7 -

-

-

.

e
v
.

w . . .

. _ ‘ u -

e o e R 2 o = s % L

5 \%@%@é{; ﬂ;ﬂm&'\ s

.

S ‘Qx%%%zl
S
i

The XENIX"

Development System

Programmer’s Guide

for the Apple Lisa 2"

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and
does not represent a commitment on the part of The Santa Cruz
Operation, Inc. and Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance
with the terms of the agreement.

©The Santa Cruz Operation, Inc., 1984
©Microsoft Corporation, 1983

The Santa Cruz Operation, Ine.
500.Chestnut Street

P.O. Box 1900

Santa Cruz, California 95061

(408) 425-7222 - TWX: 910-598-4510 SCO SACZ

UNIX is a trademark of Bell Laboratories
XENIX is a trademark -of Microsoft Corporation
Apple, Lisa 2, and ProFile are trademarks of Apple Computer Inc.

Release: 68-5-24-84-1.0/1.0

Contents

[SE ey

it
N n & WM

[S

S wuok B U RD e o«

okt i
A\ WK o

BN NN NN DN DR B
I pnt

-
=}

Introduction

Overview 1

Creating ‘C Language Programs |
Creating Other Programs 2
Creating :and Maintaining
Libraries 2

Maintaining Program Source
Files 3

Creating Programs With Shell
Commands 3

Using This Guide 4
Notational ‘Conventions 5

Ce: A Compiler

{ntroduction 1

Invoking ‘the C Compiler 2
Compiling a Source File 3
Compiling Several Source
Files 4

Using ‘Object Files 5
Naming the Output File 6
Compiling Without Linking 6
Linking ‘to Library

Functions 7

Optimizing a Source File 8
Producing an Assembly ‘Source
File 9

Stripping the Symbol Table 9
Profiling ‘a Program 10
Saving ‘a Preprocessed Source
File 10

Defining .a Macro 10
Defining the ‘Include
Directories 11

Error Messages 12

Lint: A 'C Program Checker

Introduction 1

. Invoking lime 1

Checking for Unused Variables
and Functions 2

Checking ‘Local Variables 3
Checking for Unreachable

1-i

AR iAan ABRARLDL &
NN B W N e

(7]
— e D 0D]
—

KL
R =

vt
[- ¥

i
w

Statements 4
Checking for Infinite Loops S
Checking Function Return

Values 5
Checking for Unused Return
Values 6

Checking Types 6

Checking Type Casts 7
Checking for Nonportable
Character Use 8

Checking for Assignment of
longs ‘to ints 8

Checking for Strange
Constructions 9

Checking for Use of Older C
Syntax 10

Checking Pointer Alignment 11
Checking Expression Evaluation
Order 11 |

Embedding Directives 12
Checking For Library
Compatibility 13

Make: A Program Maintainer

Introduction 1 N
Creating a Mzkefile 1
invoking Make 3

Using Psecudo—Target Names §
Using Macros 6

Using Shell Environment
Variables 8

Using the Built—in Rules 9
Changing the Built—in Rules 11
Using Libraries 13
Troubleshooting 14

Using Make: An Example 15

SCCS: A Source Code Contral System

Introduction 1

Basic Information 1

Creating and Using S—files 5
Using Identification

Keywords 14

Using S—file Flags 17
Modifying S-file

information 19

Printing from an S—file 22
Editing by Several Users 24

7.2
7.3
7.4
7.5
1.6

7.7

7.8
79

8.1
8.2
8.3
84
8.5
8.6
8.7
8.8
8.9

8.10

Protecting S—files 25
Repairing :SCCS Files 28
Using Other Command Options 30

Adb: A Program Debugger

Introduction 1
Invocation 1

The Current Address — Dot 1
Formats 2

Debugging C Programs 3
Maps 7

Advanced Usage 8
Patching 11

Notes 12

Figures 13

Adb Summary 26

As: An Assembler

Introduction 1

Command Usage 1

Invocation Options 1

Source Program Format 2

Symbols and Expressions 4

Instructions and Addressing
Modes 10

Assembler Directives 13

Operation Codes 17

Error Messages 18

Lex: A Lexical Analyzer

Introduction 1

Lex Source Format 3
Lex Regular Expressions 4
Invoking lex 5
Specifying Character
Classes §

Specifying -an Arbitrary
Character 6
Specifying ‘Optional
Expressions 7
Specifying Repeated

. Expressions 7

Specifyiag Alternation -and
Groupiag 7

Specifying Context

Sensiti ity 8

1-iii

8.11 Specifying Expression
Repetition 9

8.12 Specifying Definitions 9

8.13 Specifying Actions 9

8.14 Handling Ambiguous Source
Rules 13

8.15 Specifying Left Context
Sensitivity 16

8.16 Specifying Source
Definitions 18

8.17 Lex and Yacc 20

8.18 Specifying Character Sets 24

8.19 Source Format 25

Yacce: A Compiler—Compiler

Inroduction 1

Specifications 4

Actions 7

Lexical Analysis 9

How ‘the Parser Works 11
Ambiguity -and ‘Conflicts 16
Precedence 21

Error Handling 24

The Yacc Environment 26
Preparing ‘Specifications 27
Input Style 27

Left Recursion 28
Lexical Tie—ins 29
Handling Reserved Words 30
Simulating Error and Accept in
Actions 31

Accessing Values in Enclosing
Rules 31

Supporting Arbitrary Value
Types 32

.18 A Small Desk Calculator 33
9.19 Yacc Input Syntax 36
9.20 An Advanced Example 38
9.21 ‘Old Features 44

LOOOVVLOLVLVVLVLOS »
i Radirtodh “ I K= 7 B S IS s

NEWRN =D

© v ®
il
~ N

Appendix A C Language Portability

A1 Introduction 1

A.2 Program Portability 2

A.3 Machine Hardware 2

A.4 Compiler Differences 7

A.5 Program Environment Differences 11
A.6 Portability of Data 12

A.7 Lint 12

1=iv

A.8 Byte Ordering Summary 13

Appendix B M4: A Macro Processor

B.1 Introduction 1

Invoking m4 1

Defining Macros 2
Quoting 3

Using Arguments S

Using Arithmetic Built—ins 6
Manipulating Files 7

Using System Commnands 7
Using Conditionals ‘8

0 Manipulating Strings 8

1 Printing 10

-}
N

(CR-RRE. ST HN

PEEREEDEE

e

P

Chapter 1
Introduction

1.1 Overview 1-1

1.2 Creating CLanguage Programs 1-1

1.3 Creating Other Programs 1-1

1.4 Creatingand Maintaining Libraries 1-2

1.5 Maintaining Program Source Files 1-2

1.6 Creating Programs With ShellCommands 1-3
1.7 Using This Guide 1-3

1.8 Notational Conventions 1-4

i

Introduction

1.1 Overview

This guide explains how to use the XENIX Software Development system to
create and maintain C and assembly language programs. The system provides
a broad spectrum.of programs and commands to help you design-and develop
applications and system software. These programs and commands let you
create C and assembly language programs for execution onthe XENIX system.
They also let you debug these programs, automate their creation, and maintain
versionsof the programs you develop.

The following sections introduce the programs and commands of the XENIX
Software Development System and explain the steps you can take to develop
programs for the XENIX system. Most of the programs and commands in these
introductory ‘sections are fully explained later in this guide. ‘Some commands
mentioned here are partof the XENIX Timesharing System andare explainedin
the XENIX User’s Guide and XENIX Operations Guide.

1.2 Creating C Language Programs

All Clanguage programsistart-asa collection of C program statements on files.
The XENIX system provides a number-of text editors that let you create source
files easily and efficiently. The most convenient editor is the screen-oriented
editor wi. Vi provides many editing commands that let you easily insert,
replace, move, and search for text. All commands can be invoked from
command keys or from a command line, The program has also hasavariety of
optionsthatlet:you modifyitsoperation.

Oncea Clanguage program has been written toasource file, you can create an
executable program using the cc command. The cc command invokes the
XENIX C compiler which compiles the sourcefile. This.command also invokes
other XENIX programsto prepare the compiled program for.execution.

You can debug-an executable'C program with the XENIX debugger adb. Adb
provides a -direct interface to the machine instructions that make up ‘an
executable program.

If you wish to check a program before compilation, you can‘use lint, the XENIX
C program checker. Lint checks the content and construction of C language
programs for syntactical and logical errors. It :also enforces a strict set of
guidelines for proper C programming style. Lintis normally used in the early
stagesof program development to check for illegal and improper usageof the C
language.

1.3 Creating Other Programs

The C programming language -can meet the needs of ‘most programming
projects. In cases where finer control of execution is required, you may create

1-1

XENIX Programmers Guide

assembly language programs using the XENIX assembler :as. As assembles
source files.and producesrelocatable object files that can be linked to your C
language programs with .Id. The Id program is the XENIX linker. It links
relocatable object files created by the C compiler or assembler and produces
executable programs, Note that the cc command automatically invokes the
linkerand the assembler so useof either isoptionzal.

You-can create source files for lexical analyzers and parsers-using the program
generators lez and yace. The lez program is the XENIX lexical analyzer
generator. It generates lexical analyzers, written in C program statements,
from given specification files. Lexical analyzers are used in programs to pick
patterns out of complex input and convert these patterns into meaningful
values or tokens. The yeee program is the XENIX parser generator. It
generates parsers, -written in C program statements, from given specification
files. Patsers are used.in programs to convert meaningful sequences.of tokens
and valuesinto actions. Lezand yaceareoften used together to make complete
programs.

You-can preprocess C and assembly language source files, or-even lez and yace
source files using the ‘m4 macro processor. The m{ program performs several
preprocessing functions, such ‘as converting macros to their defined valuesand
including the contentsof files intoa source file.

1.4 Creating and Maintaining Libraries

You can create libraries -of useful C and assembly language functions and
programs using the ar-and ranith programs. Ar, the XENIX archiver, can be
used tocreate libraries of relocatable object files. Ranlih, the XENIX random
library generator, converts.archive libraries to random libraries and places a
table of contents at the frontofeach library.

The lorder command finds the ordering relation in an object library. The
tsort command topologically sortsname lists sothat forward dependencies are
apparent.

1.5 Maintaining Program Source Files

You can.automate the creation of executable programs from C and assembly
language source files and maintain your source files using the make program
andtheSCCS commands.

The make program is the XENIX program maintainer. It automates the steps
required to create executable programsand providesa mechanism for ensuring
up to -date programs. It is used with small, large, and medium-scale

programming projects.

The Source Code Control (SCCS) commandslet youmaintain different versions
of asingle program. The commands compress all versionsof a source fileintoa

1-2

Introduction

single file containing a list ‘of differences, These commands also restore
compressed filesto their original size and content.

Many XENIX commandslet you'carefully examinea program’ssource files. The
ctags command creates a tags fileso that C functions can be quickly foundina
set of related C:source files. The mkstr command creates anerror message file
by examining a C source file.

Other commands let you examine object and executable binary files. Thenm
command prints ‘the list of symbol names in a program. The hd command
performs a hexadecimal dump of given files, printing files in a variety of
formats, one-of which is hexadecimal. The od command performs an octal
dump of given files. adb (see chapter 6), allows disassembly of your program.
The size command reports the size of an object file. The strings command
finds and prints readable text {strings) in an object or other binary file. The
strip.command removessymbolsand relocationbitsfrom executable files. The
sum command computes check sum for a file and counts blocks. It is used.in
looking for bad spots in a.file and for verifying transmission of data between
systems. The xstr command extracts strings from C programsto implement
shared strings.

1.8 Creating Programs With Shell Commands

In some -cases, it is easier to write a program as a series of XENIX shell
commands than it is to-create a 'C language program. ‘Shell commands provide
much of the same control capability asthe Clanguage and give direct access to
all thecommands and programs normally available to the XENIX user.

The csh-.command invokes the C-shell, a XENIX command interpreter. The C-
shell interprets and executes commands taken from the keyboard or from a
command file. It has a C-like syntax which makes programming in this
command language easy. It also has an aliasing facility, and a command history
mechanism.

1.7 Using This Guide

This guide is intended for programmers who are familiar with the C
programming language and with the XENIX:system.

Clanguage programmers should read Chapters 2,3, and 6for an explanation of
how to compile and debug'Clanguage programs.

Assembly language programmers should read Chapter 7-for an explanation of
the XENIX assembler and Chapter 6 for an explanation -of how to debug

programs.

Programmers who wish to automate the compilation process of their programs
should read ‘Chapter 4 for an explanation of the make program. Programmers

1-3

XENIX Programmers ‘Guide

who wish to organize and maintain multiple versions of their programsshould
read Chapter 5 for an explanation of the Source Code Control System {SCCS)
commands.

Special project programmers who need a convenient ‘way to.produce lexical
analyzers and parsers should read Chapters 8 and 9 for explanationsof thelez
and yace program generators.

Chapter 1 introduces the XENIX software development programs provided
withthisppackage.

Chapter 2 explains how to ‘compile C language programs ‘using the «cc
command.

Chapter 3 -explains how ‘to check C language programs for syntactic and
semanticcorrectnessusingthe C program checker lint.

Chapter 4 explains how to automate ithe development of a program or other
projectusingthe makeprogram.

Chapter 5 explains how to control and ‘maintain all versions of a project’s
source files using the SCCS commands.

Chapter 6 explains how to debug C and assembly language programsusing the
XENIX-debugger adb.

Chapter 7 explains how to assemble assembly language programs using the
XENIX assembler as.

Chapter 8 explainshow tocreate lexical-analyzers using the program generator
lez.

Chapter9 explainshow to ¢reate parsersusing the program generator yace.

Appendix A'explains how to write C langugae programs that:can be .compiled
on other XENIX systems.

Appendix B explains how to use to create and process macros using the m{
MaCcro processor.
1.8 Notational Conventions

This guide :uses 2 number of special symbols to:describe the syntax of XENIX
commands. Thefollowingisalist of thesesymbolsand their meaning.

1] Bracketsindicate an optional command argument.

Ellipses (three dots) ‘indicate that the preceding
argument may be repeated one or more times.

1-4

SMALL
bold

stalice

Introduction

Small capitalsindicate akey to be pressed.
Boldface charactersindicate acommand name.

Italic charactersindicate a placeholder for a:.command
argument. When typing a command, a placeholder
must be replaced with an appropriate filename,
number, or option.

Chapter 2
Cc: A C Compiler

2.1 Introduction 2-1

2.2 InvokingtheCCompiler 2-2

2.3 Compilinga SourceFile 2-2

2.4 Compiling SeveralSourceFiles 2-3
2.5 Using ObjectFiles 2-4

2.6 Namingthe OutputFile 2-5

2.7 Compiling WithoutLinking 26

2.8 LinkingtoLibrary Functions 2-6

2.9 OptimizingaSourceFile 2-7

2.10 Producing an Assembly Source File V2-8
2.11 Stripping the Symbol Table 2-8

2.12 Profiling aProgram 2-9

2.13 Saving aPreprocessed Source File 2-9
2.14 DefiningaMacro 2-10

2.15 Defining the Include Directories 2-10

2.16 Error Messages 2-11

Cec: A C Compiler

2.1 Introduction

This chapter explains how to use the cc command to create executable
programs from C language source files. The command compiles C source files
by invoking the XENIX C.compiler, the Cpreprocessor, and'in'some cases the C
optimizer. It then invokes other programs, such as the XENIX assembler a# and
linker 1d, to.complete the creation of the executable program.

The cc command accepts as C source files any file containing a complete C
program or ‘one or more complete C functions. The command processes the
source files in five phases: preprocessing, assembly source generation,
optimization (if necessary), machine code generation, and linking.

In the preprocessing phase, the.cc command invokesthe C preprocessor, which
searches the source file for ‘C directives. The preprocessor replaces each
directive with:a-corresponding value or meaning. Foriexample, it replaces each
occurrence of a macro name with its defined value and each include directive
with the contentsof its corresponding include file. It then copies the expanded
version of the source file to a temporary file. The preprocessor also allows
conditional compilation.

In the assembly .source generation phase, the cc command invokes the C
compiler which translates the C program statementsin the temporary file into
equivalent assembly language instructions. These instructions form a
complete assembly language source file that performs the same tasks as the
statementsin the C.source file. The:compiler copies the assembly instructions
to atemporary file.

In the optional optimization phase, the cc-O command invokes:the Coptimizer
which ‘modifies the temporary assembly language file, making it :smaller and
faster without altering the tasks its performs. Programs of all sizes benefit
from optimization.

In the machine code generation phase, the command invokes the XENIX
assembler as which assembles the temporary assembly language file. ‘The
assembler creates an “object file” containing relocatable:machine instructions
that can‘be prepared for execution. If more than one source file is processed, a
permanentobject fileisicreated for each source file.

In the linking phase, the command invokes the XENiX linker Id, which resolves
all unresolved references to variables and functions in the object file. If
necessary, {dsearches the appropriate program libraries to link the contents of
otherobject filesto the given file. The linker then writesthelinkedinstructions
to a file. This file, called:an "executable binary” file, contains the program’s
machine instructions in executable binary form. The file z.out is used by
default.

This chapter assumes that you are familiar with the C programming language
andthatyou can create C program source filesusing a XENIX text editor.

XENIX Programmer's Guide

2.2 Invoking the C Compiler

You can invoke the C compiler with the cc command. The command hasthe
form

ec | option]... filename ...

where option is a command option, and filename is the name of a'C language

*source file, an assembly language source file, or an object file. You may give
more than one option or filename, if desired, but you must separate each item
withone or more-whitespace characters.

Thecc command options let you control and modify command operation, For
example, youcandirect the command toskip theoptimization phase or create s
permanent :copy ‘of the file created during the assembly source generation
phase. The options also let you specify additional information -about the -
compilation, such as which program libraries to examine and what the name of
the executable file should be. The options :are described in detail in the
following sections.

The-cc command lets you name three different kindsof files: C source, assembly
language source, and object files. A file's contentsare identified by the filename
extension. .C source files have the extension .c. Assembly language source files
have the extension .s. Object fileshave the extension .o. The command delays
processing of each type of file until the appropriate phase. ThusC source files
are processed immediately, assembly language files -are processed in ‘the
machine .code generation phase, and cbject files are processed in the linking
phase. An assembly language source file may be created by hand using:a XENIX
text editor, or created using the cc command’s assembly source generation
phase (see the —S:option later in this chapter). An object file must be the output
of the XENIX assembler or the cc command’s machine.code generation phase
(see the —c option).

)

2.3 Compiling a Source File

You can compile a source file:containing a complete C program by giving the
name of the file when you invoke the cc .command. The command reads:and
compiles the statements in the file, links ‘the compiled program with the
standard Clibrary, then copies the program to the default-output file z.out

To-compile asource program, type:

ccfilename -
where filename is'the name of the file containing the program. The program b)
must be complete, that is, it must contain a main program function. It may
contain calls to functions explicitly defined by the program.or by the standard
Clibrary. For example, assume the the following program is stored in the file
named main.c.

Cec: A C Compiler

Finclude <stdio.h>

main ()

{

int x,y;

scanf("%d + %d”, &x, &y);
printf("%d\n", x+y);

Tocompile thisprogram, type
c¢ main.c

The command first invokes the C preprocessor which adds the statements in
the file /usr/include/stdio.h to the beginning of the program. It then compiles
these:statements and the rest of the program statements. Next, the command
links the program with the standard C library which contains the binary code
for the scanf and printf functions. Finally, it copies the program to the file
z.0ut. :

Youcanexecute the new program by typing the command
x.out

The program waits until you enter a sum, then prints the value of that sum.
For example, if youtype “3 +'5” the program displays *‘8”.

Note that when the command creates the z.out file, it gives the file the
permissions defined by your current file creationmask.

2.4 Compiling Several Source Files

Large source programs are often split into several files to make it easier to
update and edit. Youcan compile such a programby giving thenamesof all the
files belonging to ‘the program when you invoke the cc¢ command. The
command reads and compileseach file in turn, then linksall object files together
and copies the new program tothe file z.out.

To compile severalsource files, type

cc filename ...
where each fillename is separated from the next by whitespace. One of these
files (and no more than one) must contain a program function named "main”.

The others may contain Tunctions that are called by this main function or by
other functionsin the program.

XENIX Programmer's ‘Guide

For example, suppose the following main program function is stored in the file
main.

#include ‘<stdio.h>
extern int add();

thain ()
int x,y,z;

scanf ("%d + %d", &x, &y);
z = add (x, y);
printf ("%d \n”, z);

}

Assume that the following function isstored in the file add.e:

add {(a, b)
int a, b;

return (a + b);

}

Youcan compile these files and create an executable program by typing
¢c main.c add.c

The command compiles the statements in main. ¢, ‘then compiles the
statements in.add.c. Finally, it links the two together (along with the standard
Clibrary) and copies the programto z.out. This program, like the program in
the previous section, waitsfor asum, then printsthe value of the sum.

Compiling several source files at a time causes the command to create object
filesto hold the binary code generated for each source file. These object filesare
then used in the linking phase to create an executable program. The object files
have the same basename as the source file, but are given the .o file extension.
For example, when you compile the two source files above, the compiler
produces the object files main.oand add.o. These filesare permanent files, i.e.,
the command does not delete them .after completing its operation. The
command deletes the object file only if you compile a single source file.

2.5 Using Object Files

. You canusean object file created by the cc cormmand in any later invocation of
the command. When you specify an object file, the command does nothing with
it until the linking phase, that is, the command does not compile or assemble
the file,

Cc: A 'C Compiler

Source files containing functions do not need to be recompiled each time they
are linked to a new program. The generated object files can be used instead,
saving the programmer the time it takes to compile each source file. This is
another reason large programsare often:splitinto severalmodules.

To create a program from both source files and object files, give the object
filenames ‘along ‘with the source filenames in the command invocation. Make
sure the filenames are separated by whitespace characters. For example,
assume that the following main program function isstored in the file mult.c:

#include <stdio.h>

main ()

{

int x,y,z,i;

scanf("%d * %d", &x, &y);
for (i==0; i<y; i++)

z ==-add (z;x);
printf("%d \n”, z);

}

This program uses the add function compiled in the previoussection. Since the
object file containing this function is named add.o, you can compile this
program andlink the.object filetoit by typing

cc mult.c add.o
The compiler compiles the statements in mult.c and produces an object file for
it, then:the compiler links the add.ofile to the new file and stores'the executable

program in z.out. This program waits for you to enter the values to be
multiplied, multiplies the values, then displays theresult.

2.8 Naming the Output File

You can change the name of the executable program file from z.out to any valid
filename by using the —o (for “output’) option. Theoption hasthe form:

~o filename
where filename is avalid filename or a full pathname. If a filename is given, the
program file is stored in the current directory. If a full pathname is given, the
file is stored in the given directory. If a file with that name already exists, the
compiler removes the old file before creatingthe new one.

Forexample, the command

cc ‘main.c add.o -o addem

2-8

XENIX Programmer's Guide

causes the compiler to create anexecutable program file eddem from the source

file main.c and object file add. 0. You can execute this program by typing
addem

The permissions defined by the file creation mask apply to this file just as they
doto z.out.

Note that the —o option does not affect the 2.0ut file. This means that the cc
command does'not change the current:contents.of this file if the —o-option has
been given.

2.7 Compiling Without Linking

You can compile asource file without linking it by using the —¢ {for “compile™)
option. This option is usefulif you wish tohavean object file available for later
programsbut have no current.program that-usesit. The option hasthe form:

~¢ filename

where filename is the name of the source file. You may give more than one
filename if you wish. Make sure each name is separated from the next by a
space.

For example, to make object files for the source files main.c, add.c,and mult.c,
type

¢c —¢ main.c add:c mult.c
The command compiles each file in‘turn-and copies the compiled source to the
files main. o, add.o, and mult.o.
2.8 Linking to Library Functions
A library is a file that contains useful functions in object file fofmat. You can
link a source file to these functions by linking it to the library with the -1 (for
“library”) option. The option, used by the linker during the linking phase,
causes the linker to search the given library for the functions called in the
source file. If the functions are found, the linker links them to the source file.
The optionhastheform

cc -lname

where name is a shortened version of the library’s actual filename. The actual
filename hastheform

Cc: A C Compiler

libname.a

Spaces between the name and option are not permitted. The linker builds the
library’s filename from the given name, then searches the flib directory for the
library. If not found, it searches the Jusr/lib directory.

For example, the command
cc main.c -lcurses
linksithe library libeurses. ato the source file main.c.

A library is a convenient way ‘to store a large collection of object files. The
XENIX system provides several libraries. The most common is the standard C
library. This library is automatically linked to your program whenever you
invoke the compiler. Other libraries, such as libcurses.a, must be explicitly
linked using the —-1<libname> option. Without the -1 flag, cc and 1d ‘would
identify a library by inspecting its first byte. The XENIX libraries and their
functionsare described in detailin the XENIX Programmer’s Reference Guide.

Note that you can create your ‘own libraries with the XENIX .ar and ranlih
programs. These commands let you copy cbject files to a library file and then
prepare the library for searching by the linker. These commands are described
in the XENIX Reference Manual.

In general, the linker does not search a library until the ~I option is
encountered, so the placement of the option is important. The option must
.follow the names of source files containing calls to functionsin the givenlibrary.
2.9 Optimizing a Source File

You can optimize a source file, that is, make its corresponding assembly source
file more efficient, by using the —O (for “‘optimize”} option. For example, the
command

cc ~0O main.c

optimizes thesource file masn.c.

Optimization only applies to compiled files; the compiler cannot optimize
assembly source or -object files. Furthermore, the —O option must appear
before the names of the files you wish to optimize. Files preceding the option
arenotoptimized. Foriexample, the.command

ccadd.c -O main:c

optimizes main.c but not add.c.

XENIX Programmer's Guide
You may combine the —O and —c options to compile and optimize source files
without linking the resulting object files. For example, the command

cc -0 —c:main.c add:c
createsoptimized object filesfrom the source files'main.cand.add.e.
Although optimization is very wuseful for large programs, it takes more time
than regular compilation. In general, it should be used in the last stage of
program development, afterthe program hasbeen debugged.
2.10 Producing an Assembly Source File
You can direct:the compiler to save a copy of the temporary assembly source
file by using the —S (for “source”) option. The option causes the command to
copy the temporary assembly source file to a permanent file. This permanent
file has the same basename as the sourcefile, but is given the file extension .s.
For example, the command

cc~S-add.c

compiles the source file add.c-and creates an assembly language instruction file
add.e.

The -8 option-applies to source files only; the compiler cannot create a source
file from an existing object file. Furthermore, the option must appear before
the namesof the filesfor which the assembly source is tobe saved.

2.11 Stripping the Symbol Table

You can reduce the size of a program by using the —s, option. This option
causes the cc command to strip the symbol table. ‘The symbol table contains
“information about tode relocation and program symbols and is used by the
XENIX debugger adb to allow symbolic references to variables and functions
when debugging. The information in ‘this table is not required for normal
execution and can be stripped when the program has been .completely
debugged.

The —s option strips the entire table, leaving machine instructionsonly.
For-example, the command

cc ~s main.c add.c

creates a executable program that contains nosymbol table. It also creates the
object files main. 0.and add. o which contain nosymbol tables.

2-8

Cc: A C Compiler

The —s option may be combined with the —O option to create:an optimized and
stripped program. An optimized and stripped program has the smallest size
possible. : :

Note that you can also strip 2 program with the XENIX command strip. See
the XENIX Reference Manualfor details.

2.12 Profiling a Program

You can examine the flow of execution of a program by adding “profiling” code
tothe program with the —p option. The profiling code automatically keeps a
record of the number of times program functionsare called duringexecution of
the program. This record is written to the mon.out file and can be examined
withthe prof command.

For example, the command
¢¢ —p main.c

adds profiling code to the program ‘created from the source file main.c. The
profiling code automatically calls the monitor function which creates the
mon.out file at normal termination of the program. The prof command and
monitor function are described in detail in prof(CP) and monitor(S) in the
XENIX Reference Manual.

2.13 Saving a Preprocessed Source File

You can save a copy of the temporary file created by the C preprocessor by
using the —P (for “‘preprocessing”) option. The temporary file is identical to
the source file except that all macro names have beenexpanded and all include
directives have been replaced by the specified files. The command copies this
temporary file to-a permanent file which has the same basename as the source
file:and the filename extension .1.

For example, the command
cc ~P main.c
_createsa preprocessed file for thesource file masn.c.
You may also display a copy of the preprocessed source file by using the ~E

option. This .option invokes the C ‘preprocessor ‘only and ‘directs the
preprocessor tosend the preprocessed file to the standard output.

XENIX Prograinmer’s Guide

2.14 Defining a Macro

You can define the value or meaning of a macroused in asource file by using the
~D (for “define’’) option. The option lets you assign.a value to a:macro when
you invoke the compiler and is useful if you have used if directivesin your
source files.

Theoption hastheform

~Dname=def

where ‘name is the name of the macro and def is its value or meaning. For
example, the.command

cc -DNEED=2 main.c
sets the macro “NEED"” to the value “2"”. The .command compiles the source
file main.c, replacing every occurrenceof “NEED” with “2". Ifanameisgiven
butno definition, the compiler assigns the value 1 by default.
You can also remove the initial :definition of a macro by using the —U (for
“undefine”) option. Removing the initial definition is required if you wish to
use the-D optiontwice in the same command line. The option hastheform

cc -Uname
where nameisthe macroname. For example, in the command

cc -DNEED=2 main.c -UNEED -DNEED==3 add.c
the -U options removes the previous definition-of “NEED” and ‘allows a new
one.
2.16 Defining the Include Directories
You:can explicitly define the directories.containinginclude files by using the -1
{for “include’’) option. This option -adds the given directory to the list of
directories -containing ‘include files. These ‘directories -are ‘automatically
scarched whenever you give an include directive in which the filename is
enclosedinangle’brackets. The option hasthe form

~ldirectoryname

where directoryname is a valid pathname to a directory containing include
files. Forexample, the command

cc ~Imyinclude main.c

2-10

Cc: A 'C Compiler

causes the compiler ‘to search ‘the directory myinclude for ‘include files
requested by the source file main.c.

The directories aresearched in the order they are given andonly until the given
include file isfound. The fusr/include directory isthe defaultincludedirectory
andisalwayssearched first.

2.18 Error Messages

The cc command itself produces error ‘messages. It also lets the XENIX C
compiler, C preprocessor, C.optimizer, assembler, and linker programs detect
and announce any errors found in the source files or command options. The
error messages are ustally preceded by the name of the program which
detected the error. If the errorissevere, the cc cormimand terminates and leaves
all files unchanged. Otherwise, it proceeds with the compilation and linking of
the given source filesif you have given the appropriate-commands.

Most error messages are generated by the C compiler. This displays messages
about ‘errors found during compilation such as incorrect syntax, undefined
variables, and illegal use of operators. Error messages from the compiler begin
with the name of the source file and list the number of the line containing the
error.

The XENIX linker also generates many error messages. It displays messages
about errors found during linking such as undefined symbols and misnamed
libraries. The preprocessor, optimizer, and assembler also display messages if
errorsare found. For example, the preprocessor displays an error message if it
cannotfind:an include file.

For convenience, you should use the XENIX ‘C program checker Iint before
compiling your Csource files. Lint performs detailed error checkingon asource
file and provide a list of actual errors and possible problems which may aflect
execution of the program. See Chapter 3, “Lint: A C Program Checker” for a
description.of lint.

Chapter 3
Lint: A C Program Checker

3.1 Introduction 3-1

3.2 Invoking lint 3-1

3.3 Checkingfor Unused Variablesand Functions 3-2
3.4 CheckingLocal Variables 3-3

3.5 Checkingfor UnreachableStatements 3-4
3.6 CheckingforInfiniteLoops 13-4

3.7 CheckingFunction Return Values 3-5

3.8 Checking forUnused Return Values 3-6

3.9 Checking Types 3-6

3.10 Checking Type Casts 3-7

3.11 Checking for Nonportable Character Use .3-7
3.12 Checking for Assignment of longstoints 3-7
3.13 Checking for Strange Constructions 3-8
3.14 Checkingfor Use of Older C Syntax 3-9

3.15 Checking Pointer Alignment 3-10

3.16 Checking Expression Evaluation Order 3-10

3.17 Embedding Directives 3-11

3.18 Checking For Library Compatibility 3-12

Lint: A C Program Checker

3.1 Introduction

This chapter explains how to use the C program checker {int. The program
examines C source files-and warns of errorsor misconstructions that'may cause
errors:during compilation of the file or:duringexecution of the compiled file.
In particular, lint checksfor:

Unused functions :and variables

Unknown values in local variables

Unreachable statements and infinite loops

Unused and ‘misused return values

Inconsistent ‘types and type casts

Mismatched types in assignments

Nonportable and old fashioned syntax

Strange constructions

Inconsistent -pointer alignment and expression evaluation order
The lint program and the C compiler are generally used together to check and
compile C language programs. Although the C.compiler compiles C languzge
source files, it does not perform the sophisticated type and error checking
required by many programs, though syntax is gone over. The {int program,
providesadditionalcheckingof sourcefiles without compiling.
3.2 Invoking lint
Youcaninvokelintprogram by typing

lint [option] ... filename ... lib ...
where optionis a commandoption that defineshowthe checker should operate,
filename is the name of the C language source file to be checked, and libis the
name of alibrary to check. You can give more than one option, filename, or
library name in the command. If'you give two or more filenames, lint assumes
that the files belong to the same program and checks the filesaccordingly. For
example, the command

lint main.c add.c

treats main.c.and add.c astwopartsof acomplete program.

XENIX Programmer’s Guide

If lint discovers errors or inconsistencies in a source file, it produces messages
describing the'problem. The message hasthe form

filename { num): -description

where filename is the name of the source file containing the problem, numisthe
number of the line in ‘the source containing the problem, and descriptionisa
description of the problem. For example, the message

main.c(3): warning: x unused in function main

shows that the variable”x" . definedin line three of the source file masn.¢, is not
used anywherein the file.

3.3 Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by seeing if each
declared variable and function is used in ‘at least-once in the source file. The
program considers a variable ‘or function used if the name-appears in at least
one statement. It is-not considered used if it only appearsion the left side of on
assignment. Forexample,inthefollowing program fragment

main ()

{

int x,y;2;

x=1; y=2; z=x+Yy;

the variables*x”’:and “y” are considered used, but variable “z" is not.

Unused variables and functions often occur during the development of large
programs. It isnot uncommon for a programimer to remove all referencestoa
variable or function from a source file but forget to remove its declaration.
Suchunused variablesand functions rarely cause working programstofail, but
do ‘make programs larger, harder to understand and change. Checking for
unused variables and functions can also help youfind variables or functions
that youintended to used but:accidentally have left out.of the program.

Note that the lint program does not report a variable or function unused if it is
explicitly declared with the extern storage class. Such:avariableor functionis
assumed tobe used in another source file.

You ‘can direct lint to ignore all the external declarations in a source file by
using the —x (for “external’’) option. The option causes the program checker to
skip any declaration that begins with the extern storage class,

The optionistypically used tosave time'when checkinga program, especially if
all'external declarationsare known tobevalid.

3-2

Lint: A C Program Checker

Some programming styles:-require functions that perform closely related tasks
to have the same number and type of arguments.regardless of whether or not
these arguments are used. Under normal operation, lint reports any argument
not ‘used as an unused variable, but you :can direct fint to ignore unused
arguments by using the —v option. The —v option causes {int to ignore all
unused function arguments.except for those declared with register storage
class. The program considers unused arguments of this class to be a
preventable waste of the register resourcesof the computer.

You-can direct lint toignore all unused variables:and functions’by using the —u
(for *“unused’’).option. This option prevents lint from reporting variables.and
functionsit considersunused.

This. option is typically used when checking a source file that contains just a
portion of a large program. Such source files usually contain declarations of
variables.and functionsthat are intended to beused inother sourcefilesand are
not explicitly ‘used within the file. Since lint can only check the given file, it
assumes that such variablesor functionsare unused and reportsthem assuch.

3.4 Checking Local Variables

The lint program checks all local variables to see that they are set to'a value
before being used. Since local variables have either automatic or register
storage class, their values at the start of the program or function cannot be
.known. Usingsuch avariablebefore assigning a valuetoitisanerror.

The program checks the local variables by searching for the first assignment in
which the variable receives a value and the first statement or expression in
which the variable is used. If the first assignment appears later than the first
use, lint considers the variable inappropriately used. For example, in the
programfragment

char «¢;

if (¢ 1= EOT)
= getchar{);

lint warns that the:the variable ‘‘c” isused before it is-assigned.

If the variable is'used in the same statementin which it is assigned for the first
time, lint determines the order of evaluation of ‘the statement and displays an
appropriate-message. For example, in the program fragment

int i,total;

seanf(”%d", &i);
total == total + i;

lintwarns that the variable “total” is used beforeit isset since itappearson the

3-3

XENIX Programmer’s Guide
rightsideof the same statement that assignsits first value.

3.5 Checking for Unreachable Statements

The lint program checks for unreachable statements, that is, for unlabeled
statements that immediately follow a goto, break, continue, ‘or return
statement. During-execution of a program, the unreachable statemnentsnever
receive execution controland are therefore considered wasteful. For example,
in the program fragment

int x,y;

return (x+y);
exit (1);

the function call ezit after the return statementisunreachable.

Unreachable statements are common when developing programs containing
large case constructionsor loops containing break and continue statements.

During normal operation, lint reports all unreachable ‘break statements.
Unreachable break statements are relatively common (some programsicreated
by the yacc and lez programs contain hundreds), so it may be desirable to
suppress these reports. You can:direct lint to suppress the reportsby using the
—boption.

Note that {int assumes that all functions eventually return control, so'it does
not report as unreachable any statement that follows a function that takes

~control and never returnsit. Forexample:

exit (1);
return;

the call to ezt causes the return statement to become an ‘unreachable
statement, butlint doesnot reportitassuch.

3.8 Checking for Infinite Loops

The l&int program checks for infinite loops and for loops ‘which are never
executed. Forexample, the statement

while (1)-{ }
and

for {;;) {}

are’both-consideredinfinite loops. Whilethe statements

3-4

Lint: A C Program Checker

while (0) { }
or

for (0,0;) { }
are never executed.

It is relatively common for valid programs to have such loops, but they are
generally considerederrors.

3.7 Checking Function Return Values
The lint program checks that a function returns a meaningful value if
necessary. Some functions return values which are never used; some programs
incorrectly use function values that have never been returned. Lintaddresses
these problemsin a number of ways.
Within:a function definition, the appearance of both

return {expr);
and

return ;

statements is cause for alarm. In this case, lint produces the following error
message:

function name contains return(e) and return

It is difficult to detect when afunction return is implied by the flow of control
reaching the end of the given function. This is demonstrated with a simple
example:

f (a)
{ :
if {a)

s

return (3);

Note that if the variable “a” tests false, then fwill call the function g.and then
return with no defined return value. This will trigger a report from #int. If g,
like ezit, never returns, the message will:still be produced when in fact nothing
is wrong. In practice, potentially serious bugs can be discovered with this
feature. Tt also accounts for asome of the noise messages produced by lint.

XENIX Programmer’s Guide

3.8 Checking for Unused Return Values

The {int program checks for cases where a function returns a value, but the
value is usually ignored. Lint.considers functionsthat return unused values to
be ineflicient, and functions that return rarely used valuestobe aresultof bad
programmingstyle.

Lintalso checksforicases where afunction doesnotreturn avalue but the value
isused anyway. Thisisconsidered aseriouserror.

l3.9 Checking Types

Lint enforces the type checking rules of C more strictly thanthe C compiler.
The additional checking occursinfour major areas:

1. Acrosscertainbinary operatorsand implied assignments
2. Atthestructureselection operators

3. Between the definition and uses of functions

4. Intheuseofenumerations

There are anumber-of operatorsthat have an implied balancing between types
of -operands. The assignment, conditional, and relational operators have this
property. The :argument of a return statement, and expressions used in
initialization also'suffer similar conversions. In these operations, char, short,
int, long, unsigned, float, and double types may be freely intermixed. The
typesof pointers must agreeexactly, except thatarraysof x’s can be intermixed
with.pointerstox’s.

The type checking rules also require that, in structure references, the left
operand of a pointer arrow symbol (~>) be a pointer to a structure, the left
operand of a period (.) be astructure, and the right operand-of these operators
be a member of the structure implied by the left-operand. Similarcheckingis
done forreferencesto unions.

Strict rules.apply to function.argument and return value matching. The types
float and double may be freely matched, as may the typeschar, short, int,
and unsigned. Pointerscan also be. matched with theassociated arrays. Aside
from ‘these relaxations in type checking, all actual arguments must agree in
type with their declared counterparts.

For enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations, and that the only
operations applied are assignment (=), initialization, equals (==); and not-
equals(!=). Enumerationsmay also be function argumentsand returnvalues.

Lint: A C Program Checker

3.10 Checking Type Casts

The type cast feature in C was introduced largely as-an-aid to producing more
portable programs. Consider the assignment

p=1;
where “p”is a character pointer. Lint reportsthisassuspect. But.consider the
assignment

p = (char *#)1;

in which a cast has been used to convert the integer to-a character.pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. ‘On the-other hand, if this code is moved to another
machine, it should be looked at-carefully. The —c option controlsthe printing
of comments about casts. ‘When —c is in eflect, casts are not checked:and all
legal casts are passed without comment, nomatter how strange the type mixing
seems to be.

3.11 Checking for Nonportable Character Use

Lint flags certain comparisons and assignments as illegal or nonportable. For
example, the fragment

char ¢;

i#((c = getchar()) < 0) ...

works on:some machines, but Tails on machines where characters always take
on positive values. The solution is to:declare “¢”’ an integer, since getchar is
actually returning integer values. Inany case, iintissues the message:

nonportable character comparison
‘A similar issue arises with bitfields. When assignments of constant values are
made to bitfields; the field may be too small tohold the value. Thisisespecially
true where on some machines bitfields are considered as signed quantities.
While it ‘may seem counter-intuitive to consider that a 2-bit field declared of
type int cannot hold the value 3, the problem disappears if the bitfield is
declaredtohavetype unsigned.

3.12 Checking for Assignment of longs to ints

Bugs may arise from the assignment of a long to an int, because of a loss in

3-7

XENIX Programmer’s Guide

accuracy in the process. This may happen in programs that have been
incompletely converted by changing type definitions with typedef. When a
typedef variable is.changed from int to long, the program ¢an stop working
because some intermediate results may be assigned to integer values, losing
accuracy. Since there are anumber of legitimate reasons for assigning longs to
integers, you may wish to.suppress detection of these assignments by using the
—aoption.
3.13 Checking for Strange Constructions
Several perfectly legal, but somewhat strange, constructions are flagged by
lint. The generated messages encourage better code quality, clearerstyle, and
may evenpointout bugs. For example, in the statement

*ptt
the star (*)doesnothing and fnt prints:

null effect

The program {ragment

unsigned x }
if (x < 0) ...

is also strange since the test willnever:succeed. Similarly, the test
if{x >0) ...

isequivalentto
if(x1=10)

which may not be the intended action. In these cases, lint prints the message:
degenerate unsigned comparison

If youuse
if(11=0}..

thenlintreports
constant in conditional context

sincethe comparison.of 1'with 0 givesa constant result.

