

The XENIX™

Development System

Programmer's Guide

TM

for the Apple Lisa 2

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part or The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms or the agreement.

@The Santa Cruz Operation, Inc., 1984
@Microsoft Corporation, 1983

The Santa Crus Operation, Inc.
500 Chestnut Street
P.O. Box 1900
Santa Cruz, Otlifomia 95061
(408) 425-7222 • TWX: 910-598-4510 SCO SACZ

UNIX is a trademark or Bell Laboratories
XENIX is a trademark or Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks or Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Contents

1 Introduction

1.1 Overview 1
1 .2 Creating C Language Programs
1.3 Creating Other Programs 2
1.4 Creating and Maintaining

Libraries 2
1 .5 Maintaining Program Source

Files 3
1.6 Creating Programs With Shell

Commands 3
I. 7 Using This Guide 4
1.8 Notational Conventions 5

2 Cc:: A CompDer

2.1 Introduction 1
2.2 Invoking the C Compiler 2
2.3 Compiling a Source File 3
2.4 Compiling Several Source

Files 4
2.5 Using Object Files 5
2.6 Naming the Output File 6
2. 7 Compiling Without Linking 6
2.8 Linking to Library

Functions 7
2.9 Optimizing a Source File 8
2.10 Producing an Assembly Source

File 9
2.11 Stripping the Symbol Table 9
2.12 Profiling a Program 10
2.13 Saving a Preprocessed Source

File 10
2.14 Defining a Macro 10
2.15 Defining the Include

Directories 11
2.16 Error Messages 12

3 Lint: A C Program Checker

3.1 Introduction
3.2 Invoking lint 1
3.3 Checking for Unused Variables

and Functions 2
3.4 Checking Local Variables 3
3.5 Checking for Unreachable

1-i

1-ii

Statements 4
3.6 Checking for Infinite Loops 5
3. 7 Checking Function Return

Values 5
3.8 Checking for Unused Return

Values 6
3.9 Checking Types 6
3.10 Checking Type Casts 7
3.11 Checking for Nonportable

Character Use 8
3.12 Checking for Assignment of

longs to ints 8
3.13 Checking for Strange

Constructions 9
3.14 Checking for Use of Older C

Syntax 10
3.15 Checking Pointer Alignment 11
3.16 Checking Expression Evaluation

Order 11
3.17 Embedding Directives 12
3.18 Checking For Library

Compatibility 13

4 Make: A Program Maintainer

4.1 Introduction
4.2 Creating a Makefile
4.3 Invoking Make 3
4.4 Using Pseudo-Target Names 5
4.5 Using Macros 6
4.6 Using Shell Environment

Variables 8
4.7 Using the Buih-ln Rules 9
4.8 Changing the Built-in Rules 11
4.9 Using Libraries 13
4.10 Troubleshooting 14
4.11 Using Make: An Example 15

5 SCCS: A Source Code Control System

5.1 Introduction
5.2 Basic information
5.3 Creating and Using S-files 5
5.4 Using Identification

Keywords I4
5.5 Using S-tile Flags I7
5.6 Modifying S-file

Information 19
5. 7 Printing from an S-fi1e 22
:, !l Editing by Several Users 24

5.9 Protecting S-tiles 25
5.10 Repairing sees Files 28
5.11 Using Other Command Options 30

6 Adb: A Program Debugger
6.1 Introduction
6.2 Invocation 1
6.3 The Current Address - Dot
6.4 Formats 2
6.5 Debugging C Programs 3
6.6 Maps 7
6. 7 Advanced Ulillge 8
6.8 Patching 11
6.9 Notes 12
6.10 Figures 13
6.11 Adb Summary 26

7 As: An Assembler
7.1 Introduction 1
7.2 Command Ulillge 1
7.3 Invocation Options 1
7.4 Source Program Format 2
7.5 Symbols am Expressions 4
7.6 InstJUctions and Addressing

Modes 10
7.7 Assembler Directives 13
7.8 Operation Codes 17
7.9 Error Meslillges 18

8 Lex: A Lexical Analyzer

8.1 Introduction
8.2 Lex Source Format 3
8.3 Lex Regular Expressions 4
8.4 Invoking le.-.: 5
8.5 Specifying Character

Classes 5
8.6 Specifying an Arbitrary

Character 6
8. 7 Specifying Optional

Expressions 7
8.8 Specifying Repeated

Expressions 7
8.9 Specifyi:tg Alternation and

Grouphg 7
8.10 Specifying Context

Sensit; :ity 8

1 -iii

1-iv

8.11 Specifying Expression
Repetition 9

8.12 Specifying Definitions 9
8.13 Specifying Actions 9
8.14 Handling Ambiguous Source

Rules 13
8.15 Specifying Left Context

Sensitivity 16
8.16 Specifying Source

Definitions 18
8.17 Lex. and Yacc 20
8.18 Specifying Character Sets 24
8.19 Source Format 25

9 Yacx: A CompiJer-CompDer

9. 1 Introduction 1
9.2 Specifications 4
9.3 Actions 7
9.4 Lexical Analysis 9
9.5 How the Parser Works II
9.6 Ambiguity and Conflicts 16
9.7 Precedence 21
9.8 Error Handling 24
9. 9 The Yacc Environment 26
9.10 Preparing Specifications 27
9.11 Input Style 27
9.12 Left Recursion 28
9.13 Lexical Tie-ins 29
9.14 Handling Reserved Words 30
9.15 Simulating Error and Accept in

Actions 31
9.16 Accessing Values in Enclosing

Rules 31
9.17 Supporting Arbitrary Value

Types 32
9.18 A Small Desk Calculator 33
9.19 Yacc Input Syntax. 36
9.20 An Advanced Example 38
9.21 Old Features 44

Appendix A C Language PortabiJity

A.l Introduction 1
A. 2 Program Portability 2
A.3 Machine Hardware 2
A.4 Compiler Differences 7
A.5 Program Environment Differences 11
A.6 Portability of Data 1 2
A.7 L int 12

A.8 Byte Ordering Summary 13

Appeudix B M4: A Macro Processor

B.l Introduction
B.2 Invoking m4 1
B.3 Defining Macros 2
B.4 Quoting 3
B.S Using Arguments 5
B.6 Using Aritlunetic Built-ins 6
B. 7 Manipulating Files 7
B.8 Using System Commnands 7
B.9 Using Conditionals 8
B.lO Manipulating Strings 8
B.ll Printing 10

1-v

Chapter 1
Introduction

1.1 Overview 1-1

1.2 CreatingCLanguagePrograms 1-1

1.3 Creating Other Programs 1-1

1.4 Creating and Maintaining Libraries 1-2

1.5 Maintaining Program Source Files 1-2

1.6 Creating Programs With Shell Commands 1-3

1.7 Using This Guide 1-3

1.8 Notational Conventions 1-4

Introduction

1.1 Overview

This guide explains how to use the XENIX Software Development system to
create and maintain C and assembly language programs. The system provides
a. broad spectrum of programs and commands to help you design and develop
applications and system software. These programs and commands let you
create C and assembly language programs for execution on the XENIX system.
They also let you debug these programs, automate their creation, and maintain
versions orthe programs you develop.

The following sections introduce the programs and commands of the XENIX
Software Development System and explain the steps you can take to develop
programs for the XENIX system. Most of the programs and commands in these
introductory sections are fully explained later in this guide. Some commands
mentioned here are part of the XENIX Timesharing System and are explained in
the XENIX Ueer 'e Guide andXENIX Ope ratione Guide.

1.2 Creating C Language Programs

All C language programs start as a. collection of C program statements on files.
The XENIX system provides a. number of text editors that let you create source
files easily and efficiently. The most convenient editor is the screen-oriented
editor !Ji. Vi provides many editing commands that let you easily insert,
replace, move, and search for text. All commands can be invoked from
command keys or from a command line. The program has also has a. variety of
options that let you modify its operation.

Once a. C language program has been written to a. source file, you can create an
executable program using the cc command. The cc command invokes the
XENIX C compiler which compiles the source file. This command also invokes
other XENIX programs to prepare the compiled program for execution.

You can debug a.n executable C program with the XENIX debugger adb . Adb
provides a direct interface to the machine instructions that make up an
executable program.

If you wish to check a program before compilation, you can use lint, the XENIX
C program checker. Lint checks the content and construction of C language
programs for syntactical and logical errors. It also enforces a. strict set of
guidelines for proper C programming style. Lint is normally used in the early
stages of program development to check for illegal and improper usage of the C
language.

'1.3 Creating Other Programs

The C programming language can meet the needs of most programming
projects. In cases where finer control of execution is required, you rr:ay create

1-1

XENIX Programmers Guide

assembly language programs using the XENIX assembler aB. AB assembles
source files and produces relocatable object files that can be linked to your C
language programs with /d. The ld program is the XEt-.'IX linker. It links
relocatable object files created by the C compiler or assembler and produces
executable programs. Note that the cc command automatically invokes the
linker and the assembler so use of either is optional.

You can create source files for lexical analyzers and parsers using the program
generators lez and yacc. The lez program is the XE!\'IX lexical analyzer
generator. It generates lexical analyzers, written in C program statements,
from given specification files. Lexical analyzers are used in programs to pick
patterns out of complex input and convert these patterns into meaningful
values or tokens. The yacc program is the XENIX parser generator. It
generates parsers, written in C program statements, from given specification
files. Parsers are used in programs to convert meaningful sequences of tokens
and values into actions. Lez and yacc are often used together to make complete
programs.

You can preprocess C and assembly language source files, or even lez and yacc
source files using the m4 macro processor. The m4 program performs several
preprocessing functions, such as converting macros to their defined values and
including the contents of files into a source file.

1.4 Creating and Maintaining Libraries

You can create libraries of useful C and assembly language functions and
programs using the ar and ranlib programs. Ar, the XENIX archiver, can be
used to create libraries of relocatable object files. R an/ib, the XENIX random
library generator, converts archive libraries to random libraries and places a
table of contents at the front of each library.

The !order command finds the ordering relation in an object library. The
tsort command topologically sorts name lists so that forward dependencies are
apparent.

1.5 Maintaining Program Source Files

You can automate the creation of executable programs from C and assembly
language source files and maintain your source files using the make program
and the sees commands.

The make program is the XENIX program maintainer. It automates the steps
required to create executable programs and provides a mechanism for ensuring
up to date programs. It is used with small, large, and medium-scale
programming projects.

The Source Code Control (sees) commands let you maintain different versions
of a single prqgram. The commands compress all versions of a source file into a

1-2

Introduction

single file containing a list of differences. These commands also restore
compressed files to their original size and content.

Many XENIX commands let you carefully examine a program's source files. The
ctags command creates a tags file so that C functions can be quickly found in a
set of related C source files. The mkstr command creates an error message file
by examining a C source file.

Other commands let you examine object and executable binary files. The nm
command prints the list of symbol names in a program. The hd command
performs a hexadecimal dump of given files, printing files in a variety of
formats, one of which is hexadecimal. The od command performs an octal
dump of given files. adb (see chapter 6), allows disassembly of your program.
The size command reports the size of an object file. The strings command
finds and prints readable text (strings) in an object or other binary file. The
strip command removes symbols and relocation bits from executable files. The
sum command computes check sum for a file and counts blocks. It is used in
looking for bad spots in a file and for verifying transmission of data between
systems. The xstr command extracts strings from C programs to implement
shared strings.

1.6 Creating Programs With Shell Commands

In some cases, it is easier to write a program as a series of XENJX shell
commands than it is to create a C language program. Shell commands provide
much of the same control capability as the C language and give direct access to
all the commands and programs normally available to the XENIX user.

The csh command invokes the O-shell, a XENIX command interpreter. The C
shell interprets and executes commands taken from the keyboard or from a
command file. It has a C-like syntax which makes programming in this
command language easy. It also has an aliasing facility, and a command history
mechanism.

1.7 Using This Guide

This guide is intended for programmers who are familiar with the C
programming language and with the XENIX system.

C language programmers should read Chapters 2, 3, and 6 for an explanation of
how to compile and debug C language programs.

Assembly language programmers should read Chapter 7 for an explanation of
the XEI\'JX assembler and Chapter 6 for an explanation of how to debug
programs.

Programmers who wish to automate the compilation process of their programs
should read Chapter 4 for an explanar.ivn of the make program. Programmers

1-3

XENIX Programmers Guide

who wish to organize and maintain multiple versions of their programs should
read Chapter 5 for an explanation of the Source Code Control System (sees)
commands.

Special project programmers who need a. convenient wa.y to produce lexica.!
analyzers and parsers should read Chapters 8 and 9 for explanations of the lez
and yacc program generators.

Chapter 1 introduces the XENIX software development programs provided
with this package.

Chapter 2 explains how to compile C language programs using the cc
command.

Chapter 3 explains how to check C language programs for syntactic and
semantic correctness using the C program checker lint.

Chapter 4 explains how to automate the development of a program or other
project using the make program.

Chapter 5 explains how to control and maintain all versions of a project's
source files using the sees commands.

Chapter 6 explains how to debug C and assembly language programs using the
XENIX debugger a db.

Chapter 7 explains how to assemble assembly language programs using the
XENIX assembler as.

Chapter 8 explains how to create lexical analyzers using the program generator
lez.

Chapter 9 explains how to create parsers using the program generator yacc.

Appendix A explains how to write C languga.e programs that ca.n be compiled
on other XET'-'1X systems.

Appendix B explains how to use to create and process macros using the m4
macro processor.

1.8 Notational Conventions

This guide uses a. number of special symbols to describe the syntax ofXENIX
commands. The following is a list of these symbols and their meaning.

I I

1-4

Brackets indicate an optional command argument.

Ellipses (three dots) indicate that the preceding
argument may be repeated one or more times.

SMALL

bold

italice

Introduction

Small capitals indicate a key to be pressed.

Boldface characters indicate a command name.

Italic characters indicate a placeholder for a command
argument. When typing a command, a placeholder
must be replaced with an appropriate filename,
number, or option.

1-5

Chapter 2
Cc: A C Compiler

2.1 Introduction 2-1

2.2 Invoking the C Compiler 2-2

2.3 Compiling a Source File 2-2

2.4 Compiling Several Source Files 2-3

2.5 Using Object Files 2-4

2.6 NamingtheOutputFile 2-5

2.7 Compiling Without Linking 2-6

2.8 Linking to Library Functions 2-6

2.9 Optimizing a Source File 2-7

2.10 Producing an Assembly Source File 2-8

2.11 Stripping the Symbol Table 2-8

2.12 Profiling a Program 2-9

2.13 Saving a Preprocessed Source File 2-9

2.14 DefiningaMacro 2-10

2.15 Defining the Include Directories 2-10

2.16 Error Messages 2-11

Cc: A C Compiler

2.1 Introduction

This chapter explains how to use the cc command to create executable
programs from C language source files. The command compiles C source files
by invoking the XENIX C compiler, the C preprocessor, and in some cases the C
optimizer. It then invokes other programs, such as the XENIX assembler 41 and
linker ld, to complete the creation of the executable program.

The cc command accepts as C source files any file containing a complete C
program or one or more complete C functions. The command processes the
source files in five phases: preprocessing, assembly source generation,
optimization (if necessary), machine code generation, and linking.

In the preprocessing phase, the cc command invokes the C preprocessor, which
searches the source file for C directives. The preprocessor replaces each
directive with a corresponding value or meaning. For example, it replaces each
occurrence of a macro name with its defined value and each include directive
with the contents of its corresponding include file. It then copies the expanded
version of the source file to a temporary file. The preprocessor also allows
conditional compilation.

In the assembly source generation phase, the cc command invokes the C
compiler which translates the C program statements in the temporary file into
equivalent assembly language instructions. These instructions form a
complete assembly language source file that performs the same tasks as the
statements in the C source file. The compiler copies the assembly instructions
to a temporary file.

In the optional optimization phase, the cc -0 command invokes the C optimizer
which modifies the temporary assembly language file, making it smaller and
faster without altering the tasks its performs. Programs of all sizes benefit
from optimization.

In the machine code generation phase, the command invokes the XENIX
assembler 41 which assembles the temporary assembly language file. The
assembler creates an "object file" containing relocatable machine instructions
that can be prepared for execution. If more than one source file is processed, a
permanent object file is created for each source file.

In the linking phase, the command invokes the XEN1X linker ld, which resolves
all unresolved references to variables and functions in the object file. If
necessary, ld searches the appropriate program libraries to link the contents of
other object files to the given file. The linker then writes the linked instructions
to a file. This file, called an "executable binary" file, contains the program's
machine instructions in executable binary form. The file z. out is used by
default.

This chapter assumes that you are familiar with the C programming language
and that you can create C program source files using a XENIX text editor.

2-1

XENIX Programmer's Guide

2.2 Invoking the C Compiler

You can invoke the C compiler with the c:c command. The command has the
form

ec [option) ... filename ...

where option is a command option, and filename is the name of a C language
• source file, an assembly language source file, or an object file. You may give
more than one option or filename, if desired, but you must separate each item
with one or more whitespace characters.

The cc command options let you control and modify command operation. For
example, you can direct the command to skip the optimization phase or create a
permanent copy of the file created during the assembly source generation
phase. The options also let you specify additional information about the
compilation, such as which program libraries to examine and what the name or
the executable file should be. The options are described in detail in the
following sections.

The cc command lets you name three different kinds of files: C source, assembly
language source, and object files. A file's contents are identified by the filename
extension. C source files have the extension .c. Assembly language source files
have the extension·'· Object files have the extension .o. The command delays
processing or each type of file until the appropriate phase. Thus C source files
are processed immediately, assembly language files ·are processed in the
machine code generation phase, and object files are processed in the linking
phase. An assembly language source file may be created by hand using aXENIX
text editor, or created using the cc command's assembly source generation
phase (see the -S option later in this chapter). An object file must be the output
or the XENIX assembler or the cc command's machine code generation phase
(see the -c option).

2.3 Compiling a Source File
You can compile a source file containing a complete C program by giving the
name or the file when you invoke the cc command. The command reads and
compiles the statements in the file, links the compiled program with the
standard C library, then copies the program to the default output file z.out

To compile a source program, type:
cc filename

where filename is the name or the file containing the program. The program
must be complete, that is, it must contain a main program function. It may
contain calls to functions explicitly defined by the program or by the standard
C library. For example, assume the the following program is stored in the file
named main. c .

�-2

#include <stdio.h>

main()
{

}

int x,y;

scanf(" %d + %d" , &x, &y);
printr(" %d\n", x+y);

To compile this program, type

cc main.c

Cc: A C Compiler

The command first invokes the C preprocessor which adds the statements in
the file fuBr/i nclude/ Btdio.h to the beginning of the program. It then compiles
these statements and the rest of the program statements. Next, the command
links the program with the standard C library which contains the binary code
for the BCanf and print/ functions. Finally, it copies the program to the file
z.out.

You can execute the new program by typing the command

x.out

The program waits until you enter a sum, then prints the value of that sum.
For example, if you type "3 + 5" the program displa.ys"8".

Note that when the command creates the z.out file, it gives the file the
permissions defined by your current file creation mask.

2 .4 Compiling Several Source Files

Large source programs are often split into several files to make it easier to
update and edit. You can compile such a program by giving the names ofa.ll the
files belonging to the program when you invoke the cc command. The
command reads and compiles each file in turn, then links all object files together
and copies the new program to the file z. out.

To compile several source files, type

cc filename . . .

where each filename is separated from the next by whitespace. One of these
files (and no more than one) must contain a. program function named "main" .
The others may contain functions that are called by this main function or by
other functions in the program.

2-3

XENIX Programmer's Guide

For example, suppose the following main program function is stored in the file
main.

#include <stdio.h>
extern int add();

main()
{

}

int x,y,z;

scanr (" %d + %d"' &x, &y);
z = add (x, y);
printf (" %d \n", z);

Assume that the following function is stored in the file add. c:

add (a, b)
int a, b;
{

return (a+ b);
}

You can compile these files and create an executable program by typing

cc main.c add.c

The command compiles the statements in main.e, then compiles the
statements in add.c. Finally, it links the two together (along with the standard
C library) and copies the program to z.out. This program, like the program in
the previous section, waitsfor a sum, then prints the value of the sum.

Compiling several source files at a time causes the command to create object
files to hold the binary code generated for each source file. These object files are
then used in the linking phase to create an executable program. The object files
have the same basename as the source file, but are given the .11 file extension.
For example, when you compile the two source files above, the compiler
produces the object files mai n. II and add.o. These files are permanent files, i.e.,
the command does not delete them after completing its operation. The
command deletes the object file only if you compile a single source file.

2.5 Using Object Files
You can use an object file created by the cc command in any later invocation of ·the command. When you specify an object file, the command does nothing with
it until the linking phase, that is, the command does not compile or assemble
the file.

2-4

Cc: A C Compiler

Source files containing functions do not need to be recompiled each time they
are linked to a. new program. The generated object files can be used instead,
saving the programmer the time it takes to compile each source file. This is
another reason large programs are often split into several modules.

To create a. program from both source files and object files, give the object
filenames along with the source filenames in the command invocation. Make
sure the filenames are separated by whitespa.ce characters. For example,
assume that the following main program function is stored in the file mult. c:

#include <stdio.h>

main ()
{

int x,y,z,i;

sca.nf("%d • %d", &x, &y);
for (i=O; i<y; i++)

z = add (z,x) ;
printf(" %d \n", z);

This program uses the add function compiled in the previous section. Since the
object file containing this function is named add.o, you can compile this
program and link the object file to it by typing

cc mult.c a.dd.o

The compiler compiles the statements in mult.c and produces an object file for
it, then the compiler links the add. o file to the new file and stores the executable
program in :z.out. This program waits for you to enter the values to be
multiplied, multiplies the values, then displays the result.

2.6 Naming the Output File
You can change the name of the executable program file from :z.out to any valid
filename by using the -o (for "output") option. The option ha.s the form:

-o filename

where filename is a valid filename or a. full pa.thname. Ir a filename is given, the
program file is stored in the current directory. If a full path name is given, the
file is stored in the given directory. If a. file with that name already exists, the
compiler removes the old file before creating the new one.

For example, the command

cc main.c add.o -o addem

2-5

XENIX Programmer's Guide

causes the compi ler to create an executable program file addem from the source
file main.t and object file add. o. You can execute this program by typing

addem

The permissions defined by the file creation mask apply to this file just as they
do to z.out.

Note that the -o option does not affect the z.out file. This means that the cc
command does not change the current contents of this file it the -o option has
been given.

2.7 Compiling Without Linking

You can compile a source file without linking it by using the -c (fer "compile")
option. This option is useful it you wish to have an object file available tor later
programs but have no current program that uses it. The option has the form:

-c filename

where filename is the name of the source file. You may give more than one
filename if you wish. Make sure each name is separated from the next by a
space.

For example, to make object files for the source files main.t, add.c, and mult.t,
type

cc -c main .c add.c mult.c

The command compiles each file in turn and copies the compiled source to the
files main.o, add.o, and mult.o.

2.8 Linking to Library Functions

A library is a file that contains useful functions in object file format. You can
link a source file to these functions by linking it to the library with the -I (tor
"library") option. The option, used by the linker during the linking phase,
causes the linker to search the given library for the functions called in the
source file. If the functions are found, the linker links them to the source file.

The option has the form

cc -!name

where name is a shortened version of the library's actual filename. The actual
filename has the form

2-6

Cc: A C Compiler

Jibname.a.

Spaces between the name and option are not permitted. The linker builds the
library's filename from the given name, then searches the /lib directory for the
library. If not found, it searches the / U6r/lib directory.

For example, the command

cc ma.in.c -!curses

links the library libcur1u. a to the source file main.c.

A library is a. convenient way to store a. large collection of object files. The
XENIX system provides several libraries. The most common is the standard C
library. This library is automatically linked to your program whenever you
invoke the compiler . Other libraries, such a.s libcunu.a, must be explicitly
linked using the -I <libname> option. Without the -I fta.g, cc and ld would
identify a. library by inspecting its first byte. The XENIX libraries and their
functions are described in detail in the XENIX Programmer'• Reference Guide.

Note that you can create your own libraries with the XENIX ar and ranlib
programs. These commands let you copy object files to a library file and then
prepare the library for searching by the linker. These commands are described
in theXENIXReference Manual.

In general, the linker does not search a library until the -I option is
encountered, so the placement of the option is important. The option must

. follow the names ofsource files containing calls to functions in the given library.

2.9 Optimizing a Source File

You can optimize a source file, that is, make its corresponding assembly source
file more efficient, by using the -0 (for "optimize") option. For example, the
command

cc -0 ma.in.c

optimizes the source file main. c.

Optimization only applies to compiled files; the compiler cannot optimize
assembly source or object files. Furthermore, the -0 option must appear
before the names of the files you wish to optimize. Files preceding the option
are not optimized. For example, the command

cc add .c -0 main.c

optimizes main.c but not add.c.

2-7

XENIX Programmer's Guide

You may combine the -0 and -c options to compile and optimize source files
without linking the resulting object files. For example, the command

cc -0 -c main.c add.c

creates optimized object files from the source files main.c and add. c .

Although optimization is very userul for large programs, i t takes more time
than regular compilation. In general, it should be used in the last stage of
program development, after the program has been de bugged.

2.10 Producing an Assembly Source File

You can direct the compiler to save a copy of the temporary assembly source
file by using the -S (for "source") option. The option causes the command to
copy the temporary assembly source file to a permanent file. This permanent
file has the same basename as the source file, but is given the file extension .t.

For example, the command

cc -S add.c

compiles the source file add.c and creates an assembly language instruction file
add.t.

The -S option applies to source files only; the compiler cannot create a source
file from an existing object file. Furthermore, the option must appear before
the namesorthe files for which the assembly source is to be saved.

2.11 Stripping the Symbol Table

You can reduce the size of a program by using the -s, option. This option
causes the cc command to strip the symbol table. The symbol table contains

·information about code relocation and program symbols and is used by the
XENIX debugger adb to allow symbolic references to variables and functions
when debugging. The information in this table is not required for normal
execution and can be stripped when the program has been completely
debugged.

The -s option strips the entire table, leaving machine instructions only.

For example, the command

cc -s rnain.c add.c

creates a executable program that contains no symbol table. It also creates the
object files main. o and add. o which contain no symbol tables.

2-8

Oc: A 0 Compiler

The -s option may be combined with the -0 option to create an optimized and
stripped program. An optimized and stripped program has the smallest size
possible.

Note that you can also strip a program with the XENIX command strip. See
theXENIXReference Manual Cor details.

2.12 Profiling a Program

You can examine the flow of execution or a program by adding "profiling" code
to the program with the -p option. The profiling code automatically keeps a
record or the number or times program functions are called during execution or
the program. This record is written to the mon.out file and can be examined
with the prof command.

For example, the command

cc -p main.c

adds profiling code to the program created from the source file main.c. The
profiling code automatically calls the monitor function which creates the
mon.out file at normal termination of the program. The prof command and
monitor function are described in detail in prof(CP) and monitor(S) in the
XENIXReference Manual.

2.13 Saving a Preprocessed Source File

You can save a copy of the temporary file created by the C preprocessor by
using the -P (Cor "preprocessing") option. The temporary file is identical to
the source file except that all macro names have been expanded and all include
directives have been replaced by the specified files. The command copies this
temporary file to a permanent file which has the same basename as the source
file and the filename extension .i.

For example, the command

cc -P main.c

creates a preprocessed file for the source file main.c.

You may also display a copy of the preprocessed source file by using the-E
option. This option invokes the C preprocessor only and directs the
preprocessor to send the preprocessed file to the standard output.

2-9

XENIX Programmer's Guide

2.14 Defining a ,Macro

You can define the value or meaning of a ma.cro used in a source file by using the
-D (for "define") option. The option lets you assign a value to a macro when
you invoke the compiler and is useful if you have used if directives in your
source files.

The option has the form

-D name= def

where name is the name of the macro and def is its value or meaning. For
example, the command

cc -DNEED=2 main.c

sets the macro ":llo"'EED" to the value "2". The command compiles the source
file main. c, replacing every occurrence of "NEED" with "2". If a name is given
but no definition, the compiler assigns the value 1 by default.

You can also remove the initial definition of a macro by using the -U (for
"undefine") option. Removing the initial definition is required if you wish to
use the-D option twice in the same command line. The option has the form

cc -Uname

where name is the macro name. For example, in the command

cc -DNEED==2 main.c -UNEED -DNEED=3 add.c

the -U options removes the previous definition of "NEED" and allows a new
one.

2.15 Defining the Include Directories

You can explicitly define the directories containing include files by using the -I
(for "indude") option. This option adds the given directory to the list of
directories containing include files. These directories are automatically
searched whenever you give an include directive in which the filename is
enclosed in angle brackets. The option has the form

-I dire ctor11name

where directoryname is a valid pathname to a directory containing include
files. For example, the command

cc -Imyinclude main.c

2-10

Cc: A C Compiler

causes the compiler to search the directory myinclude for include files
requested by the source file main. c.

The directories are searched in the order they arc given and only until the given
include file is found. The fun/include directory is the default include directory
and is always searched first.

2.16 Error Messages

The cc command itself produces error messages. It also lets the XENIX C
compiler, C preprocessor, C optimizer, assembler, and linker programs detect
and announce any errors found in t.he source files or command options. The
error messages are usually preceded by the name of the program which
detected the error. Ir the error is severe, the �c command terminates and leaves
all files unchanged. Otherwise, it proceeds with the compilation and linking of
the given source files if you have given the appropriate commands.

Most error messages are generated by the C compiler. This displays messages
about errors found during compilation such as incorrect synt3.X, undefined
variables, and illegal use of operators. Error messages from the compiler begin
with the name of the source file and list t.he number of the line containing the
error.

The XENIX linker also generat.es many error messages. It displays messages
about errors found during linking such as undefined symbols and misnamed
libraries. The preprocessor, optimizer, and assembler also display messages if
errors are found. For example, the preprocessor displays an error message if it
cannot find an include file.

For convenience, you should use the XENIX C program checker lint before
compiling your C source files. Lint performs detailed error checking on a source
file and provide a list of actual errors and possible problems which may affect
execution of the program. See Chapter 3, "Lint: A C Program Checker" for a
description of lint.

2-11

Chapter 3

Lint: A C Program Checker

3.1 Introduction 3-1

3.2 Invoking lint 3-1

3.3 Checking for Unused Variables and Functions 3-2

3.4 Checking Local Variables 3-3

3.5 Checking for Unreachable Statements 3-4

3.6 Checking forlnfinite Loops 3-4

3.7 Checking Function Return Values 3-.S

3.8 Checking for Unused Return Values 3-6

3.9 Checking Types 3-6

3.10 Checking Type Casts 3-7

3.11 Checking for Nonportable Character Use 3-7

3.12 Checking for Assignment oflongs to ints 3-7

3.13 Checking for S trange Constructions 3-8

3.14 Checking forUseofOider C Syntax 3-9

3.15 Checking Pointer Alignment 3-10

3.16 Checking Expression Evaluation Order 3-10

3.17 EmbeddingDirectives 3-11

3.18 Checking For Library Compatibility 3-12

Lint: A C Program Checker

3.1 Introduction

This chapter explains how to use the C program checker lint. The program
examines C source files and warns or errors or misconstructions that may cause
errors during compilation or the file or during execution of the compiled file.

In particular, lint checks for:

Unused functions and variables

Unknown values in local variables

Unreachable statements and infinite loops

Unused and misused return values

Inconsistent types and type casts

Mismatched types in assignments

Nonportable and old fashioned syntax

Strange constructions

Inconsistent pointer alignment and expression evaluation order

The lint program and the C compiler are generally used together to check and
compile C language programs. Although the C compiler compiles C language
source files, it does not perform the sophisticated type and error checking
required by many programs, though syntax is gone over. The lint program,
provides additional checking of source files without compiling.

3.2 Invoking lint
You can invoke lint program by typing

lint [option) ... filename ... lib ...

where option is a command option that defines how the checker should operate,
filename is the name of the C language source file to be checked, and lib is the
name of a library to check. You can give more than one option, filename, or
library name in the command. If you give two or more filenames, lint assumes
that the files belong to the same program and checks the files accordingly. For
example, the command

lint main.c add.c

treats main.c and add.c as two parts ora complete program.

3-1

XENIX Programmer's Guide

If lint discovers errors or inconsistencies in a source file, it produces messages
describing the problem. The message has the form

filename (num): deuription

where filename is the name of the source file containing the problem, num is the
number of the line in the source containing the problem, and de3cription is a
description of the problem. For example, the message

main.c (3): warning: x unused in function main

shows that the variable " x" , defined in line three of the source file main.c, is not
used anywhere in the file.

3.3 Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by seeing if each
declared variable and function is used in at least once in the source file. The
program considers a variable or function used if the name appears in at least
one statement. It is not considered used if it only appears on the left side of on
assignment. For example, in the following program fragment

main ()
{

int x,y,z;

x = l ; y=2; z=x+y;

the variables "x" and "y" are considered used, but variable "z" is not.

Unused variables and functions often occur during the development of large
programs. It is not uncommon for a programmer to remove all references to a
variable or function from a source file but forget to remove its declaration.
Such unused variables and functions rarely cause working programs to fail, but
do make programs larger, harder to understand and change. Checking for
unused variables and functions can also help you find variables or functions
that you intended to used but accidentally have left out orthe program.

Note that the lint program does not report a variable or function unused if it is
explicitly declared with the extern storage class. Such a variable or function is
assumed to be used in another source file.

You can direct lint to ignore all the external declarations in a source file by
using the -x (for "external") option. The option causes the program checker to
skip any declaration that begins with the extern storage class.

The option is typically used to save time when checking a program, especially if
all external declarations are known to be valid.

3-2

Lint: A C Program Checker

Some programming styles require functions that perform closely related tasks
to have the same number and type of arguments regardless of whether or not
these arguments are used. Under normal operation, lint reports any argument
not used as an unused variable, but you can direct lint to ignore unused
arguments by using the -v option. The -v option causes lint to ignore all
unused function arguments except for those declared with register storage
class. The program considers unused arguments of this class to be a
preventable waste of t he register resources of the computer.

You can dirert lint to ignore all unused variables and functions by using the -u
(for "unused") option. This option prevents lint from reporting variables and
functions it considers unused.

This option is typically used when checking a source file that contains just a
portion of a large program. Such source files usually contain declarations of
variables and functions that are intended to be used in other source files and are
not explicitly used within the file. Since lint can only check the given file, it
assumes that such variables or functions are unused and reports them as such.

3 .4 Checking Local Variables

The lint program checks all local variables to see that they are set to a value
before being used. Since local variables have either automatic or register
storage class, their values at the start of the program or function cannot be

. known. Using such a variable before assigning a value to it is an error.

The program checks the local variables by searching for the first assignment in
which the variable receives a value and the first statement or expression in
which the variable is used. If the first assignment appears later than the first
use, lint considers the variable inappropriately used. For example, in the
program fragment

char c;

ir(c != EOT)
c = getchar();

lint warns that the the variable "c" is used before it is assigned.

Ir the variable is used in the same statement in which it is assigned for the first
time, lint determines the order of evaluation of the statement and displays an
appropriate message. For example, in the program fragment

int i,total;

scanf(" %d" , &i);
total = total + i;

lint warns that the variable "total" is used before it is set since it appears on the

3-3

XE;-.;IX Programmer's Gu ide

right side of the same statement that assigns its first value.

3.5 Checking for Unreachable Statements

The lint program checks for unreachable statements, that is, for unlabeled
statements that immediately follow a goto, break, continue, or return
statement. During execution of a program, the unreachable statements never
receive execution control and are therefore considered wasteful. For example,
in the program fragment

int x,y;

return (x+y);
exit (1);

the function call ezit after the return statement is unreachable.

Unreachable statements are common when developing programs containing
large case con�tructions or loops containing break and continue statements.

During normal operation, li nt reports all unreachable break statements.
Unreachable break statements are relatively common (some programs created
by the yac c and lez programs contain hundreds) , so it may be desirable to
suppress these reports. You can direct lint to suppress the reports by using the
-b option.

Note that lint assumes that all functions eventually return control, so it does
not report as unreachable any statement that follows a function that takes

. control and never returns it. For example:

exit (1) ;
return;

the call to ezit causes the return statement to become an unreachable
statement, but lint does not report it as such.

3 .6 Check ing for Infinite Loops

The lint program checks for infinite loops and for loops which are never
executed. For example, the statement

while (1) { }

and

for (;;) {}
are both considered infinite loops. While the statements

3-4

Lint: A C Program Checker

while (0) { }

or

for (0;0;) { }

are never executed.

It is relatively common for valid programs to have such loops, but they are
generally considered errors.

3.7 Checking Function Return Values

The lint program checks that a function returns a meaningful value if
necessary. Some functions return values which are never used; some programs
incorrectly use function values that have never been returned. Lint addresses
these problems in a number of ways .

• Within a function definition, the appearance or both

return (expr);

and

return ;

statements is cause for alarm. In this case, lint produces the following error
message:

function name contains return(e) and return

It is difficult to detect when a function return is implied by the flow of control
reaching the end of the given function. This is demonstrated with a simple
example:

r(a)
{

}

if (a)

g ();
return (3);

Note that if the variable "a" tests false, then /will call the function g and then
return with no defined return value. This will trigger a report from lint. If g ,
like ezit, never returns, the message will still be produced when in fact nothing
is wrong. In practice, potentially serious bugs can be discovered with this
feature. It also accounts for a some of the noise messages produced by lint.

3-5

XE:-;"IX Programmer's Guide

3.8 Checking for Unused Return Values

The lint program checks for cases where a function returns a. value, but the
value is usually ignored. Lint considers functions that return unused values to
be inefficient, and functions that return rarely used values to be a. result of bad
programming style.

Lint also checks for cases where a function does not return a value but the value
is used anyway. This is considered a serious error.

3.9 Checking Types

Lint enforces the type checking rules of C more strictly than the C compiler.
The additional checking occurs in four major areas:

1. Across certain binary operators and implied assignments

2. At the structure selection operators

3. Between the definition and uses of functions

4. In the use of enumerations

There are a number of operators that have an implied balancing between types
of operands. The assignment, conditional, and relational operators have this
property. The argument of a return statement, and expressions used in
initialization also suffer similar conversions. In these operations, char, short,
int , long, un signed , float, and double types may be freely intermixed. The
types of pointers must agree exactly, except that arrays of x's can be intermixed
with pointers to x's.

The type checking rules also require that, in structure references, the left
operand of a pointer arrow symbol (->) be a pointer to a structure, the left
operand of a period (.) be a structure, and the right operand of these operators
be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int,
and unsigned. Point-ers can also be matched with the associated arrays. Aside
from these relaxations in type checking, all actual arguments must agree in
type with their declared counterparts.

For enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations, and that the only
operations applied are assignment (=) , initialization , equals (= =) ; and not
equals (!=). Enumerations may also be function arguments and return values.

3-6

Lint: A C Program Checker

3.10 Checking Type Casts

The type cast feature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment

p = 1 i

where "p" is a character pointer. Lint reports this as suspect. But consider the
assignment

p = (char •)I ;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. On the other hand, if this code is moved to another
machine, it should be looked at carefully. The -c option controls the printing
of comments about casts. When -c is in effect, casts are not checked and all
legal casts are passed without comment, no matter how strange the type mixing
seems to be.

3.11 Checking for Nonportable Character Use

Lint flags certain comparisons and assignments as illegal or non portable. For
example, the fragment

char c;

if((c = getchar()) < 0) . . .

works on some machines, but fails on machines where characters always take
on positive values. The solution is to declare "c" an integer, since getchar is
actually returning integer values. In any case, iint issues the message:

nonportable character comparison

A similar issue arises with bitfields. When ass!gnments of constant values are
made to bitfields, the field may be too small to hold the value. This is especially
true where on some machines bitfields are considered as signed quantities.
While it may seem counter-intuitive to consider that a 2-bit field declared of
type int cannot hold the value 3, the problem disappears if the bitfield is
declared to have type unsigned.

3 . 1 2 Checking for Assign ment of longs to ints

Bugs may arise from the assignment of a long to an int, because of a loss in

3-7

XENIX Programmer's Guide

accuracy in the process. This may happen in programs that have been
incompletely converted by changing type definitions with typedet. When a
typedet variable is changed from int to long, the program can stop working
because some intermediate results may be assigned to integer values, losing
accuracy. Since there are a number of legitimate reasons for assigning longs to
integers, you may wish to suppress detection ofthese assignments by using the
-a option.

3. 13 Checking for Strange Constructions

Several perfectly legal, but somewhat strange, constructions are flagged by
lint. The generated messa.ges encourage better code quality, clearer style, and
may even point out bugs. For example, in the statement

*p++ ;

the star (*) does nothing and lint prints:

null effect

The program fragment

unsigned x ;
it (x < 0} ...

is also strange since the test will never succeed. Similarly, the test

ir (x > o) ...
is equivalent to

if(X != 0)

which may not be the intended action. In these cases, lint prints the message:

degenerate unsigned comparison

It you use

if(1 I= 0) ...

then lint reports

constant in conditional context

since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence. Bugs ths.t
arise from misunderstandings about the precedence or operators can be

3-8

)

Lint: A C Program Checker

accentuated by spacing and formatting, making such bugs extremely hard to
find. For example, the statements

if(x&077 == 0) ...
or

x < <2 + 40

probably do not do what is intended. The best solution is to parenthesize such
expressions. Lint encourages this by printing an appropriate message.

