the
resource. The process can then request a lock conversion.

You specify lock conversions by using a flag bit (see Section 15.4.6) and a lock
status block. The lock status block must contain the lock identification of the lock
to be converted. If the new lock mode is compatible with the currently granted
locks, the conversion request is granted immediately. If the new lock mode is
incompatible with the existing locks in the granted queue, the request is placed
in the conversion queue. The lock retains its old lock mode and does not receive
its new lock mode until the request is granted.

When a lock is dequeued or is converted to a lower-level lock mode, the lock
management services inspect the first conversion request on the conversion
queue. The conversion request is granted if it is compatible with the locks
currently granted. Any compatible conversion requests immediately following are
also granted. If the conversion queue is empty, the waiting queue is checked. The
first lock request on the waiting queue is granted if it is compatible with the locks
currently granted. Any compatible lock requests immediately following are also
granted.

15–7

Synchronizing Access to Resources
15.2 Concepts of Resources and Locks

15.2.8 Deadlock Detection
A deadlock occurs when any group of locks are waiting for each other in a circular
fashion.

In Figure 15–3, three processes have queued requests for resources that cannot
be accessed until the current locks held are dequeued (or converted to a lower
lock mode).

Figure 15–3 Deadlock

ZK−0375−GE

A B

C

That A Has
the Resource
Waiting for

That C Has
the Resource
Waiting for

That B Has
the Resource
Waiting for

If the lock management services determine that a deadlock exists, the services
choose a process to break the deadlock. The chosen process is termed the victim.
If the victim has requested a new lock, the lock is not granted; if the victim has
requested a lock conversion, the lock is returned to its old lock mode. In either
case, the status code SS$_DEADLOCK is placed in the lock status block. Note
that granted locks are never revoked; only waiting lock requests can receive the
status code SS$_DEADLOCK.

Note

Programmers must not make assumptions regarding which process is to
be chosen to break a deadlock.

15.3 Queuing Lock Requests
You use the SYS$ENQ or SYS$ENQW system service to queue lock requests.
SYS$ENQ queues a lock request and returns; SYS$ENQW queues a lock request,
waits until the lock is granted, and then returns. When you request new locks,
the system service call must specify the lock mode, address of the lock status
block, and resource name.

15–8

Synchronizing Access to Resources
15.3 Queuing Lock Requests

The format for SYS$ENQ and SYS$ENQW is as follows:

SYS$ENQ(W) ([efn], lkmode, lksb, [flags], [resnam], [parid], [astadr]
,[astprm], [blkast], [acmode], nullarg)

The following example illustrates a call to SYS$ENQW:

#include <stdio.h>
#include <descrip.h>
#include <lckdef.h>

/* Declare a lock status block */

struct lock_blk {
unsigned short condition,reserved;
unsigned int lock_id;

}lksb;

.

.

.
unsigned int status, lkmode=LCK$K_PRMODE;
$DESCRIPTOR(resource,"STRUCTURE_1");

/* Queue a request for protected read mode lock */
status = SYS$ENQW(0, /* efn - event flag */

lkmode, /* lkmode - lock mode requested */
&lksb, /* lksb - lock status block */
0, /* flags */
&resource, /* resnam - name of resource */
0, /* parid - parent lock id */
0, /* astadr - AST routine */
0, /* astprm - AST parameter */
0, /* blkast - blocking AST */
0, /* acmode - access mode */
0); /* rsdm_id - resource domain id */

}

In this example, a number of processes access the STRUCTURE_1 data structure.
Some processes read the data structure; others write to the structure. Readers
must be protected from reading the structure while it is being updated by
writers. The reader in the example queues a request for a protected read mode
lock. Protected read mode is compatible with itself, so all readers can read the
structure at the same time. A writer to the structure uses protected write or
exclusive mode locks. Because protected write mode and exclusive mode are not
compatible with protected read mode, no writers can write the data structure
until the readers have released their locks, and no readers can read the data
structure until the writers have released their locks.

Table 15–3 shows the compatibility of lock modes.

15.3.1 Example of Requesting a Null Lock
The program segment in Example 15–1 requests a null lock for the resource
named TERMINAL. After the lock is granted, the program requests that the
lock be converted to an exclusive lock. Note that, after SYS$ENQW returns, the
program checks the status of the system service and the status returned in the
lock status block to ensure that the request completed successfully. (The lock
mode symbols are defined in the $LCKDEF module of the system macro library.)

15–9

Synchronizing Access to Resources
15.3 Queuing Lock Requests

Example 15–1 Requesting a Null Lock

! Define lock modes
INCLUDE ’($LCKDEF)’
! Define lock status block
STRUCTURE /STATUS_BLOCK/
INTEGER*2 LOCK_STATUS,
2 NULL
INTEGER*4 LOCK_ID
END STRUCTURE
RECORD /STATUS_BLOCK/ IOSTATUS

.

.

.
! Request a null lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_NLMODE),
2 IOSTATUS,
2 ,
2 ’TERMINAL’,
2 ,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.LOCK_STATUS)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK_STATUS))
! Convert the lock to an exclusive lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_EXMODE),
2 IOSTATUS,
2 %VAL(LCK$M_CONVERT),
2 ’TERMINAL’,
2 ,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTATUS.LOCK_STATUS)
2 CALL LIB$SIGNAL (%VAL(IOSTATUS.LOCK_STATUS))

For more complete information on the use of SYS$ENQ, refer to the OpenVMS
System Services Reference Manual.

15.4 Advanced Locking Techniques
The previous sections discuss locking techniques and concepts that are useful to
all applications. The following sections discuss specialized features of the lock
manager.

15.4.1 Synchronizing Locks
The SYS$ENQ system service returns control to the calling program when the
lock request is queued. The status code in R0 indicates whether the request was
queued successfully. After the request is queued, the procedure cannot access
the resource until the request is granted. A procedure can use three methods to
check that a request has been granted:

• Specify the number of an event flag to be set when the request is granted,
and wait for the event flag.

• Specify the address of an AST routine to be executed when the request is
granted.

• Poll the lock status block for a return status code that indicates that the
request has been granted.

These methods of synchronization are identical to the synchronization techniques
used with the SYS$QIO system services (described in Chapter 9).

15–10

Synchronizing Access to Resources
15.4 Advanced Locking Techniques

The $ENQW macro performs synchronization by combining the functions of the
SYS$ENQ system service and the Synchronize (SYS$SYNCH) system service.
The $ENQW macro has the same arguments as the $ENQ macro. It queues the
lock request and then places the program in an event flag wait state (LEF) until
the lock request is granted.

15.4.2 Notification of Synchronous Completion
The lock management services provide a mechanism that allows processes to
determine whether a lock request is granted synchronously, that is, if the lock
is not placed on the conversion or waiting queue. This feature can be used to
improve performance in applications where most locks are granted synchronously
(as is normally the case).

If the flag bit LCK$M_SYNCSTS is set and a lock is granted synchronously, the
status code SS$_SYNCH is returned in R0; no event flag is set, and no AST is
delivered.

If the request is not completed synchronously, the success code SS$_NORMAL is
returned; event flags or AST routines are handled normally (that is, the event
flag is set, and the AST is delivered when the lock is granted).

15.4.3 Expediting Lock Requests
A request can be expedited (granted immediately) if its requested mode, when
granted, does not block any currently queued requests from being granted. The
LCK$M_EXPEDITE flag is specified in the SYS$ENQ operation to expedite
a request. Currently, only NLMODE requests can be expedited. A request to
expedite any other lock mode fails with SS$_UNSUPPORTED status.

15.4.4 Lock Status Block
The lock status block receives the final completion status and the lock
identification, and optionally contains a lock value block (see Figure 15–4).
When a request is queued, the lock identification is stored in the lock status
block even if the lock has not been granted. This allows a procedure to dequeue
locks that have not been granted. For more information about the Dequeue Lock
Request (SYS$DEQ) system service, see Section 15.5.

Figure 15–4 Lock Status Block

ZK−1708−GE

Lock identification

Reserved Condition value

31 15 0

16−byte lock value block
(Used only when the LCK$M_VALBLK flag is set)

The status code is placed in the lock status block only when the lock is granted or
when errors occur in granting the lock.

The uses of the lock value block are described in Section 15.6.1.

15–11

Synchronizing Access to Resources
15.4 Advanced Locking Techniques

15.4.5 Blocking ASTs
In some applications that use the lock management services, a process must
know whether it is preventing another process from locking a resource. The lock
management services inform processes of this through the use of blocking ASTs.
When the lock prevents another lock from being granted, the blocking routine is
delivered as an AST to the process. Blocking ASTs are not delivered when the
state of the lock is either Conversion or Waiting.

To enable blocking ASTs, the blkast argument of the SYS$ENQ system service
must contain the address of a blocking AST service routine. The astprm
argument is used to pass a parameter to the blocking AST. For more information
about ASTs and AST service routines, see Chapter 4. Some uses of blocking ASTs
are also described in that chapter.

15.4.6 Lock Conversions
Lock conversions perform three main functions:

• Maintaining a low-level lock and converting it to a higher lock mode when
necessary

• Maintaining values stored in a resource lock value block (described in the
following paragraphs)

• Improving performance in some applications

A procedure normally needs an exclusive (or protected write) mode lock while
writing data. The procedure should not keep the resource exclusively locked all
the time, however, because writing might not always be necessary. Maintaining
an exclusive or protected write mode lock prevents other processes from accessing
the resource. Lock conversions allow a process to request a low-level lock at first
and convert the lock to a high-level lock mode (protected write mode, for example)
only when it needs to write data.

Some applications of locks require the use of the lock value block. If a version
number or other data is maintained in the lock value block, you need to maintain
at least one lock on the resource so that the value block is not lost. In this case,
processes convert their locks to null locks, rather than dequeuing them when they
have finished accessing the resource.

In order to improve performance in some applications, all resources that might be
locked are locked with null locks during initialization. You can convert the null
locks to higher-level locks as needed. Usually a conversion request is faster than
a new lock request because the necessary data structures have already been built.
However, maintaining any lock for the life of a procedure uses system dynamic
memory. Therefore, the approach of creating all necessary locks as null locks and
converting them as needed improves performance at the expense of increased
storage requirements.

Note

If you specify the flag bit LCK$M_NOQUEUE on a lock conversion
and the conversion fails, the new blocking AST address and parameter
specified in the conversion request replace the blocking AST address and
parameter specified in the previous SYS$ENQ request.

15–12

Synchronizing Access to Resources
15.4 Advanced Locking Techniques

Queuing Lock Conversions
To perform a lock conversion, a procedure calls the SYS$ENQ system service with
the flag bit LCK$M_CONVERT. Lock conversions do not use the resnam, parid,
acmode, or prot argument. The lock being converted is identified by the lock
identification contained in the lock status block. The following program shows
a simple lock conversion. Note that the lock must be granted before it can be
converted.

#include <stdio.h>
#include <descrip.h>
#include <lckdef.h>

/* Declare a lock status block */

struct lock_blk {
unsigned short lkstat, reserved;
unsigned int lock_id;

}lksb;

.

.

.
unsigned int status, lkmode, flags;
$DESCRIPTOR(resource,"STRUCTURE_1");

.

.

.
lkmode = LCK$K_NLMODE;

/* Queue a request for protected read mode lock */
status = SYS$ENQW(0, /* efn - event flag */

lkmode, /* lkmode - lock mode */
&lksb, /* lksb - lock status block */
0, /* flags */
&resource, /* resnam - name of resource */
0, 0, 0, 0, 0, 0);

.

.

.
lkmode = LCK$K_PWMODE;
flags = LCK$M_CONVERT;

/* Queue a request for protected write mode lock */
status = SYS$ENQW(0, /* efn - event flag */

lkmode, /* lkmode - lock mode */
&lksb, /* lksb - lock status block */
flags, /* flags */
0, 0, 0, 0, 0, 0, 0);

.

.

.
}

15.4.7 Forced Queuing of Conversions
It is possible to force certain conversions to be queued that would otherwise be
granted. A conversion request with the LCK$M_QUECVT flag set is forced to
wait behind any already queued conversions.

The conversion request is granted immediately if no conversions are already
queued.

15–13

Synchronizing Access to Resources
15.4 Advanced Locking Techniques

The QUECVT behavior is valid only for a subset of all possible conversions.
Table 15–4 defines the legal set of conversion requests for LCK$M_QUECVT.
Illegal conversion requests fail with SS$_BADPARAM returned.

Table 15–4 Legal QUECVT Conversions

Lock Mode to Which Lock Is Converted

Lock Mode
at Which
Lock Is Held NL CR CW PR PW EX

NL No Yes Yes Yes Yes Yes

CR No No Yes Yes Yes Yes

CW No No No Yes Yes Yes

PR No No Yes No Yes Yes

PW No No No No No Yes

EX No No No No No No

Key to Lock Modes:

NL—Null
CR—Concurrent read
CW—Concurrent write
PR—Protected read
PW—Protected write
EX—Exclusive

15.4.8 Parent Locks
When a lock request is queued, you can declare a parent lock for the new lock.
A lock that has a parent is called a sublock. To specify a parent lock, the lock
identification of the parent lock is passed in the parid argument to the SYS$ENQ
system service. A parent lock must be granted before the sublocks belonging to
the parent can be granted.

The benefits of specifying parent locks are as follows:

• Low-level locks (concurrent read or concurrent write) can be held at a coarse
granularity, such as files, whereas high-level (protected write or exclusive
mode) sublocks are held on resources of a finer granularity, such as records or
data items.

• Resources names are unique with each parent; parent locks are part of the
resource name.

The following paragraphs describe the use of parent locks.

Assume that a number of processes need to access a database. The database
can be locked at two levels: the file and individual records. For updating all
the records in a file, locking the whole file and updating the records without
additional locking is faster and more efficient. But for updating selected records,
locking each record as it is needed is preferable.

To use parent locks in this way, all processes request locks on the file. Processes
that need to update all records must request protected write or exclusive mode
locks on the file. Processes that need to update individual records request
concurrent write mode locks on the file and then use sublocks to lock the
individual records in protected write or exclusive mode.

15–14

Synchronizing Access to Resources
15.4 Advanced Locking Techniques

In this way, the processes that need to access all records can do so by locking the
file, while processes that share the file can lock individual records. A number
of processes can share the file-level lock at concurrent write mode while their
sublocks update selected records.

VAX On VAX systems, the number of levels of sublocks is limited by the size of the
interrupt stack. If the limit is exceeded, the error status SS$_EXDEPTH is
returned. The size of the interrupt stack is controlled by the SYSGEN parameter
INTSTKPAGES. The default value for INTSTKPAGES allows 32 levels of
sublocks. For more information about SYSGEN and INTSTKPAGES, see the
OpenVMS System Manager’s Manual. ♦

Alpha On Alpha systems, the number of levels of sublocks is limited by the size of
the kernel stack. If the limit is exceeded, the error status SS$_EXDEPTH is
returned. The size of the kernel stack is controlled by the SYSGEN parameter
KSTACKPAGES. ♦

15.4.9 Lock Value Blocks
The lock value block is an optional, 16-byte extension of a lock status block. The
first time a process associates a lock value block with a particular resource, the
lock management services create a resource lock value block for that resource.
The lock management services maintain the resource lock value block until there
are no more locks on the resource.

To associate a lock value block with a resource, the process must set the flag bit
LCK$M_VALBLK in calls to the SYS$ENQ system service. The lock status block
lksb argument must contain the address of the lock status block for the resource.

When a process sets the flag bit LCK$M_VALBLK in a lock request (or conversion
request) and the request (or conversion) is granted, the contents of the resource
lock value block are written to the lock value block of the process.

When a process sets the flag bit LCK$M_VALBLK on a conversion from protected
write or exclusive mode to a lower mode, the contents of the process’s lock value
block are stored in the resource lock value block.

In this manner, processes can pass the value in the lock value block along with
the ownership of a resource.

Table 15–5 shows how lock conversions affect the contents of the process’s and
the resource’s lock value block.

15–15

Synchronizing Access to Resources
15.4 Advanced Locking Techniques

Table 15–5 Effect of Lock Conversion on Lock Value Block

Lock Mode to Which Lock Is Converted

Lock Mode
at Which
Lock Is Held NL CR CW PR PW EX

NL Return Return Return Return Return Return

CR Neither Return Return Return Return Return

CW Neither Neither Return Return Return Return

PR Neither Neither Neither Return Return Return

PW Write Write Write Write Write Return

EX Write Write Write Write Write Write

Key to Lock Modes:

NL—Null
CR—Concurrent read
CW—Concurrent write
PR—Protected read
PW—Protected write
EX—Exclusive

Key to Effects:

Return—The contents of the resource lock value block are returned to the lock value block of the
process.
Neither—The lock value block of the process is not written; the resource lock value block is not
returned.
Write—The contents of the process’s lock value block are written to the resource lock value block.

Note that when protected write or exclusive mode locks are dequeued using the
Dequeue Lock Request (SYS$DEQ) system service and the address of a lock value
block is specified in the valblk argument, the contents of that lock value block
are written to the resource lock value block.

15.5 Dequeuing Locks
When a process no longer needs a lock on a resource, you can dequeue the lock
by using the Dequeue Lock Request (SYS$DEQ) system service. Dequeuing
locks means that the specified lock request is removed from the queue it is
in. Locks are dequeued from any queue: Granted, Waiting, or Conversion
(see Section 15.2.6). When the last lock on a resource is dequeued, the lock
management services delete the name of the resource from its data structures.

The four arguments to the SYS$DEQ macro (lkid, valblk, acmode, and flags)
are optional. The lkid argument allows the process to specify a particular lock to
be dequeued, using the lock identification returned in the lock status block.

The valblk argument contains the address of a 16-byte lock value block. If the
lock being dequeued is in protected write or exclusive mode, the contents of the
lock value block are stored in the lock value block associated with the resource.
If the lock being dequeued is in any other mode, the lock value block is not used.
The lock value block can be used only if a particular lock is being dequeued.

Three flags are available:

• LCK$M_DEQUALL—The LCK$M_DEQALL flag indicates that all locks of
the access mode specified with the acmode argument and less privileged
access modes are to be dequeued. The access mode is maximized with the

15–16

Synchronizing Access to Resources
15.5 Dequeuing Locks

access mode of the caller. If the flag LCK$M_DEQALL is specified, then the
lkid argument must be 0 (or not specified).

• LCK$M_CANCEL—When LCK$M_CANCEL is specified, SYS$DEQ attempts
to cancel a lock conversion request that was queued by SYS$ENQ. This
attempt can succeed only if the lock request has not yet been granted, in
which case the request is in the conversion queue. The LCK$M_CANCEL
flag is ignored if the LCK$M_DEQALL flag is specified. For more information
about the LCK$M_CANCEL flag, see the description of the SYS$DEQ service
in the OpenVMS System Services Reference Manual.

• LCK$M_INVVALBLK—When LCK$M_INVVALBLK is specified, $DEQ
marks the lock value block, which is maintained for the resource in the lock
database, as invalid. See the descriptions of SYS$DEQ and SYS$ENQ in the
OpenVMS System Services Reference Manual for more information about the
LCK$M_INVVALBLK flag.

The following is an example of dequeuing locks:

#include <stdio.h>
#include <descrip.h>
#include <lckdef.h>

/* Declare a lock status block */

struct lock_blk {
unsigned short lkstat ,reserved;
unsigned int lock_id;

}lksb;

.

.

.
void read_updates();
unsigned int status, lkmode=LCK$K_CRMODE, lkid;
$DESCRIPTOR(resnam,"STRUCTURE_1"); /* resource */

/* Queue a request for concurrent read mode lock */
status = SYS$ENQW(0, /* efn - event flag */

lkmode, /* lkmode - lock mode */
&lksb, /* lksb - lock status block */
0, /* flags */
&resnam, /* resnam - name of resource */
0, /* parid - lock id of parent */
&read_updates,/* astadr - AST routine */
0, 0, 0, 0);

if((status & 1) != 1)
LIB$SIGNAL(status);

.

.

.
lkid = lksb.lock_id;
status = SYS$DEQ(lkid, /* lkid - id of lock to be dequeued */

0, 0, 0);
if((status & 1) != 1)

LIB$SIGNAL(status);

}

User-mode locks are automatically dequeued when the image exits.

15–17

Synchronizing Access to Resources
15.6 Local Buffer Caching with the Lock Management Services

15.6 Local Buffer Caching with the Lock Management Services
The lock management services provide methods for applications to perform
local buffer caching (also called distributed buffer management). Local buffer
caching allows a number of processes to maintain copies of data (disk blocks,
for example) in buffers local to each process and to be notified when the buffers
contain invalid data because of modifications by another process. In applications
where modifications are infrequent, substantial I/O can be saved by maintaining
local copies of buffers. Either the lock value block or blocking ASTs (or both) can
be used to perform buffer caching.

15.6.1 Using the Lock Value Block
To support local buffer caching using the lock value block, each process
maintaining a cache of buffers maintains a null mode lock on a resource that
represents the current contents of each buffer. (For this discussion, assume that
the buffers contain disk blocks.) The value block associated with each resource is
used to contain a disk block ‘‘version number.’’ The first time a lock is obtained on
a particular disk block, the current version number of that disk block is returned
in the lock value block of the process. If the contents of the buffer are cached,
this version number is saved along with the buffer. To reuse the contents of the
buffer, the null lock must be converted to protected read mode or exclusive mode,
depending on whether the buffer is to be read or written. This conversion returns
the latest version number of the disk block. The version number of the disk block
is compared with the saved version number. If they are equal, the cached copy is
valid. If they are not equal, a fresh copy of the disk block must be read from disk.

Whenever a procedure modifies a buffer, it writes the modified buffer to disk and
then increments the version number before to converting the corresponding lock
to null mode. In this way, the next process that attempts to use its local copy of
the same buffer finds a version number mismatch and must read the latest copy
from disk rather than use its cached (now invalid) buffer.

15.6.2 Using Blocking ASTs
Blocking ASTs are used to notify processes with granted locks that another
process with an incompatible lock mode has been queued to access the same
resource.

Blocking ASTs can be used to support local buffer caching in two ways. One
technique involves deferred buffer writes; the other technique is an alternative
method of local buffer caching without using value blocks.

15.6.2.1 Deferring Buffer Writes
When local buffer caching is being performed, a modified buffer must be written
to disk before the exclusive mode lock can be released. If a large number of
modifications are expected (particularly over a short period of time), you can
reduce disk I/O by maintaining the exclusive mode lock for the entire time that
the modifications are being made and by writing the buffer once. However, this
prevents other processes from using the same disk block during this interval.
This problem can be avoided if the process holding the exclusive mode lock has
a blocking AST. The AST notifies the process if another process needs to use the
same disk block. The holder of the exclusive mode lock can then write the buffer
to disk and convert its lock to null mode (thereby allowing the other process to
access the disk block). However, if no other process needs the same disk block,
the first process can modify it many times but write it only once.

15–18

Synchronizing Access to Resources
15.6 Local Buffer Caching with the Lock Management Services

15.6.2.2 Buffer Caching
To perform local buffer caching using blocking ASTs, processes do not convert
their locks to null mode from protected read or exclusive mode when finished
with the buffer. Instead, they receive blocking ASTs whenever another process
attempts to lock the same resource in an incompatible mode. With this technique,
processes are notified that their cached buffers are invalid as soon as a writer
needs the buffer, rather than the next time the process tries to use the buffer.

15.6.3 Choosing a Buffer-Caching Technique
The choice between using version numbers or blocking ASTs to perform local
buffer caching depends on the characteristics of the application. An application
that uses version numbers performs more lock conversions, whereas one that uses
blocking ASTs delivers more ASTs. Note that these techniques are compatible;
some processes can use one technique, and other processes can use the other
at the same time. Generally, blocking ASTs are preferable in a low-contention
environment, whereas version numbers are preferable in a high-contention
environment. You can even invent combined or adaptive strategies.

In a combined strategy, the applications use specific techniques. If a process
is expected to reuse the contents of a buffer in a short amount of time, the
application uses blocking ASTs; if there is no reason to expect a quick reuse, the
application uses version numbers.

In an adaptive strategy, an application makes evaluations based on the rate of
blocking ASTs and conversions. If blocking ASTs arrive frequently, the application
changes to using version numbers; if many conversions take place and the same
cached copy remains valid, the application changes to using blocking ASTs.

For example, suppose one process continually displays the state of a database,
while another occasionally updates it. If version numbers are used, the displaying
process must always make sure that its copy of the database is valid (by
performing a lock conversion); if blocking ASTs are used, the display process
is informed every time the database is updated. On the other hand, if updates
occur frequently, the use of version numbers is preferable to continually delivering
blocking ASTs.

15.7 Example of Using Lock Management Services
The following program segment requests a null lock for the resource named
TERMINAL. After the lock is granted, the program requests that the lock be
converted to an exclusive lock. Note that, after SYS$ENQW returns, the program
checks both the status of the system service and the condition value returned in
the lock status block to ensure that the request completed successfully.

15–19

Synchronizing Access to Resources
15.7 Example of Using Lock Management Services

! Define lock modes
INCLUDE ’($LCKDEF)’
! Define lock status block
INTEGER*2 LOCK_STATUS,
2 NULL
INTEGER LOCK_ID
COMMON /LOCK_BLOCK/ LOCK_STATUS,
2 NULL,
2 LOCK_ID

.

.

.
! Request a null lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_NLMODE),
2 LOCK_STATUS,
2 ,
2 ’TERMINAL’,
2 ,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS))

! Convert the lock to an exclusive lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_EXMODE),
2 LOCK_STATUS,
2 %VAL(LCK$M_CONVERT),
2 ’TERMINAL’,
2 ,,,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS))

To share a terminal between a parent process and a subprocess, each process
requests a null lock on a shared resource name. Then, each time one of the
processes wants to perform terminal I/O, it requests an exclusive lock, performs
the I/O, and requests a null lock.

Because the lock manager is effective only between cooperating programs,
the program that created the subprocess should not exit until the subprocess
has exited. To ensure that the parent does not exit before the subprocess,
specify an event flag to be set when the subprocess exits (the num argument
of LIB$SPAWN). Before exiting from the parent program, use SYS$WAITFR to
ensure that the event flag has been set. (You can suppress the logout message
from the subprocess by using the SYS$DELPRC system service to delete the
subprocess instead of allowing the subprocess to exit.)

After the parent process exits, a created process cannot synchronize access to
the terminal and should use the SYS$BRKTHRU system service to write to the
terminal.

15–20

16
Image Initialization

This chapter describes the system declaration mechanism, including
LIB$INITIALIZE, which performs calls to any initialization routine declared
for the image by the user. However, use of LIB$INITIALIZE is discouraged and
should be used only when no other method is suitable. This chapter contains the
following sections:

Section 16.1 describes the steps to perform image initialization.

Section 16.2 describes the argument list that is passed from the command
interpreter, the debugger, or LIB$INITIALIZE to the main program.

Section 16.3 describes how a library or user program can declare an initialization
routine.

Section 16.4 describes how the LIB$INITIALIZE dispatcher calls the initialization
routine in a list.

Section 16.5 describes the options available to an initialization routine.

Section 16.6 illustrates with a code example several functions of an initialization
routine on both VAX and Alpha systems.

16.1 Initializing an Image
In most cases, both user and library routines are self-initializing. This means
that they can process information with no special action required by the calling
program. Initialization is automatic in two situations:

• When the routine’s statically allocated data storage is initialized at compile or
link time.

• When a statically allocated flag is tested and set on each call so that
initialization occurs only on the first call.

Any special initialization, such as a call to other routines or to system services,
can be performed on the first call before the main program is initialized. For
example, you can establish a new environment to alter the way errors are
handled or the way messages are printed.

Such special initialization is required only rarely; however, when it is required,
the caller of the routine does not need to make an explicit initialization call. The
run-time library provides a system declaration mechanism that performs all such
initialization calls before the main program is called. Thus, special initialization
is invisible to later callers of the routine.

VAX On VAX systems, before the main program or main routine is called, a number
of system initialization routines are called as specified by a 1-, 2-, or 3-longword
initialization list set up by the linker. ♦

16–1

Image Initialization
16.1 Initializing an Image

Alpha On Alpha systems, before the main program or main routine is called, a number
of system initialization routines are called as specified by a 1-, 2-, or 3-quadword
initialization list set up by the linker. ♦

VAX On VAX systems, the initialization list consists of the following (in order):

• The addresses of the debugger (if present)

• The LIB$INITIALIZE routine (if present)

• The entry point of the main program or main routine ♦

Alpha On Alpha systems, the initialization list consists of the following (in order):

• The procedure value addresses of the debugger (if present)

• The LIB$INITIALIZE routine (if present)

• The entry point of the main program or main routine ♦

The following initialization steps take place:

1. The image activator maps the user program into the address space of the
process and sets up useful information, such as the program name. Then it
starts the command language interpreter (CLI).

2. The CLI sets up an argument list and calls the next routine in the
initialization list (debugger, LIB$INITIALIZE, main program, or main
routine).

VAX 3. On VAX systems, the debugger, if present, initializes itself and calls the next
routine in the initialization list (LIB$INITIALIZE, main program, or main
routine). ♦

Alpha On Alpha systems, the CLI calls the debugger, if present, to set the initial
breakpoints. Then the CLI calls the next entry in the vector. ♦

4. The LIB$INITIALIZE library routine, if present, calls each library and user
initialization routine declared using the system LIB$INITIALIZE mechanism.
Then it calls the main program or main routine.

5. The main program or main routine executes and, at the user’s discretion,
accesses its argument list to scan the command or to obtain information about
the image. The main program or main routine can then call other routines.

6. Eventually, the main program or main routine terminates by executing a
return instruction (RET) with R0 set to a standard completion code to indicate
success or failure, where bit <0> equals 1 (success) or 0 (failure).

7. The completion code is returned to LIB$INITIALIZE (if present), the
debugger (if present), and, finally, to the CLI, which issues a SYS$EXIT
system service with the completion status as an argument. Any declared exit
handlers are called at this point.

Note

Main programs should not call the SYS$EXIT system service directly. If
they do, other programs cannot call them as routines.

16–2

Image Initialization
16.1 Initializing an Image

Figure 16–1 and Figure 16–2 illustrate the sequence of calls and returns in a
typical image initialization. Each box is a routine activation as represented
on the image stack. The top of the stack is at the top of the figure. Each
upward arrow represents the result of a call instruction that creates a routine
activation on the stack to which control is being transferred. Each downward
arrow represents the result of a RET (return) instruction. A RET instruction
removes the routine activation from the stack and causes control to be transferred
downward to the next box.

A user program can alter the image initialization sequence by making a program
section (PSECT) contribution to PSECT LIB$INITIALIZE and by declaring
EXTERNAL LIB$INITIALIZE. This adds the optional initialization steps
shown in Figure 16–1 and Figure 16–2 labeled ‘‘Program Section Contribution
to LIB$INITIALIZE.’’ (A program section is a portion of a program with a
given protection and set of storage management attributes. Program sections
that have the same attributes are gathered together by the linker to form
an image section.) If the initialization routine also performs a coroutine call
back to LIB$INITIALIZE, the optional steps labeled ‘‘Coroutine Call Back to
LIB$INITIALIZE’’ in Figure 16–1 and Figure 16–2 are added to the image
initialization sequence.

VAX Figure 16–1 shows the call instruction calling the debugger, if present, and the
debugger then directly calling LIB$INITIALIZE and the main program. ♦

16–3

Image Initialization
16.1 Initializing an Image

Figure 16–1 Sequence of Events During Image Initialization on VAX Systems

*These procedures are (or can be) user supplied.

ZK−1977−GE

Coroutine Call Back to
LIB$INITIALIZE
(Optional)

Program Section
Contribution to
LIB$INITIALIZE
(Optional)

Main Program*

LIB$INITIALIZE

Library
Procedure

Initialization
Procedure*

Debugger
(If Present)

Command
Language
Interpreter

Image
Activator

Library
Procedure

User
Procedure*

User
Procedure*

Initialization
Procedure*

Initialization
Procedure*

User
Procedure*User Procedure*

LIB$INITIALIZE

Alpha Figure 16–2 shows the call instruction calling the debugger, if present, to set a
breakpoint at the main program’s entry point. ♦

16–4

Image Initialization
16.1 Initializing an Image

Figure 16–2 Sequence of Events During Image Initialization on Alpha Systems

*These procedures are (or can be) user supplied.

ZK−5911A−GE

Coroutine Call Back to
LIB$INITIALIZE
(Optional)

Program Section
Contribution to
LIB$INITIALIZE
(Optional)

Main Program*

LIB$INITIALIZE

Library
Procedure

Initialization
Procedure*

Library
Procedure

User
Procedure*

User
Procedure*

Initialization
Procedure*

Initialization
Procedure*

User
Procedure*User Procedure*

LIB$INITIALIZE

Command
Language
Interpreter

Debugger
(If Present)

Image
Activator

16.2 Initializing an Argument List
The following argument list is passed from the CLI, the debugger, or
LIB$INITIALIZE to the main program. This argument list is the same for
each routine activation.

(start ,cli-coroutine [,image-info])

The start argument is the address of the entry in the initialization vector that is
used to perform the call.

The cli-routine argument is the address of a CLI coroutine to obtain command
arguments. For more information, see the OpenVMS Utility Routines Manual.

The image-info argument is useful image information, such as the program
name.

16–5

Image Initialization
16.2 Initializing an Argument List

The debugger or LIB$INITIALIZE, or both, can call the next routine in the
initialization chain using the following coding sequence:

.

.

.
ADDL #4, 4(AP) ; Step to next initialization list entry
MOVL @4(AP), R0 ; R0 = next address to call
CALLG (AP), (R0) ; Call next initialization routine

.

.

.

This coding sequence modifies the contents of an argument list entry. Thus, the
sequence does not follow the OpenVMS calling standard. However, the argument
list can be expanded in the future without requiring any change either to the
debugger or to LIB$INITIALIZE.

16.3 Declaring Initialization Routines
Any library or user program module can declare an initialization routine. This
routine is called when the image is started. The declaration is made by making
a contribution to the LIB$INITIALIZE program section, which contains a list
of routine entry point addresses to be called before the main program or main
routine is called.

The following VAX MACRO example declares an initialization routine by placing
the routine entry address INIT_PROC in the list:

.EXTRN LIB$INITIALIZE ; Cause library initialization
; Dispatcher to be loaded

.PSECT LIB$INITIALIZE, NOPIC, USR, CON, REL, GBL, NOSHR, NOEXE, RD, NOWRT, LONG

.LONG INIT_PROC ; Contribute entry point address of
; initialization routine.

.PSECT ...

The .EXTRN declaration links the initialization routine dispatcher,
LIB$INITIALIZE, into your program’s image. The reference contains a definition
of the special global symbol LIB$INITIALIZE, which is the routine entry point
address of the dispatcher. The linker stores the value of this special global symbol
in the initialization list along with the starting address of the debugger and the
main program. The GBL specification ensures that the PSECT LIB$INITIALIZE
contribution is not affected by any clustering performed by the linker.

16.4 Dispatching to Initialization Routines
The LIB$INITIALIZE dispatcher calls each initialization routine in the list with
the following argument list:

CALL init-proc (init-coroutine ,cli-coroutine [, image-info])

The init-coroutine argument is the address of a library coroutine to be called to
effect a coroutine linkage with LIB$INITIALIZE.

The cli-coroutine is the address of a CLI coroutine used to obtain command
arguments.

The image-info argument is useful image information, such as the program
name.

16–6

Image Initialization
16.5 Initialization Routine Options

16.5 Initialization Routine Options
An initialization routine can be used to do the following:

• Set up an exit handler by calling the Declare Exit Handler ($DCLEXH)
system service, although exit handlers are generally set up by using a
statically allocated first-time flag.

• Initialize statically allocated storage, although this is done preferably at
image activation time using compile-time and link-time data initialization
declarations or by using a first-time call flag in its statically allocated storage.

• Call the initialization dispatcher (instead of returning to it) by calling the
init-coroutine argument. This achieves a coroutine link. Control returns to
the initialization routine when the main program returns control. Then the
initialization routine should also return control to pass back the completion
code returned by the main program (to the debugger or CLI, or both).

• Establish a condition handler in the current frame before performing the
preceding actions. This leaves the initialization routine condition handler on
the image stack for the duration of the image execution. This occurs after the
CLI sets up the catchall stack frame handler and after the debugger sets up
its stack frame handler. Thus, the initialization routine handler can override
either of these handlers, because it will receive signals before they do.

16.6 Initialization Example
The following VAX MACRO code fragment, which works on both VAX and Alpha
systems, shows how an initialization routine does the following:

• Establishes a handler

• Calls the init-coroutine argument routine, so that the coroutine calls the
initialization dispatcher

• Gains control after the main program returns

• Returns to the normal exit processing

.ENTRY INIT_PROC, ^M<> ; No registers used
MOVAL HANDLER, (FP) ; Establish handler
... ; Perform any other initialization

CALLG (AP), @INIT_CO_ROUTINE(AP)
; Continue initialization which

10$: ; then calls main program or
; routine.

... ; Return here when main program
; returns with R0 = completion

RET ; Status return to normal exit
; processing with R0 = completion
; status

.ENTRY HANDLER, ^M<...> ; Register mask

... ; handle condition
; could unwind to 10$

MOVL #..., R0 ; Set completion status with a
; condition value

RET ; Resignal or continue depending
; on R0 being SS$_RESIGNAL or
; SS$_CONTINUE.

16–7

17
Shareable Resources

This chapter describes the techniques available for sharing data and program
code among programs. It contains the following sections:

Section 17.1 describes how to share code among programs.

Section 17.2 describes shareable images.

Section 17.3 defines and describes using local and global symbols to share images.

The operating system provides the following techniques for sharing data and
program code among programs:

• DCL symbols and logical names

• Libraries

• Shareable images

• Global sections

• Common blocks installed in a shareable image

• OpenVMS Record Management Services (RMS) shared files

Symbols and logical names are also used for intraprocess and interprocess
communication; therefore, they are discussed in Chapter 10.

Libraries and shareable images are used for sharing program code.

Global sections, common blocks stored in shareable images, and RMS shared
files are used for sharing data. You can also use common blocks for interprocess
communication. For more information, refer to Chapter 2.

17.1 Sharing Program Code
To share code among programs, you can use the following operating system
resources:

• Text, macro, or object libraries that store sections of code. Text and macro
libraries store source code; object libraries store object code. You can create
and manage libraries using the Librarian utility (LIBRARIAN). Refer to the
OpenVMS Command Definition, Librarian, and Message Utilities Manual for
complete information about using the Librarian utility.

• Shareable images, which are images that have been compiled and linked but
cannot be run independently. These images can also be stored in libraries.

17–1

Shareable Resources
17.1 Sharing Program Code

17.1.1 Object Libraries
You can use object libraries to store frequently used routines, thereby avoiding
repeated recompiling, minimizing the number of files you must maintain, and
simplifying the linking process. The source code for the object modules can be
in any VAX supported language, and the object modules can be linked with any
other modules written in any VAX supported language.

Use the .OLB file extension for any object library. All modules stored in an object
library must have the file extension .OBJ.

17.1.1.1 System- and User-Defined Default Object Libraries
The operating system provides a default system object library, STARLET.OLB.
You can also define one or more default object libraries to be automatically
searched before the system object library. The logical names for the default object
libraries are LNK$LIBRARY and LNK$LIBRARY_1 through LNK$LIBRARY_
999. To use one of these default libraries, first define the logical name. The
libraries are searched sequentially starting at LNK$LIBRARY. Do not skip any
numbers. If you store object modules in the default libraries, you do not have to
specify them at link time. However, you do have to maintain and manage them
as you would any library.

The following example defines the library in the file PROCEDURES.OLB (the file
type defaults to .OLB, meaning object library) in $DISK1:[DEV] as a default user
library:

$ DEFINE LNK$LIBRARY $DISK1:[DEV]PROCEDURES

17.1.1.2 How the Linker Searches Libraries
When the linker is resolving global symbol references, it searches user default
libraries at the process level first, then libraries at the group and system level.
Within levels, the library defined as LNK$LIBRARY is searched first, then
LNK$LIBRARY_1, LNK$LIBRARY_2, and so on.

17.1.1.3 Creating an Object Library
To create an object library, invoke the Librarian utility by entering the LIBRARY
command with the /CREATE qualifier and the name you are assigning the library.
The following example creates a library in a file named INCOME.OLB (.OLB is
the default file type):

$ LIBRARY/CREATE INCOME

17.1.1.4 Managing an Object Library
To add or replace modules in a library, enter the LIBRARY command with the
/REPLACE qualifier followed by the name of the library (first parameter) and
the names of the files containing the (second parameter). After you put object
modules in a library, you can delete the object file. The following example adds
or replaces the modules from the object file named GETSTATS.OBJ to the object
library named INCOME.OLB and then deletes the object file:

$ LIBRARY/REPLACE INCOME GETSTATS
$ DELETE GETSTATS.OBJ;*

You can examine the contents of an object library with the /LIST qualifier. Use
the /ONLY qualifier to limit the display. The following command displays all the
modules in INCOME.OLB that start with GET:

$ LIBRARY/LIST/ONLY=GET* INCOME

17–2

Shareable Resources
17.1 Sharing Program Code

Use the /DELETE qualifier to delete a library module and the /EXTRACT
qualifier to recreate an object file. If you delete many modules, you should
also compress (/COMPRESS qualifier) and purge (PURGE command) the library.
Note that the /ONLY, /DELETE, and /EXTRACT qualifiers require the names of
modules—not file names—and that the names are specified as qualifier values,
not parameter values.

17.1.2 Text and Macro Libraries
Any frequently used routine can be stored in libraries as source code. Then, when
you need the routine, it can be called in from your source program.

Source code modules are stored in text libraries. The file extension for a text
library is .TLB.

When using VAX MACRO assembly language, any source code module can be
stored in a macro library. The file extension for a macro library is .MLB. Any
source code module stored in a macro library must have the file extension .MAR.

You also use LIBRARIAN to create and manage text and macro libraries. Refer
to Section 17.1.1.3 and Section 17.1.1.4 for a summary of LIBRARIAN commands.

17.2 Shareable Images
A shareable image is a nonexecutable image that can be linked with executable
images. If you have a program unit that is invoked by more than one program,
linking it as a shareable image provides the following benefits:

• Saves disk space—The executable images to which the shareable image is
linked do not physically include the shareable image. Only one copy of the
shareable image exists.

• Simplifies maintenance—If you use transfer vectors and the GSMATCH
(on VAX systems) or symbol vectors (on Alpha systems) option, you can
modify, recompile, and relink a shareable image without having to relink any
executable image that is linked with it.

Shareable images can also save memory, provided that they are installed as
shared images. See the OpenVMS Linker Utility Manual for more information
about creating shareable images and shareable image libraries.

17.3 Symbols
Symbols are names that represent locations (addresses) in virtual memory. More
precisely, a symbol’s value is the address of the first, or low-order, byte of a
defined area of virtual memory, while the characteristics of the defined area
provide the number of bytes referred to. For example, if you define TOTAL_
HOUSES as an integer, the symbol TOTAL_HOUSES is assigned the address of
the low-order byte of a 4-byte area in virtual memory. Some system components
(for example, the debugger) permit you to refer to areas of virtual memory by
their actual addresses, but symbolic references are always recommended.

17.3.1 Defining Symbols
A symbolic name can consist of up to 31 letters, digits, underscores (_), and
dollar signs ($). Uppercase and lowercase letters are equivalent. By convention,
dollar signs are restricted to symbols used in system components. (If you do not
use the dollar sign in your symbolic names, you will never accidentally duplicate
a system-defined symbol.)

17–3

Shareable Resources
17.3 Symbols

17.3.2 Local and Global Symbols
Symbols are either local or global in scope. A local symbol can only be
referenced within the program unit in which it is defined. Local symbol names
must be unique among all other local symbols within the program unit but not
within other program units in the program. References to local symbols are
resolved at compile time.

A global symbol can be referenced outside the program unit in which it is
defined. Global symbol names must be unique among all other global symbols
within the program. References to global symbols are not resolved until link time.

References to global symbols in the executable portion of a program unit are
usually invocations of subprograms. If you reference a global symbol in any other
capacity (as an argument or data value—see the following paragraph), you must
define the symbol as external or intrinsic in the definition portion of the program
unit.

System facilities, such as the Message utility and the VAX MACRO assembler,
use global symbols to define data values.

The following program segment shows how to define and reference a global
symbol, RMS$_EOF (a condition code that may be returned by LIB$GET_
INPUT):

CHARACTER*255 NEW_TEXT
INTEGER STATUS
INTEGER*2 NT_SIZ
INTEGER LIB$GET_INPUT
EXTERNAL RMS$_EOF
STATUS = LIB$GET_INPUT (NEW_TEXT,
2 ’New text: ’,
2 NT_SIZ)
IF ((.NOT. STATUS) .AND.
2 (STATUS .NE. %LOC (RMS$_EOF))) THEN
CALL LIB$SIGNAL (RETURN_STATUS BY VALUE)

END IF

17.3.3 Resolving Global Symbols
References to global symbols are resolved by including the module that defines
the symbol in the link operation. When the linker encounters a global symbol, it
uses the following search method to find the defining module:

1. Explicitly named modules and libraries—Generally used to resolve user-
defined global symbols, such as subprogram names and condition codes.
These modules and libraries are searched in the order in which they are
specified.

2. System default libraries—Generally used to resolve system-defined global
symbols, such as procedure names and condition codes.

3. User default libraries—Generally used to avoid explicitly naming libraries,
thereby simplifying linking.

If the linker cannot find the symbol, the symbol is said to be unresolved and
a warning results. You can run an image containing unresolved symbols. The
image runs successfully as long as it does not access any unresolved symbol. For
example, if your code calls a subroutine but the subroutine call is not executed,
the image runs successfully.

17–4

Shareable Resources
17.3 Symbols

If an image accesses an unresolved global symbol, results are unpredictable.
Usually the image fails with an access violation (attempting to access a physical
memory location outside those assigned to the program’s virtual memory
addresses).