Another-construction detected by lintinvolvesoperator precedence. Bugsthat
arise from misunderstandings about the precedence of operators can be

3-8

J

Lint: A C Program Checker
accentuated by spacing ‘and formatting, making such bugs extremely hard to
find. For example, the statements

if(x&077 ==10) ...
or
x<<2 +40

probably do not dowhat isintended. The best solution is to parenthesize such
expressions. Lintencourages this by printing anappropriate message.

Finally, lint checks variables that are redeclared in inner blocks in‘a way that
conflicts with their use in outer blocks. Thisislegal, butis considered badstyle,
usually unnecessary, and frequently a bug.

Ifyoudonot wish these heuristic checks, you can suppress them by using the -h
option.

3.14 Checking for Use of Older C Syntax

Lint checks for older C constructions. These fall into two classes: assignment
operators and initialization.

The older forms of assignment operators {e.g., =+, =-, ...) can cause
ambiguousexpressions, suchas

a=-1;

which could be taken aseither

or

The situation is especially perplexing if this kind of :ambiguity arises as the
result-of a macrosubstitution. The newer, and preferred operators{e.g., +==,
-==) have no such ambiguities. To encourage the abandonment of the older
forms, lintchecksfor.occurrencesof these old-fashioned operators.

A similar issue arises withinitialization. Theolder language allowed

int x 1;

toinitialize*‘x” to 1. Thiscausessyntactic difficulties. For example

3-9

XENIX Programmer’s Guide

int x {-1);
looks somewhat like the beginningof afunctiondeclaration

int x (y)}{ ...

and the compiler mustread past “x”’ to determine what the declaration really
is. The problem isieven more perplexing when the initializer involves a macro.
The current ‘C syntax places an equal sign between the variable and the
initializer:

intx = -1;

This form is free of any possible syntactic ambiguity.

3.15 Checking Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal
on others, due to alignment restrictions. For example, on some machines it is
reasonable to assign integer pointers to double pointers,.since double precision
values may begin on any integer boundary. On other machines, however,
double preciston values must begin on-even word boundaries; thus, not all such
assignments make sense. Lint tries todetect:cases where pointers are assigned
to.other pointers, and such alignment problems might arise. The:message

possible pointer alignment problem

results from thissituation.

3.18 Checking Expression Evaluation Order

In complicated expressions, the best.order in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines in which the
stack runs up, function arguments will probably be best evaluated from right
to left; on machines with a stack running down, left to right is probably best.
Function ‘calls embedded as arguments of other funclions may or may not be
treated in the same way asordinary arguments. ‘Similar issues arise with other
operators that have side effects, such as the assignment operators and the
increment and decrementoperators.

In order that the efficiency of C on a particular machine not be unduly
compromised, the C language leaves the order of evaluation of complicated
expressions up to the compiler, and various C compilers have considerable
differencesinthe orderin which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewherein
the same expression, the result is explicitly undefined.

3-10

Lint: A C Program Checker

Lsnt checks for the important special case where a simple 'scalar variable is
aflected. Forexample, thestatement

ali] = bli++];
will:draw the.comment:

warning: 1-evaluation ‘order undefined

3.17 Embedding Directives

There are occasions when the programmer is smarter than lint. There may be
valid reasons for illegal type -casts, functions with a variable number of
arguments, and other constructions that lint flags. Moreover, as specified in
the above sections, the flow of control information produced by lint often has
blind spots, causing occasional spurious messages about perfectly reasonable
programs. Some way of communicating ‘with lint, typically to turn off its
output, is-desirable. Therefore, a number.of words:are recognized by lint when
they -are embedded in comments in a ‘C source file. These words are called
directives. Lintdirectivesare invisible tothe compiler.

The first directive -discussed .concerns flow of .control information. If a
particular place in the program cannot be reached, this can be asserted at the
appropriate spotinthe program with the directive:

/* NOTREACHED +/

Similarly, if you desire to turn off strict type checking for the next expression,
use the directive:

/+ NOSTRICT +/

The situation reverts to the previous default after the next expression. The ~v
option canbeturned on forone function with the directive:

/+ ARGSUSED +/

Comments about a variable number of arguments in calls to a function can be
turned offby preceding the function definition with the directive:

/% VARARGS +/
In'some cases, it is desirable to check the first several arguments, and leave the
later arguments unchecked. Do this by following the VARARGS keyword

immediately with a digit giving the number of arguments that should be
checked. Thus:

3-11

XENIX Programmer’s Guide

/* VARARGS? =/
causesonly the first two argumentsto be checked. Finally, the directive
/* LINTLIBRARY ¢/

at the head of a file identifies this file as a library declaration file, discussed in
the next section.

3.18 Checking For Library Compatibility

Lintacceptscertain library directives, such s

_ly

and tests the source files for compatibility with these libraries. This testing is
done by accessing library description files whose names are constructed from
thelibrary directives. These filesall begin with the directive

/+ LINTLIBRARY /

which isfollowed by = series of dummy function definitions. The critical parts
of these definitions.are the declaration of the function return type, whether the
dummy function returns a value, and the number and types.of arguments to
the function. The “VARARGS" and “ARGSUSED” directives can be used to
specify features of the library functions.

Lint library files are processed like ordinary source files. The only difference’is
that functions that are defined in a library file, but-are not used in asource file,
draw no cominents. Lint does not simulate a full library search algorithm, and
checkstosee il the source filescontain redefinitions of library routines.

By default, dint checks the programs it is given against a standard library file,
which contains descriptions of the programsthat are normally loaded when a.C
program is run. When the —p option is in efect, the portable library file is
checked containing descriptionsof the standard I/O library routines which are
expected to be portable across various machines. The —n option can be used to
suppressalllibrary checking.

Lint library files are named " fusr/lib/ll+". The programmer may wish to
examine the lint libraries directly to see what lint thinks a function should
passed and return. Printed out, lint libraries also make satisfactory skeleton
quick-reference cards.

3-12

Chapter 4
Make: A Program Maintainer

4.1 Introduction 4-1

4.2 Creating aMakefile 4-1

4.3 Invoking Make 4-3

4.4 UsingPseudo-Target Names 4-4

4.5 UsingMacros 4-5

4.6 Using ShellEnvironment Variables 4-8
4.7 Usingthe Built-InRules 49

4.8 Changingthe Built-in Rules 4-10

4.9 UsingLibraries 4-12

4.10 Troubleshooting 4-13

4.11 Using Make: An Example 4-13

Make: A Program Maintainer

4.1 Introduction

The make program provides an easy way to automate the creation of large
programs. Make reads commands from a user-defined “makefile” that lists
the files to be created, the commands that create them, and the files from which
they dre created. When you direct make to create a program, it verifies that
each file.on which the program depends is up to date, then creates the program
by executing the given commands. If a file is not up to date, make.updates it
before creatingthe program. Make updates a program by executingexplicitly
given commands, or oneof the many built-in commands.

This chapter explains how to wuse imake to automate medium-sized
programming projects. It explainshow to create makefilesfor each project, and
how ‘to invoke make for creating programs and updating files. For more
details about the program, see make(CP)inthe XENIX Reference Manual.

4.2 Creating a Makefile

A makefile contains -one or more lines of text called dependency lines. A
dependency line shows how a given file depends on :other files and what
commands are required to bring a file up to date. A dependency line hasthe
form

target: | dependent .. | ; command ... |

where target is the filename of the file to be updated, dependent is the filename
of the file on which the target depends, and command is the XENIX command
needed to create the target file. Each dependency line must have at least one
command associated withit, even ifit is only the null command(;).

You may give more than-one target filename or dependent filename if desired.
Each filename must be separated from the next by at least one space. The
target filenamesmust be separated fromthe dependent filenames by a.colon (:).
Filenames must be spelled as defined by ‘the XENIX system. Shell
metacharacters, such asstar (*) and question mark (?), can-also be used.

You may give a sequence -of commands on the same line as the target and
dependent filenames, if you precede each command with a semicolon (;). You
can give additional commands on following lines by beginning each line with a
tab character. Commands must be given exactly as they would appear on a
shell command line. The at sign (@) may be placed in front of a command to
prevent make from displaying the command before -executing it. Shell
commands, such as ¢d(C), must appear on single lines; they must not contain
the backslash {\)and newline character combination.

Youmay add a.comment to a makefile by starting the comment with a number

sign {#) and ending it with a newline character. All characters after the
number sign are ignored. Comments may be place at the end of a:dependency

4-1

XENIX Programmer's Guide

line if desired. If a command contains a number sign, it must be enclosed in
double quotation marks(").

If a-dependency line.is too long, you can continue it by typing a backslash (\)
andanewline character.

The makefileshould be kept in the same directory as the givensource files. For
convenience, the filenames makefile, Makefile, s.makefile, and e.Makefile
are provided-as.default filenames. These names are.used by make if no explicit
name is given atinvocation. You may use one of these namesfor your makefile,
or choose one of your own. If the filename begins with the s. prefix, make
assumes that it is an:SCCS file and invokes the appropriate SCCS:.command to
retrieve the lastest versionof thefile.

To illustrate dependency lines, consider the following example. A program
named prog is made by linking three object files, 2.0, y.0,and 2.0, These object
files are created by compiling the C language source files z.¢, y.¢, and z.c.
Furthermore, the files.z.c and y.c contain the line

#include "defs”

This means that prog dependson the three-object files, the object files depend
onthe C source files, and:two-of the source files:-depend on the include file defs.
Youcanrepresent these relationshipsina makefile with the followinglines.

Prog: X.0 y.0 2.0
¢C X.0 y.0 2.0 -0 prog
x.0: x.c defs

cc ~¢ X.C
y.0: y.c defs

¢ —¢ y.c
2.0 2.¢

¢c —¢ 2.¢

In the first dependency line, prog is the target file and 2.0, y.0, and z.0are its
dependents. The commandsequence

¢C X.0 ¥.0 Z.0 <0 prog

on the next line tellshow to-create progif it isout of date. The program isout of
dateif any oneof its dependentshasbeen modified since prog waslast created.

The second, third, and fourth dependency lines have the same form, with the
2.0, y.0, and 2.0 files as targets and-z.¢, y.¢, z.¢, and defe files as dependents.
Each dependency line has one command sequence which defines how to'update
the given target file.

42

Make: A Program Maintainer

4.3 Invoking Make

Once you have a makefile and wish to update and modify one or more target
files in ‘the file, you can invoke make by typing its name and optional
arguments. Theinvocation hasthe form

make [option] ... [macdef] ... [target] ...

where option is a program option used to modify program operation, macdefis
a macro definition used to give a macro a value or meaning, and targetisthe
filename of the file to be-updated. It must correspond to oneof the target names
in ‘the makefile. ‘All arguments are optional. If you give mote than one
argument, you must separate‘them with spaces.

You can direct make to-update the first target file in the makefile by typing
just the program name. In this case, make searches for the files makefile,
Makefile, e.makefile, and s.Makefile in the current directory, and uses the
first one it finds-as the makefile. For example, assume that the current makefile
containsthe dependency lines giveninthelast section. Then the command

make

compares the current date of the prog program with the current date each of
the object files 2.0, y.0, and z.0. It recreates prog if any changes have been
made to:any object file since prog waslast created. It also:compares the current
datesof the object files with the dates of the four source files z.¢, y.¢, z.¢, or
defs, and recreates the-object files if the source files have changed. It does this
before recreating progsothat the recreated object files can be-used torecreate
prog. If none of the source or object files have been altered since the last time
progwascreated, make announces thisfact andstops. Nofilesare changed.

You can direct make to update a given target file by giving the filename of the
target. Forexample,

make x.o0

causes make to recompile the 2.0 file, if the z.c or defsfiles have changed since
theobject file waslast created. Similarly, the cormmand

make x.0 z.0
causes make to recompile 2.0 and 2.0 if the corresponding dependents have

been modified. Make processes target namesfrom the commandline in a left to
right.order.

43

XENIX Programmer’s Guide
You can specify the name of the makefile you wish.make touse by giving the ~f
optionintheinvocation. Theoptionhastheform

~f filename

where filename isthe nameof the makefile. Youmustsupply a full pathname if
the fileis notin'the current directory. Forexample, the.command

make ~f makeprog

reads the dependency lines of the makefile named makeprog found in the
current directory. You can direct make to read dependency lines from the
standard input by giving “‘-” asthe filename. Make reads the standardinput
until theend-of-file character isencountered.

You may use the program options to modify the operation of the make
program. The following list describes some of the options.

-p Prints the complete set of macro definitions and dependency lines
inamakefile.

- Ignoreserrorsreturned by XENIX commands.

~k Abandons work .on the current entry, but continues -on other

branches that.donot dependon thatentry.

-8 Executes commands without displayingthem.
-r Ignoresthe built-in rules.
-n Displays commands but does not execute ‘them. Make even

displayslines beginning with the at sign (@).

—e Ignores.any macro definitions that attempt to assign new values to
the shell’senvironment variables.

-t Changesthe modification dateof each target file without recreating
the files.

Note that make executes each command in the makefile by passing it to a
separate invocation of a shell. Because of this, care must be taken with certain
commands (e.g., cd and shell ‘control commands) that have meaning only
within a single shell process; the resultsare forgotten before the next line is
executed. If aneerror occurs, make normally stops the command.

4.4 Using Pseudo-Target Names

It is often useful to include dependency lines that have pseudo-target names,
i.e., names for which no files actually exist or are produced. Pseudo-target

44

Make: A Program Maintainer

names:allow make to perform tasksnot directly connected withthe creation of
a program, such :as deleting old files .or printing copies of source files. For
example, the following dependency line removes old copies of the given object
files when the pseudo-target name *“‘cleanup” is given in ‘the invocation -of
make.

cleanup :
IMm X.0 ¥:02:0

Since no file exists for a given pseudo-target name, the target is alwaysassumed
tobe outof date. Thus the associated command is alwaysexecuted.

Make also has built-in pseudo-target names that modify its operation. The
pseudo-target name ‘.IGNORE" causes make to ignore errors .during
execution of commands, allowing make to:continue after an error. Thisis the
same ‘as the —i option. {Make also ignores errors for a given command if the
command string beginswith a hyphen(~).)

The pseudo-target name *“.DEFAULT" defines the commands to be executed
either when no built-in rule or user-defined dependency line-existsfor the given
target. You may give ‘any number of commands with this name. If
“.DEFAULT” is not ‘used and .an undefined target is given, make prints a
message and stops. .

The pseudo-target name “.PRECIOUS" prevents dependents of the current
target from being deleted-when make is terminated using the INTERRUPT or
QUIT key, and the pseudo-target name*‘.SILENT"’ hasthe same effect asthe —s
option.

4.5 Using Macros

An important feature of a. makefile is that it can contain.macros. Amacroisa
short name that representsa filename or command option. The macroscanbe
defined when youinvoke-make,orinthe makefileitself.

A macro definition isa line containing a name, an equal sign (==}, and a value.
The equal sign must not be preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign {leading
blanks and tabsarestripped.) The following are valid macro definitions:

= Xyz
abe = -1l -ly
LIBES =

The last definition assigns “‘LIBES” the null string. :A macro that is never
explicitly defined has the null string asits value.

45

XENIX Programmer's Guide

A macro is invoked by preceding the macro name with a dollar sign; macro
names longer than one character must be placed in parentheses. The name of
the macro is either the single character after the dollar:sign or a name inside
parentheses. The following are valid macroinvocations.

$(CFLAGS)
$2
$(xy)
$Z
$(2)
The last twoinvocations areidentical.
Macrosare typically used asplaceholdersfor valuesthat may change from time

to time. For example, the following makefile uses a macro for the names of
object filestobe link and one for the namesof the library.

OBJECTS = x.0y.0 2.0
LIBES = -lln
prog: $(OBJECTS)
cc $(OBJECTS) $(LIBES) -o prog

If thismakefile isinvoked withthe command
make

it will load the three object files with the lez library specified ‘with the ~iln
option.

You may include a macro definition in a command line. A macro definitionina
command line has the same form as a macro definition in a makefile. If spaces
are to be usedin the definition, double quotation marks must be used to enclose
the definition. Macros in a command line override corresponding definitions
found in'the:makefile. Forexample, the command

make "LIBES=-lin -Im”
loads assigns thelibrary options—Hn and ~lmto “LIBES".
You can modify all or part of the value generated from a macro invocation
without changing the macro-itself by using the “substitution sequence”. The
sequencehas theform

name : ot] =] st2]
where name is'the name of the macro whose value is to be modified, st1is the
character or characterstobe modified, and st2isthe character or.charactersto

replace the modified characters. If #t2 is not given, st1.is replaced by a null
character.

4-6

Make: A Program Maintainer

The -substitution ‘sequence is ‘typically used to allow wuser-defined
metacharactersina makefile. For example, suppose that “.x" isto be-used-as:a
metacharacter for.a prefix and suppose that a makefile contains the definition
FILES == progl.x prog2.x prog3.x
Then the macroinvocation
$(FILES : .x=.0)
generatesthevalue
progl.o prog2.0 prog3.o
The actual value of “FILES” remains unchanged.

Make hasfive built-in macros that can be used when writing dependency lines.
The following is a list of these macros.

$+ Contains the name of the current target with the suffix removed.
Thus if the current target is prog.o, $+ contains prog. It may be
usedin dependency linesthat redefine the built-inrules.

$@ Contains the full pathname of the current target. It may be usedin
dependency lines with user-defined target names.

$< Contains the filename of the dependent:thatismore recent thanthe
giventarget. It may be used in dependency lines with built-in target
namesorthe DEFAULT pseudo-target name.

$ Contains the filenamesof the dependents that are more recent than
the given target. It may be used in dependency lines with user-
defined target names.

$% Contains the filename of a library member. It may be used with

targetlibrary names{see the section “Using Libraries” later in this
chapter). In this case, $@ contains the name of the library and $%%
containsthe nameof the library member.

You can change the meaning of a built-in macro by appending the D or F
descriptor to its name. A built-in macro with the D descriptor contains the
name of the directory containing the given file. If the file is in the current
directory, the macro contains “.”. A macro with the F descriptor contains the
name of the given file with the directory name part removed. The D and F
descriptor must notbe used with:the $? macro.

47

XENIX Programmer’s Guide

4.8 Using Shell Environment Variables

Make provides access to current values of the shell's environment variables
such-as "HOME", “PATH", and “LOGIN”. Make automatically assignsthe
value of each shell variable in your environment to a macro of the same name.
You can access a variable’s'value inthe same way thatyou accessthe value of
explicitly defined ‘macros. For example, in the following dependency line,
“$(HOME)" hasthe same value asthe user’s “HOME’* variable.

Pre cc $(HOME)/x.0 ${HOME)/y.o Jusr/pub/z.0

Make assigns the shell variable values after it assigns values to the built-in
macros, but before it assigns values to user-specified macros. Thus, you ¢an
override the value of a shell variable by explicitly assigning a value to the
corresponding ‘macro. For -example, the following macro definition causes
make to ignore the current value of the “HOME" variable and use /uer/pub
instead.

HOME = fusr/pub

If a makefile contains macro definitions that override:the current valuesof the
shell variables, you can direct make toignore these definitions-by using the —e
option.

Make has two shell variables, “MAKE” and “MAKEFLAGS”, that

correspond to two special-purpose macros.

The “MAKE"' ‘macro provides a ‘way to override the.—n option and execute
selected commandsin amakefile. When “MAKE" istsedinacommand, make
will alwaysexecute that command, even if —n has'been given in-theinvoeation.
The variable may beset to any value or.command sequence.

The “MAKEFLAGS" macro-containsone or more make options, and can be
used in invocations of make from within a makefile. You may assign any
make optionsto *“MAKEFLAGS” except —f, ~p,and ~d. If youdo not assigna
value to the macro, make automatically assigns the current options toit, i.e.,
the options given in the currentinvocation.

The “MAKE"” and “MAKEFLAGS" variables, together with the —n option,
are typically used to debug makefiles that generate entire software systems.
For ‘example, ‘in the following makefile, setting *MAKE"” to “make” and
invoking -this ‘file with the —n -options displays all the commands used to
generate the programs progl, prog?, and progd without actually executing
them.

4-8

Make: A Program Maintainer

system : progl prog2 prog3
@echo System complete.

progl : progl.c
$(MAKE) $(MAKEFLAGS) progl

prog2 : prog2.c
$(MAKE) $(MAKEFLAGS]) prog2

prog3 : progd.c
$(MAKE) $(MAKEFLAGS) prog3

4.7 Using the Built-In Rules

Make provides a:set of built-in dependency lines, ‘called built-in rules, that
automatically check the targets and dependentsgiven in'amakefile, and create
up-to-date versionsof these files if necessary. The built-in rules are identical to
user-defined dependency linesexcept that they use the suffix of the filename as
the target or dependent instead of the filename itself. For example, make
automatically assumes that all files with the suffix .o have dependent files with
the suffixes.cand .s.

When-no explicit dependency line for a given file is given in 2 makefile, make
automatically checks the default dependents:of the file. It then formsthe name
of the dependents by removing the suffix of the given file and appending the
predefined dependent suffixes. If the given file is outof date with respect to
these default dependents, make searches fora built-in rule that defines how to
create an up-to-date versionof the file, then executesit. Therearebuilt-in rules
for the following files.

Object file
C source file
Ratfor source file
Fortran source file
Assembler ‘source file
Yace-C source grammar

r Yacc-Ratfor source grammar
Lex source grammar

NadatNias

For example, if the file 2.0is needed and there is an 2.c in the description or
directory, it is compiled. If there is also an 2./, that grammar would be run
throughlezbefore.compiling the result.

The built-in rules are designed to reduce the size .of your makefiles. They
provide the rules for creating common files from typical dependents.
Reconsider the example given in the section *Creating a Makefile”. In this
example, the program prog-depended on three object files 2.0, y.0, and z.0.
These files in turz depended on the ‘C language source files z.¢, y.¢, and z.c.

49

XENIX Programmer's ‘Guide

The files 2.¢ and y.¢ also depended ‘on the include file defs. In the original
example each dependency and corresponding command sequence wasexplicitly
given. Many of these dependency lines were unnecessary, since the built-in
rules-could have been used instead. The following is all that is needed to:show
the relationships between these files.

prog: x.0 y.o z.0
cC X.0 y.0 Z.0 -0 Prog

X.0'y.o: defs

In this'makefile, prog depends on three object files, and-an explicit command s
given showing how to update prog. However, thesecond line merely shows that
two objects files depend.on the include file defs. No explicit command sequence
is given-onhow to update these files il necessary. Instead, make usesthe built-
in rules to locate the desired 'C source files, compile these files, and create the
necessary object files.

4.8 Changing the Built-in Rules

Youcan-changethe built-in rules by redefining the macros usedinthese lines.or
by redefining the commands associated with the rules. You can display a
complete list of the built-in rules and the macrosused in the rulesby typing

make ~fp - 2> /dev/null </dev/null
The rules and macrosare displayedat the standard output,.

The macrosof the built-in dependency lines define the namesand optionsof the
compilers, program generators, and other programs invoked by the built-in
commands. Make automatically assigns:a default value to these macros when
you start the program. You can change the values by redefining the macro in
your makefile. For-example,the following built-in rule contains three macros,
“CC",*“CFLAGS", and “LOADLIBES”.

o

$(CC) $(CFLAGS) $< $(LOADLIBES) -0 $@

You can redefine any of these macros by placing ‘the appropriate macro
lefinition at the beginning of the makefile.

You can redefine the action of a built-in rule by giving a new rule in your
nakefile. Abuilt-in-rule hastheform

suffiz-rule :
command

vhere .suffiz-rule is a combination of suffixes showing the relationship of the
mplied target and dependent, and command is the XENIX command required

10

Make: A Program Maintainer
to carry out the rule. If more than one command is needed, they are given on
separate lines. '

The new rule must begin with an appropriate suffiz-rule. The available suffiz-
rulesare

. .
.sh .sh
.c.0 .C.0
{c.c 5.0
5.0 y.o
y.o lo
d.o y.c
y.c Le
.3 .c.a
s .heh

A tilde() indicates.an SCCS file. A single suffix indicates a rule that makes an
executable file from the given file. For-example, the suffix rule “.c” is for the
built-in rule that creates an executable file from a C source file. A pair of
suffixesindicates a rule that makes one file from the other. Forexample, “.c.0"
is for the rule that creates an object file (. o) file from a corresponding C source
file:(.c).

Any commandsin the rule may use the built-in macrosprovided by make. For
example, the following dependency line redefines the action of the .c.orule.

.0
cc68 $< —c $20

Hf necessary, you can.also create new suffiz-rules by adding alist of new suffixes
to:amakefile with“.SUFFIXES”. This pseudo-target name definesthe suffixes

that may be used to make suffiz-rules for the built-in rules. The line hasthe
form

.SUFFIXES: suffiz ...

where suffiz is usually a lowercase letter preceded by a dot (.). If morethan one
suffix is given, you must use spaces to separate them.

The order of the suffixesis significant. Each suffix isa dependent of the suffixes
precedingit. For example, the suffix list

.SUFFIXES: .0 .c .y .l.s

causes prog.c to be a dependent of prog.o, and prog.y to be a dependent of
prog.c.

Youcan create new suffiz-rules by combining dependent suffixes with the suffix
of the intended target. The dependentsuffix must appear first.

4-11

XENIX Programmer’s Guide

fa “.SUFFIXES" list appears more than once in a makefile, the suffixes are
ombined into a single list. If a “.SUFFIXES" is given that has no list, all
uffixesareignored.

t.8 Using Libraries

(ou-can direct make to use a file contained in an-archive library asa target or
lependent. To do this you must.explicitly name the file you wish to access by
ising a library name. Alibrary name hastheform

lib(member-name)

there lsbisthe name of the library containingthe file, and member-name is the
ameof the file. Forexample,thelibrary-name

libtemp.a(print.o)
eferstotheobject file print.oin the archivelibrary libtemp.a.

"ou can create your own built-in rules for archive libraries by adding the .a

uffix to the suffix list, and creating new suffix combinations. For example, the

ombination ‘‘.c.a" ‘may be used for a rule that defines how to create a library i
1ember from .a C source file. Note that the dependent suffix in the new j
ombination must be different than the suffix.of the ultimate file. For example, ’
he:combination *‘.c.a” can be used for arule that creates .o files, butnot for one

ratcreates .c files,

‘he most common useof the library naming convention is:to create a makefile
1at automatically maintains an archive library. For example, the following
ependency lines define the commands:required to create a library, named Ib,
ntaining up to date versions.of the files file1.0, file£.0, and file8.0.

lib:
lib{file1.0) lib(file2.0) lib(file3.0)
@echo lib is now up to date
.caal
$(CC) -c $(CFLAGS) $<
ar rv $@ $s.0
rm -f $s.0

he .¢.arule shows how to redefine a built-in rule for alibrary. Inthe following
:ample, the built-in rule is disabled, allowing the first dependency to create N
e library. s ,}

12

Make: A Program Maintainer

lib:
lib(file1.0) lib(file2.0) lib(file3.0)
$(CC) =c ${CFLAGS) $(%:.0=.c)
ar rv lib §?
rm $7
@echo 1ib is now up to date
.c.ay

In this example, a substitution sequence isused to change the value of the 87"
macro from the names of the object files *‘filel.0”, “‘file2.0”, and “file3.0” to
“filel.c”, “file2.¢”,.and “file3.¢”.

4.10 Troubleshooting

Most difficulties in using make arise from ‘make’s specific meaning of
dependency. If the file z.c hasthe line

#tinclude "defs”
then the object file 2.0 depends on defs; the source file z.¢ does not. (If defe is
changed, itis not necessary to doanything tothefile z.¢, while it is necessary to

recreate z.0.)

To determine which commands make will execute, without actually executing
them, use the —noption. Forexample, the command

make -n

prints out the commands make would normally execute without actually
executing them.

The debugging option—d causes make to print outa very detailed description
of what it is doing, including the file times. The output ‘is verbose, and
recommended only asalastresort.

If a change to a file is absolutely certain to be benign (e.g., adding a new
definition to aninclude file), the —¢t (touch) option can savealot of time. Instead
of issuing a large number of superfluous recompilations, make updates the
modification timeson the affected file. Thus, the command

make -ts

which standsfor touch silently, causes the relevant filesto appear up to date.

4.11 Using Make: An Example

As:an example of the use of make, examine the mak+fie, given in Figure 4-1,
used to maintain the makeitself. Thecodefor mak- is spreadover:a number

413

XENIX Programmer’s Guide

of Csourcefilesanda yaccgrammar.

Make usually printsout each command before issuing it. The followingoutput
results from typing the simple.command

make
inadirectory containingonly the source and makefile:

€c —¢ vers.ic
¢¢ —¢ main.c

c¢ -c-doname.c

cc —c mise.c

cc —c files.c

cc —c dosys.c

yacc gram.y

mv y.tab.c gram.c

¢c —c gram.c

¢c ‘vers.o main.o ... dosys.o gram.o —o make
13188+ 3348+ 3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the -
makefile, make found them by -using its suffix rules.and issued the needed
commands. Thestring of digits results from the size make command.

The last few targets in the makefile are useful maintenance sequences. The
print target prints only the files that have been changed since the last make
print command. A zero-length file, print, is maintained to keep track of the
time of the printing; the $7 macroin the command line then picks up only the
names of the files.changed since print was touched. The printed output canbe
sentto adifferent printer or to:afileby changingthe definition of the P:macro.

414

Make: A Program Maintainer

Figure 4-1. Makefile Contents
Description file for the make command

Macro definitions below

P == lpr

FILES = Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\
gram:y lex.c

OBJECTS = vers.o main.o ... dosys.o gram.o

LIBES==
LINT = lint —p
CFLAGS = -0

##targets: dependents
<TAB>actions

make: $§(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make
size make

$(OBJECTS): defs

gram.o: lex.c

cleanup:
-Fm *.0 gram.c
~du

install:
@size make fusr/bin/make
cp make fusr/bin/make ; rm make

print: ‘${FILES) # print recently changed files
pr $7 | §P
touch print

test:
make —dp | grep v TIME > lzap
fusr/bin/make ~dp | grep ~v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c vers.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c vers.c gram.c
rm.gram.c

arch:
ar uv [sys/source/s2/make.a $(FILES)

4-15

Chapter 5
SCCS: A Source
Code Control System

5.1 Introduction 5-1

5.2 BasicInformation 5-1
5.2.1 FilesandDirectories 51
5.2.2 DeltasandSIDs 5-2
5.2.3 SCCSWorkingFiles 5-3
5.24 SCCSCommand Arguments 5-4
5.2.5 File Administrator 5-4

5.3 Creating and Using S-files .5-5
5.3.1 CreatinganS-file &5
5.3.2 TRetrieving aFilefor Reading 5-6
5.3.3 Retrieving aFilefor Editing 57
5.3.4 SavingaNew VersionofaFile 5-8
5.3.5 RetrievingaSpecific Version 59
5.3.6 Changing the Release Number of aFile
5.3.7 CreatingaBranch Version 5-10
5.3.8 RetrievingaBranch Version 5-10
5.3.9 Retrieving the Most Recent Version 5-11
5.3.10 DisplayingaVersion 5-11
5.3.11 SavingaCopyofaNew Version 5-12
5.3.12 DisplayingHelpful Information 5-12

5.4 Using Identification Keywords 5-13
5.4.1 Inserting aKeywordintoaFile 5-13
5.4.2 Assigning Values toKeywords 5-14
54.3 ForcingKeywords 5-14

5.5 UsingS-fileFlags ©5-15
5.5.1 Setting S-fileFlags 5-15
5.5.2 UsingtheiFlag 5-15
5.56.3 UsingthedFlag 5-16

5.6

5.7

5.8

5.9

5.5.4 UsingthevFlag 5-16
5.5.5 RemovinganS-fileFlag 516

Modifying S-file Information 5-16

5.6.1 AddingComments 5-17

5.6.2 Changing Comments 5-17

5.6.3 AddingModification Requests 5-18
5.6.4 Changing Modification Requests 5-18
5.6.5 AddingDescriptive Text 5-19

Printing from an S-file 5-20

5.7.1 UsingaDataSpecification 5-20

5.7.2 Printinga Specific Version 5-20

5.7.3 Printing Later and Earlier Versions 5-21

Editing by SeveralUsers 5-21

5.8.1 Editing Different Versions 5-21
5.8.2 Editing aSingle Version 5-22
5.8.3 ‘SavingaSpecific Version 5-22

Protecting S-files 5-23

5.9.1 AddingaUser totheUser List 5-23
5.9.2 RemovingaUser fromaUserList :5-23
5.9.3 Setting theFloor Flag 5-24

5.9.4 SettingtheCeilingFlag 5-24

5.9.5 LockingaVersion 5-24

5.10 Repairing SCCSFiles 5-25

5.10.1 Checkingan S-file 5-25

5.10.2 Editing anS-file 5-25

5.10.3 Changingan S-file's Checksum 5-26
5.10.4 Regeneratinga G-file forEditing 526
5.10.5 RestoringaDamaged P-file 5-26

5.11 Using Other Command Options 5-26

5.11.1 GettingHelp With SCCS Commands 5-26
5.11.2 Creating aFile With the Standard Input 5-27
5.11.3 Starting AtaSpecific Release 527

5.11.4 Addinga CommenttotheFirst Version 5-27
5.11.5 ‘Suppressing Normal Output 5-28

5.11.6 Includingand ExcludingDeltas 5-28

7 Listing the Deltasofa Version 5-29
} Mapping LinestoDeltas 5-30

) NamingLines 5-30

|0 Displaying aList of Differences 5-30
{1 DisplayingFile Information 5-30

|2 RemovingaDelta 5-31

|8 Searching for Strings 5-31

14 Comparing SCCS Files 5-32

SCCS: A Source Code Control System

5.1 Introduction

The ‘Source Code Control System (SCCS) is ‘a collection of XENIX commands
that create, maintain, and control special files called SCCS files. The SCCS
commandslet you-create:and store multiple versionsof a.program:or document
in a single file, instead of .one file for ieach version. The ¢ommands let you
retrieve any version you wish at-any time, make changes to this version, and
save the.changesasanewversionof the file in the SCCS file.

The :SCCS system s useful wherever you require a compact way to store
multiple versions of the same file. The SCCS system provides an easy way to
update any given version of a file and.explicitly record the changes made. The
commands are typically used to control:.changes to multiple versions of source
programs, but may also be used to control multiple versions ‘of manuals,
specifications, and other documentation.

This chapter explainshowto make SCCSfiles, how:to update the files contained
in SCCS files, and how to maintain the SCCS files once they ‘are created. The
following sections describe ‘the basic information you need to-start using the
SCCS:commands. Later sectionsdescribe the.commandsindetail.

5.2 Basic Information

This section provides some ‘basic information about the SCCS system. In
particular, it describes)

— Filesand directories

— Deltasand SIDs

— ‘sccsworking files

- 8CCS.commandarguments

— Fileadministration

5.2.1 Files and Directories

Alsccsfiles (also called s-files)are originally created from text files containing
documentsor programs created by auser. The text filesmust have beencreated
using a XENIX text editor such asvi. Special charactersinthe filesare allowed
only if they.are also allowed by the giveneditor. '

To-simplify s-file storage, all logically related files (e.g., files belonging to the
same ‘project) should be kept in the same directory. Such directories should
contains-files only, and should haveread and examine permission for everyone,
and write permission for the useronly.

51

XENIX Programmer's Guide

Note that you must not use the XENIX link command to create multiple copies
of ans-file.

5.2.2 Deltas and SIDs

Unlike an ordinary text file, an'SCCS file (or s-file for short)-contains nothing
more ‘than lists of changes. Each list corresponds to the changes needed ‘to
construct exactly one version of the file. The lists can then be combined to
create the desired'version from theoriginal.

Each list of changesis called a ““delta”. Each deltahasan identification string
called'an *SID". The SID is a'string of at least two, and at-most four, numbers
separated by periods. The numbers name the version and define how it is
related to other versions. For.example, the first delta is-usually numbered 1.1
and thesecond 1.2.

The first number in any SiDiscalled the “release number™. Therelease number
usually indicates:a group of versions that are similar-and generally compatible.
The second number ‘in the SID is the “level number”. It indicates major
differences between files in the same release.

An SID may also have two optional numbers. The “branch number”, the
optional third number, indicates changes at a particular level, and ‘the
“sequence number”, ‘the fourth number, indicates changes at a particular
branch. For example, the SIDs 1.1.1.1 and 1.1.1.2 indicate two new versions
that-containslight changestotheoriginal delta 1.1,

An s-file may at any time contain several different releases, levels, branches,
and sequences of the same file. In general, the maximum number of releases-an
s-file may contain 159999, that is, release numbers may range from 1 to 9999,
Thesame limit-applies tolevel, branch, and'sequence numbers.

When you create a new version, the SCCS system usually creates-a new SID by
incrementing the level number of the original'version. If you wish to create a
new release, you must explicitly instruct the system to do so. A change toa
release number indicatesa major new version of the file. How to create a new
version of'a file and change release numbers is described later.

The SCCS system creates a branch and sequence number for the SID of a-new
version, if the next higher level number already exists. For example, if you
change version 1.3:to createa version 1.4 and then change 1.3 again, the SCCS
system createsanewversionnamed 1.3.1.1.

Version numbers.can become quite complicated. In general, it is'wise to keep
the numbers as.simple as possible by carefully planningthe creatxon of each
new version,

)

SCCS: A Source Code Control System

5.2.3 SCCS Working Files

The SCCS system uses several different kinds of files to complete its tasks. In
general, these files contain either actual text, or information about the
commandsin progress. For convenience, the SCCS system names these files by
placinga prefix before the name of the originalfile from which all versions were
made. The following isa list of the working files.

s-file

x-file

g-file

p-file

z-file

l-file

A permanent file that contains all versions of the given text file.
The versions are stored as deltas, that is, lists of changes ‘to be
applied to the original fileto create the given version. The nameof
ans-file is formed by placing the file prefix . at the beginning of the
originalfilename.

A temporary copy of the s-file. It is created by SCCS commands
which-change the s-file. It isused instead of the s-file to carry out:the
changes. When all changes are complete, the SCCS system rermoves
the original's-file and gives the x-file the name of the original s-file.
The name of ‘the x-file is formed by placing the prefix z. at the
beginning of the original file.

An ordinary text file created by applying the deltasin a given s-file
to the original file. The g-filerepresentsa copy of the given version
of the -original file, and as such receives the same filename as the
original. When created, a g-file is placed in the current working
directory of the user who requested the file.

A special file containinginformation about the versions of an s-file
currently being edited. The p-file is created when a g-file is
retrieved from the :s-file. The p-file -exists until all currently
retrieved files have been saved in the s:file; it is then deleted. The
p-file contains one or ‘more entries describing the ‘SID of the
retrieved g-file, the proposed SID of the new, edited g-file, and the
login name of the user who retrieved the g-file. The p-file name is
formed by placing the prefix p. at the beginning of the original
filename.

A lock file used by SOCS commands to prevent two users from
updating a single SCCS file at the same time. Before a command
modifes an'SCCS file, it creates a z-file and:copies its own process ID
to it. Any other command which attempts to access the fle while
the z-file is present displaysan error message and stops. When the
original command has finished its tasks, it deletes the z-file before
stopping. The z-file name is formed by placing the prefix z. at the
beginning of the original filename.

A special file containing alist of the deltas required tocreate agiven
version of a file. Thel-file name is formed by placing the prefixl, at
the beginning of the original filename.

XENIX Programmer’s Guide

d-file Atemporary copy.of the g-file used to.generate anew:delta.

q-file A'temporary file used by the delta command whenupdating the p-
file. The file isnot directly accessible.

In general, a-user never directly ‘accesses x-files, z-files, d-files, or ‘q-files. If a
system crash or similar situation abnormally terminates a command, the user
may wish delete these files to ensure proper operation of subsequent SCCS
commands,

5.2.4 SCCS Command Arguments

Almost all SCCS commands accept ‘two types of arguments: options and
filenames. These appear in the SCCS command line immediately after the
command name.

Anoption indicates a special action to be taken by the given SCCS command.
An option is usually a lowercase letter preceded by a minus sign (). Some
options requirean additionalname or value.

Afilename indicates the fileto be acted on. The syntax for SCCSfilenamesislike
other XENIX filename syntax. Appropriate pathnames must be given if
‘required. ‘Some commands also allow directory names. In this case, all files in
the directory are actedon. If the directory contains non-SCCS and unreadable
files, these areignored. A filename must not begin with aminus sign (-).

The special symbol —may be used to-cause the given command to read alist of
filenames from the standard input. These filenames are then used asnamesfor
the filesto be processed. The list must terminate with anend-of-file character.

Any options igiven with a command apply to all files. The SCCS commands
process the options before any filenames, so the options may appear anywhere
onithe command line.

Filenames are processed left to right. If a commandencounters afatalerror, it
stops processing the current file and, if any other files have been given, begins
processing the next.

5.2.5 File Administrator

Every SCCS file requires an administrator to maintain and keep the file in
order. The administrator is usually the user who created the file'and therefore
owns it. Before other users can access the file, the administrator must.ensure
that they have adequate access. Several’SCCS commandslet the administrator
define who hasaccess to the versionsin a given s-file. These are described later.

5-4

SCCS: A Source Code Control System

5.3 Creating and Using S-files

The s-file is the key element in'the SCCS system. It provides compact storage
for all versions of a given file:and automatic maintenance of the relationships
between the versions.

This section explains how to use ‘the admin, get, and delta commands to
create and use s-files. In particular, it describes how to create the first version
of a file, how to retrieve versions for reading and editing, and how to save new
versions.

5.3.1 Creating an S-file

You can create ans-file from an existing text file using the —i (for “initialize)
optionof theadmin command. The command has the form

admin -ifilename e.filename
where —ifilename gives the name of the text file from which the s-file is to be
created, and a.filename is the name of the news-file. The name must begin with
s. and'must be‘unique; no other s-file in the same directory may have the same
name. For example, suppose the file named demo.c contains the short C
language program

#include <stdio.h>

main (}

printf{" This is version 1.1 \n");

To createan s-file, type
admin -idemo.¢c s.demo.c

This command creates the s-file s.demo.c, and copies the first delta describing
the contents of demo.c tothisnew file. ‘The first deltaisnumbered1.1.

After creating an s-file, the original text file should be removed using the rm
command, since. it isno longer needed. If you wish to:view the text file.or make
changes to it, you can retrieve the file using the get command described in the
next section.

When first creating an s-file, the admin command may display the warning
message

No id keywords (cm7)

58

XENIX Programmer’s Guide

In general, this message can be ignored unless you have specifically included
keywordsin your file (see the section, “Using Identification Keywords” later in
thischapter).

Note that only a user with write permission in the directory containing the s-file
may use the admin command on that file. This protects the file from
administration by unauthorized users.

5.3.2 Retrieving a File for Reading

Youcanretrieve afile for reading from a given s-file by using the get command.
The .command hasthe form

get a.filename ...

where a.filename is the.name of the s-file containing the text file. The command
retrievesthe lastest version of the text file and copiesititoa regular file. Thefile
has the same name as the s-file but with the s. removed. It also has read-only
file permissions. For example, suppose the s-file .s.demo.c contains the first
version-of the short C programsshown inthe previous section. To retrieve this
program, type

get s.demo.c

The command retrieves the program and copies it to the file named demo.c.
Youmay then display the file just asyou doany other text file.

The command also displays‘a message which describes the SID of the retrieved
file and itssize inlines. For example, after retrieving the short Cprogram from
8.demo.c, the commanddisplays the message

1.
6 lines

You may also retrieve more than one file at a time by giving multiple s-file
namesin the command line. For example, the command

get s.demo.c s.defh

retrieves the contents of the s-files e.demo.c and s.def.h and copiesthem to the
text files demo.c.and def.h. When giving multiple s-file names'in a command,
you must separate -each with at least one space. When the get command
displaysinformation about the files, it places the corresponding filename before
the releventinformation.