Finally, lint checks variables that are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal, but is considered bad style,
usually unnecessary, 3,nd frequently a bug.

If you do not wish these heuristic checks, you can suppress them by using the -h
option.

3.14 Checking for Use of Older C Syntax

Li nt checks for older C constructions. These fall into two classes: assignment
operators and initialization.

The older forms of assignment operators (e.g., =+, =-, . . .) can cause
ambiguous expressions, such as

a =- I ;

which could be taken as either

a =- I ;

or

a = -1 i

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer, and preferred operators (e .g., +=,
-=) have no such ambiguities. To encourage the abandonment of the older
forms, lint checks for occurrences of these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int X I i

to initialize "x" to 1. This causes syntactic difficulties. For example

3-9

XENIX Programmer's Guide

int X (-1) j

looks somewhat like the beginning of a function declaration

int x (y) { . . .
and the compiler must read past "x" to determine what the declaration really
is. The problem is even more perplexing when the initializer involves a macro.
The current C syntax places an equal sign between the variable and the
initializer:

int x = -1 ;

This form is free ofany possible syntactic ambiguity.

3 . 1 5 Checking Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal
on others, due to alignment restrictions. For example, on some machines it is
reasonable to assign integer pointers to double pointers, since double precision
values may begin on any integer boundary. On other machines, however,
double precision values must begin on even word boundaries; thus, not all such
assignments make sense. Lint tries to detect cases where pointers are assigned
to other pointers, and such alignment problems might arise. The message

possible pointer alignment problem

results from this situation.

3 .16 Checking Expression Evaluation Order

In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines in which the
stack runs up, function arguments will probably be best evaluated from right
to left; on machines with a stack running down, left to right is probably best.
Function calls embedded :!.8 arguments or other functions may or may not be
treated in the same way as ordinary arguments. Similar issues arise with other
operators that have side effects, such as the assignment operators and the
increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly
compromised, the C language leaves the order of evaluation of complicated
expressions up to the compiler, and various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result is explicitly undefined.

3-10

Lint: A C Program Checker

Lint checks Cor the important special case where a simple scalar variable is
affected. For example, the statement

a[i) = b[i++) ;
will draw the comment:

warning: i evaluation order undefined

3.17 Embedding Directives
There are occasions when the programmer is smarter than lint. There may be
valid reasons Cor illegal type casts, functions with a variable number or
arguments, and other constructions that lint flags. Moreover, as specified in
the above sections, the flow or control information produced by lint often has
blind spots, causing occasional spurious messages about perfectly reasonable
programs. Some way or communicating with lint, typically to turn off its
output, is desirable. Therefore, a number or words are recognized by lint when
they are embedded in comments in a C source file. These words are called
directives. Lint directives are invisible to the compiler.

The first directive discussed concerns flow of control information. Ir a
particular place in the program cannot be reached, this can be asserted at the
appropriate spot in the program with the directive:

/• NOTREACHED •/
Similarly, ir you desire to turn off strict type checking for the next expression,
use the directive:

/• NOSTRICT •/

The situation reverts to the previous default after the next expression. The -v
option can be turned on Cor one function with the directive:

/• ARGSUSED •/
Comments about a variable number of arguments in calls to a function can be
turned off by preceding the function definition with the directive:

/• VARARGS •/

In some cases, it is desirable to check the first several arguments, and leave the
later arguments unchecked. Do this by following the VARARGS keyword
immediately with a digit giving the number or arguments that should be
checked. Thus:

3- 1 1

XENIX Programmer's Guide

/• VAR.ARGS2 •/

causes only the first two arguments to be checked. Finally, the directive

/• LINTLffiRARY •/

at the head or a file identifies this file &S a library declaration file, discussed in
the next section.

3.18 Checking For Library Compatibility

Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these libraries. This testing is
done by accessing library description files whose names are constructed from
the library directives. These files all begin with the directive

/• LINTLIDRARY •/

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to
the function. The "VARARGS" and "ARGSUSED" directives can be used to
specify features of the library functions.

Lint library files are processed like ordinary source files. The only difference is
that functions that are defined in a. library file, but are not used in a source file,
draw no comments. Lint does not simulate a. full library search algorithm, and
checks to see if the source files contain redefinitions of library routines.

By default, li nt checks the programs it is given against a standard library file,
which contains descriptions orthe programs that are normally loaded when a C
program is run. When the -p option is in effect, the portable library file is
checked containing descriptions orthe standard 1/0 library routines which are
expected to be portable across various machines. The -n option can be used to
suppress all library checking.

Lint library files are named "fusr/lib/11•�. The programmer may wish to
examine the lint libraries directly to see what lint thinks a function should
passed and return. Printed out, lint libraries also make satisfactory skeleton
quick-reference cards.

3-12

Ch apter 4

Make: A Program Maintainer

4.1 Introduction 4-1

4.2 Creating a Makefile 4-1

4.3 Invoking Make 4-3

4.4 Using Pseudo-Target Names 4-4

4.5 Using Macros 4-5

4.6 Using Shell Environment Variables 4-8

4.7 Using the Built-In Rules 4-9

4.8 Changing the Built-in Rules 4-10

4.9 Using Libraries 4-1 2

4.10 Troubleshooting 4-13

4 .11 Using Make: An Example 4- 13

Make: A Program Maintainer

4.1 Introduction

The make program provides an easy way to automate the creation of large
programs. Make reads commands from a user-defined "makefile" that lists
the files to be created, the commands that create them, and the files from which
they are created. When you direct make to create a program, it verifies that
each file on which the program depends is up to date, then creates the program
by executing the given commands. Ir a file is not up to date, make updates it
before creating the program. Make updates a program by executing explicitly
given commands, or one of the many built-in commands.

This chapter explains how to use make to automate medium-sized
programming projects. It explains how to create makefiles Cor each project, and
how to invoke make Cor creating programs and updating files. For more
details about the program, see mak e (CP) in theXENIX R efere nce Ma nual.

4.2 Creating a Makefile

A makefile contains one or more lines oC text called dependency lines. A
dependency line shows how a given file depends on other files and what
commands are required to bring a file up to date. A dependency line has the
Cor in

targ et ... : I de p e n de nt ...) I ; command ...)

where targ et is the filename or the file to be updated, dep e nde nt is the filename
oC the file on which the target depends, and comma nd is the XENIX command
needed to create the target file. Each dependency line must have at least one
command associated with it, even irit is only the null command (;).

You may give more than one target filename or dependent filename iC desired.
Each filename must be separated from the next by at least one space. The
target filenames must be separated from the dependent filenames by a colon (:).
Filenames must be spelled as defined by the XENIX system. Shell
metacharacters, such as star (*) and question mark (!), can also be used.

You may give a sequence of commands on the same line as the target and
dependent filenames, if you precede each command with a semicolon (;). You
can give additional commands on following lines by beginning each line with a
tab character. Commands must be given exactly as they would appear on a
shell command line. The at sign (@) may be placed in front oC a command to
prevent make from displaying the command before executing it. Shell
commands, such as cd(C), must appear on single lines; they must not contain
the backslash (\) and newline character combination.

You may add a comment to a makefile by starting the comment with a number
sign (#) and ending it with a newline character. All characters after the
'lumber sign are ignored. Comments may be place at the end or a dependency

4-1

XENIX Programmer's Guide

line if desired. Ir a command contains a number sign, it must be enclosed in
double quotation marks (").

Ir a dependency line is too long, you can continue it by typing a baekslash (\)
and a newline character.

The make file should be kept in the same directory as the given source files. For
convenience, the filenames makefile, Makefile, s. makefile, and B.Makefile
are provided as default filenames. These names are used by make if no explicit
name is given at invocation. You may use one of these names for your makefile,
or choose one of your own. Ir the filename begins with the e. prefix, make
assumes that it is an sees file and invokes the appropriate sees command to
retrieve the lastest version of the file.

To illustrate dependency lines, consider the following example. A program
named prog is made by linking three object files, z. o, g. o , and z. o . These object
files are created by compiling the C language source files z. c , g. c , and z. c .

Furthermore, the files z. c and g. c contain the line

#include " clefs"

This means that prog depends on the three object files, the object files depend
on the C source files, and two of the source files depend on the include file de/B.
You can represent these relationships in a makefile with the following lines.

prog: x.o y.o z.o
cc x.o y.o z.o -o prog

x.o: x.c clefs
cc -c x.c

y.o: y.c clefs
cc -e y.c

z.o: z . c
cc -c z.c

In the first dependency line, prog is the target file and z. o, g. o , and z. o are its
dependents. The command sequence

cc x.o y.o z.o -o prog

on the next line tells how to create prog if it is out of date. The program is out of
date if any one of its dependents has been modified since prog was last created.

The second, third, a.nd fourth dependency lines have the same form, with the
z. o , g. o , and z.o files as targets and z.c, 1J. c , z. c , and defs files as dependents.
Each dependency line has one command sequence which defines how to update
the given target file.

4-2

Make: A Program Maintainer

4.3 Invoking Make

Once you have a makefile and wish to update and modify one or more target
files in the file, you can invoke make by typing its name and optional
arguments. The invocation has the form

make I optio n I ... I macdef I .. . I target I ...

where optio n is a program option used to modify program operation, macdefiB
a macro definition used to give a macro a value or meaning, and target iB the
filename of the file to be updated. It must correspond to one of the target names
in the makefile. All arguments are optional. If you give more than one
argument, you must separate them with spaces.

You can direct make to update the first target file in the makefile by typing
just the program name. In this case, make searches for the files makefile,
Makefile, 1.makejile , and e.Makefile in the current directory, and uses the
first one it finds as the makefile. For example, assume that the current makefile
contains the dependency Jines given in the last section. Then the command

make

compares the current date of the prog program with the current date each of
the object files z. o , y.o, and z. o. It recreates prog if any changes have been
made to any object file since prog was last created. It also compares the current
dates of the object files with the dates of the four source files z.c , y. c , z.c , or
def•, and recreates the object files if the source files have changed. It does this
before recreating prog so that the recreated object files can be used to recreate
prog. If none of the source or object files have been altered since the last time
prog was created, make announces this fact and stops. No files are changed.

You can direct make to update a given target file by giving the filename of the
target. For example,

make x.o

causes make to recompile the z. o file, ifthe z.c or def• files have changed since
the object file was last created. Similarly, the command

make x.o z.o

causes make to recompile z. o and z.o if the corresponding dependents have
been modified. Make processes target names from the command line in a left to
right order.

4-3

XENIX Programmer's Guide

You can specify the name of the makefile you wish make to use by giving the -f
option in the invocation. The option has the form

-f filename

where jilen11.me is the name of the makefile. You must supply a full pathname if
the file is no t in the current directory. For example, the command

make -r makeprog

reads the dependency lines of the makefile named makeprog found in the
current directory. You can direct make to read dependency lines from the
standard input by giving "·" as the jilen11.me . Make reads the standard input
until the end-of-file character is encountered.

You may use the program options to modify the operation of the make
program. The following list describes some of the options.

-p Prints the complete set of macro definitions and dependency lines
in a makefile.

-i Ignores errors returned by XENIX commands.

-k Abandons work on the current entry, but continues on other
branches that do not depend on that entry.

-s Executes commands without displaying them.

-r Ignores the built-in rules.

-n Displays commands but does not execute them. Make even
displays lines beginning with the at sign (@).

-e Ignores any macro definitions that attempt to assign new values to
the shell's environment variables.

-t Changes the modification date of each target file without recreating
the files.

Note that make executes each command in the makefile by passing it to a
separate invocation of a shell. Because of this, care must be taken with certain
commands (e.g., cd and shell control commands) that have meaning only
within a single shell process; the results are forgotten before the next line is
executed. Iran error occurs, make normally stops the command.

4:.4 Using Pseudo-Target Names

It is often useful to include dependency lines that have pseudo-target names,
i.e., names for which no files actually exist or are produced. Pseudo-target

4-4

Make: A Program Maintainer

names allow make to perform tasks not directly connected with the creation of
a program, such as deleting old files or printing copies of source files. For
example, the following dependency line removes old copies of the given object
files when the pseudo-target name "cleanup" is given in the invocation of
make.

cleanup :
rm x.o y.o z.o

Since no file exists for a given pseudo-target name, the target is always assumed
to be out of date. Thus the associated command is always executed.

Make also has built-in pseudo-target names that modify its operation. The
pseudo-target name ".IGNORE" causes make to ignore errors during
execution of commands, allowing make to continue after an error. This is the
same as the -i option. (Make also ignores errors for a given command if the
command string begins with a hyphen (-).)

The pseudo-target name ".DEFAULT" defines the commands to be executed
either when no built-in rule or user-defined dependency line exists for the given
target. You may give any number of commands with this name. If
".DEFAULT" is not used and an undefined target is given, make prints a
message and stops.

The pseudo-target name ".PRECIOUS" prevents dependents of the current
target from being deleted. when make is terminated using the INTERRUPT or
QUIT key, and the pseudo-target name " .SILENT" has the same effect as the -s
option.

4.5 Using Macros

An important feature of a makefile is that it can contain macros. A macro is a
short name that represents a filename or command option. The macros can be
defined when you invoke make, or in the makefile itself.

A macro definition is a line containing a name, an equal sign (-), and a value.
The equal sign must not be preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading
blanks and tabs are stripped.) The following are valid macro definitions:

2 = xyz
abc = -ll -ly
LffiES =

The last definition assigns "LffiES" the null string. A macro that is never
explicitly defined has the null string a.s its value.

4-5

XENIX Programmer's Guide

A macro is invoked by preceding the macro name with a dollar sign; macro
names longer than one character must be placed in parentheses. The name of
the macro is either the single character after the dollar sign or a name inside
parentheses. The following are valid macro invocations.

$(CFLAGS)
$2
$(xy)
sz
$(Z)

The last two invocations are identical.

Macros are typically used as placeholders for values that may change from time
to time. For example, the following makefile uses a macro tor the names of
object files to be link and one for the names of the library.

OBJECTS - x.o y.o z.o
LIDES - -lin
prog: $(OBJECTS)

cc $(OBJECTS) $(LIDES) -o prog

If this makefile is invoked with the command

make

it will load the three object files with the lez library specified with the -lin
option.

You may include a macro definition in a command line. A macro definition in a
command line has the same form as a macro definition in a makefile. It spaces
are to be used in the definition, double quotation marks must be used to enclose
the definition. Macros in a command line override corresponding definitions
found in the make file. For example, the command

make "LIDES=-lln -lm"

loads assigns the library options-lin and -1m to "LIDES".

You can modify all or part of the value generated from a macro invocation
without changing the macro itself by using the "substitution sequence". The
sequence has the form

name : 1tt =[1tf)
where name is the name of the macro whose value is to be modified, ett is the
character or characters to be modified, and Iff is the character or characters to
replace the modified characters. If stf is not given, 1tt is replaced by a null
character.

4-6

Make: A Program Maintainer

The substitution sequence is typically used to allow user-defined
metacharacters in a make file. For example, suppose that ".x" is to be used as a
metacharacter for a prefix and suppose that a makefile contains the definition

FILES = progl.x prog2.x prog3.x

Then the macro invocation

$(FILES : .x=.o)

generates the value

progl.o prog2.o prog3.o

The actual value of "FILES" remains unchanged.

Make has five built-in macros that can be used when writing dependency lines.
The following is a list or these macros.

$• Contains the name or the current target with the suffiX removed.
Thus ir the current target is prog. o, $• contains prog. It may be
used in dependency lines that redefine the built-in rules.

$@ Contains the run pathname or the current target. It may be used in
dependency lines with user-defined target names.

$ < Contains the filename or the dependent that is more recent than the
given target. It may be used in dependency lines with built-in target
names or the .DEFAULT pseudo-target name.

$? Contains the filenames or the dependents that are more recent than
the given target. It may be used in dependency lines with user
defined target names.

$% Contains the filename or a library member. It may be used with
target library names (see the section "Using Libraries" later in this
chapter). In this case, $@ contains the name or the library and $%
contains the name or the library member.

You can change the meaning or a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D descriptor contains the
name or the directory containing the given file. IC the file is in the current
directory, the macro contains "." . A macro with the F descriptor cont.ains the
name or the given file with the directory name part removed. The D and F
descriptor must not be used with the $? macro.

4-7

XENIX Programmer's Guide

4.6 Using Shell Environment Variables

Make provides access to current values of the shell's environment variables
such as "HOME", "PATH", and "LOGIN". Make automatically assigns the
value of each shell variable in your environment to a macro of the same name.
You can access a variable's value in the same way that you access the value of
explicit ly defined macros. For example, in the following dependency line,
"$(HOME)" has the same value as the user's "HOME" variable.

prog :
cc $(HOME)/x.o S(HOME)fy.o /usr/pubfz.o

Make assigns the shell variable values after it assigns values to the built-in
macros, but before it assigns values to user-specified macros. Thus, you can
override the value of a shell variable by explicitly assigning a value to the
corresponding macro. For example, the following macro definition causes
make to ignore the current value of the "HOME" variable and use fu•rfpub
instead.

HOME = fusrfpub

If a makefile contains macro definitions that override the current values of the
shell variables, you can direct make to ignore these definitions by using the -e
option.

Make has two shell variables, "MAKE" and "MAKEFLAGS", that
correspond to two special-purpose macros.

The "MAKE" macro provides a way to override the -n option and execute
selected commands in a make file. When "t.fAKE" is used in a command, make
will always execute that command, even if -n has been given in the invocation.
The variable may be set to any value or command sequence.

The "MAKEFLAGS" macro contains one or more make options, and can be
used in invocations of make from within a makefile. You may assign any
make options to "t.fAKEFLAGS" except -C, -p, and -d. If you do not assign a
value to the macro , make automatically assigns the current options to it, i.e. ,
the options given in the current invocation.

The "t.fAKE" and "M.AKEFLAGS" variables, together with the -n option,
are typically used to debug makefiles that generate entire software systems.
For example, in the following makefile, setting "!\tAKE" to "make" and
invoking this file with the -n options displays all the commands used to
generate the programs progl, prqg2, and prqg9 without actually executing
them.

4-8

Make: A Program Maintainer

system : progl prog2 prog3
@echo System complete.

progl : progl.c
${MAKE) ${MAKEFLAGS) progl

prog2 : prog2.c
${MAKE) $(MAKEFLAGS) prog2

prog3 : prog3.c
$(MAKE) $(MAKEFLAGS) prog3

4.7 Using the Built-In Rules

Make provides a set of built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile, and create
up-to-date versions of these files if necessary. The built-in rules are identical to
user-defined dependency lines except that they use the suffix of the filename as
the target or dependent instead of the filename itselC. For example, make
automatically assumes that all files with the suffix . o have dependent files with
the suffiXes . c and . r.

When no explicit dependency line for a given file is given in a make file, make
automatically checks the default dependents of the file. It then forms the name
of the dependents by removing the suffiX of the given file and appending the
predefined dependent suffiXes. If the given file is out of date with respect to
these default dependents, make searches for a built-in rule that defines how to
create an up-to-date version of the file, then executes it. There are built-in rules
for the following files .

. o Object file

. c C source file

. r Ra.tfor source file

.f Fortran source file

. r Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.l Lex source grammar

For example, if the file :z. o is needed and there is an :z.c in the description or
directory, it is compiled. If there is also an :z.l, that grammar would be run
through le:z before compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They
provide the rules for creating common files from typical dependents.
Reconsider the example given in the section "Creating a Makefile". In this
example, the program prog depended on three object files :z. o, JI. O, and z. o.
These files in turr d�pended on the C language source files :z.c , JI.C , and z.c .

4-9

XENIX Programmer's Guide

The files z. c and !f. C also depended on the include file de/1. In the original
example each dependency and corresponding command sequence was explicitly
given. Many of these dependency lines were unnecessary, since the built-in
rules could have been used instead. The following is all that is needed to show
the relationships between these files.

prog: x.o y.o z.o
cc x.o y .o z .o -o prog

x.o y.o: defs

In this makefile, prog depends on three object files, and an explicit command is
given showing how to update pro g. However, the second line merely shows that
two objects files depend on the include file de/6. No explicit command sequence
is given on how to update these files if necessary. Instead, make uses the built
in rules to locate the desired C source files, compile these files, and create the
necessary object files.

4.8 Changing the Built-in Rules

You can change the built-in rules by redefining the macros used in these lines or
by redefining the commands associated with the rules. You can display a
complete list ofthe built-in rules and the macros used in the rules by typing

make -fp - 2>/devfnull </devfnull

The rules and macros are displayed at the standard output.

The macros of the built-in dependency lines define the names and optionsofthe
compilers, program generators, and other programs invoked by the built-in
commands. Make automatically assigns a default value to these macros when
you start the program. You can change the values by redefining the macro in
your makefile. For example, the following built-in rule contains three macros,
"CC", "CFLAGS", and "LOADLffiES" .

. c :
$(CC) $(CFLAGS) $< $(LOADLffiES) -o $@

I:' ou can redefine any of these macros by placing the appropriate macro
1efinition at the beginning of the makefile.

k'"ou can redefine the action of a built-in rule by giving a new rule in your
nakefile. A built-in rule has the form

6uffiz-rule :
command

11here 6uffiz-rule is a combination of sufl1xes showing the relationship of the
mplied target and dependent, and command is the XENIX command required

l-10

Make: A Program Maintainer

to carry out the rule. If more than one command is needed, they are given on
separate lines.

The new rule must begin with an appropriate •uffiz-rule. The available • uffiz
rule• are

.c .c
.sh .sh
.c.o .c .o
.c .c .s.o
.s .o .y.o
.y .o .l.o
.l .o .y.c
.y .c .I.e
.c.a .c .a
.s.a .h .h

A tilde () indicates an sees file. A single suffiX indicates a rule that makes an
executable file from the given file. For example, the suffix rule ".c" is tor the
built-in rule that creates an executable file from a C source file. A pair or
suffiXes indicates a rule that makes one file Crom the other. For example, ".e.o"
is Cor the rule that creates an object file (.o) file Crom a corresponding C source
file (. c).

Any commands in the rule may use the built-in macros provided by make. For
example, the following dependency line redefines the action of the .c.orule •

. c.o :
cc68 S< -c S•.o

If necessary, you can also create new •uffiz-rule• by adding a list oCnew suffiXes
to a makefile with ".SUFFIXES". This pseudo-target name defines the suffiXes
that may be used to make •uffiz-rule• Cor the built-in rules. The line has the
Corm

.SUFFIXES: • uffiz ...

where Buf!iz is usually a lowercase letter preceded by a dot (.). If more than one
suffiX is given, you must use spaces to separate them.

The order or the suffixes is significant. Each suffiX is a dependent or the suffiXes
preceding it. For example, the suffix list

.SUFFIXES: .o .c .y .I .s

causes prog.c to be a dependent or prog. o, and prog.y to be a dependent or
prog. c .

You can create new •uffiz-rule' by combining dependent suffiXeS with the suffiX
)r the intended target. The dependent suffix must appear first.

4-11

I{ENJX Programmer's Guide

r a ".SUFFIXES" list appears more than once in a makefile, the suffLXes are
ombined into a single list. Ir a " .SUFFIXES" is given that has no list, all
uffLXes are ignored.

l.9 Using Libraries

(ou can direct m ake to use a file contained in an archive library as a target or
lependent. To do this you must explicitly name the file you wish to access by
tsing a library name. A library name has the form

lib(member·ll4me)

1here lib is the name ofthe library containing the file, and membe r·ll4me is the
arne ofthe file. For example, the library name

libtemp.a(print.o)

efers to the object file pri11t. o in the archive library libtemp. 4.

'ou can create your own built-in rules for archive libraries by adding the . 4
uffLX to the suffix list, and creating new suffix combinations. For example, the
ombination ".c.a" may be used for a rule that defines how to create a library
1ember from a C source file. Note that the dependent suffix in the new
Jmbination must be different than the suffix of the ultimate file. For example,
!le combination ".c.a" can be used for a rule that creates . ofiles, but notfor one
1at creates .c files.

'he most common use of the library naming convention is to create a makefile
1at automatically maintains an archive library. For example, the following
ependency lines define the commands required to create a library, named lib,
mtaining up to date versions of the filesfilel.o, filet.o, and fileS.o.

lib:

.c.a:

lib(filel.o) lib(file2.o) lib(file3.o)
@echo lib is now up to date

$(CC) -c $(CFLAGS) $<
ar rv $@ $•.o
rm -r $•.o

he . c. 4 rule shows how to redefine a built-in rule for a library. In the following
:ample, the built-in rule is disabled, allowing the first dependency to create
1e library.

12

Make: A Program Maintainer

lib:

.c.a:;

lib(filel.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $?
@echo lib is now up to date

In this example, a substitution sequence is used to change the value or the "$?"
macro from the names or the object files "filel.o", "file2.o", and "file3.o" to
"filel.c", "file2.c", and "file3.c".

4.10 Troubleshooting

Most difficulties in using make arise from make's specific meaning or
dependency. Irthe file z. c has the line

#include " dels"

then the object file z. o depends on def•; the source file z. c does not. (Ir def• is
changed, it is not necessary to do anything to the file z.c, while it is necessary to
recreate z. o.)
To determine which commands make will execute, without actually executing
them, use the -n option. For example, the command

make -n

prints out the commands make would normally execute without actually
executing them.

The debugging option -d causes make to print out a very detailed description
or what it is doing, including the file times. The output is verbose, and
recommended only as a last resort.

Ir a change to a file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the -t (touch) option can save a lot of time. Instead
or issuing a large number or superfluous recompilations, make updates the
modification times on the affected file. Thus, the command

make -ts

which stands for touch silently, causes the relevant files to appear up to date.

4.11 Using Make: An Example

As an example or the use or make, examine the mar ·fiie, given in Figure 4-1,
used to maintain the make itself. The code for mak' is spread over a number

4-13

XENIX Programmer's Guide

of C source flies and a yacc grammar.

Make usually prints out each command before issuing it. The following output
results from typing the simple command

make

in a directory containing only the source and makefile:

cc -c vers.c
cc -c main.c
cc -c doname.c
cc -c misc. c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc vers.o main.o ... dosys.o gram.o -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the
makefile, make found them by using its suffix rules and issued the needed
commands. The string of digits results from the size make command.

The last few targets in the makefile are useful maintenance sequences. The
print target prints only the files that have been changed since the last make
print command. A zero-length file, print, is maintained to keep track of the
time of the printing; the $! macro in the command line then picks up only the
names of the files changed since print was touched. The printed output can be
sent to a different printer or to a file by changing the definition of the P macro.

4- 14

Make: A Program Maintainer

Figure 4-1. Makeflle Contents
Description file Cor the make command

Macro definitions below
P = lpr
FILES = Makefile vers.c ders main.c doname.c misc.c files.c dosys.c\

gram.y lex.c
0BJECTS = vers.o main.o ... dosys.o gram.o
LIBES=
LINT = lint -p
CFLAGS = -0

#targets: dependents
< TAB>actions

make: $(OBJECTS)
cc S(CFLAGS) $(OBJECTS) S(LffiES) -o make
size make

$(OBJECTS): dets
gram.o: lex.c

cleanup:
-rm •.o gram.c
-du

install:
@size make /usr /bin/make
cp make fusr /bin/make ; rm make

print: $(FILES) # print recently changed files
pr $! I SP

test:

touch print

make -dp I grep -v TIME > lzap
/usr/bin/make -dp I grep -v TIME >2zap
dilf lzap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c vers.c gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a $(FILES)

4-15

Chapter 5
S C C S : A Source

Control System Code

5 . 1 Introduction 5-1

5.2 Basic Information 5-1
5.2. 1 Files and Directories 5- 1
5.2.2 Deltas and SIDs 5-2

5.2.3 sees Working Files 5-3
5. 2.4 sees Command Arguments 5-4
5.2.5 File Administrator 5-4

5.3 Creating and Using S-files 5-5
5.3. 1 Creating an S-file 5-5
5.3.2 Retrieving a File for Reading 5-6
5 .3.3 Retrieving a File for Editing 5-7
5.3.4 Saving a New Version of a File 5-8
5.3.5 Retrieving a Specific Version 5-9

5.3.6 Changing the Release Number of a. File 5-9
5 .3.7 Creating a Branch Version 5-10
5.3.8 Retrieving a Branch Version 5-10
5.3.9 Retrieving the Most Recent Version 5-11
5.3. 10 Displaying a Version 5-11
5.3. 11 Saving a Copy of a New Version 5-12
5.3. 12 Displaying Helpful Information 5-1 2

5.4 Using Identification Keywords 5-13
5 .4 . 1 Inserting a Keyword into a File 5-13
5.4.2 Assigning Values to Keywords 5- 14
5.4.3 Forcing Keywords 5-14

5.5 Using S-tile Flags 5-15
5.5. 1 Setting S-file Flags 5-1 5
5.5.2 Using the i Flag 5-1 5
5. 5.3 Using the d Flag 5-16

5.5.4 Using thev Flag 5-16

5.5.5 Removing an S-file Flag 5-16

5.6 Modifying S-file Information 5-16

5.6. 1 Adding Comments 5-17
5.6.2 Changing Comments 5-17

5.6.3 Adding Modification Requests 5-18

5.6.4 Changing Modification Requests 5-18

5.6.5 Adding Descriptive Text 5-19

5.7 Printing from an S-file 5-20
5.7. 1 Using a Data Specification 5-20
5.7.2 Printing a Specific Version 5-20
5.7.3 Printing Later and Earlier Versions 5-21

5.8 Editing by Several Users 5-21

5.8. 1 Editing Different Versions 5-21

5.8. 2 Editing a Single Version 5-22

5.8.3 Saving a Specific Version 5-22

5.9 Protecting S-files 5-23

5. 9. 1 Adding a User to the User List 5-23

5.9.2 Removing a User from a User List 5-23

5. 9.3 Setting the Floor Flag 5-24

5. 9.4 Setting the Ceiling Flag 5-24

5.9.5 Locking a Version 5-24

5.10 Repairing sees Files 5-25

5. 10. 1 Checking an S-file 5-25

5. 10.2 Editing an S-file 5-25

5. 10.3 Changing an S-file's Checksum 5-26

5. 10 .4 Regenerating a G-file for Editing 5-26

5. 10.5 Restoring a Damaged P-file 5-26

5. 1 1 Using Other Command Options 5-26

5.11.1 Getting Help With sees Commands 5-26

5. 1 1. 2 Creating a File With the Standard Input 5-27

5 . 11.3 Starting At a Specific Release 5-27

5.11 .4 Adding a Comment to the First Version 5-27
5.11.5 Suppressing Normal Output 5-28
5 . 11 .6 Including and Excluding Deltas 5-28

r Listing the Deltas ofa Version 5-29
Mapping Lines to Deltas 5-30
Naming Lines 5-30

lO Displaying a List of Differences 5-30

ll Displaying File Information 5-30
l2 Removing a Delta 5-31
l3 Searching Cor Strings 5-31
!4 Comparing SCCS Files 5-32

)

SCCS : A Source Code Control System

5.1 Introduction

The Source Code Control System (sees) is a collection of XENIX commands
that create, maintain, and control special files called sees files. The sees
commands let you create and store multiple versions of a program or document
in a single file, instead of one file for each version. The commands let you
retrieve any version you wish at any time, make changes to this version, and
save the changes as a new version or the file in the sees file.

The sees system is useful wherever you require a compact way to store
multiple versions of the same file. The sees system provides an easy way to
update any given version of a file and explicitly record the changes made. The
commands are typically used to control changes to multiple versions of source
programs, but may also be used to control multiple versions of manuals,
specifications, and other documentation.

This chapter explains how to make sees files, how to update the files contained
in sees files, and how to maintain the sees files once they are created. The
following sections describe the basic information you need to start using the
sees commands. Later sections describe the commands in detail.

5.2 Basic Information

This section p.rovides some basic information about the sees system. In
particular, it describes ·

Files and directories

Deltas and S!Ds

sees working files

sees command arguments

File administration

5.2.1 Files and Directories

All sees files (also called s-files) are originally created from text files containing
documents or programs created by a user. The text files must have been created
using a XENIX text editor such as vi. Special characters in the files are allowed
only if they are also allowed by the given editor.

To simplify s-file storage, all logically related files (e.g., files belonging to the
same project) should be kept in the same directory. Such directories should
contain s-files only, and should have read and examine permission for everyone,
and write permission for the user only.

5-1

XE="IX Programmer's Guide

Note that you must not use the XENIX link command to create multiple copies
or an s-file.

6.2.2 Deltas and SIDs

Unlike an ordinary text file, an sees file (or s-file for short} contains nothing
more than lists or changes. Each list corresponds to the changes needed to
construl!t exactly one version or the file. The lists can then be combined to
create the desired version from the original.

Each list of changes is called a "delta". Each delta has an identification string
called an "SID". The SID is a string or at least two, and at most four, numbers
separated by periods. The numbers name the version and define how it is
related to other versions. For example, the first delta is usually numbered 1 . 1
and the second 1 .2.

The first number in any SID is called the "release num her". The release number
usually indicates a group or versions that are similar and generally compatible.
The second number in the SID is the "level number". It indicates major
differences between files in the same release.

An SID may also have two optional numbers. The "branch number", the
optional third number, indicates changes at a particular level, and the
"sequence number", the fourth number, indicates changes at a particular
branch. For example, the SIDs 1 .1 .1. 1 and 1.1.1.2 indicate two new versions
that contain slight changes to the original delta 1.1.

An s-file may at any time contain several different releases, levels, branches,
and sequences or the same file. In general, the maximum number or releases an
s-file may contain is 9999, that is, release numbers may range from I to 9999.
The same limit applies to level, branch, and sequence numbers.

When you create a new version, the sees system usually creates a new SID by
incrementing the level number or the original version. Ir you wish to create a
new release, you must explicitly instruct the system to do so. A change to a
release number indicates a major new version of the file. How to create a new
version or a file and change release numbers is described later.

The sees system creates a branch and sequence number for the SID or a new
version, if the next higher level number already exists. For example, if you
change version 1.3 to create a version 1.4 and then change 1.3 again, the sees
system creates a new version named 1.3.1 . 1.

Version numhers can become quite complicated. In general, it is wise to keep
the numbers as simple as possible by carefully planning the creation or each
new version.

SCCS : A Source Code Control System

1>.2.3 sees Working Files

The sees system uses several different kinds of files to complete its tasks. In
general, these files contain either actual text, or information about the
commands in progress. For convenience, the sees system names these files by
placing a prefix before the name of the original file from which all versions were
made. The following is a list of the working files.

s-file A permanent file that contains all versions of the given text file.
The versions are stored as deltas, that is, lists of changes to be
applied to the original file to create the given version. The name of
an s-file is formed by placing the file prefix e. at the beginning of the
original filename.

x-file A temporary copy of the s-file. It is created by sees commands
which change the s-file. It is used instead of the s-file to carry out the
changes. When all changes are complete, the sees system removes
the original s-file and gives the x-file the name of the original s-file.
The name of the x-file is formed by placing the prefix �. at the
beginning of the original file.

g-file An ordinary text file created by applying the deltas in a given s-file
to the original file. The g-file represents a copy of the given version
of the original file, and as such receives the same filename as the
original. When created, a g-file is placed in the current working
directory of the user who requested the file.

p-file A special file containing information about the versions of an s-tile
currently being edited. The p-file is created when a g-file is
retrieved from the s-file. The p-file exists until all currently
retrieved files have been saved in the s-file; it is then deleted. The
p-file contains one or more entries describing the SID of the
retrieved g-file, the proposed SID of the new, edited g-file, and the
login name of the user who retrieved the g-file. The p-file name is
formed by placing the prefix p. at the beginning of the original
filename.

z-file A lock file used by sees commands to prevent two users from
updating a single sees file at the same time. Before a command
modifes an sees file, it creates a z-file and copies its own process 10
to it. Any other command which attempts to access the file while
the z-file is present displays an error message and stops. When the
original command has finished its tasks, it deletes the z-file before
stopping. The z-file name is formed by placing the prefix z. at the
beginning of the original filename.

I-file A special file containing a list of the deltas required to create a given
version of a file. The]-file name is formed by placing the prefix l. at
the beginning of the original filename.

5-3

XENIX Programmer 's Guide

d-file A temporary copy ofthe g-file used to generate a new delta.

q-file A temporary file used by the delta command when updating the p
file. The file is not directly accessible.

In general, a user never directly accesses x-files, z-files, d-files, or q-files. Ir a
system crash or similar situation abnormally terminates a command, the user
may wish delete these files to ensure proper operation or subsequent sees
commands.

5.2.4 sees Command Arguments

Almost all sees commands accept two types or arguments: options and
filenames. These appear in the sees command line immediately after the
command name.

An option indicates a special action to be taken by the given sees command.
An option is usually a lowercase letter preceded by a minus sign (-). Some
options require an additional name or value.

A filename indicates the file to be acted on. The syntax Cor sees filenames is like
other XENIX filename syntax. Appropriate pathnames must be given if
required. Some commands also allow directory names. In this case, all files in
the directory are acted on. Ir the directory contains non-sees and unreadable
files, these are ignored. A filename must not begin with a minus sign (-).
The special symbol - may be used to cause the given command to read a list or
filenames from the standard input. These filenames are then used as names Cor
the files to be processed. The list must terminate with an end-of-file character.

Any options given with a command apply to all files. The sees commands
process the options before any filenames, so the options may appear anywhere
on the command line.

Filenames are processed left to right. Ira command encounters a fatal error, it
stops processing the current file and, if any other files have been given, begins
processing the next.

5 .2.5 File Administrator

Every sees file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file and therefore
owns it. Before other users can access the file, the administrator must ensure
that they have adequate access. Several sees commands let the administrator
define who has access to the versions in a given s-file. These are described later.

5-4

SCCS: A Source Code Control System

5.3 Creating and Using S-files

The s-file is the key element in the sees system. It provides compact storage
Cor all versions of a given file and automatic maintenance of the relationships
between the versions.

This section explains how to use the admin, get, and delta commands to
create and use s-files. In particular, it describes how to create the first version
or a file, how to retrieve versions for reading and editing, and how to save new
versions.

5.3. 1 Creating an S-file

You can create an s-file from an existing text file using the -i (for "initialize")
option ofthe ad min command. The command has the form

admin -ifilename e.filename

where -ifilename gives the name of the text file from which the s-file is to be
created, and s.file name is the name of the new s-file. The name must begin with
11. and must be unique; no other s-file in the same directory may have the same
name. For example, suppose the file named demo.c contains the short C
language program

#include <stdio.h>

main ()
{
printf(" This is version 1.1 \n");
}

To create an s-file, type

admin -idemo.c s.demo.c

This command creates the s-file e.demo.c, and copies the first delta describing
the contents of demo.c to this new file. The first delta is numbered 1.1.

After creating an s-file, the original text file should be removed using the r m
command, since it is no longer needed. If you wish to view the text file or make
changes to it, you can retrieve the file using the get command described in the
next section.

When first creating an s-file, the admin command may display the warning
message

No id keywords (cm7)

5-5

XENIX Programmer's Guide

In general, this message can be ignored unless you have specifically included
keywords in your file (see the section, "Using Identification Keywords" later in
this chapter).

Note that only a user with write permission in the directory containing the s-file
may use the admin command on that file. This protects the file from
administration by unauthorized users.

5.3.2 Retrieving a File for Reading

You can retrieve a file for reading from a given s-file by using the get command.
The command has the form

get r.filename ...

where •.filename is the name of the s-file containing the text file. The command
retrieves the las test version or the text file and copies it to a regular file. The file
has the same name as the s·file but with the '· removed. It also has read-only
file permissions. For example, suppose the s-file r. demo.e contains the first
version or the short C program shown in the previous section. To retrieve this
program, type

get s.demo.c

The command retrieves the program and copies it to the file named demo.c .
You may then display the file just as you do any other text file.

The command also displays a message which describes the SID or the retrieved
file and its size in lines. For example, after retrieving the short C program from
r. demo.e, the command displays the message

1.1
6 lines

You may also retrieve more than one file at a time by giving multiple s-file
names in the command line. For example, the command

get s.demo.c s.def.h

retrieves the contents or the s-files r.demo.e and e.def.h and copies them to the
text files de mo.e and def.h. When giving multiple s-lile names in a command,
you must separate each with at least one space. When the get command
displays information about the files, it places the corresponding filename before
the relevent information.

5-6

SCCS: A Source Code Control System

5 .3.3 Retrieving a File for Editing

You can retrieve a file for editing from a given s-file .by using the -e (for
"editing") option of the get command. The command has the form

get -e IJ.filename . • •

where t.filename is the name of the s-file containing the text file. You may give
more than one filename if you wish. If ,you do, you must separate each name
with a space.

..