17.3.3.1 Explicitly Named Modules and Libraries
You can resolve a global symbol reference by naming the defining object module
in the link command. For example, if the program unit INCOME references the
subprogram GET_STATS, you can resolve the global symbol reference when you
link INCOME by including the file containing the object module for GET_STATS,
as follows:

$ LINK INCOME, GETSTATS

If the modules that define the symbols are in an object library, name the library
in the link operation. In the following example, the GET_STATS module resides
in the object module library INCOME.OLB:

$ LINK INCOME,INCOME/LIBRARY

17.3.3.2 System Default Libraries
Link operations automatically check the system object and shareable image
libraries for any references to global symbols not resolved by your explicitly
named object modules and libraries. The system object and shareable image
libraries include the entry points for the RTL routines and system services,
condition codes, and other system-defined values. Invocations of these modules do
not require any explicit action by you at link time.

17.3.3.3 User Default Libraries
If you write general-purpose procedures or define general-purpose symbols, you
can place them in a user default library. (You can also make your development
library a user default library.) In this way, you can link to the modules containing
these procedures and symbols without explicitly naming the library in the DCL
LINK command. To name a single-user library, equate the file name of the
library to the logical name LNK$LIBRARY. For subsequent default libraries, use
the logical names LNK$LIBRARY_1 through LNK$LIBRARY_999, as described
in Section 17.1.1.

17.3.3.4 Making a Library Available for Systemwide Use
To make a library available to everyone using the system, define it at the system
level. To restrict use of a library or to override a system library, define the library
at the process or group level. The following command line defines the default
user library at the system level:

$ DEFINE/SYSTEM LNK$LIBRARY $DISK1:[DEV]PROCEDURES

17.3.3.5 Macro Libraries
Some system symbols are not defined in the system object and shareable image
libraries. In such cases, the OpenVMS System Services Reference Manual notes
that the symbols are defined in the system macro library and tell you the name
of the macro containing the symbols. To access these symbols, you must first
assemble a macro routine with the following source code. The keyword GLOBAL
must be in uppercase. The .TITLE directive is optional but recommended.

17–5

Shareable Resources
17.3 Symbols

.TITLE macro-name
macro-name GLOBAL
.
.
.

.END

The following example is a macro program that includes two system macros:

LBRDEF.MAR
.TITLE $LBRDEF
$LBRDEF GLOBAL
$LHIDEF GLOBAL
.END

Assemble the routine containing the macros with the MACRO command. You can
place the resultant object modules in a default library or in a library that you
specify in the LINK command, or you can specify the object modules in the LINK
command. The following example places the $LBRDEF and $LHIDEF modules in
a library before performing a link operation:

$ MACRO LBRDEF
$ LIBRARY/REPLACE INCOME LBRDEF
$ DELETE LBRDEF.OBJ;*
$ LINK INCOME,INCOME/LIBRARY

The following LINK command uses the object file directly:

$ LINK INCOME,LBRDEF,INCOME/LIBRARY

17.3.4 Sharing Data
Typically, you use an installed common block for interprocess communication
or for allowing two or more processes to access the same data simultaneously.
However, you must have the CMKRNL privilege to install the common block. If
you do not have the CMKRNL privilege, global sections allow you to perform the
same operations.

17.3.4.1 Installed Common Blocks
To share data among processes by using a common block, you must install the
common block as a shared shareable image and link each program that references
the common block against that shareable image.

To install a common block as a shared image:

1. Define a common block—Write a program that declares the variables in
the common block and defines the common block. This program should
not contain executable code. The following DEC Fortran program defines a
common block:

INC_COMMON.FOR
INTEGER TOTAL_HOUSES
REAL PERSONS_HOUSE (2048),
2 ADULTS_HOUSE (2048),
2 INCOME_HOUSE (2048)
COMMON /INCOME_DATA/ TOTAL_HOUSES,
2 PERSONS_HOUSE,
2 ADULTS_HOUSE,
2 INCOME_HOUSE

END

17–6

Shareable Resources
17.3 Symbols

2. Create the shareable image—Compile the program containing the common
block. Use the LINK/SHAREABLE command to create a shareable image
containing the common block.

$ FORTRAN INC_COMMON
$ LINK/SHAREABLE INC_COMMON

Alpha For Alpha only, you need to specify a Linker options file (shown here as
SYS$INPUT to allow typed input) to specify the PSECT attributes of the
COMMON block PSECT and include it in the global symbol table:

$ LINK/SHAREABLE INC_COMMON ,SYS$INPUT/OPTION
_ SYMBOL_VECTOR=(WORK_AREA=PSECT)
_ PSECT_ATTR=WORK_AREA,SHR

With DEC Fortran 90 on OpenVMS Alpha systems, the default PSECT
attribute for a common block is NOSHR. To use a shared installed common
block, you must specify one of the following:

• The SHR attribute in a cDEC$ PSECT directive in the source file

• The SHR attribute in the Linker options file for the shareable image to
be installed and for each executable image that references the installed
common block

If the !DEC$ PSECT (same as cDEC$ PSECT) directive specified the SHR
attribute, the LINK command is as follows:

$ LINK/SHAREABLE INC_COMMON ,SYS$INPUT/OPTION
_ SYMBOL_VECTOR=(WORK_AREA=PSECT)

For Alpha only, copy the shareable image. Once created, you should copy the
shareable image into SYS$SHARE before it is installed. The file protection
of the .EXE file must allow write access for the processes running programs
that will access the shareable image (shown for Group access in the following
COPY command):

$ COPY/LOG DISK$:[INCOME.DEV]INC_COMMON.EXE SYS$SHARE:*.*
_ /PROTECTION=G:RWE

If you do not copy the installed shareable image to SYS$SHARE, before
running executable images that reference the installed shareable common
image, you must define a logical name that specifies the location of that
image.

When compiling the program that contains the common block declarations,
consistently use the same /ALIGNMENT and /GRANULARITY qualifiers
used to compile the common block data declaration program that has been
installed as a shareable image. For more information, see Section 17.3.4.3. ♦

3. Install the shareable image—Use the DCL command SET PROCESS
/PRIVILEGE to give yourself CMKRNL privilege (required for use of the
Install utility). Use the DCL command INSTALL to invoke the interactive
Install utility. When the INSTALL prompt appears, enter CREATE, followed
by the complete file specification of the shareable image that contains the
common block (the file type defaults to .EXE) and the qualifiers /WRITEABLE
and /SHARED. The Install utility installs your shareable image and
reissues the INSTALL prompt. Enter EXIT to exit. Remember to remove
CMKRNL privilege. (For complete documentation of the Install utility, see
the OpenVMS System Management Utilities Reference Manual.)

17–7

Shareable Resources
17.3 Symbols

The following example shows how to install a shareable image:

$ SET PROCESS/PRIVILEGE=CMKRNL
$ INSTALL
INSTALL> CREATE DISK$USER:[INCOME.DEV]INC_COMMON -
_INSTALL> /WRITEABLE/SHARED
INSTALL> EXIT
$ SET PROCESS/PRIVILEGE=NOCMKRNL

Note

A disk containing an installed image cannot be dismounted. To remove an
installed image, invoke the Install utility and enter DELETE followed by
the complete file specification of the image. The DELETE subcommand
does not delete the file from the disk; it removes the file from the list of
known installed images.

Perform the following steps to write or read the data in an installed common
block from within any program:

1. Include the same variable and common block definitions in the program.

2. Compile the program.

Alpha For Alpha only, when compiling the program that contains the common block
declarations, consistently use the same /ALIGNMENT and /GRANULARITY
qualifiers used to compile the common block data declaration program
that has been installed as a shareable image. For more information, see
Section 17.3.4.3. ♦

3. Link the program against the shareable image that contains the common
block. (Linking against a shareable image requires an options file.)

$ LINK INCOME, DATA/OPTION
$ LINK REPORT, DATA/OPTION

DATA.OPT
INC_COMMON/SHAREABLE

Alpha For Alpha only, linking is as follows:

INC_COMMON/SHAREABLE
PSECT_ATTR=WORK_AREA, SHR

If a !DEC$ PSECT (cDEC$ PSECT) directive specified the SHR PSECT
attribute, the linker options file INCOME.OPT would contain the following
line:

INC_COMMON/SHAREABLE

The source line containing the !DEC$ PSECT directive would be as follows:

!DEC$ PSECT /INC_COMMON/ SHR
♦

4. Execute the program.

17–8

Shareable Resources
17.3 Symbols

Alpha For Alpha only, if the installed image is not located in SYS$SHARE, you must
define a logical name that specifies the location of that image. The logical
name (in this example INC_COMMON) is the name of the installed base. ♦

In the previous series of examples, the two programs INCOME and REPORT
access the same area of memory through the installed common block INCOME_
DATA (defined in INC_COMMON.FOR).

Typically, programs that access shared data use common event flag clusters to
synchronize read and write access to the data. Refer to Chapter 15 for more
information about using event flags for program synchronization.

17.3.4.2 Using Global Sections
To share data by using global sections, each process that plans to access the data
includes a common block of the same name, which contains the variables for
the data. The first process to reference the data declares the common block as a
global section and, optionally, maps data to the section. (Data in global sections,
as in private sections, must be page aligned.)

To create a global section, invoke SYS$CRMPSC and add the following:

• Additional argument—Specify the name of the global section (argument 5). A
program uses this name to access a global section.

• Additional flag—Set the SEC$V_GBL bit of the flags argument to indicate
that the section is a global section.

As other programs need to reference the data, each can use either SYS$CRMPSC
or SYS$MGBLSC to map data into the global section. If you know that the global
section exists, the best practice is to use the SYS$MGBLSC system service.

The format for SYS$MGBLSC is as follows:

SYS$MGBLSC (inadr,[retadr],[acmode],[flags],gsdnam,[ident],[relpag])

Refer to the OpenVMS System Services Reference Manual for complete
information about this system service.

In Example 17–1, one image, DEVICE.FOR, passes device names to another
image, GETDEVINF.FOR. GETDEVINF.FOR returns the process name and
the terminal associated with the process that allocated each device. The two
processes use the global section GLOBAL_SEC to communicate. GLOBAL_SEC is
mapped to the common block named DATA, which is page aligned by the options
file DATA.OPT. Event flags are used to synchronize the exchange of information.
UFO_CREATE.FOR, DATA.OPT, and DEVICE.FOR are included here for easy
reference. Refer to Section 8.4 for additional information about global sections.

Example 17–1 Interprocess Communication Using Global Sections

!UFO_CREATE.FOR
.
.
.

INTEGER FUNCTION UFO_CREATE (FAB,
2 RAB,
2 LUN)

(continued on next page)

17–9

Shareable Resources
17.3 Symbols

Example 17–1 (Cont.) Interprocess Communication Using Global Sections

! Include RMS definitions
INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’

! Declare dummy arguments
RECORD /FABDEF/ FAB
RECORD /RABDEF/ RAB
INTEGER LUN

! Declare channel
INTEGER*4 CHAN
COMMON /CHANNEL/ CHAN

! Declare status variable
INTEGER STATUS

! Declare system procedures
INTEGER SYS$CREATE

! Set useropen bit in the FAB options longword
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_UFO
! Open file
STATUS = SYS$CREATE (FAB)

! Read channel from FAB status word
CHAN = FAB.FAB$L_STV

! Return status of open operation
UFO_CREATE = STATUS

END

DATA.OPT

PSECT_ATTR = DATA, PAGE

DEVICE.FOR

! Define global section flags
INCLUDE ’($SECDEF)’
! Mask for section flags
INTEGER SEC_MASK
! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)
! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

(continued on next page)

17–10

Shareable Resources
17.3 Symbols

Example 17–1 (Cont.) Interprocess Communication Using Global Sections
! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE

.

.

.
! Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (last address -- first address + length of last element + 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO_LUN,
2 FILE=’INFO.TMP’,
2 STATUS=’NEW’,
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
! Free logical unit number and map section
CLOSE (INFO_LUN)
! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)
STATUS = SYS$CRMPSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Addresses mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 ’GLOBAL_SEC’, ! Section name
2 ,,
2 %VAL(SEC_CHAN), ! I/O channel
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Create the subprocess
STATUS = SYS$CREPRC (,
2 ’GETDEVINF’, ! Image
2 ,,,,,
2 ’GET_DEVICE’, ! Process name
2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Write data to section
DEVICE = ’$FLOPPY1’
! Get common event flag cluster and set flag
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

.

.

.

(continued on next page)

17–11

Shareable Resources
17.3 Symbols

Example 17–1 (Cont.) Interprocess Communication Using Global Sections

GETDEVINF.FOR

! Define section flags
INCLUDE ’($SECDEF)’
! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)
! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

.

.

.
! Get common event flag cluster and wait
! for GBL1.FOR to set REQUEST_FLAG
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)
! Set write flag
SEC_MASK = SEC$M_WRT
! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 ’GLOBAL_SEC’,,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Call GETDVI to get the process ID of the
! process that allocated the device, then
! call GETJPI to get the process name and terminal
! name associated with that process ID.
! Set PROCESS equal to the process name and
! set TERMINAL equal to the terminal name.

.

.

.
! After information is in GLOBAL_SEC
STATUS = SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

17–12

Shareable Resources
17.3 Symbols

By default, a global section is deleted when no image is mapped to it. Such global
sections are called temporary global sections. If you have the PRMGBL privilege,
you can create a permanent global section (set the SEC$V_PERM bit of the flags
argument when you invoke SYS$CRMPSC). A permanent global section is not
deleted until after it is marked for deletion with the SYS$DGBLSC system service
(requires PRMGBL). Once a permanent section is marked for deletion, it is like a
temporary section; when no image is mapped to it, the section is deleted.

17.3.4.3 Synchronizing Access to Global Sections

Alpha If more than one process or thread will write to a shared global section containing
COMMON block data, the user program may need to synchronize access to
COMMON block variables.

Compile all programs referencing the shared common area with the same value
for the /ALIGNMENT and /GRANULARITY qualifiers, as shown in the following:

$ F90 /ALIGN=COMMONS=NATURAL /GRANULARITY=LONGWORD INC_COMMON

Using /GRANULARITY=LONGWORD for 4-byte variables or
/GRANULARITY=QUADWORD for 8-byte variables ensures that adjacent
data is not accidentally effected. To ensure access to 1-byte variables, specify
/GRANULARITY=BYTE. Because accessing data items less than four bytes slows
run-time performance, you might want to considering synchronizing read and
write access to the data on the same node. ♦

One way for programs accessing shared data is to use common event flag clusters
to synchronize read and write access to the data on the same node. In the
simplest case, one event flag in a common event flag cluster might indicate that
a program is writing data, and a second event flag in the cluster might indicate
that a program is reading data. Before accessing the shared data, a program
must examine the common event flag cluster to ensure that accessing the data
does not conflict with an operation already in progress.

Other ways of synchronizing access on a single node include using the following
OpenVMS system services:

• The lock manager system services (SYS$ENQ and SYS$DEQ)

• The hibernate and wake system services (SYS$HIBER and SYS$WAKE)

You could also use Assembler code for synchronization.

17.3.4.4 RMS Shared Files
RMS allows concurrent access to a file. Shared files can be one of the following
formats:

• Indexed files

• Relative files

• Sequential files with 512-byte fixed-length records

To coordinate access to a file, RMS uses the lock manager. You can override the
RMS lock manager by controlling access yourself. Refer to Chapter 15 for more
information about synchronizing access to resources.

17–13

18
Creating User-Written System Services

This chapter describes how to create user-written system services. It contains the
following sections:

Section 18.1 describes privileged routines and privileged shareable images.

Section 18.2 describes how to write a privileged routine.

Section 18.3 describes how to create a privileged shareable image on VAX
systems.

Section 18.4 describes how to create a privileged shareable image on Alpha
systems.

18.1 Overview
Your application may contain certain routines that perform privileged functions,
called user-written system services. To create these routines, put them in
a privileged shareable image. User-mode routines in other modules can call
the routines in the privileged shareable image to perform functions in a more
privileged mode.

You create a privileged shareable image as you would any other shareable image,
using the /SHAREABLE qualifier with the linker. (For more information about
how to create a shareable image, see the OpenVMS Linker Utility Manual.)
However, because a call to a routine in a more privileged mode must be vectored
through the system service dispatch routine, you must perform some additional
steps. The following steps outline the basic procedure. Section 18.3 provides
more detail about requirements specific to VAX systems. Section 18.4 describes
the necessary steps for Alpha systems.

1. Create the source file. The source file for a privileged shareable image
contains the routines that perform privileged functions. In addition, because
user-written system services are called using the system service dispatcher,
you must include a privileged library vector (PLV) in your shareable image.
A PLV is an operating-system-defined data structure that communicates the
location of the privileged routines to the operating system.

VAX On VAX systems, the PLV contains the addresses of dispatch routines for
each access mode used in the image. You must write these dispatch routines
and include them in your shareable image. Section 18.3.1 provides more
information. ♦

18–1

Creating User-Written System Services
18.1 Overview

Alpha On Alpha systems, you list the names of the privileged routines in the PLV,
sorted by access mode. You do not need to create dispatch routines; the image
activator creates them for you automatically. ♦
Section 18.2 provides guidelines for creating privileged routines.

2. Compile or assemble the source file.

3. Create the shareable image. You create a privileged shareable image as you
would any other shareable image: by specifying the /SHAREABLE qualifier
to the LINK command. Note, however, that creating privileged shareable
images has some additional requirements. The following list summarizes
these requirements. See the OpenVMS Linker Utility Manual for additional
information about linker qualifiers and options.

• Declare the privileged routine entry points as universal symbols.
Privileged shareable images use the same mechanisms to declare
universal symbols as other shareable images: transfer vectors on VAX
and symbol vectors on Alpha systems. However, because calls to user-
written system services must be vectored through the system service
dispatcher, you must use extensions to these mechanisms for privileged
shareable images. Section 18.3.3 describes how to declare a universal
symbol in a VAX privileged shareable image. Section 18.4.2 describes how
to declare a universal symbol in an Alpha system privileged shareable
image.

• Prevent the linker from processing the system default shareable image
library, SYS$LIBRARY:IMAGELIB.OLB, by specifying the /NOSYSSHR
linker qualifier. Otherwise, the linker processes this library by default.

• Protect the shareable image from user-mode access by specifying the
/PROTECT linker qualifier. If you want to protect only certain portions
of the shareable image, instead of the entire image, use the PROTECT=
linker option.

• Set the VEC attribute of the program section containing the PLV by
using the PSECT_ATTR= linker option. Modules written in MACRO can
specify this attribute in the .PSECT directive. The PLV must appear in a
program section with the VEC attribute set.

• Set the shareable image identification numbers using the GSMATCH=
option.

If your privileged application requires that you link against the system
executive, see the OpenVMS Linker Utility Manual for more information.

4. Install the privileged shareable image as a protected permanent global
section. Privileged shareable images must be installed to be available to
nonprivileged programs. The following procedure is recommended:

a. Move the privileged shareable image to a protected directory, such as
SYS$SHARE.

b. Invoke the Install utility, specifying the /PROTECT, /OPEN, and
/SHARED qualifiers. You can also specify the /HEADER_RESIDENT
qualifier. The following entry could be used to install a user-written
system service whose image name is MY_PRIV_SHARE:

$ INSTALL
INSTALL> ADD SYS$SHARE:MY_PRIV_SHARE/PROTECT/OPEN/SHARED/HEADER_RES

18–2

Creating User-Written System Services
18.1 Overview

To use a privileged shareable image, you include it in a link operation as you
would any other shareable image: specifying the shareable image in a linker
options file with the /SHAREABLE qualifier appended to the file specification to
identify it as a shareable image.

18.2 Writing a Privileged Routine (User-Written System Service)
On both VAX systems and Alpha systems, the routines that implement
user-written system services must enable any privileges they need that the
nonprivileged user of the user-written system service lacks. The user-written
system service must also disable any such privileges before the nonprivileged
user receives control again. To enable or disable a set of privileges, use the Set
Privileges ($SETPRV) system service. The following example shows the operator
(OPER) and physical I/O (PHY_IO) privileges being enabled. (Any code executing
in executive or kernel mode is granted an implicit SETPRV privilege so it can
enable any privileges it needs.)

PRVMSK: .LONG <1@PRV$V_OPER>!<1@PRV$V_PHY_IO> ;OPER and PHY_IO
.LONG 0 ;quadword mask required. No bits set in

;high-order longword for these privileges.
.
.
.

$SETPRV_S ENBFLG=#1,- ;1=enable, 0=disable
PRVADR=PRVMSK ;Identifies the privileges

When you design your system service, you must carefully define the boundaries
between the protected subsystem and the user who calls the service. A protected
image has privileges to perform tasks on its own behalf. When your image
performs tasks on behalf of the user, you must ensure that your image performs
only those tasks the user could not have done on his or her own. Always keep the
following coding principles in mind:

• Keep privileges off, and turn them on only when necessary.

• Make sure privileges are off on all exit paths. When you perform a task for
the user, operate in user mode whenever possible and operate at all times
with the user’s privileges, identity, and so on. Make sure that operating in
an inner mode does not give you any special privileges with respect to the
operation being performed. Resume a privileged state only when you are
about to resume operation on your own behalf.

• If user input can affect an operation executed with privilege, you have to
carefully validate the input. Never pass user parameters directly to an
operation executed in an inner mode or with privilege. When designing your
program, keep in mind that the inner modes implicitly provide a user with
the system privileges SETPRV, CMKRNL, SYSNAM, and SYSLCK. (See the
OpenVMS Guide to System Security for descriptions.)

• As a protected image, your program does not have the entire operating system
programming environment at its disposal. Unless a module has the prefix
SYS$ or EXE$, you must avoid calling it from an inner mode. In particular,
do not call LIB$GET_VM or LIB$RET_VM from an inner mode. You can call
OpenVMS RMS routines from executive mode but not from kernel mode.

18–3

Creating User-Written System Services
18.2 Writing a Privileged Routine (User-Written System Service)

VAX On VAX systems, Version 5.4 or later of the operating system, any OpenVMS
RMS files that were opened with privilege from an inner mode can be left
open during user execution; however, this is not acceptable on earlier versions
of the operating system. ♦

• Never make subroutine calls to other shareable images from kernel or
executive mode.

• When a protected subsystem opens a file on its own behalf, it should specify
executive-mode logical names only by naming executive mode explicitly in the
FAB$V_LNM_MODE subfield of the file access block (FAB). This prevents a
user’s logical name from redirecting a file specification.

VAX On VAX systems, refer to SYS$EXAMPLES:USSDISP.MAR and USSTEST.MAR
for listings of modules in a user-written system service and of a module that calls
the user-written system service. ♦

Alpha On Alpha systems, for C examples refer to SYS$EXAMPLES:UWSS.C and
SYS$EXAMPLES:UWSS_TEST.C. ♦

18.3 Creating a Privileged Shareable Image (VAX Only)

VAX On VAX systems, you must create dispatch routines that transfer control to the
privileged routines in your shareable image. You then put the addresses of these
dispatch routines in a privileged library vector (PLV). Section 18.3.1 describes
how to create a dispatch routine. Section 18.3.2 describes how to create a PLV.

18.3.1 Creating User-Written Dispatch Routines on VAX Systems
On VAX systems, you must create kernel-mode and executive-mode dispatching
routines that transfer control to the routine entry points. You must supply one
dispatch routine for all your kernel mode routines and a separate routine for all
the executive mode routines. The dispatcher is usually written using the CASE
construct, with each routine identified by a code number. Make sure that the
identification code you use in the dispatch routine and the code specified in the
transfer vector identify the same routine.

The image activator, when it activates a privileged shareable image, obtains the
addresses of the dispatch routines from the PLV and stores these addresses at a
location known to the system service dispatcher. When a call to a privileged
routine is initiated by a CHME or CHMK instruction, the system service
dispatcher attempts to match the code number with a system service code. If
there is no match, it transfers control to the location where the image activator
has stored the address of your dispatch routines.

A dispatch routine must validate the CHMK or CHME operand identification
code number, handling any invalid operands. In addition, the dispatching routine
must transfer control to the appropriate routine for each identification code if
the user-written system service contains functionally separate coding segments.
The CASE instruction in VAX MACRO or a computed GOTO-type statement in a
high-level language provides a convenient mechanism for determining where to
transfer control.

18–4

Creating User-Written System Services
18.3 Creating a Privileged Shareable Image (VAX Only)

Note

Users of your privileged shareable image must specify the same code
number to identify a privileged routine as you used to identify it in the
dispatch routine. Users specify the code number in their CHMK or CHME
instruction. See Section 18.3.3 for information about transfer vectors.

In your source file, a dispatch routine must precede the routines that implement
the user-written system service.

Example 18–1 illustrates a sample dispatching routine, taken from the sample
privileged shareable image in SYS$EXAMPLES named USSDISP.MAR.

Example 18–1 Sample Dispatching Routine

KERNEL_DISPATCH:: ; Entry to dispatcher
MOVAB W^-KCODE_BASE(R0),R1 ; Normalize dispatch code value
BLSS KNOTME ; Branch if code value too low
CMPW R1,#KERNEL_COUNTER ; Check high limit
BGEQU KNOTME ; Branch if out of range

;
; The dispatch code has now been verified as being handled by this dispatcher,
; now the argument list will be probed and the required number of arguments
; verified.
;

MOVZBL W^KERNEL_NARG[R1],R1 ; Get required argument count
MOVAL @#4[R1],R1 ; Compute byte count including argcount
IFNORD R1,(AP),KACCVIO ; Branch if arglist not readable
CMPB (AP),W^<KERNEL_NARG-KCODE_BASE>[R0] ; Check for required number
BLSSU KINSFARG ; of arguments
MOVL FP,SP ; Reset stack for service routine
CASEW R0,- ; Case on change mode
.
.
.

18.3.2 Creating a PLV on VAX Systems
On VAX systems, a call to a privileged routine goes to the transfer vector which
executes a change mode instruction (CHMx) specifying the identification code of
the privileged routine as the operand to the instruction. The operating system
routes the change mode instruction to the system service dispatch routine, which
attempts to locate the system service with the code specified. Because the code is
a negative number, the system service dispatcher drops through its list of known
services and transfers control to a user-written dispatch routine, if any have been
specified.

18–5

Creating User-Written System Services
18.3 Creating a Privileged Shareable Image (VAX Only)

The image activator has already placed at this location the address of whatever
user-written dispatch routines it found in the privileged shareable image’s PLV
when it activated the PLV. The dispatch routine transfers control to the routine in
the shareable image identified by the code. (You must ensure that the code used
in the transfer vector and the code specified in the dispatch routine both identify
the same routine.) Figure 18–1 illustrates this flow of control.

Figure 18–1 Flow of Control Accessing a Privileged Routine on VAX Systems

ZK−5071A−GE

my_share_k_dispatcher:

my_share_e_dispatcher:

my_serv_int:

return

OpenVMS Change Mode Dispatcher

my_serv

Executable Image
(mytest.exe)

CHMK <change_mode_code>
CHMK <change_mode_code>
CHME <change_mode_code>

Privileged Shareable
Image (my_share.exe)

kernel−mode dispatcher address
exec−mode dispatcher address

exe$cmdxxxx:

Image Activator Vector
of User−Written Dispatchers

[code does not

JSB my_share_k_dispatcher

match OpenVMS codes]

JSB my_share_e_dispatcher

JSB

Image activator
set these fields to
addresses of user−
written dispatchers
when it activates a
privileged shareable
image.

Transfer
Vector

Privileged
Library Vector

OpenVMS Common
Exit Path

SRVEXIT:

REI:

18–6

Creating User-Written System Services
18.3 Creating a Privileged Shareable Image (VAX Only)

Figure 18–2 shows the components of the PLV in VAX shareable images.

Figure 18–2 Components of the Privileged Library Vector on VAX Systems

31 0

Vector Type Code

Reserved

ZK−5401A−GE

Kernel−Mode Dispatcher

Executive−Mode Entry

User Rundown Service

Reserved

RMS Dispatcher

Address Check

Table 18–1 describes each field in the PLV on a VAX processor, including the
symbolic names the operating system defines to access each field. These names
are defined by the $PLVDEF macro in SYS$LIBRARY:STARLET.MLB.

Table 18–1 Components of the VAX Privileged Library Vector

Component Symbol Description

Vector type code PLV$L_TYPE Identifies the type of vector. For PLVs, you must specify
the symbolic constant defined by the operating system,
PLV$C_TYP_CMOD, which identifies a privileged
library vector.

Kernel-mode dispatcher PLV$L_KERNEL Contains the address of the user-supplied kernel-mode
dispatching routine if your privileged library contains
routines that run in kernel mode. The address is
expressed as an offset relative to the start of the data
structure (self-relative pointer). A value of 0 indicates
that a kernel-mode dispatcher does not exist.

Executive-mode
dispatcher

PLV$L_EXEC Contains the address of the user-supplied executive-
mode dispatching routine if your privileged library
contains routines that run in executive mode. The
address is expressed as an offset relative to the start of
the data structure (self-relative pointer). A value of 0
indicates that a kernel-mode dispatcher does not exist.

(continued on next page)

18–7

Creating User-Written System Services
18.3 Creating a Privileged Shareable Image (VAX Only)

Table 18–1 (Cont.) Components of the VAX Privileged Library Vector

Component Symbol Description

User-supplied rundown
routine

PLV$L_USRUNDWN Contains the address of a user-supplied rundown
routine that performs image-specific cleanup and
resource deallocation if your privileged library contains
such a routine. When the image linked against the
user-written system service is run down by the system,
this run-time routine is invoked. Unlike exit handlers,
the routine is always called when a process or image
exits. (The image rundown code calls this routine with
a JSB instruction; it returns with an RSB instruction
called in kernel mode at IPL 0.)

RMS dispatcher PLV$L_RMS Contains the address of a user-supplied dispatcher for
OpenVMS RMS services. A value of 0 indicates that a
user-supplied OpenVMS RMS dispatcher does not exist.
Only one user-written system service should specify the
OpenVMS RMS vector, because only the last value is
used. This field is intended for use only by Digital.

Address check PLV$L_CHECK Contains a value to verify that a user-written system
service that is not position independent is located at
the proper virtual address. If the image is position
independent, this field should contain a zero. If the
image is not position independent, this field should
contain its own address.

Example 18–2 illustrates how the sample privileged shareable image in
SYS$EXAMPLES assigns values to the PLV.

Example 18–2 Assigning Values to a PLV on a VAX System

.PAGE
$PLVDEF ; Define PLV fields
.SBTTL Change Mode Dispatcher Vector Block

1 .PSECT USER_SERVICES,PAGE,VEC,PIC,NOWRT,EXE

2 .LONG PLV$C_TYP_CMOD ; Set type of vector to change mode
.LONG 0 ; Reserved
.LONG KERNEL_DISPATCH-. ; Offset to kernel mode dispatcher
.LONG EXEC_DISPATCH-. ; Offset to executive mode dispatcher
.LONG USER_RUNDOWN-. ; Offset to user rundown service
.LONG 0 ; Reserved.
.LONG 0 ; No RMS dispatcher
.LONG 0 ; Address check - PIC image

1 The sample program sets the VEC attribute of the program section containing
the PLV.

2 Values are assigned to each field of the PLV.

18–8

Creating User-Written System Services
18.3 Creating a Privileged Shareable Image (VAX Only)

18.3.3 Declaring Privileged Routines as Universal Symbols Using Transfer
Vectors on VAX Systems

On VAX systems, you use the transfer vector mechanism to declare universal
symbols (described in the OpenVMS Linker Utility Manual). However, for
privileged shareable images, the transfer vector must also contain a CHMx
instruction because the target routine operates in a more privileged mode. You
identify the privileged routine by its identification code, supplied as the only
operand to the CHMx instruction. Note that the code number used must match
the code used to identify the routine in the dispatch routine. The following
example illustrates a typical transfer vector for a privileged routine:

.TRANSFER my_serv

.MASK my_serv
CHMK <code_number>
RET

Because the OpenVMS system services codes are all positive numbers and
because the call to a privileged routine is initially handled by the system service
dispatcher, you should assign negative code numbers to identify your privileged
routines so they do not conflict with system services identification codes. ♦

18.4 Creating a User-Written System Service (Alpha Only)

Alpha On Alpha systems, in addition to the routines that perform privileged functions,
you must also include a PLV in your source file. However, on Alpha systems,
you list the privileged routines by name in the PLV. You do not need to create a
dispatch routine that transfers control to the routine; the routine is identified by
a special code.

18.4.1 Creating a PLV on Alpha Systems
On Alpha systems, the PLV contains a list of the actual addresses of the
privileged routines. The image activator creates the dispatch routines.
Figure 18–3 illustrates the linkage for a privileged routine on Alpha systems.

18–9

Creating User-Written System Services
18.4 Creating a User-Written System Service (Alpha Only)

Figure 18–3 Linkage for a Privileged Routine after Image Activation

PLV

List of Kernel Mode Procedure Values

Linkage Section

Symbol Vector

System Service Transfer Routines and Procedure Descriptors

ZK−5910A−GE

KERNEL_ROUTINE_LIST

.ADDRESS K_RTN1_INT

.ADDRESS K_RTN2_INT

Procedure descriptor for K_RTN2_INT

Procedure descriptor for K_RTN1_INT

Linkage pair for K_RTN2_EXT

Linkage pair for K_RTN1_EXT

Procedure descriptor for K_RTN2_EXT

Procedure descriptor for K_RTN1_EXT

CTL$_DISPVEC::

BASE/CMOD_TABLE

PLV_LIST

PLV_FLAGS_LIST=0

MAXCODE=65,536*2

APLD

K_RTN1_EXT::

K_RTN2_EXT::

BIS

BIS

K_RTN1_INT::
; service−specific procedure

SP,R31,R28

SP,R31,R28

LDAH R0,2(R31)

K_RTN2_INT::
; service−specific procedure

CALL_PAL CHMK

LDAH R0,1(R31)

RET

CALL_PAL CHMK
RET

CMOD_TABLE_END

Table 18–2 describes the components of the privileged library vector on Alpha
systems.

18–10

Creating User-Written System Services
18.4 Creating a User-Written System Service (Alpha Only)

Table 18–2 Components of the Alpha Privileged Library Vector

Component Symbol Description

Vector type code PLV$L_TYPE Identifies the type of vector. You must specify
the symbolic constant, PLV$C_TYP_CMOD,
to identify a privileged library vector.

System version number PLV$L_VERSION System version number (unused).

Kernel-mode routine
count

PLV$L_KERNEL_ROUTINE_
COUNT

Specifies the number of user-supplied kernel-
mode routines listed in the kernel-mode
routine list. The address of this list is
specified in PLV$PS_KERNEL_ROUTINE_
LIST.

Executive-mode routine
count

PLV$L_EXEC_ROUTINE_
COUNT

Specifies the number of user-supplied
executive-mode routines listed in the
executive-mode routine list. The address
of this list is specified in PLV$PS_EXEC_
ROUTINE_LIST.

Kernel-mode routine list PLV$PS_KERNEL_ROUTINE_
LIST

Specifies the address of a list of user-supplied
kernel-mode routines.

Executive-mode routine
list

PLV$PS_EXEC_ROUTINE_
LIST

Specifies the address of a list of user-supplied
executive-mode routines.

User-supplied rundown
routine

PLV$PS_KERNEL_
RUNDOWN_HANDLER

May contain the address of a user-supplied
rundown routine that performs image-specific
cleanup and resource deallocation. When
the image linked against the user-written
system service is run down by the system,
this run-time routine is invoked. Unlike exit
handlers, the routine is always called when
a process or image exits. (Image rundown
code calls this routine with a JSB instruction;
it returns with an RSB instruction called in
kernel mode at IPL 0.)

Thread-safe system
service

PLV$M_THREAD_SAFE Flags the system service dispatcher that the
service requires no explicit synchronization.
It is assumed by the dispatcher that the
service provides its own internal data
synchronization and that multiple kernel
threads can safely execute the service in
parallel.

RMS dispatcher PLV$PS_RMS_DISPATCHER Address of an alternative RMS dispatching
routine.

Kernel Routine Flags
Vector

PLV$PS_KERNEL_ROUTINE_
FLAGS

Contains either the address of an array of
quadwords that contain the defined flags
associated with each kernel system service,
or a zero. If a flag is set, the kernel mode
service may return the status SS$_WAIT_
CALLERS_MODE.

Executive Routine Flags
Vector

PLV$PS_EXEC_ROUTINE_
FLAGS

Contains a zero value, because there are no
defined flags for executive mode.

Example 18–3 illustrates how to create a PLV on Alpha systems.

18–11

Creating User-Written System Services
18.4 Creating a User-Written System Service (Alpha Only)

Example 18–3 Creating a PLV on Alpha Systems

! What follows is the definition of the PLV. The PLV lives
! in its own PSECT, which must have the VEC attribute. The
! VEC attribute is forced in the linker. The PLV looks like
! this:
!
! +-------------------------------------+
! | Vector Type Code | PLV$L_TYPE
! | (PLV$C_TYP_CMOD) |
! +-------------------------------------+
! | System Version Number | PLV$L_VERSION
! | (unused) |
! +-------------------------------------+
! | Count of Kernel Mode Services | PLV$L_KERNEL_ROUTINE_COUNT
! | |
! +-------------------------------------+
! | Count of Exec Mode Services | PLV$L_EXEC_ROUTINE_COUNT
! | |
! +-------------------------------------+
! | Address of a List of Entry Points | PLV$PS_KERNEL_ROUTINE_LIST
! | for Kernel Mode Services |
! +-------------------------------------+
! | Address of a List of Entry Points | PLV$PS_EXEC_ROUTINE_LIST
! | for Exec Mode Services |
! +-------------------------------------+
! | Address of Kernel Mode | PLV$PS_KERNEL_RUNDOWN_HANDLER
! | Rundown Routine |
! +-------------------------------------+
! | | PLV$M_THREAD_SAFE
! | |
! +-------------------------------------+
! | Address of Alternative RMS | PLV$PS_RMS_DISPATCHER
! | Dispatching Routine |
! +-------------------------------------+
! | Kernel Routine Flags Vector | PLV$PS_KERNEL_ROUTINE_FLAGS
! | |
! +-------------------------------------+
! | Exec Routine Flags Vector | PLV$PS_EXEC_ROUTINE_FLAGS
! | |
! +-------------------------------------+
!
PSECT OWN = USER_SERVICES (NOWRITE, NOEXECUTE);

OWN PLV_STRUCT : $BBLOCK[PLV$C_LENGTH] INITIAL (LONG (PLV$C_TYP_CMOD,! Type
! of vector

0, ! System version number
(KERNEL_TABLE_END - KERNEL_TABLE_START) / %UPVAL, ! Number of kernel mode

! services
(EXEC_TABLE_END - EXEC_TABLE_START) / %UPVAL, ! Number of exec mode

! services
KERNEL_TABLE_START, ! Address of list of kernel mode service routine
EXEC_TABLE_START, ! Address of list of exec mode service routine
RUNDOWN_HANDLER, ! Address of list of kernel mode rundown routine
0, ! Reserved longword
0, ! Address of alternate RMS dispatcher
0, ! reserved
0)); ! reserved

PSECT OWN = OWN;

18–12

Creating User-Written System Services
18.4 Creating a User-Written System Service (Alpha Only)

18.4.2 Declaring Privileged Routines as Universal Symbols Using Symbol
Vectors on Alpha Systems

On Alpha systems, you declare a user-written system service to be a universal
symbol by using the symbol vector mechanism. (See the OpenVMS Linker Utility
Manual for more information about creating symbol vectors.) However, because
user-written system services must be accessed by using the privileged library
vector (PLV), you must specify an alias for the user-written system service. Use
the following syntax for the SYMBOL_VECTOR= option to specify an alias that
can be universal:

SYMBOL_VECTOR = ([universal_alias_name/]internal_name = {PROCEDURE | |
DATA})

In a privileged shareable image, calls from within the image that use the alias
name result in a fixup and subsequent vectoring through the PLV, which results
in a mode change. Calls from within the shareable image that use the internal
name are made in the caller’s mode. (Calls from external images always result in
a fixup.)

The linker command procedures and options file shown in Example 18–4
illustrate how to declare universal symbols in an Alpha system privileged
shareable image.

Example 18–4 Declaring Universal Symbols for Privileged Shareable Image on
an Alpha System

$!
$! Link the protected shareable image containing
$! the user-written system services
$!
$ LINK /SHARE=UWSS -

/PROTECT -
/MAP=UWSS -
/SYSEXE -
/FULL/CROSS/NOTRACE -
UWSS, -
SYS$INPUT:/OPTIONS

!
! Set the GSMATCH options
!
GSMATCH=LEQUAL,1,1

!
! Define transfer vectors for protected shareable image
!
SYMBOL_VECTOR = (-

FIRST_SERVICE = PROCEDURE, -
SECOND_SERVICE = PROCEDURE, -
THIRD_SERVICE = PROCEDURE, -
FOURTH_SERVICE = PROCEDURE -
)

!
! Need to add the VEC attribute to the PLV psect
!
PSECT=USER_SERVICES,VEC ♦

18–13

19
Memory Management Services and Routines

(VAX Only)

This chapter describes the use of system services and run-time routines that VAX
systems use to manage memory. It contains the following sections:

Section 19.1 describes the page size on VAX systems.

Section 19.2 describes the layout of virtual address space.

Section 19.3 describes extended addressing enhancements on selected VAX
systems.

Section 19.4 describes the three levels of memory allocation routines.

Section 19.5 discusses how to use system services to add virtual address space,
adjust working sets, control process swapping, and create and manage sections.

19.1 Virtual Page Size
To facilitate memory protection and mapping, the virtual addresss space on
VAX systems is subdivided into segments of 512-byte sizes called pages. (On
Alpha systems, memory page sizes are much larger and vary from system to
system. See Chapter 20 for information about Alpha page sizes.) Versions of
system services and run-time library routines that accept page-count values
as arguments interpret these arguments in 512-byte quantities. Services and
routines automatically round the specified addresses to page boundaries.

19.2 Virtual Address Space
The initial size of a process’s virtual address space depends on the size of the
image being executed. The virtual address space of an executing program consists
of the following three regions:

• Process program region (P0)

The process program region is also referred to as P0 space. P0 space contains
the instructions and data for the current image.

Your program can dynamically allocate storage in the process program region
by calling run-time library (RTL) dynamic memory allocation routines or
system services.

• Process control region (P1)

The process control region is also referred to as P1 space. P1 space contains
system control information and the user-mode process stack. The user mode
stack expands as necessary toward the lower-addressed end of P1 space.

19–1

Memory Management Services and Routines (VAX Only)
19.2 Virtual Address Space

• Common system region (S0)

The common system region is also referred to as S0 space. S0 space contains
the operating system. Your program cannot allocate or free memory within
the common system region from the user access mode.

This common system region (S0) of system virtual address space can have
appended to it additional virtual address space, known as a reserved region,
or S1 space, that creates a single region of system space. As a result, the
system virtual address space increases from 1 GB to 2 GB.

A summary of these regions appears in Figure 19–1.

Figure 19–1 Virtual Address Overview on VAX Systems

P0

P1

S0

− OpenVMS VAX

ZK−4145−GE

Region
System
Common

Region
Control
Process

Region
Program
Process

 Information
− System Control
 Process Stack
− User−Mode

− Data
− Instructions

The memory management routines map and control the relationship between
physical memory and the virtual address space of a process. These activities
are, for the most part, transparent to you and your programs. In some cases,
however, you can make a program more efficient by explicitly controlling its
virtual memory usage.

The maximum size to which a process can increase its address space is controlled
by the system parameter VIRTUALPAGECNT.

Using memory management system services, a process can add a specified
number of pages to the end of either the program region or the control region.
Adding pages to the program region provides the process with additional space
for image execution, for example, for the dynamic creation of tables or data
areas. Adding pages to the control region increases the size of the user stack.

19–2

Memory Management Services and Routines (VAX Only)
19.2 Virtual Address Space

As new pages are referenced, the stack is automatically expanded, as shown in
Figure 19–2. (By using the STACK= option in a linker options file, you can also
expand the user stack when you link the image.)

Figure 19–2 illustrates the layout of a process’s virtual memory. The initial
size of a process’s virtual address space depends on the size of the image being
executed.

Figure 19–2 Layout of VAX Process Virtual Address Space

7FFFFFFF

ZK−0861−GE

40000000
3FFFFFFF

Program Region

Growth
Direction of

(P1)
Control Region

Length

Length

Growth
Direction of

00000000
Address
Virtual

(P0)

19.3 Extended Addressing Enhancements on Selected VAX
Systems

Selected VAX systems have extended addressing (XA) as part of the memory
management subsystem. Extended addressing enhancement is supported on the
VAX 6000 Model 600, VAX 7000 Model600, and VAX 10000 Model 600 systems.
Extended addressing contains the following two major enhancements that affect
system images, system integrated products (SIPs), privileged layered products
(LPs), and device drivers:

• Extended physical addressing (XPA)

• Extended virtual addressing (XVA)

19–3

Memory Management Services and Routines (VAX Only)
19.3 Extended Addressing Enhancements on Selected VAX Systems

Extended physical addressing increases the size of a physical address from 30
bits to 32 bits. This increases the capacity for physical memory from 512 MB to
3.5 GB as shown in Figure 19–3. The 512 MB is still reserved for I/O and adapter
space.

Figure 19–3 Physical Address Space for VAX Systems with XPA

1 GB

0 0000 0000

VAX without
Extended Addressing
30−bit Address Space

512 MB
I/O

512 MB
Memory
Space

2000 0000

3FFF FFFF

0 0000 0000

VAX with
Extended Addressing
32−bit Address Space

Memory
Space

512 MB
I/O

E000 0000

FFFF FFFF

3.5 GB

4 GB

ZK−5065A−GE

Extended virtual addressing (XVA) increases the size of the virtual page number
field in the format of a system space address from 21 bits to 22 bits. The region
of system virtual address space, known as the reserved region or S1 space, is
appended to the existing region of system virtual address space known as S0
space, thereby creating a single region of system space. As a result, the system
virtual address space increases from 1 GB to 2 GB as shown in Figure 19–4.

19–4

Memory Management Services and Routines (VAX Only)
19.3 Extended Addressing Enhancements on Selected VAX Systems

Figure 19–4 Virtual Address Space for VAX Systems with XVA

0000 0000

VAX without
Extended Addressing

Virtual Space

4000 0000

8000 0000

0000 0000

VAX with
Extended Addressing

Virtual Space

4000 0000

8000 0000

ZK−5066A−GE

C000 0000

FFFF FFFF

P0
Space

P1
Space

1 GB
System
Region
(S0)

Reserved
Region
(S1)

P0
Space

P1
Space

2 GB
System
Space

FFFF FFFF

19.3.1 Page Table Entry for Extended Addresses on VAX Systems
As shown in Figure 19–3, extended addressing increases the maximum physical
address space supported by VAX systems from 1 GB to 4 GB. This is accomplished
by expanding the page frame number (PFN) field in a page table entry (PTE) from
21 bits to 23 bits, and implementing changes in the memory management arrays
that are indexed by PFN. Both the process page table entry and system page
table entry are changed.