5-6

SCCS: A Source Code Control System

5.3.3 Retrieving a File for Editing

You can retrieve a file for editing from a given s-file by using the —e (for
“*editing’’) option of the get command. The command hasthe form

get —e 8.filename ...

where . filename is the name of the s-file containing the text file. 'You may give
more than one filename if you wish. If you do, you must separate each name
withaspace. '

The command retrieves the lastest version of the text file and copies it to an
ordinary ‘text file. The file has the same name as the s-file but with ‘the .
removed. It hasread and write file permissions. For example, suppose the s-file
s.demo.c contains the first version of a Cprogram. To retrieve this program,

type
get —es.demo.c

The command retrieves the program and copies it to the file named demo.c.
Youmay-editthe filejust asyoudo any other text file.

If you give more than one filename, the command creates files for each
corresponding s-file. ‘Since the —e option applies to all the files, you may edit
eachone.

After retrieving a text file, the command displays a message giving the SID of
the file and its size in lines, The message also displays a proposed SID, that is,
the SID:for the new version after editing. For example, after retrieving the six-
line Cprogramin s.demo.c, the.command displaysthe message

1.1
new delta 1.2
6 lines

The proposed SID is 1.2. If more than one file is retrieved, the corresponding
lename precedesthe relevantinformation.

Note that any changes made to the text file are not immediately copied to the
corresponding s-file. To save these changes you must usethe delta command
describedin the next section. To help keep:track of the current file version, the
get command creates another file, called a p-file, that contains information
about the text file. This file is used by a subsequent-delta command when
saving the new version. The p-file has the same name as the s-file but begins
witha p.. Theuser' mustnotaccessthe p-file directly.

57

XENIX Programmer's Guide

5.3.4 Saving a New Version of a File

You can save a new version of a text file by using the delta command. The
command hastheform i

delta s.filename

where o.filename is the name of the s-file from which the modified text file was
retrieved. Forexample, to save changesmade to a C programin the file demo.c
{which wasretrieved from:the file s.demo.c), type

delta s.demo.c

Before saving the new version, the delta command asks for comments
explaining the natureof the changes. It displaysithe prompt

comments?

You may type any text you think appropriate, up to 512 characters. The
comment must end with 2 newline character. If necessary, you can start a new
line by typing a backslash (\) followed by a newline character. If you do not
wish toinclude a comment, just type anewline character.

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the original version with the new version. A
list of all the changes is copied to the s-file. Thisisthe new delta.

After a command has copied the new delta to the s-file, it displays a-message
showing ‘the new SID :and the number of lines inserted, deleted, or left

unchangedin the new version. For example,if the C program hasbeen changed
to

#include <stdio.h>
main ()
intj=2;

printf(" This is version 1.%d 0, i);
}

the command displays the message
1.2
3 inserted
1 deleted
5 unchanged

Once a new version is saved, the next get command retrieves the new version.

5-8

)

SCCS: A Source Code Control System

The command ignores previous versions. If you wish to retrieve a previous
version, you must use the —r option of the get command as described in the
nextsection.

5.3.5 Retrieving a Specific Version

You can retrieve any version you wish from an s-file by using the —r (for
“retrieve’’)of the get command. The command hasthe form

get [-e | -rSID e.filenome ...
where —e is the edit option, ~rSID gives the SID of the version to be retrieved,
and . filename is the name of the s-file containing the file to be retrieved. You
may give morethan-one filename. Thenamesmust be separated withspaces.
The command retrieves-the given version and copies it to the file having the
same hame.as s-file. but with-the 5. removed. The file hasread-only permission
unless you also give the —e option. If multiple filenames are given, one text file
of the given version isretrieved from each. Forexample, the command

get -rl.1 s.demo.c
retrievesversion 1.1-from thes-file s.demo.c, but the command

get —e ~rl.1 s.demo.c s.def.h
retrieves for editing a version 1.1 from both s.demo.c and s.def.k. I you give
the number of a version that does not exist, the command displays an error
message.
You may omit the level number of a version number if you wish, that is, just
give a release number. If you do, the command automatically retrieves the
most recent version having the same release number. For example, if the most
recent versionin the file s.demo.c isnumbered 1.4, the command

get ~rl s.demo.c
retrieves the version 1.4. If there is no version with the given release number,
the command retrieves the most recent versionin the previous release.
5.3.6 Changing the Release Number of a File
You can direct the delta command to change the release number of 2 new
version of a file by using the —r option of the get command. In thiscase, the get

command has theform

get ~e -rrel-num e.filename ...

5-9

XENIX Programmer's Guide

where —e is the required edit option, ~rrel-num givesthe new release numberof
the file, and o.filename gives the name of the s-file containing the file to be
retrieved. The new release number must be anentirely new-number, that is, no
existing version may have thisnumber. Youmay give more than one filename.

The command retrieves the most recent version from the s-file, then copies the
new release number to the p-file. On the subsequent delta command, the new
versionissaved using the new release number and level number 1. For example,
if the most recent versioninthes-file e.demo.cis 1.4, thecommand

get —e -r2 s.demo.c

causes the subsequent delta to save anewversion 2.1, not 1.5. The new release
number applies to the new version only; the release numbers of ‘previous
versions are not affected. Therefore, if you edit version 1.4 (from which 2.1 was
derived) and save the changes, you create a new version 1.5. Similarly, if you
edit version 2.1, you create anew version2.2.

As before, the get command also displays a message showing the current
version number, the proposed version number, and the size of the file in lines.
Similarly, the subsequent delta command displays the new version number
and thenumber of linesinserted, deleted, and unchanged in‘the new file.
5.3.7 Creating a Branch Version
You can create a branch version of a file by editing a version that has been
previously edited. A branch version-is'simply a version whose SID contains a
branch andsequence number.
For example, if version 1.4 already exists, the command

get —e <r1.3 s.demo.¢
retrievesversion 1.3 for editing and gives 1.3.1.1 asthe proposed SID.
In general, whenever get discovers that you wish to edit a version that already
has a succeeding version, it uses the first available branch and sequence
numbers for the proposed SID. For example, if you edit version 1.3 a third time,
get gives1.3.2.1 as the proposed SID.
You can save a branch version just like any other version by using the delta
command.

5.3.8 Retrieving a Branch Version

You can retrieve a branch version.of a file by using the —r-option of the get
:ommand. For example, the command

10

SCCS: A Source Code Control System

get -rl1.3.1.1 s.demo.c
retrievesbranchversion1.3.1.1.
Youmay retrieve a branch version for editing by using the ~e option-of the get
command. ‘When retrieving for ‘editing, get creates the proposed SID by
incrementing ‘the sequence number by one. For .example, if you retrieve
branch version 1.3.1.1 for editing, get gives1.3.1.2 as the proposed SID.

As:always, the command displays the version number and file size. If the given
branch version doesnot exist, the.command displays an error message.

You may omit the sequence number if you wish. In:this case, the command
retrieves the most recent branch version with the given branch number. For
example, il the most recent branch version in the s-file s.def.k is 1.3.1.4, the
command

get -r1.3.1 s.def.h

retrievesversion1.3.1.4.

5.3.9 Retrieving the Most Recent Version

You can alwaysretrieve the most recent version of afile by using the —t option
with the get command. For example, the command

get ~t s.demo.c
retrieves the most recent version from the file s.demo.c. You may combine the
-rand -t options to retrieve the most recent versionof a given release number.
For example, if the most recent version with release number 3 is 3.5, then the
command

get -r3 -t s.demo.c
retrievesversion3.5. If a branch version exists that ismore recent'than version
3.5 (e.g., 3.2.1.5), then the above command retrieves the branch version and
ignores version 3.5.

5.3.10 Displaying a Version

You can display the contents of a version at the standard output by using the
~poptionofthe get:command. Forexample,the command

get ~p s.demo.c

displays the most recent version in the s-file s.demo.¢ at the standard output.
Similarly, the command

5-11

XENIX Programmer's Guide

get —p -12.1 s.demo.c
displaysversion2.1 at thestandard output.
The ~p ‘option is useful for ‘creating g-files with user-supplied names. This
option also-directsalloutput normally sent to the standard output, such as the
SID of .the retrieved file, to the standard error file. Thus, the resulting file
containsonlythe contentsof the given version. Forexample, the command

get =p s.demo.c >version.c
copies the most recent version in the s-file s.demo.c to the file version.c. The
SiDof the file and itssize is copied to the standard error file.
5.3.11 Saving a Copy of a New Version
The delta command normally removesthe edited file after saving it in the
s-file. You can save a copy of this file by using the =n option of ‘the delta
command. For example, the command

delta -n s.demo.c

first saves a new version in the s-file #.demo. ¢, then saves a copy of this version
in'the file demo.c. You may display the file asdesired, but'you cannot edit the
file.

5.3.12 Displaying Helpful Information

An'SCCS command displays an error message whenever it encountersan error
in:afile. Anerror message hasthe form

ERROR [filename]: message (code)

where filename is the name of the file being processed, message is a short
descriptionof the error,and code istheerrorcode.

You may use the error code as an argument to the help command to-display
additionalinformation about the error. The command hasthe form

help code
where code is the error code given in an error message. The.command displays
one:or.more lines:of text that explain the error and suggest a possible remedy.
For example, the command

help col

displaysthe message

5-12

SCCS: A Source Code Control System

col:

"not an SCCS file”

A file that ‘you think is an SCCS file
does not begin with the characters ”s.”.

The help.command can be used at any time.

5.4 Using Identification Keywords

The SCCS system provides several special symbols, called identification
keywords, which-may be used in the text of a program or document torepresent
a predefined value. Keywords represent a wide range -of values, from the
creation date and time of a given file, to the name of the module containing the
keyword. When a user retrieves the file for reading, the SCCS system
automatically replacesany keywords it findsin a given version of afilz with the
keyword’svalue.

This section explains how keywords are treated by the various SCCS
commands, and how you may use the keywords in your own files. Only a few
keywords-are described inthissection. For acomplete list of the keywords, see
the section get(CP)in the XENIX Reference Manual.

5.4.1 Inserting a Keyword into a File

You may insert-a keyword into any text file. A keyword is simply anuppercase
letter enclosed in percent signs (%). No special characters are required. For
example, “%I%" is the keyword representing the SID of ‘the current version,
and “*%HY%%" is'the keyword representing the current.date.

When ‘the program is retrieved for reading using the get command, the
keywords are replaced by their current values. For example, if the “%M%”,
“%e19%", and “%H” keywords are used in place of the module name, the SID,
andthe current datain a programstatement

char header(100) = {" %M% %1% %H% "};
then these keywordsare expanded in the retrieved version of the program

char header(100) = {" MODNAME 2.3 07/07/77 "};
The get command does not replace keywords when retrieving a version for
editing. The system assumes that you wish keep the keywords (and not their

values) whenyousave the newversionof the file.

To indicate that a file hasno keywords, the get, delta, and admin commands
display the message

513

XENIX Programmer's Guide

No id keywords (¢m7)

This message is normally treated as a warning, letting you know ‘that no
keywordsare present. However, you may-change the operationof the system to
make thisafatalerror, asexplainediaterinthischapter.

5.4.2 Assigning Values to Keywords

The values of most keywords are predefined by the system, but some, such as
the value for the “%M%" keyword can be explicitly defined by the user. To
assign a value to a keyword, you must set the corresponding s-file flag to the
desired value. You-can:do this by usingthe —foptionof the admin command.

For example, toset the %M % keyword to“cdemo”, you must set the m flagas
in the command

admin -fmcdemo s.demo.¢

This command records “cdemo” as the current value of the %¢M% keyword.
Note that if you do not set the m flag, the SCCS system uses the name of the
original text file for %6M% by default.

The t-and q flagsare also-associated with-keywords. A description of these flags
and the corresponding keywords can be found in the section get(CP) in the
XENIX Reference Manual. You can change keyword valuesatany time.

5.4.3 Forcing Keywords

If a version is found to contain no keywords, you can fotce .a fatal error by
setting the i flag in ‘the given s-file. The flag causes the delta and admin
commands to stop processing of the given-version and report-an error. Theflag
isuseful for ensuring thatkeywordsare used properlyina given file.

To set the i flag, you must use the —f option of the .admin command. For
example, the command)

admin -fi s.demo.c

sets the i1 flag in the s-file s.demo.c. I the given version does not contain
keywords, subsequent delta-or admin commands that accessthis file print an
error message.

Note that if you attempt toset the i flag at the same time asyou create an s-file,

and if the initial text file contains no keywords, the admin commanddisplaysa
fatalerror message and stops without creating the s-file.

5-14

SCCS: A Source Code Control System

5.6 Using S-file Flags

An s-file flag is a special value that defines howa given SCCS command will
operate ‘on the corresponding s-file. The s-file flags are stored in the s-file and
areread byeach SCCS command beforeit-operateson the file. S-file flags affect
operations such as keyword checking, keyword replacement values, and
default valuesfor commands.

This section explains how to set and use s-file flags. It also describes the action
of commonly-used flags. For a complete description:of all flags, see the section
admin(CP)inthe XENIX Reference Manual.

5.5.1 Setting S-file Flags

You can set the flagsin a given s-file by using the —f option of the admin
command. The command hasthe form

admin ~fflag e.filename

where —{flaggivesithe flag tobe set, and o. filename gives the name of the s-file in
whichthe flagisto be sét. Forexample, the command

admin -fi s.demo.c
setstheiflagin the s-files.demo.c.
Note that some s-file flags take values when they are set. For example, the m
flag requires that a module name be given. When a value is required, it must
immediately follow the flag name, as in the command

admin ~fmdmod s.demo.c

whichsets the m flag to themodule name ““dmod™.

5.5.2 Using the i Flag

The iflag causesthe admin and delta commandstoprintafatalerror message
and stop, if no keywords are found in the given text file. The flag is-used to
prevent a version of a file, which contains expanded keywords, from being
saved as anew version. {Saving an expanded version destroys the keywordsfor
allsubsequent versions).

When the i flag is set, each new -version of a file must contain at least one
keyword. Otherwise, the version cannotbe saved.

5-15

XENIX Programmer’s ‘Guide

5.5.3 Using thed Flag

The d flag gives the default SID for versions retrieved by the get command.
The flagtakes an'SIDasitsvalue. For example, the command

admin -{d1.1 s.demo.c
sets'the default SID to 1.1. A subsequent get command which does not.use the
—roption will retrieveversion1.1.
5.5.4 Using the v Flag
The v flag allows you toinclude modification requestsinan s-file. Modification
requests are names or numbers that may be used as a shorthand means of
indicating the reason for-each newversion.
When the v flag is set, the delta command asksfor the modification requests
just before asking for comments. The v flag also allows the ~m option to be
usedinthedeltaand admin commands.

5.5.5 Removing an S-file Flag

You canremove:an s-file flag from an s-file by using the ~d option cf:the admin
command. The command hasthe form

admin ~dflag s.filename
where ~dflag gives the name .of the flag to ‘be removed and s.filename is the
name of the s-file from which the flag is to be removed. For example, the
command

admin —di s.demo.c

removes theiflag from the s-file 's.demo.c. When removinga flag whichtakesa
value, only theflag name isrequired. Forexample, the command

admin -dm s.demo.c
removes the mflag from the's-file.

The —d and —i options must notbe used at the same time.

5.8 Modifying S-file Information

Every s-file contains information about the deltas it-.contains. Normally, this
informationis maintained by the SCCS cornmands and is not directly accessible

5-16

SCCS: A Source Code Control System

by:the user. Some:information, however, is specific to the user who creates'the
s-file, and ‘may be changed as desired to meet the user’s requirements. This
informationiskeptin twospecial partsof thes-file called the “deltatable”
andthe “‘description field”.

The delta table containsinformation about.eachdelta, such as the SID:and the
date and time of creation. It also contains user-supplied information, such as
comments and modification requests. The descripticn field contains a user-
supplied description of the s-file and its contents. Both:partscanbe changed or
deleted at any timetoreflect changesto the s-file contents.

5.6.1 Adding Comments

You ccan add comments to an s-file by using the —~y option of the delta and
admin.commands. Thisoption causesthe giventexttobe copied tothe s-file as
the comment for the new version. The comment may be any combination of
letters, digits, and:punctuation'symbols. No.embedded newline characters are
allowed. If spaces are used, the comment must be enclosed in double quotes.
The complete command must fit on one line. For example, the command

delta -y George Wheeler” s.demo.c
savesthe comment*‘George Wheeler” inthe s-file s.demo.c.
The —y option is typically used in shell procedures as part-of an automated
approach to maintaining files. When the option is used, the delta command
does mot print the corresponding comment prompt, so no interaction is

required. If more than one sfile is given in the command line, the given
comment-applies to them all.

5.8.2 Changing Comments

You can change the:comments in a given s-file by using the cdc command. The
command has the form

cde -1SID ¢.filename
where ~rSID gives the SID.of the version whose comment is to be changed, and
s.filename is the name of the s-file containing the version. The command asks
for anew.comment by displaying the prompt

comments?
You may type any sequence of characters up to 512 characters long. The
sequence may ccontain embedded newline characters if they are preceded by a

backslash (\). The sequence must be terminated with a newline character. For
example, the.command

517

XENIX Programmer's ‘Guide

ede -r3:4 s.demo.c
promptsforanew comment for version 3.4.

Althoughthe command doesnot delete the old comment,itisnolongerdirectly
accessible by the user. The new comment contains the login name of the user
whoinvoked the.cdc.command and the time the comment was changed.

5.6.3 Adding Modification Requests

You can add modification requests to ans-file, when the v flag isset, by using
the ~-m optionof the delta and admin commands. A modificationrequestisa
shorthand method of .describing the reason for a particular version.
Modification requests:are usually names or numbers which the user has¢hosen
to represent aspecificrequest.

The —m option causesthe given command to save the requests following the

option. A request may be any combination-of letters, digits, and punctuation

symbols. If you give more than one request, you must separate them with

spacesand enclose the request in.double quotes. For example, the command
delta -m"error35 optimizel0” s.demo.c

copiesthe requests “‘error35" and *‘optimize10” to s.demo. ¢, while saving the
new version.

The ~m.option, when used with the admin command, must be combined with
the ~i-option. Furthermore, the v flag must be explicitly set-with the -f option.
Forexample, the:command

admin -idef.h -m"error0” -fv s.def.h
inserts-the modification request *‘error0™ in'the new file 2. def.%.
The delta command does not prompt for modification requests if you use the
—~m option.
5.8.4 Changing Modification Requests
You can change modification requests, when the v flag is set, by using the cde
command. The command asks for alist of modification requests by displaying
the prompt

MRs?
You may type ‘any number of requests. Each request may have any

combination of letters, digits, or punctuation symbols. No more than 512
characters are allowed,-and the last request must be terminated with a newline

5-18

SCCS: A Source Code Control System
character. If you wish to remove arequest, you must precede the request with
an exclamation mark (!). For example, the command

cde -rl.4 s.demo.c
asksfor.changesto the modification requests. Theresponse
MRs? error36 terror35

adds the request ‘‘error36" and removes*“‘error35”.

5.6.5 Adding Descriptive Text

You can-add descriptive text to-an s-file by using the —t option of the admin
command. Descriptive text is any text that describes the purpose and reason
for the given s-file. Descriptive text isindependent of the contentsof the s-file
and-can‘only be displayed using the prs command.

The ~t option directs the admin ‘to copy the contents of a given file into the
description field of the s-file. The commandhasthe form

admin -tfilename ¢ filename
where —t filename gives the name of the file containing the descriptive text, and
e.filename is the name of the s-file to receive the descriptive text. The file to-be
inserted may contain any amountof text. For example, the command

admin ~tcdemo s.demo.c

inserts the contents of ‘the file .cdemo into the description field of the s-file
s.demo.e.

The ~t option may also be used to initialize the description field when creating
the s-file. For example, the command

admin —idemo.c =tcdemo s.demo.c

inserts the contents of the file cdemointo the new s-file s.demo.c. If =t is not
used, the description field of the new s-fileis left empty.

You can remove the current descriptive text in an s-file by using the —t option
withoutafilename. Forexample, the command

admin -t s.demo.c

removesthe descriptive text from thes-file s.demo.c.

5-19

XENIX Programmer's Guide

5.7 Printing from an S-file

This section ‘explains how to use the prs command to display information
contained in.an s-file. The prs command hasa variety of options which control
the display format and content.

5.7.1 Using a Data Specification

You can explicitly define the information to be printed from an:s-file by using
the —d option ‘of ‘the prs command. The command ‘copies user-specified
informationto the standard output. The commandhas the form

prs ~depec e.filename

where —dapee is the data specification, and s.filename is the name of the s-file
from whichthe informationistobetaken.

The dataspecification isa string of data keywords and text. A data’keyword is
anuppercase letter, enclosed in.colons(:). It representsa value containedinthe
givens-file. For.example, the keyword :I:representsthe SID of a given version,
:F: represent the filename of the given s-file, :C: represents the comment line
associated ‘with a given version. Data keywords are replaced by these values .
whentheinformation isprinted. }
Forexample,the command
prs —d” version: :I. filename: :F:" s.demo.c
may produce theline
version: 2.1 filename: s.demo.c
A complete list of the data keywords is given in the section pre(CP) in the
XENIX Reference Manual.

5.7.2 Printing a Specific Version

You ean print information:about a specific version'in a given s-file by using the
~roptionofthe prscommand. The command hasthe form

prs —rSID 8. filename)

where —rSID givesthe SID of the desired version, and s.filename is the name of
the s-file containing the version. For example,the command

prs -r2.1 s.demo.c

5-20

SCCS: A Source Code Control System

printsinformation about version 2.1 in thes-file s.demo.c.

If the —r option is not specified, the command prints information about the
most recently created-delta.

5.7.3 Printing Later and Earlier Versions

You ‘can print information about a group of versions by using the —1 and —e
options of the prs.command. The -1 option causes the command to print
information about all versionsimmediately succeeding the given version. The
—e option causes the command ‘to print information -about -all versions
immediately preceding the given version. For example, the.command

£

prs —rl.4 —e s.demo.c

prints all information about versions which precede version 1.4 (e.g., 1.3, 1.2,
and1.1). The.command

prs -rl.4 -] s.abe

prints information about versions which succeed version 1.4 (e.g., 1.5, 1.6, and
2.1).

I both options are given, information about all versionsisprinted.

5.8 Editing by Several Users

The SCCS system allowsany number usersto access and edit versions of a given
s-file. :Since users:are likely to access different versions of the s-file at the same
time, the system is designed to allow cencurrent editing of different versions.
Normally, the system allows only oneuser-at a time to edit a given version, bus
you can‘allow concurrentediting of the same versicn by setting the j flagin the
givens-file.

The following sections explain how to perform concurrent editing and how to
saveedited versions when you have retriéved morethan oneversion for editing.

5.8.1 Editing Different Versions

The SCCS system allows several different versions of a file to be edited at the
same time. This means a user can ‘edit version 2.1 ‘while another ‘user edit
version 1.1, There isnolimit to the number of versions which may be edited.at
any.given time.

When several users edits different versions concurrently, each user must begin

work in his own directory. If users attempt to share a directory and workon
versions from the same s-file at the same time, the get command will refuse to

5-21

XENIX Programmer’s Guide
retrieve aversion.

5.8.2 Editing a Single Version

You can let a single version of a file be edited by more than oneuser by setting
the j flagin the given s-file. The flag causesthe get command to checkthe p-file
and create a new proposed SID if the given version isalready beingedited.

You can set the flag by wusing the —f option of the admin command. For
example, the command

admin —fj s.demo.c
setsthe flag for thes-file s.demo.c.

When the flag is set, the get command uses the next available branch SID for
each new proposed SID. For example, suppose a user retrieves for editing
version 1.4.inthe file s.demo.c, and that the proposed versionis 1.5. If another
user retrieves version 1.4 for-editing before the first user hassaved his.changes,
the the proposed version for the new user will be 1.4.1.1, since version 1.5 is
already proposed and likely tobe taken. Inno case will a version edited by two
separate usersresultinasingle new version.

5.8.3 Saving a Specific Version
When editing two or more versions of a file, you can direct the delta command
tosavea specific version by using the —roption to givethe SID-of that version.
The commandhasthe form
delta -rSID s.filename
~where -rSIDgives the SIDof the version being saved, and e.filenameisthename
of the s-file to receive the new version. The SID may be the'SID of the version
you have just edited, or.the proposed SID for the new version. For example, if
you have retrieved version 1.4 for editing (and no version 1.5 exists), both
commands
delta ~r1.5 s.demo.¢c
and

delta -r1.4 s.demo.c

saveversion 1.5.

SCCS: A Source Code Control System

5.9 Protecting S-files

The SCCS:system uses the normal XENIX system file permissions to protect
s-files from changes by unauthorized users. In addition to the XENIX system
protections, the SCCS:system provides two ways to.protect the s<files: the “user
list” and the “protection flags”. The user list is a list of login namesand group
IDs of users'who are allowed to-access the s-file and create new versions of the
file. The protection flags-are three special s-file flags that define which versions
are currently accessible to otherwise authorized users. The following sections
explainhow to set and use the user list and protection flags.

5.9.1 Addinga User to the User List

You can add a user-or a group of users-to the user list of a given s-file by using
the —a option of the ad min command. The option causesthe given name to be
added tothe user list. The user list.defines who may accessand edit the versions
in the s-file. The command hasthe form

admin -aname eo.filename
where —aname gives the login name of the user or the.group name of agroup of
users to'beadded tothelist, and a. filename givesthe nameof the s-file to receive
. the newusers. For example, the command

admin -ajohnd —asuex <amarketing s.demo.c

adds the users “‘johnd” and “suex” and the group “marketing’ to the user list
of the s-file.s.demo.c.

If you create an s-file without giving the —a option, the user list is left-empty,
and-all users may access and edit the files. Whenyouexplicitly give auser name
or names, only those userscanaccessthe files.
5.9.2 Removing a User from a User List
You can remove a user or-a.group of users from the user list of a given s-file by
using ‘the —e option of the admin command. The option is similar to the.—a
optionbut performs the opposite operation. The command hasthe form

admin ~ename . filename
where ~ename gives the login name of a user or the group name of a;group of
users to be removed from the list, and s.filename is the name of the s-file from

which thenamesareto be removed. Forexample, the command

admin -ejohnd -emarketing s.demo.c

5-23

XENIX Programmer's Guide

removes the user “johnd"” and the group “marketing” from the user list of the
s-file-s.demo.c.
5.9.3 Setting the Floor Flag
The floor flag, f, defines the release number of the lowest versiona user may edit
in a given s-file. You can set the flag by using the —<f option of the admin
command. For-example, the command
admin -f2 s.demo.¢
sets the floor torelease number 2. If you attemptto retrieve any versions with'a
release number less than 2, an errorwillresult.
5.9.4 Setting the Ceiling Flag
" The ceiling flag, c, defines the release number of the highest version a-user may
edit ina given:s-file. You can'set the flag by usingthe—f option of the admin
command. For example, the command
admin ~fc5 s.demo.c
setsthe ceiling to release number 5. If you attempt toretrieve any versions:with
arelease number greaterthan 5, anerrorwillresult.
5.9.56 Lockinga Version
The lock flag, 1, lists by release number all versions in a given s-file which are
locked against further editing. You can set the flag by using the —f flag of the
admin command. The flag must be followed by one or more release numbers.
Multiple release numbers must be separated by commas (,). For example, the
command
admin -fi3 s.demo.c
locks all versions with release number 3:against furtherediting. The command
admin -4,5,9 s.def.h

locks all versions with release numbers4,5, and 9.

Note that the special symbol “a™ may be used to specify all release numbers.
The command

admin -fla s.demo.c

locks.all versionsinithe file s.demo.c.

5-24

SCCS: A Source Code Control System

5.10 Repairing SCCS Files

The SCCS system carefully maintains all SCCS files, making damageto the files
very rare. However, damage -can result from hardware malfunctions, which
cause incorrect information to ‘be copied to the file. The following sections
explain how to check for damage to SCCS files, and how to repair the damage or
regenerate the file.

5.10.1 Checking an S-file

You can check afile for damage by usingthe —h option of the admin:command.
This :option causes the cchecksum of the given s-file to be computed and
compared with the existing sum. An s-file's checksum is an internal value
computed from the sum of all bytes in the file. If the new :and existing
checksumsare notequal, the command displays the message

corrupted file (co6)
indicating damage to the file. For example, the command
admin -h :s.demo.c

checksthe s-file a.demo.c for damage by generating a new checksum for the file,
and comparing the newsum with the existing sum.

You may give more than one filename. If you do, thecommand checkseach file
inturn. Youmay-also give thename of adirectory,in which ¢ase, the command
checksaall filesinthe directory.

Since failure to repair a damaged s-file can destroy the file's contents.or make
the file inaccessible, it is'a good ideatoregularly check alls-filesfor damage.

5.10.2 Editing an S-file

When an's-file is discovered to be damaged, it is'a good idea torestore a backup
copy -of the file from a backup disk rather than attempting to repair the file.
(Restoringa backup copy of a file isdescribed in the XENIX Operations Guide.)
If thisis not possible, the file may be edited using a XENIX text editor.

To repair a damaged s-file, use the description of an s-file given in the section
sccefile(F) in the XENIX Reference Manual, tolocate the part of the file which
is damaged. Use extreme care when making changes; small errors can cause
unwanted results.

5-25

XENIX Programmer’s Guide

5.10.3 Changing an S-file’s Checksum

.After repairing a.damaged s-file, you must change the file’s checksum by using
the —z optionof the admin command. For example, to restore the checksumof
the repairedfile s.demo.c, type

admin -z s.demo.c

The command computes and saves the new checksum, replacing theold sum.

5.10.4 Regenerating a G-file for Editing

You can create a g-file for editing without affecting the current.contentsof the
p-file by ‘using the ~k option of the get command. The option has the same
affect as the —e option, except that the current contents of the p-file remain
unchanged. The option is typically used to regenerate a g-file that has been
accidentally removed or destroyed before it has ‘been saved using the delta
command.

5.10.5 Restoring a Damaged P-file

The -g optionof the get command may be'used to generate anew-copy of a
p-filethat hasbeen accidentally removed. For example, the command

get —e —g s.demo.c
creates a new p-file entry for the most recent-version in s.demo.c. If the file
demo.c already exists, it will not be changed by this command.
5.11 Using Other Command Options
Many of the SCCS commands provide options that control their operstion in
useful ways. This sectiondescribes these optionsandexplains how you mayuse
them to'perform-useful work.
5.11.1 Getting Help With SCCS Commands
You can display helpful information about-an SCCS command by giving the
name of the command as an argument to the help command. The help
command displaysa short-explanation of the command and command syntax.
For example, the command

help rmdel

displaysthe message

5-26

SCCS: A Source Code Control System

rmdel:
rmdel -rSID name ...
5.11.2 Creatinga File With the Standard Input

You-candirect admin to use the standard input as the source fora news-file by
using the —i-option withouta filename. For example, the command

admin -i s.demo.c <demo.c

causes admin to create ‘a new s-file named s.demo.c which uses the text file
demo.casits first version.

This‘method of ‘creating a new s-file is typically used to connect admin toa
pipe. Forexample,the command

cat modl.c mod2.c | admin -i's.mod.c
creates a new s-file s.mod.c which contains thefirst version of the concatenated
files modl.cand mod2.c.
5.11.3 Starting At a Specific Release
The ‘admin command normally starts numbering versions with release
number 1. You can direct the command tostart with-any givenrelease number
by usingthe —~r.option. The command has theform

admin ~rrel-num 8. filename

where -rrel-num gives the value of the:starting release number, and o, filename
is the name of the s-file to be'created. For example, the command

admin -idemo.c -r3 s.demo.c

starts with release number 8. The first versionis3.1.

5.11.4 Adding a Comment to the First Version

You can-add a comment to the first version.of file by using the =y option of the
admincommand whencreating thes-file. For example, the command

admin ~idemo.c -y"George Wheeler” s.demo.c

.inserts the comment “George Wheeler” in the new s-file s.demo.c.

527

XENIX Programmer’s Guide

The comment may be any ccombination of letters, digits, and punctuation
symbols. If spaces are used, the comment must be enclosed in-double quotes.
The complete.command must fiton.one line.

If the —y optionis notused when creating an s-file, a comment of the form

date and time created YY/MM/DD HHMMSS by logname

isautomatically inserted.

5.11.5 Suppressing Normal Output

You can suppress the normal display of messages created by the get command
by using the —s option. The option preventsinformation, such asthe SID of the
retrieved file, from being copied to the standard output. The option doesnot
SuUppresserror messages.

The —s option is often used with the —p option to pipe the output of the get
command to other commands. For example, the.command

get —p -s s.demo.c |lpr
copiesthe most recent versioninthe s-file s.demo.ctothelineprinter.
You:can also suppress the normal output.of the delta command by using the —s
option. This option suppresses.all output normally directed to the standard
output, except for the normalcomment prompt.
5.11.6 Including and Excluding Deltas
You can explicitly define which deltas you wish to include and which you wish
to exclude when creating a g-file, by using the -i and —x options of the get
command.
The ~i option causes the command to apply the given deltas when constructing
*a version. The —x option causes the command to ignore the given deltas when
constructing a version. Both options must be followed by one or more SIDs. If
multiple SIDs are given they must be separated by commas (,). A range of SIDs
may be given by separating two SIDs with a hyphen {-). For example, the
command
get -i1.2,1.3 s.demo.c
causesdeltas1.2.and 1.3tobeusedto construct the g-file. The command

get -x1.2-1.4 s.demo.c

causes deltas 1.2 through 1.4 tobeignored when constructingthe file.

5-28

SCCS: A Source Code Control System

The —i option is useful if you wish to automatically apply changes to.a version
whileretrievingit for editing. For example, the command

get —e =i4.1 -r3.3 s.demo.c

retrievesversion 3.3 for editing. When the file isretrieved, the changesin delta
4.1 are automatically applied to it, making the g-file the same as if version 3.3
had been edited by hand using the changes in delta 4.1. These changes can be
saved immediately by issuing a delta command. No editingisrequired.

The —x -option is useful if you wish to remove changes performed on a given
version. Forexample, the command

get ~e —x1.5 -r1.6 s.demo.c

retrieves version 1.6 for editing. When the file isretrieved, the changesin delta
1.5 are automatically left out-of it, making the g—ﬁle the same as if version 1.4
had been changed according to delta 1.6 (wnt,h no intervening delta 1.5). These
changes-can be saved immediately by issuing a delta command. No editingis
required.

When -deltas are ‘included or excluded wusing the —~i and —x options, get
comparesthem with the deltasthat:are normally used in constructing the given
version. If two deltas attempt to change the same line of the retrieved file, the
command displaysa warning message. The message shows the range.of linesin
which the problem ‘may exist. Corrective action, il required, is -the
responsibility of the-user.

5.11.7 Listing the Deltas of a Version
You can create a table showing the deltas required to create a given version by
using the -1 option. ‘This option causes the get command to create an I-file

-which contains the SIDs of all deltas used to create the givenversion.

The option is typically used ‘to create .a history of a given version’s
development. For example, the command

get -1 s.demo.c

creates a file named L.demo.c containing the deltas requlred to create the most
recent versionof demo.c.

You can display the list of deltas required to create a version by using the ~1p
opmon The option performs the same function as the ~1 options except it
copiesthelist to the standard output file. For example, the command

get ~Ip -r2.3 s.demo.c

copies the list of deltas required to create version 2.3 of demo. ¢ to the standard

5-29

XENIX Programmer's Guide

output,

Note that the —l-option'may be combined with the —g option tocreate alist of
deltas without retrieving the actual version. .

5.11.8 Mapping Lines to Deltas

You can map each line in agiven version toits corresponding delta by using the
-m option of the get command. This option causes-each line in'a g-file to be

preceded by the SID of the delta that caused that line to be inserted. The SID'is.

separated from the beginning of the line by atab character. The —m option is
typically used toreview the history of each line in a given version.

5.11.9 Naming Lines

You can name each line in a.given version with the current module name (ie.,
ihe value of the %M % keyword) by using the —n option of the get command.
This option causes eachline of the retrieved file to'be preceded by the value of
ihe' %M %% keyword and atab character.

Che ~n option is typically used to indicate that a given line is from the given
ile. When both the ~m and ~n options are specified, each line begins with the
"M% keyword. '

»11.10 Displaying a List of Differences

fou can display a detailed list of the differences between a new version of a fle
nd the previous version by using the —p option of the delta command. This
ption causes the command todisplay the differences, in a format similar to the
utput.of the XENIX diff command.

.11.11 Displaying File Information

‘ou can display information about a given version by using the —~g option of the
et command. This option suppresses the actual retrieval of a version and
auses only the information about the version, such as the SID and size, to be

isplayed.

he —g option is often used with the —r option to check for the existence of a
iven version. For example, the command

get -g -r4.3 s.demo.c

isplaysinformation about version 4.3 in the s-file 8. demo.c. If the version does
>texist, the command displaysan error message.

30

SCCS: A Source Code Control System

5.11.12 Removing a Delta

You can remove a delta from an s-file by using the rmdel command. The
command hasthe form

rmdel ~rSID 5. filename

where -rSID gives the SID of the deltato beremoved, and s, filename isthe name
of the s-file from which the delta is to be removed. The delta must be the most
recently created delta in the s-file. Furthermore, the user must have write
permission in the directory containing the s-file, and must either.own the s-file
or be the user who createdthe delta.

For.example, the command

rmdel -r2.3 s.demo.c
removes delta2.3 from thes-file.s.demo.c.
The rmdel command will refuse to-remove a protected delta, that is, a-delta
whose release number isbelow the current floor value, above the current ceiling
value, or equal to a current locked value {see the section “Protecting S-files"
given earlier iin this chapter). The command will also refuse to remove a delta

whichis currently beingedited.

The rmdel command should be reserved for those cases in which incorrect,
global changes'were made to ans-file.

Note that rmdel changes the type indicator of the given delta from “D” to
“R”. A type indicator defines the type of delta. Type indicators are described
infullinthesection delta(CP)inthe XENIX Reference Manual.
5.11.13 Searching for Strings
You can search for strings in files.created from an s-file by ‘using the what
command. This command searches for the symbol #(@) (the current value-of
the 9 Z % key word) in the given file. It then prints, on the standard output, all
text immediately following the symbol, up to the next double quote(”), greater
than (>), backslash (\), newline, or (non-printing) NULL character. For
example, if the s-file 8. dema.c contains the following line

char id[] = "%Z%%M%%:%61%";
andthe command

get -r3.4 s.prog.c

.isexecuted, then the command

5-31

XENIX Programmer’s Guide

what prog.c
displays

prog.c:
prog.c:3.4

You may also use what to search files that have not been created by SCCS
commands.
5.11.14 Comparing SCCS Files
You c¢an compare two versions from a given s-file by using the scesdiff
command. This command prints on the standard output the differences
between two versionsof the s-file. The command has theform

scesdifl -rSID1 <rSID2 s.fillename
where -rSID1 and -rSID2 give the SIDs of the versions to be compared, and
e.filename is the name of the s-file containing the versions. The version SIDs
must be given in the order in which they were created. For example, the
command

scesdiff ~r3.4 -r5.6 s.demo.c

displays ‘the differences between versions 3.4 and 5.6. The differences are
displayedin aform similar to the XENIX diff command.

5-32

)

Chapter 6
Adb: A Program Debugger

6.1 Introduction 1

6.2 fnvocation 1

6.3 TheCurrent Address—Dot 1
6.4 Formats 2

6.5 DebuggingCPrograms 3
6.5.1 DebuggingaCorelmage 3
6.5.2 MultipleFunctions 4
6.5.3 Setting Breakpoints 5
6.5.4 Other BreakpointFacilities 7

6.6 Maps 7

6.7 AdvancedUsage 8
6.7.1 FormattedDump 9
6.7.2 DirectoryDump 10
6.7.3 HistDump 11
6.74 Converting Values 11

6.8 Patching 11
6.9 Notes 12
6.10 Figures 13
6.11 AdbSummary 26
6.11.1 CommandSummary 26

6.11.2 incomplete FormatSummary 27
6.11.3 ExpressionSummary 27

Adb: A Program Debugger

6.1 Introduction

Adbisanindispensabletool fordebugging programsorcrashed systems. Itallows you
to look at core files resulting from :aborted programs, ‘print output in a variety of
formats, patch files, and run programs with embedded breakpoints. This chapterisan
introductiontoadbwithexamplesofitsuse. Itexplainsthe various formatting options,
techniques for debugging C programs, and gives examples of printing file system
information, andof patching.

6.2 Invocation

Theadbinvocationsyntaxis as follows:
adb objectfile corefile

where objectfile isanexecutable XENIX file and corefile isacore image file. Oftenthis
will look like:

adb a.out-core
ormoresimply:
adb

where the defaults are a.our and core, respectively. The filename minus(—) means
ignorethisargumentasin:

adb ~ core
‘Adb has requests for examining locations in either file. A question mark (?)1equest

examines the contents of objectfile; a slash (/) request examines the corefile. The
generalform of theserequestsis:

address ? formar
or
address | format

6.3 The Current Address — Dot

Adb:maintains a pointer to the current address, called dot, similar in functionto the
current pointer inthe editor, ed(C). When anaddressisentered, the current addressis
settothat location, sothat:

01267
setsdottooctal 126andprintsthe instructionatthataddress. Therequest
.,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the

lastitem printed. Whenusedwith the question mark(?) or slash (/) request, the currerit

address can be advanced by typing a ncwline; it canbe decremerited by typing acaret

0.

Addressesarerepresented by expressions. Expressionsaremadeupofdecimal, octal,

and hexadecimal integers, and symbols from the program under test. These may be
6—1

XENIX Programmer’s Guide

combined withthe following operators:

+ Addition

- Subtraction

*

Muliplication

Integer division

2 8

Bitwise AND
| Bitwise inclusive OR
Rounduptothe nextmultiple

- Not
Note that all arithmetic within adb is 32—bit arithmetic. When typing a symbolic
address for a C program, type ‘cither “‘name’’ or “‘_name"’; adb recognizes both
forms. Because adb will find only one instance of “‘name’*:and “‘_name’ " (generally
the first toappear inthe source) one will mask the other if they both appear inthe same
source file.

6.4 Formats)

To print data, you can specify a collection of letters and characters that describe the
format of the printout. Formats are remembered in the :sense that typing a request
without one will cause the new printout to ‘appear in the previous format. The
following are the most commonly used format letters; fora completelist see adb(CP)

b 1 byte in octal

c 1 byte as a character

o 1 word in octal

d 1 word in decimal

X 1 word in hexadecimal

b 2 :words (1 longword) in decimal
X 2 words (1 longword) in hexadecimal
1 machine instruction

s a null terminated character string

a the value of dot

u 1 word in unsigned -decimal .
n print-a newline .)
r print a blank 'space
B backup dot

equestis:
address | ;count] command | modifier |

which'setsthe current address (dot)toaddress andexecutesthe command counztimes.
6-2

Adb: A Program Debugger

The following table illustrates some generatadbcommand meanings:
Command Meaning

Print contents from a.out file
Print contents from core file
Print value of "dot”
Breakpoirt control
Miscellaneous requests
Request separator

Escape to shell

0 g

i gpy ee

Adb catches signals, so ausercannotuse aquitsignalto exitfromadb. Therequest $q
or$Q(or <CONTROL-D>)must beusedtoexit fromadp .