The command retrieves the lastest version of the text file and copies it to an
ordinary text file. The file has the same name as the s-file but with the 11.
removed. It has read and write file permissions. For example, suppose the s-file
11.demo.c contains the first version or a C program. To retrieve this program,
type

get -e s.demo.c

The command retrieves the program and copies it to the file named demo.c .
You may edit the file just as you do any other text file.

It you gh·e more than one filename, the command creates files for each
corresponding s-file. Since the -e option applies to all the files, you may edit
each one.

Arter retrieving a. text file, the command displays a message giving the SID of
the file and its size in lines. The message also displays a proposed SID, that is,
the SID for the new version after editing. For example, after retrieving the six
line C program in e. demo.c , the command displays the message

1.1
new delta 1.2
S lines

The proposed SID is 1.2. If more than one file is retrieved, the corresponding
filename precedes the relevant information.

Note that any changes made to the text file are not immediately copied to the
corresponding s-file. To save these changes you must use the delta command
described in the next section. To help keep track of the current file version, the
get command creates another file, called a p-file, that contains information
about the text file. This file is used by a subsequent delta command when
saving the new version. The p-file has the same name as the s-file but begins
with a p . • The user must not access the p-file directly.

5-7

XENIX Programmer's Guide

6.3.4 Saving a New Version or a File

You can save a new version of a text file by using the delta command. The
command has the form

delta • .filenam e

where r .filename is the name of the s-file from which the modified text file was
retrieved. For example, to save changes made to a C program in the file demo.e
(which was retrieved from the file 1.demo.c), type

delta s.demo.c

Before saving the new version, the delta command asks for comments
explaining the nature ofthe changes. It displays the prompt

comments?

You may type any text you think appropriate, up to 512 characters. The
comment must end with a newline character. Ir nect-ssary, you can start a new
line by typing a backslash (\) fo).)owed by a newline character. Ir you do not
wish to include a comment, just type a newline character.

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the original version with the new version. A
list of all the changes is copied to the s-file. This is the new delta.

Aftt-r a command has copied the new delta to the s-file, it displays a message
showing the new SID and the number of lines inserted, deleted, or left
unchanged in the new version. For example, if the C program has been changed
to

#include <stdio.h>

main ()
{
int i == 2;

printf(" This is version 1. %d 0, i);
}

the command displays the message

1.2
3 inserted
1 deleted
5 unchanged

Once a new version is saved, the next get command retrieves the new version.

5-8

SCCS: A Source Code Control System

The command ignores previous versions. IC you wish to retrieve a previous
version, you must use the -r option or the get command as described in the
next section.

5 .3.5 Retrieving a Specific Version

You can retrieve any version you wish from an s-file by using the -r (Cor
"retrieve") or the get command. The command has the form

get (-e) -rS/D •.filename ...

where -e is the edit option, -r SID gives the SID of the version to be retrieved,
and •.fileMme is the name of the s-file containing the file to be retrieved. You
may give more than one filename. The names must be separated with spaces.

The command retrieves the given version and copies it to the file having the
same name as s-file but with the '· removed. The file has read-only permission
unless you also give the -e option. Ir multiple filenames are given, one text file
of the given version is retrieved from each. For example, the command

get -r 1. 1 s.demo.c

retrieves version 1 .1 from the s-file 1.tlemo.c, but the command

get -e -rl.l s.demo.c s.def.h

retrieves Cor editing a version 1.1 from both 1.tlemo.c and l.tlef.h. If you give
the number or a version that does not exist, the command displays an error
message.

You may omit the level number of a version number if you wish, that is, just
give a release number. Ir you do, the command automatically retrieves the
most recent version having the same release number. For example, if the most
recent version in the file 1.tlemo.c is numbered 1.4, the command

get -rl s.demo.c

retrieves the version 1.4. Ir there is no version with the given release number,
the command retrieves the most recent version in the previous release.

5.3.6 Ch anging the Release Number of a File

You can direct the delta command to change the release number or a new
version or a file by using the -r option or the get command. In this ease, the get
command has the Corm

get -e -rrel-num e.filename ...

5-D

XENIX Programmer's Guide

where -e is the required edit option, -rrel-num gives the new release number of
the file, and l.fi/eftiZme gives the name or the s-tile containing the file to be
retrievt>d. The new release number must be an entire·ly new number, that is, no
existing version may have this number. You may give more than one filename.

The command retrieves the most recent version from the s-tile, then copies the
new relea�e number to the p-file. On the subsequent delta command, the new
version is saved using the new release number and level number 1. For example,
irthe most recent version in the s-tile 1.tlemo.c is 1.4, the command

get -e -r2 s.demo.c

causes the subsequent delta to save a new version 2.1, not 1.5. The new release
number applies to the new version only; the release numbers of previous
versions are not affected. Therefore, if you edit version 1.4 (from which 2.1 was
derived) and save the changes, you create a new version 1.5. Similarly, if you
edit version 2.1, you create a new version 2.2.

As before, the get command also displays a message showing the current
version number, the proposed version number, and the size olthe file in lines.
Similarly, the subsequent delta command displays the new version number
and tht> number of lines inserted, deleted, and unchanged in the new file.

5.3.7 Creating a Branch Version

You can create a branch version of a file by editing a version that has been
previously edited. A branch version is simply a version whose SID contains a
branch and sequence number.

For example, ifversion 1.4 already exists, the command

get -e -r1.3 s.demo.c

retrieves version 1.3 for editing and gives 1.3.1.1 as the proposed SID.

[n general, whenever get discovers that you wish to edit a version that already
has a succeeding version, it uses the first available branch and sequence
numbers for the proposed SID. For example, if you edit version 1.3 a third time,
get, gives 1.3.2. 1 as the proposed SID.

You can save a branch version just like any other version by using the delta
:ommand.

).3.8 Retrieving a Branch Version

t•ou can retrieve a branch version of a file by using the -r option or the get
:ommand. For example, the command

i-10

SCCS: A Source Code Control System

get -r1.3. 1 .1 s.demo.c

retrieves branch version 1.3.1.1.

You may retrieve a branch version for editing by using the -e option of the get
command. When retrieving for editing, get creates the proposed SID by
incrementing the sequence number by one. For example, if you retrieve
branch version 1.3. 1 .1 for editing, get gives 1.3.1.2 as the proposed SID •

.A13 always, the command displays the version number and file size. Irthe given
branch version does not exist, the command displays an error message.

You may omit the sequence number if you wish. In this case, the command
retrieves the most recent branch version with the given branch number. For
example, if the most recent branch version in the s-file l.def.lt. is 1.3.1.4, the
command

get -r 1.3.1 s.def.h

retrieves version 1.3. 1.4.

5.3.0 Retrieving the Most Recent Version

You can always retrieve the most recent version of a file by using the -t option
with the get command. For example, the command

get -t s.demo.c

retrieves the most recent version from the file l.dtmo.c . You may combine the
-r and -t options to retrieve the most recent version of a given release number.
For example, if the most recent version with release number 3 is 3.5, then the
command

get -r3 -t s.demo.c

retrieves version 3.5. If a branch version exists that is more recent than version
3.5 (e.g., 3.2.1.5), then the above command retrieves the branch version and
ignores version 3.5.

5.3.1 0 Displaying a Version

You can display the contents of a version at the standard output by using the
-p option of the get command. For example, the command

get -p s.demo.c

displays the most recent version in the s-file 1.demo. c at the standard output.
Similarly, the command

5-11

XENIX Programmer's Guide

get -p -r2. 1 s.demo.c

displays version 2. 1 at the standard output.

The -p option is useful tor creating g·flles with user-supplied names. This
option also directs all output normally sent to the standard output, such as the
SID or the retrieved file, to the standard error file. Thus, the resulting file
contains only the contents or the given version. For example, the command

get -p s.demo.c >version.c

copies the most recent version in the s·file 1.demo.c to the file tter�ion. c . The
SID otthe file and its size is copied to the standard error ftle.

5.3.11 Saving a Copy of a New Version

The delt.a command normally removes the edited file arter saving it in the
s-file. You can save a copy or this file by using the -n option or the delta
command. For example, the command

delta -n s.demo.c

first saves a new version in the s·file 1.demo.c, then saves a copy ofthisversion
in the file demo. c. You may display the file as desired, but you cannot edit the
file.

5.3.1 2 Displaying Helpful Information

An sees command displays an error message whenever it encounters an error
in a file. An error message has the rorm

ERROR [filename): muuge (code)

where filename is the name or the file being processed, me11age is a short
description or the error, and c ode is the error code.

You may use the error code as an argument to the help command to display
additional information about the error. The command has the form

help code

where c ode is the error code given in an error message. The command displays
one or more lines or text that explain the error and suggest a possible remedy.
For example, the command

help col

displays the message

0.12

SCCS: A Source Code Control System

col:
• not an sees file"
A file that you think is an sees file
does not begin with the characters • s." .

The help command can be used at any time.

5.4 Using Identification Keywords

The sees system provides several special symbols, called identification
keywords, which may be used in the text oh program or document to represent
a predefined value. Keywords represent a wide range of values, from the
creation date and time of a given file, to the name of the module containing the
keyword. When a user retrieves the file for reading, the sees system
automatically replaces any keywords it finds in a given version of a fila with the
keyword's value.

This section explains how keywords are treated by the various sees
commands, and how you may use the keywords in your own files. Only a few
keywords are described in this section. For a complete list of the keywords, see
the section get(eP) in the XENIX Reference Manual.

5.4.1 Inserting a Keyword into a File

You may insert a keyword into any text file .A keyword is simply an uppercase
letter enclosed in percent signs (%). No special characters are required. For
example, "%1%" is the keyword representing the SID of the current version,
and "%H%" is the keyword representing the current date.

When the program is retrieved for reading using the get command, the
keywords are replaced by their current values. For example, if the "%M%",
"%1%", and "%H" keywords are used in place of the module name, the SID,
and the current data in a program statement

char header(IOO) = {" %M% %1% %H% " };
then these keywords are expanded in the retrieved version of the program

char header(IOO) = {" MODNAME 2.3 07/07/77 " };

The get command does not replace keywords when retrieving a version for
editing. The system assumes that you wish keep the keywords (and not their
values) when you save the new version of the file.

To indicate that a file has no keywords, the get, delta, and ad min commands
display the message

5-13

XENlX Programmer's Guide

No id keywords (cm7)
This message is normally treated as a warning, letting you know that no
keywords are present. However, you may change the operation of the system to
make this a fatal error, as explained later in this chapter.

5.4.2 Assigning Values to Keywords

The values of most keywords are predefined by the system, but some, such as
the value for the "%M%" keyword can be explicitly defined by the user. To
assign a value to a keyword, you must set the corresponding s-file flag to the
desired value. You can do this by using the -foption ofthe ad min command.

For example, to set the %1\.f% keyword to "edema", you must set the m flag as
in the command

admin -fmcdemo s.demo.c

This command records "edema" as the current value of the %M% keyword.
Note that if you do not set the m flag, the sees system uses the name of the
original text file for %M% by default.

The t and q flags are also associated with keywords. A description of these flags
and the corresponding keywords can be found in the section get(CP) in the
XENIX Reference Manual. You can change keyword values at any time.

5.4.3 Forcing Keywords

If a version is found to contain no keywords, you can force a fatal error by
setting the i flag in the given s-file. The flag causes the delta and admin
commands to stop processing of the given version and report an error. The flag
is useful for ensuring that keywords are used properly in a given file.

To set the i flag, you must use the -r option of the ad min command. For
example, the command

admin -fi s.demo.c

sets the i flag in the s-file e.demo.c. Ir the given version does not contain
keywords, subsequent delta or ad min commands that access this file print an
error message.

Note that if you attempt to set the i flag at the same time as you create an &-file,
and if the initial text file contains no keywords, the ad min command displays a
fatal error message and stops without creating the s-file.

5-14

SCCS: A Source Code Control System

5.5 Using S-file Flags

An s-file flag is a special value that defines how a given sees command will
operate on the corresponding s-file. The s-file flags are stored in the s-file and
are read by each sees command before it operates on the file. S-file flags affect
operations such as keyword checking, keyword replacement values, and
default values for commands.

This section explains how to set and use s-file flags. It also describes the action
of commonly-used flags. For a complete description of all flags, see the section
admin(CP) in the XENIX Reference Manual.

5 .5.1 Setting S-file Flags

You can set the flags in a given s-file by using the -f option of the admin
command. The command has the form

admin -fftag s.filename

where -fftag gives the flag to be set, and s.filename gives the nameofthe s-file in
which the flag is to be set. For example, the command

admin -fi s.demo.c

sets t.he i flag in the s-file s.demo. c .

Note that some s-file flags take values when they are set. For example, the m
flag requires that a module name be given. When a value is required, it must
immediately follow the flag name, as in the command

admin -fmdmod s.demo.c

which sets the m flag to the module name "dmod".

5.5.2 Using t.he i Flag

The i flag causes the ad min and delta commands to print a fatal error message
and stop, if no keywords are found in the given text file. The flag is used to
prevent a version of a file, which contains expanded keywords, from being
saved as a new version. (Saving an expanded version destroys the keywords for
all subsequent versions).

When the i flag is set, each new version of a file must contain at least one
keyword. 0 therwise, the version cannot be saved.

5- 15

XENIX Programmer's Guide

5.5.3 Using the d Flag

The d flag gives the default SID for versions retrieved by the get command.
The flag takes an SID as its value. For example, the command

admin -fdl. l s.demo.c

sets t.he default SID to 1.1. A subsequent get command which does not use the
-r option will retrieve version 1 . 1 .

5 .5.4 Using the v Flag

The v flag allows you to include modification requests in an s-file. Modification
requests are names or numbers that may be used as a shorthand means of
indicating the reason for each new version.

When the v flag is set, the delta command asks for the modification requests
just before asking for comments. The v flag also allows the -m option to be
used in the delta and ad min commands.

5.5.5 Removing a n S-file Flag

You can remove an s-file flag from an s-file by using the -d option of the ad min
command. The command has the form

admin -dftag s.filename

where -dftag gives the name of the flag to be removed and s.filename is the
name of the s-file from which the flag is to be removed. For example, the
command

admin -di s.demo.c

removes the i flag from the s-file s .demo.c . When removing a flag which takes a
value, only the flag name is required. For example, the command

admin -dm s.demo.c

removes the m flag from the s·file.

The -d and -i options must not be used at the same time.

5.6 Modifying S-file Information

Every s-fl.le contains information about the deltas it contains. Normally, this
information is maintained by the SCCS commands and is not directly accessible

5- 16

SCCS: A Source Code Control System

by the user. Some information, however, is specific to the user who creates the
s-file, and may be changed as desired to meet the user's requirements. This
information is kept in two special parts of the s-file called the "delta table"
and the "description field".

The delta table contains information about each delta, such as the SID and the
date and time or creation. It also contains user-supplied information, such as
comments and modification requests. The description field contains a user
supplied description or the s-file and its contents. Both parts can be changed or
deleted at any time to reflect changes to the s-file contents.

5.6.1 Adding Comments

You can add comments to an s-file by using the -y option of the delta and
ad min commands. This option causes the given text to be copied to the s-file as
the comment for the new version. The comment may be any combination or
letters, digits, and punctuation symbols. No embedded newline characters are
allowed. Ir spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line. For example, the command

delta -y" George Wheeler" s.demo.c

saves the comment "George Wheeler" in the s-file e. de mo.e .

The -y option is typically used in shell procedures as part of an automated
approach to maintaining files. When the option is used, the delta command
does not print the corresponding comment prompt, so no interaction is
required. Ir more than one s-file is given in the command line, the given
comment applies to them all.

5.6.2 Changing Comments

You can change the comments in a given s-file by using the cdc command. The
command has the form

cdc -rSID s.filename

where -rS/D gives the SID of the version whose comment is to be changed, and
e.filename is the name of the s-file containing the version. The command asks
for a new comment by displaying the prompt

comments?

You may type any sequence of characters up to 512 characters long. The
sequence may contain embedded newline characters i! they are preceded by a
backslash (\). The sequence must be terminated with a newline character. For
example, the command

5- 17

XENIX Programmer's Guide

cdc -r3.4 s.demo.c

prompts for a new comment for version 3.4.

Although the command does not delete the old comment, it is no longer directly
accessible by the user. The new comment contains the login name or the user
who invoked the cdc command and the time the comment was changed.

5.6.3 Adding Modification Requests

You can add modification requests to an s-file, when the v flag is set, by using
the -m option of the del ta and ad min commands. A modification request is a
shorthand method of describing the reason for a particular version.
Modification requests are usually names or numbers which the user has chosen
to represent a specific request.

The -m option causes the given command to save the requests following the
option. A request may be any combination of letters, digits, and punctuation
symbols. If you give more than one request, you must separate them with
spaces and enclose the request in double quotes. For example, the command

delta -m"error35 optimizelO" s.demo. c

copies the requests "error35" and "optimize tO" to s. demo.c, while saving the
new version.

The -m option, when used with the ad min command, must be combined with
the -i option. Furthermore, the v flag must be explicitly set with the -(option.
For example, the command

admin -idef.h -m" errorO" -fv s.def.h

inserts the modification request "errorO" in the new file 8. def.h.

The delta command does not prompt for modification requests if you use the
-m option.

5 .6.4 Changing Modification Requests

You can change modification requests, when the v flag is set, by using the cdc
command. The command asks for a list of modification requests by displaying
the prompt

�ffis?

You may type any number of requests. Each request ma.y have a.ny
combination or letters, digits, or punctuation symbols. No more than 512
characters are allowed, and the last request must be terminated with a newline

5- 18

SCCS: A Source Code Control System

character. Ir you wish to remove a request, you must precede the request with
an exclamation mark (!). For example, the command

cdc -r1.4 s.demo.c

asks for changes to the modification requests. The response

MRs! error36 !error35

adds the request "error36" and removes "error35".

5.6.5 Adding Descriptive Text

You can add descriptive text to an s-file by using the -t option of the ad min
command. Descriptive text is any text that describes the purpose and reason
Cor the given s-file. Descriptive text is independent of the contents of the s-file
and can only be displayed using the prs command.

The -t option directs the ad min to copy the cont-ents of a given file into the
description field of the s-file. The command has the form

admin -tfilename 1.jilename

where -tfilename gives the name of the file containing the descriptive text, and
1.jilename is the name of the s-file to receive the de�criptive text. The file to be
inserted may contain any amount of text. For example, the command

admin -tcdemo s.demo.c

inserts the contents of the file cdemo into the description field of the s-file
1 .demo. c .

The -t option may also be used to initialize the description field when creating
the s-file. For example, the command

admin -idemo.c -tcdemo s.demo.c

inserts the contents of the file cdemo into the new s-file 3.demo.c . If -t is not
used, the description field of the new s-file is left empty.

You can remove the current descriptive text in an s-file by using the -t option
without a filename. For example, the command

admin -t s.demo.c

removes the descriptive text from the s-file 3.demo. c .

5-19

XENIX Programmer's Guide

5.7 Printing from an S-file

This section explains how to use the prs command to display information
contained in an s-flle. The prs command has a variety of options which control
t.he display format and content.

5.7 . 1 Using a. Data. Specification

You can explicitly define the information to be printed from an s-file by using
the -d option of the prs command. The command copies user-specified
information to the standard output. The command has the form

prs -dspec s.filename

where -dspec is the data. Epecification, and s.filename is the name of the s·file
from which the information is to be taken.

The data specification is a string of data. keywords and text. A data keyword is
an uppercase letter, enclosed in colons (:). It represents a value contained in the
given s-file. For example, the keyword :1: represents the SID of a given version,
:F : represent the filename of the given s-file, :C: represents the comment line
associated with a given version. Data. keywords are replaced by these values
when the information is printed.

For example, the command

prs -d" version: :1: filename: :F: " s.demo.c

may produce the line

version: 2. 1 filename: s.demo.c

A complete list of the data. keywords is given in the section prs(CP) in the
XE!'i'IX Reference Manual.

5.7.2 Printing a Specific Version

You can print information about a specific version in a given s-file by using the
-r option of the prs command. The command has the form

prs -rSID s.filename

where -rS/D gives the SID of the desired version, and s.filename is the name of
the s-file containing the version. For example, the command

prs -r2.1 s.demo.c

5-20

SCCS: A Source Code Control System

prints information about version 2.1 in the s-file t. de mo. c .

Ir the -r option i s not specified, the command prints information about the
most recently created delta.

5.7.3 Printing Later and Earlier Versions

You can print information about a group of versions by using the -I and -e
options of the prs command. The -1 option causes the command to print
information about all versions immediately succeeding the given version. The
-e option causes the command to print information about all versions
immediately preceding the given version. For example, the command

prs -r1.4 -e s.demo.c

prints all information about versions which precede version 1.4 (e.g., 1.3, 1.2,
and 1 . 1) . The command

prs -r1 .4 -1 s.abc

prints information about versions which succeed version 1.4 (e.g., 1.5, 1 .6, and
2.1).

If both options are given, information about all versions is printed.

5 .8 Ed iting by Several Users

The sees system allows any number users to access and edit versions of a given
s-file. Since users are likely to access different versions of the s-file at the same
time, the system is designed to allow concurrent editing of different versions.
Normally, the system allows only one user at a time to edit a given version, but
you can allow concurrent editing of the same version by setting the j flag in the
given s-file.

The following sections explain how to perform concurrent editing and how to
•ave edited versions when you have retrieved more than one version for editing.

5.8.1 Edi ting Different Versions

The sees system allows several different versions of a file to be edited at the
same time. This means a user can edit version 2.1 while another user edit
version 1 . 1. There is no limit to the number of versions which may be edited at
any given time.

When several users edits different versions concurrently, each user must begin
work in his own directory. If users attempt to share a directory and work on
versions from the same s-file at the same time, the get command will refuse to

5-21

XENIX Programmer's Guide

retrieve a. version.

S.8.2 Editing a Single Version

You can let a. single version of a. file be edited by more than one user by setting
the j flag in the given s-file. The flag causes the get command to check the p-file
and create a. new proposed SID if the given version is already being edited.

You can set the flag by using the -f option of the admin command. For
example, the command

admin -fj s.demo.c

sets the flag for the s-file s. demo. c.

When the flag is set, the get command uses the next available branch SID for
each new proposed SID. For example, suppose a user retrieves for editing
version 1.4 in the file e. demo.c, and that the proposed version is 1.5. If another
user retrieves version 1 .4 for editing before the first user has saved his changes,
the the proposed version for the new user will be 1 . 4. 1 . 1 , since versi.on 1 .5 is
already proposed and likely to be taken. In no case will a version edited by two
separate users result in a single new version.

5 .8.3 Saving a Specific Version

When editing two or more versions of a file, you can direct the delt.a command
to save a specific version by using the -r option to give the SID of that version.
The command has the form

delta -rSID s.filename

· where -rSID gives the SID of the version being saved, and e.filename is the name
of the s-file to receive the new version. The SID may be the SID of the version
you have just edited, or the proposed SID for the new version. For example, if
you have retrieved version 1.4 for editing (and no version 1.5 exists), both
commands

delta -r 1.5 s.demo.c

and

delta -r l .4 s.demo.c

save version 1.5.

5-22

)

SCCS : A Source Code Control System

5.9 Protecting S-files
The sees system uses the normal XENIX system file permissions to protect
s-tiles from changes by unauthorized users. In addition to the XENIX system
protections, the sees system provides two ways to protect the s-files: the "user
list" and the "protection flags". The user list is a list of login names and group
IDs of users who are allowed to access the s-file and create new versions of the
file. The protection flags are three special s-file flags that define which versions
are currently accessible to otherwise authorized users. The following sections
explain how to set and use the user list and protection flags.

6.0.1 Adding a User to the User List

You can add a user or a group of users to the user list of a given s-file by using
the -a option of the ad min command. The option causes the given name to be
added to the user list. The user list defines who may access and edit the versions
in the s-file. The command has the form

admin -aname r.filename

where -a name gives the login name or the user or the group name or a group or
users to be added to the list, and e.filename gives the name orthe s-file to receive

. the new users. For example, the command

admin -ajohnd -asuex -amarketing s.demo.c

adds the users "johnd" and "suex" and the group "marketing" to the user list
of the s-file r.demo.c.

If you create an s-file without giving the -a option, the user list is left empty,
and all users may access and edit the files. When you explicitly give a user name
or names, only those users can access the files.

6.0.2 Removing a User from a User List

You can remove a user or a group of users from the user list of a given s-file by
using the -e option of the ad min command. The option is similar to the -a
option but performs the opposite operation. The command has the form

admin -ename r.filename

where -ename gives the login name of a user or the group name of a group of
users to be removed from the list, and r.filename is the name of the s-file from
which the names are to be removed. For example, the command

admin -ejohnd -emarketing s.demo.c

5-23

XENIX Programmer's Guide

removes the user "johnd" and the group "marketing" from the user list of the
s-file r.demo. c .

5 .9.3 Setting the Floor Flag

The floor flag, r, defines the release number or the lowest version a user may edit
in a given s-file. You can set the flag by using the -f option oC the admin
command. For example, the command

admin -fl2 s.demo.c

sets the floor to release number 2. ICyou attempt to retrieve any versions with a
release number less than 2, an error will result.

5.9.4 Setting the Ceiling Flag

· The ceiling flag, c, defines the release number or the highest version a user may
edit in a given s-file. You can set the flag by using the -f option of the ad min
command. For example, the command

admin -fc5 s.demo.c

sets the ceiling to release number 5. Iryou att-empt to retrieve any nrsions with
a release number greater than 5, an error will result.

5.9.5 Locking a Version

The lock flag, 1, lists by release number all versions in a given s-file which are
locked against further editing. You can set the flag by using the -f flag or the
ad min command. The flag must be followed by one or more release numbers.
Multiple release numbers must be separated by commas (,). For example, the
command

admin -fl3 s.demo.c

locks all versions with release number 3 against further editing. The command

admin -fl4,5,9 s.def.h

locks all versions with release numbers 4, 5, and 9.

Note that the special symbol "a" may be used to specify all release numbers.
The command

admin -fla s.demo.c

locks all versions in the file B. de mo. c.

5-24

SCCS: A Source Code Control System

5.10 Repairing sees Files
The sees system carefully maintains all sees files, making damage to the files
very rare. However, damage can result from hardware malfunctions, which
cause incorrect information to be copied to the file. The following sections
explain how to check for damage to sees files, and how to repair the damage or
regenerate the file.

5.10.1 Checking an S-ftle

You can check a file for damage by using the -h option of the ad min command.
This option causes the checksum of the given s-file to be computed and
compared with the existing sum. An s-file's checksum is an internal value
computed from the sum of all bytes in the file. Ir the new and existing
checksums are not equal, t-he command displays the message

corrupted file (co6)
indicating damage to the file. For example, the command

admin -h s.demo.c

checks the s-file r.demo.e for damage by generating a new checksum for the file,
and comparing the new sum with the existing sum.

You may give more than one filename. Ir you do, the command checks each file
in turn. You may also give the name of a directory, in which case, the command
checks all files in the directory.

Since failure to repair a damaged s-file can destroy the file's contents or make
the file inaccessible, it is a good idea to regularly check all s-files for damage.

5.10.2 Editing an S-file

When an s-file is discovered to be damaged, it is a good idea to restore a backup
copy of the file from a backup disk rather than attempting to repair the file.
(Restoring a backup copy of a file is described in the XENIX Operationr Guide .)
If this is not possible, the file may be edited using a XENIX text editor.

To repair a damaged s-file, use the description of an s-file given in the section
seesfile (F) in the XENIX Reference Manual, to locate the part of the file which
is damaged. Use extreme care when making changes; small errors can cause
unwanted results.

5-25

XENIX Programmer's Guide

5 .10.3 Chan gin g an S-file's Checksum

. After repairing a. damaged s-file, you must change the file's checksum by using
the - z option of the ad min command. For example, to restore the checksum or
the repaired file s.demo. c , type

admin -z s.demo.c

The command computes and saves the new checksum, replacing the old sum.

5 .10.4 Regeneratin g a G-file tor Editing

You can create a. g-file Cor editing without affecting the current contents of the
p-file by using the -k option of the get command. The option has the same
affect as the -e option, except that the current contents or the p-file remain
unchanged. The option is typically used to regenerate a g-file that has been
accidentally removed or destroyed before it has been saved u�ing the delta
command.

5 .10.5 Restoring a Damaged P-flle

The -g option of the get command may be used to generate a new copy or a
p-file that has been accidentally removed. For example, the command

get -e -g s.demo.c

creates a new p-file entry for the most recent version in e. demo.c . Ir the file
demo.c already exists, it will not be changed by this command.

5.11 Using Other Command Options

Many of the sees commands provide options that control their operation in
useful ways. This section describes these options and explains how you may use
them to perform useful work.

5.11.1 Getting Help With sees Commands

You can display helpful information about an sees command by giving the
name of the command as an argument to the help command. The help
command displays a short explanation or the command and command syntax.
For example, the command

help rmdel

displays the message

5-26

SCCS: A Source Code Control System

rmdel:
rmdel -rSID name . . .

5 . 1 1. 2 Creating a File With the Standard Input

You can direct ad min to use the standard input as the source for a new s-file by
using the -i option without a filename. For example, the command

admin -i s.demo.c < demo.c

causes ad min to create a new s-file named t.demo.c which uses the text file
demo.c as its first version.

This method of creating a new s-file is typically used to connect ad min to a
pipe. For example, the command

cat modl.c mod2.c I admin -i s.mod.c

creates a. new s-file B. mod.c which contains the first version oCthe concatenated
files modJ. c and mod2.c .

5 . 11 .3 Starting At a Specific Release

The admin command normally starts numbering versions with release
number I . You can direct the command to start with any given release number
by using the -r option. The command has the form

a.dmin -rrel-num t.filename

where -rrel-num gives the value oCthe starting release number , and •.filename
is the name of the s-tile to be created. For example, the command

admin -idemo.c -r3 s.demo.c

starts with release number 3. The first version is3. 1 .

5 .1 1 .4 Adding a Comment to the First Version

You can add a comment to the first version of file by using the -y option of the
ad min command when creating the s-file. For example, the command

admin -idemo.c -y" George Wheeler" s.demo.c

. inserts the comment "George Wheeler" in the new s··file w.demo.c .

5-27

XENIX Programmer's Guide

The comment may be any combination of letters, digits, and punctuation
symbols. Ir spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line.

Ir the -y option is not used when creating an s-file, a comment of the form

date and time created YY/MM/DD HH:MMSS by logname

is automatically inserted.

5 . 11 .5 Suppressing Normal Output

You can suppress the normal display of messages created by the get command
by using the -s option. The option prevents inform�tion, such as the SID of the
retrieved file, from being copied to the standard output. The option does not
suppress error messages.

The -s option is often used with the -p option to pipe the output of the get
command to other commands. For example, the command

get -p -s s.demo.c l lpr

copies the most recent version in the s-file r.demo.c to the line printer.

You can also suppress the normal output of the delta command by using the -s
option. This option suppresses all output normally directed to the standard
output, except for the normal comment prompt.

5 . 1 1 .6 Including and Excluding Deltas

You can explicitly define which deltas you wish to include and which you wish
to exclude when creating a g-file, by using the -i and -x options of the get
command.

The -i option causes the command to apply the given deltas when constructing
' a version. The -x option causes the command to ignore the given deltas when
constructing a version. Both options must be followed by one or more S!Ds. Ir
multiple S!Ds are given they must be separated by commas (,). A range of SIDs
may be given by separating two S!Ds with a hyphen (-). For example, the
command

get -i1 .2,1.3 s.demo.c

causes deltas 1.2 and 1.3 to be used to construct the g-file. The command

get -x1.2-1.4 s.demo.c

causes delta£ 1.2 through 1 .4 to be ignored ·;;hen constructing the file.

5-28

SCCS: A Source Code Control System

The -i option is useful if you wish to automatically apply changes to a version
while retrieving it for editing. For example, the command

get -e -i4. 1 -r3.3 s.demo.e

retrieves version 3.3 for editing. When the file is retrieved, the changes in delta
4. 1 are automatically applied to it, making the g-file the same as if version 3.3
had been edited by hand using the changes in delta 4.1. These changes can be
saved immediately by issuing a delta command. No editing is required.

The -x option is useful if you wish to remove changes performed on a given
version. For example, the command

get -e -xl.5 -rl.6 s.demo.c

retrieves version 1.6 for editing. When the file is retrieved, the changes in delta
1.5 are automatically left out of it, making the g-file the same as if version 1.4
had been changed according to delta 1.6 (with no intervening delta 1.5). These
changes can be saved immediately by issuing a delta command. No editing is
required.

When deltas are included or excluded using the -i and -x options, get
compares them with the deltas that are normally used in constructing the given
version. If two deltas attempt to change the same line of the retrieved file, the
command displays a warning message. The message shows the range of lines in
which the problem may exist. Corrective action, if required, is the
responsibility of the user.

5 . 11.7 Listing the Deltas of a Version

You can create a table showing the deltas required to create a given version by
using the -1 option. This option causes the get command to create an !-file

· which contains the S!Ds of all deltas used to create the given version.

The option is typically used to create a history of a given version's
development. For example, the command

get -1 s.demo.c

creates a file named l.demo.c containing the deltas required to create the most
recent version of demo. c .

You can display the list of deltas required to create a version by using the -lp
option. The option performs the same function as the -1 opt.ions except it
copies the list to the standard output file. For example, the command

get -lp -r2.3 s.demo.c

copies the list of deltas required to create version 2.3 of de mo. c to the standard

5-29

XENIX Programmer's Guide

output.

Note that the -1 option may be combined with the -g option to create a Jist or
deltas without retrieving the actual version.

5 . 11 .8 Mapping Lines to Deltas

You can map each line in a given version to its corresponding delta by using the
-m option ot the get command. This option causes each line in a g-file to be
preceded by the SID or the delta that caused that line to be inserted. The SID is
separated from the beginning ot the line by a tab character. The -m option is
�ypically used to review the history of each line in a given version.

�.lUI Naming Lines

� ou can name each line in a given version with the current module name (i.e.,
;he value of the %M% keyword) by using the -n option of the get command.
rhis option causes each line of the retrieved file to be preceded by the value ot
.he %M% keyword and a tab character.

rhe -n option is typically used to indicate that a given line is from the given
ile. When both the -m and -n options are specified, each line begins with the
�M% keyword.

1.11.10 Displaying a List of Dift'erenees

!ou can display a detailed list of the differences between a new version of a file
.nd the previous version by using the -p option of the delta command. This
ption causes the command to display the differences, in a format similar to the
utputoftheXENJXdift'command .

. 11 .11 Displaying File Information

• ou can display information about a given version by using the -g option orthe
et command. This option suppresses the actual retrieval of a version and
�uses only the information about the version, such as the SID and size, to be
isplayed.

'he -g option is oft.en used with the -r option to check for the existence of a
iven version. For example, the command

get -g -r4.3 s.demo.c

tsplays information about version 4.3 in the s-file s. demo.c. Itthe version does
't exist, the command displays an error message.

30

SCCS: A Source Code Control System

5.11.12 Removing a Delta

You can remove a delta from an s-file by using the rmdel command. The
command has the form

rmdel -rS/D s.filename

where -r SID gives the SID of the delta to be removed, and s.file name is the name
of the s-tile from which the delta is to be removed. The delta must be the most
recently created delta in the s-file. Furthermore, the user must have write
permission in the directory containing the s-tile, and must either own the s-file
or be the user who created the delta.

For example, the command

rmdel -r2.3 s.demo.c

removes delta 2.3 from the s-file s.demo. c .

The rmdel command will refuse to remove a protected delta, that is, a delta
whose release number is below the current floor value, above the current ceiling
value, or equal to a current locked value (see the section "Protecting S..files"
given earlier in this chapter). The command will also refuse to remove a delta
which is currently being edited.

The rmdel command should be reserved for those cases in which incorrect,
global changes were made to an s-file.

Note that rmdel changes the type indicator of the given delta from "D" to
"R''. A type indicator defines the type of delta. Type indicators are described
in full in the section delta (CP) in theXENIX Refe rence Manual.

5 . 11 . 1 3 Searching for Strings

You can search for strings in files created from an s-tile by using the what
command. This command searches for the symbol #(@) (the current value of
the %Z% keyword) in the given file. It then prints, on the standard output, all
text immediately following the symbol, up to the next double quote ("), greater
than (>), backslash (\), newline, or (non-printing) NULL character. For
example, if the s·file B. dem<J.c contains the following line

char id[] = " %Z%%M%:%I%" ;

and the command

get -r3.4 s.prog.c

. is executed, then the command

5-31

XENIX Programmer's Guide

what prog.c

displays

prog.c:
prog.c:3.4

You may also use what to search files that have not been created by sees
commands.

5.11 .14 Comparing sees Files

You can compare two versions from a given s-file by using the sccsditr
command. This command prints on the standard output the differences
between two versions of the s-file. The command ha.s the form

sccsdiff -rSID1 -rSIDB r.filename

where -rSID1 a.nd -rSIDB give the S!Ds or the versions to be compared, and
r.file name is the name or the s•file cont.a.ining the versions. The version SIDs
must be given in the order in which they were created. For example, the
command

sccsdiff -r3.4 -r5.6 s.demo.c

displays the differences between versions 3.4 a.nd 5.6. The differences are
displayed in a. form similar to the XENIX ditr command.

5-32

Chapter 6
Adb: A Program Debugger

6 . 1 Introduction

6.2 invocation 1

6.3 The Current Address - Dot 1

6.4 Fonnats 2

6.5 DebuggingCPrograms 3
6.5. 1 DebuggingaCorelmage 3
6.5.2 MultipleFunctions 4
6.5.3 SettingBreakpoints 5
6.5.4 OtherBreakpointFacilities 7

6.6 Maps 7

6.7 AdvancedUsage 8
6. 7 . l FonnattedDump 9
6.7.2 DirectoryDump 10
6.7.3 llistDump 11
6.7.4 ConvertingValues 11

6.8 Patching 11

6 .9 Notes 12

6.10 Figures 13

6 . 11 AdbSummary 26
6 . 1 1.1 CommandSummary 26
6 . 1 1 .2 lncompleteFonnatSummary 27
6 . 11 .3 ExpressionSummary 27

- i -

6.1 Introduction

Adb: A Program Debugger

Adb is an indispensable tool fordebuggingprogramsorcrashed systems. ltallowsyw
to look at core files resulting from aborted programs, print output in a variety of
formats, patch files, and run programs with embedded breakpoints. This chapter is an
introductiontoadbwithexamplesofitsuse. ltexplainsthevariousformattingoptions,
techniques for debugging C programs, and gives examples of printing file system
information, and of patching.

6.2 Invocation

Theadbinvocationsyntaxisasfollows:

adb objectfile corejile

where objectfih is an executableXENIX file and corejile is a core image file. Often this
will look like:

adb a. out core

ormoresimply:

adb

where the defauhs are a.out and core , respectively. The filename minus (-) means
ignorethisargumentasin:

adb - core

Adb has requests for examining locations in either file. A question mark (?) request
examines the contents of objectfile; a slash (/) request examines the corejile. The
general form of these requests is:

address ? format
or

address I format

6.3 The Current Address - Dot

Adb maintains a pointer to the current address, called dot, similar in function to the
current pointer in the editor, ed(C). When an address is entered, the current address is
set to that location, so that:

0126?i

sets dot to octal l26 and prints the instruction at that address. The request

. ,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the
last item printed. When used with the question mark(?) or slash (/)request, the current
address can be advanced by typing a newline; it can be decremented by typing a caret
n.
Addresses are represented by expressions. Expressions are made up of decimal, octal,
and hexadecimal integers, and symbols frcm the program under test. These may be

6- 1

XENIX Programmer's Guide

combined with the following operators:

+ Addition

Subtraction

* Muhiplication

% Integer division

& Bitwise AND

Bitwise inclusive OR

Roundup to the next multiple

Not
Note that all arithmetic within adb is 32-bit arithmetic. When typing a symbolic
address for a C program, type either "name" or "..name"; adb recognizes both
forms. Because adb will find only one instance of "name" and "..name" (generally
the first to appear in the soorce) one will mask the other if they both appear in the same
source file.

6.4 Formats

To print data, you can specify a collection of letters and characters that describe the
format of the printout. Formats are remembered in the sense that typing a request
without one will cause the new printout to appear in the previous format. The
followingarethemostcommonlyusedfamat letters; fora complete list seeadb(CP)

Letter Format

b 1 byte in octal
c 1 byte as a character
o 1 word in octal
d 1 word in decimal
x 1 word in hexadecimal
D 2 words (1 longword) in decimal
X 2 words (1 longword) in hexadecimal

machine instruction
s a null terminated character string
a the value of dot
u 1 word in unsigned decimal
n print a newline
r print a blank space

backup dot

equestis:

address r ,count] command r modifier 1
which setsthecurrentaddress (dot)toaddress andexecutesthecommand counttimes.

6-2

)

Adb: A Program Debugger

Thefollowingtableillustratessomegenernladbcommandmeanings:

Command Meaning

? Print contents from a.out file
Print contents from core file
Print value of "dot"
Breakpoint control

$ Miscellaneous requests
Request separatcr
Escape to shell

Adb catches signals, so a user cannot use a quit signal to exit fra:nadb. The request $q
or$Q(or<CONIROL-D>)mustbeusedtoexitfromadb.