19.4 Levels of Memory Allocation Routines
Sophisticated software systems must often create and manage complex data
structures. In these systems, the size and number of elements are not always
known in advance. You can tailor the memory allocation for these elements
by using dynamic memory allocation. By managing the memory allocation,
you can avoid allocating fixed tables that may be too large or too small for your
program. Managing memory directly can improve program efficiency. By allowing
you to allocate specific amounts of memory, the operating system provides a
hierarchy of routines and services for memory management. Memory allocation
and deallocation routines allow you to allocate and free storage within the virtual
address space available to your process.

There are three levels of memory allocation routines:

1. Memory management system services

The memory management system services comprise the lowest level of
memory allocation routines. These services include, but are not limited to,
the following:

SYS$EXPREG (Expand Region)
SYS$CRETVA (Create Virtual Address Space)
SYS$DELTVA (Delete Virtual Address Space)

19–5

Memory Management Services and Routines (VAX Only)
19.4 Levels of Memory Allocation Routines

SYS$CRMPSC (Create and Map Section)
SYS$MGBLSC (Map Global Section)
SYS$DGBLSC (Delete Global Section)

For most cases in which a system service is used for memory allocation, the
Expand Region (SYS$EXPREG) system service is used to create pages of
virtual memory.

Because system services provide more control over allocation procedures than
RTL routines, you must manage the allocation precisely. System services
provide extensive control over address space allocation by allowing you to do
the following types of tasks:

• Add or delete virtual address space to the process program region (P0) or
process control region (P1)

• Add or delete virtual address space at a specific range of addresses

• Increase or decrease the number of pages in a program’s working set

• Lock or delete pages of a program’s working set in memory

• Lock the entire program’s working set in memory (by disabling process
swapping)

• Define disk files containing data or shareable images and map the files
into the virtual address space of a process

2. RTL page management routines

RTL routines are available for creating, deleting, and accessing information
about virtual address space. You can either allocate a specified number of
contiguous pages or create a zone of virtual address space. A zone is a logical
unit of the memory pool or subheap that you can control as an independent
area. It can be any size required by your program. Refer to Chapter 21 for
more information about zones.

The RTL page management routines LIB$GET_VM_PAGE and LIB$FREE_
VM_PAGE provide a convenient mechanism for allocating and freeing pages
of memory.

These routines maintain a processwide pool of free pages. If unallocated
pages are not available when LIB$GET_VM_PAGE is called, it calls
SYS$EXPREG to create the required pages in the program region (P0
space).

3. RTL heap management routines

The RTL heap management routines LIB$GET_VM and LIB$FREE_VM
provide a mechanism for allocating and freeing blocks of memory of arbitrary
size.

The following are heap management routines based on the concept of zones:

LIB$CREATE_VM_ZONE
LIB$CREATE_USER_VM_ZONE
LIB$DELETE_VM_ZONE
LIB$FIND_VM_ZONE
LIB$RESET_VM_ZONE
LIB$SHOW_VM_ZONE
LIB$VERIFY_VM_ZONE

If an unallocated block is not available to satisfy a call to LIB$GET_VM,
LIB$GET_VM calls LIB$GET_VM_PAGE to allocate additional pages.

19–6

Memory Management Services and Routines (VAX Only)
19.4 Levels of Memory Allocation Routines

Modular application programs can call routines at any or all levels of the
hierarchy, depending on the kinds of services the application program needs. You
must observe the following basic rule when using multiple levels of the hierarchy:

Memory that is allocated by an allocation routine at one level of the hierarchy
must be freed by calling a deallocation routine at the same level of the
hierarchy. For example, if you allocated a page of memory by calling
LIB$GET_VM_PAGE, you can free it only by calling LIB$FREE_VM_PAGE.

Figure 19–5 shows the three levels of memory allocation routines.

Figure 19–5 Hierarchy of VAX Memory Management Routines

RTL Heap Management Routines

RTL Page Management Routines

LIB$FREE_VM_PAGE LIB$GET_VM_PAGE

Memory Management System Services

ZK−4146−GE

LIB$CREATE_USER_VM_ZONE
LIB$CREATE_VM_ZONE
LIB$DELETE_VM_ZONE
LIB$FIND_VM_ZONE
LIB$FREE_VM

LIB$GET_VM
LIB$RESET_VM_ZONE
LIB$SHOW_VM_ZONE
LIB$VERIFY_VM_ZONE

$CRETVA
$CRMPSC

$DELTVA
$DGBLSC

$EXPREG
$MGBLSC

For information about using memory management RTLs, see Chapter 21.

19.5 Using System Services for Memory Allocation
This section describes how to use system services to perform the following tasks:

• Increase and decrease virtual address space

• Input and return address arrays

• Control page ownership and protection

• Control working set paging

• Control process swapping

19–7

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

19.5.1 Increasing and Decreasing Virtual Address Space
The system services allow you to add address space anywhere within the process’s
program region (P0) or control region (P1). To add address space at the end of P0
or P1, use the Expand Program/Control Region (SYS$EXPREG) system service.
SYS$EXPREG optionally returns the range of virtual addresses for the new
pages. To add address space in other portions of P0 or P1, use SYS$CRETVA.

The format for SYS$EXPREG is as follows:

SYS$EXPREG (pagcnt,[retadr],[acmode],[region])

Specifying the Number of Pages
Use the pagcnt argument to specify the number of pages to add to the end of
the region. The range of addresses where the new pages are added is returned in
retadr.

Specifying the Access Mode
Use the acmode argument to specify the access to be assigned to the newly
created pages.

Specifying the Region
Use the region argument to specify whether to add the pages to the end of the
P0 or P1 region. This argument is optional.

To deallocate pages allocated with SYS$EXPREG, use SYS$DELTVA.

The following example illustrates how to add 4 pages to the program region of a
process by writing a call to the SYS$EXPREG system service:

#include <stdio.h>
#include <ssdef.h>

main() {
unsigned int status, retadr[1],pagcnt=4, region=0;

/* Add 4 pages to P0 space */
status = SYS$EXPREG(pagcnt, &retadr, 0, region);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Starting address: %d Ending address: %d\n",
retadr.lower,retadr.upper);

}

The value 0 is passed in the region argument to specify that the pages are to
be added to the program region. To add the same number of pages to the control
region, you would specify REGION=#1.

Note that the region argument to SYS$EXPREG is optional; if it is not specified,
the pages are added to or deleted from the program region by default.

The SYS$EXPREG service can add pages only to the end of a particular region.
When you need to add pages to the middle of these regions, you can use the
Create Virtual Address Space (SYS$CRETVA) system service. Likewise, when
you need to delete pages created by either SYS$EXPREG or SYS$CRETVA, you
can use the Delete Virtual Address Space (SYS$DELTVA) system service. For
example, if you have used the SYS$EXPREG service twice to add pages to the
program region and want to delete the first range of pages but not the second, you
could use the SYS$DELTVA system service, as shown in the following example:

19–8

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

#include <stdio.h>
#include <ssdef.h>

struct {
unsigned int lower, upper;

}retadr1, retadr2, retadr3;

main() {
unsigned int status, pagcnt=4, region=0;

/* Add 4 pages to P0 space */
status = SYS$EXPREG(pagcnt, &retadr1, 0, region);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Starting address: %d ending address: %d\n",
retadr1.lower,retadr1.upper);

/* Add 3 more pages to P0 space */

pagcnt = 3;
status = SYS$EXPREG(pagcnt, &retadr2, 0, region);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Starting address: %d ending address: %d\n",
retadr2.lower,retadr2.upper);

/* Delete original allocation */
status = SYS$DELTVA(&retadr1, &retadr3, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Starting address: %d ending address: %d\n",
retadr1.lower,retadr1.upper);

}

In this example, the first call to SYS$EXPREG adds 4 pages to the program
region; the virtual addresses of the created pages are returned in the 2-longword
array at retadr1. The second call adds 3 pages and returns the addresses at
retadr2. The call to SYS$DELTVA deletes the first 4 pages that were added.

Caution

Be aware that using SYS$CRETVA presents some risk because it can
delete pages that already exist if those pages are not owned by a more
privileged access mode. Further, if those pages are deleted, no notification
is sent. Therefore, unless you have complete control over an entire
system, use SYS$EXPREG or the RTL routines to allocate address space.

19.5.2 Input Address Arrays and Return Address Arrays
When the SYS$EXPREG system service adds pages to a region, it adds them
in the normal direction of growth for the region. The return address array, if
requested, indicates the order in which the pages were added. For example:

• If the program region is expanded, the starting virtual address is smaller
than the ending virtual address.

• If the control region is expanded, the starting virtual address is larger than
the ending virtual address.

19–9

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

The addresses returned indicate the first byte in the first page that was added or
deleted and the last byte in the last page that was added or deleted.

When input address arrays are specified for the Create and Delete Virtual
Address Space (SYS$CRETVA and SYS$DELTVA, respectively) system services,
these services add or delete pages beginning with the address specified in the
first longword and ending with the address specified in the second longword.

Note

The operating system always adjusts the starting and ending virtual
addresses up or down to fit page boundaries.

The order in which the pages are added or deleted does not have to be in the
normal direction of growth for the region. Moreover, because these services add
or delete only whole pages, they ignore the low-order 9 bits of the specified virtual
address (the low-order 9 bits contain the byte offset within the page). The virtual
addresses returned indicate the byte offsets.

Table 19–1 shows some sample virtual addresses in hexadecimal that may be
specified as input to SYS$CRETVA or SYS$DELTVA and shows the return
address arrays if all pages are successfully added or deleted.

Table 19–1 Sample Virtual Address Arrays on VAX Systems

Input Array Output Array

Start End Region Start End

Number
of
Pages

1010 1670 P0 1000 17FF 4

1450 1451 P0 1400 15FF 1

1200 1000 P0 1000 13FF 2

1450 1450 P0 1400 15FF 1

7FFEC010 7FFEC010 P1 7FFEC1FF 7FFEC000 1

7FFEC010 7FFEBCA0 P1 7FFEC1FF 7FFEBC00 3

Note that if the input virtual addresses are the same, as in the fourth and fifth
items in Table 19–1, a single page is added or deleted. The return address array
indicates that the page was added or deleted in the normal direction of growth for
the region.

19.5.3 Page Ownership and Protection
Each page in the virtual address space of a process is owned by the access mode
that created the page. For example, pages in the program region that are initially
provided for the execution of an image are owned by user mode. Pages that the
image creates dynamically are also owned by user mode. Pages in the control
region, except for the pages containing the user stack, are normally owned by
more privileged access modes.

Only the owner access mode or a more privileged access mode can delete the
page or otherwise affect it. The owner of a page can also indicate, by means of a
protection code, the type of access that each access mode will be allowed.

19–10

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

The Set Protection on Pages (SYS$SETPRT) system service changes the
protection assigned to a page or group of pages. The protection is expressed
as a code that indicates the specific type of access (none, read-only, read/write)
for each of the four access modes (kernel, executive, supervisor, user). Only the
owner access mode or a more privileged access mode can change the protection
for a page.

When an image attempts to access a page that is protected against the access
attempted, a hardware exception called an access violation occurs. When an
image calls a system service, the service probes the pages to be used to determine
whether an access violation would occur if the image attempts to read or write
one of the pages. If an access violation would occur, the service exits with the
status code SS$_ACCVIO.

Because the memory management services add, delete, or modify a single page at
a time, one or more pages can be successfully changed before an access violation
is detected. If the retadr argument is specified in the service call, the service
returns the addresses of pages changed (added, deleted, or modified) before the
error. If no pages are affected, that is, if an access violation would occur on the
first page specified, the service returns a value of �� in both longwords of the
return address array.

If the retadr argument is not specified, no information is returned.

19.5.4 Working Set Paging
When a process is executing an image, a subset of its pages resides in physical
memory; these pages are called the working set of the process. The working set
includes pages in both the program region and the control region. The initial size
of a process’s working set is usually defined by the process’s working set default
(WSDEFAULT) quota. The maximum size of a process’s working set is normally
defined by the process’s working set quota (WSQUOTA). When ample memory
is available, a process’s working-set upper growth limit can be expanded by its
working set extent (WSEXTENT).

When the image refers to a page that is not in memory, a page fault occurs and
the page is brought into memory, replacing an existing page in the working set.
If the page that is going to be replaced is modified during the execution of the
image, that page is written into a paging file on disk. When this page is needed
again, it is brought back into memory, again replacing a current page from the
working set. This exchange of pages between physical memory and secondary
storage is called paging.

The paging of a process’s working set is transparent to the process. However, if
a program is very large or if pages in the program image that are used often are
being paged in and out frequently, the overhead required for paging may decrease
the program’s efficiency. The SYS$ADJWSL, SYS$PURGWS, and SYS$LKWSET
system services allow a process, within limits, to counteract these potential
problems.

SYS$ADJWSL System Service
The Adjust Working Set Limit (SYS$ADJWSL) system service increases or
decreases the maximum number of pages that a process can have in its working
set. The format for this routine is as follows:

SYS$ADJWSL ([pagcnt],[wsetlm])

Use the pagcnt argument to specify the number of pages to add or subtract from
the current working set size. The new working set size is returned in wsetlm.

19–11

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

SYS$PURGWS System Service
The Purge Working Set (SYS$PURGWS) system service removes one or more
pages from the working set.

SYS$LKWSET System Service
The Lock Pages in Working Set (SYS$LKWSET) system service makes one
or more pages in the working set ineligible for paging by locking them in the
working set. Once locked into the working set, those pages remain until they are
explicitly unlocked with the Unlock Pages in Working Set (SYS$ULWSET) system
service or until program execution ends. The format is as follows:

SYS$LKWSET (inadr,[retadr],[acmode])

Specifying a Range of Addresses Use the inadr argument to specify the range
of addresses to be locked. The range of addresses of the pages actually locked are
returned in the retadr argument.

Specifying the Access Mode Use the acmode argument to specify the access
mode to be associated with the pages you want locked.

19.5.5 Process Swapping
The operating system balances the needs of all the processes currently executing,
providing each with the system resources it requires on an as-needed basis. The
memory management routines balance the memory requirements of the process.
Thus, the sum of the working sets for all processes currently in physical memory
is called the balance set.

When a process whose working set is in memory becomes inactive—for example,
to wait for an I/O request or to hibernate—the entire working set or part of it
may be removed from memory to provide space for another process’s working set
to be brought in for execution. This removal from memory is called swapping.

The working set may be removed in two ways:

• Partially—Also called swapper trimming. Pages are removed from the
working set of the target process so that the number of pages in the working
set is fewer, but the working set is not swapped.

• Entirely—Called swapping. All pages are swapped out of memory.

When a process is swapped out of the balance set, all the pages (both modified
and unmodified) of its working set are swapped, including any pages that had
been locked in the working set.

A privileged process may lock itself in the balance set. While pages can still be
paged in and out of the working set, the process remains in memory even when
it is inactive. To lock itself in the balance set, the process issues the Set Process
Swap Mode (SYS$SETSWM) system service, as follows:

$SETSWM_S SWPFLG=#1

This call to SYS$SETSWM disables process swap mode. You can also disable
swap mode by setting the appropriate bit in the STSFLG argument to the
Create Process (SYS$CREPRC) system service; however, you need the PSWAPM
privilege to alter process swap mode.

A process can also lock particular pages in memory with the Lock Pages in
Memory (SYS$LCKPAG) system service. These pages are not part of the process’s
working set, but they are forced into the process’s working set. When pages are
locked in memory with this service, the pages remain in memory even when the

19–12

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

remainder of the process’s working set is swapped out of the balance set. These
remaining pages stay in memory until they are unlocked with SYS$ULKPAG.
SYS$LCKPAG can be useful in special circumstances, for example, for routines
that perform I/O operations to devices without using the operating system’s I/O
system.

You need the PSWAPM privilege to issue SYS$LCKPAG or SYS$ULKPAG.

19.5.6 Sections
A section is a disk file or a portion of a disk file containing data or instructions
that can be brought into memory and made available to a process for
manipulation and execution. A section can also be one or more consecutive
page frames in physical memory or I/O space; such sections, which require you to
specify page frame number (PFN) mapping, are discussed in Section 19.5.6.15.

Sections are either private or global (shared).

• Private sections are accessible only by the process that creates them. A
process can define a disk data file as a section, map it into its virtual address
space, and manipulate it.

• Global sections can be shared by more than one process. One copy of the
global section resides in physical memory, and each process sharing it refers
to the same copy. A global section can contain shareable code or data that can
be read, or read and written, by more than one process. Global sections are
either temporary or permanent and can be defined for use within a group or
on a systemwide basis. Global sections can be either mapped to a disk file or
created as a global page-file section.

When modified pages in writable disk file sections are paged out of memory
during image execution, they are written back into the section file rather than
into the paging file, as is the normal case with files. (However, copy-on-reference
sections are not written back into the section file.)

The use of disk file sections involves these two distinct operations:

• The creation of a section defines a disk file as a section and informs the
system what portions of the file contain the section.

• The mapping of a section makes it available to a process and establishes the
correspondence between virtual blocks in the file and specific addresses in the
virtual address space of a process.

The Create and Map Section (SYS$CRMPSC) system service creates and maps
a private section or a global section. Because a private section is used only by a
single process, creation and mapping are simultaneous operations. In the case of
a global section, one process can create a permanent global section and not map
to it; other processes can map to it. A process can also create and map a global
section in one operation.

The following sections describe the creation, mapping, and use of disk file
sections. In each case, operations and requirements that are common to both
private sections and global sections are described first, followed by additional
notes and requirements for the use of global sections. Section 19.5.6.9 discusses
global page-file sections.

19–13

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

19.5.6.1 Creating Sections
To create a disk file section, follow these steps:

1. Open or create the disk file containing the section.

2. Define which virtual blocks in the file comprise the section.

3. Define the characteristics of the section.

19.5.6.2 Opening the Disk File
Before you can use a file as a section, you must open it using OpenVMS Record
Management Services (RMS). The following example shows the OpenVMS RMS
file access block ($FAB) and $OPEN macros used to open the file and the channel
specification to the SYS$CRMPSC system service necessary for reading an
existing file:

#include <rms.h>
#include <rmsdef.h>
#include <string.h>
#include <secdef.h>

struct FAB secfab;

main() {
unsigned short chan;
unsigned int status, retadr[1], pagcnt=1, flags;
char *fn = "SECTION.TST";

/* Initialize FAB fields */
secfab = cc$rms_fab;
secfab.fab$l_fna = fn;
secfab.fab$b_fns = strlen(fn);
secfab.fab$l_fop = FAB$M_CIF;
secfab.fab$b_rtv = -1;

/* Create a file if none exists */
status = SYS$CREATE(&secfab, 0, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

flags = SEC$M_EXPREG;
chan = secfab.fab$l_stv;
status = SYS$CRMPSC(0, &retadr, 0, 0, 0, 0, flags, chan, pagcnt, 0, 0, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

}

In this example, the file options parameter (FOP) indicates that the file is to be
opened for user I/O; this parameter is required so that OpenVMS RMS assigns
the channel using the access mode of the caller. OpenVMS RMS returns the
channel number on which the file is accessed; this channel number is specified as
input to SYS$CRMPSC (chan argument). The same channel number can be used
for multiple create and map section operations.

The option RTV=–1 tells the file system to keep all of the pointers to be mapped
in memory at all times. If this option is omitted, SYS$CRMPSC requests the file
system to expand the pointer areas, if necessary. Storage for these pointers is
charged to the BYTLM quota, which means that opening a badly fragmented file
can fail with an EXBYTLM failure status. Too many fragmented sections may
cause the byte limit to be exceeded.

19–14

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

The file may be a new file that is to be created while it is in use as a section. In
this case, use the $CREATE macro to open the file. If you are creating a new file,
the file access block (FAB) for the file must specify an allocation quantity (ALQ
parameter).

You can also use SYS$CREATE to open an existing file; if the file does not exist,
it is created. The following example shows the required fields in the FAB for the
conditional creation of a file:

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
ALQ=4, -
FAC=PUT,-
FOP=<UFO,CIF,CBT>, -
SHR=<PUT,UPI>

.

.

.
$CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file GLOBAL.TST if the
file does not currently exist. The CBT (contiguous best try) option requests that,
if possible, the file be contiguous. Although section files are not required to be
contiguous, better performance can result if they are.

19.5.6.3 Defining the Section Extents
After the file is opened successfully, SYS$CRMPSC can create a section either
from the entire file or from certain portions of it. The following arguments to
SYS$CRMPSC define the extents of the file that comprise the section:

• pagcnt (page count). This argument is required. It indicates the number of
virtual blocks that will be mapped. These blocks correspond to pages in the
section.

• vbn (virtual block number). This argument is optional. It defines the number
of the virtual block in the file that is the beginning of the section. If you do
not specify this argument, the value 1 is passed (the first virtual block in the
file is the beginning of the section). If you have specified physical page frame
number (PFN) mapping, the vbn argument specifies the starting PFN. The
system does not allow you to specify a virtual block number outside of the file.

19.5.6.4 Defining the Section Characteristics
The flags argument to SYS$CRMPSC defines the following section
characteristics:

• Whether it is a private section or a global section. The default is to create a
private section.

• How the pages of the section are to be treated when they are copied into
physical memory or when a process refers to them. The pages in a section can
be either or both of the following:

Read/write or read-only

Created as demand-zero pages or as copy-on-reference pages, depending
on how the processes are going to use the section and whether the file
contains any data (see Section 19.5.6.10)

• Whether the section is to be mapped to a disk file or to specific physical page
frames (see Section 19.5.6.15).

19–15

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

Table 19–2 shows the flag bits that must be set for specific characteristics.

Table 19–2 Flag Bits to Set for Specific Section Characteristics on VAX Systems

Section to Be Created

Correct Flag
Combinations Private Global

PFN
Private

PFN
Global

Shared
Memory

SEC$M_GBL 0 1 0 1 1

SEC$M_CRF Optional Optional 0 0 0

SEC$M_DZRO Optional Optional 0 0 Optional

SEC$M_WRT Optional Optional Optional Optional Optional

SEC$M_PERM Not used Optional Optional 1 1

SEC$M_SYSGBL Not used Optional Not used Optional Optional

SEC$M_PFNMAP 0 0 1 1 0

SEC$M_EXPREG Optional Optional Optional Optional Optional

SEC$M_PAGFIL 0 Optional 0 0 0

When you specify section characteristics, the following restrictions apply:

• Global sections cannot be both demand-zero and copy-on-reference.

• Demand-zero sections must be writable.

• Shared memory private sections are not allowed.

19.5.6.5 Defining Global Section Characteristics
If the section is a global section, you must assign it a character string name
(gsdnam argument) to it so that other processes can identify it when they map
it. The format of this character string name is explained in Section 19.5.6.6.

The flags argument specifies the following types of global sections:

• Group temporary (the default)

• Group permanent

• System temporary

• System permanent

Group global sections can be shared only by processes executing with the same
group number. The name of a group global section is implicitly qualified by the
group number of the process that created it. When other processes map it, their
group numbers must match.

A temporary global section is automatically deleted when no processes are
mapped to it, but a permanent global section remains in existence even when
no processes are mapped to it. A permanent global section must be explicitly
marked for deletion with the Delete Global Section (SYS$DGBLSC) system
service.

You need the user privileges PRMGBL and SYSGBL to create permanent group
global sections or system global sections (temporary or permanent), respectively.

A system global section is available to all processes in the system.

19–16

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

Optionally, a process creating a global section can specify a protection mask (prot
argument), restricting all access or a type of access (read, write, execute, delete)
to other processes.

19.5.6.6 Global Section Name
The gsdnam argument specifies a descriptor that points to a character string.

Translation of the gsdnam argument proceeds in the following manner:

1. The current name string is prefixed with GBL$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the system parameter LNM$C_MAXDEPTH.

3. The GBL$ prefix is stripped from the current name string that could not be
translated. This current string is the name of the global section.

For example, assume that you have made the following logical name assignment:

$ DEFINE GBL$GSDATA GSDATA_001

Your program contains the following statements:

#include <descrip.h>
.
.
.
$DESCRIPTOR(gsdnam,"GSDATA");

.

.

.
status = sys$crmpsc(&gsdnam, . . .);

The following logical name translation takes place:

1. GBL$ is prefixed to GDSDATA.

2. GBL$GSDATA is translated to GSDATA_001. (Further translation is not
successful. When logical name translation fails, the string is passed to the
service.)

There are three exceptions to the logical name translation method discussed in
this section:

• If the name string starts with an underscore (_), the operating system strips
the underscore and considers the resultant string to be the actual name (that
is, further translation is not performed).

• If the name string is the result of a logical name translation, then the name
string is checked to see whether it has the terminal attribute. If the name
string is marked with the terminal attribute, the operating system considers
the resultant string to be the actual name (that is, further translation is not
performed).

• If the global section has a name in the format name_nnn, the operating
system first strips the underscore and the digits (nnn), then translates the
resultant name according to the sequence discussed in this section, and
finally reappends the underscore and digits. The system uses this method

19–17

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

in conjunction with known images and shared files installed by the system
manager.

19.5.6.7 Mapping Sections
When you call SYS$CRMPSC to create or map a section, or both, you must
provide the service with a range of virtual addresses (inadr argument) into
which the section is to be mapped.

If you know specifically which pages the section should be mapped into, you
provide these addresses in a 2-longword array. For example, to map a private
section of 10 pages into virtual pages 10 through 19 of the program region,
specify the input address array as follows:

unsigned int maprange[1];

maprange[0]= 0x1400; /* Address (hex) of page 10 */
maprange[1]= 0x2300; /* Address (hex) of page 19 */

You do not need to know the explicit addresses to provide an input address range.
If you want the section mapped into the first available virtual address range in
the program region (P0) or the control region (P1), you can specify the SEC$M_
EXPREG flag bit in the flags argument. In this case, the addresses specified by
the inadr argument control whether the service finds the first available space in
P0 or P1. The value specified or defaulted for the pagcnt argument determines
the number of pages mapped. The following example shows part of a program
used to map a section at the current end of the program region:

unsigned int status, inadr[1], retadr[1], flags;

inadr[0]= 0x200; /* Any program (P0) region address */
inadr[1]= 0x200; /* Any P0 address (can be same) */

.

.

.
/* Address range returned in retadr */

flags = SEC$M_EXPREG;
status = sys$crmpsc(&inadr, &retadr, flags, . . .);

The addresses specified do not have to be currently in the virtual address space of
the process. SYS$CRMPSC creates the required virtual address space during the
mapping of the section. If you specify the retadr argument, the service returns
the range of addresses actually mapped.

After a section is mapped successfully, the image can refer to the pages using one
of the following:

• A base register or pointer and predefined symbolic offset names

• Labels defining offsets of an absolute program section or structure

The following example shows part of a program used to create and map a process
section:

#include <rms.h>
#include <rmsdef.h>
#include <string.h>
#include <secdef.h>

struct FAB secfab;

19–18

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

main() {
unsigned short chan;
unsigned int status, inadr[1], retadr[1], pagcnt=1, flags;
char *fn = "SECTION.TST";

/* Initialize FAB fields */

secfab = cc$rms_fab;
secfab.fab$b_fac = FAB$M_PUT;
secfab.fab$b_shr = FAB$M_SHRGET || FAB$V_SHRPUT || FAB$V_UPI;
secfab.fab$l_fna = fn;
secfab.fab$b_fns = strlen(fn);
secfab.fab$l_fop = FAB$V_CIF;
secfab.fab$b_rtv = -1;

/* Create a file if none exists */

status = SYS$CREATE(&secfab, 0, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

inadr[0] = X1400;
inadr[1] = X2300;
flags = SEC$M_WRT;
chan = secfab.fab$l_stv;
status = SYS$CRMPSC(&inadr, &retadr, 0, 0, 0, 0, flags, chan, pagcnt, 0, 0, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

}

Notes on Example

1. The OPEN macro opens the section file defined in the file access block
SECFAB. (The FOP parameter to the $FAB macro must specify the UFO
option.)

2. SYS$CRMPSC uses the addresses specified at MAPRANGE to specify an
input range of addresses into which the section will be mapped. The pagcnt
argument requests that only 4 pages of the file be mapped.

3. The flags argument requests that the pages in the section have read/write
access. The symbolic flag definitions for this argument are defined in the
$SECDEF macro. Note that the file access field (FAC parameter) in the FAB
also indicates that the file is to be opened for writing.

4. When SYS$CRMPSC completes, the addresses of the 4 pages that were
mapped are returned in the output address array at RETRANGE. The
address of the beginning of the section is placed in general register 6, which
serves as a pointer to the section.

19.5.6.8 Mapping Global Sections
A process that creates a global section can map that global section. Then other
processes can map it by calling the Map Global Section (SYS$MGBLSC) system
service.

When a process maps a global section, it must specify the global section name
assigned to the section when it was created, whether it is a group or system
global section, and whether it wants read-only or read/write access. The process
may also specify the following:

• A version identification (ident argument), indicating the version number of
the global section (when multiple versions exist) and whether more recent
versions are acceptable to the process.

19–19

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

• A relative page number (relpag argument) that specifies the page number
relative to the beginning of the section to begin mapping the section. In this
way, processes can use only portions of a section. Additionally, a process can
map a piece of a section into a particular address range and subsequently
map a different piece of the section into the same virtual address range.

To specify that the global section being mapped is located in physical memory that
is being shared by multiple processors, you can include the shared memory name
in the gsdnam argument character string (see Section 19.5.6.6). A demand-zero
global section in memory shared by multiple processors must be mapped when it
is created.

Cooperating processes can issue a call to SYS$CRMPSC to create and map
the same global section. The first process to call the service actually creates
the global section; subsequent attempts to create and map the section result
only in mapping the section for the caller. The successful return status code
SS$_CREATED indicates that the section did not already exist when the
SYS$CRMPSC system service was called. If the section did exist, the status
code SS$_NORMAL is returned.

The example in Section 19.5.6.10 shows one process (ORION) creating a global
section and a second process (CYGNUS) mapping the section.

19.5.6.9 Global Page-File Sections
Global page-file sections are used to store temporary data in a global section. A
global page-file section is a section of virtual memory that is not mapped to a file.
The section can be deleted when processes have finished with it. (Contrast this to
demand-zero pages, where initialization is not necessary but the pages are saved
in a file.) The system parameter GBLPAGFIL controls the total number of global
page-file pages in the system.

To create a global page-file section, you must set the flag bits SEC$M_GBL
and SEC$M_PAGFIL in the flags argument to the Create and Map Section
(SYS$CRMPSC) system service. The channel (chan argument) must be 0.

You cannot specify the flag bit SEC$M_CRF with the flag bit SEC$M_PAGFIL.

19.5.6.10 Section Paging
The first time an image executing in a process refers to a page that was created
during the mapping of a disk file section, the page is copied into physical memory.
The address of the page in the virtual address space of a process is mapped to
the physical page. During the execution of the image, normal paging can occur;
however, pages in sections are not written into the page file when they are paged
out, as is the normal case. Rather, if they have been modified, they are written
back into the section file on disk. The next time a page fault occurs for the page,
the page is brought back from the section file.

If the pages in a section were defined as demand-zero pages or copy-on-reference
pages when the section was created, the pages are treated differently, as follows:

• If the call to SYS$CRMPSC requested that pages in the section be treated as
demand-zero pages, these pages are initialized to zero when they are created
in physical memory. If the file is either a new file being created as a section
or a file being completely rewritten, demand-zero pages provide a convenient
way of initializing the pages. The pages are paged back into the section file.

• When the virtual address space is deleted, all unreferenced pages are written
back to the file as zeros. This causes the file to be initialized, no matter how
few pages were modified.

19–20

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

• If the call to SYS$CRMPSC requested that pages in the section be copy-on-
reference pages, each process that maps to the section receives its own copy of
the section, on a page-by-page basis from the file, as it refers to them. These
pages are never written back into the section file but are paged to the paging
file as needed.

In the case of global sections, more than one process can be mapped to the same
physical pages. If these pages need to be paged out or written back to the disk
file defined as the section, these operations are done only when the pages are not
in the working set of any process.

In the following example, process ORION creates a global section, and process
CYGNUS maps to that section:

/* Process ORION */

#include <rms.h>
#include <rmsdef.h>
#include <string.h>
#include <secdef.h>
#include <descrip.h>

struct FAB gblfab;

main() {
unsigned short chan;
unsigned int status, flags, efn=65;
char *fn = "SECTION.TST";
$DESCRIPTOR(name, "FLAG_CLUSTER"); /* Common event flag cluster name */
$DESCRIPTOR(gsdnam, "GLOBAL_SECTION"); /* Global section name */

1 status = SYS$ASCEFC(efn, &name, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Initialize FAB fields */

gblfab = cc$rms_fab;
gblfab.fab$l_alq = 4;
gblfab.fab$b_fac = FAB$M_PUT;
gblfab.fab$l_fnm = fn;
gblfab.fab$l_fop = FAB$M_CIF | FABM$_CBT;

.

.

.

/* Create a file if none exists */

2 status = SYS$CREATE(&gblfab, 0, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

flags = SEC$M_GBL || SEC$M_WRT;
status = SYS$CRMPSC(0, 0, 0, flags, &gsdnam, . . .);
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$SETEF(efn);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

}

19–21

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

/* Process CYGNUS */

unsigned int status, efn=65;
$DESCRIPTOR(cluster,"FLAG_CLUSTER");
$DESCRIPTOR(section,"GLOBAL_SECTION");
.
.
.

3 status = SYS$ASCEFC(efn, &cluster, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$WAITFR(efn);
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$MGBLSC(&inadr, &retadr, 0, flags, §ion, 0, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

}

1 The processes ORION and CYGNUS are in the same group. Each process
first associates with a common event flag cluster named FLAG_CLUSTER to
use common event flags to synchronize its use of the section.

2 The process ORION creates the global section named GLOBAL_SECTION,
specifying section flags that indicate that it is a global section (SEC$M_GBL)
and has read/write access. Input and output address arrays, the page count
parameter, and the channel number arguments are not shown; procedures for
specifying them are the same, as shown in this example.

3 The process CYGNUS associates with the common event flag cluster and
waits for the flag defined as FLGSET; ORION sets this flag when it has
finished creating the section. To map the section, CYGNUS specifies the input
and output address arrays, the flag indicating that it is a global section, and
the global section name. The number of pages mapped is the same as that
specified by the creator of the section.

19.5.6.11 Reading and Writing Data Sections
Read/write sections provide a way for a process or cooperating processes to share
data files in virtual memory.

The sharing of global sections may involve application-dependent synchronization
techniques. For example, one process can create and map to a global section
in read/write fashion; other processes can map to it in read-only fashion and
interpret data written by the first process. Alternatively, two or more processes
can write to the section concurrently. (In this case, the application must provide
the necessary synchronization and protection.)

After a file is updated, the process or processes can release (or unmap) the
section. The modified pages are then written back into the disk file defined as a
section.

When this is done, the revision number of the file is incremented, and the version
number of the file remains unchanged. A full directory listing indicates the
revision number of the file and the date and time that the file was last updated.

19–22

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

19.5.6.12 Releasing and Deleting Sections
A process unmaps a section by deleting the virtual addresses in its own virtual
address space to which it has mapped the section. If a return address range was
specified to receive the virtual addresses of the mapped pages, this address range
can be used as input to the Delete Virtual Address Space (SYS$DELTVA) system
service, as follows:

$DELTVA_S INADR=RETRANGE

When a process unmaps a private section, the section is deleted; that is, all
control information maintained by the system is deleted. A temporary global
section is deleted when all processes that have mapped to it have unmapped it.
Permanent global sections are not deleted until they are specifically marked for
deletion with the Delete Global Section (SYS$DGBLSC) system service; they are
then deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the section
file but rather cancels the process’s association with the file. Moreover, when a
process deletes pages mapped to a read/write section and no other processes are
mapped to it, all modified pages are written back into the section file.

After a section is deleted, the channel assigned to it can be deassigned. The
process that created the section can deassign the channel with the Deassign I/O
Channel (SYS$DASSGN) system service, as follows:

$DASSGN_S CHAN=GBLFAB+FAB$L_STV

19.5.6.13 Writing Back Sections
Because read/write sections are not normally updated on disk until the
physical pages they occupy are paged out or until all processes referring to
the section have unmapped it, a process should ensure that all modified pages are
successfully written back into the section file at regular intervals.

The Update Section File on Disk (SYS$UPDSEC) system service writes the
modified pages in a section into the disk file. SYS$UPDSEC is described in the
OpenVMS System Services Reference Manual.

19.5.6.14 Image Sections
Global sections can contain shareable code. The operating system uses global
sections to implement shareable code, as follows:

1. The object module containing code to be shared is linked to produce a
shareable image. The shareable image is not, in itself, executable. It contains
a series of sections called image sections.

2. You link private object modules with the shareable image to produce an
executable image. No code or data from the shareable image is put into the
executable image.

3. The system manager uses the INSTALL command to create a permanent
global section from the shareable image file, making the image sections
available for sharing.

4. When you run the executable image, the operating system automatically
maps the global sections created by the INSTALL command into the virtual
address space of your process.

19–23

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

For details about how to create and identify shareable images and how to link
them with private object modules, see the OpenVMS Linker Utility Manual. For
information about how to install shareable images and make them available for
sharing as global sections, see the OpenVMS System Manager’s Manual.

19.5.6.15 Page Frame Sections
A page frame section is one or more contiguous pages of physical memory or
I/O space that have been mapped as a section. One use of page frame sections is
to map to an I/O page, thus allowing a process to read device registers. A process
mapped to an I/O page can also connect to a device interrupt vector.

A page frame section differs from a disk file section in that it is not associated
with a particular disk file and is not paged. However, it is similar to a disk
file section in most other respects: you create, map, and define the extent and
characteristics of a page frame section in essentially the same manner as you do
for a disk file section.

To create a page frame section, you must specify page frame number (PFN)
mapping by setting the SEC$M_PFNMAP flag bit in the flags argument to the
Create and Map Section (SYS$CRMPSC) system service. The vbn argument is
now used to specify that the first page frame is to be mapped instead of the first
virtual block. You must have the user privilege PFNMAP to create or delete a
page frame section but not to map to an existing one.

Because a page frame section is not associated with a disk file, you do not use the
relpag, chan, and pfc arguments to the SYS$CRMPSC service to create or map
this type of section. For the same reason, the SEC$M_CRF (copy-on-reference)
and SEC$M_DZRO (demand-zero) bit settings in the flags argument do not apply.
Pages in page frame sections are not written back to any disk file (including the
paging file).

Caution

You must use caution when working with page frame sections. If you
permit write access to the section, each process that writes to it does
so at its own risk. Serious errors can occur if a process writes incorrect
data or writes to the wrong page, especially if the page is also mapped by
the system or by another process. Thus, any user who has the PFNMAP
privilege can damage or violate the security of a system.

19–24

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

19.5.7 Example of Using Memory Management System Services
In the following example, two programs are communicating through a global
section. The first program creates and maps a global section (by using
SYS$CRMPSC) and then writes a device name to the section. This program
also defines the device terminal and process names and sets the event flags that
synchronize the processes.

The second program maps the section (by using SYS$MGBLSC) and then reads
the device name and the process that allocated the device and any terminal
allocated to that process. This program also writes the process named to the
terminal global section where the process name can be read by the first program.

The common event cluster is used to synchronize access to the global section. The
first program sets REQ_FLAG to indicate that the device name is in the section.
The second program sets INFO_FLAG to indicate that the process and terminal
names are available.

Data in a section must be page aligned. The following is the option file used
at link time that causes the data in the common area named DATA to be page
aligned:
PSECT_ATTR = DATA, PAGE

For high-level language usage, use the solitary attribute of the linker. See the
OpenVMS Linker Utility Manual for an explanation of how to use the solitary
attribute.

Before executing the first program, you need to write a user-open routine that
sets the user open bit (FAB$V_UFO) of the FAB options longword (FAB$L_FOP).
The user-open routine would then read the channel number that the file is opened
on from the status longword (FAB$L_STV) and return that channel number to
the main program by using a common block (CHANNEL in this example).

!This is the program that creates the global section.

! Define global section flags
INCLUDE ’($SECDEF)’
! Mask for section flags
INTEGER SEC_MASK

! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
! (returned from useropen routine)
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

19–25

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE
.
.
.

! Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (Last element - first element + size of last element + 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO_LUN,
2 FILE=’INFO.TMP’,
2 STATUS=’NEW’,
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
! Free logical unit number and map section
CLOSE (INFO_LUN)

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)

STATUS = SYS$CRMPSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Addresses mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 ’GLOBAL_SEC’, ! Section name
2 ,,
2 %VAL(SEC_CHAN), ! I/O channel
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create the subprocess
STATUS = SYS$CREPRC (,
2 ’GETDEVINF’, ! Image
2 ,,,,,
2 ’GET_DEVICE’, ! Process name
2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Write data to section
DEVICE = ’$FLOPPY1’

! Get common event flag cluster and set flag
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
.
.
.

! This is the program that maps to the global section
! created by the previous program.

19–26

Memory Management Services and Routines (VAX Only)
19.5 Using System Services for Memory Allocation

! Define section flags
INCLUDE ’($SECDEF)’
! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL

! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/
.
.
.
! Get common event flag cluster and wait
! for GBL1.FOR to set REQUEST_FLAG
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)

! Set write flag
SEC_MASK = SEC$M_WRT

! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 ’GLOBAL_SEC’,,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Call GETDVI to get the process ID of the
! process that allocated the device, then
! call GETJPI to get the process name and terminal
! name associated with that process ID.
! Set PROCESS equal to the process name and
! set TERMINAL equal to the terminal name.
.
.
.
! After information is in GLOBAL_SEC
STATUS = SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

19–27

20
Memory Management Services and Routines

(Alpha Only)

Alpha This chapter describes the use of memory management system services and
run-time routines on Alpha systems. Although the operating system’s memory
management concepts are much the same on VAX systems and Alpha systems,
details of the memory management system are different. These details may
be critical to certain uses of the operating system’s memory management
system services and routines on an Alpha system. This chapter highlights those
differences by using the Alpha icon.

This chapter contains the following sections:

Section 20.1 describes the page sizes of Alpha systems.

Section 20.2 describes the layout of virtual address space.

Section 20.3 describes the three levels of the operating system’s memory
allocation routines.

Section 20.4 discusses how to use system services to add virtual address space,
adjust working sets, control process swapping, and create and manage
sections. ♦

20.1 Virtual Page Sizes

Alpha On Alpha systems, in order to facilitate memory protection and mapping, the
virtual address space is subdivided into segments of 8 KB, 16 KB, 32 KB, or 64
KB sizes called CPU-specific pages. On VAX systems, the page sizes are 512
bytes.

Wherever possible, the Alpha system’s versions of the system services and run-
time library routines that manipulate memory attempt to preserve compatibility
with the VAX system’s services and routines. The Alpha system’s versions of
the routines that accept page count values as arguments still interpret these
arguments in 512-byte quantities, which are called pagelets to distinguish
them from CPU-specific page sizes. The routines convert pagelet values into
CPU-specific pages. The routines that return page count values convert from
CPU-specific pages to pagelets, so that return values expected by applications are
still measured in the same 512-byte units.

This difference in page size does not affect memory allocation using higher-level
routines, such as run-time library routines that manipulate virtual memory
zones or language-specific memory allocation routines such as the malloc and free
routines in C.

To determine system page size, you make a call to the SYS$GETSYI system
service, specifying the SYI$_PAGE_SIZE item code. See the description of
SYS$GETSYI and SYI$_PAGE_SIZE in the OpenVMS System Services Reference
Manual for details. ♦

20–1

Memory Management Services and Routines (Alpha Only)
20.2 Virtual Address Space

20.2 Virtual Address Space
The Alpha system defines the same virtual address space layout as the VAX
system. The Alpha system virtual address space allows for growth of the P0 and
P1 regions in the same directions as on VAX systems.

The initial size of a process’s virtual address space depends on the size of the
image being executed. The virtual address space of an executing program consists
of the following three regions:

• Process program region (P0)

The process program region is also referred to as P0 space. P0 space contains
the instructions and data for the current image.

Your program can dynamically allocate storage in the process program region
by calling run-time library (RTL) dynamic memory allocation routines or the
operating system’s system services.

• Process control region (P1)

The process control region is also referred to as P1 space. P1 space contains
system control information and the user-mode process stack. The user mode
stack expands as necessary toward the lower-addressed end of P1 space.

• Common system region (S0)

The common system region is also referred to as S0 space, or system space.
S0 space contains the operating system. Your program cannot allocate or free
memory within the common system region from the user access mode.

The operating system’s memory management routines map and control the
relationship between physical memory and the virtual address space of a process.
These activities are, for the most part, transparent to you and your programs.
In some cases, however, you can make a program more efficient by explicitly
controlling its virtual memory usage.

The maximum size to which a process can increase its address space is controlled
by the system parameter VIRTUALPAGECNT.

Using memory management system services, a process can add a specified
number of pages to the end of either the program region or the control region.
Adding pages to the program region provides the process with additional space
for image execution, for example, for the dynamic creation of tables or data areas.
Adding pages to the control region increases the size of the user stack. As new
pages are referenced, the stack is automatically expanded (see Figure 20–1). (By
using the STACK= option in a linker options file, you can also expand the user
stack when you link the image.)

Figure 20–1 illustrates the layout of a process’s virtual memory. The initial
size of a process’s virtual address space depends on the size of the image being
executed.

20–2

Memory Management Services and Routines (Alpha Only)
20.2 Virtual Address Space

Figure 20–1 Layout of Alpha Process Virtual Address Space

7FFFFFFF

ZK−0861−GE

40000000
3FFFFFFF

Program Region

Growth
Direction of

(P1)
Control Region

Length

Length

Growth
Direction of

00000000
Address
Virtual

(P0)

20.3 Levels of Memory Allocation Routines
Sophisticated software systems must often create and manage complex data
structures. In these systems, the size and number of elements are not always
known in advance. You can tailor the memory allocation for these elements
by using dynamic memory allocation. By managing the memory allocation,
you can avoid allocating fixed tables that may be too large or too small for your
program. Managing memory directly can improve program efficiency. By allowing
you to allocate specific amounts of memory, the operating system provides a
hierarchy of routines and services for memory management. Memory allocation
and deallocation routines allow you to allocate and free storage within the virtual
address space available to your process.