6.5 Debugging C Programs

The following subsections describe use of adb indebugging the C programs given in
thenumberedfigures at theend of this chapter. Refertothesefiguresasyouworkyour
waythroughtheexamples. :

6.5.1 Debugging a Core Image

Considerthe Cprogram in Figure 1. Thisprogram illustrates acommonerrormade by
C programmers. The object of the program is to change the lowercase “t™ to
uppercase *“T"" inthe string pointed to by “‘charp’* and then write the character string
tothe fileindicated by argument 1. Thebugshownisthatthe character *“T"*isstoredin
the pointer “‘charp™ instead of the string pointed to by *‘charp.”” ‘Executing the
program produces a core file because of an out—of—bounds memory reference.
(Notethatacore filemay notbe producedonall systems.)
Adbisinvokedby typing:

adb a.out-core
Thefirstdebuggingrequest

$c

isused to give a C backtrace through the subroutines called. ‘As shown in Figure 2,
only one function, main, was calledandthe arguments ““argc”” and “‘argv’ " have hex
values 0x2 and Ox1£ff90 respectively. Both of these values look reasonable; 0x2 =
two arguments, OxHff90 = address on stack of parameter vector. These values may
be different onyour system duetoadifferent mapping of memory.

Thenextrequest
Sr

prints out the registers including the program couster and -an interpretation of the
instructionatthatlocation.

Therequest:

XENIX Programmer’s Guide

Se
prints outthe values of allexternal variables.

Amapexistsforeachfile handledbyadb. The mapforthea.outfileisreferenced with
a question:amark (?), whereas the map for the core file is referenced with a slash (/).
Furthermore, a good rule of thumbistouse questionmark for instructions and slash for
datawhenlookingatprograms. Toprint out informationaboutthemaps, type:

$m
Thisproducesareport ofthecontentsofthemaps.
Inourexample, it isusefultosee the contents of the string pointedtoby ““charp.”" This
isdonebytyping

*charp/s
which means.use ‘‘charp”’ as-a pointer in the core file and print the information asa
character string. This printout shows that the character buffer was incorrectly
overwrittenrand helps identify the error. Printingthelocations around ‘‘charp*’ shows

thatthebufferisunchanged but that the pointeris destroyed. Similarly, we couldprint
informationabout the argumentstoa function. Forexample

Ox1£f90,3/X

printsthehex values of the three consecutive cells pointed toby ““argv’” inthe function
main. Notethatthese valuesarethe addresses of the argumentstomain. Therefore:

Ox1ttfbb/s

prints the ASCII value of the first argument. Another way to print this value would
havebeen

*g

The quotation mark (") meansditto, i.¢., the Jast address typed, inthis case *‘Ox1{ff90
;" thestar (*)instructsadbtouscthe address ficld ofthe corefile asapointer.

Therequest
=X

printsthe current address inhex (and not its contents). Thishasbeensettothe address
of the first argument. The current address, dot, isused by adbto remember its current
location. Dot allowsthe usertoreference locationsrelative to the current address, for
example:

.—10/d
6.5.2 Multiple Functions

Considerthe Cprogramillustrated inFigure 3. Thisprogram calls functionsf, g ,and 4
untilthestack isexhausted and acore image is produced.

Again, enteradbbytyping
adb

which assumes the names a.out and core for the executable file and core image file,
respectively. Therequest
6—4

Adb: A Program Dcbugger

$c

fills'a page of backirace referencestof, g ,.and 4. Figure 4 shows anabbreviated list.

Pressing the INTERRUPT key terminates the output and brings you back to the adb

request level. Additionally, some versionsof adb-will automatically quit after fifieen
levelsunlesstoldotherwise with the command:

slevelcount$c
Therequest
,5%¢
printsthefivemost recent activations.

Notice that each function (f, g, and 4) hasa counter that counts the number of times
eachhasbeencalled.

Therequest
fent/D

prints the-decimal value of the counter for the function f. Similarly, “‘gent” and
“‘hcnt’” could be printed. Notice that because “‘fent™, “‘gent™’, and “‘hent”’ are int
variables, and on the MC68000 int is implemented aslong, to print its value youmust
usethe Dtwo—~word format.

6.5.3 Setting Breakpoints

Consider the C program in Figure 5. This program changestabsintoblanks. We will
runthisprogramunderthe control of adb (see Figure 6) by typing:

adb a.out —
Breakpointsare setintheprogramas:
address:b [request]
Therequests

settab+8:b
fopen+8:b
tabpos+8:b

sct breakpoints at the start of these functions. ‘C does not generate statement labels.
Therefore, it is currently not possible to plant breakpoints at ‘locations other than
functionentry points without knowledge of the code generated by the Ccompiler. The
aboveaddressesareenteredas

symbol+8

sothat they will appear in any C backtrace, because the first two instructions of each
function are used to set up.the local stack frame. Note that some of the functions are
fromthe Clibrary.

Toprintthe locationofbreakpoints, type:
$b

The display indicates a count field. A breakpoint is bypassed counr—1 timesbefore

causing a stop. Thecommand field indicatesthe adbrequeststobe executed eachtime
' 6~5

XENIX Programmer’s Guide

the breakpointisencountered. Inourexamplenocommandficldsarepresent.

By displaying the original instructions at the function serrab we see that the breakpoint
is 'set ‘afier ‘the tstb instruction, which ‘is the stack probe. We can-display ‘the
instructionsusing theadbrequest:

settab,5%ai

This request-displays five instructions starting at serzab with the addresses of each
locationdisplayed. Anothervariationis

settab,5%
which displaystheinstructions with onlythe starting address.

Notethat weaccessedtheaddresses fromthe a. out file withthe question(?) command.
In general, when asking for-a printout .of multiple items adb advances the current
address the number of bytes necessary to satisfy the request. 1n the above example,
five instructions were displayed and the current address was advanced 18 (decimal)

bytes.
Torunthe programitype:
H
Todelete abreakpoint, for instaxicethe entrytothefunctionsetrab, type:
settab+8:d
Tocontinueexecutionof theprogram from the breakpoint type:
c
Orxe the program has stopped (in this case at the breakpoint for fopen), adb requests
canbeusedtodisplay thecontentsof memory. Forexample
$c
displaysastacktraceor
tabs,6/4X

prints six lines of four locations each from the array called *‘tabs’’. By thistime (at
locationfopen) in'the C program, settabhas been called.and should have seta onein
every eighthlocationof “‘tabs’’.

The XENIX quitandinterrupt signalsactonadb itself ratherthanonthe program being
debugged. If suchasignal-occurs then the program being debugged is stopped and
control'is returned to.adb. The signal is saved by adb and‘is passed on tothe test

programif
HY

istyped. Thiscanbeuseful whentesting interrupt handling routines. The signalisnot
passedontothetest program if

¢ 0
istyped.

Adb: A Program Debugger

6.5.4 Other Breakpoint Facilities

Arguments and changes of standard inputand output are passed toaprogramas:
sr argl arg2 ...<infile >outfile
Thisrequestkillsanyexisting programundertestandstartsthea.outafresh.
Theprogrambeing debuggedcanbe single—stepped by typing:
s

If ‘necessary, this request ‘starts up the program being debugged and stops after
executingthe first instruction.

Adballowsaprogramtobe executedbeginning ataspecificaddress by typing:
address:t

Thecount fieldcanbeusedto skipthe first nbreakpoints with:
R

Therequest
,C

may alsobeused for skipping the first nbreakpoints whencontinuing aprogram.

Aprogram canbe continued atanaddress different fromthe breakpoint by typing:
address:c

Theprogrambeing debuggedrunsasaseparate processand canbekilled by typing:
k

6.6 Maps

XENIX supports several executable file formats. These are used totell the loader how
to load the program file. Nonshared program files are the most common and are
generatedbyaCcompilerinvocationsuchas:

cc pgm.c
Asharedfileis producedbya Ccompilercommand line of the form

cc —npgm.c
Notethat separate instruction/data filesare not supported on the MC68000.

Adbinterpretsthese different file formats and providesaccesstothe different se gments
throughasetofmaps. Toprintthemapstype:

$m

In nonshared files, both text (instructions) and data are intermixed. This makes it
impossible for adb to differentiate data from instructions and some of the printed
symbolic addresses look incorrect; for example, printing data addresses as offsets
fromroutines.

Insharedtext, theinstructionsare separatedfrom dataand the

XENIX Programmer’s Guide

9%

accessesthedatapart of thea. ouzfile. Thisrequesttellsadbtousethesecondpartofthe
mapinthea.outfile. Accessing datainthe core file showsthedataafterit wasmodified
by the execution of the program. Notice-alsothat the data'segment may have grown
during programexecution. Inshared filesthe corresponding core file does not contain
the programtext.

Figure 7 shows the display.of three maps for the same program lirked as a nonshared
and sharedrespectively. The b, e, andfficldsareusedbyadbtomapaddressesintofile
addresses. Thefl fieldisthe lengthoftheheaderatthebeginning of the file (Ox34 bytes
forana.out file and 0x800 bytes fora core file). The /2 field isthe displacement from
the beginning of the file to the data. Forunshared files with mixed text and datathisis
the sameasthe length of the header; for shared files thisisthe length of the headerplus
the sizeof thetextportion.

The b and e fields are the starting and -ending locations for a segment. ‘Given an
address, A, the locationinthe file (eithera.outor core)iscalculatedas:

bl=<A<el = file address = (A—bl)+fl
b2<A<e? = file address = (A~b2)+12

Ausercanaccesslocationsbyusingtheadbdefined variables. The
$v
request printsthe variablesinitializedby adb:

b Base address of data segment
d Length of the data segment

s Length of the stack

t Length of the text

m Execution type

In Figure 7 those wvariables not present are zero. These variableés can be used in
expressions suchas

<b

in the address field. ‘Similarly, the value of the variable can be changed by an
assignmentrequest suchas
02000>b

which sets ‘‘b” to-octal 2000. These variables are useful to know if the file under
examinationisanexecutable orcore image file.

Adbreadstheheader of the core image file to find the values for these variables. Ifthe
secondfile specified does not seemtobe acorefile, orifitismissing, thenthe headerof
the executable fileisused instead.

6.7 Advanced Usage

Withadb it is possibleto combine formatting requests to;provide elaborate displays.
Beloware severalexamples.

Adb: A Program Debugger

6.7.1 Formatted Dump

Theline
<b,—~1/404"8Cn
prints four octal words followed by their ASCIL interpretation from the data space of
thecore image file. Brokendown, therequest piecesmean:
<b Thebaseaddressofthe datasegment.

<b,~1 Print fromthebase addresstothe end—of—file. Ancgativecountisused
here and elsewhere toloop indefinitely oruntil some error condition (like
end—of—file)isdetected.

Theformat ‘ ‘404°8Cn"" isinterpreted as follows:
40 Print fouroctallocations.

4" Backup the current address four locations (to the original start-of the
field).
8C Print -eight consecutive characters using an escape convention; ‘cach

characterinthe range octal 010037 is printedasan at—sign (@) followed
by the corresponding character in the range octal 0140100177, Anat—
signisprintedas“@@"".
n Printanewline.
Therequest:
<b,<d/404°8Cn

could have been used instead to allow printing to stop at the end of the data segment
(<dprovidesthe datasegment size inbytes).

The formatting requests can be combined ‘with adb’s ability to read in a script to
producea core imagedump script. Adb isinvoked withthe commandline

adb a.out core < dump
toreadinascript file containingrequests nameddump. Anexample of suchascriptis:

XENIX Programmer’s Guide

1205w
4095%s
Sv
=3n

$m

=3n"C Stack Backtrace”
$C

=3n"C External Variables”
Se

=3n"Registers”

$r

08s

=3n"Data Segment”
<b,—1/8ona

Therequest

1208w

sets the width of the-output to 120 characters (normally, the width is 80 characters).
Adbattemptstoprintaddressesas:

symbol +.offset
Therequest
4095%s

increases the maximum permissible offset to the nearest symbolic-address from 255
(default)to4095. Theequal signrequest(=)canbeused toprint literal strings. Thus,
headingsare providedinthisdump program withrequests suchas:

=3n"C Stack Backtrace”

Thisspacesthreelines andprintsthe literal string. Therequest
Sv

printsallnonzeroadb variables. Therequest
08s

setsthe maximum offset for symbol matchesto zero, thus suppressing the printing of
symbolic labels in favor of hexadecimal values. Note that this is only done for the
printingofthe datascgment. Therequest

<b,—1/8ona

prints a dump from the base of the data segment to the end~of~—file with an-octal
address ficldandeight octalnumbers perline.

Figure9showsthe resultsof some formatting requestsonthe Cprogramof Figure 8.

6.7.2 Directory Dump

Figure 10illustrates anothier set of requests to dumpthe contents of adirectory (which
ismadeupofaninteger ‘ ‘inumber"* followedby a14—character name):

6—10

.Adbc A Program Debugger

adb dir —

=n8t"Inum"8t"Name”

0,—17u8tl4cn
Inthis example, *‘u”’ prints the inumber as an unsigned decimal integer, *‘8t"" means
that adb will space to the next muktiple of 8 onthe output line, and “‘14c”" prints the
14—character filename.

6.7.3 Nist Dump

Similarly the contents.of the ilist of afile system (e.g. , /deviroot) canbe dumped with
the following set of requests:

adb /dev/root —

02000>b

m <b

<b,=—1"flags"8ton"links,uid,gid"8t3bn",size"8ibrdn"addr" 8t8un"times"8:2Y2na

Inthisexamplethe value ofthebase forthemap was changedto02000by typing
m<b

since thatisthe start of anilist withina file system. Therequest *‘brd’” above wasused
to print the 24—bit size ficld as:a byte, a:space, and a decimal integer. The lastaccess
time ‘and last modify time are printed with the “‘2Y"’ operator. Figure 10 shows
portions of these requestsasappliedtoadirectory and file system.

6.7.4 Converting Values

Adbmaybeusedtoconvert values fromonerepresentationtoanother. Forexample
072 = odx

prints
072 58 0x3a

which are the octal, decimal and hexadecimal representations of 072 (octal}. The
format is remembered so that typing subsequent numbers prints them-in the given
formats. Character valuescanbe convertedina similar way; forexample

'a’ = co
prints
a 0141

1t may also beused to evaluate expressions. However, be forewarned that all binary
operators have the same precedence, a precedence that is lower than that for unary

operators.
6.8 Patching

Patching files with adb is accomplished with the write (w.or W) request. This is often
usedinconjunction withthe locate , @ or L)request. Therequestsyntax forland ware
similar: 6-11

XENIX Programmer’s Guide

N value

Therequestlisusedto matchon2 bytes; Lisusedfor4 bytes. Therequest wisusedto
write 2 bytcs, whereas ‘W ‘writes 4 bytes. The value field in either locate or write
requestsisan expression. Therefore, decimal and octal numbers, or character stnngs

aresupported.
Inordertomodifyafile,adbmustbecalled withthe —wswitch:

adb —w filel file2
When called with-this-option, filel and file2 are created if necessary and-opened.for
bothreading and writing.
For example, consider the C program shown in Figure 8. 'We can.change the word
"This” to"The ” in the executable file for this program, ex7, by using the following
requests:

adb —w.ex7 —

N °Th’

W "The’
Therequest

N

starts at-dot and stops at the first match of *‘Th’* having set dot to the address of the
locationfound. Notetheuse ofthe questionmark (?)to writetothe x. ourfile. The form

2%

wouldhavebeenusedforasharedfile.

More frequently therequestistypedas:
21 °Th"; ?s

This locatesthe first occurrence of ‘Th*’ and printsthe entire string. Executionofthis
request setsdottotheaddressofthecharacters “Th”’.

Asanotherexample oftheutility of the patching facility, considera:C program thathas
an internal logic flag. The flag:could be set by the user through adb and the program
run. For example:

adb x.out —
:s argl ‘arg2
flag/w 1

H

The :srequest is normally used to:single —step through a process or start a:process in
single—stepmode. Inthiscaseitstartsx.out as asubprocess with-arguments “‘arg1”*
and “‘arg2”. If there isa subprocess running, adb writes to it rather than to the file so
the wrequestcauses *‘flag2’ " tobe changed inthe memory of the subprocess.

6.9 Notes

Belowisalist of somethingsthatusers should beaware of:
The stack frame is allocated by teh first two instructions at the beginning of
every C routine. Thus, putting breakpoints at the entry point.of routines
6—12 meansthatthe functionappears nottohavebeencalled whenthe breakpoint

Adb: A Program Debugger

occurs. Tryplacingthe breakpointat‘routine’’ + instead.

1. When printing addresses, ADB uscs ither text or data symbols from the
x.out file. This sometimes causes unexpected symbol names to be printed
with data(e.g., *‘savr5:+022""). Thisdoesnothappenif question mark (?)
isused fortext (instructions)and slash (/) fordata.

2. ‘Localvariablescannotbeaddressed.

6.10 Figures

Figure1: C programwithpointer bug

#include <stdio.h>
struct buf !
int fildes;
int nleft;
char *nextp:
char buff{512};
ibby;
struct buf *obuf;

char *charp = "this is a sentence.”;

main(arge,argv)
int ‘argc;

char **argy;

1

char cc;
FILE *file;

if(arge < 2) !
printf("Input file missing\n");
exit(8);

if((file = fopen(argv1];"w")) == NULLY!
print{("%s : ‘can’t open\n”, argv1));
exit(8);

1

charp = 'T";

printf("debug 1 %s\n",charp);

while(cc= “*charp+ +)
putc(cc, file);

fAlush(file);

6-13

XENIX Programmer’s Guide

Figure2: Adboutputfor Cprogramoffigurel

adb

$c

start+44: main (0x2, Ox1FFF90)

$r

do 0x0 a0 0x54

di 0x8 al OX1FFF90
d2 0x0 a2 0x0

d3 0x0 a3 0x0

d4 0x0 ad 0x0

ds 0x0 a5 0x0

dé 0x0 a6 Ox1FFFIC
d7 0x0 sp Ox1FFF74
ps 0x0

pc 0x80E4 _main+160: movb (a0),—1.(a6)
Se

_environ: OxI1FFFIC
-ermo: Ox19

_bb: 0x0
_obuf: 0x0
.charp: 0x55

dob: 0x9BIC

—sobuf: '0x64656275

lastbu: Ox96F8

—sibuf: 0x0

callocs: 0x0

-allocp: 0x0

aalloct: Ox0

.allocx: 0x0

-end: 0x0

_edata: 0x0

$m

Tmap ‘xiout’

b1 =0x8000 el =:0x970C fl = 0x20
b2 = 0x8000 €2 = 0x970C f2 = 0x20
/ map l_'

bl = 0x0cl = 0x1000000 fI = 0x0

b2 = 0x0e2 = 0x0f2 = 0x0

*charp/s
0x55:
data address not found
0x111190,3/X
0x1FFF90: O0x1FFFRO Ox1FFFB6, 0x0
Ox1{1b0/s
OxIFFFBO: X.out
Is
Ox1FFFBO: x.out
=X

Cx1FFFBO
~10/d
Ox1FFFA6: 65497

6—14

Adb: A Program Debugger

6—15

XENIX Programmer’s Guide

Figure3: MultiplefunctionC program

int fent,gent,hent;
h(x,y)
I

int hi; register int hr;
hi = x+1;

hr = x~y+1;
hent++ 5

hj:

f(hr,hi);

int -gi; register int gr;
81 =:4q4—Pp;

gr = q~p+l;
gent++

g
h(gr,gi);

int fi; register int fr;
fi = a+2%b;

fr = a+b;

fort++ 3

fj:
g(fr.fi);

f(l,1);

6~16

Figure4: AdboutputforC programof Figure3

adb

$c
h+46:
£+48:
£4+70;
_h+46:
.g+48:
£+70:
h+46:
-g+48:
<INTERRUPT>
adb
»5%¢
.h+46:
-g+48:
£+70:
h+46:
.g+48:
fent/D
font:
gent/D
-gent:
hent/D
_hent:

$q

b bade b bods brba

b bide br ks

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, 0x1258)
(0x2,-0x92B)
(0x92A, 0x929)
(0x92B, 0x1254)
(0x2, 0x929)
(0x928, 0x927)

(0x2, 0x92D)
(0x92C, 0x92B)
(0x92D, . 0x1258)
(0x2, 0x92B)
(0x92A, 0x929)

Adb: A Program Dcbugger

6—17

XENIX Programmer’s Guide

Figure5: Cprogramtodecodetabs
#include <stdio.h>

#define MAXLINE 80
#define YES 1
#define NO 0
#define TABSP 8

char input/] = "data”;
char ibuf{518};
int tabs MAXLINE};

main()
I

int col, *ptab;
charic;

ptab = tabs;
settab(ptab); /*Set initial tab stops */
col =];
if(fopen(input,ibuf) < 0) !
printf("%s : not found\n",input);
exit(8);

|
while((c = getch(ibuf)) 1= ~1)!
switch(c) !
case "\t /* TAB ¥
while(tabpos(col) != YES)!

/*put BLANK */
putchar(’);
col++;

1
i

break;
case "\n': /*NEWLINE ¥/

putchar(\n’);
col = 1;

default:
putchar(c);
col++ ;

L
4

1
1

1
1* Tabpos return YES if col is a tab stop */

tabpes(col)
int col;
i
if(col > MAXLINE)
return(YES);
else
return(tabgcol);

6—18

Adb: A Program Debugger

7% Settab — ‘Set -initial tab stops */
settab(tabp)
int *tabp;
1
int §;

for(i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabs]i] = NO) : (tabsi] = YES);

1
1

/¥ getch(ibuf) — Just do a getc call, but not a macro */
getch(ibuf)
FILE *ibuf;
i
return(getc(ibuf));
}

6-19

XENIX Programmer’s Guide

Figure6: Adboutputfor CprogramofFigure$

adb x.out

settab+8:b

fopen+8:b

getch+8:b

tabpos-+8:b

$b

breakpoints

count bkpt command

1 tabpos+8

1 -getch+8

1 fopen+8

1 -settab+8

settab,5%ia

settab: link a6, #0xFFFFFFFC

settab+4; tstb —132.(a7)

settab+8: moveml #<>,—(a7)

-settab+12: clrl —4.(ab)

~settab+16: cmpl #0x50,—4.(a6)

.settab+24:

settab,57§

settab: link 26, #0xFFFFFFFC
tstb —132.(a7)
moveml #<>,—(a7)
ol —d4.(a6))
cmpl #0x50,-4.(26)

ir

x.outrunning

int -settab+8: moveml #<>,=(a7)

settab+8:d

¢

x;out:running

ls)creakpoim fopen+8: jsr —findio

.main+52: Sfopen (0x9750, 0x9958)

start+44: main (0x1, Ox1FFF98)

tabs,6/4X

dabs: 0x1 0x0 0x0 0x0
0x0 0x0 0x0 0x0
Ox1 0x0 0x0 0x0
0x0 0x0 0x0 0x0
Ox1 0x0 0x0 0x0
0x0 0x0 0x0 0x0

-20

Figure7: Adboutputfor maps

adb x.out.unshared core.unshared

$m

7map ‘x.out.unshared’

bl =.0x8000 el = 0x83E4

b2 = 0x8000 e2 = 0x83E4

/map ‘core.unshared’

bl = 0x8000 el = 0x8800

b2 = 0x1EB000 €2 = 0x200000

$v

variables

b = 0x8000

d = 0x800

e = 0x8000

m = 0x107

s = 0x15000

$q

adb x.out.shared core.shared

$m

?map ‘x.out.shared’

bl = 0x8000 el = 0x8390

b2 = 0x10000 e2 = 0x10054

/map ‘core.shared’

bl = 0x10000 el = 0x10108

ts>2 = 0x1EBO00 €2 = 0x200000
v

variables

b= 0x10390

d = 0x800

e = 0x8000

m = 0x108

s = 0x15000

$q

Adb: A Program Debugger

fl = 0x34
2 =:0x34

fl = 0x800
f2 = 0x1000

[

B2 R
(=% =]
&
g%

[~

6-21

XENIX Programmer’s Guide

Figure8: Simple C program illustratingformatting and patching

char
int

int
long
float
char
main()
!

6—22

srl] = "This is a character string”;

one =1,

number = 456;

Inum = 1234,

fp = 1.25;

gr2] = "This is the second character siring”;
one = 2;

Adb: A Program Debugger

Figure9: Adboutputllustratingfancy formats

adb x.out.shared core.shared

<b,~1/8cna

strl; 052150064563 020151 071440 060440 061550 060562 060543
strl+16: 072145071040 071564 0711510671470 0O 01

-number:
_number; 0 0710 ‘0 02322 0376400 052150:064563

ste2+4: 020151 071440 072150 062440°071545 061557 067144 020143
Suw2+20: 064141 071141 061564 062562 020163 072162 064556 063400

$nd:
$nd: 01 0140
<b,20/404'8Cn

strl: 052150 064563 020151 071440 This is
060440-061550.060562 060543 a charac
072145071040 071564 071151 ter sti
0671470 0 o1 npReEe@'@'@a

-number: 0 0710 0 02322 @'@‘@H@'@'@dR

fpt: 0376400 052150064563 ? @‘@'This
020151 071440 072150 062440 is the
071545 061557067144 020143 ‘second ¢
064141 071141 061564 062562 haracter
020163 072162 064556 063400 string@"

$nd: 01 0140
data-address ‘not found

<b,20/404'818Cna

strl: 052150 064563 020151 071440 This is

~strl1+8: 060440 061550 060562 060543 a charac

strl+16; 1072145 071040 071564071151 ter stri

srl+24: 0671470 0 01 ng@‘@'e@@'@a

-number:

_number; 0 0710 © 02322 @‘@'@H@ ‘@ ‘@dR
t:

fpt: 0376400 052150 064563 2 @‘@ This

str2+4: 1020151 071440072150 062440 is'the

_str2+12: 071545 061557 067144 020143 second ¢

su2+20: 064141 071141 061564 062562 haracter

-str2+28: ‘020163 072162 064556 063400 string@"*

$nd:

$nd: 01 0140
data address not found

<b,10/2b8¢" 2cn

stri: 0124 0150 Th
0151 0163 is
040 0151 i

XENIX Programmer’s Guide

-24

0163 040
0141 040
0143 0150
0141 0162
0141 0143
0164 0145
0162 040

"sggg_ﬂn

)

Adb: A Program Debugger

Figure10: Directoryandinodedumps

adb dir —
=n{Inode"t' Name”; 0,—17utlden

Inode ‘Name
0x0: 652

82 "

5971 «cap.c

5323 cap

0 pp

adb /dev/root -
/dev/root — ‘not in a.out format
02000>b
m<b
$v
variables
b = 0x400
<b,-1?"flags"8tonTinks,nid,gid"813bn"size"$tbrdn"addr"8t8un"times"82Y2na
0x400: flags 073145
links,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times 1976 Feb 5.08:34:56 1975 Dec 28 10:55:15

0x420: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 300508294 25130 15216 26390 29806 10784
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

0x440: flags 05173
lirks;uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times 1977 Apr 208:58:01 1977 Feb § 10:2]:44

6-25

XENIX Programmer’s ‘Guide

6.11 AdbSummary

6.11.1 Command Summary

Formatted printing
?format print fromx. outfile according toformat
Iformat print from core fileaccordingtoformat
= format printthe value of dor
?wexpr writeexpressionintox.outfile
Iwexpr writeexpressionintocore file
Nexpr locateexpressioninx.ourfile

Breakpoint and program control

b set breakpoint at dot

H continue running program

«d delete breakpoint

ik kill the program being debugged
ir run x.out file under adb-control
s single step

)

Miscellaneousprinting
$b print current breakpoints
$c C stack trace
Se external variables
$m print adb segment maps
$q exit from adb

$r general registers

$s set offset for symbol match

$v print adb variables

$w set output line width
Callingtheshell

! call sh (shell) to read rest of line ‘ /\)
Assignmenttovariables G

>name -assign dot to variable or register name

6—26

Adb: A Program Debugger

6.11.2 Incomplete Format Summary

date

ARG I-FLER TR W

the value of dot

1 byte iin-octal

1 byte ‘as a-character

1 word in decimal

machine instruction

1 ‘word in octal

print a newline

print a blank space

a null terminated character string .
move 1o next n space-tab

1 word as unsigned integer

1 word in hexadecimal

2 words (1 longword) in hexadecimal
2 words (1 longword) in decimal

backup dot
. print string

6.11.3 Expression Summary

Expressioncomponents

decimal ‘integer
octal integer
hexadecimal
symbols
variablese.g., <b

e.g., 256
e.g., 0277
e.g., Oxff
e.g., flag .main ‘main.argc

registers e.g., <pc <d0 <a0

{expression) expression grouping
Dyadicoperators

+ add

- subtract

® multiply

% integer division

& bitwise and

| bitwise or

round up to the next multiple
Monadicoperators

- not

hd contents of location

- integer negation

6—27

hapter 7
52 An Assembler

Istroduction 1
CommandUsage 1
InvocationOptions 1

SourceProgramFormat 2
74.1 LabelField 3
742 OpcodeFicld 3
74.3 Operand—Field 3
744 CommentField 4

SymbolsandExpressions 4

7.5.1 Symbols 4

7.5.2 AssemblyLocationCounter 6
7.5.3 ProgramSections 7

7.54 Constants 7

75.5 Operators 8

7.5.6 Terms 9

7.5.7 Expressions 9

Instructionsand AddressingModes 10
7.6.1 InstructionMnemonics 10
7.6.2 Operand AddressingModes 11

AssemblerDirectives 13
7.7.1 .ascii.asciz 14
7.71.2 Jblkb .blkw bkl 15
7.7.3 Jbyte .word .long 15
7.74 .end 15

7.7.5 dext .data .bss 16
©71.7.6 .globl.comm 16
7.1.7 .even 16

OperationCodes 17

ErrorMessages 18

As: An Assembler

7.1 Introduction

This chapter describes the use of the XENIX assembler, named as, for'the Motorola
MC68000 microprocessor. It is beyond the scope of this chapter to describe the
instruction set of the MC68000 or to discuss assembly language programming in
general. For ‘information ‘on these topics, refer to the ““MC68000 16-—Bit
Microprocessor User’s Marual™, 3rd Edition, Englewood Cliffs: Prentice—Hall,
1982.

Thischapterdescribesthe following:
— CommandUsage
— Source ProgramFormat
— ‘SymbolsandExpressions
— Instructionsand Addressing Modes
- AssemblerDirectives
— ‘OperationCodes
— ErrorMessages

7.2 Command Usage

As canbe invoked with one or more arguments. Except for option arguments, which
must appear first on the command line, arguments may appear in any order on the
command line. The source filename argument is traditionally named with an ".s"
extension. Exceptasspecifiedbelow, flagsmay be grouped. Forexample

as —glo that.o this.s
willhavethe sameeffectas
as —g —| —o that.o this.s

7.3 Invocation Options

The various options andtheir functionsaredescribedbelow:

—o relname The default output name is filename .0. This can be overridden by
giving as the —o flag and giving the new filename in the argument
followingthe —o. Forexample

as —o that.o this.s
assemblesthe sourceshis. sand putstheoutputinthefilerhar.o.
-1 Bydefault, nooutputlisting isproduced. ‘Alistingmaybeproducedby
giving the —I flag. The listing filename extension is “.L*’. The

filename forthe list fileisbased onthe output file. Sothe command line
7-1

XENIX Programmer’s Guide

as —1—o output.x input.s
producesalisting named output. L.
—e By defauk, all symbols gointothe symboltable of the a.out(F) filethat

is produced by the assembler, including locals. If you want only
symbolsthataredefinedas.globl or.commtobeincluded, uscthe —e

(externalsonly)flag.

-g Bydefault, ifa symbolisundefined inanassembly, anerroris flagged.
This may be changed with the —g flag. If this is-done, undefined
symbolswillbeinterpreted asexternal.

-V By default, the a.ont file is for XENIX version 3.0 systems; the

number 2or 3specifies which versionthe output isintendedfor.
7.4 Source Program Format

Anas program consists of a scries of statements, each of which occupies exactly one
line, i.¢., a sequence of characters followed by the newline character. Form feed,
ASCIl <CONTROL-L>, also serves as a line terminator. Continuationlinesarenot
allowed, and themaximumline lengthis 132 characters. However, several statements
may be on a single line, separated by semicolons. Remember though, that anything
after a comment character is.considered a.comment. The format of an as assembly
language statementis:

[label—field) [opcode | operands) || comment)
Most of the fieldsmay beomittedundercertaincircumstances. inparticular:

1. Blanklinesarepermitted.

2. Astatementmay containonly alabel field. Thelabel definedinthis fieldhas
the same value asif it were defined in the Iabelficld of the next statement in
theprogram. Asanexample, thetwostatements

name:
add! d0,d1

areequivalenttothesingle statement
name: -addl do,d1
3. Alinemayconsistofonlythecommentfield. Thetwo statementsbelow are
atlowedascommentsoccupying fulllines:
| 'This is.a ‘comment field.
1 So is this.

4. Multiple statements may be put on a line by separating them with a
semicolon -(;). Remember, however, that anything after ‘a comment
character (including statement separators) isacomment.

n general, blanks ortabs are allowed anywhere ina statement; that is, multiple blanks
re allowed in the operand field to separate symbols from operators. Blanks are

2

As: An Assembler

significant only whenthey occurina character string (¢.g., asthe operand of an . ascii
pseudo—op) or in acharacter constant. At least oneblank or tabmust appearbetween
the opcode andtheoperand fieldof a statement.

74.1 Label Field

A label is-a user—defined symbol that is assigned the value of the current location
counter, both of which are entered into the assembler’s symbol table. The value of the
labelisrelocatable.

A label is-a symbolic means.of referring to a specific location within a program. If
present, alabel always occurs first ina statement and must be terminated by-acolon. A
maximum of ten labels may be defined by-a single source statement. The collectionof
labeldefinitionsina statementis calledthe ¢“label ~field.**

Theformatofalabel—fieldis:

symbol: [symbol:]
Examples:
start:
name: name2: | Multiple symbols
7%: | A local symbo} (sce below)

7.4.2 Opcode Field

The opcode fieldof anassembly language statement identifiesthe statement as eithera
machine instruction, or an assembler directive (pseudo—op). One ormore blanks (or
tabs) must separate the opcode field from the operand field ina statement. Noblanks
are necessary between the label and opcode fields, but they are recommended to
improvereadability of programs.

Amachine instruction is indicated by an instruction mnemonic. Conventionsused in
as forinstructionmnemonics are describedinalatersection, along withacompletelist
ofopcodes.

Anassembler directive, or pseudo—op, performs some function duringthe assembly
process. It does not produce any executable code, but it may assign space inaprogram
fordata.

Asiscase—sensitive. Operatorsandoperandsmay only be lowercase.
7.4.3 Operand —Field

As makes a distinction between operand—field and ‘operand. Several machine
instructions andassemblerdirectivesrequire one ormore arguments, andeachofthese
isreferredto.asan “‘operand™. In general, an operand field consists of zero, one, or
two operands, and inall cases, operands.are separated by acomma. In other words,
the format foran operand—fieldis:

|operand [, operand)..]

The format of the operand field for machine instruction statements is the same for all
7-3

XENIX Programmer’s Guide

instructions. The format of the operand field for assembler directives dependsonthe
directiveitself.

7.4.4 Comment Ficld

Thecomment delimiter isthe verticalbar, |), notthe semicolon, (;). The semicolonis
the statement separator. The comment field consists of all characters on a source line
followingand including the comment character. These characters are ignored by the
assembler. Any charactermay-appear inthe comment field, with the exception of the
newline character, which'startsanewline.

7.5 Symbols and Expressions

This sectiondescribes the various components of as expressions: symbols, numbers,
terms, andexpressions.

7.5.1 Symbols

Asymbolconsists of 1 to32 characters, withthe followingrestrictions:

1. Validcharactersinclude A—Z, a—z, 0—9, period (.), underscore (), and
dollarsign ($).

2. Thefirstcharactermust notbe numeric, unless the symbolisalocal symbol.

There is no limit to the size of symbols, except the practical issue of running out of
symbolmemory inthe assembler. However, beaware that the current C compiler only
generates eight —character symbol names, soa symbol greaterthan eight —characters
in lengththat you thinkis the same inboth C and assembly may not match. Uppercase
and lowercase are distinct (e.g., ‘“‘Name’.and “‘name’" are separate symbols). The
period (.) and dollar sign ($) characters are valid symbol characters, but they are
reserved for system software symbols such as system calls and should not appear in
user—defined symbols.

A symbolis saidtobe “‘declared’ when theassemblerrecognizesit asa symbolofthe
program. Asymbolissaidtobe‘defined’’whena valueisassociated with it. Withthe
exceptionof symbolsdeclaredby a.globl directive, all symbolsare defined whenthey
are declared. Alabel symbol (which represents an address inthe program) may notbe
redefined; other symbols areallowedtoreceiveanew value.

Thereare several waystodeclarea symbol:
1. Asthelabelofastatement
2. Inadirectassignment statement
3. Asanexternalsymbolviathe .globldirective
4

Asacommonsymbol viathe .commdirective

As: An Assembler

5. Asalocalsymbol

7.5.1.1 Direct Assigrment Statements
A direct assignment statement assigns the value of an arbitrary expression to a
specified symbol. The formatofadirectassignmentstatementis:

symbol = [symbol =]expression
Examplesofvaliddirectassignmentsare:

vect.size = 4

vectora = /fffe

vectorb = vectora—vect.size
CRLF = /0DOA

Any symbol defined by direct assignment may be redefined later in‘the program, in
which case'its value is the result of the last such statement. A local symbol may be
definedby direct assignment; alabelorregister symbol may notberedefined.

Hthe expressionis absolute, then the symbol is also absolute, and may betreatedasa
constant in subsequent expressions. 1f the expression is relocatable, however, then
symbol is also relocatable, and is considered to be declared in the same program
section ‘as the ‘expression. See the discussion in a later section of absolute and
relocatable expressions.

7.5.1.2 Register Symbols

Register symbols are symbols used to represent machine registers. Register symbols
are usually used to indicate the register in the register field of a machine instruction.
Theregister symbolsknowntothe assemblerare givenatthe end ofthis chapter.

7.5.1.3 External Symbols

A program may be assembled in separate modules, andthen linked togethertoforma
single ‘program (see /d(CP)). External symbols may be defined in each of these
separate modules. A symbol that is declared (given a value) in one module may be
referenced inanother module by declaring the symboltobe external inboth modules.
There are two forms of external symbols: those defined with the .globl directive and
those defined with the .comm directive. See Section8.7.6 for more informationon
thesedirectives.

7.5.1.4 Local Symbols

Local symbols provide a cconvenient ‘means -of generating labels for branch
instructions. Use of ‘local ‘symbols reduces the possibility of multiply—defined

7-5

XENIX Programmer’s Guide

symbols ina program, and separates entry point syrbols from local references, such
asthetopofaloop. Localsymbolscannotbereferenced byotherobject modules.

Local symbolsare of theformn $where nisanyinteger. Validlocal symbolsinclude:

273
3948

Alocal symbol isdefined andreferenced onily withina singlelocal symbol block (Isb).
Anewlocal symbolblockisentered wheneither:

1. Alabelisdeclared,or

2. Ancwprogramsectionisentered.

There isno conflict betweenlocal symbols with the same name thatappear indifferent
local symbolblocks.

7.5.2 Assembly Location Counter

Theassembly location counteristhe periodcharacter (.); henceitsname “‘dot™". When
usedinthe operand field of any statement, dot representsthe address of the first byte of
the statement. Evenin assembly directives, it represents the:address of the start of the
directive. A dot appearing as the third argument ina .byte directive would have the
value of the address where the first byte was loaded:; it is not updated “‘during’* the
directive.

Forexample:
movl .,dl | load value of program counter into di

At ihe beginning of each assembly pass, the assembler clears the location courter.
Normally, consecutive memorylocations areassignedtoeach byteof generatedcode.
However, the location where the code is stored maybechangedbyadirectassignment
alteringthelocationcounter:

. = expression

This expression must not contain any forward references, must not change from one

pass to-another, and must not have the effect of reducing the vahie of dot. Note that

setting dot to an.absolute position may not have quite the effect you expect if you-are
linking anas output file with other files, since dot ismaintained relative tothe originof
the output file and not the resolved position in memory. Storage areamay also be

reserved by advancing dot. Forexample, if the current value of dot is 1000, the direct

assignment statement:

TABLE: .=. + /100

wouldreserve 100.(hex) bytesof storage, with the address of the first byteasthevalue
of TABLE. Thenextinstructionwouldbe storedat address 1100. Note that

.blkb 100
isasubstantially more readable wayof doing the same thing.

The :p operator, discussed ina later section, allows youtoassemble values that are
location~relative, both locally (within 2 module) and across module boundaries,
without explicitaddressarithmetic.

7-6

As: An Assembler

7.5.3 Program Sections

As in'XENIX, programs to as are divided into two sections: text and data. These
sectionsare interpreted asinstruction space and initialized data space,, respectively.

In the first pass of the assembly, as maintains a separate location counter for each
section. Thus, forcodelike the following:

dext
LABEL1: movw dl,d2
.data
LABEL2: .word 27
JAext
LABEL3: addl d2,d1
.data
LABEL4: .byte 4

LABEL1 willimmediately precede LABEL3, and LABEL2 willimmediately precede
LABELA in the output. At the end of the first pass, as rearranges all the addresses so
that the sections will be output in the following order: text, then data. The resulting
output file is an executable image with all addresses ‘correctly ‘resolved, with the
exception of .comm variables and undefined .glob! variables. Formore information
onthe format ofthe output file, consulta. iz (F).

7.5.4 Constants

Allconstantsare considered absolute quantities whenappearing inanexpression.

7.5.4.1 Numeric Constants

Any symbolbeginning withadigitisassumedtobe anumber, and willbe interpretedin
thedefault decimalradix. Individual mumbers may beevaluated inany ofthe five valid
radices: decimal, ‘octal, hexadecimal, character, and binary. The default decimal
radix is only-used on ‘‘bare’” numbers, i.e., sequences of digits. Numbers may be
represented in other radices as defined by the following table. The otherthree radices

XENIX Programmer’s Guide

requireaprefix:

Radix Pre _Example

octal “(up—amrow) | 17 equalsT3base 10.
octal 0 017 equals15base 10.
hex I{(slash) /A1 equals 161 base 10.
hex 0x OxAl equals 161 base 10.
char ?(quote) a equals97base 10.
char *(quote) “\n equals 10base 10.
binary | % (percent) %11011 | equals27base 0.

Letters in hex constants may be uppercase or lowercase; €. 8. , /aa=/Aa=/AA=170.

1llegaldigits foraparticularradix generate anerror(e.g., "018). While the Ccharacter
constantsyntaxis supported,

you cannot define character constants with a number (e.g., "\27) asthisismore easily
represented inone of the other formats.

7.5.5 Operators

Anoperatoris either a unary operatorrequiring a smgle operand, orabinary operator
requiringtwo operands. Operatorsof eachtypeare describedbelow.

7.5.5.1 Unary Operators ’ ?
Thereare threeunary operatorsinas:
Operator Function
+ unaryplus, hasnocfiect.
— unary minus.

p programdisplacement

The““:p’" operatorisa suffixthat canbe appliedtoarelocatable expression. ltreplaces
thevalucofthccxpressxonwnhmcdlsplacemcm ofthat value fromthe currentlocation
(not dot). This is implemented with displacement relocation, so that it also works

As: An Assembler

acrossmodules.