6.5 Debugging c Programs

The following subsections describe use of adb in debugging the C programs given in
the numbered figuresattheendofthischapter. Refertothesefiguresasyouworkyour
way through the examples.

6.5.1 Debugging a Core Image

ConsidertheCprogram inFigure l . Thisprogramillustrntesacommonerrormadeby
C programmers. The object of the program is to change the lowercase "t" to
uppercase "T" in the string pointed to by "chrup" and then write the character string
tothefileindicatedbyargument l . Thebugshownisthatthecharncter ''T'' is storedin
the pointer "charp" instead of the string pointed to by "charp." Executing the
program produces a core file because of an out-of-bounds memory reference.
(Note that a core filemaynotbeproducedonall systems.)

Adbis invoked by typing:

adb a.out core

Thefirstdebuggingrequest

$c

is used to give a C backtrace through the subroutines called. As shown in Figure 2,
only one function, main, was called and the arguments "argc" and "argv" have hex
values Ox2 and Oxlflll)() respectively. B<Xh of these values look reasonable; Ox2 =
two arguments, Oxl fff90 = address on stack of parameter vector. These values may
be different on your system due to a differentmappingofmemory.

The next request

$r

prints out the registers including the program counter and an interpretation of the
instructionatthatlocation.

The request:

6-3

XENIX Programmer's Guide

Se

prints out the values of all external variables.

Amapexistsforeachfilehandledbyadb. Themapforthea.outfileisreferencedwith
a question mark (?), whereas the map for the core file is referenced with a slash (/).
Furthermore, a good ruleofthumbistousequestionmarkforinstructionsand slash for
data when looking at programs. To print out informationaboutthemaps, type:

Sm

This produces a report ofthe contentsofthemaps.

In our example, it is useful to see the contents of the string pointed to by "charp." This
is done by typing

*charpls

which means use "charp" as a pointer in the core file and print the information as a
character string. This printout shows that the character buffer was incorrectly
overwritten and helps identify the error. Printing the locations around ' 'charp'' shows
that the buffer is unchanged but that the pointer is destroyed. Similarly, we could print
informationabouttheargumentstoafunction. Forexample

Oxlff190,3/X

prints the hex valuesofthe three consecutive cells pointed to by "argv" in the function
main. Note that these valuesaretheaddressesoftheargumentstomain. Therefore:

Oxlfffb6/s

prints the ASCll value of the first argument. Another way to print this value would
have been

*"Is

The quotation mark ('')means ditto, i.e. , the last address typed, in this case "Oxl ff190
; ' ' the star(*) instructsadbtousethe address fieldofthecorefileasa pointer.

The request

.=x

prints the current address in hex (and not its contents). This has been set to the address
of the first argument. The current address, dot, is used by adb to remember its current
location. Dot allows the user to reference locations relative to the current address, for
example:

. - 10/d

6.5.2 Multiple Functions

Consider the Cprogramillustrated inFigure3. This program calls functionsf,g, and h
untilthestackisexhaustedandacoreimageisproduced.

Again, enteradbbytyping

a db

which assumes the names a.out and core for the executable file and core image file,
respectively. Therequest

6-4

Adb: A Program Debugger

Sc

fills a page ofbacktrace references to f, g , and h. Figure 4 shows an abbreviated list.
Pressing the INTERRUPT key terminates the output and brings you back to the adb
request level. Additionally, some versions of adb will automatically quit after fifteen
levels unlesstoldotherwisewith the command:

,levelcount$c

The request

,5$c

prints the five most recent activations.

Notice that each function if, g, and h) has a counter that counts the number of times
each has been called.

The request

fcnt!D

prints the decimal value of the counter f<r the function/. Similarly, "gent" and
"bent" could be printed. Notice that because "fcnt", "gent", and "bent" are int
variables, and on the MC68000int is implemented as long, to print its value you must
usetheDtwo-wordfonnat.

6.5.3 Setting Breakpoints

Consider the C program in Figure 5. This program changes tabs into blanks. We will
run this program underthecontrolofadb (see Figure 6) by typing:

adb a.out -

Breakpointsareset intheprogramas:

address:b rrequest1
The requests

settab+S:b
fopen+S:b
tabpos+S:b

set breakpoints at the start of these functions. C does not generate statement labels.
Therefore, it is currently not possible to plant breakpoints at locations other than
function entry points withoutknowledgeofthecode generated by the Ccompiler. The
above addresses are entered as

symbol+8

so that they will appear in any C backtrace, because the first two iru;tructions of each
function are used to set up the local stack frame. Note that some of the functions are
from theCiibrary.

Toprintthe location ofbreakpoints, type:

$b

The display indicates a count field. A breakpoint is bypassed count-) times before
causing a stop. The command field indicates the adbrequests to be executed each time

6-5

XENIX Programmer's Guide

the breakpoint is encountered. In our example nocommandfieldsarepresent.

By displaying the original instructions at the function settab we see that the breakpoint
is set after the tstb instruction, which is the stack probe. We can display the
instructions using theadbrequest:

settab,5?ai

This request displays five instructions starting at settab with the addresses of each
location displayed. Another variation is

settab,5?i

which displays the instructions with only the starting address.

Note that we accessed the addresses from thea. out file with the question(?) command.
In general, when asking for a printout of multiple items adb advances the current
address the number of bytes necessary to satisfy the request. In the above example,
five instructions were displayed and the current address was advanced 18 (decimal)
bytes.

To run the program type:

:r

To delete a breakpoint, for instance the entry to the function settab, type:
settab+S:d

To continue executionoftheprogramfrom the breakpoint type:

:c

Once the program has stopped (in this case at the breakpoint for/open), adb requests
canbeusedtodisplaythecontentsofmemory. Forexample

$c

displaysastacktraceor

tabs,6/4X

prints six lines of four locations each from the array called • 'tabs''. By this time (at
locationfopen) in the C program, settab has been called and should have set a one in
every eighth locationof"tabs".

The XENIX quit and interrupt signals act onadb itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and
control is returned to adb. The signal is saved by adb and is passed on to the test
program if

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not
passed on to the test program if

:c 0

is typed.

6-6

Adb: A Program Debugger

6.5.4 Other Breakpoint FacUlties

Arguments and changes of standard inputandoutputarepassed to a program as:

:r argl arg2 • • • <injile >outfile

This request kills any existing program under test and starts the a. out afresh.

Theprogrambeingdebugged canbe single-steppedbytyping:

:s

If necessary, this request starts up the program being debugged and stops after
executing the first instruction.

Adballowsaprogramtobeexecutedbeginningataspecificaddressbytyping:

address:r

The count field can be used to skip the first nbreakpointswith:

,n:r

The request

,n:c

may also be used for skipping the first nbreakpoints when continuing a program.

Aprogramcanbecontinuedatanaddressdifferentfromthebreakpointbytyping:

address:c

The program being debuggedrunsasaseparateprocessand canbekiliedby typing:

:k

6.6 Maps

XENIX supports several executable file formats. These are used to tell the loader how
to load the program file. Nonshared program files are the most common and are
generated by a Ccompilerinvocation such as:

cc pgm.c

AsharedfileisproducedbyaCcompilercommand lineoftheform

cc -n pgm.c

Note that separate instruction/data files are not supported on theMC68000.

Adb interprets these different file formats and provides access to the different segments
througha setofmaps. Toprintthemapstype:

$m

In nonshared files, both text (instructions) and data are intermixed. This makes it
impossible for adb to differentiate data from instructions and some of the primed
symbolic addresses look incorrect; for example, printing data addresses as offsets
from routines.

In shared text, the instructions are separated from data and the

6-7

XENIX Programmer's Guide

?*

accessesthedatapartofthea.outfile. Thisrequesttellsadbtousethesecondpartofthe
map inthea.outfile. Accessing data in the core file showsthedataafterit was modified
by the execution of the program. Notice also that the data segment may have grown
during program execution. In shared files the corresponding core file does not contain
the program text.

Figure 7 shows the display of three maps for the same program linked as a nonshared
and shared respectively. The b, e, and ffieldsare used by adbtomap addresses into file
addresses. ThefJ field is the lengthoftheheader at the beginning of the file (0x34 bytes
for ana.out file and Ox800 bytes for a core file). Thej2 field is the displacement from
the beginning of the file to the data. Forunshared files with mixed text and data this is
the same as the length of the header; for shared files this is the length of the header plus
the sizeofthetextportion.

The b and e fields are the starting and ending locations for a segment. Given an
address, A , the location in the file (either a. out or core) is calculated as:

bl E;;AE;;el � file address = (A-bl)+fl
b2E;;AE;;e2 � file address = (A-b2)+f2

A user can access locations byusingtheadbdefined variables. The

$v

request prints the variables initialized by adb:

b Base address of data segment
d Length of the data segment
s Length of the stack
t Length of the text
m Execution type

In Figure 7 those variables not present are zero. These variables can be used in
expressions such as

<b

in the address field. Similarly, the value of the variable can be changed by an
assignment request such as

02000>b

which sets "b" to octal 2000. These variables are useful to know if the file under
examination is an executable or core image file.

Adb reads the header of the core image file to find the values for these variables. If the
second file specified does not seem to be a core file, orifitismissing, thentheheaderof
theexecutablefile is used instead.

6.7 Advanced Usage

With adb it is possible to combine formatting requests to provide elaborate displays.
Below are several examples.

6-8

6.7.1 Formatted Dump

The line

<b, -ll4o4.8Cn

Adb: A Program Debugger

prints fow- octal words followed by their ASCII interpretation from the data space of
the core image file. Broken down, the request pieces mean:

<b Thebaseaddressofthedatasegment.

<b,- 1 Printfromthebaseaddresstotheend-of-file. Anegativecountisused
here and elsewhere to loop indefinitely or until some error condition (like
end-of-file) is detected.

The format' '4o4.8Cn'' is interpreted as follows:

4o Printfouroctallocations.

4• Backup the current address four locations (to the original stan of the
field).

8C Print eight consecutive characters using an escape convention; each
characterintherangeoctal0to037isprintedasanat-sign(@)followed
by the corresponding character in the range octal 0140 to 0177. An at
signisprintedas "@@".

n Printanewline.

The request:

<b,<d/4o4·scn

could have been used instead to allow printing to stop at the end of the data segment
(<dprovidesthedatasegmentsizeinbytes).

The formatting requests can be combined with adb's ability to read in a script to
produceacoreimagedumpscript. Adbisinvokedwiththecommandline

adb a.out core < dump

toreadinascriptfilecontainingrequestsnameddump. Anexampleofsuchascriptis:

6-9

XENIX Programmer's Guide

120$w
4095$s
Sv
=3n
Sm
=3n"C Stack Back:trace•
sc
=3n"C External Variables"
Se
=3n"Registers•
Sr
O$s
=3n"Data Segment"
<b,- l!8ona

The request

120$w

sets the width of the output to 120 characters (normally, the width is SO characters).
Adbattemptstoprintaddressesas:

symbol + offset

The request

409S$s

increases the maximum permissible offset to the nearest symbolic address from 2SS
(defauh)to409S. The equal signrequest (=)canbeusedtoprint literalstrings. Thus,
headings are provided in thisdumpprogram with requests such as:

=3n"C Stack Back:trace"

This spaces three lines and prints the literal string. The request

Sv

printsallnonzeroadbvariables. Therequest

O$s

sets the maximum offset for symbol matches to zero, thus suppressing the printing of
symbolic labels in favor of hexadecimal values. Note that this is only done for the
printing of the data segment. The request

<b,- 1/Sona

prints a dump from the base of the data segment to the end-of-file with an octal
addressfieldandeightoctalnumbersperline.

Figure9showstheresultsofsomeformattingrequestsontheCprogramofFigure8.

6. 7.2 Directory Dump

Figure tO illustrates another set of requests to dumpthecontentsofa directory (which
is made upofan integer ' 'inumber" followed by a 14-charactername):

6-10

adb dir
=n8t"Inum"8t"Name"
o,- t? u8t14cn

Aclb: A Program Debugger

In this example, "u" prints the inumber as an unsigned decimal integer, "St" means
that adb will space to the next muhiple of 8 on the output line, and ''14c '' prints the
14-characterfilename.

6. 7.3 Dist Dump

Similarly the contents of the ilistofa file system (e.g. , ldevlroot)can be dumped with
thefollowingsetofrequests:

adb /dev/root -
02000>b
?m <b
<b, - 1 ?"ftags"Ston"links, uid,gid"8t3bn",size"8tbrdn"addr"8t8un"times"8t2Y2na

lnthisexamplethevalueofthebaseforthemapwaschangedto02000bytyping

?m<b

since that is the start of an ilistwithin a file system. The request ''brd'' above was used
to print the 24-bit size field as a byte, a space, and a decimal integer. The last access
time and last modify time are printed with the "2Y" operator. Figure 10 shows
portionsoftheserequestsasappliedtoadirectoryandfilesystem.

6.7.4 ConvertingValues

Adbmaybeusedtoconvertvaluesfromonerepresentationtoanother. Forexample

072 = odx

prints

072 58 Ox3a

which are the octal, decimal and hexadecimal representations of 072 (octal). The
format is remembered so that typing subsequent numbers prints them in the given
formats. Charactervaluescanbeconvertedina similarway; for example

'a' = co

prints

a 0141

It may also be used to evaluate expressions. However, be forewarned that all binary
operators have the same precedence, a precedence that is lower than that for unary
operators.

6.8 Patching

Patching files with adb is accomplished with the write (w or W) request. This is often
used in conjunction with the locate , (1 or L)request. The request syntax for I and ware
similar: 6- 11

XENIX PrograiiUDel''s Guide

?1 value

Therequestlisusedtomatchon2 bytes; Lisusedfor4 bytes. The request wisusedto
write 2 bytes, whereas W writes 4 bytes. The value field in either locate or write
requests is an expression. Therefore, decimal and octal numbers, or character strings
are supported.

lnordertomodifyafile,adbmustbecalledwiththe -wswitch:

adb -w filet file2

When called with this option, file! andjile2 are created if necessary and opened for
both reading and writing.

For example, consider the C program shown in Figure 8. We can change the word
"This" to "The • in the executable file for this program, ex7, by using the following
requests:

adb -w ex7 -
?1 'Th'
?W 'The'

The request

?I
starts at dot and stops at the first match of ' 'Th'' having set dot to the address of the
location found. Note the use ofthequestionmark(?)to writetothex.outfile. The form

?*

wooldhavebeenusedforasharedfile.

Morefrequentlytherequestistypedas:

?1 'Th'; ?s

This locates the first occurrence of' 'Th'' and prints the entire string. Exe.cutionofthis
request setsdottothe address of the characters "Th".
As another example of the utility of the patching facility, consider a Cprogram that has
an internal logic flag. The flag could be set by the user through adb and the program
run. Forexample:

adb x.out
:s argl arg2
tlaglw l
:c

The :s request is normally used to single-step through a process or start a process in
single-step mode. In this case it startsx.out as a subprocess with arguments "argl"
and • 'arg2' ' . If there is a subprocess running, adb writes to it rather than to the file so
the wrequestcauses "tlag2' ' to be changed in the memory of the subprocess.

6.9 Notes

Below is a list of somethingsthatusers should be a ware of:

6-12

The stack frame is allocated by teh first two instructions at the beginning of
every C routine. Thus, putting breakpoiius at the entry point of routines
means that the function appears not to have been called when the breakpoint

Adb: A Program Debugger

occurs. Try placing the breakpoint at "routine" + instead.

I . When printing addresses, AD B uses ither text or data symbols from the
x.out file. This sometimes causes unexpected symbol names to be printed
with data (e. g., "savr5+022"). This does not happen if question mark (?)
is used fortext (instructions)and slash (/) for data.

2. Local variablescannotbeaddressed.

6.10 Figures

Figure I : C programwitb poiuterbug

#include <stdio.h>
struct buf I

iflt tildes;
int nleft;
char *nextp;
char buf!f5121;
ibb;

struct buf *obuf;

char *charp = "this is a sentence.";

main(argc ,argv)
int argc;
char **argv;
!

char cc;
FILE *file;

if(argc < 2) !
printf("'nput file missing\n");
exit(8);

if((file = fopen(argv[11."w")) = = NULL)!
printf("%s : can't open\n", arg� 1]};
exit(8);

I
charp = 'T';

printf("debug 1 %s\n",charp);
while(cc= *charp + +)

putc(cc,file);
fflush(file);

6-13

XENIX Programmer's Guide

Figure2: AdboutputrorC programoffJgUrel

a db
$e
start+44: .main (0x2, Ox1FFF90)
$r
dO OxO aO
dl Ox8 al
d2 OxO a2
d3 OxO �1
d4 OxO a4
d5 OxO a5
d6 OxO a6
d7 OxO sp

ps OxO

Ox54
OxJFFF90
OxO
OxO
OxO
OxO
OxlFFF7C
OxlFFF74

pc Ox80E4 .main+ 1 60: movb (aO), -l . (a6)
$e
..environ: Ox1FFF9C
_ermo: Ox19
..bb: OxO
_obuf: OxO
_charp: Ox55
_iob: Ox9BJC
_sobuf Ox64656275
_lastbu: Ox96F8
_sibuf: OxO
..allocs: OxO
..allocp: OxO
..alloct: OxO
..allocx: OxO
_end: OxO
_edata: OxO
$m
? map 'x.out'
bl = Ox8000 el = Ox970C
b2 = Ox8000 e2 = Ox970C
I map ' '
bl = OxOel = OxlOOOOOO fl = OxO
b2 = Ox0e2 = Ox0f2 = OxO
*charp/s
OxSS:
data address not found
Oxlffi'90,3/X
Ox1FFF90: OxlFFFBO
OxlfflbO/s
OxlFFFBO: x.out
/s
OxlFFFBO: x.out
.=X

OxlFFFBO
. - 10/d
Ox1FFFA6: 65497

6-14

fl = Ox20
f2 = Ox20

OxlFFFB6, OxO

Adb: A Program Debugger

$q

6- 15

XENIX Programmer's Guide

Figure3: MultiplefunctionC program

int fcnt,gcnt,hcnt;
h(x,y)
I

g(p,q)
I

f(a,b)
I

main()
I

6- 16

int hi; register int hr;
hi = x+ l ;
hr = x-y+l;
hcnt++ ;
hj:
f(hr,hi);

int gi; register int gr;
gi = q-p;
gr = q-p+l;
gent++ ;
gj:
h(gr,gi);

int fi; register int fr;
fi = a+2*b;
fr = a+b;
fcnt + + ;
fj:
g(fr,fi);

f(l , l);

Figure4: AdboutputrorC programofFigure3

adb
$c
..h+46:
_g+48:
.1+70:
..h+46:
_g+48:
.1+10:
..h+46:
_g+48:
<INTERRUPT>
a db
,S$c
..h+46:
_g+48:
.1+10:
..h+46:
_g+48:
fcnt/D
.icnt:
gcnt!D
_gent:
ben tiD
..hcnt:
$q

.i
..h
_g
_f
..h
..g
.i
..h

_f
..h
..g
.i
..h

1175

1174

1174

(Ox2, Ox92D)
(0x92C, Ox92B)
(0x92D, Ox1258)
(Ox2, Ox92B)
(0x92A, Ox929)
(0x92B, Ox1254)
(Ox2, Ox929)
(0x928, Ox927)

(Ox2, Ox92D)
(0x92C, Ox92B)
(0x92D, Oxl258)
(Ox2, Ox92B)
(Ox92A, Ox929)

Adb: A Program Debugger

6- 17

XENIX Programmer's Guide

FigureS: C programtodecodetabs

#include <stdio.h>
#define MAXUNE 80
#define YES 1
#define NO 0
#define T ABSP 8
char input{l = ndataR;
char ibu�5181;
int tabsjMAXLINE];

main()

I I

I

int col, *ptab;
char c;

ptab = tabs;
settab(ptab); /*Set initial tab stops *I
col = I;
if(fopen(input,ibut) < 0) !

I

printf(n%s : net founcflnR,input);
exit(8);

while((c = getch(ibuf)) != - I) !
switch(c) I

ease '\l': I* TAB *I
while(tabpos(col) != YES) !

l
break;

I* put BLANK */
putchar(' ');
col+ + ;

case '\n': /*NEWLINE */
putchar('\n');
col = 1;

defauh:
break;
putchar(c);
col+ + ;

I* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;
I

6- 18

if(col > MAXUNE)
return(YES);

else
retum(tab�colb;

Adb: A Program Debugger

I* Settab - Set initial tab stops *I
settab(tabp)
int *tabp;
l

int i;
for(i = 0; i<= MAXLINE; i++)

(i%TABSP) ? (tabsfi] = NO) : (tab�i] = YES);

I* getch(ibuf) - Just do a getc caU, but not a macro *I
getch(ibuf)
FILE *ibuf;
l

retum(getc(ibuf));

6- 19

XENJX Programmer's Guide

Flgure6: AdboutputforC programoiFigure 5

adb x.out
settab+8:b
fopeu+8:b
getch+8:b
tabpos+8:b
$b

breakpoints
count bkpt
1 ..tabpos+8
1 ..getch+8
1 ..fopen+8
I ..settab+8
settab,S?ia
..settab: link
..settab+4:
..settab+8:
_settab+ 12:
..settab+ 16:
_settab+24:
settab,S?I
_settab: link

command

a6,#0xFFFFFFFC
tstb -132.(a7)
moveml #<>,-(a7)
clrl -4.(a6)
cmpl #OxS0,-4.(a6)

a6,#0xFFFFFFFC
tstb -132.(a7)
moveml #<>,-(a7)
clrl -4.(a6)
cmpl #Ox50,-4.(a6)

:r
x.outnmning
breakpoint
settab+8:d

..settab+8: moveml #<>,-(a7)

:c
x.out:nmning
breakpoint
$c
.main+52:
start+44: .main
tabs,6/4X
.Jabs: Oxl

-20

OxO
Ox I
OxO
Ox I
OxO

..fopen+8: j�
..fopen (0x9750, Ox9958)
(Oxl , Oxl FFF98)

OxO
OxO
OxO
OxO
OxO
OxO

OxO
OxO
OxO
OxO
OxO
OxO

OxO
OxO
OxO
OxO
OxO
OxO

_findio

)

Adb: A Program Debugger

Flgore7: Adboutputformaps

adb x.out.unshared c:ore.uDShared
$m
? map 'x.out.unshared'
bl = Ox8000 el = Ox83E4 f1 = Ox34
b2 = Ox8000 e2 = Ox83E4 f2 = Ox34
I map 'core.unshared'
bl = Ox8000 el = Ox8800 f1 = Ox800
b2 = OxlEBOOO e2 = Ox200000 f2 = OxlOOO
$v
variables
b = Ox8000
d = Ox800
e = Ox8000
m = Ox107
s = Oxl5000
$q

adb x.out.shared c:ore.shared
$m
? map 'x.out.shared'
bl = Ox8000 el = Ox8390 f1 = Ox34
b2 = OxlOOOO e2 = Oxl0054 f2 = Ox3BO
I map 'core.shared'
bl = OxlOOOO el = Ox10108 f1 = Ox800
b2 = OxiEBOOO e2 = Ox200000 f2 = OxlOOO
$v
variables
b = Oxl0390
d = Ox800
e = Ox8000
m = Oxl08
s = Ox15000
$q

6-21

XENIX Programmer's Guide

FigureS: Simple C program DlustrotlngrormattlngaDCI patch�g

char strln = "This is a character strina";
int one = 1 ;
int number = 456;
long lnum = J 234;
float fpt = 1 .25;
char str2n = "This is the second character string":
main()
I

one = 2;

6-22

Adb: A Program Debugger

Figurd: Adboutpotillustratingfancyformats

adb x.out.sbared core.sbared
<b,-ll8ona
..str1 : 052150 064563 020151 071440 060440 061550 060562 060543

..str1 + 16: 072145 071040 071564 071 151 067147 0 0 OJ

..number:
..number: 0 0710 0 02322 037640 0 052150 064563

..str2+4: 020151 071440 072150 062440 071545 061551 067144 020143

..str2+20: 064141 071141 061564 062562 020163 072162 064556 063400

$nd:
$nd: OJ 0140
<b,20/4o4"8Cn
..strl: 052150 064563 020151 071440 This is

060440 061550 060562 060543 a charac
072145 071040 071564 071 151 ter stri
067147 0 0 01 ng@'@'@'@'@'@a

..number: 0 0710 0 02322 @'@'@aH@'@'@dR

..fpt: 037640 0 052150 064563 ? @'@'This
020151 071440 072150 062440 is the
071545 061557 067144 020143 second c
064141 071141 061564 062562 haractcr
020163 072162 064556 063400 string@'

$nd: 01 0140
data address not found
<b,20/4o4"8t8Cna
..str1 : 052150 064563 020151 071440
..str1 +8: 060440 061550 060562 060543
..strl + 16: 072145 071040 071564 071 151
..strl +24: 067147 0 0 01
..number:
..number: 0 0710 0 02322
..fpt:
..fpt: 037640 0 052150 064563
..str2+4: 020151 071440 072150 062440
..str2+12: 071545 061557 067144 020143
..str2+20: 064141 071141 061564 062562
..str2+28: 020163 072162 064556 063400
$nd:
$nd: 01 0140
data address not found
<b,10/2b8t"2cn
..str1 : 0124 0150 Th

0151 0163 is
040 0151

This is
a charac
tcr stri

ng@'@'@'@'@'@a

@'@'@aH@'@'@dR

? @'@'This
is the
second c
haracter
string@'

6-23

XENIX Programmer's Guide

0163 040 I
0141 040 a
0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 IC
0162 040 r

$q

)-24

Adb: A Program Debugger

FigurelO: DirectoryancliDOdedumps

adb dir -
=nt"'node"t"Name"; o,-l?ut14c:n

I node Name
OxO: 652

82
5971 cap.c
5323 cap
0 pp

adb /dev/root -
/dev/root - not in a.out format
02000>b
?m<b
$v
variables
b = Ox400
<b, - 1 ?"Oags"8tou'1inks,uid,gid"8t3bn"size"8tbrdn"addr"8t8un"times"8t2Ylna
Ox400: flags 073145

links,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 252<Xi
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55: 15

Ox420: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 1�'216 26890 29806 10784
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

Ox440: flags 05173
links,uid,gid Oi l 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

6-25

XENIX Programmer's Guide

6.11 Adb Summary

6.11.1 Command Summary

Formatted printing

?format
/format

=format

?wexpr

/wexpr

?lexpr

Breakpoint and program control

printfromx.outfileac:cordingtoformat

printfromcorefileac:cordingtoformal

print the value of dot

writeexpressionintox.outfile

writeexpressionintocore file

locateexpressioninx.outfile

:b set breakpoint at dot
:c: continue running program
:d delete breakpoint
:k kill the program being debugged
:r run x.out file under adb control
:s single step

Miscellaneous printing

$b print current breakpoints
$c: C stack trace
$e external variables
$m print adb segment maps
$q exit from adb
$r general registers
$s set offset for symbol match
$v print adb variables
$w set output line width

Calling the shell

call sh (shell) to read rest of line

Assignment to variables

>name assign dot to variable or register name

6-26

Adb: A Program Debugger

6.11.2

a
b
c:
d
i
0
n
r
s
nt
u
X
X
D
y

6.11.3

Incomplete Format Summary

the value of dot
1 byte in octal
1 byte as a character
1 word in decimal
machine instruction
1 word in octal
print a newline
print a blank space
a null terminated character string
move to next n space tab
1 word as unsigned integer
1 word in hexadecimal
2 words (1 longword) in hexadecimal
2 words (1 longword) in decimal
date
backup dot
print string

Expression Summary

Expression components

dedmal integer e.g., 256
octal integer e.g. , orn
bexadedmal e.g., Ox.ff
symbols e.g., flag ..main main.argc
variables e.g., <b
registers e.g. , <pc <dO <aO
(expression) expression grouping

Dyadic operators

+ add

•

%
&
I

subtract
muhiply
integer division
bitwise and
bitwise or
round up to the next multiple

Monadic operators

not
• contents of location

integer negation

6-27

ltapter 7

,: An Assembler

Introduction 1

Command Usage 1

Invocation Options

Source ProgramFonnat
7.4 . 1 LabelField

2
3

7 .4.2 OpcodeField
7.4.3 Operand -Field
7 .4.4 Comment Field

3
3

4

S ymbolsandExpressions 4
7.5 . 1 Symbols 4
7.5.2 Assemb1yLocationCounter 6
7.5.3 ProgramSections 7
7.5 .4 Constants 7
7.5.5 Operators 8
7 .5.6 Terms 9
7.5. 7 Expressions 9

lnstructionsand AddressingModes 10
7.6 . 1 lnstructionMnemonics 10
7.6.2 Operand AddressingModes 11

AssemblerDirectives 13
7. 7 . 1 .ascii .asciz 14
7.7.2 .blkb .blkw .blk.l 15
7.7.3 .byte .word .long 15
7.7.4 .end 15
7.7.5 .text. data .bss 16
7.7.6 .globl.comm 16
7.7.7 .even 16

OperationCodes 17

ErrorMessages 18

7.1 Introduction

As: An Assembler

This chapter describes the use of the XENIX assembler, named as , for the Motorola
MC68000 microprocessor. It is beyond the sc� of this chapter to describe the
instruction set of the MC68000 or to discuss assembly language programming in
general. For information on these topics, refer to the "MC68000 16-Bit
Microprocessor User's Manual", 3rd Edition, Englewood Cliffs: Prentice-Hall,
1982.

Thischapterdescribesthefollowing:

Command Usage

SourceProgramFormat

Symbols and Expressions

1nstructionsandAddressingModes

Assemble<rDirectives

Operation Codes

Error Messages

7.2 Command Usage

As can be invoked with one or more arguments. Except for option arguments, which
must appear first on the command line, arguments may appear in any order on the
command line. The source filename argument is traditionally named with an ".s"
extension. Exceptasspecifiedbelow, ftagsmaybegrouped. Forexample

as -glo that.o this. s

willhavethesameeffectas

as -g -I -o that.o this.s

7.3 Invocation Options

The various options and theirfunctionsaredescribedbelow:

-o relname The default output name is filename .o. This can be overridden by
giving as the -o flag and giving the new filename in the argument
following the -o. For example

as -o that.o this.s

assemblesthesourcerhi.s . .sandputstheoutputinthefilerhat.o.

-1 Bydefauh,nooutputlistingisproduced. Alistingmaybeproducedby
giving the -I flag. The listing filename extension is ".L". The
filename forthelistfileis based ontheoutputfile. So the command line

7- 1

XENIX Programmer's Guide

as -1 -o output.x input.s

producesalistingnamedourpur.L.

-e Bydefauh, allsymbolsgointothesymboltableofthea.out(F)filethat
is produced by the assembler, including locals. If you want only
symbolsthatan:definedas.globlor.commtobeincluded,usethe-e
(externals only) flag.

-g Bydefault, ifasymbolisundefinedinanassembly,anerrorisllagged.
This may be changed with the -g flag. If this is done, undefined
symbols will be interpreted as external.

: - v By default, the a.out file is for XENIX version 3.0 systems; the
number lor3 specifies which versiontbeoutputisintendedfor.

7.4 Source Program Format

Ana.s program consists of a series of statements, each of which occupies exactly one
line, i.e., a sequence of characters followed by the newline character. Form feed,
ASCll <CONTROL-L>, also serves as a line terminator. Continuation lines an: not
allowed, andtliemaximumlinelengthis 132characters. However, several statements
1118Y be on a single line, separated by semicolons. Remember though, that anything
after a comment character is considered a comment. The format of an as assembly
language statement is:

[label-Jieldl [opcode foperandsl [1 commentl
MostofthefieldsmaybeomittedundercertaincircumstaDCes. Inparticular.

1. Blanklinesarepermitted.

2. Astatementmaycontainonlyalabelfield. Thelabeldefinedinthisfieldhas
the same value as if it were defined in the label field of the next statement in
theprogram. Asanexample, the two statements

name:
add) dO,dl

are equivalent to the single statement

name: add) dO,dl

3. Aline may consistofonlythecomment field. The two statements below are
allowedascommentsoccupying full lines:

I This is a comment field.
I So is this.

4. Muhiple statements may be put on a line by separating them with a
semicolon (;). Remember, however, that anything after a comment
character(includingstatementseparators)isacomment.

n general, blanks crtabs an: allowed anywhere ina statement; that is, muhiple blanks
re allowed in the operand field to separate symbols from operators. Blanks an:
·2

As: An Assembler

significant only when they occur in a character string (e.g. , as the operand of an .ascii
pseudo-op) or in a character constant. At least one blank or tab must appear between
theopcodeandtheoperandfieldofastatement.

7.4.1 Label Field

A label is a user-defined symbol that is assigned the value of the current location
counter, both of which are entered into the assembler's symbol table. The value of the
label is relocatable.

A label is a symbolic means of referring to a specific location within a program. If
present, a label always occurs first ina statement and must be terminated by a colon. A
maximum often labels may be defined by a single source statement. The collection of
labeldefi.nitionsinastatementiscalledthe"label-field."

Theformatofalabel-fieldis:

symbol: f symbol: l . . .

Examples:

start:
name: name2:
7$:

I Multiple symbols
I A local symbol (see below)

7.4.2 OpcodeFidd

The opcode field of an assembly language statement identifies the statement as either a
machine instruction, or an assembler directive (pseudo-op). One ormore blanks (or
tabs) must separate the opcode field from the operand field ina statement. No blanks
are necessary between the label and opcode fields, but they are recommended to
improvereadabilityofprograms.

A machine instruction is indicated by an instruction mnemonic. Conventions used in
as for instruction mnemonics aredescribedinalatersection, along with a complete list
ofopcodes.

An assembler directive, or pseudo-op, performs some function during the assembly
process. lt does not produce any executable code, but it may assign space ina program
for data.

As is case-sensitive. Operatorsandoperandsmayonly be lowercase.

7.4.3 Operand-Field

As makes a distinction between operand-field and operand. Several machine
instructions andassemblerdirectivesrequireoneormore arguments, and each ofthese
is referred to as an "operand". In general, an operand field consists of zero, one, or
two operands, and in all cases, operands are separated by a comma. In other words,
theformatforanoperand-fieldis:

[operand [, operand] . . .]
The format of the operand field for machine instruction statements is the same for all

7-3

XENIX Programmer's Guide

instructions. The format of the operand field for assembler directives depends on the
directive itself.

7.4.4 Comment Ficld

The commentdelimiteristheverticalbar, { I), not the semicolon, (;). The semicolon is
the statement separator. The comment field consists of all characters on a source line
following and including the comment character. These characters are ignored by the
assembler. Any character may appear in the comment field, with the exception of the
new line character, which starts a newline.

7.5 Symbols and Expressions

This section describes the various components of as expressions: symbols, numbers,
terms, and expressions.

7.5.1 Symbols

A symbolconsistsofl to32characters, with the following restrictions:

l. Valid characters include A-Z, a-z, 0-9, period (.), underscore (_), and
dollar sign ($).

2. Thefirstcharactermustnotbenumeric,unlessthesymbolisalocalsymbol.

There is no limit to the size of symbols, except the practical issue of running out of
symbol memory in the assembler. However, be aware that the current C compiler only
generates eight -character symbol names, so a symbol greater than eight -characters
in length that you think is the same in both C and assembly may not match. Uppercase
and lowercase are distinct (e.g. , "Name" and "name" are separate symbols). The
period (.) and dollar sign ($) characters are valid symbol characters, but they are
reserved for system software symbols such as system calls and should not appear in
user-defined symbols.

A symbol is said to be "declared'' when the assembler recognizes it as a symbol of the
program. A symbolis said to be "defined' ' when a value is associated with it. With the
exception of symbols declared by a .globl directive, all symbols are defined when they
are declared. A label symbol (which represents an address in the program) may not be
redefined; other symbols areallowedtoreceivea new value.

There are several ways to declare a symbol:

7-4

l . Asthelabelofastatement

2. lnadirectassigmnentstatement

3. Asanexternalsymbolviathe.globl directive

4. Asacommonsymbolviathe.c:ommdirective

5. Asalocal symbol

7.5.1.1 Direct Assignment Statements

As: An Assembler

A direct assignment statement assigns the value of an arbitrary expression to a
specified symbol. The format of a direct assignment statement is:

symbol = f symbol =] . . . expression

Examples of valid direct assignments are:

vecLsize =
vectora
vectorb =
CRLF

4
/fffe
vectora-vecLsize
/ODOA

Any symbol defined by direct assignment may be redefined later in the program, in
which case its value is the resuh of the last such statement. A local symbol may be
defined by direct assignment; a label orregistersymbolmay ntt be redefined.

If the expression is absolute, then the symbolis also absolute, and may be treated as a
constant in subsequent expressions. If the expression is relocatable, however, then
symbol is also relocatable, and is considered to be declared in the same program
section as the expression. See the discussion in a later section of absolute and
relocatableexpressions.

7.5.1.2 Regbter Symbols

Register symbols are symbols used to represent machine registers. Register symbols
are usually used to indicate the register in the register field of a machine instruction.
Theregistersymbolsknowntotheassembleraregivenattheendofthischapter.

7.5.1.3 External Symbols

A program may be assembled in separate modules, and then linked together to form a
single program (see /d(CP)). External symbols may be defined in each of these
separate modules. A symbol that is declared (given a value) in one module may be
referenced in another module by declaring the symbol to be external in both modules.
There are two forms of external symbols: those defined with the .globl directive and
those defined with the .eomm directive. See Section 8. 7.6 for more information on
these directives.

7.5.1.4 Local Symbols

Local symbols provide a convenient means of generating labels for branch
instructions. Use of local symbols reduces the possibility of muhiply-defined

7-5

XENIX Programmer's Guide

symbols in a program, and separates entry point symbols from local references, such
asthetopofaloop. Localsymbolscannotbereferencedbyotherobjectmodules.

Local symbolsareoftheformn $ wherenisanyinteger. Validlocal symbolsinclude:

27$
394$

A local symbolis defined and referenced only within a single local symbol block (lsb) .
Anewlocalsymbolblockisenteredwheneither:

!. Alabelisdeclared,or

2 . Anewprogramsectionisentered.

There isno conflictbetweenlocal symbols withthe samename thatappearindifferent
local symbol blocks.

7 .5.2 Assembly Location Counter

Theassembly locationcounteristheperiodcharacter(.);henceitsname ''dot". When
used in the operand field of any statement, dot represents the address of the first byte of
the statement . Even in assembly directives, it represents the address ofthe start ofthe
directive. A dot appearing as the third argument in a .byte directive would have the
value of the address where the first byte was loaded; it is not updated "during" the
directive.

For example:

movl . ,d1 I load value of program counter into d1

At the beginning of each assembly pass, the assembler clears the location counter.
Normally, consecutive memory locations are assigned to each byte of generated code.
However, the location where the code is stored may be changed by a direct assignment
alteringthelocationcounter:

. = expression

This expression must not contain any forward references, must not change from one
pass to another, and must not have the effect of reducing the value of dot. Note that
setting dot to an absolute position may not have quite the effect you expect if you are
linking an as output file with other files, since dot is maintained relative to the origin of
the output file and not the resolved position in memory. Storage area may also be
reserved by advancing dot. For example, if the current value of dot is 1000, the direct
assignment statement:

TABLE: . = . + 1100

would reserve 100 (hex) bytes of storage, with the address of the first byte as the value
ofT ABLE. Thenextinstructionwouldbestoredataddress llOO. Notethat

.blkb 100

is a substantially more readable way of doing the same thing.

The :p operator, discussed in a later section, allows you to assemble values that are
location-relative, both locally (within a module) and across module boundaries,
without explicitaddressarithmetic.

7-6

7.5.3 ProgramSections

As: Au Assembler

As in XENIX, programs to as are divided into two sections: text and data. These
sections are interpreted as instruction space and initialized data space, respectively.

In the first pass of the assembly, as maintains a separate location counter for each
section. Thus, forcodelikethefollowing:

.text
LABELl: movw dl ,d2

.data
LABEL2: . word 1:7

.text
LABEL3: add! d2,dl

.data
LABEL4: .byte 4

LABELl willimmediatelyprecedeLABEL3, andLABEL2 willimmediatelyprecede
LABEL4 in the output. At the end of the first pass, as rearranges all the addresses so
that the sections will be output in the following order: text, then data. The resulting
output file is an executable image with all addresses correctly resolved, with the
exception of .comm variables and undefined .globl variables. For more information
ontheformatoftheoutputfile, consulta.out(F).

7.5.4 Comtallts

AllconstaiJlsare considered absolute quantities when appearing in an expression.