There are three levels of memory allocation routines:

1. Memory management system services

The memory management system services comprise the lowest level of
memory allocation routines. These services include, but are not limited to,
the following:

SYS$EXPREG (Expand Region)
SYS$CRETVA (Create Virtual Address Space)
SYS$DELTVA (Delete Virtual Address Space)
SYS$CRMPSC (Create and Map Section)
SYS$MGBLSC (Map Global Section)

20–3

Memory Management Services and Routines (Alpha Only)
20.3 Levels of Memory Allocation Routines

SYS$DGBLSC (Delete Global Section)

For most cases in which a system service is used for memory allocation, the
Expand Region (SYS$EXPREG) system service is used to create pages of
virtual memory.

Because system services provide more control over allocation procedures than
RTL routines, you must manage the allocation precisely. System services
provide extensive control over address space allocation by allowing you to do
the following types of tasks:

• Add or delete virtual address space to the process’s program region (P0)
or control region (P1)

• Add or delete virtual address space at a specific range of addresses

• Increase or decrease the number of pages in a program’s working set

• Lock or delete pages of a program’s working set in memory

• Lock the entire program’s working set in memory (by disabling process
swapping)

• Define disk files containing data or shareable images and map the files
into the virtual address space of a process

2. RTL page management routines

The RTL routines exist for creating, deleting, and accessing information
about virtual address space. You can either allocate a specified number of
contiguous pages or create a zone of virtual address space. A zone is a logical
unit of the memory pool or subheap that you can control as an independent
area. It can be any size required by your program. Refer to Chapter 21 for
more information about zones.

The RTL page management routines LIB$GET_VM_PAGE and LIB$FREE_
VM_PAGE provide a convenient mechanism for allocating and freeing pages
of memory.

These routines maintain a processwide pool of free pages. If unallocated
pages are not available when LIB$GET_VM_PAGE is called, it calls
SYS$EXPREG to create the required pages in the program region (P0
space).

3. RTL heap management routines

The RTL heap management routines LIB$GET_VM and LIB$FREE_VM
provide a mechanism for allocating and freeing blocks of memory of arbitrary
size.

The following are heap management routines based on the concept of zones:

LIB$CREATE_VM_ZONE
LIB$CREATE_USER_VM_ZONE
LIB$DELETE_VM_ZONE
LIB$FIND_VM_ZONE
LIB$RESET_VM_ZONE
LIB$SHOW_VM_ZONE
LIB$VERIFY_VM_ZONE

If an unallocated block is not available to satisfy a call to LIB$GET_VM,
LIB$GET_VM calls LIB$GET_VM_PAGE to allocate additional pages.

20–4

Memory Management Services and Routines (Alpha Only)
20.3 Levels of Memory Allocation Routines

Modular application programs can call routines in any or all levels of the
hierarchy, depending on the kinds of services the application program needs. You
must observe the following basic rule when using multiple levels of the hierarchy:

Memory that is allocated by an allocation routine at one level of the hierarchy
must be freed by calling a deallocation routine at the same level of the
hierarchy. For example, if you allocated a page of memory by calling
LIB$GET_VM_PAGE, you can free it only by calling LIB$FREE_VM_PAGE.

Figure 20–2 shows the three levels of memory allocation routines.

Figure 20–2 Hierarchy of Alpha Memory Management Routines

RTL Heap Management Routines

RTL Page Management Routines

LIB$FREE_VM_PAGE LIB$GET_VM_PAGE

Memory Management System Services

ZK−4146−GE

LIB$CREATE_USER_VM_ZONE
LIB$CREATE_VM_ZONE
LIB$DELETE_VM_ZONE
LIB$FIND_VM_ZONE
LIB$FREE_VM

LIB$GET_VM
LIB$RESET_VM_ZONE
LIB$SHOW_VM_ZONE
LIB$VERIFY_VM_ZONE

$CRETVA
$CRMPSC

$DELTVA
$DGBLSC

$EXPREG
$MGBLSC

For information about using memory management RTLs, see Chapter 21.

20.4 Using System Services for Memory Allocation
This section describes how to use system services to perform the following tasks:

• Increase and decrease virtual address space

• Input and return address arrays

• Control page ownership and protection

• Control working set paging

• Control process swapping

20–5

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

20.4.1 Increasing and Decreasing Virtual Address Space
The system services allow you to add address space anywhere within the process’s
program region (P0) or control region (P1). To add address space at the end of P0
or P1, use the Expand Program/Control Region (SYS$EXPREG) system service.
SYS$EXPREG optionally returns the range of virtual addresses for the new
pages. To add address space in other portions of P0 or P1, use SYS$CRETVA.

The format for SYS$EXPREG is as follows:

SYS$EXPREG (pagcnt,[retadr],[acmode],[region])

Specifying the Number of Pages

Alpha On Alpha systems, use the pagcnt argument to specify the number of pagelets to
add to the end of the region. The Alpha system rounds the specified pagelet value
to the next integral number of Alpha pages for the system where it is executing.
To check the exact boundaries of the memory allocated by the system, specify the
optional retadr argument. The retadr argument contains the start address and
the end address of the memory allocated by the system service. ♦

Specifying the Access Mode
Use the acmode argument to specify the access to be assigned to the newly
created pages.

Specifying the Region
Use the region argument to specify whether to add the pages to the end of the
P0 or P1 region.

To deallocate pages allocated with SYS$EXPREG and SYS$CRETVA, use
SYS$DELTVA.

Alpha For Alpha systems, the following example illustrates the addition of 4 pagelets
to the program region of a process by writing a call to the SYS$EXPREG system
service.

#include <stdio.h>
#include <ssdef.h>

main() {
unsigned int status, retadr[2],pagcnt=4, region=0;

/* Add 4 pages to P0 space */
status = SYS$EXPREG(pagcnt, &retadr, 0, region);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Starting address: %d Ending address: %d\n",
retadr[0],retadr[1];

}

The value 0 is passed in the region argument to specify that the pages are to
be added to the program region. To add the same number of pages to the control
region, you would specify REGION=1.

Note that the region argument to the SYS$EXPREG service is optional; if it
is not specified, the pages are added to or deleted from the program region by
default.♦

20–6

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

Alpha The SYS$EXPREG service can add pagelets only in the direction of growth of a
particular region. When you need to add pages to the middle of these regions,
you can use the Create Virtual Address Space (SYS$CRETVA) system service.
Likewise, when you need to delete pages created by either SYS$EXPREG or
SYS$CRETVA, you can use the Delete Virtual Address Space (SYS$DELTVA)
system service. For example, if you have used the SYS$EXPREG service twice to
add pages to the program region and want to delete the first range of pages but
not the second, you could use the SYS$DELTVA system service, as shown in the
following example:

#include <stdio.h>
#include <ssdef.h>

struct {
unsigned int lower, upper;

}retadr1, retadr2, retadr3;

main() {
unsigned int status, pagcnt=4, region=0;

/* Add 4 pages to P0 space */
status = SYS$EXPREG(pagcnt, &retadr1, 0, region);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Starting address: %d ending address: %d\n",
retadr1.lower,retadr1.upper);

/* Add 3 more pages to P0 space */

pagcnt = 3;
status = SYS$EXPREG(pagcnt, &retadr2, 0, region);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Starting address: %d ending address: %d\n",
retadr2.lower,retadr2.upper);

/* Delete original allocation */
status = SYS$DELTVA(&retadr1, &retadr3, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);
else

printf("Starting address: %d ending address: %d\n",
retadr1.lower,retadr1.upper);

}

In this example, the first call to SYS$EXPREG rounds up the requested pagelet
count to an integral number of CPU-specific pages and adds that number of pages
to the program region; the virtual addresses of the created pages are returned in
the 2-longword array at retadr1. The second request converts the pagelet count
to pages, adds them to the program region, and returns the addresses at retadr2.
The call to SYS$DELTVA deletes the area created by the first SYS$EXPREG call.

20–7

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

Caution

Be aware that using SYS$CRETVA presents some risk because it can
delete pages that already exist if those pages are not owned by a more
privileged access mode. Further, if those pages are deleted, notification
is not sent. Therefore, unless you have complete control over an entire
system, use SYS$EXPREG or the RTL routines to allocate address space.

Section 20.4.3 mentions some other possible risks in using SYS$CRETVA for
allocating memory. ♦

20.4.2 Input Address Arrays and Return Address Arrays
When the SYS$EXPREG system service adds pages to a region, it adds them
in the normal direction of growth for the region. The return address array, if
requested, indicates the order in which the pages were added. For example:

• If the program region is expanded, the starting virtual address is smaller
than the ending virtual address.

• If the control region is expanded, the starting virtual address is larger than
the ending virtual address.

The addresses returned indicate the first byte in the first page that was added or
deleted and the last byte in the last page that was added or deleted, respectively.

When input address arrays are specified for the Create and Delete Virtual
Address Space (SYS$CRETVA and SYS$DELTVA, respectively) system services,
these services add or delete pages beginning with the address specified in the
first longword and ending with the address specified in the second longword.

Alpha On Alpha systems, the order in which the pages are added or deleted does not
have to be in the normal direction of growth for the region. Moreover, because
these services add or delete only whole pages, they ignore the low-order bits of
the specified virtual address (the low-order bits contain the byte offset within the
page). Table 20–1 shows the page size and byte offset.

Table 20–1 Page and Byte Offset Within Pages on Alpha Systems

Page Size
(Bytes)

Byte Within Page
(Bits)

8K 13

16K 14

32K 15

64K 16

Table 20–2 shows some sample virtual addresses in hexadecimal that may be
specified as input to SYS$CRETVA or SYS$DELTVA and shows the return
address arrays if all pages are successfully added or deleted. Table 20–2 assumes
a page size of 8 KB = 2000 hex.

20–8

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

Table 20–2 Sample Virtual Address Arrays on Alpha Systems

Input Array Output Array

Start End Region Start End

Number
of
Pages

1010 1670 P0 0 1FFF 1

2450 2451 P0 2000 3FFF 1

4200 A500 P0 4000 BFFF 5

9450 9450 P0 8000 9FFF 1

7FFEC010 7FFEC010 P1 7FFEDFFF 7FFEC000 1

7FFEC010 7FFEBCA0 P1 7FFEDFFF 7FFEA000 2

For SYS$CRETVA and SYS$DELTVA, note that if the input virtual addresses are
the same, as in the fourth and fifth items in Table 19–1, a single page is added or
deleted. The return address array indicates that the page was added or deleted
in the normal direction of growth for the region.

Note that for SYS$CRMPSC and SYS$MGBLSC, which are discussed in
Section 20.4.7, the sample virtual address arrays in Table 19–1 do not apply.
The reason is that the lower address value has to be an even multiple of the
machine page size; that is, it must be rounded down to an even multiple page
size. In addition, the higher address value must be one less than the even
multiple page size, representing the last byte on the last page. That is, it must
be rounded up to an even multiple page size, minus 1.

The procedure for determining start and end virtual addresses is as follows:

1. Get the page size in bytes.

2. Subtract 1 to get the byte-with-page mask.

3. Mask the low bits of lower virtual address, which is a round-down operation
to round it to the next lower page boundary.

4. Perform a logical OR operation on the higher virtual address, which is a
round-up operation to round it to the highest address in the last page. ♦

20.4.3 Allocating Memory in Existing Virtual Address Space on Alpha Systems
(Alpha Only)

Alpha On Alpha systems, if you reallocate memory that is already in its virtual address
space by using the SYS$CRETVA system service, you may need to modify the
values of the following arguments to SYS$CRETVA:

• If your application explicitly rounds the lower address specified in the inadr
argument to be a multiple of 512 in order to align on a page boundary, you
need to modify the address. The Alpha system’s version of the SYS$CRETVA
system service rounds down the start address to a CPU-specific page
boundary, which will vary with different implementations. It also rounds
up the end address to the last byte in a CPU-specific page boundary.

• The size of the reallocation, specified by the address range in the inadr
argument, may be larger on an Alpha system than on a VAX system
because the request is rounded up to CPU-specific pages. This can cause
the unintended destruction of neighboring data, which may also occur with

20–9

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

single-page allocations. (When the start address and the end address specified
in the inadr argument match, a single page is allocated.)

To determine whether you must modify the address as specified in inadr, specify
the optional retadr argument to determine the exact boundaries of the memory
allocated by the call to SYS$CRETVA. ♦

20.4.4 Page Ownership and Protection
Each page in the virtual address space of a process is owned by the access
mode that created the page. For example, pages in the program region initially
provided for the execution of an image are owned by user mode. Pages that the
image creates dynamically are also owned by user mode. Pages in the control
region, except for the pages containing the user stack, are normally owned by
more privileged access modes.

Only the owner access mode or a more privileged access mode can delete the
page or otherwise affect it. The owner of a page can also indicate, by means of a
protection code, the type of access that each access mode will be allowed.

The Set Protection on Pages (SYS$SETPRT) system service changes the
protection assigned to a page or group of pages. The protection is expressed
as a code that indicates the specific type of access (none, read-only, read/write)
for each of the four access modes (kernel, executive, supervisor, user). Only the
owner access mode or a more privileged access mode can change the protection
for a page.

When an image attempts to access a page that is protected against the access
attempted, a hardware exception called an access violation occurs. When an
image calls a memory management system service, the service probes the pages
to be used to determine whether an access violation would occur if the image
attempts to read or write one of the pages. If an access violation occurs, the
service exits with the status code SS$_ACCVIO.

Because the memory management services add, delete, or modify a single page at
a time, one or more pages can be successfully changed before an access violation
is detected. If the retadr argument is specified in the service call, the service
returns the addresses of pages changed (added, deleted, or modified) before the
error. If no pages are affected, that is, if an access violation occurs on the first
page specified, the service returns a �� in both longwords of the return address
array.

If the retadr argument is not specified, no information is returned.

20.4.5 Working Set Paging

Alpha On Alpha systems, when a process is executing an image, a subset of its pages
resides in physical memory; these pages are called the working set of the
process. The working set includes pages in both the program region and the
control region. The initial size of a process’s working set is defined by the
process’s working set default (WSDEFAULT) quota, which is specified in pagelets.
When ample physical memory is available, a process’s working-set upper growth
limit can be expanded to its working set extent (WSEXTENT). ♦

When the image refers to a page that is not in memory, a page fault occurs,
and the page is brought into memory, possibly replacing an existing page in
the working set. If the page that is going to be replaced is modified during the
execution of the image, that page is written into a paging file on disk. When this
page is needed again, it is brought back into memory, again replacing a current

20–10

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

page from the working set. This exchange of pages between physical memory and
secondary storage is called paging.

The paging of a process’s working set is transparent to the process. However, if
a program is very large or if pages in the program image that are used often are
being paged in and out frequently, the overhead required for paging may decrease
the program’s efficiency. The SYS$ADJWSL, SYS$PURGWS, and SYS$LKWSET
system services allow a process, within limits, to counteract these potential
problems.

SYS$ADJWSL System Service
The Adjust Working Set Limit (SYS$ADJWSL) system service increases or
decreases the maximum number of pages that a process can have in its working
set. The format for this routine is as follows:

SYS$ADJWSL ([pagcnt],[wsetlm])

Alpha On Alpha systems, use the pagcnt argument to specify the number of pagelets
to add or subtract from the current working set size. The Alpha system rounds
the specified number of pagelets to a multiple of the system’s page size. The new
working set size is returned in wsetlm in units of pagelets. ♦

SYS$PURGWS System Service
The Purge Working Set (SYS$PURGWS) system service removes one or more
pages from the working set.

SYS$LKWSET System Service
The Lock Pages in Working Set (SYS$LKWSET) system service makes one
or more pages in the working set ineligible for paging by locking them in the
working set. Once locked into the working set, those pages remain in the working
set until they are unlocked explicitly with the Unlock Pages in Working Set
(SYS$ULWSET) system service, or program execution ends. The format is as
follows:

SYS$LKWSET (inadr,[retadr],[acmode])

Alpha Specifying a Range of Addresses On Alpha systems, use the inadr argument to
specify the range of addresses to be locked. SYS$LKWSET rounds the addresses
to CPU-specific page boundaries, if necessary. The range of addresses of the pages
actually locked are returned in the retadr argument.

However, because the Alpha system’s instructions cannot contain full virtual
addresses, the Alpha system’s images must reference procedures and data
indirectly through a pointer to a procedure descriptor. The procedure descriptor
contains information about the procedure, including the actual code address.
These pointers to procedure descriptors and data are collected into a program
section called a linkage section. Therefore, it is not sufficient simply to lock
a section of code into memory to improve performance. You must also lock the
associated linkage section into the working set.

To lock the linkage section into memory, you must determine the start and end
addresses that encompass the linkage section and pass these addresses as values
in the inadr argument to a call to SYS$LKWSET. For more information about
linking, see Migrating to an OpenVMS AXP System: Recompiling and Relinking
Applications. ♦

Specifying the Access Mode Use the acmode argument to specify the access
mode to be associated with the pages you want locked.

20–11

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

20.4.6 Process Swapping
The operating system balances the needs of all the processes currently executing,
providing each with the system resources it requires on an as-needed basis. The
memory management routines balance the memory requirements of the process.
Thus, the sum of the working sets for all processes currently in physical memory
is called the balance set.

When a process whose working set is in memory becomes inactive—for example,
to wait for an I/O request or to hibernate—the entire working set or part of it
may be removed from memory to provide space for another process’s working set
to be brought in for execution. This removal from memory is called swapping.

The working set may be removed in two ways:

• Partially—Also called swapper trimming. Pages are removed from the
working set of the target process so that the number of pages in the working
set is fewer, but the working set is not swapped.

• Entirely—Called swapping. All pages are swapped out of memory.

When a process is swapped out of the balance set, all the pages (both modified
and unmodified) of its working set are swapped, including any pages that had
been locked in the working set.

A privileged process may lock itself in the balance set. While pages can still be
paged in and out of the working set, the process remains in memory even when
it is inactive. To lock itself in the balance set, the process issues the Set Process
Swap Mode (SYS$SETSWM) system service, as follows:

$SETSWM_S SWPFLG=#1

This call to SYS$SETSWM disables process swap mode. You can also disable
swap mode by setting the appropriate bit in the STSFLG argument to the
Create Process (SYS$CREPRC) system service; however, you need the PSWAPM
privilege to alter process swap mode.

A process can also lock particular pages in memory with the Lock Pages in
Memory (SYS$LCKPAG) system service. These pages are forced into the process’s
working set if they are not already there. When pages are locked in memory
with this service, the pages remain in memory even when the remainder of the
process’s working set is swapped out of the balance set. These remaining pages
stay in memory until they are unlocked with SYS$ULKPAG. The SYS$LCKPAG
system service can be useful in special circumstances, for example, for routines
that perform I/O operations to devices without using the operating system’s I/O
system.

You need the PSWAPM privilege to issue the SYS$LCKPAG or SYS$ULKPAG
system service.

20.4.7 Sections
A section is a disk file or a portion of a disk file containing data or instructions
that can be brought into memory and made available to a process for
manipulation and execution. A section can also be one or more consecutive
page frames in physical memory or I/O space; such sections, which require you
to specify page frame number (PFN) mapping, are discussed in the Chapter 19,
Section 19.5.6.15.

20–12

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

Sections are either private or global (shared).

• Private sections are accessible only by the process that creates them. A
process can define a disk data file as a section, map it into its virtual address
space, and manipulate it.

• Global sections can be shared by more than one process. One copy of
the global section resides in physical memory, and each process sharing it
refers to the same copy, except for copy-on-reference sections. For a copy-
on-reference section, each process refers to the same global section, but each
process gets its own copy of each page upon reference. A global section can
contain shareable code or data that can be read, or read and written, by more
than one process. Global sections are either temporary or permanent and can
be defined for use within a group or on a systemwide basis. Global sections
can be mapped to a disk file or created as a global page-file section, or they
can be a PFN mapped section.

When modified pages in writable disk file sections are paged out of memory
during image execution, they are written back into the section file rather than
into the paging file, as is the normal case with files. (However, copy-on-reference
sections are not written back into the section file.)

The use of disk file sections involves these two distinct operations:

1. The creation of a section defines a disk file as a section and informs the
system what portions of the file contain the section.

2. The mapping of a section makes it available to a process and establishes the
correspondence between virtual blocks in the file and specific addresses in the
virtual address space of a process.

The Create and Map Section (SYS$CRMPSC) system service creates and maps
a private section or a global section. Because a private section is used only by a
single process, creation and mapping are simultaneous operations. In the case of
a global section, one process can create a permanent global section and not map
to it; other processes can map to it. A process can also create and map a global
section in one operation.

The following sections describe the creation, mapping, and use of disk file
sections. In each case, operations and requirements that are common to both
private sections and global sections are described first, followed by additional
notes and requirements for the use of global sections. Section 20.4.7.9 discusses
global page-file sections.

20.4.7.1 Creating Sections
To create a disk file section, you must follow these steps:

1. Open or create the disk file containing the section.

2. Define which virtual blocks in the file comprise the section.

3. Define the characteristics of the section.

20–13

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

20.4.7.2 Opening the Disk File
Before you can use a file as a section, you must open it using OpenVMS RMS. The
following example shows the OpenVMS RMS file access block ($FAB) and $OPEN
macros used to open the file and the channel specification to the SYS$CRMPSC
system service necessary for reading an existing file:

SECFAB: $FAB FNM=<SECTION.TST>, ; File access block
FOP=UFO
RTV= -1

.

.

.
$OPEN FAB=SECFAB
$CRMPSC_S -

CHAN=SECFAB+FAB$L_STV,...

The file options parameter (FOP) indicates that the file is to be opened for user
I/O; this option is required so that OpenVMS RMS assigns the channel using
the access mode of the caller. OpenVMS RMS returns the channel number
on which the file is accessed; this channel number is specified as input to the
SYS$CRMPSC system service (chan argument). The same channel number can
be used for multiple create and map section operations.

The option RTV=�� tells the file system to keep all of the pointers to be mapped
in memory at all times. If this option is omitted, the SYS$CRMPSC service
requests the file system to expand the pointer areas if necessary. Storage for
these pointers is charged to the BYTLM quota, which means that opening a badly
fragmented file can fail with an EXBYTLM failure status. Too many fragmented
sections may cause the byte limit to be exceeded.

The file may be a new file that is to be created while it is in use as a section. In
this case, use the $CREATE macro to open the file. If you are creating a new file,
the file access block (FAB) for the file must specify an allocation quantity (ALQ
parameter).

You can also use SYS$CREATE to open an existing file; if the file does not exist,
it is created. The following example shows the required fields in the FAB for the
conditional creation of a file:

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
ALQ=4, -
FAC=PUT,-
FOP=<UFO,CIF,CBT>, -
SHR=<PUT,UPI>

.

.

.
$CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file GLOBAL.TST if the
file does not currently exist. The CBT (contiguous best try) option requests that,
if possible, the file be contiguous. Although section files are not required to be
contiguous, better performance can result if they are.

20–14

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

20.4.7.3 Defining the Section Extents
After the file is opened successfully, the SYS$CRMPSC system service can create
a section from the entire file or from only certain portions of it. The following
arguments to SYS$CRMPSC define the extents of the file that comprise the
section:

Alpha • pagcnt (page count). On Alpha systems, this argument is optional. It
indicates the size of the space that will be mapped. The pagcnt argument
is in units of page frames (PFNs) for a PFN-mapped section and in units
of pagelets (512-byte blocks) for disk-backed sections, including page file
sections.

If pagcnt is not supplied, then the section size defaults to the file size for a
section being created and not mapped or defaults to the minimum of the file
size and the size specified by inadr for a section being created and mapped
simultaneously. You can map only what you have access to. Once a starting
point is established, you can map pagcnt more space as long as you do not
exceed the total size of the item you are mapping, such as the remaining
blocks of a file or the remaining space in a global section. ♦

• vbn (virtual block number). This argument is optional. It defines the number
of the virtual block in the file that is the beginning of the section. If you do
not specify this argument, the value 1 is passed (the first virtual block in the
file is the beginning of the section). If you have specified physical page frame
number (PFN) mapping, the vbn argument specifies the starting PFN.

20.4.7.4 Defining the Section Characteristics
The flags argument to the SYS$CRMPSC system service defines the following
section characteristics:

• Whether it is a private section or a global section. The default is to create a
private section.

• How the pages of the section are to be treated when they are copied into
physical memory or when a process refers to them. The pages in a section can
be either or both of the following:

Read/write or read-only

Created as demand-zero pages or as copy-on-reference pages, depending
on how the processes are going to use the section and whether the file
contains any data (see Section 20.4.7.12)

• Whether the section is to be mapped to a disk file or to specific physical page
frames (see Section 20.4.7.17).

Alpha Table 20–3 shows the flag bits that must be set for specific characteristics on
Alpha systems.

20–15

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

Table 20–3 Flag Bits to Set for Specific Section Characteristics on Alpha
Systems

Section to Be Created

Correct Flag
Combinations Private Global

PFN
Private

PFN
Global

SEC$M_GBL 0 1 0 1

SEC$M_CRF Optional Optional 0 0

SEC$M_DZRO Optional Optional 0 0

SEC$M_WRT Optional Optional Optional Optional

SEC$M_PERM Not used Optional Not used 1

SEC$M_SYSGBL Not used Optional Not used Optional

SEC$M_PFNMAP 0 0 1 1

SEC$M_EXPREG Optional Optional Optional Optional

SEC$M_PAGFIL 0 Optional 0 0

When you specify section characteristics, the following restrictions apply:

• Global sections cannot be both demand-zero and copy-on-reference.

• Demand-zero sections must be writable. ♦

20.4.7.5 Defining Global Section Characteristics
If the section is a global section, you must assign a character string name
(gsdnam argument) to it so that other processes can identify it when they
map it. The format of this character string name is explained in Section 20.4.7.6.

The flags argument specifies the following types of global section:

• Group temporary (the default)

• Group permanent

• System temporary

• System permanent

Group global sections can be shared only by processes executing with the same
group number. The name of a group global section is implicitly qualified by the
group number of the process that created it. When other processes map it, their
group numbers must match.

A temporary global section is automatically deleted when no processes are
mapped to it, but a permanent global section remains in existence even when
no processes are mapped to it. A permanent global section must be explicitly
marked for deletion with the Delete Global Section (SYS$DGBLSC) system
service.

You need the user privileges PRMGBL and SYSGBL to create permanent group
global sections or system global sections (temporary or permanent), respectively.

A system global section is available to all processes in the system.

Optionally, a process creating a global section can specify a protection mask (prot
argument) to restrict all access or a type of access (read, write, execute, delete) to
other processes.

20–16

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

20.4.7.6 Global Section Name
The gsdnam argument specifies a descriptor that points to a character string.

Translation of the gsdnam argument proceeds in the following manner:

1. The current name string is prefixed with GBL$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the system parameter LNM$C_MAXDEPTH.

3. The GBL$ prefix is stripped from the current name string that could not be
translated. This current string is the global section name.

For example, assume that you have made the following logical name assignment:

$ DEFINE GBL$GSDATA GSDATA_001

Your program contains the following statements:

#include <descrip.h>
.
.
.
$DESCRIPTOR(gsdnam,"GSDATA");

.

.

.
status = sys$crmpsc(&gsdnam, . . .);

The following logical name translation takes place:

1. GBL$ is prefixed to GSDATA.

2. GBL$GSDATA is translated to GSDATA_001. (Further translation is not
successful. When logical name translation fails, the string is passed to the
service.)

There are three exceptions to the logical name translation method discussed in
this section:

• If the name string starts with an underscore (_), the operating system strips
the underscore and considers the resultant string to be the actual name (that
is, further translation is not performed).

• If the name string is the result of a logical name translation, then the name
string is checked to see if it has the terminal attribute. If the name string
is marked with the terminal attribute, the operating system considers the
resultant string to be the actual name (that is, further translation is not
performed).

• If the global section has a name in the format name_nnn, the operating
system first strips the underscore and the digits (nnn), then translates the
resultant name according to the sequence discussed in this section, and
finally reappends the underscore and digits. The system uses this method
in conjunction with known images and shared files installed by the system
manager.

20–17

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

20.4.7.7 Mapping Sections
When you call the SYS$CRMPSC system service to create or map a section,
or both, you must provide the service with a range of virtual addresses (inadr
argument) into which the section is to be mapped.

Alpha On Alpha systems, the inadr argument specifies the size and location of the
section by its start and end addresses. SYS$CRMPSC interprets the inadr
argument in the following ways:

• If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG bit is set in the flags argument, SYS$CRMPSC allocates
the memory in whichever program region the addresses fall but does not use
the specified location.

• If both addresses are different, SYS$CRMPSC maps the section into memory
using the boundaries specified.

If you know specifically which pages the section should be mapped into, you
provide these addresses in a 2-longword array. For example, to map a private
section of 10 pages into virtual pages 10 through 19 of the program region,
specify the input address array as follows: ♦

unsigned int maprange[1]; /* Assume page size = 8 KB */

maprange[0] = 0x14000; /* Address (hex) of page 10 */
maprange[1] = 0x27FFF; /* Address (hex) of page 19 */

Alpha On Alpha systems, the inadr argument range must have a lower address on an
even page boundary and a higher address exactly one less than a page boundary.
For example, the range can be expressed as the following on an 8 KB page
system:

0 —-> 1FFF
2000 —-> 7FFF
or
inadr[0] = first byte in range
inadr[1] = last byte in range

If the range is not expressed in terms of page-inclusive boundaries, then an SS$_
INVARG condition value is returned. ♦

You do not need to know the explicit addresses to provide an input address range.
If you want the section mapped into the first available virtual address range in
the program region (P0) or control region (P1), you can specify the SEC$M_
EXPREG flag bit in the flags argument. In this case, the addresses specified
by the inadr argument control whether the service finds the first available
space in the P0 or P1. The value specified or defaulted for the pagcnt argument
determines the amount of space mapped.

Alpha On Alpha systems, the relpag argument specifies the location in the section file
at which you want mapping to begin.

The SYS$CRMPSC and SYS$MGBLSC system services map a minimum of one
CPU-specific page. If the section file does not fill a single page, the remainder of
the page is filled with zeros after faulting the page into memory. The extra space
on the page should not be used by your application because only the data that fits
into the section file will be written back to the disk.

20–18

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

The following example shows part of a program used to map a section at the
current end of the program region:

unsigned int status, inadr[1], retadr[1], flags;

/*
This range used merely to indicate P0 space since SEC$M_EXPREG

is specified
*/

inadr[0]= 0x200; /* Any program (P0) region address */
inadr[1]= 0x200; /* Any P0 address (can be same) */

.

.

.
/* Address range returned in retadr */

flags = SEC$M_EXPREG;
status = sys$crmpsc(&inadr, &retadr, flags, . . .);

The addresses specified do not have to be currently in the virtual address space
of the process. The SYS$CRMPSC system service creates the required virtual
address space during the mapping of the section. If you specify the retadr
argument, the service returns the range of addresses actually mapped. ♦

Alpha On Alpha systems, the starting retadr address should match inadr, plus relpag
if specified. The ending (higher) address will be limited by the lower of:

• The value of the pagcnt argument

• The actual remaining block count in the file starting with specified starting
vbn, or relpag

• The bound dictated by the inadr argument ♦

After a section is mapped successfully, the image can refer to the pages using one
of the following:

• A base register or pointer and predefined symbolic offset names

• Labels defining offsets of an absolute program section or structure

Alpha The following example shows part of a program used to create and map a process
section on Alpha systems:

SECFAB: $FAB FNM=<SECTION.TST>, -
FOP=UFO, -
FAC=PUT, -
SHR=<GET,PUT,UPI>

;
MAPRANGE:

.LONG ^X14000 ; First 8 KB page

.LONG ^X27FFF ; Last page
RETRANGE:

.BLKL 1 ; First page mapped
ENDRANGE:

.BLKL 1 ; Last page mapped
.
.
.

$OPEN FAB=SECFAB ; Open section file
BLBS R0,10$
BSBW ERROR

20–19

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

10$: $CRMPSC_S -
INADR=MAPRANGE,- ; Input address array
RETADR=RETRANGE,- ; Output array
PAGCNT=#4,- ; Map four pagelets
FLAGS=#SEC$M_WRT,- ; Read/write section
CHAN=SECFAB+FAB$L_STV ; Channel number

BLBS R0,20$
BSBW ERROR

20$: MOVL RETRANGE,R6 ; Point to start of section

Notes on Example

1. The OPEN macro opens the section file defined in the file access block
SECFAB. (The FOP parameter to the $FAB macro must specify the UFO
option.)

2. The SYS$CRMPSC system service uses the addresses specified at
MAPRANGE to specify an input range of addresses into which the section
will be mapped. The pagcnt argument requests that only 4 pagelets of the
file be mapped.

3. The flags argument requests that the pages in the section have read/write
access. The symbolic flag definitions for this argument are defined in the
$SECDEF macro. Note that the file access field (FAC parameter) in the FAB
also indicates that the file is to be opened for writing.

4. When SYS$CRMPSC completes, the addresses of the 4 pagelets that were
mapped are returned in the output address array at RETRANGE. The
address of the beginning of the section is placed in register 6, which serves as
a pointer to the section. ♦

20.4.7.8 Mapping Global Sections
A process that creates a global section can map that global section. Then other
processes can map it by calling the Map Global Section (SYS$MGBLSC) system
service.

When a process maps a global section, it must specify the global section name
assigned to the section when it was created, whether it is a group or system
global section, and whether it desires read-only or read/write access. The process
may also specify the following:

• A version identification (ident argument), indicating the version number of
the global section (when multiple versions exist) and whether more recent
versions are acceptable to the process.

• A relative pagelet number (relpag argument), specifying the pagelet number,
relative to the beginning of the section, to begin mapping the section. In this
way, processes can use only portions of a section. Additionally, a process can
map a piece of a section into a particular address range and subsequently
map a different piece of the section into the same virtual address range.

Alpha On Alpha systems, you should specify the retadr argument to determine the
exact boundaries of the memory that was mapped by the call. If your application
specifies the relpag argument, you must specify the retadr argument. In this
case, it is not an optional argument. ♦

Cooperating processes can both issue a SYS$CRMPSC system service to create
and map the same global section. The first process to call the service actually
creates the global section; subsequent attempts to create and map the section
result only in mapping the section for the caller. The successful return status
code SS$_CREATED indicates that the section did not already exist when the

20–20

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

SYS$CRMPSC system service was called. If the section did exist, the status code
SS$_NORMAL is returned.

The example in Section 20.4.7.12 shows one process (ORION) creating a global
section and a second process (CYGNUS) mapping the section.

20.4.7.9 Global Page-File Sections
Global page-file sections are used to store temporary data in a global section. A
global page-file section is a section of virtual memory that is not mapped to a file.
The section can be deleted when processes have finished with it. (Contrast this
with demand-zero section file pages where no initialization is necessary, but the
pages are saved in a file.) The system parameter GBLPAGFIL controls the total
number of global page-file pages in the system.

To create a global page-file section, you must set the flag bits SEC$M_GBL
and SEC$M_PAGFIL in the flags argument to the Create and Map Section
(SYS$CRMPSC) system service. The channel (chan argument) must be 0.

You cannot specify the flag bit SEC$M_CRF with the flag bit SEC$M_PAGFIL.

20.4.7.10 Mapping into a Defined Address Range

Alpha On Alpha systems, SYS$CRMPSC and SYS$MGBLSC interpret some of the
arguments differently than on VAX systems if you are mapping a section into a
defined area of virtual address space. The differences are as follows:

• The addresses specified as values in the inadr argument must be aligned
on CPU-specific page boundaries. On VAX systems, SYS$CRMPSC and
the SYS$MGBLSC round these addresses to page boundaries for you. On
Alpha systems, SYS$CRMPSC does not round the addresses you specify
to page boundaries, because rounding to CPU-specific page boundaries on
Alpha system affects a much larger portion of memory than it does on VAX
systems, where page sizes are much smaller. Therefore, on Alpha systems,
you must explicitly state where you want the virtual memory space mapped.
If the addresses you specify are not aligned on CPU-specific page boundaries,
SYS$CRMPSC returns an invalid arguments error (SS$_INVARG).

In particular, the lower inadr address must be on a CPU-specific page
boundary, and the higher inadr address must be one less than a CPU-specific
page; that is, it indicates the highest-addressed byte of the inadr range.

• The addresses returned in the retadr argument reflect only the usable
portion of the actual memory mapped by the call, not the entire amount
mapped. The usable amount is either the value specified in the pagcnt
argument (measured in pagelets) or the size of the section file, whichever
is smaller. The actual amount mapped depends on how many CPU-specific
pages are required to map the section file. If the section file does not fill a
CPU-specific page, the remainder of the page is filled with zeros. The excess
space on this page should not be used by your application. The end address
specified in the retadr argument specifies the upper limit available to your
application. Also note that, when the relpag argument is specified, the
retadr argument must be included. It is not optional on Alpha systems. ♦

20–21

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

20.4.7.11 Mapping from an Offset into a Section File

Alpha On Alpha systems, you can map a portion of a section file by specifying the
address at which to start the mapping as an offset from the beginning of the
section file. You specify this offset by supplying a value to the relpag argument
of SYS$CRMPSC. The value of the relpag argument specifies the pagelet number
relative to the beginning of the file at which the mapping should begin.

To preserve compatibility, SYS$CRMPSC interprets the value of the relpag
argument in 512-byte units on both VAX systems and Alpha systems. However,
because the CPU-specific page size on the Alpha system is larger than 512 bytes,
the address specified by the offset in the relpag argument probably does not
fall on a CPU-specific page boundary on an Alpha system. SYS$CRMPSC can
map virtual memory in CPU-specific page increments only. Therefore, on Alpha
systems, the mapping of the section file will start at the beginning of the CPU-
specific page that contains the offset address, not at the address specified by the
offset.

Note

Even though the routine starts mapping at the beginning of the CPU-
specific page that contains the address specified by the offset, the start
address returned in the retadr argument is the address specified by the
offset, not the address at which mapping actually starts.

If you map from an offset into a section file, you must still provide an inadr
argument that abides by the requirements presented in Section 20.4.7.10 when
mapping into a defined address range. ♦

20.4.7.12 Section Paging
The first time an image executing in a process refers to a page that was created
during the mapping of a disk file section, the page is copied into physical memory.
The address of the page in the virtual address space of a process is mapped to
the physical page. During the execution of the image, normal paging can occur;
however, pages in sections are not written into the page file when they are paged
out, as is the normal case. Rather, if they have been modified, they are written
back into the section file on disk. The next time a page fault occurs for the page,
the page is brought back from the section file.

If the pages in a section were defined as demand-zero pages or copy-on-reference
pages when the section was created, the pages are treated differently, as follows:

• If the call to SYS$CRMPSC requested that pages in the section be treated as
demand-zero pages, these pages are initialized to zeros when they are created
in physical memory. If the file is either a new file being created as a section
or a file being completely rewritten, demand-zero pages provide a convenient
way of initializing the pages. The pages are paged back into the section file.

• When the virtual address space is deleted, all unreferenced pages are written
back to the file as zeros. This causes the file to be initialized, no matter how
few pages were modified.

• If the call to SYS$CRMPSC requested that pages in the section be copy-on-
reference pages, each process that maps to the section receives its own copy of
the section, on a page-by-page basis from the file, as it refers to them. These
pages are never written back into the section file but are paged to the paging
file as needed.

20–22

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

In the case of global sections, more than one process can be mapped to the same
physical pages. If these pages need to be paged out or written back to the disk
file defined as the section, these operations are done only when the pages are not
in the working set of any process.

Alpha In the following example for Alpha systems, process ORION creates a global
section and process CYGNUS maps to that section:

/* Process ORION */

#include <rms.h>
#include <rmsdef.h>
#include <string.h>
#include <secdef.h>
#include <descrip.h>

struct FAB gblfab;

main() {
unsigned short chan;
unsigned int status, flags, efn=65;
char *fn = "SECTION.TST";
$DESCRIPTOR(name, "FLAG_CLUSTER"); /* Common event flag cluster name */
$DESCRIPTOR(gsdnam, "GLOBAL_SECTION"); /* Global section name */

1 status = SYS$ASCEFC(efn, &name, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

/* Initialize FAB fields */

gblfab = cc$rms_fab;
gblfab.fab$l_alq = 4;
gblfab.fab$b_fac = FAB$M_PUT;
gblfab.fab$l_fnm = fn;
gblfab.fab$l_fop = FAB$M_CIF || FAB$M_CBT;

.

.

.

/* Create a file if none exists */

2 status = SYS$CREATE(&gblfab, 0, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

flags = SEC$M_GBL | SEC$M_WRT;
status = SYS$CRMPSC(0, 0, 0, flags, &gsdnam, . . .);
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$SETEF(efn);
if ((status & 1) != 1)

LIB$SIGNAL(status);
.
.
.

}

/* Process CYGNUS */

unsigned int status, efn=65;
$DESCRIPTOR(cluster,"FLAG_CLUSTER");
$DESCRIPTOR(section,"GLOBAL_SECTION");
.
.
.

20–23

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

3 status = SYS$ASCEFC(efn, &cluster, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$WAITFR(efn);
if ((status & 1) != 1)

LIB$SIGNAL(status);

status = SYS$MGBLSC(&inadr, &retadr, 0, flags, §ion, 0, 0);
if ((status & 1) != 1)

LIB$SIGNAL(status);

}

1 The processes ORION and CYGNUS are in the same group. Each process
first associates with a common event flag cluster named FLAG_CLUSTER to
use common event flags to synchronize its use of the section.

2 The process ORION creates the global section named GLOBAL_SECTION,
specifying section flags that indicate that it is a global section (SEC$M_GBL)
and has read/write access. Input and output address arrays, the page count
parameter, and the channel number arguments are not shown; procedures for
specifying them are the same, as shown in this example.

3 The process CYGNUS associates with the common event flag cluster and
waits for the flag defined as FLGSET; ORION sets this flag when it has
finished creating the section. To map the section, CYGNUS specifies the input
and output address arrays, the flag indicating that it is a global section, and
the global section name. The number of pages mapped is the same as that
specified by the creator of the section. ♦

20.4.7.13 Reading and Writing Data Sections
Read/write sections provide a way for a process or cooperating processes to share
data files in virtual memory.

The sharing of global sections may involve application-dependent synchronization
techniques. For example, one process can create and map to a global section
in read/write fashion; other processes can map to it in read-only fashion and
interpret data written by the first process. Alternatively, two or more processes
can write to the section concurrently. (In this case, the application must provide
the necessary synchronization and protection.)

After a file is updated, the process or processes can release (or unmap) the
section. The modified pages are then written back into the disk file defined as a
section.

When this is done, the revision number of the file is incremented, and the version
number of the file remains unchanged. A full directory listing indicates the
revision number of the file and the date and time that the file was last updated.

20.4.7.14 Releasing and Deleting Sections
A process unmaps a section by deleting the virtual addresses in its own virtual
address space to which it has mapped the section. If a return address range was
specified to receive the virtual addresses of the mapped pages, this address range
can be used as input to the Delete Virtual Address Space (SYS$DELTVA) system
service, as follows:

$DELTVA_S INADR=RETRANGE

20–24

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

When a process unmaps a private section, the section is deleted; that is, all
control information maintained by the system is deleted. A temporary global
section is deleted when all processes that have mapped to it have unmapped it.
Permanent global sections are not deleted until they are specifically marked for
deletion with the Delete Global Section (SYS$DGBLSC) system service; they are
then deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the section
file, but rather cancels the process’s association with the file. Moreover, when a
process deletes pages mapped to a read/write section and no other processes are
mapped to it, all modified pages are written back into the section file.

After a section is deleted, the channel assigned to it can be deassigned. The
process that created the section can deassign the channel with the Deassign I/O
Channel (SYS$DASSGN) system service, as follows:

$DASSGN_S CHAN=GBLFAB+FAB$L_STV

20.4.7.15 Writing Back Sections
Because read/write sections are not normally updated on disk until the
physical pages they occupy are paged out, or until all processes referring to
the section have unmapped it, a process should ensure that all modified pages are
successfully written back into the section file at regular intervals.

The Update Section File on Disk (SYS$UPDSEC) system service writes the
modified pages in a section into the disk file. The SYS$UPDSEC system service
is described in the OpenVMS System Services Reference Manual.

20.4.7.16 Image Sections
Global sections can contain shareable code. The operating system uses global
sections to implement shareable code, as follows:

1. The object module containing code to be shared is linked to produce a
shareable image. The shareable image is not, in itself, executable. It contains
a series of sections, called image sections.

2. You link private object modules with the shareable image to produce an
executable image. No code or data from the shareable image is put into the
executable image.

3. The system manager uses the INSTALL command to create a permanent
global section from the shareable image file, making the image sections
available for sharing.

4. When you run the executable image, the operating system automatically
maps the global sections created by the INSTALL command into the virtual
address space of your process.

For details on how to create and identify shareable images and how to link
them with private object modules, see the OpenVMS Linker Utility Manual. For
information about how to install shareable images and make them available for
sharing as global sections, see the OpenVMS System Manager’s Manual.

20–25

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

20.4.7.17 Page Frame Sections
A page frame section is one or more contiguous pages of physical memory or
I/O space that have been mapped as a section. One use of page frame sections is
to map to an I/O page, thus allowing a process to read device registers.

A page frame section differs from a disk file section in that it is not associated
with a particular disk file and is not paged. However, it is similar to a disk
file section in most other respects: you create, map, and define the extent and
characteristics of a page frame section in essentially the same manner as you do
for a disk file section.

To create a page frame section, you must specify page frame number (PFN)
mapping by setting the SEC$M_PFNMAP flag bit in the flags argument to the
Create and Map Section (SYS$CRMPSC) system service. The vbn argument is
now used to specify that the first page frame is to be mapped instead of the first
virtual block. You must have the user privilege PFNMAP to create or delete a
page frame section but not to map to an existing one.

Because a page frame section is not associated with a disk file, you do not use
the chan, and pfc arguments to the SYS$CRMPSC service to create or map this
type of section. For the same reason, the SEC$M_CRF (copy-on-reference) and
SEC$M_DZRO (demand-zero) bit settings in the flags argument do not apply.
Pages in page frame sections are not written back to any disk file (including the
paging file). The pagcnt and relpag arguments are in units of CPU-specific
pages for page frame sections.