7.55.2 Binary Operators

Binary operatorsinclude:
Operator Description Example Value
+ Addition 3+4 1.
- Subtraction 3—-4 —1.,or/FFFF
. Multiplication 4%3 12.
/ Division 12/4 3.
] Logical OR %01101 | %00011 %01111
& LogicalAND %01101&%00011 %00001
- Remainder 573 2.

Each operator isassumedto work on'a 32—bit number. If the value of aparticular term
occupiesonly 8or 16bits, the signbitis extended intothe highbyte.

Someétimeserrorsinexpressions canbe fixedby breaking the expressionsintomultiple
statementsusingdirect assignment statements.

7.5.6 Terms

Atermisacomponent of anexpression.. Atermmay be one of the following:
1. Anumberwhose32—bitvalueisused
2. Asymbol

3. A term preceded by -a unary ‘operator. For example, both “‘term’” and
““term" " may-be considered terms. Multiple unary operators are allowed,
e.g.‘‘+— —+A " hasthesamevalueas “A”".

7.5.7 Expressions

Expressions ‘are combinations ‘of terms joined together by binary ‘operators. An
expressionisalways evaluatedtoa32—bit value. Ifthe instructioncalls foronly 1 byte
(e.g.,.byte),thenthelow—order8bitsareused.

Expressions -are ‘evaluated left to right with no -operator precedence. Thus
“1 + 2 * 3" evaluatesto 9,:not 7. Unary operators have precedence over binary
operators since they are considered part of a term, and both terms of a binary operator
mustbe evaluatedbefore the binary operator canbeapplied.

A missing expressionor term is interpretzd as having a value of zero. Inthis case, the
following error message is generated:

Invalid Expression

XENIX Programmer’s Guide

An “Invalid Operator’ error means that a valid end—of-line character or binary
operatorwas not detectedafterthe assemblerprocessedaterm. Inparticular, thiserror
will'be generated if anexpression contains a symbol with an illegal character, orif an
incorrectcomment characterwasused.

Amnyexpression, when evaluated, iseither absolute, relocatable, orexternal:

1. Anexpressionisabsohteifits valueisfixed. Absolute expressions arethose
whose terms are ‘constants, or symbols assigned :constants with -an
assignment statement. Also absolute is-a relocatable expression minus a
relocatable term, where bothitemsbelong tothe same program section.

2. .Anexpressionis relocarable if its value is fixed relative to a base address,
but willhave anoffset value whenit is linked, orloadedintocore. Alllabels
of a program defined in relocatable sections are relocatable terms, and any
expression that contains them must only add.or subtract constants to their
value. For -example, -assume ‘the symbol “‘sym’ was defined in a
relocatable section of the program. Thenthe following demonstratestheuse
ofrrelocatable expressions:

sym Relocatable
sym+5 Relocatable
sym—"A Relocatable
sym*2 Notrelocatable

2—sym Not relocatable, since the .expression cannot be linked by
adding sym’soffsettoit.

sym—sym2 Absolute, since the offsets addedto.sym and sym2 cancel each
otherout.

3. An-expression is “‘external’’ (i.e., or global) if it contains an external
symbol ‘not defined in the current program. The same restrictions on
expressions ‘containing relocatable symbols apply to expressions
containingexternal symbols.

An important exception is the expression sym—sym2 where both sym.and
sym2are external symbols. Expressionsofthiskind are disallowed.
7.6 Instructions and Addressing Modes

Thissectiondescribesthe conventionsusedinastospecify instructionmnemonicsand
addressingmodes.

7.6.1 Instruction Mnemonics

The instructionmnemonicsused by as are described inthe Motorola MC68000 User's
Manual with a few variations. Most of the MC68000 instructions can apply to byte,

7-10

As: An Assembier

word orto long operands, thus inasthe normalinstructionmnemonic is suffixed with
b, w, orltoindicate which length of operand was intended. For example, there are
three mnemonics for theaddinstruction::addb, addw, andaddl.

Branch-and call instructions come in 3 forms: the bra, jra, bsr and jbsr forms may
only take a label as argument. For the bra:and bsr forms, the-assembler will always
produce along (16—bit) pcrelativeaddress. Forthe jraand jbsr forms, the assembler
will produce the shortest form of binary it can. This may be 8—bit or 16~bit pc
relative, ‘or 32-bit absolute. The 32~bit absolute is implemented for conditional
branches by inverting the sense of the condition and branching around a 32—bit jmp
instruction. The 32—Dbit form will be generated whenever the assembler can’t figure
out how far away the addressed location is; for example, branching to anundefined
symboloracalculated value suchasbranchingtoaconstantlocation.

7.6.2 Operand Addressing Modes

These effective addressing modes specify the operand(s) of aninstruction. Fordetails
of the effectiveaddressingmodes, seethe “MC68000User’sManual.”* Note alsothat
pot.all instructions allow all addressing modes. Details are given in'the “*“MC68000
User’sManual’” in Appendix Bunder the specificinstruction.

In the examplesthat follow, whentwo examples are given, the first example is based
on the assembly format suggested by Motorola. The second example is in what is
called “‘Register Transfer Language’ or RTL and is used to describe the register
transfersthat are occurring withinthemachine. Itis provided forcompatibility. Either
syntax‘isaccepted, and itis permissibleto mix thetwo types of syntax withina module
oreven withinaline whentwo effective address fields are allowed. Beware, however,
thata warning message willbe generated whentheassembler noticessuchamix.

Many of the effective address modes have other names, by which they may be:more
commonly known. Inthe following descriptions, this name appearstothe right of the
Motorolanameinparentheses.

DataRegister Direct

addi do,d1
AddressRegister Direct

addi a0,a0
AddressRegister Indirect (indirect)

addl (a0),d1

addl a0@,d!

AddressRegister Indirect WithPostincrement(antoinc)

movl (a7)+;d1
movl a7@+,d1

AddressRegister Indirect WithPredecrement(autodec)

7-11

{ENIX Programmer’s Guide

movl dl, —(a7)
movl di,a7@-
\ddressRegister Indirect WithDisplacement(indexed)

This form includes asigned 16—bit displacement. These disﬁlacemems maybe
symbolic.

movl 12(a6),d1
movl a6@(12),d1
iddressRegisterIndirect WithIndex (double—indexed)

This formincludesa signed 8—bit displacement and anindex register. The size
oftheindexregisteris givenby folowingts specification witha *“:w" “ora “;1"".
Ifneitherisspecified, “:I'* isassumed.

movl 12(a6,d0:w),d1

movl a6@(12,d0:w),dl
.bsoluteShort Address

movl xxiw,dl

bsolute Long Address (absolute)

This isthe assumed addressing mode should the given value be aconstant. This
is nottrue of branch and call instructions. Note also that the second example
hereisnot RTL syntax, butis provided only becauseitisalsoallowed.

movl xx,d}
mov] xx:1,di
rogram Counter WithDisplacement(pcrelative)
Whenpcrelative addressingisused, suchas
pea name(pc)

the assembler will assemble a value thatisequalto *‘name—."*, where dot (.)is
the position of the value, whether *‘name’” isinthe current module ornot. You
mayalsocauseanexpressiontobe perelativeby suffixingit witha ““:p””.

movl 10(pc),dl
movl pc@(10),d1

Note that if a symbol appears inthe above addressing mode (where the 10isin
the example), the symbol’s displacement from the extension word willbe used
intheinstruction.

rogram Counter WithIndex

jmp switchtab(pc,d0:1)
jmp pe@(switchtab,d0:D)
switchtab:

mmediate Data

7.7

As: ‘An Assembler

Note that this is the way to:get immediate data. If a number is given with no
number-sign (#), you get absolute addressing. This does not hold for jsr.and
Jjmpinstructions.

movl #47,d1
jmp somewhere
moveq #7,d1

in'the movem instruction’s register mask field, a special kind of immediate is
allowed:theregister list. Itssyntax isasfollows:

<reg [,reg]>

Here, regisanyregistername. Register names may be giveninany order. The
assembler automatically takes .care of reversing the ‘mask for the auto—
decrementaddressingmode. Normalimmediatesarealsoallowed.

Assembler Directives

7--13

XENIX Programmer’s Guide

The following assemblerdirectivesare availableinas:

.escii storescharacter strings

.asciz stores null—appended character strings
-blkb
~blkw savesblocksofbytes/words/longs
bkl
.byte
.word storesbytes’words/longs
Jdong
send terminates programandidentifies executionaddress
Jtext Text program section

.data Dataprogram section

.bss Bssprogram section

‘glob} declaresexternal symbols

~comm | declarescommunal symbols

.even forceslocationcountertonext wordboundary

7.7.1 ~ascii .asciz

The .ascii directive translates character strings into their 7—bit ASCl1 (represented as
8—bit bytes) equivalents ‘for use in the source program. The format of the .ascii
directiveisasfollows:

.ascii "character—string”

where .character—string ‘contains any character valid in a character .constant.
Obviously, -a newline ‘must not ‘appear within the character string. (It .can ‘be
represented by theescape sequence “\n’"as described below). The quotationmark (")
is the delimiter character, which must not appear in the string unless preceded by a
backslash(\).

The following escape sequencesare aiso validassingle characters:

X Value of X
\b <backspace>, hex 708
\¢ <tab>, hex /09
<newline>, hex /10A
b4 <form—feed>, hex /0C
\r <return>, hex./0D
\nnn | hex value of nnn
Severalexamplesfollow:
HexCodeGenerated: Statement:
2268656C6C6F2074 .ascii "hellothere”
6865726522
7761726E696E6720 .ascii "Warning—\007\007\n"
2D0707200A

As: An Assembier

The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically insertedasthe finalcharacterofthestring. Thus, whenalistortext string
istobeprinted, a;search forthe nullcharactercanterminate the string. Nullterminated
stringsare oftenusedas argumentstoXENIX systemcalls.

7.7.2 -blkb .blkw .blki

The .blkb, .blkw, and .bkkl directives are used to reserve blocks of storage: .blkb
reservesbytes, .blkwreserves wordsand . biklreserves longs.

The formatis:
label:] .Hkb expression
lakel: blkw expression
label:} bikl expression

where expressionisthe number of bytesor wordstoreserve. 1f noargument is given a
valueof lisassumed. Theexpressionmust be absolute, anddefined duringpass 1 (i.e.
noforwardreferences).

This is equivalent to the statement ‘.= . +expression’’, but has ‘a much more
transparentmeaning.

7.1.3 .byte .word .long

The .byte, .word, and .Jong directives are used to reserve bytes and words and to
initializethemwith values.

The formatis:
label: .byte expression|| , expression). ...
label; word expression)| , expression).. .
label: Jong expression|| y expression|. ..

The .byte directive reserves 1 byte for each expression in the operand ficld .and
initializes the value .of the byte to be the Jow—order byte of the corresponding
expression. Note that mukiple expressions must be ‘separated by commas. A blank
expressionisinterpretedas zero, and noerroris generated.

Forexample,

.bytea,b,c,s reservesdbytes.

.byte,,,, reserves Sbytes, each with avalue of zero.
.byte reserves 1 byte, withavalue of zero.

The semartics for..word and .long areidentical, except that 16—bit.or 32—bit words
arereservedand initialized. Be forewamned that the value of dot withinan ¢xpressionis
thatofthe beginning ofthe statement, notof the valuebeing calculated.

7.74 end

The .end directive indicatesthe physicalend of the source program. The formatis:

T-15

XENIX Programmer’s Guide

«end
The.endisnotrequired; reachingtheend of filehasthe same effect.

7.1.5 text .data .bss

These statements change the “‘program section’’ ‘where ‘assembled code will be
loaded.

7.7.6 .globl .comm

Two forms of external symbolsare defined withthe .globland .comm directives.
Externalsymbolsare declared with the .globlassembler directive. The format s
.globl symbol | , symbol]

For example, the following statements declare the array TABLE .and the routine
SRCHtobeexternal symbols:

.globl TABLE, SRCH
TABLE: .blkw 10.
SRCH: movw TABLE,a0

External symbolsare only declared tothe assembler. Theymustbedefined(i.e., given
avalue) in some other statement by one of the methods mentioned-above. They need
not be-defined in the current program; in this case they are flagged as “‘undefined’” in
the symbol table. If they are undefined, they are considered to have a value of zeroin
expressions.

Itisgenerally agoodideatodeclare asymbol as.globl before using it inany way. This
isparticularly important whendefining absolutes.

The other form of external symbol is defined with the .comm directive. The .comm
directive reserves storage that may be communally defined, i.e. , defined mutually by
several modules. Thelink editor, Id(CP) resolves allocation of .comm regions. The
syntax of the .commdirectiveis:

~o0mm name constant —expression

which causesas to.declare the name as a.common symbol with a value equal to the
expression. Fortherestof the assemblythis symbolwillbetreated as though it were an
undefined global. As does notallocate storage for common symbols; thistask isleft to
the loader. The loader computes the maximum size of each common symbolthat may
appear in several load modules, allocates storage for it inthe bss section, andresolves
linkages.

1.1.7 .even

Thisdirective advancesthe locationcounterifitscurrent valueis.odd. Thisisusefulfor
forcing storage allocation:on a word boundary after a .byte or .asciidirective. Note
that many things may not be onan-odd boundary inas, including instructions, and

wordandlongdata.

7.8

Operation Cedes

Belowareall opcodesrecognizedbyas:

abed
addb
addw
addl
addgb
addqw
addql
addxb
addxw
addxi
andb
andw
andl
aslb
aslw
asll
astb
asrw
asrl
bee
bees
bechg
belr
bes
bess

beq
begs
bge
bges
bgt
bgts
bhi
bhis
ble
bles
bls
blss
blt
bits

bmi
bmis
bne
bnes
bpl
bpls
bra
bras
bset
bsr
bsrs
btst
bve
bvcs
bvs
bvss
chk
ckb
clrw
clrl
cmpb
cmpw
cmpl
cmpmb
cmpmw
cmpml
dbce
dbes
dbeq
dbf
dbge
dbgt
dbhi
dble
dbls
dblt
dbmi
dbne
dbpl

dbra
dbt
dbvc
dbvs
divs
divu
corb
corw
corl
exg
extw
extl
jbsr
jee
jes
Jeq
Jge
st
jhi
jle
ils
jit
Jmp
jne
jpl
jra
jsr
jve
jvs
lea
link
1stb
islw
Isit
Istb
Isrw
sl

movb
movw
movl
movemw
moveml
movepw
movepl
moveq
muls
mulu
nbcd
negb
negw
negl
negxb
negxw
negxl
nop
notb
notw
notl
orb
orw

orl

pea
reset
rolb
rolw
roll
rorb
01w
rorl
roxlb
roxlw
roxll
roxrb
TOXIW
roxrl

The following pseudooperationsarerecognized;

As: An Assembler

e

s
sbed
scc
xS
seq
sf
sge
sgt
shi
sle
sls
slt

sne
spl

subb
subw
subl
subgb
subqw
subql
subxb
subxw
subxl
sve
sVs
swap

trap
trapv

tstw

tstl
unlk

717

XENIX Programmer’s Guide

-ascii
.asciz
.blkb
bkl
blkw
Dbss
byte
scomm
.data
.end
.even
.globl
Jong
Jdext
word

Thefollowing registersarerecognized:
d0.d1.d2 d3-d4 d5 d6 a7

a0 a1l a2 a3 a4 a5 a6 a7
sp:peccsr

7.9 Error Messages

Iftherearcerrorsinanassembly, anérrormessageappearsonthe standard erroroutput
(usually the terminal) giving the type ‘of error and the source line number. If an
assembly listing is requested, and there are errors, the emor message appears before
the offending statement. Ifthere were noassembly ervors, thenthereare nomessages,
thus‘indicating a successful assembly. Some diagnostics are only warnings and the
assemblyissuccessful despitethe warnings.

The commonerror codes andtheirprobable causes, appearbelow:

Invalidcharacter
Aninvalid character for a character constant or character. string was
encountered.

Multiply defined symbol
A symbol has appeared twice as a label, or an attempt has been made to
redefine alabelusing an = statement. Thiserrormessagemay alsooccur
ifthevalueofasymbolchangesbetweenpasses.

Offsettoolarge
Adisplacement cannot fit inthe space provided for by the instruction.

Invalid constant
Aninvalid digit was encounteredinanumber.

Invalid term
The expression evaluator could not find a valid term that was either:a
symbol, constant orexpression. An.invalid prefix to'a number ora bad
symbolname inanoperand willgenerate this.

7-18

As: An Assembler

Nonrelocatable expression
A required relocatable expression was not found as an operand. It was
notprovided.

Invalid operand
Anillegal addressing mode was given forthe instruction.

Invalid symbol
A symbol ‘was given that does not conform to the rules for symbol
formation.

Invalid assignment
Anattempt was madetoredefine alabel with an = statement.

Invalid opcode
A ‘symbol in the opcode ‘ficld was not recognized as an instruction
mnemonicordirective.

Badfilename
Aninvalidfilename wasgiven.

Wrong number of operands
Aninstructionhaseithertoo few ortoo many operandsasrequired by the
syntaxof the instruction.

Invalidregister expression
Anoperandor operand elementthat must be aregister isnot, oraregister
nameis used where it may not be used. For example, using an address
register in a yoveq instruction, which only allows data registers will
produce this error message; as will using aregistername as alabel witha
brainstruction.

Oddaddress
Aninstructionor dataitemthat muststartatanevenaddressdoes not.

Inconsistent effectiveaddresssyntax
Bothassembly andRTL syntax appear withinasingle module.

Nonword memory shift
Anin—memory shift instruction was givenasize otherthan 16bits.

7-19

Chapter 8
Lex: A Lexical Analyzer

8.1 Introduction 8-1

8.2 LexSourceFormat 8-2

8.3 LexRegular Expressions 83

8.4 Invokinglez = 8-4

8.5 Specifying Character Classes 8-5

8.6 Specifyingan Arbitrary Character 8-6
8.7 Specifying Optional Expressions &6
8.8 Specifying Repeated Expressions 8-6
8.9 Specifying Alternation and Grouping 8-7
8.10 Specifying Context Sensitivity 8-7
8.11 Specifying Expression Repetition 88
8.12 Specifying Definitions 8-8

8.13 Specifying Actions 8-8

8.14 Handling Ambiguous Source Rules 8-12
8.15 Specifying Left Context Sensitivity 8-15
8.16 Specifying Source Definitions 8-17

8.17 Lexand Yacc 8-18

8.18 Specifying Character Sets 8-22

8.19 SourceFormat 8-23

Lex: A Lexical Analyzer

8.1 Introduction

Lex is a program generator designed for lexical processing of character input
streams. It accepts a high-level, problem-oriented specification for character
string ‘matching, and produces a C program that recognizes regular
expressions. The regular expressions are specified by the user in the source
specifications given to lex. The lex ‘code recognizes these expressions in-an
input stream and partitions the input :stream into strings :matching the
expressions. At the boundaries between strings, program sections provided by
the user areexecuted. Thelex source file associates'the regular expressionsand
the program fragments. As each expression appears in the input to ‘the
program written by lex, the corresponding fragment isexecuted.

The user supplies-the additional code needed to complete his tasks, including
code written'by other generators. The program thatrecognizes the expressions
is generated in the from the user’s C program fragments. Lex isnot:a complete
language, but rather a generator representinganew language feature added on
topof the:C programming language.

Liex turns the user’sexpressionsand actions{called source in thischapter)into
a C program named yylez. The yylez program recognizes expressions in a
stream (called input in this chapter) and performs the specified actions for.each
expression asitis-detected.

Consider -a program to delete from the input all blanks-or tabs at the ends of
lines. Thefollowinglines

%%
I\t]+8

are all that is required. The program contains a %% delimiter to mark the
beginning of the rules, and-one rule. This rule contains a regular expression
that matches one or more instances of the characters blank or tab (written \t
for visibility, in accordance with the C language convention) just prior to the
endof aline. The bracketsindicate the character class made of blank and tab;
the + indicates -one or more of the previous item; and the ‘dollar sign ($)
indicatesthe end of the line. o action is specified, so the program generated by
lex will ignore these characters. Everything else will be copied. To change any
remainingstring of’blanksor tabs to a single blank, add‘another rule:

%%
[\t]+$
[\t]+ printf(” ");

The finite automaton generated for this source scans for both rules at once,
observes-at the termination of the string of blanks or tabs whether or not there
isanewline character, and then executesthe desired rule’s action. Thefirstrule
matches all strings of blanks or tabs at the end of lines, and the second rule
matchesallremaining stringsof blanks or tabs.

8-1

XENIX Programmer’s Guide

Liex can be used alone for:simple transformations, or for analysis and statistics
gathering on a lexical level. Lex can also be-used with a parser generator to
perform ‘the lexical ‘analysis phase; it is especially easy to interface lex and
yacc. Lex programs recognize only regular expressions; yace writes parsers
that accept a large class of context-free grammars, but that require a lower
level analyzer to recognize input tokens. Thus, a.combination of lex and yace
is often appropriate. When used asa preprocessor for alater parser generator,
lex is used ‘to partition the input stream, and the parser generator assigns
structure to the resulting pieces. Additional programs, written by other
generators or by hand, can be added easily to programs written by lex. Yacc
users will realize that the name yyleziswhatyacc expectsitslexical analyzer to
be named, sothatthe useof thisname by lex simplifies interfacing.

Lex generates a-deterministic finite automaton from:the regular expressionsin
the source. The automaton is interpreted, rather than compiled, in order to
savespace. Theresultisstill afastanalyzer. In particular, the time taken by a
lex program to.recognize and partition an input stream is proportional to the
lengthof theinput. The number.of lex rulesorthe complexity of the rulesisnot
important in determining speed, unless rules which include forward context
require a significant ‘amount of rescanning. What -does increase with the
number and .complexity -of rules is the size of the finite automaton, and
therefore the size of the program generated by lex.

Inthe program written by lex, theuser’s fragments(representing the:actionsto
be performed as each regular expression is found) are gathered as cases of a
switch. The automaton interpreter directsthe control flow. ‘Opportunity is
provided for the user to insert either declarations or additional statements in
the routine containing the actions, or to:add subroutines-outside this action
routine.

Lex is not limited to source that ican be interpreted ‘on the basis of one
character lookahead. For example, if there aretworules,onelookingfor aband
another for ebcdefg, and the input stream is ebedefk, lex will recognize aband
leave the input pointer just before ¢d. :Such ‘backup is more costly than the
processingof'simpler languages.

8.2 Lex Source Format
The general formatof lex source is:

{definitions}
%%

{rules}

%%

{user-subroutines}
where the definitions and the user subroutines are often omitted. The second

%%is optional, but the first isrequired to'mark the beginning of the rules. The
absolute minimum lex program is thus

8-2

Lex: A Lexical Analyzer

%%

(no:definitions, no rules) which translates into a program that copies the input
to the outputunchanged.

In the lex program format shown above, the rules represent the user’s control
decisions. They make up -a table in which the left column contains regular
expressions and the right column contains actions, program fragments to be
executed when the expressions are recognized. Thus the following individual
rulemight appear:

integer :printf("found keyword INT");
Thislooks for thestring tntegerin theinput stream and prints the message
found keyword INT

whenever it appears in the input text. In this example the C library function
printf{} is used to print the string. The end of the lex regular expression is
indicated by the first blank or tab character. If the action'is merely a single C
expression, itcan be given onthe rightside of the line; if it is compound, or takes
more than a line, it should be enclosed in braces. As a slightly more useful
example, suppose it is desired to change a number of words from British to
Americanspelling. Lex rulessuchas

colour printf("color”);
mechanise printf{"mechanize");
petrol printf("gas”);

would be a start. These rules.are not quite enough, since the word petroleum
would become gaseum;-a way of dealing with such problems is described in a
later section.
8.3 Lex Regular Expressions
A regular expression specifies a-set-of strings to be matched. It contains text
characters (that ‘match the corresponding characters in ‘the strings being
compared) -and operator characters (these specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text
characters. Thus, the regular expression

integer
matches the stringinteger wherever it appearsand the expression

adb7D

looksfor thestring a57D.

8-3

XENIX Programmer’s Guide

The operator charactersare
"N -t |8/ {} B <>

If any of these ‘characters are to be used literally, they needed to be quoted
individually with a backslash () or as a group within quotation marks (").
The quotation mark operator (") indicates that whatever is contained between
apair of quotation marksisto be takenastext characters. Thus

xyz" ++"
matches the string zyz++ when it appears. Note that a part.of.astring may be
quoted. Itis harmless but unnecessary to.quote an ordinary text character; the
expression

"xyz++4"
is the same as the .one above. Thus by quoting every nonalphanumeric
character beingused as‘a text character, you need not memorize the above list

of current.operator characters.

An operator character may-also:be turned into a text character by preceding it
withabackslash(\)asin

xyz\+\+
which is another, less readable, ‘equivalent of the above expressions. The
quoting mechanism can also be used to get a blank intoan expression; normally,
as explained above, blanks or tabs end a rule. Any blank character not
contained within brackets must be quoted. ‘Several normal:C escapes with the
backslash (|)are recognized:
\n newline
\t tab
\b ‘backspace
\\ backslash
Since'newline isillegal in an expression, a'\n must be-used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and:the list
aboveis always atextcharacter.
8.4 Invoking lez
There are two steps-in compiling a lex source program. First, the lex source

must beturned intoa generated program in the host general purpose language.
Then this program must be compiled and loaded, usually with a library of lex

8-4

Liex: A Lexical Analyzer

subroutines. The generated program is in a file named lex.yy.c. The 1/O
library isdefinedintermsof the Cstandard library.

The library is accessed by ‘the loader flag —U. So ‘an appropriate set of
commandsis

lex source
cc lex.yy.c -1l

The resulting program is placed on the usual file a.out for later execution. To
use lex with y acc see the section “Lex and Yacc” in‘this chapterand Chapter 9,
*“Yacc: A'Compiler-Compiler”””. Although the default lex I/O routines use the
C standard library, the lex automata themselves do not do so. If private
versionsof input, output,and unput aregiven, the library can'be avoided.

8.5 Specifying Character Classes
Classesof characters can be specified using brackets: [and]. The construction
[abe]

matches a single character, which may be 4, b, or ¢. Within square brackets,
most operator meanings:are ignored. Only three characters are special: these
are the backslash (\), the dash (), and the caret {). The dash character
indicatesranges. Foriexample

[a-20:9< > _]

indicates the character class containing all the lowercase letters, the digits, the
angle brackets, and underline. Ranges may be given‘in-either order. Using the
dash between any pair of characters that are not both uppercase letters, both
lowercase letters, or both digits is implementation dependent and causes a
warning message. If it is desired to include the dash in a character class, it
should be first or last; thus

|-+0-9]
matchesall the digits and the plus and minus signs.
In character classes, the caret () operator must appear as the first character
after the left bracket; it indicates that the resulting string is to be
complemented with respect to the computer character set. Thus

[“abe}

matches all characters except a, b, or ¢, including all special or control
characters; or

XENIX Programmer’s ‘Guide

["a-2A-Z]
is any character which is not a letter. The backslash () provides-an escape
mechanism within character class brackets, so that characters can be entered
literally by preceding them with thischaracter.
8.8 Specifying an Arbitrary Character
To match -almost any -character, the period (.} designates the class of all
characters except a newline. Escaping into octal is possible although
nonportable. Forexample

[\40-\176]
matches all printable characters in the ASCII character set, from octal 40
(blank) to'octal 176 (tilde).
8.7 Specifying Optional Expressions

The question mark (?).operator indicates an optional element of an expression.
Thus

ab?c
matches either ac or abe. Note that the meaning of the question mark here
differsfrom its meaningin theshell.
8.8 Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and plus (+) operators.
Forexample

a%

matches any number of .consecutive @ characters, including zero; while a+
matchesoneormoreinstancesof a. Forexample,

[a-2]+
matchesall strings of lowercase letters, and
|A-Za-z]|A-Za-20-9]+

matches all alphanumeric strings with aleading alphabetic character; thisisa
typicalexpressionfor recognizingidentifiersin computerlanguages.

Lex: A Lexical Analyzer

8.9 Specifying Alternation and Grouping
The vertical bar (|) operator indicatesalternation. Forexample
(abjed)

matcheseither abor cd. Note that parentheses are:used for grouping, although
they are not necessary at the outside level. For example

ab]cd

would have:sufficed in the preceding example. Parentheses should be used for
morecomplex expressions, suchas

(abjed+)?(ef)*

which matchessuch:stringsas abefef, ¢fefef, cdef, and cddd, butnot ebc, abed,
or abedef.

8.10 Specifying Context Sensitivity

Lex recognizes a small amount of surrounding context. The two simplest
operators for this are the caret (~) and the dollar sign:($). If the first character
of an expressionisia caret, then the expression isonly'matched at the beginning
of a line (after a newline character, or at the beginning of the input stream).
This can never conflict with the other meaning of the caret, complementation
of character classes, since complementation only applies within brackets. If the
very last character is-dollar sign, the expression only matched at the end of a
line (when immediately followed by newline). The latter operator is a special
case of the slash (/) operator, whichindicates trailing context. The expression

ab/cd
matchesthestring ab, butonly if followed by ed. Thus
ab$

isthe same as

ab/\n

Left context is handled in lex by specifying start conditions as explained in the
section ““Specifying Left Context Sensitivity”. If a rule is only to be executed
when the lex automaton interpreter is in:start.condition z, the rule should be
enclosedinangle brackets:

<x>

XENIX Programmer's Guide

If we considered being at the beginningof a line to be start condition ONE, then
the caret(")operator wouldbe equivalent'to

<ONE>

Start.conditions are explained more fully later.

8.11 Specifying Expression Repetition

The curly braces({ and })specify either repetitions (if they enclose numbers)or
definition expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the
expression.

8.12 Specifying Definitions

The definitions:are given in the first part of the lex input, before the rules. In
contrast,

a{1,5}
looks for 1to0.5 occurrencesof the character a.

Finally, an initial percent sign (‘%) is special, since it is the separator for lex
source segments. :

8.13 Specifying Actions

When an expression is matched by a pattern of text in the input, lex executes
the corresponding action. This section describes some features of lex which aid
in writing actions. Notethat there is a default action, which consists of copying
the input to the output. Thisis performed on all strings not otherwise matched.
Thus the lex user who wishes to absorbtheentire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacg, this is'the-normal situation. You may consider that actions are what is
done instead.of copying the input to the output; thus, in general, a rule which
merely copies can beomitted.

One of the simplest things that canbe done is to ignore the input. Specifyinga C
nullstatement ;as:an action causesthis result. A frequent ruleis

[\t\n] ;

which causes the three spacing characters {blank, tab, and newline) to be

8-8

Lex: A Lexical Analyzer

ignored.’

Another easy way to avoid writing actions is to-use the repeat action character,
|, which indicates that the action for this rule is the action for the next rule. The
previousexample could-also have been'written

"\t”. I
”\n” ;
with:the same result, although in adifferent style. The quotes around \n.and \¢t

arenotrequired.

In more complex-actions, you often want to know the actualtext that matched
some expression like:

[a-z]+

Lex leaves this text in an external character array named yytezt. Thus, to
printthe name found, arulelike

[a-z}+ printf("%s", yytext);

prints the string in yytezt. The C function printf accepts-a format argument
and data to be printed; in this case, the format is print string where the percent
sign (%) indicates data conversion, and the sindicate string type, and the data
are the characters in yytest. So this just places the matched string on the
output. Thisaction is so common that it may be written asECHO. For example

[2-z]+ ECHO;
is the same as the preceding example. Since the default action is justto print
the characters found, one might ask why give a rule, like this one, which merely
specifies the default action? Such rules are often required to avoid matching
some other rule that is not desired. For example, if there is a rule that matches

read it willnormally match theinstancesof read containediin breador re adjust;
toavoid this, aruleof theform

[a~z]+
isneeded. Thisisexplained further below.
Sometimes it is more convenient to know theend of what hasbeen found; hence
lex also provides a count:of the number of characters matched in the variable,
yyleng. To count both the number of words and the number of characters in
wordsin the input, youmight write

{a-2A-Z]+ {words++; chars +== yyleng;}

which accumulates in the variables charsthe number of charactersinthe words

8-9

XENIX Programmer’s Guide

recognized. Thelast character inthestring matched can be accessed with:

yytext[yyleng-1]

Occasionally, alex action:may decide that a rule has not recognized the correct
spanof characters. Two routines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Normally, the next input string will
overwrite the current entry in yytest. Second, yyless(n) ‘may be called to
indicate that not all the characters matched by the currently successful
expression are wanted right now. The argument n indicates the number of
charactersin yytezt to be retained. Further characters previously matched are
returned to the input. This provides the same sort of lookahead offered by the
slash (/) operator, but ina different form.

For example, consider a language that defines a string as a set of characters
between quotation marks ("), and provides that toinclude a quotation mark in
a string, it must be preceded by a backslash (\). The regular expression that
matches this is somewhat confusing, sothatit might be preferable to write

Vil o
if (yytext[yyleng-1] ==\Y)
yymore(};
else
... normal .user processing

which, when faced with astringsuchas
”abc\"def”
will first match the five characters
"abe\
and then the call to yymore() will cause the next part of the string,

" def

to be tacked on the end. Note that the final quotation mark terminating the
string should be picked upinthe code labeled normal processing.

The function yylese() might be used toreprocessitextin various circumstances.
Consider the problem in.the.older C syntaxof distinguishing the ambiguity of
==-4. Suppose it is desired to treat this as =- aandtoprinta message. A rule
might be

8-10

Lex: A Lexical Analyzer

=-[a-2A-Z]
printf("Operator (=-) ambiguous\n");

yyless(yyleng-1);
... action for =- ...

}

which prints a message, returns the letter after the operator ‘to the input
stream, and-treatsthe operator as'==,

Alternatively it might be desired to treat this as.= —a. To do this, just return
the minus sign as well as the letter to the input. The following performs the
interpretation:

=-la-zA-Z}
printf("Operator (==-) ambiguous\n™);
yyless(yyleng-2);
... action for = ..,
Notethatthe expressionsforthe two casesmight more easily be written
=-[[A-Za-3]
in the first:case and
=/-[A-Za-z]
in ‘the second: no backup would be required in the rule action. It is not

necessary to recognize the whole identifier to observe the ambiguity. The
possibility of =-8, however, makes

=-/[" \t\n]
astill better rule.
In addition to these routines, lex also permits access to the I/O routines it uses.
Theyinclude:
1. dnput() which returns the next input character;
2. output(c)which writes the character conthe output;and

3. .unput(c) which pushes the character ¢ back onto the input stream:to
bereadlater by tnput().

By default these routines are provided as macro definitions, but the user can
override them and supply private versions. These routines define the
relationship between external files and internal characters, and must all be
retained .or ‘modified consistently. ‘They may be redefined, to cause input.or

8-11

XENIX Programmer’s Guide

output to be transmitted to or from strange places, including other programs
or internal ‘memory; but the character set used must be consistent in all
routines; - 'value .of zero returned by tnput must mean end-of-file; and the
relationship between unput and input must be retained or the lookahead will
not work. Lex does not look ahead at all if it does-not have to, but every rule
containing a slash (/) or ending in one of the following characters implies
lookahead:

+*178

Lookahead is:also necessary to match an expression that is a prefix of another
expression. See below for a discussion of the character set used by lex. The
standard lex library imposesa 100 character limit on backup.

Another lex library routine that you sometimes want to redefine is yywrap()
which is called whenever lex reaches an end-of-file. I yywrap returnsa 1, lex
continues with the normal wrapup on:end of input. Sometimes, however, it is
convenient to arrange for more input to arrive froma new source. Inthis case,
the user should provide a yywrap that arranges for new input and returns0.
Thisinstructs lex to continue processing. The default yywrapalwaysreturnsi.
This:routine is also a-convenient place to print tables, summaries,-etc. at the
end of a program. Note that it is not possible to write a normal rule that
recognizes.end-of-file; the only access to this condition is through yywrap(). In

fact, unlessa private version of input() is:supplied a file containing nulls cannot
be handled, since avalue of O returned by inputistaken to be end-ol-file.

8.14 Handling Ambiguous Source Rules

Lex can handle ambiguous specifications. When more than:one expression can
matchthe current input, lex choosesasfollows:

o Thelongest matchispreferred.

o .Among rules that match ‘the same number of characters, the first
givenruleispreferred.

For example, suppose the following rules are given:

integer keyword action ...;
[a-z]+ identifier action ...;

Ifthe inputisintegers, it istaken as anidentifier, because
[a-z}+

matches8.characters while

8-12

Lex: A Lexical Analyzer

integer

matchesonly 7. If the input is integer, both rules match 7-characters, and the
keyword rule isselected because it was given first. Anythingshorter {e.g., int)
does not:match theexpression integer, so the identifier interpretationisused.

The principle of preferring the longest match makes certain constructions
dangerous, such as the following:

K J

Forexample
’.'!

might seem a good way ‘of recognizing a string in single quotes. But it isan
invitation for the program to read far ahead, looking for a distant single quote.
Presented with theinput

first” quoted string here, ‘second’ here
the:above expression matches
first* quoted string here, second”’

which is probably not what waswanted. Abetter ruleisof the form
["\n}#’

which, on the above input, stops after first”, The consequences of errors like
this ‘are mitigated by the fact that the dot (.) operator does not match a
newline. Therefore, nomore than.one lineisever matched by suchexpressions.
Don’ttry to defeat this with expressionslike

[-\n}+

or their equivalents: the lex generated program willtry toread the entire input
file, causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for all
possible matches of .each expression. This means that each character is
accounted for once and only once. For example, suppose it is desired to count
occurrencesof both ghe and Ae in aninput text. Some lex rulesto do this might
be

she s+4;
he h++4;
\n l

k]

8-13

XENIX Programmer's ‘Guide

where the last two rulesignore everything besides ke and she. Remember that
the period (.} does not include the newline. Since she includes ke, lex will
normally not recognize the instances of ke included in she, since once it has
passed a she thosecharactersare gone.

Sometimes the user would like to override this choice. The action REJECT
means go do the ‘next alternative. It causes whatever rule was second choice
after the current rule to be executed. ‘The position -of the input ‘pointer is
adjusted accordingly. Suppose the user really ‘wants to count the included
instancesof he:

she {s++; REJECT;}
he {h++; REJECT;}
\n |

1

These rules are.one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, ‘the .other
expression will then be counted. In thisexample,of course, the user-could note
that she includes ke, but not vice versa, and omit the REJECT action on he; in
other cases, however, it would not be possible to tell which input characters
wereinboth classes.

Consider the tworules

bel+ {...; REJECT;}
cdl+ {..;REJECT.)

8
al

If the input is'ab, only the first rule matches, and on adonly the second matches.
The input string accb matches the first rule for four characters and then the
second rule for three characters. In contrast, the input -aced agrees with the
second rulefor four charactersand then the first rule for three.

In general, REJECT is useful whenever the purpose of lex is not to partition the
input stream but to detect all.examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose-a digram
table of the input is desired; normally the digrams overlap, thatis the wordthe
is considered to contain both th and ke. Assuming a two-dimensional array
named digram to beincremented, the appropriate source is

%%
fa-z][a-2] :{digram[yytext[O]][yytext[l]]++; REJECT;}
o

where the REJECT is necessary to pick up a letter pair beginning at every
character, rather:than atevery other character.

Remember that REJECT does not rescan the input. Instead it remembers the
results of the previous scan. This means that if a rule with trailing context is

8-14

Lex: A Lexical Analyzer

found, and REJECT executed, you must not have used unput to change the
characters forthcoming from the input stream. This'is the only restriction to
ability to. manipulate the not-yet-processed input.

8.15 Specifying Left Context Sensitivity

Sometimes it is desirable to have several sets of lexical rules to be applied at
different times in the input. For example, :a compiler preprocessor might
distinguish ‘preprocessor ‘statements and analyze them differently from
ordinary statements. ‘This requires sensitivity to prior context,-and there are
several ways of handling such problems. The caret (") operator, for example, is
aprior contextoperator, recognizingimmediately precedingleft contextjust as
the dollar sign ($) recognizes immediately following right context. Adjacent
left context could be extended, to produce afacility similar to that for-adjacent
right .context, but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such asat the beginning of aline.

Thissection describesthree meansof dealing with different environments:

1. The use of flags, when only a few rules change from-one environment
to:another

2. Theuseof start conditions with-rules
3. Theusemultiplelexicalanalyzersrunningtogether.

Ineach case, therearerulesthat recognize:the needto change the environment
in which the following input textis analyzed, and:set some parameter toreflect
the change. This may be a flag explicitly tested by theuser’saction code; sucha
flag is the simplest way of dealing with the problem, since lex isnot involved at
all. Tt :may be more convenient, however, to have lex remember the flags as
initial conditions on ‘the rules. Any rule may be -associated with a start
condition. It will only be recognized when lex is in-that start.condition. The
current start condition may bechanged at any time. Finally, if the setsof rules
for-the different environments-are very dissimilar, clarity may be best-achieved
by writing several distinctlexical analyzers,-and switching from one to another
as desired.

Consider the following problem: copy the input to the output, changing the
word 'magicto firston‘every line that began with the letter a, changing magic to
secondon every line that began with the letter b, and changing magic to third
on‘every line that began with the letter ¢. All other words:and allother linesare
left unchanged.

These rulesiare sosimple that the easiest way to dothisjobiswith aflag:

8-15

XENIX Programmer’s Guide

int flag;

%%

“a {flag = ‘a’, ECHO;}

b {flag = % ECHO;}

"¢ {flag = ¢y ECHO;}

\n {flag == 0; ECHO;}

magic {
switch (fag)
{
case ‘a”: printf(”first”); break;
case b printf("second”); break;
case ‘c”: printf("third"); break;
default: ECHO; break;

}
}

should be adequate.

Tohandle the same problem with:start conditions, each start condition must be
introduced tolex in the definitions section with aline reading

%Start namel name2 ...
where ‘the .conditions may be named in any order. The word Start may be
abbreviated to sor S. The:conditions may be referenced at the headof a rule
withangle brackets. For.example

<namel>expression

is a rule that is only recognized when lex is in the start condition namel. To
enter-a start condition, execute the action:statement

BEGIN namel;
which changesthe start condition to name 1. Toreturntotheinitialstate
BEGIN 0;

resets the initial condition of the lex automaton interpreter. A rule may be
activeinseveral start conditions; for example:

<namel,name2;name3 >

is alegal prefix. Any rule not beginning with the <> prefix operator is always
active.

The same-example as before can be written:

8-16

Lex: A Lexical Analyzer

%START AA BB CC

%%
“a
“b

[

\n

{ECHO; BEGIN AA;}
{ECHO; BEGIN EB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN 0;}

<AA>magic printf("first”);
<BB>magic printf{"second”);
< CC>magic print{(” third™);

where the logic is exactly the same asiin the previous method of handling the

problem,

butlex doesthe workratherthanthe user’s-code.

8.18 Specifying Source Definitions

Remember the format of the lex:source:

{definitions}

%%

{rules}

%%
{use

r routines}

So far only the rules have been described. You will need -additional options,
though, to define variables for use in your program and for use by lex. These
cangoeitherin the definitionssection orinthe rulessection.