7.5.4.1 Numeric Constauts

Any symbol beginning with a digit is assumed to be a number, and will be interpreted in
thedefauhdecimalradix. Individual numbers may be evaluated inanyofthefive valid
radices: decimal, octal, hexadecimal, character, and binary. The default decimal
radix is only used on "bare" numbers, i.e., sequences of digits. Numbers may be
represented in !Xher radices as defined by the following table. The other three radices

7-7

XENlX Programmer's Guide

require a prefix:

Radix Prefix Examole
octal :<up-arrow) "17 equals l�base l O.
octal 0 "017 equals 1Sbase10.
hex /(slash) /A1 equals 161 base 10.
hex Ox OxAi equals 161 base 10.
char ' (quote) •a equals97base 10.
char ' (quote) '\n equals 10base 10.
binary % (percent) %11011 equals27base 10.

Letters in hex constants may be uppercase or lowercase; e. g. , /aa==/Aa==/ AA== 170.
lllegaldigits for a particular radix generate an error (e.g. , "018). While theC character
constant syntaxis supported,
you cannot define character constants with a number (e. g. , '\27) as this is more easily
representedinoneoftheotherformats.

7.5.5 Operators

An operator is either a unary operator requiring a single operand, or a binary operator
requiringtwooperands. Operatorsofeachtypearedescribedbelow.

·

7.5.5.1 Unary Operators

Therearethreeunaryoperatorsinas:

The' ':p'' operator is a suffix that can be applied toarelocatableexpression. It replaces
the valueoftheexpression with the displacement ofthat value from the current location
(not dot). This is implemented with displacement relocation, so that it also works

7-8

As: An Assembler

across modules.

7.5.5.2 Binary Operators

Binary operators include:

Operator Descriotion Example Value
+ Addrtwn 3+4 7.

Subtraction 3 4 l . , or/FFFF
• Multiplication 4*3 1 2 .
I Division 1214 3.
I Logical OR %01101 I %00011 %0ll l l

& Logical AND %0ll01&%000ll %00001 .
Remainder 5"3 2 .

Each operator is assumed to work on a 32-bit number. lfthe value of a particular term
occupies only 8 or 16 bits, the sign bit is extended into the high byte.

Sometimes errors in expressions can be fixed by breaking the expressions intomuhiple
statements using direct assignment statements.

7.5.6 Terms

Atermisacomponentofanexpression. Atermmaybeoneofthefollowing:

1 . Anumberwhose32-bitvalueisused

2. Asymbol

3. A term preceded by a unary operator. For example, both "term" and
''"term' ' may be considered terms. Muhiple unary operators are allowed;
e.g. " + - - + A" hasthe samevalueas "A".

7.5.7 Expressions

Expressions are combinations of terms joined together by binary operators. An
expression is always evaluated to a 3 2-bit value. If the instruction calls for only 1 byte
(e.g. , .byte), thenthelow-order8bitsareused.

Expressions are evaluated left to right with no operator precedence. Thus
"1 + 2 * 3" evaluates to 9, not 7. Unary operators have precedence over binary
operators since they are considered part of a term, and both terms of a binary operator
mustbeevaluatedbeforethebinaryoperatorcanbeapplied.

A missing expression or term is interpreted as having a value of zero. In this case, the
following error message is generated:

Invalid Expression

7-9

XENIX Programmer's Guide

An "Invalid Operator" error means that a valid end-of-line character or binary
operator was not detected after the assembler processed a term. In particular, this error
will be generated if an expression contains a symbol with an illegal character, or if an
incorrectcommentcharacterwas used.

AJrj expression, when evaluated, is either absolute, relocatable, or external:

1 . Anexpressionisabsolute if its value is fixed. Absolute expressions are those
whose terms are constants, or symbols assigned constants with an
assignment statement. Also absolute is a relocatable expression minus a
relocatable term, where both items belong to the same program section.

2. An expression is relocatable if its value is fixed relative to a base address,
but will have an offset value when it is linked, or loaded into core. Alllabels
of a program defined in relocatable sections are relocatable terms, and any
expression that contains them must only add or subtract constants to their
value. For example, assume the symbol "sym" was defined in a
relocatable sectionofthe program. Then thefollowingdemonstratestheuse
ofrelocatable expressions:

sym Relocatable

sym+5 Relocatable

sym- 'A Relocatable

sym*2 Notrelocatable

2-sym Not relocatable, since the expression cannot be linked by
adding sym' soffsettoit.

sym-sym2 Absolute, since the offsets added to sym and sym2 cancel each
other out.

3. An expression is "external" (i.e., or global) if it contains an external
symbol not defined in the current program. The same restrictions on
expressions containing relocatable symbols apply to expressions
containing external symbols.

An important exception is the expres�ion sym-sym2 where b<xh sym and
sym2 are external symbols. Expressionsofthiskindaredisallowed.

7.6 Instructions and Addressing Modes

This section describes the conventionsusedinasto specify instructionmnemonicsand
addressing modes.

7 .6.1 Instruction Mnemonics

The instructionmnemonicsusedbyasaredescribed intheMotorolaMC68000User's
Manual with a few variations. Most of the MC68000 instructions can apply to byte,

7- 10

As: An Assembler

word or to long operands, thus in as the normal instruction mnemonic is suffixed with
b, w, or I to indicate which length of operand was intended. For example, there are
threemnemonicsfortheaddinstruction: addb, addw, andaddl.

Branch and call instructions come in 3 forms: the bra, jra, bsr and jbsr forms may
only take a label as argument. For the bra and bsr forms, the assembler will always
produce a long (16-bit) pcrelative address. Forthejra andjbsr forms, the assembler
will produce the shortest form of binary it can. This may be 8-bit or 16-bit pc
relative, or 32-bit absolute. The 32-bit absolute is implemented for conditional
branches by inverting the sense of the condition and branching around a 32-bitjmp
instruction. The 32-bit form will be generated whenever the assembler can't figure
out how far away the addressed location is; for example, branching to an undefined
symbol or a calculated valuesuchasbranchingtoaconstantlocation.

7 .6.2 Operand Addressing Modes

These effective addressing modes specify the operand(s)of an instruction. For details
oftheeffectiveaddressingmodes, seethe ' 'MC68000User'sManual. "Notealsothat
not all instructions allow all addressing modes. Details are given in the "MC68000
U ser'sManual'' inAppendixB under the specific instruction.

In the examples that follow, when two examples are given, the first example is based
on the assembly format suggested by Mrtorola. The second example is in what is
called "Register Transfer Language" or RTL and is used to describe the register
transfers that are occurring within the machine. It is provided forcompaubility. Either
syntax is accepted, and it is permissible to mix the two types of syntax within a module
or even within a line when two effective address fields are allowed. Beware,however,
that a warning message will be generated whentheassemblernoticessuchamix.

Many of the effective address modes have other names, by which they may be more
commonly known. In the following descriptions, this name appears to the right of the
Motorola name in parentheses.

Data Register Direct

addl dO,dl

AddressRegisterDired

addl aO,aO

Address Register Indirect (indirect)

addl (aO),dl
addl aO@,dl

Address Register Indirect WithPostincrement(autoinc)

movl (a7)+ ,dl
movl a7@+,dl

Address Register Indirect WitbPredecrement(autodec)

7- 11

CENJX Programmer's Guide

movl d l , -(a7)
movl dl ,a7@-

�cldressRegister Indirect WithDisplaeement(indexed)

This form includes a signed 16-bit displacement. These displacements maybe
symbolic.

movl 12(a6),dl
movl a6@(12),d1

�ddressReglster Indirect Witbindex(double-indexed)

This form includes a signed 8-bit displacement and an index register. The size
oftheindexregisterisgivenbyfollowingitsspecificationwitha ":w''ora'':l''.
If neither is specified, ":1" is assumed.

movl 12(a6,dO:w),dl
movl a6@(12,d0:w),dl

,bsoJuteSbortAddress

movl xx:w,dl

.bsoluteLongAcldress(absolute)

This is the assumed addressing mode should the given value be a constant. This
is not true of branch and call instructions. Note also that the second example
hereisnotRTL syntax, butisprovidedonlybecauseitisalsoallowed.

movl xx,dl
movl xx:l,dl

rogramCounter WitbDisplaeement(perelative)

Whenpcrelativeaddressingis used, such as

pea name(pc)

theassemblerwillassemble a valuethatisequalto "name-.", wheredot(.)is
the position of the value, whether "name" is in the current module or not. You
may also causeanexpressiontobepcrelative by suffixing it with a ' ':p' ' .

movl JO(pc),dl
movl pc@(lO),dl

Note that if a symbol appears in the above addressing mode (where the 10 is in
the example), the symbol' sdisplacement from the extension word will be used
in the instruction.

�ogramCounter With Index

jmp switchtab(pc,dO:l)
JDlP pc@(switchtab,dO:l)
switch tab:

unediateData

· 1 2

As: An Assembler

Note that this is the way to get immediate data. If a number is given with no
number sign (#), you get absolute addressing. This does not hold for jsr and
jmp instructions.

movl

jmp
moveq

#47,dl
somewhere
#7,dl

In the movem instruction's register mask field, a special kind of immediate is
allowed: the register list. Its syntax is as follows:

<reg [,reg]>
Here, reg is any register name. Register names may be given in any order. The
assembler automatically takes care of reversing the mask for the auto
decrement addressingmode. Normalimmediatesarealsoallowed.

7. 7 Assembler Directives

XENIX Programmer's Guide

The following assemblerdirectivesareavailable inas:

.ascii stores character strings

.asclz stores null-appended character strings

.blkb

. blkw saves blocks ofbytes/wocds/longs

.blkl

.byte

.word stoces bytes/words/longs

.long

.end terminates program and identifies execution address

.text Text program section

.data Data program section

.bss Bss program section

.globl declares external symbols

.comm declares communal symbols

.even forces location counter to next word boundary

7. 7.1 .ascii .asciz

The • asdi directive translates character strings into their 7-bit ASCll (represented as
8-bit bytes) equivalents for use in the source program. The format of the .ascii
directive is as follows:

.ascii "character-string"
where character-string contains any character valid in a character constant.
Obviously, a newline must not appear within the character string. (It can be
represented by the escape sequence • '\n '' as described below). The quotation mark(")
is the delimiter character, which must not appear in the string unless preceded by a
backslash (\).
The following escape sequences are also valid as single characters:

X Value of X
\b <bac.kspace>,
\t <tab>,
\n <newline>,
'! <form-feed>,
\r <return>,
\nnn hex value of nnn

Several examples follow:

7- 14

HexCodeGenerated: Statement:

22686..<; 6C6C6F2074 .ascii "hello there"
6865726522

7761 72 6E696E 6720 .ascii "Warning-\007\007\n"
2D0707200A

hex /08
hex /09
hex /OA
hex /OC
hex /OD

As: An Assem�er

The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically inserted as the final characterofthe string. Thus, when a list or text string
is to be printed, a search for the null character can terminate the string. Null terminated
strings areoftenusedasargumentstoXENIX systemcalls.

7. 7.2 .blkb .blkw .bUd

The .blkb, .blkw, and .bW directives are used to reserve blocks of storage: .blkb
reserves bytes, . blkwreserves words and. blkl reserves longs.

The format is:

r/abe/:1 lahet:1
label: 1

.blkb

.blkw

.blkl

expression expression expression
where expression is the number ofbytes or words to reserve. lf no argument is given a
value of 1 is assumed. Theexpressionmust be absolute, anddefinedduringpass 1 (i.e.
no forward references).

This is equivalent to the statement ", = . +expression", but has a much more
transparent meaning.

7. 7.3 • byte • word .long

The .byte, .word, and .Jong directives are used to reserve bytes and words and to
initialize them with values.

The format is:

r�::::j ttabel:
.byte
.word
.long

[expression\ r. expressionj . . . express�on , express�on . . .
ex pre sst on , expresswn . . .

The .byte directive reserves 1 byte for each expression in the operand field and
initializes the value of the byte to be the low-order byte of the corresponding
expression. Note that multiple expressions must be separated by commas. A blank
expression is interpreted as zero, and no error is generated.

For example,

• bytea,b, e,s

.byte , , ,

• byte

reserves4 bytes .

reserves5 bytes, each with a value of zero.

reserves 1 byte, with a value of zero .

The semantics for . word and .long are identical , except that 16-bit or 32-bit words
are reserved and initialized. Be forewarned that the value of dot within an expression is
that of the beginningofthe statement, not of the value being calculated.

7.7.4 .end

The .end directive indicates the physical endofthe source program. The format is:

7- 1 5

KENIX Programmer's Guide

.end

The .end is not required; reaching the end of file has the same effect.

7.7.5 .text .data .bss

These statements change the "program section" where assembled code will be
loaded.

7.7.6 .globl.comm

Two forms of external symbols are defined with the .globland .comm directives.

External symbols are declared with the .globlassemblerdirective. The format is:

.globl symbol r • symbol • • •]
For example, the following statements declare the array TABLE and the routine
SRCH to be external symbols:

.globl TABLE, SRCH
TABLE: .b!kw 10.
SRCH: movw T ABLE,aO

External symbols are only declared to the assembler. They must be defined (i.e. , given
a value) in some other statement by one of the methods mentioned above. They need
not be defined in the current program; in this case they are flagged as ''undefined'' in
the symbol table. If they are undefined, they are considered to have a value of zero in
expressions.

It is generally a good idea to declare a symbol as .globl before using it in any way. This
is particularly imponant when defining absolutes.

The other form of external symbol is defined with the .comm directive. The .c:omm
directive reserves storage that may be communally defined, i.e. , defined mutually by
several modules. The link editor, ld (CP) resolves allocation of .comm regions. The
syntax of the .commdirective is:

.comm name consta111-expression

which causes as to declare the name as a common symbol with a value equal to the
expression. Fortherestoftheassemblythissymbolwillbetreatedasthoughitwerean
undefined global. As does not allocate storage for common symbols; this task is left to
the loader. The loader computes the maximum size of each common symbol that may
appear in several load modules, allocates storage for it in the bss section, and resolves
linkages.

7.7.7 .even

This directive advances the location counter if its current value is odd. This is useful for
forcing storage allocation on a word boundary after a .byte or .ascii directive. Note
that many things may not be on an odd boundary in as , including instructions, and
wordandlongdata.

7-16

As: An Assembler

7.8 Operation Codes

Below are all opcodesrecognized by as:

abed bmi dbra movb rte
addb bmis dbt movw rtr
addw bne dbvc movl rts
addl bnes dbvs movemw sbcd
addqb bpi divs moveml sec
addqw bpls divu movepw scs
addql bra eorb movepl seq
addxb bras eorw moveq sf
addxw bset eorl muls sge
addxl bsr exg mulu sgt
an db bsrs extw nbcd shi
andw btst extl negb sle
andl bvc jbsr negw sis
aslb bvcs jcc negl sit
aslw bvs jcs negxb smi
asn bvss jeq negxw sne
asrb chk jge negxl spl
asrw chb jgt nop st
asrl clrw jhi notb stop
bee clrl jle notw subb
bees cmpb jls notl subw
bchg cmpw jlt orb subl
bclr cmpl jmi orw subqb
bcs cmpmb jmp orl subqw
bess cmpmw jne pea subql
beq cmpml jpl reset subxb
beqs dbcc jra rolb subxw
bge dbcs jsr rolw subxl
bges dbeq jvc roll SVC
bgt dbf jvs rorb svs
bgts dbge lea rorw swap
bhi dbgt link rorl tas
bhis dbhi lslb roxlb trap
ble dble lslw roxlw trapv
bles dbls lsll roxll tstb
bls dblt lsrb roxrb tstw
blss dbmi lsrw roxrw tstl
bh dbne I sri roxrl unlk
bhs dbpl

The followingpseudooperationsarerecognized:

7- 1 7

XENIX Programmer's Guide

.ascii

.asdz

.blkb

.blkl

.blkw

.bss

.byte

.comm

.data

.end

.even

.globl

.long

.text

.word

Thefollowingregistersarerecognized:

dO dl d2 d3 d4 d5 d6 d7
aO al al a3 a4 aS a6 a7
sp pe cc sr

7.9 Error Messages

lfthereareerrorsinanassembly, anerrormessageappearsonthe standard error output
(usually the terminal) giving the type of error and the source line number. If an
assembly listing is requested, and there are errors, the error message appears before
the offending statement. lfthere werenoassemblyerrors, thentherearenomessages,
thus indicating a successful assembly. Some diagnostics are only warnings and the
assembly is successful despite the warnings.

The commonerr<X"codes andtheirprobablecauses, appear below:

Invalid character
An invalid character for a character constant <Y character string was
encountered.

Multiply defined symbol
A symbol has appeared twice as a label, or an attempt has been made to
redefine a label using an= statement. This error message may also occur
ifthe value of a symbol changes between passes.

OITsettoolarge
A displacement cannot fitinthespaceprovided for by the instruction.

Invalid constant
An invalid digit was encountered ina number.

Invalid term

7-18

The expression evaluat<X" could not lind a valid tenn that was either a
symbol, constant or expression. An invalid prefix to a number or a bad
symbol name in an operand will generate this.

As: An Assembler

Nonreloeatable expression
A required relocatable expression was not found as an operand. It was
not provided.

Invalid operand
An illegal addressing mode was given for the instruction.

Invalid symbol
A symbol was given that does not conform to the rules for symbol
formation.

Invalid assignment
An attempt wasmadetoredefinealabelwithan = statement.

Invalid opcode
A symbol in the opcode field was not recognized as an instruction
mnemonic or directive.

Bad filename
An invalid filename was given.

Wrongnumberofoperands
An instruction has either too few or too many operands as required by the
syntax of the instruction.

Invalid register expression
Anoperandoroperand elementthatmustbe aregisterisnot,oraregister
name is used where it may not be used. For example, using an address
register in a moveq instruction, which only allows data registers will
produce this error message; as will using a register name as a label with a
bra instruction.

Odd address
Aninstructionordataitemthatmuststartatanevenaddressdoesnot.

lnconsbtenteffectiveaddresssyntax
Both assembly andRTL syntaxappearwithina single module.

Nonword memory shift
Anin-memoryshiftinstructionwasgivenasizeotherthan l 6bits.

7- 1 9

Chapter 8
Lex: A Lexical Analyzer

8.1 Introduction 8-1

8.2 Lex Source Format 8-2

8.3 Lex Regular Expressions 8-3

8.4 Invoking lex 8-4

8.5 Specifying Character Classes 8-5

8.6 Specifying an Arbitrary Character 8-6

8.7 Specifying Optional Expressions 8-6

8.8 Specifying Repeated Expressions 8-6

8.9 Specifying Alternation and Grouping 8-7

8.10 Specifying Context Sensitivity 8-7

8.11 Specifying Expression Repetition 8-8

8.12 Specifying Definitions 8-8

8 . 13 Specifying Actions 8-8

8.14 HandlingAmbiguous Source Rules 8-12

8 . 1 5 Specifying Left Context Sensitivity 8-15

8.16 Specifying Source Definitions 8-17

8.17 Lex and Yacc 8-18

8.18 S pecifying Character Sets 8-22

8.19 Source Format 8-23

Lex: A Lexical Analyzer

8 . 1 Introduction

Lex is a program generator designed for lexical processing of character input
streams. It accepts a high-level, problem-oriented specification for character
string matching, and produces a C program that recognizes regular
expressions. The regular expressions are specified by the user in the source
specifications given to lex. The lex code recognizes these expressions in an
input stream and partitions the input stream into strings matching the
expressions. At the boundaries between strings, program sections provided by
the user are executed. The lex source file associates the regular expressions a.nd
the program fragments. As each expression appears in the input to the
program written by lex, the corresponding fragment is executed.

The user supplies the additional code needed to complete his tasks, including
code written by other generators. The program that recognizes the expressions
is generated in the from the user's C program fragments. Lex is not a complete
language, but rather a. generator representing a. new language feature added on
top or the c programming language.

Lex turns the user's expressions a.nd actions (called source in this chapter) into
a C program named yylez . The yylez program recognizes expressions in a
stream (called input in this chapter) and performs the specified actions for each
expression as it is detected.

Consider a program to delete from the input all blanks or tabs at the ends of
lines. The. following lines

%%
[\t]+$

are all that is required. The program contains a %% delimiter to mark the
beginning of the rules, and one rule. This rule contains a regular expression
that matches one or more instances of the characters blank or ta.b (written \t
for visibility, in accordance with the C language convention) just prior to the
end of a. line. The brackets indicate the character class made of blank and ta.b;
the + indicates one or more of the previous item; and the dollar sign ($)
indicates the end of the line. No action is specified, so the program generated by
lex will ignore these characters. Everything else will be copied. To change a.ny
remaining string of blanks or tabs to a. single blank, add another rule:

%%
[\t]+$
[\t]+

I
printf(" ");

The finite automaton generated for this source scans for both rules at once,
observes at the termination of the string of blanks or tabs whether or not there
is a newline character, and then executes the desired rule's action. The first rule
matches all strings of blanks or tabs at the end of lines, and the second rule
matches all remaining strings of blanks or tabs.

8- l

XENIX Programmer's Guide

Lex can be used alone for simple transformations, or for analysis and statistics
gathering on a lexical level. Lex can also be used with a parser generator to
perform the lexical analysis phase; it is especially easy to interface lex and
yacc . Lex programs recognize only regular expressions; yacc writes parsers
that accept a large class or context-free grammars, but that require a lower
level analyzer to recognize input tokens. Thus, a combination or lex and yacc
is often appropriate. When used as a preprocessor Cor a later parser generator,
lex is used to partition the input stream, a.nd the parser generator assigns
structure to the resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs written by lex. Yacc
users will realize that the name yylez is what yacc expects its lexica.! analyzer to
be named, so that the use or this name by lex simplifies interfacing.

Lex generates a deterministic finite a.utoma.ton from the regular expressions in
the source. The automaton is interpreted, rather than compiled, in order to
save space. The result is still a Cast analyzer. In particular, the time taken by a
lex program to recognize and partition an input stream is proportional to the
length of the input. The number oriex rules or the complexity orthe rules is not
important in determining speed, unless rules which include forward context
require a significant amount or rescanning. Wha.t does increase with the
number and complexity or rules is the size or the finite automaton, and
therefore the size or the program generated by lex.

In the program written by lex, the user's fragments (representing the actions to
be performed as each regular expression is found) are gathered as cases or a
switch. The automaton interpreter directs the control flow. Opportunity is
provided for the user to insert either declarations or additional statements in
the routine containing the actions, or to add subroutines outside this action
routine.

Lex is not limited to source that can be interpreted on the basis or one
character lookahead. For example, if there are two rules, one looking Cor ab and
another for abcdefg, and the input stream is abcdefh, lex will recognize ab and
leave the input pointer just before cd. Such backup is more costly than the
processing or simpler languages.

8.2 Lex Source Format

The general formatoriex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often omitted. The second
%% is optional, but the first is required to mark the beginning of the rules. The
absolute minimum lex program is thus

B-2

Lex: A Lexical Analyzer

%%
(no definitions, no rules) which translates into a program that copies the input
to the output unchanged.

In the lex program format shown above, the rules represent the user's control
decisions. They make up a table in which the left column contains regular
expressions and the right column contains actions, program fragments to be
executed when the expressions are recognized. Thus the following individual
rule might appear:

integer printf(" found keyword INT");

This looks for the string integer in the input stream and prints the message

found keyword INT

whenever it appears in the input text. In this example the C library function
print/() is used to print the string. The end of the lex regular expression is
indicated by the first blank or tab character. If the action is merely a single C
expression, it can be given on the right side of the line; if it is compound, or takes
more than a line, it should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

printf(" color") ;
printf(" mechanize") ;
printf(" gas");

would be a start. These rules are not quite enough, since the word petroleum
would become gauum; a way of dealing with such problems is described in a.
later section.

8.3 Lex Regular Expressions

A regular expression specifies a set of strings to be matched. It contains text
characters (that match the corresponding characters in the strings being
compared) and operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet a.nd the digits a.re always text
characters. Thus, the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string a57D.

8-3

XENIX Programmer's Guide

The operator characters are

" \ [J ' - ? . • + 1 () $ / {} % < >

If any of these characters are to be used literally, they needed to be quoted
individually with a backslash (\) or as a group within quotation marks (").
The quotation mark operator (") indicates that whatever is contained between
a pair of quotation marks is to be taken as text characters. Thus

xyz" ++"

matches the string zyz++ when it appears. Note that a part of a. string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression

"xyz++"

is the same as the one above. Thus by quoting every nonalphanumeric
character being used as a text character, you need not memorize the above list
of current operator characters.

An operator character may also be turned into a text character by preceding it
with a backslash (\) as in

xyz\+\+

which is another, less readable, equivalent of the above expressions. The
quoting mechanism can also be used to get a. blank into an expression; normally,
as explained above, blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted. Several normal C escapes with the
back slash (\) are recognized:

\n newline

\t tab

\b backspace

\\ back slash

Since newline is illegal in an expression, a \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character.

8.4 Invoking /ez
There are two steps in compiling a lex source program. First, the lex source
must be turned into a generated program in the host general purpose language.
Then this program must be compiled and loaded, usually with a library of lex

8-4

Lex: A Lexical Analyzer

subroutines. The generated program is in a file named lex .yy .c. The 1/0
library is defined in terms of the C standard library.

The library is accessed by the loader flag -ll. So an appropriate set of
commands is

lex source
cc lex.yy.c -II

The resulting program is placed on the usual file a. out for later execution. To
use lex with yacc see the section "Lex and Yacc" in this chapter and Chapter 9,
"Yacc: A Compiler-Compiler" ". Although the default lex 1/0 routines use the
C standard library, the lex automata themselves do not do so. Ir private
versions of input, output , and unput are given, the library can be avoided.

8.5 Specifying Character Classes

Classes of characters can be specified using brackets: [and). The construction

(abc)

matches a single character, which may be a, b, or c . Within square brackets,
most operator meanings are ignored. Only three characters are special: these
are the backs! ash {\), the dash (·), and the caret (•). The dash character
indicates ranges. For example

[a-z0-9< > _J
indicates the character class containing all the lowercase letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using the
dash between any pair of characters that are not both uppercase letters, both
lowercase letters, or both digits is implementation dependent and causes a
warning message. Ir it is desired to include the dash in a character class, it
should be first or last; thus

[-+0..9)

matches all the digits and the plus and minus signs.

In character classes, the caret (') operator must appear as the first character
after the left bracket; it indicates that the resulting string is to be
complemented with respect to the computer character set. Thus

(' abc)

matches all characters except a, b, or c, including all special or control
characters; or

8-5

XENIX Programmer's Guide

!' a-zA-Z)

is any character which is not a letter. The backslash (\) provides an escape
mechanism within character class brackets, so that characters can be entered
literally by preceding them with this character.

8.6 Specifying an Arbitrary Character

To match almost any character, the period (.) designates the class of all
characters except a newline. Escaping into octal is possible although
nonportable. For example

[\40-\176)

matches all printable characters in the ASCII character set, from octal 40
(blank) to octal 176 (tilde).

8. 7 Specifying Optional Expressions

The question mark (!) operator indicates an optional element of an expression.
Thus

ab!c

matches either ac or abc . Note that the meaning of the question mark here
differs from its meaning in the shell.

8 .8 Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and plus (+) operators.
For example

matches any number of consecutive a characters, including zero; while a+
matches one or more instances of a. For example,

[a-z)+

matches all strings oflowercase letters, and

[A-Za-z)[A-Za-z0-9)•

matches all alphanumeric strings with a leading alphabetic character; this is a
typical expression for recognizing identifiers in computer languages.

8-6

Lex: A Lexical Analyzer

8.9 Specifying Alternation and Grouping

The vertical bar (I) operator indicates alternation. For example

(ablcd)

matches either ab or c d. Note that parentheses are used for grouping, although
they are not necessary at the outside level. For example

ablcd

would have sufficed in the preceding example. Parentheses should be used for
more complex expressions, such as

(ab led+)?(ef)*

which matches such strings as abefef, efefef, cdef, and cddd, but not abc , abed,
or abcdef.

8 .10 Specifying Context Sensitivity

Lex recognizes a small amount of surrounding context. The two simplest
operators for this are the caret (') and the dollar sign ($). Ir the first character
of an expression is a caret, then the expression is only matched at the beginning
of a line (after a newline character, or at the beginning of the input stream).
This can never conflict with the other meaning of the caret, complementation
of character classes, since complementation only applies within brackets. If the
very last character is dollar sign, the expression only matched at the end of a
line (when immediately followed by newline). The latter operator is a special
case of the slash (/) operator, which indicates trailing context. The expression

abfcd

matches the string ab , but only if followed by c d. Thus

ab$

is the same as

ab/\n

Left context is handled in lex by specifying start conditions as explained in the
section "Specifying Left Context Sensitivity". If a rule is only to be executed
when the lex automaton interpreter is in start condition z, the rule should be
enclosed in angle brackets:

<x>

8-7

XENIX Programmer's Guide

If we considered being at the beginning of a line to be start condition ONE, then
the caret (·) operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

8.11 Specifying Expression Repetition

The curly braces ({ and }) specify either repetitions (if they enclose numbers) or
definition expansion (ifthey enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the
expression.

8.12 Specifying Definitions

The definitions are given in the first part of the lex input, before the rules. In
contrast,

a{ l,5}

looks for 1 to 5 occurrencesofthe character 4.

Finally, an initial percent sign (%) is special, since it is the separator for lex
source segments.

8.13 Specifying Actions

When an expression is matched by a pattern of text in the input, lex executes
the corresponding action. This section describes some features of lex which aid
in writing actions. Note that there is a default action, which consists of copying
the input to the output. This is performed on all strings not otherwise matched.
Thus the lex user who wishes to absorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacc, this is the normal situation. You may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be omitted.

One of the simplest things that can be done is to ignore the input. Specifying a C
null statement ; as an action causes this result. A frequent rule is

[\t\n[

which causes the three spacing characters (blank, tab, and newline) to be

8-8

Lex: A Lexical Analyzer

ignored.

Another easy way to avoid writing actions is to use the repeat action character,
I, which indicates that the action for this rule is the action for the next rule. The
previous example could also have been written

" "
" \t" .
"\n"

with the same result, although in a different style. The quotes around \n and \t
are not required.

In more complex actions, you often want to know the actual text that matched
some expression like:

[a-z)+

Lex leaves this text in an external character array named vytezt. Thus, to
print the name found, a rule like

[a-z)+ print!(" %s" , yytext);

prints the string in 1111tezt. The C function print/accepts a format argument
and data to be printed; in this case, the format is print ttringwhere the percent
sign (%) indicates data conversion, and the B indicate string type, and the data
are the characters in yytezt. So this just places the matched string on the
output. This action is so common that it may be written as ECHO. For example

[a-z)+ ECHO;

is the same as the preceding example. Since the default action is just to print
the characters found, one might ask why give a rule, like this one, which merely
specifies the default action! Such rules are often required to avoid matching
some other rule that is not desired. For example, if there is a rule that matches
read it will normally match the instances of read contained• in bread or re adju1t;
to avoid this, a rule of the form

[a-z)+

is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence
lex also provides a count of the number of characters matched in the variable,
yyleng. To count both the number of words and the number of characters in
words in the input, you might write

[a-zA-Z)+ {words++; chars += yyleng;}

which accumulates in the variables chars the number of characters in the words

8-!l

XENIX Programmer's Guide

recognized. The last character in the string matched can be accessed with:

yytext(yyleng-1)

Occasionally, a lex action may decide that a rule has not recognized the correct
span of characters. Two routines are provided to aid with this situation. First,
yymore () can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Normally, the next input string will
overwrite the current entry in yyte:rt. Second, yyle11(n) may be called to
indicate that not all the characters matched by the currently successful
expression are wanted right now. The argument n indicates the number of
characters in yyte:rt to be retained. Further characters previously matched are
returned to the input. This provides the same sort of lookahead offered by the
slash (/) operator, but in a different form.

For example, consider a language that defines a string as a set of characters
between quotation marks (") , and provides that to include a quotation mark in
a string, it must be preceded by a backslash (\). The regular expression that
matches this is somewhat confusing, so that it might be preferable to write

,. r· J· {
if (yytext[yyleng-1) == '\ \')

yymore();
else

... normal user processing
}

which, when faced with a string such as

" abc\" def"

will first match the five characters

" abc\

and then the call to yymore() will cause the next part of the string,

" def

to be tacked on the end. Note that the final quotation mark terminating the
string should be picked up in the code labeled normal processing.

The function yyleu() might be used to reprocess text in various circumstances.
Consider the problem in the older C syntax of distinguishing the ambiguity of
=-a. Suppose it is desired to treat this as =- a and to print a message. A rule
might be

8-10

Lex: A Lexical Analyzer

==-[a-zA-Z] {
printf(" Operator (=-) ambiguous\n");
yyless(yyleng- 1);
. . . action for =· ...
}

which prints a message, returns the letter after the operator to the input
stream, and treats the operator as �.

Alternatively it might be desired to treat this as = -11. To do this, just return
the minus sign as well as the letter to the input. The following performs the
interpretation:

=-[a-zA-Z] {
printf(" Operator (=·) ambiguous\n");
yyless(yyleng-2);
. . . action for = ...
}

Note that the expressions for the two cases might more easily be written

=-/[A-Za-z]

in the first case and

=/-[A-Za-z]

in the second: no backup would be required in the rule action. It is not
necessary to recognize the whole identifier to observe the ambiguity. The
possibility or =-8, however' makes

=-/r \t\nJ

a still better rule.

In addition to these routines, lex also permits access to the I/0 routines it uses.
They include:

1. input() which returns the next input character;

2. output(c) which writes the character c on the output; and

3. unput(c) which pushes the character c back onto the input stream to
be read later by input().

By default these routines are provided as macro definitions, but the user can
override them and supply private versions. These routines define the
relationship between external files and internal characters, and must all be
retained or modified consistently. They may be redefined, to cause input or

8-11

XENIX Programmer's Guide

output to be transmitted to or from strange places, including other programs
or internal memory; but the character set used must be consistent in all
routines; a value of zero returned by input must mean end-of-file; and the
relationship between unput and input must be retained or the lookahead will
not work. Lex does not look ahead at all if it does not have to, but every rule
containing a slash (/) or ending in one of the following characters implies
look ahead:

+ * ? $

Look ahead is also necessary to match an expression that is a prefix or another
expression. See below Cor a discussion or the character set used by lex. The
standard lex library imposes a 100 character limit on backup.

Another lex library routine that you sometimes want to redefine is Jl)'torap()
which is called whenever lex reaches an en d-oC-file. Ir 111110rap returns a 1, lex
continues with the normal wrapup on end of input. Sometimes, however, it is
convenient to arrange for more input to arrive rrom a new source. In this case,
the user should provide a 111/Wrap that arranges for new input and returns 0.
This instructs lex to continue processing. The default uywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the
end of a program. Note that it is not possible to write a normal rule that
recognizes end-of-file; the only access to this condition is through ygwrap(). In
fact, unless a private version of input() is supplied a file containing nulls cannot
be handled, since a value oro returned by input is taken to be end-of-file.

8.14 Handling Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than one expression can
match the current input, lex chooses as Collows:

The longest match is preferred.

Among rules that match the same number or characters, the first
given rule is preferred.

For example, suppose the following rules are given:

integer
Ja-zJ+

keyword action .. . ;
identifier action ... ;

If the input is integere, it is taken as an identifier, because

Ja-zJ+

matches 8 characters while

8-12

Lex: A Lexical Analyzer

integer

matches only 7. Ir the input is integer, both rules match 7 characters, and the
keyword rule is selected because it was given first. Anything shorter (e.g., int)
does not match the expression integer, so the identifier interpretation is used.

The principle of preferring the longest match makes certain constructions
dangerous, such as the following:

·*

For example

' .*'

might seem a good way of recognizing a string in single quotes. But it is an
invitation for the program to read far ahead, looking for a distant single quote.
Presented with the input

'first ' quoted string here, 'second ' here

the above expression matches

'first ' quoted string here, 'second '

which is probably not what was wanted. A better rule is orthe form

T '\n)•'

which, on the above input, stops after 'first '. The consequences of errors like
this are mitigated by the fact that the dot (.) operator does not match a
newline. Therefore, no more than one line is ever matched by such expressions.
Don't try to defeat this with expressions like

(.\n)+

or their equivalents: the lex generated program will try to read the entire input
file, causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for all
possible matches of each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to count
occurrences of both 1he and he in an input text. Some lex rules to do this might
be

she s++;
he h++;
\n I

8-13

XENIX Programmer's Guide

where the last two rules ignore everything besides he and de. Remember that
the period (.) does not include the newline. Since rhe includes he , lex will
normally not recognize the instances of he included in 1he , since once it has
passed a de those characters are gone.

Sometimes the user would like to override this choice. The action REJECT
means go do the next alternative. It causes whatever rule was second choice
after the current rule to be executed. The position of the input pointer is
adjusted accordingly. Suppose the user really wants to count the included
instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

These rules a�e one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, the other
expression will then be counted. In this example, of course, the user could note
that 1he includes he, but not vice versa., and omit the REJECT action on he; in
other cases, however, it would not be possible to tell which input characters
were in both classes.

Consider the two rules

albcl+
a. cd +

{ .. . ; REJECT;}
{ .. . ; REJECT;}

If the input is ab, only the first rule matches, and on ad only the second matches.
The input string accb matches the first rule for four characters and then the
second rule for three characters. In contrast, the input aced agrees with the
second rule for four characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of lex is not to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally the digra.ms overlap, that is the word the
is considered to contain both th and he. Assuming a. two-dimensional array
named digram to be incremented, the appropriate source is

%%
(a-z J [a.-z J { digra.m(yytext(O])(yytext(l])++; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at every
character, rather than at every other character.

Remember that REJECT does not resca.n the input. Instead it remembers the
results of the previous scan. This means that if a. rule with trailing context is

8- 14

Lex: A Lexical Analyzer

found, and REJECT executed, you must not have used unput to change the
characters forthcoming from the input stream. This is the only restriction to
ability to manipulate the not-yet-processed input.

8 .15 Specifying Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to be applied at
different times in the input. For example, a compiler preprocessor might
distinguish preprocessor statements and analyze them differently from
ordinary statements. This requires sensitivity to prior context, and there are
several ways of handling such problems. The caret (') operator, for example, is
a prior context operator, recognizing immediately preceding left context just as
the dollar sign ($) recognizes immediately following right context. Adjacent
left context could be extended, to produce a facility similar to that for adjacent
right context, but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments:

1 . The use of flags, when only a few rules change from one environment
to another

2. The use of start conditions with rules

3. The use multiple lexical analyzers running together.

In each case, there are rules that recognize the need to change the environment
in which the following input text is analyzed, and set some parameter to reflect
the change. This may be a flag explicitly tested by the user's action code; such a
flag is the simplest way of dealing with the problem, since lex is not involved at
all. It may be more convenient, however, to have lex remember the flags as
initial conditions on the rules. Any rule may be associated with a start
condition. It will only be recognized when lex is in that start condition. The
current start condition may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity may be best achieved
by writing several distinct lexical analyzers, and switching from one to another
as desired.

Consider the following problem: copy the input to the output, changing the
word magic to firet on every line that began with the letter a, changing magic to
sec ond on every line that began with the letter b, and changing magic to third
on every line that began with the letter c . All other words and all other lines are
left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

8-15

XENIX Programmer's Guide

%%
'a
' b
' c
\n
magic

int flag;

{flag = 'a '; ECHO;}
{flag = b '; ECHO;}
{flag == 'c '; ECHO;}
{flag = 0 ; ECHO;}
{
switch (flag)
{
case 'a': printf(" first") ; break;
case b ': printf(" second"); break;
case 'c ': printf(" third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start conditions, each start condition must be
introduced to lex in the definitions section with a line reading

%Start namel name2 . . .

where the conditions may be named in any order. The word Start may be
abbreviated to e or S. The conditions may be referenced at the head of a rule
with angle brackets. For example

<name I> expression

is a rule that is only recognized when lex is in the start condition namet. To
enter a start condition, execute the action statement

BEGIN namel ;

which changes the start condition to name 1 . To return to the initial state

BEGIN 0;

resets the initial condition of the lex automaton interpreter. A rule may be
active in several start conditions; for example:

<name l,name2,name3 >

is a legal prefix. Any rule not beginning with the < > prefix operator is always
active.

The same example as before can be written:

8- 16

)

%START AA BB CC
%%

a. {ECHO; BEGI:'II AA;}
. b {ECHO; BEGI!'i BB;}

{ECHO; BEGIN CC; }
\n {ECHO; BEGIN 0;}
<AA> magic printf(" first");
<DB>ma.gic printf("second");
< CC>ma.gic printf(" third");

Lex: A Lexical Analyzer

where the logic is exactly the same a.s in the previous method of handling the
problem, but lex does the work rather than the user's code.

8 . 16 Specifying Sou rce Definitions

Remember the format ofthe lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. You will need additional options,
though, to define variables for use in your program and for use by lex. These
can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex is copied into the generated program. There are three classes
of such things:

1 . Any line that is not part of a lex rule or action which begins with a
blank or tab is copied into the lex generated program. Such source
input prior to the first %% delimiter will be external to any function
in the code; if it appears immediately after the first %%, it appears in
an appropriate place for declarations in the function written by lex
which contains the actions. This material must look like program
fragments, and should precede the first lex rule.