Caution

You must use caution when working with page frame sections. If you
permit write access to the section, each process that writes to it does
so at its own risk. Serious errors can occur if a process writes incorrect
data or writes to the wrong page, especially if the page is also mapped by
the system or by another process. Thus, any user who has the PFNMAP
privilege can damage or violate the security of a system.

20.4.7.18 Partial Sections

Alpha On Alpha systems, a partial section is one where not all of the defined section,
whether private or global, is entirely backed up by disk blocks. In other words, a
partial section is where a disk file does not map completely onto an Alpha system
page.

For example, suppose a file for which you wish to create a section consists of 17
virtual blocks on disk. To map this section, you would need two whole Alpha 8
KB pages, the smallest size Alpha page available. The first Alpha page would
map the first 16 blocks of the section, and the second Alpha page would map the
17th block of the section. (A block on disk is 512 bytes, same as on OpenVMS
VAX.) This results in 15/16ths of the second Alpha page not being backed up by
the section file. This is called a partial section because the second Alpha page of
the section is only partially backed up.

When the partial page is faulted in, a disk read is issued for only as many blocks
as actually back up that page, which in this case is 1. When that page is written
back, only the one block is actually written.

20–26

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

If the upper portion of the second Alpha page is used, it is done so at some risk,
because only the first block of that page is saved on a write-back operation.
This upper portion of the second Alpha page is not really useful space to the
programmer, because it is discarded during page faulting. ♦

20.4.8 Example of Using Memory Management System Services

Alpha In the following example, two programs are communicating through a global
section. The first program creates and maps a global section (by using
SYS$CRMPSC) and then writes a device name to the section. This program
also defines the device terminal and process names and sets the event flags that
synchronize the processes.

The second program maps the section (by using SYS$MGBLSC) and then reads
the device name and the process that allocated the device and any terminal
allocated to that process. This program also writes the process named to the
terminal global section where the process name can be read by the first program.

The common event cluster is used to synchronize access to the global section. The
first program sets REQ_FLAG to indicate that the device name is in the section.
The second program sets INFO_FLAG to indicate that the process and terminal
names are available.

Data in a section must be page aligned. The following is the option file used
at link time that causes the data in the common area named DATA to be page
aligned:
PSECT_ATTR = DATA, PAGE

For high-level language usage, use the solitary attribute of the linker. See
the OpenVMS Linker Utility Manual for an explanation of how to use the
solitary attribute. The address range requested for a section must end on a page
boundary, so SYS$GETSYI is used to obtain the system page size.

Before executing the first program, you need to write a user-open routine that
sets the user-open bit (FAB$V_UFO) of the FAB options longword (FAB$L_FOP).
Because the Fortran OPEN statement specifies that the file is new, $CREATE
should be used to open it rather than $OPEN. No $CONNECT should be issued.
The user-open routine reads the channel number that the file is opened on from
the status longword (FAB$L_STV) and returns that channel number to the main
program by using a common block (CHANNEL in this example).

!This is the program that creates the global section.

! Define global section flags
INCLUDE ’($SECDEF)’
! Mask for section flags
INTEGER SEC_MASK

20–27

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
! (returned from useropen routine)
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

! Data for SYS$GETSYI
INTEGER PAGE_SIZE
INTEGER*2 BUFF_LEN, ITEM_CODE
INTEGER BUFF_ADDR, LENGTH, TERMINATOR
EXTERNAL SYI$_PAGE_SIZE
COMMON /GETSYI_ITEMLST/ BUFF_LEN,
2 ITEM_CODE,
2 BUFF_ADDR,
2 LENGTH,
2 TERMINATOR

! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE
.
.
.

! Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (Last element - first element + size of last element + 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO_LUN,
2 FILE=’INFO.TMP’,
2 STATUS=’NEW’,
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
! Free logical unit number and map section
CLOSE (INFO_LUN)

! Get the system page size
BUFF_LEN = 4
ITEM_CODE = %LOC(SYI$_PAGE_SIZE)
BUFF_ADDR = %LOC(PAGE_SIZE)
LENGTH = 0
TERMINATOR = 0

STATUS = SYS$GETSYI(,,,BUFF_LEN,,,)

20–28

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = PASS_ADDR(1) + PAGE_SIZE - 1

STATUS = SYS$CRMPSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Addresses mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 ’GLOBAL_SEC’, ! Section name
2 ,,
2 %VAL(SEC_CHAN), ! I/O channel
2 ,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create the subprocess
STATUS = SYS$CREPRC (,
2 ’GETDEVINF’, ! Image
2 ,,,,,
2 ’GET_DEVICE’, ! Process name
2 %VAL(4),,,) ! Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Write data to section
DEVICE = ’$DISK1’

! Get common event flag cluster and set flag
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
.
.
.

! This is the program that maps to the global section
! created by the previous program.

! Define section flags
INCLUDE ’($SECDEF)’
! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL

! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

20–29

Memory Management Services and Routines (Alpha Only)
20.4 Using System Services for Memory Allocation

! Data for SYS$GETSYI
INTEGER PAGE_SIZE
INTEGER*2 BUFF_LEN, ITEM_CODE
INTEGER BUFF_ADDR, LENGTH, TERMINATOR
EXTERNAL SYI$_PAGE_SIZE
COMMON /GETSYI_ITEMLST/ BUFF_LEN,
2 ITEM_CODE,
2 BUFF_ADDR,
2 LENGTH,
2 TERMINATOR
.
.
.
! Get the system page size
BUFF_LEN = 4
ITEM_CODE = %LOC(SYI$_PAGE_SIZE)
BUFF_ADDR = %LOC(PAGE_SIZE)
LENGTH = 0
TERMINATOR = 0

STATUS = SYS$GETSYI(,,,BUFF_LEN,,,)

! Get common event flag cluster and wait
! for GBL1.FOR to set REQUEST_FLAG
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 ’CLUSTER’,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = PASS_ADDR(1) + PAGE_SIZE - 1

! Set write flag
SEC_MASK = SEC$M_WRT

! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2 ,
2 %VAL(SEC_MASK), ! Section mask
2 ’GLOBAL_SEC’,,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Call GETDVI to get the process ID of the
! process that allocated the device, then
! call GETJPI to get the process name and terminal
! name associated with that process ID.
! Set PROCESS equal to the process name and
! set TERMINAL equal to the terminal name.
.
.
.
! After information is in GLOBAL_SEC
STATUS = SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

♦

20–30

21
Using Run-Time Routines for Memory

Allocation

This chapter describes the use of run-time routines (RTLs) to allocate and
deallocate pages. It contains the following sections:

Section 21.1 describes the allocating and freeing of pages.

Section 21.2 describes the interactions with other RTL routines.

Section 21.3 describes the interactions with system services.

Section 21.4 describes how to use zones.

Section 21.5 describes the mechanism for allocating and freeing blocks of memory.

Section 21.6 describes the RTL algorithms used to allocate and free memory.

Section 21.7 describes how to create and manage user-defined zones.

Section 21.8 describes the methods of debugging programs that use virtual
memory zones.

Note

In this chapter, all references to pages include both the 512-byte page
size on VAX systems and the 512-byte pagelet size on Alpha systems. See
Chapter 19 and Chapter 20 for a discussion of page sizes on VAX and
Alpha systems.

21.1 Allocating and Freeing Pages
The run-time library page management routines LIB$GET_VM_PAGE and
LIB$FREE_VM_PAGE provide a flexible mechanism for allocating and freeing
pages (pagelets on Alpha systems) of memory. In general, modular routines
should use these routines rather than direct system service calls to manage
memory. The page or pagelet management routines maintain a processwide pool
of free pages or pagelets and automatically reuse free pages or pagelets. If your
program calls system services directly, it must do the bookkeeping to keep track
of free memory.

LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE are fully reentrant. They can
be called by code running at AST level or in an Ada multitasking environment.

Memory space allocated by LIB$GET_VM_PAGE are created with user-mode
read-write access, even if the call to LIB$GET_VM_PAGE is made from a more
privileged access mode.

21–1

Using Run-Time Routines for Memory Allocation
21.1 Allocating and Freeing Pages

LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE are designed for request sizes
ranging from one page to a few hundred pages. If you are using very large
request sizes of contiguous space in a single request, the bitmap allocation
method that is used may cause fragmentation of your virtual address space
because allocated pages are contiguous. For very large request sizes, use direct
calls to SYS$EXPREG and do not use LIB$GET_VM_PAGE.

The format for LIB$GET_VM_PAGE is as follows:

LIB$GET_VM_PAGE (num-pages, base-adr, [zone-id])

With this routine, you need to specify only the number of pages you need in the
num-pages argument. The routine returns the base address of the contiguous
block of pages that have been allocated in the base-adr argument.

The rules for using LIB$GET_VM_PAGE and LIB$FREE_VM_PAGE are as
follows:

• Any memory you free by calling LIB$FREE_VM_PAGE must have been
allocated by a previous call to LIB$GET_VM_PAGE. You cannot allocate
memory by calling SYS$EXPREG or SYS$CRETVA and then free it using
LIB$FREE_VM_PAGE.

• All memory allocated by LIB$GET_VM_PAGE is page aligned; that is, the
low-order 9 bits of the address are all zero. All memory freed by LIB$FREE_
VM_PAGE must also be page aligned; an error status is returned if you
attempt to free a block of memory that is not page aligned.

• You can free a smaller group of pages than you allocated. That is, if you
allocated a group of 4 contiguous pages by a single call to LIB$GET_VM_
PAGE, you can free the memory by using several calls to LIB$FREE_VM_
PAGE; for example, free 1 page, 2 pages, and 1 page.

• You can combine contiguous groups of pages that were allocated by several
calls to LIB$GET_VM_PAGE into one group of pages that are freed by a
single call to LIB$FREE_VM_PAGE. Before doing this, however, you must
compare the addresses to ensure that the pages you are combining are indeed
contiguous. Of course, you must ensure that a routine frees only pages that it
has previously allocated and still owns.

• Be especially careful that you do not attempt to free a set of pages twice. You
might free a set of pages in one routine and reallocate those same pages from
another routine. If the first routine then deallocates those pages a second
time, any information that the second routine stored in them is lost. Because
the pages are still allocated to your program (even though to a different
routine), this type of programming mistake does not generate an error.

• The contents of memory allocated by LIB$GET_VM_PAGE are unpredictable.
Your program must assign values to all locations that it uses.

• You should try to minimize the number of request sizes your program uses
to avoid fragmentation of the free page pool. This concept is shown in
Figure 21–1.

21–2

Using Run-Time Routines for Memory Allocation
21.1 Allocating and Freeing Pages

Figure 21–1 Memory Fragmentation

ZK−4150−GE

 5 3 25 15 40 2 2

The straight line running across Figure 21–1 represents the memory
allocated to your program. The blocks represent memory that has already
been allocated. At this point, if you request 16 pages, memory will have to be
allocated at the far right end of the memory line shown in this figure, even
though there are 20 free pages before that point. You cannot use 16 of these
20 pages because the 20 free pages are ‘‘fragmented’’ into groups of 15, 3, and
2 pages.

Fragmentation is discussed further in Section 21.4.1.

21.2 Interactions with Other Run-Time Library Routines
Chapter 19 and Chapter 20 describe a three-level hierarchy of memory allocation
routines consisting of the following:

1. Memory management system services

2. Run-time library page management routines LIB$GET_VM_PAGE and
LIB$FREE_VM_PAGE

3. Run-time library heap management routines LIB$GET_VM and LIB$FREE_
VM

The run-time library and various programming languages provide another level
of more specialized allocation routines.

• The run-time library dynamic string package provides a set of routines for
allocating and freeing dynamic strings. The set of routines includes the
following:

LIB$SGET1_DD, LIB$SFREE1_DD
LIB$SFREEN_DD
STR$GET1_DX, STR$FREE1_DX

• VAX Ada provides allocators and the UNCHECKED_DEALLOCATION
package for allocating and freeing memory.

• VAX Pascal provides the NEW and DISPOSE routines for allocating and
freeing memory.

• VAX PL/I provides ALLOCATE and FREE statements for allocating and
freeing memory.

A program containing routines written in several operating system languages
may use a number of these facilities at the same time. This does not cause any
problems or impose any restrictions on the user because all of these are layered
on the run-time library heap management routines.

21–3

Using Run-Time Routines for Memory Allocation
21.2 Interactions with Other Run-Time Library Routines

Note

To ensure correct operation, memory that is allocated by one of the
higher-level allocators in the preceding list can be freed only by using
the corresponding deallocation routine. That is, memory allocated by
PASCAL NEW must be freed by calling PASCAL DISPOSE, and a
dynamic string can be freed only by calling one of the string package
deallocation routines.

21.3 Interactions with System Services
The run-time library page management and heap management routines are
implemented as layers built on the memory management system services. In
general, modular routines should use the run-time library routines rather than
directly call memory management system services. However, in some situations
you must use both. This section describes relationships between the run-time
library and memory management. See the OpenVMS System Services Reference
Manual for descriptions of the memory management system services.

You can use the Expand Region (SYS$EXPREG) system service to create pages
of virtual memory in the program region (P0 space) for your process. The
operating system keeps track of the first free page address at the end of P0
space, and it updates this free page address whenever you call SYS$EXPREG or
SYS$CRETVA. The LIB$GET_VM_PAGE routine calls SYS$EXPREG to create
pages, so there is no conflicting address assignments when you call SYS$EXPREG
directly.

Avoid using the Create Virtual Address Space (SYS$CRETVA) system service,
because you must specify the range of virtual addresses when it is called. If
the address range you specify contains pages that already exist, SYS$CRETVA
deletes those pages and recreates them as demand-zero pages. You may have
difficulty avoiding conflicting address assignments if you use run-time library
routines and SYS$CRETVA.

You must not use the Contract Region (SYS$CNTREG) system service, because
other routines or the OpenVMS Record Management Services (RMS) may have
allocated pages at the end of the program region.

You can change the protection on pages your program has allocated by calling the
Set Protection (SYS$SETPRT) system service. All pages allocated by LIB$GET_
VM_PAGE have user-mode read/write access. If you change protection on pages
allocated by LIB$GET_VM_PAGE, you must reset the protection to user-mode
read/write before calling LIB$FREE_VM_PAGE to free the pages.

You can use the Create and Map Section (SYS$CRMPSC) system service to map
a file into your virtual address space. To map a file, you provide a range of
virtual addresses for the file. One way to do this is to specify the Expand Region
option (SEC$M_EXPREG) when you call SYS$CRMPSC. This method assigns
addresses at the end of P0 space, similar to the SYS$EXPREG system service.
Alternatively, you can provide a specific range of virtual addresses when you call
SYS$CRMPSC; this is similar to allocating pages by calling SYS$CRETVA. If you
assign a specific range of addresses, you must avoid conflicts with other routines.
One way to do this is to allocate memory by calling LIB$GET_VM_PAGE and
then use that memory to map the file.

21–4

Using Run-Time Routines for Memory Allocation
21.3 Interactions with System Services

The complete sequence of steps is as follows:

1. Call LIB$GET_VM_PAGE to allocate a contiguous group of (n+1) pages. The
first n pages is used to map the file; the last page serves as a guard page.

2. Call SYS$CRMPSC using the first n pages to map the file into your process
address space.

3. Process the file.

4. Call SYS$DELTVA to delete the first n pages and unmap the file.

5. Call SYS$CRETVA to recreate the n pages of virtual address space as
demand-zero pages.

6. Call LIB$FREE_VM_PAGE to free (n+1) pages of memory and return them to
the processwide page pool.

This sequence is satisfactory when mapping small files of a few hundred pages,
but it has severe limitations when mapping very large files. As discussed in
Section 21.1, you should not use LIB$GET_VM_PAGE to allocate very large
groups of contiguous pages in a single request. In addition, when you allocate
memory by calling LIB$GET_VM_PAGE (and thus SYS$EXPREG), the pages are
charged against your process page file quota. Your page file quota is not charged
if you call SYS$CRMPSC with the SEC$M_EXPREG option.

You can process very large files using SYS$CRMPSC by first providing a pool
of pages that is sufficient for your program and then by using SYS$CRMPSC
and SYS$DELTVA to map and unmap the file. Use LIB$SHOW_VM to obtain
an estimate of how much dynamically allocated memory your program requires;
round this number up and allow for increased memory usage in the future. You
can then use the memory estimate as follows:

1. At the beginning of your program, include code to call LIB$GET_VM_PAGE
and allocate the estimated number of pages. You should not request a large
number of pages in one call to LIB$GET_VM_PAGE, because this would
require contiguous allocation of the pages.

2. Call LIB$FREE_VM_PAGE to free all the pages allocated in step 1; this
establishes a pool of free pages for your program.

3. Open files that your program needs; note that RMS may allocate buffers in
P0 space.

4. Call SYS$CRMPSC specifying SEC$M_EXPREG to map the file into your
process address space at the end of P0 space.

5. Process the file.

6. Call SYS$DELTVA, specifying the address range to release the file. If
additional pages were not created after you mapped the file, SYS$DELTVA
contracts your address space. Your program can repeat the process of
mapping a file without continually expanding its address space.

21–5

Using Run-Time Routines for Memory Allocation
21.4 Zones

21.4 Zones
The run-time library heap management routines LIB$GET_VM and LIB$FREE_
VM are based on the concept of zones. A zone is a logically independent memory
pool or subheap that you can control as one unit. A program may use several
zones to structure its heap memory management. You might use a zone to:

• Store short-lived data structures that you can subsequently delete all at once

• Store a program that does not reference a wide range of addresses

• Specify a memory allocation algorithm specific to your program

• Specify attributes, like block size and alignment, specific to your program

You create a zone with specified attributes by calling the routine LIB$CREATE_
VM_ZONE. LIB$CREATE_VM_ZONE returns a zone identifier value that you
can use in subsequent calls to the routines LIB$GET_VM and LIB$FREE_VM.
When you no longer need the zone, you can delete the zone and free all the
memory it controls by a single call to LIB$DELETE_VM_ZONE.

The format for this routine is as follows:

LIB$CREATE_VM_ZONE (zone_id,[algorithm],[algorithm_arg] [,flags]
[,extend_size],[initial_size]
,[block_size],[alignment],[page_limit],[p1])

For more information about LIB$CREATE_VM_ZONE, refer to the OpenVMS
RTL Library (LIB$) Manual.

Allocating Address Space
Use the algorithm argument to specify how much space should be allocated—as
a linked list of free blocks, as a set of lookaside list indexes by request size, as a
set of lookaside lists for some block sizes, or as a single queue of free blocks.

Allocating Pages Within the Zone
Use the initial_size argument to allocate a specified number of pages from
the zone when it is created. After zone creation, you can use LIB$GET_VM to
allocate space.

Specifying the Block Size
Use the block_size argument to specify, in bytes, the block size.

Specifying Block Alignment
Use the alignment argument to specify, in bytes, the alignment for each block
allocated.

Once a zone has been created and used, use LIB$DELETE_VM_ZONE to
delete the zone and return the pages allocated to the processwide page pool.
LIB$RESET_VM_ZONE frees pages for subsequent allocation but does not delete
the zone or return the pages to the processwide page pool. Use LIB$SHOW_VM_
ZONE to get information about a specific zone.

If you want a program to deal with each VM zone created during the invocation,
including those created outside of the program, you can call LIB$FIND_VM_
ZONE. At each call, LIB$FIND_VM_ZONE scans the heap management database
and returns the zone identifier of the next valid zone.

21–6

Using Run-Time Routines for Memory Allocation
21.4 Zones

LIB$SHOW_VM_ZONE returns formatted information about a specified zone,
detailing such information as the zone’s name, characteristics, and areas,
and then passes the information to the specified or default action routine.
LIB$VERIFY_VM_ZONE verifies the zone header and scans all of the queues
and lists maintained in the zone header.

If you call LIB$GET_VM to allocate memory from a zone and the zone has no
free memory to satisfy the request, LIB$GET_VM calls LIB$GET_VM_PAGE to
allocate a block of contiguous pages for the zone. Each such block of contiguous
pages is called an area. You control the number of pages in an area by specifying
the area extension size attribute when you create the zone.

The systematic use of zones provides the following benefits:

• Structuring heap memory management

Data structures in your program may have different life spans or dynamic
scopes. Some structures may continue to grow during the entire execution of
your program, while others exist for a very short time and are then discarded
by the program. You can create a separate zone in which you allocate a
particular type of short-lived structure. When the program no longer needs
any of those structures, you can delete all of them in a single operation by
calling LIB$DELETE_VM_ZONE.

• Program locality

Program locality is a characteristic of a program that indicates the distance
between the references and virtual memory over a period of time. A program
with a high degree of program locality does not refer to many widely scattered
virtual addresses in a short period of time. Maintaining a high degree of
program locality reduces the number of page faults and improves program
performance.

It is important to minimize the number of page faults to obtain best
performance in a virtual memory system such as VAX and Alpha systems.
For example, if your program creates and searches a symbol table, you can
reduce the number of page faults incurred by the search operation by using
as few pages as possible to hold all the symbol table entries. If you allocate
symbol table entries and other items unrelated to the symbol table in the
same zone, each page of the symbol table contains both symbol table entries
and other items. Because of the extra unrelated entries, the symbol table
takes up more pages than it actually needs. A search of the symbol table then
accesses more pages, and performance is lower as a result. You may be able
to reduce the number of page faults by creating a separate symbol table zone
so that pages that contain symbol table entries do not contain any unrelated
items.

• Specialized allocation algorithms

No single memory allocation algorithm is ideal for all applications.
Section 21.6 describes the run-time library memory allocation algorithms
and their performance characteristics so that you can select an appropriate
algorithm for each zone that you create.

• Performance tuning

You can specify a number of attributes that affect performance when you
create a zone. The allocation algorithm you select can have a significant effect
on performance. By specifying the allocation block size, you can improve
performance and reduce fragmentation within the zone at the cost of some
extra memory. Boundary tags can also be used to improve the speed of

21–7

Using Run-Time Routines for Memory Allocation
21.4 Zones

LIB$FREE_VM at the cost of some extra memory. Boundary tags are further
discussed in Section 21.4.1.

21.4.1 Zone Attributes
You can specify a number of zone attributes when you call LIB$CREATE_VM_
ZONE to create the zone. The attributes that you specify are permanent; that is,
you cannot change the attribute values. They remain constant until you delete
the zone. Each zone that you create can have a different set of attribute values.
Thus, you can tailor each zone to optimize program locality, execution time, and
memory usage.

This section describes each of the zone attributes, suggested values for the
attribute, and the effects of the attribute on execution time and memory usage.
If you do not specify a complete set of attribute values, LIB$CREATE_VM_ZONE
provides defaults for many of the attributes. More detailed information about
argument names and the encoding of arguments is given in the description of
LIB$CREATE_VM_ZONE in the OpenVMS RTL Library (LIB$) Manual.

The zone attributes are as follows:

• Allocation algorithms

The run-time library heap management routines provide four algorithms
to allocate and free memory and to manage blocks of free memory. The
algorithms are listed here. (See Section 21.6 for more details.)

The First Fit algorithm (LIB$K_VM_FIRST_FIT) maintains a linked list
of free blocks, sorted in order of increasing memory address.

The Quick Fit algorithm (LIB$K_VM_QUICK_FIT) maintains a set of
lookaside lists indexed by request size for request sizes in a specified
range. For request sizes that are not in the specified range, a First Fit
list of free blocks is maintained by the heap management routines.

The Frequent Sizes algorithm (LIB$K_VM_FREQ_SIZES) is similar to
Quick Fit in that it maintains a set of lookaside lists for some block
sizes. You specify the number of lists when you create the zone; the sizes
associated with those lists are determined by the actual sizes of blocks
that are freed.

The Fixed Size algorithm (LIB$K_VM_FIXED) maintains a single queue
of free blocks.

• Boundary-tagged blocks

You can specify the use of boundary tags (LIB$M_VM_BOUNDARY_TAGS)
with any of the algorithms that handle variable-sized blocks. The algorithms
that handle variable-sized blocks are First Fit, Quick Fit, and Frequent Sizes.

If you specify boundary tags, LIB$GET_VM appends two additional longwords
to each block that you allocate. LIB$FREE_VM uses these tags to speed up
the process of merging adjacent free blocks on the First Fit free list. Using
the standard First Fit insertion and merge, the execution time and number of
page faults to free a block are proportional to the number of items on the list;
freeing n blocks takes time proportional to n squared. When boundary tags
are used, LIB$FREE_VM does not have to keep the free list in sorted order.
This reduces the time and the number of page faults for freeing one block to
a constant value that is independent of the number of free blocks. By using
boundary tags, you can improve execution time at the cost of some additional
memory for the tags.

21–8

Using Run-Time Routines for Memory Allocation
21.4 Zones

The use of boundary tags can have a significant effect on execution time if all
of the following three conditions are present:

You are using the First Fit algorithm.

There are many calls to LIB$FREE_VM.

The free list is long.

Boundary tags do not improve execution time if you are using Quick Fit or
Frequent Sizes and if all the blocks being freed use one of the lookaside lists.
Merging or searching is not done for free blocks on a lookaside list.

The boundary tags specify the length of each block that is allocated, so you do
not need to specify the length of a tagged block when you free it. This reduces
the bookkeeping that your program must perform. Figure 21–2 shows the
placement of boundary tags.

Figure 21–2 Boundary Tags

Boundary Tag

Boundary Tag

:A Address of first
usable byte.
This address is
returned by
LIB$GET_VM.

Block of Memory
Marked Off by
Boundary Tags

ZK−4149−GE

Boundary tags are not visible to the calling program. The request size
you specify when calling LIB$GET_VM is the number of usable bytes your
program needs. The address returned by LIB$GET_VM is the address of the
first usable byte of the block, and this same address is used when you call
LIB$FREE_VM.

• Area extension size

Pages of memory are allocated to a zone in contiguous groups called areas. By
specifying area extension parameters for the zone, you can tailor the zone to
achieve a satisfactory balance between locality, memory usage, and execution
time for allocating pages. If you specify a large area size, you improve locality
for blocks in the zone, but you may waste a large amount of virtual memory.
Pages can be allocated to an area of a zone, but the memory might never be
used to satisfy a LIB$GET_VM allocation request. If you specify a small area
extension size, you reduce the number of pages used, but you may reduce
locality and you increase the amount of overhead for area control blocks.

21–9

Using Run-Time Routines for Memory Allocation
21.4 Zones

You can specify two area extension size values: an initial size and an extend
size. If you specify an initial area size, that number of pages is allocated to
the zone when you create the zone. If you do not specify an initial size, no
pages are allocated until the first call to LIB$GET_VM that references the
zone. When an allocation request cannot be satisfied by blocks from the free
list or from memory in any of the areas owned by the zone, a new area is
added to the zone. The size of this area is the maximum of the area extend
size and the current request size. The extend size does not limit the size of
blocks you can allocate. If you do not specify extend size when you create the
zone, a default of 16 pages is used.

Choose a few area extension sizes, and use them throughout your program.
It is also desirable to choose extension sizes that are multiples of each
other. Memory for areas is allocated by calling LIB$GET_VM_PAGE. You
should choose the area extension sizes in order to minimize fragmentation.
Digital-supplied software generally uses extension sizes that are a power of 2.

Also consider the overhead for area control blocks when choosing the area
extension parameters. Each area control block is 64 bytes long. Table 21–1
shows the overhead for various extension sizes.

Table 21–1 Overhead for Area Control Blocks

Area Size (Pages) Overhead Percentage

1 12.5%

2 6.3%

4 3.1%

16 0.8%

128 0.1%

You can also control the way in which zones are extended by using the
LIB$M_VM_EXTEND_AREA attribute. This attribute specifies that when
new pages are allocated for a zone, they should be appended to an existing
area if the pages are adjacent to an existing area.

• Block size

The block size attribute specifies the number of bytes in the basic allocation
quantum for the zone.

All allocation requests are rounded up to a multiple of the block size.

The block size must be a power of 2 in the range of 8 to 512. Table 21–2 lists
the possible block sizes.

Table 21–2 Possible Values for the Block Size Attribute

Block Size
(Power of 2) Actual Block Size

23 8

24 16

25 32

(continued on next page)

21–10

Using Run-Time Routines for Memory Allocation
21.4 Zones

Table 21–2 (Cont.) Possible Values for the Block Size Attribute

Block Size
(Power of 2) Actual Block Size

26 64

27 128

28 256

29 512

By adjusting the block size, you can control the effects of internal
fragmentation and external fragmentation. Internal fragmentation occurs
when the request size is rounded up and more bytes are allocated than are
required to satisfy the request. External fragmentation occurs when there are
many small blocks on the free list, but none of them is large enough to satisfy
an allocation request.

If you do not specify a value for block size, a default of 8 bytes is used.

• Alignment

The alignment attribute specifies the required address boundary alignment
for each block allocated. The alignment value must be a power of 2 in the
range of 4 to 512.

The block size and alignment values are closely related. If you are not using
boundary-tagged blocks, the larger value of block size and alignment controls
both the block size and alignment. If you are using boundary-tagged blocks,
you can minimize the overhead for the boundary tags by specifying a block
size of 8 and an alignment of 4 (longword alignment).

VAX Note that the VAX interlocked queue instructions require quadword
alignment, so you should not specify longword alignment for blocks that
will be inserted on an interlocked queue. ♦
If you do not specify an alignment value, a default of 8 is used (alignment on
a quadword boundary).

• Page limit

You can specify the maximum number of pages that can be allocated to the
zone. If you do not specify a limit, the only limit is the total process virtual
address limit imposed by process quotas and system parameters.

• Fill on allocate

If you do not specify the allocation fill attribute, LIB$GET_VM does not
initialize the contents of the blocks of memory that it supplies. The contents
of the memory are unpredictable, and you must assign a value to each
location your program uses.

In many applications, it is convenient to initialize every byte of dynamically
allocated memory to the value 0. You can request that LIB$GET_VM do
this initialization by specifying the allocation fill attribute LIB$M_VM_GET_
FILL0 when you create the zone.

If your program does not use the allocation fill attribute, it may be very
difficult to locate bugs where the program does not properly initialize
dynamically allocated memory. As a debugging aid, you can request that
LIB$GET_VM initialize every byte to FF (hexadecimal) by specifying the
allocation fill attribute LIB$M_VM_GET_FILL1 when you create the zone.

21–11

Using Run-Time Routines for Memory Allocation
21.4 Zones

• Fill on free

In complex programs using heap storage, it can be very difficult to locate
bugs where the program frees a block of memory but continues to make
references to that block of memory. As a debugging aid, you can request that
LIB$FREE_VM write bytes containing 0 or FF (hexadecimal) into each block
of memory when it is freed; specify one of the attributes LIB$M_VM_FREE_
FILL0 or LIB$M_VM_FREE_FILL1.

21.4.2 Default Zone
The run-time library provides a default zone that is used if you do not specify
a zone-id argument when you call LIB$GET_VM or LIB$FREE_VM. The
default zone provides compatibility with earlier versions of LIB$GET_VM and
LIB$FREE_VM, which did not support multiple zones.

Programs that do not place heavy demands on heap storage can simply use
the default zone for all heap storage allocation. They do not need to call
LIB$CREATE_VM_ZONE and LIB$DELETE_VM_ZONE, and they can omit
the zone-id argument when calling LIB$GET_VM and LIB$FREE_VM. The
zone-id for the default zone has the value 0.

The default zone has the values shown in Table 21–3.

Table 21–3 Attribute Values for the Default Zone

Attribute Value

Algorithm First Fit

Area extension size 128 pages

Block size 8 bytes

Alignment Quadword boundary

Boundary tags No boundary tags

Page limit No limit

Fill on allocate No fill on allocate

Fill on free No fill on free

21.4.3 Zone Identification
A zone is a logically independent memory pool or subheap. You can create zones
by calling LIB$CREATE_VM_ZONE or LIB$CREATE_USER_VM_ZONE. These
routines return as an output argument a unique 32-bit zone identifier (zone-id)
that is used in subsequent routine calls where a zone identification is needed.

You can specify the zone-id argument as an optional argument when you call
LIB$GET_VM to allocate a block of memory. If you do specify zone-id when
you allocate memory, you must specify the same zone-id value when you call
LIB$FREE_VM to free the memory. LIB$FREE_VM returns an error status if
you do not provide the correct value for zone-id.

Modular routines that allocate and free heap storage must use zone identifications
in a consistent fashion. You can use one of several approaches in designing a set
of modular routines to ensure consistency in using zone identifications:

• Each routine that allocates or frees heap storage has a zone-id argument so
the caller can specify the zone to be used.

21–12

Using Run-Time Routines for Memory Allocation
21.4 Zones

• The modular routine package provides ALLOCATE and FREE routines
for each type of dynamically allocated object. These routines keep track
of zone identifications in an implicit argument, in static storage, or in the
dynamically allocated objects. The caller need not be concerned with the
details of zone identifications.

• By convention, the set of modular routines could do all allocate and free
operations in the default zone.

The zone identifier for the default zone has the value 0 (see Section 21.4.2
for more information on the default zone). You can allocate and free blocks of
memory in the default zone by specifying a zone-id value of 0 or by omitting the
zone-id argument when you call LIB$GET_VM and LIB$FREE_VM. You cannot
use LIB$DELETE_VM_ZONE or LIB$RESET_VM_ZONE on the default zone;
these routines return an error status if the value for zone-id is 0.

21.4.4 Creating a Zone
The LIB$CREATE_VM_ZONE routine creates a new zone and sets zone
attributes according to arguments that you supply. LIB$CREATE_VM_ZONE
returns a zone-id value for the new zone that you use in subsequent calls to
LIBGET_VM, LIBFREE_VM, and LIB$DELETE_VM_ZONE.

21.4.5 Deleting a Zone
The LIB$DELETE_VM_ZONE routine deletes a zone and returns all pages
owned by the zone to the processwide page pool managed by LIB$GET_VM_
PAGE. Your program must not perform any more operations on the zone after you
call LIB$DELETE_VM_ZONE.

It takes less execution time to free memory in a single operation by calling
LIB$DELETE_VM_ZONE than to account individually for and free every block of
memory that was allocated by calling LIB$GET_VM. Of course, you must be sure
that your program is no longer using the zone or any of the memory in the zone
before you call LIB$DELETE_VM_ZONE.

If you have specified deallocation filling, LIB$DELETE_VM_ZONE fills all of the
allocated blocks that are freed.

21.4.6 Resetting a Zone
The LIB$RESET_VM_ZONE routine frees all the blocks of memory that were
previously allocated from the zone. The memory becomes available to satisfy
further allocation requests for the zone; the memory is not returned to the
processwide page pool managed by LIB$GET_VM_PAGE. Your program can
continue to use the zone after you call LIB$RESET_VM_ZONE.

It takes less execution time to free memory in a single operation by calling
LIB$RESET_VM_ZONE than to account individually for and free every block of
memory that was allocated by calling LIB$GET_VM. Of course, you must be sure
that your program is no longer using any of the memory in the zone before you
call LIB$RESET_VM_ZONE.

If you have specified deallocation filling, LIB$RESET_VM_ZONE fills all of the
allocated blocks that are freed.

Because LIB$RESET_VM_ZONE does not return any pages to the processwide
page pool, you should reset a zone only if you expect to reallocate almost all of
the memory that is currently owned by the zone. If the next cycle of reallocation

21–13

Using Run-Time Routines for Memory Allocation
21.4 Zones

may use much less memory, it is better to delete the zone (with LIB$DELETE_
VM_ZONE) and create it again (with LIB$CREATE_VM_ZONE).

21.5 Allocating and Freeing Blocks
The run-time library heap management routines LIB$GET_VM and LIB$FREE_
VM provide the mechanism for allocating and freeing blocks of memory.

The LIB$GET_VM and LIB$FREE_VM routines are fully reentrant, so they can
be called by code running at AST level or in an Ada multitasking environment.
Several threads of execution can be allocating or freeing memory simultaneously
in the same zone or in different zones.

All memory allocated by LIB$GET_VM has user-mode read/write access, even if
the call to LIB$GET_VM is made from a more privileged access mode.

The rules for using LIB$GET_VM and LIB$FREE_VM are as follows:

• Any memory you free by calling LIB$FREE_VM must have been allocated
by a previous call to LIB$GET_VM. You cannot allocate memory by calling
SYS$EXPREG or SYS$CRETVA and then free it using LIB$FREE_VM.

• When you free a block of memory by calling LIB$FREE_VM, you must use
the same zone-id value as when you called LIB$GET_VM to allocate the
block. If the block was allocated from the default zone, you must either
specify a zone-id value of 0 or omit the zone-id argument when you call
LIB$FREE_VM.

• You cannot free part of a block that was allocated by a call to LIB$GET_VM;
the whole block must be freed by a single call to LIB$FREE_VM.

• You cannot combine contiguous blocks of memory that were allocated by
several calls to LIB$GET_VM into one larger block that is freed by a single
call to LIB$FREE_VM.

• All memory allocated by LIB$GET_VM is aligned according to the alignment
attribute for the zone; all memory freed by LIB$FREE_VM must have the
correct alignment for the zone. An error status is returned if you attempt to
free a block that is not aligned properly.

21.6 Allocation Algorithms
The run-time library heap management routines provide four algorithms, listed
in Table 21–4, that are used to allocate and free memory and that are used to
manage blocks of free memory.

Table 21–4 Allocation Algorithms

Code Symbol Description

1 LIB$K_VM_FIRST_FIT First Fit

2 LIB$K_VM_QUICK_FIT Quick Fit (maintains lookaside list)

3 LIB$K_VM_FREQ_SIZES Frequent Sizes (maintains lookaside list)

4 LIB$K_VM_FIXED Fixed Size Blocks

The Quick Fit and Frequent Sizes algorithms use lookaside lists to speed
allocation and freeing for certain request sizes. A lookaside list is the software

21–14

Using Run-Time Routines for Memory Allocation
21.6 Allocation Algorithms

analog of a hardware cache. It takes less time to allocate or free a block that is
on a lookaside list.

For each of the algorithms, LIB$GET_VM performs one or more of the following
operations:

• Tries to allocate a block from an appropriate lookaside list.

• Scans the list of areas owned by the zone. For each area, it tries to allocate
a block from the free list and then tries to allocate a block from the block of
unallocated memory at the end of the area.

• Adds a new area to the zone and allocates the block from that area.

For each of the algorithms, LIB$FREE_VM performs one or more of the following
operations:

• Places the block on a lookaside list associated with the zone if there is an
appropriate list.

• Locates the area that contains the block. If the zone has boundary tags, the
tags encode the area; otherwise, it scans the list of areas owned by the zone
to find the correct area.

• Inserts the block on the area free list and checks for merges with adjacent
free blocks.

If the zone has boundary tags, LIB$FREE_VM checks the tags of adjacent
blocks; if a merge does not occur, it inserts the block at the tail of the free list.

If the zone does not have boundary tags, LIB$FREE_VM scans the sorted
free list to find the correct insertion point. It also checks the preceding and
following blocks for merges.

21.6.1 First Fit Algorithm
The First Fit algorithm (LIB$K_VM_FIRST_FIT) maintains a linked list of free
blocks. If the zone does not have boundary tags, the free list is kept sorted in
order of increasing memory address. An allocation request is satisfied by the first
block on the free list that is large enough; if the first free block is larger than the
request size, it is split and the fragment is kept on the free list. When a block is
freed, it is inserted in the free list at the appropriate point; adjacent free blocks
are merged to form larger free blocks.

21.6.2 Quick Fit Algorithm
The Quick Fit algorithm (LIB$K_VM_QUICK_FIT) maintains a set of lookaside
lists indexed by request size for request sizes in a specified range. For request
sizes that are not in the specified range, a First Fit list of free blocks is
maintained. An allocation request is satisfied by removing a block from the
appropriate lookaside list; if the lookaside list is empty, a First Fit allocation is
done. When a block is freed, it is placed on a lookaside list or the First Fit list
according to its size.

Free blocks that are placed on a lookaside list are neither merged with adjacent
free blocks nor split to satisfy a request for a smaller block.

21–15

Using Run-Time Routines for Memory Allocation
21.6 Allocation Algorithms

21.6.3 Frequent Sizes Algorithm
The Frequent Sizes algorithm (LIB$K_VM_FREQ_SIZES) is similar to the Quick
Fit algorithm in that it maintains a set of lookaside lists for some block sizes.
You specify the number of lookaside lists when you create the zone; the sizes
associated with those lists are determined by the actual sizes of blocks that are
freed. An allocation request is satisfied by searching the lookaside lists for a
matching size; if no match is found, a First Fit allocation is done. When a block
is freed, the block is placed on a lookaside list with a matching size, on an empty
lookaside list, or on the First Fit list if no lookaside list is available. As with the
Quick Fit algorithm, free blocks on lookaside lists are not merged or split.

21.6.4 Fixed Size Algorithm
The Fixed Size algorithm (LIB$K_VM_FIXED) maintains a single queue of free
blocks. There is no First Fit free list, and splitting or merging of blocks does not
occur.

21.7 User-Defined Zones
When you create a zone by calling LIB$CREATE_VM_ZONE, you must select
an allocation algorithm from the fixed set provided by the run-time library. You
can tailor the characteristics of the zone by specifying various zone attributes.
User-defined zones provide additional flexibility and control by letting you supply
routines for the allocation and deallocation algorithms.

You create a user-defined zone by calling LIB$CREATE_USER_VM_ZONE.
Instead of supplying values for a fixed set of zone attributes, you provide routines
that perform the following operations for the zone:

• Allocate a block of memory

• Free a block of memory

• Reset the zone

• Delete the zone

Each time that one of the run-time library heap management routines (LIB$GET_
VM, LIB$FREE_VM, LIB$RESET_VM_ZONE, LIB$DELETE_VM_ZONE) is
called to perform an operation on a user-defined zone, the corresponding routine
that you specified is called to perform the actual operation. You need not make
any changes in the calling program to use user-defined zones; their use is
transparent.

You do not need to provide routines for all four of the preceding operations if
you know that your program will not perform certain operations. If you omit
some of the operations and your program attempts to use them, an error status is
returned.

Applications of user-defined zones include the following:

• You can provide your own specialized allocation algorithms. These algorithms
can in turn invoke LIBGET_VM, LIBGET_VM_PAGE, SYS$EXPREG, or
other system services.

• You can use a user-defined zone to monitor memory allocation operations.
Example 21–1 shows a monitoring program that prints a record of each call
to allocate or free memory in a zone.

21–16

Using Run-Time Routines for Memory Allocation
21.7 User-Defined Zones

Example 21–1 Monitoring Heap Operations with a User-Defined Zone

C+
C This is the main program that creates a zone and exercises it.
C
C Note that the main program simply calls LIB$GET_VM and LIB$FREE_VM.
C It contains no special coding for user-defined zones.
C-

PROGRAM MAIN
IMPLICIT INTEGER(A-Z)

CALL MAKE_ZONE(ZONE)

CALL LIB$GET_VM(10, I1, ZONE)
CALL LIB$GET_VM(20, I2, ZONE)
CALL LIB$FREE_VM(10, I1, ZONE)
CALL LIB$RESET_VM_ZONE(ZONE)
CALL LIB$DELETE_VM_ZONE(ZONE)
END

C+
C This is the subroutine that creates a user-defined zone for monitoring.
C Each GET, FREE, or RESET prints a line of output on the terminal.
C Errors are signaled.
C-

SUBROUTINE MAKE_ZONE(ZONE)
IMPLICIT INTEGER (A-Z)
EXTERNAL GET_RTN, FREE_RTN, RESET_RTN, LIB$DELETE_VM_ZONE

C+
C Create the primary zone. The primary zone supports
C the actual allocation and freeing of memory.
C-

STATUS = LIB$CREATE_VM_ZONE(REAL_ZONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

C+
C Create a user-defined zone that monitors operations on REAL_ZONE.
C-

STATUS = LIB$CREATE_USER_VM_ZONE(USER_ZONE, REAL_ZONE,
1 GET_RTN,
1 FREE_RTN,
1 RESET_RTN,
1 LIB$DELETE_VM_ZONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

C+
C Return the zone-id of the user-defined zone to the caller to use.
C-

ZONE = USER_ZONE
END

C+
C GET routine for user-defined zone.
C-

FUNCTION GET_RTN(SIZE, ADDR, ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$GET_VM(SIZE, ADDR, ZONE)

(continued on next page)

21–17

Using Run-Time Routines for Memory Allocation
21.7 User-Defined Zones

Example 21–1 (Cont.) Monitoring Heap Operations with a User-Defined Zone

IF (.NOT. STATUS) THEN
CALL LIB$SIGNAL(%VAL(STATUS))

ELSE
TYPE 10, SIZE, ADDR

10 FORMAT(’ Allocated ’,I4,’ bytes at ’,Z8)
ENDIF
GET_RTN = STATUS
END

C+
C FREE routine for user-defined zone.
C-

FUNCTION FREE_RTN(SIZE, ADDR, ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$FREE_VM(SIZE, ADDR, ZONE)

IF (.NOT. STATUS) THEN
CALL LIB$SIGNAL(%VAL(STATUS))

ELSE
TYPE 20, SIZE, ADDR

20 FORMAT(’ Freed ’,I4,’ bytes at ’,Z8)
ENDIF
FREE_RTN = STATUS
END

C+
C RESET routine for user-defined zone.
C-

FUNCTION RESET_RTN(ZONE)
IMPLICIT INTEGER(A-Z)

STATUS = LIB$RESET_VM_ZONE(ZONE)
IF (.NOT. STATUS) THEN

CALL LIB$SIGNAL(%VAL(STATUS))
ELSE

TYPE 30, ZONE
30 FORMAT(’ Reset zone at ’, Z8)

ENDIF

RESET_RTN = STATUS
END

21–18

Using Run-Time Routines for Memory Allocation
21.8 Debugging Programs That Use Virtual Memory Zones

21.8 Debugging Programs That Use Virtual Memory Zones
This section discusses some methods and aids for debugging programs that use
virtual memory zones. Note that this information is implementation dependent
and may change at any time.

The following list offers some suggestions for discovering and tracking problems
with memory zone usage:

• Run the program with both free-fill-zero and free-fill-one set. The results
from both executions of the program should be the same. If the results differ,
this could mean that you are referencing a zone that is already deallocated.
It could also mean that, after deallocating a zone, you created a new zone at
the same location, so that you now have two pointers pointing to the same
zone.