Remember that lex is turning the rules into a program. Any source not
intercepted by lex iscopied intothe generated program. Therearethree classes
of'suchthings:

Any line that is not part of a lex rule:or action which begins with a
blank-or tab is copied into the lex generated program. Such source
input prior to the first %% :delimiter will be external to any function
inthe code;'if it appears immediately after the first %%, it appearsin
an appropriate place for declarations in the function written by lex
which contains the ‘actions. ‘This material must look like program
fragments, and should precede the first lex rule.

As aside effect of the above, lines that begin with a blank or tab, and
which contain a comment, are passed through to the generated
program. This can be used to include comments in either the lex
source or the generated code. The comments should follow the
conventionsof the C language.

Anythingincluded between lines containing only %{ and %} is copied

out ‘as ‘above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must beginin column

8-17

XENIX Programmer’s Guide

1, or copyinglinesthat do not look like programs.

3. Anything after the third ‘%% delimiter, regardless of formats, is
copied out-afterthe lex output.

Definitionsintended for lex are given before the first % % delimiter. Any line'in
this section not contained between %{ and %}, and beginning in column 1,is
assumed todefine lex substitution strings. The formatof suchlinesis

name translation

and it causes the string given as a translation to be associated with the name.
The name and translation must be separated by at least one blank or tab, and
the name must begin witha letter. The translation can then be called out by'the
{name} syntax in a rule. Using {D} for the digits and {E} for-an.exponent field,
for example, might abbreviate rulesto recognize numbers:

D 0-9]
E Ede]|-+]?{D}+
%%

{D}+ printf("integer”);
{D}+".7 (D)+((E})?

Dy Dy+(E | _
{D}+{E} printf("real”);

Note the first two rules for real numbers; both require a decimal point and
contain an-optionalexponent field, but the first requires at least-one digit before
the decimal point and the second requires at least one digit after the decimal
point. To correctly handle the problem posed by a FORTRAN expression such
as 35.EQ.1, which does not contain areal number, a context-sensitive rule such
as

[0-9]+/"."EQ printf(”integer”);
could be used in addition to.the normal rule for integers.

The definitions section may also contain other commands, including a
character set table, a list of start conditions, or adjustments to the default size
of arrays within lex itself for larger source programs. ‘These possibilities are
discussed in the section “Source Format”.

8.17 Lex and Yace

If you want to useJex with yacc, note that what lex writesisa program named
yylea(), the name required by yacc for its unalyzer. Normally, the default main
program:on the lex library callsthis routinr, butif yacc is loaded, and itsmain
program is used, yace will call yyles(). In this case, each lex rule should end
with

8-18

Lex: A Lexical Analyzer

return{token);

where the appropriate token value is returned. An easy way to get access to
Yacc'’s names for tokens is to compile the lex output file as part of the yace
outputfile by placing the line

include "lex.yy.c”

inthe last sectionof yace input. Supposingthe grammar tobe named goodand
the lexicalrules to be-named betterthe XENIX command sequence can just be:

yace good
lex better
cc y.tab.c-ly -li

The yacc library {-ly) should be loaded before the lex library, to.obtain'a main
program which invokes the yacc parser. The generation of lex and yacc
programs.can be doneineither order.

As a trivial problem, consider copying an input file while adding 3 to every
positive number divisible by 7. Here is a suitable lex source program to do just
that:

%%
int k;
o9+ {
k = atoi(yytext);
if (k%7 === 0)
printf("%d", k+3);
else

printf("%d" k);

The rule {0-]+ recognizes strings of digits; atoi() converts the digits to binary
and stores the result in k. Theremainder operator (%) isused to check whether
kis divisible by 7; if it is, it is incremented by 3 as it is-written out. It may be
objected that this program will alter such input items as 49.63 or X7.
Furthermore, it incrementsthe absolute value of all negative numbers divisible
by 7. Toavoid this, just add a few more rules after the active one, as here:

%%
int k;
-o-9)+ {
k = atoi(yytext);
printf("%d”, k%7 == 0 ? k+3 : k);

-?[o-8.]+ ECHO;
[A-Za-2][A-Za-20-9]+ ECHO;

Numerical strings containing a decimal point or preceded by a letter will be

8-19

XENIX Programmer’s Guide

picked up by one of the last two rules, and not changed. The'if-else hasbeen
replaced by a C:conditional expression to save space; the form afb:cmeans: if ¢
then-belsec.

For an example of statistics gathering, here is a program which ‘makes
histograms of word lengths, where a word isdefined asastring of letters.

int lengs{100);
%%
[a-z]+ lengslyylengl++;
: |

%o
¥YW~rap()

int i;
printf("Length No. words\n");
for(i==0; i<100; i++)
if (lengs|i] > 0)
printf(” %5d%10d\n" i, lengs|i]};
return(1);

This program accumulates the histogram, while producing no output. At the }
end of the input it prints the table. The final statement return(1); indicates
that lex is to perform wrapup. If yywrap() returns zero (false) it implies that

further input is available .and the program is to continue reading and

processing. ‘To provide a yywrap() that never returns true causes an infinite

loop.

As a larger example, here are some parts of a program written to convert
double precision FORTRAN to single precision FORTRAN. ‘Because FORTRAN
does not distinguish between upper- and lowercase letters, this routine begins
by-defining a set of classesincluding both cases of each letter:

2 aA
b bB
c [eQ)
2 izZ]
Anadditional class recognizes white space: i)
w [\t]

The first rule changes double precision to real, or DOUBLE PRECISION to
REAL.

8-20

Lex: A Lexical Analyzer

{d}{O}{u}{b}{l}[{tlf}{W}{p}{r}{e}{C}{ }{S}{l}{o}{n} {

printf(yytext][0]==="d"?
}

Care is taken throughout this program to preserve the ccase of the original
program. The conditional operator is used to select the proper form of the
keyword. Thenext rule copiescontinuation:card indications toavoid confusing
them with constants:

SR) ECHO;

In the regular expression, the guotes surround the blanks. It isinterpreted as
beginning of line, then five blanks, then anything but blank or zero.” Note the
two different meaningsof the caret () here. There follow some rulesto change
double precision constants toordinary floating constants.

[0-9]+{WHdH{ WH+-]?{W}{0-9]+

[0-9]+{W}"." {W}{d}{W} []?{W}[O-Q |

7 "{)N}[(W]'Ft{w}{g}{:”} H{Who-gl+ |
for(;{:-—yytext *p 1= 0; p++4)

if (4p =="d"|| 3p =="D")
.p+== 1e~- ’d);
ECHO;

}

After the floating point constant is recognized, it is scanned by the for loop to
find the letter ““d”or “D”’. The program thenadds‘"e’ -’ 4’ -which convertsit
tothe next letter of the alphabet. The modified constant, now single precision,
is written.out again. There follow aseriesiof names which must be respelled to
remove their initial *‘d”. By using the array yytezt the same action suffices for
all the names{only asampleof arather longlistisgiven here).

{dH{sHi}{n} |
{o}s} |
{dHsHa}{r}{t} |
{dH{a}{tHa}{n} |
{dH{IHIHoHa}e) printf(” %s” yytext+1);

Another list.of names must have initial dchanged toinitial a:

8-21

XENIX Programmer’s Guide

s e i e

yytext[0] +="a"- d5
ECHO;
}

Andone routine musthave initial d changed toinitial r:

e
yytest[0] += T° - “d"
) ECHO;

To avoid such names as dsinz being detected as instances of dssn, some final
rules pick up longer words asidentifiers and-copy some surviving characters:

[A-Za-7][A-Za-20-9]+ I
0-]+

ECHO;

Note that this program is not complete; it does not deal ‘with the spacing
problemsin FORTRAN or with the use of keywordsasidentifiers.

8.18 Specifying Character Sets

The programs generated by lex handle character 1/O only through the
routines input, output, and unput. Thusthe characterrepresentation provided
in these routines is accepted by lex and employed to return values in yytezt.
For internal use a character is represented as a small integer which, if the
standard library isused, has avalue equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter a'is
represented as the same formas the character constant:
fa'

If thisinterpretation is changed, by providing I/O routines which translate the
characters, lex must betold about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by lines containing
only %T. Thetable containslines of the form

{integer} {character string}

which indicatethe value associated witheachcharacter. Forexample:

8-22

Lex: A Lexical Analyzer

%T

1 Aa

2 Bb
26 Zz
27 \n
28 +
29 -
30 0
31 1
39 9
%T

This table mapsthe lowercase and uppercase letterstogether intotheintegers1
through26, newline into 27, plus(+)and minus(-) into 28 and 29, and the digits
into 30 through 39. Note the escape for newline. If a table is:'supplied, every
character that is to appear either in the rules or in any valid input must be
included in the table. No character may be assigned the number 0,-and no
character may be assigned ‘a larger number than the size of the hardware
character set.

8.19 Source Format

The general formof:alex sourcefileis:

{definitions}

{rules}
%%
{user subroutines}

The definitions section containsa combinationof

1. Definitions, intheform “namespacetranslation”
2. Included code,intheform “'space code”

3. Included code,intheform
%4
code
%}

4. Start conditions, givenintheform

%S namel name2 ...

8-23

XENIX Programmer’s Guide

5. Characterset tables, inthe form

%T
number space character-string
%T

6. Changestointernalarray sizes, in'theform
%x nnn

where nnnisa decimal integer representing an array size and zselects
the parameteras follows:

Letter Parameter

positions

states

tree nodes

transitions

packed ccharacter classes
output array size

O x e o 3o

Linesintherulessection have the form:

)

ezpression -action

where the action may be continued -on succeeding lines by using braces to
delimit it.

Regular expressionsinlex use the followingoperators:

X The character "x”
"x" An"x", evenil'xisanoperator.
\x An"x",evenifxisanoperator.

[xy} The characterx ory.
[x-z] Thecharactersx,yoraz.
["x] Any character butx.

Any character but newline.

x Anxatthe beginning of'aline.
<y>x Anxwhenlexisinstartconditiony.

x$ Anxattheendofaline.

Lex: A Lexical Analyzer

x? Anoptionalx.

X‘

0,1,2, ...instancesof x.

x+ 1,2,3,...instancesof x.

xly Anxoray.

(x) Anx.

xfy Anxbutonlyiffollowed by y.

{xx} The translationof xx from the definitions section.

x{m,n} mthroughnoccurrencesofx.

8-25

Chapter 9
Yacc: A Compller-Compller

9.1 Introduction 9-1

9.2 Specifications 94

9.3 Actions 96

9.4 Lexical Analysis 9-8

9.5 HowtheParser Works 9-10

9.6 Ambiguity and Conflicts 9-14

9.7 Precedence 919

9.8 ErrorHandling 9-22

9.9 TheYaccEnvironment 9-24

9.10 Preparing Specifications '9-25

9.11 Input Style 9-25

9.12 Left Recursion 9-26

9.13 Lexical Tie-ins 9-27

9.14 Handling Reserved Words 9-27

9.15 Simulating Errorand Acceptin Actions 9-28
9.16 Accessing Valuesin EnclosingRules 9-28

9.17 Supporting Arbitrar Value Types 929

9.18 A Small Desk Calculator '9-30

.9.19 Yaf:c InputSyntax 9-32
9.20 An Advanced Example 9-34

9.21 Old Features 9-40

Yacc: A Compiler-Compiler

9.1 Introduction

Computer ‘program :input generally thas some structure; every computer
program that doesinput can be thought:of as-defining an input language which
it accepts. Aninput language may be as complex asa programming language,
or as sitnple:asasequence of numbers. Unfortunately, usualinput facilities are
limited, difficult touse, and.often lax about checking their inputsfor validity.

Yacc provides a general tool for describing the input to a computer program.
The ‘name yacc itself stands for “‘yet another compiler-compiler”. The yace
user specifies the structures-of his input, together ‘with code to be invoked as
each such structure is recognized. Yacc turns such a specification into a
subroutine that handles the input process; frequently, it is convenient and
appropriate to have:mostof the flow-of controlin the user’s application handled
by this subroutine.

The input subroutine produced by yacc:eallsa user-supplied routine'to return
the next basic input item. Thus, the user can specify his input in terms of
individual input characters, or in terms of higher level constructs such as
names ‘and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification. The class of specifications accepted is.a very
generalone: LALR grammars with disambiguating rules.

In-addition to compilers for C, APL, Pascal, RATFOR, etc., yacc hasalso been
used for less conventional languages, including a phototypesetter language,
several ‘desk calculator languages, a document retrieval system, and a

FORTRAN debugging system.

Yacc providesageneral tool for imposing structure on the input to a computer
program. The yacec user prepares a specification of the input process; this
includes rules-describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. Yacc then
generates a function to control the input process. This function, -called a
parser, calls the ‘user-supplied low-level input routine {called the lexical
analyzer) to pick up the basic items (called tokens) from ‘the input stream.
These tokens are organized according to the input structure rules, called
grammar rules; ‘when one of these rules has been recognized, then user code
supplied for this rule, an action, isiinvoked; actions have the ability to return
valuesand make useof the valuesof other actions.

Yacc is written in a portable dialect of C and the actions, and output
subroutine, -are in C as ‘well. Moreover, many of the syntactic conventions.of
yaccfollow C.

The heart of the input specification isa collection of grammar rules. Each rule

describes .an allowable structure and gives it a name. For example, one
grammar rule might be:

g-1

XENIX Programmer’s Guide

date : month_name day °’

) year ;

Here, date, month_name, day, and yearrepresent structures of interestin the
input process; presumably, month_name, day, and yearare defined elsewhere.
The comma (,) .is enclosed in single ‘quotation marks; this implies that the
commaiste appear literally in theinput. The.colonandsemicolon merely serve
as punctuation in the rule, and have no significance in controlling the input.
Thus, with proper definitions, theinput:

July 4, 1775
might be:matched by the above rule.

An important part of the input process is carried out by the lexical analyzer.
This user routine reads the input stream, recognizing the lower level
structures, 'and communicates these tokens -to the pparser. A structure
recognized by the lexical analyzer is called a terminal symbol, while the
structure recognized by the parser is ‘called :a nonterminal symbol. To avoid
confusion, terminal symbols will usually be referred to:as tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. Forexample, the rules

1990y

month_name : 'Y ’a’ 'n’;
month_name : 'F’ ¢’ b’ ;

month_name : 'D’' %¢’ ’¢’ ;
might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and montk_name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and ‘may ‘complicate the
specification beyond yacc’s ability to-deal with it. Usually, the lexical analyzer
would recognize the month names, and return :an indication that a
month_name wasseen;inthiscase, month_name wouldbea token.

Literal characters, such as the comma, must also be passed through the lexical
analyzer and are considered tokens.

Specification files are very flexible. It is relatively easy to add to the above
example the rule

“date : month */" day '/ year ;
allowing
7/4/1716

asasynonym for

9-2

Yacec: A Compiler-Compiler

July 4, 1776

In ‘most cases, this new rule icould be slipped in to ‘a working system with
minimaleflort, and little danger of disrupting existing input.

The input being read may not conformto the specifications. Theseinputerrors
are detected as-early asis theoretically possible with-aleft-to-right'scan; thus,
not -only ‘is the chance of reading and computing with bad input data
substantially reduced, but the bad data can usually be quickly found. Error
handling, provided as part of the input specifications, permits the reentry -of
bad data, or the continuation of the input process:after skipping over the bad
data.

In'some cases, yacc fails:to produce a parser when given-a set of specifications.
For example, the specifications may be self contradictory,or they may require
a more powerful recognition :mechanism than that available to yace. The
former-cases represent design errors; the latter casescan often’be corrected by
making the lexical analyzer more powerful, or by rewriting some of the
grammar rules. While yacc cannot handleall possible specifications, itspower
compares favorably with similar systems; moreover, the constructions which
are difficult for y:acc to handle are also frequently difficult for human beingsto
handle. ‘Some usershave reported that the discipline of formulating validyace
specificationsfor theirinputrevealederrorsof conception or design early in the
programdevelopment.

The nextseveral sectionsdescribe:
o The preparationoflgrammar rules

o The preparation of the user supplied ‘actions associated with the
grammar rules

o The preparationoflexicalanalyzers
e Theoperationof the parser

o ‘Various reasons why yacc may beunableto produce a parser from a
specification, and what to doabout it.

» Asimple mechanism for handlingoperator precedences inarithmetic
expressions.

o Errordetectionandrecovery.

o The operating environment and special features of the parsers yacc
produces.

s Some suggestions'which shouldimprove the style and efficiency of the
specifications.

9-3

XENIX Programmer’s Guide

9.2 Specifications

Names refer to -either tokens or nonterminal symbols. yacc requires token
names to be declared assuch. Inaddition, for reasons discussed later, it isoften
desirable to include the lexical analyzer-as:part of the specification file. It may
be useful to include :other programs as well. Thus, every specification file
consists of three sections: the declarations, {grammar) rules, and programs.
The sections are separated by double percent %% marks. |(The percent sign
(%) isgenerally usedinyaccspecificationsasan escape character.)

Inother words,afull specification file looks like

declarations
%%

rules

%%
programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second %% mark may be omitted also; thus, the smallest legal
yacc specification is

%%

rules

Blanks, tabs, and newlines are ignored except that they may not appear in
namesormulticharacter reserved symbols. Comments may appear wherevera
nameislegal; they areenclosedin /... %/, asinC.

The rulessectionis madeup.of oneormore grammarrules. A grammarrule has
the form:

A :BODY;

A'represents'a nonterminal name, .and BODY represents-a sequence of zero-or
more names and literals. The colon and the semicolon are yace punctuation.

Names'may be of arbitrary length, and may be made up of letters, dot (.), the
underscore (_), and noninitial digits. Uppercase and lowercase letters are
distinct. The names used inthe body of a.grammar rule may represent tokens
or nonterminalsymbols.

Aliteral consists of a character enclosed insingle quotation marks (). Asin'C,

the backslash (\)is'an escape character withinliterals, and all the Cescapesare
recognized. Thus

9-4

Yace: A Compiler-Compiler

An’ Newline

Ar’ Return

\’ Single quotation mark
AW Backslash

At Tab

\b’ Backspace

N\ Form feed

Axxx’ "xxx” in octal

For a number of technical reasons, the ASCIl NUL character {40 or:0} should
never be usedingrammar rules.

If there are several grammar rules with the 'same left hand side, then the
vertical bar (|) can be used to avoid rewriting the left hand side. In-addition,
the semicolon.at theend of arule canbe dropped before a vertical bar. Thusthe
grammar rules

A:BC D;
A:ETF ;
A:G ;

canbegiventoyaceas

A:BCD
|E F
|G

It is not necessary that all grammar rules with the same left side appear
together in the.grammar rules section, although it makes the input much more
readable, and easier to change.

If a nonterminal symbol'matches the empty string, this can be indicated in the
obvious way:

empty . ;

Names representing tokens must be declared; this is most simply done by
writing

Ct¢token namel name2 ...

in'the declarations'section. (See Sections 3, 5, and 6 for much more discussion).
Every nonterminal symbol must.appearon the left side of at least one rule.

Of :all 'the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, ‘this
symbol represents the largest, most general structure described by the
grammar rules. By-default, the start symbol is taken to be the left hand side of
the first grammar ruleiin the rulessection. Itispossible, and in fact desirable, to

9

[

XENIX Programmer’s ‘Guide

declare the start symbol explicitly in-the declarations section‘using the %start
keyword:

Yostart symbol

The end of the input to the parser is signaled by a special token, called the
:ndmarker. If the tokens up to, but not including, the endmarker form a
structure which matches the start symbol, the parser function returns toits
:aller after the endmarker is'seen;itacceptsthe input. If the endmarker isseen
nany-other context,itisanerror.

[t is the jobof the user-supplied lexical analyzer to return the endmarker when
ippropriate; see section 3, below. Usually the endmarker represents some
reasonably obvious]/O status, such asthe end of the file or end of the record.

3.3 Actions

With each grammar rule, the user may associate actions to be performed each
iime the rule is recognized in the input process. These actions may return
ralues, and may obtainthe valuesreturned by previousactions. Moreover, the
exical apalyzer can return valuesfor tokens, if desired.

Anactionisan arbitrary Cstatement, andassuch candoinput:and output, call
subprograms, and alter external vectors and variables. An action is specified
’y one or more statements, enclosed in curly braces { and }. Forexample
A: !(I B ’)’
{ hello{ 1, "abe”); }
ind
XXX YYY ZZZ
{ printf(”a message\n");
flag = 25;}
wre grammarrules with actions.
Co facilitate easy communication between the actions and the parser, the
iction statements are altered slightly. The dollar sign ($) is used as a signal to

raccin thiscontext.

o return a value, the action normally sets the pseudo-variable $$ to some
ralue. Forexample, an action that doesnothing but return the value 1is

{$8 =1}
[oobtain the values returned by previous:actions and-the lexical analyzer, the

ietion may ‘use the pseudo-variables :$1, $2, ..., ‘which refer to the values
eturned by the components of the right side of a rule, reading from left to

6

Yace: A Compiler-Compiler

right. Thus, ifthe ruleis
A:BCD;

for example, then $2 has the value returned by ‘C, and $3 the value returned by
D.

Asamoreconcrete-example, consider therule
expr.: !’ expr ') ;

The value returned by this rule is usually the value.of the ezprin parentheses.
This canbeindicatedby

expr: (" expr’) { $$ == 42}

By default, the value of a ruleis the value of the first element in-it ($1). Thus,
grammar rulesof the form

A:Bj;
frequently need not have an explicit action.

In theexamplesabove, all the:actions came at the end:of their rules. Sometimes,
it is ‘desirable to get control before a rule is fully parsed. Yacc permits an
action to be written in the middle of a rule as well asat the end. Thisrule is
assumed to return a value, accessible through the usual mechanism by the
actions to the right of it. .In turn, it may access the‘values returned by the
symbolstoitsleft. Thus,in'therule

A:B
$$=1, }

x=$2; y=283; }

e Oy

the eflect istoset-zto 1,.and ytothe valuereturned by C.

Actions that 'do not terminate a rule are actually handled by yace by
manufacturing a new nonterminal'symbol name, anda new rule‘matching this
name to the empty string. The interior action is the action triggered off by
recognizing this added rule. Yaccactually treats the.above example asifit had
been written:

XENIX Programmer’s Guide

$ACT : /* empty #/
{$8=1}

’

A :B $ACT C
{ x=192; y==1$3; }

In many applications, output is not.done directly by the actions; rather,a data
structure, such as a parse tree, is constructed in memory, and transformations
areapplied toit before output is generated. Parse trees are particularly easy to
construct, given routines to build and maintain the tree structure desired. For
example, suppose there isa C function node, writtensothat the call

node(L, n1, n2)

creates anode with labelL, and descendantsnl and n2, and returnstheindex of
the newly created node. Then parse tree can be built by supplying actions such
as:

expr : expr '+’ expr

{ $¢ = node(+',$1,$3); }
in the specification.

The user may define other variablesto beused by the actions. Declarationsand
definitions can appear in the declarationssection, enclosedin the:marks %{.and
%}. These declarationsand definitions have globalscope, so-they are knownto
the action statementsand the lexical analyzer. Forexample,

%{ int variable = 0; %}

could be placed in the declarations:section, making variable accessible to all of
the actions. The yacc parser uses only names beginning in yy; the user should
avoid such names.

In these examples, all the values are integers: a discussion of values of other
types willbe found in alater section.

9.4 Lexical Analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens{with values, if desired) to the parser. Thelexical analyzer
is an integer-valued function called yylez. The function returns an integer,
called the token number, representing the kind of tokenread. Ifthereisavalue
associated with'that token, it should be assigned to the externalvariable yylval.

The parserand the lexical analyzer must agree on these token numbersinorder
for communication between them to take place. The numbers may be chosen

g-8

Yacc: A Compiler-Compiler

by yacc, or-.chosen by the user. In either case, the # define mechanismof Cis
used to allow the lexical analyzer to return these numbers symbolically. For
example, :suppose that the token name DIGIT has been defined in the
declarations section of the yacc specification file. The relevant portion of the
lexical:analyzer mightlook like:

yylex(){
extern int yylval;
int ¢;

¢ getchar();
.s.}.vitch(¢){

case "0
case '1%:

ca"s.e g
yylval = ¢-'0%;
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the
numericalvalue of the digit. Providedthatthelexical analyzer codeisplacedin
the programs section of the specification file, the identifier DIGIT will be
defined asthe token number associated with the token DIGIT.

This mechanism leads toclear, easily modified lexical analyzers; the only pitfall
is the need to.avoid using any token namesinthe grammar that are reserved or
significant in C.or the parser; for example, the use of token names:for whilewill
almost certainly cause severe difficulties when the lexical analyzeris compiled.
The token'name error is reserved for-error handling, and:should not be used
naively.

Asmentioned above, the token numbers may be chosen by yaccor by the user.
In the default situation, the numbers are chosen by yacc. The default token
number for :a literal character is the numerical value of the character in ‘the
local characterset. Other namesare assigned token numbersstartingat 257.

To assign a token number to a token (including literals), the first-appearance of
the token name or literal in the -declarations section ‘can be immediately
followed by a nonnegativeinteger. This integer istaken to be the token number
of the name or literal. Namesand literals not-defined by this mechanism retain
their default-definition. It isimportantthatall token numbersbe distinct.

For historical reasons, the endmarker must have token number 0 or negative.

Thistoken number cannot be redefined by the user. Hence, all lexical analyzers
should be preparedtoreturn 0 or negative asatoken numberuponreaching the

9-9

XENIX Programmer’s Guide

end of theirinput.

A very useful tool for constructing lexical analyzers is lex, discussed in 3
previoussection. These lexicalanalyzersare designedto work in-close harmony
with yacc parsers. The specifications for these lexical analyzers use regular
expressions instead of grammar rules. Lex can be easily used to produce quite
complicated lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any ‘theoretical framework, and whose lexical
analyzers must be crafted by hand.

9.5 How the Parser Works

Yace turns the specification file into a ‘C program, which parses the input
according to the :specification given. The algorithm used to ‘go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser ‘itself, however, .is relatively
simple, and understanding how it ‘works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by yacc consists of a finite state machine with a stack.
The parser is also capable of reading and remembering the next input token
(called the lookahead token). The current state is always the.one on the top.of
the stack. The states-of the finite state machine are given small integer labels;
initially, the machine is in state 0, the stack contains only state 0, and no
lookahead token hasbeen read.

The machine has only four actions available to it, called shift, reduce, accept,
and error. Amove of the parser is done asfollows:

“1. Based on its current state, the parser decides whether it needs a
lockahead token to decide what action should be done; if it needsone,
and does not have one, it calls yylez toobtain the next token.

2. Using the current state, and:the lookahead tokenif needed, the parser
decideson its next:action, and carries it out. Thismay resultinstates
being pushed onto the stack, or popped off .of the stack, and in the
lockahead token being processedor left alone.

The shift actionis the most.common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For.example, in state 56
there may be anaction: .

IF shift 34

which says, in state 58, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state {(onthetop of
thestack). Thelookahead token is cleared.

9-10

Yacc: A Compiler-Compiler

The reduce action keeps the stack from growing without bounds. Reduce
actions are appropriate when the parser has seen the right hand side of a
grammar rule. and is prepared to announce that it has seen aninstance of the
tule, replacing the right handside by theleft hand side. It may be necessary to
consult thelookahead tokentodecide:whether toreduce, butusually itisnot;in
fact, thedefault.action (represented by a.)isoften areduce action.

Reduce actions are associated with individual grammar rules. Grammar rules
arealsogivensmall integer numbers, leading to some confusion. Theaction

reduce 18
referstogrammar rule 18, while the-action
Ir shift 34
referstostate 34.
Supposethe rule being reduced is
Aixyz;

The reduce action depends on the left hand :symbol (A in this case), and the
number of symbols-on the right hand side (three in this case). Toreduce, first
pop off the top three states from the stack (In general, the number .of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put onthestack whilerecognizing 2z, y,and 2, and no
longer serve any useful purpose. After -popping these states, a state is
uncovered which wasthe state the parser wasinbefore beginning to processthe
rule. Using this uncovered state, and the symbol.on the left side of the rule,
perform what is in effect a'shift of A. A new state is obtained, pushed onto the
stack, -and parsing continues. There are significant differences between the
processingof theleft hand symbol and an.ordinary shift of a'token, however, so
this:action is called a goto acticn. In particular, the lcokahead token iscleared
by 2 :shift, and is not affected by a goto. In any case, the uncovered state
containsanentry suchas:

A goto 20
causingstate 20-tobe pushed ontothestack, and become the current state.

In effect, the reduce action turns back the clock in the parse, poppingthe states
off the stack to go backto thestate where theright hand side of the rule was first
seen. The parserthen behaves as if it had seen the left side at that time. If'the
right hand side of the rule is empty, no states are popped off of the stack: the
uncovered stateisinfact the currentstate,

The reduce action is also importantin-the treatment of user-supplied actions

and values. When a rule isreduced, the code:supplied with the rule is executed
before the stack is adjusted. Inaddition 1o the stack holding the states, another

9-11

XENIX Programmer's Guide

stack, Tunning in parallel with it, holds the values returned from the lexical
analyzer and the actions. When a shift takes place, the externalvariable yylval
is copied onto the value stack. After the return from ‘the user -code, the
reduction is carried out. When ‘the goto action is done, the external variable
yyvalis copied onto the value stack. The pseudo-variables $1, $2, etc., refer to
the value stack.

The other two.parser actionsare conceptually muchsimpler. Theaccept.action
indicates that ‘the. entire input has been seen -and that it matches the
specification. This action appears only when the lookahead token is the
endmarker, and indicates that the parser has successfully done its job. The
error -action, on the other hand, represents a place where the parser can no
longer continue parsing.according to the specification. The input tokensit has
seen, together with the lookahead token, cannot be followed by anything that
would result in a legal input. The parser reports an error, and attempts to
recover the situation and resume parsing: theerror recovery (as opposed to the
detection of error) will beinalater section.

Consider the following example:

%token DING DONG DELL
%%
rhyme : sound place

sound : DING DONG
place : DELL

1

When yacc is invoked with the —v option, a file called y.output is produced,
with a human-readable description of ‘the parser. The .y.output file
corresponding to the above grammar (with some statistics stripped off the end)
is:

9-12

)

state 0
$accept : _rhyme $end

DING shift 3
. ‘error

rhyme goto 1
sound goto 2

state 1
$accept : thyme_8end

$end accept
. error

state 2
thyme : sound_place

DELL shift 5
. error

place goto 4
state 3
sound : DING_DONG

DONG shift 6
. error .

state 4
rhyme : sound place_ (1)

.‘reduce 1

state 5
place : DELL_ (3}

. reduce 3

state 6
sound : DING DONG_{(2)

.‘reduce 2

Yacc: A Compiler-Compiler

Notice that, in additionto the actionsfor each state, there isadescriptionofthe
parsing rulesbeing processed in each state. The underscore character (_)isused
toindicate what has been seen, and what is yet to.come, in each rule. Suppose
the inputis

9-13

XENIX Programmer’s Guide

DING DONG DELL
It isinstructivetofollow the steps of the parser while processing thisinput.

Initially, the current state is state 0. The parser needs to refer to the input in
order to decide between the actions available in state ‘0, so the first token,
DING,isread, becomingthe lookahead token. The actioninstate 0.on DINGis
shift 8, so state 3 is pushed onto thestack, and the lockahead token is cleared.
State 3 becomes the current state. The nexttoken, DONG, is read, becoming
the lookahead token. The action in state 3 on the token DONG'is shift 6, so
state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0,3, and 6. In state 6, without even consulting the lookahead, the
parserreducesby rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off of the stack, uncovering state 0. Consulting the description of state
0, looking for a gotoon sound,

sound .goto 2
isobtained; thusstate 2is pushed'onto thestack, becoming the current state.

Instate’2,the nexttoken, DELL, mustberead. Theactionis shift 5,sostate s
pushed onto the stack, whichnow has0, 2, and 5 on it, and the lookahead token
is cleared. In state 5, the only actionisto reduce by.rule 3. This hasonesymbol
on the right hand side, so one state, 5, is popped off, and state 2 is uncovered.
The goto in state 2 on place, the left side of rule 3, is state 4. Now, the stack
contains 0, 2,-and 4. In state 4, the only actionisto reduce by rule 1. There are
two symbols on the right, so.the top two states are-popped off, uncovering state

-0 again. Instate 0, there isa goto on rhyme causing the parser toenter state 1.
In state 1, the input istead; the endmarker isobtained, indicated by $endinthe
y.output file. The action in:state 1 when the endmarker is seen is to-accept,
successfully ending theparse.

The reader is urged to consider how the parser works when confronted with
such incorrect strings as DING DONG DONG, .DING DONG, DING DONG
DELL DELL, etc. A few minutesspend with this and other simple examples
will prabably be repaid when problemsarisein more complicated contexts.

9.8 Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is seme input string that can be
structuredin twoor moredifferent ways. Forexample, the grammar rule

expr :-expr -’ expr

is a natural -way of expressing the fact that one way of forming an arithmetic

9-14

Yacc: A Compiler-Compiler

expression is to put two other expressions together witha minus sign between
them. Unfortunately, this grammar rule does not completely specify the way
that all complex inputsshould be structured. For example, if the inputis

eXpr - €Xpr - eXpr
the rule allowsthisinput to be structured aseither

(expr - expr) - expr
oras

expr - (-expr - expr)
{The firstiscalled ieft association, thesecond right association).
Yacc detects'such ambiguities when it is attempting to-build the parser. It is
instructive to consider the problem that confronts the parser when it is.given
aninputsuchas

exXpr - €xpr - expr
When the parser has read the second expr, the input that it hasseen:

expr-- expr
matches the right side of the grammar rule above. The parser.could reduce:the
input by applying this rule; after applying the rule; the inputisreduced to ezpr
(the left side of the rule). The parser would thenreadthefinal partof theinput:

- expr
andagainreduce. Theeflect of thisistotaketheleft associative interpretation.
Alternatively, when the parser hasseen

€Xpr - €Xpr

it could defer the immediate application of the rule, and continue reading the
inputuntilit had seen

expr - €xpr - expr

It could then apply the rule to the rightmost three symbols, reducing them to
ezprand leaving

expr - expr

Now:therule.canbereducedonce more; the effectistotake the right associative
interpretation. Thus, havingread

9-15

XENIX Programmer’s Guide

eXpr - expr

the parser can do two legal things, a shift or a reduction, and has no way ‘of
deciding between them. This is called a shift/reduce conflict. It may also
happen that the parser has a choice of two legal reductions; this is called a
reduce/reduce conflict. Note that there are never any shift /shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yace still produces.a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing which choice to make in a given situation is called a
disambiguatingrule.

Yacc invokestwo.disambiguating rules by default:

1. Inashift/reduceconflict, the default isto do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

Rule 1implies that reductions are deferred whenever thereisa choice, in favor
of shifts. Rule 2 gives the user rather .crude control over the behavior of the
parser in this situation, but ‘reduce/reduce conflicts should be .avoided
whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the
grammar rules, while consistent, require amore complex parser than yacc can
construct. The use of actions within rules can also cause conflicts, if the action
must be done before the parser can be sure which rule'is being recognized. In
these cases, the application of disambiguating rulesis inappropriate, and leads
to‘an incorrect parser. For this reason, yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule2.

In general, whenever it is possible to apply disambiguating rules to produce-a
correct parser, it is also possible to rewrite the grammar rules sothat the same
inputsare read but there are no.conflicts. For thisreason, most previous parser
generators have ‘considered conflicts to be fatal errors. Our experience has
suggested that this rewriting is somewhat unnatural, and produces slower
parsers;thus, yacc will produce parserseven in‘the presenceof conflicts.

Asanexample of the power of disambiguating rules, consider a fragment from a
programming language involving anif-then-else construction:

stat : IF ’(* cond *)’ stat
| IF *(* cond ") stat ELSE stat

ntheserules, /Fand ELSE are'tokens, condis anonterminal symboldescribing
‘onditional (logical) expressions, and stat is a nonterminal symbol describing
statements. The first rule will be called the simple-if rule, and the second the

)-16

Yace: A Compiler-Compiler

if-else rule.
These two rules form an ambiguous construction, since inputof the form
IF {C1)TF (:C2) S1 ELSE S2

can be structured according to these rulesin two-ways:

or

IF(c1){
IF (C2) 81
I}ELSES2

The second interpretation is the one given in most programming languages
having this construct. Each ELSE is associated with the last [F immediately
preceding the ELSE. In this example, consider the situation where the parser
hasseen

IF (C1)IF (C2)SI

and is looking at the ELSE. It can immediately reduce by the simple-if rule to
get

IF (C1) stat
and then read the remaining input,
ELSE S2
andreduce
IF { C1) stat ELSE S2
by theif-else rule. Thisleads tothe first of the above groupings of theinput.

On the other hand, the ELSE may be shifted, 52 read, and then the right hand

portion of
IF{(C1)IF (C2)S1ELSE §2

sanbereduced by theif-else rule toget

9-17

XENIX Programmer’s Guide

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of the
above groupingsof the input, which isusually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case,
which leads to the desired grouping,.

This shift/reduce conflict arises only when there is a particular current inpus
symbol, ELSE, and particularinputs already seen,such as

IF (C1)IF (02) S1

[n general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs
are characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the verbose
\—v) option output file. For example, the output corresponding to the above
sonflict state might be:

23: shift/reduce conflict (shift 45, reduce 18).on ELSE
state 23

stat : IF (cond) stat_ (18}
stat : IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

Che first line describes the conflict, giving the state and the input symbol. The
rdinary state description follows, giving the grammar rules-activeinthestate,
nd the parser actions. Recall that the underline marks the portion of the
rammar rules' which has been seen. Thusin the example, instate 23the parser
rasseeninput correspondingto

IF { cond) stat

nd the two grammar rules.shown are active at thistime. The parser can do
wo possible things. If the input symbolis ELSE, it ispossible to shift into state
5. State 45-willhave, aspartof its description, the line

stat : IF { cond) stat ELSE_stat
ince the ELSE will have been shifted in this state. Back in state 23, the

lternative action, described by “.”” , is to be done if the input symbol is not
1entioned explicitly in the above actions; thus, in this case, if the input symbol

-18

Yace: A Compiler-Compiler

isnot ELSE, the parserreducesby grammar rule 18:
stat : IF (" cond *)’ stat

Once again, notice that the numbers following shift commands refer to-other
states, ‘while the numbers following reduce commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed after those rules
which can be reduced. In most one states, there will be at most reduce action
possible in the state, and this will be the default command. The user ‘who
encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the defaultactions are appropriate. Inreally
tough cases, the user might need to know more about the behavior and
construction of the parser than can be covered here. In this case, .one of the
theoretical references might be consulted; the services of alocal guru might also
be appropriate.

9.7 Precedence

There is one common -situation ‘where the rules given above for resolving
conflicts are not-sufficient; thisisin the parsing of arithmetic expressions. Most
of the commonly used constructions for arithmetic expressions can benaturally
described by the notion of precedence levels for operators, together with
information ‘about left ‘or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used'to-create parsers
that-are faster and easier to write than parsers.constructed from unambiguous
grammars. Thebasic notionisto write grammar rulesof the form

expr : expr ‘OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, ‘with many parsing conflicts, As disambiguating rules, the user
specifies the precedence, or binding strength, of all the operators, and the
associativity ‘of the binary operators. This information is sufficient to z2llow
yacc to resolve the parsing -conflicts in accordance with these rules, and
construct a parserthat realizes the desired precedences and associativities.

The precedences and associativities are attached to'tokens in‘the declarations
section. This is done by a series of lines beginning with a yacc keyword: $Zleft,
Jeright, or %nonassoc, followed by -a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and associativity; the
linesarelistedin order of increasing precedence or bindingsstrength. Thus,

Geleft *4 12
%left Ll 1/1

9-19

"XENIX Programmer's ‘Guide

describes ‘the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative, and have lower precedence than star and
slash, which are also left associative. The keyword %right is-used to describe
right associative operators, and the keyword %nonassoc is used to describe
operators, like the operator .LT. in FORTRAN, that may not associate with
themselves; thus,

ALT.BILT.C

is illegal in FORTRAN, and such an operator would be described with the
keyword %%nonassoc in yacc. As an example of the behavior of these
declarations, the-description

Goright "=’
%left ’+, ,_,
Doleft 2s* '

%%

expr :expr = expr
| expr '+’ expr
| expr - :expr
| expr '#' expr
| expr /" expr

| NAME

might be used to:structurethe input
a=bh=-ctd-e-fsg
asfollows:
a={(b={(({csed)-e) - (f+g) })

When ‘this mechanism is used, unary operators must, in general, be given a
precedence. Sometimesaunary operator and abinary operator have the same
symbolic representation, but different precedences. An-exampleis unary and
binary -, unary minus may be given the same strength as multiplication, or
even higher, while binary minushas a lower strength'than multiplication. The
keyword, Joprec, -changes the precedence level associated with a particular
grammarrule. The'{oprec appearsimmediately after the body.of the grammar
rule, before the action or closing semicolon, and is followed by atoken nameor
literal. Tt causes the precedence of the grammar ‘rule to become that of the
following token name or literal. For example, to make unary minus have the
sarme precedence asmultiplication the rules might resemble:

9-20

Yacc: A Compiler-Compiler

%left, 1+s 1
%!ert 14! s/s

%%

expr :expr '+’ expr
| expr =*expr
| expr %" expr
| expr '/’ expr
| -’ expr Soprec =

| NAME

]

A token declared by %left, %right, and %nonassoc need not be, but may be,
declared by %token aswell.

The precedences and associativities are used by yacc to resolve parsing
conflicts: they give rise to disambiguating rules. Formally, the rules work as
follows:

1. The precedencesand-associativities are recorded for those tokens.and
literalsthat have them.

2. Aprecedence and associativity is associated with each grammar rule;
it isthe precedence and-associativity of the last token or literalin the
body ‘of the rule. If the J%prec.construction is used, it overrides this
default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, .or there is a shift/reduce
conflict and either the input symbol -or the grammar rule has no
precedence and associativity, then the two -disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

4. Ifthereis a:shift/reduce conflict, and both the grammar rule-and the
input character have precedence and associativity associated with
them, ‘then the conflict is resolved in favor of the action (shift or
reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies
reduce, right ‘associative implies shift, and nonassociating implies
error.

Conflicts resolved by precedence are not counted in the number of shift /reduce
and reduce/reduce conflicts reported by yacc. Thismeansthat mistakesin the
specification of ‘precedences may disguise errors in the input grammar; it isa
good idea to be sparing with precedences, and use them ‘in ‘an essentially
cookbook fashion, until some experience has been gained. The y.output file is
very usefulin deciding whether the parser isactually doing what wasintended.

9-21

XENIX Programmer's Guide

9.8 Error Handling

Error handling is an extremely difficult area, and many of the problems are
semantic-ones. When an error is found, for example, it . may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically,
set switchesto avoid generating any furtheroutput.

It is seldom acceptable to stop-all processing when an error is found. It ismore
useful to continue scanningthe input to find further syntax errors. Thisleads
tothe problem of getting the parser restarted after anerror. A general classof
algorithins to perform this involves discarding a number of tokens from the
input string, and attempting to:adjust the parser sothat input can continue.

To allow the user some control over this process, yacc provides asimple, but
reasonably general feature. The token name error is reserved for -error
handling. Thisname can be used in grammar rules;in effect, it suggests places
where errors are expected, and recovery might take place. The parser popsits
stack until it enters a state where the token errorislegal. It then behavesasiif
the token .error were the ‘current lookahead token, and performs the action
encountered. The lockahead token is then reset to the token that caused the
error. If no special error rules have been specified, the processing halts whenan
errorisdetected.