As a side effect of the above, lines that begin with a blank or tab, and
which contain a comment, are passed through to the generated
program. This can be used to include comments in either the lex
source or the generated code. The comments should follow the
conventions of the C language.

2. Anything included between lines containing only %{ and %} is copied
out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column

8-17

XENIX Programmer's Guide

1, or copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of formats, is
copied out after the lex output.

Definitions intended for lex are given before the first %% delimiter. Any line in
this section not contained between %{ and %} , and beginning in column 1, is
assumed to define lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and
the name must begin with a letter. The translation can then be called out by the
{name} syntax in a rule. Using {D} for the digits and {E} for an exponent field,
for example, might abbreviate rules to recognize numbers:

D
E
%%
{D}+
{D }+" .• {D }•({E})?
{D}•" ." {D}+({E})?
{D}+{E}

(0-Q)
fDEdeli-+)?{D}+

printf(" integer") ;
I
I

printf(" real") ;

Note the first two rules for real numbers; both require a decimal point and
contain an optional exponent field, but the first requires at least one digit before
the decimal point and the second requires at least one digit after the decimal
point. To correctly handle the problem posed by a FORTRAN expression such
as 95.EQ.l, which does not contain a real number, a contextrsensitive rule such
as

(0-Q)+/" ." EQ printf(" integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including a
character set table, a list of start conditions, or adjustments to the default size
of arrays within lex itself for larger source programs. These possibilities are
discussed in the section "Source Format".

8 .17 Lex a.nd Ya.cc

If you want to use lex with yacc, note that what lex writes is a program named
yylez(), the name required by yacc for its :.nalyzer. Normally, the default main
program on the lex library calls this routino , but ifyacc is loaded, and its nH•.in
program is used, y acc will call ;;rylez(). In this case, each lex rule should end
with

8- 18

Lex: A Lexical Analyzer

return(token);

where the appropriate token value is returned. An easy way to get access to
yacc's names for tokens is to compile the lex output file as part of the yacc
output file by placing the line

include " lex.yy.c"

in the last section ofyacc input. Supposing the grammar to be named good and
the lexical rules to be named bette rthe XENIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -II

The yacc library (-ly) should be loaded before the lex library, to obtain a main
program which invokes the yacc parser. The generation of lex and yacc
programs can be done in either order.

As a trivial problem, consider copying an input file while adding 3 to every
positive number divisible by 7. Here is a suitable lex source program to do just
that:

%%
int k;

[0-9)+ {
k = atoi(yytext);
if (k%7 = = 0)

printf(" %d" , k+3);
else

printf(" %d" ,k);
}

The rule [0-9)+ recognizes strings of digits; atoa1) converts the digits to binary
and stores the result in k. The remainder operator (%) is used to check whether
k is divisible by 7; if it is, it is incremented by 3 as it is written out. It may be
objected that this program will alter such input items as 49.63 or X7.
Furthermore, it increments the absolute value of all negative numbers divisible
by 7. To avoid this, just add a few more rules after the active one, as here:

%%
int k;

-![0-9)+ {
k = atoi(yytext);
printf(" %d" , k%7 == 0 ! k+3 : k);
}

-!(0-9.)+ ECHO;
(A-Za-z)[A-Za-z0-9)+ ECHO;

Numerical strings containing a decimal point or preceded by a letter will be

8-19

XENIX Programmer's Guide

picked up by one of the la.st two rules, and not changed. The it-else ha.s been
replaced by a C conditional expression to save space; the form aS'b:c means: if a
then b else c .

For an example o r statistics gathering, here is a program which makes
histograms of word lengths, where a word is defined a.s a string oCletters.

%%
[a-z)+

\n
%%
yywrap()

� . mt 1;

int lengs[lOOJ;

lengsl;vyleng)++;
I

printf("Length No. words\n");
for(i=O; i< IOO; i++)

if (lengs[i) > 0)
print£(" %5d%10d\n" ,i,lengs[i));

return(l);
}

This program accumulates the histogram, while producing no output. At the
end of the input it prints the table. The final statement return(l); indicates
that lex is to perform wrapup. Ir yywrap() returns zero (false) it implies that
further input is available and the program is to continue reading and
processing. To provide a yywrap() that never returns true causes an infinite
loop.

As a larger example, here are some parts of a program written to convert
double precision FORTRAN to single precision FORTRAN. Because FORTRAN
does not distinguish between upper- and lowercase letters, this routine begins
by defining a set or classes including both cases or each letter:

a
b
c

z

1�1
[cO)

[zZ)

An additional class recognizes white space:

w 1 \t)•

The first rule changes double precision to real, or DOUBLE PRECISION to
REAL.

B-20

Lex: A Lexical Analyzer

{ d}{o }{u}{b }{I}{ e }{W}{p }{r }{ e}{ c }{i}{s} {i}{o}{n} {
printf(yytext[O)=='d'? " real" : "REAL");
}

Care is taken throughout this program to preserve the case of the original
program. The conditional operator is used to select the proper form of the
keyword. The next rule copies continuation card indications to avoid confusing
them with constants:

" [' OJ ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as
beginning of line, then five blanks, then anything but blank or zero." Note the
two different meanings of the caret (') here. There follow some rules to change
double precision constants to ordinary floating constants.

[0-9j+{W}{ d}{W}[+-j?{W} [0-9)+ I
[0-9 +{W}" ." {W}{ d}{W} �+-j? {W}[0-9l+
" ." {W} [0-9)+{W}{d}{W} +- ? {W} [0-9 +

/• convert constants • /
for(p=yytext; •p != 0; p++)

{
if (•p == 'd' II *P == 'D')

•p+= 'e'- 'd';
ECHO;

}

After the floating point constant is recognized, it is scanned by the Cor loop to
find the letter "d" or "D". The program then adds "1 e' -1 d' " which converts it
to the next letter of the alphabet. The modified constant, now single precision,
is written out again. There follow a series of names which must be respelled to
remove their initial "d". By using the array yytezt the same action suffices for
all the names (only a sample of a rather long list is given here).

{ d}{s} {i}{n}
{d}{c}{o}{s}
{d}{s}{q}{r}{ t} I
{d}{a}{t}{a} {n} I

{ d}{f}{l}{o}{a}{t} printf(" %s" ,yytext+ 1);

Another list of names must have initial d changed to initial a:

8-21

XENIX Programmer's Guide

{ d}{ l}{ 0 }{g}
{d}{l}{o}{g}IO
{d}{m}{i}{n} l
{d}{m}{a}{x} l {

yytext[OJ += 'a ' - 'd ';
ECHO;
}

And one routine must have initial tl changed to initial r:

{d} I {m}{a}{c}{h} {
yytext[O] +- 'r ' - 'd ';
ECHO;

}

To avoid such names as tleinz being detected as instances of tlein, some final
rules pick up longer words as identifiers and copy some surviving characters:

(A-Za-z][A-Za-zO-Q]• �Q]+

ECHO;

Note that this program is not complete; it does not deal with the spacing
problems in FORTRAN or with the use of keywords as identifiers.

8.18 Specifying Character Sets

The programs generated by lex handle character I/0 only through the
routines input, output, and unput. Thus the characterrepresentation provided
in these routines is accepted by lex and employed to return values in vgtezt.
For internal use a character is represented as a small integer which, if the
standard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter cz is
represented as the same form as the character constant:

'a '

Ir this interpretation is changed, by providing 1/0 routines which translate the
characters, lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by lines containing
only % T. The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. For example:

8-22

Lex: A Lexical Analyzer

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
3 1 1

39 9
%T

This table maps the lowercase and uppercase letters together into the integers 1
through 26, newline into 27, plus (+ J and minus (-) into 28 and 29, and the digits
into 30 through 39. Note the escape for newline. Ir a table is supplied, every
character that is to appear either in the rules or in any valid input must be
included in the table. No character may be assigned the number 0, and no
character may be assigned a larger number than the size or the hardware
character set.

8.19 Source Format

The general form or a lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1 . Definitions, i n the form "name space translation"

2. Included code, in the form "space code"

3. Included code, in the form

%{
code
%}

4. Start conditions, given in the form

%S namel name2 .. .

8-23

XENIX Programmer's Guide

5. Character set tables, in the form

%T
number space character-string
%T

6. Changes to internal array sizes, in the form

%x nnn

where 111111 is a decimal integer representing an array size and zselects
the parameter as follows:

Letter
p
n
e
a
k
0

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form:

ezpreuio11 action

where the action may be continued on succeeding lines by using braces to
delimit it.

Regular expressions in lex use the following operators:

X The character" x"

"x" An " x" , even if x is an operator.

\x An " x", even if x is an operator.

[xy) The character x or y.

[x-z[The characters x, y or z.

["x[Any character butx.

Any character but newline.
.

X An X at the beginning of a line .

<y>x An x when lex is in start condition y.

x$ An X at the end or a line.

8-24

)

x? An optional x.

x* 0,1 ,2, . . . instances orx.

x+ 1 ,2,3, .. . instances orx.

xjy An x or ay.

(x) Anx.

x/y An x but only irrollowed by y .

Lex: A Lexical Analyzer

{xx} The translation ohx from the definitions section.

x{m,n} mthrough noccurrences ofx.

8-25

)

Ch apter 9
Yacc: A Compiler- Compiler

9.1 Introduction 9- 1

9.2 S pecifications 9-4

9.3 Actions 9-6

9.4 Lexical An alysis 9-8

9 .5 How the Parser Works 9-10

9.6 Ambiguity and Conflicts 9-14

9.7 Precedence 9-19

9.8 Error Handling 9-22

9.9 The Yacc Environment 9-24

9.10 Preparing Specifications 9-25

9 . 11 lnput Style 9-25

9.12 Left Recursion 9-26

9.13 Lexical Tie-ins 9-27

9.14 Handling Reserved Words 9-27

9.15 Simulating Error and Accept in Actions 9-28

9. 16 Accessing Values in Enclosing Rules 9-28

9.17 Supporting Arbitrar \'alue Types 9-29

9.18 A Small Desk Calculator 9-30

. 9.19 Yacc lnpu t Syntax 9-32

9.20 An Advanced Example 9-34

9.21 Old Features 9-40

Yacc: A Compiler-Compiler

9.1 Introd uction
Computer program input generally has some structure; every computer
program that does input can be thought or as defining an input language which
it accepts. An input language may be as complex as a programming language,
or as simple as a sequence of numbers. Unfortunately, usual input facilities are
limited, difficult to use, and often lax about checking their inputs for validity.

Yacc provides a general tool for describing the input to a computer program.
The name yacc itself stands for "yet another compiler-compiler". The yacc
user specifies the structures or his input, together with code to be invoked as
earh �uch structure is recognized. Yacc turns such a specification into a
subroutine that handles the input process; frequently, it is convenient and
appropriate to have most or the flow or control in the user's application handled
by this subroutine.

The input subroutine produced by yacc calls a user-supplied routine to return
the next basic inp·ut item. Thus, the user can specify his input in terms or
individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification. The class of specifications accepted is a very
general one: LALR grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., yacc has also been
used for less conventional languages, including a phototypesetter language,
several desk calrulator languages, a document retrieval system, and a
FORTRAN. debugging system.

Yacc provides a general tool for imposing structure on the input to a computer
program. The yacc user prepares a specification or the input process; this
includes rules describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. Yacc then
generates a function to control the input process. This function, called a
parser, calls the user-supplied low-level input routine (called the lexical
analyzer) to pick up the basic items (called tokens) from the input stream.
These tokens are organized according to the input structure rules, called
grammar rules; when one of these rules has been recognized, then user code
supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C and the actions, and output
subroutine, are in C as well. Moreover, many of the syntactic conventions of
yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule
describes an allowable structure and gives it a name. For example, one
grammar rule might be:

9- 1

XENIX Programmer's Guide

date : month_name day ',' year ;

Here, date, month_name , day, and year represent structures or interest in the
input process; presumably, month_name, day, and year are defined elsewhere.
The comma (,) .is enclosed in single quotation marks; this implies that the
comma is to appear literally in the input. The colon and semicolon merely serve
as punctuation in the rule, and h ave no significance in controlling the input.
Thus, with proper definitions, the input:

July 4, 1776

might be matched by the above rule.

An important part or the input process is carried out by the lexical analyzer.
This user routine reads the input stream, recognizing the lower level
structures, and communicates these tokens to the parser. A structure
recognized by the lexical analyzer is called a terminal symbol, while the
structure recognized by the parser is called a nonterminal symbol. To avoid
confusion, terminal symbols will usually be rererred to as tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

month_name : 'J' 'a' 'n' ;
month_name : 'F' 'e' 'b' ;

month_name : 'D' 'e' 'c' ;

might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month_name would be a non terminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yacc 's ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a
month_name was seen; in this case, month_name would be a token.

Literal characters, such as the comma, must also be passed through the lexical
analyzer and are considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example the rule

date : month '/' day '/' year ;

allowing

7/4/1776

as a synonym for

9-2

Yacc: A Compiler-Compiler

July 4, 1 776

In most cases, this new rule could be slipped in to a working system with
minimal effort, and little danger of disrupting existing input.

The input being read may not conform to t.he specifications. These input errors
are detected as early as is theoretically possible with a left-to-right scan; thus,
not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be quickly found. Error
handling, prov ided as part of the input specifications, permits the reentry of
bad data, or the continuation of the input process after skipping over the bad
data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be seir contradictory, or they may require
a more powerful recogn ition mechanism than that available to yacc. The
former cases represent design errors; the latter cases can often be corrected by
making the lexical analyzer more powerful, or by rewriting some of the
grammar rules. While yacc cannot handle all possible specifications, its power
compares favorably with similar systems; moreover, the constructions which
are difficult for y acc to handle are also frequently difficult for human beings to
handle. Some users have reported that the discipline of formulating valid yacc
specifications for their input revealed errors of conception or design early in the
program development.

The next several sections describe :

The preparation of grammar rules

The preparation of the user supplied actions associated with the
grammar rules

The preparation of lexical analyzers

The operation of t he parser

Various reasons why y acc may be unable to produce a parser from a
specification, and what to do about it.

• A simple mechanism for handling operator precedences in arithmetic
expressions.

Error detection and recovery.

• The operating environment and special features of the parsers yacc
produces.

Some suggestions which should improve the style and efficiency oft he
specifications.

Q-3

XENIX Programmer's Guide

9 .2 Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. In addition, for reasons discussed later, it is often
desirable to include the lexical analyzer as part or the specification file. It may
be useful to include other programs as well. Thus, every specification file
consists or three sections: the declarations, (grammar) rules, and programs.
The sections are separated by double percent %% marks. (The percent sign
(%) is generally used inyacc specifications as an escape character.)

In other words, a full specification file looks like

dedarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second %% mark may be omitted also; thus, the smallest legal
yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in
names or multirharacter reserved symbols. Comments may appear wherever a
name is legal; they are enclosed in /• .. . •/, as in C.

The rules section is made up of one or more grammar rules. A grammar rule has
the form:

A : BODY ;

A represents a nont.erminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot (.), the
underscore (_), and noninitial digits. Uppercase and lowercase letters are
distinct. The names used in the body of a grammar rule may represent tokens
or nonterminal sym bois.

A literal consists of a character enclosed in single quotation marks ('). As in C,
the backslash (\) is an escape character within literals, and all the C escapes are
recognized. Thus

9-4

'\n'
'\r'
'\"
'\\'
'\t'
'\b'
'V
'\xxx'

Newline
Return
Single quotation mark
Backslash
Tab
Backspace
Form feed
"xxx" in octal

Yacc: A Compiler-Compiler

For a number of technical reasons, the ASCII NUL character (\0 ' or 0) should
never be used in grammar rules.

If there are several grammar rules with the same left hand side, then the
vertical bar (I) can be used to avoid rewriting the left hand side. In addition,
the semicolon at the end of a rule can be dropped before a vertical bar. Thus the
grammar rules

A : B C D ;
A : E F
A : G ;

can be given to yacc as

A : B C D
I E F
I G

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input much more
readable, and easier to change.

Ir a non terminal symbol matches the empty string, this can be indicated in the
obvious way:

empty : ;

Names representing tokens must be declared; this is most simply done by
writing

%token name 1 name2 ...

in the declarations section. (See Sections 3, 5, and 6 for much more discussion).
Every nonterminal symbol must appear on the left side of at least one rule.

or all the non terminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this
symbol represents the largest, most general structure described by the
grammar rules. By default, the start symbol is taken to be the left hand side of
the first grammar rule in the rules section. It is possible., and in fact desirable, to

9-5

KENIX Programmer's Guide

�eel are the start symbol explicitly in the declarations section using the %start
�eyword:

%start symbol

rhe end of the input to the parser is signaled by a special token, called the
mdmarker. Ir the tokens up to, but not including, the endmarker form a
;tructure which matches the start symbol, the parser function returns to its
:aller after the endmarker is seen; it accepts the input. Irthe endmarker is seen
.n any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when
�ppropriate; see section 3, below. Usually the endmarker represents some
�easonably obvious I/0 status, such as the end of the file or end of the record.

tJ.3 Actions

Nith each grammar rule, the user may associate actions to be performed each
;ime the rule is recognized in the input process. These actions may return
ralues, and may obtain the values returned by previous actions. Moreover, the
exical analyzer can return values for tokens, if desired.

�n action is an arbitrary C statement, and as such can do input and output, call
mbprograms, and alter external vectors and variables. An action is specified
>y one or more statements, enclosed in curly braces { and } . For example

md

A : '(' B ')'
{ hello(1, " abc"); }

XXX : "'l:'YY ZZZ
{ printf(" a message\n");

flag = 25;}

�re grammar rules with actions.

ro facilitate easy communication between the actions and the parser, the
�ction statements are altered slightly. The dollar sign ($) is used as a signal to
race in this context.

ro return a value, the action normally sets the pseudo-variable $$ to some
•alue. For example, an action that does nothing but return the value 1 is

{ $$ = 1; }

ro obtain the values returned by previous actions and the lexical analyzer, the
cction may use the pseudo-variables $1, $2, . .. , which refer to the values
eturned by the components of the right side of a rule, reading from left to

1-6

Yacc: A Compiler-Compiler

right. Thus, if the rule is

A : B C D ;

for example, then $2 has the value returned by C, and $3 the value returned by
D.

1.$ a more concrete example, consider the rule

expr : '(' expr ') ' ;

The value returned by this rule is usually the value of the ezpr in parentheses.
This can be indicated by

expr : '(' expr ') ' { $$ = $2 ; }

By default, the value of a rule is the value of the first element in it {$1) . Thus,
grammar rules oft he form

A : B ;

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes,
it is desirable to get control before a rule is fully parsed. Yacc permits an
action to be written in the middle of a rule as well as at the end. This rule is
assumed to return a value, accessible through the usual mechanism by the
actions to the right of it. In turn, it may access the values returned by the
symbols to its left. Thus, in the rule

A : B
{ $$ = 1 ; }
c
{ X = $2; y = $3;

the effect is to set z to 1, and yto the value returned by C.

Actions that do not terminate a. rule are actually handled by yacc by
manufacturing a new nonterminal symbol name, and a new rule matching this
name to the empty string. The interior action is the action triggered off by
recognizing this added rule. Yacc actually treats the above example as if it had
been written:

9-7

XENIX Programmer's Guide

$ACT : /• empty •/
{ $$ = 1; }

A : B $ACT C
{ X = $2; y == $3; }

In many applications, output is not done directly by the actions; rather, a data
structure, such a.<; a parse tree, is constructed in memory, and transformations
are applied to it before output is generated. Parse trees are particularly easy to
construct, given routines to build and maintain the tree structure desired. For
exa.mple, suppose there is a C function node , written 50 that the call

node(L, nl, n2)

creates a. node with label L, and descendants nl and n2, and returns the index of
the newly' created node. Then parse tree can be built by supplying actions such
as:

expr : expr '+' expr
{ $$ = node('+ ' , $1 , $3); }

in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks %{ and
%} . ThPse declarations and definitions have global scope, 50 they are known to
the action statements and the lexical analyzer. For example,

%{ int variable = 0; %}

could b� placed in the declarations section, making t�ariable accessible to all of
the actions. The yacc parser uses only names beginning in VYi the user should
avoid such names.

In these examples, all the values are integers: a discussion of values of other
types will be found in a later section.

9.4 Lexical Analysis
The user must supply a lexical analyzer to read the input stream and
communirate tokens (with values, if desired) to the parser. The lexical analyzer
is an integer-valued function called vvlez. The function returns an integer,
called the t<>hn number, representing the kind of token read. If there is a value
associated with that token, it should be assigned to the external variable vylval.

The parser and the lexical analyzer must agree on these token numbers in order
for .communication between them to take place. The numbers may be chosen

9-8

Yacc: A Compiler-Compiler

by yacc, or chosen by the user. In either case, the # define mechanism of C is
used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIGIT has been defined in the
declarations section of the yacc specification file. The relevant portion of the
lexical analyzer might look like:

yylex(){
extern int yylval;
int c;

c - getchar();

switch(c) {

case '0':
case ' 1 ':

case '9':
yylval == c-'0';
return(DIGIT);

The intent is to return a. token number of DIGIT, and a. value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed in
the programs section of the specification file, the identifier DIGIT will be
defined as the token number associated with the token DIGIT.

This mechanism leads t.o clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token names in the grammar that are reserved or
significant in C or the parser; for example, the use oftoken names if or wlt.i/e will
almost certainly cause severe difficulties when the lexical analyzer is compiled.
The token name error is reserved for error handling, and should not be used
naively.

As mentioned above, the token numbers may be chosen by yacc or by the user.
In t.he default situation, the numbers are chosen by yacc. The default token
number for a. literal character is the numerical value of the character in the
local character set. Other names are assigned token numbers starting a.t257.

To assign a. token number to a token (including literals), t,he first appearance of
the token name or literal in the declarations section can be immediately
followed by a. nonnegative integer. This integer is taken to be the token number
of the name or literal. Names and literals not defi.ned by this mechanism retain
their default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative.
This token number cannot be redefined by the user. Hence, all lexical analyzers
should be prepared to return 0 or negative as a. token number upon reaching t.he

9-9

XENIX Programmer's Guide

end of their input.

A very useful tool for constructing le�ical analyzers is lex, discussed
.in �

previous section. These lexical analyzers are designed to work in close harmony
with yacc parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily used to produce quite
complicated lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

9.5 How the Parser Works

Yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser itself, however, is relatively
simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
(called the look ahead token). The current state is always the one on the top of
the stack. The states of the finite state machine are given small integer labels;
init ially, the machine is in state 0, the stack. contains only state 0, and no
look ahead token has been read.

The machine has only four actions availabl� to it, called Bhift, reduce , accept,
and.error. A move of the parser is done as follows:

1 . Based on its current state, the parser decides whether it needs a
look ahead token to decide what action should be done; if it needs one,
and does not have one, it calls yylez to obtain the next token.

2. Using the current state, and the look ahead token if needed, the parser
decides on its next action, and carries it out. This may result in states
being pushed onto the stack, or popped off of the stack, a.nd in t-he
look ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state 56
there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top of
the stack). The lookahe.ad token is cleared.

9- 10

Yacc: A Compiler-Compiler

The reduce action keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right hand side of a
grammar rule. and is prepared to announce that it has seen an instance of the
rule, replacing the right hand side by the left hand side. It may be necessary to
consult the look ahead token to decide whether to reduce, but usually it is not; in
fact, the default action (represented by a .) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules
are also given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18 , while the action

IF shift 34

refers to state 34.

Suppose th� rule being reduced is

A : X y z j

The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing z, y, and z, and no
longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the
rule. Using this uncovered state, and the symbol on the left side of the rule,
perform what i:; in effe ct a shift of A. A new state is obtained, pushed onto the
stack, and par�ing continues. There are significant differences between the
processing of the left hand symbol and an ordinary shift of a token, however, so
this action is called a goto ar.tion. In particular, the look ahead token is cleared
by a shift, and is not affect-ed by a goto. In any case, the uncovered state
contains an en try such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action turns back the clock in the parse, popping the states
off the stack to go back to the state where the right hand side of the rule was first
seen. The parser then behaves as if it had seen the left side at that time. If the
right hand side of the rule is empty, no states are popped off of the stack: the
uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions
and values. When a rule is reduced, the e.ode supplied with the rule is executed
before the sta�k is adjusted. In addition Lo .the stack holding the states, another

9-11

XENIX Programmer's Guide

stack, running in parallel with it, holds the values returned from the lexical
analyzer and the actions. When a shift takes place, the external variable yylval
is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable
yyval is copied onto the value stack. The pseudo-variables $1 , $2, etc., refer to
the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the
specification. This action appears only when the lookahead token is the
endmarker, and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has
seen, together with the look ahead token, cannot be followed by anything that
would result in a legal input. The parser reports an error, and attempts to
recover the situation and resume parsing: the error recovery (as opposed to the
detection of error) will be in a later section.

Consider the following example:

%token DING DONG DELL
%%
rhyme : sound place

'
sound : DING DONG

'
place : DELL

When yacc is invoked with the -v option, a file called g. output is produced,
with a human-readable description of the parser. The y.output file
corresponding to the above grammar (with some statistics stripped off the end)
is:

9- 12

state 0
$accept : _rhyme Send

DING shift 3
• error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_Send

Send accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error .

state 4
rhyme : sound place_ (1)

. reduce 1

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2

Yacc: A Compiler-Compiler

Notice that, in addition to the actions for each state, there is a. description of the
parsing rules being processed in each state. The underscore character (_) is used
to indicate what has been seen, and what is yet to come, in each rule. Suppose
the input is

9-13

XENIX Programmer's Guide

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first token,
DING, is read, becoming the lookahead token. The action in state 0 on DINGis
Bht1t 8, so state 3 is pushed onto the stack, and the look ahead token is cleared.
State 3 becomes the current state. The next token, DONG, is read, becoming
the look ahead token. The action in state 3 on the token DONG is shift 6, so
state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the
parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off of the stack, uncovering state 0. Consulting the description of state
0, looking for a go to on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is shs1t 5, so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token
is cleared. In state 5, the only action is to reduce by rule 3. This has one symbol
on the right hand side, so one state, 5, is popped off, and state 2 is uncovered.
The go to in state 2 on plae e, the left side of rule 3, is state 4. Now, the stack
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are
two symbols on the right, so the top two states are popped off, uncovering state

· 0 again. In state 0, there is a go to on rhyme causing the parser to enter state 1 .
In state 1 , the input is read; the endmarker is obtained, indicated by $end in the
y. output file. The action in state 1 when the endmarker is seen is to accept,
successfully ending the parse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, DING DONG, DING DONG
DELL DELL, etc. A few minutes spend with this and other simple examples
will probably be repaid when problems arise in more complicated contexts.

9.6 Ambiguity and Conflicts
A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic

9- 14

)

Yacc: A Compiler-Compiler

expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not completely specify the way
that. all complex inputs should be structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called ieft association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is
instructive to consider the problem that confronts the parser when it is given
an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule; after applying the rule; the input is reduced to ezpr
(the left side of the rule). The parser would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the
input until it had seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to
ezpr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative
interpretation. Thus, having read

9- 15

XENIX Progra.mmer's Guide

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is called a shift/reduce conflict. It may also
happen that the parser has a choice of two legal reductions; this is called a
reduce/redure conflict. Note that there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yaee still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing whirh choice to make in a given situation is called a
disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor
of shifts. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require a more complex parser than yaec can
construct . The use of actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules is inappropriate, and leads
to an incorrect pa.rser. For this reason, yaee always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule I and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has
sugg�>sted that this rewriting is somewhat unnatural, and produces slower
parsers; thus, yacc will produce parsers even in the presence of conflicts.

A.s an example of the power of disambiguating rules, consider a fragment from a
programming language involving an if-then-else construction:

stat : IF '(' cond ')' stat
I IF '(' cond ')' stat ELSE stat

:n these rules, /Fand ELSE are tokens, eon d is a nonterminal symbol describing
·onditional (logical) expressions, and etat is a nonterminal symbol describing
;tatements. The first rule will be called the simple-if rule, and the second the

1- 16

Yacc: A Compiler-Compiler

if-else rule.

These two rules form an ambiguous construction, since input of the form

IF (CI) IF (C2) SI ELSE S2

can be structured according to these rules in two ways:

or

IF (CI) {
IF (C2) S l

}
ELSE S2

IF (CI) {
IF (C2) S I
ELSE S2
}

The second interpretation is the one given in most .programming languages
having this construct. Each ELSE is associated with the last IF immediately
preceding the ELSE. In this example, consider the situation where the parser
has seen

IF (CI) IF (C2) S l

and i s looking at the ELSE. I t can immediately reduce by the simple-ifrule to
get

IF (CI) stat

and then read the remaining input,

ELSE S2

and reduce

IF (CI) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2read, and then the right hand
portion of

IF (CI) IF (C2) SI ELSE S2

:an be reduced by the if-else rule to get

9-17

XENIX Programmer's Guide

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of the
above groupings of the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the pan:er to shift in this case,
which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input
symbol, ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) Sl

In general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs
�re characterized by the state oCthe parser.

fhe conflict messages of ya.cc are best understood by examining the verbose
:-v) option output file. For example, the output corresponding to the above
:onflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

rhe first line describes the conflict, giving the state and the input symbol. The
•rdinary state description follows, giving the grammar rules active in the state,
.nd the parser actions. Recall that the underline marks the portion of the
;ram mar rules which has been seen. Thus in the example, in state 23 the parser
tas seen input corresponding to

IF (cond) stat

.nd the two grammar rules shown are active at this time. The parser can do
wo possible things. If the input symbol is ELSE, it is possible to shift into state
5. State 45 will have, as part of its description, the line

stat : IF (cond) stat ELSE_stat

ince the ELSE will have been shifted in this state. Back in state 23, the
lternative action, described by "." , is to be done if the input symbol is not
1entioned explicitly in the above actions; thus, in this case, if the input symbol

· 18

Yacc: A Compiler-Compiler

is not ELSE, the parser reduces by grammar rule 18:

stat : IF '(' cond ')' stat

Once again, notice that the numbers following shift commands refer to other
states, while the numbers following reduce commands refer to grammar rule
numbers. In the y. output file, the rule numbers are printed after those rules
which can be reduced. In most one states, there will be at most reduce action
possible in the state, and this will be the defauit command. The user who
encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really
tough ca�es, the user might need to know more about the behavior and
construction of the parser than can be covered here. In this case, one of the
theoretical references might be consulted; the services of a local guru might also
be appropriate.

9.7 Precedence

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most
of the commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, together with
information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous
grammars. The basic notion is to write grammar rules of the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, with many parsing conflicts. As disambiguating rules, the user
specifies the precedence, or binding strength, of all the operators, and the
associativity of the binary operators. This information is sufficient to allow
yacc to resolve the parsing conflicts in accordance with these rules, and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a yacc keyword: %left,
%right, or o/c:nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and associativity; the
lines are listed in order of increasing precedence or binding strength. Thus,

o/c left '+' '. '
%left ' * ' '/'

9- 19

' XENIX Programmer's Guide

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative, and have lower precedence than star and
slash, which are also left associative. The keyword %right is used to describe
right associative operators, and the keyword %nona.ssoc is used to describe
operators, like the operator .LT. in FORTRAN, that may not associate with
themselves; thus,

A .LT. B .LT. C

is illegal in FORTRAN, and such an operator would be described with the
keyword %nonassoc in ya.cc. As an example of the behavior of these
declarations, the description

%right '='
%left '+' '-'
%left '•' '/'

%%

expr : expr '=' expr
I expr '+ ' expr
I expr '-' expr
I expr '*' expr
I expr '/' expr
I NAME

might be used to structure the input

a = b = c•d - e - f•g

as follows:

a = (b = (((c•d)-e) - (f•g)))
When this mechanism is used, unary operators must, in general, be given a
precedence. Sometimes a unary operator and a binary operator have the same
symbolic representation, but different precedences. An example is unary and
binary '- '; unary minus may be given the same strength as multiplication, or
even higher, while binary minus ha.s a lower strength than multiplication. The
keyword, %prec, changes the precedence level associated with a particular
grammar rule. The %prec appears immediately after the body of the grammar
rule, before the action or closing semicolon, and is followed by a token name or
literal. It causes the precedence of the grammar rule to become that of the
following token name or literal. For example, to make unary minus have the
same precedence as multiplication the rules might resemble:

ll-20

)

%left '+' '-'

%!eft ' • ' '/ '

%%

expr : expr '+' expr
I expr '-' expr
I expr '•' expr
I expr '/ ' expr
I '- ' expr %prec ' * '

! NAME

Yacc: A Compiler-Compiler

A token declared by %left, %right, and %nonassoc need not be, but may be,
declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work as
follows:

1 . The precedences and associativities are recorded for those tokens and
literals that have them.

2. A precedence and associativity is associated with each grammar rule;
it is the precedence and associativity of the last token or literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies
reduce, right associative implies shift, and nonassocia.ting implies
error.

Conflicts resolved by precedence a.re not counted in the number of shift/reduce
and reduce/reduce conflicts reported by yacc. This means that mistakes in the
specification of precedentes may disguise errors in the input gra.mma.r; it is a
good idea to be sparing with precedences, and use them in an essentially
cookbook fashion, until some experience has been gained. The g. output file is
very useful in deciding whether the parser is actually doing what was intended.

9-21

XENIX Programmer's Guide

9.8 Error Handling

Error handling is an extremely difficult area, and many or the problems are
semantic ones. When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically,
set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is more
useful to continue scanning the input to find further syntax errors. This leads
to the problem of getting the parser restarted after an error. A general class of
algorithms t.o perform this involves discarding a number or tokens from the
input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple, but
reasonably general feature. The token name error is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser pops its
stack until it enters a state where the token error is legal. It then behaves as if
the token error were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the
error. H no special error rules have been specified, the processing halts when an
error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no
message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legally follow a statement, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle of a statement,
and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control.
Somewhat easier are rules such as

stat : error ';'

Here, when there is an error, the parser attempts to skip over the statement,
but will do so by skipping to the next '; '. All tokens after the error and before

Yacc: A Compiler-Compiler

the next '; ' cannot be shifted, and are discarded. When the '; ' is seen, this rule
will be reduced, and any cleanup action associated with it performed.

Another form of error rule arises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule
might be

input : error '\n' { printf("Reenter line: "); } input

{ $$ = $4;}
There is one potential d ifficulty with this approach; the parser must correctly
process three input tokens before it admits that it has correctly resynchronized
after the error. Ir the reentered line contains an error in the first two tokens,
the parser deletes the offending tokens, and gives no message; this is clearly
unacceptable. For this reason, there is a mechanism that can be used to force
the parser to believe that an error has been fully recovered from. The
statement

yyerrok ;

in an action resets the parser to its normal mode. The l ast example is better
written

input : error '\n'
{ yyerrok;

printf(" Reenter last line: "); }
input

{ $$ = $4; }

As mentioned above, the token seen immediately after the error symbol is the
input token at which the error was discovered. Sometimes, this is
inappropriate; for example, an error recovery action might take upon itself the
job of fi nding the correct place to resume input. In this case, the previous
look ahead token must be cleared. The statement

yyclearin ;

in an act.ion will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the user,
that attempted to advance the input to the beginning of the next valid
statement.. .<\Iter this routine was called, the next token returned by yylex
would presumably be the first token in a legal statement; the old, illegal token
must be discarded, and the error state reset. This could be done by a rule like

9-23

XENIX Programmer's Guide

stat : error
{ resynch();

yyerrok ;
yyclearin ; }

These mechanisms are admittedly crude, but do allow for a simple, fairly
effective recovery of the parser from many errors. Moreover , the user can get
control to deal with the error actions required by other portions of the
program.

9.9 The Yacc Environment

When the user inputs a specification to yacc, the output is a file o!C programs,
called y.tab.c on most systems. The runction produced by yacc is called
yyparse ; it is an integer valued function. When it is called, it in turn repeat�dly
calls yylez, the lexical analyzer supplied by the user to obtain input tokens.
Eventually, either an error is detected, in which case (ir no error recovery is
possible) yyparse returns the value 1 , or the lexical analyzer returns the
endmarker token and the parser accepts. In this case, yypar1e returns the value
0.

The user must provide a certain amount or environment for this parser in order
to obtain a working program. For example, as with every C program, a
program called main must be defined, that eventually calls yyparse. In
addition, a routine called yyerror prints a message when a syntax error ·is
detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of using yacc, a library has been provided with default
versions of main and yyerror. The name of this library is system dependent; on
many systems the library is accessed by a -ly argument to the loader. To show
the triviality or these default programs, the source is given below:

main(){
return(yyparse());
}

and

include <stdio.h>

yyl'rror(s) char •s; {
fprintf(stderr, " %s\n" , s);
}

The argument to yyerror is a string containing an error mei'Sage, usually the
string syntaz error. The average application "· ill .,. mt to do better than this.
Ordinarily, the program should keep track of the il' Jt line number, and print

9-24

Yacc: A Compiler-Compiler

it along with the message when a syntax error is detected. The exter.nal integer
variable 1/1/C har contains the look ahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics. Since the
main program is probably supplied by the user (to read arguments, etc.) the
yacc library is useful only in small projects, or in the earliest stages of larger
ones.

The external integer variable vvdebug is normally set to 0. If it is set to a
nonzero value, the parser will output a verbose description of its actions,
including a discussion of which input symbols have been read, a.nd what the
parser actions are. Depending on the operating environment, it may be
possible to set this variable by using a debugging system.

9.10 Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change,
a.nd clear specifications. The individual subsections a.re more or less
independent.

9.11 Input Style

It is difficult to provide rules with substantia.! actions a.nd still have a readable
specification file.

1. Use uppercase letters for token names, lowercase letters for
nonterminal names. This rule helps you to know who to blame when
things go wrong.

2. Put grammar rules and actions on separate lines. This allows either
to be ch:mgcd without an automatic need to change the other.

3. Put all rules with the same left hand side together. Put the left hand
side in only once, and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left hand side, a.nd
put the semicolon on a. separate line. This allows new rules to be easily
added.

5. Indent rule bodies by two tab stops, and action bodies by three tab
stops.

The examples in the text of this section follow this style (where space permits).
The user must make up his own mind about these stylistic questions; the central
problem, however, is to make the rules visible through the morass of action
code.

ll-25

XENIX Programmer's Guide

9.12 Left Recursion

The algorithm used by the yacc parser encourages so-called left recursive
grammar rules: rules ott he form

name : name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list : item
I list ',' item

and

seq : item
I seq item

In each or these cases, the first rule will be reduced Cor the first item only, and
the second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq : item
I item seq

the parser would be a. bit bigger, and the items would be seen, and reduced,
from right to left. More seriously, an internal stack in the parser would be in
danger or overflowing it a. very long sequence were read. Thus, the user should
use lett recursion wherever reasonable.

It is worth considering whether a. sequence with zero elements has any meaning,
and it so, consider writing the sequence specification with an empty rule:

seq : /• empty •/
I seq item

Once again, t.he first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once for each item
read. Permitting empty sequences often leads to increased generality.
However, conflicts might arise iCy ace is asked to decide which empty sequence
it has seen, when it hasn't seen enough to know!

9-26

Yacc: A Compiler-Compiler

9.13 Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions. For example, suppose a program
consists ofO or more declarations, followed by 0 or more statements. Consider:

%{
int dfla.g;

%}
... other declarations ...

%%

prog : decls sta.ts

de cis : /* empty •/
{ dflag = 1 ;

I decls declaration

stats : /• empty •/
{ dflag = 0;

I stats statement

other rules ...

}

}

The flag djlag is now 0 when reading statements, and 1 when reading
declarations, except for the first token in the first statement. This token must
be seen by the parser before it can tell that the declaration section has ended
and the statements have begun. In many cases, this single token exception does
not affect the lexical scan.

This kind of back door approach can be over done. Nevertheless, it represents a
way of doing some things that are difficult to do otherwise.

9.14 Handling Reserved Words

Some programming languages permit the user to use words like if, which are
normally reserved, as label or variable names, provided that such use does not
conflict with the legal use of these names in the programming language. This is
extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexica.! analyzer telling it "this instance of 'ir is a keyword,

9-27

XENIX Programmer's Guide

and that instance is a variable". The user can make a stab at it, but it ia
difficult. It is best that keywords be reserved; that ia, be forbidden tor use as
variable names.

9.15 Simula.ting Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of
macros YYAOOEPTand l'YERROR. YYAOOEPTcauses ggpam to return
the value 0; YYERROR causes the parser to behave as if the current input
symbol had been a syntax error; gge rror is called, and error recovery takes
place. These mechanisms can be used to simulate parsers with multiple
endmarkers or context-sensitive syntax checking.

9.16 Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, a dollar sign
followed by a digit, but in this case the digit may be 0 or negative. Consider

sent : adj noun verb adj noun
{ look at the sentence ... }

adj : THE { $$ = THE; }
I YOUNG { $$ = YOUNG; }

noun : DOG { $$ = DOG; }
I CRONE { if($0 =- YOUNG){

printf("what!\n");
}

$$ = CRONE;
}

In the action following the word ORONE,acheckiBmade preceding token
shift�d was not YOUNG. Obviously, this is only possible when a great deal is
known about. what might precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at times this
mechanism will save a great deal of trouble, especially when a few combinations
are to be excluded from an otherwise regular structure.