• Call LIB$FIND_VM_ZONE at image termination. If a virtual memory zone is
not deleted, LIB$FIND_VM_ZONE returns its zone identifier.

• Use LIB$SHOW_VM_ZONE and LIB$VERIFY_VM_ZONE to print zone
information and check for errors in the internal data structures. LIB$SHOW_
VM_ZONE allows you to determine whether any linkage pointers for the
virtual memory zones are corrupted. LIB$VERIFY_VM_ZONE allows you
to request verification of the contents of the free blocks, so that if you call
LIB$VERIFY_VM_ZONE with free-fill set, you can determine whether you
are writing to any deallocated zones.

• For zones created with the Fixed Size, Quick Fit, or Frequent Size algorithm,
some types of errors cannot be detected. For example, in a zone that
implements the Fixed Size algorithm (or in a Quick Fit or Frequent Size
algorithm when the block is cached on a lookaside list), freeing a block
more than once returns SS$_NORMAL, but the internal data structures
are invalid. In this case, change the algorithm to First Fit. The First Fit
algorithm checks whether you are freeing a block that is already on the free
list and, if so, returns the error LIB$_BADBLOADR.

21–19

22
Alignment on OpenVMS VAX and Alpha

Systems

This chapter describes the importance and techniques of alignment for both
OpenVMS VAX and OpenVMS Alpha systems.1 It contains the following
subsections:

Section 22.1 describes alignment on OpenVMS VAX and OpenVMS Alpha
systems.

Section 22.2 describes using compilers for alignment.

Section 22.3 describes using various tools to uncover unaligned data.

22.1 Alignment
Alignment is an aspect of a data item that refers to its placement in memory. The
mixing of byte, word, longword, and quadword data types can lead to data that
is not aligned on natural boundaries. A naturally aligned datum of size 2**N is
stored in memory at a starting byte address that is a multiple of 2**N; that is,
an address that has N low-order zero bits. Data is naturally aligned when its
address is an integral multiple of the size of the data in bytes (for example, when
the following occurs):

• A byte is aligned at any address.

• A word is aligned at any address that is a multiple of 2.

• A longword is aligned at any address that is a multiple of 4.

• A quadword is aligned at any address that is a multiple of 8.

Data that is not aligned is referred to as unaligned. Throughout this chapter, the
term aligned is used instead of naturally aligned.

Table 22–1 shows examples of common data sizes, their alignment, the number
of zero bits in an aligned address for that data, and a sample aligned address in
hexadecimal.

1 Reprinted from an article in the March/April 1993 issue of Digital Systems Journal,
Volume 15, Number 2, titled "Alpha AXP(TM) Migration: Understanding Data
Alignment on OpenVMS AXP Systems" by Eric M. LaFranchi and Kathleen D. Morse.
Copyright 1993 by Cardinal Business Media, Inc., 101 Witmer Road, Horsham, PA
19044.

22–1

Alignment on OpenVMS VAX and Alpha Systems
22.1 Alignment

Table 22–1 Aligned Data Sizes

Data Size Alignment
Zero
Bits Aligned Address Example

Byte Byte 0 10001, 10002, 10003, 10004

Word Word 1 10002, 10004, 10006, 10008

Longword Longword 2 10004, 10008, 1000C, 10010

Quadword Quadword 4 10008, 10010, 10018, 10020

An aligned structure has all its members aligned. An unaligned structure has
one or more unaligned members. Figure 22–1 shows examples of aligned and
unaligned structures.

Figure 22–1 Aligned and Unaligned Structures

63 031 2355
:aaa0

7

:aaa8

aligned longword aligned word byte byte

aligned quadword

Aligned Structure:

Unaligned Structure:

ZK−6999A−GE

7 6 5 4 3 2 1 0

Bits

Bytes

63 031 2355
:aaa0

7

:aaa8

unaligned longword unaligned word byte

7 6 5 4 3 2 1 0

Bits

Bytes

byte

= unaligned quadword

22.1.1 Alignment and Performance
To achieve optimal performance, use aligned instruction sequence references
and naturally aligned data. When unaligned data is referenced, more overhead
is required than when referencing aligned data. This condition is true for both
OpenVMS VAX and Alpha systems. On both VAX and Alpha systems, data need
not be aligned to obtain correct processing results. Alignment is a concern for
performance, not program correctness. Because natural alignment is not always
possible, both OpenVMS VAX and Alpha systems provide help to manage the
impact of unaligned data references.

22–2

Alignment on OpenVMS VAX and Alpha Systems
22.1 Alignment

Alpha Although alignment is not required on VAX systems for stack, data, or instruction
stream references, Alpha systems require that the stack and instructions be
longword aligned.♦

22.1.1.1 Alignment on OpenVMS VAX

VAX On VAX systems, memory references that are not longword aligned result in
a transparent performance degradation. The full effect of unaligned memory
references is hidden by microcode, which detects the unaligned reference and
generates a microtrap to handle the alignment correction. This fix of alignment
is done entirely in microcode. Aligned references, on the other hand, avoid the
microtraps to handle fixes. Even with this microcode fix, an unaligned reference
can take up to four times longer than an aligned reference. ♦

22.1.1.2 Alignment on OpenVMS Alpha

Alpha On Alpha systems, you can check and correct alignment the following three ways:

• Allow privileged architecture library code (PALcode) to fix the alignment
faults for you.

• Use directives to the compiler.

• Fix the data yourself to make sure data is aligned.

Though Alpha systems do not use microcode to automatically handle unaligned
references, PALcode traps the faults and corrects unaligned references as the
data is processed. If you use the shorter load/store instruction sequences and
your data in unaligned, then you incur an alignment fault PALcode fixup. The
use of PALcode to correct alignment faults results in the slowest of the three ways
to process your data.

By using directives to the compiler, you can tell your compiler to create a safe set
of instructions. If it is unaligned, the compiler uses a set of unaligned load/store
instructions. These unaligned load/store instructions are called safe sequences
because they never generate unaligned data exceptions. Code sequences that
use the unaligned load/store instructions are longer than the aligned load/store
instruction sequences. By using unaligned load/store instructions and longer
instruction sequences, you can obtain the desired results without incurring an
alignment trap. This technique allows you to avoid the significant performance
impact of a trap and subsequent data fixes.

By fixing the data yourself so that it is aligned, you can use a short instruction
stream. This results in the fastest way to process your data. When aligning data,
the following recommendations are suggested:

• If references to the data must be made atomic, then the data must be aligned.
Otherwise, an unaligned fault causes a fatal reserved operand fault in this
case.

• If you fix alignment problems in public interfaces, then you could break
existing programs.

To detect unaligned reference information, you can use utilities such as the
OpenVMS Debugger and Performance and Coverage Analyzer (PCA). You
can also use the OpenVMS Alpha handler to generate optional informational
exceptions for process space references. This allows condition handlers to track
unaligned references. Alignment fault system services allow you to enable and
disable the delivery of these informational exceptions. Section 22.3.3 discusses
system services that you can use to report both image and systemwide alignment
problems. ♦

22–3

Alignment on OpenVMS VAX and Alpha Systems
22.2 Using Compilers for Alignment

22.2 Using Compilers for Alignment

Alpha On Alpha systems, compilers automatically align data by default. If alignment
problems are not resolved, they are at least flagged. The following sections
present how the compilers for DEC C, BLISS, DEC Fortran, and MACRO-32 deal
with alignment. ♦

22.2.1 The DEC C Compiler (Alpha Only)

Alpha On Alpha systems, the DEC C compiler naturally aligns all explicitly declared
data, including the elements of data structures. The pragmas member_
alignment and nomember_alignment allow data structures to be aligned
or packed (putting the next piece of data on the next byte boundary) in the same
manner as the VAX C compiler. Additional pragmas of member_alignment
save and member_alignment restore exist to save and restore the state of
member alignment. These are useful to prevent alignment assumptions in one
include file from affecting other source code. The following program examples
show the use of these pragmas:

#pragma member_alignment save 1
#pragma nomember_alignment 2

struct
{
char byte;
short word;
long longword;

} mystruct;
#pragma member_alignment restore 3

1 Saves the current alignment setting.

2 Sets nomember_alignment, which means that the data is to be packed in the
structure mystruct.

3 Resets the alignment setting for the code that follows.

The base alignment of a data structure is set to be the alignment of the largest
member in the structure. If the largest element of a data structure is a longword,
for example, then the base alignment of the data structure is longword alignment.

The malloc() function of the DEC C Run-Time Library retrieves pointers that
are at least quadword aligned. Because it is the exception rather than the rule
to encounter unaligned data in C programs, the compiler assumes most data
references are aligned. Pointers, for example, are always assumed to be aligned;
only data structures declared with the pragma nomember_alignment are
assumed to contain unaligned data. If the DEC C compiler believes the data
might be unaligned, it generates the safe instruction sequences; that is, it uses
the unaligned load/store instructions. Also, the /WARNING=ALIGNMENT
compiler qualifier can be used to turn on alignment checking by the compiler.
This results in a compiler warning for unaligned data references. ♦

22–4

Alignment on OpenVMS VAX and Alpha Systems
22.2 Using Compilers for Alignment

22.2.1.1 Compiler Example of Memory Structure of VAX C and DEC C
The following code examples, and Figure 22–2, and Figure 22–3 illustrate a C
data structure containing byte, word, and longword data and how it would be laid
out in memory by VAX C and DEC C.

struct
{
char byte;
short word;
long longword;

}mystruct;

VAX On VAX systems, when compiled using the VAX C compiler, the previous structure
has a memory layout as shown in Figure 22–2, where each piece of data begins
on the next byte boundary. ♦

Figure 22–2 Alignment Using VAX C Compiler

63 031 2355 7

longword word byte

ZK−7000A−GE

Alpha On Alpha systems, when compiled using the DEC C compiler, the structure is
padded to achieve natural alignment, if needed, as shown in Figure 22–3.

Figure 22–3 Alignment Using DEC C Compiler

63 031 2355 7

longword word byte

ZK−7001A−GE

Note where DEC C places some padding to align naturally all the data structure
elements. DEC C would also align the structure itself on a longword boundary.
The DEC C compiler aligns the structure on a longword boundary because the
largest element in the structure is a longword. ♦

22.2.2 The BLISS Compiler

Alpha On Alpha systems, the BLISS compiler provide greater control over alignment
than the DEC C compiler does. The BLISS compiler also makes different
assumptions about alignment.

Digital does not ship the BLISS compiler on Alpha systems. ♦

The Alpha BLISS compiler, like the VAX BLISS compiler, allows explicit
specification of program section (PSECT) alignment.

22–5

Alignment on OpenVMS VAX and Alpha Systems
22.2 Using Compilers for Alignment

Alpha On Alpha systems, BLISS compilers align all explicitly declared data on naturally
aligned boundaries.

Declared data in BLISS source code can be aligned with the ALIGN attribute,
although the alignment specified cannot be greater than that for the PSECT in
which the data is contained. The alignment attribute indicates a specific address
boundary by means of a boundary value, N, which specifies that the binary
address of the data segment must end in at least N 0s. To specify the static
byte datum A to be aligned on a longword boundary, for example, the following
declaration might be used:

OWN
A:BYTE ALIGN(2)

When the BLISS compiler cannot determine the base alignment of a BLOCK, it
assumes full word alignment, unless told otherwise by a command qualifier or
switch declaration. Like the DEC C compiler, if the BLISS compilers believe that
the data is unaligned, they generate safe instruction sequences. If you specify
the qualifier /CHECK=ALIGNMENT in the BLISS command line, then warning
information is provided when they detect unaligned memory references. ♦

22.2.3 The DEC Fortran Compiler (Alpha Only)

Alpha On Alpha systems, the defaults for the DEC Fortran compiler emphasize
compatibility and standards conformance. Normal data declarations (data
declared outside of COMMON block statements) are aligned on natural
boundaries by default. COMMON block statement data is not aligned by default,
which conforms to the FORTRAN–77 and FORTRAN-90 standards.

The qualifier /ALIGN=(COMMONS=STANDARD) causes COMMON block data
to be longword aligned. This adheres with the FORTRAN–77 and FORTRAN-
90 standards, which state that the compiler is not allowed to put padding
between INTEGER*4 and REAL*8 data. This can cause REAL*8 data to
be unaligned. To correct this, apply the NATURAL rule; for instance, apply
/ALIGN=(COMMONS=NATURAL) to get natural alignment up to quadwords
and the best performance, though this is not standards conforming.

To pack COMMON block and RECORD statement data, specify /ALIGN=NONE.
The qualifier /ALIGN=NONE is equivalent to /NOALIGN, /ALIGN=PACKED,
or /ALIGN=(COMMON=PACKED,RECORD=PACKED). To pack just RECORD
statement data, specify /ALIGN=(RECORD=PACKED).

Besides command line qualifiers, DEC Fortran provides two directives to
control the alignment of RECORD statement data and COMMON block data.
The CDEC$OPTIONS directive controls whether the DEC Fortran compiler
naturally aligns fields in RECORD statements or data items in COMMON blocks
for performance reasons, or whether the compiler packs those fields and data
items together on arbitrary byte boundaries. The CDEC$OPTIONS directive,
like the /ALIGN command qualifier, takes class and rule parameters. Also, the
CDE$OPTIONS directive overrides the compiler option /ALIGN.

By default, the DEC Fortran compiler emits alignment warnings, but these can
be turned off by using the qualifier /WARNINGS=NOALIGNMENT. ♦

22–6

Alignment on OpenVMS VAX and Alpha Systems
22.2 Using Compilers for Alignment

22.2.4 The MACRO-32 Compiler (Alpha Only)

Alpha As with the C, BLISS, and DEC Fortran languages, unaligned data references
in MACRO-32 code work correctly, though they perform slower than aligned
references. The MACRO-32 language provides you with direct control over
alignment. There is no implicit padding for alignment done by the MACRO-32
compiler; data remains at the alignment you specify.

The MACRO-32 compiler recognizes the alignment of all locally declared data and
flags all references to declared data that is unaligned. By default, the MACRO-32
compiler assumes that addresses in registers used as base pointers are longword
aligned at routine entry.

For the MOVQ instruction, the compiler assumes that the base address is
longword aligned, unless the compiler determines by its register-tracking logic
that the address can not be longword aligned. Only longword alignment is
tracked; quadword register alignment is not tracked. If you use the OpenVMS
Alpha MOVQ instruction, the data must be quadword aligned, because the
compiler does not translate it into unaligned loads.

External data is data that is not contained in the current source being compiled.
External data is assumed to be longword aligned by the MACRO-32 compiler.
The compiler detects and flags unaligned global label references. This enables
you to locate external data that is not aligned.

To preserve atomicity, the compiler assumes that the data is longword aligned.
Unaligned data causes a trap and voids the atomicity. Therefore, you must
ensure that such data is aligned.

To fix unaligned data references, the easiest way is for you to align the data,
if possible. If you cannot align the data, the data address can be moved into
a register and then the register declared as unaligned. When you compile with
/UNALIGNED, you tell the compiler to treat all data references as unaligned and
to generate safe unaligned sequences. You can also use the .SET_REGISTERS
directive, which affects data references only for the specified registers for a
section of code.

The .PSECT and .ALIGN directives are supported. The compiler knows the
alignment of locally declared data. The compiler makes certain assumptions
about the alignment, but does allow programmer control over those assumptions.
The MACRO-32 compiler provides two directives for changing the compiler’s
assumptions about alignment, which results in letting the compiler produce more
efficient code. These two directives are as follows:

• .SET_REGISTERS allows you to specify whether a register points to aligned
or unaligned data. You use this directive when the result of an operation is
the opposite of what the compiler expects. Also, use the same directive to
declare registers that the compiler would not otherwise detect as input or
output registers.

For example, consider the DIVL instruction. After executing this instruction
in the following example, the MACRO-32 compiler assumes that R1 is
unaligned. A future attempt at using R1 as a base register will cause the
compiler to generate an unaligned fetch sequence. However, suppose you
know that R1 is always aligned after the DIVL instruction. You can then
use the .SET_REGISTERS directive to inform the compiler of this. When
the compiler sees the MOVL from 8(r1), it knows that it can use the shorter
aligned fetch (LDL) to retrieve the data. At run time, however, if R1 is not

22–7

Alignment on OpenVMS VAX and Alpha Systems
22.2 Using Compilers for Alignment

really aligned, then this results in an alignment trap. The following example
show the setting of a register to be aligned:

divl r0,r1 ;Compiler now thinks R1 unaligned

.set_registers aligned=r1

movl 8(r1),r2 ;Compiler now treats R1 as aligned

• .SYMBOL_ALIGNMENT allows you to specify the alignment of any memory
reference that uses a symbolic offset. The .SYMBOL_ALIGNMENT directive
associates an alignment attribute with a symbol definition used as a register
offset; it can be used when you know the base register will be aligned for
every use of the symbolic offset. This attribute guarantees to the compiler
that the base register has that alignment, and this enables the compiler to
generate optimal code.

In the example that follows, QUAD_OFF has a symbol alignment of QUAD,
LONG_OFF, a symbol alignment of LONG, and NONE_OFF has no symbol
alignment. In the first MOVL instruction, the compiler assumes that R0,
since it is used as a base register with QUAD_OFF, is quadword aligned.
Since QUAD_OFF has a value of 4, the compiler knows it can generate an
aligned longword fetch. For the second MOVL, R0 is assumed to be longword
aligned, but since LONG_OFF has a value of 5, the compiler realizes that
offset+ base is not longword aligned and would generate a safe unaligned
fetch sequence. In the third MOVL, R0 is assumed to be unaligned,
unless the compiler knows otherwise from other register tracking, and
would generate a safe unaligned sequence. The .SYMBOL_ALIGNMENT
alignment remains in effect until the next occurrence of the directive.

.symbol_alignment QUAD
quad_off=4
.symbol_alignment LONG
long_off=5
.symbol_alignment NONE
none_off=6

movl quad_off(r0),r1 ;Assumes R0 quadword aligned
movl long_off(r0),r2 ;Assumes R0 longword aligned
movl none_off(r0),r3 ;No presumed alignment for R0

♦

22.2.5 The VAX Environment Software Translator—VEST (Alpha Only)

Alpha The DECmigrate for OpenVMS Alpha VAX Environment Software Translator
(VEST) utility is a tool that translates binary OpenVMS VAX image files into
OpenVMS Alpha image files. Image files are also called executable files. Though
it is similar to compiler, VEST is for binaries instead of sources.

VEST deals with alignment in two different modes: pessimistic and optimistic.
VEST is optimistic by default; but whether optimistic or pessimistic, the
alignment of program counter (PC) relative data is known at translation time,
and the appropriate instruction sequence can be generated.

In pessimistic mode, all non PC-relative references are treated as unaligned
using the safe access sequences. In optimistic mode, the emulated VAX registers
(R0–R14) are assumed to be quadword aligned upon entry to each basic block.
Autoincrement and autodecrement changes to the base registers are tracked. The
offset plus the base register alignment are used to determine the alignment and
the appropriate access sequence is generated.

22–8

Alignment on OpenVMS VAX and Alpha Systems
22.2 Using Compilers for Alignment

The /OPTIMIZE=NOALIGN qualifier on the VEST command tells VEST to be
pessimistic; it assumes that base registers are not aligned, and should generate
the safe instruction sequence. Doing this can slow execution speed by a factor
of two or more, if there are no unaligned data references. On the other hand, it
can result in a performance gain if there are a significant number of unaligned
references, since safe sequences avoid any unaligned data traps.

There exist additional controls to preserve atomicity in longword data that is not
naturally aligned. Wherever possible, data should be aligned in the VAX source
code and the image rebuilt before translating the image with DECmigrate. This
results in better performance on both VAX and Alpha systems. ♦

22.3 Using Tools for Finding Unaligned Data
Tools that aid the uncovering of unaligned data include the OpenVMS Debugger,
Performance and Coverage Analyzer (PCA), and eight system services. These
tools are discussed in the following sections.

22.3.1 The OpenVMS Debugger
By using the OpenVMS Debugger, you can turn on and off unaligned data
exception breakpoints by using the commands SET BREAK/UNALIGNED_
DATA and CANCEL BREAK/UNALIGNED_DATA. These commands must be
used with the SET BREAK/EXCEPTION command. When the debugger breaks
at the unaligned data exception, the context is like any other exception. You can
examine the program counter (PC), processor status (PS), and virtual address of
the unaligned data exception. Example 22–1 shows the output from the debugger
using the SET OUTPUT LOG command of a simple program.

Example 22–1 OpenVMS Debugger Output from SET OUTPUT LOG Command

#include <stdio.h>
#include <stdlib.h>

main()
{

char *p;
long *lp;

/* malloc returns at least quadword aligned printer */
p = (char *)malloc(32);

/* construct unaligned longword pointer and place into lp */
lp = (long *)((char *)(p+1));

/* load data into unaligned longword */
lp[0] = 123456;

printf("data - %d\n", lp[0]);
return;

}

(continued on next page)

22–9

Alignment on OpenVMS VAX and Alpha Systems
22.3 Using Tools for Finding Unaligned Data

Example 22–1 (Cont.) OpenVMS Debugger Output from SET OUTPUT LOG
Command

------- Compile and Link commands -------
$ cc/debug debug_example
$ link/debug debug_example
$ run debug_example
------- DEBUG session using set output log -------
Go
! break at routine DEBUG_EXAMPLE\main
! 598: p - (char *)malloc(32);
set break/unaligned_data
set break/exception
set radix hexadecimal
Go
!Unaligned data access: virtual address - 003CEEA1, PC - 00020048
!break on unaligned data trap preceding DEBUG_EXAMPLE\main\%LINE 602
! 602: printf("data - %d\n", lp[0]);
ex/inst 00020048-4
!DEBUG_EXAMPLE\main\%LINE 600+4: STL R1,(R0)
ex r0
!DEBUG_EXAMPLE\main\%R0: 00000000 003CEEA1

22.3.2 The Performance and Coverage Analyzer—PCA
The PCA allows you to detect and fix performance problems. Because unaligned
data handling can significantly increase overhead, PCA has the capability to
collect and present information on aligned data exceptions. PCA commands that
collect and display unaligned data exceptions are:

• SET UNALIGNED_DATA

• PLOT/UNALIGNED_DATA PROGRAM BY LINE

Also, PCA can display data according to the PC of the fault, or by the virtual
address of the unaligned data.

22.3.3 System Services (Alpha Only)

Alpha There are eight system services to help locate unaligned data. The first
three system services establish temporary image reporting; the next two
provide process-permanent reporting; and the last three provide for system
alignment fault tracking. The symbols used in calling all eight of these system
services are located in $AFRDEF in the OpenVMS Alpha MACRO-32 library,
SYS$LIBRARY:STARLET.MLB. You can also call these system services in C with
#include <afrdef.h>.

The first three system services can be used together; they report on the currently
executing image. They are as follows:

• SYS$START_ALIGN_FAULT_REPORT. This service enables unaligned data
exception for the current image. You can use either a buffered or an exception
method of reporting, but you can enable only one method at a time.

Buffered method. This method requires that the buffer address and size
be specified. You use the SYS$GET_ALIGN_FAULT_DATA service to
retrieve buffered alignment data under program control.

22–10

Alignment on OpenVMS VAX and Alpha Systems
22.3 Using Tools for Finding Unaligned Data

Exception method. This method requires no buffer. Unaligned data
exceptions are signaled to the image, at which point a user-written
condition handler takes whatever action is desired. If no user-written
handler is set up, then an informational exception message is broadcast
for each unaligned data trap, and the program continues to execute.

• SYS$STOP_ALIGN_FAULT_REPORT. This service cancels unaligned data
exception reporting for the current image if it were previously enabled. If you
do not explicitly call this routine, then reporting is disabled by the operating
systems’ image rundown logic.

• SYS$GET_ALIGN_FAULT_DATA. This service retrieves the accumulated,
buffered alignment data when using the buffered collection method.

You can use two of the eight system services to report unaligned data exceptions
for the current process. The two services are as follows:

• SYS$PERM_REPORT_ALIGN_FAULT. This service enables unaligned
data exception reporting for the process. Once you enable this service, the
reporting remains in effect for the process until you explicitly disable it.
Once enabled, the SS$_ALIGN condition is signaled for all unaligned data
exceptions while the process is active. By default, if no user-written exception
handler handles the condition, this results in an information display message
for each unaligned data exception.

This service provides a convenient way of running a number of images
without modifying the code in each image, and also of recording the unaligned
data exception behavior of each image.

• SYS$PERM_DIS_ALIGN_FAULT_REPORT. This service disables unaligned
data exception reporting for the process.

The three system services that allow you to track systemwide alignment faults
are as follows:

• SYS$INIT_SYS_ALIGN_FAULT_REPORT. This service initializes system
process alignment fault reporting.

• SYS$STOP_SYS_ALIGN_FAULT_REPORT. This service disables systemwide
alignment fault reporting.

• SYS$GET_SYS_ALIGN_FAULT_DATA. This service obtains data from the
system alignment fault buffer.

These services require CMKRNL privilege. Alignment faults for all modes and all
addresses can be reported using these services. The user can also set up masks
to report only certain types of alignment faults. For example, you can get reports
on only kernel modes, only user PC, or only data in system space.

22–11

23
System Security Services

This chapter describes the security system services that provide various
mechanisms to enhance the security of operating systems. It contains the
following sections:

Section 23.1 provides an overview of the protection scheme.

Section 23.2 describes identifiers and how they are used in security.

Section 23.3 describes the rights database.

Section 23.4 describes how to create, translate, and maintain access control
entries (ACEs).

Section 23.5 describes protected subsystems.

Section 23.6 describes security auditing.

Section 23.7 describes how to determine a user’s access to an object.

Section 23.8 describes SYS$CHECK_PRIVILEGE system service.

Section 23.9 describes how to implement site-specific security policies.

23.1 Overview of the Operating System’s Protection Scheme
The basis of the security scheme is an identifier, which is a 32-bit binary value
that represents a set of users to the system. An identifier can represent an
individual user, a group of users, or some aspect of the environment in which
a user is operating. A process is a holder of an identifier when that identifier
can represent that process to the system. The protection scheme also includes
the user identification code (UIC), the authorization database, and access control
lists.

Authorization Database
The authorization database consists of the system authorization file
(SYSUAF.DAT), the network proxy database, and the rights list database
(RIGHTSLISTS.DAT). Note that the network proxy database is called
NETPROXY.DAT on Alpha systems and NET$PROXY.DAT on VAX systems. (The
file NETPROXY.DAT on VAX systems is maintained for platform compatibility,
translation of DECnet Phase IV node names, and layered product support.)
The system rights database is an indexed file consisting of identifier and
holder records. These records define the identifiers and the holders of those
identifiers on a system. When a user logs in to the system, a process is created
and LOGINOUT creates a rights list for the process from the applicable entries
in the rights database. The process rights list contains all the identifiers that
the process holds. A process can be the holder of a number of identifiers. These
identifiers determine the access rights of the list holder. The process rights list
becomes part of the process and is propagated to any created subprocesses.

23–1

System Security Services
23.1 Overview of the Operating System’s Protection Scheme

Access Protection
When a process without special privileges attempts to access an object (protected
by an ACL) in the system, the operating system uses the rights list when
performing a protection check. The system compares the identifiers in the rights
list to the protection attributes of the object and grants or denies access to the
object based on the comparison. In other words, the entries in the rights list
do not specifically grant access; instead, the system uses them to perform a
protection check when the process attempts to access an object.

Access Control Lists
The protection scheme provides security with the mechanism of the access control
list (ACL). An ACL consists of access control entries (ACEs) that specify the
type of access an identifier has to an object like a file, device, or queue. When a
process attempts to access an object with an associated ACL, the system grants
or denies access based on whether an exact match for the identifier in the ACL
exists in the process rights list.

The following sections describe each of the components of the security scheme—
identifiers, rights database, process and system rights lists, protection codes, and
ACLs—and the system services affecting those components.

23.2 Identifiers
The basic component of the protection scheme is an identifier. An identifier
represents various types of agents using the system. The types of agents
represented include individual users, groups of users, and environments in which
a process is operating. Identifiers and their attributes apply to both processes
and objects. An identifier name consists of 1 to 31 alphanumeric characters
with no embedded blanks and must contain at least one nonnumeric character. It
can include the uppercase letters A through Z, dollar signs ($), and underscores
(_), as well as the numbers 0 through 9. Any lowercase letters are automatically
converted to uppercase.

23.2.1 Identifier Format
Each of the three types of identifier has an internal format in the rights database:
user identification code (UIC) format, identification (ID) format, and facility-
specific format. The high-order bits <31:28> of the identifier value specify the
format of the identifier.

23.2.2 General Identifiers
You can define general identifiers to meet the specific needs of your site. You
grant these identifiers to users by establishing holder records in the rights
database. General identifiers can identify a single user, a single UIC group, a
group of users, or a number of groups.

Bit <31>, which is set to 1, specifies ID format used by general identifiers as
shown in Figure 23–1. Bits <30:28> are reserved by Digital. The remaining bits
specify the identifier value.

23–2

System Security Services
23.2 Identifiers

Figure 23–1 ID Format

31 027

1 0 0 0

ZK−5908A−GE

System−generated value

You define identifiers and their holders in the rights database with the Authorize
utility or with the appropriate system services. Each user can hold multiple
identifiers. This allows you to create a different kind of group designation from
the one used with the user’s UIC.

The alternative grouping described here permits each user to be a member of
multiple overlapping groups. Access control lists (ACLs) define the access to
protected objects based on the identifiers the user holds rather than on the user’s
UIC. See Section 23.4.3.1 for information on creating ACLs.

You can also define identifiers to represent particular terminals, times of day, or
other site-specific environmental attributes. These identifiers are not given holder
records in the rights database but may be granted to users by customer-written
privileged software. This feature of the security system allows each site flexibility
and, because the identifiers can be specific to the site, enhanced security. For a
programming example demonstrating this technique, see Section 23.3.2.4. For
more information, also see the OpenVMS Guide to System Security.

23.2.3 System-Defined Identifiers
System-defined identifiers, or environmental identifiers, are general identifiers
that are automatically defined when the rights database is initialized. The
following system-defined identifiers correspond directly with the login classes and
relate to the environment in which the process operates:

BATCH All attempts at access made by batch jobs

NETWORK All attempts at access made across the network

INTERACTIVE All attempts at access made by interactive processes

LOCAL All attempts at access made by users logged in at local terminals

DIALUP All attempts at access made by users logged in at dialup terminals

REMOTE All attempts at access made by users logged in on a network

Depending on the environment in which the process is operating, the system
includes one or more of these identifiers when creating the process rights list.

23.2.4 UIC Identifiers
Each UIC identifier is unique and represents a system user. By default, when an
account is created, its UIC is associated with the account’s user name generating
an identifier value. When the high-order bit <31> of the identifier value is zero,
the value identifies a UIC format identifier as shown in Figure 23–2.

23–3

System Security Services
23.2 Identifiers

Figure 23–2 UIC Identifier Format

31 0151627

0 0 0 0 UIC group UIC member

ZK−5907A−GE

Bits <27:16> and <15:0> designate a group field and member field. Group
numbers range from 1 through 16,382; member numbers range from 0 through
65,534.

23.2.5 Facility Identifiers
Facility-specific rights identifiers allow a range of unique binary identifier values
to be reserved for a particular software product or application. Compare the
format of facility-specific identifiers with the format of general identifiers and
UIC identifiers, as shown in Section 23.2.1. The system normally determines the
binary values of general identifiers when the system manager creates them; the
system manager determines the binary values of UIC identifiers.

Figure 23–3 shows the facility-specific identifiers.

Figure 23–3 Facility-Specific Identifiers

31 0151627

1 0 0 1 Facility code Facility−specific value

ZK−5909A−GE

The binary value of a facility-specific identifier is determined at the time the
application is designed. The facility number of the identifier must match
the facility number the application has chosen for its condition and message
codes. The remaining 16-bit facility-specific value may be assigned at will by
the application designer. By reserving specific binary identifier values, the
application designer may code fixed identifier values into an application’s calls to
$CHECK_PRIVILEGE, $GRANT_ID, and so forth. It avoids the added complexity
of first having to translate an identifier name to binary with $ASCTOID.

An application can choose to register the identifiers in the rights database or
not, depending on its needs. If the identifiers are registered, they are visible
to the system manager who may grant them to users. In any case, they will
be displayed properly if they appear on access control lists. If they are not
registered, they will remain invisible to the system manager. Unregistered
identifiers that appear on access control lists are displayed as a hexadecimal
value.

To register its identifiers, the installation procedure of the application must
run a program that enters the identifiers into the rights database using the
$ADD_IDENT service. You cannot specify facility-specific identifier values to
AUTHORIZE with the ADD/IDENTIFIER command.

23–4

System Security Services
23.2 Identifiers

Typically, facility-specific identifiers serve to extend the OpenVMS privilege
mechanism for an application. For example, consider a database manager that
includes a function to allow appropriately privileged users to modify a schema.
Access to this function could be controlled through a facility-specific identifier
named, for example, DBM$MOD_SCHEMA. The system manager grants the
identifier to authorized persons using the AUTHORIZE command GRANT/ID.
The database services that modify schemas use the $CHECK_PRIVILEGE service
to check that the caller holds the identifier.

In another example, a privileged program run by users when they log in uses
$GRANT_ID to grant the user certain facility-specific identifiers, depending on
conditions determined by the program; for example, time of day or access port
name. These identifiers can be placed on the ACLs of files to control file access,
or they might be checked by other software with $CHECK_PRIVILEGE.

23.2.6 Identifier Attributes
An identifier has attributes associated with it in the rights database. The process
rights list includes the attributes of any identifiers that the process holds.

The use of rights identifiers can be extended with the following identifier attribute
keywords:

DYNAMIC Allows unprivileged holders of an identifier to add or remove
the identifier from the process rights list using the DCL SET
RIGHTS command. Conversely, an unprivileged user who does
not have the attribute cannot modify the identifier.

HOLDER_HIDDEN Prevents someone from using the SYS$FIND_HOLDER system
service to get a list of users who hold an identifier, unless that
person holds the identifier.

NAME_HIDDEN Allows only the holders of an identifier to have it translated,
either from binary to ASCII or from ASCII to binary.

NO_ACCESS Specifies that the identifier does not affect the access rights of
the user holding the identifier.

RESOURCE Allows the holder of an identifier to charge resources, such as
disk blocks, to an identifier.

SUBSYSTEM Allows holders of the identifier to create and maintain protected
subsystems.

Using the Resource Attribute
The following example demonstrates the advantages of defining an identifier and
holders for a project.

The Physics department of a school has a common library with an associated disk
quota on the system. In order to use the Resource attribute, you must enable disk
quotas and establish a quota file entry using the SYSMAN utility. You want to
allow the faculty members to charge disk quota that they use in conjunction with
the library to the identifier PHYSICS associated with the common library and to
prevent the students from charging resources to that identifier.

• Define an identifier PHYSICS with the Resource attribute in the rights
database using the SYS$ADD_IDENT service.

• Enable disk quotas using SYSMAN as shown in the example.

23–5

System Security Services
23.2 Identifiers

$ MCR SYSMAN
SYSMAN> DISKQUOTA CREATE/DEVICE=DKB0:
SYSMAN> DISKQUOTA MODIFY/DEVICE=DKB0: PHYSICS /PERMQUOTA=150000 -
_SYSMAN> /OVERDRAFT=5000
SYSMAN> EXIT

• Create the common library and assign the identifier PHYSICS using the
run-time library routine LIB$CREATE_DIR.

• Grant the identifier PHYSICS to holders FRED, a faculty member, and
GEORGE, a student using the SYS$ADD_HOLDER service.

If you specify the Resource attribute for identifier FRED, he can charge disk
resources to the PHYSICS identifier; if you do not specify the Resource attribute
for identifier GEORGE, he will not inherit the Resource attribute associated
with the identifier PHYSICS and cannot charge disk resources to the PHYSICS
identifier. The following input file, USERLIST.DAT, contains valid UIC identifiers
of students and faculty members:

FRED NORESOURCE
GEORGE RESOURCE
NANCY NORESOURCE
HAROLD RESOURCE
SUSAN RESOURCE
CHERYL NORESOURCE
MARVIN NORESOURCE

The following program reads USERLIST.DAT and associates the UIC identifiers
with the identifier PHYSICS:

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <lib$routines.h>
#include <kgbdef.h>
#include <nam.h>
#include <string.h>
#include <stdlib.h>

#define IDENT_LEN 31
#define NO_ATTR 0

#define RESOURCE 1
#define NORESOURCE 0

unsigned int sys$asctoid(),
sys$add_ident(),
sys$add_holder(),
sys$idtoasc(),
convert_id(struct dsc$descriptor_s, unsigned int);

void add_holder(unsigned int, unsigned int, unsigned int);

struct {
unsigned int uic;
unsigned int terminator;

}holder;

static char ascii_ident[IDENT_LEN],
abuffer[IDENT_LEN],
dirbuf[NAM$C_MAXRSS],
targbuf[IDENT_LEN];

$DESCRIPTOR(target,targbuf);

unsigned int status;

main() {

23–6

System Security Services
23.2 Identifiers

FILE *ptr;
char attr[11];
unsigned int owner_uic, attrib, resid, bin_id;
$DESCRIPTOR(dirspec,dirbuf);
$DESCRIPTOR(aident, abuffer);

printf("\nEnter directory spec: ");
gets(dirbuf);
dirspec.dsc$w_length = strlen(dirbuf);

printf("\nEnter its owner identifier: ");
gets(targbuf);
target.dsc$w_length = strlen(targbuf);

/* Add target identifier WITH resource attribute to the rights database */

attrib = KGB$M_RESOURCE;
status = sys$add_ident(&target, 0, attrib, &resid);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
else

printf("\nAdding identifier %s to rights database...\n",
target.dsc$a_pointer);

/* Create the common directory with the target id as owner */

owner_uic = resid;
status = lib$create_dir(&dirspec, &owner_uic, 0, 0);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
else

printf("Creating the directory %s...\n",dirspec.dsc$a_pointer);

/* Open an input file of UIC identifiers and attribute types */
if((ptr = fopen("USERLIST.DAT","r")) == NULL) {

perror("OPEN");
exit(EXIT_FAILURE);

}

/* Read the input file of UIC identifiers */
while((fscanf(ptr,"%s %s\n",abuffer,attr)) != EOF) {

aident.dsc$w_length = strlen(abuffer);
attrib = (strcmp(attr,"RESOURCE")) == 0 ? KGB$M_RESOURCE : NO_ATTR;
bin_id = convert_id(aident, attrib);
add_holder(bin_id, resid, attrib);

}

/* Close the input file */
fclose(ptr);

}

unsigned int convert_id(struct dsc$descriptor_s uic_id,
unsigned int attr) {

unsigned int bin_id;

status = sys$asctoid(&uic_id, &bin_id, &attr);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
else {

printf("Converting identifier %s to binary format...\n",
uic_id.dsc$a_pointer);

return bin_id;
}

}

void add_holder(unsigned int bin_id, unsigned int resid,
unsigned int attrib) {

23–7

System Security Services
23.2 Identifiers

int i;
$DESCRIPTOR(nambuf, ascii_ident);

holder.uic = bin_id;
holder.terminator = 0;

status = sys$add_holder(resid, &holder, attrib);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
else {

status = sys$idtoasc(bin_id, 0, &nambuf, 0, 0, 0);
if((status & 1) != SS$_NORMAL)

lib$signal(status);
/* Remove padding */

nambuf.dsc$w_length = strlen(ascii_ident);
for(i=0;i < nambuf.dsc$w_length + 1; i++)

if (ascii_ident[i] == 0x20)
ascii_ident[i] = ’\0’;

printf("\nAdding holder %s to target identifier %s...\n", \
nambuf.dsc$a_pointer,target.dsc$a_pointer);

}
}

23.3 Rights Database
The rights database is an indexed file containing two types of records that define
all identifiers: identifier records and holder records.

One identifier record appears in the rights database for each identifier. The
identifier record associates the identifier name with its 32-bit binary value and
specifies the attributes of the identifier. Figure 23–4 depicts the format of the
identifier record.

Figure 23–4 Format of the Identifier Record

0

Identifier Name

ZK−1904−GE

0

Attributes

Identifier Value

Identifier Name

Identifier Name

Identifier Name

23–8

System Security Services
23.3 Rights Database

One holder record exists in the rights database for each holder of each identifier.
The holder record associates the holder with the identifier, specifies the attributes
of the holder, and identifies the UIC identifier of the holder. Figure 23–5 depicts
the format of the holder record.

Figure 23–5 Format of the Holder Record

(Reserved)

UIC Identifier of Holder

Attributes

Identifier Value

(Reserved)

(Reserved)

(Reserved)

ZK−1907−GE

The rights database is an indexed file with three keys. The primary key is the
identifier value, the secondary key is the holder ID, and the tertiary key is the
identifier name. Through the use of the secondary key of the holder ID, all the
identifiers held by a process can be retrieved quickly when the system creates the
process’s rights list.

23.3.1 Initializing a Rights Database
You initialize the rights database in one of the following ways:

• When a system is installed

• With the Authorize utility

• With the SYS$CREATE_RDB system service

When you call SYS$CREATE_RDB, you can use the sysid argument to pass the
system identification value associated with the rights database. If you omit sysid,
the system uses the current system time in 64-bit format. If the rights database
already exists, SYS$CREATE_RDB fails with the error code RMS$_FEX. To
create a new rights database when one already exists, you must explicitly delete
or rename the old one.

You can specify the location and name of the rights database by defining the
logical name RIGHTSLIST as a system logical name in executive mode; its
equivalence string must contain the device, directory, and file name of the rights
database.

The file RIGHTSLIST.DAT has the protection of (S:RWED,O:RWED,G:R,W).

23–9

System Security Services
23.3 Rights Database

In order to use SYS$CREATE_RDB, write access to the database is necessary.
If the database is in SYS$SYSTEM, which is the default, you need the SYSPRV
privilege to grant write access to the directory.

When SYS$CREATE_RDB initializes a rights database, system-defined
identifiers, which describe the environment in which a process can operate,
are automatically created.

To add any other identifiers to the rights database, you must define them with
the Authorize utility or with the appropriate system service.

23.3.2 Using System Services to Affect a Rights Database
The identifier and holder records in the rights database contain the following
elements:

• Identifier binary value

• Identifier name

• Holders of each identifier

• Attribute of each identifier and each holder of each identifier

You can use the Authorize utility or one of the system services described in
Table 23–1 to add, delete, display, modify, or translate the various elements of the
rights database.

Table 23–1 Using System Services to Manipulate Elements of the Rights
Database

Action Element Service Used

Translate Identifier name to identifier binary value SYS$ASCTOID

Identifier binary value to identifier name SYS$IDTOASC

Add Identifier holder record SYS$ADD_HOLDER

New identifier record SYS$ADD_IDENT

Find Identifier value held by holder SYS$FIND_HELD

Holders of an identifier SYS$FIND_HOLDER

All identifiers SYS$IDTOASC

Modify Attribute in holder record SYS$MOD_HOLDER

Attribute in identifier record SYS$MOD_IDENT

Delete Holder from identifier record SYS$REM_HOLDER

Identifier and all its holders SYS$REM_IDENT

The following table shows what access you need for which services:

Service Required Access

SYS$ADD_HOLDER Write

SYS$ADD_IDENT Write

SYS$ASCTOID Read†

†On VAX systems, read access is required when certain restrictions are present (for example, if the
identifiers have the name hidden or holder hidden attributes).

23–10

System Security Services
23.3 Rights Database

Service Required Access

SYS$CREATE_RDB Write1

SYS$FIND_HELD Read†

SYS$FIND_HOLDER Read†

SYS$FINISH_RDB Read†

SYS$IDTOASC Read†

SYS$MOD_HOLDER Write

SYS$MOD_IDENT Write

SYS$REM_HOLDER Write

SYS$REM_IDENT Write

1File creation access.
†On VAX systems, read access is required when certain restrictions are present (for example, if the
identifiers have the name hidden or holder hidden attributes).

23.3.2.1 Translating Identifier Values and Identifier Names
To the system, an identifier is a 32-bit binary value; however, to make identifiers
easy to use, each binary value has an associated identifier name. The identifier
value and the ASCII identifier name string are associated in the rights database.
You can use the SYS$ASCTOID and SYS$IDTOASC system services to translate
from one format to another. When you pass to SYS$ASCTOID the address of
a string descriptor pointing to an identifier name, the corresponding identifier
binary value is returned. Conversely, you use the SYS$IDTOASC service to
translate a binary identifier value to an ASCII identifier name string.

Preventing a Translation
You can prevent a translation operation by unauthorized users by specifying the
KGB$V_NAME_HIDDEN within an attributes mask.

Listing Identifiers in the Rights Database
You can also use the SYS$IDTOASC service to list the identifier names of all of
the identifiers in the rights database. Specify the id argument as ��, initialize
the context argument to 0, and repeatedly call SYS$IDTOASC until the status
code SS$_NOSUCHID is returned. The SYS$IDTOASC service returns the
identifier names in alphabetical order. When SS$_NOSUCHID is returned,
SYS$IDTOASC clears the context longword and deallocates the record stream. If
you complete your calls to SYS$IDTOASC before SS$_NOSUCHID is returned,
use SYS$FINISH_RDB to clear the context longword and to deallocate the record
stream.

The following programming example uses SYS$IDTOASC to identify all
identifiers in a rights database:

Program ID_LIST

*
* Produce a list of all the identifiers
*

integer SYS$IDTOASC
external SS$_NORMAL, SS$_NOSUCHID

character*31 NAME
integer IDENTIFIER, ATTRIBUTES

integer ID/-1/, LENGTH, CONTEXT/0/
integer NAME_DSC(2)/31, 0/

23–11

System Security Services
23.3 Rights Database

integer STATUS
*
* Initialization
*

NAME_DSC(2) = %loc(NAME)
STATUS = %loc(SS$_NORMAL)

*
* Scan through the entire RDB ...
*

do while (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID)))

STATUS = SYS$IDTOASC(%val(ID), LENGTH, NAME_DSC,
+ IDENTIFIER, ATTRIBUTES, CONTEXT)

if (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID))) then

NAME(LENGTH+1:LENGTH+1) = ’,’

print 1, NAME, IDENTIFIER, ATTRIBUTES
1 format(1X,’Name: ’,A31,’ Id: ’,Z8,’, Attributes: ’,Z8)

end if

end do
*
* Do we need to finish the RDB ???
*

if (STATUS .ne. %loc(SS$_NOSUCHID)) then
call SYS$FINISH_RDB(CONTEXT)

end if

end

23.3.2.2 Adding Identifiers and Holders to the Rights Database
To add identifiers to the rights database, use the SYS$ADD_IDENT service in a
program. When you call SYS$ADD_IDENT, use the name argument to pass the
identifier name you want to add. You can specify an identifier value with the id
argument; however, if you do not specify a value, the system selects an identifier
value from the general identifier space.