In order ‘to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the :parser is already in error state, no
message is given, and the input'token is quietly deleted.

Asanexample,aruleof the form

stat :error
would, in effect, mean that on asyntax.error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legally follow a statement, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it-may make a false start in the middle of a statement,

and end up reportingasecond error where thereisinfactnoerror.

Actions may be used with these special error rules. These actions might
attempt toreinitialize:tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control.
Somewhat easier.are rulessuch as

stat :.error '3’

Here, when there is an error, the parser attempts to skip over ‘the statement,
but will do:so by skipping to the next %°. Alltokensafter the error and before

9-22

)

Yacc: A ‘Compiler-Compiler

the next ;" cannot be shifted, and are discarded. When the %"isseen, thisrule
will be reduced, and any cleanup actionassociated with it performed.

Another form of error rule arises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule
might be

input : error \n’ { printf{ "Reenter line: "}; } input

¥

There is one potential difficulty with thisapproach; the parser must correctly
process three input tokensbefore it admitsthat it hascorrectly resynchronized
after the error. If the reentered line contains an etror in the first twotokens,
the parser deletes the offending tokens, and gives no message; this is clearly
unacceptable. For thisreason, there is-a mechanism that can'be used to force
the parser to believe that an error has been fully recovered from. The
statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better
written

input : error ’\n’
{ yyerrok;
printf("Reenter last line: "); }
input

(88 =84)

2]

As:mentioned above, the token seen immediately after the errorsymbol is the
input token at which the error was discovered. ‘Sometimes, this is
inappropriate; for example, an error recovery action might take uponitselfthe
job of finding the .correct place to resume input. In this case, the previous
lookahead token must be cleared. The statement

yyclearin ;

in anaction will ‘have this-effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the user,
that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex
would presumably be the first token in a legalstatement; the old, illegal token
must be.discarded, and the errorstate reset. Thiscould be'done by arule like

XENIX Programmer's ‘Guide

stat : error
{ resynch(};
yyerrok ;
yyclearin ; }

1

These ‘mechanisms :are admittedly -crude, but do allow for a simple, fairly
effective recovery-of the parser from many errors. Moreover, the user can get
control to deal with the error actions required by other portions of the
program.

9.9 The Yacc Environment

When the user inputsa specification toyace, the outputisa fileof C programs,
called y.tab.c on most systems. The function produced by yacc is called
yyparse ;itis anintegervalued function. Whenitis called, it in turn repeatedly
calls yylez, the lexical analyzer supplied by the user ‘to obtain input tokens.
Eventually, either-an error is detected, in which case (if no error recovery is
possible) :yyparse returns the value 1, or the lexical analyzer returns the
endmarker token and the parser accepts. Inthiscase, yyparsereturnsthevalue
0.

The user must provide a certain amount of environment for this parserin order
to obtain a ‘working program. For example, ‘as with every C program, a
program -called mafn must be defined, that eventually calls yyparse. In
addition, ‘a routine called yyerror prints a message when a syntax -erroris
detected.

These two routines must be supplied in one form or another by the user. To
ease the initial effort of usingyace, a library has been provided with default
versions of mainand yyerror. Thename of thislibrary issystem dependent; on
many systems the library is.accessed by a ~ly argument tothe loader. To:show
the triviality of these default programs, the sourceisigiven below:

main(){
return{ yyparse());
}
and
include <stdio.h>
yyerror(s) char #s; {

fprintf(stderr, "%s\n", s });
}

The argument to yyerror is a string containing arn error message, usually the
string syntaz error. The average application v.ill want to do better than this.
Ordinarily, the program should keep track of the in -ut line number,and print

9-24

Yacc: A Compiler-Compiler

it-along with the message when a syntax erroriisdetected. Theexternalinteger
variable yychar contains the lookahead token number at the timethe error was
detected; this'may be of some interest in giving better diagnostics. Since the
main program is probably supplied by the user {to read arguments, etc.) the
yacc library is useful-only in small projects, or in the earliest stages of larger
ones.

The ‘external integer variable yydebug is normally set to 0. If it is set to a
nonzero value, the parser will output ‘a verbose description of its actions,
including a discussion ‘of which input symbols have been read, and what the
parser actions are. Depending on the operating environment, it may be
possible to set this variable by usinga debugging system.

9.10 Preparing Specifications

Thissection contains miscellaneoushintson preparing eflicient, easy to change,
and clear specifications. The individual subsections are more or less
independent.

8.11 Input Style

It is difficult to provide rules with-substantial actions and still have a readable
specification file.

1. Use uppercase letters for token names, lowercase letters for
nonterminal names. This rule helpsyou to know whoto blame when
things:go wrong.

2. Put grammar rulesand actions on separate lines. This allows either
tobe changed without an automaticneed tochange the other.

3. Putallrules'with the same left hand side together. Put the left hand
sideinonly once, and let allfollowing rules begin with a vertical bar.

4. Putasemicolon only after thelast rule withagiven left hand side, and
putthesemicolon ona separateline. Thisallowsnew rulestobe easily

added.

5. Indent rule bodies by two tab stops, and action bodies by three tab
stops.

The-examples in the text of this section follow this style (where space permits).
The user must makeup hisown mind about these stylistic guestions; the central
problem, however, is to make the rules visible through the morass of action
code.

9-25

XENIX Programmer’s ‘Guide

8.12 Left Recursion

The -algorithm used by the yacc parser encourages so-called left recursive
grammar rules: rulesof the form

name : name rest_of_rule ;
These rulesfrequently arise when writing specifications of sequences and lists:

list : itemn
| list °,* item

]

and

seq : item
| seq item

Ineachof these cases, the first rule will be reduced for the first item only, and
the second rule will be reduced for the:second andallsucceedingitems,

Withright recursive rules,such as

seq : item
|item seq

td

the parser would be a bit bigger, and the items would be seen, and reduced,
from right to left. More seriously, an internal stack in the parser would be in
danger of overflowing if a very long sequence were read. Thus, the user should
use left recursion wherever reasonable. :

Itis worth considering whether a'sequence with zero elements has any meaning,
andifso, consider writing the sequence specification with an empty rule:

seq : /* empty */
| seq item

Once again, the first rule would alwaysbe reduced exactly once, before the first
item ‘was read, and then the second rule would be reduced once for each item
read. Permitting empty sequences often leads to increased generality.
However, conflicts might arise if yacc is asked to decide which empty sequence
ithasseen, when it hasn’t seen enough toknow!

9-26

)

Yacc: A Compiler-Compiler

9.13 Lexical Tie-ins

Some lexical decisions depend .on context. For example, the lexical analyzer
might want ‘to delete blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but notinexpressions.

One way of handling this situation isto create a global flag that is.examined by
the lexical analyzer, and set by actions. For example, 'suppose a program
consistsof 0 or more declarations, followed by 0-or more statements. Consider:

%{
int dflag;
%}
. other declarations ...

%%

prog : decls stats
decls : [+ empty */
dflag=1; }
| decls declaration

]

stats : /e empty */
dflag = 0; }
| stats statement

3
. other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading
declarations, except for the first-token in the first statement. This token must
be seen by the parser before it can tell that the declaration section has.ended
and the statements have begun. In many cases, thissingle token exception does
notaffect thelexical scan.

Thiskind of back door approach can be over done. Nevertheless, it representsa
way of doing some things that are difficult to do otherwise.

9.14 Handling Reserved Words

Some programming languages permit the user to use words like if, which are
normally reserved, as label or variable:names, provided that such use does not
conflict with the legal use of these namesinthe programminglanguage. Thisis
extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexical analyzer telling it *‘this instance of ‘if’ is'a keyword,

9-27

XENIX Programmer’s Guide

and ‘that instance is a variable’. The user can make a stab at it, but it is
difficult. 1t is best that keywords be reserved; that is, be forbidden for use as
variablenames.

9.15 Simulating Error and Accept in Actions

The parsing actions.of error and-accept can be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to-return
the value 0; YYERROR causes the parser to behave asif the current input
symbol had been a syntax error; yyerror is called, and error recovery takes
place, These mechanisms can be used to simulate parsers with multiple
endmarkers or-context-sensitive syntax checking.

8.18 Accessing Values in Enclosing Rules

Anaction may refer to valuesreturned by actions to'the left of the currentrule.
The mechanism is simply the same as with ordinary actions, a dollar sign
followed by a digit, but in this case the digit may be O.or negative. Consider

sent :adj noun verb adj noun
{ look at the sentence ... }

e}

adj :THE {$$= THE;}
| YOUNG { $8 = YOUNG; }

noun :DOG {$$ =DOG;}
| CRONE { if($0 == YOUNG){
printf("what?\n" };

$$ = CRONE;

In the action following the word CRONE,acheckirmade preceding token
shifted was not YOUNG. Obviously, this is only possible when a great dealis
known about what might precede the symbol nourin the input. There isalcoa
distinetly unstructured flavor about ‘this. Nevertheless, at times this
mechanism will save a great deal of trouble, especially when a few combinations
are'to be excluded from anotherwise regular structure.

9-28

_’J

)

Yace: A ‘Compiler-Compiler

98.17 Supporting Arbitrary Value Types

By default, the vzlues returned by actions-and the lexical analyzer are integers.
Yacc can also support values of other types, including structures. In-addition,
yacc keeps track of the types, and inserts appropriate union membernamesso
that the resulting parser will be strictly type checked. The yaccvaluestack is
declared to be a unionof the varioustypesof values desired. The user declares
the union, and associates union member names to each tokenand nonterminal
symbol having a value. When the value is referenced through a $$ or $n
construction, yacc will automatically insert the appropriate union name, so
that mo unwanted conversions will take place. In addition, type checking
commandssuchaslint{C) will be far more silent.

There are three mechanisms used to provide for this typing. First, thereisa
way of defining the union; this must be done by the user since other programs,
notably ‘the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and
nonterminals. Finally, there is a mechanism for describing the type of those
few values where yacccannoteasily determine the type.

To.declarethe union, theuser.includesin the declaration section:

Psunion {
body of union ...

This declares the yacc value stack, and the external variables yylval and yyval,
to have type equal to this union. If iyacc wasinvoked with the ~d option, the
union declaration is copied onto the y.tab.k file. Alternatively, the unicn may
be declaredin:a header file, and atypedefused to define the variable YYSTYPE
torepresent thisunion. Thus, the header file mightalsohave said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
%3}

Once YYSTYPE s defined, the union member names must be associated with
the various terminal and nonterminal names. The construction

< ‘name >
is used to indicate a union member name. If this follows one of the keywords

%token, Jlelt, Joright, and SGnonassoc, the union member name is associated
with the tokens listed. Thus, saying

9-29

XENIX Programmer'’s Guide

Toleft <optyped> '+ '

will cause any reference to values returned by these two tokensto be tagged
with ‘the union member name optype. Another keyword, %type, is used
similarly to ‘associate union member names with nonterminals. Thus, one
might say

%type <nodetype> expr stat

‘There remain a couple of cases where these mechanisms are insufficient. If
there is an action within ‘a rule, the value returned by this action has no
predefined type. Similarly, reference toleft context values (suchas$0 —see the
previous subsection) leaves yace with noeasy way of knowing the type. In this
case, a type can beimposed on the reference by inserting a-union member name,
between < and >,immediately after the first $. Anexampleof thisusageis

rule : aaa { $<intval>$ == 3; } bbb
{ fun($<intval>2, $<other>0); }

s
Thissyntax haslittletorecommend it, but the situation arisesrarely.

A sample specification is givenin'alater section. The facilitiesin thissubsection
are nottriggered untilthey are used: in particular, the.use of %type will turnon
these mechanisms. When they are used, thereisa fairly strict level of checking.
For example, use of $n or §8 to refer to something with no defined ‘type is
diagnosed. If these facilities are not triggered, the yacc value stack is used to
hold #nt’s, as was true historically.

9.18 A Small Desk Calculator

Thisexample gives the complete yacc specification for a small desk calculator:
the desk-calculator has26 registers, labeled athrough z, and accepts arithmetic
expressions.made up of the operators +, -, ¢, /, % (mod operator), & (bitwise
and), | (bitwise ‘or), .and assignment. If an expression at the top level is an
assignment, the value is not printed; otherwise it is. As in C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

Asan example of ayaccspecification, the desk calculator does a reasonable job
of showing how precedences and ambiguities are used, and demonstrating
simple error recovery. The major oversimplifications are that the lexical
analysis phase is much simpler than for most applications, and the output is
produced immediately, line by line. Note the way that decimal and octal
integers are read in by the grammar rules; This job is probably better done by
the lexical analyzer.

9-30

Yacc: A Compiler-Compiler

%{
include <stdioh>
‘include <ctype.h>

int regs|26];
int ‘base;

%}
%stars Tist
%token DIGIT LETTER

Tlefs 1’
Goleft '&'
%oleft +
Toleft «* ’/' %’
Cpleft l'MINUS /* precedence for unary minus */

%% |* beginning of rules section »/

list : /+ empty ¢/
| list stat \n’

| list error \n”

{ yyerrok; }

]

stat ":.expr
{ printf("%d\n", $1); }
] LETTER ‘=" expr
{ regs|$1] = $3; }

expr : (“expr)

{88 =182}
| expr "4 expr
{88 =91483}
| expr - “expr
{$$ $l ~$3;}
| expr “*“expr
{88=81+83)

| expr “/ expr
{$8 = $l /$3;}
| expr %" expr

{88 =1¢61%$3;})

| expr ‘& expr

{88 =281483}
| expr 7" expr
{$$—$l|$3}

8-31

XENIX Programmer'’s Guide

| = expr %prec UMINUS

{$%=-$2;}
|LETTER

{ 8% == regsf$1}; }
| number

]

number : DIGIT
{ $$ = $1; base == ($1===0) ? 8: 10; }
| number DIGIT
{ $$ == base + $1 + $2; }

H
%% [start of programs #/

yylex{) { /#* lexical analysis routine ¢/
* returns LETTER for a lowercase letter, #/
* yylval = 0 through 25 */
/# return DIGIT for a digit, +/
* yylval == 0 through'9 +/
/* all other characters */
/* are returned immediately */

int c;
while({c==getchar(})) == *“) { /#skip blanks */ }
/* ¢ is now nonblank #/

if(islower(¢)) {
yylval = ¢ - 2}

return { LETTER);

if(isdigit{ ¢)) {
yylval = ¢ - 0%
return{ DIGIT);

return{ ¢ J;

8.19 Yacc Input Syntax

Thissection hasa description of the yace input syntax, asa yacc specification. >
Context dependencies, ‘ete., are not considered. Ironically, the yacc input
specification language is most naturally specified as an LR(2) grammar; the
sticky part comes when an identifier is seen in-a rule, immediately followingan
action. If thisidentifier is followed by a colon, it is the start of the next rule;
otherwise it is a continuation of the current rule, which just happensto have an

9-32

Yacc: A Compiler-Compiler

on embedded init. Asimplemented, the lexical analyzer locks:ahead after
ng ‘an identifier, ‘and decide whether the next token (skipping blanks,
lines, comments, etc.) is a colon. If =o, it returns the token
DENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted
ngs) are also returned as IDENTIFIER, but never as part of
DENTIFIER.

/* grammar for the input to Yacc ¢/

/* basic entities +/
»ken IDENTIFIER /# includes identifiers and literals +/
sken ‘C_IDENTIFIER /# identifier followed by colon */
ken NUMEER /¢ 09+ ¢/

/* reserved words: %type ==> TYPE, %left => LEFT, etc. s/
yken LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

sken MARK /# the %% mark s/
ken LCURL /¢ the %{ mark s/
sken RCURL /s the %} mark ¢/

/* ascii character literals stand for themselves »/
;art spec
>
: :idefs MARK rules tail

: MARK { Eat up the rest of the file }
| /* empty: the second MARK is optional =/

5 o f+empty ¢/
| defs def

3

: START IDENTIFIER

UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

rd : TOKEN
LEFT
RIGHT
NONASSOC

9-33

XENIX Programmer’s Guide

| TYPE

tag : [+ empty: union tag is optional +/
| ‘< IDENTIFIER >

2]

nlist :nmno
nlist .nmno

’

| nlist 4" nmno
nmno : IDENTIFIER /# Literal illegal with %type »/
| IDENTIFIER NUMBER /+ Illegal with %type /

1
/#* rules section ¢/

rules : C_IDENTIFIER rbody prec
| rules ‘rule

+

rule : C_IDENTIFIER rbody prec ‘ }
|’ rbody prec :

rbody : /* empty */
| rtbody IDENTIFIER
| rbody -act

1

act : {’ { Copy action, translate $8, etc. } }’

prec : [+ empty */
| PREC IDENTIFIER
| PREC IDENTIFIER act

| prec

B.20 An Advanced Example

This section gives an example of ‘a grammar using some of the advanced «)
‘eatures discussed in-earlier sections. The desk calculator example is modified
0 provide a desk calculator that does floating point.interval arithmetic. The

:alculator understands floating point constants, the arithmesic operations +,

-,%, /, unary -, and == (assignment), and has 26 floating point variables, @

hrough z. Moreover, it also understandsintervals, written

)-34

Yacc: A Compiler-Compiler

{x.¥)

where 2 is less than or equal to y. There are 26 interval valued variables 4
through Z that may also be used. Assignments return no value, and print
nothing, while expressions print the (foating or interval) value.

This ‘example explores a number of interesting features of yacc and C.
Intervals are represented by a structure, consisting -of the left -and right
endpoint values, stored as a‘double precision values. This structure is given a
type name, INTERVAL, by using typedef. The yacc value stack can also
contain floating point scalars, and integers (used to index into the arrays
holding the variable values). Notice that thisentire strategy depends strongly
on being able toassign structures.and unions in C. In fact, many of the actions
call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions:
division by an interval containing 0, 2nd an interval preseated in the wrong
order. In effect, the error recovery mechanism of yacc is used to throw away
the rest-of the offending line.

In addition to the mixing of types on the value stack, this grammar also
demonstrates an interesting use of syntax to keep track of the type (e.g., scalar
or interval) of intermediate expressions. Note that a .scalar can be
automatically ‘promoted to an interval if the context demands an interval
value. This ‘causes a large number of conflicts when the grammar is run
through yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be
seen'by looking at the twoinputlines:

2.5+ (3.5-4.)
and
25+ (35,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second
example, but this factis not known until the comma(,)is read; by thistime, 2.5
isfinished, and the parser.cannot go back and change its mind. More generally,
it-might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is circumvented by
having two rules for each binary interval valued operator:-one when the left
operand is a scalar, and one when the left operand isan interval. In the second
case, the right operand must be an interval,so the conversion will be applied
automatically. However, there are still many cases where the conversion may
be applied or not, leading to the above conflicts. They :are resolved by listing
the rules:that yield scalarsfirst in the specification file; in this way, the conflicts
will be resolved in ‘the direction of keeping scalar valued expressions scalar
valued until they are forced to become intervals.

This way of handling multiple typesis very instructive, but not very general. If
there were many kinds of expression types, instead of just two, the number of

9-35

XENIX Programmer’s Guide

-ules needed would ‘increase dramatically, and ‘the conflicts -even more
iramatically. Thus, while this example is instructive, it is better practice in a
nore mnormal programming language environment to keep the type
information as part of the value, and not as part of the grammar.

Finally, a ‘word about the lexical analysis. The only unusual feature is the
treatment of floating point constants. The C library routine atofis used to-do
the actual conversion from & character string to adouble precision value. If the
lexical analyzer detects an error, it responds by returning atoken that isillegal
in the grammar, provoking a syntax error in the parser, and thence error
recovery.

%{

include <stdioh>
include <ctype.h>

typedef struct -interval {
double lo, hi;
} INTERVAL;
INTERVAL vmul(), vdiv(};
double atof();

double dreg| 26];
INTERVAL vreg| 26 };

%}

Tostart lines

%union {
int ival;

double dval;
INTERVAL vval;

}

%token <ival> DREG VREG [+ indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant #/

Otype <dval> dexp /* expression #/ - '>
otype <vval> vexp /* interval expression

/* precedence information about the operators */

%18“} !+’ ’-1

9-36

Yace: A Compiler-Compiler

%lert 1.’)/)
%left 'UMINUS /+ precedence for unary minus */

%%

lines : /¢ empty #*/
| lines line

line : dexp '\n’
{ printf("%15.8f\n", $1); }
| vexp "\n’
{ printf("(%15.8f, %15.8f)\n", $1.lo, $1.hi); }
| DREG =" dexp \n’
{ dreg[$1] = $3; }
| VREG =’ vexp \n’
{ vreg[$1] = $3; }
| error \n’
{ yyerrok; }

]

dexp :CONST
| DREG
{ 8% = dreg[$1]; }
| dexp *+’ dexp
{88 =191483}
| dexp ’-’ dexp
{88 =81-83;}
| dexp ¢’ dexp
{$%=191+83;}
| dexp /' dexp
{88 =91/83}
| *-* dexp %prec UMINUS
{88 =-82;})
l 7(’ dexp !)1
{88 =192}
vexp :dexp
{ $$.hi = $8.1o = $1; }
I !(1 dexp !’l dexp 1)1
$8lo = $2;
$$.hi = $4;
if(8810 > $8.hi)}{

printf("interval out of order\n"};
YYERROR;

| VREG

8-37

XENIX Programmer’s ‘Guide

{88 = vregl$l); }
|'vexp *+’ vexp
{ $8.hi = $Lhi + $3.hi;
$8.10 = $1.1o + $3.10; }
| dexp '+’ vexp
{$8.hi = $1 4 $3.hi;
$3.1o = $1 + $3.1o; }
| vexp >’ vexp
{ $$.hi = $1.hi - $3.1o;
$8.1o = $1.1o - $3.hi; }
| dexp '’ vexp
{$8.hi = $1 - $3.1;
$3.10 == §1 - $3.hi;}
| vexp "¢ -vex
{ 8% = vmul($1.1o, $1.hi, $3); }
| dexp '+’ vexp
{ 8% = vmul(81, $1,$3); }
| vexp [/’ vexp
{'if (dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3); }
| dexp*/’ vexp
{if (dcheck($3)) YYERROR;
$$ = vdiv($1, 81, 83); }
| %' vexp Poprec UMINUS)
{ $8.hi = -$2.10; $$.10 = -$2.hj; } —
I ’(9 Vexp ,)'
{ 8 = §2;)

%%
define BSZ 50 [+ buffer size for fp numbers #/

/* lexical analysis */

yylex(){

register ¢;
/* skip over blanks ¢/ }
while((¢ = getchar()) =="")

if (isupper(c)){
yylvalival = ¢ - ’A";
return{ VREG);

if (‘islower(c) }{

yylvalival = ¢ - ’a’;
return(DREG);
}

if(isdigit(«) || e=="." }{

9-38

Yacc: A Compiler-Compiler

/* gobble up digits, points, exponents +/

char buf[BSZ+1)], #cp = buf;
int dot'=10, exp =10;

for(; (cp-buf) <BSZ ; +#+cp,c=getchar()){

tcp == .C;
if (isdigit{c)) continue;
if(c==""

if («dot++ |] exp) return(*.');
* above causes syntax error s/
continue;

}

it fc =="¢){
if (‘exp++) return{ 'e’);
/* above causes syntax error */
continue;

/#* end of number »/
break;

‘Cp - &\0'
if{(cp-buf) >="BSZ)
printf{ "constant too long: truncated\n");
else ungetc(¢, stdin);
/* above pushes back last char read ¢/
yylval.dval = atof (buf);
return(CONST);

return{ ¢);

INTERVAL hilo(a, b, ¢, d) double a,b,c,d;{
/# returns the smallest interval containing 2, b, ¢, and «d-#/
/* used by *, / routines +/
INTERVAL v;

if{ a>b) { v.hi=a; vilo = b; }
else { v.hi = b; vlo = a; }

iff(c>d
v.hi)} v.hi = ¢;
vlo } vio = d;

){
if{e>
if (d<
}

else {
if { d>v.hi) v.hi =;
if (e<vlo) v.lo = ¢;

9-39

XENIX Programmer’s Guide

return{ v);

INTERVAL vmul{a, b, v) douvble a, b; INTERVAL v; {
return(hilo(asv.hi, asv.lo, bsv.hi, bev.lo));

dcheck(v) INTERVAL v; {
if{ v.hi D= 0. && vilo <== 0.){
printf("divisor interval contains 0.\n" };
_ return(1);

return{0);

INTERVAL vdiv(a, b,'v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
} :

8.21 Old Features

This :section ‘mentions synonyms and features which are supported for)
historical continuity, but, for variousreasons, are not encouraged.

1. Literalsmay alsobe delimited by.double quotation marks(*).

2. Literalsmay be more than one character long. If all the charactersare
alphabetic, numeric, or underscore, the type number of the literal is
defined, just as if the literal did-not have the-quotation'marks around
it. ‘Otherwise, it is difficult to find the value for such literals. The use
of multicharacter literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing a job that must be actually
done by the lexical analyzer.

3. Most places where ‘%' is legal, backslash (\) may be used. In
particular, the double backslash (\\} is the same as %%, \left the
sameas Zleft etc.

4. Thereareanumberofother synonyms:

%< is the same as Pleft i j}
%> is the same as %right i
%binary and %2 are the same as %nonassoc’
%0 -and %term are the same as %token

%== is the same as Pprec

9-40

Yace: A Compiler-Compiler

Actionsmay also have the form

and the curly braces can be dropped if the action is a single C
statement.

C code between %{ and %} used to be permitted at the head of the
rulessection,as well asin the declaration section.

9-41

Appendix A

C Language Portability

A1 Introduction 1
A.2 Program Portability 2

A.3 achine Hardware 2

Byte Length 2

Word Length 2

Storage Alignment 2
Byte Order in a Word Y

o1
o2
.3
Y
5 Bitfields 5
6
7
8

« o o
O
.

Pointers 5
Address Space 6
Character Set 6

.
wwwwwwww
°

>>>>?>>>z

AL ompiler Differences 7

Signed/Unsigned char, Sign Extension 7
Shift Operations 7

Identifier Length 7

i
1
2
3
4 Register Variables 8
5
6
7

. &
EEESEEED
. .

Type Conversion 8
Functions With Variable Number of Arguments
Side Effects, Evaluation Order 11

. o

9

A.5 Program Environment Differences 11

A.6 Portability of Data 12

A.7T Lint 12

A.8 Byte Ordering Summary 13

1-ii

C Language Portability

A.l Introduction

The standard definition of the C programming language leavesmany details to
be decided by individual implementations of the language. These unspecified
features:of the language detract from its portability and must be studied when
attempting to write portable Cicode.

Most of the issuesaflecting C portability arise from differencesin either target
machine hardware or:compilers. C was designed to compile to efficient code for
the target machine (initially a PDP-11) and so many of the language features
not precisely defined are those that reflect a particular machine’s hardware
characteristics.

This appendix ‘highlights the various aspects of C that may not be portable
acrossdifferent machinesand.compilers. It also briefly discusses the portability
of a.C program in terms.of its environment, which is determined by the system
calls and library routines it uses during execution, file pathnames it requires,
and other itemns not guaranteed to be constant acrossdifferent systems.

The C language has been implemented on many ‘different .computers with
widely different hardware characteristics, from small 8-bit-microprocessors to
large mainframes. This appendix is concerned with the portability of C code in
the XENIX programming environment. This is'a more restricted problem to
consider since all XENIX systems to date run on hardware with the following
basic characteristics:

< ASCIIcharacterset

— 8-bit bytes

— 2-byteor4-byteintegers

— Two’scomplement arithmetic

These features are not formally defined for the language and may not be found
in all implementations of C. However, the remainder of this appendix is
devoted to those systems where these basic assumptionshold.

The C language definition contains no specification of how input and output is
performed. This is left ‘to system calls and library routines on individual
systems. Within XENIX systems there aresystem callsand library routines that
can be considered portable. Theseare described briefly in a later section.

This appendix is not intended as a C language primer. It'is assumed that the
reader is familiar with ‘C, and ‘with the basic architecture of common
microprocessors.

XENIX Programmer’s Guide

A.2 Program Portability

A program is portable if it can be compiled and run successfully on different
machines without alteration. There are many ways to write portable
programs. The firstisto avoid usinginherentlynonportablelanguage features.
The second is to isolate :any nonportable interactions with the environment,
suchasI/O to nonstandard devices. For example programsshould-avoid hard-

coding pathnames ‘unless a pathname is common to all systems (e:g.,

[et/ passwd).
Files required at compiletime (i.e., include files) may also introduce
nonportability if the pathnamesare not the same on all machines. In'some cases

include files containing machine parameters ¢can be used to make the source
codeitself portable.

A.3 Machine Hardware

Differences in the hardware of the various target machines and differences’in

the corresponding C compilers cause the greatest number :of portability

problems. This section lists problems commonly encountered on XENIX
systems.

A.3.1 Byte Length

By definition, the char data type in C must be large enough to hold as positive
integers all members of a machine’s character set. For the machines described
in thisappendix, the char size isexactly an 8 bit byte.

A.3.2 Word Length

In ‘'C, the size of the basic data types for a given implementation are not
formally defined. Thus they ‘often follow the most natural size for the
underlying ‘machine. It is safe to assume that short is no longer than long.
Beyond that no assumptions are :portable. For example on some machines
short is the same length as int, whereas on others long is the same length as
int.

Programs that need to know the size of a particular data type should avoid
hard-coded constants where possible. Such information can usually be written
in a fairly portable way. For example the maximum positive integer (on a two's
complementmachine)can be obtained with:

#tdefine MAXPOS ((int){((unsigned)0) >> 1))

Thisispreferable to somethinglike:

C Language Portability

#tifdef PDP11
#define MAXPOS 32767
ffelse

fendif

Tofind the number of bytesin anintuse*'sizeof (int)” rather than 2,4, or some
other nonportable constant.

A.3.3 Storage Alignment

The Clanguage defines no particular layoutfor storage of data itemsrelative to
each other, or for storage of elements of structures or ‘unions within the
structure or union.

Some CPU’s, such :as the PDP-11 and M68000 require that data types longer
than one byte be aligned oneven byte address boundaries. Others, such asthe
8086-and VAX-11 have nosuch hardware restriction. However, even with these
machines, most compilers generate code that aligns words, structures, arrays,
and long words on even addresses, or even long word addresses. Thus, on the
VAX-11, ‘the following code sequence gives “8"”, .even though the VAX
hardware canaccessanint (a 4-byte word) onany physicalstarting address:

struct 's_tag {
char ¢;
int i;

I8
printf(” %d\n" ;sizeof(struct s_tag));

The principal implications of this variation .in data storage are that data
. accessed as nonprimitive data typesis not portable, and code that makes use of
knowledge of the layout on aparticularmachine isnot portable.

Thus unions containing structuresare nonportable if the union isused toaccess
the same datain different-ways. Unionsare only likely to be portable if theyare
used simply to have different data in the same space at different times. For
example, if the following union were used to obtain 4 bytes from along word,
the code would not be portable:

union {
char cl4];
long 1w;

}y

The eizeof operator should always be used when reading -and ‘writing
structures:

XENIX Programmer’s Guide

struct:s_tag st;

write(fd, &st, sizeof(st));

This ensures portability of the source code. It does not produce a portable data
file. Portability of data is discussed in-a later section.

Note that the sizeof operator returns the number of bytes:an object would
occupy in an array. Thuson machines-where structures are always aligned to
begin ‘on a word boundary in memory, the sizeof operator will include any
necessary padding for thisin the return value, even if the padding occurs after
all useful data in the structure. This'occurs whether or not the argument is
actually an arrayelement,.

A.3:4 Byte Order in a Word

The variation in'byte order in a word affects the portability of data more than
the portability -of source :code. However any program that makes use of
knowledge of the internal byte order in a word is not portable. For-example, on
some systems there is ‘an include file misc.k that contains the following
structure declaration:

/t

* structure to access:an
* integer in bytes

*

struct {
char lobyte;
char hibyte;

h

With certain less restrictive compilers this.could be used to-accessthe high and
low order bytesof an integer separately, and ina completely nonportable way.
The correct way to do this is to use mask and shift operations to extract the
required byte:

#define LOBYTE() (i & Oxff)
#tdefine HIBYTE(i) ((i > > 8) & 0xfl)

Note that even this operation'is only applicable to machines with two bytes in
anint.

One result of the byte ordering problem isthat the following code sequence will
notalwaysperformasintended:

C Language Portability

int ¢ =0;
read(fd, &c, 1);

On machines where the loworder byte isstored first, the value of “c” willbe the
byte value read. On other machinesthe byteis read into some byte other than
thelow order-one, and the valueof ‘¢’ is:different.

A.3.5 Bitfields

Bitfields are not implemented in all C compilers. When they are, no field may
belargerthananint,and nofield canoverlap an int boundary. If necessary the
compiler will leave gapsand moveto the nextint boundary.

The C language makesno guarantees about whether fields are assigned left to

*right, or right to left in an int. Thus, while bitfields may be useful for storing
flags and other small data items, their ‘use in unions to dissect bits from-other
dataisdefinitely nonportable.

Toensure portability noindividualfield should exceed 16 bits.

A.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to the
extent that most compilers will not object to nonportable pointer operations.
The lint program is particularly useful for -detecting ‘questionable pointer
assignments and comparisons.

The common nonportable use of pointersis the use of casts to-assign one pointer
to ‘another pointer of a different data type. This almost always makes some
assumption about the internal byte ordering and layout of the datatype,.and s
therefore nonportable. In the following code, the byte orderin the given array
isnot portable:

char c[4];
long #*Ip;

Ip == (long *)&c[0];
slp = 0x12345678L;

The lint program will issue warning messages about such-usesof pointers. Code
like this is very rarely necessary or valid. Itis acceptable, however, when using
the malloc function to allocate space for variables that do'not have char type.
The routine is declared as type char * and the return valueis cast tothe type
to be stored in the allocated memory. If this type is not.char #* then lint will
issue a warning concerning illegal type conversion. In addition, the malloc
function is written to always return a starting address suitable for storing all
typesof data. Lint doesnot know this, soit gives a warning about possible data

A5

XENIX Programn.ner's Guide

alignment problems too. In the following example, malloc is used to obtain
memory for an array of 50integers.

extern char #malloc{);
int *ip;

ip == (int *)malloc(50);

Thisexample will attract:a warning message from lint.

A.3.7 Address Space

The address .space available to a program running under XENIX varies
considerably from system to system. On asmall PDP-11 there may be only 64K
bytesavailable for program and data combined. Larger PDP-11's, and some 16
bit microprocessors-allow 64K bytes of data, and 64K bytes of program text.
Other machines may allow considerably more text, and possibly more data as
well.

Large programs, or programs that require large data areas may have
portability problemson smallmachines.

A.3.8 Character Set

The Clanguage doesnot require the use of the ASCI character set. Infact, the
only character set requirements are all characters must fit in the char data
type,andall charactersmust have positive values.

In the ASCII character set, all characters have values between zero and 127.
Thus they can all be represented in 7 bits, and on an 8-bits-per-byte machine
areall positive, whether charistreated as signed or unsigned.

There is a set of macros defined under XENIX in the header file
[uer/include/ctype.h that should be used for ‘most tests on character
quantities. They provide insulation from the internal structure of the
character set and, in most cases, their names are more meaningful than the
equivalent line of code. Compare

if(isupper(c))
to
if{{c >="A") && (c <="2"))
With some ‘of the other macros, such as fadigit to test for a hex digit, the

advantage is even greater. Also, the internal implementation of the macros
makes them more efficient than anexplicit test withan ‘if’ statement

A-6

C Language Portability

A.4 Compiler Differences
There are a number-of C compilers running under XENIX. On PDP-11systems

there is the so-called “Ritchie” compiler. Also on the 11, and on most other
systems, thereisthe Portable C:Compiler.

A.4.1 Signed/Unsigned char, Sign Extension

The current state of the signed versus unsigned char problem isbest described
asunsatisfactory.

The sign extension:problem is a serious barrier to writing portable:C, and the

best solution at present is to write defensive code that :does not rely on
particularimplementationfeatures.

A.4.2 Shift Operations

The left shift operator, **< <" shifts its:operand a number of bits left, filling
vacated bits with zero. Thisisa so-calledlogical shift. Therightshiftoperator,
“>>" when applied to an wunsigned ‘quantity, ‘performs a logical shift
operation. When applied to 2 signed quantity, the vacated bits may be filled
with zero (logical shift) or with sign bits (arithmetic shift). The decision is
implementation dependent, and code that uses knowledge of a particular
implementationisnonportable.

The PDP-11 compilers use arithmetic right shift. To avoid sign-extension it is
necessary toshift and mask out the appropriate number of high-order bits:

char ¢;
¢ = (c >> 3) & Ox1f;

You canalso-avoidsign extension by using using the divide.operator:
char c;

c=c /8

A4.3 Identifier Length

The use of long symbols and identifier names will cause portability problems
with some compilers. To avoid these jproblems, a program should keep the
following symbols asshort as possible:

— CPreprocessor Symbols

XENIX Programmer's Guide

— CLocal Symbols
— CExternal Symbols

The loader used ‘may :also place a restriction on the number of unique
charactersin Cexternal symbols.

Symbols unique in the first six characters are unique to most C language
processors.

On some non-XENIX C implementations, uppercase and lowercase letters are
not-distinct in identifiers.

A.4.4 Register Variables

The number and type of register variablesin afunction dependson the machine
hardware and the compiler. Excess and invalid register declarations are treated
as nonregister declarations and should not cause a portability problem. Ona
PDP-11, up to three register declarations are significant, and they must be of
type int, char, or pointer. While other machines and compilers may support
declarations suchas

register unsigned short
thisshould not be relied upon.

Since the compiler ignores excess variables of register type, the mostimportant
register type variablesshould be declared first. Thus, if any areignored, they
will be the least important ones.

A.4.5 Type Conversion

The C language has some rules for implicit type conversion; it ‘also allows
explicit type conversions by ‘type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is a
potential problem whenever something of typechariscompared with anint.

Forexample
char ¢;

if(c == 0x80)

will never evaluate true on .a machine which sign extends since “c”’ is sign

extended before the comparison with 0x80, anint.

C Language Portability

The only safe comparison between char typeand an int is the following:

char <;

if(c == "x')

Thisis reliable because C guarantees all characters to be positive. The use.of
hard-coded octal constants is subject to sign extension. For example the
following program prints*‘ff80" on a PDP-11:

main()

printf(" %x\n",’\200’);

Type conversion also takes place when arguments are passed to functions.
Types char and short become int. Machines that sign extend char can give
surprises. For example the following program gives—128 on some machines:

char ¢ == 128;
printf{"%d\n" ,c};

This is because “¢” is converted to int before passing o the function. The
function itself has no knowledge of the original type of the argument, and is
expecting an int. The correct way to handle this is to code defensively and
allow for the possibility of sign extension:

char ¢.== 128;
printf(" %d\n", ¢ & Oxfl);

A.4.8 Functions With Variable Number of Arguments

Functions with a variable number of arguments present a particular
portability problem if the type of the arguments is variable too. In-such:cases
the codeis dependent.upon the size of various data types.

In XENIX there isaninclude file, fusr/include/varargs.k, that contains macros
for use in variable argument functions to access the arguments ina portable
way:

typedef char *va_list;

#define va_dcl int va_alist;

#define va_start(list) list = (char *) &va_alist

#tdefine va_end(list)

#define va_arg(list,mode) ({mode #)(list += sizeof(mode)))[-1]

The va_end() macro isnot currently required. Use of the other macros will be

A-9

XENIX Programmer’s Guide

demonstrated by an example of the fprintf library routine. This has a first
argument-of type FILE #, and asecond argument of type char . Subsequent
arguments-are of unknown type and number at compilation time. They are
determined-atruntime by the contentsof the.control string, argument2.

The first few lines of fprintf to declare the arguments and find the output file
and controlstringaddresscould be:

ftinclude <varargs.h>
#include <stdio.h>

int
fprintf{va_alist)
va_dcl;
va_list-ap; /* pointer to arg list +f
char *format;
FILE «fp;
va_start(ap); /* initialize arg pointer s/

fp = va_arg(ap, (FILE #));
format == va_arg(ap, (char #));

}

Note that there is just one argument declared to fprintf. This argument is
declared by the va_dcl macro to be type int, although its actual type is
unknown at compile time. The.argument pointer “ap” isinitialized by va_start
totheaddressof the first argument. Successive argumentscan be picked from
the stack solong astheir type is known using the va_argmacro. Thishas a type
as'its second argument, and this controls what data is removed from the stack,
and how far the argument pointer *“ap” is incremented. In fprintf, once the
control string is found, the type of subsequent arguments is known and they
can be accessed sequentially by repeated calls to va_arg(). For example,
arguments of type double,int *, and short, could be retrieved asfollows:

double dint;
int *ip;
short s;

dint == va_arg(ap, double);
ip = va_arg(ap, (int +));
s == va_arg(ap, short);

The use of these macros makes the code more portable, although it does assume
a‘certain standard method of passing arguments on the stack. In particular no
holes must be left by the compiler, and types smaller than int (e.g., char, and
short onlong word machines) must be declared asint.

A-10

C Language Portability

A 4.7 Side Effects, Evaluation Order

The C language ‘makes few guarantees about the order of evaluation of
operandsin-anexpression, orargumentstoafunctionecall. Thus

func(i++, i++);
isextremely nonportable,andeven
func{i++);

is unwise if func is ever likely to be replaced by 2 macro, since the macro may
use “i” ‘more than once. There are certain XENIX macros commonly used in
user programs; these are all guaranteed to-use their argumentonce, and so.can
safely be called with a side-effect argument. The most common examples are
gete, pute, getchar, and putchar.

Operands to ‘the following ‘operators are guaranteed to be evaluated left to
right:

; && || !

Note that the comma operator here isa separator for two-C statements. A list
of items separated by commas in a declaration list is not guaranteed to be
processed left to right. Thusthe declaration

register int a, b, ¢, d;

ona PDP-11 where only three register variables may be declared could make
any three of the four variables register type, depending on the-compiler. The
correct declaration is to decide the order of importance of the variables being
register type, and then use separate declaration statements, since the order of
processing of individual declaration statementsisguaranteed to be sequential:

register int a;
register iint b;
register int ¢;
register int d;

A.5 Program Environment Differences

Most programs make system callsand use library routines for various services.
This section indicates some-of those routinesthat are not always portable, and
those that particularly aid portability.

We are concerned here primarily with portability under the XENIX-operating

system. Many of the XENIX system calls are specific to that particular
operating system ‘environment and are not present on ‘all other operating

A-11

XENIX Programmer’s Guide

system implementations of C. Examples of this are getpwent for accessing
entries in the XENIX password file, and getenv which is specific to the XENIX
concept of aprocess’ environment.

Any program containing hard-coded pathnames to files or directories, or user
IDs, login ‘names, terminal lines or other system dependent parameters is
nonportable, These types of constant should be in header files, passed as
tommand line arguments, obtained from the environment, or obtained by
using the XENIX default parameter library routines dfopesn, and dfread.

Within XENIX, most system calls and library routines are portable across
lifferent implementations and XENIX releases. However, a few routines have
thanged ‘in ‘their user interface. The XENIX library routines are usually
>ortable among XENIX systems,

Note that the members of the printf family, print/, forintf, sprintf, sscanf, and
rcanf have changed in several ways during the evolution of XENIX, and some
eatures are not completely portable. The return values of these routines
:annot be relied upon to have the same meaning on .all systems. Some of the
ormat.conversion characters have.changed their meanings, in particular those
‘elating to-uppercase and lowercase in theoutput of hexadecimal numbers, and
he -specification of long integers on 16-bit word :machines. The reference
nanual page for printfcontainsthe correct specification for these routines.