9-28

Yac:c: A Compiler-Compiler

9.17 Supporting Arbitrary Value Types

By default, the vz.lues returned by actions and the lexical analyzer are integers.
Yacc can also support values of other types, including structures. In addition,
yacc keeps track of the types, and inserts appropriate union member names so
that the resulting parser will be strictly type checked. The yacc value stack is
declared to be a union of the various types of values desired. The user declares
the union, and associates union member names to each token and non terminal
symbol having a value. When the value is referenced through a $$ or Sn
construction, yacc will automatically insert the appropriate union name, so
that no unwanted conversions will take place. In addition, type checking
commands such as lint(C) will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a
way of defining the union; this must be done by the user since other programs,
notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and
nont.erminals. Finally, there is a mechanism for describing the type of those
few values where yacc cannot easily determine the type.

To declare the union, the user includes in the declaration section:

%union { bodv of union ...
}

This declares the yacc value stack, and the extern
.
al variables vvfval and yyval,

to have type equal to this union. Ir yacc was invoked with the -d option, the
union declaration is copied onto the v.tab.h file. Alternatively, the union may
be declared in a header file, and a typedef used to define the variable YYSTYPE
to represent this union. Thus, the header file might also have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
%}.
Once YYSTYPE is defined, the union member names must be associated with
the various term ina.! and non terminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords
%token, %left, %right, and %nonassoc, the union member name is associated
with the tokens listed. Thus, saying

ll-29

XENIX Programmer's Guide

%left <optype> '+' '-'

will cause any reference to values returned by these two tokens to be tagged
with the union member name ()ptgpe . Another keyword, %type, is used
similarly to associate union member names with nonterminals. Thus, one
might say

%type < nodetype > expr stat

There remain a couple of cases where these mechanisms are insufficient. If
there is an action within a rule, the value returned by this action has no
predefined type. Similarly, reference to left context values (such as $0 - see the
previous subsection) leaves yacc with no easy way of knowing the type. In this
case, a type can be imposed on the reference by inserting a union member name,
between < and > , immediately after the first $. An example ofthisusage is

rule : aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>O); }

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in a later section. The facilities in this subsection
are not triggered until they are used: in particular, the use of%type will turn on
these mechanisms. When they are used, there is a fairly strict level of checking.
For example, use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is used to
hold int's, as was true historically.

9.18 A Small Desk Calculator

This example gives the complete yacc specificat.ion for a small desk calculator:
the desk calculator has 26 registers, labeled a through z, and accepts arithmetic
expressions made up of the operators +, -, •, {, % (mod operator), & (bitwise
and), I (bitwise or), and assignment. If an expression at the top level is an
assignment, the value is not printed; otherwise it is. As in C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of ayacc specification, the desk calculator does a reasonable job
of showing how precedences and ambiguities are used, and demonstrating
simple error recovery. The major oversimplifications are that the lexical
analysis phase is much simpler than for most applications, and the output is
produced immediately, line by line. Note the way that decimal and octal
integers are read in by the grammar rules; This job is probably better done by
the lexical analyzer.

9-30

Yacc: A Compiler-Compiler

%{
include <stdio.h>
include < ctype.h>

int regs[26);
int base;

%}

%start list

%token DIGIT LETTER

%left 1 '
%left '& '
%left '+ ' '- '
%left '• ' '/ ' '% '
%left V:Mll\'US /• precedence for unary minus •/
%% /• beginning of rules section •/

list : /• empty •/
! list stat \n '
! list error \n '

{ yyerrok; }

stat : expr
{ printf(" %d\n", $1); }
LETTER '= ' expr

{ regs[$1) = $3; }

expr : '(' expr 1 '
{ $$ = $2; }

I expr '+ ' expr
{ $$ = $1 + $3; }

I expr '- ' expr
{ $$ = $1 - $3; }

I expr '• ' expr
{ $$ = $1 • $3; }

I expr '/ ' expr
{ ss = SI I $3; }

I expr '%' expr
{ $$ = $1 % $3; }

I expr '& ' expr
{ $$ = $1 & $3; }

I expr 1 ' expr
{ ss = s1 I $3; }

0-31

XENIX Programmer's Guide

I '- ' expr %prec UMINUS
{ $$ = - $2; }

! LETTER
{ $$... regs($1); }

I number

number : DIGIT

%%

{ $$ = $1; base - ($1==0) ! 8 : 10; } I number DIGIT
{ $$ == base • $1 + $2; }

/• start of programs •/
yylex() { /• lexical analysis routine •/

/• returns LETTER for a lowercase letter, •/
/• yylval 0 through 25 •/
/• return DIGIT for a digit, •/
/• yylval == 0 through 9 •/
/• all other characters •/
/• are returned immediately •/

int c;

while({c=getchar()) ' ') { /• skip blanks •/ }
/• c is now nonblank •/

if(islower(c)) {
yylval ""' c - 'a ';
return (LETTER);
}

if(isdigit(c)) {
yylval = c - '0 ';
return(DIGIT);
}

return(c);
}

9.19 Ya.cc Input Syntax

This section has a description of the yacc input syntax, as a yacc specification.
Context dependencies, etc., are not considered. Ironically, the yacc input
specification language is most naturally specified as an LR(2) grammar; the
sticky part corqes when an identifier is seen in a rule, immediately following an
action. If this identifier is followed by a colon, it is the start of the next rule;
otherwise it is a continuation or the current rule, w�ich just happens to have an

�-32

Yacc: A Compiler-Compiler

on embedded in it. As implemented, the lexical analyzer looks ahead after
ng an identifier, and decide whether the next token (skipping blanks,
·Jines, comments, etc.) is a colon. Ir eo, it returns the token
DENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
ngs) are also returned as IDENTIFIER, but never as part or
DENTIFIER.

/• grammar for the input to Yacc •/

/• basic entities • /
>ken IDENTWIER /• includes identifiers and literals •/
>ken C_IDENTIFIER /• identifier followed by colon •/
>ken NUMBER /• (0-Q]+ •/

/• reserved words: %type => TYPE, %left => LEFT, etc. •/

>ken LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

>ken MARK /• the %% mark •/
>ken LClJRL /• the %{ mark •/
>ken RCURL /• the %} mark •/

/• ascii cha.racter literals stand Cor themselves •/

:art spec

: defs MARK rules tail

: :MARK { Eat up the rett of the file }
I /• empty: the second MARK is optional */

: /• empty •/
] defs deC

: START IDENTIFIER

I UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL

] ndefs rword tag nlist

rd : TOKEN
] LEFT
I RIGHT
] NONASSOC

Q-33

XENIX Programmer�s Guide

I TYPE

tag : /• empty: union tag is optional •/
I '< ' IDENTIFJER '> '

nlist : nmno

I nlist nmno
nlist ', ' nmno

nmno : IDENTIFIER /• Literal illegal with %type •/
I IDENTIFIER NUMBER /• Illegal with %type •/

/• rules section •/

rules : C_IDENTIFIER rbody prec
I rules rule

rule : C_IDENTIFIER rbody prec
I 'I' rbody prec

rbody : /• empty •/
I rbody IDENTIFIER
I rbody act

�ct : '{ ' { Copg action, translate $$, etc. } '} '

prec : /• empty •/
I PREC IDENTIFIER
I PREC IDENTIFIER act
I prec '; '

rJ.20 An Advan ced Example

fhis section gives an example of a grammar using some of the advanced
"eatures discussed in earlier sections. The desk calculator example is modified
;o provide a desk calculator that does floating point interval arithmetic. The
:alculator understands floating point constants, the arithmetic operations +,
-, •, /, unary -, and = (assignment), and has 26 lloating point variables, 11
;hrough z. Moreover, it also understands intervals, written

1-34

Yacc : A Compiler-Compiler

(X ' y)

where � is less than or equal to 11· There are 26 interval valued variables A
through Z that may also be used. A.ssignments return no value, and print
nothing, whi!e expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and C.
Intervals are represented by a structure, consisting of the left and right
endpoint values, stored as a double precision values. This structure is given a
type name, INTERVAL, by using tupedef. The yacc value stack can also
contain floating point scalars, and integers (used to index into the arrays
holding the variable values). Notice that this entire strategy depends strongly
on being able to assign structures and unions in C. In fact, many of the actions
call functions th3.t return structures as well.

It is also worth noting the use of YYERROR to handle error conditions:
division by an interval containing 0, and an interval presepted in the wrong
order. In effect, the error recovery mechanism of y acc is used to throw away
the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (e.g., scalar
or interval) of intermediate expressions. Note that a scalar can be
aut<>matically promoted to an interval if the context demands an interval
value. This causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be
seen by looking at the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 ' 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second
example, but this fact is not known until the comma (,) is read; by this time, 2.5
is finished, and the parser cannot go back and change its mind. More generally,
it might be nece�sary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is circumvented by
having two rules for each binary interval valued operator: one when the left
operand is a scalar, and one when the left operand is an interval. In the second
case, the right operand must be an interval, so the conversion will be applied
automatically. However, there are still many casf's where the conversion may
be applied or not, leading to the above conflicts. They are resolved by listing
the rules that yield scalars first in the specification file; in this way, the conflicts
will be resolved in the direction of keeping scalar valued expressions scalar
valued until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. Ir
there were many kinds of expression types, inste3.d of just two, the number of

ll-35

!CENIX Programmer's Guide

�ules needed would increase dramatically, and the confticts even more
iramatically. Thus, while this example is instructive, it is better practice in a
nore normal programming language environment to keep the type
,nformation as part of the value, and not as part of the grammar.

f'inally, a word about the lexical analysis. The only unusual feature is the
�reatment or ftoating point constants. The C library routine atofis used to do
�he actual conversion from a character string to a double precision value. Itt he
lexical analyzer detects an error, it responds by returning a token that is illegal
in the grammar, provoking a syntax error in the parser, and thence error
recovery.

9-36

%{
rf include <stdio.h>
rf include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg(26);
INTERVAL vreg(26);

%}

%start lines

%union {
int iva.!;
double dval;
INTERVAL vval;
}

%token <iva.!> DREG VREG /• indices into dreg, vreg a.rrays •/

%token < dval> CONST

%type <dva.l> dexp

%type <vva.l> vexp

/• floa.ting point constant •/

/• expression •/

/• interval expression •/
/• precedence informa.tion a.bout the operators •/

%left '+' '·'

\
/

Yacc: A Compiler-Compiler

%left '•' '/'
%left UMINUS I• precedence for unary minus •I

%%

lines : I• empty •I
I lines line

line : dexp '\n'
{ printf(" %15.8(\n" , $1); }

I vexp '\n'
{ printf(" (%15.8f, %15.8f)\n" , Sl.lo, $1.hi); }

I DREG '==' dexp '\n'
{ dreg($1) = $3; }

I VREG '=' vexp '\n'
{ vreg[$1) = $3; }

I error '\n'
{ yyerrok; }

dexp : CONST
I DREG

{ $$ = dreg[$1); }
I dexp '+' dexp

{ $$ = $1 + $3; }
I dexp '-' dexp

{ $$ = $1 - $3; }
I dexp '• ' dexp

{ $$ = $1 • $3; }
I dexp '/' dexp

{ ss = s1 1 S3; }
I '-' dexp %prec UMINUS

{ $$ = - $2; }
I '(' dexp ')'

{ $$ = $2; }

vexp : dexp
{ $$.hi = $$.1o = $1; }

I ' (' dexp ',' dexp ')'
{

$$.1o = $2;
$$.hi = $4;
if($$.1o > $$.hi){

printf(" interval out of order\n");
YYERROR;

} }
I VREG

Q-37

XENIX Programmer's Guide

9-38

%%

{ $$ = vreg($1]; }
I vexp '+' vexp

{ SS.hi == Sl.hi + $3.hi;
SS.Io - Sl.lo + $3.1o; }

I dexp '+' vexp
{ $$.hi $1 + $3.hi;

SS.Io == $1 + $3.Io; }
I vexp '·' vexp

{ $$.hi - Sl.hi • $3.Io;
SS.Io == Sl.lo - $3.hi; }

I dexp '·' vexp
{ $$.hi == $1 • $3.Io;

SS.Io ... $1 - S3.hi;}
I vexp '•' vexp

{ $$ == vmul(Sl.lo, Sl.hi, $3); }
I dexp '•' vexp

{ $$... vmul($1, $1, $3); }
I vexp '/' vexp

{ if (dcheck($3)) YYERROR;
$$ = vdiv(Sl.lo, Sl.hi, $3); }

I dexp '/' vexp
{ if (dcheck($3)) YYERROR;

$$ == vdiv($1, $1, $3); }
I '·' vexp %prec UMINUS

{ $$.hi == -$2.Io; $$.Io ... -$2.hi; }
I '(' vexp ')'

'
{ $$ =- $2; }

* define BSZ 50 /• buffer size for fp numbers •/

/• lexical analysis •/

yylex(){
register c;

{ /• skip over blanks •/ }
while((c = getchar()) === ' ')
if (isupper(c)){

yylval.ival = c • 'A';
return(VREG);
}

i r(islower(c\){
yylva.l.iva.l == c • 'a';
return(DREG);
}

if(isdigit(r) II c=='.'){

Yacc: A Compiler-Compiler

/• gobble up digits, points, exponents •/

char buf(BSZ+ l), •cp = buf;
int dot = 0, exp = 0;

for(; (cp·buf) <BSZ ; ++cp, c=getchar()){

•cp = c;
if (isdigit(c)) continue;
ir(c == '.') {

if (dot++ II exp) return('.');
/• above causes syntax error •/

continue;
}

if (c == 'e') {
if (exp++) return('e');

/• above causes syntax error •/
continue;
}

/• end of number •/
break;
}

•cp = '\0';
if((cp-buf) >= BSZ)

printf(" constant too long: truncated\n");
else ungetc(c, stdin);

/• above pushes back last char read •/
yylval.dval = atof (buf);
return(CONST);
}

return(c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/• returns the smallest interval containing a, b, c, and d •/
/• used by •, / routines •/
INTERVAL v;
if(a>b) { v.hi = a; v.lo = b; }
else { v.hi = b; v.lo = a; }

if(c > d) {
if (c>v.hi) v.hi = c;
if (d<v.lo) v.lo = d;

else /
if (d>v.hi) v.hi = d;
if (c<v.lo) v.lo = c;

XENIX Programmer's Guide

}
return(v);
}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hila(a•v.hi, a•v.lo, b•v.hi, b•v.lo));
}

dcheck(v) INTERVAL v; {
if(v.hi > =- 0. && v.lo <- 0.){

printf(" divisor interval contains 0. \n");
return(I);
}

return(O);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hila(afv.hi, a/v.lo, b/v.hi, b/v.lo) };
}

9.21 Old Features

This section mentions synonyms and features which are supported for
historical continuity, but, for various reasons, are hot encouraged.

1. Literals may also be delimited by double quotation marks (").
2. Literals may be more than one character long. Irall the characters are

alphabetic, numeric, or underscore, the type number of the literal is
defined, just as if the literal did not have the quotation marks around
it. Otherwise, it is difficult to find the value for such literals. The use
of multicharacter literals is likely to misiE'ad those unfamiliar with
yacc, since it suggests that yacc is doing a job that must be actually
done by the lexical analyzer.

3. Most places where '%' is legal, backslash (\) may be used. In
particular, the double backslash (\ \) is the same as %%, \left the
same as %left, etc.

4. There are a number of other synonyms:

9-40

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

)

5. Actions may also have the form

=={ .. . }

Yacc: A Compiler-Compiler

and the curly braces can be dropped if the action is a single C
statement.

6. C code between %{ and %} used to be permitted at the head of the
rules section, as well as in the declaration section.

9-41

Append ix A

C Language Portab il ity

A . 1 Introd uction

A . 2 Program Portab ili ty 2

A. 3 Machine Hardwar e 2
A. 3. 1 Byte Length 2
A. 3. 2 Word Length 2
A. 3 . 3 Stor age Al ignment 2
A. 3. 4 Byte Order in a Word 4
A . 3 . 5 Bit field s 5
A. 3. 6 Po in ters 5
A. 3 . 7 Address Space 6

A. 3 . 8 Char acter Set 6

A. 4 Compiler Di fferences 7
A. 4. 1 Signed /Unsi gned char , Sign Extension 7
A. 4 . 2 Shi ft Operat ions 7
A. 4. 3 Identi fier Length 7
A. 4 . 4 Regi ster Var i ables 8
A. 4 . 5 Type Conver sion 8
A . 4. 6 Functions With Var iable Number o f Argumen ts 9
A. 4 . 7 Side Effects , Ev al uation Order 1 1

1 -i

1 -ii

A. 5 Program Env ironment Di ffer ences 1 1

A. 6 Portability of Data 1 2

A. 7 Lint 1 2

A . 8 Byte Ord er ing Summary 1 3

.)

C Language Portability

A. l Introduction

The standard definition of the C programming language leaves many details to
be decided by individual implementations of the language. These unspecified
features of the language detract from its portability a.nd must be studied when
attempting to write portable C code.

Most of the issues affecting C portability arise from differences in either target
machine hardware or compilers. C was designed to compile to efficient code for
the target machine (initially a. PDP-I I) and so many of the language features
not precisely defined are those that reflect a particular machine's hardware
characteristics.

This appendix highlights the various aspects of C that may not be portable
across different machines a.nd compilers. It also briefly discusses the portability
of a c program in terms or its environment, which is determined by the system
calls and library routines it uses during execution, file pa.thna.mes it requires,
and other items not guaranteed to be constant across different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from sma.ll 8-bit microprocessors to
large mainframes. This appendix is concerned with the portability of C code in
the XENIX programming environment. This is a. more restricted problem to
consider since a.ll XENIX systems to date run on hardware with the following
basic characteristics:

ASCll character set

8-bit bytes

2-byte or 4-byte integers

Two's complement arithmetic

These features are not formally defined for the language a.nd ma.y not be found
in all implementations of C. However, the remainder of this appendix is
devoted to those systems where these basic assumptions hold.

The C language definition contains no specification of how input and output is
performed. This is left to system calls a.nd library routines on individual
systems. Within XENIX systems there a.re system calls and library routines that
ca.n be considered portable. These a.re described briefly in a. la.ter section.

This appendix is not intended as a. C language primer. It is assumed that the
reader is familiar with C, a.nd with the basic architecture or common
microprocessors.

A- I

XENIX Programmer's Guide

A.2 Program Portability

A program is portable if it can be compiled and run successfully on different
machines without alteration. There are many ways to write portable
programs. The first is to avoid using inherently non portable language features.
The second is to isolate any nonportable interactions with the environment,
such as 1/0 to nonstandard devices. For example programs should avoid hard·
coding pathnames unless a pathname is common to all systems (e.g.,
fetcfpallwt!).

Files required at compiletime (i.e., include files) may also introduce
nonportability if the pathnames are not the same on all machines. In some cases
include files containing machine parameters can be used to make the source
code itselr portable.

A.3 Machine Hardware
Differences in the hardware of the various target machines and differences in
the corresponding C compilers cause the greatest number of portability
problems. This section lists problems commonly encountered on XENIX
systems.

A.3.1 Byte Length

By definition, the char data type in C must be large enough to hold as positive
integers all members of a machine's character set. For the machines described
in this appendix, the char size is exactly an 8 bit byte.

A.3 .2 Word Length

In C, the size of the basic data types for a given implementation are not
rormally defined. Thus they often follow the most natural size for the
underlying machine. It is safe to assume that short is no longer than long.
Beyond that no assumptions are portable. For example on some machines
short is the same length as int, whereas on others long is the same length as
int.

Programs that need to know the size of a particular data type should avoid
hard-coded constants where possible. Such information can usually be written
in a fairly portable way. For example the maximum positive integer (on a two's
wm plement machine) can be obtained with:

#define MAXPOS ((int)(((unsigned) 0) > > 1))

rhis is preferable to something like:

�-2

#ifdef PDPll
#define MAXPOS 32767
#else

#end if

C Language Portability

To find the number orhytes in an int use "sizeor(int)" rather than 2, 4, or some
ot.her non portable constant.

A.3.3 Storage Alignment

The C language defines no particular layout for storage of data items relative to
each other, or for storage of elements of structures or unions within the
structure or union.

Some CPU's, such as the PDP-11 and M68000 require that data types longer
than one byte be aligned on even byte address boundaries. Others, such as the
8086 and V AX-I l have no such hardware restriction. However, even with these
machines, most compilers generate code that aligns words, structures, arrays,
and long words on even addresses, or even long word addresses. Thus, on the
VAX-11, the following code sequence gives "8'', even though the VAX
hardware can access an int (a 4-byte word) on any physical starting address:

struct s_tag {
char c;
int i;

};
printf(" %d\n" ,sizeof(struct s_tag));

The principal implications of this variation in data storage are that data
. accessed as nonprimitive data types is not portable, and code that makes use of
knowledge of the layout on a particular machine is not portable.

Thus unions containing structures are non portable if the union is used to access
the same data. in different ways. Unions are only likely to be portable if they are
used simply to have different data in the same space at different times. For
example, if the following union were used to obtain 4 bytes from a long word,
the code would not be portable:

union {

} u;

char c(4] ;
long lw;

The sizeof operator should always be used when reading and writing
structures:

A-3

XENIX Programmer's Guide

struct s_tag st;

write(td, &st, sizeof(st));

This ensures portability of the source code. It does not produce a portable data
file. Portability of data is discussed in a later section.

Note that the rize of operator returns the number of bytes an object would
occupy in an array. Thus on machines where structures are always aligned to
begin on a word boundary in memory, the size of operator will include any
necessary padding for this in the return value, even it the padding occurs after
all useful data in the structure. This occurs whether or not the argument is
actually an array element.

A.3.4 Byte Order in a Word

The variation in byte order in a word affects the portability of data more than
the portability of source code. However any program that makes use or
knowledge or the internal byte order in a. word is not portable. For example, on
some systems there is a.n include file mirc.k that contains the following
structure declaration:

I*
* structure to access an
* integer in bytes
•I
struct {

};

char lobyte;
char hibyte;

With certain less restrictive compilers this could be used to access the high and
low order bytes or an integer separately, and in a completely nonportable way.
The correct way to do this is to use mask and shift operations to extract the
required byte:

#define LOBYTE(i) (i & Oxft)
#define HIBYTE(i) ((i > > 8) & Oxft)

Note that even this operation is only applicable to machines with two bytes in
an int.

One result of the byte ordering problem is that the following code sequence will
not always perform as intended:

A-4

C Language Portability

int c = 0;

rea.d(fd, &c, 1};

On machines where the low order byte is stored first, the value of"c" will be the
byte value read. On other machines the byte is read into some byte other than
the low order one, and the value of" c" is different.

A.3.5 Bitflelds

Bitfields are not implemented in all C compilers. When they are, no field may
be larger than an int, and no field can overlap an int boundary .Ifnecessary the
compiler will leave gaps and move to the next int boundary.

The C language makes no guarantees about whether fields are assigned left to
· right, or right to left in an int. Thus, while bitfields may be useful for storing
flags and other small data. items, their use in unions to dissect bits from other
data. is definitely non portable.

To ensure portability no individual field should exceed 16 bits.

A.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to the
extent that most compilers will not object to non portable pointer operations.
The lint program is particularly useful for detecting questionable pointer
assignments and comparisons.

The common non portable use of pointers is the use of casts to assign one pointer
to another pointer of a. different data. type. This almost always makes some
assumption about the internal byte ordering and layout of the data type, and is
therefore non portable. In the following code, the byte order in the given array
is not portable:

char c(4J;
long •lp;

lp = (long •)&c (OJ;
•lp = Ox12345678L;

The lint program will issue warning messages about such uses of pointers. Code
like this is very rarely necessary or valid. It is acceptable, however, when using
the malloc function to allocate space for variables that do not have char type.
The routine is declared as type char • and the return value is cast to the type
to be stored in the allocated memory. If this type is not char • then lint will
issue a. warning concerning illegal type conversion. In addition, the malloc
function is written to always return a starting address suitable for storing all
types of data. Lint does not know this, so it gives a warning about possible data

A-5

.
XENIX Programmer's Guide

alignment problems too. In the following example, malloc is used to obtain
memory for an array of 50 integers.

extern char •malloc();
int •ip;

ip = (int •)malloc(SO);

This example will attract a warning message from lint .

A.3.7 Address Space

The address space available to a program running under XENJX varies
considerably from system to system. On a small PDP-11 there may be only 64K
bytes available for program and data combined. Larger PDP-11 's, and some 16
bit microprocessors·allow 64K bytes of data, and 64K bytes of program text.
Other machines may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data areas may have
portability problems on small machines.

A.3.8 Ch aracter Set

The C language does not require the use of the ASCII character set. In fact, the
only character set requirements a.re all characters must fit in the char data
type, and a.ll characters must have positive values.

In the ASCII character set, all characters have values between zero and 127.
Thus they ca.n all be represented in 7 bits, and on a.n 8-bits-per-byte machine
are all positive, whether char is treated as signed or unsigned.

There is a. set of macros defined under XENIX in the header file
/u8r/includefctype.h. that should be used for most tests on character
quantities. They provide insulation from the internal structure of the
character set and, in most cases, their names are more meaningful than the
equivalent line of code. Compare

if(isupper(c))

to

if((c >=='A') && (c < ='Z'))

With some of the other macros, such a.s isdigit to test for a hex digit, the
�dvantage is even greater. Also, the internal implementation of the macros
makes them more efficient than a.n explicit test with an 'ir statement

o\-6

C Language Portability

A.4 Compiler Differences

There are a number of C compilers running under XENIX. On PDP-11 systems
there is the so-called "Ritchie" compiler. Also on the 11, and on most other
systems, there is the Portable C Compiler.

A.4.1 Signed/Unsigned char, Sign Extension

The current state of the signed versus unsigned char problem is best described
as unsatisfactory.

The sign extension problem is a serious barrier to writing portable C, and the
best solution at present is to write defensive code that does not rely on
particular implementation features.

A.4.2 Shift Operations

The left shift operator, " < < " shifts its operand a number of bits left, filling
vacated bits with zero. This is a so-called logical shift. The right shift operator,
" > > " when applied to an unsigned quantity, performs a logical shift
operation. When applied to a signed quantity, the vacated bits may be filled
with zero (logical shift) or with sign bits (arithmetic shift). The decision is
implementation dependent, and code that uses knowledge of a particular
implementation is nonportable.

The PDP-1 1 compilers use arithmetic right shift. To avoid sign extension it is
necessary to shift and mask out the appropriate number of high order bits:

char c;

c = (c > > 3) & Oxlf;

You can also avoid sign extension by using using the divide operator:

char c;

c == c 1 s;

A.4.3 Identifier Length

The use of long symbols and identifier names will cause portability problems
with some compilers. To avoid these problems, a program should keep the
following symbols as short as possible:

C Preprocessor Symbols

A-7

XENIX Programmer's Guide

C Local Symbols

C External Symbols

The loader used may also place a. restriction on the numb�r of unique
characters in C external symbols.

Symbols unique in the first six characters are unique to most C language
processors.

On some non-XENIX C implementations, uppercase and lowercase letters are
not distinct in identifiers.

A.4.4 Register Variables

The number and type of register variables in a function depends on the machine
hardware and the compiler. Excess and invalid register declarations are treated
as nonregister declarations and should not cause a portability problem. On a
PDP-11, up to three register declarations are significant, and they must be of
type int, char, or pointer. While other machines and compilers may support
declarations such as

register unsigned short

this should not be relied upon.

Since the compiler ignores excess variables or register type, the most important
register type variables should be declared first. Thus, if any are ignored, they
will be the least important ones.

A.4 .5 Type Conversion

The C language has some rules Cor implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is a.
potential problem whenever something of type char is compared with an int.

For example

char c;

iC(c = = Ox80)

will never evaluate true on a machine which sign extends since "c" is sign
extended before the comparison with Ox80, an in t.

A-8

C Language Portability

The only safe comparison between char type and an int is the following:

char c;

if(c == 'x')

This is reliable because C guarantees all characters to be positive. The use of
hard-coded octal constants is subject to sign extension. For example the
following program prints "fl'80" on a PDP-11 :

main()
{

printf(" %x\n" , '\200');
}

Type conversion also takes place when arguments are passed to functions.
Types char and short become int. Machines that sign extend char can give
surprises. For example the following program gives-128 on some machines:

char c = 128;
printf(" %d\n" ,c);

This is because "c" is converted to int before passing o the function. The
function itself has no knowledge of the original type or the argument, and is
expecting an int. The correct way to handle this is to code defensively and
allow for the possibility of sign extension:

char c == 128;
printf(" %d\n" , c & Oxft');

A.4.6 Functions With Variable Number of Arguments

Functions with a variable number of arguments present a particular
portability problem if the type of the arguments is variable too. In such cases
the code is dependent upon the size of various data types.

In XENIX there is an include file, fu�rfincludef V4r4rg8.h, that contains macros
for use in variable argument functions to access the arguments in a portable
way:

typedef char •va_list;
#define va_dcl int va_alist;
#define va_start(list) list = (char •) &va._alist
#define va_end(list)
#define va_arg(list,mode) ((mode •)(list += sizeof(mode)))[-1)

The va_end() macro is not currently required. Use of the other macros will be

A-9

XENIX Programmer's Guide

demonstrated by an example of the /print/ library routine. This has a first
argument of type FILE * , and a second argument of type char *· Subsequent
arguments are of unknown type and number at compilation time. They are
determined at run time by the contents orthe control string, argument 2.

The first few lines of fprintfto declare the arguments and find the output file
and control string address could be:

finclude <varargs.h>
'�¥include <stdio.h>

int
fprintf(va_alist)
va_dcl;
{

vaJist ap;
char •format;
FU..E •fp;

/• pointer to arg list

va_start(ap); /• initialize arg pointer •/
fp = va_arg(ap, (FU..E •));
format == va_arg(ap, (char •));

}

•I

Note that there is just one argument declared to fprintf. This argument is
declared by the va_dcl macro to be type int, although its actual type is
unknown at compile time. The argument pointer "ap" is initialized by 11a_etart
to the address of the first argument. Successive arguments can be picked from
the stack so long as their type is known using the 11a_arg macro. This has a type
as its second argument, and this controls what data is removed from the stack,
and how far the argument pointer "ap" is incremented. In /print/, once the
control string is found, the type of subsequent arguments is known and they
can be accessed sequentially by repeated calls to va_arg(). For example,
arguments of type double, int *• and short, could be retrieved as follows:

double dint;
int •ip;
short s;

dint == va_arg(ap, double);
ip = va_arg(ap, (int *));
s == va_arg(ap, short);

The use of these macros makes the code more portable, although it does assume
a certain standard method of passing arguments on the stack. In particular no
holes must be left by the compiler, and types smaller than int (e.g., char, and
short on long word machines) must be declared as int.

A-10

.)

C Language Portability

A.4 .7 Side Effects, Evaluation Order

The C language makes few guarantees about the order of evaluation of
operands in an expression, or arguments to a. function call. Thus

func(i++, i++);

is extremely nonportable, and even

func(i++);

is unwise if June is ever likely to be replaced by a macro, since the macro may
use "i" more than once. There are certain XENIX macros commonly used in
user programs; these are all guaranteed to use their argument once, and so can
safely be called with a side-effect argument. The most common'examples are
getc, putc , getchar, and putchar.

Operands to the following operators are guaranteed to be evaluated left to
right:

&& II

Note that the comma operator here is a separator for two C statements. A list
of items separated by commas in a declaration list is not guaranteed to be
processed left to right. Thus the declaration

register int a., b, c, d;

on a. PDP-11 where only three register variables may be declared could make
any three of the four variables register type, depending on the compiler. The
correct declaration is to decide the order of importance of the variables being
register type, and then use separate declaration statements, since the order of
processing of individual declaration statements is guaranteed to be sequential:

register int a.;
register int b;
register int c;
register int d;

A.5 Program Environment Differences

Most programs make system calls and use library routines for various services.
This section indicates some of those routines that are not always portable, and
those that particularly aid portability.

We are concerned here primarily with portability under the XENIX operating
system. Many of the XENIX system calls are specific to that particular
operating system environment and are not present on all other operating

A-ll

XENIX Programmer's Guide

system implementations of C. Examples of this are getpwent for accessing
entries in the XENIX password file, and getent1 which is specific to the XENIX
concept of a process' environment.

fu!y program containing hard-coded pathnames to files or directories, or user
IDs, login names, terminal lines or other system dependent parameters is
�onportable. These types of constant should be in header files, passed as
:ommand line arguments, obtained from the environment, or obtained by
�sing theXENIX default parameter library routines dfopen, and dfread.
Within XENIX, most system calls and library routines are portable across
:lifferent implementations and XENIX releases. However, a few routines have
:hanged in their user interface. The XENIX library routines are usually
>ortable amongXENIX systems.

IJote that the members of the printffamily, print/, /print/, eprintf, ucanf, and
rcanf have changed in several ways during the evolution ofXENIX, and some
'eatures are not completely portable. The return values of these routines
:annot be relied upon to have the same meaning on all systems. Some of the
'ormat conversion characters have changed their meanings, in particular those
·elating to uppercase and lowercase in the output of hexadecimal numbers, and
.he specification of long integers on 16-bit word machines. The reference
nanual page for print/ contains the correct specification for these routines.

\..6 Portability of Data
)ata files are almost always nonportable across different machine CPU
.rchitectures. As mentioned above, structures, unions, and arrays have
·arying internal layout and padding requirements on different machines. In
.ddition, byte ordering within words and actual word length may differ.

�he only way achieve data file portability is to write and read data files as one
'.imensional character arrays. This avoids alignment and padding problems if
he data is written and read as characters, and interpreted that way. Thus
.sen text files can usually be moved between different machine types without
oo many problems.

�.'1 Lint
.int is a C program checker which attempts to detect features of a collection of
: source files that are nonportable or even incorrect C. One particular
dvantage or lint over any compiler checking is that lint checks function
eclaration and usage across source files. Neither compiler nor loader do this.

int will generate warning messages about nonportable pointer arithmetic,
ssignments, and type conversions. Passage unscathed through lint is not a
Llarantee that a program is completely portable .

. -12

C Language Portability

A.8 Byte Ordering Summary

The following conventions are used in the tables below:

aO The lowest physically addressed byte ofthe data item. aO + 1, and so on.

bO The least significant byte or the data item, 'bl' being the next least
significant, and so on.

Note that any program that actually makes use or the following information is
guaranteed to be non portable!

Byte Ordering for Short Types

CPU Byte Order

aO at
PDP-11 bO bl
VAX-11 bO bl
8086 bO bl
286 bO bl
M68000 bl bO
Z8000 bl bO

Byte Ordering for Long Types

CPU Byte Order

aO at a2 a3
PDP-11 b2 b3 bO bl
VAX- 11 bO b l b2 b3
8086 b2 b3 bO bl
286 b2 b3 bO bl
M68000 b3 b2 bl bO
Z8000 b3 b2 bl bO

A-13

)

Appendix B

M4: A Macro Proces sor

B. 1 In trod uction

B. 2 Invoking m4

B. 3 De fin ing Macros 2

B. 4 Quoting 3

B. 5 Using Arg umen ts 5

B . 6 Us ing Ar ithmet ic Built-ins 6

B. 7 Man i pulating Fil es 7

B. 8 Us ing Sy stem Commn ands 7

B. 9 Using Cond itional s 8

B . 1 0 Man i pulat ing Str ing s 8

B. 1 1 Pr inting 1 0

1 - i

M4: A Macro Processor

B.l Introduction

The m./ macro processor defines and processes specially defined strings or
characters called macros. By defining a set of macros to be processed by m,/, a
programming language can be enhanced to make it:

More structured

More readable

More appropriate for a particular application

The #define statement in C and the analogous define in Ratfor are examples
or the basic facility provided by any macro processor-replacement or text by
other text.

Besides the straightforward replacement of one string of text by another, m,/
provides:

Macros with arguments

Conditional macro expansions

Arithmetic expressions

File manipulation facilities

String processing functions

The basic operation of m,/ is copying its input to its output. & the input is read,
each alphanumeric token (that is, string of letters and digits) is checked. If the
token is the name of a macro, then the name of the macro is replaced by its
defining text. The resulting string is reread by m,/. Macros may also be called
with arguments, in which case the arguments are collected and substituted in
the right places in the defining text before m,/ rescans the text.

M4 provides a collection of about twenty built-in macros. In addition, the user
can define new macros. Built-ins and user-defined macros work in exactly the
same way, except that some of the built-in macros have side effects on the state
of the process.

B.2 Invoking m4
The invocation syntax for m4 is:

m4 (files)

Each file name argument is processed in order. If there are no arguments, or if

B-1

XENIX Programmer's Guide

an argument is a dash (-), then the standard is read. The processed text is
written to the standard output, and can be redirected as in the following
example:

m4 filel file2 - > outputfile

Note the use of the dash in the above example to indicate processing of the
standard input, after the files filel and JilefJha.ve been processed by m,l.

B.3 Defining Macros

The primary built-in function or m,l is define, which is used to define new
macros. The input

define(name, 1tuff)

causes the string name to be defined as ltulf. All subsequent occurrences of
name will be replaced by ltulf. Name must be alphanumeric and must begin
with a. letter (the underscore (j counts as a. letter). Stulfis any text, including
text that contains balanced parentheses; it may stretch over multiple lines.

Thus, as a. typical example

define(N, 100)

ir(i > N)

defines "N" to be 100, and uses this symbolic constant in a. later ihta.tement.

The left parenthesis must immediately follow the word define, to signal that
define has arguments. Ir a. macro or built-in name is not followed immediately
by a. left parenthesis, "(", it is assumed to have no arguments. This is the
situation for "N" above; it is actually a macro with no arguments. Thus, when
it is used, no parentheses are needed following its name.

You should also notice that a. macro name is only recognized as such if it
appears surrounded by non alphanumerics. For example, in

define(N, 100)

if (NNN > 100)

the variable "NNN" is absolutely unrelated to the defined macro "N", even
though it contains three N's.

Things may be defined in terms of other things. For example

B-2

define(N, 100)
define(M, N)

defines both M and N to be 100.

M4: A Macro Processor

What happens if "N" is redefined? Or, to say it another way, is "M" defined as
"N" or as 100? In m./, the latter is true, "M" is 100, so even if"N" subsequently
changes, "M" does not.

This behavior arises because m4 expands macro names into their defining text
as soon as it possibly can. Here, that means that when the string "N" is seen as
the arguments of define are being collected, it is immediately replaced by 100;
it'sjust as if you had said

define(M, 100)

in the first place.

If this isn't what you really want, there are two ways out of it. The first, which
is specific to this situation, is to interchange the order of the definitions:

define(M, N)
define(N, 100)

Now "M" is defined to be the string "N", so when you ask for "M" later, you
will always get the value of "N" at that time (because the "M" will be replaced
by "N" which, in turn, will be replaced by 100).

B.4 Quoting

The more general solution is to delay the expansion of the arguments of define
by quoting them. Any text surrounded by single quotation marks ' and ' is not
expanded immediately, but has the quotation marks stripped off. If you say

define(N, 100)
define(M, 'N')

the quotation marks around the "N" are stripped off as the argument is being
collected, but they have served their purpose, and "M" is defined as the string
"N", not 100. The general rule is that m4 always strips off one level of single
quotation marks whenever it evaluates something. This is true even outside of
macros. If you want the word "define" to appear in the output, you have to
quote it in the input, as in

'define' = 1;

As another instance of the same thing, which is a bit more surprising, consider
redefining "N":

B-3

XENIX Programmer's Guide

define(N, 100)

define(N, 200)

Perhaps regrettably, the "N" in the second definition is evaluated as soon as it's
seen; that is, it is replaced by 100, so it's as if you had written

define(lOO, 200)

This statement is ignored by m.f, since you can only define things that look like
names, but it obviously doesn't have the effect you wanted. To really redefine
"N" , you must delay the evaluation by quoting:

define(N, 100)

define('N', 200)

In m.f, it is often wise to quote the first argument of a macro.

If the forward and backward quotation marks (' and ') are not convenient for
some reason, the quotation marks can be changed with the built-in
changequote. For example:

changequote([,))

makes the new quotation marks the left and right brackets. You can restore the
original characters with just

changequote

There are two additional built-ins related to define. The built-in undeflne
removes the definition of some macro or built-in:

undefine('N')

removes the definition of"N". Built-ins can be removed with undeflne, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is currently defined.
For instance, pretend that either the word "xenix" or "unix" is defined
according to a particular implementation of a program. To perform operations
according to which system you have you might say:

. ifdef('xenix', 'define(system,l)')
ifdef('unix', 'define(system,2)')

Don't forget the quotation marks in the above example.