In addition to defining the identifier value and identifier name, you use
SYS$ADD_IDENT to specify attributes in the identifier record. Attributes are
enabled for a holder of an identifier only when they are set in both the identifier
record and the holder record. The attrib argument is a longword containing a bit
mask specifying the attributes. The symbol KGB$V_RESOURCE, defined in the
system macro library $KGBDEF, sets the Resource bit in the attribute longword,
and the symbol KGB$V_DYNAMIC sets the Dynamic bit. (You can use the prefix
KGB$M rather than KGB$V.) See the description of SYS$ADD_IDENT in the
OpenVMS System Services Reference Manual for a complete list of symbols.

When SYS$ADD_IDENT successfully completes execution, a new identifier record
containing the identifier value, the identifier name, and the attributes of the
identifier exists in the rights database.

When the identifier record exists in the rights database, you define the holders of
that identifier with the SYS$ADD_HOLDER system service. You pass the binary
identifier value with the id argument and you specify the holder with the holder
argument, which is the address of a quadword data structure in the following
format. Figure 23–6 shows the format of the holder argument.

23–12

System Security Services
23.3 Rights Database

Figure 23–6 Format of the holder Argument

ZK−1903−GE

31 0

0

UIC identifier of holder

In the rights database, the holder identifier is in UIC format. You specify the
attributes of the holder with the attrib argument in the same manner as with
SYS$ADD_IDENT.

After SYS$ADD_HOLDER completes execution, a new holder record containing
the binary value of the identifier that the holder holds, the attributes of the
holder, and the UIC of the holder exists in the rights database.

23.3.2.3 Determining Holders of Identifiers
To determine the holders of a particular identifier, use the SYS$FIND_HOLDER
service in a program. When you call SYS$FIND_HOLDER, use the id argument
to pass the binary value of the identifier whose holder you want to determine. On
successful execution, SYS$FIND_HOLDER returns the holder identifier with the
holder argument and the attributes of the holder with the attrib argument.

You can identify all of the identifier’s holders by initializing the context
argument to 0 and repeatedly calling SYS$FIND_HOLDER, as detailed in
Section 23.3.3. Because SYS$FIND_HOLDER identifies the records by the same
key (holder ID), it returns the records in the order in which they were written.

23.3.2.4 Determining Identifiers Held by a Holder
To determine the identifiers held by a holder, use the SYS$FIND_HELD service
in a program. When you call SYS$FIND_HELD, use the holder argument to
specify the holder whose identifier is to be found.

On successful execution, SYS$FIND_HELD returns the identifier’s binary
identifier value and attributes.

You can identify all the identifiers held by the specified holder by initializing the
context argument to 0 and repeatedly calling SYS$FIND_HELD, as detailed in
Section 23.3.3. Because SYS$FIND_HELD identifies the records by the same key
(identifier), it returns the records in the order in which they were written.

23.3.2.5 Modifying the Identifier Record
To modify an identifier record by changing the identifier’s name, value, or
attributes, or all three in the rights database, use the SYS$MOD_IDENT service
in a program. Use the id argument to pass the binary value of the identifier
whose record you want to modify. To enable attributes, use the set_attrib
argument, which is a longword containing a bit mask specifying the attributes.
The symbol KGB$V_RESOURCE, defined in the system macro library $KGBDEF,
sets the Resource bit in the attribute longword. The symbol KGB$V_DYNAMIC
sets the Dynamic bit. (You can use the prefix KGB$M rather than KGB$V.) See
the description of SYS$MOD_IDENT in the OpenVMS System Services Reference
Manual for a complete list of symbols.

23–13

System Security Services
23.3 Rights Database

If you want to disable the attributes for the identifier, use the clr_attrib
argument, which is a longword containing a bit mask specifying the attributes.
If the same attribute is specified in set_attrib and clr_attrib, the attribute is
enabled.

You can also change the identifier name, value, or both with the new_name and
new_value arguments. The new_name argument is the address of a descriptor
pointing to the identifier name string; new_value is a longword containing the
binary identifier value. If you change the value of an identifier that is the holder
of other identifiers (a UIC, for example), SYS$MOD_IDENT updates all the
corresponding holder records with the new holder identifier value.

When SYS$MOD_IDENT successfully completes execution, a new identifier
record containing the identifier value, the identifier name, and the attributes of
the identifier exists in the rights database.

23.3.2.6 Modifying a Holder Record
To modify a holder record, use the SYS$MOD_HOLDER service in a program.
When you call SYS$MOD_HOLDER, use the id argument and the holder
argument to pass the binary identifier value and the UIC holder identifier whose
holder record you want to modify.

Use the SYS$MOD_HOLDER service to enable or disable the attributes of an
identifier in the same way as with SYS$MOD_HOLDER.

When SYS$MOD_HOLDER completes execution, a new holder record containing
the identifier value, the identifier name, and the attributes of the identifier exists
in the rights database.

The following programming example uses SYS$MOD_HOLDER to modify holder
records in the rights database:

Program MOD_HOLDER

*
* Modify the attributes of all the holders of identifiers to reflect
* the current attribute setting of the identifiers themselves.
*

external SS$_NOSUCHID
parameter KGB$M_RESOURCE = 1, KGB$M_DYNAMIC = 2
integer SYS$IDTOASC, SYS$FIND_HELD, SYS$MOD_HOLDER

*
* Store information about the holder here.
*

integer HOLDER(2)/2*0/
equivalence (HOLDER(1), HOLDER_ID)
integer HOLDER_NAME(2)/31, 0/
integer HOLDER_ID, HOLDER_CTX/0/
character*31 HOLDER_STRING

*
* Store attributes here.
*

integer OLD_ATTR, NEW_ATTR, ID_ATTR, CONTEXT

*
* Store information about the identifier here.
*

integer IDENTIFIER, ID_NAME(2)/31, 0/
character*31 ID_STRING

23–14

System Security Services
23.3 Rights Database

integer STATUS
*
* Initialize the descriptors.
*

HOLDER_NAME(2) = %loc(HOLDER_STRING)
ID_NAME(2) = %loc(ID_STRING)

*
* Scan through all the identifiers.
*

do while
+ (SYS$IDTOASC(%val(-1),, HOLDER_NAME, HOLDER_ID,, HOLDER_CTX)
+ .ne. %loc(SS$_NOSUCHID))

*
* Test all the identifiers held by this identifier (our HOLDER).
*

if (HOLDER_ID .le. 0) go to 2

CONTEXT = 0

do while
+ (SYS$FIND_HELD(HOLDER, IDENTIFIER, OLD_ATTR, CONTEXT)
+ .ne. %loc(SS$_NOSUCHID))

*
* Get name and attributes of held identifier.
*

STATUS = SYS$IDTOASC(%val(IDENTIFIER),, ID_NAME,, ID_ATTR,)

*
* Modify the holder record to reflect the state of the identifier itself.
*

if ((ID_ATTR .and. KGB$M_RESOURCE) .ne. 0) then
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M_RESOURCE),)
NEW_ATTR = OLD_ATTR .or. KGB$M_RESOURCE

else
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M_RESOURCE))
NEW_ATTR = OLD_ATTR .and. (.not. KGB$M_RESOURCE)

end if

if ((ID_ATTR .and. KGB$M_DYNAMIC) .ne. 0) then
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M_DYNAMIC),)
NEW_ATTR = OLD_ATTR .or. KGB$M_DYNAMIC

else
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M_DYNAMIC))
NEW_ATTR = OLD_ATTR .and. (.not. KGB$M_DYNAMIC)

end if

*
* Was it successful?
*

if (.not. STATUS) then
NEW_ATTR = OLD_ATTR
call LIB$SIGNAL(%val(STATUS))

end if
*
* Report it all.
*

23–15

System Security Services
23.3 Rights Database

print 1, HOLDER_STRING, ID_STRING,
+ OLD_ATTR, ID_ATTR, NEW_ATTR
1 format(1X, ’Holder: ’, A31, ’ Id: ’, A31,
+ ’ Old: ’, Z8, ’ Id: ’, Z8, ’ New: ’, Z8)

end do

2 continue

end do

end

23.3.2.7 Removing Identifiers and Holders from the Rights Database
To remove an identifier and all of its holders, use the SYS$REM_IDENT service
in a program. When you call SYS$REM_IDENT, use the id argument to pass
the binary value of the identifier you want to remove. When SYS$REM_IDENT
completes execution, the identifier and all of its associated holder records are
removed from the rights database.

To remove a holder from the list of an identifier’s holders, use the SYS$REM_
HOLDER service in a program. When you call SYS$REM_HOLDER, use the id
argument and the holder argument to pass the binary ID value and the UIC
identifier of the holder whose holder record you want to delete.

On successful execution, SYS$REM_HOLDER removes the holder from the list of
the identifier’s holders.

23.3.3 Search Operations
You can search the entire rights database when you use the SYS$IDTOASC,
SYS$FIND_HELD, and SYS$FIND_HOLDER services. You initialize the context
longword to 0 and repeatedly call one of the three services until the status code
SS$_NOSUCHID is returned. When SS$_NOSUCHID is returned, the service
clears the context longword and deallocates the record stream. If you complete
your calls to one of these services before SS$_NOSUCHID is returned, you must
use SYS$FINISH_RDB to clear the context longword and to deallocate the record
stream.

The structure of the rights database affects the order in which each of these
services returns the records when you search the rights database. The rights
database is an indexed file with three keys. The primary key is the identifier
binary value, the secondary key is the holder UIC identifier, and the tertiary key
is the identifier name.

During a searching operation, the service obtains the first record with an indexed
OpenVMS RMS GET operation. The key used for the GET operation depends on
the service. The SYS$FIND_HOLDER service uses the identifier binary value;
SYS$FIND_HELD uses the holder UIC identifier. After the indexed GET, the
service returns the records with sequential RMS GET operations. Consequently,
the file organization, the key used for the first GET operation, and the order in
which the records were originally written in the database determine the order of
records returned.

Table 23–2 summarizes how records are returned by the SYS$IDTOASC,
SYS$FIND_HELD, and SYS$FIND_HOLDER services when used in a searching
operation.

23–16

System Security Services
23.3 Rights Database

Table 23–2 Returned Records of SYS$IDTOASC, SYS$FIND_HELD, and
SYS$FIND_HOLDER

Service Record Order

SYS$IDTOASC Identifier name order.

SYS$FIND_HELD First GET operation—holder key. Subsequent records are
returned in the order in which they were written.

SYS$FIND_HOLDER First GET operation—identifier key. Subsequent records are
returned in the order in which they were written.

The following programming example uses SYS$IDTOASC, SYS$FINISH_RDB,
and SYS$FIND_HOLDER to search the entire rights database for identifiers with
holders and produces a list of those identifiers and their holders:

Module ID_HOLDER
(main = MAIN,

addressing_mode(external=GENERAL)) =
begin

!
! Produce a list of all the identifiers, that have holders,
! with their respective holders.
!

!
! Declarations:
!

library

’SYS$LIBRARY:LIB’;

forward routine

MAIN;

external routine

LIB$PUT_OUTPUT,

SYS$FAO,
SYS$IDTOASC,
SYS$FINISH_RDB,
SYS$FIND_HOLDER;

!
! To create static descriptors
!

macro S_DESCRIPTOR[NAME, SIZE] =
own

%name(NAME, ’_BUFFER’): block[%number(SIZE), byte],
%name(NAME): block[DSC$K_S_BLN, byte]

preset([DSC$B_CLASS] = DSC$K_CLASS_S,
[DSC$W_LENGTH] = %number(SIZE),
[DSC$A_POINTER] = %name(NAME, ’_BUFFER’)); %;

!
! Descriptors for ID, holder NAME, and output LINE
!

S_DESCRIPTOR(’ID_NAME’, 31);
S_DESCRIPTOR(’NAME’, 31);
S_DESCRIPTOR(’LINE’, 76);

own

STATUS,

23–17

System Security Services
23.3 Rights Database

ID,
ID_LENGTH,
ID_CONTEXT: initial(0),

HOLDER,
LENGTH,
CONTEXT: initial(0),

ATTRIBS,
VALUE,
LINE_: block[DSC$K_S_BLN, byte]

preset([DSC$B_CLASS] = DSC$K_CLASS_S,
[DSC$A_POINTER] = LINE_BUFFER);

!
! To check for existence of an ID or HOLDER
!

macro CHECK(EXPRESSION) =
(STATUS = %remove(EXPRESSION)) and (.STATUS neq SS$_NOSUCHID) %;

!
! List all the identifiers, which have holders, with their holders.
!

routine MAIN =
begin

!
! Examine all IDs (-1).
!

while
CHECK(<SYS$IDTOASC(-1, ID_LENGTH, ID_NAME, ID, ATTRIBS, ID_CONTEXT)>)

do
begin

CONTEXT = 0;

!
! Find all holders of ID.
!

while CHECK(<SYS$FIND_HOLDER(.ID, HOLDER, ATTRIBS, CONTEXT)>) do
begin

!
! Translate the HOLDER to find its NAME.
!

SYS$IDTOASC(.HOLDER, LENGTH, NAME, VALUE, ATTRIBS, 0);

!
! Print a message reporting ID and HOLDER.
!

SYS$FAO(%ascid’Id: !AD, Holder: !AD’,
LINE_[DSC$W_LENGTH], LINE,
.ID_LENGTH, .ID_NAME[DSC$A_POINTER],
.LENGTH, .NAME[DSC$A_POINTER]);

LIB$PUT_OUTPUT(LINE_);

end;

end;

return SS$_NORMAL;

end;

end

eludom

23–18

System Security Services
23.3 Rights Database

23.3.4 Modifying a Rights List
When a process is created, LOGINOUT builds a rights list for the process
consisting of the identifiers the user holds and any appropriate environmental
identifiers. A system rights list is the default rights list used in addition to
any process rights list. Modifications to the system rights list effectively become
modifications to the rights of each process.

A privileged user can alter the process or system rights list with the
SYS$GRANTID or SYS$REVOKID services. These services are not intended
for the general system user. Use of these services requires CMKRNL privilege.
The SYS$GRANTID service adds an identifier to a rights list or, if the identifier is
already part of the rights list, the SYS$GRANTID service modifies the attributes
of the identifier. The SYS$REVOKID service removes an identifier from a rights
list.

The SYS$GRANTID and SYS$REVOKID services treat the pidadr and prcnam
arguments the same way all other process control services treat these arguments.
For more details, see the OpenVMS Guide to System Security.

You can also modify the process or system rights list with the DCL command
SET RIGHTS_LIST. Additionally, you can use SET RIGHTS_LIST to modify
the attributes of the identifier if the identifier is already part of the rights list.
Note that you cannot use the SET RIGHTS_LIST command to modify the rights
database from which the rights list was created. For more information about
using the SET RIGHTS_LIST command, see the OpenVMS DCL Dictionary.

23.4 Managing Object Protection
An ACL is a list of entries defining the type of access allowed to an object in the
system such as a file, device, or mailbox. An access control entry (ACE) consists
of an identifier and one or more access types.

(IDENTIFIER=GREEN,ACCESS=WRITE+READ+CONTROL)
(IDENTIFIER=YELLOW,ACCESS=READ)
(IDENTIFIER=RED,ACCESS=NOACCESS)

Managing object protection involves using system services to manipulate
protection codes, UICs, and ACEs; that is, creating, translating, and maintaining
ACEs, establishing object ownership, and manipulating the protection codes of
protected objects.

23.4.1 Protected Objects
A protected object is an entity that can contain or receive information. When
such information is not considered shareable, access to those objects can be
restricted. The system recognizes eleven classes of protected objects as shown in
the following table:

Class Name Description

Capability1 A resource to which the system controls access;
currently, the only defined capability is the vector
processor.

Common event flag cluster A set of 32 event flags that enable cooperating
processes to post event notifications to each other.

1Exists only on systems with vector processors

23–19

System Security Services
23.4 Managing Object Protection

Class Name Description

Device A class of peripherals connected to a processor that are
capable of receiving, storing, or transmitting data.

File Files–11 On-Disk Structure Level 2 (ODS-2) files and
directories.

Group global section A shareable memory section potentially available to all
processes in the same group.

Logical name table A shareable table of logical names and their
equivalence names for the system or a particular
group.

Queue A set of jobs to be processed in a batch, terminal,
server, or print job queue.

Resource domain A namespace controlling access to the lock manager’s
resources.

Security class A data structure containing the elements and
management routines for all members of the security
class.

System global section A shareable memory section potentially available to all
processes in the system.

Volume A mass storage medium, such as a disk or tape, that
is in ODS-2 format. Volumes contain files and may be
mounted on devices.

23.4.2 Object Security Profile
The security profile summarizes the various types of protection mechanisms
applied to a protected object. The security profile associates a protected object
with an owner, a protection code, and optionally an ACL. When a user or process
requests access to a protected object, the system compares the user’s privileges
and identifiers in the system authorization database with appropriate elements
in the object’s security profile.

23.4.2.1 Displaying the Security Profile
You can display an object’s security profile by using the SYS$GET_SECURITY
system service. On your first call to SYS$GET_SECURITY, be sure to initialize
the context variable to 0. Use the OSS$M_RELCTX flag to release any locks
on the context structure when the routine completes execution. The following
example illustrates the type of information contained in the security profile of a
logical name table:

LNM$GROUP object of class LOGICAL_NAME_TABLE

Owner: [ACCOUNTING]
Protection: (System: RWCD, Owner: RWCD, Group: R, World: R)
Access Control List:

(IDENTIFIER=[USER,CHEHKOV],ACCESS=CONTROL)
(IDENTIFIER=[USER,VANNEST],ACCESS=READ+WRITE)

After you have returned owner and protection code information, you can call
SYS$GET_SECURITY iteratively to return each ACE in the ACL (if it exists) or
you can read the entire ACL. In addition, you can perform iterative searches to
retrieve objects and their templates.

23–20

System Security Services
23.4 Managing Object Protection

23.4.2.2 Modifying the Security Profile
You can modify all the security characteristics listed in a protected object’s profile
by using the SYS$SET_SECURITY system service. You can add or delete ACEs
in the ACL selectively or you can delete the entire ACL. You have the option of
modifying a local copy of the profile without altering the master copy using the
OSS$M_LOCAL flags or you can modify the master copy directly. Also, use the
context to release the context structure after the service completes execution.

23.4.3 Types of Access Control Entries
There are seven types of security-related ACEs as described in the following
table:

ACE Description

Alarm Sets an alarm

Application Contains application-dependent information

Audit Sets a security audit

Creator Controls access to an object based on creators

Default Protection Specifies the default protection for all files and subdirectories
created in the directory

Identifier Controls the type of access allowed based on identifiers

Subsystem Maintains protected subsystems

For information about the structure of specific types of ACEs, see the
SYS$FORMAT_ACL system service in OpenVMS System Services Reference
Manual.

You use SYS$FORMAT_ACL and SYS$PARSE_ACL to translate ACEs from one
format to another in the same way that SYS$IDTOASC and SYS$ASCTOID
translate identifiers from binary to text format and text to binary format.

To create and manipulate ACLs, use the ACL editor, the DCL command SET
ACL, or the SYS$GET_SECURITY and SYS$SET_SECURITY system services in
a program. The following table lists services that manipulate ACEs:

Service Description

SYS$FORMAT_ACL Converts an ACE from binary format to ASCII text

SYS$GET_SECURITY Retrieves the security characteristics of an object

SYS$PARSE_ACL Converts an ACE from ASCII text to binary format

SYS$SET_SECURITY Modifies the security characteristics of a protected
object

23.4.3.1 Design Considerations
Before you attempt to manipulate ACLs, you should understand the meaning and
relationship among existing identifiers. If you are populating a previously empty
ACL, you need to plan the access types and position of each ACE within the ACL.

The position of the ACE within the ACL is an important consideration when
creating an ACE. By default, ACEs are added to the top of an ACL. The ACL
management services accept options allowing you to control the placement of
ACEs. The system compares the identifiers granted to the process requesting
access with those associated with the object starting with the top ACE in the

23–21

System Security Services
23.4 Managing Object Protection

object’s ACL. Once a matching identifier name is found in the object’s ACL, the
search stops.

23.4.3.2 Translating ACEs
To translate ACEs from binary format to a text string, use the SYS$FORMAT_
ACL service. The aclent argument is the address of a descriptor pointing to a
buffer containing the description of the ACE. The first byte of the buffer contains
the length of the ACE and the second byte contains the type, which in turn
defines the format of the ACE.

The acllen argument specifies the length of the text string written to the buffer
pointed to by aclstr. You use the width, trmdsc, and indent arguments to
specify a particular width, termination character, and number of blank characters
for an ACE. The accnam argument contains the address of an array of 32
quadword descriptors called an access name table. The access name table
defines the names of the bits in the access mask of the ACE. The access mask
defines the access types associated with a protected object. Use run-time library
(RTL) routine LIB$GET_ACCNAM described in the OpenVMS RTL Library
(LIB$) Manual to obtain the address of the access name table. If accnam is
omitted, the following names are used:

Bit <0> READ
Bit <1> WRITE
Bit <2> EXECUTE
Bit <3> DELETE
Bit <4> CONTROL
Bit <5> BIT_5
Bit <6> BIT_6

.

.

.
Bit <31> BIT_31

The SYS$PARSE_ACL service translates an ACE from text string format to
binary format. The aclstr argument is the address of a string descriptor pointing
to the ACE text string. As with SYS$FORMAT_ACL, the aclent argument is the
address of a descriptor pointing to a buffer containing the description of the ACE.
The first byte of the buffer contains the length of the ACE and the second byte
contains the type, which in turn defines the format of the ACE. If SYS$PARSE_
ACL fails, the errpos argument points to the failing point in the string. The
accnam argument contains the address of an array of 32 quadword descriptors
that define the names of the bits in the access mask of the ACE. If accnam is
omitted, the names specified in the description of SYS$FORMAT_ACL are used.

23.4.3.3 Creating and Maintaining ACEs
The SYS$GET_SECURITY and SYS$SET_SECURITY system services replace the
SYS$CHANGE_ACL system service. The OpenVMS System Services Reference
Manual: A–GETMSG and the OpenVMS System Services Reference Manual:
GETQUI–Z describe these system services.

To create or modify an ACL associated with a protected object, you use the
SYS$SET_SECURITY service. You specify the object whose ACL is to be modified
with either the objhan argument, which specifies the I/O channel associated
with the object, or the objnam argument, which specifies the object name. If
you specify objnam, objhan must be omitted or specified as 0. The clsnam
argument specifies the type of object.

23–22

System Security Services
23.4 Managing Object Protection

Use the acmode argument to specify the access mode used when checking file
access protection. By default, kernel mode is used, but the system compares
acmode against the caller’s access mode and uses the least privileged mode.
Digital recommends that this argument be omitted (passed as zero).

The item code specifies the change to be made to the ACL. Table 23–3 describes
the symbols for the item codes that are defined in the system macro library
($ACLDEF). Note that without the itmlst argument, you can manipulate only
the security profile locks or release contxt resources.

Table 23–3 Item Code Symbols and Meanings

Item Code Description

OSS$_ACL_ADD_ENTRY Adds an access control entry (ACE)

OSS$_ACL_DELETE Deletes all unprotected ACEs from an ACL

OSS$_ACL_DELETE_ALL Deletes the ACL, including protected ACEs

OSS$_ACL_DELETE_ENTRY Deletes an ACE

OSS$_ACL_FIND_ENTRY Locates an ACE

OSS$_ACL_FIND_NEXT Moves the current position to the next ACE in
the ACL

OSS$_ACL_FIND_TYPE Locates an ACE of the specified type

OSS$_ACL_MODIFY_ENTRY Replaces an ACE at the current position

OSS$_ACL_POSITION_BOTTOM Sets a marker that points to the end of the
ACL

OSS$_ACL_POSITION_TOP Sets a marker that points to the beginning of
the ACL

OSS$_OWNER Sets the UIC or general identifier of the
object’s owner

OSS$_PROTECTION Sets the protection code of the object

23.5 Protected Subsystems
A protected subsystem is a set of application programs that allow controlled
access to objects. It has under its control one or more protected objects and a
gatekeeper application. Users cannot access the objects within the subsystem
unless they execute the gatekeeper application. Once users have successfully
executed the application, their process rights list acquires the identifiers
necessary to access objects owned by the subsystem. The identifiers allow
processes to use the resources of the subsystem. When the application completes
execution or the user exits, the identifiers are removed from the user’s process
rights list. Protected subsystems are an alternative to creating privileged images
and protected shareable images (user-written system services), and help prevent
the overuse of privileges.

Roles and Responsibilities
You should think of a protected subsystem as an isolated security domain where
the system manager creates and grants SUBSYSTEM identifiers using the
Authorize utility as shown in the following example:

UAF> ADD/IDENTIFIER FOO/ATTRIBUTES=SUBSYSTEM
UAF> GRANT/IDENTIFIER FOO FRANK /ATTRIBUTES=SUBSYSTEM

23–23

System Security Services
23.5 Protected Subsystems

The system manager can delegate responsibility for the maintenance of the
subsystem to subsystem managers who can associate existing identifiers with the
subsystem executable and its data. In the following example, the manager of a
protected subsystem creates an ACE in a subsystem’s image and data files:

$ SET SECURITY BLOP.EXE -
_$ /ACL=(SUBSYSTEM, IDENTIFIER=FOO) -
$ SET SECURITY BLOP.DAT -
_$ /ACL=(IDENTIFIER=FOO, ACCESS=READ+WRITE) -
$ SET SECURITY BLOP.EXE -
_$ /ACL=(IDENTIFIER=HARRY, ACCESS=EXECUTE) -

Finally, a user uses the protected subsystem to access data available only through
the subsystem.

Subsystem Security
During the execution of a protected subsystem, $IMGACT adds subsystem
identifiers to the image rights list. What happens if the user presses the
Ctrl/Y key sequence during execution? Will the user retain whatever privileges
were granted by the subsystem? If Ctrl/Y is pressed, image identifiers are
removed from the process. Also, subprocesses do not inherit image identifiers
by default. However, SYS$CREPRC and LIB$SPAWN do contain flags PRC$M_
SUBSYSTEM and SUBSYSTEM, respectively, that allow subprocesses to inherit
image identifiers.

23.6 Security Auditing
Auditing is the recording of security-relevant activity as it occurs on a system.
See the OpenVMS Guide to System Security for a list of all types of security-
relevant activity or classes of events that are audited. The following table
describes the security services that provide security auditing:

Service Description

SYS$AUDIT_EVENT Appends an event message to the system audit log file
or sends an alarm to a security operator terminal

SYS$CHECK_PRIVILEGE Determines whether the caller has the specified
privileges or identifiers

The system service SYS$AUDIT_EVENT is used to report security events to the
auditing system. It examines the settings of the DCL command SET AUDIT to
determine if an event is enabled for auditing. If the event is enabled for alarms
or audits, SYS$AUDIT_EVENT generates an audit record and appends it to the
system audit log file (or sends an alarm to a security operator terminal) that
identifies the process involved and lists information supplied by its caller.

23.7 Checking Access Protection
The operating system provides two system services that allow a process to check
access to objects on the system: SYS$CHKPRO and SYS$CHECK_ACCESS.
The SYS$CHKPRO service performs the system access protection check on a
user attempting direct access to an object on the system; SYS$CHECK_ACCESS
performs a similar check on a third party attempting access to an object. The
following table describes the security services that provide access checking:

23–24

System Security Services
23.7 Checking Access Protection

Service Description

SYS$CHECK_ACCESS Invokes a system access protection check on behalf of
another user

SYS$CHKPRO Invokes a system access protection check

The SYS$CHKPRO and SYS$CHECK_ACCESS system services have been
extended to support auditing. The OpenVMS Guide to System Security describes
how to use the auditing function. The OpenVMS System Services Reference
Manual: A–GETMSG describes how to use the two system services. These
services are described in the following sections.

23.7.1 Creating a Security Profile
The SYS$CREATE_USER_PROFILE system service returns a user profile,
using information in the rights database and the system authorization
database to generate the profile. The system services SYS$CHECK_ACCESS or
SYS$CHKPRO accept as input the profile from SYS$CREATE_USER_PROFILE.

23.7.2 SYS$CHKPRO System Sevice
The SYS$CHKPRO service invokes the access protection check used by the
system. The service does not grant or deny access; rather, it performs the
protection check. Subsequently, an application might grant or deny access to the
specified object.

To pass the input and output information to SYS$CHKPRO, use the itmlst
argument, which is the address of an item list of descriptors. The SYS$CHKPRO
service compares the item list of the rights and privileges of the accessor to a list
of the protection attributes of the object to be accessed. If the accessor can access
the object, SYS$CHKPRO returns the status SS$_NORMAL; if the accessor
cannot access the object, SYS$CHKPRO returns the status SS$_NOPRIV. The
SYS$CHKPRO service does not grant or deny access. The subsystem itself must
grant or deny access based on the output (SS$_NORMAL or SS$_NOPRIV) from
SYS$CHKPRO.

The SYS$CHKPRO service also returns an item list of the rights or privileges
that allowed the accessor access to the object, as well as the names of security
alarms raised by the access attempt. For information about the item codes
defined for SYS$CHKPRO, see the description of SYS$CHKPRO in the OpenVMS
System Services Reference Manual.

See the OpenVMS Guide to System Security for a flowchart describing how
SYS$CHKPRO evaluates an access request attempt.

23.7.3 SYS$CHECK_ACCESS System Service
The SYS$CHECK_ACCESS service performs a protection check on a third-party
accessor. An example of this is a file server program that uses SYS$CHECK_
ACCESS to ensure that an accessor (the third party) requesting a file has the
required privileges to do so.

You pass the input and output information to SYS$CHECK_ACCESS by using
the itmlst argument, which is the address of an item list of descriptors. You
also pass the name of the accessor and the name and type of the object being
accessed by using the usrnam, objnam, and objtyp arguments, respectively.
The SYS$CHECK_ACCESS service compares the rights and privileges of the
accessor to a list of the protection attributes of the object to be accessed. If
the accessor can access the object, SYS$CHECK_ACCESS returns the status

23–25

System Security Services
23.7 Checking Access Protection

SS$_NORMAL; if the accessor cannot access the object, SYS$CHECK_ACCESS
returns the status SS$_NOPRIV.

The SYS$CHECK_ACCESS service does not grant or deny access. The subsystem
itself must explicitly grant or deny access based on the output (SS$_NORMAL or
SS$_NOPRIV) from SYS$CHECK_ACCESS.

The SYS$CHECK_ACCESS service also returns an item list of the rights or
privileges that allowed the accessor to access the object, as well as the names of
security alarms raised by the access attempt. For information about the item
codes defined for SYS$CHECK_ACCESS, see the description of SYS$CHECK_
ACCESS in the OpenVMS System Services Reference Manual.

23.8 SYS$CHECK_PRIVILEGE
The SYS$CHECK_PRIVILEGE system service determines whether the caller
has the specified privileges or identifiers. The service performs the privilege
check and looks at the SET AUDIT settings to determine whether the system
administrator enabled privilege auditing. When privilege auditing is enabled,
SYS$CHECK_PRIVILEGE generates an audit record. The audit record identifies
the process (subject) and privilege involved, provides the result of the privilege
check, and lists supplemental event information supplied by its caller. Privilege
audit records usually contain the DCL command line or the system service name
associated with the privilege check.

SYS$CHECK_PRIVILEGE completes asynchronously; that is, it does not wait for
final status. For synchronous completion, use the SYS$CHECK_PRIVILEGEW
service.

23.9 Implementing Site-Specific Security Policies (VAX Only)
Occasionally, you may need to write routines that implement site-specific policies
or special algorithms. The routines that you write can either replace or augment
built-in operating system policies. This section contains instructions for replacing
key operating system security routines with routines that are specific to your
site. Two types of routines are discussed: loadable system services and shareable
images.

23.9.1 Creating Loadable Security Services
This section describes how to create a system service image and how to update
the SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA file, which
controls site-specific loading of system images. These procedures update the
loading of system images for all nodes of a cluster.

Currently, you can replace the following three system services with services
specific to your site:

Service Description

SYS$ERAPAT Generates a security erasure pattern

SYS$MTACCESS Controls magnetic tape access

SYS$HASH_PASSWORD Applies a hash algorithm to an ASCII password

When you create the system service, you code the source module and define the
vector offsets, the entry point, and the program sections for the system service.
Then, you can assemble and link the module to create a loadable image.

23–26

System Security Services
23.9 Implementing Site-Specific Security Policies (VAX Only)

Once you have created the loadable image, you install it. First, you copy the
image into the SYS$LOADABLE_IMAGES directory and add an entry for it
in the operating system’s images file using the System Management utility
(SYSMAN). Next, you invoke the system images command procedure to generate
a new system image data file. Finally, you reboot the system to load your service.

The following sections describe how to create and load the the Get Security Erase
Pattern (SYS$ERAPAT) system service.

On VAX systems, you can find an example of the SYS$ERAPAT system service in
SYS$EXAMPLES:DOD_ERAPAT.MAR on the operating system. The description
here also applies to the Hash Password (SYS$HASH_PASSWORD) and
Magnetic Tape Accessibility (SYS$MTACCESS) system services. You can find
an example of how to prepare and load the SYS$HASH_PASSWORD service in
SYS$EXAMPLES:HASH_PASSWORD.MAR.

23.9.1.1 Preparing and Loading a System Service
On VAX systems, use the following procedure to prepare and load a system
service, in this case SYS$ERAPAT:

1. Create the source module.

a. Include the following macro to define system service vector offsets:

$SYSVECTORDEF ; Define system service vector offsets

b. Use the following macro to define the system service entry point:

SYSTEM_SERVICE ERAPAT, - ; Entry point name
<R4>, - ; Register to save
MODE=KERNEL,- ; Mode of system service
NARG=3 ; Number of arguments

(The code immediately following this macro is the first instruction of the
SYS$ERAPAT system service.)

c. Use the following macros to declare the desired program sections:

DECLARE_PSECT EXEC$PAGED_CODE ; Pageable code PSCET

DECLARE_PSECT EXEC$PAGED_DATA ; Pageable data PSECT

DECLARE_PSECT EXEC$NONPAGED_DATA ; Nonpageable data PSECT

DECLARE_PSECT EXEC$NONPAGED_CODE ; Nonpageable code PSCET

2. Assemble the source module by using the following command:

$ MACRO DOD_ERAPAT+SYS$LIBRARY:LIB.MLB/LIB

3. Link the module to create a SYS$ERAPAT.EXE executive loaded image. You
can link the module using the command procedure DOD_ERAPAT_LNK.COM
in SYS$EXAMPLES. (A command procedure is also available to link the
SYS$HASH_PASSWORD example.) To link the SYS$ERAPAT module, enter
the following command:

$ @SYS$EXAMPLES:DOD_ERAPAT_LNK.COM

4. Prepare the operating system image to be loaded.

a. Copy the SYS$ERAPAT.EXE image produced by the link command into
the SYS$COMMON:[SYS$LDR] directory. Note that privilege is required
to put files into this directory.

b. Add an entry for the SYS$ERAPAT.EXE image in the
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX data file.

23–27

System Security Services
23.9 Implementing Site-Specific Security Policies (VAX Only)

You add an entry by using the SYSMAN command SYS_LOADABLE
ADD. (See the OpenVMS System Management Utilities Reference Manual
for a description of this command.) For example, the following commands
add an entry in VMS$SYSTEM_IMAGES.IDX for SYS$ERAPAT.EXE:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> SYS_LOADABLE ADD _LOCAL_ SYS$ERAPAT -
_SYSMAN> /LOAD_STEP = SYSINIT -
_SYSMAN> /SEVERITY = WARNING -
_SYSMAN> /MESSAGE = "failure to load SYS$ERAPAT.EXE"

This entry specifies that the SYS$ERAPAT.EXE image is to be loaded by
the SYSINIT process during the bootstrap. If there is an error loading the
image, the following messages are printed on the console terminal:

%SYSINIT-E-failure to load SYS$ERAPAT.EXE
-SYSINIT-E-error loading <SYS$LDR>SYS$ERAPAT.EXE, status = "status"

The following table shows other error messages that may be returned:

Message Meaning User Action

NO_PHYSICAL_
MEMORY

Physical memory is not
available.

Check SYSGEN
parameters.

NO_POOL Amount of nonpaged
pool is insufficient.

Check SYSGEN
parameters.

MULTIPLE_ISDS Encountered more than
one image section of a
given type.

Check link options.

BAD_GSD An inconsistency was
detected.

Verify that the image was
linked properly.

NO_SUCH_IMAGE The requested image
cannot be located.

Check image name
against images in
SYS$LOADABLE_
IMAGES.

c. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file (VMS$SYSTEM_
IMAGES.DATA). The system bootstrap uses this image data file to load
the appropriate images into the system.

d. Reboot the system, which loads the original SYS$ERAPAT.EXE image
into the system. Subsequent calls to the SYS$ERAPAT system service use
the normal operating system routine.

As the default, the system bootstrap loads all images described in
VMS$SYSTEM_IMAGES.DATA. You can disable this feature by setting
the special system parameter LOAD_SYS_IMAGES to 0.

23.9.1.2 Removing an Executive Loaded Image
On VAX systems, use the following procedure to remove an executive loaded
image; in this case, SYS$ERAPAT.EXE:

1. Enter the following SYSMAN command:

SYSMAN> SYS_LOADABLE REMOVE _LOCAL_ SYS$ERAPAT

2. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file (VMS$SYSTEM_
IMAGES.DATA). The system bootstrap uses this image data file to load
the appropriate images into the system.

23–28

System Security Services
23.9 Implementing Site-Specific Security Policies (VAX Only)

3. Reboot the system, which loads the installation-specific SYS$ERAPAT.EXE
image into the system. Subsequent calls to the SYS$ERAPAT system service
use the installation-specific routine.

As the default, the system bootstrap loads all images described in the
system image data file (VMS$SYSTEM_IMAGES.DATA). You can disable this
functionality by setting the special system parameter LOAD_SYS_IMAGES
to 0.

23.9.2 Installing Filters for Site-Specific Password Policies
A site security administrator can screen new passwords to make sure they comply
with a site-specific password policy. (See the OpenVMS Guide to System Security
for more information.) This section describes how a security administrator can
encode the policy, create a shareable image and install it in SYS$LIBRARY, and
enable the policy by setting a SYSGEN parameter.

Installing and enabling a site-specific password policy image requires both
SYSPRV and CMKRNL privileges.

23.9.2.1 Creating a Shareable Image
To compile and link a shareable image that filters passwords for words that are
sensitive to your site, perform the following steps:

1. Create the source module VMS$PASSWORD_POLICY.*.

Bliss and Ada examples of the policy module’s interface, called
VMS$PASSWORD_POLICY.*, are located in SYS$EXAMPLES.

Define two routine names in the source module: POLICY_PLAINTEXT and
POLICY_HASH. These routines must be global (see your language reference
for instructions on defining a global routine). The Set Password utility looks
for these routine names and displays the message SYMNOTFOU if the names
are missing or if the routines are not defined as global.

2. Link the source file.

On VAX systems, use the VMS$PASSWORD_POLICY_LNK.COM command
procedure, located in SYS$EXAMPLES.

23.9.2.2 Installing a Shareable Image
To install a shareable image, perform the following steps:

1. Copy the file to SYS$LIBRARY and install it using the following commands:

$ COPY VMS$PASSWORD_POLICY.EXE SYS$COMMON:[SYSLIB]/PROTECTION=(W:RE)
$ INSTALL ADD SYS$LIBRARY:VMS$PASSWORD_POLICY/OPEN/HEAD/SHARE

2. Set the system parameter LOAD_PWD_POLICY to 1 as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> USE ACTIVE
SYSGEN> SET LOAD_PWD_POLICY 1
SYSGEN> WRITE ACTIVE
SYSGEN> WRITE CURRENT

23–29

System Security Services
23.9 Implementing Site-Specific Security Policies (VAX Only)

3. To make the changes permanent, add the INSTALL command from step 1
to the SYS$SYSTEM:SYSTARTUP_VMS.COM file and modify the system
parameter file, MODPARAMS.DAT, so that the LOAD_PWD_POLICY
parameter is set to 1.