A.8 Portability of Data

data files are almost always nonportable across different machine ‘CPU
rchitectures. As mentioned .above, ‘structures, unions, and arrays have
-arying internal layout and padding requirements on different machines. In
ddition, byte ordering within wordsand actual wordlength may differ.

“he only way achieve data file portability isto write and read data files as one
imensional character arrays. This avoids alignment and padding problems if
he data is written and read as characters, and interpreted that way. Thus
\SCII text files can usually be moved between different machine types without
oomany problems.

\.7 Lint

#ntis'a Cprogram checker which attempts to detect features of a collection of
! source files that are nonportable or even incorrect C. One particular
dvantage of lint over any compiler checking is that {int checks function

eclaration andusage acrosssource files. Neither compiler nor loader do this,
int will generate warning messages about nonportable pointer arithmetic,

ssignments, and type conversions. Passage unscathed through #int is not a
uarantee thata programis completely portable.

-12

)

C Language Portability

A.8 Byte Ordering Summary
The following conventionsare used in the tables below:
a0 Thelowestphysically addressed byteof the dataitem. a0+ 1, and so.on.

b0 The least significant byte of the data item, 'bI’ being the next least
significant, and soon.

Note that any program that actually makes use of the following information is
guaranteed to’be nonportable!

Byte Ordering for Short Types

CPU Byte Order
a0 al |

PDP-11 bo bl
VAX-11 b0 bl
8086 b0 b1
286 b0 b1
M68000 bl bo
Z8000 bl b0

Byte Ordering for Long Types

CPU Byte Order

a0 al a2 a3
PDP-11 b2 b3 b0 bl
VAX-11 b0 bl b2 b3
8086 b2 b3 b0 bl
286 b2 b3 bo bl
M68000 b3 b2 bl b0
78000 b3 b2 bl b0

A-13

Appendix B

M4: A Macro Processor

B. 1 Introduction 1

B.2 Invoking m4 1

B.3 Defining Macros 2

B.4 Quoting 3

B.5 Using Arguments 5

B.6 Using Arithmetic Built-ins 6
B.7 Manipulating Files 7

B.8 Using System Commnands 7

B.9 Using Conditionals 8

B.10 Manipulating Strings 8

B.11 Printing 10

M4: A Macro Processor

B.1 Introduction
The ‘m4 macro processor defines and :processes specially :defined :strings .of
characters called macros. By defining a'set of macrosto be processed by m4,a
programming language can beenhanced tomake it:

— Morestructured

- Morereadable

— Moreappropriate fora particular application
The #define statement in C and the analogous define in Ratfor are examples
of the basic facility provided by any macro processor—replacement of text by

other text.

Besides the straightforward replacement of one string of text by another, m}
provides:

— ‘Macroswith arguments

— Conditional macro expansions

—~ Arithmetic expressions

— Filemanipulation facilities

~ String processing functions
The basicoperation of m4isccopyingitsinput toitsoutput. Asthe inputisread,
each alphanumeric token (that is, string of letters and digits) is.checked. If the
token is the name of a macro, then the name of the macro is replaced by its
defining text. The resulting string is reread by m4. Macros may also be called
with arguments, in‘which case the arguments are collected and substituted in
the right placesin the defining text before m4 rescans:the text.
M provides a collection of about twerity built-in macros. In addition, the user
can-define new macros. ‘Built-ins and user-defined macros work in.exactly the
same way, except that some of the built-in'‘macros have side effects on the state
of'the process.
B.2 Invoking m4
The invocation syntax for m{is:

m4 [files]

Each file name argument is processed‘in order. If there are noarguments, or if

B-1

XENIX Programmer’s Guide

an argument is a dash (-}, then the standard is read. The processed text is
written to the standard output, and can be redirected -as in the following
example:

m4 filel file2 - > outputfile
Note the use of the dash in the above example to indicate processing of the
standard input, after the files file1and file2have been processed by m4.
B.3 Defining Macros

The primary built-in function of m4 is define, which is used to define new
macros. The input

define(name, stuff)
causes the string name to be defined as etuff. All subsequent occurrences of
name will be replaced by stuff. Name must be alphanumeric and must begin
witha letter (the underscore (_) counts as aletter). Stuffis any text, including
text'that contains balanced parentheses; it may stretchover multxple lines.

Thus, as atypical example

define(N, 100)

if(i > N)
defines‘‘N" to be 100, and uses'this symbolic.constantin alater if statement.
The left parenthesis must immediately follow the word define, to signal that
define has arguments. If a macro.or built-in name is not followed immediately
by a left parenthesis, ("), it is assumed to have no arguments. This is the
situation for “N" above; it is actually a macro withno-arguments. Thus, when
itisused, no parentheses are needed following itsname.

You should -also notice that a macro name is only recogmzed as such if it
appearssurrounded by nonalphanumerics. Forexample, in

define(N, 100)
if (NNN > 100)

the variable “NNN” is absolutely unrelated to the defined macro “N”, even
though it.contains three N's.

Things may be defined in terms of other things. For example

B-2

M4: A Macro Processor

define(N, 100)
define(M, N)

definesboth M.and N:to'be 100.

What happensif “N” is redefined? Or, to say'it another way, is “M” defined as
“N"or as 1007 In'm{, thelatter is true, “M” is 100, soeven if “N”’ subsequently
changes, “M" does not.

This behavior arises because m4 expands macro namesinto their defining text
assoon as it-possibly can. Here, that means that when the string “N” is seen as
the arguments of define are being collected, it is immediately replaced by 100;
it'sjust-asifyouhad said

define(M, 100)
inthe first place.

I this isn’t what you really want, there are two waysout of it. The first, which
isspecifictothissituation, istointerchangethe order of the definitions:

define(M, N)
define(N, 100)

Now “‘M" is defined to be the string **N”, so when you ask for “M" later, you
will always get the value of “N""at that time (because the “M" will be replaced
by “N”"which, inturn, will be replaced by 100).

B.4 Quoting

The more general solution isto delay the expansion of the arguments of define
by quoting them. Any text surrounded by single quotation marks *and ‘is not
expanded immediately, but has the quotation marksstripped off. It yousay

define(N, 100)
define(M, *N’)

the quotation marks around the “N’* are stripped off as the argument is being
collected, but they have served their purpose, and “M" is defined as the string
“N”, not 100. The general rule is that m{ always strips off one level of single
quotation marks whenever it-evaluates something. This is true evenoutside of
macros. If you want the word “define” to appear in the output, you have to
quoteitin the input, asin

‘define’ == 1;

As another instance of the same thing, which is a bit more surprising, consider
redefining **N"’:

XENIX Programmer's Guide

define(N, 100)

define(N, 200)

Perhaps regrettably, the “N* in the second definition isevaluated assoon asit’s
seen; thatis, it is replaced by 100, 50 it's asifyou had-written

define(100, 200)
Thisstatement is ignored by m4, since you can.only define things that look like
names, but it obviously doesn’t-have the effect you wanted. To really redefine
“N", youmust delay theevaluation by quoting:

define(N, 100)

define(*N’, 200)
In m4,it isoften wise to-quote the first argument.of a macro.
If the forward and backward quotation marks (" and ‘)are not convenient for
some reason, the quotation :marks can be changed with the built-in
changequote. For example:

changequote(],]) .

makes the new quotation marks the left and right brackets. You ¢an restore the
original characters with just

changequote

There are two additional built-ins related to define. The built-in undefine
removes the definition of sorne macroor built-in:

undefine(*N’)
removes the definition of “N”. Built-inscan be removed withundefine, asin
undefine(*define’)
butonce you remove one, you can never getit back.
The built-in ifdef providesa way to determine if a macro'is currently defined.
For instance, pretend that either the word “xenix” or “unix” .is defined -
according toa particular implementation of a program. Toperform operations : >

according to which system you have you might say:

. ‘ifdef(‘xenix’, ‘define(system,1)’)
ifdef(*unix’, ‘define(system,2)’)

Don’tforget the quotation marksin theabove example.

B-4

M4: A Macro Processor
Ifdef actually permits three arguments: if the name is undefined, the value.of

ifdefis then the third argument,asin

ifdef(*xenix’, on XENIX, not on XENIX)

B.5 Using Arguments
So far we have discussed thesimplest form of macro processing — replacingone
string by:another (fixed) string. User-defined macros may also have arguments,
so different invocations can have different results. Withinthe replacement text
for a macro (the second argument of its define) any occurrence of $n will be
replaced by the nth argument when the macro is actually used. Thus, the
macrobump, defined as

define(bump, $1 = $1 + 1)
generates codetoincrementitsargument by 1:

bump(x)
is

X=x41
A’'macro can have as.many arguments.as you want, but only the first nine are
accessible, through $1t0:$9. (The'macroname itself is $0.) Argumentsthatare
not supplied are replaced by null strings, so we can define a macro ¢at which
simply concatenatesitsarguments, like this:

define{cat, $1$2$3$4$5$637$889)
Thus

cat{x, y, z)
isequivalentto

Xyz

The arguments $4 through $9 are null, since no-corresponding arguments were
provided.

Leading -unquoted blanks, tabs, or newlines that occur during ‘argument
collection are discarded. All other white space isretained. Thus:

define(a, b <)

defines*‘a’tobe“b ”.

XENIX Programmer’s Guide

Argumentsare separated by commas, but parentheses are.counted properly, so
acomma protected by parentheses does not terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally “(b,c)". And of course a
bare comma or parenthesiscan be inserted by quotingit.

B.8 Using Arithmetic Built-ins

M} provides two built-in functions for doing arithmetic on integers. The
simplest is incr, which incrementsits numeric argument by 1. Thus, tohandle
the common programming situation ‘where you want avariable to be defined as
onemorethan N, write

define(N, 100)
define(N1, ‘incr(N))

Then “N1""is defined as one more:than the current value of “N”°,

The more general mechanism for arithmetic is a built-in called eval, which is
capableof arbitrary arithmetic onintegers. It provides the following operators
{in decreasing order of precedence):

unary 4 and -

s% or © (exponentiation)

+ [% (modulus)

+ -

== l= < <= > >=
! (not)

& or &&(logical and)

lor |l (logical or)

Parentheses may be used to group operations where needed. All the operands
of an.expression given to.eval must ultimately be numeric. Thenumericvalue
of a true relation (like 1>0) is 1, and false is 0. The precision in eval is
implementation dependent.

Asasimpleexample, suppose we want “M” to be “2+#N+1". Then

define(N, 3)
define(M, ‘eval(2+#+N+1)")

As a matter of principle, it is advisable to quote the defining text for a macro
unlessitis very simple indeed (say just a number); it usually gives the result you
want,and is a good habit to getinto.

M4: A Macro Processor

B.7 Manipulating Files

You can include a ‘new file iin the input at-any time by the built-in function
include:

include(filename)

inserts the contents of filename in place of the include command. The
contentsof the file isoften a'set of definitions. The valueof include (thatiis, its
replacement text) is the contents-of the file; this can be captured in definitions,
ete.

It is a fatal error if the file named in include cannot be accessed. To get some
control over this situation, the alternate form sinclude can be used; sinclude
(for “‘silentinclude”} says nothing and continuesif it can’t-access the file.

It is also possible ‘to divert the output of -m4 to temporary files during
processing, and output the collected material upon command. M4 maintains
nineof these diversions,numbered 1 through9. If yousay

divert{n)
all subsequent output is put'onto the end of a temporary file referred toas“n®.
Diverting to ‘this file is stopped by ‘another divert command; in particular,
divertor divert(0) resumesthenormaloutput process.
Diverted text is normally output all'at once at the end of processing, with the
diversions -output in numeric order. It is possible, however, to bring back
diversionsat any time, that is, to append them tothe current diversion.
undivert
brings back all diversions in numeric order, and undivert with arguments
brings back the selected diversions in the order given. The act of undiverting
discards the diverted stufl, as does diverting into a diversion whose number:is

not between 0.and@inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted
materialisnot rescanned for macros.

The built-in divnum returns the number of the currently active diversion.
Thisiszeroduringnormal processing,.
B.8 Using System Commands

You can run any program in the local .operating system with the syscmd
built-in. Forexample,

B-7

XENIX Programmer’s Guide

syscmd(date)

runsthedate command. Normally, sysemd would be used tocreateafilefor a
subsequentinclude.

To facilitate making unique file names, the built-in maketemp is provided,
with specifications identical to the system function mktemp: a string of
“XXXXX” in the argumentisreplaced by the processid of the current process.
B.2 Using Conditionals

There is a built-in called ifelse which enables you to perform arbitrary
conditional testing. Inthesimplest form,

ifelse(a, b, ¢, d)
compares the two strings a and b. If these are identical, ifelse returns the
string ¢; otherwise it returns d. Thus, we might define a ‘macro called
compare which compares twostringsand returns“yes or “no” if they are the
sameor.different.

define{compare, ‘ifelse($1, $2, yes, no)’)
Notethe quotation marks, which prevent too-early-evaluation of ifelse.

If the fourth argument ismissing, it is treated asempty.

ifelse-can-actually have any number of arguments, and thus provides alimited
form of multi-way decision capability. Intheinput

ifelse(a, b, ¢, 4, ¢, f, g)
if the string amatches the string 4, the resultis ¢. Otherwise, il disthe same as
e, theresultis f. Otherwise:the resultis.g. If the final argument is omitted, the
resultisnull, so

ifelse(a, b, ¢)

is-¢if amatches b, and nullotherwise.

B.10 Manipulating Strings

The built-in len returns the length of the string that makes up its argument.
Thus

len{abedef)

is 6, and

B-8

M4: A Macro Processor

len((a,b)}

is 5.

The built-in substr can be used to produce substringsof strings. Forexample
substr(s,1,n)

returns the substring of s that starts at position ¢ {origin zero), and is n
characterslong. If nisomitted, the rest.of the stringisreturned, so

substr(‘now is the time’, 1)

ow is the time
If for nareout of range, various sensible things happen.
The command

index(21,22)

returns the index (position) in &1 where the string 22 occurs, or -1 if it doesn’t
occur. As withsubstr, theorigin for stringsis0.

The built-in translit.performs character transliteration.
translit(s, [,)

modifies £ by replacing any character found in f by the correspondingcharacter
of't. Thatis

translit(s, aeiou, 12345)
replaces the vowels by the corresponding digits. If t is shorter than f,
charactersithat don’t have anentry in tare deleted; as alimiting case, if tisnot
present at all, charactersfrom fare deleted from s. So

translit(s, aeiou)
deletesvowelsfrom “s”.
There is'also.a built-in called dnl which deletes all characters that follow it up

to-and including the next newline. It is useful mainly for throwing away empty
linesthatotherwise tend to.clutter up m4 output. Forexample, if yousay

B-9

XENIX Programmer's Guide

define(N, 100)

define(M, 200)

define(L, 300)
the newline at the end of each line isnot part-of the definition, so it is copiedinto
the output, where it may not be wanted. If you add.dnl to each of these lines,
the newlines will disappear.
Another way to achieve this, is

divert(-1)
define(...)

divert

B.11 Printing

The built-in ‘errprint writes its arguments out .on the standard error file.
Thus, you can'say

errprint(‘fatal error’)
Dumpdef is a debugging aid that dumps the current definitions of defined

terms. If there are no arguments, you get everything; otherwise you get the
onesyouname asarguments. Don’tforget the quotation marks.

B-10

ndex

c option

C compiler 2-8
D option

C compiler 2«13
E option

€ compiler 2-15
h -option

lint 3-9

I ‘option

C compiler 2-14
1 option

C compiler
o option

C compiler 2-5
0 option

C compiler 2-10"
p option

C compiler 2-12
P option

C compiler 2-15
s option

C compiler 2-10"
X option

C compiler 2-10"
a option

lint 3-8
b option

lint 3-4
¢ option

lint 3-7
n option

lint 3-12

p option

lint 3-12

=u -option

lint 3-3
-v option

lint 3-11

lint 3-3
=X option

lint 3-2
Adb

basic tool 1-1
ar

description 1=2
As

basic tool 1-2
Assembler See As
assembler

error messages 2=15
C compiler

-1 option, include file

search 2«14
-1 option

library linking 2-9

-0 option

a.,out file naming 2-5

-0 option
output optimization
2-10"

-P -option, preprocessor

invocation 2-15
-p -option, profiling
code 2-12
-5 option, output
stripping 2-10%
-S option

assembly language

Programmers Guide

tput 2-12

ption, external symbol
y 2-10"

ption, symbol saving
o"

ile 2-12

t file

fault output file 2-3

ning 2-4

nbly language

ut 2-12

ting

ject files 2=8

tion

ero definition 2-13
r messages 2-15
2ssion

aluation order 3-11
tion calls

anting 2-12

ide file

arch 2«14

Ll discard 2-10%

ary

tking 2-9

ng

rary 2-9
directives,

it 3-1

)

"nition 2-13
processor 2=15

ut file write out 2«

.ple source files 2-3
it file
ration 2-U

optimization 2-10"
output file See a.out
file
output
assembly language
output 2-12
stripping 2-10"
preprocessing 2-13
preprocessing 2«15
profiling code 2~12
source file
linking 2-4
multiple 2-4
single 2.2
strip command, output
stripping 2-10"
symbol table 2-10%
language
compiler See cc
usage check 1-1
yace 9-1
program
string extraction 1-3
programming language 11
programs
creating 1-1
source file
compilation See C
compiler 2-2

C-shell

command history
mechanism 1-3
command language 1-3

cc ‘command

error messages 2-15
source file
compiling 2-3

o

imand
ixecution 1-3
.nterpretation 1-3
5CCS :commands See SCCS
3CCS See SCCS
1
lescription 1-3
rugger See Adb
.ta See SCCS
sk calculator
specifications 9-31
*or message file
rreation 1-3
:cution profile
of 2-12
e
irchives 1-2
1lock counting 1-3
theck sum computation 1-3
'rror message file See
irror message file
yetal dump 1-3
‘elocation bits
‘emoval 1-3
*emoval

SCCS use See SCCS
jource Code Control System
3ee SCCS
symbol removal 1-3
sext search, print 1-3
iTRAN
onversion program 8-20"
tadecimal dump 1-3

rasic tool 1-2

v

-11 flag
library access 8-5

0, end of file

notation 8«12

a.out file
contents 8-5

action
default 8-8
description 8-3
repetition 8-9
specification 8-8

alternation 8-7

ambiguous source rules 8-

12

angle brackets (<>)
operator character B8-2u4

operator character 8-U
start condition
referencing 8-16
arbitrary character
match 8-6
array size change 8-24
asterisk (%)
operator character 8-25

operator character 8-U4
repeated expression
specification 8-6
automaton interpreter
initial condition
resetting 8-16
backslash (\)
C escapes 8-A
backslash (\)
operator character 8-24

backslash (\)
operator character . 8-4

NIX Programmers Guide

backslash (\)
operator character
escape 8-4

backslash (\)
operator character
escape 8«6

BEGIN
start condition
entry 8-16

blank character
quoting 8-4
rule -ending 8-4

blank, tab line

beginning 8-17

braces ({})
expression
repetition B8-8
operator character

operator character
brackets ({1])
character class
specification B8-5
character class use

operator character

operator character
operator character
escape 8-5
buffer overflow 8=13
C escapes 8-4
caret (") operator
left context
recognizing 8-15
caret (")
character class
inclusion 8-5

8-25
8-4

8«1
8-2u

8-4

context sensitivity 8-7
operator character 8-24

operator character 8-U
string complement 8«5
character class
notation 8«1
specification 8«5
character set
specification 8-22
character
internal use 8-22
set table 8-22
set table 8-24
translation table See
set table
context sensitivity 8-7
copy classes 8-17
dash (=)
operator character 824

character class

inclusion 8<5

operator character :8-4

range indicator 8-5
definition

expansion 8-8

format B8-18

placement 8-8
definitions

character set table 8-

22

contents 8-18

contents 8-23

format 8-23

location B8-18

specification 8-17
delimiter
discard 8-18
rule beginning
marking 8-1
source format §-2
third delimiter,
copy 8-18
description 1-2
description 8-1
dollar sign ($) operator
right context)
recognizing 8-15
dollar sign ($)
context sensitivity 8-7

end of line
notation 8-1
operator character 8-24

operator character 8-l
dot (.) operator See
period {(.)
double precision constant
change 8-21
ECHO

format ‘argument, data

printing 8-9
end-of=file

0 handling 8-12

yywrap routine 8-12
environment

change 8«15
expression

new line illegal 8-4

repetition B8-8
external character
array 8-9

flag
environment change 8-15

FORTRAN conversion program
g§-20"
grouping 8-7
170 1ibrary See library
I/0 routine
access B8-11
consistency 8-11
input () routine 8-11
input routine
character 1/0
handling 8-22
input
description 81
end-of-file, 0
ignoring 8-8
manipulation
restriction 8-15
invocation 8-l
left context 8-7
caret (") operator 8«15

sensitivity 8-15
lex.yy.c file 8-5
lexical analyzer
environment change 8-15

library
access B8-5
avoidance 8-5
backup limitation 8-12
loading 8-19
line beginning match 8-7
line ‘end mateh 8-7
loader flag See -11 flag

IX Programmers Guide

ookahead
haracteristic 8-12
ookahead characteristic
8-10m
atch count 8-9
atching

occurrence counting 8-
13

preferences 8-12
ew line

illegality 8-4
2wline

escape 8-23

matching 8-<13
2tal escape 8-6
perator character
escape 8-4

quoting 8-4
perator characters
aaSee also Specific
Operator Character
designated 8-24
escape 8-5

escape 8-6

listing 8-4

literal meaning 8-4
>tional expression
specification 8-6
atput (e) routine 8-11
utput routine

character I/0

handling 8-22
arentheses (())
grouping 87

operator character 8-4
arenthesis (())
operator character 8-25

parser generator
analysis phase 8«2
percentage sign (%) :)
delimiter notation :
(%2%) 8-1
operator character 8-4
remainder operator 8-19

source segment
separator 8-8
period (.) operator
designted. 8-24
period (.)
arbitrary character
match 8<=6
newline no match 8-13
operator -character 8-4
plus sign (+)
operator character 8-25

operator character 8-4 }
repeated expression /
specification 8-6

preprocessor statement

entry 8<18

question mark (?)
operator character 8-25

operator character 8-4
optional expression
specification 8-6
quotation marks, double
(\o
real numbers rule 8-18
regular expression
description 8-3
end indication 8-3

operators See operator
characters

rule -component 8«3
EJECT 8-14

epeated expression
specification 8-6
ight context

dollar sign ($)
operator 8-15
ule

active 8-16

real number 8-18
ules

components 8-3

format 8-24

emicolon (3)

null statement 8-8
lash (/)

operator character 8=25

operator character 8<4
trailing text 8-7
ource definitions
specification 8-17
ource file

format 8-23

surce program
compilation B8-U
burce

copy into generated
program 8-17
description 8-1

format 8-17
format 8-2
interception

failure 8-17
segment separator 8-8

spacing ‘character
ignoring 8-9
start condition 8-7
entry B8-16
environment change 8-15

start conditions

format 8-23
location 8-23
start

abbreviation 8-16
statistics gathering 8-
20"
string

printing 8-3
substitution string

definition See

definition
tab line beginning See
blank, tab line beginning

text character
quoting 8-l
trailing text 8-T
unput (¢) routine 8-11
unput routine
character 1/0
handling 8-22
unput
REJECT
noncompatible 8-15

lex

unreachable statement 3-4

Lex

vertical bar (})
action repetition 8-9
alternation B8=7

XENIX Programmers Guide

operator character 8«25
operator character 8«4
wrapup See yywrap routine

Yacc interface

tokens 8-19

yylex () 8-18
Yace

interface 8«2

library loading 8-19
yyleng variable 8-9
yyless ()

text reprocessing 8-10

yyless (n) 8-10
yylex () program
Yace interface 8-18
yylex program
contents §-1
yymore () 8-10

yytext
external character
array B8-9

yywrap () 8+20

yywrap () routine 8-12
Library

conversion 1=-2

maintenance 1-2

ordering relation 1-2

sort 1=2
linker

error messages 2-15
Lint

«h option 3-9

-a option 3-8

-b option 3-4

~¢ option 3-T7
«ly directive 3-12
=n option 3-12
=p option 3=12
=u option 3-3
=y .option
turnon 3-11
unused variable report
suppression 3«3
=% option 3-2
ARGSUSED directive 3-11
ARGSUSED directive 3=12
argument number comments
turnoff 3-11
assignment of long to int
check 3-8
assignment operator
new form 3-10%
old form, check 3«9
operand type
balancing 3<6
assignment, implied See
implied assignment
binary operator, type
check 3-6
break statement
unreachable See
unreachable break
statement
C language check 1-1
C program check 3=1
C syntax, old form,
check 3=9
cast See type cast
conditional operator,
operand type balancing 3-6

onstant in conditional
rontext 3-9
ronstruction check 3-1
sonstruction check 3-8
ontrol information
low 3-11
legenerate unsigned
:omparison 3-8
lescription 3-1
lirective
defined 3-11
embedding 3-11
:numeration, type
theck 3-6
rror message, function
lame 3-5
)xpression, order 3-10"
ixtern statement 3-2
ixternal declaration,
‘eport suppression 3-2
*ile
library declaration file
identification - 3-12
‘unction
error message 3-5
return value check 3-5
type check 3-6
unused See unused
function
mplied assignment, type
heck 3«6
nitialization, old style
‘heck 3-10"
Adbrary
compatibility cheek 3~
12
compatibility check
suppression 3-12

directive

acceptance 3«12

file processing 3-12
LINTLIBRARY directive 3-12

loop check 3=l
nonportable character
check 3-7
nonportable expression
evaluation order check
3-10"
NOSTRICT directive 3-11
NOTREACHED directive 3-11
operator
operand types
balancing 3-6
precedence 3-9
output turnoff 3-11
pointer
agreement 3-6
alignment check 3-10"
relational operator,
operand type balancing 3-6

scalar variable check 3-11

source file, library
compatibility check 3-12
statement, unlabeled
report 34
structure selection
operator, type check 3-6
syntax 3-1
type cast
check 3-T7
comment printing
control 3-7

NIX Programmers Guide

type check
description 3«6
turnoff 3-11
areachable break
statement, report
suppression 3=l
inused argument
report suppression 3-3

mused function, check 3-2
mused variable, check 3=2

TARARGS directive 3-12

rariable
external variable
initialization 3-4
inner/outer block
conflict 3-9
set/used '
information 3-3
static variable
initialization 3-4
unused See unused
variable

der See 1d

P

int use See Lint

der

leseription 12

W description
ros
reprocessing 1-2
ntainer See Make
‘e command
rguments 44

syntax Y-l
Make

~d option 4=13

=n option 4-13

«t option U4-13

¢ suffix 4-9

«DEFAULT Y45

of suffix 4«9

«IGNORE 4-5

1 suffix 4.9

«0 suffix 49

«PRECIOUS 45

.r suffix U9

«8 suffix 4-9

+SILENT 4.5

¥ suffix 4.9

Jyr suffix 4«9

argument quoting 4-6

backslash (\)
description file
continuation 4-2

basic tool 1-2

command argument
macro definition 4-6

command string

" substitution 4-5

command string
hyphen (-) start 4.5

command
form 41
location 4-1
print without
execution #4-13

dependency line

substitution 4-=5

dependency line
form Y1

lescription file
comment convention 4-1

macro definition U-6
lescription filename
argument U-U
ollar sign ($)
macro invocation U6
qual sign (=)
macro definition #4-5
‘ile generation 4-5
‘ile update U-1
‘ile
time, date printing 4-
13
updating U4-13
yphen (<)
command ‘string
start 4-5
acro definition
analysis U-6
argument 4-U
description U<5
;acro
definition 4-6
definition override 4-6

invocation U4-6
substitution U4-5
value assignment H-6
edium sized projects H-1
etacharacter
xpansion 4-1
umber sign (#)
description file
comment 41
bject file
suffix 4-9

option argument

use 4~
parentheses (())

macro enclosure 4=6
program maintenance 4-1
semicolon (3)

command

introduction 4-1
source file

suffixes 49
source grammar

suffixes #-9

suffixes
list #4-9
table U4=9

target file
pseudo-target files 4«5

update U4-13
target filename

argument 4-4
target name omission 4-3
touch option See =t

option
transformation rules
table 4-9

troubleshooting' 4-13
Notational conventions 1=5
Object files

creating 2-8
Pipe

SCCS ‘use See SCCS
prof command 2-12
Program :development 1-1
Program

maintainer See Make
ps -command

C-shell use See C-shell

IX Programmers Guide

tation marks, single ('')
-shell use See C-shell
1ib

escription 12

command

CCS use See SCCS

S, source code

ontrol 1«3
S
M% keyword

g-file line
precedence 5-=30
a option

login name addition
use 5-23
d flag ‘ .
flags deletion 5-16
d .option

data specification
provision 5=20"
flag removal 5-16

e option

delta range

printing 521

file editing use 5-7
login name removal 5-24

f option
flag initialization,
modification 5-15
flag, value setting 5-
16
g option
output suppression 5«
30m
p-file regeneration S-
26

=h option
file audit use 5«25
-1 flag
keyword message, error
treatment 5-15
~1i option
delta inclusion 1list
use 5-28
-k option
g-file regeneration 5-
26
=1 option
delta range
printing = 5-21
l-file creation 5-29
-m option
effective when 5-18
file change
identification 5-30"
new file creation 5<27
=n -option
%M% keyword value use
530"
g-file preservation 5=
12
pipeline use 5-30"
-p option
delta printing 5-30%
output effect 5-11
-r option
delta creation use 5-22

delta printing use 5-21
file retrieval 5-9

release number
specification 5<27

; option
output suppression 5-28

, option

delta retrieval 5-11
file initialization ©5-
19

file modification 5-19
: ‘option

delta exclusion list
use 5-28

r .option

comments prompt
response 5«17

new file creation 5«27
1 key

file audit use 5-26
“#) string

file information,
search 5-31

imin .command

file administration 65«
25

file «checking use 5-25
file creation 5<5

use authorization 5«6
iministrator

description 5-4
‘gument

minus sign{(-) use
types designated 5-4
~anch delta

retrieval 5-10%

anch number

description 5-2

ic command

commentary change 5-17

ceiling flag
protection 5«24
checksum
file corruption
determination 5-25
command
argument See argument

execution control 5-U

explanation 5-26
comments

change procedure 5-17

omission, effect 5-28
corrupted file

determination 5-25

processing

restrictions 5-25

restoration 5-26
d flag

default

specification 5-16
d-file

temporary g-file 5-4
data keyword

data specification

component 5-20"

replacement 5-20"
data specification

deseription 5-20"
delta command

comments prompt 5-8

file change

procedure 5-8

g-file removal 5-12

p-file reading 5-7

p-file reading 5-8
delta table

delta removal,

1-13

ENIX Programmers Guide

-

effect 5-31

description 5-17
delta

branch delta See branch

delta

defined 5«1

defined 5«2

exclusion 528

inclusion 5«28

interference 5-29

latest release

retrieval 511

level number See level

number

name See 1SIDv

printing 5<21

printing S<30%

range printing 5-21

release number See

release number

removal 5=31
descriptive text

initialization 5-19

modification 5«19

removal 65<19
diagnostic output

-p option effect 5-12
diagnostics

code as help

argument 5-12

form 5-12
directory use 5=-1
lirectory

file argument

application 5-4

x-file location 5-3
rror message

code use 5-12

form 6-12
exclamation point (1)
MR deletion use 5-19
file argument
description 5-U
processing 5<i
file creation
comment line
generation 5-28
commentary 527
comments omission,
effect 5-28
level number 5«27
release number 5<27
file protection 523
file
administration 5-25
change identification
5,30"
change procedure 5«8
change, major 5«9
changes See delta
checking procedure 525

comparison 5§-32
composition 5-16
composition 5«2
corrupted file See
corrupted file
creation 5«5

data keyword See data
keyword

descriptive text
description 517
descriptive text See
descriptive text
editing, ~e option
use 5«7

irouping 5-1
dentifying
information 5<31
.ink See link
nultiple :concurrent
:dits 5-22

1ame arbitrary 5-12
1ame See link

1ame, S use 5-5
parameter
initialization,
nodification 5-19
printing S5=20"
protection methods 5=23

removal 55

retrieval See get

command

x-file See x~file

ags

deletion 5-16

jnitialization 5-15

modification 5-15

setting, value

setting 5-16

use 5-16

oor flag

protection 5-2U

file

creation 5=3

creation date, time

recordation 5-13

description 5-3

line identification
5_3 0"

line, $M% keyword value
5_30“

ownership 5-3
regeneration 5=26
removal, delta command
use 5-12

temporary See d-file

get command

-e option use 5-7
concurrent editing,
directory use 5-21
delta inclusion,
exclusion check 5-29
file retrieval 5=6
filename creation 5-6
g-file creation 5-3
message 5-6
release number
change 5-9

help -command
argument 5-12
code use 5-12
use 5«26

i flag
file creation,
effect 5-14

ID keyword See keyword

jdentification string See
1SID"

j flag
multiple concurrent
edits specification 5-
22

keyword
data See data keyword

format 5-13

lack, error
treatment ©5-15

1-15

NIX Programmers Guide

use 5«13
l-file
contents 5«3
ereation 5-29
level number
delta component 5-2
new file 5<27
omission, file
retrieval, effect 5-9
link
number restriction 5«2

lock file See z-file
lock flag

R protection 5-24
minus sign (<)

option argument use 5-l

minus sign(-)
argument use 5«4
mode
g-file 5-3
MR
commentary supply 5«17

deletion 5-18

new file creation 5-27
multiple users 5-4
option argument

description 5=l

processing order 5-4
output

data specification See

data specification

suppression, =g option

5-30"
suppression, -s
option 5-28

16

write to standard
output 5-11
p-file
contents 5.3
contents 5«7
creation 63
delta command
reading 5-8
naming 5«3
ownership 5-3
permissions 5-3
regeneration 5-26
update 5=3
updating 5-U
percentage sign (%)
keyword enclosure 5-13

piping 5-28
-n option use 530"
prs ‘command
file printing 5=20"
purpose 5«1
q file
use 5l
R
delta removal check 5~
3
release number
-~r -option,
specification 5-27
change 65-2
change procedure 5-=9
delta component 65-2
new file 6-27
release
protection 5-2U
rm command
file removal 5«5

ndel command

delta removal 5-31

resdiff command

file comparison 5«32

zquence number

description 5-2

ab character

-n option, designation
5_30"

ser list

empty by default 5-23

login name .addition 5-

23

login name removal 5-24

protection feature 5-23

ser name
list 5-23
flag

new file use 5-16

1at ‘command

file information 5-31
~ite permission

delta removal 5-31
-file

directory, location 5-3

naming procedure 5-3
permissions 53
temporary file copy ©5-3

use 5-3

INIX command

use precaution 5=25
-file

lock file use 53

ownership 5-3
permissions 5-3

1SID" components
1SID"* .delta printing
use
SCS
output

piping 5-28
Semicolon (3)
C-shell use See C-shell
Software development
described 1-1
Source Code Control System:
See SCCS
Source files 1-1
strip
description 1-3
sum
description 1-3
Symbol
name list 1-3
removal 1=3
syne
description 1-3
Tags file
creation 1-3
Text editor
creating programs 1-1
tsort
description 1.2
vi, the screen-oriented text
editor 1-1
XENIX file
identifying
information 5-31
Yace
% token keyword

117

‘NIX Programmers Guide

union member name

association 9-30"
%left keyword 9-=20"
%left keyword

union member name

association 9-30"
%left token

synonym 9-42
¥nonassoc keyword 9«21

union member name

association 930"
%nonassoc token

synonyms 9-U2
%prec keyword 9-21
fprec

synonym 942
%right keyword 9-21

union member name

association 930"
Iright token

synonym 9-42
ftoken

synonym 9-42
ftype keyword 9-31
)

0 key"
=ly argument, library
access 9-25
-v -option
y.output file 9-13
0 character
grammar rules,
avoidance 9-5
accept action See parser
iccept simulation 9-29
action
0, negative number Q-
29

conflict source 9-17
defined 9-7

error rules 9-23

form 9-U42

global flag setting 9-

- 28

input style 9-26
invocation Q-1
location 9-8
nonterminating 9-8
parser See parser
return value 9<30"
statement 9-7
statement 9-8
value in enclosing
rules, access 9-29
ampersand (&)
bitwise AND
operator 9«31
desk calculator
operator 9-31
arithmetic expression
desk calculator 9-31
parsing 9-20"
precedence See
precedence
assocliativity
arithmetic expression
parsing 920"
grammar rule
association 09-22
recordation 922
token attachment 9=20"

asterisk (%)
desk calculator
operator 9-31

N

backslash (\)
escape character 9-5
percentage sign (%)
substitution 9-41
binary operator
precedence 9-21
blank character
restrictions 9-5
braces ({})
action 9-8
action statement
enclosure 9=7
action, dropping 9-42
header file -enclosure
9_30"
colon (3)
identifier, effect 9-33

punctuation 9-5
comments
location 9-5
conflict
associativity See
associativity
disambiguating
rules 9-17
message 9-19
precedence See
precedence
reduce/reduce
conflict 9-17
reduce/reduce
confliet 9-22
resolution, not
counted 9-22
shift/reduce
conflict 9-17

shift/reduce
conflict 9-19
shift/reduce
conflict 9-22
source 9-17
declaration section
header file 930"
declaration
specification file
component 9-U
description 1-2
desk calculator
specifications 9-31
desk calculator
advanced features 9=35

error recovery 9-36

floating point

interval 9-35

scalar conversion =36
dflag 9-28
disambiguating rule 9-17
disambiguating rules 9-17
dollar sign ($)

action significance 9-7

empty rule 9=27
enclosing rules,
access 9-29
endmarker
lookahead token 9-12
parser input end 9-6
representation 9-6
token number 9-10"
environment 9-25
error action See parser
error token
parser restart 9-23

1=-19

grammers Guide

ing 9-23
sociating

cation 9-22

r restart 9-23
ation 9-29

ok statement G-24
characters 9-5

1 interger

e 9-26

1 flag See global

ig point intervals
'k calculator

flag

al analysis 9-28
* rules 9«1

iracter avoidance

ced features 0-35
uity 9-15
dativity

riation 9-22

le location 9-U42
' rule 9-27

' token 9-23

it 9-5

., style 9-26
recursion 9«27
side

;ition 9<5
3 9«5
rs 9201
idence

riation 9-22
e action 9=11

reduction 9-12

revwrite Q<17

right recursion 9-27

specification file

component 9-H4

value 9-7
header file, union
declaration 9-30"
historical features 941
identifier

input syntax 9-33
if-else rule 9-18
if-then-else
construction 9-17
input error detection 9-3
input language 9-1

input
style 9-26
syntax 9-33
keyword 9-20%
keyword

reservation 9-29
union member name
association 930"
left association 9-16
left associative
reduce implication 9-22

left recursion 9=27
value type 9-31
lex
interface 8-2
lexical analyzer
construction 9-10"
lexical analyzer
context dependency 9-28

afined 9-1

:fined 9-9

idmarker return 9<6
loating point
mstants 9-37
mmction 9-2

lobal flag
tamination 9-28
lentifier analysis

2X 9-10"
sturn value 9-30"
rope 9-8

»ecification file
mponent 9=l
rrminal symbol See
rminal symbol
yken number
jreement 9-9
.cal tie-in 9-28
rary 9-25

‘ary 9-26

wral

'fined 9-5
limiting 9-41
mgth 941

tahead token 9-10"
:ahead token
.earing 9<24
‘ror rules 9-23
2)

| program

ts -sign (~)

sk .caleulator
erator 9-31

'S
mposition 9<5
mgth 9<5

reference 9-4
token name See token
name
newline character
restrictions 9«5
nonassociating
error implication 9«22

nonterminal name
input style 9-26
representation 9-5
nonterminal symbol 9«2
empty string match 9-6
location 9-6
name See nonterminal
name
start symbol See start
symbol
nonterminal
union member name
association 9-31
octal interger
0 beginning 9-31
parser
accept action 9-12
accept simulation 9-29
actions 9-11
arithmetic expression
9_20"
conflict See -conflict
creation 9-20"
defined 9-1
description 9-10"
error .action 9-12
error handling See
error
goto action 9-12

1=21

ENIX Programmers Guide

initial state 9-15

input end 9-6

lookahead token 9-11

movement 9-11

names, yy prefix 9-9

nonterminal symbol See

nonterminal

production failure 9.3

reduce action 9-11

restart §-23

shift action 9-11

start symbol

recognition 9-6

token number

agreement 9-9
percentage sign (%)

action 9-8

desk -calculator mod

operator 9«31

header file enclosure

9_30"

precedence keyword Qw

20"

specification file

section separator Q-4

substitution 9-41
plus sign (+)

desk calculator

operator 9-31
precedence

binary operator 9-21

change 9-21

grammar rule

association 9-22

keyword 9-20"

parsing function 9-20"

=22

recordation 9«22
token attachment 920"

unary operator 9-21
program

specification file

component 9l
punctuation 9«5
quotation marks, double
(9«41
quotation marks, single

(*")

literal enclosure 9-5
reduce action See parser
reduce command

number reference 9-20"

reduce/reduce conflict 9-
17
reduce/reduce conflict 9-
22
reduction conflict See
reduce/reduce conflict
reduction conflict See
shift/reduce conflict
reserved words 9-28
right association 9-16
right associative

shift implication 9-22

right recursion 9-27
semicolon (;)
input style 9-26
punctuation 9-5
shift action See parser
shift command
number reference 9-20"

ft/reduce conflict 9-17
ft/reduce conflict 9-19
ft/reduce conflict 9-22

ple~if rule 9-18
sh (/)

esk calculator
perator 9-31
2ification file
ontents 9-U
exical analyzer
nclusion 9-4
ections separator 9-i
cification files 9=2
rt symbol
escription 9-6
ocation 9-6

bol synonyms 9-41
character
estrictions 9-5
minal symbol 9-2
en name
eclaration 9«6
nput style 9-26
en names 9-10"
en number 9-9
greement 9-9
ssignment 910"
ndmarker 910"

en
ssociativity g-20"
efined 91

rror token See error
oken
ames 9-U

organization 9-1
precedence 9-20"
unary operator
precedence 9-21
underscore sign ()
parser 9-14
union
copy g9-30"
declaration 9-30"
header file 930"
name association 9-30"

yace
unreachable statement 3-4
Yace
value stack 9-30"
value stack
declaration 9-30"
floating point scalars,
intergers 9-36
value
typing 9-30"
union See union
vertical bar (1)
bitwise OR operator 9-
31
desk calculator
operator 9-31
grammar rule
repetition 9-5
input style 9-26
y.output file 9-13
parser checkup 9-22
y.tab.c file 9-25
y.tab.h file 9-30"
YYACCEPT 9-29
yychar 9-26

1=23

XENIX Programmers Guide

yyclearin statement 9-24
yydebug 9-26
yyerrok statement 9-24
yyerror 9-25
YYERROR 9-36
yylex 9-25
yyparse 9-25
YYACCEPT effect 0-29
YYSTYPE 9-30"
XENIX Timesharing
system 1-1

1-24