B-4

M4: A Macro Processor

Irdef actually permits three arguments: if the name is undefined, the value or
ifdefis then the third argument, as in

ifdef('xenix', on XENIX, not on XENIX)

B.5 Using Arguments

So far we have discussed the simplest form or macro processing- replacing one
string by another (fixed) string. User-defined macros may also have arguments,
so different invocations can have different results. Within the replacement text
for a macro (the second argument or its define) any occurrence of $n will be
replaced by the nth argument when the macro is actually used. Thus, the
macro bump, defined as

define(bump, $1 = $1 + I)

generates code to increment its argument by 1 :

bump(x)

is

A macro can have as many arguments as you want, but only the first nine are
accessible, through $1 to $9. (The macro name itself is $0.) Arguments that are
not supplied are replaced by null strings, so we can define a macro cat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

The arguments $4 through $9 are null, since no corresponding arguments were
provided.

Leading unquoted blanks, tabs, or newlines that occur during argument
collection are discarded. All other white space is retained. Thus:

define(a, b c)

defines "a" to be "b c".

B-5

XENIX Programmer's Guide

Arguments are separated by commas, but parentheses are counted properly, so
a comma protected by parentheses does not terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally "(b,c)". And of course a
bare comma or parenthesis can be inserted by quotingit.

B.6 Using Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on integers. The
simplest is incr, which increments its numeric argument by 1. Thus, to handle
the common programming situation where you want a variable to be defined as
one more than N, write

define(N, 100)
define(Nl, 'incr(N)')

Then "Nl" is defined as one more than the current value of "N".

The more general mechanism for arithmetic is a built-in called eval, which is
capable ofarbitrary arithmetic on integers. It provides the following operators
(in decreasing order of precedence):

unary + and ·
** or • (exponentiation)
* / % (modulus)
+ .
== != < <= > >=
! (not)
& or &&(logical and)
I or I I (logical or)

Parentheses may be used to group operations where needed. All the operands
of an expression given to eva! must ultimately be numeric. The numeric value
of a true relation (like 1 >0) is 1, and false is 0. The precision in eval is
implementation dependent.

AI; a simple example, suppose we want "M" to be "2** N+ 1". Then

define(N, 3)
define(M, 'eval(2**N+l)')

AI; a matter of principle, it is advisable to quote the defining text for a macro
unless it is very simple indeed (say just a number); it usually gives the result you
want, and is a good habit to get into.

B-6

M4: A Macro Processor

B.7 Manipulating Files

You can include a new file in the input at any time by the built-in function
include:

include(.file name)

inserts the contents of filename in place of the include command. The
contents of the file is often a set of definitions. The value ofinclude (that is, its
replacement text) is the contents of the file; this can be captured in definitions,
etc.

It is a fatal error if the file named in include cannot be accessed. To get some
control over this situation, the alternate form sinclude can be used; sinclude
(for "silent include") says nothing and continues ifit can't access the file.

It is also possible to divert the output of m4 to temporary files during
processing, and output the collected material upon command. M4 maintains
nine of these diversions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of a temporary file referred to as "n".
Diverting to this file is stopped by another divert command; in particular,
divert or divert(O) resumes the normal output process.

Diverted text is normally output all at once at the end of processing, with the
diversions output in numeric order. It is possible, however, to bring back
diversions at any time, that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undivert with arguments
brings back the selected diversions in the order given. The act of undiverting
discards the diverted stuff, as does diverting into a diversion whose number is
not between 0 and 9 inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the number of the currently active diversion.
This is zero during normal processing.

B.8 Using System Comm ands

You can run any program in the local operating system with the syscmd
built-in. For example,

B-7

XENIX Programmer's Guide

syscmd(date)

runs the date command. Normally, syscmd would be used to create a flle for a
subsequent include.

To facilitate making unique file names, the built-in maketemp is provided,
with specifications identical to the system function mktemp: a string or
"XXXXX" in the argument is replaced by the process id of the current process.

B.9 Using Conditionals

There is a built-in called irelse which enables you to perform arbitrary
conditional testing. In the simplest form,

if else(a, b, c, d)

compares the two strings a and b. Ir these are identical, irelse returns the
string c; otherwise it returns d. Thus, we might define a. macro called
compare which compares two strings and returns "yes" or "no" if they are the
same or different.

define(compare, 'ifelse($1, $2, yes, no)')

Note the quotation marks, which prevent too-early evaluation orirelse.

Ir the fourth argument is missing, it is treated as empty.

irelse can actually have any number of arguments, and thus provides a limited
form of multi-way decision capability. In the input

if else(a, b, c, d, e, /, g)

if the string a matches the string b, the result is c . Otherwise, if d is the same as
e , the result is f. Otherwise the result is g. If the final argument is omitted, the
result is null, so

if else(a, b, c)
is c if a matches b, and null otherwise.

B.lO Manipulating Strings

The built-in len returns the length of the string that makes up its argument.
Thus

len(abcdef)

is 6, and

B-8

)

M4: A Macro Processor

len((a., b))

is 5.

The built-in substr can be used to produce substrings of strings. For example

substr(e,t', n)

returns the substring of e that starts at position i (origin zero), and is n
characters long. Ir n is omitted, the rest orthe string is returned, so

substr('now is the time', 1)

is

ow is the time

Ir i or n are out of range, various sensible things happen.

The command

index(e1, ef)

returns the index (position) in 11 where the string 1foccurs, or -1 if it doesn't
occur. As with substr, the origin for strings isO.

The built-in translit performs character transliteration.

translit('• /, t)

modifies ' by replacing any character found in /by the corresponding character
of t . Tha.t is

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. Ir t is shorter than /,
characters that don't have a.n entry in t are deleted; as a limiting case, if t is not
present at all, characters from/are deleted from '· So

tra.nslit(s, aeiou)

deletes vowels from "s".

There is also a. built-in called dnl which deletes all characters that follow it up
to and including the next newline. It is useful mainly for throwing away empty
lines that otherwise tend to clutter up m./ output. For example, if you say

B-9

XENIX Programmer's Guide

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end oreaeh line is not part ofthe definition, so it is copied into
the output, where it may not be wanted. It you add dnl to each of these lines,
the newlines will disappear.

Another way to achieve this, is

divert(-1)
define(...)

divert

B.U Printing
The built-in errprint writes its arguments out on the standard error file.
Thus, you can say

errprint('Catal error')
Dumpdef is a debugging aid that dumps the current definitions of defined
terms. Ir there are no arguments, you get everything; otherwise you get the
ones you name as arguments. Don't forget the quotation marks.

B-10

)

ndex

c option
C compiler 2-8

D option
C compiler 2-1 3

·E option
C compil er 2-1 5

h option
lint 3-9

I option
C compiler 2-1 4

1 option
C compiler

o option
C compi l er 2-5

0 opt ion
C compil er 2-1 0"

p option
C compi l er 2- 1 2

P option
C compi l er 2-1 5

s option
C compiler 2-1 0"

X option
C compiler 2-1 0"

a opt ion
lint 3-8

b opt ion
lint 3-4

c opt ion
lint 3-7

n opt ion
lint 3-1 2

p option
lint 3- 1 2

-u o ption
lint 3-3

-v option
lint 3-1 1
lint 3-3

-x option
lint 3-2

Adb
ba sic tool 1 -1

ar
descr i ption 1 -2

As
ba sic tool 1 -2

Assembler See As
a ssembler

error messages 2-1 5
C compiler

-I option , include fi l e
search 2-1 4
-1 option

l ibr ary l inking 2-9
-o option

a .out file naming 2-5
-0 option

output optim i zation
2-1 011

-P option , preprocessor
invoc ation 2-1 5
-P option , pro filing
code 2-1 2
-s o ption , output
str ipping 2-1 0"
-S o pt ion

assembly l anguage

1-1

Programmer s Guide

t put 2-1 2
ption , extern al symbol
y 2-1 011
ption , symbol saving
0"
ile 2-12
t fil e
fault output file 2-3

n i ng 2-4
nbl y l anguage
ut 2-1 2
ting
j ect files 2-8
t:.ion
cro d e fin i tion 2-1 3
r messages 2-1 5
ession
al uation order 3-1 1
t:. ion c all s
mting 2-1 2
Jde file
arch 2-1 4
l d i sc ard 2-10"
ar y
1king 2-9
',ng
>r ary 2-9
d irec tives ,

lt 3-1 1
)

:'inition 2- 1 3
�processor 2-1 5
>ut file wr i te out 2-

. ple source files 2-3
�t fil e
�ation 2-4

opt imi zation 2-1 0 "
output file See a .out
fil e
output

assembly l anguage
output 2-1 2
str i pping "2-1 0"

preprocessing 2-1 3
pr eprocessing 2-1 5
pro fil ing code 2-12
source fil e

linking 2-4
multiple 2-4
s ingle 2-2

str ip command , output
stri pping 2-1 0"
symbol table 2-1 0"

C l anguage
compiler See cc
usage c heck 1 -1
yacc 9-1

C program
str ing extr action 1-3

C programming l anguage 1 -1
C program s

creating 1-1
C so urce file

compil ation See C
compiler 2-2

C-shell
comm and hi story
mechan i sm 1 -3
command l anguage 1 -3

cc command
error messages 2-1 5
source file

compiling 2-3

1m and
:xecution 1 -3
.nterpr etation 1-3
;ees commands See sees
;ces See sees
I
lesc r i ption 1-3
•ugger See Adb
. ta See sees
sk c alcul ator
spec ifi c ations 9-3 1
·or me s sage file
: reation 1-3
!cution pro file
>ro f 2-1 2
. e
lrchi ves 1 -2
1lock coun ting 1 -3
:heck sum computation 1 -3
!r ror message file See
�ror message file
1ctal dump 1 -3
·elocat ion b i t s
·emoval 1 -3
·emoval

sees u se See sees
X>urce Code Control System
�ee sees
;ymbol removal 1 -3
�ext search , pr int 1 -3
!TRAN
:onver sion program 8-20"
l adec imal dump 1 -3

>asic tool 1 -2

·11 f1 ag
l ibrary access 8-5

0 , end of fil e
notation 8-1 2
a .out fil e

con tents 8-5
action

default 8-8
desc r i ption 8-3
re pe tition 8-9
spec i fi c at ion 8-8

altern at ion 8-7
ambiguous source rules 8-
1 2
angle brackets (<>)

o per ator char acter 8-24

oper ator char acter 8-4
start cond ition
referenc ing 8-1 6

arb i tr ar y char acter
match 8-6
arr ay s i ze change 8-24
aster i sk (*) ·

o perator char acter 8-25

oper ator char acter 8-4
repeated ex pression
spec i fi c ation 8-6

automaton interpreter
initial cond ition
resetting 8-1 6

b ackslash (\)
e e sc apes 8-4

backslash (\)
o perator char acter 8-24

backslash (\)
o perator char acter . 8-4

1 -3

NIX Programmer s Guide

backsl ash (\)
operator char acter
esc ape 8-4

b acksl a sh (\)
operator char acter
e scape 8-6

BEGIN
start cond ition
entr y 8-1 6

bl ank char acter
quoting 8-4
rule end ing 8-4

b l an k , tab line
beginn ing 8-17
braces ({})

ex pression
repetition 8-8
operator char acter 8-25

operator char acter 8-4
br ac kets ([])

char acter class
spec i fication 8-5
char acter class use 8-1

oper ator char acter 8-24

o perator c har acter 8-4
operator char acter
e scape 8-5

buffer over flow 8- 1 3
C e scapes 8-4
car et (A) oper ator

le ft context
recogni zing 8- 1 5

c aret (A)

4

char acter class
incl usion 8-5

context sen sitiv ity

operator char acter

oper ator character
str i ng complement

char acter cl ass
notation 8-1
spec i fication 8-5

char acter set
spec i fi c ation 8-22

char acter
inter nal use 8-22
set table 8-22

8-7

8-2 4

8-4
8-5

set tab le 8-24
tran slation table See
set table

context sen si tivity 8 -7
copy c l asse s 8- 1 7
dash (-)

oper ator char acter 8-2 4

char acter cl ass
inclusion 8-5
operator character 8-4
r ange indicator 8-5

d e fin ition
ex pan sion 8-8
format 8-1 8
placement 8-8

defin itions
char acter set table 8-
22
contents 8-1 8
contents 8-23
format 8-23
l oc ation 8-1 8

s peci fic ation 8 - 1 7
d elimi ter

d i sc ard 8-1 8
rule beginn ing
m ar k ing 8-1
source fo rmat 8-2
t hird delimiter ,
copy 8-1 8

descri ption 1 -2
description 8-1
dol l ar sign ($) operator

r ight context
r ecogn1 z1ng 8- 1 5

dollar sign { $)
context sen sitivity 8-7

end of l in e
notation 8-1
oper ator char acter 8-24

operator char acter 8-4
dot (.) oper ator See
per iod (.)
double pr ec i sion con st an t
change 8-2 1
ECHO

format argument , d ata
pr int ing 8-9

end-of-fil e
0 hand l ing 8- 1 2
yywr ap routine 8-1 2

env ironment
change 8-15

ex pr ession
new l ine illegal 8-4
repetition 8-8

external char acter
arr ay 8-9

fl ag
env i ronment change 8-1 5

FORTRAN conver sion program
8-20"

grouping 8-7
I/0 l ibr ary See l ibr ary
I /0 r out ine

access 8- 1 1
consi stency 8-1 1

input () routine 8-1 1
input routine

char acter I/ 0
hand ling 8-22

input
descr iption 8-1
end-o f- file , 0
ignor ing 8-8
m an i pulation
restr ic tion 8-1 5

invocat ion 8-4
left c ontext 8-7

c ar et ("') o perator 8-15

sen sitivity 8-1 5
l ex . yy .c file 8-5
lexical analyzer

env i ronment change 8-1 5

l ibrar y
acce ss 8-5
avoid ance 8-5
b ackup l imi tation 8-12
load ing 8- 1 9

l ine beginning match 8-7
l ine end match 8-7
lo ad er fl ag See -11 fl ag

1 -5

IX Programmer s Guide

ookahe ad
har acter i stic 8-1 2
ookahead char acter i stic
8- 1 0"
atch count 8-9
atching

occurrence counting 8-
1 3
pr eference s 8 - 1 2

e w line
il l egality 8-4

�wl ine
escape 8-23
matching 8-1 3

� tal esc ape 8-6
perator char ac ter

esc ape 8-4
quot i ng 8-4

per ato r char acter s
a a See al so Speci fie
Oper ator Character
d e signated 8-24
esc ape 8-5
e scape 8-6
list ing 8-4
l i ter al mean ing 8-4

:>tional ex pr e ssion
speci fication 8-6

Jtput (c) rout ine 8-1 1
utput routine
char acter I/0
handl ing 8-22

3renthe se s (())
grouping 8 -7
opera tor char acter 8-4

ar ent hesis (())
oper ator char acter 8-25

par ser gener ator
anal ysis phase 8-2

per cen tage sign (�)
delimiter notation
(%$) 8-1
o perator char acter
remainder operato r

sour c e segment
separator 8-8

per iod (.) operator
de signted 8-24

per iod (.)
arbitr ary char acter
match 8-6

8-4
8- 1 9

newl ine no match
operator char acter

pl us sign (+)
oper ator char acter

8-1 3
8-4

8-25

oper ator c har acter 8-4
repeated ex press ion
spe c i fi c ation 8-6

preproce s sor statement
entry 8-1 8
que stion mark (?)

o per ator char acter 8-25

operator char acter 8-4
option al express ion
spec i fication 8-6

quotation m ar ks , doubl e
(\ 0
r e al number s r u l e 8-1 8
regul ar ex pression

d e scr i pt ion 8-3
end ind ic ation 8-3

)

oper ators See o per ator
char acter s
rul e component 8-3

E J ECT 8- 1 4
epeated expression

s pec i fication 8-6
ight context

d oll ar sign ($)
oper ator 8-1 5

ule
acti ve 8-1 6

r e al number 8-1 8

ules
c om ponents 8-3
format 8-2 4

em icolon (;)
null statement 8-8

lash (/)
o per ator char acter 8 -25

o per ator char acter 8-4

trailing tex t 8-7
�urce definitions

spec i fic ation 8- 1 7
�urce file

format 8-23
)Urce program

compi l ation 8-4
'urce
copy into gener ated
progr am 8-17
desc r iption 8-1

format 8-17

format 8-2

in terception
failure 8-1 7

segment se par ator 8-8

spac ing char acter
ignor ing 8-9

start cond ition 8-7

entry 8-16
env ironment change 8-1 5

start c ond i tions
form at 8-23
loc ation 8-23

start
abb rev iation 8-1 6

stati stics g ather ing 8-
20"
str ing

printing 8-3
sub stitut ion str ing

defin ition See
d e fin ition

tab l ine beg inn ing See
blank , t ab l ine beg inn ing

text char acter
quoting 8-4

tr ailing text 8-7
unput (c) routine 8-1 1
unput rout ine

character I/0
hand ling 8-22

unput

lex

REJECT
noncompatible 8-1 5

unreachable statement 3-4
Lex

vertical b ar (I)
action r epetition 8-9
alternation 8-7

1 -7

XENIX Programmers Guide

oper ator character 8-25

operator char acter 8-4
wr apup See yywr ap routine

Yacc inter face
tokens 8-1 9
yyl ex 0 8-1 8

Yacc
interface 8-2
library load ing 8- 1 9

yyleng var iable 8-9
yyless ()

text reprocessing 8-1 0

yyless (n) 8-10
yylex () prog ram

Yacc inter face 8-1 8
yylex program

contents 8-1
yymore 0 8-10
yytext

external char acter
array 8-9

yywrap () 8-20
yywrap () routine 8-1 2

Librar y
conver sion 1 -2
maintenance 1 -2
order ing r elation 1 -2
sort 1-2

linker
error messages 2-1 5

Lint
-h option 3-9
-a option 3-8
-b option 3-4

1 -8

-c option 3-7
-ly d ir ective 3-12
-n o pt ion 3-12
-P option 3-1 2
-u option 3-3
-v o ption

turnon 3-1 1
unused var i able report
suppr ession 3-3

-x o pt ion 3-2
ARGSUSED directive 3-1 1
ARGSUSED d irective 3-12
argument number comments
turnoff 3-1 1
assignment of long to int

check 3-8
assignment oper ator

new form 3-1 0"
old form , check 3-9
oper and type
balancing 3-6

a ssignment , impl ied See
implied assignment
b inary o perator , type
check 3-6
break statement

unreachable See
unreachable break
statement

C l anguage check 1 -1
C program check 3-1
C syntax , old form,
check 3-9
cast See type cast
cond itional oper ator ,
oper and type bal anc ing 3-6

:onstant in cond itional
:on text 3-9
:onstruction check 3-1
:on struct ion check 3-8
:ontrol information
'low 3-1 1
l egener ate un signed
:om par i son 3-8
le scr i pt ion 3-1
l irective

d e fined 3-1 1
embed d in g 3-1 1

mumer ation , type
�heck 3-6
:rror message , function
1 ame 3-5
:x pression , order 3-1 0"
:x tern st atement 3-2
:xternal d ecl aration ,
·eport suppr ession 3-2
'ile

l ib r ar y d ec l ar ation file
id enti fication 3-12

'unction
error message 3-5
return v al ue c heck 3-5
type check 3-6
unused See unused
function

.mplied as signment , t ype
:hec k 3-6
.n i tiali zat ion , old style
:heck 3-1 0"
. ib r ar y

compatib ility check 3-
1 2
compatib il ity check
suppression 3-12

d ir ective
acceptance 3-1 2
file processing 3-1 2

LI NTLIBRARY d ir ective 3-1 2

loop check 3-4
non por t able c har acter
check 3-7
non por table ex pr ession
ev aluation order check

3-10"
NOSTR ICT d ir ective 3-1 1
NOTREACHED d ir ective 3-1 1
oper ator

oper and types
bal anc ing 3-6
precedence 3-9

output turnoff 3-1 1
pointer

agreement 3-6
alignment check 3-1 0"

relational operator ,
o per and t ype b al anc ing 3-6

scal ar v ar iable c heck 3-1 1

source fi l e , l ib r ar y
compatibility check 3-1 2
statemen t , unl abeled
r e port 3-4
struc ture sel ection
operator , type check 3-6
syntax 3-1
t ype cast

check 3-7
comment pr inting
control 3-7

1 -9

�IX Progr ammer s Guide

�ype check
descr iption 3-6
turnoff 3-1 1

Jnr eachable break
statement , r eport
suppression 3-4
mused argument

report suppression 3-3

Jnused function , check 3-2

mused var i able , check 3-2

fARARGS d irective 3-1 2
rariable

external var iable
in itial ization 3-4
inner/outer block
conflict 3-9
set/used
in formation 3-3
static var iable
initial i zation 3-4
unused See unused
var iable

1der See ld

'P
. int use See Lint
der
lescr i ption 1 -2

" descri ption
ros
'reproce ssing 1 -2
ntainer See Make
:e command
rguments 4-4

0

syntax 4-4
Make

-d option 4-1 3
-n option 4-1 3
-t option 4-1 3
.c suffix 4-9
• DEFAULT 4-5
. f suffix 4-9
. IGNORE 4-5
.1 suffix 4-9
.o suffix 4-9
• PRECIOUS 4-5
.r suffix 4-9
. s suffix 4-9
. SILENT 4-5
.y suffix 4-9
. yr suffix 4-9
argument quoting 4-6
backsl ash (\)

descr i pt ion file
continuation 4-2

basic tool 1 -2
command argument

macro definition 4-6
command str ing
sub stitution 4-5
command string

hyphen (-) start 4-5
command

form 4-1
location 4-1
print without
execution 4-1 3

dependency line
substitution 4-5
dependency line

form 4-1

tesc r i ption fi l e
comment convent ion 4 - 1

m acro defin i t ion 4-6
tesc r i ption fil ename

argument 4-4
oll ar sign ($)

m acro i nvoc ation 4-6
!qual sign (:)

m acro de fin ition 4-5
'i l e gener ation 4-5
'ile update 4-1
'il e

t ime , date pr inting 4-
1 3
updating 4-1 3

yphen (-)
c ommand str ing
start 4-5

aero definition
anal ys i s 4-6
argument 4-4
descr ipt ion 4-5

,aero
defin ition 4-6
de fin i t ion overr ide 4 -6

invocation 4-6
sub st itut ion 4-5
v al ue assignment 4-6

ed ium si zed pro j ects 4-1
etacharac ter
x pansion 4-1
umber sign (II)

d escription fi le
comment 4-1

bj ect fil e
suffix 4-9

option argument
use 4 -4

paren the se s (())
macro enclosure 4-6

program maintenance 4-1
sem icolon (;)

command
introduction 4-1

sourc e fil e
suffixes 4-9

source gr ammar
suffixes 4-9

suffi xes
li st 4-9
table 4-9

target· file
pseudo-target fil e s 4-5

update 4-1 3
target filename

argument 4-4
target n ame omi ssion 4-3
touch o ption See -t
opt ion
transformation rules

table 4 -9
troubleshooting ' 4-1 3

Notational conventions 1 -5
Obj ect file s

creating 2-8
Pipe

sees use See sees
prof command 2-1 2
Prog r am d ev elopment 1 - 1
Program

maintainer See Make
ps command

e-shell u se See e-she ll

1-1 1

IX Progr ammers Guide

tation m ar ks , single (' ')
-shell use See C-shell
l ib
escription 1 -2
command
ccs use See sees
S, source code
ontrol 1 -3
s
MJ keyword

g-file line
precedence 5-30

a option
login name add ition
use 5-23

d flag
flag s d eletion 5-16

d opt ion
data speci fication
prov ision 5-20"
fl ag r emoval 5-1 6

e option
delta r ange
printing 5-2 1
file editing use 5-7
log in name r emoval 5-24

f option
flag initial i zation ,
modi fication 5-15
flag , value setting 5-
1 6

g opt ion

2

output suppre ssion 5-
30"
p-file regeneration 5-
26

-h option
fil e aud it use 5-25

-i flag
keyword message , error
treatment 5-15

-i option
delta incl usion l i st
use 5-28

-k option
g-fi l e r egeneration 5-
26

-l option
delta r ange
printing 5-21
1-·file creation 5-29

-m option
e ffective when 5-1 8
file change
identificat ion 5-30"
new file creation 5-27

-n option
JMJ keyword value use

5-30"
g-file preservation s-
12
pi peline use 5-30"

-P option
d elta pr inting 5-30"
output e ffect 5-1 1

-r option
delta c reation use 5-22

delta pr inting use 5-2 1

fil e retr ieval 5-9
r elease number
spec ific ation 5-27

; option
output suppression 5-28

� opt ion
delta r etr ieval 5-1 1
file ini t iali zat ion 5-
1 9
file mod i ficat ion 5- 1 9

: option
d el ta excl usion l i st
use 5-28

r option
commen ts prompt
response 5-17
new file c reation 5-27

� key
fil e aud it use 5-26

: n > str ing
file info rmation ,
search 5-31

lmin command
file admini str ation 5-
25
f ile checking use 5-25
fi le creation 5-5
u se author i zation 5-6

lmin i str ator
d e scr i ption 5 -4

·gument
m inus sign (-) u se
types d esi gnated 5-4

· anch d elta
retr ieval 5-1 0"

· anch numb er
descript ion 5-2

lc command
commen tary change 5-1 7

ceil ing fl ag
protection 5-24

checksum
file corr uption
determination 5-25

command
argument See argument

execut ion c ontrol 5-4
expl anation 5-26

comment s
change procedure 5-17
omi ssion , e ffect 5-28

cor r upted file
determination 5-25
processing
restr ictions
re stor at ion

d flag

5-25
5-26

d e fault
spec i fi c ation 5-1 6

d-file
tempor ar y g-file 5-4

d ata keyword
d ata spec i fi c ation
component 5-20"
repl ac ement 5-20"

d ata s peci fication
description 5-20"

delta command
comments prompt 5-8
file change
procedur e 5-8
g- file r emov al 5-12
p-fi l e r ead ing 5-7
p-file r e ad ing 5-8

delta table
delta r emoval ,

1 -1 3

ENIX Programmer s Guide

effect 5-3 1
descri ption 5-17

delta
br anch delta See br anch
delta
de fined S-1
defined 5-2
exclusion 5-28
inclusion 5-28
inter ference 5-29
l atest release
retr ieval 5-1 1
level number See l evel
number
name See 1SID11
printing 5-21
pr inting 5-30"
r ange pr inting 5-21
rel ease number See
r elease number
removal 5-3 1

descri ptive text
in itial ization 5-1 9
modi fication 5 - 1 9
removal 5-1 9

d i agnostic output
-P option effect 5-1 2

diagnostic s
code as hel p
argument 5-1 2
form 5-1 2

jirectory use 5-1
:lirectory

file argument
application 5-4
x-file location 5-3

!rror message
code use 5-1 2

1 4

form 5-12

excl amation point (I)
HR d el etion use 5- 1 9

file argument
descript ion 5-4
processing 5-4

file creation
comment line
generation 5-28
commentary 5-27
comments omission ,
e ffect 5-28
level number 5-27
r el ease number 5 -27

fil e protection 5-23
file

admin i stration 5-25
change identification

5-30"
change procedure 5-8
change , major 5-9
changes See d el ta
checking procedure 5-25

comparison 5-32
composition 5- 1 6
composi tion 5-2
corrupted file See
corrupted file
creation 5-5
data keyword See data
keyword
descript ive text
descr i ption 5-17
descr ipt ive text See
descriptive text
ed iting , -e option
use 5-7

:rouping 5-1
.denti fying
m formation 5 -3 1
' ink See 1 ink
�ul tiple concur rent
�dits 5-22
1 ame arb itr ar y 5-1 2
1 ame See link
1 ame , s use 5-5
par ameter
initi alization ,
nod i fication 5- 1 9
pr inting 5-20"
protect ion methods 5-23

removal 5-5
retr ieval See get
comm and
x-fi l e See x-fi l e
ags
deletion 5-1 6
init ial i zation 5-15
mod i fication 5-1 5
setting , v al ue
se tting 5-1 6
use 5-1 6
oor fl ag
protection 5-24

·fi l e
cr eation 5-3
creation d ate , t ime
r ecordat ion 5-1 3
desc r iption 5-3
l ine identi fication

5-30"
l ine , �M� keyword v al ue

5-3 0"

owner shi p 5-3
r egener at ion 5-26
r emoval , delta command
u se 5-12
temporary See d-fi le

get command
-e option use 5-7
concur r ent ed iting ,
directory u se 5-21
d elta incl u sion ,
ex clus ion check 5-29
file retr iev al 5-6
fil en ame c reation 5-6
g-file creation 5-3
message 5-6
r elease number
c hange 5-9

help command
arg ument 5-12
code use 5-12
use 5-26

i fl ag
file c reation ,
e ffect 5-1 4

I D keyword See keyword
id enti fication str ing See

1 SID11

j fl ag
multiple concur rent
edits speci fication 5-
22

keywor d
data Se e d ata keyword

format 5-1 3
l ac k , error
treatment 5-1 5

1 - 1 5

NIX Programmer s Guide

use 5-1 3
l-file

contents 5-3
creation 5-29

level number
delta component 5-2
new file 5-27
omi ssion , file
retrieval , e ffect 5-9

l ink
number restr iction 5-2

lock file See z-file
lock flag

R protection 5-24
minus sign (-)

option argument use 5-4

minus sign (-)
argument use 5-4

mode
g-fil e 5-3

HR
commentary supply 5-1 7

deletion 5-1 8
new file creation 5-27

multiple users 5-4
opt ion argument

descr iption 5-4
processing order 5-4

output
data speci fication See
data specific ation
suppre ssion , -g option

5-3 0"
suppression , -s
option 5-28

·1 6

wr ite to stand ard
output 5-1 1

p-file
contents 5-3
contents 5-7
creation 5-3
delta command
reading 5-8
naming 5-3
owner ship 5-3
permissions 5-3
r egeneration 5-26
update 5-3
updating 5-4

percentage sign (�)
keyword enclosure 5-1 3

piping 5-28
-n option use 5-30"

pr s command
file printing 5-20"

purpose 5-1
q file

use 5-4
R

del ta r emoval check
31

rel ease number
-r option ,
spec i fic ation 5-27
change 5-2
change procedure 5-9
delta component 5-2
new file 5-27

rel ease
protection 5-24

rm command
file removal 5-5

5-

ndel command
d elta r emoval 5-3 1

�csd iff command
file compa r i son 5-32

� quence number
d esc r ipt ion 5-2

ab char ac ter
-n option , design ation

5 -30"
ser li st

empty by default 5-23
log in n ame add ition 5-
23
login n ame r emoval 5 -2 4

protection feature 5-23

ser n ame
l i st 5-23
fl ag
new f i l e use 5-1 6

1at command
fi le info rmation 5-3 1

· i te permi ss ion
delta removal 5-3 1

-file
direc to r y , loc ation 5-3

n aming proc ed ure 5-3
permissions 5-3
tempor ar y file copy 5-3

use 5 -3
�NIX command
use pr ec aution 5-25

-fil e
lock file use 5 -3

own ership 5-3
permissions 5-3

1 S ID" components
1 SID" d elta pr inting
u se

ses
out put

piping 5-28
Semicolon (;)

e-shell use See e-shell
Software d evelopment

d e scr ibed 1 - 1
Sour ce Code Control System

see sees
Source files 1 - 1
str ip

de scr i pt ion 1 -3
sum

d e scription 1 -3
Symbol

n ame list 1 -3
r emoval 1 -3

s ync
descr ipt ion 1 -3

Tags file
creation 1 -3

Tex t ed i tor
creating progr ams 1 -1

t sort
descr i pt ion 1 -2

v i , t he screen-oriented text
ed i tor 1 -1

XENIX file
identifying
information 5-3 1

Yacc
:£ token keyword

1 -1 7

:NIX Programmers Guide

union member
association

neft keyword
ne ft keyword

name
9-30"

9-20"

union member name
assoc iation 9-30"

neft token
synonym 9-42

Snonassoo keyword 9-2 1
union member n ame
association 9-30"

Snonassoo token
synonyms 9-42

Spree keyword 9-21
Spree

synonym 9-42
Sright keyword 9-21

union member name
association 9-30"

'r ight token
synonym 9-42

'token
synonym 9-42

'type keyword 9-3 1
)

0 key"
-ly argument , l ibrar y
access 9-25
-v option

y . output file 9-1 3
D char acter

grammar rules ,
avoidance 9-5

ilooept action See par ser
ilooept simulation 9-29
!lotion

1 8

O , negative number 9-
29

conflict source 9-1 7
de fined 9-7
error rules 9-23
form 9-42
global flag setting 9-

. 28
in put style 9-26
invocat ion 9-1
location 9-8
nonterminating 9-8
parser See parser
return v alue 9-30"
statement 9-7
statement 9-8
value in enclosing
rules , access 9-29

ampersand (&)
bitwise AND
operator 9-3 1
desk c alculator
operator 9-3 1

ar ithmetic expression
desk c alculator 9-3 1
par sing 9-20"
pr ecedence See
precedence

assoc iativity
arithmetic expression
parsing 9-20"
gr ammar r ule
association 9-22
r ecordation 9-22
token attachment 9-20"

aster i sk (*)
desk c alculator
operator 9-3 1

)

bac kslash (\)
e scape char acter 9-5
percentage sign (�)
sub stitut ion 9-4 1

binar y oper ator
pr ec ed ence 9-21

b l an k char acter
restr ic t ion s 9-5

b r aces ({ })
act ion 9-8
ac tion statement
enclosure 9-7
action , dropping 9-42
he ad er file enclosur e

9-30"
colon (:)

identi fier , e ffect 9-33

punctuation 9-5
comment s

location 9-5
con fl ict

assoc iativity See
assoc iativ ity
di samb ig uating
rul es 9-17
message 9-1 9
pr eced ence See
pr ec ed ence
r ed uce/red uce
conflict 9-1 7
r educe/red uce
con fl ict 9-22
re solution , not
counted 9-22
shi ft/red uce
conflict 9 - 1 7

shi ft /reduce
con fl ict 9-1 9
shift / reduce
con flict 9-22
source 9-1 7

declar ation section
header file 9-30"

declar ation
spe c i fic ation file
component 9-4

d esc r ipt ion 1 -2
desk c alculator
spec i fications 9-3 1
desk c alculator

advanced featur es 9-35

error recovery 9-36
floa ting po int
interv al 9-35
sc al ar c onver sion 9-36

d fl ag 9-28
d i samb iguating iul e 9-1 7
d i s amb iguating rules 9-1 7
dollar sign ($)

act ion signi fic ance 9-7

empty r ule 9-27
enclosing r ules ,
access 9-29
endmarker

lookahead token 9-1 2
parser input end 9-6
representation 9-6
token number 9-10"

env ironment 9-25
error action See parser
error token

par ser r estart 9-23

1 -1 9

grammer s Guide

ing 9-23
sociating
cation 9-22
r restart 9-23
ation 9-29
ok statement 9-24
char acter s 9-5
1l interger
e 9-26

11 flag See global

1g point intervals
:k calcul ator
flag
al an alysis 9-28

rules 9-1
1r acter avoidance

1ced featur es 9-35
;uity 9-1 5
:iativ ity
:iation 9-22
le location 9-42
' rule 9-27
· token 9-23
at 9-5
, style 9-26
recursion 9-27
sid e

�ition 9-5
I 9-5
1r s 9-20"
!dence
: iation 9-22
:e action 9-1 1

reduction 9-1 2
rewrite 9-1 7
r ight r ecur sion 9-27
speci fication file
component 9-4
v alue 9-7

header file , un ion
d eclar ation 9-30"
hi storic al fe atures 9-4 1
identifier

input syntax 9-33
i f-else r ule 9-1 8
if-then-else
construction 9-17
input error detection 9-3
input language 9-1
input

style 9-26
syntax 9-33

keyword 9-20"
keyword

reservation 9-29
union member name
association 9-30"

left association 9-1 6
l e ft associative

reduce implication 9-22

left r ecur sion 9-27
v al ue type 9-31

lex
interface 8-2
lex ical analyzer
construction 9-10"

l ex ical an alyzer
context dependency 9-28

�fined 9-1
� fined 9-9
tdmar ker r eturn 9-6
Loating po int
m stants 9-37
motion 9-2
Lob al fl ag
c amination 9-28
l enti fier an alys i s
�X 9-1 011
�turn v alue 9-30"
:ope 9-8
>ecific ation fi le
>lllponent 9-4
�rminal symbol See
!rminal symbol
•ken number
:reement 9-9
.c al tie-in 9-28
· ary 9-25
· ar y 9-26
�r al
�fined 9-5
!limit ing 9-4 1
mgth 9-4 1
:ahead token 9-10"
:ahe ad token
.ear ing 9-24
· ror rules 9-23
2)

1 progr am
IS sign (-)
�sk c al cul ator
•er ator 9-3 1
�s
mtposi tion 9.-5
!ngth 9-5

refer ence 9-4
token n ame See token
n ame

newl ine char acter
restr ictions 9-5

non assoc iating
error impl ication 9-22

nonterminal name
input style 9-26
repr esentation 9-5

nonterminal symbol 9-2
empty str ing m atch 9-6
l ocation 9-6
n ame See nonterminal
n ame
start symbol
symbol

See start

nonterminal
union member
assoc iation

octal interger
0 beginning

par ser

n ame
9-3 1

9-3 1

accept action 9-1 2
accept simulat ion 9-29
actions 9-1 1
ar ithmetic ex pression

9-20"
con fl ict
creation
de fined

See con fl ict
9-20"

9-1
desc r iption 9-1 0"
error action 9-1 2
error hand l ing See
error
goto act ion 9-1 2

1 -2 1

:ENIX Programmer s Guide

in itial state 9-1 5
input end 9-6
lookahead token 9-1 1
movement 9-1 1
n ames , yy prefix 9-9
nonterminal symbol See
nonterminal
production failure 9-3
r ed uce action 9-1 1
restart 9-23
shi ft action 9- 1 1
start symbol
recogni tion 9-6
token number
agreement 9-9

percentage sign (J)
action 9-8
desk c al culator mod
operator 9-3 1
header fil e enclosure

9-30"
precedence keyword 9-
20"
spec ification fil e
section separator 9-4
sub st itution 9-4 1

pl us sign (+)
desk calculator
operator 9-3 1

pr ecedence

-22

binary operator 9-21
change 9-21
grammar rule
assoc iation 9-22
keyword 9-20"
parsing function 9-2011

recordation 9-22
token attachment 9-20"

un ary oper ator 9-2 1
progr am

spec i fic ation fil e
component 9-4

punctuation 9•5
quotation marks , double
(9-4 1
quotation marks , single

(")
liter al enclosure 9�5

reduce action See par ser
r ed uce command

number reference 9-20"

reduce/reduce conflict 9-
17

reduce/reduce conflict 9-
22
reduction conflict See
r educe/reduce conflict
reduction confl ict See
shi ft/reduce conflict
reserved word s 9-28
r ight assoc iation 9-1 6
r ight associative

shi ft impl ication 9-22

r ight r ecur sion 9-27
semicolon (;)

input styl e 9-26
punctuation 9-5

shi ft action See parser
shi ft comm and

number r eference 9-2011

ft / red uc e c on flict 9- 1 7

ft/ r ed uce con fl ict 9-1 9

ft/ r educe con fl ict 9-22

ple-i f rule 9- 1 8
sh (/)
e s k c alculator
per ator 9-3 1
::: i ficat ion file
ontent s 9 -4
ex ical an alyzer
ncl usion 9-4
ections se par ator 9-4
ci fication files 9-2
rt symbol
e scri ption 9-6
oc at ion 9-6
bol synonyms 9-4 1

char acter
e str ic tion s 9-5
minal symbol 9-2
en n ame
ecl ar ation 9-6
nput style 9-2 6
e n names 9-1 0"
en numb er 9-9
greement 9-9
ssignment 9 - 1 0 "
ndmarker 9-1 0"
en
s soc iativ ity 9-20"
e fined 9-1
r ror token See error
o ken
ames 9-4

org an i zation 9-1
pr eced ence 9-20"

un ary o per ator
pr ecedence 9-2 1

under score s ign ()
par ser 9-1 4

-

un ion
copy 9-30"
decl ar at ion 9-30"
he ad er fil e 9-3 0"
n ame a ssoc iat ion 9-30"

yacc
unreachable statement 3-4

Yacc
value stack 9-30"
value stack

d ecl ar at ion 9-30"
floating point scal ar s ,
intergers 9-36

v alue
typing 9-30"
union See union

v ertical b ar (l)
bi twi se OR oper ator 9-
3 1
desk c al cul ator
o perator 9-31
grammar r ul e
repetition 9-5
input style 9-2 6

y . output file 9-1 3
par ser checkup 9-22

y . tab . c file 9-25
y . tab .h file 9-30"
YYACCEPT 9-29
yychar 9-26

1 -2 3

XENIX Programmers Guide

yyclear in statement 9-24
yydebug 9-26
yyerrok statement 9-24
yyerror 9-25
YYERROR 9-36
yylex 9-25
yyparse 9-25

YYACCEPT e ffect 9-29
YYSTYPE 9-30"

XENIX Timeshar ing
system 1 -1

1 -24

)