4. Run AUTOGEN as follows to ensure that the system parameters are set
correctly on subsequent system startups:

$ @SYS$UPDATE:AUTOGEN SAVPARAMS SETPARAMS

23–30

Index

A
Absolute time, 5–1

in system format, 5–6
Access

physical I/O, 9–6
Access control entries

See ACEs
Access control lists

See ACLs
Access mask, 23–22
Access modes

effect on AST delivery, 4–9
with AST, 4–5
with logical names, 10–10

Access name table, 23–22
ACEs (access control entries)

creating, 23–21, 23–22
maintaining, 23–21, 23–22
translating, 23–21, 23–22

ACLs (access control lists), 23–2
Addresses

virtual memory, 17–3
Address space

allocating by page, 19–8, 20–6
allocating in zones, 21–6
deallocating by page, 19–8, 20–6, 21–2
zones, 21–6

Affinity
types of, 3–35

Affinity mechanism, 3–32
Algorithms

for memory allocation, 21–7
Aligning data, 8–4
Alignment, 22–1

natural, 22–2
on Alpha systems, 14–3
on VAX systems, 14–3
OpenVMS Alpha systems, 22–3
OpenVMS VAX, 22–3
system services, 22–10
with BLISS compiler, 22–5
with compilers, 22–4
with DEC C compiler, 22–4
with DEC Fortran compiler, 22–6
with MACRO-32 compiler, 22–7
with OpenVMS Debugger, 22–9

Alignment (cont’d)
with PCA, 22–10
with tools, 22–9
with VEST translator, 22–8

Alignment attribute, 21–11
Area extension size, 21–9
Argument lists

for AST service routine, 4–7
for condition handler, 13–27

Arguments
mechanism vector, 13–35

Arithmetic exceptions
on Alpha systems, 13–13

Arrays
mechanism, 13–35
virtual address, 19–10, 20–8

ASCII time, 5–7
ASSIGN command, 10–2
AST delivery

Kernel threads, 4–9
AST routines

overview, 4–3
ASTs, 1–14
ASTs (asynchronous system traps), 4–1, 6–22

See also Synchronization
access mode, 4–5
blocking, 15–12, 15–18
declaring, 4–6
delivery, 4–5, 4–8
example, 4–8
execution, 4–1
in target process, 3–26
parameter, 4–7
process wait state, 4–6
quota, 9–3
service routine, 4–7
system service, 4–1
writing, 4–4

Asynchronous input/output, 9–20
Asynchronous system traps

See ASTs
Atomic instructions

effect on synchronization, 14–5
Atomicity

definition, 14–3

Index–1

Atomic memory reference, 14–3
Attributes

Dynamic, 23–5
Holder Hidden, 23–5
Name Hidden, 23–5
No access, 23–5
Resource, 23–5
Subsystem, 23–5

B
Balance sets

swapping, 19–12, 20–12
Barrier synchronization

See also Parallel processing
See Parallel processing

Binary semaphores, 14–29
BIOLM (buffered I/O limit) quota, 9–3
BLISS compiler

alignment, 22–5
Blocking ASTs

description, 15–12
using, 15–18

Block sizes, 21–10
Borders

virtual display, 7–11
Boundary tags, 21–8
Broadcast messages, 7–42

alternate handler, 7–42
default handler, 7–42

Buffered I/O operations, 5–18
BYPASS privilege, 9–5
BYTELM (buffered I/O byte count) quota, 9–3

C
Caching, 15–18
Call-frame condition handlers, 13–24
Call stacks

unwinding, 13–46
Capabilities mechanism, 3–32
Capability masks

CPU, 3–34
process, 3–34

Capability types, 3–33
Catchall handlers, 13–25, 13–43
Chaining, 6–5
Change-mode handlers, 13–12
Channels, 2–10

assigning I/O, 9–11
deassigning, 9–23

Character string routines, 6–14
Character string translation routines, 6–14
$CHFDEF2 macro, 13–27
$CHFDEF macro, 13–27

CLI (command language interpreter), 6–2
CLI access routine, 6–2
Clocks

setting system, 5–11
Command language interpreter

See CLI
Common areas, 2–6

per-process, 2–6
Common blocks

aligning, 8–4
installing as a shared image, 17–6
interprocess, 17–6
modifying, 2–6

Common event flag clusters, 14–19
permanent, 14–21
temporary, 14–21

Compatibility mode handlers, 13–12
Compilers

alignment, 22–4
Composed input

See also Key tables
terminating, 7–28

Condition codes
chaining, 13–53
signaling, 13–32
SS$_EXQUOTA, 13–21
SS$_NOPRIV, 13–21

Condition handlers
See also Signal argument vectors
argument list, 13–27
arithmetic, 13–17
call frame, 13–24
catchall, 13–25, 13–43
condition code, 13–65
continuing execution of, 13–64
debugging, 13–70
default, 13–42
establishing, 13–5
example, 13–69
exiting, 13–66
last-chance, 13–43
last-chance exception vector, 13–25
mechanism argument vectors, 13–35
primary exception vector, 13–24
resignaling, 13–64
searching for, 13–24
secondary exception vectors, 13–24
signal argument array, 13–32
software supplied, 13–42
specifying, 13–4
traceback, 13–25, 13–42
types, 13–41
types of action, 13–45
unwinding, 13–64
use of, 13–27
user-supplied, 13–42
writing, 13–63

Index–2

Condition handling, 13–3
See also Condition handlers
See also Condition Handling Facility
See also Condition values
See also Exception conditions
See also Exceptions
See also Message utility (MESSAGE)
alignment fault reporting, 13–15
arithmetic exceptions, 13–13
continuing, 13–45
displaying messages, 13–49
GOTO unwind, 13–45
hardware exception conditions, 13–12
logging error messages, 13–6
logging error messages to a file, 13–55
mechanism argument vectors, 13–35, 13–37
mechanism array format, 13–37
resignaling, 13–45, 13–67
return status, 13–21
run-time library support routines, 13–18
signal argument vectors, 13–32
signaling a condition, 13–45
stack traceback, 13–6
stack unwind, 13–6, 13–45
unwinding, 13–67
user-defined messages, 13–6
VAX hardware exceptions, 13–12

Condition Handling facility (CHF), 13–41
function, 13–4

Condition Handling Facility (CHF)
definition, 13–1

Conditions
for exception, 13–6

Condition values, 13–19 to 13–20, 13–31
definition, 13–63
severity, 13–19

Control actions
inhibiting, 7–41

Coordinated Universal Time
See UTC system services

Counting semaphores, 14–29
CPU scheduling, 3–32
CPU-specific pages, 20–1
Create Mailbox and Assign Channel system service

See also SYS$CREMBX system service
Ctrl/C key sequence, 7–32
Ctrl/Y key sequence, 7–32
Ctrl/Z key sequence, 7–5, 9–30
Current procedure, 13–48
Current time, 5–9
Cursor movement, 7–20

D
Data

aligning, 8–4
interprocess, 17–6
sharing, 17–6

Data alignment, 22–1
exception reporting, 13–15

Databases
record, 8–12

Data Cells, 1–16
Dates

64-bit system format, 5–1
128-bit system format, 5–36
getting current system, 5–10
Smithsonian base, 5–1

Date/time formats, 5–22
Date/time manipulation

converting, 5–7
Deadlock detection, 15–8
Debugging

condition handler, 13–70
exit handler, 13–70

DEC C compiler
alignment, 22–4

DECdns call
timeout, 11–5

DECdns naming conventions
defining logicals, 11–16
logical names, 11–16

DECdns objects
creating, 11–4
reading attributes, 11–10

DECdtm services
aborted, 12–1
atomic, 12–1
committed, 12–1
distributed transaction, 12–1
introduction to programming, 12–1

DECforms, 7–2
DEC Fortran compiler

alignment, 22–6
DEC Text Processing Utility

See DECTPU
DECthreads, 1–12
DECTPU (DEC Text Processing Utility), 7–1
DECwindows Motif, 7–7
Default logical name tables

group, 10–6
job, 10–5
process, 10–4
system, 10–6

DEFINE command, 10–2
/DELETE qualifier

LIBRARY command, 17–2

Index–3

Delta time, 5–1
example, 5–6
in system format, 5–6

Detached processes, 1–1
creating, 1–10

Devices
allocating, 9–30
deallocating, 9–32
default name, 9–26
getting information about, 9–27
implicit allocation, 9–32
names, 9–25
protection, 9–5

Device types, 9–27
DIOLM (direct I/O limit) quota, 9–3
Direct I/O, 5–18
Directives

See also Message utility (MESSAGE)
.END, 13–59
.FACILITY, 13–58
.SEVERITY, 13–59
.TITLE, 13–60

Directory logical name tables
process, 10–3
system, 10–3

Disk files
opening, 19–14, 20–14

Disks
initializing from within a program

example, 9–35
Disk volumes

mounting, 9–32
Dispatcher

exception, 13–24
Double-width characters

See also Screen management
See also Virtual displays
specifying, 7–20

Dynamic attribute, 23–5
Dynamic memory allocation, 20–5

E
Echo

terminal, 7–39
terminators, 7–24

EFN$C_ENF
symbolic EFN 128 event flag, 14–16

EFN$C_ENF event flag, 14–17
EFN 128 event flag, 14–16
.END directive, 13–59
EOF (end-of-file), 7–5
Equivalence names

defining, 10–2
format convention, 10–13

Error handling
See also Condition handling
See Condition handling

Error recovery, 9–11
Errors

signaling, 13–5
Escape sequences

read, 9–30
Event flag clusters

deleting, 14–21
dissociating, 14–21
specifying name for, 14–20

Event flag numbers, 14–16
Event flags, 1–14, 14–14

See also Synchronization
allocation of, 6–17
clearing, 14–24
cluster, 14–16
common, 14–16
for interprocess communication, 2–8
local, 2–2, 14–16
setting, 14–24
specifying, 14–16
wait, 14–23

Event flag service
example using, 14–27

Exception conditions, 13–2, 13–6
returning condition value, 13–7
signaling of, 13–6, 13–7, 13–16, 13–28, 13–49

Exceptions
definition, 13–2
dispatcher, 13–24
floating-point underflow, 13–17
handling by run-time library, 13–16
type, 13–6

EXE$READ_PROCESS routine, 3–39 to 3–41
EXE$WRITE_PROCESS routine, 3–41 to 3–43
Execution context, 1–2
Executive image

linking, 3–48 to 3–49
loading, 3–49 to 3–53
unloading, 3–53 to 3–55
writing, 3–44 to 3–47

Executive mode ASTs, 4–11
Executive stack, 1–16
Exit handlers, 3–68, 9–30, 13–73

debugging, 13–76
establishing, 13–74
writing, 13–76

Exits
See also Exit handlers
forced, 3–68
image, 3–66, 13–73

Explicit affinity, 3–36
Extended address space, 19–3, 19–4

physical address space, 19–3
virtual address space, 19–4

Index–4

Extents
defining section, 19–15, 20–15

/EXTRACT qualifier
LIBRARY command, 17–2

F
FABs (file access blocks), 8–15
.FACILITY directive, 13–58
Facility identifiers, 23–4
FAO argument

signaling, 13–62
FAO parameter

specifying, 13–62
/FAO_COUNT qualifier

Message utility (MESSAGE), 13–60
File access strategies, 8–2
File attributes, 8–1
Files

attributes, 8–1, 8–2
complete access, 8–2
discrete records access, 8–2
mapping, 8–4
record-by-record access, 8–2
sequential, 8–12
sequential and indexed access, 8–2

File terminators, 9–30
Flags

See also Event flags
Floating-point overflow, 13–16
Floating-Point Registers and Execution Data Block

(FRED), 1–16
Floating-point underflow, 13–17
Forced exit, 3–68
Foreign commands, 6–3
Foreign devices, 9–5
Foreign volumes, 9–4, 9–6
FRED

Floating-Point Registers and Execution Data
Block, 1–16

Function codes, 9–10
Function modifiers, 9–11

IO$M_INHERLOG, 9–5
types of

IO$M_DATACHECK, 9–11
IO$M_INHRETRY, 9–11

G
Global sections, 17–9, 19–16, 20–16

characteristics, 19–16, 20–16
definition, 19–13, 20–13
for interprocess communication, 2–8
mapping, 19–19, 20–20
multiprocessing, 14–14
name, 19–17, 20–17
paging file, 19–20, 20–21
permanent, 17–13

Global sections (cont’d)
temporary, 17–13
writable, 14–14

Global symbols, 17–4
resolving, 17–4
signaling with, 13–61

GOTO unwind operations, 13–49
Granularity

of resources, 15–3
on Alpha systems, 14–3
on VAX systems, 14–3

Greenwich Mean Time (GMT), 5–36
Group logical name tables, 10–6

H
Handlers

change and compatibility modes, 13–12
Hardware Process Control Block (HWPCB), 1–14,

1–16
Hibernation, 3–60

alternate method, 3–64
and AST, 4–6
compared with suspension, 3–62

Holder Hidden attribute, 23–5
Holder records, 23–8

adding, 23–12
format, 23–9
modifying, 23–14
removing, 23–16

HWPCB
Hardware Process Control Block, 1–14

I
I/O (input/output)

asynchronous, 9–20
checking device type, 9–27
complex, 7–2
echo, 7–39
exit handler, 9–30
lowercase, 7–41
reading a single line, 7–4
reading several lines, 7–5
screen updates, 7–30
simple, 7–2
status, 9–21
synchronous, 9–18
terminator, 7–4

end of file, 9–30
record, 9–30

timeout, 7–40
unsolicited input, 7–35
uppercase, 7–41
using SYS$QIO system service, 9–21
using SYS$QIOW system service, 9–21
writing simple character data, 7–6

Index–5

I/O channels, 9–11
deassigning, 9–23

I/O completion
recommended test, 9–16
status, 9–22
synchronizing, 9–13

I/O functions
codes, 9–10, 9–12
modifier, 9–11

I/O operations
logical, 9–6
overview, 9–2
physical, 9–5
quotas, privileges, and protection, 9–2
virtual, 9–6

I/O requests
canceling, 9–25
queuing, 9–12

I/O services
asynchronous version, 9–18
synchronous version, 9–18

Identifier attributes, 23–5
Identifier names

translating, 23–11
Identifier records, 23–8

adding to rights database, 23–12
format, 23–8
modifying, 23–13
removing from rights database, 23–16

Identifiers, 23–1, 23–2
adding to rights database, 23–12
attributes, 23–4, 23–5
defining, 23–1
determining holders of, 23–13
facility, 23–4
facility-specific, 23–4
format, 23–2
general, 23–2
new attributes, 23–5
removing from rights database, 23–16
system-defined, 23–3

Identifier values
translating, 23–11

If states
composed input, 7–28

IMAGELIB.OLB file, 17–5
Image rundown, 13–73

effect on logical names, 10–5
Images

exit, 3–66
exiting, 13–73
for subprocess, 1–9
loading site-specific, 23–26
rundown activity, 3–67
shareable, 17–3

Image sections, 19–23, 20–25

Implicit affinity, 3–35
IM semaphore, 14–11
Initialization

argument list, 16–5
volume from within a program, 9–35

example, 9–35
Initialization routines

declaring, 16–6
dispatching, 16–6
options, 16–7

INITIALIZATION_ROUTINE macro, 3–46 to
3–47

Inner mode (IM)semaphore, 14–11
Inner mode access, 1–14
Inner mode ASTs, 4–11
Inner mode synchronization, 14–11
Input address arrays, 19–9, 20–8
Instruction memory barriers, 14–10
Instructions

queue, 14–14
Integer and floating-point routines, 6–12
Interlocked instructions, 14–6, 14–9, 14–14
Internal file identifiers

See IFI
Interprocess communication, 2–1, 2–7

event flags, 2–8
global sections, 2–8
lock management services, 2–8
logical names, 2–8
mailboxes, 2–8

using, 2–8
Interprocess control, 2–1
Interrupt priority level, 14–7
Intraprocess communication, 2–1

common area, 2–6
global symbols, 2–5

IOSBs (I/O status blocks)
in synchronization, 9–13
return condition value field, 9–22

J
Jacket routines, 6–1
Job logical name tables, 10–5

K
Kernel mode ASTs, 4–11
Kernel stack, 1–16
Kernel Thread Block (KTB), 1–15
kernel threads

suspending, 3–60
Kernel threads

advantages, 1–12
AST delivery, 4–9
definition, 1–12
execution, 3–60
hibernating, 3–60

Index–6

Kernel threads (cont’d)
priority, 3–32
scheduling, 3–32

Kernel threads model, 1–13
Kernel Threads region, 1–16
Keypads

reading from, 7–25
Key tables

reading from, 7–28
KTB

Kernel Thread Block, 1–15

L
Last-chance exception vectors, 13–25
LDR$LOAD_IMAGE routine, 3–50 to 3–53
LDR$UNLOAD_IMAGE routine, 3–53 to 3–55
LIB$ADDX routine, 5–7
LIB$ADD_TIME routine, 5–7
LIB$ASN_WTH_MBX routine, 2–10
LIB$AST_IN_PROG routine, 6–22
LIB$ATTACH routine, 6–9
LIB$CALLG routine, 6–15
LIB$CRC routine, 6–16
LIB$CRC_TABLE routine, 6–16
LIB$CREATE_DIR routine, 6–22
LIB$CREATE_USER_VM_ZONE routine, 21–12,

21–16
LIB$CREATE_VM_ZONE routine, 21–7, 21–16
LIB$DATE_TIME routine, 5–9
LIB$DAY routine, 5–5
LIB$DECODE_FAULT routine, 13–73
LIB$DEC_OVER routine, 13–17
LIB$DELETE_LOGICAL routine, 6–8
LIB$DELETE_SYMBOL routine, 6–8
LIB$DELETE_VM_ZONE routine, 21–7, 21–13
LIB$DISABLE_CTRL routine, 6–9
LIB$DO_COMMAND routine, 6–7
LIB$ENABLE_CTRL routine, 6–9
LIB$ESTABLISH routine, 13–4, 13–42
LIB$FIND_VM_ZONE routine, 21–7
LIB$FIXUP_FLT routine, 13–72
LIB$FLT_UNDER routine, 13–17
LIB$FREE_TIMER routine, 5–19
LIB$FREE_VM routine, 19–6, 20–4
LIB$FREE_VM_PAGE routine, 19–6, 20–4
LIB$GETQUI routine, 5–21
LIB$GET_COMMON routine, 2–6, 6–5
LIB$GET_FOREIGN routine, 6–3
LIB$GET_INPUT routine, 7–4 to 7–6

example, 7–4
obtaining several lines of input, 7–5
obtaining single line of input, 7–4
prompt, 7–4

LIB$GET_SYMBOL routine, 6–8
LIB$GET_VM routine, 19–6, 20–4

LIB$GET_VM_PAGE routine, 19–6, 20–4
LIB$INITIALIZE routine, 16–1
LIB$INIT_TIMER routine, 5–19
LIB$INSERT_TREE routine, 6–29
LIB$INT_OVER routine, 13–17
LIB$LOOKUP_TREE routine, 6–29
LIB$MATCH_COND routine, 13–33, 13–65,

13–72
LIB$MULTF_DELTA_TIME routine, 5–7
LIB$MULT_DELTA_TIME routine, 5–7
LIB$PUT_COMMON routine, 2–6, 6–5
LIB$PUT_OUTPUT routine, 7–4

example, 7–7
writing simple output, 7–6

LIB$RESET_VM_ZONE routine, 21–6, 21–13
LIB$REVERT routine, 13–4, 13–5
LIB$RUN_PROGRAM routine, 6–5
LIB$SET_LOGICAL routine, 6–8
LIB$SET_SYMBOL routine, 6–8
LIB$SHOW_TIMER routine, 5–19
LIB$SHOW_VM_ZONE routine, 21–7
LIB$SIGNAL routine, 13–3, 13–5, 13–16, 13–28,

13–34, 13–35, 13–36, 13–50, 13–57, 13–65
generating signals, 13–30
invoking, 13–30

LIB$SIG_TO_RET routine, 13–71
establishing, 13–71

LIB$SIG_TO_STOP routine, 13–71
LIB$SIM_TRAP routine, 13–64, 13–70
LIB$SPAWN routine, 6–9
LIB$STAT_TIMER routine, 5–19
LIB$STOP routine, 13–3, 13–5, 13–7, 13–28,

13–34, 13–36, 13–45, 13–50, 13–57, 13–64,
13–65

generating signals, 13–30
LIB$SUBX routine, 5–7
LIB$SUB_TIME routine, 5–7
LIB$TRAVERSE_TREE routine, 6–29
LIB$VERIFY_VM_ZONE routine, 21–7
Libraries

default object, 17–2
macro, 17–3, 17–5
message object module, 13–60
object, 17–2, 17–5

adding modules, 17–2
creating, 17–2
deleting a module, 17–2
extracting a module, 17–2
listing modules, 17–2
replacing modules, 17–2
system default, 17–2
user default, 17–2

system default, 17–5
text, 17–3
user default, 17–5

LIBRARY command
/CREATE qualifier, 17–2
/DELETE qualifier, 17–3

Index–7

LIBRARY command (cont’d)
/EXTRACT qualifier, 17–3
/LIST qualifier, 17–2
/REPLACE qualifier, 17–2

Line editing
inhibiting, 7–41

Linkage sections, 20–11
Linker utility (LINK)

searching object libraries, 17–2
LINK/SHAREABLE command, 17–7
/LIST qualifier

LIBRARY command, 17–2
LNK$LIBRARY routine, 17–2

See also Libraries
See also Linker utility (LINK)

Load-locked instructions, 14–8, 14–14
Local buffer caching

with lock management service, 15–18
Local symbols, 17–4

signaling with, 13–61
Lock management system services

for interprocess communication, 2–8
Lock manager, 15–1

See also Synchronization
Lock requests

queuing, 15–6
queuing a lock request, 15–8
synchronizing, 15–10

Locks
choice of mode, 15–5
concept of, 15–2
conversion, 15–7, 15–12, 15–13
deadlock detection, 15–8
dequeuing, 15–16
level, 15–5
mode, 15–5

Lock status blocks, 15–11
Lock value blocks

description, 15–15
using, 15–18

Logical I/Os
operations, 9–6
privilege, 9–4, 9–5, 9–6

Logical names, 9–25, 11–16
attributes of, 10–10
creating, 10–15
defining, 10–2
deleting, 10–17
duplicating, 10–7
for interprocess communication, 2–8
format convention, 10–13
image rundown, 10–5
multivalued, 10–2
superseding, 10–9
translating, 10–17

Logical name system service calls
SYS$CRELNM system service, 10–15
SYS$CRELNT system service, 10–16
SYS$DELLNM system service, 10–17
SYS$TRNLNM system service, 10–18

Logical name tables
creating, 10–16
default, 10–3
directory, 10–3
group, 10–6
job, 10–5
predefined logical names, 10–2
process, 10–4
process-private, 10–6
quotas, 10–11
search list, 10–14

modifying, 10–14
shareable, 10–6, 10–17
system, 10–6
types, 10–2
user-defined, 10–6

Logical unit numbers
allocating, 6–16

M
MACRO–32 compiler

alignment, 22–7
Macro libraries, 17–5
Magnetic tapes

initializing within program, 9–35
example, 9–35

Mailboxes, 2–8, 2–10, 9–38
creating, 2–9
for interprocess communication, 2–8
input/output

asynchronous, 2–11
immediate, 2–11
synchronous, 2–11
using SYS$QIO, 2–11
using SYS$QIOW, 2–11

name, 9–41
permanent, 2–9
protection, 9–4
reading data from, 2–11
system, 9–41

messages, 9–42
temporary, 2–9
termination, 3–72
writing data to, 2–11

Mapped file, 8–4
closing, 8–11
saving, 8–11

Mechanism argument vectors, 13–28, 13–35,
13–63

on Alpha systems, 13–37
on VAX systems, 13–35

Index–8

Mechanism arrays
format, 13–37

Memory
allocating and freeing blocks, 21–1
allocating and freeing pages, 21–1
allocation algorithms, 21–7
locking page into, 19–13, 20–12

Memory barriers, 14–10
instructions, 14–10

Memory fragmentation, 21–2
Memory management system services, 19–5, 20–3
Memory reads and writes

on Alpha systems, 14–5
on VAX systems, 14–5

Menus
creating with SMG$ routines, 7–22
reading, 7–24

Messages
chaining, 13–53
displaying, 13–50
logging, 13–56

Message text
specifying variables in, 13–60

Message utility (MESSAGE), 13–56 to 13–63
accessing message object module, 13–60
associating messages with exception conditions,

13–57
compiling message file, 13–60
creating a message object library, 13–60
.END directive, 13–59
.FACILITY directive, 13–58
facility name, 13–58
facility number, 13–59
FAO parameters, 13–62
/FAO_COUNT, 13–60
logging messages, 13–56
message object module, 13–60
message text, 13–59
message text variables, 13–60
modifying a message source file, 13–61
.SEVERITY directive, 13–59
source module, 13–58
.TITLE directive, 13–60

Modularity
virtual displays, 7–30

MOUNT privilege, 9–4
Multiple execution contexts, 1–12
Multiprocess applications

synchronizing, 14–12
Multiprocessor environment, 14–13

See also Synchronization
scheduling, 14–12

Multistreamed work load, 14–13

N
Name Hidden attribute, 23–5
Name services, 10–1, 11–1
Namespaces

listing information, 11–13
Natural alignment, 22–2

performance, 22–2
No Access attribute, 23–5
Null devices, 9–27
Numeric time, 5–7

O
Object libraries, 17–2, 17–5

adding a module, 17–2
creating, 17–2
deleting a module, 17–2
extracting a module, 17–2
including message object module, 13–60
listing modules, 17–2
replacing a module, 17–2

Objects
DECdns, 11–4
modifying, 11–6
protected, 23–19

OpenVMS Alpha
support for 64-bit addresses, xxv

OpenVMS Debugger utility, 22–3
alignment, 22–9

OpenVMS RMS
See RMS

Outer mode ASTs, 4–10
Output formatting control routine, 6–20

P
P0 space, 1–16
P1 space, 1–16
Page faults, 5–18
Page frame number (PFN), 19–5
Page frame sections, 19–24, 20–26
Pagelets, 20–1
Pages, 19–3, 20–2

copy-on-reference, 19–16, 20–16
demand-zero, 19–16, 20–16
locking into memory, 19–13, 20–12
owner, 19–10, 20–10
ownership and protection, 19–10, 20–10

Page table entry (PTE)
extended addresses, 19–5

Paging file sections, 19–20, 20–22
global, 19–20, 20–21

PALcode (privileged architecture library) code,
14–10, 22–3

Index–9

Parallel processing, 14–28
initializing, 14–28
subprocess

creating, 14–28
deleting, 14–28

terminating, 14–28
using semaphores, 14–29
using spin locks, 14–28

Parent lock, 15–14
Partial sections, 20–26
Pasteboards, 7–9

creating, 7–9
deleting, 7–9, 7–10
ID, 7–31
sharing, 7–31

PCA
See Performance and Coverage Analyzer

PCB
Process Control Block, 1–14

Performance and Coverage Analyzer (PCA)
alignment, 22–3

Performance measurement routine, 6–17
Per Kernel Thread Stacks, 1–16
Per-process common areas, 2–6
PFN

See Page frame number
PHD

Process Header, 1–14
Physical I/Os

access checks, 9–6
operations, 9–5
privilege, 9–3, 9–5, 9–6

Physical names, 9–25
PID (process identification)

See PID numbers
PID numbers, 3–3, 3–6

definition, 3–6, 3–9
referencing remote processes, 3–9

PPL$ routines, 14–28
PPL$SPAWN routine, 14–28
Predefined logical name

LNM$FILE_DEV, 10–14
Primary exception vector, 13–24
Printer device widths, 7–6
Private sections

definition, 19–13, 20–13
Privileged architecture library code

See PALcode
Privileged shareable images

creating, 18–1
definition, 18–1

Privileges, 10–9
BYPASS, 9–5
I/O operations, 9–2
logical I/Os, 9–4 to 9–6
MOUNT, 9–4
physical I/Os, 9–3, 9–5, 9–6

Privileges (cont’d)
SS$_NOPRIV, 13–21
SYSTEM, 9–5

Process context
accessing, 3–37 to 3–55
reading, 3–39 to 3–41
writing, 3–41 to 3–43

Process contexts
using with $GETJPI system service, 3–9

Process Control Block (PCB), 1–14
Process controls, 3–1
Process directory tables, 10–3
Processes

See also SYS$GETJPI system service
See also SYS$PROCESS_SCAN system service
communicating between, 2–7
communicating within, 2–1

using logical names, 2–2
using symbols, 2–5

creating
restrictions, 3–3

deleting, 3–70, 3–72
detached, 1–1, 1–10
disabling swap mode, 19–12, 20–12
disallowing swapping, 19–12, 20–12
execution, 3–60
hibernating, 3–60
identification, 3–3
lock information, 3–30
modes of execution, 1–2
modifying name, 3–36
obtaining information about, 3–9

example, 3–9
processes on specific nodes, 3–21, 3–22
synchronously, 3–23
using LIB$GETJPI routine, 3–5
using PIDs, 3–5, 3–9
using process name, 3–6, 3–9
using SYS$GETJPI system service, 3–5
using SYS$GETJPIW system service, 3–5

one process, 3–9
priority

modifying, 3–32
privileges

setting, 3–31
scheduling, 3–32
spawned, 1–1
subprocess, 1–1
suspending, 3–60, 3–65
swapping, 19–12, 20–12
SYS$PROCESS_SCAN system service

item list
to specify selection criteria about

processes, 3–20
with remote procedures, 3–24

item-specific flags to control selection
information, 3–16

search, 3–14

Index–10

Processes (cont’d)
SYS$PROCESS_SCAN system service item list

to specify selection criteria about processes,
3–16

termination mailboxes, 3–72, 9–42
wildcard search, 3–12

Process Header (PHD), 1–14
Process identification numbers

See PID numbers
Process logical name tables, 10–4
Process names

length of for remote processes, 3–6
obtain information about remote processes

example, 3–12
specifying for local processes, 3–6
specifying for remote processes, 3–6
using to obtain information about remote

processes, 3–6, 3–9, 3–20
Process rights lists, 23–1
Process searches

obtaining information about, 3–9
searching nodes, 3–22
searching on all nodes, 3–22
searching on specific nodes, 3–21
using item list with remote procedures, 3–24
using item-specific flags to control selection

information, 3–16
using SYS$PROCESS_SCAN system service

item list, 3–17
using SYS$PROCESS_SCAN system service

item list to specify processes
example, 3–20

using SYS$PROCESS_SCAN system service
item list to specify selection criteria, 3–16

using SYS$PROCESS_SCAN system service
item list to specify selection criteria about
processes, 3–20

using wildcard on local system, 3–12
Process structure, 1–13
Program decomposition, 14–13
Program execution

See also Synchronization
specifying a time, 3–56, 3–57
timed intervals, 3–58

Program regions, 19–8, 20–6
Prompt for input

with LIB$GET_INPUT routine, 7–4
Protection

devices, 9–5
I/O operations, 9–2
mailboxes, 9–4
page, 19–10, 20–10
volumes, 9–4

Protection masks, 9–4
PTE

See Page table entry

Q
Queue access routines, 6–13
Queue information

obtaining, 5–21
Queues, 6–12

lock management, 15–6
self-relative, 6–12

Quotas
AST, 9–3
buffered I/O, 9–3
buffered I/O byte count, 9–3
direct I/O, 9–3
establishing, 10–11
I/O operations, 9–2
SS$_EXQUOTA condition value, 13–21

R
RABs (record access blocks), 8–15
Read and write operations

ordering, 14–4
Read-modify-write operations

atomic, 14–5
Records

I/O, 8–12
/REPLACE qualifier

LIBRARY command, 17–2
Resource attribute, 23–5
Resource granularity

in lock, 15–3
Resources

lock management concept, 15–2
name, 15–4

Return address arrays, 19–9, 20–8
Return status, 13–21

from signal, 13–71
Rights databases, 23–1, 23–8, 23–16

adding to, 23–12
default protection, 23–9
elements of, 23–10
holder record, 23–8
identifier records, 23–8
initializing, 23–9
keys, 23–9
modifying, 23–13, 23–14, 23–16

Rights lists
process, 23–19
system, 23–19

RMS
opening file for mapping, 19–14, 20–14
structures, 8–15

Routines
processwide resource allocation, 6–16
variable-length bit field, 6–10

Index–11

RTL routines
See Run-time library routines

Run-time libraries
condition handling, 13–1
queue access, 6–12

Run-time library routines
accessing command language interpreter, 6–2
accessing operating system components, 6–1
accessing VAX instruction set, 6–9
integer and floating-point, 6–12
interaction with operating system, 6–1
jacket routine, 6–1
manipulating character string, 6–14
on Alpha systems, 13–18
output formatting control, 6–20
performance measurement, 6–17
return status, 13–21
system service access, 6–1
variable-length bit field instruction, 6–10

S
Schedulers

callback, 1–13
DECthreads, 1–12
OpenVMS, 1–12

Scheduling, 1–14
Screen management, 7–7

See also Key tables
See also Pasteboards
See also Video attributes
See also Viewports
See also Virtual displays
See also Virtual keyboards
deleting text, 7–22
double-width characters, 7–19, 7–20
drawing lines, 7–21
inserting characters, 7–19
menus

creating, 7–22
reading, 7–24
types of, 7–22

reading data, 7–23
scrolling, 7–20
setting background color, 7–10
setting screen dimensions, 7–10
video attributes, 7–21
viewports, 7–18

Scrolling
backward, 7–20
down, 7–20
forward, 7–20
output, 7–20
up, 7–20

Search lists, 10–2

Search operations, 23–16
Secondary exception vectors, 13–24
Sections, 19–13, 20–12

characteristic, 19–15, 20–15
creating, 19–14, 20–13
defining extent, 19–15, 20–15
deleting, 8–11, 19–23, 20–24, 20–25
global, 17–9
global paging file, 19–20, 20–21
image, 19–23, 20–25
mapping, 8–4, 19–18, 20–18
page frame, 19–24, 20–26
paging, 19–20, 19–21, 20–22, 20–23
private, 8–5
releasing, 19–23, 20–24
sharing data, 19–22, 20–24
unmapping, 19–23, 20–24
updating, 8–11
writing back, 19–23, 20–25

Security profile, 23–20
Security profiles

displaying, 23–20
modifying, 23–21

Semaphores, 14–29
See also Synchronization
binary, 14–29
counting, 14–29

Sequential files
creating, 8–12
updating, 8–13

Service routines
AST, 4–7

.SEVERITY directive, 13–59
Shareable images, 17–3

privileged, 18–1
Shared files, 17–13
Sharing data

RMS shared files, 17–13
Signal argument vectors, 13–28, 13–32, 13–63
Signaling, 13–32

changing to return status, 13–71
SMG$ADD_KEY_DEF routine, 7–28
SMG$CHANGE_VIRTUAL_DISPLAY routine,

7–16
SMG$CHECK_FOR_OCCLUSION routine, 7–13
SMG$CREATE_KEY_TABLE routine, 7–28
SMG$CREATE_PASTEBOARD routine, 7–9
SMG$CREATE_SUBPROCESS routine, 7–17
SMG$CREATE_VIRTUAL_DISPLAY routine, 7–9
SMG$CREATE_VIRTUAL_KEYBOARD routine,

7–24
SMG$DELETE_CHARS routine, 7–22
SMG$DELETE_LINE routine, 7–22
SMG$DELETE_PASTEBOARD routine, 7–9
SMG$DELETE_SUBPROCESS routine, 7–17

Index–12

SMG$DELETE_VIRTUAL_DISPLAY routine,
7–15

SMG$DRAW_LINE routine, 7–21
SMG$DRAW_RECTANGLE routine, 7–21
SMG$ERASE_CHARS routine, 7–22
SMG$ERASE_COLUMN routine, 7–22
SMG$ERASE_DISPLAY routine, 7–22
SMG$ERASE_LINE routine, 7–22
SMG$ERASE_PASTEBOARD routine, 7–9
SMG$EXECUTE_COMMAND routine, 7–17
SMG$HOME_CURSOR routine, 7–18
SMG$INSERT_CHARS routine, 7–19
SMG$INSERT_LINE routine, 7–20
SMG$LABEL_BORDER routine, 7–11
SMG$LIST_PASTING_ORDER routine, 7–15
SMG$PASTE_VIRTUAL_DISPLAY routine, 7–9
SMG$POP_VIRTUAL_DISPLAY routine, 7–31
SMG$PUT_CHARS_HIGHWIDE routine, 7–19
SMG$PUT_LINE routine, 7–20
SMG$PUT_LINE_WIDE routine, 7–20
SMG$PUT_WITH_SCROLL routine, 7–20
SMG$READ_COMPOSED_LINE routine, 7–28
SMG$READ_FROM_DISPLAY routine, 7–24
SMG$READ_STRING routine, 7–24
SMG$RESTORE_PHYSICAL_SCREEN routine,

7–30
SMG$RETURN_CURSOR_POS routine, 7–18
SMG$SAVE_PHYSICAL_SCREEN routine, 7–30
SMG$SCROLL_DISPLAY_AREA routine, 7–20
SMG$SET_CURSOR_ABS routine, 7–18
SMG$SET_CURSOR_REL routine, 7–18
SMG$SET_DISPLAY_SCROLL_REGION routine,

7–20
SMG$SET_PHYSICAL_CURSOR routine, 7–18
SMG$UNPASTE_VIRTUAL_DISPLAY routine,

7–15
Spin locks, 14–28

See also Synchronization
SS$_ALIGN exception, 13–12

signal array format, 13–15
SS$_HPARITH exception, 13–12

signal array format, 13–14
STARLET.OLB file, 17–2, 17–5
Store-conditional instructions, 14–8
Sublock, 15–14
Subprocesses, 1–1

connecting to using LIB$ATTACH routine, 6–9
creating

with LIB$SPAWN, 1–3
with PPL$ routines, 14–28
with PPL$SPAWN, 1–5
with SMG$ routines, 7–17
with SYS$CREPRC, 1–5

creation of using LIB$SPAWN routine, 6–9
deleting with PPL$ routines, 14–28
disk and directory default, 1–9
image, 1–9
input, output, and error device, 1–6

Subprocesses (cont’d)
priority setting, 3–32
program debugging, 1–10

Subsystem attribute, 23–5
Supervisor mode ASTs, 4–10
Supervisor stack, 1–16
Suspension, 3–60, 3–65

compared with hibernation, 3–62
Swapping

by suspension, 3–65
Symbols

defining, 17–3
global, 17–4
local, 17–4
referring to, 17–3
storage, 17–3
unresolved, 17–4

Synchronization
See also Parallel processing
asynchronous system traps, 4–1
barrier, 14–29
definition of, 14–1
hardware-level, 14–7
inner mode, 14–11
passing control to another image, 3–65
software-level, 14–10
using detached processes, 3–56
using events flags, 14–14
using PPL$ routines with spin locks, 14–28
using process priority, 14–12
using semaphores with PPL$ routines, 14–29
using spin locks, 14–13
using subprocesses, 3–56

Synchronous input/output, 9–18
SYS$ABORT_TRANS system service, 12–2
SYS$ABORT_TRANSW system service, 12–2,

12–3
SYS$ADD_HOLDER system service, 23–12
SYS$ADD_IDENT system service, 23–12
SYS$ADJWSL system service, 19–11, 20–11
SYS$ALLOC system service

example, 9–32
SYS$ASCTIM system service, 5–6

example, 5–10
SYS$ASCTOID system service, 23–11
SYS$ASCUTC system service, 5–2 to 5–4
SYS$ASSIGN system service

example, 9–11
SYS$BINTIM system service, 5–2 to 5–4, 5–6
SYS$BINUTC system service, 5–2 to 5–4
SYS$CANCEL system service

example, 9–25
SYS$CANTIM system service, 5–13

example, 5–16
SYS$CANWAK system service, 5–13, 5–17
SYS$CHECK_ACCESS system service, 23–25

Index–13

SYS$CHKPRO system service, 23–25
SYS$CLREF system service, 14–24
SYS$CPU_CAPABILITIES system service, 3–34
SYS$CREATE system service, 8–10
SYS$CREATE_RDB system service, 23–9
SYS$CREMBX system service, 1–6, 2–9, 3–74
SYS$CREPRC system service

example, 1–9
SYS$CRETVA system service, 19–9, 20–8
SYS$CRMPSC system service, 8–4, 8–5
SYS$DASSGN system service, 8–11

example, 9–23
SYS$DCLAST system service

example, 4–8
SYS$DCLEXH system service, 13–74

example, 3–69
SYS$DELTVA system service, 8–11
SYS$DEQ system service

example, 15–17
SYS$DISMOU system service, 9–34
SYS$END_TRANS system service, 12–2
SYS$END_TRANSW system service, 12–2, 12–3
SYS$ENQ system service

example, 15–9
SYS$ERROR system service, 13–56
SYS$EXIT system service, 3–67
SYS$EXPREG system service, 19–8, 20–6

example, 19–8, 20–6
SYS$FAO system service, 5–2 to 5–4, 13–42,

13–50, 13–55
example, 9–37

SYS$FIND_HELD system service, 23–13, 23–16
SYS$FIND_HOLDER system service, 23–13,

23–16
SYS$FORCEX system service

example, 3–68
SYS$FORMAT_ACL system service, 23–22
SYS$GETDVI system service, 9–27
SYS$GETJPI system service, 3–5, 3–9

See also SYS$PROCESS_SCAN system service
AST in target process, 3–26
buffer, 3–24, 3–25
control flags, 3–26
item list

specifying criteria to select processes
example, 3–20

item-specific flags, 3–16
obtaining information about all processes on the

local system, 3–9 to 3–14
obtaining information about one process, 3–9
obtaining information with wildcard search

example, 3–13
packing information in buffers, 3–24, 3–25
searching for processes on all nodes, 3–22
searching for processes on specific nodes, 3–21,

3–22
searching for selected processes, 3–14
specifying buffer size, 3–24, 3–25

SYS$GETJPI system service (cont’d)
specifying criteria to select processes

example, 3–20
swapping processes, 3–26
synchronizing calls, 3–21, 3–22, 3–23
using item lists, 3–16, 3–24
using item list with remote procedures, 3–24
using multiple $PROCESS_SCAN service

contexts, 3–23
using SYS$PROCESS_SCAN system service

item list to specify selection criteria about
processes, 3–16, 3–20

item-specific flags to control selection
information, 3–16

search, 3–14
using SYS$PROCESS_SCAN system service

item list to specify selection criteria about
processes, 3–17

using wildcard
example, 3–13

using wildcard as pidadr, 3–9
using wildcards, 3–9 to 3–14
using wildcard search, 3–12

SYS$GETMSG system service, 13–50
SYS$GETQUI system service, 5–21
SYS$GETSYI system service, 5–21
SYS$GETTIM system service, 5–2 to 5–4, 5–10
SYS$GETUTC system service, 5–2 to 5–4
SYS$GET_ALIGN_FAULT_DATA system service,

22–10
SYS$GET_SECURITY system service, 23–21,

23–22
SYS$GET_SYS_ALIGN_FAULT_DATA system

service, 22–11
SYS$GOTO_UNWIND system service, 13–45,

13–49
SYS$HIBER system service, 3–63

example, 3–64
SYS$IDTOASC system service, 23–11, 23–16
SYS$INIT_SYS_ALIGN_FAULT_REPORT system

service, 22–11
SYS$INIT_VOL system service, 9–35

example, 9–35
SYS$INPUT system service, 13–56

default value, 7–3
redefining value, 7–3
using with LIB$GET_INPUT routine, 7–4
using with LIB$PUT_OUTPUT routine, 7–4

SYS$LCKPAG system service, 19–12, 20–12
SYS$LKWSET system service, 19–12, 20–11
SYS$MGBLSC system service, 17–9
SYS$MOD_HOLDER system service, 23–14
SYS$MOD_IDENT system service, 23–13
SYS$MOUNT system service, 9–33
SYS$NUMTIM system service, 5–2 to 5–4, 5–7
SYS$NUMUTC system service, 5–2 to 5–4

Index–14

SYS$OPEN system service, 8–10
SYS$OUTPUT system service

default value, 7–3
redefining value, 7–3
using with LIB$GET_INPUT routine, 7–4
using with LIB$PUT_OUTPUT routine, 7–4

SYS$PARSE_ACL system service, 23–22
SYS$PERM_DIS_ALIGN_FAULT_REPORT

system service, 22–11
SYS$PERM_REPORT_ALIGN_FAULT system

service, 22–11
SYS$PROCESS_CAPABILITIES system service,

3–34
SYS$PROCESS_SCAN system service, 3–5, 3–9

See also SYS$GETJPI system service
obtaining information about processes on

specific nodes, 3–21, 3–22
searching nodes, 3–22
searching on specific nodes, 3–21
setting up multiple contexts, 3–23
using item lists, 3–16 to 3–24
using item list to specify selection criteria about

processes, 3–16, 3–17, 3–20
example, 3–20

using item list with remote procedures, 3–24
using item-specific flags to control selection

information, 3–16
SYS$PROCESS_SCAN system services

obtaining information about processes on nodes,
3–22 to 3–23

SYS$PUTMSG system service, 13–6, 13–42,
13–50, 13–55

SYS$QIO system service, 9–12
example, 9–12

SYS$REM_HOLDER system service, 23–16
SYS$REM_IDENT system service, 23–16
SYS$SCHDWK system service, 5–13, 5–16, 5–17

canceling, 5–17
example, 5–17
request, 5–16

SYS$SETEF system service, 14–24
SYS$SETEXV system service, 13–24

example, 13–4
SYS$SETIME system service, 5–11
SYS$SETIMR system service, 5–13

example with ASTs, 4–2
SYS$SETRWM system service, 9–2
SYS$SETSWM system service, 19–12, 20–12

example, 19–12, 20–12
SYS$SET_SECURITY system service, 23–21,

23–22
SYS$START_ALIGN_FAULT_REPORT system

service, 22–10
SYS$START_TRANS system service, 12–2
SYS$START_TRANSW system service, 12–2,

12–3

SYS$STOP_ALIGN_FAULT_REPORT system
service, 22–10

SYS$STOP_SYS_ALIGN_FAULT_REPORT system
service, 22–11

SYS$SYNCH system service, 9–16, 9–18, 14–23
SYS$TIMCON system service, 5–2 to 5–4
SYS$ULKPAG system service, 19–12, 20–12
SYS$ULWSET system service, 19–12, 20–11
SYS$UNWIND system service, 13–45, 13–47,

13–49, 13–64, 13–65, 13–67, 13–71
example, 13–48

SYS$UPDSEC system service, 8–11
SYS$WAKE system service, 3–63

example, 3–64
SYSPRV privilege, 9–5
System clock

setting, 5–11
System directory table, 10–3
System information

See Timers statistics
System logical name tables, 10–6
System routines

system services
asynchronous, 14–29
synchronous, 14–29

Systems
exception dispatcher, 13–24
mailbox, 9–41

System service access, 6–1, 6–2
System services

Initializing volumes, 9–35
loading site-specific, 23–26
obtaining information about processes, 3–5,

3–9
return status, 13–21

System timer
canceling, 3–60
setting, 3–59

T
Tapes

initializing from within a program
example, 9–35

Tape volumes
mounting, 9–32

Terminal characteristics, 9–28
Terminal device widths, 7–6
Terminal echo, 7–39

disabling, 7–40
Terminal I/Os

example, 9–23
Terminal timeouts, 7–40
Termination mailboxes, 3–72, 9–42
Terminators

See also I/O (input/output)
echos, 7–24

Index–15

Terminators (cont’d)
file, 9–30
record, 9–30

Thread manager, 1–12
Threads, 13–48
time

current, 5–9
Time

See also Current time
absolute, 5–1
64-bit system format, 5–1
128-bit system format, 5–36
conversions, 5–2
converting ASCII to binary, 5–6
delta, 5–1
getting current system, 5–10
internal format, 5–2
numeric and ASCII, 5–7
obtaining

using SYS$ASCTIM system service, 5–2 to
5–4

using SYS$ASCUTC system service, 5–2
to 5–4

using SYS$BINTIM system service, 5–2 to
5–4

using SYS$BINUTC system service, 5–2 to
5–4

using SYS$FAO system service, 5–2 to 5–4
using SYS$GETTIM system service, 5–2 to

5–4
using SYS$GETUTC system service, 5–2

to 5–4
using SYS$NUMUTC system service, 5–2

to 5–4
using SYS$TIMCON system service, 5–2

to 5–4
setting system, 5–11
using system services, 5–2 to 5–4

Time conversions
formatting, 5–4

Time manipulation
using LIB$ADDX routine, 5–7
using LIB$ADD_TIMES routine, 5–7
using LIB$DAY routine, 5–5
using LIB$MULTF_DELTA_TIME, 5–7
using LIB$MULT_DELTA_TIME routine, 5–7
using LIB$ routines, 5–5 to 5–7
using LIB$SUBX routine, 5–7
using LIB$SUB_TIMES routine, 5–7

Timer requests, 5–13
canceling, 5–16

Timers
deallocating, 5–19
initializing, 5–19
obtaining statistics, 5–19
statistics

buffered input/output, 5–18
CPU time, 5–18

Timers
statistics (cont’d)

direct input/output, 5–18
elapsed time, 5–18
page faults, 5–18

.TITLE directive, 13–60
Tools

alignment, 22–9
Traceback handlers, 13–25
Transactions

default, 12–3
programming, 12–1

TRM$M_TM_ESCAPE routine, 7–25
TRM$M_TM_NOECHO routine, 7–25
TRM$M_TM_NOTRMECHO routine, 7–24
TRM$M_TM_PURGE routine, 7–25
Type-ahead buffers, 7–38

U
UFO (user-file open), 8–10

See also User-open routine
Unalignment, 22–1
Uniprocessor operations, 14–5
Unwind condition handlers, 13–67
Upcall, 1–13
User capabilities, 3–33
User-defined condition values

signaling, 13–61
User-defined logical name tables, 10–6
User-file open

See UFO
User mode ASTs, 4–10
User-open routines, 8–15
User stack, 1–16
UTC system services, 5–36

V
Variable-length bit field routine, 6–10
VAX Environment Software Translator (VEST)

alignment, 22–8
VAX instruction set

accessing through run-time library, 6–9
Video attributes, 7–11, 7–17, 7–21

current, 7–17
default, 7–17

Viewports, 7–18
Virtual address space, 19–1, 19–8, 20–2, 20–7

increasing and decreasing, 19–8, 20–6
mapping section of, 19–18, 20–19
specifying array, 19–10, 20–8

Virtual displays, 7–10
See also Viewports
checking occlusion, 7–13
creating, 7–11
creating a subprocess from, 7–17
cursor movement, 7–20

Index–16

Virtual displays (cont’d)
deleting, 7–15
deleting text, 7–22
drawing lines, 7–21
erasing, 7–15
ID, 7–11, 7–32
inserting text, 7–19, 7–20
list pasting order of, 7–15
logical cursor position, 7–18
modifying, 7–16
obtaining the pasting order, 7–15
overwriting text, 7–19, 7–20
pasting, 7–11
physical cursor position, 7–18
popping, 7–15
reading data from, 7–23
rearranging, 7–14
scrolling, 7–20
sharing, 7–32
specifying double-size characters, 7–20
specifying video attributes, 7–11
viewports, 7–18
writing double-width characters, 7–19
writing text to, 7–18

Virtual I/O, 9–6
Virtual keyboards

reading data from, 7–23, 7–24
Virtual page size, 19–1
Volume protection, 9–4
Volumes

initializing from within a program, 9–35
example, 9–35

mounting, 9–32

W
WAIT form services, 14–23
Wakeup requests

scheduling, 5–16
Wildcard searches

obtaining information about processes
example, 3–13

using SYS$GETJPI system service, 3–12
Working sets

adjusting size, 19–11, 20–11
paging, 19–11, 20–10

Write-back sections, 19–23, 20–25
Writing a condition handler

example, 13–65

Z
Zones, 21–6 to 21–14

allocation algorithm, 21–14
attributes, 21–8
creating, 21–7
default, 21–12
deleting, 21–7

Zones (cont’d)
identifier, 21–12
resetting, 21–13
user-created, 21–6

Index–17

